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The popularity of Android mobile phones has caused more cybercriminals to 
create malware applications that carry out various malicious activities. The 
attacks, which escalated after the COVID-19 pandemic, proved there is great 
importance in protecting Android mobile devices from malware attacks. 
Intelligent Mobile Malware Detection will teach users how to develop 
intelligent Android malware detection mechanisms by using various graphs 
and stochastic models. The book begins with an introduction to the Android 
operating system accompanied by the limitations of the state-of-the-art static 
malware detection mechanisms as well as a detailed presentation of a hybrid 
malware detection mechanism. The text then presents four different system call-
based dynamic Android malware detection mechanisms using graph centrality 
measures, graph signal processing and graph convolutional networks. Further, 
the text shows how most of Android malware can be detected by checking the 
presence of a unique subsequence of system calls in its system call sequence. 
All the malware detection mechanisms presented in the book are based on 
the authors’ recent research. The experiments are conducted with the latest 
Android malware samples, and the malware samples are collected from public 
repositories. The source codes are also provided for easy implementation of the 
mechanisms. This book will be highly useful to Android malware researchers, 
developers, students and cyber security professionals to explore and build 
defense mechanisms against the ever-evolving Android malware.
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Preface

Nowadays, smart phones are widely used for making phone calls, sending mes-
sages, storing personal data, browsing the Internet, online banking and more.
Because of this, smart phones have become targets for cyber-attacks involving mal-
ware. Cyber criminals are targeting smart phones to spread malware in order to steal
money and confidential data stored in those phones. Malware applications such as
trojan SMS and trojan banker can cause great financial loss to users. Trojan SMS can
send SMS messages to premium rate numbers in the background and trojan banker
can steal the online banking details of a user without the user’s knowledge. Therefore,
it has become very essential to secure smart phones against malware attacks.

With the widespread usage of the Android operating system, the number of mal-
ware targeting Android smart phones has risen several folds. Almost 98% of smart-
phone malware are designed for Android devices. Most of the existing anti-malware
products are still relying on static and signature-based malware detection mecha-
nisms. Static analysis is a method of detecting malware application by analyzing the
source code of the application without executing it. In signature-based analysis, the
hash value of an application is compared with a list of hash values of knownmalicious
applications for identifying whether the application is one among the listed malware.
These detection mechanisms can be easily evaded by code transformation attacks.
Hence, it is essential to develop novel malware detection mechanisms based on dy-
namic analysis for accurate malware detection. Dynamic analysis mechanisms con-
sider runtime information such as system metrics, network level information, system
calls and more for detecting the malicious behavior of the application. A malicious
application typically invokes sensitive APIs in an automated manner to perform priv-
ileged operations. This automated invocation of API calls gets reflected in the system
call sequence of the application. Hence, system calls are considered as one of most
effective features for capturing the malicious behavior of an application.

Most of the existing system call-based malware detection mechanisms consider
the system call frequencies or co-occurrences in the system call sequence for mal-
ware detection. The system call frequency-based mechanisms use machine learning
classifiers to detect malware based on the independent occurrences of each individual
system call in the entire sequence. These mechanisms do not consider the relation-
ships among the system calls in a system call sequence. In system call co-occurrence-
based mechanisms, the mutual relationships between system calls in the sequence
are considered for malware detection. However, these approaches do not consider the
complex relationships among the system calls crucial for identifying the malicious
behavior of an application.

ix



x Preface

This book is an attempt to present representation and characterization of Android
malware using graph and stochastic models and use such representations and charac-
terizations to detect Android malware. First, the state-of-the-art static malware detec-
tionmechanisms and their limitations are presented in this book. This will be followed
by detailed presentations of a hybrid malware detection mechanism and four different
system call-based dynamic Android malware detection mechanisms based on recent
research by the authors. This book will teach readers how to develop effective An-
droid malware detection mechanisms using graph centrality measures, graph signal
processing and graph convolutional networks. The source codes are also provided in
the appendix for easy implementations of the mechanisms. This book will be highly
useful for Android malware researchers, developers, students and cyber security pro-
fessionals.

In Chapters 1 and 2, the basics of Android OS andAndroidmalware are discussed.
In Chapter 3, state-of-the-art static malware detection mechanisms and their limita-
tions are presented. In Chapter 4, a tree augmented naive (TAN) Bayes-based hybrid
malware detection mechanism, which uses the conditional dependencies among rel-
evant static and dynamic features (API calls, permissions and system calls) required
for the functionality of an application, is presented. Three ridge regularized logistic
regression classifiers corresponding to API calls, permissions and system calls of an
application are used along with the TAN model for identifying whether the applica-
tion is malicious or not. In Chapter 5, a malware detection mechanism, which uses
machine learning classifiers on various centrality measures calculated from the sys-
tem call digraph of an application, is presented. In Chapter 6, the graph convolutional
neural (GCN) network is used to detect the malicious behavior from the system call
digraphs. In Chapter 7, a way to construct low-dimensional feature vectors (graph
signals) from system calls using graph signal processing (GSP) is described. These
graph signals are used as feature vectors of machine learning classifiers for identi-
fying the malicious behavior. Through the implementations of these methods, it is
shown that graph-based mechanisms are very accurate and efficient in detecting mal-
ware applications over traditional mechanisms. In Chapters 4–7, machine learning
classifiers are used to detect malware. The main problem of a machine learning ap-
proach is the difficulty in finding the properties or features that uniquely characterize
the Android malware. Toward this, in Chapter 8 it is shown that most of the Android
malware could be detected by checking the presence of a unique short system call
subsequence (malicious system call code) in its system call sequence. This detection
mechanism does not require any machine learning classifiers. Through experiments,
the existence of malicious system call code is shown in the majority of malware ap-
plications that use the system resources in the background. The book concludes with
Chapter 9, which includes conclusions, limitations and future directions for research.
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1
Internet and Android OS

Android operating system is the most widely used mobile operating system dominat-
ing the global market share. In this chapter, we provide an introduction to Android
operating system and its architecture. We also discuss about why Android operating
system is widely adopted for developing smart and scalable Internet of Things (IoT)
infrastructure. Towards the end of the chapter, we also provide a brief discussion about
the security of IoT and also about the various malware attacks in IoT till date.

Android operating system (Android OS) was developed in Palo Alto of California
in 2003 [136]. It is based on the Linux kernel and it is available as an open source
software. Due to the open source nature, the developers find it easy to build new
applications with varied functionalities. Android OS has dominated the mobile op-
erating system market with a share of 74.14% in June 2020 which clearly shows its
widespread usage. Figure 1.1 shows the market share of mobile operating systems
worldwide. The figure clearly shows the popularity of Android OS when compared
to other mobile operating systems.

iOS, 27.33%

Samsung, 0.39%

KaiOS, 0.14% Unknown, 0.14%

Linux, 0.12%

Android, 71.90%

FIGURE 1.1 Market share of mobile operating systems.
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The first version of Android known as Android 1.0 was released in September
2008. Since then, several versions have been released with various features[170]. The
following section discusses about the architecture of Android OS in detail.

1.1 Android OS
Android OS comprises of a stack of software components. Figure 1.2 shows its archi-
tecture. There are five layers in Android OS. They are:

1. Linux Kernel;
2. Libraries;
3. Android Runtime;
4. Application Framework; and
5. Applications.

LIBRARIES SQLite

Display Drivers

Keypad Driver

Camera Driver Audio Drivers

Wifi Driver

Flash Memory
Driver

Binder (IPC)
Driver

Power
Management

Home Contacts Phone Browser ..

APPLICATION

Package Manager Telephony Manager

Activity Manager Window Manager Content Providers View System

Resource Manager Location Manager Notification ManagerResource Manager

APPLICATION FRAMEWORK

LINUX KERNEL

Surface Manager Media Framework

OpenGL | ES FreeType Webkit

SGL SSL libc

ANDROID
RUNTIME

Core Libraries

DVM

FIGURE 1.2 Architecture of Android OS.
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Now, we will discuss about these layers in detail in the following sections.

1.1.1 Linux kernel
In Android, the Linux kernel constitutes the bottom layer of the software stack. The
Linux kernel can support hardware drivers and it is used to manage input and output
requests from the user. The device drivers present in the linux kernel are software
used to communicate to a particular device. For example, if we need to access the
camera and take the photos, the driver will give necessary commands to the camera
hardware to do so. The linux kernel also provides wide range of functionalities such as
process management, memory management, device management, etc. Each version
of the Android has its own linux kernel version. Android uses the kernel version 4.4
or 4.9 or 4.14 or 5.4 or 5.10 as of 2022.

1.1.2 Native libraries
On top of the linux kernel, there exists the native libraries layer which consists of
various C/C++ core libraries and java-based libraries such as SQLite, WebkitSur-
face Manger, OpenGL, SSL, libc, Graphics, Media, etc. These libraries are used for
handling different types of data. The surface manager library is used to manage the
display while the SGL and openGL libraries are used to manage 3D and 2D graphics.
The media library is used for managing and storing video and audio files and SQL
library is used for database support and WebKit library is used for web browser sup-
port. The SSL library is used to manage the security. The FreeType library is used for
font support while libc library is used to support C libraries.

1.1.3 Android runtime
Android runtime (ART) consists of core libraries andDalvikVirtualMachine (DVM).
ART forms the basis of the application framework and it helps to launch an Android
application with the libraries. The DVM is a java based virtual machine and it helps
the Android application to run its own instances of the virtual machine. The DVM
also helps to run multiple instances of the virtual machine simultaneously assuring
memory management, security, isolation and threading. The DVM also helps to run
the .dex files created from .class files. The core libraries present in the ART helps to
create Android applications using the Java language.

1.1.4 Application framework
Application Framework provides services to the application in the form of Appli-
cation Programming Interfaces (API’s). The Application Framework consists of the
following components:

• Activity Manager: The Activity Manager is used to manage the life cycle of appli-
cations.
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• Content Providers: The Content Providers manage the data sharing between appli-
cations.

• Telephony Manager: The Telephony Manager manages all the telephony related
functionalities.

• Location Manager: The Location Manager is used to get periodic updates about the
device’s geographical location.

• Resource Manager: The Resource Manager manages the various types of resources
used in application.

1.1.5 Application layer
The application layer constitutes the topmost layer. This layer consists of Android ap-
plications which are prebuilt in the system like SMS client app, Contact manager and
also the customized applications build by the developer. The applications make use
of the services of the application framework layer to build the required applications.
Android applications are developed in Java programming language[173][148]. The
main components of an Android application are given below:

• Activity: Activities provide a user interface to interact with the Android application.

• Services: This component deals with the background operations such as upload-
ing/downloading the data. The service component does not have a user interface.

• Broadcast receiver: This component deals with the external events such as incoming
SMS, reboot the device, etc.

• Content provider: It provides a consistent interface for data access between different
apps.

1.2 Android Application Development
The code of the Android applications contains the necessary components required for
the functionality of the application. Initially, the Java source code is converted into
the byte code (.class file) using the Java compiler. Then, the byte code (.class file) is
converted to dalvik executable format (.dex file) using dx tool [7]. Finally, aapt tool
[6] is used for converting .dex file into Android application (.apk file).

The development stages of an Android application is given in Figure 1.3.
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FIGURE 1.3 Android application development.

1.3 Google Playstore
Google play store is the official repository of Android applications. Developers
can submit applications to Google playstore for publishing them. The submit-
ted applications undergo security checks via a built-in mechanism called bouncer
[159][198][145]. The algorithm of bouncer is not revealed by Google. Bouncer ex-
ecutes the submitted application in a virtual machine and checks for the malicious
activities. Google play publishes an application only if no malicious activity is de-
tected by the bouncer. After publication, a user can directly install the application into
his/her device. There are several categories of Android applications found in Google
play. The sample categories of apps in Google play are given below.

• Gaming apps

• Sports related apps

• Social networking apps

• Banking apps

• Education apps

• Communication apps

• Photography apps

• News and magazine apps

• Weather apps

• Parenting apps etc.
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1.4 Intents and Intent Filters
Intents are objects used to interact with the components of the same applications and
also with the components of other applications. There are two types of intents, namely
explicit intents and implicit intents [32]. They are described below.

• Explicit intents: Explicit intents are typically used to start a component in the par-
ticular application itself. For example, to start a new activity within the application
in response to a user action.

• Implicit intents: Implicit intents declare a general action to perform and it helps
a component from another application to handle it. For example, if an application
wants to show the user a location on a map, then we can use an implicit intent that
requests some other application like Google Maps to show the location.

An application can permit other applications to access its components (activity, ser-
vice, broadcast receiver, etc) using intent filters. The elements of the intent filters are:

• Action: It indicates the type of action performed by the invoking component. For
example, ACTION_VIEW is used for viewing the contents.

• Data: It indicates the type of data received by the intent.

• Category: It specifies the launching location of the component.

1.5 Android Security
In Android, a privilage escalation model is implemented to ensure that an applica-
tion cannot access other application’s code or data. Android application security is
achieved using permissions, application sandbox, application signature and data en-
cryption [26].

1.5.1 Permissions
In order to restrict an application from accessing the sensitive functionalities of a de-
vice such as telephony, network, contacts, sdcard and location, Android provides a
permission-based security model in its application framework[36]. Android permis-
sions are classified into four protection-levels. They are normal, dangerous, signature
and signatureOrSystem. Normal permissions are granted default during the installa-
tion time of the application. Dangerous permissions are considered as high risk per-
missions since they have the capability to access the private data and important device
sensors such as camera. Signature permissions are the permissions which are granted
only if the requesting application is signed with the same developer certificate. They
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are granted automatically at the installation time. SignatureOrSystem permissions are
granted only if the application is signed with the same certificate as the Android sys-
tem image. They are also granted automatically during the installation time.

1.5.2 Application sandbox
Android uses the Linux operating system based protection to ensure that the resources
of each application is isolated. It also provides unique User Identification (UID) to
ensure isolation. Each application is alsomade to run in its ownDVMorAndroid Run-
time (ART). The processes communicate with each other with the help of Binders.
Binders act as an interprocess communication systems as well as remote method invo-
cation systems. To communicate with other processes, the application sends messages
to the Binder that checks the Activity Manager to verify whether the application has
permissions to communicate.

1.5.3 Application signature
Android application signature ensures that the application has not been manipulated
by the malware developers. If an application is decompiled, the signature is no longer
considered as valid. The signing is done by the application developers using a certifi-
cate. Android provides three schemes for generating application signature. They are
given below[14].

• APK Signature Scheme v1: The v1 scheme is based on JAR signing. However v1
signing scheme can only protect some parts of the application.

• APK Signature Scheme v2: The v2 signature scheme was introduced in Android
7.0. It has faster application installation and it also offers more protection to unau-
thorized apk manipulations.

• APK Signature Scheme v3: The v3 signature scheme was introduced in Android 9.
The format of v3 signature scheme is similar to that of v2. However, the v3 signature
scheme adds information about the supported SDK versions.

1.5.4 Data encryption
Android also ensures data encryption to protect users data [21]. Android uses
symmetric encryption to secure the user’s data. In Android, there are two types of en-
cryptions. They are file-based encryption and full disk encryption. File-based encryp-
tion is supported by Android 7.0 and later. In this encryption, each file is encrypted
with a different key. Android 9 uses metadata encryption with hardware support. In
metadata encryption, the contents that are not encrypted by file based encryption such
as directory layouts, file sizes, permissions, etc. are encrypted with a single key. This
key is protected by the KeyMaster that is again protected by Verified Boot. The Ver-
ified Boot ensures all executed code comes from a trusted source (usually device
OEMs), rather than from an attacker or corruption. In full disk encryption, a single
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key is used to encrypt all the files and the key is protected by the device password.
This type of encryption is supported by Android 5.0 to Android 9.

1.6 Internet of Things
The Internet of things (IoT) describes the network of physical objects or things that
are embedded with sensors, software, and other technologies for the purpose of con-
necting and exchanging data with other devices and systems over the Internet[33].
With IoT, billions of objects can sense, share the information and can take decision of
their own. This section discusses about the various components of IoT[163] and also
why Android Things help to build scalable and secure IoT infrastructures.

1.6.1 Architecture of IoT
The architecture of IoT comprises of various technologies that support each other to
achieve scalability, availability, maintainability and functionality. Android architec-
ture comprises of sensors, gateways and networks, management services and applica-
tions. Figure 1.4 shows the architecture of IoT. The different layers of IoT are Sensor
Layer, Gateways and Networks Layer, Management Service Layer and Application
Layer. The details are given in the subsections below.

WIFI, Ethernet, Gateway Control WAN(GSM,UMTS,LTE,LTE-A)

Gateways and Networks Layer

Application Layer

Healthcare Transportation Supply Chain

Retail EnvironmentalEnergy

Management Services layer

Data

Security

BRM

BPM

Analytics Platform

Predictive Analysis

Statistical

Analytics

In Memory

Analytics

Data Mining

Text Mining

OSS-Device

monitoring,

Performance

management,

Security

management,

BSS-Billing,

Reporting

Wifi|Ethernet|UWB|ZigBee|Bluetooth|GLowPAN|Wired

Sensor Layer

SolidState|Infrared|Photo-ionization|Gyroscope|Electrochemical

Electromech|Catalytic|Accelerometer|GPS|Photo-electric

FIGURE 1.4 Architecture of IoT.
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1.6.1.1 Sensor layer

The sensor layer is made up of smart objects integrated with sensors that are able to
measure temperature, speed, humidity and other factors. In certain cases, these sen-
sors may also possess some memory to record certain measurements. These sensors
are then connected to the sensor aggregators in the form of a Local Area Network
(LAN) such as Ethernet, WiFi connections or Personal Area Network (PAN) such
as ZigBee, Bluetooth and Ultra-Wideband (UWB) [163]. In certain type of sensors,
instead of connecting to the sensor aggregates, the connectivity to backend servers/ap-
plications can be achieved using Wide Area Network (WAN) such as Global System
for Mobile communication (GSM), General Packet Radio Service (GPRS) and Long-
Term Evolution (LTE). The sensors with low power and low data rate connectivity
forms a Wireless Sensor Network (WSN).

1.6.1.2 Gateways and networks

The data sensed by the sensors are send through the network with the help of gate-
ways and networks. The primary function of this layer is to process the information
collected from the sensors and to convert it to digitalized and aggregated versions. To
support wider range of applications and transactional services, we can use multiple
networks with different access protocols. These networks can be public, private or hy-
brid which ensures latency, bandwidth and security. The Gateways are implemented
with WAN, WiFi or Ethernet.

1.6.1.3 Management service layer

Management service layer constitutes business and process rule engines. The rule
engines present in the management service layer helps to take decisions and provide
automated processes to obtain more efficient IoT system. This layer also provides
Business Rule Management (BRM) and Business Process Management (BPM). It
also has various analytical tools to extract information from raw data. Different types
of analytics such as in-memory analytics, and streaming analytics are used here. In in-
memory analytics, huge volumes of data are cached in the RAM for analysis. Stream-
ing analytics on the other hand, performs the analytics of the data in real-time. This
layer also has the ability to control data to reduce the risk of privacy disclosure. In ad-
dition to that, various services such as access control, encryption, data management
etc. are provided in this layer to ensure security of the data. The Operational Sup-
port System (OSS) present in this layer is used to automate the network management
function while Business Support System (BSS) supports billing and reporting.

1.6.1.4 Application layer

The application layer consists of various smart applications that work in IoT such as
those related to agriculture, factory, supply chain, healthcare, etc.
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1.7 Android Things
The main challenges in building an IoT system is interoperability, security and scala-
bility. To solve these issues, Google inventedAndroid Things in 2015. Android Things
is an Android-based OS that is meant for IoT. It can address the security issues en-
countered by the connected devices. The main advantage of Android Things is the
easy development environment that makes the developers work on smart displays,
digital signboards and Kiosks. Figure 1.5 shows the architecture of Android Things.

Application

Native C/C++ Libraries

Hardware Abstraction Layer (HAL)

Linux Kernel

Java API

Framework

Google

Services

Things Support

Library

FIGURE 1.5 Architecture of Android Things.

Android Things also solve the problem of interoperability by allowing many de-
vices to work together without any compatability issues. With Android Things, the
hardware manufacturers are provided with a certified OS and hardware that makes
it easy to build products. Besides that, Android Things also ensures secure IoT in-
frastructures. This is achieved with Google that sends regular security updates and
patches to avoid privacy breaches.

The main difference between Android OS and Android Things is that the system
applications and content providers are absent in Android Things. Besides that, An-
droid Things have a Things support library with peripheral I/O API that allows appli-
cations to communicate with the sensors and actuators using interfaces and protocols.
The Things support library also has a user driver API that allows the applications to
inject hardware events. The HAL and the native C/C++ libraries are same as that
of the Android operating system. In addition to that, the Google services also offer
Google API for Android. The Java API framework provides API’s to communicate
between the sensors and actuators.
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1.8 IoT Security
The popularity of IoT devices has attracted cybercriminals to launch attacks against
these systems. In 2018, around 12 million attacks were launched from 69,000 IP ad-
dresses. IoT require huge volumes of data for developing smart and intelligent devices.
The attacks against IoT can be classified into the three types[34] given below.

• Communication attacks: These attacks target the data transmitted between servers
and IoT devices. Attackers may gather the data sent between the IoT devices and
servers to access sensitive data.

• Software attacks: Attackers can exploit the vulnerabilities in the web applications
and the device software to push malicious firmware updates and steal the creden-
tials.

• Physical attacks: Attackers can target the chip, firmware and physical interfaces to
launch their attacks.

1.8.1 Malware Threats in IoT
According to the study of Kasperesky, IoT malware has risen three folds[42]. The
most common attack is in the form of botnets. Linux Hydra was the first IoT malware
that was capable of launching Distributed denial of service attack. Since then, various
malware such as Psybot, Chuck Norris and Tsunami have emerged[53]. Among the
various malware attacks against IoT, the Mirai botnet attack affected over 600,000
devices. The attack infected the devices with Argonaut RISC Core (ARC) processors
and turned them into a network of bots. Malware such as BrickerBot, VPNFilter, etc.
are the variants of Mirai that appeared recently. The common malware infection is
through weak Telnet passwords. Table 1.1 shows some of the well known IoTmalware
families that appeared till the year 2020.

1.9 Conclusion
In this chapter, we discussed about the architecture of Android operating system and
also about the IoT architecture in detail. We also discussed about the security threats
in IoT and also about the well known IoTmalware families appeared till the year 2020.



12 Internet and Android OS

TABLE 1.1 IoT malware attacks.

Year Malware Type
2008 Hydra Botnet
2009 Psybot/NetworkBluePill Router Based Botnet
2010 Chuck Norris Botnet
2011 Umbreon/Umreon/Rebonum/Neobrum Rootkit
2012 Carna Botnet Botnet
2012 LightAidra/Linux Aidra Botnet
2013 Tsunami/Kaiten Botnet
2013 Linux Darlloz/Zollard Worm
2014 Gafgyt/BASHLITE/Lizkebab/

Torlus/Qbot/LizardStresser
DDoS Botnet

2014 Spike/Dafloo/MrBlack/Wrkatk/
Sotdas/AES.DDoS

DDoS Botnet

2014 TheMoon Botnet
2015 Linux Moose/Elan Worm
2016 VPNfilter Spyware
2016 Mirai Botnet
2016 IRCTelnet/LinuxIRCTelnet/NewAidra Botnet
2017 Amnesia DDoS Botnet
2017 Linux.MulDrop.14 Trojan
2018 Hide ‘N Seek Botnet
2019 Echobot Botnet
2020 Mukashi DDoS Botnet
2020 Rhombus DDoS Botnet
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Android Malware

Malware or a malicious software is a program designed to damage or compromise
a device or computer system[38].These malicious software can access and damage
the valuable cyber assets of the organisation. Eventhough security vendors and re-
searchers are pushing hard to control malware, cybercriminals are finding new ways
to evade detection. This chapter explains how the malware has evolved over the past
several years. We also explain Android malware types and families and the need for
developing secure systems against malware attacks in Android.

2.1 PC Malware vs. Android Malware
The first PC malware, which was virus called Brain appeared in 1986[118]. The virus
contained hidden copyright messages and it infected the boot sector of the floppy disk.
Since then, a variety of malware types and variants have evolved with diverse threat
capabilities. The most common ways with which a PC is infected by the malware is
through the following mechanisms[151].

1. Spam emails: The most common malware infection is in the form of spam
e-mails. The user may receive an e-mail with an attachment stated to con-
tain details of winning a contest, a receipt of an item purchased or an in-
voice. When the user opens the attachment, it gets downloaded and the
malware gets installed into the system.

2. Infected removable drives: This mode of infection is carried out by remov-
able drives such as USB flash drives or external hard drives. These hard
drives are installed with potentially dangerous malware that can perform
malicious activities on the system.

3. Bundled with other software: In this type of attack, the malware come
bundled with legitimate software. These malicious software can be seen in
third party websites and peer to peer networks. Some malicious programs
disguised as software key generators can also install malware into the PC.

4. Hacked or compromised websites: In this type of attack, when a user ac-
cess a hacked or compromised website, the vulnerability of the software
present in the device can be used by the attacker to infect a malware. Hence

DOI: 10.1201/9781003121510-2 13

https://doi.org/10.1201/9781003121510-2


14 Android Malware

regular software updates are recommended to make the system secure
against these threats.

While security vendors are making their products more effective to detect PC
malware, cyber criminals are targeting smart phones to carry out their malicious ac-
tivities. Ever since, Android has become the widely used mobile operating system
[140], there is significant rise of Android malware [92]. The mode of infection of An-
droid malware is different from that of the PC malware [39]. This poses significant
challenges to develop anti-malware solutions as Android malware use completely dif-
ferent types of attack methods for their infection compared to PC malware. The most
common methods of infection or sources of Android malware are given below [39].

1. Third party application store: Malware developers may publish malicious
applications in third party application store with the name of legitimate
applications. If a user downloads these the applications, then the device
may get infected with the malware that may steal the personal information
of the user or encrypt the files in the device.

2. Man in the middle attack: In this case, connecting an Android mobile de-
vice to rogue Wifi hotspots exposes the device to attackers who can send
malware to the device.

3. Malvertising: In this technique, a malware is inserted into a legitimate
advertisement application. When the user clicks on the advertisement, the
device gets infected with the malware. Some malvertisements show up
the entire screen of the device and when the user touches the screen, the
malicious payload will get downloaded.

4. Scams: In this type of attack, a user is redirected to a malicious web page,
using a pop-up or a web redirect. During this process a malware can get
downloaded.

5. Physical compromise: In this type of attack, the attackers have physical
access to the device. They connect the device into the PC and directly
downloads the malicious application.

2.2 Trends in Malware
Because of the widespread usage of connected devices to share data, attackers are
now utilizing the vulnerability of the network, operating system and the software to
launch malicious attacks. According to a survey of National Institute of Standards
and Technology (NIST)[43], the number of vulnerabilities showed a drastic increase
in the year 2020. Despite developing and publishing patches, the attackers are finding
new ways to evade various attack detection mechanisms.

The latest trend shows that malware come equipped with multiple functionalities
with the help of plugin interfaces[162]. The PlugXmalware is one such malware[51].
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The plugins allow the malware to update its functionality without the need for rein-
stalling the malware. Further, these plugins allow the malware to adapt to the changes
in the new environment. That is, if the environment uses an antivirus, the malware
can hide its malicious functionality. In the past, malware attacks were not targeted
on a specific user or organization. However, the new trend shows that 70–90% of the
recent malware attacks were targeted on specific organizations. Recent trend is the
emergence of polymorphic malware to evade the detection by antivirus software. An-
other design trend is the type of evasion techniques used to hide the presence of the
malware. It is seen that the recent malware use a variety of evasion techniques like
dead code insertion, packing, anti-emulation technique, etc. for hiding its behavior.

2.2.1 Trends in Windows malware
In the case of Windows malware, file-less attacks have emerged in which a malware
utilizes legitimate program for infection[144]. File-less malware can evade the most
advanced threat detection mechanisms[149]. File-less infection go straight into the
memory and operates in it. Many file-less malware utilize the Windows Powershell, a
tool used for configuration management and task automation for carrying out the at-
tack. These attacks often employ social engineering to click an attachment or a link in
the phishing e-mail. Besides file-less malware, ransomware and cryptocurrency min-
ers are also on the rise[184][135]. According to the report issued by FireEye[201],
the ransomware related breaches showed a dramatic increase by the year 2020. Fur-
ther, most of the attacks targeted manufacturing organizations. The ransomware also
targeted academic institutions when the universities started their classes virtually due
to the outbreak of COVID-19[48]. The ransomware attacks pose serious threat when
the attackers steal sensitive information before encrypting the device. In this type of
ransomware attack, the victims are threatened to make sensitive information public
if they fail to pay the ransom[201]. Another type of ransomware attack called Ran-
somware as a Service (RaaS) attack [47] also emerged. In RaaS attack, the malware
developers sell out malware kits to individuals who need to launch attack against an
enterprise. These kits are sold in the dark web[147].

2.2.2 Trends in Android malware
In the case of Android, the Google Playstore detection mechanism is not at all effec-
tive in detecting malicious applications. The recent trend in Android malware shows
a drastic increase in the botnet attacks[44]. A botnet is a group of mobile devices that
are controlled by the attackers without the knowledge of the users[64]. According to
the threat report of Mcafee, a new type of Android malware called Shopper[45] ex-
ists. This malware can take the users Google or Facebook account credentials and
then post reviews on the popular entertainment and shopping sites on behalf of the
user. For evasion, these malware use hide icon method. This malware is distributed
through malvertising and it is found in the Discord chat service[19]. Another trend
observed is the type of evasion methods adopted. Nowadays, most of the malware use
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self-hiding mechanism to hide their functionality[180]. These malware can masquer-
ade as a legitimate application with the similar icons and name and can hide their icon
soon after installation. A fakeappmalware is one suchmalware that mimics legitimate
FaceApp Android application and accesses the gallery of the user[23].

The most dangerous trend observed in Android malware is that some malware
have been found to spy and collect sensitive information about a country’s political
and defense matters. MalBus is one such malware[37] that was developed by a South
Korean developer. The malware pushes a malicious payload and then uploads it to
the Google Play account. When a user downloads it, the malware scans the device for
the documents that are related to the military and the state. The applications that are
infected by these malware also contain an additional library to download malicious
plugins.

Recently researchers have uncovered two novel Android surveillanceware
(surveillancemalware) families calledHornbill and SunBird used by an advanced per-
sistent threat (APT) group to target military, nuclear and election entities. These two
malware families, have sophisticated capabilities to exfiltrate SMSmessages, contents
of encrypted messaging apps, geolocation, and other types of sensitive information.
Hornbill was first detected in early May 2018, and the newer samples of the malware
were detected in December 2020. The SunBird was first detected in 2017 and it was
last seen active in December 2019. The samples of SunBird was found hosted on
third-party app stores, where it was disguised as a security service application. The
Hornbill applications impersonate various chat and system applications. Both mal-
ware families are able to collect call logs, contacts, device metadata (such as phone
numbers, models, details of manufacturer, and version of Android operating system),
geolocation, images stored, and WhatsApp files. SunBird has more malicious func-
tionalities than Hornbill, with the ability to upload all data at regular intervals to its
servers. Also, it can run arbitrary commands as root or download malicious payloads.
In contrast, Hornbill is more like a passive reconnaissance malware than SunBird.
Hornbill uploads data only in the initial runs and not at regular intervals like Sun-
Bird. After that, it only uploads changes in data.

2.3 Types of Malware Detection Mechanisms
Malware detection is a very important task because a potentially malicious software
can damage the devices and the files. The conventional signature based malware de-
tection mechanisms are incapable to detect sophisticated zero day malware. This is
because a polymorphic malware can have a different signature that is not stored in the
antivirus database. Hence, nowadays many malware detection mechanisms are using
machine learning techniques[199]. To detect the malicious behavior of an applica-
tion, static, dynamic and hybrid mechanisms are used [72][68]. Static mechanisms
analyze the application without running the code. The advantages of static analysis is
that, it has less overhead and high code coverage. However, the disadvantage is that,
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these mechanisms fail to detect evasive malware that use dynamic code loading and
obfuscation. To deal with these issues, dynamic malware detection mechanisms can
be used. In dynamic detection, the malware is made to run in a sandbox environment
and the execution traces are gathered to capture the malicious behavior. Despite its
advantages, some malware can use anti-emulation techniques to detect whether they
are running in a sandbox environment in order to hide their malicious behavior. Anti-
emulation techniques are found in many different Android malware families, such as
the recent Android Adload adware found in Google Play. To utilize the benefits of
static and dynamic malware detection mechanisms, hybrid detection mechanisms are
also used. However, malware with advanced evasion capabilities continue to emerge
every day. Hence security researchers are trying hard to invent new mechanisms to
detect emerging malware.

2.4 Malware Types
Malware applications can be classified into different types based on their malicious
functionalities. Some malware application can use the sensitive API calls provided
by the application framework while the others can exploit the vulnerabilities of the
device for performing malicious activities. The functionalities of malware apps are
given below [104].

• Stealing private information: Some malware apps tend to steal private information
such as credit card numbers, user login credentials, IMEI code etc. from the device.

• Sending SMS to premium rate numbers: Some malware apps tend to send text mes-
sages to the premium rate numbers in the background.

• Surveillance attacks: Some malware apps tend to capture the surroundings by se-
cretly taking the photos or videos in the background.

• Recording phone calls: Some malware apps tend to record the incoming and out-
going phone calls in the background.

• Encrypting the files: Some malware apps tend to encrypt the files in the device and
demand ransom for decryption.

• Locking the device: Somemalware apps tend to lock the device and demand ransom
for unlocking.

• Showing advertisements: Some malware apps tend to show the advertisements in
the form of popups for revenue.
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The different types of malware applications according to their functionalities are
the following:

1. Trojan Spy;
2. Trojan SMS;
3. Backdoor;
4. Ransomware;
5. Exploits; and
6. Botnet.

Trojan spy can record the activities in a device without the knowledge of the user.
The spyware can perform various kinds of activities such as keylogging, recording
phone calls, stealing SMS, etc. Triout and Bouncing golf are two malware families in
this category. Triout was identified in 2018[54]. Triout can record the phone calls and
send it to a remote server. Bouncing golf was identified in 2019. Bouncing golf[40]
can collect the information such as SMSmessages, contacts, list of installed apps, etc.
and send them to a remote server.

Trojan SMS can send text messages to premium rate numbers frequently in the
background. Boxer and Opfake are two malware families in this category. Boxer was
identified in 2011. It sends SMS to premium rate numbers in the background. Opfake
was identified in 2012. It also sends SMS to premium rate numbers in the background.

Backdoor can transfer the control of a device to a remote server without the knowl-
edge of the owner. Here, the malicious server can perform various attacks such as
stealing information, monitoring user activities and so on. AndroRAT is a backdoor
malware family. It was identified in 2013. AndroRAT can control the device and per-
form various kinds of attacks such as initiating phone call, getting device contacts,
etc.

Ransomware is a type of malware that blocks users from accessing the device until
he/she pays a ransom to the attacker. Simplocker is a sample ransomware family. It was
identified in 2014. Simplocker can encrypt the files in a device and demand ransom
for decryption[49].

Exploits tend to utilize the vulnerabilities in the device kernel for performing priv-
ileged operations. Gingermaster is a sample malware family in this category. It was
identified in 2011[27]. Gingermaster can exploit vulnerabilities in Gingerbird version
of Android OS through an exploit code for performing various kinds of privileged op-
erations.

Botnet is a group of infected devices communicating among themselves to per-
form malicious activities such as DDoS attack. These devices are infected with mal-
ware which enable the attacker to control them. Zazdi is an example of a botnet family.
It was identified in 2019. Zazdi botnet uses Firebase CloudMessaging (FCM) services
to communicate with the infected devices.
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2.5 Malware Attacks in Android
Malware attacks in Android can occur in the following three ways:

• Drive by download attack and

• Update attack and

• Repacking attack.

2.5.1 Drive by download attack
In this case, the attacker first creates a malicious website containing malware appli-
cations which can automatically download into the systems. Then the attacker sends
the link of the website to the victims via e-mail or SMS messages or social network-
ing sites. These types of malicious websites contain misinformation which prompt
some users to visit that page [96]. When a user visits the website, the malware gets
downloaded automatically to the phone. For example, Rumms is a drive by download
Android malware that is distributed via SMS messages [203]. When a user clicks the
link provided in the SMS message, the Rumms malware gets downloaded automati-
cally to the phone.

2.5.2 Update attack
In this case, the malware developer publishes an application in the app stores which
updates with malware functionality automatically after installing it. For example,
Vmvol malware app gets updated with a malicious payload after installing it [203].

2.5.3 Repacking attack
In this case, an attacker adds a malicious payload to a goodware application. First the
attacker takes a legitimate app and decompresses it. In the next step, the byte code is
edited . In this step, the attacker uses third party tools to recover the source code from
the byte code for inserting the malware code into it and compile the modified code.
Finally, the attacker compresses the result and signs with a self-signed certificate.
For example, Walkinwat malware application[29] is a repacked version of legitimate
Walktext application

2.6 History of Malware Attacks in Android
The first mobile virus called ‘Cabir’[3][15] emerged in 2004 and it targeted the Sym-
bian OS running on an ARM processor. When Android OS gained popularity, the first
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Android malware called the ‘FakePlayer’ emerged in 2010[4]. This malware came
disguised as a media player and it sent messages to some premium numbers with
each messages costing around 5 dollars. When the malware was executed, it displayed
messages in Russian language. In 2016, HummingBad malware[62] was found in the
wild. It was created by a Chinese advertisement company. This malware also installed
fraudulent applications in the infected device.

In 2010, the first trojan called ‘Zitmo’[67] emerged. It was designed to steal the
mTan codes sent by the banks. Later in 2011, Droiddream[57] a malware that sends
information to the remote server was found. In 2012, Boxer[56] malware was seen
in the wild. It was distributed through messages and once installed, it sent messages
to premium numbers. In the year 2013, FakeDefender[52], the first ransomware that
targeted Android application was found. It appeared as a fake antivirus program. The
malware displayed a picture of an animal peering out of the letters ‘OZ’. In 2014, the
SimLocker malware emerged[49]. The malware was a ransomware that scans the SD
card of the device and encrypts certain file types. The files that targeted where .mp4,
.jpeg and .png. In 2015, Gazon[11], a financial fraudulent application was seen target-
ing Android. In the year 2017, a malware named ExpensiveWall was found sending
messages to premium numbers. Other malware like Marcher, Xavier, DVMap and
BankBot also emerged in 2017[2]. Marcher was found stealing the login credentials
of the user and it was found inside the third party application sites. This malware dis-
played fake login pages of Citibank, Walmart, Paypal, etc. Xavier was a trojan adware
that records the call, changes the ringtone, etc.[2]. Besides that, this malware used ad-
vanced mechanisms to evade static and dynamic analysis. DvMap on the other hand
installed the malicious modules and executed it with the root privilege. Bankbot mal-
ware/Anubis steals the payment card data with the help of fake overlay screens that
looked like legitimate login pages. In the year 2019, Cereberus banking trojan was
detected. It had Remote Access Trojan (RAT) [25] capability. In addition to that, the
malware also accessed the device’s unlock pattern.

With the outbreak of the COVID pandemic in the year 2020, malware developers
utilized the functionality of corona virus application tracker to spread the banking
malware Anubis[10]. Another version of corona virus app was seen as a spyware tak-
ing the photos, recording videos, etc. In the year 2020, Joker malware [66] was also
seen in the Google PlayStore. This malware can access the device information, con-
tact list, etc. of the user. The malware was also able to sign up for premium wireless
application protocol (WAP) without user’s knowledge. In the early 2021, researchers
also found a spyware targeting the users in Pakistan[41]. The spyware came hidden
in a legitimate application and it exfilterates the sensitive data of the users like the
contact list and SMS messages. Despite powerful security mechanisms, new mal-
ware continue to emerge day by day. Hence powerful and effective malware detection
mechanisms have become a need of the hour.
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2.7 Conclusion
In this chapter, we discussed about Android malware, trends in malware, malware
types and the importance of malware detection. We also discussed the popular mal-
ware attacks in Android. Since malware threats are evolving rapidly, more effective
threat detection mechanisms are needed. Since artificial intelligence (AI) powered
malware are also on the rise[95], the effectiveness of machine learning techniques in
detecting advanced malware threats should also be investigated.
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3
Static Malware Detection

Static analysis is the technique of detecting malware applications by analyzing their
source code. The source code associated with an application is obtained using reverse
engineering tools. The source code contains features likeAPI calls, permissions, hard-
ware components, intents, intent filters and app components. The advantage of static
analysis is that it has high code coverage and less analysis overhead. In this chapter,
we present various existing static malware detection mechanisms.

3.1 Reverse Engineering and Static Analysis
Reverse engineering is the process of obtaining the source code of an Android appli-
cation to understand its functionality. Reverse engineering is done for the following
reasons.

• To find the vulnerabilities in the application code.

• To detect malicious code for malware analysis.

• To modify the functionality of Android application.

In Android reverse engineering involves the process of disassembling and decom-
pilation. Disassembling refers to the translation of bytes to mnemonics. In Android,
smali code is the output obtained after disassembling the Android application.The
process of converting the application binaries to the high-level language in which the
source code is written is called decompilation. In Android, the decompilation is a
process in which the dex files are converted to the java source code files.

3.1.1 Reverse engineering using Apktool and Dex2jar
In this section, we will discuss how to reverse engineer an Android application using
Apktool and Dex2jar. The various steps are given below.

• Step 1: Install Apktool.

• Step 2: Download the Android application that we want to analyze and put it in the
same folder where apktool is located, as given below.
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Home@abc :~$ cd Analysis/
Home@abc :~/Analysis $ ls
aapt apktool candycorn.apk
Home@abc :~/Analysis $

• Step 3: Run the command,

Home@abc :~/Analysis $ ./apktool d [app].apk

Once the above code is entered, a new directory with the decompiled contents will
be created. The directory contains AndroidManifest.xml file and smali code. Smali
code is the bytecode version of Java code and it is similar to that of the assembly code.
A sample smali code is given below.

.class public La;

.super Ljava/lang/Object;
#interfaces
.implements Landroid/text/TextWatcher;
#instance fields
.field final synthetic a:(Lgywwv/jvyjsd/sordvd/ActivityCard);V

After disassembling, to analyze the Java source code of the application, we can
use dex2jar and JD-GUI. Dex2jar to convert the dex files to jar (java ) files. To view
the java files we can use JD-GUI. This can be done as follows:

• Download dex2jar.

• Extract the apk.zip and open it.

• Copy classes.dex file from the apk folder and paste it to the dex2jar folder.

• Run the command: sh d2j-dex2jar.sh classes.dex to obtain classes_dex2jar.jar
file.

• Open the generated classes_dex2jar.jar file using JD-GUI.

3.1.2 Static malware analysis tools
Static Android malware analysis tools are very useful for malware researchers to an-
alyze the malicious functionality of Android application. The popular static Android
malware detection tools are given below.

• Amandroid – Amandroid is a static analysis tool that is used for Inter-component
data analysis of Android applications.

• APKAnalyzer – APk analyzer is a static analysis tool that has the ability to compare
two apk’s.
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• SmaliSCA – SmaliSCA is a static analysis tool for examining the smali files.

• Maldrolyzer –Maldrolyzer is a tool to extract ‘actionable’ data such as C&Cs, phone
numbers, etc. from the Android malware.

• Argus-SAF – Argus-SAF is a tool with different capabilities such as Java native
interface analysis, annotation based analysis, etc.

• DroidRA – DroidRA provides reflection analysis for Android malware.

• Androwarn – Androwarn is a Dalvik bytecode analysis tool that can identify suspi-
cious permissions and other activities of Android applications.

• PScout – PScout is an Android API call to permission mapping tool that can be
used for malware analysis.

• Androguard –Androguard is powerful tool that can be integratedwith other tools for
malware analysis. It provides class analysis, method analysis, permission analysis,
etc.

3.2 Components of Android Application
An Android application has the following components[5].

• Java Source Files: The Java files contain the application’s source code written in
Java programming language.

• res/drawable-hdpi: This directory contains values for the resources that are required
for running the Android application. It includes style, color, dimensions, etc.

• res/layout: This directory contains details about the application’s user interface.

• res/values: This directory contains a collection of resources, like colour definitions
and strings.

• AndroidManifest.xml: It stores meta-data such as package name, permissions re-
quired, definitions of one or more components like Activities, Services, Broadcast
Receivers or Content Providers, minimum and maximum version support, libraries
to be linked, etc. In manifest file, the developer can specify the hardware compo-
nents and software requirements of the application. The developer can specify the
minimum and maximum SDK required in the manifest file.

• Build.gradle: This file is an autogenerated file that contains compileSdkVersion,
targetSdkVersion, versionCode, versionName, etc. The compile SdkVersion is the
version in which the Android application is debugged and compiled. The targetSdk
version is the version of Android that the application was developed to run on.
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3.3 API Call Analysis
API stands for Application Programming Interface. It can be defined as a set of pro-
tocols, procedures, and tools that allow interaction between two applications [65]. In
Android, the application layer which forms the top of the native libraries provides the
API. These (APIs) are built in the form of java classes. The API consists of enormous
class library (a set of packages) suitable for building our own applications. API level
of an Android is an integer value that helps to identify the API revision offered by
a version of the Android platform [13]. The new API level launched each time by
the Android is compatible with the older versions. The code below shows how API
packages are imported in the java source code of an Android application.

1.package com.abc.telephonymanager;
2.import os.Bundle;
3.import android.content.Context;
4.import android.view.Menu;
5.import android.app.Activity
6.import android.telephony.TelephonyManager;
7.public class MainActivity extends Activity{
8.setContentView(R.layout.activity_main);
9.TelephonyManager t=(TelephonyManager)
getSystemService(Context.TELEPHONY_SERVICE);
10.String IMEINumber=t.getDeviceId();
11.String subscriberID=t.getDeviceID();
12.Sring SIMSerialNumber=t.getSimSerialNumber();
}

In the line 6 of the code above android.telephony is the package name and the Telepho-
nyManager is the API class name. The API calls are the methods of the API classes.
Lines 10, 11 and 12 show the API methods of the class TelephonyManager. The API
classes and methods are very crucial for identifying the behavior of Android appli-
cation. The smali codes can also be directly analyzed before converting to the java
source files to understand the API’s of the application. The code below shows how
the API packages, classes and methods appears in smali. Here Landroid/telephony is
the package name, TelephonyManager is the API class name and listen () is the API
method name.

Landroid/telephony/TelephonyManager;>listen(Landroid/telephony/
PhoneStateListener;I)V

Android malware may use certain API’s to access the sensitive resources such as
location, device Id, etc. of the mobile phone to perform its malicious activities. The
following section describes how API can be used to detect Android malware.
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3.3.1 API’s used by malware applications
We can classify different API’s by the type of requested utilities and resources to
identify the malicious behavior [68]. They are application specific resources API’s,
Android framework resources API’s, DVM related resources API, system resources
API’s, and utilities API’s.

1. Application Specific Resources API’s
The application specific resources API’s can be classified into Content
resolver class, Context class and Intent class.

(a) Content resolver class: The content resolver class gives access to con-
tent providers. Malware may use methods such as delete(), insert(),
query(), etc. of this class to carry out the malicious activities.

(b) Context class: Context class provides information on classes, re-
sources and assets. The startService() method in this class is fre-
quently used by the malware to start a service in the background. The
methods like getFilesDir() and openFileOuput( ), etc. are other API’s
of this class used by the malware to create files and to obtain their
absolute paths.

(c) Intent class: Intents are used to interact with the phone’s hardware
and also to launch activities and services. The frequent APIs invoked
by malware in this class are setFlags(), addFlags() and setDataAnd-
Type().

2. Android Framework Resources API’s
The Android framework resources API’s can be classified into Activity
Manager class, Packagemanager class, Telephony SMSmanager and Tele-
phony class.

(a) ActivityManager class: The ActivityManager class helps to interact
with other activities running in the device. The getRunningServices()
method invoked by the malware is used to find whether there are any
antivirus services running in the device. Another method called get-
MemoryInfo() is used by themalware to checkwhether there is enough
memory for background process to kill other processes. The method
restartPackage() is invoked by the malware to kill other application
services.

(b) PackageManager class: The package manager class contains infor-
mation about the application packages installed on the device. The
getInstalledPackages() method is used to scan the device to check
whether there are any antivirus programs running in the device to kill
it.

(c) Telephony/SmsManager & Telephony/gsm/SmsManager: The
methods in these classes allow malware developers to send premium
rate SMS from infected devices thereby causing financial losses to the
users. The sendTextMessage() is one such method of this class.
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(d) Telephony Manager: Malware may use methods of this class such as
getSubscriberId(), getSimSerialNumber(), getLine1Number(), getNet-
workOperator(), getCellLocation(), getDeviceId(), getNetworkType(),
etc. to access the device information of the user. Android malware
such as Ginmaster[58], Exodus[22], etc. used this API.

3. DVM Related Resources API’s
The DVM related resources API’s can be classified into DexClassLoader
class and Runtime and System class.

(a) DexClassLoader class: The DexClassloader class helps to load a
classes.dex file. Malware may use the method called loadClass() to
execute the code that is not a part of the application so as to evade the
malware detection mechanisms.

(b) Runtime and System class: In this case, the method called Run-
time.getRuntime.exec () in the Runtime and System class helps the
malware developers to execute malicious code in the form of shell
scripts to evade detection. The method loadLibrary() is used to dy-
namically load the native libraries. This can be used by the malware
developers to run native codes.

4. System Resources API’s
The system resources API’s can be classified into ConnectivityManager,
NetworkInfo and WifiManager class, HttpURLConnection and Sockets
class and OS package and IO package class.

(a) ConnectivityManager, NetworkInfo, and WifiManager class: The
ConnectivityManager, NetworkInfo and Wifi Manager classes pro-
vide network related functionalities such as answering queries about
different connections and network interfaces. Android malware may
call API’s within ConnectivityManager class such as getNetwork-
Info(), NetworkInfo(), getExtraInfo(), getTypeName(), isConnected(),
getState(), and the methods in WifiManager class such as setWifiEn-
abled() and getWifiState() to establish a network connection and in-
teract with malicious remote servers. This API’s were used by the
Android malware Basebridge [55] used these API’s.

(b) HttpURLConnection and Sockets class: The methods used in these
classes are used for establishing connections to a remote server and
to send or receive data over the web. SetRequestMethod() and getOut-
putStream() etc. are the methods used by the malware to establish a
connection with a remote server.

(c) OS package class: The method such as kill process() of the OS pack-
age class is often invoked by the malware to kill the process that is
running on a given process id. The OS package also contains several
API for process and thread management.
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(d) IO Package class: This package provides read and write to datas-
treams, files, etc. Malware uses API’s such as writeBytes() to upload
certain files to a malicious url, readLines() to read malicious payload
and delete(), mkdir() API’s for launching a variety of malicious activ-
ities.

5. Utilities API’s
The utilities API’s can be classified into string and String Builder class,
Crypto class, ZipInputStream class and w3c.dom class.

(a) String and StringBuilder class: The methods in this class are widely
employed for code obfuscation by the malware. API calls such as in-
dexof(), getBytes() and replaceAll() are used for creating and manip-
ulating the strings.

(b) Timer: Malware may use APIs of this class such as schedule() and
cancel() to evade the detection.

(c) Crypto class: The methods in this class allow implementing cryp-
tographic operations. API calls such as getInstance(), doFinal() and
Crypto.spec.DESKeySpec() are used by the malware for code obfus-
cation.

(d) ZipInputStream class: Malware may use methods to decompress the
malicious .zip/.rar files. Read(), close(), getNextEntry(), etc. are other
API methods of this class that are used by the malware.

(e) w3c.dom class: Malware may use getDocumentElement(), getEle-
mentByTagName(), and getAttribute() for communicating with a bot
and encode the data.

3.4 API Call-Based Static Detection
There are two types of API call-basedmalware detectionmechanisms. They aremech-
anisms that use the independent occurrence of API and mechanisms that use API call
graphs. In this section, we explain some API call-based malware detection mecha-
nisms.

3.4.1 Mechanisms using the independent occurrence of API
In this mechanism, the independent occurrence of API call-based features are ana-
lyzed for finding the malicious behavior. It is computationally less complex to con-
struct the binary feature vector of an application based on independent occurrences
of API call-based features. The following mechanisms use independent occurrence
of API for detecting malware.
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In DroidAPIMiner [68], the source code API level features such as package name,
class name and function name are analyzed using machine learning algorithms for
finding malicious behavior. In this mechanism, they selected the API level features
which are more frequently found in malware apps in their dataset. Sometimes good-
ware apps may use non malicious features which are frequently found in malware
apps. In such cases, a goodware app might get misjudged as a malware.

In [158], API calls are used as feature vectors for a trained deep Convolutional
Neural Network (CNN) classifier for predicting whether the application is a malware
or not. The authors used a very limited number of malware (216 samples) to evaluate
their approach.

In [123], Hou et al. proposed a mechanism to detect Android malware apps by
analyzing the API calls in it. In this approach, a trained Deep Belief Network (DBN)
classifier is used to predict whether the application is a malware or not based on the
API calls in it. This approach is computationally expensive.

Han et al.[117] proposed an Android malware detection mechanism using API
calls. Their mechanism used SVM for detecting malware. Shankarpanni et al. [181]
proposed a malware detection mechanism using API calls to detect obfuscated mal-
ware. In [142], the authors proposed a detection mechanism that used structural and
behavioral features of API to detect malware. In [69], the authors proposed a mal-
ware detection mechanism by combining permissions and API calls. Android tend to
revise its API calls time to time. Hence, evolving malware apps can use newer API
calls for performing malicious activities. In such cases, newer benign applications
may get wrongly flagged off as malicious and vice versa in these detection mecha-
nisms. Hence, frequent classifier retraining is required in these mechanisms.

3.4.2 Mechanisms Using API Call Graphs
In these mechanisms, the API call or inter component communication graphs are
analyzed for malware detection. From the API call sequence or graphs, we can easily
infer the underlying semantics behind a family/category of Android malware. The
following works use API call graphs for detecting malware

Zhang et al. [218] proposed a mechanism to detect Android malicious apps from
its API call dependence graph for finding whether the application is malicious or not.
In this approach, the graph similarity metrics are used for measuring the similarity be-
tween API call dependency graph associated with the application and those of known
malicious applications. This approach cannot detect malware apps having unseen API
call sequence.

In Faldroid [102], frequent API call subgraphs generated by the malware families
are used for finding malicious behavior. This approach has two steps. In the first step,
authors employed a clustering based approach to extract commonmalicious behaviors
(frequent subgraphs) of each malware family. In the second phase, they employed a
weighted sensitive API call-based graph matching approach to classify the unknown
malware applications. This approach cannot detect malware apps which contain priv-
ilege escalation exploits.
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3.5 Permission and Intent-Based Static Detection
In this section, we explain how permissions and intent analysis are used for Android
malware detection.

3.5.1 Permission analysis
A permission is a unique text string that is defined by Android or third party devel-
opers [103]. In Android, permissions are requested when an application is accessing
the resources of the device. In Android, the permissions are divided into four types
based on the protection levels they offers. They are normal, dangerous, signature, and
signatureOrSystem[63]. Types of some sample permissions are given in Table 3.1.
These levels are assigned based on the damage they may cause if the user grants it.
While installing the application, the Android package installer will not ask the user for
approval for the permissions that have the safe protection levels. But in the case of the
permissions with dangerous protection levels, the user will be asked for a consent to
install the applications that needs it. The Android system grants signature permissions
at the application installation time provided that the app that is asking for the permis-
sion must be signed with the same certificate as that of the application that defines
the permission. The signatureOrSystem level permission on the other hand requires
the application to be a system application. However, this type of signatureOrSystem
level permission is deprecated from API level 23 onwards.

TABLE 3.1 Various types of permissions.

Type of Permission Example
Normal ACCESS_LOCATION_EXTRA_COMMANDS

ACCESS_NETWORK_STATE
CHANGE_NETWORK_STATE

ACCESS_WIFI_STATE
Signature BIND_ACCESSIBILITY

BIND_ACCESSIBILITY_SERVICE,
BIND_AUTOFILL_SERVICE,
BIND_CARRIER_SERVICES

Dangerous READ_CONTACTS
WRITE_CONTACTS
GET_ACCOUNTS

ACCESS_FINE _LOCATION
ACCESS_COARSE_LOCATION

SEND _SMS
RECEIVE_SMS

SignatureOrSystem DELETE_PACKAGES
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Android permissions prevent malware developers from accessing the sensitive
resources of the device. However, the vulnerability in the permission framework of
Android can be exploited by the malware to execute various malicious activities. In
2019, researchers found a vulnerability called “StrandHogg” that was able to exploit
the permission pop up mechanism in Android. In this type of attack, malware abused
the permission called SYSTEM_ALERT_WINDOW, that allowed an application to
display a window on top of other applications. By using this pop up mechanism,
the malware displayed fake banking login pages and fraudulent ads. Initially, Google
blocked the apps that used this permission. But, it affected the normal functional-
ity of legitimate apps such as Facebook that need to show pop up windows for chat
operations. Hence from Android 6.0 onwards, the restriction has been taken out by
the Google. However, the applications that use this permissions are analyzed by the
Bouncer mechanism before making it available to the users. According to the recent
threat report[30], 74% of ransomware, 57% of adware and 14% of banker malware
abuse this permission for doing malicious activities. There are several other permis-
sions that are used by the malware for their activities. The following subsection pro-
vides some of the permissions abused by the malware developers to launch attack
against Android.

3.5.1.1 Permissions used by the malware applications

The various permissions used by the malware applications and the details are given
below.

1. ACCESS_COARSE_LOCATIONandACCESS_FINE_LOCATION: These
permissions are used by the malware applications to locate the network
provider information and GPS information of the user. Tekya malware
[169] and Malbus malware[38] use this permission to access the GPS lo-
cation and network provider information.

2. ACCESS_NETWORK _STATE: Malware use this permission to monitor
the network connection of the device. This permission is used by a mal-
ware to connect the device to amalicious remote server. DroidKungfumal-
ware uses this permission to collect the information about the device[20].

3. ACCESS_WIFI _STATE: This permission is used by a malware to access
the wifi connectivity of the user. Malware may send wifi information to
the remote server to monitor the wifi connectivity of the user. Corona-
Tracker malware that appeared recently uses this permission to obtain the
wifi connectivity information[17].

4. BROADCAST_PACKAGE_REMOVED: This permission is used to no-
tify that an application package has been removed. Malware may use this
to kill other running applications such as antivirus applications.

5. CALL_PHONE: This permission helps to make calls without user’s con-
sent. Malicious applications use this permission to make calls resulting in
huge call charges to the user. Basebridge [55] malware uses this permis-
sion to make phone calls.
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6. CHANGE_WIFI _STATE: This permission is used to change the wifi state
of the device. This permission is used by the malware application to con-
nect to the malicious servers. FakeAngry [24] malware uses this permis-
sion.

7. DELETE_PACKAGES: This permission is used to delete the application
packages that are installed in the device. Malware may use this to delete
the antivirus programs that are running on the device.

8. INSTALL_PACKAGES: This permission is used to install packages to the
device. Malware may use this to install malicious application packages.

9. INTERNET: This permission is used by the application to access the In-
ternet. Malware may use this permission to establish a connection with a
remote server. The Cerebrus malware [25] uses this permission.

10. KILL BACKGROUND PROCESSES: This permission is used by the ap-
plication to kill the background process. This permission may be used by
the Android application to kill the antivirus process running in the back-
ground.

11. MOUNT_UNMOUNT _FILESYSTEMS: This permission is used by the
Android application for mounting or unmounting storage devices. Mal-
ware may use this permission to access the SD cards in the device for
reading and writing the data from or to the device.

12. PROCESS_OUTGOING_CALLS: An application with this permission is
able to monitor the details of outgoing calls. A malware may use this per-
mission to monitor the phone numbers and personal details that are stored
in the device.

13. READ _CONTACTS: This permission allows an application to read the
contact information saved in the device.Malware may use this information
to infect other devices using the contact information. Malware such as
Comebot [16] and Cerebrus [25] use this permission.

14. READ_PHONE_STATE: This permission allows to read the current cel-
lular network information and the status of ongoing calls from the device.
Malware may use this permission to eavesdrop the phone call activities of
the user. Malware such as Comebot[16], and Exodus[22] use this permis-
sion.

15. READ_SMS: This permission is used by the application to read SMS.
Malware may use this permission to gather the sensitive information of
the user. Basebridge[55] malware uses this permission.

16. RECEIVE_BOOT_COMPLETED: This permission allows the applica-
tion to start as soon as the system has finished booting. Malware may
use this permission to start the malicious activity as soon as the system
is booted. The malware DroidKungfu[20] uses this permission.

17. RECEIVE_SMS: This permission is used by the application to receive
SMS for legitimate services. This permission is used by the malware for
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listening and forwarding the SMS’s to the remote server without the user’s
knowledge. FakeInstaller[1] malware uses this permission.

18. SEND_SMS: This permission allows an application to send SMS. This
permission is used by the malware to send SMS to premium rate numbers.
Malware such as Mobts[16], FakeAngry[24] and FakeInstaller[1] use this
permission.

19. SET_WALLPAPER: This permission that is used to set the wall paper is
used by a malware to download malicious content from the remote server.
Certain malware may also use this permission to crash the device by re-
booting it many times.

20. WAKE_LOCK: This is a permission that is used to keep the device’s
screen active. Malware may use this permission to perform malicious ac-
tivities in the background by keeping the device active.

21. WRITE_APN _SETTINGS: This permission allows the application to
write the APN settings and to read the sensitive fields like username and
password. Malware may use this permission to gather sensitive informa-
tion of the device.

22. WRITE_CONTACTS: This permission allows an application to write the
user’s contacts data. Malware application may use this to access the ac-
counts like Google, Facebook, etc. The malware Mobts [16] uses this per-
mission.

23. WRITE_EXTERNAL_STORAGE: This permission is used to read orma-
nipulate the files stored in a phone.Malwaremay use this to access the files
stored in a device. Malware Ginmaster[58] uses this permission.

24. WRITE_SMS: This permission is used to write SMS. Malware may
use this to send SMS to the premium rate numbers. Malware such as
FakeAV[59], and Dendroid[18] use this permission.

Table 3.2 shows the permissions used by some of the popular malware applica-
tions for doing various malicious activities.

3.5.1.2 Component-based permission escalation attack

In Android, every application runs in its own sandbox.This means that every applica-
tion has its own resources and neither of the applications can interact with each other.
However, a transitive permission attack can break the Android’s security model by
allowing an unprivilaged application to utilize the privileges of another application
[205]. A component based permission escalation attack is one such attack. This attack
exploits the MAC reference model. Figure 3.1 shows the component-based permis-
sion escalation attack.

Here the three android application �, � and � are isolated from each other. Each
of the applications are running in their own sandboxes. Application � has two compo-
nents �1 and �2 with no granted permissions and application � has two components
�1 and �2 with the permission %2. Let the application � has two components �1
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TABLE 3.2 Permissions used by malware families.

Permission Geinimi DroidDream PjApp GoldDream Adrd
ACCESS_COARSE_LOCATION x x
ACCESS_FINE_LOCATION x x
ACCESS_NETWORK_STATE x x

ACCESS _WIFI _STATE x
BROADCAST_PACKAGE_REMOVED x

CALL_PHONE x x
CHANGE_WIFI_STATE x x
DELETE_PACKAGES x
INSTALL_PACKAGES x

INTERNET x x x x x
KILL_BACKGROUND_PROCESSES

MOUNT _UNMOUNT_FILESYSTEMS x
PROCESS _OUTGOING_CALLS x x

READ_CONTACTS x
READ_PHONE _STATE x x x

READ_SMS x
RECEIVE_BOOT_COMPLETED x x

RECEIVE _SMS x x
SEND _SMS x

SET_WALLPAPER x
WAKE _LOCK

WRITE_CONTACTS x
WRITE_EXTERNAL_STORAGE x

and �2 which are protected with permission %1 and %2. The application �’s com-
ponents are not allowed to access the components of application � directly because
they are protected by permission %1 and %2. However, application � is allowed to
access the components of application �. In component based permission escalation
attack, the application � accesses the components of application� indirectly through
the components of � .

Application A

Granted Permissions:

A1 A2

Application B

Granted Permissions: P2

B1 B2

Application C

Granted Permissions:

C1 P1 C2 P2

B1 can be accessed by

       A1 without permissions

A1 is not allowed to access the components protected by P1

Android Middleware 

B1 is allowed to access

the components

protected by P1

FIGURE 3.1 Component-based permission escalation.
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3.5.2 Intent-based analysis
In this section, we explain how intents in Android application can be used for
malware detection. We also explain the intent-based vulnerabilities in Android
and how the intents are used by the malware applications to launch malicious
activities.

Intents are requests that are given to the activities, external applications and built-
in Android services. An application has many activities and each of the activities may
have buttons, texts and labels associated with it. The intent mechanism helps to push
data from one activity to the other. Intents are defined in the AndroidManifest.xml
file in the form of intent filters. An intent object carries the information to determine
the component to start and the actions for the components. An intent object consists
of the following.

1. Component Name: The intent object holds the name of the component
of the Android application. The component name indicates the activity,
service or BroadcastReceiver class.

2. Action: Actions are used to define the task that is to be performed by the
components.

3. Data: The data defines the type of data that is specified by the intents.
4. Category: The category is a string that is used to specify the type of com-

ponent that should handle the intent.
5. Extras: The extra values are used to provide additional information to the

components.
6. Flag: The flags are used to tell the Android system how to start an activity,

and how the activity is carried out after it is launched.

There are two types of intents. They are explicit intents and implicit intents. Implicit
intents used to perform an action based on specific data or value. For example, if the
application needs to make a telephone call, the implicit intent would be like,

Intent callIntent = new Intent(Intent.ACTION_CALL);
callIntent.setData(Uri.parse("tel:78654989"));
startActivity(callIntent);

The explicit intent on the other hand is used for calling one activity in response to a
user action or another activity. For instance if the application needs to send a message
when the user clicks a button, we use an explicit intent. The explicit intent would be
like,

public void launchComposeView()
Intent i = new Intent(ActivityOne.this, ActivityTwo.class);
startActivity(i);

3.5.2.1 Intents used for malware attacks

Various intents used by the malware to launch malicious activities are given below.
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1. android.intent.action.BOOT_COMPLETED: This intent is used by the
malware applications to start the malicious activities when the device has
finished the booting process. DroidKungfu [20] malware uses this intent.

2. android.intent.action.BATTERY_LOW, android.intent.action. BATTERY
_OKAY: Malware may use these intents to check the status of the battery
level of the device to load various malicious payloads.

3. android.intent.action.INPUT_METHOD_CHANGED: This intent is used
to check whether the device’s input method is changed.

4. android.intent.action.ACTION_POWER_CONNECTED: This intent is
used by the malware to check whether the device is connected with the
power to initiate a malicious app update. The malware Basebridge [55]
uses this intent.

5. android.provider.Telephony.SMS_RECEIVED: This intent is used by the
malware application to check whether the device has received SMS so as
to forward it to a malicious server.

6. android.intent.action.USER_PRESENT: This intent is used by the mal-
ware application to check whether the user is present or not by checking
whether the device is unlocked. Tekya malware uses this intent[169].

7. android.intent.action.SCREEN_ON: This intent is used by the malware to
check whether the device’s screen is on.

8. android.intent.action.SCREEN_OFF: This intent is used to check whether
the device’s screen is off. Malware FakeAV[59] uses this intent.

9. android.intent.action.SIG_STR: This intent is used by the malware appli-
cation to check the signal strength of the device.

10. android.intent.action.PACKAGE_INSTALL: This intent is used by the
malware to check whether the malicious package is installed or not.

11. android.intent.action.PACKAGE_ADDED: This intent is used by themal-
ware application to check whether the malicious package is added or not.

12. android.intent.action.PHONE_STATE: This intent is used by the malware
to check whether there are any incoming calls in the device.

13. android.app.action.DEVICE_ADMIN_ENABLED: This intent is used to
check whether the administrator privilege is enabled to manage the device.

14. android.intent.action.ACTION_EXTERNAL_APPLICATIONS_AVAIL
ABLE: This intent is used by the malware to start the application when it
is present in the SD card.

15. android.intent.action.QUICKBOOT_POWERON: This intent is used by
themalware to start a servicewhen the device is booted. Comebotmalware
uses this intent[16].
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3.5.2.2 Intent-based vulnerabilities

The recent trends in Android malware show that a malware can exploit the vulnera-
bilities present in the intent mechanism of the Android[31]. In this section, we discuss
about the intent-based vulnerabilities in Android applications.

AnAndroid applicationmay consistsmany private components which other appli-
cations are not allowed to access. However an intent redirection vulnerability allows
the malware to access the private components of an application and steal the sensitive
data. In the year 2021, thousands of shopping applications were exploited by the intent
redirection vulnerability [81]. In the next paragraph, we explain the intent redirection
vulnerability in Android.

Android application consists of components such as Activity, Service, Broadcast
Receiver and Content Providers. These components are private and can be accessed
by other components of the same application. However, if the components are de-
clared as public they can be accessed by the components of other applications also.
These components are invoked with intents and specific API’s. Suppose there are two
applications A1 and A2 in which A1 is a malicious application and A2 is a legitimate
application. Let the application A2 has two components a public component denoted
by >C and a private component denoted by >@ . The private component >@ of A2 is
designed in such a way to extract and process the data sent from the intent � of the ap-
plication A1. Here the malware application A1 accesses the private component of A2
as follows. At first A1 sends the intent � to access the public component >C of A2. In
addition to � the malware also adds another intent object � ′ to � to access the private
component >@ of the legitimate application. When the public component >C receives
the intent � , >C extracts and forwards it to >@ . The private component >@ extracts
the data from its intent � which consists of an additional intent object to access the
private component >@ . In this way, the attacker is able access the private component
of the legitimate application. Figure 3.2 shows how this attack is carried out.

Intent I

startActivity(I)

Application A1

Public component (pu)

Intent I=getIntent() Private

component

(pr)

Application A2

Intent I’=I.getParceableExtra()

Intent I’

startActivity(I’)

FIGURE 3.2 Intent redirection attack.
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3.5.3 Malware detection using permissions and intents
This subsection explains the mechanisms based on permissions and intents for detect-
ing malware.

Features of Android manifest file such as intents and permissions may not change
from time to time. Hence, frequent classifier retraining is not required if we are using
permissions and intents.

Talha et al. [193] suggested a signature-based malware identification mechanism
called Apkauditor. This mechanism analyzes the signatures based on the permissions
requested by the application for identifying whether it is malicious or not. The accu-
racy of this approach was low as compared to other approaches.

Shahriar et al. [179] developed a mechanism to detect Android malware appli-
cation by analyzing their requested permissions. In the first step, they used Latent
Semantic Indexing (LSI) to find the frequent permissions requested by most of the
malware applications. In the second step, they searched for these frequent permis-
sions in unknown applications for identifying the malicious behavior. The authors
did not mention the accuracy of their approach.

In ICCDetector [213], inter component communication patterns were analyzed
for finding the malicious behavior. This approach had two steps. In the first step, a
machine learning classifier was trained with the ICC related features of several known
goodware andmalware apps. In the next phase, a classifier was used to predict whether
the unknown application is a malware or not based on the ICC patterns.

Intent-based mechanisms are very accurate in detecting malware apps which per-
form malicious behavior by invoking the components of other applications. However,
these mechanisms will not work in the case of repacked malware apps. That is, an
attacker can add malicious functionality without adding or removing the components
of an application. In such cases, a malware application may get falsely flagged off as
a goodware.

Feizollah et al.[105] developed a mechanism to detect Android malware by an-
alyzing their permissions and intent related features. In the first step, they used
Bayesian network to build the malware detection model. In the second step, they used
heuristic search algorithms such as K2 and HillClimber to reduce the complexity of
the model. The Bayesian network model was able to predict whether an application
wasmalware or not based on the permissions and intents. In this approach, the time re-
quired for training the Bayesian network algorithm was very high. In [129] and [124],
the authors proposed a malware detection mechanism by combining permissions and
intents. Sato et al.[177] proposed a light weight malware detection mechanism using
various static features such as permissions, intents, intent filters, number of redefined
permissions, etc. Their mechanism gave 91% accuracy. Andre et al.[108] proposed a
malware detection mechanism with permissions and intents. Their mechanism gave
97% accuracy with Adaboost Random Forest (ARF) classifier.

Eventhough permissions are useful for detecting malware, certain goodware apps
may request dangerous permissions for legitimate reasons. For example, a banking ap-
plication request SEND_SMS permission for legitimate purposes. In such cases, the
goodware app might get misjudged as a malware. Furthermore, malware applications
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have tendency to share their user-id with legitimate apps to inherit permissions [204].
All of these factors may degrade the accuracy of the classifier.

3.6 Opcode-Based Static Detection
When an Android application is compiled, Dalvik opcodes are generated. The An-
droid RunTime Environment (ART) translates opcodes into the instruction set of the
processor. There are 221 unique opcodes in an Android application. An example of
Android Dalvik opcodes is given below.

add-int/2addr
check-cast
const/4
const-string
goto
if-eqz
if-ne
if-nez
iget
iget-object

The opcodes provide the execution paths of Android application and it helps to
understand the functionality of application. The main advantage of using opcodes as
features for Android malware detection is that they can be used to detect malware
without expert analysis[91]. The shell script to extract opcodes from an Android ap-
plication is give in the Appendix.

3.6.1 Malware detection using opcodes
Analysis of opcodes have been found to be very effective in detecting Android mal-
ware. Table 3.3 provides the top 5 opcode 3−grams used for detecting malware. In
this section we discuss about various malware detection mechanisms that use opcode
analysis.

The opcodes are found to be useful features for detecting Android malware since
they are closely related to the application code[91]. Canfora et al.[91] proposed a
technique based on the frequencies of opcode <-grams for detecting Android mal-
ware. Jerome et al.[125] also proposed a technique based on opcode <-grams using
ML techniques. Chen et al.[94] proposed a mechanism called TinyDroid, that uses a
compression technique to reduce the feature set. Their technique was able to achieve
a higher accuracy value with low false alarm rate. Pektas et al. [164] also proposed a
technique using deep learning and instruction call graph for detecting Android mal-
ware. Bacci et al. [78] proposed a hybrid mechanism to detect malware by combining
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TABLE 3.3 Top 5 opcode 3–grams used by malware applications.

Sl. No Opcodes
1 move-result-object,move-object/from16,invoke-virtual
2 move-object/from16,iget-object, invoke-virtual
3 if-eqz,check-cast,goto
4 move-object, check-cast, if-eqz
5 move-object/from16,iget-object, move-object/from16

opcodes and system calls to detect malware. Bai et al. [79] proposed a mechanism
to detect Android malware by combining Dalvik opcodes and permissions. Kim et
al.[131] proposed a multimodel deeplearning technique to detect Android malware
by combining opcodes and various features. Bakhshinejad et al.[80] also proposed a
mechanism to detect Android malware by compression mechanisms with opcodes as
features. In [137], Rao et al. proposed an opcode basedmalware detectionmechanism.
Their mechanism used Recurrent Neural Networks (RNN) and gave 96% accuracy.
Tang et al. [195] proposedMGOPDroid to detect obfuscated variants of Android mal-
ware with opcode sequences as features. In [146], the authors proposed a model based
on PercieverIO that can process long sequence of opcodes effectively for malware de-
tection.

Many of the above detection mechanisms can be evaded by a code injection at-
tack[127] [95] [139] that can degrade the accuracy of the detection mechanism.

3.7 Conclusion
In this chapter, we discussed the static analysis approaches used for Android malware
detection.We also discussed how the sensitive API’s, permissions and intents are used
by malware for doing various malicious activities. This chapter will help the cyber
security researchers and developers to understand how static analysis mechanisms
can be used effectively for malware detection and to develop more effective detection
mechanisms.
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4
Dynamic and Hybrid Malware Detection

All the static analysis mechanisms can be evaded by dynamic code loading attacks
[171]. A dynamic code loading attack consists of three steps. In the first step, a mal-
ware developer creates an application with two byte codes: a malicious code and a
legitimate code. In the next step, he encrypts the malicious byte code. In the final
step, he writes a decryption program in the main byte code (legitimate byte code) to
decrypt the malicious byte code and compile the application. Hence, the malicious
byte code is not available in plain text for analysis. During the runtime, the malicious
code gets decrypted and executed in the system. Hence, it is required to consider run-
time information of an application to detect the malware apps which employ dynamic
code loading attacks.

4.1 Emulator-Based Dynamic Analysis
Dynamic analysis rely on the runtime features such as network packet level informa-
tion, systemmetrics, sensitive API calls and system calls for identifying the malicious
behavior. In emulator based dynamic analysis, the dynamic analysis is conducted by
executing the application in an emulator. For conducting dynamic analysis, we ini-
tially set up an Android emulator in our PC. The steps are given below:

• Download and install the Android studio;

• Open Android studio;

• Go to tools -> Android -> AVD Manager -> Create Virtual Device;

• Create AVD by selecting phone type and API level information and

• Launch AVD (Android Virtual Device) from AVD manager.

After setting up the emulator, we install the testing app into the emulator. The com-
mand is given below.

adb install <path of the application> \index{ADB}

During the dynamic analysis, we inject several pseudo random events with auto-
mated test case generation tools for achieving better code coverage. Here, we used
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monkeyrunner as automated test case generation for injecting pseudo random events.
The command is given below.

adb shell monkey -p <package-name> -v <number of events>

During the execution of the application, we can use system utilities in the emulator
for collecting dynamic information. For collecting system calls, we can use strace tool
in the emulator. The command for collecting system calls is given below.

strace -p <process-id> -o <output-filename>

For collecting the network packets, we can use tcpdump command in the emulator.
The command for collecting network packets is given below.

tcpdump -i <interface> -w <output-filename>

By this way, we can use tools or frameworks in the emulator to collect various other
dynamic information such as CPU/memory usages, battery utilization, API calls, etc..

4.2 Dynamic Malware Detection Mechanisms
We classify the existing mechanisms into the following categories:

1. System Metric Analysis (Category 1);
2. Network Packet Analysis (Category 2);
3. Sensitive API Call Analysis (Category 3);
4. System Call Analysis (Category 4).

The comparative analysis of existing dynamic analysis mechanisms are given in Table
4.1.

4.2.1 System metric and traffic analysis (Category 1)
In these mechanisms, the system metrics such as CPU usage, memory usage, battery
level information and network traffic are analyzed for malware detection. In this ap-
proach, since the system level features may not change from time to time, frequent
classifier retraining is not required.

In Andromaly [178], the system level features such as CPU as well as memory
usage and battery utilization are recorded while running the application. Then, these
features are used in a trained ML classifier for malware detection. The accuracy of
this approach is low as compared to other mechanisms.

In [182], the system level features such as CPU usage, memory usage and network
traffic information are recorded in every 5 seconds and these features are used in a
trained ML classifier for finding the malicious behavior. This approach is tested in



Dynamic Malware Detection Mechanisms 45

TABLE 4.1 Comparative analysis of dynamic malware detection mechanisms.

Category Performance Limitations

Category 1 [152] Precision: 0.84,
F1 Score: 0.84 High false positive rate

Category 1 [182]
Accuracy: 0.99
TPR: 0.98
FPR: 0.01

Performance not clear

Category 1 [178] Detection Accuracy: 0.88
TPR: 0.91 Low accuracy

Category 2 [82] Detection Rate: 0.77 High false positives

Category 2 [130] TPR: 0.96,
Accuracy: 0.96 Prone to API call injection attack

Category 3 [119] Detection Rate: 0.73,
FPR: 0.04 Malware detection rate is low

Category 3 [73] Detection Rate: 0.90 High feature extraction cost
Category 4[89] N/A Performance results are not given
Category 4 [71] Accuracy: 1 Performance not clear

Category 4[199] TPR: 0.99,
Accuracy: 0.99 System call relationship is missing

Category 4[91] TPR: 0.97,
Accuracy: 0.97 Cannot detect unknown malware families

Category 4 [100] Accuracy: 0.96 High dimensionality of feature vector
Category 4 [122] Accuracy: 0.92 Require a large training dataset

Category 4[209] TPR: 0.98
F1 Score: 0.98 High dimensionality of feature vector

Category 4 [85] Accuracy: 0.94 Feature extraction cost is high

Category 4[208] TPR: 0.98
F1 Score: 0.98 High dimensionality of feature vector

Category 4[219] TPR: 0.97
Accuracy: 0.98 High dimensionality of feature vector

Category 4 [83] TPR: 0.94
F1 Score: 0.91 Requires multiple system call logs

Category 4 [210] Precision: 0.91
Accuracy: 0.94 Prone to system call reordering attack

Category 4 [99] TPR: 0.96,
Accuracy: 0.94 Emulator customization is required

very limited number of applications (20 goodware and 6 malware apps). Hence the
performance is not clear on large and realistic datasets.

In [152], the relevant features related to CPU and memory usages are used as
input features of a machine learning classifier for identifying whether an application is
malicious or not. In this approach, they used feature selection algorithms to reduce the
number of features in the machine learning classifier. The computational complexity
of this approach is low. However, false positive rate is high in this approach.

According to Gheorghe et al. [112], the consumption of system resources in some
malware apps are minimal. Hence the system metric values (CPU usage, memory
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usage) are not high for these applications. In such cases, a system metric-based mal-
ware detection mechanism may fail in detecting these kinds of malware.

4.2.2 Network packet analysis (Category 2)
In thesemechanisms, the network packets are analyzed for findingmalicious behavior.
These approaches are very accurate in detecting the malicious applications which try
to communicate with the remote servers in the background.

In [73], the network packet level information such as average packet size, ratio
of incoming to outgoing bytes etc. are used for predicting the malicious behavior. In
this approach, a trained ML classifier is used to predict whether the application is
malicious or not based on the network traffic features. The cost of feature extraction
is very high in this approach.

In AppFA[119], He et al. proposed a mechanism to construct the network be-
havioral profiles of an application using a clustering algorithm. Then, these network
behavioral profiles are compared with historical data and profiles of selected peer
groups (apps having similarity in size, category etc.) for identifying the malicious
behavior. Malware detection rate (0.734) is low in this approach.

Some malware do not need the Internet connection for performing their activities.
For example, somemalware send SMS to premium numbers in the background. These
kinds of malware cannot be detected by analyzing network packets. This is a major
drawback of this approach.

4.2.3 Sensitive API call analysis (Category 3)
It is required for an application to invoke sensitive API calls for performing privi-
leged operations in a device. Hence, the malicious behavior of an application can be
identified from the API calls invoked by the application during its runtime.

In [82], Bao et al. suggested a mechanism to detect Android malware by analyzing
the sensitive API calls. In this approach, the malicious behavior of an unknown ap-
plication is identified by checking the presence of malicious API calls. This approach
cannot detect evolving malware apps.

In [130], Kim et al. proposed a mechanism to detect Android malware apps based
on a suffix tree which contains API call subtraces. In this approach, Hidden Markov
Model is used for generating the probabilistic confidence values from the suffix tree
for identifying the malicious behavior. This approach cannot detect malware apps
which contain privilege escalation exploits.

This mechanism is very accurate in detecting the malware apps which try to make
a communication with the sensitive resources in a device by generating a sensitive
API call sequence. Sometimes benign applications (goodware) invoke sensitive API
calls for performing privileged operations. In those cases, benign applications may
get wrongly classified as malware.
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4.2.4 System call analysis (Category 4)
In this section, we discuss about the system call-based dynamic analysis mechanisms
for detecting malware applications. Malware apps do not require user triggers for in-
voking sensitive APIs [101]. The invocation of API calls without user triggers get
reflected in the corresponding system call sequence [211]. Hence, system call anal-
ysis is a powerful approach for dynamic malware detection. The system call-based
dynamic analysis mechanisms can be classified into:

• System Call Frequency or TF-IDF (Term Frequency-Inverse Document Frequency)
Based Methods;

• System Call Dependency Graph or Markov Chain Based Methods;

• System Call Phylogeny Based Methods;

• System Call Behavioral or Sequence Analysis Based Methods .

4.2.4.1 System call frequency or TF-IDF-based methods

In these mechanisms, the counts of system calls or TF-IDF values are analyzed using
machine learning algorithms for finding the malicious behavior. It is computationally
easy to construct a feature vector based on the counts or TF-IDF values of system
calls in the system call sequence of an application.

Crowdroid [89] is a behavior based dynamic malware detection mechanism based
on a cloud architecture. In this approach, a client application collects all the system
call events from a device and sends to a remote server. Then the server preprocesses
this system call data and uses k-means clustering algorithm to determine whether the
application is malicious or not. This approach can be defeated by employing system
call injection attack. That is, an attacker can inject irrelevant system calls such as
information maintenance system calls, erroneous system calls, etc. in the system call
sequence of an application.

Amamra et al. [71] proposed a mechanism for detecting Android malware appli-
cations by analyzing the frequencies of system calls which influence the behavior of
an application. In this approach, a binary machine learning classifier is trained with
the frequencies of behavioral system calls produced by known malware and good-
ware applications. The classifier is used to predict whether an application is malware
or not based on the frequencies of behavioral system calls. The authors used a limited
dataset (100 malware and 100 goodware) to evaluate their approach.

Vinod et al. [199] suggested novel feature selection methods for finding the most
relevant system calls which provide more accuracy in detecting malware and good-
ware apps. In this approach, a machine learning classifier is used to predict whether an
application is malware or not based on the TF-IDF (Term Frequency- Inverse Docu-
ment Frequency) values of the selected system calls. In this approach, the system call
relationship information is not considered.

In [209], Xiao et al. proposed a mechanism to detect Android malware applica-
tions by analyzing system calls during its runtime. A pre-trained machine learning
classifier is used to predict the malicious behavior of an unknown application based
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on the system call co-occurrence values and the frequency values of each system calls
in a sequence. In this approach, the dimensionality of feature vector is high.

Canfora et al. [91] proposed a mechanism to detect Android malware application
by analyzing the counts of the fixed length contiguous subsequences in the system call
sequence of an application. They used a trained SVMclassifier for identifyingwhether
an application is a malware or not based on the counts of fixed length contiguous
system call subsequences. This approach cannot detect unknown malware families.

4.2.4.2 System call dependency graph or markov chain-based methods

In these mechanisms, system call graphs or Markov chain sequences of system calls
are analyzed for finding the malicious behavior. Here, system call dependency infor-
mation is considered for finding malicious behavior.

Maline [100] is a tool for detectingmalware applications in Android devices based
on system call sequence. In Maline, a trained classifier is used to predict whether an
application is malicious or not by finding the dependencies of each system calls and
their frequencies of occurrence. This approach can be defeated by employing system
call injection attack. That is, an attacker can inject irrelevant system calls such as
information maintenance system calls, erroneous system calls, etc. in the system call
sequence of an application and defeat the detection mechanism.

In [122], Hu et al. proposed a mechanism to detect Android malware applica-
tions from system call graphs. In this approach, they used a deep learning classifier
for identifying whether an application is malicious or not based on the system call
graph-based features. This mechanism rely on deep learning algorithms for malware
detection. It requires a very large set of training data.

Xiao et al. [208] suggested a mechanism for detecting Android malwares from the
Markov chain sequence of system calls of the application. A back propagation neural
network [120] is trainedwith the system call state transition probabilities using several
goodware and malware applications. This neural network [120] is used to predict the
malicious behavior of the application. In this approach, the dimensionality of feature
vector is high.

In CSCdroid [219], the Markov chain system call sequence of an application is
analyzed for detecting malware applications. This approach has two steps. In the first
step, they constructed a system call Markov chain sequence by replacing all normal
system calls in a sequence with a specific one. In the second step, a binary machine
learning classifier such as SVM is used for detecting the malicious behavior of an ap-
plication from its system call Markov chain state transition probability matrix. This
approach can be defeated by employing system call injection attack. That is, an at-
tacker can inject irrelevant system calls such as informationmaintenance system calls,
erroneous system calls, etc. in the system call sequence of an application and defeat
the detection mechanism.

Bandari et al. [85] proposed a mechanism to detect Android malware application
from its Markov chain system call sequence. In this approach, they extracted seman-
tically relevant paths from system call Markov chain graph and used it as a feature
vector of a machine learning classifier for finding the malicious behavior. It requires
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at least 30 minutes to extract the semantically relevant paths from system call Markov
chain graph of an application.

4.2.4.3 System call phylogeny-based methods

In these mechanisms, the system call phylogeny relationship among malware samples
are analyzed for finding malicious behavior.

Bernadi et al. [83] proposed a mechanism to detect Android malware apps from
System Call Execution Fingerprint (SEF)-based feature vectors. This SEF (System
Call Execution Fingerprint)-based features can be used to characterize the malicious
behavior and trace out the malware phylogeny. In this mechanism, a trained machine
learning classifier is used to identify the malicious behavior of an application from
the SEF-based features. It is practically very difficult to collect multiple system call
log of a single application and construct the feature vector.

4.2.4.4 System call behavior or sequence analysis-based methods

In these mechanisms, the system call sequence or subsequences are analyzed for find-
ing malicious behavior.

Xiao et al. [210] proposed an LSTM (Long Short Term Memory)-based mecha-
nism for detecting Android malware applications from its system call sequences. In
this approach, two trained LSTM classifiers corresponding to malware and goodware
system call sequences are used to predict the malicious behavior from the system
call sequence generated by an application. It is possible for an attacker to reorder the
system call sequence by reordering the source code. Further, it requires a very large
training dataset.

In [99], Dash et al. suggested a mechanism called DroidScribe which makes use
of Copperdroid [194] to reconstruct high level behavior from the system calls and
these behaviors are used as features of a machine learning classifier for identifying
the malicious applications. It is required to customize emulators for reconstructing
the malicious behavior from system call sequence.

All the existng system call analysis mechanisms can be defeated by employing
system call hijacking attack [168]. That is, it is possible for an attacker to defeat sys-
tem call-based malware detection mechanisms by changing system call names in the
system call table. In such cases, a malware app may get wrongly flagged off as a
goodware and vice versa.

In this section, we discussed various dynamic analysis mechanisms and their lim-
itations. Dynamic analysis mechanisms can detect a malicious application only when
the application expresses malicious behavior at least once in the analysis time. Hence,
it is possible for a malware developer to defeat dynamic analysis mechanism by em-
ploying the update attack after the analysis time.
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4.3 Hybrid Analysis
Hybrid analysis is a combination of static and dynamic analysis. The comparative
analysis of existing hybrid analysis mechanisms are given in Table 4.2. The existing
hybrid detection mechanisms can be classified into two categories. They are:

• Hybrid Detection Based on a Single Classifier (Category 1);

• Hybrid Detection Based on Ensemble of Classifiers (Category 2).

TABLE 4.2 Comparative analysis of hybrid malware detection mechanisms.

Category Performance Limitations
Category 1 [160] F1 Score: 0.920 Prone to API call injection attacks
Category 1 [217] Accuracy: 0.967 Requires a very large training dataset
Category 1 [74] Accuracy: 0.948 System calls are not considered
Category 1 [214] Accuracy: 0.947 Requires a very large training dataset
Category 1 [93] Accuracy: 0.938 High dimensionality of feature vector
Category 2 [143] Accuracy: 0.897 High dimensionality of feature vector

Category 2 [76]
Static Accuracy : 0.980
Dynamic Accuracy : 0.820
Hybrid Accuracy : N/A

Low accuracy in dynamic analysis

4.3.1 Hybrid detection based on a single classifier (Category 1)
In these mechanisms, both static and dynamic features are used as features of a ma-
chine learning classifier for identifying the malicious behavior. In these mechanisms,
the feature fusion is carried out by the classifier itself. Hence, feature fusion mecha-
nisms are not required in this approach.

In [74], Arora et al. suggested a mechanism to detect Android malware from the
permissions and the network traffic-based features. In this approach, the permissions
and network traffic features are used in the frequent pattern growth algorithm to detect
the malicious behavior. This approach can only detect the malware apps which try to
communicate with a remote server.

In [160], Onwuzurike et al. suggested a hybrid analysis mechanism for detecting
Android malware apps. In this approach, abstracted API call Markov chain sequences
from static and dynamic analysis are combined for detecting the malicious behavior.
It is possible for an attacker to inject additional API calls in the system call sequence.
In such cases, a malware app may get falsely flagged off as a goodware.

In StormDroid [93], static features such as permissions, sensitive API calls and
their sequences and dynamic features from the droidbox such as sendSMS, recvnet,
sendnet, etc. are used in a machine learning classifier for identifying the malicious
behavior. In this mechanism, the high dimensionality of feature vector unnecessarily
increases the storage space and processing time of the classifier.
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In DroidDetector [217], static features such as sensitive APIs, requested permis-
sions and dynamic features obtained from the droidbox are used in a deep learning
model for identifying the malicious behavior. This mechanism rely on deep learning
algorithms for malware detection. It requires a very large set of training data.

Xu et al. suggested a malware detection mechanism called HADM [214]. In this
approach, hybrid features such as suspicious calls, intent filters, network APIs, APIs
related to advertising networks such as Google ads and AdMob, instruction sequences
and system calls are used as feature vectors of a DNN (Deep Neural Network) classi-
fier for identifying themalicious behavior. It requires to train DNN classifier on a large
set of high dimensional feature vectors. Due to the high complexity, it is infeasible to
use this mechanism to use in real time malware detection.

In thesemechanisms, there are toomany features used in a single classifier. Hence,
it is possible for a malware developer to defeat these mechanisms by injecting the
features which are frequently found in goodware apps.

4.3.2 Hybrid detection based on ensemble classifiers (Category 2)
In these mechanisms, ensembles of classifiers are used for identifying malicious be-
havior from static and dynamic features. These mechanisms are highly accurate than
others.

Samadroid [76] is a hybrid malware detection model for Android devices.
Samadroid works in two steps. In the first step, the static features such as requested
hardware components, requested permissions, used permissions, app components, in-
tent filters and API calls are extracted from the source code and the dynamic feature
such as file and network related system calls such as open, read, etc. produced by
the application are collected after executing it. In the second phase, these static and
dynamic features are preprocessed and used as inputs to two machine learning clas-
sifiers such as SVM for identifying whether the application is a malware or not. An
application is treated as a malware if it is flagged off as malicious by both static and
dynamic classifiers. The accuracy of this approach is low due to the low accuracy in
its dynamic analysis part.

In Omnidroid [143], voting based ensembles of machine learning classifiers are
used for fusing the static and dynamic features extracted from malware and good-
ware applications. In this approach, the dimensionality of feature vector is high. The
high dimensionality of feature vector unnecessarily increases the storage space and
processing time of the classifier.

There are multiple classifiers used in these mechanisms. Hence, it is required to
develop innovative mechanisms to combine the prediction results of distinct machine
learning classifiers for accurate malware detection.
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4.4 Correlation Among Static and Dynamic Features
Android malware applications have a malicious code along with appropriate permis-
sions for accessing sensitive resources from the device without the proper permis-
sion of a user. According to Zhang et al. [218], the source code level API calls can
determine the underlying semantics of an application. These APIs are protected by
some permissions which need to be declared in the manifest file [106]. It is possi-
ble for a developer to declare permissions without API calls and vice versa. Hence,
using either permissions or API calls alone as features is not enough to detect the
malicious behavior of an application. Therefore, it is required to combine both API
calls and permissions for accurately detecting malware applications. Malware appli-
cations do not require user triggers for invoking sensitive API calls unlike goodware
[101, 211, 176]. This automated invocation of API calls gets reflected in a system call
sequence [211]. It is known that, an application generates system calls in accordance
with the execution of API calls during its runtime [183]. Hence, we can conclude that
static features such as API calls, permissions and dynamic features such as system
calls are the relevant features for detecting malicious applications.

Whenever an application process invokes an API call, the system process will
check the corresponding permissions required for it [106]. Then, it will allow that
API to execute if the permission is granted. For instance, the system process allows
sendTextMessage() API call to execute only if SEND_SMS permission is granted.
Hence, we can assume that an API call is conditionally dependent on its permission.
Hardware Abstraction Layer (HAL) accepts the invoked API calls and communicates
with the Linux kernel by generating system calls [86]. Hence, we can assume that
there exists some conditional dependencies between system calls and API calls. The
conditionally dependent execution of API call/s is given in Figure 4.1.

FIGURE 4.1 Conditional dependencies among features.

4.4.1 Tree augmented Naive Bayes (TAN) model
The naïve Bayes classifier builds a simple probabilistic model based on the assump-
tion that the features are independent of each other. In reality this assumption may
not hold. If we can incorporate the information of dependencies between the features
within the naïve Bayes model, the classification accuracy can be improved. Tree aug-
mented naïve Bayes (TAN) is one such model where the features are not independent
as in the naive Bayes. In TAN, each feature conditionally depends on the class and
(one) another feature from the feature set.
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In TAN model the basic structure of the naive Bayes model is retained. However,
the class node and all the feature nodes are connected by directed edges. Thus, it will
take into consideration all the features while calculating the conditional probability
%@ (� |�1 . . . �<), where� is the class variable and �1, . . . , �< are the features. Except
for the root variable (the class), each variable in the tree will have one or two parents:
one is class node and the other one, when present, is another random variable corre-
sponding to a feature. As interaction between the attributes have been limited to only
one, the computational complexity of this model is low.

To construct the tree structure we need to find the features which are correlated.
This is how the parent of each feature is found out. In this way, the problem of con-
structing amaximum likelihood tree can be reduced to the construction of amaximum
weighted spanning tree in a graph. In order to find the most correlated features mutual
information is calculated between each pair of attributes which form the weight of the
edges. The edges are added between the features which are highly interdependent. If
there are < features, there will < nodes and < − 1 edges in the graph. The resultant
graph with mutual information on the edges will form a maximum weight spanning
tree. For constructing a TAN model, we need to measure the degree of correlation
between the predictors (random variables corresponding to features) with the help of
a previously known dataset with class labels E. This is done by measuring the con-
ditional mutual information among all pair of predictors in that labelled dataset. The
conditional mutual information � (�7 , �8 |� ) between two random variables �7 , and �8
is computed as,

� (�7 , �8 |� ) =
∑
F,G ,9

(%@ (�7 = F, �8 = G , � = 9 ).

log
%@ (�7 = F, �8 = G |� = 9 )

%@ (�7 = F |� = 9 )%@ (�8 = G |� = 9 ) ),
(4.1)

where the probability values %@ (�7 = F, �8 = G , � = 9 ), %@ (�7 = F, �8 = G |� = 9 )
and %@ (�7 = F |� = 9 )%@ (�8 = G |� = 9 ) are obtained from the dataset. After cal-
culating the CMI values, the conditional dependencies among the predictor variables
are modeled as a tree. This tree can be used for the classification

4.5 Hybrid Analysis with TAN Classifier
In the previous section, we saw that there exists conditional dependencies among
the features, API calls, permissions and system calls. However, using conditionally
dependent static and dynamic features as a feature vector in a machine learning classi-
fier for hybrid analysis can lead to multicollinearity problem[70] . In [188], the mean
of output probability values of three naïve Bayes classifiers corresponding to API
calls, permissions and system calls is used for malware detection. However, in this ap-
proach, outlier probability values may affect the performance of the model. In [191],
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TAN classifier is used to fuse the prediction results of the classifiers corresponding
to API calls, permissions and system calls. In this section, we explain about this TAN
classifier

In order to overcome these limitations, in this chapter, we discuss a TAN
model[191] to combine the classifier output variables corresponding to the static fea-
tures such as API calls, permissions and the dynamic features such as system calls
based on their conditional dependencies for predicting the malicious behavior. Hence
we can use a Tree Augmented Naive Bayes (TAN) model to combine the probabilities
of these correlated features to identify whether it is a malware or not. TAN is a re-
stricted Bayesian network based on the Bayes theorem. TAN can be used for modeling
the conditional dependency relationships among random variables as a tree. Further,
it has superior classification performance than naive Bayes classifier. This TAN-based
model can capture the interdependencies between static and dynamic features for pre-
dicting the malicious behavior. Suppose, in an application, sendTextMessage() API
call is declared without SEND_SMS permission. In this situation, sendTextMessage()
API call will not execute. Hence, without the execution of sendTextMesssage() API
call, the malicious system calls will not generate. In such cases, only the API call fea-
ture vector will have non zero values. Hence the API call-based classifier may classify
this application as anomalous, whereas the permission based classifier and the sys-
tem call based classifier may classify this application as goodware. Hence the TAN
model which combines the outputs of these three classifiers will correctly classify the
application as goodware. However, in the integrated feature fusion approaches, the
classifiers may wrongly classify the app as malware because of the presence of API
calls in the feature vector. Ridge regularized logistic regression models (RRLR) are
used for training and testing in this TANmodel. The advantage of the RRLR classifier
is its ability to predict anomalous behavior even in the presence of noisy samples in
the dataset [172]. In RRLR classifiers , regularization is used to tune the parameters
for minimizing the prediction errors caused by the noisy applications.

Wewill now discuss the details of the TAN based hybrid malware detectionmech-
anism [191]. This mechanism has two phases. In the first phase, we will estimate the
probabilities of anomalous behaviors in static API calls, permissions and the system
calls using RRLR (Ridge Regularized Logistic Regression) classifiers. In the second
phase, we combine these probabilities using TAN for effectively predicting the ma-
licious behavior. The hybrid malware detection mechanism is given in Figure 4.2.

4.5.1 Dependencies among API calls, permission and system calls
In this section, we illustrate conditional dependencies among these API calls, permis-
sions and system calls with the help of a dataset.

4.5.2 Ridge regularized logistic regression (RRLR)
Logistic regression is the fitting of a logit function or an s-curve logistic to a dataset
in order to calculate the probability of the occurrence of a categorical event based
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FIGURE 4.2 Hybrid malware detection mechanism.

on the values of a set of independent variables. A logistic model might predict the
likelihood of a given application to be a malware as a function of its static or dynamic
features.

A logistic regression in one independent variable has the general form,

ℎX (F) =
1

1 + 4 −(X0+X1F )
.

Logistic regression can be generalized to multiple independent variables as,

ℎX (- ) =
1

1 + 4 −(X0+X1F1+···+X<F< )
=

1
1 + 4 −X) -

,

where X = (X1, . . . , X<)) and - = (F1, . . . , F<)) . The probability of occurrence of a
dependent variable . given - can be directly estimated as,

ℎX (- ) = %@ (. |- ) =
1

1 + 4 −X) -
,

where X = (X1, X2, . . . , X<)) are the regression parameters. These regression param-
eters are estimated from the training data.

Ridge and Lasso are two regularization techniques to reduce or shrink the coef-
ficients in the resulting regression. This reduces the variance in the model and can
avoid over fitting problem. Over fitting results in a model failing to generalize. That
is the model works well on a data used to train the model, whereas it fails to perform
on a new set of data. The logistic regression coefficients X0, . . . , X< are found by min-
imising the negative log likelihood. Ridge and lasso regularization work by adding a
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penalty term to the log likelihood function. In the case of ridge regression, the penalty
term is

∑
X 2
7
and in the case of lasso, it is

∑ |X7 |. In this chapter, we will employ the
ridge regularization to estimate the probabilities.

Let � = {(-7 ,.7 ) : 7 = 1, 2, . . . ,;} be a labeled dataset, where each -7 is an
< dimensional vector and .7 denotes its label. The regression parameter vector X =

(X1, X2, . . . , X<) can be estimated from the dataset� through ridge regularization.The
parameter X is estimated as,

argmax
X

;∑
7=1

log(%@ (.7 |-7 : X )) −W
<∑
7=1

X 27 ,

where W is a penalty value calculated by cross validation approach [172]. %@ (.7 |-7 :
X )) is computed as,

%@ (.7 |-7 : X ) = ℎX (-7 ).7 (1 − ℎX (-7 )) (1−.7 ) .

4.5.3 Probability estimation
RRLR classifier is used to find the probability of anomaly (malicious behavior) asso-
ciated with a ?-dimensional feature vector - (based on permissions or API calls or
system calls). Let . = 1 represents anomalous (malicious) and . = 0 represents non
anomalous (non malicious). Then, %@ (. = 1|- ) is computed as:

%@ (. = 1|- ) = 1
1 + 4F> (−X)- )

,

where X = (X1, X2, . . . , X? ) are the regression parameters. These regression parame-
ters are estimated during the training phase.

Let � = {(-7 ,.7 ) : 7 = 1, 2, . . . ,;} be a labeled dataset, where -7 =

(-71, . . . , -7? ) be the ? dimensional feature vector correspond to the 7 Bℎ element
and .7 ∈ {0, 1} denotes its label (1 represents anomalous and 0 represents non
anomalous). During the training time, we estimate regression parameters X =

(X1, X2, . . . , X? ) from the dataset � as argmax
X

;∑
7=1

:=6 (%@ (.7 |-7 : X )) − W
?∑
7=1
|X 2
7
|,

where W is a penalty value calculated by cross validation approach [172].

4.5.4 Anomaly detection
In this phase, we will inspect API calls, requested permissions and system calls gen-
erated by the application for finding the anomalous behavior. In TAN-based model,
anomaly in API, permission and system call based features refer to their abnormal or
suspicious behavior. The anomalous API calls, permissions and system calls are in-
voked for performing high privileged operations in a device. The source code of amal-
ware application may contain risky API calls (anomalous) to perform high privileged
operations such as calling phone, sending SMS, taking pictures, recording audio and
so on. In order to perform these highly privileged operations, an application requires
appropriate risky permissions (anomalous) such as CALL_PHONE and SEND_SMS
which need to be declared in the manifest file. These kinds of risky permissions are
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required for the execution of API calls (anomalous) in the runtime. In order for the
execution of these risky API calls (anomalous) in the runtime, infrequent risky system
call sequences (anomalous) will be generated. These system call sequences (anoma-
lous) are intended to perform the high privileged operations in the device. Here, we
train three distinct ridge regularized LR classifiers corresponding to API calls, per-
missions and system call sequences of a set of malware and goodware applications.

4.5.4.1 App permission analysis

In this phase, we will analyze the permissions declared in the app manifest file for
estimating the abnormal behavior. The process consists of two steps. In the first step,
we will train an RRLR (Ridge Regularized Logistic Regression) classifier [138] with
the permissions of knownmalware and goodware applications. In the second step, the
trained RRLR classifier is used for estimating the malicious probability of unknown
application based on the permission based features.

LetA=(A1, . . . ,AC ) represents the feature vector based on the permissions men-
tioned in the app manifest file and E ∈ {0, 1} denotes the binary random variable of
an application F in which 1 represents anomalous and 0 represents non anomalous.
A7 in A is computed as:

A7 =

{
1, if 7 Bℎ permission is present in F ;
0, otherwise.

Let T1 be a threshold value lying between 0 to 1. LetZ1 be a binary value indicat-
ing whether the app manifest permissions of an application is considered as anoma-
lous or not by the RRLR classifier L1. That is,

Z1 =

{
1 if %@ (E = 1|A) ≥ T1;
0 otherwise.

4.5.4.2 Static API function call analysis

In this phase, we will analyze the static API function calls of an application to predict
the abnormal behavior. The process consists of two steps. In the first step, we will train
an RRLR (Ridge Regularized Logistic Regression) classifier [138] with the static API
function calls of known malware and goodware applications. In the second step, the
trained RRLR classifier is used for estimating the malicious probability of unknown
application based on the static API function calls in it.

Assume that B=(B1, . . . ,BD ) denotes the features based on static API function
calls and E ∈ {0, 1} denotes the binary random variable of an application F in which
1 represents anomalous and 0 represents non anomalous. B7 in B is computed as:

B7 =
{
1, if 7 Bℎ API call is present in F ;
0, otherwise.

Let T2 be a threshold value lying between 0 to 1. LetZ2 be a binary value indicat-
ing whether the static API function calls of an application is considered as anomalous
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or not by the RRLR classifier L2. That is,

Z2 =

{
1 if %@ (E = 1|B) ≥ T2;
0 otherwise.

4.5.4.3 System call analysis

In this phase, we will analyse the counts of individual system calls in a system call
sequence. The process consists of two steps. In the first step, we will train an RRLR
(Ridge Regularized Logistic Regression) classifier [138] with the system call counts
of known malware and goodware applications. In the second step, the trained RRLR
classifier is used for estimating the malicious probability of unknown application
based on the counts of system calls in it.

Assume that C=(C1, . . . ,CE ) denotes the system call count based feature vector
and E ∈ {0, 1} denotes the binary random variable of an application F in which 1
represents anomalous and 0 represents non anomalous.

Let T3 be a threshold value lying between 0 to 1. Let Z3 be a binary value indi-
cating whether the system call counts of an application is considered as abnormal or
not by the RRLR classifier L3. That is,

Z3 =

{
1 if %@ (E = 1|C) ≥ T3;
0 otherwise.

4.5.5 Malware detection using TAN-based model
In this section, we combine the outputs of machine learning classifiers using Tree
Augmented Naive Bayes algorithm [97] [111]. Assume that F is an unknown appli-
cation andA,B,C correspond to the manifest permission based feature vector, static
API call based feature vector and system call count based feature vector respectively.
Assume that Z7 for 7 = 1, 2, 3 denote the binary valued random variables indicating
whether the application F has been declared as anomalous or not by the RRLR clas-
sifiersL7 , for 7 = 1, 2, 3 respectively. The TANmodel is given in Figure 4.3. The Tree
Augmented naive Bayes algorithm [97] is given below:

1. Measure the Conditional Mutual Information, � (Z7 ,Z8 |E) between Z7

and Z8 for 7 ≠ 8 . The conditional mutual information � (Z7 ,Z8 |E) be-
tween two ML classifier outputsZ7 andZ8 is calculated as,

� (Z7 ,Z8 |E) =
1∑

C=0

1∑
D=0

1∑
9=0

(%@ (Z7 = C,Z8 = D, E = 9 ).

log
%@ (Z7 = C,Z8 = D |E = 9 )

%@ (Z7 = C |E = 9 )%@ (Z8 = D |E = 9 ) ).
(4.2)

2. Construct an undirected graph withZ1,Z2,Z3 as the vertices connected
by edges with weights � (Z7 ,Z8 |E).

3. Extract an undirected maximum spanning tree from the obtained undi-
rected graph.
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Z1 Z2 Z3

FIGURE 4.3 TAN Model for malicious probability estimation.

4. Transform the undirected maximum spanning tree to directed maximum
spanning tree by arbitrarily choosing a node as root and setting directed
edges outward from it.

5. Construct a TAN model by adding a vertex E and adding edges from E to
all remaining vertices.

The malicious probability value %@ (E = 1|Z1,Z2,Z3) of an application is com-
puted using TAN as follows,

%@ (E = 1|Z1,Z2,Z3) =
%@ (E = 1).%@ (Z1,Z2,Z3 |E = 1)

%@ (Z1,Z2,Z3)
. (4.3)

The probability %@ (Z1,Z2,Z3 |E = 1) is calculated as,

%@ (Z1,Z2,Z3 |E = 1) = %@ (Z1 |E = 1).%@ (Z2 |Z1, E = 1).%@ (Z3 |Z2, E = 1).

The probability %@ (Z1,Z2,Z3) is calculated as,

%@ (Z1,Z2,Z3) = %@ (E = 1).%@ (Z1,Z2,Z3 |E = 1)
+ %@ (E = 0).%@ (Z1,Z2,Z3 |E = 0).

Let T be a threshold value lying between 0 and 1. If the malicious probability value
%@ (E = 1|Z1,Z2,Z3) exceeds T , then the application is declared as a malware.

4.6 Experiments and Analysis
In this section, we discuss about the performance of the TAN-based hybrid model in
the existing malware and goodware datasets. We have taken 1000 malware applica-
tions fromDrebin [75] and AMD [203] and 1000 goodware applications fromGoogle
Play (GP) [28] for evaluating the performance of this approach. The implementation
of this approach was carried out in an intel core i5Windows 10 PCwith 8GBmemory
having a preinstalled Android 4.4 emulator.

In static analysis, API calls and permissions of 3200 apps were extracted. For
extracting API calls and permissions, we have used Androguard [98] tool . After
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extracting the features, the binary feature vectors were constructed from these ex-
tracted API calls and permissions using a python code and saved in separate files.
In the dataset, we observed the presence of some permissions more frequently in
malware applications than in goodware applications and vice versa. We selected
these as our permission based features. The selected permissions are given in
Table 4.3.

TABLE 4.3 Selected permission for malware detection.

ID Permission ID Permission
1 READ_PHONE_STATE 2 WRITE_CONTACTS
3 CALL_PHONE 4 READ_CONTACTS
5 Internet 6 SEND_SMS
7 DISABLE_KEYGUARD 8 PROCESS_OUTGOING_CALLS
9 RECEIVE_BOOT_COMPLETED 10 READ_SMS
11 FACTORY_TEST 12 DEVICE_POWER
13 HARDWARE_TEST 14 CHANGE_WIFI_STATE
15 GET_ACCOUNTS 16 READ_HISTORY_BOOKMARKS
17 WRITE_APN_SETTINGS 18 MODIFY_PHONE_STATE
19 WRITE_HISTORY_BOOKMARKS 20 ACCESS_LOCATION
21 EXPAND_STATUS_BAR 22 WRITE_EXTERNAL_STORAGE
23 RECEIVE_SMS 24 WRITE_SMS
25 ACCESS_WIFI_STATE 26 MODIFY_AUDIO_SETTINGS
27 KILL _BACKGROUND_PROCESS

We observed the presence of some sensitive API calls frequently in malware ap-
plications than in goodware applications and vice versa. We selected these as our API
call-based features. The selected API calls are given in Table 4.4.

For dynamic analysis, we extracted the system call sequences of 2000 apps in our
dataset. The applications in our dataset were installed in an emulator and system call
logs were collected using strace utility. Here, we injected 1000 random events using
monkeyrunner tool while collecting the system call sequence. We used a python code
to transform the system call sequences into system call count-based feature vectors.

After collecting the system call sequences, the system call frequency based feature
vectors were constructed and saved in a file. Wang et al. [202], showed that memory
management calls, error system calls and information maintenance system calls do
not hold any significant impact on the malicious behavior. So, these system calls can
be avoided from the recorded system calls for effective identification of anomalous
behavior. The selected system calls and their alternate notations are given in Table
4.5.

4.6.1 Training phase
We randomly selected 500 malware and 500 goodware samples for training the three
ridge regularized LR classifiers L1, L2, L3. The different steps in training process
are given as follows:
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TABLE 4.4 Selected API calls for malware detection.

ID API Call ID API Call
1 getNetworkType 2 getNetworkOperator
3 loadClass 4 getClassLoader
5 getMethod 6 getLongitude
7 getLatitude 8 createFromPdu
9 getInputStream 10 getOutputStream
11 getWifiState 12 abortBroadCast
13 getAccountName 14 RequestFocus
15 getSubscriberId 16 getDisplayOriginatingAddress
17 sendTextMessage 18 getCredential
19 getDisplayMessageBody 20 getPackageInfo
21 getIMEI 22 getLastKnownLocation
23 getAppPackageName 24 takepicture
25 getCookies 26 killProcess
27 exec 28 getMessage

TABLE 4.5 Selected system calls for malware detection.

ID Notation System Call ID Notation System Call
1 A recvfrom 2 B write
3 C ioctl 4 D read
5 E sendto 6 F dup
7 G writev 8 H pread
9 I close 10 J socket
11 K bind 12 L connect
13 M mkdir 14 N access
15 O chmod 16 P open
17 Q rename 18 R fchown32
19 S unlink 20 T pwrite
21 U unmask 22 V lseek
23 W fcntl 24 X recvmsg
25 Y sendmsg 26 Z epoll
27 A1 dup2 28 A2 fchown
29 A3 readv 30 A4 chdir
31 A4 execve

• Estimation of threshold for L1,L2,L3;

• Conditional probability estimation.
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FIGURE 4.4 Classification error rate against different threshold values.

4.6.1.1 Estimation of threshold for L1,L2,L3

We split our training dataset into two subsets in which one of them is used to train
the classifiers and other is used for validation. We used 250 malware and 250 good-
ware samples for training the classifiers L1, L2 and L3. Then, we tested them with
the remaining malware and goodware samples and classifier output probabilities
%@ (E = 1|A), %@ (E = 1|B) and %@ (E = 1|C) were recorded. The error rate (dis-
cussed in Chapter 2) of API, permission and system call based classifiers against
different threshold values (probability) are given in Figure 4.4. From Figure 4.4, we
can see that, the classifiers can effectively detect anomalies in any threshold (proba-
bility) value between 0.3 and 0.6. Here, we chose 0.5 as the values of the thresholds
T1, T2 and T3 for the classifiers L1, L2 and L3 respectively .

4.6.1.2 Conditional probability estimation

In this phase, we determine the conditional probabilities among the classifier outputs
Z1,Z2 andZ3 using the TANmodel. For this, we used the validation set of 250 mal-
ware apps and 250 goodware apps. The static (API calls, permissions) and dynamic
features (system calls) of applications in the validation dataset are given as inputs to
the classifiers L1, L2 L3 and the classifier outputsZ1,Z2,Z3 were recorded. Then,
we used TAN model for computing the conditional probability values amongZ1,Z2
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and Z3. Initially, we calculate conditional mutual information � (Z7 ,Z8 |E) between
Z7 andZ8 for 7 ≠ 8 . Then, we construct an undirected graph withZ1,Z2 andZ3 as
the set of vertices connected by edges with weights � (Z7 ,Z8 |E) and extracted a max-
imum directed spanning tree from it. The undirected graph and maximum spanning
directed dependency tree are given in Figures 4.5 and 4.6.

Z1

Z2 Z3

0.1
99

0.005

0

FIGURE 4.5 Undirected dependency graph corresponding to classifier outputs.

Z1 Z2 Z3

FIGURE 4.6 Maximum spanning directed dependency tree corresponding to clas-
sifier outputs.

Let |Z3 = 8 ,Z2 = 7 , E = 9 | be the number of joint occurrences of eventsZ3 = 8 ,
Z2 = 7 and E = 9 and |Z2 = 7 , E = 9 | be the number of joint occurrences of events
Z2 = 7 and E = 9 . Then, the probability %@ (Z3 = 8 ,Z2 = 7 |E = 9 ) is calculated as,

%@ (Z3 = 8 |Z2 = 7 , E = 9 ) = |Z3 = 8 ,Z2 = 7 , E = 9 |
|Z2 = 7 , E = 9 | .

Let |Z2 = 8 ,Z1 = 7 , E = 9 | be the number of joint occurrences of eventsZ2 = 8 ,
Z1 = 7 and E = 9 and |Z1 = 7 , E = 9 | be the number of joint occurrences of events
Z1 = 7 and E = 9 . Then, the probability %@ (Z2 = 8 ,Z1 = 7 |E = 9 ) is calculated as,

%@ (Z2 = 8 |Z1 = 7 , E = 9 ) = |Z2 = 8 ,Z1 = 7 , E = 9 |
|Z1 = 7 , E = 9 | .

Let |Z1 = 7 , E = 9 | be the number of joint occurrences of events Z1 = 7 and
E = 9 . Then, the probability %@ (Z1 = 7 |E = 9 ) is calculated as,

%@ (Z1 = 7 |E = 9 ) = |Z1 = 7 , E = 9 |
|E = 9 | .

Let |E = 9 | is the number of occurrences of E = 9 and |E | is the total number of
applications in the dataset. Then the probability value %@ (E = 9 ) is calculated as,

%@ (E = 9 ) = |E = 9 |
|E | .

The conditional probabilities are given in Table 4.6, 4.7 and 4.8 respectively.
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TABLE 4.6 Conditional probability table for random variableZ1.

Class Label Z1Z1Z1 %@ (Z1 |�:0AA!014: )%@ (Z1 |�:0AA!014: )%@ (Z1 |�:0AA!014: )
E = 1 1 0.95
E = 1 0 0.05
E = 0 1 0.15
E = 0 0 0.85

TABLE 4.7 Conditional probability table for random variableZ2.

Class Label Z1Z1Z1 Z2Z2Z2 %@ (Z2 |Z1,� :0AA!014: )%@ (Z2 |Z1,� :0AA!014: )%@ (Z2 |Z1,� :0AA!014: )
E = 1 1 1 0.89
E = 1 0 1 0.45
E = 1 1 0 0.11
E = 1 0 0 0.55
E = 0 1 1 0.27
E = 0 1 0 0.73
E = 0 0 1 0.20
E = 0 0 0 0.80

TABLE 4.8 Conditional probability table for random variableZ3.

Class Label Z2Z2Z2 Z3Z3Z3 %@ (Z3 |Z2,� :0AA!014: )%@ (Z3 |Z2,� :0AA!014: )%@ (Z3 |Z2,� :0AA!014: )
E = 1 1 1 0.85
E = 1 1 0 0.15
E = 1 0 1 0.73
E = 1 0 0 0.27
E = 0 1 1 0.09
E = 0 1 0 0.91
E = 0 0 1 0.06
E = 0 0 0 0.94

The false positive (FPR) and negative rates (FNR) of the TAN approach against
different threshold values (malicious probability) are given in Figure 4.7. From Figure
4.7, we can see that the FPR and FNR values are lowest for any threshold value in the
range 0.3−0.8. Hence, we can fix any value in the range 0.3−0.8 as a threshold. Here,
we chose the mid value 0.5 as as the value of the threshold T for the TAN classifier.

4.6.2 Evaluation phase
The performance of the mechanism was evaluated with 500 malware and 500 good-
ware applications. The evaluation phase consists of two steps. In the first step, we
find out the classifier outputs Z1, Z2 and Z3 from API call, permission and system
call-based features of an application. In the second step, we find out the malicious
probability value. The performance of this approach is given in Table 4.9. In Table
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FIGURE 4.7 False positive and negative rates against different threshold values.

4.9, we can see that the TAN model could classify malware applications with a max-
imum accuracy of 0.98. The source code for extracting API, permission and system
call based features are given in the Apendix. Here, Androguard tool [98] is used to
extract API calls and permissions from the applications to construct csv files.

TABLE 4.9 Performance of the TAN-based model.

Dataset TPR FPR Precision Accuracy F1Score
AMD+Drebin 0.98 0.04 0.96 0.97 0.96
Drebin 1 0.04 0.96 0.98 0.98

4.7 Conclusion
In this chapter, we discussed amechanism for detectingAndroidmalware applications
by combining static and dynamic features related to the malicious activities by explor-
ing their conditional dependencies. This hybrid detection mechanism can accurately
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capture the malicious behavior than existing static and dynamic analysis mechanisms.
Further, this model is scalable to detect evolving malware and goodware applications.
Evolving malware and goodware apps may use new features for performing their ac-
tivities [154]. In such cases, the classifiers need to be retrained with the new set of
features. Hence, by retraining, we can keep the TAN model up to date. In order to
overcome the limitation of frequent retraining, one can employ active machine learn-
ing algorithms in the RRLR classifiers.

It is possible for an application to perform malicious activities by inheriting the
permissions of other apps. In such a situation, the app can use the permissions de-
clared in the manifest file of other apps. In this case, the AAPT tool cannot get these
inherited permissions by analyzing the manifest file. Hence, a classifier trained with
permission based features may wrongly classify the application. However, the API
calls are still present in the source code of the application and after the execution of
these API calls, malicious system calls will also be generated. Finally, the API call
and the system call based classifiers can correctly classify the application. Hence, in
most of the cases combining the outputs of permission, API call and system call based
classifiers, we can detect the malicious behavior.

In this chapter, we discussed about the effectiveness of API calls, permissions and
system calls for malware detection. API calls and permissions usually contain more
information than system calls. However, the reliability of API calls and permissions
can be questioned when a benign application invokes API calls and permissions that
are typical of malware. Malware applications do not require any kind of user trig-
ger for invoking sensitive API calls unlike goodware applications [101]. In goodware
applications user triggers are propagated through intent mechanism for invoking sen-
sitive APIs such as sendTextMessage() [101]. In those cases, the data reference is not
send over the IPC (Inter Process Communication) channel [194]. However, the invo-
cation of sensitive APIs without user triggers get reflected in the system call sequence
generated by the application [211]. Hence, the system calls trace of an application con-
tains relevant information about the malicious behavior than the standalone sensitive
API calls invoked by the application.

Most of the existing system call-based dynamic analysis mechanisms rely on
machine learning (ML) based approaches for detecting the malicious behavior.
These ML based detection mechanisms take either system call frequencies [71] or
co-occurrence matrix [209] or Markov chain state transition probability matrix [208]
as the feature vector for the ML classifier. These approaches can result in high di-
mensionality of feature vectors [110]. Curse of dimensionality (high dimensionality
of feature vectors) is a problem in which the higher number of features in a feature
vector will result in high sparsity in the data [110]. This high sparsity in data can
unnecessarily increase the storage space and processing time of the classifier. The
limitations of existing system call-based dynamic analysis mechanisms are given in
Table 4.10. In order to overcome these limitations, in the following chapters, we dis-
cuss low dimensional feature constructions using graph centrality measures and graph
signals for effective malware detection. These graph based low dimensional features
are then incorporated as part of machine learning algorithms that can automate the
malware detection task.
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TABLE 4.10 Limitations of existing system call-based mechanisms.

Approach Limitations
Burguera et al. [89] High dimensionality/Lack of system call dependencies
Xiao et al. [208] High dimensionality
Xiao et al. [209] High dimensionality
Zhang et al. [219] High dimensionality
Bernadi et al. [83] Requirement of multiple system call logs for feature construction
Yu et al. [216] High dimensionality
Xiao et al. [210] System call reordering attack
Canfora et al. [91] High dimensionality
Bhandari et al. [85] High dimensionality
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5
Detection Using Graph Centrality Measures

In the Chapter 4, we showed that TAN model can be used to combine the static and
dynamic features for accurate malware detection. In TAN-based detection model, it is
possible for a malware developer to evade API call and permission-based classifiers
by employing adversarial attacks[126].

Adversarial attacks on Android malware detection mechanisms are really threat-
ening. They can make an attacker to gain unauthorized access to a device. In ML-
based malware detection, feature values are extremely important since a slight change
in the feature values can affect the output of the classifier. In addition to that, many
adversarial attacks are transferable. That is the attacks targeting a specific ML-based
classifier can also cause misclassifications in other ML-based classifiers. There are
many simple feature manipulation techniques such as injecting bytes or appending
bytes at the end of the application code. These simple feature manipulations can be
easily detected bymonitoring the file structure of the Android application. However, if
an adversary adopts fine-grained modifications of the features, they can-not be easily
detected.

Adversarial attacks may affect the performance of the TAN based detection model
discussed in the Chapter 4. However, for an adversary it is not possible to change the
system call sequence generated by an application without changing the underlying se-
mantics in the source code of the application. Further, it is known that malware apps
invoke sensitive APIs in an automated manner. This invocation of API calls without
user triggers gets reflected in the corresponding system call sequence [211]. Hence,
the system call sequence of an application contains relevant information about the
malicious behavior than sensitive API calls. Hence system call based malware detec-
tion mechanisms are more robust to adversarial attacks. Many existing system call
based detection mechanisms use standalone features related to the system call fre-
quencies to detect the malicious behavior from the system call trace. The standalone
features may not capture all the characteristics of system call trace associated with
the malware application. Hence, the machine learning classifiers trained with these
features can wrongly classify malware applications as goodware and vice versa. In
order to overcome this limitation, a graph centrality based approach was proposed
in [187]. Therefore, in this chapter, we discuss the computation of more informative
features using graph centrality measures from system call traces for accurate malware
detection.
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5.1 Digraph from System Call Sequence
In Chapter 3, we explained the mechanism of tracing the system call sequence - of an
application. A directed graph (digraph) is a convenient way of modelling the pairwise
relationships between the elements in a complex sequence. The system call sequence
X of an application can be represented as a directed graph G = (S ,E ,A), where
S = {(7 : 7 = 1, 2, . . . , <} is the set of < system calls, � is the weighted adjacency
matrix in which each 07 8 ∈ A is the number of immediate occurrence of the system
call S8 after the system call S7 in the system call sequence X and E is the set of ;
directed edges between the vertices in S . An edge 47 8 exists from the vertex S7 to the
vertex S8 if and only 07 8 > 0, that is if and only if in the execution of the application
at least once the system call S8 occurs immediately after the system call S7 . The set of
selected system calls ( are given in Table 5.1.

Wang et al. [202], showed that memory management calls, error system calls and
information maintenance system calls do not hold any significant impact on the mali-
cious behavior. So, these system calls can be removed from the recorded system calls
for effective identification of malicious behavior. Hence the system call sequence need
to be refined by eliminating these system calls. The selected system calls are given in
Table 4.5 (Chapter 4).

The refined system call sequence of the walkinwat trojan after executing in an
emulator is shown in Figure 5.1. The system call logs can be collected using the
strace utility. Here, we injected 1000 random events using monkeyrunner tool while
collecting the system call sequence.

TABLE 5.1 List of relevant system calls.

Alternative Name A B C D E F G H
System Call recvfrom write ioctl read sendto dup writev pread
Alternative Name I J K L M N O P
System Call close socket bind connect mkdir access chmod open
Alternative Name Q R S T U V W X
System Call rename fchown32 unlink pwrite umask lseek fcntl recvmsg
Alternative Name Y Z A1 A2 A3 A4
System Call sendmsg epoll dup2 fchown readv chdir

The system call digraph of the walkinwat trojan obtained from the system call
sequence is shown in Figure 5.2 These system call graphs can capture the complex
relationships among system calls in that system call sequence. After modelling the
system call sequence as an ordered graph, we infer the relevant information related to
the system calls in terms of centrality measures.
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FIGURE 5.1 System call sequence of Walkinwat Trojan.
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FIGURE 5.2 System call digraph of Walkinwat Trojan.

5.2 Centrality Measures from System Call Digraph
Centrality of a vertex is a measure of the influence of the vertex in the digraph G
[157]. There exists different types of centrality measures such as, indegree centrality,
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eigen vector centrality, betweenness centrality, closeness centrality and so on. They
are described below.

1. Eigen Vector Centrality: Let N = {<7 8 : 7 , 8 = 1, 2, 3, . . . , <} be a neigh-
bourhood matrix of the graph G , where <7 8 is computed as:

<7 8 =

{
1, if 07 8 ≠ 0;
0, otherwise.

The eigen vector centrality of a vertex S7 is computed as:

�1 (S7 ) =
1
_

<∑
8=1

<7 8�1 (S8 ), (5.1)

where _ is the largest eigen value of the adjacency matrix.
2. Closeness Centrality: It is the rate in which a vertex is closer to other

vertices in the digraph. In a connected graph, the closeness centrality of a
vertex S7 is calculated as:

�2 ((7 ) =
< − 1
<∑
8=1

f8 7

, (5.2)

where f8 7 is the length of a shortest path from vertex S8 to vertex S7 and <
is the number of vertices.

3. Betweenness Centrality: Betweenness centrality is the rate in which a
vertex S7 lies in the shortest path between other vertices in the directed
graph. The betweeness centrality �3 (S7 ) of a vertex S7 is computed as:

�3 (S7 ) =
<∑
8=1

<∑
9=1

f8 79

f89
, (5.3)

where f89 is the number of shortest paths from vertex S8 to vertex S9 and
f8 79 is the number of shortest paths from vertex S8 to vertex S9 through
vertex S7 .

4. Indegree centrality: It is the number of edges incident on a vertex of a
directed graph G . The indegree centrality of a vertex S7 is calculated as:

�4 (S7 ) =
<∑
8=1

0 8 7 , (5.4)

where 0 8 7 is the number of edges from the vertex S8 to vertex S7 .

The adjacency and the shortest distance matrices of the walkinwat trojan are
shown in Figures 5.3 and 5.4, respectively. The indegree, eigen, betweenness and
the closeness centrality values computed are given in Table 5.3.
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©­­­­­­­­­­­­­­­­­­­­«

� � � � � � � � � /

� 189 41 114 0 4 0 0 0 0 68
� 41 238 41 303 0 14 0 0 0 7
� 2 109 126 0 1 5 0 0 10 153
� 49 232 62 0 0 7 1 0 0 1
� 5 0 0 0 2 0 0 0 0 0
� 0 7 0 0 0 3 0 0 0 0
� 1 0 3 0 0 0 0 2 0 0
� 1 0 3 0 0 0 0 2 0 0
� 0 12 8 0 0 0 1 0 0 4
/ 129 2 46 52 0 2 3 0 0 77

ª®®®®®®®®®®®®®®®®®®®®¬
FIGURE 5.3 Adjacency matrix of walkinwat malware.
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� 0 1 1 2 1 1 1 3 2 1
� 1 0 1 1 2 2 2 3 2 1
� 1 1 0 1 2 1 2 3 1 1
� 1 1 1 0 2 2 2 3 1 1
� 1 2 2 3 0 3 3 4 3 2
� 2 1 2 2 3 0 2 3 1 2
� 1 2 1 3 2 2 0 1 2 2
� 2 2 1 3 2 2 3 0 2 2
� 2 1 1 2 2 2 1 2 0 1
/ 1 1 1 1 2 2 1 2 1 0

ª®®®®®®®®®®®®®®®®®®®®¬
FIGURE 5.4 Shortest distance matrix of walkinwat malware.

The code for representing a system call sequence as digraph and extracting the
centrality measures such as eignvector centality, betweeness centrality and closeness
centrality is given in the Appendix. Here, we used the nextworkx package [116] in
python for representing the system call sequence as digraph and to extract the cen-
trality measures.
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TABLE 5.2 System call counts and their normalized values.

System Call (Alternative Name) Count Normalized Count
A 416 0.190650779
B 641 0.293767186
C 402 0.184234647
D 355 0.162694775
E 7 0.003208066
F 10 0.004582951
G 5 0.002291476
H 5 0.002291476
I 31 0.014207149
Z 310 0.142071494

TABLE 5.3 Centrality values of system calls in walkinwat digraph.

System call Indegree Centrality Eigen centrality Betweenness centrality Closeness centrality
A 0.19 0.4218 11.83 0.2700
B 0.29 0.4305 7.58 0.2700
C 0.18 0.4591 22.08 0.2945
D 0.16 0.1874 0.67 0.1705
E 0.003 0.1959 0 0
F 0.004 0.1021 0 0.1800
G 0.002 0.2120 8.25 0.1906
H 0.002 0.0471 0 0.1409
I 0.014 0.3538 5.50 0.2314
Z 0.014 0.4120 10.08 0.2492

5.3 Malware Detection Phase
The malicious behavior of applications can be detected from the centrality mea-
sures using ensemble learning method. Let �1 = (�1,1,�1,2, . . . ,�1,<) denotes
the eigen vector centrality based feature vector of an application where �1,7
for 7 = 1, 2, . . . , < denotes the eigen vector centrality of the system call S7 .
Let�2 = (�2,1,�2,2, . . . ,�2,<) denotes the closeness centrality based feature vector of
an application, where �2,7 for 7 = 1, 2, . . . , < denotes the closeness centrality of the
system call S7 . Let�3 = (�3,1,�3,2, . . . ,�3,<) denotes the betweeness centrality based
feature vector of an application where�3,7 for 7 = 1, 2, . . . , < denotes the betweenness
centrality of the system call S7 .

ThreeML classifiers can be trained with�1,�2,�3 as feature vectors respectively.
These three classifiers give estimate of the malicious scores from the centrality based
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feature vectors �1, �2 and �3 of an unknown application. The malicious scores are
further combined to detect whether the unknown app is a malware or not.

Let $7 ∈ [0, 1] for 7 = 1, 2, 3 be the malicious scores produced by the three
classifiers based on the centrality features �1, �2 and �3 of the unknown application.
The average malicious score$0D6 of the application is calculated as,

$0D6 =

3∑
7=1

E7 .$7 ,

where E7 ∈ [0, 1], for 7 = 1, 2, 3 are the weights of the classifiers and
3∑
7=1
E7 = 1. If

the average malicious score$0D6 is greater than a threshold) , the application can be
treated as a malware.

5.4 Experiments and Analysis
In this section, we discuss about the performance of this detection mechanism. In
Section 5.4.1, we discuss about the benign and malware datasets used. In Section
5.4.2, we discuss about the performance results and compare it with other approaches.

5.4.1 Dataset
In this section, we discuss about the dataset. We built a balanced dataset consisting
of 2600 malicious and benign applications for demonstrating the performance of this
mechanism. The malware applications were collected from Drebin [75] and AMD
datasets [203] based on the code obfuscation techniques used and the type of the
malware application. This dataset consists of 685 malware apps which use at least one
obfuscation technique. The code obfuscation techniques employed by the obfuscated
malware app in this dataset are the following:

• String renaming;

• Dynamic code loading;

• String encryption;

• Embedding native code.

The distribution of obfuscated malware applications are given in Table 5.4.The good-
ware apps are downloaded from google play store. All benign apps were submitted to
virustotal [60] for verifying their legitimacy.

Android emulator can be used to collect the system call logs of all the malicious
and benign applications in the dataset. In our experiments, the Android emulator was
installed in an intel core i5 PC with 8GBmemory. Here, we used strace tool to collect
the system call trace of applications which were installed in the Android emulator
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TABLE 5.4 Statistics of obfuscation techniques used in selected malware apps.

Obfuscation Technique Number of Malware Apps
String renaming 435

Dynamic code loading 277
String encryption 507

Embedding native code 250

[185]. Monkey runner tool was used as an automated test case generation tool while
tracing the system calls [153]. The monkey runner tool can get its maximum code
coverage within a minute [82]. After one minute, we terminated the execution of the
applications and saved the system call traces as log files. The collected system call logs
were preprocessed by removing the arguments and eliminating the irrelevant system
calls from them. From these preprocessed system call logs, we built a csv (comma
separated value) file corresponding to eigen centrality, closeness centrality and be-
tweenness centrality based features of 1300 benign and 1300 malicious applications.

5.4.2 Performance results
In this section, we discuss about the performance of the centrality based detection
mechanism in the datasets described in Section 5.4.1. We used the features of 75%
of malware and benign apps for training the classifiers and the features of 25% of
malware and benign applications for testing the performance of the model. However,
for measuring the performance in obfuscated malware apps, we used new ML mod-
els trained with the features of 75% malware (obfuscated and non-obfuscated) and
goodware (samples used in previous model) and used the features of 25% of malware
(obfuscated) and goodware (samples used in previous models) for testing. Here, we
used ANN (Artificial Neural Network) classifier for testing the performance.

We treated the three centrality measures as three different feature vectors for three
different ANN classifiers. So, we trained three ANN classifiers with closeness, eigen
and betweeness centrality measures as features and combined their outputs for mal-
ware detection. The performance of individual ANN classifiers and their ensemble
for various threshold values are given in Figure 5.5. From this figure we can conclude
that the ensemble of classifiers gives better accuracy. Hence the ensemble of these
three classifiers is used for the final prediction. Further, notice that the accuracy is
highest for threshold values near 0.5. Hence, we fixed 0.5 as the threshold (malware-
goodware margin) for all the classifiers.

For analyzing the performance of the model, we assigned various weights E7 ∈
[0, 1] for 7 = 1, 2, 3, such thatE1 +E2 +E3 = 1 to the three classifiers for combining
the malicious scores. The performance results are given in Table 5.5. From Table 5.5,
we can see that ensemble averaging based mechanism can detect malware applica-
tions with good accuracy and F1 score while using artificial neural network as the
ML classifier. Notice that the best performance with accuracy 98% occurs when the
weight E2 corresponding to the closeness centrality feature based classifier is given
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FIGURE 5.5 Performance results of single and ensemble of classifiers.

TABLE 5.5 Performance results with different weights to the classifiers.

Dataset E1 E2 E3 True Positive Rate False Positive Rate Positive Predictive Value Accuracy F1Score
All Malware Apps 1

3
1
3

1
3 0.95 0.03 0.97 0.96 0.96

All Malware Apps 0.30 0.40 0.30 0.97 0.02 0.98 0.97 0.97
All Malware Apps 0.25 0.50 0.25 0.98 0.02 0.98 0.98 0.98
All Malware Apps 0.25 0.45 0.35 0.98 0.02 0.98 0.98 0.98

Obfuscated Malware Apps 1
3

1
3

1
3 0.94 0.03 0.97 0.96 0.95

Obfuscated Malware Apps 0.30 0.40 0.30 0.96 0.02 0.98 0.97 0.96
Obfuscated Malware Apps 0.25 0.50 0.25 0.96 0.02 0.98 0.97 0.96
Obfuscated Malware Apps 0.25 0.45 0.35 0.96 0.02 0.98 0.97 0.96

higher value. Further, this mechanism can detect malware samples which use obfus-
cation techniques with an accuracy of 97%. Thus this mechanism can detect both the
obfuscated and the non-obfuscated malware with almost the same accuracy. We also
found that the ensemble averaging based mechanism is slightly more accurate than
the majority voting based ensemble method (taking the majority of class output by
the classifiers).

We compared the performance of this mechanism against various ML-based
mechanismswhich use other system call-based features such as system call frequency,
transition probability matrix and system call graph signals [189]. Here, we extracted
system call frequencies, transition probability matrix and graph signal-based features
of 2600 apps in our dataset and used them as features of differentML classifiers. Here,
we obtained the maximum accuracy with Random Forest (RF) classifier for all these
feature vectors. The performance results are given in Table 5.6. From Tables 5.5 and
5.6, we can see that, the centrality feature based mechanisms outperform the other
feature based mechanisms with better accuracy.
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TABLE 5.6 Performance of RF classifier with various feature vectors.

Feature Vector TPR False Positive Rate Positive Predictive Value Accuracy F1 Score
System Call Frequency Vector 0.91 0.14 0.86 0.88 0.88

System Call Transition Probability Matrix 0.89 0.11 0.89 0.89 0.89
Graph Signals 0.96 0.03 0.97 0.96 0.96

The program code for classification is given in the Appendix.We used R program-
ming language for training and testing ANN classifiers. The training and testing files
are given as inputs to the nnet() function and the prediction probabilities returned by
the predict() function are averaged together. If the average probability value exceeds
0.5 then, the applications are treated as malware.

5.5 Conclusion
In this chapter, we discussed about the advantage of combining many types of fea-
tures that can be inferred from the system call graph for malware detection. The graph
centrality features provide better accuracy than standalone features used in many ex-
isting mechanisms. Further, this mechanism is capable of detecting malware apps
which employ obfuscation techniques.

In our experiments, around 3% of goodware applications were wrongly classified
as malware. This was because certain goodware apps try to request more privileges
for their execution. Similarly, around 5% of malware apps could not be detected. This
was because these malware apps did not fully exhibit their malicious behavior during
the analysis time. To overcome these limitations one can try to infer more features
from the system call digraph for enhancing the accuracy.
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Graph Convolutional Network for Detection

Graph Convolutional Network (GCN) is a graph representation learning approach
that represents the structure and features of the graph in a low dimensional Euclidean
space. GCN has found to give promising results in many real-world applications such
as learning social networks[206], traffic prediction[220], drug response prediction
[156], etc. as well as in Android malware detection [128]. In this chapter, we discuss
the application GCN in Android malware detection and illustrate with the detection
of obfuscated Android malware from system call graphs. We organised the chapter
as follows. Section 6.2 gives an introduction of GCN and its applications in many
real-world problems, Section 6.3 explains GCN-based malware detection, Section
6.4 gives the results and discussions, Section 6.5 describes a case study and Section
6.6 gives the conclusions.

6.1 Introduction to GCN
Learning the structure of complex graphs is a challenging problem inmany real-world
applications[207]. To address this problem, graph representation learning approach is
used in which the structure and features of a graph is represented in a low dimensional
Euclidean space with embedding techniques. Although, graph embedding techniques
give promising results in many applications, these mechanisms suffer from the limi-
tations of shallow learning in which they fail to discover the complex structural com-
plexities present in the graph. Although, deep learning mechanisms like CNN, RNN,
etc. can solve the problems of shallow learning mechanisms, the non-Euclidean char-
acteristics of graphs make convolutions and filtering ineffective [207]. Thus recently,
a model called Graph Neural Network (GNN) has been proposed [88] that uses graph
representation learning by utilizing the power of deep learning. To perform convolu-
tions on the graph data, a variant of GNN called GCN has also emerged in the recent
years [207][133]. GCN models are neural network models that can learn the graph
structure and can aggregate the node information in a convolutional fashion. There
are two types of GCN: spatial-based GCN and spectral based GCN[207]. In spa-
tial GCN, the graph convolutions are defined by collecting the information from the
nearby nodes as well as its own and in spectral GCN, convolutions are defined in the
Fourier domain by computing the eigen decomposition of the graph Laplacian[207].
In the malware detectionmechanism discussed in this chapter, we will be using spatial
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GCN that aggregates the features of the system calls in the system call graph to obtain
a compact feature representation of the Android applications. The following sections
explain how GCN can be used effectively to detect Android malware.

6.2 GCN-Based Malware Detection
Malware developers can employ a variety of mechanisms to circumvent its detection
by generating malware variants that mimic legitimate applications[196]. The com-
mon evasion strategies are repackaging, payload insertion, string encryption, etc. The
ineffectiveness of antimalwares in detecting obfuscated variants has been widely dis-
cussed before[107]. In the year 2021, many malware variants have evaded the Google
Play Protect mechanism[35]. The ineffectiveness of choosing static features for mal-
ware detection is widely discussed in the past[107]. Hence, inorder to cope up with
the emerging malware threats, many malware detection mechanisms are using sys-
tem call based detection to detect obfuscated Android malware[91]. The reason is
that, all the requests made by the applications are passed through the system call in-
terface before reaching the kernel of the device. Hence even if the applications are
obfuscated, the system calls can be used to determine the malicious nature of the An-
droid applications [109]. Many research works demonstrate the effectiveness of the
structural dependencies between the system calls for detecting malware[122]. Hence
in this chapter, we introduce an emerging deep learning approach called Graph Con-
volutional Networks[186], that is able to capture the interdependencies between the
system calls in the system call graph. The main features of this approach are the fol-
lowing:

• A GCN based Android malware detection mechanism that uses the power of deep
learning and system call dependency information to detect Android malware.

• A four dimensional feature representation with centrality values as features for clas-
sification that can better represent the behavior of Android malware.

• Ability to detect obfuscated malware variants.

The details of this mechanism are given in the following sections.

6.2.1 System call graph construction
Android kernel invocation calls can be classified into binder calls, system calls, and
socket calls[50]. When an application requests the Android kernel to provide the re-
quired resources, the request is transferred to the system call interface. This interface
serves as a layer between the user space and the kernel space. The system call is then
executed in the kernel space and the control is passed to the user space. To capture
the system calls, Android applications are made to run in an emulator. After that, one
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thousand pseudo random events such as touch event and key press event are injected
to the applications using monkeyrunner tool.The system calls are then extracted using
strace utility. After obtaining the system calls, the arguments are eliminated and then
the system calls that are used for file management and network access are selected for
constructing the graph. Table 6.1 shows the relevant system calls that were taken for
developing the detection mechanism discussed in this chapter. The main objective of
selecting these system calls is that malware use these system calls for accessing the
sensitive resources in a device.

The system call sequence X of an application can be represented as a directed
graph G = (S ,E), where S = {S7 : 7 = 1, 2, . . . , <} is the set of < relevant system
calls, and E is the set of directed edges. An edge 47 8 exists from the vertex S7 to
the vertex S8 if the system call S8 occurs immediately after the system call S7 . It is
important to be noted that the system call digraph has no multiple edges. Figures 6.1
and 6.2 shows the system call digraphs of Cerebrus malware and a benign Android
application.

TABLE 6.1 Most relevant 26 system calls chosen.

Alterna-
tive Name

System
Call

Description Alterna-
tive Name

Sys-
tem
Call

Description

A recvfrom system call that is used to recieve a message
from a socket

B write system call that is used to write to a file de-
scriptor

C ioctl system call that is used to manipulate the
underlying device parameters

D read system call that is used for read operation

E send to system call that is used to send a message
on a socket

F dup system call that is used to create a copy of
the file descriptor

G writev system call that is used to write data to ma-
nipulate buffer

H pread system call that is used to write to or read
from a file descriptor to a given offset

I close system call that is used to close a file de-
scriptor

J socket system call that is used to create an end-
point for communication

K bind system call that is used to bind a name to a
socket

L con-
nect

system call that is used to start a connection
on a socket directory

M mkdir system call that is used to create a directory N access system call that is used to check the users
permission for accessing the file

O chmod system call that is used to change the per-
mission of a file

P open system call that is used to open a file spec-
ified by the path name.

Q fchown used to change the ownership of a file. R re-
name

system call that is used to change the loca-
tion or name of a file.

S unlink system call that is used to remove a file T pwrit system call that is used towrite or read from
a file descriptor.

U unmask system call that is used to get file mode cre-
ation mask

V fcntl64 system call that is used to change the file
descriptor

W recvmsg system call that is used to recieve a message
from a socket

X sendmsg system call that is used to send a message
on a socket

Y get-
dents64

system call that is used to obtain the direc-
tory entries

Z epoll
wait

system call that is used to wait for an I/O
event

After constructing system call digraphs, we use the GCN to determine whether
the digraph generated by the application corresponds to a malware or not. We use
four graph centrality measures as features for detecting the malware. These centrality
measures helps us to identify the most discriminating system calls that can be used for
detecting the malware. In this chapter, we have taken the Katz, Closeness, Between-
ness and Page Rank as different centrality measures. The details of these centrality
measures are given below.
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FIGURE 6.1 System call digraph of cerebrus malware disguised as covid tracker.
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FIGURE 6.2 System call digraph of benign Android application.

1. Katz Centrality: This centrality value is used to indicate the influence of a
vertex in the directed graph. Let A be the adjacency matrix of the directed
graph G = (S ,E). The Katz centrality of the node Si in the directed graph
G is computed as,

 (Si ) =
∞∑
9=1

<∑
8=1

U9A9
7 8 (6.1)

where A9
7 8

is the (7 , 8 )Bℎ entry of A9 which is equal to the total number
of paths of length 9 between the vertices Si and Sj and U represents the
attenuation factor used to penalize the distance between them.

2. Closeness Centrality: It is the rate in which a vertex is closer to other ver-
tices in the digraph. In a connected graph, the closeness centrality of a
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vertex S7 is calculated as,

�2 (S7 ) =
< − 1
<∑
8=1

f8 7

, (6.2)

where f8 7 is the length of a shortest path from vertex Sj to vertex S7 and <
is the number of vertices.

3. Betweenness Centrality: Betweenness centrality is the rate in which a ver-
tex S7 lies in the shortest path between other vertices in the directed graph.
The betweeness centrality �3 (S7 ) of a vertex S7 is computed as,

�3 (S7 ) =
<∑
8=1

<∑
9=1

f8 79

f89
, (6.3)

where f89 is the number of shortest paths from vertex Sj to vertex S9 and
f8 79 is the number of shortest paths from vertex S8 to vertex S9 through
vertex S7 .

4. Page Rank: Page rank centrality value finds the importance of a vertex
in the directed graph whose influence extends beyond direct connections.
The page rank of the vertices S7 are computed iteratively. Initially the page
rank of all the vertices will be 1. At each iteration, the page rank of the
vertex S7 will be updated as,

% (S7 ) = (1 − V) + V (
% (S@ )
3 (S@ )

+ · · · + % (SB )
3 (SB )

), (6.4)

where V is the damping factor which is taken as 0.85, % (S@ ), . . . , % (SB ) are
the page ranks of the vertices S@ , . . . , SB ∈ S that are pointing to the vertex
S7 and 3 (S@ ), . . . , 3 (SB ) are their out degrees.

If any of the system calls are absent in an application, we represent it as an isolated
node in the digraph with all centrality values equal to 0.

6.2.2 GCN for low dimensional feature representation
The 1 centrality values of the < vertices in the system call graph gives an <×1 feature
matrix representation for the Android application. GCN can be used to convert this
< × 1 feature matrix to a low dimensional feature matrix of size : ×;, where : ≤ <
and; ≤ 1 for malware detection. Since the system call digraph has 26 vertices, with
4 centrality values for each of the vertices, the value of < is 26 and 1 is 4 in our case.
GCN converts this 26×4 feature matrix to a 1×4 feature matrix. Hence with GCN, we
will get a 4 dimensional feature representation for Android applications. Figure 6.3
shows the various steps in this method. The low dimensional feature representation is
obtained using GCN as follows.

At the B Bℎ layer of the GCN, a vertex Si ∈ S has a hidden vector ℎBSi
, where the

centrality values ℎ0Si
= ( (Si ),�2 (Si ),�3 (Si ), % (Si )) denotes the initial values of the
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FIGURE 6.3 Proposed method.

hidden vectors. These hidden vectors are the Katz, Closeness, Betweenness and Page
Rank centrality values of the vertex Si . At the B Bℎ layer, the vertex Si collects the
information from the neighbouring vertices. It then computes the hidden vector ℎBSi
of the node Si as,

ℎ̃BSi
=

∑
C∈# (Si )∪{Si }

ℎB−1C (6.5)

ℎBSi
= f (ℎ̃BSi

, B ), (6.6)

where # (Si ) denotes the set of nodes that are connected to node Si (neighbouring
nodes)., B denotes the weight matrix of size 3B−1 × 3B , where 3B denotes the size of
the hidden vectors at the B Bℎ layer, and f denotes the sigmoid activation function. In
this manner, the hidden vectors are computed for all nodes in every layer. Finally, the
hidden vector at the last layer (9 Bℎ layer) is the node embedding vector of the node Si
which is denoted as,

HSi = ℎSi
9 (6.7)

After computing the hidden vector at the last layer, the node embedding vectors of all
the nodes are added together to form the pooling layer which gives the graph repre-
sentation HG . That is,

HG =
∑
Si ∈S

HSi , (6.8)

where HSi denotes the node embedding vector of node Si .

6.2.3 Training of GCN
In the training phase, the input of the GCN will be the adjacency matrix and the
feature matrix of the system call graphs of benign and malware applications. Let) @ =

{(A7 , #7 ,.7 ) : 7 = 1, . . . , >} be the training set of > graphs (applications), where A7
denotes the adjacency matrix, #7 denotes the feature matrix which is the matrix of
centrality values of nodes and :1 7 denotes the label of the 7 Bℎ graph G7 = (S7 ,E7 ).
The optimal weights , are computed as follows. First the weights are initialized
randomly. Then the GCN is made to predict the label of the training sample (A7 , #7 ),
which is then compared with the actual label :1 7 . Then the error or loss function is
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FIGURE 6.4 Malware detection with GCN.

calculated as the difference between the predicted label and the actual label .7 . The
weight matrix can be represented as a matrix, of size 3B−1 × 3B where 3B−1 is the
dimension of the hidden vector at layer B − 1 and 3B is the dimension of the hidden
vector at layer B . We can the use Adam optimization [132] to update the weights.

6.2.4 System call graph classification using GCN
To classify an Android application as malware or goodware, a fully connected layer
with a softmax function is added after the pooling layer of the GCN. The function of
this layer is to take the graph representation HG from the pooling layer and to provide
the probability of application to be a malware. Figure 6.4 shows the architecture of
GCN.

6.3 Experiments and Analysis
To conduct the experiments, we collected malware samples from Drebin[75], AMD
[203] and Malgenome [222]. The details of the malware families collected are given
Table 6.2. The benign applications were downloaded from Google Play Store and up-
loaded to VirusTotal for verification. For building the model, a total of 1560 samples
were taken. Among them, there were 560 malware samples and 1000 goodware sam-
ples [165]. A systemwith 64 bitWindows 10 operating system and Intel(R) Core(TM)
i7-6700K CPU @ 4.00GHz with 32 GB RAM is used to carry out the experiments.

For collecting the system calls, the Android applications were made to run
in Android Genymotion emulator. Monkeyrunner tool was used to inject pseu-
dorandom events to an application and the system calls were collected with the
AB @024 utility. The system call sequences were then used to generate the system
call graphs. After constructing the graphs, the centrality measures were computed
and provided as node attributes to the graph. The adjacency matrices and the cen-
trality values were then used for training the GCN model. The experimental re-
sults show that the four centrality values can distinguish goodware from malware.
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TABLE 6.2 Android malware families.

Android Malware Family Type of Obfuscation Malware Type
Andup String encryption and renaming Adware
Boxer String encryption and renaming Trojan-SMS

DroidKungFu Native payload, string encryption ,renaming Backdoor
FakeAngry String encryption and renaming Backdoor
FakePlayer Renaming Trojan-SMS
Mmarketpay - Trojan

Lotoor Dynamic loading and renaming HackerTool
Kuguo Renaming Adware
Kyview Renaming, string encryption Adware
Lnk - Trojan

Mecor - Trojan-spy
Minimob Renaming Adware
Zitmo Renaming Trojan-Banker

Nandrobox - Trojan
RuMMS Renaming, string encryption, dynamic loading Trojan-SMS
Winge Renaming Trojan-Clicker
Penetho - HackerTool
Mseg Renaming Trojan

BrainTest Dynamic loading Backdoor
Stealer Renaming Trojan-SMS
FakeDoc Renaming Trojan
Tesbo Renaming, string encryption, dynamic loading Trojan-SMS
Mtk Renaming, string encryption,dynamic loading Trojan
Utchi Renaming Adware

Cerebrus Java reflection Banker

Table 6.3 shows the Katz centrality values of 6 system calls. This shows that even
with Katz centrality values of a few system calls one may be able to distinguish mal-
ware from benign applications.

6.3.1 Implementation details
From 1560 application samples, we took 1248 samples for training, 156 samples for
testing and 156 samples for validation. In the GCNmodel, we chose three hidden lay-
ers. Among the hidden layers, two were graph convolutional layers and the third was
a single pooling layer. The accuracy values associated with the size of the layers are
given in the Table 6.4. We obtained the maximum accuracy with hidden layers of size
26,11 and 4 respectively. We used metrics such as accuracy, precision, recall and F1
measure to evaluate the performance of the model. True Positives (TP) indicates the
number of malware applications that are correctly classified as malware, True Nega-
tives (TN) indicates the number of goodware applications that are correctly classified
as goodware, False Positives (FP) indicates the number of benign applications that
are incorrectly classified as malware, and False Negatives (FN) indicates the number
of malware applications that are incorrectly classified as benign. The accuracy and
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TABLE 6.3 Katz centrality values of selected system calls.

System Call Malware Benign
fcntl64 0.3361 0.1824
open 0.2134 0.1674
access 0.2321 0.2187
write 0.3657 0.2402
pread 0.2844 0.2621
sendto 0.3192 0.2141

F1-measure of the model are computed as given below.

�22C@02G =
)% +)#

)% + �# +)# + �%

%@427A7=< =
)%

)% + �%

'420:: =
)%

)% + �#

�1 −;40AC@4 =
2 × %@427A7=< × '420::
%@427A7=< + '420::

The GCN classifier is trained with 100 epochs and a learning rate of 0.01. We
used Adam optimization with an early stopping value of 10.

TABLE 6.4 Accuracy with size of hidden layers of GCN.

Size of Hidden Layers Accuracy
(26,11,4) 0.913
(32,32,16) 0.873
(32,16,4) 0.853

Table 6.5 shows the performance of this mechanism with AMD, Drebin datasets
and some latest malware families that use obfuscation(AMD 2020)[203]. We can see
that the mechanism has an accuracy of 91.30%.

TABLE 6.5 Performance results.

TPR FPR FNR TNR Precision Recall F1 Score Accuracy
0.912 0.086 0.088 0.914 0.913 0.912 0.912 0.913
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To evaluate the effectiveness of the GCN based malware detection mechanism,
we compared it with the existing system call frequency-based mechanism proposed
by Fei et al[197] with Malgenome dataset, and system call frequency-based detection
mechanisms using SVM (Support Vector Machines) as well as decision tree with
Drebin datasets. The Malgenome dataset is now a part of the Drebin dataset [222].
Table 6.6 shows the comparison results. We found that with GCN, we can classify
malware with 93.3% accuracy. For implementing SVM and decision tree, we used
WEKA 3.8 with 10 fold cross validation.

TABLE 6.6 Comparison of the GCN method with other methods.

Method TPR FPR FNR TNR Precision Recall F1 Score Accuracy Datasets
GCN Approach 0.938 0.071 0.062 0.929 0.929 0.938 0.933 0.933 Drebin
Fei et al.[197] - - - - - - - 0.901 Malgenome

SVM 0.873 0.137 0.863 0.127 0.868 0.864 0.873 0.868 Drebin
Decision Tree 0.890 0.084 0.110 0.916 0.913 0.8907 0.901 0.903 Drebin

6.4 Detection of Emerging Malware
Android malware continue to emerge day by day and hence it is challenging to de-
tect the malware in an effective and scalable manner[212]. Hence in this section, we
explore whether GCN can detect the evolving Android malware.

TABLE 6.7 Malware families.

Malware Number of Samples Type Year
MystryBot 5 Ransomware, Keylogger 2018

SMS malware 15 Spywares 2020
Banking malware 20 Trojan 2019

Comebot 5 Banking Spyware 2019
Descarga 10 Banking Trojan 2016
Xbot 1 Ransomware 2016

Covidlures 3 Spyware 2020

To test whether the GCN mechanism can detect the latest Android malware ap-
plications, we prepared a test set with the malware samples given in Table 6.7. The
malware samples were collected from the public repositories[9],[8]. Figure 6.5 shows
the system call graph of Xbot malware[12]. Xbot malware is the successor of a Tro-
jan named Aulrin that appeared in 2014. After its installation in an Android device,
this malware starts communicating with a command-and-control server (C2 server).
The malware requests permission called RECEIVE_BOOT_COMPLETED that al-
lows the malware to be persistent on the compromised device. It then steals the credit
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card information of the user. After that, it encrypts the files of the user. To evade de-
tection, this malware uses a variety of obfuscation. From the system call graph, we
can see that there exists connections between writv(), socket(), sendmsg(), recvfrom(),
and connect() system calls, that are used to establish a connection to a C2 server to en-
crypt the files. The performance results are given in Table 6.8. From this performance
results, we can conclude GCN with centrality measures can detect many emerging
malware applications.

FIGURE 6.5 System call graph of Xbot malware.

TABLE 6.8 Detection rate of emerging malware.

TPR FPR FNR TNR Precision Recall F1 Score Accuracy
0.890 0.084 0.110 0.916 0.913 0.8907 0.901 0.903

The code of GCN is given in the Appendix. Packages such as Keras and Tensor-
flow are used to code GCN. We used the implementation of[87] to build our GCN
model.

6.5 Conclusion
In this chapter, we presented a malware detection mechanism with system call graphs
using GCN. This mechanism was able to detect Android malware with an accuracy of
91.3% in our dataset. We also explored whether GCN was able to detect the evolving
Android malware. We obtained an accuracy of 90% on a dataset of latest Android
malware applications. The ideas presented in this chapter will help cyber security
researchers and developers to unveil the potential of GCN in developing automated
cyber security solutions.
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7
Graph Signal Processing-Based Detection

In the previous chapters, we discussed about the effectiveness of system call graph-
based malware detection mechanisms. These mechanisms considered the vertex level
features such as centralities for malware detection. In the current settings, it is very
difficult to incorporate high dimensional edge level features such as adjacency matrix
in a machine learning classifier. In order to overcome this limitation, a graph signal
processing based approach was proposed in [189]. In this chapter, we first discuss
how to generate various graph signals from system call sequence of an application
for constructing low dimensional feature vectors. Later we discuss about employing
various machine learning classifiers for effective malware detection using these fea-
ture vectors.

7.1 Graph Signal Processing and Its Applications
The information in a dataset with < related elements can be represented as a graph
G=(S ,E ,A), where,S = {S1, . . . , S< } is the vertex set consisting of elements in the
dataset, E is the set of edges and � = (a7 8 )<×< is a weighted adjacency matrix in
which each 07 8 denotes the degree of relationship between the vertices S7 and S8 .

Definition 7.1. A graph signal V is a function from the set of vertices S into the set
of real numbers ℝ or complex numbers ℂ. That is,

V : S → ℝ or ℂ.

In this chapter, we will treat the graph signal V on ( as a column vector. That is,

V (() = [V (S1) . . .V (S<)]) .

For convenience, we will denote V (() as V , wherever the vertex set S is obvious.
There exists a plethora of engineering and scientific applications where signals

naturally exist on graph representations such as gene-expression patterns defined on
gene networks, number of infections on the network of spread of an epidemic, rumors,
or memes over a population network, congestion level at the nodes of a telecommuni-
cation network and so on. In all these cases, complex systems are formed by multiple
nodes, where the global network behavior is a result of the local interactions between
connected nodes. In many cases, our object of interest will be the information defined
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on top of the graph, that is the information associated with the nodes of the graph.
Graph signal processing (GSP) can be applied to extract this information by modeling
the structure of the data using a graph and then viewing the available information as a
signal defined on it. In GSP, a signal is first defined on each node of the graph. These
signals are then processed using various connectivity relationships in the graph. The
resulting signal values can provide better insights into the data represented by the
graph. The graph shift is such an operation.

Definition 7.2. The graph shift of a signal V on a vertex set S is obtained by replacing
the signal V (S7 ) at each vertex by a weighted linear combination of signals at the
neighbors of S7 using the weighted adjacency matrix �. That is, the graph shift Ṽ of
V is calculated as,

Ṽ = AV .

That is, �V (() = A [V (S1) . . .V (S<)]) .

GSP has found tremendous applications in various fields such as brain disease predic-
tion [161], social network analysis [121], weather prediction [175] and so on. In brain
disease prediction [161], human activity signals are mapped into the regions (nodes)
of the human brain network. These signals are then processed using the connectivity
information between the brain regions (nodes). The processed signals are then used
to identify the anomalies or diseases such as Alzheimer’s in the human brain. In so-
cial networks analysis [121], the information about rumors (signals) are mapped onto
the people (nodes) in the social network. These signals are then processed using the
relationship information among the people. The processed signals are then used for
finding the source of the rumor. In weather prediction [175], the temperature informa-
tion obtained from various sensors (nodes) are taken as the signals. These signals are
then processed using the distance information between the sensors. The processed
signals are then used to analyze the relative temperature distribution across a geo-
graphical area. In the next section, we will discuss about representing the system call
sequence of an Android application as graph signals.

7.2 Graph Signals from System Call Sequence
In this section, we discuss about representing system call sequence as a digraph and
computing graph signals for each node. It consists of two steps. In the first step, we
extract the system call sequence generated by an application and construct a digraph
as described in Chapter 5. In the second step, we construct appropriate signals on the
vertices of this system call graph.

The system call sequence of the Walkinwat trojan is shown in Figure 7.1 and the
system call digraph is shown in Figure 7.2. The set of selected system calls are given
in Table 7.1. The system call frequencies are given in Table 7.2 and adjacency matrix
is given in Figure 7.3.
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In the second step, we first define a signal on the vertices of this system call digraph
as the normalized frequency of occurrence that system call. Then, we refine these
signals by applying a graph shift operation (adjacency matrix) on these signals to
obtain the graph signals with information on system call dependencies.

FIGURE 7.1 System call sequence of Walkinwat Trojan.

TABLE 7.1 List of relevant system calls.

Alternative Name A B C D E F G H
System Call recvfrom write ioctl read sendto dup writev pread
Alternative Name I J K L M N O P
System Call close socket bind connect mkdir access chmod open
Alternative Name Q R S T U V W X
System Call rename fchown32 unlink pwrite umask lseek fcntl recvmsg
Alternative Name Y Z A1 A2 A3 A4
System Call sendmsg epoll dup2 fchown readv chdir

Graph signal processing helps to analyze the structure of a system call connec-
tivity digraph. We first consider the frequency value � (S7 ) of the system call S7 for
7 = 1, . . . , < in the system call digraph G for constructing the graph signals. The fre-
quency � (S7 ) of the occurrence of each system call S7 is divided by the total number
of system calls

<∑
8=1

� (S8 ). This normalized frequency values (probability) of system

calls are taken as the initial signal values. In other words the probability of occurrence
of each system call is taken as the initial signal values. The information about the rate
of occurrence of each system call S7 in a system call sequence - can be inferred from
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FIGURE 7.2 System call digraph of Walkinwat malware application.

TABLE 7.2 System call frequency values.

System Call Name System Call (Alternative Name) Frequency
recvfrom A 416
write B 641
ioctl C 402
read D 355
sendto E 7
dup F 10
writev G 5
pread H 5
close I 31
epoll Z 310

its system call sequence. The graph signal V0 on S7 is defined as,

V0 (S7 ) =
� (S7 )
<∑
8=1

� (S8 )
(7.1)

The adjacency value 07 8 from a system call S7 to another system call S8 in the ad-
jacency matrix � of the system call digraph is calculated as the number of occurrence
of the system call S8 after the system call S7 , ∀1 ≤ 8 ≤ n in the system call sequence.
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FIGURE 7.3 Adjacency matrix of Walkinwat malware graph.

The normalized adjacency value â7 8 from a system call S7 to another system call
S8 is calculated as,

â7 8 =
|a7 8 |

n∑
9=1
|a79 |

,∀1 ≤ 7 , 8 ≤ n (7.2)

The graph signal V0 can be transformed to other signal V by various graph signal
processing operations. We transform the graph signals to V using the normalized
adjacency matrix Â = (â7 8 ) as,

V = ÂV0.

The graph signals and transformed signals of Walkinwat malware app is given in
Table 7.3.

7.3 Machine Learning Classification for Malware Detection
The graph signals or processed signals obtained from the system call digraph of An-
droid applications can be used as feature vectors of a supervised machine learning
classifier for malware detection. Here, any machine learning algorithm such as naive
Bayes, support vector machine (SVM), decision trees, etc. can be used for classifying
the graph signals to detect the malicious behavior.



96 Graph Signal Processing-Based Detection

TABLE 7.3 Graph signals of Walkinwat Trojan.

System Call Name System Call (Alternative Name) V0V0V0 V1V1V1
recvfrom A 0.190650779 0.1969
write B 0.293767186 0.2181
ioctl C 0.184234647 0.1985
read D 0.162694775 0.2067
sendto E 0.003208066 0.1689
dup F 0.004582951 0.1886
writev G 0.002291476 0.1616
pread H 0.002291476 0.1486
dup I 0.014207149 0.1863
epoll Z 0.142071494 0.1909

7.3.1 Construction of low-dimensional feature vectors
Let V (() denotes the signal vector of an Android application. Then we can have the
<-dimensional feature vector as,

[V (S1) . . .V (S<)]) .

One can reduce the feature dimension by using the signal values of only a few selected
system calls as the feature vector. The system calls can be selected by analysing their
signal values in malware and goodware applications. The signal values of some sys-
tem calls can be higher in malware apps than in goodware apps. This is because mal-
ware may invoke some special system call sequences which are not found in goodware
apps. These special system call sequences are intended to perform malicious activi-
ties. For example, many malware applications invoke sensitive resources such as GPS
and camera for performing malicious activities. The main purpose of dup() system
call is to perform IPC through shared memory channel. Malware rely on dup() and
close() system calls for communicating with sensitive resources. That is, a malware
may invoke a malicious system call code consisting of F (dup()) and I (close()) for
accessing sensitive resources in the background. In these cases, the signal values of
the system calls F (dup()) and I (close()) can become high in malware than in benign
applications.

The signal values of those system calls with large difference over goodware and
malware applications can be selected as they are more informative in distinguishing
malware from goodware. One can select the graph signal values of ‘3’ such system
calls, 1 ≤ 3 ≤ <, where ‘<’ is the number of system calls (vertices) in the system call
graph as a low dimensional feature vector. The selection of prominent system calls
can be done as follows.

Let V (S7 |;0:E0@4 ) denotes the mean of the signal values of the system call S7
in a set of;1 malware application. That is,

V (S7 |;0:E0@4 ) =

∑
;0:E0@4

V (S7 )

;1
(7.3)
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Let V (S7 |6==3E0@4 ) denotes the mean of the signal values of the system call S7 in
a set of;2 goodware applications. That is,

V (S7 |6==3E0@4 ) =

∑
6==3E0@4

V (S7 )

;2
(7.4)

The variance in the signal values of each system call in the set of malware applications
and in the set of goodware applications also need to be computed. A low variance
in signal values of a system call indicates that the signal values across application
are more centered and consistent in that set of malware or goodware. Let � (S7 ), ∀7
denotes the mean difference. That is,

� (S7 ) = V (S7 |;0:E0@4 ) − V (S7 |6==3E0@4 ),∀7 (7.5)

Those system calls with mean difference in signal values greater than a threshold can
be selected and their signal values can be taken as the features of the application.

Suppose that we have 20 system calls (A,B,…,T) in the system call graph and
we obtained the mean, variance and difference of signal values as shown in Table
7.4. In this case, we may proceed with a 20 dimensional feature vector corresponding
to the signal values of the 20 system calls (A,B,…,T). However, a dimensionality
reduction is possible here. In Table 7.4, we can see that the difference of signal values
for the systems calls A,B,E,F,K,N,P and S are above a threshold B = 0.275. However,
variance is high for the system calls K and P. Hence, we may choose the signal values
of A,B,E,F,N and S as a 6 dimensional feature vector instead of a 20 dimensional
feature vector and proceed with ML classification.

7.4 Experiments and Analysis
In this section, we illustrate the graph signal based malware detection in a balanced
dataset consisting of 1000 malware and goodware applications. The malware appli-
cations were downloaded from Drebin/AMD dataset [75] [203] and the goodware
applications were from Google play store/Androzoo [28]. In Chapter 4, we selected
the malware apps irrespective of their behavior. In this chapter, we selected malware
apps which try to access the system resources such as camera, GPS, telephony, etc. in
the background. AMD dataset contains some malware apps which evade the detec-
tion environment. Here, we have not considered these kinds of evasive malware apps.
Also, we have eliminated the duplicate samples from malware and goodware datasets
and selected only the unique ones.

7.4.1 Experimental setup
The malware detection system was implemented in an 8 GB Intel core i5 PC with an
Android emulator. A dataset of the graph signals V1 was computed from 1000 mal-
ware and goodware samples. In the dataset construction phase, the sample malware
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TABLE 7.4 Mean and variances of signals in malware and goodware applications.

SI.No System Call VVV (SSSi | Malware) Variance VVV (SSSi | Goodware) Variance���(S7S7S7 )
1 A 0.639 0.021 0.278 0.038 0.361
2 B 0.775 0.021 0.464 0.019 0.311
3 C 0.445 0.025 0.309 0.059 0.136
4 D 0.685 0.041 0.570 0.096 0.115
5 E 0.514 0.044 0.200 0.092 0.314
6 F 0.452 0.003 0.173 0.090 0.279
7 G 0.242 0.076 0.104 0.042 0.138
8 H 0.309 0.073 0.182 0.060 0.127
9 I 0.110 0.037 0.006 0.002 0.104
10 J 0.180 0.057 0.080 0.038 0.100
11 K 0.565 0.214 0.275 0.031 0.290
12 L 0.755 0.007 0.674 0.025 0.081
13 M 0.655 0.012 0.582 0.038 0.073
14 N 0.813 0.008 0.445 0.029 0.368
15 O 0.746 0.003 0.713 0.024 0.033
16 P 0.366 0.026 0.037 0.217 0.329
17 Q 0.033 0.015 0.011 0.005 0.022
18 R 0.041 0.015 0.023 0.009 0.018
19 S 0.457 0.020 0.049 0.017 0.408
20 T 0.007 0.003 0.006 0.002 0.001

and goodware applications were executed in an emulator and the system calls were
logged-in using the strace utility [185]. A python code was used to preprocess the rel-
evant system call sequence (file and network management) by eliminating arguments
and irrelevant system calls. Then, these preprocessed system calls were modeled as
control flow digraphs using the functions in the networkx package. The system call
frequencies � (S7 ) : 1 ≤ 7 ≤ < and normalized adjacency matrix Â of each applica-
tion were computed from the control flow graph and the system call sequence. The
feature vectors of each application were then computed as the matrix product,

Â × [ � (S1)
<∑
8=1

� (S8 )
. . .

� (S<)
<∑
8=1

� (S8 )
]) .

The python code for graph signal construction is given in the Appendix. This graph
signal construction code receives system call sequences of several applications as in-
put and gives the graph signal vectors as the output. In this process, the python code
first preprocess the system call sequences by eliminating arguments and irrelevant
system calls. Then, it assigns alternative name to system calls instead of their original
name for convenience. After that, it extracts system call count values and adjacency
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matrix from each system call sequence. It then computes the transformed graph sig-
nals and save it in the csv file for machine learning classification.

7.4.2 Performance analysis with various ML classifiers
In this section, we discuss about the performance of various machine learning clas-
sifiers with graph signals as the feature vectors. The malware detection mechanism
involves running any machine learning classifier with graph signals on selected nodes
as the feature vector. We have demonstrated the performance with the following five
machine learning classifiers:

1. Naive Bayes;
2. SVM (Support Vector Machine);
3. Decision Trees (DT);
4. Random Forest (RF);
5. ANN( Artificial Neural Network).

TABLE 7.5 Performance of various ML classifiers.

Algorithm TPR FPR Precision Accuracy F1Score
Naive Bayes 0.81 0.20 0.81 0.81 0.81
SVM 0.83 0.12 0.88 0.86 0.85
ANN 0.93 0.14 0.86 0.89 0.89
Decision Trees (DT) 0.93 0.21 0.82 0.86 0.87
Random Forrest (RF) 0.94 0.13 0.85 0.90 0.90

Here, the signal values of 90% of malware and goodware applications were used for
training themachine learning classifiers. The performance of the classifiers were eval-
uated in the signal values of remaining 10% of malware and goodware applications.
The detection performance of the five popular machine learning classifiers with graph
signals as features is given in Table 7.5. Here the signal values on all the vertices were
taken for the feature vector construction. In Table 7.5, we can see that the signal vector
based feature representation gives good performance with SVM, ANN and random
forest classifiers. The python codes for the classifiers is given in the Appendix. The
file graphsignals.csv is split in the ratio 9:1 for training and testing. That is 90% of
samples are used for training and the remaining 10% samples are used for testing.
These training and test data sets are given as inputs to various ML algorithms for de-
termining their performance. Here, label_pred is the output (predicted class) of the
ML classifier.
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7.5 Miscellaneous Operations on Graph Signals
Apart from graph shift operation, there are several other techniques such as graph
Fourier transform, and graph filtering which can be used for transforming graph sig-
nals to different forms. Some of these transformations may give better signal values
and feature vectors. For calculating graph Fourier transform of a signal vector V0, the
generalized eigen vector matrix F of the adjacency matrix � is computed and multi-
plied with the graph signals. The eigen vector transformation of the matrix � can be
written as:

A .F = _.F ,

where _ is the eigen value vector. The Fourier transform V1 of the graph signal V0 is
calculated as

V1 = F −1.V0.

These Fourier transformed signals V1 can be given as inputs to an ML classifier for
malware classification. Also, it is possible for an analyst to design a linear and shift
invariant (LSI) graph filter ℎ (A) based on the properties of system call digraphs. The
LSI filter matrix ℎ (A) is calculated as:

ℎ (A) =
<∑
7=0

h7 .A7 ,

where the numerical values h7 , for 7 = 1, 2, . . . , < are called the graph filter taps. The
filtered signals V3 are calculated as,

V2 = ℎ (A).V0.

7.6 Conclusion
In this chapter, we discussed the graph signal processing based approach for dynamic
feature vector construction. The graph signals can be used to detect Android malware
with high accuracy while using with various ML classifiers. These graph signals can
also be used as additional features for hybrid and ensemble classifiers

Certain malware applications when performing malicious activities, generate sys-
tem call sequences similar to benign applications[200]. Therefore, if we consider
only the system call sequence, these malware apps may get misclassified as good-
ware apps and vice versa. This can lead to an increase in the false negatives (false
positives). Also, in our experiments with new malware applications, we found that
multistage malware apps such as camscanner can get undetected if we consider only
the system call sequences. Multistage malware apps initially act as a legitimate app
and download malicious functionalities from online repositories. The online server
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communication is done by passing arguments to network management system calls
such as sendto() and recvfrom(). Some malware applications inject malicious com-
mands, files, or data as arguments to the system calls such as open(), execve() for
performing various malicious activities [141]. The system call execve() is used by
goodware as well as malware. Some malware applications request root privileges for
exploiting the vulnerabilities in the system utilities for gaining unauthorized access.
It uses “/xbin/su” as argument of the system call execve() for checking the root priv-
ilege. In all these cases, the malicious behavior may be inferred from the system call
arguments rather than the system calls. Hence, one may use the information in sys-
tem call arguments along with the system call sequences for constructing the feature
vectors. It is possible to construct a system call behavioral graph for an application
based on the dependencies among system call arguments[134]. However, such kind of
argument dependencies are found only in certain kind of applications [134]. Hence, it
is not possible to construct these kinds of graphs for all kinds of applications [134]. In
order to overcome these limitations, one may consider both the system call argument
relationships and control dependency information for building novel graph models.

In Chapter 4 to Chapter 7, we discussed about the efficiency and accuracy of ma-
chine learning algorithms for Android malware detection. However, machine learning
algorithms need to be frequently retrained in accordance with the emergence of new
malware and goodware applications. In order to overcome this limitation, in the next
chapter, we will discuss about the existence and extraction of certain short system
call subsequences in malware applications. With these subsequences, one can detect
malware applications.
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In the previous chapters, we employed machine learning classifiers for malware de-
tection. Machine learning mechanisms usually require good feature representation for
accurate classification of the data points. It is a challenge to identify and represent the
correct features of the data points. Further machine learning based detection mecha-
nisms can be computationally challenging and may not be suitable for on device real
time deployment. Hence, there have been many attempts to detect malware based on
various signatures.

According to Artenstein et al. [77], malware applications can utilize the vulnera-
bilities in the Android IPC to perform various kinds of attacks such as sending SMS,
stealing information, etc. A malware app can invoke the services provided by the
server processes with the help of sensitive API calls for launching various kinds of
attacks. In the kernel level, ioctl () system call is produced for requesting the services
provided by the server processes. Then, the kernel verifies the request and creates a
shared memory for communication. After the communication, the shared memory is
unallocated. Hence, this IPC (Inter Process Communication) between malware appli-
cation and server processes gets reflected as a short system call pattern in the entire
system call sequence. In [190], it is proved that the system call sequence of Android
applications contains special patterns which are unique to malware. The system call
sequence of Android applications is found to be stationary first-order ergodic Markov
chains. As a consequence of this, there exists short system call patterns in the system
call sequence of malware applications which contain the malicious information in the
entire system call sequence. Even a single pattern can be found in multiple families
of malware application. These patterns can be used for efficient signature based mal-
ware detection and identification. In this chapter, we discuss how to extract such kind
of malicious system call patterns from malware applications and use it for malware
detection.

8.1 Extraction of Patterns From System Call Sequences
Most of the malware applications try to access the sensitive resources frequently in
the background. It communicates with a sensitive resource silently in the background
by generating a system call pattern (contiguous system call sequence between two
busy wait system calls) immediately when that resource is available. From this, it is
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clear that there exist certain system call patterns (contiguous system call sequence
between two busy wait system calls) in a system call sequence which contains rele-
vant information about the malicious behavior. Hence we can identify the malicious
behavior in the system call sequence X with such contiguous subsequences in X .

8.1.1 Representing system call sequence as ergodic Markov chain
In the previous chapters, we made detailed discussion about tracing the system call
sequence of an application. In the system call sequence of an application, we eliminate
the irrelevant system calls and keep only the relevant system calls. The list of relevant
system calls ( = {(7 : 7 = 1, 2, 3 . . . , <} is given in Table 8.1. Let, X = {X8 : 8 =

1, 2, . . . ,;} denotes the refined system call sequence after eliminating the irrelevant
system calls.

TABLE 8.1 List of relevant system calls.

Alternative Name A B C D E F G H
System Call recvfrom write ioctl read sendto dup writev pread
Alternative Name I J K L M N O P
System Call close socket bind connect mkdir access chmod open
Alternative Name Q R S T U V W X
System Call rename fchown32 unlink pwrite umask lseek fcntl recvmsg
Alternative Name Y Z A1 A2 A3 A4
System Call sendmsg epoll dup2 fchown readv chdir

8.1.2 Computation of information in system call sequence
Let, T = (t7 8 ) be the transition probability matrix of the system call sequence. The
transition probability t7 8 from a system call S7 to another system call S8 can be calcu-
lated as,

t7 8 = %@ (S8 |S7 ) =
<7 8
<∑
9=1

<79

,∀1 ≤ 7 , 8 ≤ n (8.1)

where <79 is the number of state transitions from a state S7 to the state S9 in X ,
∀1 ≤ 9 ≤ n .

Since the system call sequence X can be treated as an ergodic Markov chain,
lim
9→∞

T 9 = Q , where Q is a matrix with identical rows say `=(`1, `2,…, `n ). That is,

lim
9→∞

T 9 =


`1 `2 . . . `<
. . . . . . . . . . . .

`1 `2 . . . `<


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` is known as the stationary distribution of the Markov chain X . Entropy H (X )
of a Markov chain is a measure of the information in X . For an ergodic Markov chain
X , it is calculated as:

H (X ) = −
n∑
7=1

n∑
8=1

`7 t7 8 :=6 (t7 8 ),

where T = (B7 8 ) is the transition probability matrix of X and `=(`1, `2,…, `n ) is
the stationary distribution of X . The steps for computing the entropy is given in Al-
gorithm 1. The state transition probability matrix T = (t7 8 ) is given as the input to
the Algorithm 1. The algorithm first computes the stationary distribution ` from T
by computing the powers of T until the rank of the matrix Q = T 7 becomes 1. When
the rank becomes 1, all the rows of Q become identical and the first (or any) row of
Q gives the stationary distribution ` of X . The entropy rate H (X ) of X is calculated
using t7 8 and `.

Algorithm 1 Computation of Entropy in a System Call Sequence
Input: T = (t7 8 )
Output: �<B@=>G
1: 7 ← 1
2: Q = (Q7 8 ) ← T
3: while '0<9 (Q ) ≠ 1 do
4: 7 ← 7 + 1
5: Q =← T 7

6: end while
7: ` = (`1, . . . , `<) = (Q1,1, . . . ,Q1,1)
8: H (X ) ← −

<∑
7=1

<∑
8=1

`7 × t7 8 × :=6 (t7 8 )

8.1.3 Identification of system call patterns
An application goes through different states during its execution [183]. Those states
are:

• Ready : The process is ready to communicate with an available resource;

• Running: The process is communicating with the resources through operating sys-
tem by means of generating a system call sequence;

• Waiting: The process is waiting for the availability of a resource or user input. An
application raises epoll_wait() system call in this state.

A malware application has a tendency to access the system resources during its exe-
cution time. An application checks the availability of a resource via polling process
. During the polling process, the application checks the status of the file descriptor
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of the required resource in order to know the availability of the resource. If the re-
source is available, the application starts to communicate with the device immediately
resulting in the generation of several system calls. Such system calls generated in be-
tween two busy wait calls (epoll_wait) in the system call sequence are extracted and is
stored in the form of system call patterns. It is known that, every application requires
B (write()) and C (ioctl()) system calls for communicating with sensitive resources in
a system [174]. Hence, we may not consider those system call patterns which do not
contain B (write()) and C (ioctl()) system calls.

Let, X 9C
C = (XC , . . . ,XC+9C−1) be a sequence of system calls between two busy

wait system calls Z. We call X 9C
C , a system call pattern. The information distances nC

between the patterns X 9C
C and theMarkov chain of system call sequence X is calculated

as,
nC = | − 1

9C
log Pr(XC , . . . ,XC+9C−1) − H (X ) |.

The actual behavior of a malware application is concentrated entirely on the system
call patterns XC if the information distance nC ≈ 0.

8.2 System call patterns in Walkinwat trojan
In this section, we explain how to extract the system call patterns from the Walkinwat
trojan and get the best approximation of the system call sequence. It is known that,
Walkinwat trojan performs malicious activities such as sending SMS to all contacts
in a device, stealing information etc. In order to perform this malicious behavior,
Walkinwat malware requires to access the services such as telephony provided by
the server process via IPC based on shared memory mechanism. Hence, the system
call sequence of Walkinwat trojan can contain system call patterns which represent
malicious activities such as accessing system resources like Telephony, and GPS in
the background.

The system call sequence of the Walkinwat trojan is shown in Figure 8.1 and
the system call digraph is shown in Figure 8.2. Consider the system call sequence
Z,A,A,B, …as a walk in the state transition digraph G . We know that the system
call walk starts from the system call Z. That is, X1= Z. After context switching, the
application generates a system call sequence {A,A,B,A,C,…,C} and raises the epoll
(Z) system call. Hence, the sequence {Z,A, A,B,A,C,…,C,Z} becomes a closed walk
in the Walkinwat state transition digraph G . This process is repeated several times
during execution of Walkinwat trojan. The transition probability matrix T is given in
Table 8.2.

Now, we know that lim
9→∞

T 9 = Q , where Q is a rank 1 matrix with identical rows
say `=(`1,…, `n ). By raising T to a sufficiently large power 9 , we can get the matrix
Q and the stationary distribution ` of the Walkinwat trojan as,

` = (0.1900, 0.2954, 0.1841, 0.1626, 0.0031, 0.0045, 0.0023, 0.0019, 0.014, 0.1414).
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FIGURE 8.1 System call sequence of Walkinwat Trojan.

TABLE 8.2 State transition probability matrix of Walkinwat Trojan.

A B C D E F G H I Z

A 0.454 0.098 0.274 0 0.009 0 0 0 0 0.163

B 0.063 0.369 0.063 0.470 0 0 0 0 0.021 0.010

C 0.004 0.268 0.310 0 0.002 0.024 0 0 0.012 0.376

D 0.139 0.659 0.176 0 0 0 0.002 0 0.019 0.002

E 0.714 0 0 0 0.285 0 0 0 0 0

F 0 0.700 0 0 0 0 0 0 0.300 0

G 0.166 0 0.500 0 0 0 0 0.333 0 0

H 0 0 0.400 0 0 0 0 0.600 0 0

I 0 0.480 0.320 0 0 0 0.04 0 0 0.160

Z 0.414 0.006 0.147 0.167 0 0 0.009 0 0.006 0.247

The entropy of the system call sequence of Walkinwat trojan can be calculated using
T and ` as,

H (X ) = −
n∑
7=1

n∑
8=1

`7 t7 8 :=6 (t7 8 ) = 1.7512.

The system call patterns generated by the Walkinwat trojan and their information
distance n are given in Table 8.3. The consecutive occurrence of same system calls in
a system call pattern are represented using power notation. For example, a system call
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FIGURE 8.2 System call digraph of Walkinwat malware application.

TABLE 8.3 System call patterns and information distance values.

ID System Call Pattern nnn

Pattern 1 A²C⁷FBDIBDB³DC⁴FBDIBDBDB³DBDB³DC 0.05

Pattern 2 A²E³AEA³CBC⁴FBDIBDBDB³DBDB³DC²BDBDBDB³DBDB³DC 0.07

Pattern 3 GA³C⁵FBDIBDBDB³DBDB³DC²BCAC³ 0.18

Pattern 4 A²CBIBICBIC²BI 1.05

pattern AACBIBICBICCBI is represented in power notation as A²CBIBICBIC²BI
for convenience. Here we can select the system call pattern with least information
distance (Pattern 1) as the malicious system call pattern of the Walkinwat trojan.

8.3 Malware Detection and Classification Based on System Call
Patterns

System call pattern based malware detection and classification involves comparing
the system call pattern of the test applications with the system call patterns of known
malware. So we need to first build a dataset of system call patterns of knownmalware.
The system calls generated by various malware samples have to be refined and the
system call patterns are to be extracted out as described in the Section 8.1. Each pat-
tern is then compared with every malicious system call pattern stored in the database
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(created earlier). The comparison is carried out using the Jaro-Winkler similarity met-
ric [155]. The system calls in a system call pattern are repetitive in nature. Usually, a
few initial system calls in similar system call patterns are equal. Hence, similar system
call patterns have a common prefix. Therefore, Jaro-Winkler similarity metric can be
used to compare the system call patterns as Jaro-Winkler considers common prefix
for comparison.

Jaro-Winkler similarity metric is a string metric for measuring the edit distance
between two sequences. Higher the Jaro-Winkler distance for two string, the more
similar the strings are. The score is normalized such that 1 corresponds to exact match
and 0 corresponds to perfect dissimilarity. If the match score is greater than a thresh-
old ) ∈ [0, 1], the application can be flagged off as malicious and the process can
be terminated. Otherwise, the similarity comparison is to be carried out with other
system call patterns in the test application. If the Jaro-Winkler similarity score is less
than or equal to the threshold ) in all cases, the application can be declared as a
goodware. The malware detection steps are given in Algorithm 2.

Let %1 and %2 be the two system call patterns. Then, the Jaro score � of %1 and %2
is given by:

� =
1
3

(
;

|%1 |
+ ;

|%2 |
+ (; − B )

;

)
, (8.2)

where; is the number of matched system calls, B is the number of transpositions and
|%1 |, |%1 | are the length of these patterns. The Jaro-Winkler score �E is calculated as:

�E = � + (:> (1 − � )), (8.3)

where : is the length of common prefix and > is a scaling constant with value equal
to 0.1. Two characters from %1 and %2, are considered matching only if they are the
same and not farther than

bmax( |%1 |, |%2 |)
2

c − 1.

Each character of %1 is compared with all its matching characters in %2. The number
of matching (but different sequence order) characters divided by 2 defines the number
of transpositions.

The malware detection mechanism using system call pattern matching with
Jaro-Winkler score is given in Algorithm 2. The set of malicious patterns "% =

{"%1, . . . ,"%: } obtained in the training phase from various malware families, the
set of system call patterns % = {%C = (%C,D : D = 1, 2, . . . , 9C ) : C = 1, 2, . . . , 9 }
obtained by running the test application (Section 8.3) and a threshold value ) are
given as input to the Algorithm 2. (B0B4 variable holds the value 0 to denote a good-
ware and 1 to denote a malware. In Algorithm 2, |"%7 | denotes the length of the 7 Bℎ
malicious pattern, |%C | denotes the length of theCBℎ system call pattern in the test ap-
plication,;7 ,C denotes the number matching system calls, B @7 ,C denotes the number of
transpositions and :7 ,C denotes the common prefixes between the system call patterns
"%7 and %C . First, the Jaro score � and then the Jaro-Winkler score are calculated
for each pair of malicious pattern "%7 ∈ "% and system call pattern %C ∈ % . If
the Jaro-Winkler similarity score exceeds a predetermined threshold value ) for any
such pair, then the application is flagged off as a malware, otherwise, the application
is flagged off as a goodware.
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Algorithm 2 Malware Detection (System Call Pattern Matching) Algorithm
Input: "% = {"%1, . . . ,"%: }, % = {%C : C = 1, 2, . . . , 9 },)
Output: (B0B4
1: 7 ← 1
2: 8 ← 1
3: (B0B4 ← 0
4: for 7 ∈ {1, 2, . . . , : } do
5: for C ∈ {1, 2, . . . , 9 } do

6: � ← 1
3

(
;7 ,C

|"%7 | +
;7 ,C

|%C | +
(;7 ,C−B @7 ,C )

;7 ,C

)
7: �E ← � + 0.1 × :7 ,C (1 − � )
8: if �E ≥ ) then
9: (B0B4 ← 1

10: end if
11: end for
12: end for

8.4 Experiments and Analysis
In this section, let us examine the performance of the malicious system call pattern
based malware detection mechanism. We consider an initial dataset of 2000 samples
comprising of goodware as well as malware applications. Goodware applications are
downloaded from the Google play store [28] and malware applications are down-
loaded from the Drebin and the AMD datasets [75] [203]. Further, we downloaded
Judy infected autoclicking adware applications and ransomware from external repos-
itories [113] [114] [115]. The tested malware applications include spyware privilege
escalators, SMS senders, adware and ransomware, etc. Spyware are applications can
perform many malicious activities like stealing information such as IMEI code, mon-
itoring the location, listening phone calls, sniffing the surroundings by controlling
camera etc. of a compromised device. Privilege escalators are malware applications
which make use of the vulnerabilities in a device for gaining access to its protected
resources without owner’s knowledge. SMS senders can send SMS messages to pre-
mium rate numbers stealthily in the background. Spyware, privilege escalators and
SMS senders can be categorized as Trojans. These malware can perform malicious
activities without any user intent. Adware loads advertisements from a server for gen-
erating revenue to the attacker. Certain kinds of adware can generate auto clicks on
these advertisements. Ransomware are of two types: Crypto ransomware and locker
ransomware. Crypto ransomware encrypts the files in a device and demands a ran-
som for decrypting it. Locker ransomware blocks the device from usage by locking
the screen until the user pays a ransom to the attacker. The tested goodware apps
includes gaming apps, social apps etc.

The methodology was implemented in a 16 GB Intel core i5 PC with an An-
droid emulator having ARM v8 architecture. This emulator can simulate the hard-
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ware resources in a real Android device. In the pattern extraction phase, the sample
malware applications are executed in an emulator by injecting 1000 random events
using monkey runner tool. Then, the generated system calls are logged using strace
utility.

The malicious system call pattern of three categories of malware applications
(Trojans, malvertising applications, and ransomware) were extracted out. Trojans are
malware applications which tend to access the system resources in the background.
The trojans considered for pattern extraction are Android.Tapsnake (Trojan Spy),
Android.wakinwat (Trojan SMS) and Droidkungfu application (privilege escalator).
Malvertising applications tend to generate many advertisements for revenue to a third
party. In this category, we considered the Judy malware for pattern extraction. Ran-
someware encrypt the files or lock the device for a ransom. We have analyzed Sim-
plocker crypto ransomware and VideoPlayer locker ransomware. The system call pat-
terns generated by these malware applications are given in Table 8.4. In Table 8.4, we
can see that there exist a longest common subsequence (!�() among the system call
patterns of a particular category ofmalware. Hence, we can identify the category from
the system call patterns generated by an application. The system call patterns gener-
ated by goodware applications are given in Table 8.5. Unlike in the case of malware,
we may not be able to find longest common subsequences (!�() in goodware appli-
cations. The system call sizes of malware samples used in pattern extraction is given
in Table 8.6. The python code for extracting the system call pattern of an application
is given in the Appendix.

TABLE 8.4 System call patterns of various malware.

Pattern ID Application Category Application Type Application Name System Call Pattern LCS
Pattern 1 Trojan Trojan Spy Android.TapSnake AABCCFBDIBDBDBBBDBDBBBDC

FBDIBDPattern 2 Trojan Trojan SMS Android.Wakinwat AACCCCCCCFBDIBDBBBDCCCC
FBDIBDBDBBBDBDBBBDC

Pattern 3 Trojan Privilage Escalator DroidKungFu ACCCCCCFBDIBDBBBDC

Pattern 4 Malvertising Application Autoclicking Adware Judy

GCGCCCCGCCCCCCCCGBP
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDI

Pattern 5 Ransomware Crypto Ransomware Simplocker DAAAEAABACBDBDCCCCB

BACBDBDPattern 6
Ransomware

Locker Ransomware Videoplayer
DAAABACBDBDBDGBDBDBDBDBDB
DBDBDBDBDBDBDBDBDBDGBDBDBD
BDBDBDBDBDBDBDBDBDBDBDBDBDB
DBDBDBDBDBDBDBDBDGBDBDBDCCCB

In the testing phase (malware detection by comparison with known system call
patterns), 2000 samples of goodware and malware applications were executed in an
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TABLE 8.5 System call Patterns of various goodware.

Application Category Pattern ID System Call Pattern
Calculo IMC App Pattern 1 AABCBDDBBDDBDDCCBDDCCBDDBDDBDDCCBDDC
Calculator App (System) Pattern 2 AACBDDBDDBDDCCCB
Superb Booster App Pattern 3 DAAAACBBBBBDBDCCB

TABLE 8.6 System call size of malware samples used in pattern extraction.

Category Application Number of Events Size of the Trace
Trojan Android.TapSnake 1000 4703
Trojan Android.WakinWat 1000 2182
Trojan DroidKungFu 1000 1814
Malvertising App. Judy 1000 38007
Ransomware Simplocker 1000 1214
Ransomware Videoplayer 1000 8472

emulator and the system calls were collected. These system call logs were segmented
and refined. Then, the Jaro-Winkler similarity scores of system call patterns in each
application with the known system call patterns of malware from the training phase
(see Table 8.4) were computed.

It was found that the Jaro-Winkler similarity score of any application was bounded
below by 0.66. This is because every application tend to generate patterns with single
system calls (see Figure 8.1) such as read(), recvfrom(), and ioctl() for performing
simple operations like reading datagram from the device drivers. The system call
patterns also contain at least one ioctl(), read(), and recvfrom() system call. Therefore,
system call patterns with single system calls such as ioctl(), read() or recvfrom() have
Jaro Winkler similarity greater than or equal to 0.66. This can be proved as follows.

Let %1 be a pattern in an application with a single system call such as read() or
recvfrom() or ioctl() and %n be a syatem call pattern of length :n . Then the Jaro score
between %1 and %n is

� =
1
3

(
;

|%1 |
+ ;

|%n |
+ (; − B )

;

)
=
1
3

(
1
1
+ 1
:n
+ (1 − 0)

1

)
≥ 2
3
= 0.66.

(8.4)

Note that ; = 1 and B = 0, since there is only one system call in %1. Now the Jaro-
Winkler score �E is,

�E = � + (:> (1 − � )) ≥ 0.66 (8.5)

Thus, the maximum Jaro Winkler similarity score of any application has a minimum
value of 0.66.

The malware detection involves computing the Jaro-Winkler similarity score be-
tween the system call pattern of the test application with the system call patterns
of known malware applications in the database. If the Jaro Winkler similarity score
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TABLE 8.7 Performance results.

Dataset TPR TNR FPR FNR PPV Accuracy F1_Score
Drebin +AMD+ External Repositories 0.940 0.961 0.039 0.060 0.95 0.949 0.95
Drebin 0.935 0.961 0.039 0.065 0.959 0.948 0.947
AMD Dataset 0.940 0.961 0.039 0.06 0.96 0.95 0.955
External Repositories 1 1 1 1 1 1 1

is above a pre-determined threshold, then the test application will be considered as a
malware. The FPR and FNR values against various threshold values (with system call
patterns of 6 malware) are shown in Figure 8.3. From Figure 8.3, we can conclude that
) = 0.85 serves as a good threshold to separate malware and goodware applications.
The detection rates of the proposed approach in various databases are given in Table
8.7. From Table 8.7, we can conclude that the system call pattern based mechanism
can effectively detect malicious applications with an accuracy and F1 score of around
0.95. The detection rates of different malware families are given in Table 8.8.
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FIGURE 8.3 False positive and negative rates against different threshold values.

The python code for the Jaro-winkler similarity matching for the system call pat-
terns is given in the Appendix.

8.5 Conclusion
In this chapter, we discussed a malware detection mechanism which makes use of
the presence of system call patterns in the system call sequence of the application.
Initially, the system call patterns of known Android malware are required to be iden-
tified and the distinct ones have to be stored as malware signatures. A single system
call pattern can represent many malware families. Malware detection works by check-
ing the presence of any of the known system call patterns in the system call sequence
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TABLE 8.8 Rate of detection across malware families.

Malware Family Tested Samples Category Rate of Detection
Adrd 20 Trojan 1
Andrup 45 Trojan 0.92
Base Bridge 20 Trojan 0.80
DrodKungFu 147 Trojan 0.91
GoldDream 37 Trojan 0.92
AndroRAT 45 Trojan 0.97
Boxer 44 Trojan 0.88
MobileTX 17 Trojan 0.64
Rumms 50 Trojan 1
Lottor 100 Trojan 0.90
Mseg 128 Trojan 0.92
Penetho 18 Trojan 1
Vidro 23 Trojan 1
Mercor 178 Trojan 1
MMarketPay 9 Trojan 0.77
Lnk 5 Trojan 1
FakeDoc 21 Trojan 1
FakeAV 5 Trojan 1
FakeInstall 15 Trojan 1
FakePlayer 16 Trojan 1
FakeTimer 10 Trojan 1
Simplocker 19 Ransomware 1
VideoPlayer 18 Ransomware 1
Judy 11 Malvertising 1

Application

of the application. This malware detection approach can overcome the limitations of
many existing machine learning based detection mechanisms.

Reinforcement learning techniques can be used to identify the malicious behavior
even if there is a change in system call sequence. That is, one can use the temporal
difference algorithm to learn the properties of known malicious system call patterns
and identify the malicious probability value of unknown system call patterns [192]
[215]. Further, using the system call arguments along with the system calls may give
better characterizations of malware families.



9
Conclusions and Future Directions

In this chapter, we discuss about the trends in emerging malware, effectiveness of the
detection mechanisms described in Chapter 4 to Chapter 8 and the possible research
directions to overcome the limitations of these malware detection mechanisms. The
suggested extensions of the detection mechanisms can detect and prevent most of the
malware attacks.

In Chapter 4, we showed that malicious behavior can be accurately detected by
combining API calls, permissions and system calls. However, an attacker can evade
the static malware classifiers by using adversarial techniques. In such cases, static
and hybrid analysis mechanisms are not very useful. However, it is very hard for an
attacker to alter the system call sequence of an application without modifying the
program semantics. Hence, it is possible to identify the malicious behavior from the
system call sequence itself. However, in current settings the system call analysis is not
very accurate because of the limited code coverage problem .Moreover, it is restricted
to the malware which try to access sensitive resources in the background. In order to
overcome these limitations, we need to employ mechanisms to cover all the parts of
an application source code during its execution time. Further, we need to develop
techniques to identify the malicious behavior in unseen system call sequences.

9.1 Recent Malware Attacks
During the COVID-19 outbreak, cybercriminals used COVID-19 tracker applications
as a bait to carry out various malicious activities. The spread of coronavirus helped
the attackers to launch malicious applications that disguise as covid trackers. Most
of these malware appeared in the form of trojans, spyware and ransomware. These
malware use anti-detection techniques to prevent them from being detected. Further,
the spyware and ransomware attacks dramatically increased during this time leading
to huge financial losses and serious security breaches.

Pegasus is a spyware made by the Israeli company called NSO Group[46]. Pega-
sus can extract the personal details of the user and can access the microphone and
camera of the device without user’s permission. It can also access the device’s lo-
cation, read text messages and can track calls. The earlier version of Pegasus was
installed on smartphones by spear-phishing. However, the latest version of Pegasus
spreads through a ‘zero click’ attack in which the malware enter into the device
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without clicking a malicious link or user interaction. This malware has the ability
to get installed with a missed call on WhatsApp, and can remove the record of the
missed call after installation. Another installation technique is by sending a message
to a user’s phone without any notification. In Android operating system, pegasus uses
a rooting method called framaroot to gain access into the device. This method of
rooting is subtle and hence the user thinks that the device is not infected.

Due to the popularity of bitcoins, cybercriminals are now exploiting Android
applications to spread cryptocurrency-mining malware[61]. These cryptocurrency-
mining malware are distributed through Google Play Store and other third party app
stores disguised as, gaming app, streaming apps, and VPNs. Most of the disguised ap-
plications appear in the form of applications that are used to watch football matches.
A common method that is used by the attackers is to conceal a Coinhive JavaScript
miner in the Android application. When the user watches the broadcast, the applica-
tion opens an HTML file with the embedded JavaScript miner. This javascript con-
verts the user’s CPU power into a tool for mining cryptocurrency. Crypto-currency
mining malware also appeared in the form of adware. Recently, a crypto-currency
mining malware family called Trojan.AndroidOS.Coinge.j emerged, that installs it-
self as a porn app or as a system app. This malware was used by the attackers to
monitor the device’s battery and temperature to regulate mining activities. The cryp-
tominers are a real threat since they can adversely affect the device performance and
can also trigger network based attacks.

9.2 Identifying Exploitation Attacks
Wagner et al. [200] had shown that, certain malware applications when performing
malicious activities, generate system call sequences similar to goodware applications.
If we consider only the system call sequence, these malware apps may get wrongly
classified as goodware apps (and vice versa) which can lead to an increase in the false
negatives (false positives). In these cases, the malicious behavior may be identified
from the system call arguments along with the system call sequences. For instance, a
malware app can perform malicious activities by exploiting the buffer overflow vul-
nerabilities in the system utilities or programs [141, 90, 84]. That is, a malware app
can try to inject malicious commands or files or data as arguments to certain kinds of
system calls such as open(), execve() for performing malicious activities [141]. The
system call execve() is used by goodware as well as malware. Amalware requests root
privileges for exploiting the vulnerabilities in the system utilities for gaining unautho-
rized access. A malware application uses “/xbin/su” as argument of the system call
execve() for checking the root privilege. Thus, in these cases, the malicious behavior
may be inferred from the system call arguments rather than the system calls.

Experiments with new malware apps have shown that multistage malware apps
such as camscanner can escape many detection mechanisms. Multistage malware
apps initially act as legitimate apps and later download malicious codes from online



Mitigating Emulator Evasion and Code Coverage Problem 117

servers. The online server communication is done by passing arguments to network
management system calls such as sendto() and recvfrom(). In this case, the detection
mechanisms discussed in this book may not work. In [134], Kolbitch et al. suggested
a mechanism to construct a system call behavioral graph for an application based on
the dependencies among system call arguments. However, such kinds of argument
dependencies are found only in certain kinds of applications [134]. Hence, it is not
possible to construct these kinds of graphs for all kinds of applications [134]. In order
to overcome the limitations of not using the system call arguments, one may consider
both the system call argument relationships and control dependency information for
building graph models.

9.3 Mitigating Emulator Evasion and Code Coverage Problem
Many malware detection mechanisms including the ones discussed in this book, rely
on Android emulators to trace out the system calls produced by an application. How-
ever, certain malware applications can bypass the emulator based detection mecha-
nisms by using techniques such as verifying the presence of motion sensor, checking
for the null value in IMEI code, etc.[166]. This can be resolved by employing tech-
niques such as modifying the emulator, realistic simulation of sensor events, acute
binary translation and hardware assisted virtualization [166],[166].

Dynamic malware detection systems detects a malware only if the malware ex-
hibits malicious behavior at least once in an execution. In this book, we used monkey
runner tool to inject pseudo random events such as click event, touch event, etc. during
its runtime. Monkey runner relies on random exploration strategy to generate input
test cases. Certainmalware applications such asXhelper performsmalicious activities
only when user presses a particular key or when a particular event occurs. Further,
it is possible for a malware application to extend its functionality by downloading
malicious codes from online repositories during its runtime [167]. This behavior is
known as dynamic loading . In such cases, the malware app can update itself or load
some malicious code from online sources after few minutes of execution or when a
particular event occurs. In those cases, a malware application might get misjudged as
benign. In order to overcome these limitations, we can employ mechanisms to cover
all parts of the source code of an application during execution. For this, we can use
forward execution based on the application control flow graph while collecting the
system call sequence [221]. That is, we initially build a control flow graph based on
the source code of the application and then inject user or system events to explore
all the possible paths in that control flow graph. This collected system call sequence
will contain all the possible information related to the application and can be used to
identify the malicious behavior from it.
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9.4 Resilience to the Change in System Call Sequence
We can employ reinforcement learning techniques to identify the malicious behavior
even if there is a change in the system call sequence of a malware. That is, we can use
temporal difference algorithm to learn the properties of known malicious system call
patterns and identify the malicious probability value of unknown system call patterns
[192] [215]. Also, we can consider the system call arguments along with the system
call sequence for constructing stochastic models.

9.5 Collusion Attack
In this book, we have considered only the malicious behavior of a single application.
We have not considered collusion attacks from multiple applications. In a collusion
attack, the malicious code is fragmented into several parts and distributed across mul-
tiple apps [150]. These apps communicate together via covert channels for performing
malicious activities. For example, an app ‘A’ steals the information and sends it to an
app ‘B’. The app ‘B’ sends that information to the attacker. In such a situation, the
background communication with other processes may get reflected in the system call
sequences of all the colluding apps in the device. We haven’t considered these kinds
of malicious attack (collusion) jointly conducted by more than one application (ma-
licious behavior in multiple app scenarios). We need to find some novel mechanisms
to detect such kind of malicious behavior in multiple app scenario by correlating the
system call sequences generated by all the applications in a device.
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Source Codes of Chapter 3
The following shell script can be used to extract opcodes from Android application.

for file in ./*.apk; do apktool d -f $file;done
for dir in $(ls -d */);
do
mkdir ${dir}smali/opcodes
FILES=$(find ${dir}smali -type f -name '*.smali')
for file in $FILES;
do
grep -v [0*.#:}{\"] $file | sed '/^$/d' |
sed's/ //g' | cut -d","
-f1 | sort -u >> ./${dir}smali/opcodes/opcodes.txt

done
done
for dir in $(ls -d */);
do

sed "s/v[0-9]//" ./${dir}smali/opcodes/opcodes.txt >
./${dir}smali/opcodes/opcodesv1.txt

sed "s/p[0-9]//" ./${dir}smali/opcodes/opcodesv1.txt >
./${dir}smali/opcodes/opcodesv2.txt
sed "s/[0-9]$//" ./${dir}smali/opcodes/opcodesv2.txt >
./${dir}smali/opcodes/opcodesv3.txt

done

Source Codes of Chapter 4
The source code for extracting API, permission and system call based features are
given below. Here, Androguard tool [98] is used to extract API calls and permissions
from the applications to construct csv files.

from androguard.misc import AnalyzeAPK

119
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import os
import time
import array as arr
import numpy
from numpy import zeros
path = "C:/MalwareDataset"
path1 = "C:/GoodwareDataset"
file1=open("permission.csv","w")
file2=open("apicall.csv","w")
dirs = os.listdir(path)
dirs1=os.listdir(path1)
a=[]
a1=[]
permissions=[]
apicalls=[]
l=['android.permission.WRITE_SETTINGS',
'android.permission.ACCESS_NETWORK_STATE',
'android.permission.READ_EXTERNAL_STORAGE',
'android.permission.ACCESS_MOCK_LOCATION',
'android.permission.USE_CREDENTIALS',
'android.permission.HARDWARE_TEST',
'android.permission.GET_ACCOUNTS',
'android.permission.SEND_SMS',
'android.permission.VIBRATE',
'android.permission.READ_HISTORY_BOOKMARKS',
'android.permission.ACCESS_COARSE_LOCATION',
'android.permission.EXPAND_STATUS_BAR',
'android.permission.UNINSTALL_SHORTCUT',
'android.permission.READ_LOGS',
'android.permission.ACCESS_GPS',
'android.permission.CHANGE_NETWORK_STATE',
'android.permission.FACTORY_TEST',
'android.permission.INSTALL_SHORTCUT',
'android.permission.CHANGE_WIFI_STATE',
'android.permission.SYSTEM_ALERT_WINDOW',
'android.permission.WRITE_SMS',
'android.permission.KILL_BACKGROUND_PROCESSES',
'android.permission.MODIFY_PHONE_STATE',
'android.permission.DEVICE_POWER',
'android.permission.LOCATION',
'android.permission.RECEIVE_BOOT_COMPLETED',
'android.permission.WAKE_LOCK',
'android.permission.WRITE_APN_SETTINGS',
'android.permission.ACCESS_COARSE_UPDATES',
'android.permission.WRITE_HISTORY_BOOKMARKS',
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'android.permission.WRITE_CONTACTS',
'android.permission.PROCESS_OUTGOING_CALLS',
'android.permission.SET_WALLPAPER',
'android.permission.CALL_PHONE',
'android.permission.ACCESS_LOCATION_EXTRA_COMMANDS',
'android.permission.INTERNET',
'android.permission.ACCESS_FINE_LOCATION',
'android.permission.READ_SMS',
'android.permission.RECEIVE_SMS',
'android.permission.BROADCAST_STICKY',
'android.permission.GET_TASKS',
'android.permission.WRITE_EXTERNAL_STORAGE',
'android.permission.RESTART_PACKAGES',
'android.permission.MOUNT_UNMOUNT_FILESYSTEMS',
'android.permission.REBOOT',
'android.permission.INSTALL_PACKAGES',
'android.permission.ACCESS_WIFI_STATE',
'android.permission.DISABLE_KEYGUARD',
'android.permission.READ_CONTACTS',
'android.permission.MODIFY_AUDIO_SETTINGS',
'android.permission.READ_PHONE_STATE',
'android.permission.ADD_SYSTEM_SERVICE',
'android.permission.ACCESS_LOCATION']
file1.write(str(l))
l1=['exec','getDeviceId','getLatitude',
'abortBroadcast','takePicture',
'getLongitude','getWifiState','getDeviceInfo',
'createFromPdu','getSimOperatorName',
'getPackageInfo','requestFocus','getAccountName',
'getIMEI','getCertStatus','getAppPackageName',
'getCellLocation','setSerialNumber','sendSMS',
'getCredential','getSessions','getCookies',
'getSignalLevel','getMessage','getDisplayMessageBody',
'getClassLoader','loadClass','getMethod',
'getDisplayOriginatingAddress','getInputStream',
'getOutputStream','killProcess','getLine1Number',
'getNetworkOperator','getNetworkType',
'getSimSerialNumber','getSubscriberId',
'getLastKnownLocation','isProviderEnabled',
'sendTextMessage']
file2.write(str(l1))
for f in dirs1:

location="C:/GoodwareDataset"+f
#print(location)
#file2=open(location,'r')
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apicall=[]
a=[]
a1=[]
permissions=[]
try:

app, list_of_dex, dx = AnalyzeAPK(location)
permissions=app.get_permissions()
for method in dx.get_methods():

apicall.append(method.name)

for i in range(0,len(l)):
if l[i] in permissions:

a.append(1)
else:

a.append(0)
for i in range(0,len(l1)):

if l1[i] in apicall:
a1.append(1)

else:
a1.append(0)

file1.write('\n')
file1.write(str(a))
file1.write(",0")
file2.write('\n')
file2.write(str(a1))
file2.write(",0")

except:
print('Exception')

for f in dirs:
location="C:/MalwareDataset/"+f
apicall=[]
a=[]
a1=[]
permissions=[]
try:

app, list_of_dex, dx = AnalyzeAPK(location)
permissions=app.get_permissions()
for method in dx.get_methods():

#print(apicall)
apicall.append(method.name)

for i in range(0,len(l)):
if l[i] in permissions:

a.append(1)
else:
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a.append(0)
for i in range(0,len(l1)):

if l1[i] in apicall:
a1.append(1)

else:
a1.append(0)

file1.write('\n')
file1.write(str(a))
file1.write(",1")
file2.write('\n')
file2.write(str(a1))
file2.write(",1")

except:
print('Exception')

file1.close()
file2.close()
path = "C:\\MalwareDataset"
path1= :C:\\GoodwareDataset"
files1=os.listdir(path1)
File3 = open('C:\\syscalls.csv','w')
files=os.listdir(path)
z=[]
z57=[]
File3.write("A,B,C,D,E,F,G,H,I,J,K,
L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,Application")
for Files in files:

# Reading system call sequence
with open(path+"/"+Files) as f:

for line in f:
z=line.split("(")[0]
z57=z57+z

fv=[z57.count('A'),z57.count('B'),z57.count('C'),
z57.count('D'),z57.count('E'),z57.count('F'),
z57.count('G'),z57.count('H'),z57.count('I'),
z57.count('J'),z57.count('K'),z57.count('L'),
z57.count('M'),z57.count('N'),z57.count('O'),
z57.count('P'),z57.count('Q'),z57.count('R'),
z57.count('S'),z57.count('T'),z57.count('U'),
z57.count('V'),z57.count('W'),z57.count('X'),
z57.count('Y'),z57.count('Z')]
File3.write("\n")
File3.write(str(fv))
File3.write(",1")
for Files in files1:
# Reading system call sequence
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with open(path+"/"+Files) as f:
for line in f:

z=line.split("(")[0]
z57=z57+z

fv=[z57.count('A'),z57.count('B'),z57.count('C'),
z57.count('D'),z57.count('E'),z57.count('F'),
z57.count('G'),z57.count('H'),z57.count('I'),
z57.count('J'),z57.count('K'),z57.count('L'),
z57.count('M'),z57.count('N'),z57.count('O'),
z57.count('P'),z57.count('Q'),z57.count('R'),
z57.count('S'),z57.count('T'),z57.count('U'),
z57.count('V'),z57.count('W'),z57.count('X'),
z57.count('Y'),z57.count('Z')]
File3.write("\n")
File3.write(str(fv))
File3.write(",0")

Source Codes of Chapter 5
The code for representing a system call sequence as digraph and extracting the cen-
trality measures such as eignvector centality, betweeness centrality and closeness cen-
trality is given below.

import csv
import networkx as nx
import math
from sklearn import preprocessing
import numpy
import os, sys
import re
import numpy as np
PQ=[]
path = "C:\\Dataset"
myFile1 = open('C:\\GraphSignals\\eigencent.csv',
'w')
myFile2 = open('C:\\GraphSignals\\betcent.csv',
'w')
myFile3 = open('C:\\GraphSignals\\Closecent.csv',
'w')
files=os.listdir(path)
l=[]
p=[]
i=1
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for Files in files:
l1=[]
# Reading system call sequence
with open(path+"/"+Files) as f:

for line in f:
z=line.split("(")[0]
z1=z1+z

z12345=[]
d=[]
e=[]
b=[]
c=[]
#Create adjacency matrix
def rank(c):

return ord(c) - ord('A')
T = [rank(c) for c in z9]
M = [[0]*26 for _ in range(26)]
for (i,j) in zip(T,T[1:]):

M[i][j] += 1
for row in M:

n = sum(row)
if n > 0:

row[:] = [f/sum(row) for f in row]
#Graph construction from adjacency matrix
G=nx.DiGraph()
G.add_node("A")
G.add_node("B")
G.add_node("C")
G.add_node("D")
G.add_node("E")
G.add_node("F")
G.add_node("G")
G.add_node("H")
G.add_node("I")
G.add_node("J")
G.add_node("K")
G.add_node("L")
G.add_node("M")
G.add_node("N")
G.add_node("O")
G.add_node("P")
G.add_node("Q")
G.add_node("R")
G.add_node("S")
G.add_node("T")
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G.add_node("U")
G.add_node("V")
G.add_node("W")
G.add_node("X")
G.add_node("Y")
G.add_node("Z")
n=[]
n1=[]
for i in range(0,len(z57)-1):

G.add_edge(z57[i],z57[i+1])
for i in range(65,91):

for j in G.neighbors(chr(i)):
n.append(j)

n1.append(n)
# Extraction of centrality measures
eigen=nx.eigenvector_centrality_numpy(G)
betweenness=nx.betweenness_centrality
(G,normalized=False)
closeness=nx.closeness_centrality(G)

for i in range(65,91):
try:

eig1=eigen.get(chr(i))
e.append(round(eig1,4))

except KeyError:
e.append(0)

for i in range(65,91):
try:

deg1=degree.get(chr(i))
d.append(deg1)

except KeyError:
d.append(0)

for i in range(65,91):
try:

between1=betweenness.get(chr(i))
b.append(round(between1,4))

except KeyError:
b.append(0)

for i in range(65,91):
try:

closeness1=closeness.get(chr(i))
c.append(round(closeness1,4))

except KeyError:
c.append(0)

# Logging centralities as csv files
m=[]
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m1=[]
myFile1.write("\n")
myFile2.write("\n")
myFile3.write("\n")
myFile1.write(str(d))
myFile2.write(str(e))
myFile3.write(str(e))

The program code for classification is given below. We used R programming lan-
guage for training and testing ANN classifiers. The training and testing files are given
as inputs to the nnet() function and the prediction probabilities returned by the pre-
dict() function are averaged together. If the average probability value exceeds 0.5 then,
the applications are treated as malware.

install.packages('nnet')
library(nnet)
a <- read.csv('eigentrain.csv')
b <- read.csv('eigentest.csv')
a1 <- read.csv('betweennesstrain.csv')
b1 <- read.csv('betweennesstest.csv')
a2 <- read.csv('closenesstrain.csv')
b2 <- read.csv('closenesstest.csv')
c <- nnet(Application~.,size=5,a)
c1 <- nnet(Application~.,size=5,a1)
c2 <- nnet(Application~.,size=5,a2)
p <- predict(c,b)
p1 <- predict(c1,b1)
p2 <- predict(c2,b2)
p3 <- (p+p1+p2)/3
#True Positives
length(which(p3[0:325] > .5))
#False Positives
length(which(p3[326:650] > .5))

Source Codes of Chapter 6
The code of GCN is given below. Packages such as Keras and Tensorflow are used to
code GCN. We used the implementation of[87] to build our GCN model.

layer.py: The layer.py file is used to create different layers of neural network. The
code is given below.
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import tensorflow as tf
import keras as k
from utils import *

_LAYER_UIDS = {}
def get_layer_uid(layer_name=''):

if layer_name not in _LAYER_UIDS:
_LAYER_UIDS[layer_name] = 1
return 1

else:
_LAYER_UIDS[layer_name] += 1
return _LAYER_UIDS[layer_name]

def sparse_dropout(x, keep_prob, noise_shape):
random_tensor = keep_prob
random_tensor += tf.random_uniform(noise_shape)
dropout_mask = tf.cast(tf.floor(random_tensor),
dtype=tf.bool)
pre_out = tf.sparse_retain(x, dropout_mask)
return pre_out * (1./keep_prob)

def dot(x, y, sparse=False):
if sparse:

res = tf.sparse_tensor_dense_matmul(x, y)
else:

res = tf.matmul(x, y)
return res

class Layer(object):
def __init__(self, **kwargs):

layer = self.__class__.__name__.lower()
name = layer + '_' + str(get_layer_uid(layer))
self.name = name
self.weights = {}
self.sparse_inputs = False

def _call(self, inputs):
return inputs

def __call__(self, inputs):
with tf.name_scope(self.name):
outputs = self._call(inputs)
return outputs

class ConvolutionalLayer(Layer):
def __init__(self, input_dim, output_dim,
placeholders, dropout,
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sparse_inputs, activation, isLast=False,
bias=False,
featureless=False, **kwargs):

super(ConvolutionalLayer, self).
__init__(**kwargs)
if dropout:

self.dropout = placeholders['dropout']
else:

self.dropout = 0.
self.featureless = featureless
self.activation = activation
self.support = placeholders['support']
self.sparse_inputs = sparse_inputs
self.bias = bias

# helper variable for sparse dropout
self.num_features_nonzero =
placeholders['num_features_nonzero']

with tf.variable_scope(self.name + '_weights'):
for i in range(len(self.support)):

self.weights['weights_' + str(i)]=
glorot([input_dim, output_dim],
name='weights_' + str(i))

if self.bias:
self.weights['bias'] =zeros([output_dim],
name='bias')

def _call(self, inputs):
x = inputs
# dropout
if self.sparse_inputs:

x = sparse_dropout(x, 1-self.dropout,
self.num_features_nonzero)

else:
x = tf.nn.dropout(x, 1-self.dropout)

# convolve
supports = list()
for i in range(len(self.support)):

if not self.featureless:
pre_sup = dot(x, self.weights
['weights_' +
str(i)],
sparse=self.sparse_inputs)

else:
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pre_sup = self.weights
['weights_' + str(i)]

support = dot(self.support[i],
pre_sup, sparse=True)
supports.append(support)

output = tf.add_n(supports)

# bias
if self.bias:

output += self.weights['bias']
return self.activation(output)

class PoolingLayer(Layer):
def __init__(self, num_graphs, num_nodes, idx,
input_dim,
output_dim, placeholders, sparse_inputs,activation,
isLast=False, bias=False,featureless=False,
**kwargs):

super(PoolingLayer, self).__init__(**kwargs)
self.num_nodes = num_nodes
self.num_graphs = num_graphs
self.activation = activation
self.output_dim = output_dim
self.input_dim = input_dim
self.idx = idx

def _call(self, inputs):
#pooling_matrix = 0
pooling_matrix = np.array([[0. for i in range
(self.num_nodes)]
for k in range(self.num_graphs)])
idx_aug = np.append(self.idx, self.num_nodes-1)
idx_aug = idx_aug.astype(int)

for i in range(self.num_graphs):
pooling_matrix[i, range(idx_aug[i],
idx_aug[i+1])] =
(1/(idx_aug[i+1]-idx_aug[i])

output = dot(tf.cast(pooling_matrix,
tf.float32), inputs,
sparse = False)
return self.activation(output)

fileutils.py: The fileutils.py file provides various utilities to the GCN classifier. This
file contains code for loading the inputs and processing them for learning. For this,
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the inputs of the GCN such as feature matrix, graph label, etc. are converted to numpy
arrays (.npz format). The code of fileutils.py is given below.

import numpy as np
import os
from collections import defaultdict
from itertools import groupby
import scipy.sparse as sp
import random
import sys

def parse_index_file(filename):
index = []
for line in open(filename):

index.append(int(line.strip()))
return index

def encode_onehot(labels):
classes = set(labels)
classes_dict = {c: np.identity
(len(classes))[i, :]
for i, c in enumerate(classes)}
onehot = np.array
(list(map(classes_dict.get, labels)),
dtype=np.int32)
return onehot

def sample_mask(idx, l):
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool)

def load_data_outer(dataset, model):
if model == 'gcn':

return load_data_gcn(dataset)

def add_one_by_one(l):
new_l = []
cumsum = 0
for elt in l:

cumsum += elt
new_l.append(cumsum)

return new_l

def load_data_gcn(dataset="malware"):
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print('Loading: {} dataset...'.format(dataset))
feats_and_labels = np.genfromtxt("malware\{}.
content".format
(dataset),dtype=np.dtype(str))
features = sp.csr_matrix(feats_and_labels
[:, 1:-1],
dtype=np.int32)
labels = encode_onehot(feats_and_labels
[:, -1])
idx = np.array(feats_and_labels[:, 0],
dtype=np.int32)
idx_map = {j: i for i, j in enumerate(idx)}
edges_unordered = np.genfromtxt("cora\{}.cites".
format(dataset),
dtype=np.int32)
edges = np.array(list(map(idx_map.get,
edges_unordered.flatten())),
dtype=np.int32).reshape(edges_unordered.shape)
adj = sp.coo_matrix((np.ones(edges.shape[0]),
(edges[:, 0], edges[:, 1])),
shape=(labels.shape[0],
labels.shape[0]), dtype=np.int32)
adj = adj + adj.T.multiply(adj.T > adj) -
adj.multiply(adj.T > adj)
print('{} has {} nodes, {} edges,
{} features.'.format(dataset, adj.shape[0],
edges.shape[0],
features.shape[1]))
return features, adj, labels

def get_splits(labels, train_dim, val_dim, test_dim):
train_ind = range(train_dim[1])
val_ind = range(val_dim[0], val_dim[1])
test_ind = range(test_dim[0], test_dim[1])
labels_train = np.zeros(labels.shape,
dtype=np.int32)
labels_val = np.zeros(labels.shape,
dtype=np.int32)
labels_test = np.zeros(labels.shape,
dtype=np.int32)
labels_train[train_ind] = labels[train_ind]
labels_val[val_ind] = labels[val_ind]
labels_test[test_ind] = labels[test_ind]
train_mask = sample_mask(train_ind,
labels.shape[0])
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val_mask = sample_mask(val_ind,
labels.shape[0])
test_mask = sample_mask(test_ind,
labels.shape[0])
return labels_train, labels_val,
labels_test,
train_ind, val_ind,
test_ind, train_mask,
val_mask, test_mask

def get_splits_graphs_basic(num_graphs, labels,
train_dim,
val_dim,
test_dim, oldidx):

idx = np.array([i for i in range(num_graphs)])
train_ind = [idx[train_dim[0] : train_dim[1]]]
val_ind = [idx[val_dim[0] : val_dim[1]]]
test_ind = [idx[test_dim[0] : test_dim[1]]]
labels_train = np.zeros(labels.shape, dtype=np.int32)
labels_val = np.zeros(labels.shape, dtype=np.int32)
labels_test = np.zeros(labels.shape, dtype=np.int32)
labels_train[train_ind] = labels[train_ind]
labels_val[val_ind] = labels[val_ind]
labels_test[test_ind] = labels[test_ind]
train_mask = sample_mask(train_ind, labels.shape[0])
val_mask = sample_mask(val_ind, labels.shape[0])
test_mask = sample_mask(test_ind, labels.shape[0])
return labels_train, labels_val, labels_test,
train_ind,
val_ind, test_ind, train_mask, val_mask, test_mask

def get_splits_graphs(num_graphs, labels, train_dim,
val_dim, test_dim, idx):

idx_incr = np.array([i for i in range(num_graphs)])
idx_incr = idx + idx_incr
random.shuffle(idx_incr)
train_ind = [idx_incr[train_dim[0] : train_dim[1]]]
val_ind = [idx_incr[val_dim[0] : val_dim[1]]]
test_ind = [idx_incr[test_dim[0] : test_dim[1]]]
labels_train = np.zeros(labels.shape, dtype=np.int32)
labels_val = np.zeros(labels.shape, dtype=np.int32)
labels_test = np.zeros(labels.shape, dtype=np.int32)
labels_train[train_ind] = labels[train_ind]
labels_val[val_ind] = labels[val_ind]
labels_test[test_ind] = labels[test_ind]
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train_mask = sample_mask(train_ind, labels.shape[0])
val_mask = sample_mask(val_ind, labels.shape[0])
test_mask = sample_mask(test_ind, labels.shape[0])
return labels_train, labels_val, labels_test,
train_ind, val_ind,
test_ind, train_mask, val_mask, test_mask

def load_data_basic(num_nodes, num_graphs,
num_classes,dim_feats,dataset_name):

global_nodes_idx = find_insert_position(dataset_name)
adj_matrix = build_adj_diag_basic(num_nodes, num_graphs,
dataset_name)
node_feats = build_feats_basic(num_nodes, num_graphs,
dim_feats, dataset_name)
graph_labels = build_labels_basic(num_graphs, num_classes,
num_nodes,dataset_name)
return adj_matrix, node_feats, graph_labels,
global_nodes_idx

def load_data(num_nodes, num_graphs, num_classes, dim_feats,
dataset_name):

global_nodes_idx = find_insert_position(dataset_name)
adj_matrix = build_adj_diag(num_nodes, num_graphs,
global_nodes_idx,dataset_name)
node_feats = build_feats_vertConc(global_nodes_idx,
num_nodes,num_graphs, dim_feats,
dataset_name)
graph_labels = build_labels_vertConc(num_graphs,
num_classes,num_nodes,global_nodes_idx,
dataset_name)
return adj_matrix, node_feats, graph_labels,
global_nodes_idx

def find_insert_position(dataset_name):
path = dataset_name +"/"+dataset_name.upper()
+"_graph_indicator.txt"
node_ind = np.genfromtxt(path)
fake_idx = np.where(node_ind[:-1] != node_ind[1:])[0]
fake_idx = fake_idx + 1
fake_idx = np.insert(fake_idx, 0, 0)
return fake_idx

def build_labels_basic(graphs, num_classes, num_nodes,
dataset_name ):
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if(os.path.exists(dataset_name +
"_labels_basic.npy")):
labels = np.load(dataset_name +"_labels_basic.npy")
return labels
path=dataset_name +"/"+dataset_name.upper()+
"_graph_labels.txt"
true_labels = np.loadtxt(path
, dtype='i', delimiter=',')
labels = encode_onehot(true_labels)
np.save(dataset_name +"_labels_basic.npy", labels)
return labels

def build_labels_vertConc(graphs, num_classes, num_nodes,
idx, dataset_name ):

if(os.path.exists(dataset_name +"_labels_aug.npy")):
labels = np.load(dataset_name +"_labels_aug.npy")
return labels

path=dataset_name +"/"+dataset_name.upper()+
"_graph_labels.txt"
true_labels = np.loadtxt(path, dtype='i',
delimiter=',')
true_labels = encode_onehot(true_labels)
labels = np.array([[0 for i in range(num_classes)]
for k in range(num_nodes)])
for i in range(graphs):

labels = np.insert(labels, idx[i]+i,
true_labels[i], axis=0)
print("row: ")
print(i)

np.save(dataset_name +"_labels_aug.npy", labels)
return labels

def build_feats_basic(num_nodes, graphs, dim_feats,
dataset_name):

if(os.path.exists(dataset_name+
"_feats_matrix_basic.npz")):

feats_matrix=sp.load_npz(dataset_name+
"_feats_matrix_basic.npz")
return feats_matrix

path=dataset_name +"/"+dataset_name.upper()+
"_node_attributes.txt"
feats_matrix = np.loadtxt(path, delimiter=',')
feats_matrix = sp.csr_matrix(feats_matrix)
sp.save_npz(dataset_name+"_feats_matrix_basic",
feats_matrix)
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return feats_matrix

def build_feats_vertConc(idx, num_nodes, graphs, dim_feats,
dataset_name):

if(os.path.exists(dataset_name
+"_feats_matrix_aug.npz")):

feats_matrix = sp.load_npz(dataset_name+

"_feats_matrix_aug.npz")
return feats_matrix

path=dataset_name +"/"+dataset_name.upper()+
"_node_attributes.txt"
feats_matrix = np.loadtxt(path, delimiter=',')
fake_feats = np.array([[0. for i in range(dim_feats)]
for k in range(graphs)])
print("inserting global node rows:")
for i in range(graphs):

feats_matrix = np.insert(feats_matrix, idx[i]+i,
fake_feats[i],
axis=0)
print("row:")
print(i)

feats_matrix = np.absolute(feats_matrix)
feats_matrix = sp.csr_matrix(feats_matrix)
sp.save_npz(dataset_name+"_feats_matrix_aug",
feats_matrix)
return feats_matrix

def build_feats_vertConc_mean_features(idx,num_nodes,
graphs,dim_feats, dataset_name):

if(os.path.exists(dataset_name+
"_feats_matrix_aug_with_mean.npz")):

feats_matrix = sp.load_npz(dataset_name+
"_feats_matrix_aug_with_mean.npz")
return feats_matrix

path=dataset_name +"/"+dataset_name.upper()+
"_node_attributes.txt"
aug_idx = np.append(idx, int(num_nodes-1))
feats_matrix = np.loadtxt(path, delimiter=',')
fake_feats = np.array([[ np.mean(feats_matrix
[[ range(aug_idx[k],aug_idx[k+1]) ] ,[i] ] )
for i in range(dim_feats)] for k in range(graphs)])
print("inserting global node rows:")
for i in range(graphs):

feats_matrix = np.insert(feats_matrix, idx[i]+i,
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fake_feats[i],
axis=0)
print("row: ")
print(i)

feats_matrix = sp.csr_matrix(feats_matrix)
sp.save_npz(dataset_name+"_feats_matrix_aug_with_mean",
feats_matrix)
return feats_matrix

def build_adj_diag_basic(nodes, graphs, dataset_name):
if(os.path.exists(dataset_name +"_adj_matrix_basic.npz")):

adj_matrix = sp.load_npz(dataset_name+
"_adj_matrix_basic.npz")
return adj_matrix

path=dataset_name +"/"+dataset_name.upper()+"_A.txt"
tmpdata = np.genfromtxt(path, dtype=np.dtype(str))
ind1 = tmpdata[:, 1]
ind2 = tmpdata[:, 0]
adj_matrix = [[0 for i in range(nodes)]
for k in range(nodes)]
for i in range(len(ind1)):

print(i)
u = ind1[i]
v = ind2[i]
u = int(u)
v = int(v[:-1])
adj_matrix[u-1][v-1] = 1

adj_matrix = np.matrix(adj_matrix)
adj_matrix = sp.coo_matrix(adj_matrix)
sp.save_npz(dataset_name + "_adj_matrix_basic", adj_matrix)
return adj_matrix

def build_adj_diag(nodes, graphs, idx, dataset_name):
if(os.path.exists(dataset_name +"_adj_matrix_aug.npz")):

adj_matrix = sp.load_npz(dataset_name+
"_adj_matrix_aug.npz")
return adj_matrix

path=dataset_name +"/"+dataset_name.upper()+"_A.txt"
nodes_tot = nodes+graphs
fake_matrix = np.array([[0 for i in range(nodes)]
for k in range
(graphs)])
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node_ind = np.genfromtxt(dataset_name+"/"
+dataset_name.upper()+
"_graph_indicator.txt")
node_ind = node_ind.tolist()
occ = [len(list(group)) for key, group in groupby(node_ind)]
occ = add_one_by_one(occ)
occ.insert(0, 1)
ranges = list(zip(occ[1:], occ))
upper_idx, lower_idx = map(list, zip(*ranges))

for index in range(graphs):
fake_matrix[index][(lower_idx[index] -1) :
(upper_idx[index]-1)] = 1

print("parsing original adj matrix")
tmpdata = np.genfromtxt(path, dtype=np.dtype(str))
ind1 = tmpdata[:, 1]
ind2 = tmpdata[:, 0]
adj_matrix = [[0 for i in range(nodes)]
for k in range(nodes)]
for i in range(len(ind1)):

u = ind1[i]
v = ind2[i]
u = int(u)
v = int(v[:-1])
adj_matrix[u-1][v-1] = 1

print("inserting global node rows:")
for i in range(graphs):

adj_matrix = np.insert(adj_matrix, idx[i]+i,
fake_matrix[i], axis=0)
print("row: ")
print(i)

lower_idx_new = [0 for i in range(graphs)]
upper_idx_new = [0 for i in range(graphs)]
for i in range(graphs):

lower_idx_new[i] = lower_idx[i]+i
upper_idx_new[i] = upper_idx[i]+i

vert_padding = np.array([[0 for i in range(nodes_tot)]
for k
in range(graphs)])
for i in range(graphs):

vert_padding[i][(lower_idx_new[i]-1):
(upper_idx_new[i]-1)] = 1

print("inserting global node columns:")
for i in range(graphs):

adj_matrix = np.insert(adj_matrix, idx[i]+i,



Appendix 139

vert_padding[i], axis=1)
print("column: ")
print(i)

adj_matrix = np.matrix(adj_matrix)
adj_matrix = sp.coo_matrix(adj_matrix)
sp.save_npz(dataset_name + "_adj_matrix_aug", adj_matrix)
return adj_matrix

neural networks.py: The neural network.py contains code of how the GCN learns
the system call graphs to classify whether the system call graph is malicious or not.

from layers import *
from utils import *
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
class BaseNet(object):

def __init__(self, **kwargs):
self.name = self.__class__.__name__.lower()
self.weights = {}
self.placeholders = {}
self.layers = []
self.activations = []
self.inputs = None
self.outputs = None
self.loss = 0
self.accuracy = 0
self.optimizer = None
self.opt_op = None

def _build(self):
raise NotImplementedError

def build(self):
with tf.variable_scope(self.name):

self._build()
self.activations.append(self.inputs)
for layer in self.layers:

hidden = layer(self.activations[-1])
self.activations.append(hidden)

self.outputs = self.activations[-1]
self.weights = {var.name: var for var in
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope=self.name)}
self._loss()
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self._accuracy()
self.opt_op = self.optimizer.minimize(self.loss)

def predict(self):
pass

def _loss(self):
raise NotImplementedError

def _accuracy(self):
raise NotImplementedError

class GCN(BaseNet):
def __init__(self, placeholders, input_dim, **kwargs):

super(GCN, self).__init__(**kwargs)
self.inputs = placeholders['feats']
self.input_dim = input_dim
self.output_dim = placeholders['labels'].
get_shape().as_list()[1]
self.placeholders = placeholders
self.optimizer = tf.train.AdamOptimizer
(learning_rate=FLAGS.learning_rate)
self.build()

def _loss(self):
# Weight decay loss
for var in self.layers[0].weights.values():

self.loss += FLAGS.weight_decay *
tf.nn.l2_loss(var)

#cross entropy loss
self.loss += masked_cross_entropy
(self.outputs, self.placeholders
['labels'],

self.placeholders['labels_mask'])

def _accuracy(self):
self.accuracy = masked_accuracy(self.outputs,

self.placeholders['labels'],

self.placeholders['labels_mask'])

def _build(self):
self.layers.append(ConvolutionalLayer
(input_dim=self.input_dim,output_dim=FLAGS.hidden1,
placeholders=self.placeholders,
activation=tf.nn.relu,dropout=True,
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sparse_inputs=True,featureless=False))
self.layers.append(ConvolutionalLayer
(input_dim=FLAGS.hidden1,
output_dim=self.output_dim,
placeholders=self.placeholders,
activation=lambda x: x,
dropout=True,
sparse_inputs=False))

def predict(self):
return tf.nn.softmax(self.outputs)

class GCNGraphs(BaseNet):
def __init__(self, placeholders, input_dim, featureless,
idx, num_graphs, num_nodes,
with_pooling, **kwargs):

super(GCNGraphs, self).__init__(**kwargs)
self.pooling = with_pooling
self.num_graphs = num_graphs
self.num_nodes = num_nodes
self.idx = idx
self.inputs = placeholders['feats']
self.input_dim = input_dim
self.output_dim = placeholders['labels'].get_shape().
as_list()[1]
self.placeholders = placeholders
self.featureless = featureless
self.optimizer = tf.train.AdamOptimizer
(learning_rate=FLAGS.learning_rate)
self.build()

def _loss(self):
# Weight decay loss
for var in self.layers[0].weights.values():

self.loss += FLAGS.weight_decay *
tf.nn.l2_loss(var)

#cross entropy loss
self.loss += masked_cross_entropy
(self.outputs,
self.placeholders['labels'],
self.placeholders['labels_mask'])
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def _accuracy(self):
self.accuracy = masked_accuracy(self.outputs,
self.placeholders['labels'],
self.placeholders['labels_mask'])

def _build(self):
self.layers.append(ConvolutionalLayer(input_dim=
self.input_dim,
output_dim=FLAGS.hidden2,
placeholders=self.placeholders,
activation=tf.nn.relu,
dropout=True,
sparse_inputs=True,
featureless = self.featureless))
self.layers.append(ConvolutionalLayer(input_dim=
FLAGS.hidden2,
output_dim=self.output_dim,
placeholders=self.placeholders,
activation=lambda x: x,
dropout=True,
sparse_inputs=False,
featureless = False))
if self.pooling:

self.layers.append(PoolingLayer(num_graphs =
self.num_graphs,
num_nodes = self.num_nodes,
idx=self.idx,
input_dim=self.output_dim,
output_dim=self.output_dim,
placeholders=self.placeholders,
activation=lambda x: x,
sparse_inputs=False,
featureless = False))

def predict(self):
return tf.nn.softmax(self.outputs)

Graph Classification Using GCN.py: The graph classification using GCN.py file
contains the code for specifying the parameters used for learning the graph represen-
tation such as the number of epochs, learning rate, etc. The code of graph classification
using GCN.py is given below.

from __future__ import division
from __future__ import print_function
import time
import tensorflow as tf
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import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from file_utils import *
from utils import *
from neural_networks import GCNGraphs
from neural_networks import GCN
# Set random seed
seed = 123
np.random.seed(seed)
tf.set_random_seed(seed)
def del_all_flags(FLAGS):

flags_dict = FLAGS._flags()
keys_list = [keys for keys in flags_dict]
for keys in keys_list:

FLAGS.__delattr__(keys)

del_all_flags(tf.flags.FLAGS)

# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('dataset', 'MALWARE',
'which dataset to
load')
flags.DEFINE_boolean('with_pooling', True,
'if a mean value for
graph labels is computed via pooling(True)
or via global nodes
(False)')
flags.DEFINE_boolean('featureless', False,
'If nodes are featureless')
#only if with_pooling = False
flags.DEFINE_float('learning_rate', 0.01,
'Initial learning rate.')
flags.DEFINE_integer('epochs', 200,
'Number of epochs to train.')
flags.DEFINE_integer('hidden1', 32, 'Number of units in
hidden layer 1.')
flags.DEFINE_integer('hidden2', 64, 'Number of units in
hidden layer 2.')
flags.DEFINE_integer('hidden3', 16, 'Number of units in
hidden layer 3.')
flags.DEFINE_float('dropout', 0, 'Dropout rate
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(1 - keep probability).')
flags.DEFINE_float('weight_decay', 5e-4,
'Weight for L2 loss on embedding
matrix.')
flags.DEFINE_integer('early_stopping', 10,
'Tolerance for early stopping (# of epochs).')

elif FLAGS.dataset=='MALWARE':
num_nodes = 55406
num_graphs = 2131
tot = 57537
num_classes = 2
num_feats = 5
dataset_name = "malware"
splits = [[0,1400], [1400, 1500], [2000, 2131]]

if not FLAGS.with_pooling:
adj, features, labels, idx = load_data(num_nodes,
num_graphs,
num_classes, num_feats, dataset_name)
y_train, y_val, y_test, idx_train, idx_val, idx_test,
train_mask,
val_mask, test_mask = get_splits_graphs(num_graphs,
labels,
splits[0], splits[1], splits[2], idx)

else:
adj, features, labels, idx = load_data_basic(num_nodes,
num_graphs, num_classes, num_feats, dataset_name)
y_train, y_val, y_test, idx_train,
idx_val, idx_test, train_mask, val_mask, test_mask=
get_splits_graphs_basic(num_graphs,
labels, splits[0], splits[1], splits[2], idx)

support = [preprocess_adj(adj, True, False)]
features = process_features(features)

num_supports = 1

GCN_placeholders = {
'idx' :tf.placeholder(tf.int32),
'support': [tf.sparse_placeholder(tf.float32)
for i in range(num_supports)],
'feats': tf.sparse_placeholder(tf.float32,
shape=tf.constant(features[2],
dtype=tf.int64)),
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'labels': tf.placeholder(tf.float32, shape=(None,
y_train.shape[1])),
'labels_mask': tf.placeholder(tf.int32),
'dropout': tf.placeholder_with_default(0., shape=()),
'num_features_nonzero': tf.placeholder(tf.int32),
# helper variable for sparse dropout

}

if FLAGS.featureless:
if not FLAGS.with_pooling:

input_dim = tot
else:

input_dim = num_nodes
else:

input_dim = features[2][1]

# Create network
featureless = (FLAGS.featureless)
network = GCNGraphs(GCN_placeholders, input_dim,
featureless, idx, num_graphs, num_nodes,
FLAGS.with_pooling)

# Initialize session
sess = tf.Session()
# Init variables
sess.run(tf.global_variables_initializer())
cost_val = []
train_dict = build_dictionary_GCN(features, support,
y_train,
train_mask, GCN_placeholders)
train_dict.update({GCN_placeholders['dropout']:
FLAGS.dropout})
train_loss = [0. for i in range(0, FLAGS.epochs)]
val_loss = [0. for i in range(0, FLAGS.epochs)]

def evaluate(features, support, labels, mask,
placeholders):

t_test = time.time()
feed_dict_val = build_dictionary_GCN
(features, support,
labels, mask, GCN_placeholders)
outs_val = sess.run([network.loss, network.accuracy],
feed_dict=feed_dict_val)
return outs_val[0], outs_val[1], (time.time()
- t_test)
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# Train network
for epoch in range(FLAGS.epochs):

t = time.time()
# Training step
train_out = sess.run([network.opt_op,
network.loss, network.accuracy,
network.outputs],
feed_dict=train_dict)
train_loss[epoch] = train_out[1]

# Validation
t_test = time.time()

cost, acc, duration = evaluate(features,
support, y_val, val_mask, GCN_placeholders)
cost_val.append(cost)
val_loss[epoch] = cost
print("Epoch:", '%04d' % (epoch + 1),
"train_loss=",
"{:.5f}".format(train_out[1]),
"train_acc=", "{:.5f}".format(train_out[2]),
"val_loss=","{:.5f}".format(cost),
"val_acc=", "{:.5f}".format(acc),
"time=", "{:.5f}".format(time.time() - t))

""" if epoch > FLAGS.early_stopping and
cost_val[-1] >
np.mean(cost_val[-(FLAGS.early_stopping+1):-1]):

print("Early stopping...")
break """

#network.save(sess,'mymodel')
print("Optimization Finished!")

test_cost, test_acc, test_duration =
evaluate(features,
support, y_test, test_mask, GCN_placeholders)
print("Test set results:", "cost=", "{:.5f}".
format(test_cost),

"accuracy=",
"{:.5f}".format
(test_acc),
"time=", "{:.5f}".format(test_duration))

epochs = [i for i in range(0, FLAGS.epochs)]
plt.plot(np.array(epochs),
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np.array(train_loss), color='g')
plt.plot(np.array(epochs),
np.array(val_loss), color='orange')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Train and validation(yellow)
loss over epochs with {}
dataset'.format(dataset_name))
plt.show()
probs = model.predict_proba(x_test)
probs = probs[:, 1]
auc = roc_auc_score(y_test, probs)
print('AUC: %.3f' % auc)
fpr, tpr, thresholds = roc_curve(y_test, probs)
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(fpr, tpr, marker='.')
# show the plot
plt.show()

Source Codes of Chapter 7
The python code for graph signal construction is given below. This graph signal con-
struction code receives system call sequences of several applications as input and
gives the graph signal vectors as the output. In this process, the python code first
preprocess the system call sequences by eliminating arguments and irrelevant system
calls. Then, it assigns alternative name to system calls instead of their original name
for convenience. After that, it extracts system call count values and adjacency matrix
from each system call sequence. It then computes the transformed graph signals and
save it in the csv file for machine learning classification.

import csv
import networkx as nx
import math
from sklearn import preprocessing
import numpy
import os, sys
import re
import numpy as np
path = "C:\\Dataset"
myFile1 = open('C:\\GraphSignals\\graphsignals.csv',
'w')
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files=os.listdir(path)
z=[]
z57=[]
for Files in files:

# Reading system call sequence
with open(path+"/"+Files) as f:

for line in f:
z=line.split("(")[0]
z57=z57+z

signals=[z57.count('A'),z57.count('B'),
z57.count('C'),
z57.count('D'),z57.count('E'),z57.count('F'),
z57.count('G'),z57.count('H'),z57.count('I'),
z57.count('J'),z57.count('K'),z57.count('L'),
z57.count('M'),z57.count('N'),z57.count('O'),
z57.count('P'),z57.count('Q'),z57.count('R'),
z57.count('S'),z57.count('T'),z57.count('U'),
z57.count('V'),z57.count('W'),z57.count('X'),
z57.count('Y'),z57.count('Z')]
for i in range(0,26):

if sum(signals)!=0:
signals.append(signals[i]/sum(signals))

else:
signals.append(signals[i]/1)

#Create adjacency matrix
def rank(c):

return ord(c) - ord('A')
T = [rank(c) for c in z9]
M = [[0]*26 for _ in range(26)]
for (i,j) in zip(T,T[1:]):

M[i][j] += 1
for row in M:

n = sum(row)
if n > 0:

row[:] = [f/sum(row) for f in row]
#Transformed Graph Signals construction from
adjacency matrix

transformed_signals=np.zeros(26)
for i in range(0,26):

for j in range(0,26):
transformed_signals[i]=p[i]+(M[i][j]*z12345[j])

# Logging graph signals as csv files
myFile1.write("\n")
myFile1.write(str(transformed_signals))
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The python codes for the classifiers are given below. The file graphsignals.csv is
split in the ratio 9:1 for training and testing. That is 90% of samples are used for train-
ing and the remaining 10% samples are used for testing. These training and test data
sets are given as inputs to various ML algorithms for determining their performance.
Here, label_pred is the output (predicted class) of the ML classifier.

from sklearn import svm
import pandas as pd
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
data=pd.read_csv('graphsignals.csv')
graphsignals.target=data.labels
graphsignals.data=data.drop('target',axis=1)
# 90% training and 30% test
Data_train, Data_test, label_train, label_test =
train_test_split(graphsignals.data,
graphsignals.target, test_size=0.1,random_state=109)
#SVM Classifier
svmcl = svm.SVC(kernel='linear')
svmcl.fit(Data_train, label_train)
label_pred = clf.predict(Data_test)
#Naive bayes Classifier
NBC = GaussianNB()
NBC.fit(Data_train, label_train)
label_pred = classifier.predict(Data_test)
#Decision Tree Classifier
DT=DecisionTreeClassifier()
DT.fit(Data_train,label_train)
label_pred = DT.predict(Data_test)
#Random Forest Classifier
RFC = RandomForestRegressor(n_estimators = 1000,
random_state = 42)
RFC.fit(Data_train, label_train)
label_pred=rf.predict(Data_test)
#ANN Classifier
clf = MLPClassifier(solver='lbfgs',
alpha=1e-5,hidden_layer_sizes=(5, 2), random_state=1)
clf.fit(Data_train, label_train)
label_pred=clf.predict(Data_test)
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Source Codes of Chapter 8
The python code for extracting the system call pattern of an application is given below.

import numpy
import os, sys
import re
from numpy.linalg import matrix_power
from numpy.linalg import matrix_rank
import numpy as np
path = "C:\\Dataset"
files=os.listdir(path)
z=[]
z57=[]
for Files in files:

# Reading system call sequence
with open(path+"/"+Files) as f:

for line in f:
a=line.split("(")[0]
z57=z57+a

#Create adjacency matrix
def rank(c):

return ord(c) - ord('A')
T = [rank(c) for c in z57]
M = [[0]*26 for _ in range(26)]
for (i,j) in zip(T,T[1:]):

M[i][j] += 1
for row in M:

n = sum(row)
if n > 0:

row[:] = [f/sum(row) for f in row]
res = re.findall(r'\z.*?\z', z57)
j=1
mat=M
while mat_rank(mat)==1:

mat=matrix_power(M,j)
j=j+1

dist=Mat[1,]
# Entropy Calculation
entr=0
for i in range(0,26):

for j in range(0,26):
entr=entr+dist[i]*M[i,j]*math.log(M[i,j],
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10)
# Subsequence Probability Calculation
for i in range(0,len(res)):

distance[i]=1
for j in range(0,len(res[i])):

distance[i]=distance[i]*z57.count
(res[i][j])
/len(z57)

distance[i]=-1/26*math.log(distance[i])
# LTP Extraction
minvalue=1
for i in range(0,len(res)):

minp[i]=abs(distance[i]-entr)
if minp[i]<minvalue:

LTP=minp[i]

The python code for the Jaro-winkler similarity matching for the system call pat-
terns is given below.

import numpy
import os, sys
import re
import numpy as np
from pyjarowinkler import distance
path = "C:\\Dataset"
files=os.listdir(path)
z=[]
z57=[]
i=1
malware=false
# Reading the LTPs
with open("C:\\pattern.txt") as p:

for line in p:
pattern[i]=line
i=i+1

for Files in files:
# Reading system call sequence
with open(path+"/"+Files) as f:

for line in f:
z=line.split("(")[0]
z57=z57+z

res = re.findall(r'\z.*?\z', z57)
# Pattern matching using Jaro-Winkler similarity
metric
for i in range(0,len(pattern)):

for j in range(0,len(res)):
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if distance.get_jaro_distance
(pattern[i], res[j],
winkler=True, scaling=0.1)>0.85 :

print ("Malware Application")
malware=true
break

if malware:
break
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