

HACKING

Rooting	&	Jailbreaking

by
ALEX	WAGNER

Copyright
All	rights	reserved.	No	part	of	this	book	may	be	reproduced	in	any	form	or	by	any	electronic,	print	or

mechanical	means,	including	information	storage	and	retrieval	systems,	without	permission	in	writing	from
the	publisher.

Copyright	©	2020	Alex	Wagner
Disclaimer

This	Book	is	produced	with	the	goal	of	providing	information	that	is	as	accurate
and	reliable	as	possible.	Regardless,	purchasing	this	Book	can	be	seen	as	consent
to	 the	 fact	 that	 both	 the	 publisher	 and	 the	 author	 of	 this	 book	 are	 in	 no	 way
experts	 on	 the	 topics	 discussed	 within	 and	 that	 any	 recommendations	 or
suggestions	that	are	made	herein	are	for	entertainment	purposes	only.
Professionals	should	be	consulted	as	needed	before	undertaking	any	of	the	action
endorsed	herein.
Under	 no	 circumstances	will	 any	 legal	 responsibility	 or	 blame	be	 held	 against

the	 publisher	 for	 any	 reparation,	 damages,	 or	 monetary	 loss	 due	 to	 the
information	herein,	either	directly	or	indirectly.
This	declaration	is	deemed	fair	and	valid	by	both	the	American	Bar	Association
and	the	Committee	of	Publishers	Association	and	is	 legally	binding	throughout
the	United	States.
The	information	in	the	following	pages	is	broadly	considered	to	be	a	truthful	and
accurate	 account	 of	 facts,	 and	 as	 such	 any	 inattention,	 use	 or	 misuse	 of	 the
information	 in	 question	 by	 the	 reader	 will	 render	 any	 resulting	 actions	 solely
under	their	purview.	There	are	no	scenarios	in	which	the	publisher	or	the	original
author	 of	 this	 work	 can	 be	 in	 any	 fashion	 deemed	 liable	 for	 any	 hardship	 or
damages	that	may	befall	the	reader	or	anyone	else	after	undertaking	information
described	herein.
Additionally,	 the	 information	 in	 the	 following	 pages	 is	 intended	 only	 for
informational	purposes	and	should	thus	be	thought	of	as	universal.	As	befitting
its	 nature,	 it	 is	 presented	without	 assurance	 regarding	 its	 continued	 validity	 or
interim	quality.	Trademarks	that	are	mentioned	are	done	without	written	consent
and	can	in	no	way	be	considered	an	endorsement	from	the	trademark	holder.

Introduction

To	begin	with,	I	would	like	to	give	a	few	major	points	on	what	this	book	is	will
cover.	The	tools	that	I	will	describe	in	this	book	are	available	for	both	white	hat
and	black	hat	hacking.	Once	applied	the	outcome	will	be	the	same	in	both	cases.
Nevertheless,	it	can	lead	to	a	terrible	situation	for	the	person	using	such	hacking
tools	 in	 any	 unauthorized	 manner,	 which	 might	 cause	 system	 damage	 or	 any
system	outage.
If	 you	 attempt	 to	 use	 any	 of	 this	 tools	 on	 a	 network	 without	 being
authorized	 and	 you	 disturb	 or	 damage	 any	 systems,	 that	 would	 be
considered	 illegal	 black	 hat	 hacking.	 So,	 I	 would	 like	 to	 encourage	 all
readers	 to	 deploy	 any	 tool	 described	 in	 this	 book	 for	WHITE	HAT	USE
ONLY	.
Anything	legally	authorized	to	help	people	or	companies	 to	find	vulnerabilities
and	identify	potential	risks	is	fine.	All	 tools	I	will	describe,	you	should	use	for
improving	security	posture	only.	I	should	sound	a	warning	here.	If	you	are	eager
to	learn	about	hacking	and	penetration	testing,	it's	recommended	to	build	a	home
lab	 and	 practice	 using	 these	 tools	 in	 an	 isolated	 network	 that	 you	 have	 full
control	 over,	 and	 it's	 not	 connected	 to	 any	 production	 environment	 or	 the
internet.

If	you	use	these	tools	for	black	hat	purposes	and	you	get	caught,	 it	will	be
entirely	on	you,	and	you	will	have	no	one	to	blame.	So,	again	I	would	highly
recommend	 you	 stay	 behind	 the	 lines,	 and	 anything	 you	 do	 should	 be
completely	legit	and	fully	authorized.
Lastly,	 if	 you	are	not	 sure	 about	 anything	 that	you	are	doing	and	don't	 have	a
clue	on	the	outcome,	ask	your	manager	or	DO	NOT	DO	IT	.
This	book	is	for	education	purposes.	It	is	for	those	who	are	interested	in	learning
and	knowing	what	is	really	behind	the	curtains	and	would	like	to	become	an	IT
professional	or	white	hat	hackers.
In	addition	to	legal	issues,	before	using	any	of	the	tools,	it	is	recommended	that
you	have	the	fundamental	knowledge	of	networking	concepts.

Intended	Audience

This	 book	 is	 designed	 for	 anyone	 who	 wishes	 to	 become	 an	 IT	 Professional,
specifically	 in	 the	 field	 of	 Ethical	 Hacking.	 This	 book	 is	 written	 in	 everyday

English;	therefore,	no	technical	background	is	necessary.
If	 you	 are	 a	 complete	 beginner	 to	 Informational	 Technology	 or	 Information
Security	 in	 the	realm	of	Ethical	Hacking,	 the	contents	 in	 this	book	will	deliver
all	 the	 answers	 you	 have	 in	mind	 on	 topics	 revolving	 around	 hacking	mobile
devices.
Considering	 that	 you	 are	 preparing	 to	 become	 an	 Ethical	 Hacker,	 IT	 Security
Analyst,	 IT	Security	Engineer,	 or	 a	Cybersecurity	 Specialist,	 yet	 still	 in	 doubt
and	 want	 to	 know	 about	 mobile	 devices,	 you	 will	 find	 this	 book	 extremely
useful.
Not	 only	 you	 will	 learn	 key	 concepts	 and	 methodologies	 revolving	 around
Hacking	 mobile	 devices,	 but	 you	 will	 also	 learn	 what	 key	 Technologies	 you
should	 be	 aware	 of.	 If	 you	 are	 genuinely	 interested	 in	 becoming	 an	 Ethical
Hacker,	this	book	is	for	you.

Assuming	 that	 you	 are	 preparing	 to	 become	 an	 Information	 Security
Professional,	 this	 book	will	 undoubtedly	 provide	 great	 details	 that	will	 benefit
you	as	you	enter	 this	 industry.	The	contents	of	 this	book	are	 revolving	around
many	 topics,	 such	as	 security	mindset,	daily	 security	 tasks	and	activities.	Still,
the	main	focus	of	this	book	is	to	help	you	understand	how	mobile	devices	work,
how	 they	 can	 be	 exposed,	 and	what	 security	measurements	 you	 can	 deploy	 to
prevent	them.	
If	you	are	planning	to	become	a	Developer	or	Programmer,	this	book	will	help
you	to	understand	the	Security	aspects	of	applications	security,	but	this	is	not	a
technical	book	on	coding.
The	content	of	 this	book	will	be	an	excellent	material	 for	anyone	 interested	 in
Ethical	Hacking	or	Cybersecurity.	Let’s	get	cracking!

Introduction	to	Mobile	Attack	Vectors

Welcome	to	my	new	Ethical	Hacking	Book	on	Hacking	Mobile	Devices.	We're
going	to	be	focusing	on	the	mobile	device	attack	vector.	Mobile	devices	are	tiny,
yet	smartphones	are	more	powerful	than	many	computer	systems,	and	the	rate	at
which	mobile	devices	are	coming	out	and	applications	that	are	being	supported
on	these	devices	is	mind	overwhelming.
Hence	 I'm	 going	 to	 take	 you	 through	 several	 different	 aspects	 of	 the	 mobile
platform	and	how	we	can	hack	them,	or	looking	at	it	from	a	hacker's	perspective.
We'll	take	a	look	at	the	effect	that	these	mobile	devices	have	on	us	in	the	aspect
of	 the	 attack	 vector,	meaning	 how	many	different	ways	 an	 attacker	 can	 get	 to
them.
We'll	then	break	it	down	into	a	platform-based	environment	where	we'll	look	at
hacking	Android	devices.	Then	we'll	look	at	hacking	iOS	platforms.

Then	we'll	take	a	look	at	hacking	other	mobile	platforms	too,	but	this	book	will
focus	mainly	 on	 the	 two	 dominant	 platforms	 that	 compete	 against	 each	 other,
which	is	Android	and	IOS.
Afterward,	 we'll	 take	 a	 look	 at	 how	 we	 can	 manage	 these	 environments	 and
what's	the	best	way	that	we	can	maintain	the	environment	because	this	is	going
to	open	up	a	whole	new	attack	surface	for	us.
We'll	 look	at	MDMs	aka	Mobile	Device	Management	systems.	We'll	highlight
some	of	 the	 aspects	 that	MDMs	need	 to	make	 sure	 that	 they	cover.	We'll	 also
take	 a	 look	 at	 guidelines	 and	 tools	 that	 we'll	 use	 to	 help	 secure	 down	 this
environment.
We'll	 then	 take	 a	 look	 at	 malware	 at	 the	 mobile	 level	 as	 well	 as	 mobile
payments.	We're	also	going	to	look	at	the	different	avenues	as	far	as	the	vector	is
concerned,	 including	 how	 bad	 is	 our	 current	 environment	 in	 terms	 of	 mobile
device	 security.	And	 lastly,	we'll	 also	 take	a	 look	at	 terms	 that	you	 should	get
used	to	and	add	to	your	vocabulary.

The	fact	 that	mobile	devices	are	moving,	as	far	as	cells	and	implementation,	 is
moving	faster	than	anything	we've	ever	seen	in	technology.	Currently,	there	are
over	 5	 billion	 mobile	 devices	 in	 the	 world.	 That's	 enough	 devices	 for	 every
person	living	on	this	planet.
According	 to	 statistics,	 by	 2023,	 mobile	 owners	 will	 increase	 to	 7.33	 billion.
Google	 also	 announced	 that	 more	 Google	 searches	 are	 done	 via	 mobile

platforms	than	desktop	platforms,	which	proves	the	point	that	we're	making	that
transition	 into	 the	 mobile	 environment	 and	 moving	 further	 away	 from	 the
traditional	desktop	and	laptop.
Hence	it's	worse	than	you	can	imagine	as	far	as	the	security	is	concerned	when	it
comes	 to	mobile	platforms.	According	 to	Kensington	 Infographic,	 there	 is	one
laptop	 stolen	 every	 53	 seconds,	while	 over	 70	million	mobile	 devices	 are	 lost
each	year,	and	only	about	7	percent	of	them	are	recovered.
The	 other	 issue	 is	 that	 when	 we	 talk	 to	 IT	 people,	 they	 admit	 that	 it's	 their
number	one	weakness	because	they	don't	know	how	to	secure	mobile	devices.
There	are	so	many	different	platforms	to	cover.	Besides	Android	and	Apple,	you
also	 have	 Blackberry,	 Microsoft,	 and	 everybody	 wants	 to	 use	 something
different.	Of	 those	devices	 that	are	deployed,	stats	are	showing	us	 that	25%	of
the	mobile	devices	are	receiving	security	threats	every	day.

This	 is	 the	 new	platform	 that	 attackers	 are	 going	 after.	As	mobile	 devices	 get
more	and	more	popular,	as	far	as	malware	is	concerned	and	its	threat,	there	will
be	a	continuous	increase	in	terms	of	risks.
You	 can	 understand	 why,	 when	 you	 start	 thinking	 about	 from	 a	 hacker
perspective.	The	attacker	will	think	like	this;	“Let's	see,	I	want	to	create	a	piece
of	malware.”	“Do	I	want	to	do	it	for	Windows	7,	Windows	10,	Android	or	IOS?”
“Where	are	my	numbers?”
Here's	 something	 else	 that	 might	 be	 interesting	 to	 you.	 Of	 the	 Trojans	 and
malware	 that	 are	out	 there,	we	have	 seen	an	 increase	of	17	 times.	To	add	 that
number	in	the	mix	of	the	continuously	increasing	malware,	a	majority	of	it	is	in
banking	trojans	and	malware.
In	the	meanwhile	what	we	do	with	our	phones?	Well,	we	are	doing	banking	and
accounting.	As	 far	 as	 the	 increase	 in	vulnerabilities	 is	 concerned,	 according	 to
AV.test.org,	there	was	3.14	million	Android	malware	development	and	close	to
60K	IOS	malware	development.
As	you	see,	Android	is	not	alone	in	this	game,	simply	because	IOS	is	extremely
popular	 with	 end-users.	 Most	 end-users	 don't	 understand	 security.	 78%	 of	 all
apps	 fail	 primary	 security	 threats	 and	 the	 stats	 show	 us	 that	 59%	 of	 the	 IT
admins	have	no	idea	what	to	do	as	far	as	detecting	mobile	threats	and	how	to	fix
them.
Because	of	BYOD,	aka	“bring	your	device”,	in	the	average	enterprise.	Currently,
there	are	over	1000	malicious	apps	are	installed	on	employee	devices.	When	you

get	down	to	it,	think	about	what	we	do	on	these	devices.
Back	in	the	days,	we	only	used	to	talk.	Now	we	do	all	kinds	of	things.	We'd	send
text	messages;	we	post	photos,	we	do	our	banking,	we	do	email,	 travel,	music
and	so	on.
A	single	device	allows	us	to	do	all	these	different	things,	while	previously	we
had	to	have	a	separate	device	to	do	separate	items,	such	as	a	typewriter	for
documents,	or	a	physical	map	to	figure	out	how	to	get	from	one	place	to	another,
or	Discman	for	our	music	and	so	on.		Either	way,	let’s	move	on	and	look	at	some
terminologies	that	you	should	be	aware	of.

Table	of	Contents

Chapter	1	Common	mobile	platform	terminologies														
Chapter	2	Attack	Vectors	&	Countermeasures														
Chapter	3	Introduction	to	NFC	Tags														
Chapter	4	How	to	Install	Android	in	Hyper-V														
Chapter	5	Android	Architecture														
Chapter	6	Android	Hardware	Function	Basics														
Chapter	7	Android	Root	Level	Access														
Chapter	8	Rooting	Android														
Chapter	9	The	danger	of	Free	Apps														
Chapter	10	Android	Attack	Types														
Chapter	11	Securing	Android	Devices														
Chapter	12	IOS	Architecture	Basics														
Chapter	13	IOS	Hardware	Security														
Chapter	14	IOS	App	Security														
Chapter	15	IOS	Jailbreak	Types														
Chapter	16	IOS	Jailbreaking														
Chapter	17	Securing	IOS	Devices														
Chapter	18	Windows	Phone	Architecture														
Chapter	19	BlackBerry	Architecture														
Chapter	20	Mobile	Device	Management														
Chapter	21	Security	Recommendations														
Chapter	22	Spiceworks	&	Solarwinds														
Chapter	23	Malware	&	Spyware	on	IOS														
Chapter	24	Malware	&	Spyware	on	Android														
Chapter	25	Android	Pay	&	Apple	Pay														
Conclusion														
About	the	Author														

Chapter	1	Common	mobile	platform	terminologies

To	discuss	some	of	the	most	common	terminologies	that	you	should	know	when
it	 comes	 to	 the	 mobile	 platform.	 It	 can	 be	 overwhelming	 to	 think	 about	 how
many	devices	are	out	there	and	how	we're	going	to	control	them.	The	answer	to
that	question	is	that	we're	going	to	do	this	the	same	way	we	do	it	with	desktops.
We	 have	 a	 little	 bit	 of	 a	 learning	 curve	 here.	 Part	 of	 that	 learning	 curve	 is	 to
understand	specific	terminologies.	First	of	all,	let's	look	at	what's	important	and
to	whom.	Several	different	stakeholders	are	involved	with	mobile	platforms,	and
certain	 items	 are	 essential	 to	 each	 stakeholder	 that	 may	 be	 a	 threat	 to	 other
stakeholders.
For	example,	one	of	the	stakeholders	will	be	the	mobile	network	operators,	and
these	are	 the	people	 that	are	 in	charge	of	selling	 the	device	and	supporting	 the
services	for	specific	devices.

What's	important	to	them	is	to	support	the	users	and	giving	them	an	environment
that	 is	 easy	 to	use.	The	 issue	here	 is	 that	while	 the	 technology	 triangle,	 as	we
move	towards	ease-of-use,	we	lose	functionality	and	security.
Another	stakeholder	would	be	the	Original	Equipment	Manufacturer	aka	OEM,
the	people	who	create	 the	devices.	What’s	 important	 to	 them	 is	 that	 they	want
their	devices	to	be	the	best,	latest	and	greatest,	and	there	are	sometimes	assets,	as
we	 like	 to	 classify	 them	 the	 OEMs	 want	 to	 implement	 but	 the	 carriers	 won't
allow	it.
There	are	many	examples	of	 theses	where	certain	Internet	Service	Providers	or
ISP-s	are	going	to	start	allowing	phone	service	over	Wi-Fi	also	known	as	voice
over	 Wifi.	 Therefore,	 that	 could	 cause	 a	 conflict	 between	 the	 OEM	 and	 the
carriers.
Another	stakeholder	would	be	the	app	stores,	such	as	Google,	Amazon,	Apple,
and	 Microsoft	 marketplace.	 Being	 a	 stakeholder,	 	 they	 want	 their	 apps
generating	revenues	for	their	environment,	but	by	default,	for	example,	Amazon
apps	can't	be	installed	on	an	Android	device	because	Google	blocks	that.
Since	Google	 is	 the	Android	OEM	in	most	cases,	we	have	to	 try	 to	bypass	 the
securities	 that	we	 can	 implement	 or	 install	 our	Amazon	 apps.	Another	 known
example	is	Apple	because	their	applications	are	entirely	locked	down.
Indeed	there	are	many	great	features	that	each	of	these	App	stores	provides,	but
there	are	also	some	limitations	of	creating	a	closed	environment.	The	other	issue

that	you	have	is	making	sure	that	you	get	your	applications	from	legitimate	app
stores.
There	are	all	kinds	of	app	stores	out	there.	In	some	cases,	the	OS	manufacturer
might	look	at	applications	as	a	threat.	We	also	have	corporate	IT	environments
or	the	IT	guys	that	are	in	charge	of	these	mobile	devices,	and	to	them,	everything
is	a	threat.
Technically,	 another	 stakeholder	 is	 an	 end-user.	 To	 an	 end-user,	 the	 threat	 to
them	could	be	that	the	OS	violates	their	privacy	by	capturing	data.	Often	people
think	 that	 Android	 is	 an	 OS	 that's	 there	 to	 gather	 statistics	 and	 market	 to
individuals.
End-users	are	 threats	 to	 the	operating	system	and	 the	manufacturers	because	 if
somebody	 tries	 to	 jailbreak	or	 root	 the	phone,	 it's	going	 to	bypass	some	of	 the
security	mechanisms	that	they	put	in	place.

This	 is	an	 issue	because	we've	many	people	 involved.	Each	has	different	goals
set	up,	therefore	that	it	makes	it	hard	for	us	to	ensure	that	these	environments	are
secured.
The	 first	 terminology	 I	want	 to	discuss	 is	 called	ROM.	A	ROM	 is	 a	modified
version	of	an	Android	operating	system.	All	our	Android	devices	come	with	a
default	 ROM	 by	 the	manufacturer,	 but	 we	 can	modify	 these.	 Another	 term	 is
AOSP,	aka	Android	Open	Source	Project.
This	is	the	Android	operating	system	completely	stripped	down,	and	it's	given	to
developers	 and	 manufacturers,	 so	 they	 can	 customize	 it	 to	 create	 their	 own
ROM.
Next,	there	is	a	firmware.	Firmware	is	like	a	driver,	which	is	a	piece	of	software
that	 makes	 the	 hardware	 function	 correctly	 with	 the	 OS.	 Sometimes,	 we	 also
refer	 to	 this	 as	 a	 radio	 firmware.	We	 also	 have	 something	 called	 open	 source.
This	isn't	to	be	confused	with	free.	Open	source	is	a	piece	of	software	that's	free
to	edit	and	 to	be	used	or	distributed	and	shared	at	no	charge.	The	next	 term	 is
called	bloatware.
This	is	software	or	applications	that	are	installed	on	the	mobile	devices	that	you
don't	 necessarily	 need,	 that	 the	 manufacturer	 and	 the	 OEM	 have	 agreed	 with
these	pieces	of	software,	they're	making	a	little	bit	of	money	in	the	backside	for	a
reactivation,	for	example,	Dropbox.	I	mention	Dropbox	because	they	pay	to	get
their	app	installed	automatically	on	your	Android	device.
Because	these	are	preinstalled,	it	means	that	you	can't	remove	them	unless	we	do

something	tricky,	which	we'll	discuss	shortly,	but	to	give	you	a	hint,	it’s	called
rooting.
The	 next	 term	 is	 called	 APK,	 aka	 Android	 Package	 or	 	 Android	 Application
Package,	which	is	the	file	extension	for	applications	in	the	Android	environment.
For	example,	Dropbox	would	have	a	file	called	“Dropbox.apk.”
Frequently,	we	download	files	or	apps	from	a	store,	and	 it	gets	downloaded	or
installed.	 But	 we	 also	 have	 something	 called	 “sideloading”	 that	 we'll	 further
discuss	 later	on,	where	you	execute	 the	APK	off	 the	side	or	outside	of	 the	app
stores.	That	could	be	dangerous,	but	we	will	look	at	in	more	detail	shortly.
Another	term	is	what	we	refer	to	as	a	“stock	ROM”.	Stock	ROM	is	the	ROM
that	comes	stocked	with	the	device.	There	is	also	something	called
“CyanogenMod”,	which	is	one	of	the	more	popular	ROMs	that	are	out	there.

It	 is	 a	 free,	 open-source	 project.	 It's	 based	 on	 the	 AOSP,	 and	 it's	 extremely
popular	with	 the	Android	 people	 just	 because	 of	 how	 stripped-down	 it	 is	 and
how	customizable	it	is.
We	 also	 have	 Odex.	 Odex-es	 are	 files	 that	 are	 a	 collection	 of	 parts	 from
applications	that	are	optimized	before	booting.	This	speeds	up	the	boot	process
as	it	preloads	part	of	the	applications	into	the	memory.
We	also	have	OTA,	short	for	Over	The	Air,	that	functions	as	we	get	our	updates
OTA.	We	also	have	modes.	We	have	both;	recovery	mode	and	download	mode.
Recovery	mode	 is	 similar	 to	 booting	 up	 a	Windows	 box	 in	 safe	mode,	where
you're	going	to	get	an	OS	that	allows	you	to	reimage	the	phone.
Download	modes	allow	you	to	push	a	new	image	or	new	software	to	the	phone
before	it's	booted	up.	It's	essential	to	understand	what	these	two	modes	are	from
a	 security	 perspective.	 Lastly,	 there	 is	 another	 term	 called	 “bricking”,	 which
means	 that	 you	 completely	messed	 up	 your	 phone	 to	 the	 point	 that	 it's	 now	 a
“brick”.
The	 term	I	want	 to	discuss	 is	called	 jailbreak,	which	 is	 in	 the	 iOS	world	only.
Jailbreak	is	the	process	of	removing	software	restrictions	that	Apple	has	imposed
on	a	device,	and	we	do	it	through	software	exploits.	You	can	jailbreak	an	iPad,
an	iPhone,	an	iTouch,	or	even	second-generation	Apple	TVs.
What	we're	doing	here	 is	permitting	root	access	 to	 the	 iOS	file	system	and	 the
manager,	which	allows	us	to	download	additional	applications	and	extensions,	as
well	as	themes	that	are	not	available	through	the	standard	Apple	Store.
We	 also	 have	 a	 term	 called	 unlocking.	 Unlocking	 is	 not	 the	 same	 thing	 as

jailbreaking.	There's	a	 lot	of	misconceptions	between	the	 two,	but	unlocking	is
allowing	you	to	get	the	phone	to	work	on	a	different	carrier.
This	 is	 not	 a	 big	 issue	 as	 it	 used	 to	 be,	 because	 the	 courts	 have	 ruled	 that
unlocking	 your	 phone	 is	 not	 illegal,	 so	 you	 can	 technically	 call	 upon	 your
providers	 and	 say	 that	 you	 are	moving	 over	 to	 another	 carrier.	 Therefore	 you
need	 to	unlock	your	phone,	 and	 they'll	 open	 it	 for	you.	Sometimes	 they	might
charge	for	it.
The	next	term	called	kernel,	which	we	can	use	with	almost	any	platform	because
it	means	 the	same	thing.	 It's	 the	computer	program	that	manages	 the	 input	and
output	 requests	 from	 software	 and	 translates	 them	 into	 or	 refers	 to	 data
processing	 instructions	 for	 the	 CPU	 and	 other	 components	 of	 the	 system	 to
interpret.
The	 kernel	 is	 a	 computer	 program	 that	manages	 the	 input	 and	 output	 requests
from	software,	and	then	it	translates	them	into	instructions	for	the	CPU	and	other
components	of	the	device.

When	it	comes	to	dealing	with	 the	Apple	platform,	 it's	 important	 to	note	 that	I
mentioned	 jailbreaking	 before	 and	what	 it	 does,	 but	 it's	 not	 the	 same	 thing	 as
rooting.
Rooting	is	giving	me	access	at	the	root	level,	where	jailbreaking	is,	well,	 if	we
want	to	put	it	in	hacking	terms,	it's	a	form	of	privilege	escalation.
There	 are	more	 terms	 that	we	 could	 go	 through	on	 either	 type	 of	 platform,	 as
well	 as	 I	 didn't	 get	 into	Blackberry	or	 the	Microsoft	 platform,	but	 I	wanted	 to
make	sure	that	you	have	a	good	understanding	of	some	of	the	terms	that	you're
going	to	hear	in	real	life	or	presented	through	this	book.

Chapter	2	Attack	Vectors	&	Countermeasures

There	are	more	vulnerabilities	or	attack	vectors	associated	with	mobile	devices
than	there	are	with	our	standard	desktop	environments.	Some	of	the	same	attack
vectors	that	we	do	experience	in	the	desktop	platform,	we	also	see	in	the	mobile
environment.	For	example,	malware	gets	in	everywhere	on	mobile	devices,	and
operating	system	modifications	can	cause	it.
It	can	also	be	caused	for	application	or	app	modifications,	and	we'll	 talk	about
this	 a	 little	 bit	 later	 on,	 but	 it's	 imperative	 to	 know	where	 you're	 getting	 your
apps	from	because	guess	what!?
As	an	attacker,	you	can	take	a	 	popular	application	and	add	your	malware	to	it
and	try	to	distribute	it.	There	are	viruses,	worms,	rootkits	and	those	same	type	of
malware	 issues	 that	 happen	 on	 a	 desktop	 environment	 can	 happen	 on	 mobile
device	environment	as	well.

The	other	issue	that	we	have	as	far	as	another	vector	is	concerned	is	going	to	be
the	data	storage.	That	could	mean	internal	storage	or	even	your	e-mails.	E-mails
are	 where	 we	 see	 a	 lot	 of	 security	 breaches	 taking	 place	 where	 people	 are
emailing	via	their	mobile	devices'	sensitive	company	data.
Another	 thing	 that	 we	 need	 to	 think	 about	 when	 it	 comes	 to	 data	 storage	 is
copying	 information.	Maybe	 you	 get	 it	 via	 an	 email,	 and	 you	 save	 it	 since	 it
comes	as	an	attachment	to	your	local	SD	card,	and	then	you	forward	it	 to	your
Dropbox.	Therefore	copying	data	back	and	forth	is	an	issue.
When	it	comes	to	data	storage,	something	else	that	you	may	want	to	take	a	look
at,	and	that	is	encrypting	the	data	storage,	so	if	somebody	pulls	the	SD	card,	or	if
they	 get	 a	 hold	 of	 your	 device,	 most	 of	 the	 devices	 when	 you	 implement
encryption,	you	have	to	type	in	a	PIN	when	you	turn	the	phone	on.
That's	 from	 a	 cold	 boot,	 not	 from	 a	 warm	 boot.	 Another	 attack	 vector	 is	 via
social	 engineering.	 This	 is	 	 getting	 people	 to	 do	 things	 outside	 of	 their	 norm.
Social	engineering	it's	a	non-technical	skill	set,	or	method	of	getting	humans	to
do	things	that	they	normally	wouldn't	do.

We	can	use	technology	to	do	socially	engineering	for	us	too.	In	either	case,	there
is	manipulation	that's	involved,	not	at	the	device	level,	but	the	human	aspect.
Most	 social	 engineering	 is	 going	 to	 be	 done	 through	 either	 email	 or	 text
messages	 or	 even	multimedia	messages;	 at	 least	 from	 the	mobile	 perspective,
that's	what	we're	seeing.

If	you	want	to	learn	more	about	social	engineering,	I	suggest	you	take	a	look	at
my	 other	 book	 called	 Hacking:	 Social	 Engineering	 Attacks,	 Techniques	 &
Prevention,	so	that	you	can	master	this	potent	technique.
As	far	as	social	engineering	being	done	through	social	networks,	when	you	think
about	 it,	 there	 are	 advertisements,	which	 are	 a	way	 of	 social	 engineering	 or	 a
way	of	implementing	social	engineering	to	get	you	to	click	on	a	specific	link	or
to	like	something.
Better	 yet,	 if	 you	 can	 hijack	 someone's	 Facebook	 page,	 you	 can	 post	 to	 their
friends,	and	get	 their	attention	to	click	on	a	specific	link,	and	they	click	on	the
link,	you	infect	them	all	at	once.	We're	also	seeing	it	being	done	via	video	chat.
One	of	the	things	that	we	see	as	far	as	a	considerable	increase	in	attack	vectors	is
concerned,	 is	 within	 the	 SMS	 environment,	 called	 SMS	 phishing.	 The	 reason
why	 we	 see	 this	 significant	 increase	 is	 because	 there	 are	 so	 many	 different
opportunities,	and	even	more	different	types	of	phishes	out	there.

People	who	don't	know	how	devices	are	designed	 to	work,	 they	can	become	a
victim	 very	 quickly.	 There	 are	many	 examples	 where	 the	 TXT	 looks	 like	 it's
coming	from	a	particular	bank,	or	it	comes	from	a	bank	that	you	don't	have	an
account	with,	but	they	include	links.
Those	 links	 could	 be	 very	 easily	 a	 link	 to	 a	 phone	 number	 to	 dial	 a	 different
number	than	what's	being	displayed,	and	once	you	click	on	it,	they	route	you	to	a
different	phone	number.
They're	getting	so	sophisticated	that	even	some	of	 the	 links	 that	you	may	click
on	might	 take	you	 to	a	website	 that	 looks	 identical	because	 if	you	 think	about
what	 a	 website	 is	 or	 how	 it's	 created,	 it's	 just	 files	 and	 images	 publically
available,	therefore	anyone	can	duplicate	it.
That	 site	 can	 be	 spoofed,	 or	 set	 up	 as	 a	 phished	 site,	 and	 you	 can	 get	 there
because	you	got	a	text	message	from	a	bank	saying	that	your	account	was	locked
out.
There	are	countermeasures	or	common	sense	guidelines,	and	the	first	would	be
that	DO	NOT	CLICK	on	 any	 links	 in	 an	 SMS	or	 text	messages,	 even	 if	 they
come	from	somebody	you	know.
For	 all	we	know,	 their	 account	 could've	been	breached.	Another	option	 is	 that
DO	NOT	 reply	 to	 any	 suspicious	 SMS	without	 knowing	who	 it	 is,	 and	 check
with	your	financial	companies	first.
Find	out	if	they	sent	you	a	text	message	when	something	like	an	account	lockout

was	taking	place.	Some	companies	typically	tell	you	that	 they	will	never	email
you.
DO	NOT	call	any	numbers	that	might	be	in	a	suspicious	text	message	or	SMS,
either.	Another	countermeasure	is	that	you	should	ignore	any	messages	that	are
urging	you	to	react	quickly.
Things	 like	 “You're	 going	 to	 miss	 out!”	 or	 “There's	 an	 X-amount	 of	 dollar
Amazon	gift	card	waiting	for	you	if	you	just	do	this!”	Be	careful	about	those.
Another	vector	is	called	“drive-bys”.

Drive-bys	are	when	somebody	browses	a	web	page	just	by	visiting	the	web	page.
Many	 websites	 are	 created	 for	 the	 soul	 purpose,	 so	 end	 users	 download	 free
software,	free	movies,	free	music	and	things	like	that.
That	software	could	be	free	Windows	OS	or	also	be	the	type	of	web	plugin	that
might	be	infected	with	a	specific	malware,	waiting	for	people	to	download	them.
The	 other	 issue	 is	 that	 there	 are	 older	 versions	 of	 operating	 systems	 on	many
mobile	 devices.	 Most	 vendors	 do	 not	 keep	 on	 updating	 their	 old	 operating
system,	and	there	are	vulnerabilities	in	them.	This	is	partly	because	they	instead
push	out	their	new	devices	to	the	market.	
Therefore	if	you	don't	have	the	latest	generation	of	iPad	or	Samsung	device,	or
whichever	vendor	is	your	favorite,	you	are	potentially	in	danger.
Typically	updates	 are	 fixing	 security	holes	 in	 those	devices;	 once	 there	 are	no
more	updates,	well,	you	also	better	move	on.	Phishing	is	another	attack	vector,
and	this	is	done	through	fake	emails.
Most	people	get	emails	on	their	devices,	therefore	sometimes	it's	hard	to	realize
that	 the	 link	 in	 the	email	 is	 invalid	as	well	as	we	get	 fake	websites,	and	 it	 is	a
part	of	a	social	engineering	environment.
It	 is	 getting	 harder	 to	 accomplish	 phishing	 type	 attacks	 because	 there	 are	 so
many	companies	that	have	their	app.	So	if	you	get	a	link	that	says,	you	need	to
update	your	password	because	 it's	been	compromised,	 if	 it	doesn't	 launch	 their
app,	then	you	should	know	that	is	a	bad	email.

Because	of	these	upcoming	apps	form	the	vendors,	it	is	harder	for	the	attackers
to	come	up	with	 these	 types	of	attacks,	but	 it's	 still	possible,	especially	 for	 the
novice.
One	of	my	biggest	concerns	when	it	comes	to	mobile	devices	is	the	connections
that	we	 are	 creating,	 and	 you	 need	 to	 think	 about	 this	 one.	 Take	 your	mobile

device,	and	let's	compare	it	to	your	desktop.	Most	phones	are	always	connected
to	either	the	cellular	network	or	a	Wi-Fi	network.	There	are	Bluetooth	as	well	as
NFC	connections	too	which	we	will	discuss	in	the	next	chapter.

Chapter	3	Introduction	to	NFC	Tags

NFC-s	are	tags,	and	the	concept	behind	these	small	little	stickers	is	that	you	can
program	 them	 to	 do	 specific	 things.	 They've	 got	 icons	 on	 them	 to	 help	 you
determine	what	you	should	program	them	with,	but	you	don't	necessarily	have	to
program	them.
For	example,	 if	 it's	 for	a	mobile	device,	you	don't	have	 to	program	 it	with	 the
ability	to	turn	your	phone	off	and	on.	You	can	have	it	do	something	completely
different.	You	could	have	it	to	install	an	application,	send	you	to	a	website	that
may	root	your	phone,	and	you	could	take	those	tags	and	put	them	on	top	of	other
legitimate	tags	that	may	be	out	there.
The	overall	concept	is	significant	because	in	the	aspect	of	you	could	take	one	of
these	tags	and	use	it	for	many	things.	For	example,	you	can	take	the	navigation
example	and	if	you	were	to	place	it	on	a	dashboard	of	your	car,	you	could	get	it
to	 set	 your	 phone	 on	 it	 to	 turn	 on	GPS,	 open	 up	Google	Maps	 or	 set	 up	 text
messaging	 to	 send	 auto-replies	 like	 "Sorry,	 I'm	 busy	 driving	 right	 now,	 and
unable	to	text	you."

When	it	comes	to	attack	vectors,	 this	one's	probably	the	biggest	and	that	 is	 the
physical	 aspect.	 The	 concept	 behind	 this	 is	 excellent.	 You	 get	 it	 on	 a	mobile
device,	but	what	if	your	smartphone	gets	stolen	or	you	lost	it?
Might	you	have	 company	data	or	 compromising	photos	or	documents	on	your
mobile	device?	Well,	when	it	comes	to	the	physical	side	of	things,	if	a	bad	guy
can	 persuade	 you	 to	 run	 his	 program	 on	 your	 device,	 it's	 not	 your	 device
anymore.
Moreover,	 if	 a	 bad	 guy	 can	 alter	 the	OS	 on	 your	 device,	 it's	 not	 your	 device
anymore.	Likewise,	if	a	bad	guy	has	unrestricted	physical	access	to	your	device,
once	again,	it's	not	your	device	anymore.
There's	no	service	pack	or	patch	that	you	can	implement	to	protect	yourself	from
this	attack	vector.	Physical	access	 is	 just	 that,	 it's	physical.	But	you	can	reduce
your	risk	by	taking	other	steps	in	protecting	your	device.

An	 example	 of	 that	 might	 be	 an	 encryption	 method.	 But,	 nothing	 is	 100%
foolproof.	Another	protection	could	be	customer	support-based	services.	When	it
comes	to	 these	services,	one	of	 the	significant	 issues	that	we	have	with	mobile
devices	is	that	most	people	don’t	even	know	they	exist	in	the	first	place.
Have	 you	 ever	 phoned	 up	 somebody	 to	 download	 an	 app	 for	 your	 mobile

device?	Especially	when	 you	 forget	 your	 password?	What	 do	 you	 usually	 do?
Usually,	it's	a	self-help	password	reset	environment.
Typically,	what	do	they	ask	you	when	you're	doing	a	self-help	password	reset?
They	ask	you	something	that	is	going	to	be	known	to	you.	For	example,	what's
your	Mother’s	Maiden	name?	What's	your	favorite	color?	Where	were	you	born?
Can	I	not	find	out	that	information?
Have	you	heard	about	that	breach	where	all	the	celebrities,	their	photos	that	they
took	with	their	cameras,	they	had	no	idea	that	they	were	being	backed	up	to	the
iCloud,	and	attackers	were	able	to	get	into	those	photos	by	doing	simple	answers
to	this	self-help	password	reset	because	the	answers	or	the	questions	were,	what
is	your	dogs	name?
Well,	 they	were	 able	 to	 get	 in	 and	 grab	 the	 photos	 and	 push	 them	 out	 to	 the
internet,	making	them	publically	available.	It	was	embarrassing	for	a	lot	of	those
individuals.	Therefore	the	other	attack	vector	is	the	app	itself.

When	you	download	an	app,	do	you	download	it	just	because	it	sounds	cool,	or
do	you	understand	who	wrote	the	app?	Or	better	yet,	you	go	and	search	for	the
app,	and	you	see	multiple	versions	of	that	app,	so	you	might	download	them	all
to	see	which	one	is	better	right?
But	are	you	getting	the	app	from	the	right	vendor?	If	you	search	Tetris,	you'll	see
more	 than	one	Tetris	 app	out	 there.	Also,	 one	of	 the	 significant	 attack	vectors
when	it	comes	to	apps	is	the	permissions	that	are	associated	with	installing	those
apps.
There	 is	no	 reason	 that	 some	entertainment	game	 that	 I	 plan	on	playing	needs
access	 to	my	 contacts	 or	 needs	 access	 to	make	 a	 phone	 call.	 And	 sometimes,
these	permissions	are	hard	to	understand	because	you	may	be	thinking,	well,	this
game	doesn't	need	access	to	my	network.
Well,	maybe	 it	 does	because	you're	playing	an	online	game	or	 a	game	against
other	 individuals.	Likewise,	because	 computers	 and	mobile	devices	 run	a	 little
differently,	we	have	sandboxing	environments,	where	indeed,	you	can	find	many
vulnerabilities.	
What	sandboxing	does,	is	that	is	taking	the	program	and	separating	it	for	security
purposes	 to	protect	 the	 system	and	 the	users,	by	allowing	what	 the	application
has	access	to,	and	what	it	doesn't	have	access	to.
For	example,	on	computers,	an	application	can	access	 the	system	RAM,	and	 it
can	access	all	of	the	RAM	that's	not	protected	the	hard	drive	information.	It	can

access	your	system	resources	such	as	the	RAM,	anything	that's	in	RAM,	as	well
as	almost	any	file	that's	on	the	hard	drive,	except	for	some	of	the	files	that	have
been	protected.
With	mobile	devices,	typically,	each	application	is	given	its	own	little	virtualized
world,	but	within	its	own	environment,	so	the	app	is	restricted	to	access	only	the
things	that	you've	given	it	permission	to	access.
The	 problem	 here	 is	 that	 some	 applications	 could	 be	 malicious	 and	 exploit
loopholes	 or	 vulnerabilities	 of	 a	 sandbox,	 and	 access	 to	 other	 resources	 that	 it
usually	wouldn't	have	access	to.
When	it	comes	to	apps,	you	must	know	where	it's	coming	from.	If	you	go	and	do
a	 search	 on	 a	 torrent	 site,	 you	 can	 download	 a	 bunch	 of	 APKs	 for	 Android
devices	or	apps	for	Apple	without	having	to	go	through	the	store	and	paying	for
them.	Then	you	can	install	them,	known	as	“sideloading	those	apps”.

You	install	it	without	going	through	the	app	store.	Yet,	I	am	here	to	warn	you:
DON	 NOT	 DO	 IT!	 Don't	 trust	 those	 sources.	 Anyone	 can	 take	 an	 APK,
decompile	it,	put	in	his	malware,	recompile	it,	and	push	it	back	up	to	the	torrent
sites.
Next,	 someone	 going	 to	 download	 it	 then	 install	 it,	 who	 might	 get	 the	 paid
version	 for	 free,	 but	 he	 will	 also	 going	 to	 get	 a	 little	 bit	 more	 than	 what	 he
thought	he	is	getting.	Is	it	worth	it?	Do	yourself	a	favor	and	make	sure	that	the
apps	are	legit.

When	we	 talk	 about	 these	 different	 platforms	 and	 the	 security	 vectors,	 people
often	ask	what's	better,	open,	or	closed?	Well,	when	 it	comes	 to	computers,	or
anything	electronic,	 there's	always	going	 to	be	weaknesses	no	matter	what	you
do.
When	it	comes	to	an	open	environment	such	as	Android,	the	biggest	complaint	is
that	 it	 is	 called	 fragmentation.	 Fragmentation	 is	 in	 the	 aspect	 of	 the	 operating
systems.
We	 already	 discussed	 that	 there	 are	 different	 versions	 of	 the	 operating	 system
out	 there,	 and	 some	 of	 them	 are	 customized	 to	 the	 hardware	 vendor.	 For
example,	Samsung	has	something	called	Touchwiz	 they	put	 inside	of	Android,
where	 Motorola	 may	 have	 their	 interface	 or	 their	 version	 of	 Android	 that's
running.
One	of	the	biggest	frustrations	that	many	times	we'll	see	is	that	the	same	device

just	with	different	carriers	running	different	software.	Many	times,	people	think
of	this	as	a	security	issue,	but	instead	of	looking	at	fragmentation	as	a	bad	thing,
they	take	it.
Most	times,	people	look	at	fragmentation	as	a	negative	thing,	but	I	also	want	to
think	of	it	as	a	different	word.	How	about	being	diverse?
The	 other	 side	 of	 this	 argument	 is	 a	 closed	 environment,	 which	 is	 more
restrictive.	Apple	said	that	87%	of	the	active	iPhone	users	are	currently	running
the	latest	OS.
That	makes	 it	 easier	 to	 protect	 everyone,	 right?	 Because	 if	 there	 is	 a	 security
vulnerability,	everyone	gets	notified,	patch	it,	and	the	upgrades	get	it	pushed	out
to	everybody.

That's	the	very	same	thing	Microsoft	is	trying	to	do	with	Windows	10.	It	won't
matter	 what	 platform,	 whether	 it's	 a	 desktop	 machine	 or	 a	 new	Windows	 10
phone	or	a	tablet,	they'll	be	able	to	fix	all	their	updates	at	one	shot.
That	 versus	 Android,	 which	 is	 like	 at	 17%,	 is	 running	 all	 sorts	 of	 Android
versions.	The	reason	why	the	number	is	so	low	is	because	manufacturers	decide
not	to	support	the	older	devices.
Additionally,	 sideloading	 is	 taking	 an	 application,	 installing	 it	 without	 going
through	 the	official	 app	 store.	 I	do	understand	 that	 some	of	us	not	very	happy
with	 the	 fact	 that	 Apple	 won't	 allow	 a	 particular	 program	 in	 their	 app	 store
because	 it's	 restrictive	or	 it	does	something	 that	Apple	doesn't	want	 it	 to	do	so
that	people	will	sideload	those,	I	get	it.
On	 the	Android	device	 side	of	 things,	 there's	 a	great	 application	out	 there;	 for
example,	there	was	an	app	called	Adaway	that	blocked	ads,		modifying	the	host
file	on	the	device	that	you	wouldn't	get	pop-ups.
Adaway	was	also	blocked	ads	from	showing	up	in	the	games.	That's	not	what	the
game	manufacturer	wanted	to	happen;	 therefore,	 they	kicked	off	 that	particular
application	off	the	market.
Hence,	we	see	these	third-party	app	stores	show	up,	which	is	a	warning	for	you,
but	if	you	are	going	to	do	any	type	of	sideloading,	make	sure	you	understand	the
source.

Chapter	4	How	to	Install	Android	in	Hyper-V

In	 this	 chapter,	 I	 am	 going	 to	 explain	 how	 to	 fire	 up	 an	 Android	 box	 inside
Hyper-V	or	VMware	virtualized	environment.	The	first	thing	you	need	to	do	is
open	 up	 a	 web	 browser	 so	 that	 you	 can	 go	 and	 download	 the	 Android-x86
project.
You	 can	 visit	 the	 following	website	 to	 download	 the	 project:	 https://www.android-
x86.org/documentation/virtualbox.html

Once	 you	 have	 downloaded	 it,	 go	 ahead	 and	 install	 it.	 I	 will	 explain	 in	more
detail	because,	as	of	writing	this	book,	the	latest	version	is	Oreo,	so	I'm	going	to
select	I'd	like	to	download	the	ISO,	and	you	can	either	grab	the	ISO	for	the	32-
bit	or	the	64-bit,	it	depends	on	what	your	platform	is.

I'm	going	to	grab	the	64-bit	myself,	which	is	about	700	MB	to	download	so	that
it	may	 take	a	 little	while,	but	once	you	have	downloaded	your	version	of	 ISO,
click	on	continue.
So	 when	 you're	 done	 downloading,	 check	 it	 in	 your	 download	 directory.	 It
should	be	called	android-x86_64-	8.1.iso.	Next,	open	up	either	Hyper-V	box,	or
VMware,	and	select	“New	Virtual	Machine”	and	hit	Next.
You	have	to	name	it	so	you	type	there	Android_VM,	then	you	have	to	select	a
location	where	you	want	to	store	it.	Once	you	selected	that	area,	it	should	create
a	directory	for	you,	and	make	sure	you	select	Generation	1.
Do	 not	 select	 Generation	 2	 because	 this	 is	 an	 Android	 operating	 system	 that
we're	 installing	on	 a	Windows	box,	 therefore	 select	Next.	Then	 it	 asks	 for	 the
amount	of	RAM	that	it	needs,	and	we	need	to	make	sure	we	give	it	at	least	2	GB
of	RAM.
Do	not	 select	 the	Dynamic	Memory	 for	 this	virtual	machine,	 and	as	 far	 as	 the
network	 connection	 is	 concerned,	 make	 sure	 you	 hook	 it	 up	 to	 the	 external
network,	because	it	needs	to	download	files	while	it's	installing.
After	that,	you	can	put	it	onto	the	Lab	network	if	you	want	to,	but	for	now,	leave
it	 as	 external,	 and	 hit	Next.	 It	 will	 then	 tell	 you	 that	 “we're	 about	 to	 create	 a
virtual	disk	for	you	called	Android_VM.vhdx	or	whatever	you	named	your	new
disc	then	hit	Next,	so	it	should	prompt	you	that	 is	about	 to	install	an	operating
system,	where	you	should	hit	“Yes”,	and	here	you	should	choose	the	download
location	 or	 the	 folder	 where	 you	 have	 kept	 the	 ISO	 that	 you	 previously
downloaded.

https://www.android-x86.org/documentation/virtualbox.html

Once	you	have	selected	the	Android	image,	hit	Next,	and	hit	Finished.	This	will
be	going	 to	 create	 the	virtual	machine	 for	 you,	 and	now	all	 you	have	 to	do	 is
connect	to	it	and	start	it	up,	to	begin	with	the	installation	process.
The	first	option	is	where	you	need	to	select	to	do	an	installation.	You	don't	want
to	run	it	from	a	live	CD,	but	it’s	an	excellent	option	to	keep	in	mind	in	case	the
machine	turns	off,	you	have	to	wait	for	it	to	go	back	and	re-install	the	image.
It's	great	if	you	want	to	do	a	live	CD,	and	you	want	to	pop	it	into	a	machine,	but
for	our	purposes,	we're	going	to	do	a	full-out	installation,	so	hit	“Enter”	on	that
option.
Next,	select	the	“Create	and	Modify	partitions”	and	hit	Enter.	It	will	ask	if	you
want	to	use	GPT,	and	the	answer	to	that	is	yes,	so	hit	Enter.	At	this	point,	 if	 it
says	that	a	non-GPT	or	damaged	disk	is	detected,	that's	fine,	so	go	ahead	and	hit
any	key	to	continue,	because	it's	a	brand-new	drive.

Next,	you	have	to	provide	the	amount	of	disk	usage	for	the	Android	disc,	where
you	can	go	ahead	and	hit	the	default	option.	You'll	notice	at	the	bottom	that	you
can	either	select	“new”	or	“load”	options.
You	can	do	a	new	partition,	and	keep	 the	default	 size,	which	 is	2	GB,	and	hit
Enter.	Next,	it	will	ask	you	for	a	new	partition	name	where	you	can	leave	it	as	is
and	hit	Enter	because	you	will	see	that	there's	a	partition	for	it.
Now	 that	 you	 created	 it,	 you	 need	 to	 tell	 it	 to	 write	 it	 so	 that	 it	 writes	 the
partition.	You	 can	use	 the	 right	 arrow	key,	 and	 tap	 it	 a	 couple	 times	 to	 get	 to
Write,	and	hit	Enter.
It	will	ask	you	if	you	are	sure	you	want	to	do	this,	so	you	can	type	“yes”.	Next,
you	should	see	the	partition	there,	so	go	ahead	and	make	sure	that's	highlighted
and	hit	Enter,	and	then	select	what	type	of	format	you	want	to	use.	Go	ahead	and
use	ex4,	and	hit	Enter.
It	will	ask	again:	“are	you	sure	you	want	to	write	the	partition?”	Select	“Yes”,	so
it's	going	to	format	that	partition	that	will	take	some	time,	but	once	complete,	go
ahead	and	hit	“Play”.
Next,	 it	will	ask	 if	you	want	 to	 install	 the	boot	 loader	GRUB,	so	hit	Yes,	 then
select	that	you	want	to	install	the	system	directory	as	“read-write”,	and	hit	Yes.
This	means	that	it	will	be	going	to	write	some	files	to	the	virtual	disk,	and	these
files	are	the	installation	of	Android.
Once	that	it's	done,	it	should	say	that	it	has	successfully	installed	Android.	The
one	thing	you	want	to	do	here	is	if	you	just	hit	to	reboot	every	time	you	boot	up

because	you	have	that	ISO	listed,	you	need	to	get	rid	of	that.
Go	under	“File”,	 “Settings”,	go	 to	 the	DVD	Drive,	 and	 select	 “None”,	 and	hit
OK.	Thus	you	should	be	able	to	select	“run	the	Android-x86	project”,	but	before
you	do	that,	you	need	to	change	one	of	the	network	settings.
By	default,	Android	has	a	hard	time	handling	network	interfaces,	at	 least	when
they're	 running	 off	 in	Hyper-V.	Therefore,	 open	 up	 the	 Settings,	 and	 add	 in	 a
Legacy	Network	Adaptor,	select	External,	and	hit	Apply,	then	hit	OK.
Now	you	can	fire	it	up,	by	hitting	“Start”.	It's	going	to	be	very	similar	to	what
you	go	through	when	you	turn	on	an	Android	tablet	or	a	phone	for	the	first	time.

Once	 it’s	 up,	 select	English,	United	States,	 and	 go	 ahead	 and	 hit	 Start.	 If	 you
don't	have	any	mouse	connectivity	yet,	no	worries,	because	it	eventually	installs
for	you	so	that	you	can	use	it.
You	want	to	ensure	that	your	external	network	is	appropriately	setup	get	all	the
required	updates	for	your	operating	system	installed.	You	can	copy	all	your	data
from	an	existing	Android	device,	or	create	a	new	setup.
Hit	the	Tab	key,	hit	Enter,	and	if	you	have	an	Android,	you	have	to	do	a	Google
log-in,	and	you	have	to	type	in	your	email	address	or	your	phone	number.	If	you
don't	want	this	to	be	associated	with	all	your	other	devices,	 just	because	this	is
going	 to	 link	 you	 into	 Google	 Play,	 and	 you	 perhaps	 don't	 want	 to	 have	 that
exposed,	you	may	want	to	create	your	own	private	Gmail	account.

Once	you	have	decided	and	 fill	 the	 information	out,	you	have	 to	enter	 in	your
account	 information	and	your	password,	and	 it's	going	 to	continue	 to	authorize
your	access.
Once	complete,	it	asks	for	the	time	and	date	that	you	have	to	verify	that.	Next,
just	like	a	standard	Google	or	Android	device,	it	will	ask	you	if	you	want	to	back
up	 your	 data	 to	 the	 cloud.	You	 can	 tap	 through	 this,	 hit	 “agree”	 to	 terms	 and
services,	and	right	down	below	the	screen,	tab	down	where	it	says,	“No	Thanks”.
Make	sure	you	select	the	“No	Thanks”	and	not	“Add	Another	Account”	option.
Next,	 hit	 Enter,	 and	 you	 should	 now	 have	 a	 fully	 configured	 Android	 device
virtualized	that	you	can	lab	or	test	with.
This	is	not	an	emulator	or	simulator	of	any	type.	This	is	a	real	product	running.
Before	you	start	playing	around	with	it,	go	to	Settings,	and	do	any	updates	that
you	need	to	on	the	built-in	applications	on	this	device.

Then	 you	 can	 start	 looking	 at	 some	 of	 the	 mobile	 applications	 that	 we'll	 be

discussing	shortly.
If	 you	 can't	 run	 this	 type	 of	 virtualized	 environment,	 no	 worries	 as	 I	 will	 be
explaining	 everything	 in	 plain	 English,	 but	 hopefully,	 you	 have	 both;	 the
software	and	hardware	to	create	a	virtual	environment.

Chapter	5	Android	Architecture

It’s	time	to	take	a	look	at	different	ways	that	we	can	hack	the	Android	platform.
That	will	include	Android	rooting	as	well	as	we	will	look	at	various	attacks	that
can	be	placed	on	Android	devices,	and	we'll	take	a	look	at	malware	specifically
because	it's	rampant	within	the	Android	world.
Next,	we'll	look	at	countermeasures	and	understand	what	we	need	to	do	to	lock	it
down	to	minimize	the	chances	of	security	vulnerabilities.	We'll	begin	discussing
the	architecture	of	Android	by	making	sure	that	you	understand	how	the	device
is	operating	based	on	its	architecture.
To	truly	understand	any	security,	you	do	need	to	understand	the	architecture	that
lays	underneath	the	platform,	because	the	architecture	itself	can	show	you	where
the	security	holes	are	going	to	be	on	that	particular	device.

When	 it	comes	 to	Android,	 it	has	 its	 layers.	The	first	 layer	of	Android	 is	what
it’s	called	the	Linux	kernel.	The	Linux	kernel	was	used	by	Android,	because	it's
very	stable,	and	it	has	a	proven	driver	set.
The	Linux	kernel	creates	an	interface	between	the	hardware	that	may	be	installed
on	 the	device,	whether	 it’s	 a	display,	or	 the	camera	on	 the	device,	USB	ports,
networking	ports,	Wi-Fi,	as	well	as	sound,	and	the	power	features	too.
All	 Android	 devices	 are	 supported	 directly	 to	 the	 operating	 system	 via	 this
particular	layer	of	the	architecture.	Windows	has	its	kernel-level.	Mac	OS	has	its
kernel,	 and	 they	all	do	 the	very	 same	 thing,	which	 is	 to	provide	a	way	 for	 the
operating	system	to	speak	to	the	hardware.
Above	the	kernel	layer,	we	have	the	libraries	layer.	This	layer	has	some	built	in
libraries,	 and	 one	 of	 them	 being	 the	 service	manager.	 The	 service	manager	 is
there	to	compose	the	windows	that	you	see	displayed	on	the	screen.
There's	also	the	OpenGL	aka	Open	Graphics	Library,	as	well	as	SGL	aka
Scalable	Graphics	Library.	These	two	are		in	charge	of	both	of	2D	and	3D
displays.
What's	great	about	this	infrastructure	is	that	an	application	can	switch	from	2D
to	3D	almost	seamlessly.
Another	library	that's	included	with	most	Androids	is	the	Media	Framework.	The
media	 framework	 is	 there	 to	 support	 playback	 and	 recording	 of	 multimedia,
whether	it	be	audio,	or	video,	or	pictures	back	to	the	display.

For	example,	most	of	our	codecs	are	built	 into	this	framework,	such	as	mp3	or
mp4.	This	is	why	when	you	start	up	a	brand	new	device,	you	can	take	a	picture
and	look	at	the	image	immediately.
It's	in	a	JPEG	format,	or	you	can	download	an	MP3	file,	and	immediately	listen
to	 it.	 You	 don't	 go	 and	 download	 and	 install	 any	 additional	 Codecs.	We	 also
have	a	free	type.
This	particular	component	is	there	to	render	our	fonts.	For	example,	if	you	have
an	Android	device,	you	can	change	the	fonts	that	are	being	displayed	throughout
the	system,	or	 its	 size,	or	 its	 type,	and	some	applications	will	 also	pull	on	 this
free	type.	Therefore	you	can	change	the	font	within	the	app	itself.
OpenSSL	 is	 also	 implemented,	 giving	 us	 security	 when	 we're	 communicating
with	 other	 devices,	 as	 well	 as	 SQLite.	 Unfortunately,	 there	 are	 few
vulnerabilities	 that	 SQLite	 can	 create	 on	 Android	 devices,	 the	 same	 type	 of
weaknesses	that	we	see	in	a	standard	SQL	database	server	can	be	implemented
in	some	cases.

There	 is	 also	 a	WebKit,	 which	 is	 an	 open	 browser.	 It's	 the	 same	 engine	 that
Apple's	Safari	 uses.	There	 is	 also	 the	Runtime	 layer,	where	we	have	both;	 the
core	libraries	as	well	as	the	virtual	machines.
As	far	as	the	core	libraries	are	concerned,	this	is	a	runtime	layer	that	includes	a
set	 of	 core	 Java	 libraries.	 This	 allows	 application	 programmers	 to	 build	 their
apps,	just	using	standard	Java	programming	language.
The	VM-s	is	open	source	software,	and	it's	been	streamlined	for	mobile	devices
so	 that	 there	 could	 be	multiple	 virtual	machines	 running	 to	 support	 numerous
apps.
In	 the	 Android	 world,	 we	 	 sandbox	 each	 of	 our	 apps.	 It	 has	 a	 low	 memory
requirement,	and,	it	does	rely	on	the	underlying	OS	for	process	isolation,	as	well
as	memory	management	and	thread	support.

The	layer	above	this	is	 the	framework	layer.	The	framework	layer	is	where	we
see	a	lot	of	our	applications	or	the	core	applications	that	come	with	our	device.
For	 example,	 a	 service	 provider	 may	 load	 some	 default	 applications	 that	 are
proprietary	to	their	environment.	This	could	be	the	interface	that	they	load	on	top
of	Android.
There	are	other	types	of	applications,	such	as	the	Activity	Manager.	This	is	what
manages	 the	 lifecycle	 of	 applications,	 which	 typically	 when	 it	 comes	 to	 an

application,	the	lifecycle	includes	the	starting	of	the	application,	the	running	of
the	application,	or	if	the	application	is	paused,	because	maybe	we	switch	out	to
different	app,	a	stop	state,	because	perhaps	the	application	hasn't	been	used	in	a
while,	and	a	destroy	state.
The	destroys	state	removes	things	out	of	the	resources	when	the	activity	manager
decides	 that	 there's	 no	 more	 use	 for	 that	 activity.	We	 also	 have	 the	Window
Manager,	which	is	responsible	for	what	we	see	on	the	screen	itself.
There	is	also	the	Package	Manager,	which	is	in	charge	of	keeping	track	of	which
applications	we	have	installed,	so	when	it	comes	to	updates	or	how	to	uninstall	a
particular	 application,	 the	 Packet	Manager	 deals	with	 those.	We	 also	 have	 the
Telephony	 Manager	 that	 does	 precisely	 what	 we	 think	 telephony	 does	 on	 a
mobile	device.
It's	 in	 charge	 of	 managing	 your	 phone	 calls.	 Let's	 say	 that	 you've	 built	 an
application,	 and	once	you	 click	 on	 a	 contact,	 and	you	 see	 their	 phone	number
when	you	click	on	the	phone	number,	you	need	to	dial	that	phone	number.	This
is	where	the	application's	calling	on	the	Telephony	Manager.

We	 also	 have	 the	 Resource	Manager,	 which	manages	 the	 resources	 that	 your
application	may	 use.	 There's	 also	 Content	 Providers,	 which	manages	 the	 data
shared	between	applications.
We	get	that	seamless	feel	in	the	environment	itself.	As	an	example,	a	few	of	our
default	content	providers	 include	 the	call	 log,	which	provides	our	missed	calls,
call	details	and	 times,	 that	we	might	 see	 that	 information	when	we	 look	at	 the
contact.
For	example,	you	can	see	 the	 last	phone	call	you	made	 to	your	friend	on	what
date	and	time.	Another	content	providers	would	be	the	address	book	or	the	user
dictionary.
As	you	start	to	type	the	letters	when	texting	someone,	the	default	user	dictionary
may	 not	 recognize	 the	 word,	 but	 you	 know	 that's	 a	 correct	 word	 that	 you
sometimes	hit.
Another	concept	here	is	when	you	install	an	app	that	has	an	activity,	and	when
you	click	on	the	photo	button,	you	might	pull	up	the	Content	Provider	 into	the
Photoshop	gallery,	so	that	you're	able	to	share	photos	via	the	application.
Another	framework	is	the	Location	Manager.	This	is	the	framework	that	is	used
by	your	GPS,	 and	possibly	 your	 cell	 phone	 towers,	 so	 it	 can	determine	where
you're	located.	It	does	a	triangulation	through	the	cell	towers.

Next,	we	have	a	View	System,	which	is	what	 it	sounds	like,	provides	different
views	that	we	have	of	the	applications	in	separate	windows	or	window	sizes.	It
does	a	lot	of	communication	through	the	Windows	Manager.
Next,	we	have	the	Notification	Manager.	I'm	sure	you	can	figure	out	what	that's
supposed	to	do,	right?	Do	we	allow	an	application	to	notify	us	that	we	missed	a
call,	missed	a	text	message?
This	 layer	 has	 the	 actual	Apps	 layer,	 and	 this	 is	where	we	 see	 things	 like	 the
Home	screen	or	our	Contacts,	the	built-in	applications,	the	Phone,	the	Browser,
and	as	you	add	additional	applications	to	your	device,	it	adds	it	to	this	level.
You	can	see	then,	it	would	use	the	framework,	as	well	as	the	libraries	and	the	run
time	 to	 interact	with	 the	 devices	 to	 do	what	we	want	 our	machine	 to	 do.	 It’s
important	to	know	this,	but	we'll	also	discuss	how	the	device	works	so	that	we
can	understand	its	security.

Chapter	6	Android	Hardware	Function	Basics

As	a	security	professional,	you	need	to	understand	how	the	device	is	working,	or
at	least	the	security	side	of	the	device.	Hence	we're	going	to	take	a	look	at	first,
the	security	model	of	Android.
First	 and	 foremost,	 Android	 it’s	 permission-based.	 Commonly,	 these
permissions	are	implemented	at	two	places	in	the	Android	architecture,	both	of
the	kernel-level,	and	also	the	application	framework	level.
As	far	as	the	number	of	permissions	that	are	out	there,	(over	100)	are	defined,	or
that	 can	 be	 defined,	 you	 have	 to	 know	 that	 applications	 can	 define	 their
permissions.	This	figure	means	the	number	of	permissions	available.

But,	we	usually	break	them	down	into	four	different	categories.	The	first	one	is
referred	to	as	standard,	which	is	low-risk	permission	that	we	give	access	to	non-
sensitive	data	or	possibly	even	features.
Normal	 permissions	 don't	 require	 an	 explicit	 approval	 from	 the	 user	 at
installation	 time.	An	example	of	 this	would	be	for	contacts	 that	have	access	or
permissions	to	the	phone	application.
The	 next	 category	 defined	 as	 “dangerous”.	 These	 permissions	 grant	 access	 to
data	and	features	that	may	be	classified	as	sensitive,	which	does	require	explicit
approval	when	you	do	the	installation.
An	example	of	that	is	when	you	install	an	application,	and	you	are	going	to	get
flagged	on	some	permissions	that	are	required	by	the	application.	Some	of	them
are	legit,	some	of	them	are	not.
The	 next	 category	 defined	 as	 “signature”.	 Signature	 is	 interesting	 permission
because	 it's	defined	by	 the	application	 in	what	we	refer	 to	as	 the	manifest	 file,
but	with	signature	permissions,	the	app	that	requires	this	permission	can	only	be
accessed	by	other	applications	that	were	signed	by	the	same	certificate.
Then	we	have	another	one	that's	called	“SignatureOrSystem”.	It's	the	same	thing
as	 signature	 permission,	 but	 the	 application	 installs	 inside	 of	 the	 system
partition,	which	does	have	elevated	privileges.
So,	in	that	case,	the	application	can	either	run	as	signature-based	or	at	a	system-
level.	Typically,	when	it	comes	to	applications,	at	least	on	the	Android	platform,
those	applications	must	be	signed	to	be	installed,	and	this	comes	into	where	the
app	stores	help	to	protect	us.

By	 default,	 Android	 allows	 a	 self-signed	 certificate,	 so	 that	 developers	 can
generate	their	certificate	to	sign	their	applications.	Besides	the	application-level
security,	starting	with	Android	4.0,	we	could	start	getting	into	what	they	refer	to
is	ASLR,	 aka	Address	 Space	 Layout	Randomization.	ASLR,	 it's	 a	 technology
that	 makes	 it	 more	 difficult	 for	 attackers	 to	 exploit	 any	 memory	 corruption
issues.
An	 Android	 application	 is	 composed	 of	 about	 four	 different	 types	 of
components,	 and	each	one	of	 those	components	 in	 the	application	 represents	a
different	entry	point	into	the	application.
The	 first	 one	 is	 called	 “Activities”.	 An	 activity	 defines	 a	 single	 screen	 of	 the
application's	users	 interface,	and	because	of	 the	way	 that	Android	 is	created,	 it
promotes	the	reusability	of	these	activities,	so	that	the	application	doesn't	have	to
redraw	and	recreate	anything	all	over	again.
For	example,	if	you	had	a	contact	application	and	you	wanted	to	pull	in	people's
phone	 numbers	 and	 link	 it	 to	 the	 phone	 app,	 you	 are	 going	 to	 reuse	 those
activities.

That's	great,	but	on	the	other	hand,	 this	behavior	 increases	an	attack	surface	of
the	application	that	you're	installing,	because	we're	starting	to	share	information
between	applications.
Another	 application	module	 is	 the	Content	Providers.	One	of	 the	 things	 that	 it
does	 for	 us	 is	 that	 it	 allows	us	 to	 query,	 insert,	 update,	 or	 delete	 data	 to	 other
applications	 and	 internal	 components.	 For	 example,	 if	 you	 are	 inside	 of	 your
brand	 new	 application	 for	 contacts,	 if	 you	 delete	 a	 contact	 in	 it,	 it's	 going	 to
delete	it	in	the	framework	of	contacts	that	came	native	with	the	phone.
The	application	might	also	store	the	data	in	the	SQLite	database,	so	you	have	to
be	 suspicious	 about	 poorly	 written	 content	 providers	 that	 could	 open	 up
vulnerabilities	to	an	SQL	injection,	or	other	types	of	injection	attacks.
We	 also	 have	 Services	 that	 are	 there	 to	 run	 in	 the	 background.	 While	 we're
operating	 in	 the	 front	end,	we	never	 see	 interaction	with	 the	services,	unless	 it
fails,	but	other	components	can	start	services.
If	your	application	wants	access	to	a	service,	or	implement	a	service,	you	could
open	yourself	up	to	another	vulnerability.	Finally,	we	have	Broadcast	Receivers.
Broadcast	receivers	receive,	hence	the	word	receivers,	from	what	we	refer	to	as
broadcast	intents.
Intents	are	asynchronous	messages	that	are	used	to	perform	in	our	processes	as

well	 in	 our	 component	 communications.	 We	 have	 to	 be	 careful	 about
applications,	making	sure	they	don't	just	accept	data	from	broadcast	intents.
This	 is	 because	 those	 hostile	 applications	may	be	 trying	 to	 inject	 or	 send	data
that	are	originating	from	a	remote	system,	which	could	lead	to	some	issues	for
us.
Now	 let's	 discuss	 the	 data	 storage.	 Data	 storage	 can	 be	 confusing	 because	 it
depends	on	your	device	itself,	but	most	of	the	time,	data	storage	is	stored	on	SD
cards	that	are	standard	micro	SD	cards.
Samsung	 released	 a	 bunch	 of	 phones	 that	 had	 built-in	 internal	 SD	 cards.	We
refer	 to	 these	 things	 as	 NAND	 flash,	 aka	 Non-Volatile	 Storage	 Mechanism,
which	means	that	it	doesn't	need	the	power	to	retain	information.	We	can	use	SD
cards,	and	those	could	be	either	internal	or	external	cards.

You	need	to	make	sure	you	are	careful	where	you	store	information,	and	here's
the	 reason	why:	 files	 that	 are	 stored	 in	 external	 storage	 locations	 are	 publicly
available	 to	 all	 applications	 and	 files,	 versus	 internal	 storage,	 by	 default,	 are
private	and	accessible	only	to	specific	applications.
What	does	that	tell	you?	Well,	we	need	to	make	sure	that	we	encrypt	them.	We
already	 discussed	 NFC	 tags	 earlier,	 but	 these	 are	 just	 tags.	 Their	 design	 is
excellent	 in	the	aspect	 that	 they're	contactless.	Still,	you	do	have	to	be	close	to
them,	but	 it	allows	us	to	put	macros	or	different	 tasks	behind	them.	This	is	 the
same	 communication	 that's	 used	 for	 payment	 services,	 which	 we'll	 talk	 about
later	on.	Android	Beam	uses	this.
An	 example	 of	 that	 is	 known	 as	 “bump”,	 an	 application	 that	 is	 now	 being
replaced	by	defaults	as	part	of	Android,	but	you	can	pull	up	contact	information
on	your	phone	and	bump	it	with	another	person,	physically.
Bump	the	devices	together,	and	it	would	transfer	the	contact	information	via	this
technology.	You're	 going	 to	 start	 seeing	 these	 types	 of	 communications	 being
used	for	advertisement.
There	 is	also	something	called	 the	Android	Debug	Bridge,	aka	ABD.	This	 is	a
command-line	interface	that	allows	you	to	communicate	with	the	mobile	device
via	USB	cable.
It's	like	a	remote	shell,	and	because	of	that,	there	are	several	different	commands
that	 we	 can	 be	 implemented	 remotely	 to	 affect	 the	 device.	 For	 example,	 we
could	issue	push	and	pull	commands.
The	push	will	copy	a	file	to	your	system,	while	a	pull	will	copy	a	file	away	from

your	 system	 to	 your	 remote	 location.	 There's	 also	 “logcat”,	 which	 shows	 you
logging	information	in	the	console	itself,	and	this	can	be	very	useful	if	you	want
to	 see	 if	 an	 application	 or	 underlying	 operating	 system	 is	 logging	 sensitive
information	somewhere.
We	can	also	issue	an	“install”	command	that	copies	the	APK	files	to	the	mobile
device	 and	 installs	 the	 application.	When	 you're	 installing	 stuff	 from	 the	App
Store,	that's	what	you're	doing.	You're	doing	a	push,	and	you're	doing	an	install,
and	this	is	technically	how	we	“sideload”	applications	onto	a	device,	which	can
be	good	or	bad.

Chapter	7	Android	Root	Level	Access

When	it	comes	to	rooting,	all	we	do	is	escalating	our	privileges	so	that	we	have
root	 access	 to	 the	 device.	Naturally,	 applications	 are	 restricted	 by	 the	 security
model,	so	 that	an	application	can	only	access	 its	 files,	or	 the	external	SD	card,
while	 only	 has	 access	 to	 resources	 and	 features	 that	 are	 requested	 during	 the
installation	time.
By	 rooting	a	device,	we're	allowing	specific	applications	 to	 run	as	a	 root	user.
When	 this	happens,	 the	security	model	breaks	down,	because	you're	bypassing
the	 default	 permissions.	 Yet,	 not	 all	 applications	 will	 automatically	 use	 root-
level	access.
For	example,	Facebook	is	still	going	to	use	its	resources	and	the	information	that
it	 needs,	 but	 I	might	 find	 another	 application,	 and	 here's	 where	 it	 gets	 tricky.
Many	 people	 each	 time	 when	 getting	 an	 Android	 device	 began	 immediately
rooting	it,	so	they	can	load	specialized	applications	that	allows	them	to	do	things
such	as	backing	up	applications,	their	settings	and	their	data.

When	 it	 comes	 to	 rooting,	 you	 have	 to	 know	 what	 you're	 doing.	 I	 warn	 you
upfront	that	You	are	responsible	for	what	you're	about	to	do,	and	this	is	because
you	can	break	your	device	by	rooting	it.
Once	 you	 have	 root	 access	 to	 a	 device,	 you	 can	 also	 overclock	 the	 system	 to
make	 it	 run	 faster.	With	 root-level	 access,	you	can	get	 rid	of	all	 the	bloatware
that	came	with	the	device.
You	do	have	to	be	careful	because	if	the	applications	are	running	with	root	user-
level	 access,	 it	 can	 directly	 access	 the	 resources	 and	 bypassing	 permission
checks.	There	 is	also	a	possibility	 that	you're	going	 to	give	 the	application	full
control	over	the	device,	and	the	other	applications	that	are	installed	on	it,	such	as
your	banking	applications.
Having	 root-level	 access,	 you	 can	 do	 all	 kinds	 of	 installations	 by	 sideloading.
Rooting	 your	 device	 will	 typically	 void	 the	 warranty	 of	 the	 device.	 What's
interesting	is	that	you	can	always	un-root	it.	Either	way,	ISP-s	don't	like	rooting
because,	 if	you	had	 to	do	 tech	support	as	 that	carrier	and	people	were	 running
different	 versions	 of	 platforms	 on	 that	 device,	 it	 would	 be	 a	 nightmare	 to
troubleshoot	for	the	individuals.
Furthermore,	 there	are	also	financial	 issues,	as	far	as	 the	carrier	getting	paid	to
put	 specific	 applications	 preloaded	 on	 your	 mobile	 device.	 Unlocking	 a	 cell
phone	that	other	carriers	could	use	them	was	legal,	but	it's	now	illegal	to	unlock

your	phone	without	your	carrier's	permission.
However,	 it	 depends	 on	 the	 date	 when	 you	 are	 reading	 this	 book;	 they	 can
change	the	law	at	any	time.	But	at	the	beginning	of	2020	in	the	US,	it	is	legal	to
root	your	phone	if	you're	doing	so	only	to	use	applications	that	require	root-level
access.
If	 you're	 rooting	 your	 phone	 for	 any	 other	 reason	 at	 all,	 technically,	 you're
breaking	 the	 law.	Regards	 to	Apple	products,	 if	you've	got	 an	 iPhone	and	you
jailbreak	 it,	 you	 could	 violate	 the	 law.	 Unfortunately,	 most	 lawmakers	 don't
understand	how	technology	is	used,	so	currently,	the	law	has	exemptions	in	there
for	jailbreaking	and	rooting	tablets.
The	exemption	that	was	made	only	applies	to	wireless	telephone	handsets.	Now
in	 Canada,	 they	 passed	 the	 Copyright	 Modernization	 Act	 of	 2012.	 It	 makes
tampering	with	 digital	 locks	 illegal,	 but	 it	 does	 have	 a	 specific	 exemption	 for
interoperability,	security,	privacy,	encryption	research,	and	security.

Therefore,	 if	you're	rooting	an	Android	device	so	that	you	can	run	applications
that	 aren't	 allowed	 on	 the	 App	 Store,	 you	 should	 be,	 in	 the	 EU,	 they	 have
Computer	 Programs	 Directive,	 which	 says	 that	 rooting	 or	 jailbreaking	 is	 a
violation	of	copyright,	just	like	the	US	and	Canadian	laws	do.
But	it	also	says	that	if	it's	for	interoperability,	or	fair	use,	to	root	or	jailbreak	with
intent	 of	 running,	 other	 or	 legally	 acquired	 software,	 then	 you're	 ok.	 I	 already
mentioned	 the	US,	Canada,	 and	 the	EU,	yet	you	might	be	 located	 in	 India,	 so
instead	of	assuming	that	rooting	or	jailbreaking	is	 legal	in	your	country,	please
double-check	so	you	don’t	get	into	any	trouble.
Now	let's	move	on	and	take	a	look	at	some	new	terminology	that	we're	going	to
be	 discussing	 as	 we	 continue	 in	 the	 rooting	 process.	 First,	 we	 have	 the
bootloader.	The	bootloader	is	the	very	first	thing	that	fires	off	when	you	turn	on
your	device.
It's	 like	 the	BIOS	 in	 a	 PC.	 It	 has	 code	 in	 it	 that	 it’s	 an	 operating	 system	 and
kernel	 should	 boot	 off	 from.	 It	 understands	 which	 OS	 to	 boot	 from.	 Android
devices	have	multiple	partitions,	and	we	can	put	this	in	computer	terms.
Imagine	 that	 you	 have	 a	 computer,	 and	 you've	 got	 multiple	 hard	 drives	 in	 it.
How	 does	 your	 computer	 know	which	 hard	 drive	 to	 boot	 from?	Well,	 in	 the
BIOS,	 you	 go	 and	 say	 that:	 "Boot	 from	 a	 particular	 drive,	 "	 so	 it	 looks	 the
partition	you	told	it	to.
That's	going	to	be	determined	by	the	boot	sequence	of	the	operating	system,	and

it's	the	same	concept	when	it	comes	to	Android	too.	Each	device	is	going	to	have
its	own	bootloader,	and	most	of	them	are	going	to	be	locked,	while	some	of	them
may	be	even	encrypted.
Manufacturers	usually	do	this	so	that	they	can	ensure	that	you	stay	within	their
parameters	as	far	as	which	OS	versions	should	be	used	that	they've	designed	for
the	device.
Without	an	unlocked	bootloader,	it's	almost	impossible	to	flash	a	custom	ROM.
Many	ISP-s	do	encrypt	their	bootloader	on	several	of	their	devices,	which	makes
it	very	hard	for	anybody	to	take	advantage	of	the	running	custom	ROMs.
When	 you	 unlock	 your	 bootloader,	 besides	 voiding	 the	 warranty,	 it	 also	 will
wipe	 the	 internal	memory,	 so	 you	 lose	 your	 contacts,	 your	messages,	 and	 you
start	over	with	a	new	phone.	We	also	have	 the	kernel.	We	already	discussed	 it
earlier,	and	this	is	the	level	where	the	apps	have	access	to	the	hardware	via	this
communication	channel.

The	kernels	are	customized	by	 the	manufacturer	as	well,	and	 this	 is	one	of	 the
reasons	why	many	people	tend	rooting	Android	devices	because	they	underclock
the	performance	of	the	CPU.
Devices	 would	 be	 getting	 more	 battery	 life	 if	 they	 would	 stop	 loading	 the
bloatware	to	run	automatically.	People	need	to	make	the	decision	on	whether	or
not	they	want	Twitter	installed,	and	whether	or	not	they	wish	to	be	notified	every
time	there's	a	post.

Most	custom	ROM-s	can	be	tweaked	in	such	a	way,	so	they	can	no	malware	on,
no	bloatware	on,	and	can	run	the	device	faster	while	can	get	double	the	battery
life	out	of	the	same	system.	Another	feature	of	the	kernel	is	the	sound	governor,
which	would	allow	you	to	get	the	volume	even	louder	if	you	wanted	to.
The	next	 item	on	our	 list	 is	called	“baseband”.	Baseband	 is	a	 type	of	 software
that	allows	the	correct	communication	with	the	radio	and	the	operating	system.
Most	manufacturers	don't	update	the	baseband	and	if	you	find	a	newer	tweaked
baseband,	you	can	improve	the	battery	life	and	the	call	quality.
Back	in	my	Samsung	Note	days,	there	was	a	radio	that	improved	reception.	The
next	 item	 on	 our	 list	 is	 called	 “recovery”.	 This	 is	 a	 mode	 that	 we	 go	 into	 to
recover	or	help	us	to	troubleshoot	and	upgrade	our	environment.
For	 example,	 if	 you	 are	 about	 to	 receive	 an	 update	 from	 your	 ISP	when	 you
select	that	you'd	like	to	go	ahead	install	it,	it	reboots	the	phone	and	you	get	that

little	screen	that	has	the	Android	on	it.
That's	the	recovery	mode,	but	we	also	have	the	stock	recovery,	which	is	a	very
plain	looking	screen.	You	can	install	a	custom	recovery,	which	allows	you	to	do
all	kinds	of	things,	such	as	create	a	complete	backup	of	your	system,	or	flash	a
new	ROM,	or	go	back	to	your	original	ROM.
We	also	have	 the	Dalvik-Cache	and	ART.	ART	is	a	new	runtime	for	Android,
but	they	released	it	as	an	experiment,	and	it's	becoming	fully	deployed	in	various
devices.
Dalvik	is	based	on	a	JIT,	aka	Just	In	Time	compilation.	What	JIT	does	for	us	is
that	each	time	when	you	run	the	app,	a	part	of	the	code	required	for	execution	is
going	 to	 be	 compiled	 to	 the	 machine's	 code,	 just	 at	 that	 moment	 and	 as	 you
continue	 through	 the	 app,	 additional	 code	 is	 going	 to	 be	 collected,	 and	 it	 gets
cached.

Because	JIT	or	Dalvik	compiles	only	part	of	the	code,	it	has	a	smaller	memory
footprint	 and	 uses	 up	 less	 space.	 ART	 however,	 takes	 the	 Dalvik	 code	 and
compiles	it	into	a	system-dependent	binary.

The	whole	code	of	the	app	will	be	precompiled	during	installation,	but	it's	going
to	 take	 up	 more	 space,	 yet	 it	 should	 execute	 much	 faster.	 They	 could	 have
implemented	 ART	 immediately	 but	 the	 first	 Android	 devices	 had	 deficient
memory	and	CPU	capabilities.
Nowadays,	we've	got	phones	 that	 are	quad	cores	and	16	gigs	of	RAM.	As	we
make	the	transition	over	to	ART,	application	developers	will	have	to	make	sure
they	write	 for	 it,	because	not	all	apps	are	compatible,	which	means	 they'll	 still
run,	but	it	may	take	a	little	while	to	convert	it.
But	 once	 it's	 done,	 it	 increases	 the	 CPU	 by	 about	 20%,	 RAM	 operations	 get
increased	by	about	10%,	and	storage	operations	are	increased	by	about	10%.	In
other	words,	we	can	make	them	stronger	and	faster.
Besides	the	recovery	mode,	the	Dalvik-Cache,	ART,	and	baseband,	we	also	have
the	download	mode.	Download	mode,	in	some	devices	known	as	fast	boot	mode
that	gives	you	the	ability	to	flash	images.	Those	images	could	be	customizations
as	well	as	ROMs.	The	manufacturer	uses	download	mode	to	install	the	ROM	on
the	device	before	they	box	it	up.

Chapter	8	Rooting	Android

Each	 Android	 device	 has	 its	 steps	 that	 you	 need	 to	 go	 through	 to	 	 root.	 The
particular	machine	I	will	discuss	with	you	is	a	Samsung	Galaxy	Note	8,	and	I'm
going	to	share	with	you	what	we've	discussed	already.	The	bootloader	as	well	as
the	download	mode,	and	then	I'll	also	look	at	Odin,	which	is	what	we	use	to	root
the	device.
There	are	also	some	other	utilities	out	there.	I'm	just	going	to	share	with	you	the
tools	that	I	use.	There	are	many	different	products	out	there	too	that	you	might
find	better	 for	 the	 particular	 device	 you	want	 to	 root,	 but	 the	 concepts	 are	 the
same.
It's	just	a	matter	of	preference,	but	you	first	have	to	begin	by	turning	the	device
off,	because	to	get	into	it,	you	need	to	power	it	off	and	get	into	bootloader	mode.
This	is	device-dependent.

If	you	are	testing	this	using	the	same	model,	you	are	going	to	have	to	hold	down
the	up	volume	button	and	the	home	button	and	power	it	on.	Once	you	hold	those
down,	hit	 the	power	button.	 It	will	vibrate	once,	and	you	should	see	at	 the	 top
that	there	is	a	blue	text	saying,	"Entering	recovery."
Once	 the	 little	Android	guy	pops	up,	 you	have	 to	 edit	 the	 standard	bootloader
from	Samsung	and	you	will	see	that	you	have	several	different	options	here.
The	 Apply	 Update	 options	 are	 different	 ways	 of	 updating	 the	 ROM	 and
typically,	when	you	get	 an	update	 from	 the	manufacturer,	 they	get	 scripts	 that
not	 only	 downloads	 the	 update,	 but	 takes	 you	 through	 this	 process	 and
automatically	selects	to	do	an	update	from	cache.
You	should	also	see	that	you	can	do	a	wipe	of	the	data	in	factory	settings	as	well
as	the	cache	partition,	and	you	can	reboot	into	the	bootloader,	which	is	the	same
environment,	or	lastly	you	can	also	power	it	down.
You	can	chose	the	stock	bootloader	to	see	what	it	looks	like	after	you	root	this
device.	But	before	you		root	a	device,	you'll	need	to	make	sure	that	you	get	the
appropriate	root	files	for	the	device	itself,	and	you	can	to	do	that	by	going	into
my	 settings	 on	 the	 device,	 scroll	 down	 where	 you	 have	 the	 “About	 Device”
option	and	you	should	see	that	you	have	your	current	baseband,	kernel	version,
the	version	of	Android	that	currently	running,	and	the	model.
This	is	important	because	you	want	to	find	the	root	of	this	particular	model.	In
this	case,	it's	an	N950F,	and	don’t	forget	that	you	can	mix	and	match.	You	can

also	scroll	down	and	see	your	current	build	number,	as	well	as	with	the	Samsung
devices;	we	have	something	that's	called	Knox.
Knox	is	a	security	feature	so	that	you	can	support	both	enterprise	and	personal
environments	 on	 the	 same	 device	 without	 it	 being	 compromised.	 One	 of	 the
things	 you're	 going	 to	want	 to	 do	 to	 root	 a	 device	 is,	 typically,	 in	 an	Android
device,	you	want	to	look	at	the	build	number,	tap	it	several	times	and	you	should
see	that	it	gets	into	developer	mode.
What	 that	means	 is	 that	 it	will	give	you	access	 to	 the	 resource	 through	a	USB
cable,	so	if	you	hit	“back”,	you	now	will	have	the	developer	options	available	to
you.
You	can	also	turn	on	USB	debugging	while	you	can	use	Odin	to	connect	to	the
device	to	root	it.	Next,	you	can	hit	back	and	look	at	download	mode.	To	get	into
download	mode,	 it	 will	 allow	 you	 to	 download	 ROMs,	 especially	 customized
ROMs,	onto	a	device.

To	 get	 there,	 you	 can	 do	 the	 same	 thing	 as	 before.	 Power	 it	 off,	 and	 if	 you
remember,	 to	 get	 into	 the	 bootloader,	 we	 used	 a	 Volume	 Up,	 Home	 button,
Power	button	key	combination.
All	 devices	 have	 their	way	 of	 getting	 in.	 Therefore	 you	will	 need	 to	 do	 some
research	to	figure	out	what	you	need	for	your	particular	android	device.	But	 in
this	precise	device,	I	use	a	Volume	Down	option,	Home	button	and	turn	on	the
power	and	I'm	going	to	get	a	warning	here	that	I'm	about	to	add	a	custom	ROM.
It	warns	you	that	you're	going	to	take	responsibility	for	what	you're	about	to	do
and	it	tells	me	to	continue,	I	have	to	hit	the	up	arrow	button.	Once	you	hit	the	up
arrow	button,	it	will	now	be	going	into	Download	mode.
In	the	upper	left-hand	corner,	 it	will	show	you	information	such	as	the	product
ID;	 the	 current	 binary	 is	 Samsung	 official,	 also	 shows	 you	 that	 the	 Knox
warranty	is	currently	set	for	zero.
Knox	in	the	Samsung	environment,	it’s	a	chip	that's	on	this	device,	and	if	I	do	a
custom	 ROM,	 it	 modifies	 that	 chip.	 The	 microchip	 can't	 be	 unmodified;
therefore,	 after	 you	 flash	 and	 do	 my	 own	 custom	 ROM	 on	 the	 device,	 your
warranty's	going	to	be	void.
This	is	the	one	way	that	the	vendor	can	determine	if	they	know	what	they	look
for	if	you've	done	a	custom	ROM	or	not.	While	you	are	this	mode,	you	want	to
hook	your	phone	to	your	computer	using	a	USB	cable.
Your	 computer	 should	 already	 have	 the	 drivers	 loaded	 up,	 as	 it’s	 also	 an

important	part	of	 the	preparation	for	your	device	 to	receive	a	root	and	the	new
ROM.
I	do	want	to	share	with	you	a	few	resources	that	you	can	use	as	far	as	rooting	is
concerned.	 One	 of	 the	 most	 famous	 sites	 for	 rooting	 devices	 is	 called	 XDA
Developers.	You	can	visit	the	website	on	https://www.xda-developers.com/

This	 is	a	website	 that	has	everything	about	almost	every	device	out	 there.	You
can	visit	the	site	and	select	forums	and	then	select	from	all	sorts	of	devices	that
they	support.
You	can	also	 look	at	 the	 top	devices,	 the	newest	devices,	but	 if	you	select	All
Devices,	 you'll	 see	 there	 is	 an	 overabundance	 of	 devices	 that	 are	 going	 to	 be
listed	in	there.

You	can	do	a	quick	search	on	the	website	for	a	particular	device	you	have,	and
once	you	found	it,	you	will	see	that	the	site	describes	the	device	itself,	gives	you
some	specs,	and	then	they	break	it	down	into	things	like	a	Q&A	where	you	can
figure	out	how	to	root	it	for	example.
Further	down	at	 each	device’s	page,	you	can	also	 find	 the	 custom	ROMs.	For
example,	Sun	Engine	is	a	very	popular	ROM	that's	out	there.	It's	gaining	a	lot	of
attraction	and	some	of	them	will	be	based	on	its	distribution.
The	way	 you	 can	 choose	 a	ROM	 for	 your	 device	 is	 to	 see	which	 one	 has	 the
most	activity.	You	can	also	look	at	the	number	of	views	on	the	forum	where	they
might	explain	that	they've	combined	some	of	the	best	of	the	latest	devices.
The	important	that	you	read	everything	that	developers	are	posting.	For	example,
it'll	tell	you	that	if	you	have	a	particular	model,	there	are	some	additional	things
that	you	need	to	pay	attention	to.
For	 example,	 in	 some	 cases,	 for	 a	 flawless	 experience,	 you	 should	 be	 on	 a
particular	baseband	and	therefore,	you	would	want	to	find	that	baseband	or	make
sure	you	updated	to	that.
In	 other	 cases,	 they	may	warn	 you	 that	 the	 initial	 boot	might	 take	 at	 least	 15
minutes,	 so	 don't	 get	 impatient.	 Therefore,	make	 sure	 you	 read,	 and	 you	 don't
just	start	going	at	rooting	devices	and	see	what	happens.
Some	apps	might	be	advertising	that	you	can	download	them	on	your	device	and
they	are	going	to	root	the	device	for	you.	Be	careful	with	those.	Not	saying	that
they're	terrible,	but	if	you	are	unsure	of	the	source,	as	well	as	loading	an	app	to
root	your	device,	it	does	sound	reasonable	that	they	want	to	automate	the	process
but	still	have	to	be	careful.

https://www.xda-developers.com/

I	 have	 heard	 before	 that	 if	 you	 use	 these	 types	 of	 services	 can	 be	 dangerous
simply	because	the	superuser	account	has	total	access	to	your	system.
Moving	on,	now	that	you	know	about	different	modes	and	settings,	let’s	discuss
Odin.	 There	 are	 several	 different	 versions	 of	 Odin	 out	 there,	 and	 you	 can
download	it	by	visiting	https://odindownload.com/

The	older	versions	have	been	around	for	a	long	time,	so	make	sure	that	you	have
the	 latest	 or	 even	 check	with	 the	 author	 of	 your	ROM	or	 the	 author	 of	who's
telling	you	how	to	flash	a	particular	device	because	they	need	to	tell	you	to	use	a
specific	version	of	Odin.
In	my	case	here,	I'm	using	Odin3,	version	3.10.	This	is	the	utility	that	will	brick
a	device	faster	than	anything	else,	so	you	want	to	be	very	careful	using	this	file,
and	 you	 want	 to	 read	 about	 how	 to	 use	 it.	 IT	 guys	 tend	 just	 doing	 and	 then
reading	later,	but	that's	going	to	get	you	into	problems	with	this	one.

To	 use	Odin,	 you	 have	 to	 put	 the	 phone	 into	 download	mode	 and	 plug	 in	 the
phone,	and	then	you'll	notice	that	you	have	a	little	blue	icon	saying	com	3.	That
tells	you	that	Odin	is	talking	to	your	phone	and	it	is	currently	in	download	mode.
The	 first	 thing	 you	want	 to	 do	 with	 Odin	 is	 to	member	 your	 recovery	mode.
Install	 your	 custom	 recovery,	 so	 change	 your	 bootloader.	 The	 plain	 text
bootloader	gives	you	the	ability	to	wipe	the	cache	or	do	a	factory	reset.
This	particular	bootloader	for	my	device	is	called	TWRP,	so	I	have	to	go	to	the
file	 called	 Open	 Recovery	 TRWP.	 Go	 ahead	 and	 hit	 OK,	 or	 “Open”	 and	 it's
going	to	verify	it	then	hit	Start.
This	will	upload	the	information,	and	if	you	look	at	 it,	you	will	see	that	 this	 is
your	 new	 recovery	 mode.	 Now	 you	 can	 Install,	 Backup,	 Mount,	 Advanced
options,	Wipe,	Restore,	Settings	and	Reboot.
Here,	select	Install	a	new	kernel.	The	new	kernel	is	going	to	allow	you	to	install
custom	ROMs	as	well.	You	should	see	here	that	you	have	almost	like	a	directory
structure,	so	go	ahead	and	navigate	if	you	have	saved	your	file	to	your	external
SD	card	that’s	called	Emotion	kernel.
Go	 ahead	 and	 swipe	 to	 install	 that,	 and	 then	 you	 also	 want	 to	 install	 your
SuperSU	 to	 give	 you	 superuser	 accounts	 that	 have	 rights	 to	 everything,	 then
reboot	the	device.
Once	your	phone	is	back,	you'll	notice	that	nothing's	changed	except	for	the	fact
that	under	my	apps,	you	have	 something	called	SuperSU,	 so	 the	application	 is
running,	and	now	you	know	that	you	have	superuser	rights.

https://odindownload.com/

Knox	 is	 going	 to	 fail	 because	Knox	was	 the	 security	mechanism	 that	 you	 just
broke	and	 that's	 the	only	 time	you're	going	 to	see	 that	 little	error	message	pop
up.	 If	 you	 go	 back	 into	 your	 download	mode,	 you	will	 see	 that	 it	 voided	 the
warranty.
Next,	 restart	 the	 device,	 and	 get	 back	 in	 download	 mode.	 Here,	 you'll	 notice
under	Knox	warranty;	 it	 now	 tells	 you	 that	 you	are	void.	From	 there,	 you	can
download	your	own	custom	ROM	and	install	it.	The	reason	why	you	had	to	do
the	 custom	 recovery	 and	 the	 custom	 kernels	 is	 that	 the	 stock	 recovery	 doesn't
allow	 you	 to	 install	 any	 ROM,	 unless	 it's	 been	 digitally	 signed	 by	 the
manufacturer,	which	would	be,	in	this	case	here,	Samsung.
But	now,	you	can	load	up	a	ROM	that	doesn't	have	a	whole	bunch	of	bloatware
in	it,	that's	a	bit	more	secure.	You	don't	have	to	wait	for	your	ISP	or	Samsung	to
come	 out	with	 a	 fix	 for	 a	 particular	 issue.	 The	 other	 downside	 of	 rooting	 and
doing	your	custom	ROMs	is	that	once	you've	rooted,	you	will	no	longer	get	over
the	air	updates	from	your	vendor.
You	might	get	 the	updates,	but	 it	won't	 let	you	apply	 them,	because	 it	will	see
that	the	security	has	been	broken.	You	can	always	unroot	your	device	and	there
are	steps	on	how	to	do	it,	but	now	that	the	device	is	rooted,	let’s	discuss	different
types	of	attacks	that	can	take	place	against	Android-based	devices.

Chapter	9	The	danger	of	Free	Apps

First	 of	 all,	 most	 people	 keep	 on	 installing	 applications	 from	 sources	 or
developers	they	don’t	know.	Granted,	some	apps	come	from	major	suppliers	and
vendors	such	as	Microsoft	or	Google,	but	what	about	John	Smith	and	the	game
called	Tetris	right?
Maybe	he's	trying	to	copy	of	a	popular	game.	But,	John	Smith	can	decompile	an
existing	 game	 or	 create	 one	 from	 scratch	 and	 just	 simulating	 an	 existing	 one.
Let's	say	that	you	want	to	take	a	popular	Tetris	game,	and	you	are	going	to	pay
for	it.
Then,	you	are	going	 to	decompile	 it.	Decompiling	can	also	help	an	attacker	 to
see	what	vulnerabilities	are	accessible	through	the	application.	Maybe	you	don't
have	to	do	anything	special	 to	 it,	because	it’s	 just	writer	poorly.	Next,	you	can
download	 a	 program	 such	 as	 dex2jar	 from	 https://github.com/pxb1988/dex2jar	 ,	 that
Dalvik	VM	uses,	and	it	converts	it	into	Java	or	a	JR	file.

You	 then	 download	 a	 Java	 Decompiler	 from	 https://github.com/java-decompiler/jd-
gui/releases	 ,	 and	you	can	 start	 to	 inspect	different	parts	of	 the	application.	Next,
you	will	 take	 your	mischievous	 code,	 such	 that	 you	 can	 track	 passwords	 that
users	may	type	in	via	web	browsers.	As	a	result,	you	can	disassemble	the	APK
on	the	fly.
Then,	you	simply	repackage	the	now	infected	program,	and	distribute	it	through
unofficial	 marketplaces,	 or	 maybe	 through	 a	 torrent.	 Relying	 on	 the	 social
Engineering	aspect	of	greed,	many	people	will	download	and	install	it.
One	of	the	ways	that	you	can	implement	a	countermeasure	against	these	types	of
attacks,	especially	if	you're	developing	your	own	apps,	is	to	use	something	like	a
Pro	 Guard	 from	 https://github.com/Guardsquare/proguard	 ,	 which	 is	 a	 program	 that
obfuscates	the	Java	classes	by	remaining	the	classes	and	field	to	methods.
This	isn't	a	best	way	of	completely	defending	against	everything,	but	it	slows	the
attacker	 down.	 There	 are	 another	 types	 of	 network	 attacks	 that	 you	 can
implement	in	different	ways	too.	But	as	a	countermeasure,	the	first	thing	you	can
do	 is	 start	 looking	at	network	 traffic	 to	 find	out	which	applications	are	pulling
http	or	https	traffic.

Most	applications	will	advertise	themselves	that	they	are	protecting	you	because
they're	 using	TLS	 to	mitigate	 the	 risk	 of	 you	 being	 involved	 in	 a	man-in-the-
middle	attack.

https://github.com/pxb1988/dex2jar
https://github.com/java-decompiler/jd-gui/releases
https://github.com/Guardsquare/proguard

But,	we	can	quickly	get	around	 this	because	all	we	have	 to	do	 is	add	our	own
trusted	CA	or	a	private	certificate	 to	 the	Android	Device.	Then	implement	 that
on	a	proxy	server.	And	you	just	got	hocked,	because	at	this	point,	I'll	be	able	to
intercept	 all	 your	 https	 traffic	 the	 application	 is	 using	 with	 a	 product	 such	 as
Burp	Suite	from	here	https://portswigger.net/burp/communitydownload

At	this	point,	I	can	then	start	manipulating	the	HTTP	requests	and	the	response
between	 the	 application	 and	 the	 endpoints	 of	 its	 contact.	Once	you	 set	 up	 this
type	of	environment,	you're	able	to	bypass	the	client-side	validation.
One	of	the	most	significant	issues	that	developers	have	is	the	tendency	to	disable
certificate	verification	and	validation	so	that	they	can	use	self-signed	certificates
for	 testing.	 Then	 they	 forget	 to	 remove	 this	 feature,	 which	 leaves	 their
application	open	to	man	in	the	middle	attacks.	Therefore,	do	not	trust	data	from
anybody	or	anyone	by	going	to	websites.

https://portswigger.net/burp/communitydownload

Chapter	10	Android	Attack	Types

We	already	discussed	NFCs	in	the	aspect	of	how	great	they	are.	As	an	attacker,
you	might	be	looking	out	for	legitimate	NFC	tags.	They	could	be	in	the	mall	or
at	the	grocery	store,	and	you	can	create	your	tag	which	allows	the	user	to	tag	or
tap	that	tag	to	get	information.
Well,	all	you	have	to	do	is	create	your	tag.	Place	it	on	top	of	that	tag,	or	tear	off
their	old	one	and	put	yours	there	in	return.	Then	you	send	them	off	to	a	website
that	has	an	exploit	to	a	vulnerability	in	the	WebKit.
So,	 any	 end-user	 who	 scans	 the	 tag	 would	 find	 their	 device	 rooted	 and
compromised.	 Rooted,	 I	 mean	 not	 in	 the	 right	 way.	 Another	 attack,	 that's	 an
interesting	one	that	NFC	opens	up,	is	something	called	a	relay	attack.

To	execute	 a	 relay	 attack,	 all	 the	 attacker	needs	 is	 two	devices	which	 act	 as	 a
token	 and	 a	 reader.	 They	 create	 a	 connection	 via	 a	 proxy	 channel,	 typically
Bluetooth,	but	could	be	Wi-Fi	as	well.
This	allows	relaying	the	information	over	a	greater	distance.	The	proxy	reader	is
then	used	 to	communicate	with	 the	real	 token,	while	 the	proxy	 token	 is	placed
near	a	real	reader.
The	 token	 assumes	 it's	 talking	 to	 the	 reader	 and	 responds	 accordingly.	 That
response	 is	 then	 relayed	 back	 to	 the	 token	 proxy,	 which	 will	 transmit	 the
information	back	to	the	reader.	You'll	never	guess	what	information	we	end	up
with	on	our	systems.
So,	when	it	comes	to	data	leakage,	normally	the	Android	operating	systems	stops
applications	from	getting	access	to	other	application	files	or	 their	 internal	files,
because	 each	 application	 is	 assigned	 a	 unique	 user	 identifier,	 and	 a	 group
identifier.
But,	 an	 application	 could	 create	 a	 “word	 readable”	 or	 a	 “word	writeable”	 file.
What	this	could	do	for	example,	is	that	imagine	that	you	have	an	application	like
Twitter	that	stores	credentials	to	talk	back	to	it’s	server.
In	a	meanwhile,	a	malicious	application	on	the	same	device	could	read	that	file
and	send	your	login	information	back	to	my	evil	server.

Another	 data	 leakage	 area	would	 be	 external	 storage.	 Remember	 that	 any	 file
that's	 stored	 on	 your	 external	 SD	 is	 globally	 readable	 and	 writeable	 to	 every
application	on	the	device.

Therefore	 you	 should	 stop	 storing	 sensitive	 information	 like	 your	 passwords,
server	 names	 on	 IP	 addresses	 on	 external	 SD	 cards.	 Another	 data	 leakage
location	 could	 be	 in	 the	 fact	 that	 SQLite	 is	 supported,	 or	 it's	 implemented
throughout	Android.
Anytime	we	see	SQL,	it	means	that	we	have	to	be	worried	about	SQL	injection
attacks.	 As	 far	 as	 the	 developers	 are	 concerned,	 they	 have	 to	 avoid	 storing
information	in	unencrypted	formats	of	any	type.
Also,	you	should	never	create	globally	readable	or	writeable	files,	and	you	must
also	encrypt	your	phone.	Lastly,	we	can	look	at	 logs.	Information	always	leaks
out	via	logs.
Developers	document	way	too	much	during	the	debugging	process,	so	they	can
test	 to	 see	what's	 going	on,	while	 they	 forget	 to	 turn	 those	off.	Some	Android
applications	will	 search	 the	device	or	gain	access	 to	 these	application	 log	 files
during	installation	time.

A	great	example	of	this	was	when	Samsung	stored	touch	coordinates	inside	of	a
log	file,	which	would	allow	an	application	to	determine	the	user's	pin,	based	on
the	log	touch	coordinates.
Moving	on,	we	also	have	a	URI	scheme.	This	is	when	there	is	a	malicious	web
page	loaded	into	the	Android	browser	that	can	get	hold	of	the	contents	of	a	file
on	the	SD	card.
One	way	to	protect	yourself	is	to	disable	JavaScript	on	your	Android	browsers.
Also,	you	could	look	at	using	a	different	browser	that	might	prompt	you	before
downloading	 a	 file,	 or	 change	 the	 settings	 of	 your	 browser,	 so	 that	 it	 prompts
you.
Many	times	if	you	use	the	default	browser	on	the	device,	you're	relying	on	the
ISP	to	release	a	patch.	Technically,	you	could	unmount	the	SD	card.	There	are
also	 insecure	 components,	 such	 as	Wi-Fi.	 What	 if	 there's	 a	 vulnerability	 that
allowed	any	application	permission	to	acquire	your	Wi-Fi	credentials	right?
This	vulnerability	had	modified	a	function	in	the	Wi-Fi	configuration	class	that
included	the	password	to	be	stored.	That	allowed	you	to	recover	a	list	of	all	the
objects	that	the	Wi-Fi	configuration	object	had	taken	a	look	at	and	seen.
That	would	have	 the	passwords	 in	clear	 text	 instead	of	 the	 standard	storage	of
asterisks,	or	an	empty	string.	Maybe	you	can	see	why	custom	ROMs	are	great
because	you	don't	have	to	worry	about	certain	vendors	having	code	that	makes
you	worry	when	you	think	about	what	they	have	access	to.

The	problem	is	that	the	attackers	are	getting	very	tricky	in	terms	of	how	they	to
deploy	malware,	that	it's	hard	sometimes	to	determine	what	is	real	malware	and
what	 is	 an	 application	 that's	 just	 been	 modified	 by	 injecting	 their	 piece	 of
malware	inside	the	application.
As	 far	 as	 the	 application	 developers	 are	 concerned,	 is	 that	 sometimes	we	 start
with	an	application	that	doesn't	seem	too	bad,	but	then	it’s	all	go	wrong.
When	 you	 think	 about	 all	 the	 different	 applications	 we	 have	 installed	 on	 our
mobile	devices,	it's	probably	more	than	what	average	people	have	on	their	PC-s.
Applications	on	the	mobile	platforms	do	help	us,	as	far	as	making	sure	we're	not
susceptible	to	some	vulnerabilities	that	a	website	might	give	us.	We	might	go	to
a	 website	 to	 book	 flights,	 instead	 of	 going	 to	 the	 site	 and	 hoping	 they're	 not
compromised,	 we	 can	 go	 to	 Flight	 Company’s	 app,	 and	 because	 their	 app	 is
sandboxed,	hopefully,	we	are	secured.

Applications	that	we	get	through	the	app	stores	are	typically	safe.	But,	there	was
an	app	called	DroidDream,	 that	was	distributed	 through	 third-party	application
marketplaces.
DroidDream	allowed	the	user	to	go	through	the	install	process,	and	you	got	the
application.	But,	you	also	got	apps	 that	were	repackaged	with	 the	DroidDream
malware	 on	 it.	 So	 whenever	 you	 are	 installing	 an	 application,	 watch	 the
permissions.

For	example,	if	you	are	going	to	visit	the	Play	Store	and	check	if	you	have	any
updates,	you	might	see	several	updates.	Some	of	 them	are	Google	updates,	but
many	times	people	will	visit,	and	what	will	happen	is	that	when	we	see	updates,
people	select	“Update	All”,	and	they	don't	pay	attention	to	what's	happening.
Well,	the	application	itself,	or	the	vendor	could	start	all	innocent,	but	over	time
through	updates,	they	might	require	more	permissions,	just	because	they	want	to
be	a	little	deceitful.
Therefore	you	should	always	look	at	permission	details.	That	will	tell	you	that	it
needs	Wi-Fi	connectivity,	as	well	as	full	network	access.	Well,	you	have	to	think
about	what	they	want	or	why	would	they	want	full	network	connectivity.
If	 it	 makes	 sense,	 you	 might	 go	 ahead	 and	 update	 because	 some	 apps	 don't
require	any	special	or	additional	permissions.	This	helps	 to	warn	you	when	an
application	is	changing	the	permissions	that	you	gave	it	initially.
This	part	of	the	social	engineering	aspect	of	hacking	is	that	we	tend	just	hitting

accept.	Other	apps	might	want	to	have	access	to	some	Identities.
For	example,	they	want	to	find	accounts	on	your	device.	Perhaps	they	want	to	do
that	 because	 your	 account	 is	 related	 to	 your	 email	 account,	 so	 it's	 looking	 for
those	accounts.
Regards	to	location	checks,	it	could	be	because	you	are	subscribed	to	a	service,
and	the	App	providers	want	to	tell	you	where	the	closest	facility	is	available	to
you.
Yet,	 if	 they	 want	 to	 have	 access	 to	 your	 Bluetooth	 connection,	 that	 should
concern	you	unless	it’s	a	big	company	that	you	already	trust.	Big	businesses	will
not	 be	 going	 to	 do	 anything	 to	 put	 their	whole	 company	 in	 jeopardy.	At	 least
that’s	what	we	all	hope	unless	they	are	compromised	right?

Many	apps	have	ads,	especially	the	ones	that	are	free	versions.	They're	going	to
have	some	ads	popping	up,	and	they	want	to	know	where	you	are	located	so	that
they	 can	 focus	 those	 ads	 based	 on	 your	 location.	 The	 other	 issue	 that	 if	 they
would	 need	 more	 than	 just	 your	 Wi-Fi	 connection.	 Wi-Fi	 only	 makes	 sense
because	maybe	they're	going	to	download	those	ads	to	you.
But	maybe	they	also	want	to	see	when	you	are	online	and	when	you	are	offline.
As	 a	 result,	 I	 recommend	 you	 not	 only	 watch	 your	 permissions	 on	 your
applications,	but	do	a	 little	research,	and	find	out	what	other	people	are	saying
about	the	application.	Not	necessarily	on	the	review	page	for	 that	app,	because
they	 have	 people	 that	 post	 positive	 comments	 and	 they're	 paid	 to	 post	 those
comments.

Chapter	11	Securing	Android	Devices

When	it	comes	to	locking	down	Android	devices,	there	are	a	couple	of	things	we
need	 to	 take	 a	 look	 at	 first.	 Some	 people	 still	 can’t	 decide	 (myself	 included)
which	 is	 better,	 an	 Android	 or	 Apple	 device.	 Well,	 it	 depends	 on	 your
background.
If	the	user	has	more	experience	or	a	technical	background	in	IT,	probably	going
towards	Android	rather	than	Apple	is	a	better	choice.	But,	if	it's	just	an	end-user
or	a	family	member,	who	wants	a	device	to	work,	then	going	towards	the	Apple
platform	 is	 more	 reasonable.	 At	 the	 same	 time,	 there	 are	 many	 technology
professionals	just	vale	Apple.
The	 biggest	 reason	 that	 you	want	 to	 look	 at	 these	 two	 different	 platforms,	 or
consider	these	two	distinct	platforms,	is	because	of	the	attacks	that	are	thrown	at
them.	Let	me	ask	you	a	question.	Who	has	a	more	significant	market	share?

Because	 whoever	 has	 a	 more	 significant	 market	 share	 is	 going	 to	 have	 more
attacks	 associated	 with	 it.	 In	 this	 case,	 Android	 does	 have	 a	more	 substantial
market	 share.	 The	 fact	 that	Android	 is	 so	 fragmented,	with	 so	many	 different
vendors,	they	have	a	more	significant	market	share	compared	to	Apple.
The	other	issue	is	the	approval	process	for	applications.	this	is	going	to	be	where
Android	 suffers,	 because	 what	 happens	 is	 that	 developers	 who	 create	 an
application	typically	pay	a	one-time	fee,	and	they	can	upload	their	application	to
the	Google	Play	Store.	After	that,	within	an	hour,	the	applications	start	to	appear.
Versus	 Apple,	 that	 goes	 through	 and	 does	 statistical	 analysis	 to	 detect	 any
improper	usages	of	 their	API.	This	 then	causes	 the	 application	 to	 take	about	 a
week	to	be	approved.
Also	developers	are	required	to	pay	like	about	$100	for	a	developer	fee,	which
does	 raise	 the	 bar	 as	 far	 as	 entry	 into	 the	App	Store.	 In	 a	 nutshell,	Apple	 can
decide	whether	or	not	your	app	makes	 it	 into	 the	store.	To	get	 into	 third	party
application	stores,	Android	is	your	choice	because	it	does	support	installing	apps
from	unknown	sources.
This	 means	 that	 the	 user	 can	 install	 from	 these	 third-party	 app	 stores.	 Just
because	the	app	says	that	it's	signed,	doesn't	necessarily	mean	that	it's	approved,
because	Android	doesn't	care	who	signs	the	application.
Versus	Apple,	which	only	allows	users	to	install	iOS	applications	from	its	App
Store.	There's	no	side-loading,	natively.	So,	the	iOS	kernel	enforces	the	security

mechanism	by	only	executing	signed	code	by	an	approved	party.
While	Apple's	approach	is	a	strict	control,	it	does	give	you	the	added	benefit	of	a
reduced	target,	as	far	as	malware	is	concerned,	not	that	it's	invulnerable.	Versus
Google's	approach	which	provides	you	with	a	lot	more	for	and	a	little	bit	more
freedom	too.	It	is	up	to	the	end-user	really.
Personally	had	both	Android	and	Apple	products,	and	they	all	useful	as	well	bad
features,	or	I	should	say	not	as	user-friendly	on	one	platform,	while	it	is	on	the
other.
Back	to	the	topic	of	protecting	ourselves,	the	first	rule	is	this:	No	side-loading.
Some	could	even	argue	of	possible	security	issues	that	it's	more	than	likely	that
performance	or	hardware	related	issues	are	also	important,	but	you	will	never	go
and	download	an	APK	file,	or	a	collection	of	APK	files	from	a	torrent	and	side-
load	them.

Also,	make	sure	that	you	keep	on	eye	your	updates.		When	it	comes	to	updates,
not	 only	 should	 you	 make	 sure	 that	 you	 are	 updating	 the	 applications
themselves,	but	the	OS	as	well.
If	you're	rooted	the	phone,	you	're	going	to	have	to	come	up	with	an	alternative
way	 of	 updating.	 Also,	 make	 sure	 that	 you	 use	 some	 security	mechanism	 for
locking	out	the	screen.
Don't	do	the	standard	swipe	to	unlock,	because	if	you	lose	the	phone,	anybody
can	 undo	 that.	 Certain	 of	 the	 newer	 technologies	 that	 we're	 seeing	 include
fingerprint	scanners	or	facial	recognition.
At	this	point,	most	of	these	are	not	100%	foolproof,	but	at	least	it	slows	attackers
down.	 Also,	make	 sure	 that	 you	 use	 a	 legit	 App	 Store.	 Stay	with	 the	 leading
vendors	such	as	Amazon	or	Google.	Those	two	are	being	the	primary	sources	for
Android,	at	least	in	the	early	2020s.
Also,	get	yourself	an	antivirus.	A	quick	Google	search	for	the	best	antivirus	for
Android	including	the	current	year	will	give	you	some	results.	Remember,	even
that	it's	a	mobile	device,	it's	still	a	computer	system,	so	we	need	to	protect	it.
Also,	don’t	 forget	 to	protect	 the	apps.	For	example,	 if	you	have	some	apps	on
your	mobile	device	that	used	for	personal	 information,	so	when	you	tap	on	the
app,	it	should	ask	you	to	type	in	a	separate	password.
This	 way,	 you	 can	 make	 sure	 if	 you	 lose	 it	 somewhere,	 people	 don't	 start
transferring	money	out	of	your	account.	Anything	you	wouldn't	want	a	stranger,
who	 picked	 up	 your	 phone	 to	 be	 able	 to	 see,	 you	 need	 to	make	 sure	 that	 you

protect	it.
For	 those	 who	 don't	 know	 much	 about	 technology,	 I	 would	 recommend	 No
Rooting.
In	 summary,	we	 have	 looked	 at	 the	 architecture	 of	 the	Android	 platform.	We
talked	about	its	security	model,	and	if	you	recall,	that	architecture	starts	with	the
Linux	 kernel,	 which	 is	 there	 for	 support	 of	 your	 display	 drivers	 or
communication	between	the	device	and	the	operating	system.
Then	we	also	discussed	different	libraries	that	are	in	charge	of	handling	2D	and
3D	graphics.	We	also	covered	the	Service	Manager	and	SQLite.	Next,	we	have
discussed	 the	Free	Type,	which	handled	our	 fonts,	as	well	as	 the	core	 libraries
and	the	Dalvik	Virtual	Machine.

We	 also	 discussed	what	 an	Application	 Framework	 is,	 where	 the	 applications
help	support	the	default	apps,	and	the	applications	themselves.	We	then	looked
at	understanding	how	the	device	worked	and	talked	about	the	security	model	that
they	have	as	far	as	permissions	required	for	applications.
Likewise,	we	have	discussed	the	application	modules	and	data,	and	how	data	is
stored	on	SD	cards	as	well	as	what	problem	we	have	with	external	SD	cards.
Next,	we	 have	 covered	NFC,	 aka	 near	 field	 communications	 and	 the	 problem
that	 it	can	create	for	us.	We	then	took	a	 look	at	 the	concept	of	rooting	and	the
bootloader.
Next,	we	have	installed	a	custom	bootloader	via	the	root	process,	and	install	the
SuperSU	user	 on	 the	 device,	 so	 that	we	 can	do	whatever	we	want.	Lastly,	we
went	 through	 different	 attacks,	 such	 as	 internet-based	 attacks,	 network	 traffic
attacks,	information	leakage,	and	the	NFC	relay	attack.

Chapter	12	IOS	Architecture	Basics

Once	 you	 get	 into	 an	 Apple	 environment,	 it's	 very	 restrictive.	 Yet,	 Apple
controlling	both	hardware	and	software,	it	does	lead	to	better	controls	all	around.
First,	we	are	going	 to	make	sure	 that	you	understand	 the	IOS	architecture,	and
how	Apple	is	designed.	We'll	also	look	at	understand	the	device	itself,	and	then,
instead	 of	 talking	 about	 rooting,	 in	 the	 Apple	 world,	 we	 do	 something	 called
jailbreaking.
Lastly,	just	like	in	the	Android	environment,	we	will	discuss	how	we	can	secure
the	IOS	or	Apple	devices.	To	begin	with,	Apple	is	exceptionally	unique.	It	has
some	similarities	as	far	as	it’s	layered	to	Android.

There	 are	 several	 different	 layers	 that	 we'll	 take	 a	 look	 at,	 but	 this	 particular
operating	 system	 is	 called	 IOS,	 aka	 Integrated	 Operating	 System.	 It	 is	 the
platform	that	Apple	uses	for	iPhones,	iPads,	iPods.
Apple	does	not	allow	iOS	to	be	implemented	on	any	non-Apple	devices	that	are
out	 there,	 and	 just	 like	 what	 we	 have	 with	 Android,	 IOS	 is	 simply	 an
intermediary	between	the	hardware	and	the	applications.
Applications	are	not	supposed	to	try	to	access	hardware	directly.	Instead,	they're
going	 through	 several	 different	 layers	 of	 the	 architecture.	 The	 first	 one	 is	 the
core	OS.
The	system-level	involves	the	kernel	environment,	the	drivers,	and	the	low-level
UNIX	 interfaces	 of	 the	 operating	 system.	 IOS	 provides	 a	 set	 of	 interfaces	 for
accessing	many	of	the	features	of	the	operating	systems.
When	devs	create	applications,	those	features	are	handled	through	the	lib	system
library,	 and	 the	 interfaces	 are	 C-based,	 which	 gives	 us	 the	 ability	 to	 control
things	such	as	networking	or	BSD	sockets,	 locale	information,	also	networking
components,	as	well	as	the	file	system	access.
It's	 also	 in	 charge	of	 things	 like	DNS	 services	 and	Bonjour.	 It	 also	has	 a	 core
Bluetooth	 framework,	which	 is	 responsible	 for	what	Apple	devices	sound	 like.
It's	 a	 framework	 that	 allows	 developers	 to	 interact	 with	 the	 Bluetooth
accessories,	or	to	create	accessories	via	Bluetooth,	so	we're	able	to	scan	for	those
accessories,	then	connect	or	disconnect	from	them.
We're	 able	 to	 broadcast	 using	 iBeacon.	 We	 can	 preserve	 the	 Bluetooth
connections	and	restore	the	links	when	your	app	needs	that	Bluetooth	device.

There's	also	a	generic	security	service	framework	or	also	known	as	GSS,	which
gives	 you	 a	 standard	 set	 of	 security	 services	 for	 IOS	 applications.	Besides	 the
regular	 interfaces	 that	 it	 supports,	 IOS	 can	 also	 include	 some	 additions	 for
managing	 credentials	 that	 are	 not	 part	 of	 the	 standard	 but	 may	 be	 used	 by
specific	applications.
We	 also	 have	 the	 framework	 for	 the	 external	 accessories,	 which	 gives	 us	 the
ability	 to	 communicate	 with	 hardware	 accessories	 over	 the	 30	 pin	 connectors
and	lightning	connectors,	or	even	using	Bluetooth.
Then	 we	 also	 have	 the	 standard	 security	 framework	 which	 Apple	 uses	 to
guarantee	 the	 security	 of	 data	 that	 applications	 utilize.	 This	 interface	manages
the	access	 to	 certificates,	public	 and	private	keys,	 trust	policies,	 as	well	 as	 the
storage	of	certificates	and	cryptographic	keys	in	a	key	chain.
Without	 getting	 in-depth	 with	 key	 chains,	 the	 key	 chain	 can	 be	 used	 among
multiple	 apps	 that	 you	 create.	 This	 way	 it’s	 easier	 for	 applications	 to
interoperate.

Above	 this	 layer,	 we	 have	 the	 core	 services	 layer.	 This	 layer	 has	 different
features	associated	with	 it,	such	as	 the	peer-to-peer	services	which	your	device
uses	to	connect	or	initiate	a	connection	to	other	devices	that	are	nearby.	This	is
mostly	used	in	games.
There's	also	the	iCloud	storage.	This	feature	allows	you	to	write	applications	so
that	 the	 user's	 documents	 and	 data	 are	 pushed	 to	 the	 iCloud.	 There's	 also	 the
block	objects	feature,	which	will	enable	developers	to	incorporate	their	Object	C
and	C	 codes,	which	 is	 a	 developer's	 concept	 as	 far	 as	 a	 language	 construct	 is
concerned.
It	 allows	 them	 to	 implement	 callbacks,	 delegation	 methods,	 and	 other
mechanisms	 that	 they	 can	 use	 to	 combine	 the	 code	 that	 needs	 to	 be	 executed
with	the	associated	data	that	it	needs	to	be	performed	with.
There	 are	 a	 bunch	 of	 services	 that	 developers	 use,	 but	 we	 also	 have	 data
protection	 features	 that	 allow	 the	 apps	 to	 work	 with	 data	 that	 needs	 to	 be
encrypted.
This	way,	if	the	device	is	locked,	the	contents	are	inaccessible	to	the	application
or	possibly	any	other	app	that	may	be	considered	an	intruder.	When	the	device
gets	unlocked	by	the	user,	a	decryption	key	is	created,	which	allows	the	app	to
access	the	file.
The	core	services	also	include	the	SQLite.	This	allows	a	developer	to	embed	an

SQL	 database	 within	 the	 app	 without	 having	 to	 run	 separate	 remote	 database
server	processes.	Therefore	your	app	could	create	databases.
It	 could	 manage	 tables	 and	 records.	 There's	 also	 the	 massive	 core	 service
framework.	 The	 framework	 itself	 has	 several	 sub-components,	 things	 like	 the
account	framework	for	signing	in.
We	also	have	the	address	book	framework,	the	ad	support	framework,	the	core
location	 framework,	 the	 media	 framework,	 the	 motion	 framework,	 and	 the
telephony	framework.
Above	this	particular	layer,	we	have	the	media	layer.	This	layer	is	in	charge	of
several	 technologies,	 and	 those	 technologies	would	 include	anything	 that	deals
with	media	such	as	the	camera,	audio,	as	well	as	both	2D	and	3D.

It	 uses	 OpenGL	 and	 GLKit	 that	 are	 in	 charge	 of	 both	 2D	 and	 3D	 rendering.
There's	also	the	core	graphics	framework,	which	is	also	known	as	Quartz.	It's	not
as	 well-performing	 as	 OpenGL,	 but	 if	 a	 developer	 needs	 to	 do	 a	 custom
rendering	in	2D,	they	can	use	Quartz.
Then	there's	also	the	core	animation	feature,	which	does	exactly	what	it	sounds
like	if	you	want	to	change	the	animation	process	of	even	if	it's	just	displayed	for
an	app,	how	the	app	zooms	in	and	out	as	you	touch	things.
Above	this	level,	we	have	the	Cocoa	Touch.	This	is	a	critical	layer	because	it's
the	 first	 layer	 that	most	 developers	 deal	with.	 It's	 responsible	 for	 the	 interface
that	we	see	 that's	standardized	throughout	 the	Apple	platform.	Our	buttons.	It's
also	in	charge	of	the	Text	Kit,	which	is	what	is	in	charge	of	handling	text	and	the
way	the	text	is	formatted;	paragraphs,	columns,	and	the	pages.
Cocoa	Touch	is	also	in	charge	of	our	push	notification	services,	so	we	can	push
text	 notifications	 or	 add	 a	 badge	 to	 your	 icon	 that	 says	 that	 you've	 got	 a
notification,	such	as	a	new	text	message.
There's	also	the	auto-layout	feature,	which	allows	developers	to	create	interfaces
with	a	tiny	amount	of	code.	You	could	say	that	an	interface	would	always	be	10
points	 away	 from	 the	 right	 edge	 of	 a	 parent's	 view,	 so	 it's	 in	 charge	 of	 our
layouts.
There's	also	the	gesture	recognizer,	which	picks	up	the	pinching	technology	that
Apple	is	famous	for.	Then	there's	the	standard	system	view	controller.	This	way,
Apple	can	make	sure	that	applications	presented	in	a	very	consistent	experience,
whether	 they're	 in	 your	 application	 or	 a	 different	 application.	 It's	 just	 one
environment.

There	 are	 also	 other	 types	 of	 Cocoa	 Touch	 frameworks,	 including,	 there's	 an
Address	 Book	 UI,	 there's	 an	 Event	 Kit	 UI,	 a	 Game	 Kit,	 a	 Map	 Kit,	 even	 a
Twitter	 framework,	 and	 the	 UI	 Kit	 framework,	 which	 handles	 copying	 and
pasting,	multitasking,	PDF	creation	and	so	on.

Chapter	13	IOS	Hardware	Security

Let's	 discuss	 an	 Apple	 device	 in	 detail,	 and	 in	 this	 case	 here,	 we'll	 try	 to
understand	where	 it	 came	 from	and	how	 it	 operates.	Back	 in	 the	1980s,	Steve
Jobs	had	gotten	forced	out	of	Apple	and	he	went	and	founded	a	company	called
NeXT.
NeXT	 was	 focused	 on	 creating	 powerful	 workstations	 for	 both	 business	 and
educational	purposes.	The	company	wasn't	as	successful	as	Steve	had	thought	it
would	have	been,	but	it	did	sell	over	50,	000	computers.
When	it	comes	to	the	framework	of	NeXT,	it	was	used	to	lay	the	foundation	of
the	first	web	server	and	web	browser	software.	The	NeXT	environment	was	built
off	of	Objective-C.

In	1996,	Apple	purchased	NeXT.	This	was	when	Steve	Jobs	made	his	comeback
into	Apple,	and	with	that,	they	introduced	the	technology	called	OpenStep.	This
was	 the	 new	 operating	 system	 for	 NeXT,	 and	 technically	 they	 renamed	 it	 to
NEXTSTEP.
NEXTSTEP	was	 then	 utilized	 as	 a	 replacement	 to	 the	Mac	OS	 or	 the	 classic
macOS	 environment.	 In	 2007,	Apple	 announced	 that	 they	 are	 getting	 into	 the
new	mobile	platform	via	the	iPhone,	and	this	did	change	the	electronic	industry.
Apple	has	been	very	inventive	when	it	comes	to	pushing	things	to	the	next	level.
For	 example,	 the	 iPod	 was	 instrumental	 in	 getting	 us	 into	 digital	 recording,
where	 the	 iPhone	 was	 the	 next	 step	 to	 creating	 mobile	 devices	 that	 are	 so
powerful	today.
When	they	first	released	it,	they	called	it	the	iPhone	OS,	and	only	later	renamed
to	 just	 IOS.	 Because	 of	 the	 success	 of	 the	 iPhone,	 as	 Apple	 released	 new
products	such	as	iPad	or	iPod	Touch,	they	used	the	same	operating	system.
When	 it	 comes	 to	Apple	TV,	 it's	 different	 than	 some	of	 the	 other	 products	 by
Apple,	because	it's	an	embedded	device.	It's	not	designed	for	mobility,	but	in	its
heart,	it	still	runs	a	version	of	iOS.	When	it	comes	to	security,	Apple's	been	able
to	control	the	safety	of	their	devices,	because	they	manage	not	only	the	operating
system	but	also	the	hardware	itself.
At	 the	heart	of	 the	hardware	 for	 the	 iOS	devices,	we	are	utilizing	ARM-based
processors,	and	that	would	also	include	the	current	A	series	of	CPUs	by	Apple.
Apple	devices	have	many	similarities,	but	each	device	is	relatively	different.
They	 do	 share	 some	 of	 the	 same	 frameworks	 and	 layers	 that	 support	 the	 iOS

platform.	 Apple	 also	 releases	 major	 updates	 yearly.	 They	 push	 out	 security
updates	all	the	time,	but	significant	updates	are	typically	done	every	year.
As	far	as	its	footprint	is	concerned	on	the	devices,	it	usually	takes	up	about	1.2
GB	of	space,	which	is	low	for	an	OS,	but	there	are	so	many	different	versions	of
these	 products	 that	 some	 are	 different,	 and	 it	 also	 depends	 on	 when	 you	 are
reading	this	book.
When	it	comes	to	the	bootup,	this	is	where	the	security	of	Apple	shines.	During
the	entire	startup	process,	every	component	that's	involved	in	the	bootup	process
or	the	startup	process	has	been	cryptographically	signed	by	Apple	to	make	sure
that	the	device	is	what	it	is,	and	it	hasn't	been	modified.
Those	things	include	the	bootloader,	the	kernel	extensions,	the	kernel	itself,	and
baseband	firmware.	When	an	iOS	device	is	turned	on,	the	application	processor
immediately	executes	a	code	from	read-only	memory	aka	the	boot	ROM.

This	 boot	 ROM	 is	 laid	 down	 on	 the	 chip	 during	 fabrication.	 Therefore	 it	 is
implicitly	trusted	by	the	device.	The	boot	ROM	code	comprises	the	Apple	Root
CA	Public	Key,	and	it	is	used	to	verify	that	Apple	signs	the	low-level	bootloader
before	it	continues	to	load.
This	is	one	of	the	first	steps	that's	used	in	the	chain	of	trust	as	the	machine	boots
up	 and	 lays	 our	 foundation	 for	 us.	 After	 the	 low-level	 bootloader	 fires	 off,	 it
verifies	and	runs	the	next	stage	of	the	bootloader	which	is	iBoot,	which	in	turn
then	verifies	and	runs	the	iOS	kernel.
If	 the	device	is	a	cell	phone	or	has	cell	phone	service,	 the	baseband	subsystem
also	 utilizes	 its	 boot	 process	 with	 signed	 software	 and	 keys	 that	 have	 been
verified	 by	 the	 baseband	 processor	 that	 has	 been	 loaded	 by	 the	 cell	 phone
provider.	This	is	how	they	used	to	test	and	made	sure	that	you	had	an	iPhone	on
the	ISPs	network	when	you	had	to	be	on	a	specific	Carrier.
It's	 still	 utilized	 today	 because	 the	 cell	 phone	 vendor	wants	 to	make	 sure	 that
you're	 running	 the	device,	and	 it	hasn't	been	compromised	on	 their	network.	 If
you	have	a	newer	version	of	an	iPhone,	it	must	have	a	SE	aka	Secure	Enclaver
Co-Processor	 that	 ensures	 its	 software	 has	 been	verified	 and	 signed	by	Apple,
and	it	hasn't	been	modified.
If	one	of	these	steps	in	the	boot	process	fails	in	any	way	whatsoever,	then	you're
going	to	get	a	warning	saying	that	you	need	to	connect	to	iTunes.	This	is	called
Recovery	 Mode.	 If	 the	 boot	 ROM	 is	 unable	 to	 load	 or	 verify	 the	 low-level
bootloader,	 it	 enters	 into	 DFU,	 which	 is	 short	 for	 Device	 Firmware	 Upgrade

mode.
In	 either	 case,	 the	 device	 has	 to	 be	 connected	 to	 iTunes	 to	 restore	 the	 factory
default	 settings.	Sometimes	Apple	 releases	 software	updates	 to	 the	platform	 to
address	 more	 current	 security	 concerns,	 and	 when	 they	 do	 these	 updates,	 if
you've	jailbroken	the	phone,	it	typically	tends	resetting	the	phone.

Chapter	14	IOS	App	Security

When	it	comes	to	the	application	security,	once	the	iOS	kernel	up	and	going,	it
controls	which	user	processes	and	applications	can	be	run.	To	make	sure	that	all
apps	come	from	a	known	or	approved	play	store,	such	as	the	Apple	iStore,	which
is	the	only	one	at	this	point,	and	haven't	been	compromised	in	any	way,	the	iOS
requires	 that	 all	 executable	 code	 must	 be	 signed	 by	 using	 an	 Apple-issued
certificate.
The	 apps	 that	 come	 with	 your	 iPhone,	 such	 as	Mail,	 Contacts,	 or	 Safari,	 are
signed	 by	 Apple.	 Third-party	 apps	 have	 to	 be	 validated,	 and	 that's	 a	 whole
validation	process	they	have	to	go	through	with	Apple	where	they	submit	 their
apps	to	Apple,	and	then	Apple	issues	a	certificate.
If	you	work	for	a	company	that	wants	the	ability	to	write	your	applications,	you
can	apply	for	the	Apple	Developer	Enterprise	Program,	and	part	of	that	process
is	that	you	have	a	DUNS	number.

Apple	 then	 does	 background	 checks	 and	 approves	 you,	 in	 which	 case	 the
company	 can	 register	 and	 obtain	 their	 provisioning	 profile,	 which	 allows	 in-
house	apps	to	run	on	their	devices	that	it	authorizes.
Once	the	app	has	been	verified	that	it	came	from	an	approved	source,	it	looks	at
its	 runtime	 to	 make	 sure	 the	 app	 hasn't	 been	 compromised	 and	 won't	 try	 to
compromise	any	of	the	other	portions	of	the	system.
All	 third-party	 apps	 are	 sandboxed,	 so	 they	 can't	 have	 access	 to	 files	 that	 are
stored	from	other	apps,	and	one	of	the	ways	that	they	do	this	is	that	each	app	has
its	 home	 directory	 which	 gets	 randomly	 assigned	 when	 the	 application	 gets
installed.
If	by	chance	the	app	needs	information	from	other	apps,	it	does	so	only	by	using
the	 services	 explicitly	 provided	by	 iOS.	Another	 app	 security	mechanism	 they
have	in	place	is	utilizing	extensions.
This	means	that	iOS	allows	apps	to	give	functionality	to	other	apps	by	providing
extensions,	 and	 these	 extensions	 are	 just	 special	 executable	 binaries	 that	 are
packaged	within	an	app	itself.

The	 system	 automatically	 detects	 the	 extension	 during	 installation	 and	 then
makes	them	available	to	the	other	apps	using	a	linking	system.	The	system	area
that	 supports	 these	 extensions	 are	 called	 extension	 points,	 and	 each	 of	 these
points	has	APIs	that	enforce	policies	for	that	particular	area.

In	 this	 case,	 the	 system	 will	 automatically	 launch	 the	 extension	 process	 as
needed	 to	manage	 the	 apps.	As	 an	 example,	 you	 have	 the	News	 view	widget,
which	 is	visible	 in	 the	Notifications	Center,	 and	 those	extension	points	are	 the
News	 widget,	 the	 share,	 the	 custom	 action,	 the	 photo	 editing,	 the	 document
provider,	and	custom	keyboard.
Each	 of	 the	 extensions	 run	 in	 their	 own	 memory	 space,	 and	 communications
between	 the	 extensions	 and	 the	 apps	 are	maintained	 by	 the	 system	 framework
that	we	discussed	earlier.
We	also	have	app	groups.	Apps	and	extensions	 that	 are	owned	by	a	particular
developer	account	can	share	the	content	of	their	application	when	it's	configured
to	be	part	of	an	app	group.
For	example,	Twitter	may	have	the	Twitter	app,	as	well	as	 the	Messenger	app.
It's	up	 to	 the	developer	 to	 create	 the	app	group,	 and	 they	do	 that	 in	 the	Apple
developer	portal,	where	they	say	these	are	the	apps	and	extensions	that	they	want
within	the	app	group.

Once	placed	inside	of	an	app	group,	the	apps	have	access	to	a	shared	location	in
storage,	and	that	information	stays	there	as	long	as	at	least	one	of	the	apps	in	the
group	has	been	installed.
Therefore,	if	you	install	Facebook	and	you	install	the	Messenger	service	but	then
you	 uninstall	 the	 Messenger	 service,	 the	 information	 is	 still	 there	 as	 far	 as
storage	is	concerned	until	you	remove	all	the	apps	in	the	app	group.

They	also	will	be	able	 to	share	preferences,	sometimes	settings,	as	well	as	key
chain	items,	which	deals	with	security,	so	you	don't	have	to	keep	logging	in	and
out.
When	it	comes	to	accessories,	there	are	all	kinds	of	them	for	the	IOS	platform.
For	an	accessory	to	get	made	for	the	iPhone,	iPad	or	iTouch	logo,	they	have	to
go	 through	 the	MFi	approval	 licensing	process,	and	 this	helps	Apple	 to	ensure
the	accessories	aren't	using	any	backdoor	to	get	into	the	device.
As	an	example,	when	an	accessory	communicates	via	Bluetooth,	the	device	asks
the	 accessory	 to	 prove	 that	 it's	 been	 authorized	 by	 Apple	 by	 responding	 with
their	Apple-provided	certificate.
Once	it's	been	verified	by	the	device,	the	device	then	sends	a	challenge	that	the
accessory	has	to	answer	with	a	signed	response,	and	this	all	happens	without	the
user	seeing	anything.	We	plug	in	the	device,	and	it	works.

Chapter	15	IOS	Jailbreak	Types

When	it	comes	to	jailbreaking,	this	is	different	than	rooting,	and	if	you	want	to
put	 this	 into	 terms,	 jailbreaking	 is	 bending	 the	 rules	 to	 overcome	 some	 of	 the
existing	restrictions.
Typically,	 when	 it	 comes	 to	 jailbreaking,	 we	want	 to	 remove	 restrictions	 that
Apple	 has	 placed.	 Most	 people	 will	 jailbreak	 their	 device	 so	 they	 can	 load
applications	 that	 Apple	 doesn't	 necessarily	 want	 you	 to	 utilize	 for	 whatever
reason.
Reasons	often	related	to	marketing	issues.	Like	being	able	to	block	pop-up	ads.
That's	 how	 some	 of	 the	 free	 game	 manufacturers	 and	 developers	 make	 their
money	through	advertisement.

We're	 going	 to	 accomplish	 jailbreaking	 by	 loading	 up	 a	 custom	 kernel	 that	 is
used	that	has	root	access.	By	the	way,	“root	access”	in	IOS	has	a	different	term
associated	or	a	different	definition	versus	root	access	in	Android.
Once	 the	user	can	give	himself	 this	control,	he's	able	 to	download	applications
and	 software	 that	 the	 app	 store	 doesn't	 allow.	 It	 also	 allows	 for	 customization
like	adding	themes	or	extensions	that	Apple	doesn't	support.
It	also	gives	you	the	ability	to	unlock	the	phone.	This	is	how	you	can	get	one	ISP
versions	of	the	iPhone	to	work	on	the	other	ISPs	network.	Therefore	jailbreaking
allows	you	to	use	software	that	Apple	doesn't	think	you	should	have	access	to.
One	of	the	biggest	ones	here	is	ad	blockers.	There	are	other	apps		that	allows	you
to	 	hide	apps,	hide	badges,	get	rid	of	certain	elements,	customize	the	date	 text,
change	the	lock	screen	and	things	like	that.
Another	great	item	out	there	was	one	that's	called	Activator,	which	allows	you	to
assign	custom	actions	to	gestures	and	button	presses.	So	if	you	wanted	to	launch
Twitter	for	example,	you	could	do	a	three-finger	swipe	and	launch	Twitter.
Or	you	could	 short-hold	 the	Home	button	 to	 fire	up	 the	 camera.	You	can	also
change	 your	 toggle	 settings	 so	 that	 you	 could	 have	 a	 toggle	 for	 a	 VPN	 or
personal	hotspot.
You	could	even	bypass	the	tethering	option	so	that	whether	your	carrier	allows
you	 to	 tether	 or	 not,	 you	 turn	 your	 device	 into	 a	 hotspot,	 and	 as	 far	 as	 your
carrier	is	concerned,	it's	the	iPhone	that's	requesting	the	data.

When	 we	 are	 jailbreaking,	 we	 are	 modifying	 the	 security	 of	 the	 device,	 and

therefore	we	have	to	be	careful.	As	long	as	you	know	what	you're	doing,	it’s	ok.
But,	 for	 example,	 don’t	 jailbreak	 a	 device	 and	 hand	 it	 over	 to	 someone	 who
doesn’t	know	what	you	have	done	with	the	device	right?
There	are	different	types	of	jailbreaking	that	you	can	implement.	The	first	one	is
called	 untethered,	which	 has	 the	 attribute	 that	 if	 a	 user	 turns	 a	 device	 off	 and
back	on,	the	machine	starts	up	and	the	kernel	will	be	patched	without	any	help	of
a	computer.
The	other	type	is	called	a	tethered	jailbreak.	In	this	case,	a	computer	is	needed	to
turn	 the	device	on	each	 time	 it's	 rebooted.	 If	 the	machine	starts	up	back	on	 its
own,	 it's	 no	 longer	 a	 patched	 kernel,	 and	 it	 gets	 stuck	 in	 that	 partially	 started
state.	 By	 using	 a	 computer,	 the	 phone	 is	 essentially	 re-jailbroken	 each	 time	 it
turns	on,	which	sounds	like	a	hassle.
There's	also	asemi-tethered	jailbreak,	which	means	that	when	a	device	boots,	it
will	no	longer	have	a	patched	kernel.	It	won't	be	able	to	run	any	modified	code,
but	it's	still	usable	for	standard	functions	such	as	making	calls	and	texting.

To	use	any	features	that	require	the	running	of	modified	code,	the	user	must	start
the	device	with	the	help	of	a	jailbreak	tool	for	it	to	start	with	a	patched	kernel.
Besides	the	types,	we	also	have	the	exploits	that	can	be	used	to	root	the	phone.
The	first	one	is	called	the	Userland	Exploit.	This	is	where	software	running	on
the	iOS	device	after	the	kernel	has	started.
This	particular	exploit	uses	a	loophole	in	the	system	application.	It	allows	user-
level	access	but	does	not	allow	iBoot	level	access.	These	types	of	exploits	cannot
be	tethered,	because	nothing	can	cause	a	recovery	mode	loop,	and	these	types	of
exploits	could	and	have	been	patched	by	Apple.
We	 also	 have	 the	 iBoot	Exploit.	 The	 iBoot	Exploit	 allows	 jailbreaking,	 and	 it
also	allows	for	user-level	access	and	iBoot	level	access.	It's	an	exploit	that	could
be	semi-tethered	if	the	device	has	a	new	boot	ROM.
This	particular	exploit	turns	off	code	signing	and	runs	a	program	that	does	all	the
work	for	us,	and	this	exploit	can	be	patched	with	some	firmware	updates.
We	 also	 have	 Bootrom	 Exploits.	 This	 exploit	 uses	 a	 loophole	 in	 the	 secure
ROM,	which	is	the	first	bootloader.	It	disables	the	signature	checks,	which	can
be	used	to	load	a	patch	or	firmware.
Firmware	 updates	 cannot	 patch	 these	 types	 of	 exploits.	 The	 Bootrom	 Exploit
allows	user-level	access	and	iBoot	level	access	as	well.	The	only	way	for	them
to	repair	this	is	for	a	hardware	update	of	the	Bootrom	by	Apple.

There	are	different	solutions	based	on	the	devices	themselves,	and	you'll	want	to
do	research	on	that.	We're	talking	about	the	security	ramifications	of	supporting
these	 devices	 but	 shortly	 will	 discuss	 how	 to	 start	 preparing	 an	 iPhone	 for
Jailbreaking	it.

Chapter	16	IOS	Jailbreaking

This	chapter	will	focus	on	explaining	how	to	Jailbreak	an	iPhone	5.	The	things
you'll	 want	 to	 do	 is	 use	 iTunes	 to	 back	 up	 your	 device	 before	 you	 do	 any
jailbreaking,	just	in	case	you	mess	things	up.
Once	you	do	that,	you	have	to	use	an	application	called	Cydia.	Cydia	is	what's
going	 to	get	 installed	after	 the	device	 is	 jailbroken.	You	can	use	a	 jailbreaking
app	called	Pangu,	 and	 they've	got	different	versions	of	 it	 even	 including	up	 to
version	10.3.3.
This	particular	iPhone	that	I'm	using	is	running	on	IOS	10.3.3.	First,	you	have	to
download	 the	 Pangu	 application	 for	 Windows	 from	 https://pangu-
jailbreak.en.lo4d.com/windows	.

This	could	 take	some	 time	 to	download,	 so	while	 the	download	 is	 in	progress,
you	can	connect	your	 iPhone	 to	your	 laptop	with	 the	 standard	cable.	Once	 the
Pangu	download	complete,	you	have	to	launch	the	application.	
Next,	it	will	detect	your	device.	It	will	see	what	version	of	IOS	you	are	running,
and	 it	will	 tell	 you	 that	you	 should	 click	 the	 “jailbreak”	button.	Go	ahead	and
click	that.

Next,	it	will	say	that	you	need	to	adjust	the	system	date	to	be	equal	to	July	3rd	,
2015,	and	it	will	provide	instructions	on	how	to	do	that.	The	reason	why	they	do
this	is	that	its	part	of	the	vulnerability.
Next,	switch	back	to	your	mobile	device	and	go	ahead	and	do	what	it	asks	you	to
do.	Go	into	time	and	date	under	the	General	tab,	turn	off	the	automatic	time,	and
change	it	to	July	3rd,	2015.
Next,	go	back	 to	your	main	 screen,	 and	 switch	back	 to	 the	computer,	 and	you
should	see	there	that	it's	injecting	the	bundles	automatically.	They	give	you	the
warning	that	you	should	back	up	your	device,	and	you	need	to	specify	that	this	is
not	the	same	for	every	other	device	that	you	have	under	your	Apple	ID.
Each	device	is	going	to	have	its	jailbreaking	technique.	Next,	it	will	tell	you	that
you	need	 to	press	on	 the	Pangu	 icon	on	your	device.	Once	you	have	 switched
back	to	the	device,	you	should	have	an	icon	for	Pangu.
Click	on	 it,	and	 then	you	should	see	a	warning	message	saying:	"Are	you	sure
you	want	to	open	the	application	Pangu	from	the	developer	tool?	"

Because	it's	not	coming	from	the	app	store,	go	ahead	and	hit	Continue,	and	now

https://pangu-jailbreak.en.lo4d.com/windows

switch	back	to	the	computer.	You	should	see	that	it’s	implementing	the	exploit	at
this	 point,	 while	 it	 will	 tell	 you	 on	 the	 screen	 that	 it's	 rebooting	 and	 don't
disconnect	the	device.
You	can	switch	back	over,	and	you	should	see	the	phone	is	rebooting.	Once	it's
rebooted,	go	ahead	and	switch	back	 to	 the	computer	 screen,	where	you	should
see	that	it's	just	waiting	for	you	to	turn	the	device	on,	or	swipe.
Next,	 it	 will	 ask	 you	 to	 log	 back	 into	 the	 phone,	 and	 now	 it's	 processing	 the
jailbreak	files,	and	your	phone	is	officially	jailbroken.	Switch	back	to	the	phone,
and	the	last	thing	you	will	want	to	do	is	back	on	the	phone	you	want	to	go	back
and	change	your	settings.
Change	your	date	back;	otherwise	iTunes	will	have	a	problem	with	it.	You	can
set	 the	 time	 for	automatic.	Disconnect	 the	cable	otherwise,	and	 it	will	keep	on
rebooting.	Next,	go	back	to	the	menu	where	you	should	have	a	new	app	called
Cydia.

You'll	see	that	the	Cydia	app	is	now	installed,	and	this	is	where	you	can	load	up
applications	that	Apple	doesn't	necessarily	approve	of.	The	first	time	into	Cydia,
it	has	to	change	up	the	file	system	because	you	have	jailbroken	the	phone.
You	are	going	 to	gain	access	 to	some	locations	 that	you	usually	wouldn't	have
access	to,	and	this	can	take	a	while.	You	can	reboot	the	device	again,	because	of
the	changes	to	the	file	system.
Once	the	device	is	rebooted,	swipe	again	to	log	in	and	launch	Cydia.	From	here,
you	can	start	looking	at	different	apps	that	are	available	to	you.	You	can	go	into
your	featured	apps.
Here,	you	can	find	many	such	as	the	one	called	“NoSlowAnimations”.	You	can
read	what	 it's	going	 to	do	for	you,	but	 in	a	nutshell,	 it’s	going	 to	get	 rid	of	all
your	animations,	and	it	will	speed	up	your	phone.
You	can	also	do	icon	customization,	or	you	also	have	“WinterBoard”	that	allows
you	to	do	a	ton	of	customization	to	the	display.
When	 it	 comes	 to	 Jailbreaking,	 each	device	 is	 completely	different,	 depending
on	the	IOS	they	are	running	and	the	device	itself.	Therefore,	you	want	to	do	a	lot
of	 research.	 Make	 sure	 you	 check	 your	 sources,	 and	 remember	 that	 doing
something	like	this,	you	could	break	your	device.

Chapter	17	Securing	IOS	Devices

When	 it	 comes	 to	 Jailbreaking	 an	 IOS	 device,	 even	 you	 open	 up	 an
overabundance	of	options	that	Apple	doesn't	necessarily	want	you	to	have	access
to,	and	you	just	need	to	know	what	those	ramifications	can	include.
Once	 you	gain	 access	 to	 the	 device	 remotely,	 think	 of	 that	 from	 the	 attacker's
perspective.	 Still,	 the	 biggest	 issue	with	 security	 is	 at	 the	 physical	 layer.	 If	 an
attacker	gets	physical	access	to	a	device,	either	if	it's	Apple	or	Android,	a	PC,	a
laptop,	or	a	server,	they	are	done.
With	mobile	 devices,	we	need	 to	 take	 into	 consideration	what	 risks	 come	 into
play.	As	we're	moving	 around	 and	 taking	 our	 devices	with	 us,	we	 do	 need	 to
make	sure	that	we	secure	down	the	doorways.

First	of	all,	what	do	you	do	if	you	lose	your	phone?	Well,	you	want	to	make	sure
that	you	use	the	“Find	My	iPhone”	feature	so	that	you	can	quickly	recover	 the
device	before	it	gets	compromised.
I	say	this	is	one	of	the	features	of	the	Apple	product	line	that	helped	to	change
the	 security	 industry.	 You	 also	 want	 to	 make	 sure	 that	 you	 protect	 your	 data
using	the	iTunes	AppleID.
This	can	also	be	used	 to	detect	 if	an	application	or	 somebody	has	 jailbroken	a
device.	 There's	 jailbreak	 detection	 that	 you	 can	 turn	 on.	 Also,	 your	 Google
accounts.	Make	sure	you	protect	access	to	those.
Moreover,	you	don’t	want	sensitive	information	being	backed	up	to	the	iCloud,
where	 anybody	 can	 hack	 your	 password.	 iCloud	 security	 has	 been	 improved
significantly	over	the	years,	yet	private	pictures	have	been	stolen	before.
Apple	has	fixed	a	lot	of	these	problems	already,	but	when	it	comes	to	hacking,
eventually,	somebody	finds	a	way	around	it.	The	majority	of	people	don't	know
that	their	data	is	being	backed	up	automatically	through	iCloud.
Most	people	don't	remember	during	the	initial	set	up	of	the	device,	because	they
are	so	excited,	but	this	is	also	true	with	Android	people	too.	Manufacturers	want
to	 help	 protect	 your	 data,	 and	 by	 default	 on	many	 of	 these	 devices	 is	 to	 back
things	up	to	their	cloud	service.
Jailbreaking	does	open	up	some	freedom,	but	it	also	makes	you	a	possible	target
as	well,	and	at	the	very	beginning,	I	would	never	jailbreak	a	device	for	someone
that	has	no	tech	knowledge.

Regards	to	social	engineering,	 if	you	get	an	email	from	somebody	that	you	are
not	expecting	from,	and	it	has	an	attachment,	do	not	open	it	on	a	mobile	device.
Likewise,	you	want	to	make	sure	that	you	have	a	passcode	to	your	device,	and
when	typing	it,	nobody	can	see	what	you	are	typing.	It's	complicated	to	recover
sensitive	documents	and	your	personal	information,	both	financial	and	identity-
based	than	it	is	to	type	in	a	code.
Also,	 be	 careful	 about	 add-ons	 that	 require	 Java	 or	might	 silently	 install	 Java.
You	 should	 check	 out	 all	 the	 requirements	 and	 settings	 of	 each	 application
before	you	install	it.
Moreover,	don't	 jump	on	any	WiFi	just	because	it's	free.	Make	sure	that	you're
only	hooking	up	to	WiFi	networks	that	you	genuinely	do	trust.	Also	make	sure
that	you	don’t	click	on	any	attachments,	or	a	link	in	any	email,	or	even	on	instant
messengers	that	people	might	send	you.

Many	times	these	links	are	shortened,	so	you	have	to	be	careful	with	those.	Also,
make	sure	that	you	only	use	trusted	third-party	applications	and	know	who	they
are.	Do	some	research	on	them.
Don't	get	fooled	because	of	how	great	the	utility	is	or	the	application	is	or	how
popular	 it	 is.	 Do	 your	 research	 first.	 Just	 because	 cool	 kids	 playing	 with	 a
particular	app,	doesn't	mean	that	the	app	is	good	as	far	as	security	is	concerned.
Similarly,	if	you	jailbreak	the	device,	you've	to	change	the	default	password.	The
default	 password	 for	 root	 access	 on	 a	 jailbroken	 Apple	 device	 is	 alpine.	 In
Cydia,	their	web	page	is	laid	out	for	an	Apple	device,	where	you	will	notice	that
you've	to	change	the	root	password.
For	 most	 attackers,	 the	 best	 approach	 that	 they	 have	 is	 merely	 waiting	 for
exploits	 to	 appear,	 and	 then	 they	 repurpose	 them	 so	 that	 they	 can	 target	 users
during	that	time	when	nobody	comes	up	with	a	patch	for	that	vulnerability.
In	summary,	we	first	looked	at	the	architecture	of	IOS,	which	is	a	little	bit	more
compartmentalized,	 but	 similar	 concepts	 of	 what	 we	 discussed	 on	 the	 side	 of
Android.
We	 also	made	 sure	 that	 you	 understand	 the	 device	 itself,	 and	we	 talked	 about
where	 the	 operating	 system	 came	 from.	That	was	 through	 the	 company	 called
NeXT,	founded	by	Steve	Jobs.
After	 that,	we	also	 took	a	 look	at	how	 to	 jailbreak	an	 iPhone	5,	but	 remember
that	 it's	 not	 a	 solution	 for	 all	Apple	devices,	 as	 there	 are	different	 jailbreaking
techniques	used	for	all	different	devices.

Each	device	has	its	separate	trick	to	be	deployed.	Therefore	you	have	to	do	your
research	before	Jailbreaking	your	specific	device.	We	also	looked	at	the	possible
consequences	of	 jailbreaking	and	how	 to	be	able	 to	 see	 that	a	device	has	been
jailbroken.
In	 this	 case	here,	 the	 easiest	way	was	by	 seeing	 that	 the	 app	 called	Cydia	has
been	installed.	We	also	look	at	some	best	practices	on	how	to	secure	the	device.
At	an	enterprise-level,	we'll	want	to	control	all	these	devices	or	be	warned	of	the
possibility	of	a	device	being	jailbroken.
Sometimes	it	may	be	that	the	user	is	trying	to	jailbreak	the	device,	but	it	also	is
because	 the	 user	 has	 downloaded	 a	 malicious	 document	 that	 is	 executing	 a
jailbroken	 technique	 so	 that	 the	 attacker	 can	 take	 over	 the	 device.	 Now	 that
we've	covered	both	Android	and	the	Apple	platform,	we're	going	to	take	a	look
at	other	mobile	devices	that	are	out	there.

Chapter	18	Windows	Phone	Architecture

Now	 that	 we've	 covered	 both	 Android	 and	 IOS,	 let's	 discuss	 hacking	 other
mobile	 platforms,	 and	 I	 want	 to	 begin	 with	Windows	 Phones.	When	 we	 talk
about	Windows	Phones,	 it	does	depend	on	which	Windows	Phone	you	want	to
look	at	because	Microsoft	is	making	a	huge	transition.
There	 are	 the	 original	 Windows	 Phones,	 or	 also	 known	 as	 WP,	 which	 had
several	 different	 versions	 associated	 with	 it,	 including	 Windows	 Phone	 7,
Windows	Phone	8.1,	as	well	as	Windows	10	which	is	the	successor	to	Windows
8.1.
Microsoft	 has	 been	 marketing	 this	 as	 being	 an	 addition	 of	 the	 Windows	 10
environment,	and	this	is	all	part	of	their	strategy	of	creating	this	unified	platform
environment	where	we	will	have	one	OS	to	connect	them	all.

And	 as	 far	 as	 the	 platform	 is	 concerned,	 the	 new	 architecture	 is	 dramatically
different	because	it's	following	the	desktop	platform	very	closely.	OEM	partners
provide	most	of	the	low-level	hardware	interaction	and	the	drivers	that	are	used
to	boot	the	phone	in	a	Board	Support	Package	aka	BSP.
The	 core	 of	 BSP	 is	written	 by	 the	 vendor	 that	 creates	 the	 CPU,	 and	 then	 the
OEMs	responsible	for	adding	the	drivers	that	are	required	to	support	the	phone
hardware	and	the	different	components.
OEMs	 are	 responsible	 for	 adding	 drivers	 that	 are	 required	 to	 help	 each	 phone
that's	provided	by	the	vendor.	The	kernel	 in	 the	OS	will	come	from	Microsoft,
and	since	this	is	an	iteration	of	Windows	Phone	8.1,	it's	based	on	the	NT	kernel.
These	 devices	 use	 the	 core	 systems	 from	Microsoft,	which	 is	 a	 stripped-down
Windows	 operating	 system	 that	 boots	 and	 manages	 hardware	 as	 well	 as
resources	such	as	authentication	and	different	types	of	communication.
As	 far	 as	 handling	 the	 phone-specific	 tasks	 of	 these	 devices,	 there's	 a
supplemental	set	of	Windows	Phone	binaries	that	form	the	mobile	core.	Some	of
the	 great	 features	 of	 this	 environment	 include	 NFC	 support	 on	 Windows
products,	as	well	as	the	support	for	both	C	and	C++	porting,	which	is	supposed
to	help	porting	from	both	Android	and	the	IOS	platforms.
There's	 also	 the	Wallet	 feature,	which	 is	 supposed	 to	 be	 a	 secure	 place	where
you	 store	 digital	 versions	 of	 credit	 cards,	 coupons,	 tickets,	which	 is	 similar	 to
Apple	Pay	or	Android	Pay.
Another	feature	they	presented	was	taking	Bitlocker	from	the	PC	and	bringing	it

over	to	the	mobile	platform	as	an	encryption	mechanism.	Windows	Phones	also
support	 UEFI,	 and	 they	 also	 introduced	 the	 ability	 to	 scale	 their	 platform	 to
larger	 screens,	 while	 they	 also	 support	 multi-core	 processors,	 which	 would
include	up	to	64	cores.
From	 the	 security	 perspective,	 Microsoft	 is	 also	 supporting	 app	 sandboxing,
while	 we	 know	 that	 the	 applications	 are	 going	 to	 run	 inside	 of	 a	 sandboxed
environment,	so	they	don't	interfere.
Moreover,	 they	 also	 included	 the	 features	 of	 supporting	 both	VoIP	 and	 video
chat	 integration	 for	any	VoIP	or	video	chat	app,	and	 this	 is	one	of	 the	 reasons
why	we	see	Skype	being	installed	by	default	on	Windows	devices.
When	it	comes	to	jailbreaking	the	Windows	mobile	platform,	there	are	a	couple
of	 reasons	 why	 people	 do	 this.	 Mainly,	 it's	 to	 sideload	 apps	 and	 to	 install	 a
custom	ROM.	The	custom	ROM	is	still	going	to	be	Windows-based,	but	it's	not
going	 to	have	bloat	 associated	with	 it.	There	are	 several	methods	 that	you	can
use	 to	 jailbreak	 the	Windows	 platform,	 but	we	want	 to	make	 sure	 that	 you're
aware	of	what	can	happen	in	the	background	of	these	different	devices.

What	 you	 need	 to	 know	 us	 that	 the	Windows	Mobile	 platform	 does	 a	 secure
boot,	or	SafeBoot.	The	overall	goal	of	SafeBoot	is	to	make	sure	that	the	OS,	as
well	as	any	application	that	launches,	is	trusted.
The	trust	comes	from	the	application	stores,	so	when	you	first	turn	the	device	on,
the	firmware	starts	a	Unified	Extensible	Firmware	Interface	in	the	background,
that	ensures	the	hash	of	the	keys	that	are	stored,	and	the	device	is	compared	the
signature	of	 the	OS	 to	 the	Boot	Manager,	which	confirms	 if	OS	 is	 legit.	 If	 the
signatures	 that	 are	 compared	 pass,	 then	 the	Windows	 Phone	Boot	Manager	 is
permitted	 to	 continue	 to	 start	 up,	 in	 which	 case,	 we	 then	 start	 relying	 on	 the
binaries	of	both	Microsoft	as	well	as	the	OEMs.

This	is	because	the	OEMs	will	have	their	applications	that	are	pre-loaded	on	the
device	signed	by	Microsoft.	This	is	used	to	protect	the	application	and	the	boot
system	from	any	type	of	malware	from	being	injected.
This	 is	 advertised	 as	 no	 one	 can	 access	 the	 keys	 that	 are	 required	 to	 start	 the
system	 up,	 but	 in	 the	 real	 world,	 that’s	 not	 always	 true.	 Microsoft	 has	 also
reduced	the	footprint	of	the	operating	system.	Therefore	all	the	applications	will
execute	in	the	same	sandbox	as	a	third-party	marketplace	app.
This,	 in	 turn,	 extends	 the	 customization	 of	 the	OEM	drivers,	 so	 if	 an	 attacker
tries	 to	 mitigate	 the	 application	 with	 malware,	 it	 can	 only	 access	 the	 content

inside	 of	 that	 sandbox.	 Therefore,	 it	 prevents	malware	 from	 gaining	 access	 to
any	of	the	core-level	applications	and	hardware	on	the	device.
First	 and	 foremost,	you	should	only	 run	apps	 that	come	 from	a	 trusted	source.
That	might	be	the	App	Store	by	Microsoft	or	an	OEM	app	store.	Also,	make	sure
that	you	lock	the	SIM	with	a	PIN,	and	that	PIN	being	a	passcode	that	you	type	in
when	you	turn	the	device	on.
You	 also	 need	 to	make	 sure	 that	 you	 run	Windows	Updates	 and	 have	 proper
backups.	Just	like	if	you	root	or	jailbreak	a	device,	make	sure	that	you	back	it	up
in	 case	 you	 mess	 something	 up,	 thus	 you	 can	 always	 restore	 the	 original
environment.
Moreover,	 do	 not	 connect	 to	 wireless	 access	 points	 that	 are	 unsecured.	 Often
people	are	socially	engineered	as	they	hook	up	their	devices	to	Wireless	access
points	because	they	believe	that	they	are	going	to	get	free	internet.

And	the	next	thing	they	know,	everything	they're	doing	on	that	network	is	being
monitored,	logged	or	worse,	if	the	traffic	gets	modified.	You	should	also	ensure
that	 you	 have	 a	 lock	 screen,	 so	 when	 the	 device	 turns	 off	 or	 goes	 into	 sleep
mode,	you	have	to	unlock	it	to	continue	to	use	it.
If	 you	 can	 utilize	 biometrics	 security	 such	 as	 fingerprint	 scanner,	 or	 facial
recognition,	 you	 should	 consider	 using	 them.	 In	 particular,	 when	 it	 comes	 to
these	 Windows	 Mobile	 devices,	 you	 can	 lock	 them	 down	 with	 the
Lockdown.xml	file.
This	file	can	be	used	to	restrict	which	apps	users	can	gain	access	to,	as	well	as
which	app	stores	 they	can	go	 to.	For	example,	an	end-user	 is	allowed	 to	 reach
Windows	App	Store	but	able	to	access	any	social	networking	apps	because	you
filter	it	that	way.
As	a	corporate	mobile	device	administrator,		create	your	store	that's	used	strictly
within	 your	 network	 infrastructure,	 and	 you	 can	 copy	 those	 files	 from	 the
publicly	available	store,	and	make	them	available	in	your	enterprise-level	store,
and	ensure	that	all	the	devices	are	only	able	to	install	apps	from	your	store.
You	can	also	use	it	for	customizing	the	layout	because	perhaps	you	want	certain
apps	or	specific	shortcuts	available	on	Windows	Mobile	devices.	To	lock	down
Windows	 Mobile	 devices	 with	 the	 XML	 file,	 there	 is	 a	 step-by-step	 guide
created	 by	 Microsoft	 that	 you	 can	 visit	 at	 https://docs.microsoft.com/en-
us/windows/configuration/mobile-devices/lockdown-xml

https://docs.microsoft.com/en-us/windows/configuration/mobile-devices/lockdown-xml

Chapter	19	BlackBerry	Architecture

To	hack	BlackBerry	devices,	 it	 depends	on	which	device	we	are	 talking	about
because	BlackBerry	also	has	gone	through	a	transition	between	BlackBerry	OS
and	BlackBerry	10.	Both	these	operating	systems	are	proprietary	to	BlackBerry
devices.
As	far	as	BlackBerry	OS	is	concerned,	it	was	prevalent	back	in	the	day	when	it
started	 supporting	 corporate	 emails.	 BlackBerry's	 no	 longer	 dominant	 in	 the
mobile	market,	and	here	is	why.
BlackBerry	 OS	 has	 discontinued	 the	 release	 of	 BlackBerry	 10,	 that	 was	 a
complete	 rebuild	 from	 the	 ground	 up.	 It	 was	 powered	 by	 QNS,	 which
BlackBerry	 purchased	 back	 in	 2010.	 This	 particular	 operating	 system	 uses	 a
combination	of	both	gestures	and	touches	for	navigation	control,	and	this	is	why
it's	popular	in	some	of	the	interfaces	we	see	in	cars	nowadays.

In	2014,	 they	released	Version	10.2,	which	gives	 the	accessibility	 to	download
Android	 apps.	Next,	 in	 2015,	BlackBerry	 said	 that	 they	 had	 no	more	 plans	 to
update	the	APIs	or	the	software	development	kits,	which	would	also	include	any
runtimes	of	the	operating	system.
They	said	that	any	future	updates	of	the	platform	are	going	to	be	strictly	focused
on	security	and	privacy	enhancements.	Then	in	2016,	BlackBerry	has	announced
that	they	will	be	releasing	10.3.3,	which	will	be	primarily	targeted	at	providing
more	security	and	privacy	enhancements.
When	you	look	at	either	version	of	the	OS	or	10,	we're	talking	about	BlackBerry
OS,	which	technically	has	been	discontinued,	but	both	of	them	are	proprietary	to
the	BlackBerry	name,	and	they	both	support	a	Java-based	framework	that	allows
the	Android	runtime	and	Android	apps	to	run	on	these	devices.
When	 it	 comes	 to	 securing	 blackberries,	 make	 sure	 that	 you	 encrypt	 these
devices,	 and	 activate	 the	BlackBerry	 Protect	 feature,	 and	 implement	 password
encryption.

Chapter	20	Mobile	Device	Management

Speaking	from	a	traditional	IT	perspective,	we'd	like	to	manage	our	desktops	and
laptops	 with	 some	 devices.	 When	 it	 comes	 to	 adding	 in	 all	 these	 additional
mobile	devices,	we	need	some	way	of	managing	them.

Therefore,	 we'll	 take	 a	 look	 at	MDM,	 aka	Mobile	 Device	Management,	 what
those	 are,	 as	 well	 as	 how	 to	 evade	 MDMs.	 Introducing	 MDM	 into	 our
environment,	it	also	becomes	a	target,	so	we'll	also	want	to	take	a	look	at	how	do
we	 protect	 that	 device.	 Next,	 we	will	 also	 look	 at	 something	 that	 helps	 us	 to
detect	jailbreaking	or	rooting	of	devices,	so	let’s	get	started.
MDM,	or	mobile	 device	management,	 it's	 a	 software	 used	 to	monitor	 all	 your
mobile	 devices,	 allowing	 you	 to	 deploy	 apps	 or	 secure	 anything	 from
smartphones	to	tablets.
The	whole	purpose	of	MDM	is	 to	optimize	and	automate	 the	functionality	and
security	 of	 your	 devices	 throughout	 the	 enterprise,	 whether	 they're	 on	 the
corporate	network	or	NPE	aka	non-production	network.
Typically,	 you	 can	 control	 things	 such	 as	 allowing	 the	 distribution	 of
applications,	where	data	is	stored,	how	the	device	is	configured,	which	patches
to	install,	as	well	as	how	to	handle	the	machine	that's	been	compromised.

Naturally,	MDMs	work	with	frameworks,	and	each	device	manufacturer	has	its
structure	 that	 is	 injected	 inside	 of	 the	 MDM.	 The	 MDMs	 usually	 have	 their
policies	and	features	that	mobile	device	administrators	can	control	or	enforce	on
these	devices.
The	 combination	 of	 these	 policies	 and	 features	 form	 the	 frameworks	 such	 as
Android,	 Blackberry,	 or	 Apple,	 provide	 their	 MDM	 framework	 that	 allows
administrators	and	MDM	vendors	to	link	into	their	devices.
Different	MDM	software	 solutions	 are	 out	 there,	 and	 one	 of	 the	most	 popular
ones	 is	called	AirWatch,	which	 is	handled	by	 the	same	company	like	VMware
and	System	Center	Configuration	Manager.
The	 latest	 addition	 from	 Microsoft,	 supports	 the	 mobile	 Windows	 platform,
Android	and	iOS	as	well.	It	does	require	an	additional	component	called	Intune,
which	 is	 a	 obtainable	with	 a	monthly	 subscription	 to	 be	 able	 to	manage	 your
devices	when	they're	not	inside	of	your	network	infrastructure.	
Intune	 acts	 as	 a	 proxy,	while	 it	 has	 a	 connection	 to	 the	 internet.	Your	devices
make	 a	 connection	 to	 it,	 and	 it	 relays	 it	 back	 to	 your	 System	 Center
Configuration	Manager	on	the	back	end.
Another	product	 that's	worth	mentioning	 is	 called	completely	 free	Spiceworks.
Which	one	is	better?	Well,	you	want	to	find	one	that	supports	app	provisioning
so	that	you	can	force	the	installation	of	applications	on	mobile	devices.
With	app	provisioning,	most	 IT	guys	and	most	MDM	products	will	also	allow

you	to	filter	which	applications	are	available	to	the	devices	via	the	app	stores,	or
you	can	create	your	internal	app	store.
Another	 feature	 you	want	 to	 take	 a	 look	 at	 is	 security,	 and	 there	 are	 different
levels	of	security	that	you	want	to	look	for.		First,	you	want	to	look	at	the	safety
of	the	MDM	itself.
Also,	how	does	it	communicate	outside	of	the	network	if	the	device	is	externally
implemented.	Some	of	the	MDM	solutions	will	allow	the	IT	professional	to	limit
the	number	of	pages	or	files	to	be	downloaded	and	require	passwords	to	access
online	data.
We're	also	starting	to	see	a	lot	of	MDMs	take	advantage	of	the	infamous	TPM
chip.	This	way,	you	can	make	sure	 that	 the	users	encrypt	 their	device,	and	 the
chip	acts	as	a	decryption	key	for	you.

You'll	also	want	 to	 look	at	other	security	mechanisms,	such	as	can	you	control
what	Wireless	access	points	your	users	can	use.	For	example,	maybe	you	want	to
do	a	blacklist	on	any	wi-fi	access	point	that	has	the	word	free	in	it.
Another	 feature	 you'll	 want	 to	 take	 a	 look	 at	 is	 the	 enrollment	 process.
Technically,	it	would	be	both	authentication	and	enrollment.	This	is	what	locks
the	device	and	the	user	and	the	organization	together.
Some	MDMs	can	be	set	 in	a	way	so	 that	 it	 responds	 to	each	user	according	to
their	 role-based	 permissions.	 For	 example,	 a	 user	 typically	 downloads	 an	 app,
which	then	leads	to	a	sign-in	screen	for	the	MDM	site.
At	this	point,	the	employee	has	to	use	their	credentials	from	Active	Directory	to
authenticate	 who	 they	 are.	 Then	 the	 device	 gets	 enrolled,	 and	 we	 can	 then
control	it.
The	remote	access	feature	is	also	trendy.	This	also	could	allow	an	administrator
to	remotely	disable	or	even	wipe	the	device	if	it	gets	reported	stolen	or	lost.
Another	feature	is	called	MEM,	aka	mobile	expense	management.	Some	MDMs
will	 help	you	 compile	 cost	 data	 for	mobile	 devices.	For	 example,	 you	 can	 see
how	much	data	 they're	 using	 in	 their	 data	 plans,	 how	much	voice	 traffic,	 how
many	 text	 messages,	 so	 an	 administrator	 can	 help	 keep	 costs	 down	 for	 the
company.
Most	of	your	MDMs	are	also	include	their	own	set	of	policies.	Moreover,	when
it	 comes	 to	 provisioning	 a	 device	 in	 which	 you	 need	 to	 deploys	 and	 enforce
policies,	as	well	as	restrictions	you	may	have	for	mobile	devices,	and	MDM	can
help	you.

The	 MDM	 deploying	 a	 client	 application	 on	 the	 device	 through	 some
mechanism,	and	once	that’s	complete,	 the	app	compares	itself	as	it	reports	into
the	MDM	to	a	policy	file.
Once	you	have	a	new	app	on	the	device,	 that	will	create	another	attack	vector.
There	 are	 two	 different	 files	 that	 most	 MDMs	 will	 install	 or	 utilize	 by	 most
MDM	products.
It's	 called	 the	“EffectiveUserSettings.plist”	and	“Truth.plist”.	Both	of	 these	are
system	 files	 that	 help	 determine	 the	 IOS	 device's	 security	 settings.	 The
“Truth.plist”	has	information	in	it,	such	as	PIN	and	passcode	policies,	as	well	as
device	timeout	settings	and	restrictions.
For	 example,	 you	 could	 disable	 alphanumeric	 enforcements	 of	 a	 PIN,	 or	 the
maximum	grace	period	so	that	you	don't	get	locked	out	after	four	PIN	attempts.
Additionally,	 you	 can	 set	 the	Maximum	 inactivity	 setting.	 For	 example,	when
you	don't	use	your	phone,	it	locks	out	in	a	couple	of	seconds.

You	 also	 want	 to	 ensure	 that	 your	 MDM	 supports	 the	 ability	 to	 detect
modifications.
This	is	going	be	done	by	the	policies	of	the	MDM	software,	and	in	some	cases,
some	of	the	solutions	are	if	you	detect	a	change	in	the	XML	file	on	the	device,
you	 re-push	 the	 master	 XML	 file	 back	 to	 the	 device.	 You	 can	 also	 set	 up
automation,	 so	 if	 these	 files	have	been	modified,	you	 lock	down	 the	device	or
wipe	it.
Another	thing	that	you	want	to	make	sure	is	that	your	MDM	protects	you	from
patching	and	modification	attacks.	These	are	platform-based	attacks,	so	there	are
different	types	of	attacks	for	different	kinds	of	devices.
For	 example,	Android	 uses	 self-signed	 certificates,	 so	 an	 attacker	 could	 easily
modify	the	binary	of	the	Android	application	to	patch	existing	functions,	or	even
inject	a	new	code.
An	 attacker	 can	 also	 execute	 the	 Android	 package	 manager	 command	 on	 a
device	that	installs	or	uninstalls	applications.	When	it	comes	to	the	IOS	platform,
attackers	use	“injection”.	A	mobile	substrate	does	this.
The	 mobile	 substrate	 is	 a	 common	 framework	 that	 allows	 applications	 to	 do
runtime	patching	in	IOS.	Using	these	types	of	structures,	an	attacker	could	patch
the	 jailbreak	 detection	 feature	 of	 an	MDM,	 so	 it	 would	 never	 report	 that	 the
device	had	been	jailbroken.
There	is	also	an	issue	with	decompiling.	Applications,	especially	on	the	Android

platform,	can	be	reverse-engineered.	Both;	Java	and	Dalvik	have	tools	that	allow
you	 to	 decompile	 or	 disassemble	 the	 representation	 of	 the	 application	 that	 is
stored	in	the	“Dalvik	byte”	code	or	inside	the	Java	code.
By	 doing	 so,	 the	 attacker	 can	 get	 a	 high-quality	 version	 of	 the	 source	 code
because	 it's	 been	 installed	on	 the	device.	An	 attacker	 can	use	 several	 different
tools	to	accomplish	this,	such	as	DEXtoJar	or	APKTool.
On	the	IOS,	mobile	applications	are	written	in	Objective-C,	which	is	a	relative
of	C.	Therefore,	we	have	programs	such	as	class-dump,class-dump-x,	and	class-
dump-z	that	we	can	use	to	reverse	engineer	our	iOS	apps.
Because	IOS	is	restrictive	when	it	comes	to	applications,	using	these	extractors
to	 look	 at	 the	 application	 binary,	 doesn't	 give	 you	 any	 insight.	 It	 provides	 a
debugger	with	the	ability	to	correlate	and	understand	what	the	author	was	doing
as	far	as	the	logic	and	the	function	of	the	application	is	concerned,	which	is	the
first	step	in	any	ethical	hacking.

How	do	you	protect	from	this?	Well,	you	can	use	obfuscation.	There	are	several
programs	out	there	such	as	ProGuard	that	obfuscate	the	code	that	an	author	has
created,	so	it	can't	be	reverse-engineered	or	at	least	slows	the	attacker	down.
When	it	comes	to	detection,	you	want	to	make	sure	that	you	can	find	out	if	the
devices	 are	 being	 jailbroken	 or	 rooted.	 MDM	 solutions	 have	 built-in	 client
applications	that	detect	devices	if	they	are	jailbroken	or	rooted.
Typically,	this	coding	is	done	very	basically,	because	in	the	case	of	Apple,	most
people	 like	 to	 jailbreak	 their	 device	 so	 that	 they	 can	 run	 the	Cydia	 app	 store.
Therefore,	most	MDMs	look	at	if	an	alternative	app	store	has	been	configured.

Chapter	21	Security	Recommendations

One	of	the	most	noteworthy	issues	with	the	mobile	platform	is	that	people	load
up	 too	 many	 apps.	 Therefore	 you	 should	 be	 careful	 about	 automatically
uploading	 photos	 to	 social	 networks.	 People	 often	 share	 way	 too	 much
information.
Sometimes	people	don't	even	realize	it.	Every	time	we	take	a	picture,	we	post	it
up	on	Facebook.	Well,	did	you	look	at	the	photo?	What's	in	the	background?	Are
you	exposing	your	address?
So	be	careful	that	you	don’t	share	too	much	information	publically.	Also,	make
sure	that	you	can	maintain	control	of	mobile	devices.	If	you	lose	control	of	them,
it's	time	to	get	them	back	in	the	office	and	reassociate.

Make	 sure	 that	 you	 are	 also	 doing	 security	 assessments	 on	 both;	 the	 devices
themselves	 as	well	 as	 the	 application	 and	 its	 architecture.	Make	 sure	 that	 you
only	install	apps	from	trusted	locations.
Likewise,	don't	add	any	location-based	features,	unless	there's	a	component	that
supports	 the	 application.	 For	 example,	 don't	 load	 Google	 Maps	 if	 you're	 not
going	to	need	Google	Maps.
Typically,	 a	 lot	 of	 the	 Android	 devices	 come	 with	 those	 applications	 pre-
installed,	but	on	the	same	aspect,	you	also	need	to	be	careful	of	apps	that	want	to
look	at	your	location.
Also	turn	your	Bluetooth	off	if	you	don't	need	it,	especially	while	traveling.	Only
turn	on	your	Bluetooth	when	you	need	Bluetooth,	plus	you'll	get	a	little	bit	extra
batter	life	too.
Similarly,	don't	connect	to	two	separate	networks	such	as	Wi-Fi	and	Bluetooth	at
the	 same	 time.	 Furthermore,	 make	 sure	 that	 you	 do	 backups,	 and	 check	 how
often	your	devices	are	synchronizing,	especially	if	they're	synchronizing	outside
of	your	network.
You	also	want	to	ensure	that	you're	using	strong	passwords.		When	it	comes	to
passwords,	ensure	 that	you	set	 the	 idle	 timeout	 to	automatically	 lock	when	 the
phone	is	not	in	use.	When	you	hit	the	power	button,	it	should	automatically	locks
your	 phone.	 Make	 sure	 that	 you	 take	 advantage	 of	 the	 “lockout	 and	 wipe”
features.	 If	 somebody	 types	 in	 your	 code	 incorrectly	 four	 times,	 your	 device
should	get	wiped.
When	it	comes	to	jailbreaking	and	rooting	devices,	the	best	practices	are	that	you

should	 never	 allow	 rooted	 or	 jailbroken	 devices	 in	 the	 corporate	 environment.
Also,	make	sure	 that	you	keep	every	application	up	 to	date,	 as	well	 as	 the	OS
itself.
This	 is	 relatively	 easy	 because	 most	 of	 our	 app	 stores	 tell	 us	 that	 you	 need
updating.	Here,	you	should	 review	 the	changes	 that	 the	updates	are	wanting	 to
accomplish,	instead	of	just	hit	“Apply	All”,	because	you	could	be	lowering	the
security	profile	of	your	device.
Also,	 take	 advantage	 of	 hardware	 encryption.	 Hardware	 encryption	 is	 like
encrypting	the	hard	drive	on	a	PC.	If	somebody	steals	your	PC,	and	if	they	don't
know	the	encryption	key	to	type	it	when	they	boot	it	up,	they're	not	getting	the
data.
Moreover,	review	your	MDM	policies,	and	this	comes	down	the	road	of	change
management	 because	 when	 you	 come	 up	 with	 plans,	 you	 need	 to	 make	 sure
there's	a	complete	agreement	across	departments	of	what	is	allowed	and	what's
not	allowed	on	mobile	devices.

Some	 IT	 guys	 think	 that	 they	 know	 everything	 and	 know	 what's	 best	 for
everybody,	 but	 we	 all	 work	 differently,	 so	 you	 want	 to	 discuss	 with	 your
manager	or	other	team	managers	what	to	include	in	these	policies.
Moreover,	make	sure	that	you	filter	email	forwarding	barriers,	because	most	of
our	 malware	 coming	 across	 email,	 and	 you	 don’t	 want	 to	 head	 out	 to	 your
devices.
With	some	of	the	newer	email	servers	out	there,	you	can	allow	only	emails	that
are	 generated	 internally,	 so	 only	 those	 get	 forwarded	 to	 corporate	 mobile
devices.	Also,	 look	 at	 permission	 rules,	 so	when	 somebody	 is	 trying	 to	 visit	 a
particular	page	on	 these	devices,	 they're	not	getting	 injected	with	 a	 code	 that's
going	to	jailbreak	them	or	root	them.
Also,	make	sure	that	you	are	only	using	applications	that	are	signed	by	the	app
stores,	or	you've	approved	them	for	internal	use	only.	Likewise,	make	sure	that
you	set	up	erasing	data	to	keep	people	from	guessing	passwords	on	the	devices,
and	ensure	that	you	have	auto-locking	turned	on.
When	it	comes	to	backups,	ask	yourself	these	questions:	Where	are	you	locating
those	backups?	 Is	 that	place	 is	 in	a	secure	 location?	Require	a	passcode	where
you	 swipe	 a	 pattern?	 This	 is	 because	 studies	 show	 that	 people	 are	 not	 using
patterns.
Also,	 make	 sure	 that	 you	 have	 a	 software	 maintenance	 plan	 in	 place.	 For

example,	if	there	is	an	app	installed	on	a	device	and	it’s	not	been	used	since	90
days,	most	probably	don't	need	it.
Also,	make	sure	that	you	continue	to	sandbox	the	data	and	the	app.	This	way	you
don't	have	to	worry	about	any	cross-infection.
When	 it	 comes	 to	Wi-Fi,	make	 sure	 that	 the	person	has	 to	 ask	 to	 join.	This	 is
because	one	of	the	new	features	of	Windows	10	is	to	automatically	join	known
Wi-Fi	 access	 points,	 not	 the	 ones	 the	 end-user	 is	 aware	 of,	 but	 the	 ones	 that
Microsoft	is	aware	of.
When	 it	 comes	 to	 emails,	 don't	 allow	 for	 the	 caching	 of	 emails	 because	 even
you've	deleted	the	email,	 it's	still	 in	the	cache	and	if	someone	is	going	to	get	a
hold	of	that	device,	they	can	read	that	information.

You	 also,	 as	 a	 company,	 need	 to	 sit	 down	 and	 decide	 if	 data	 can	 leave	 the
environment.	For	example,	do	we	allow	people	 to	send	the	payroll	spreadsheet
via	email?	Why	not	use	the	newer	technologies	such	as	ShareFile	options,	where
you	don't	send	you	a	copy	of	the	file.
Instead,	 provide	 a	URL	 link	 back	 to	 your	 SharePoint	 server	 so	 that	 users	 can
read	the	files.	Then	you	don't	have	data	leaving	the	environment.
You	may	also	want	to	consider	Citrix	from	the	mobile	device.	Instead	of	putting
the	data	on	your	mobile	device,	the	user	opens	up	a	Citrix	session	back	to	their
PC.
When	 it	 comes	 to	 Android,	 check	 what	 Google	 is	 backing	 up,	 what	 they're
storing,	what	 they're	caching,	and	what	data	 that	 they're	collecting.	Also,	make
sure	that	notifications	are	turned	off	on	the	lock	screen,	so	people	can't	see	the
notifications.	 Notifications	 should	 only	 be	 visible	 to	 users	 if	 they	 unlock	 the
device.
Make	 sure	 you	 turn	 off	 “AutoFill”,	 and	 train	 your	 users	 on	 how	 to	 use	 these
devices.	What's	acceptable	and	what's	not	acceptable?	Make	sure	that	 there	are
written	policies	in	place,	so	they	understand	what	the	consequences	are	and	you
hold	them	to	those	consequences	if	they	break	them.
You	also	want	to	consider	when	users	are	getting	in	remotely,	how	long	do	you
allow	them	to	stay	inactive	before	the	session	times	out.	They	might	have	to	type
in	a	username	and	password	again,	but	do	not	cache	domain	passwords.

Chapter	22	Spiceworks	&	Solarwinds

Spiceworks	is	an	ad-supported	application	aimed	at	the	Small	and	medium-sized
business	aka	SMB,	designed	to	perform	inventory	and	necessary	monitoring	of
Local	Area	Networks.	The	product	is	excellent	for	about	250	employees	or	less,
which	 is	 vital	 to	 remember	 when	 evaluating	 the	 product's	 functionality	 and
features.
The	 software	 is	 targeting	 system	 administrators	 who	 may	 not	 have	 a	 deep
appreciative	 of	 technologies	 or	 who	 may	 lack	 proper	 education,	 training,	 and
certifications.
Therefore,	 the	 product's	 feature	 set,	 while	 being	 productive,	 offers	 much	 less
functionality	 of	 products	 such	 as	 Solarwinds	 Orion.	 Still,	 Spiceworks	 is	 free
software	 that	 you	 can	 try	 out	 by	 visiting	 their	 website	 at
https://www.spiceworks.com/downloads/

The	 software	 is	 a	 desktop	 application,	 and	 the	 installation	 is	 very	 easy	 for	 a
Windows	app.	Once	installed,	it	requires	a	username	and	password	for	an	admin
account.
The	 detection	 feature	 across	 the	 network	 is	 very	 fast,	 but	 the	 system	 is	 slows
down	during	the	network	device	detection	process,	but	it’s	not	too	bad,	and	the
load	is	not	noticeable	on	the	client	devices.
The	detection	procedure	can	be	scheduled	to	be	rerun	intermittently	as	well,	so
you	can	keep	 the	 info	database	always	up-to-date.	The	end	user	can	access	 the
desktop	via	a	Web	GUI,	and	the	underlying	process	can	be	run	as	a	service.
This	enables	the	software	to	be	used	on	an	ad-hoc	basis	to	get	a	snapshot	of	the
network	condition.	You	can	also	run	it	a	server	and	access	it	remotely.	The	app
itself,	while	is	resource	intensive,	is	not	as	resource	hungry	as	more	enterprise-
type	software.
It	operates	by	examining	a	range	of	IP	addresses,	and	it	utalises	WMI	to	log	on
Windows	devices	and	SSH	aka	Secure	Shell	to	access	Linux	systems.
It	 can	 also	 monitor	 routers,	 printers,	 switches,	 and	 many	 other	 networked
machines.	The	way	 it	 performs	 the	detections	 and	monitoring	 the	machines,	 it
requires	no	additional	software	installation	or	physical	contact	with	the	devices.
Moreover,	you	don't	need	to	spend	hours	on	complex	configuration,	such	as	with
other	traditional	monitoring	and	management	apps	and	software.

Once	it	detects	devices	on	the	network,	it	uses	standard	WMI	queries	and	UNIX

https://www.spiceworks.com/downloads/

shell	apps	to	determine	the	system	info	and	their	status.	This	method	esteems	the
security	settings	on	the	network	machines	in	an	easy-to-understand	fashion.
But,	 if	 something	prevents	 this	 from	operating,	Spiceworks	marks	 the	machine
as	 “Unknown”.	 It	 does	 an	 excellent	 job	 cataloging	 and	 inventorying	 the
software,	hardware,	services,	and	necessary	status	information	as	well.
One	issue	is	that	it	detects	only	McAfee	and	Symantec	AV	products.
It	includes	a	basic	trouble	ticket	system	as	well,	and	alerts	can	be	sent	via	SMS,
and	e-mail,	or	viewed	via	the	Web-GUI.	The	Web	GUI,	in	overall,	is	an	easy	to
understand	platform.

Spiceworks	 also	 has	 a	 reporting	 system	 that	 can	 create	 reports	 based	 on
monitoring	 and	 cataloging	 functions	 to	 allow	 you	 to	 find	 printers	 low	 on	 ink,
PC-s	low	on	drive	space,	or	where	new	machines	added	to	the	network.
The	GUI	also	allows	end-users	to	look	at	the	network,	and	apply	filters	to	locate
a	device	or	a	group	of	devices.	The	GUI	function	also	allows	you	to	search	for
anything	that	you	can	monitor.
Another	great	 thing	 is	 that	Spiceworks,	as	a	company,	 is	 forming	communities
with	 the	 end-users.	 So,	 for	 example,	 you	 can	 submit	 a	 question	 to	 the
community.	 As	 you	 see,	 Spiceworks	 is	 very	 comprehensive	 and	 contains
information	from	various	vendors	and	end-users.
Moreover,	they	have	a	forum	where	devs	can	request	new	features,	submit	bug
reports,	or	vote	on	feature	ideas.
Because	 Spiceworks	 is	 free,	 it	 requires	 minimal	 configuration	 and	 does	 not
install	any	additional	software	on	the	devices	it	manages,	and	you	should	give	it
a	try.	In	case	you	find	a	feature	that’s	missing,	you	can	request	it,	and	I	am	pretty
sure	that	they	will	include	it	in	the	future.
Yet,	 in	case	you	need	real-time	alerts,	a	highly	customizable	system,	or	proper
device-specific	information,	you	should	try	out	Solarwinds.	Solarwinds	Free	trial
can	be	downloaded	at	https://www.solarwinds.com/downloads

Still,	if	you	only	need	an	MDM	to	monitor	mobile	devices	or	just	for	inventory
purposes,	Spiceworks	is	an	excellent	choice	for	you.

https://www.solarwinds.com/downloads

Chapter	23	Malware	&	Spyware	on	IOS

There	is	no	difference	between	what	we	know	about	malware	when	it	comes	to
the	 desktop	 platform	 versus	 the	 mobile	 platform.	 Yet,	 it's	 interesting	 how
Malware	getting	around	some	of	the	security	mechanisms	that	are	in	place.
Typically	 it's	 being	done	by	 social	 engineering.	As	 far	 as	 attackers	 concerned,
when	it	comes	to	malware	on	the	mobile	device,	they	are	just	computers.	Since
mobile	 devices	 are	 only	 computers,	 it's	 the	 same	 type	 of	 environment	 for
attackers	too.	We	need	to	understand	that	a	lot	of	the	malware	that	we	get	is	just
a	repackaging	of	older	attacks	on	our	systems.	But,	let’s	begin	with	Malware	on
IOS.
You	might	be	thinking,	“WHAT?	malware	on	IOS?”	Well,	there's	malware	out
there	 for	 IOS.	Apple	 is	 considered	more	 secure	 than	other	 platforms.	Still,	we
open	ourselves	up	to	different	types	of	malware	attacks.

The	first	actual	malware	attack	was	called	the	iPhone	firmware	1.1.3	prep	tool.
This	 malware	 disguised	 itself	 because	 it	 acted	 like	 this	 was	 a	 preparatory
upgrade	before	you	updated	the	device	to	Version	1.1.3.
Once	you	 install	 this	particular	malware,	several	common	utilities	got	 installed
on	 jailbroken	 devices	 that	 would	 stop	 working,	 and	 the	 fix	 for	 this	 was	 to
reinstall	those	utilities.
This	malware	only	 infected	 jailbroken	devices,	but	you	have	 to	 remember	 that
jailbreaking	 has	 been	 very	 popular	 throughout	 the	 Apple	 community.	 On
jailbroken	phones,	the	default	password	for	SSH	is	“alpine”,	and	the	reason	why
it's	“alpine”	is	that	that	was	the	code	name	for	the	IOS	version	1.0.
Well,	 a	 year	 later,	 someone	 ended	 up	 doing	 a	 full	 scan	 on	 T-Mobile's	 3G	 IP
range,	 and	 exploited	 this	 vulnerability	 and	 installed	 ransomware	 on	 those
devices.
In	 2009,	 a	 teenager	 released	 a	 worm	 that	 exploited	 the	 vulnerability	 called
“iKee”.	 Yet,	 another	 attacker	 took	 “iKee”,	 modified	 it,	 and	 released	 it	 as
“iKee.b”.
In	this	particular	case,	the	purpose	was	to	“Rickroll”	the	target,	while	the	same
default	password	was	used	again.	“iKee”	used	the	same	SSH	vulnerability	by
running	a	series	of	commands,	so	that	it	would	propagate	itself	throughout	the
host.
First,	 it	 would	 delete	 the	 “sshpass	 utility”,	 and	 then	 would	 copy	 the	 “sshpass

utility”	and	the	“worm”	itself	from	the	current	mobile	device	file	system	to	the
remote	file	system.
During	that	process,	it	copied	an	image	and	replaced	the	background	image	for
your	locked	screens	on	iPhones,	and	it	was	a	picture	of	the	1980s	British	pop	star
“Rick	Astley”.	Here's	is	where	things	got	interesting.	After	that,	the	scan	began
on	the	victim's	IP	address	range	that	it	was	hooked	into,	to	propagate	out	to	new
hosts.
In	2012,	we	ended	up	seeing	a	piece	of	malware	that	hit	the	“AppStore”	called
“Find	and	Call”,	that	automatically	uploaded	users'	contact	lists	to	the	company's
server.	It	then	spammed	those	contacts	with	a	link	to	the	app,	saying	it	was	from
your	friend.
In	2013,	a	developer,	who	went	by	several	different	names,	a	more	famous	name
that	he	was	known	by	“Felix	the	Cat”	included	adware	in	his	tweaks	and	these
were	sold	through	“Cydia”.	This	was	known	as	“Nobiniz”	and	some	of	the	apps
that	he	put	 them	inside	of,	 included	“Better	Chrome”	or	“Chrome	Downloader
Enabler”,	and	many	more.

He	had	a	bunch	of	different	apps	or	tweaks	that	he	supplied,	so	his	products	were
top-rated.	He	also	had	tweaks	for	Instagram,	Twitter,	iOS	6	Photos,	Menu,	and
he	added	some	new	features	to	it	too.	He	was	popular,	and	he	ended	up	getting
into	advertising	before	his	apps	got	blocked.
In	2014	things	started	to	get	interesting,	and	it's	because	mobile	devices	started
getting	more	 popular.	We	 first	 saw	 something	 called	 “Unflod”,	which	 tried	 to
capture	 users'	 “AppleID”	 and	 passwords.	 Once	 it	 captured	 those,	 it	 sent	 the
information	to	Chinese	IP	addresses.	This	was	also	known	as	“SSLCreeds”.

We	also	had	“AdThief”.	This	particular	malware,	which	 tweaked	a	developer's
ID	that	was	intended	to	tell	ad	developers	who	were	presenting	their	ads,	such	as
affiliation	fees,	it	redirected	those	instead	to	the	attacker's	account.	This	went	on
over	70K	devices	at	the	time.
We	also	have	“AppBuyer”,	which	was	a	piece	of	malware	that	would	connect	to
a	“C&C”	server.	It	downloaded	and	executed	malicious	executable	files,	hooked
network	APIs	to	steal	the	device's	users'	AppleID	and	password,	and	then	upload
those	to	the	attacker's	server.
It	also	simulated	Apple's	proprietary	protocols	to	buy	apps	from	the	AppStore	by
using	 the	 victim's	 identity.	All	 three	 of	 these	were	 targeted	 towards	 jailbroken
devices.

We	also	have	“WireLurker”	and	“Masque”.	This	malware	targeted	not	only	IOS
but	MacOS	as	well.	This	was	 one	of	 the	 first	 pieces	 of	malware	 that	 installed
third-party	 applications	 on	 non-jailbroken	 devices,	 and	 they	 did	 that	 through
enterprise	provisioning.
“Masque”	allowed	an	IOS	app	to	be	installed	using	enterprise	provisioning,	and
it	could	 replace	another	official	app	 installed	 through	 the	AppStore,	as	 long	as
both	apps	used	the	same	bundle	identifier.
“Xsser	 mRAT”,	 was	 another	 piece	 of	 malware	 that	 would	 target	 jailbroken
devices.	This	app	installed	a	rogue	repository	on	Cydia.	Cydia,	even	though	it's
an	AppStore,	had	different	 repositories	 that	you	could	pull	apps	 from,	and	 this
was	a	rogue	repository	that	got	installed.
Once	it	was	installed,	it	gained	persistence,	meaning	you	can't	delete	it.	“mRAT”
then	makes	 a	 server-side	check	and	 starts	 to	 steal	data	off	 the	user's	device.	 It
also	executed	remote	commands	that	were	issued	by	the	C&C	server.

In	2015,	we	saw	even	more	Malware	come	out	for	IOS.	First,	we	have	seen	the
one	called	“Lock	Saver	Free”.	This	was	a	 free	app	 that	 installs	an	extra	 tweak
that	hooks	into	ad	banners	and	inserts	it's	own	identifier	into	the	banner	so	that
the	author	of	the	Malware	would	get	revenues	for	referrals	instead	of	the	actual
app	developer.

Next,	we	have	 seen	another	Malware	called	“XcodeGhost”.	This	malware	was
found	 in	 some	 re-distributions	 of	 “Xcode”	 that	 was	 targeted	 at	 Chinese
developers.	 “XcodeGhost”	 infected	 the	 apps	 compiled	 with	 the	 versions	 of
“Xcode”,	and	apps	that	were	published	on	the	Apple	AppStore	had	to	be	pulled,
once	Apple	became	aware	of	this.
This	also	uninstalled	the	apps	from	your	devices	at	the	time.	This	malware	added
code	that	could	upload	device	and	application	information	to	a	CNC	server.	This
was	 capable	 of	 creating	 iCloud	 password	 sign-in	 prompts	 that	were	 faked	 and
was	able	to	read	and	write	data	from	the	copy	and	paste	clipboard.
After	that,	another	powerful	Malware	comes	out	called	“KeyRaider”,	which	was
used	 to	 steal	Apple	 account	 usernames	 and	passwords,	 and	 the	 device	 grid	 by
intercepting	iTunes	traffic	on	the	device.	There	were	over	200K	stolen	accounts
via	“KeyRaider”.
“YiSpecter”	was	 the	 next	 famous	Malware	 that	 used	 its	 private	APIs	 on	 both
jailbroken	 and	non-jailbroken	devices.	This	 particular	 piece	of	malware	would
download,	 install	 and	 launch	 arbitrary	 iOS	 apps,	 replacing	 existing	 apps	 with

those	 that	 it	 downloaded.	 It	 also	 changed	 Safari's	 default	 search	 engine,
bookmarked	and	opened	pages	and	uploaded	device	information	that	was	sent	to
their	CNC	server.
“Muda”	aka	“AdLord”	was	also	spread	through	Cydia.	Therefore	it	only	affected
jailbroken	 devices.	 This	 one	 was	 setting	 up	 display	 advertisements	 over	 the
notification	 bar	 and	 then	 asked	 the	 user	 to	 download	 ISO	 apps	 that	 it	 was
promoting.	Therefore	the	author	would	make	money	off	the	referral	fee.
“Youmi	Ad	SDK”	was	another	software	development	kit	that	was	used	by	a	lot
of	Chinese	AppStore	developers	 to	 take	advantage	of	private	APIs	 to	get	more
personal	information.
Personal	information	that	Apple	allowed,	including	a	list	of	the	apps	installed	on
the	device,	serial	numbers	of	the	device,	 the	user's	AppleID,	email	address	and
so	on.	There	were	over	200	apps	that	got	into	over	a	million	devices.

It's	not	 limited	 to	 just	attackers,	because	even	governments	are	using	pieces	of
malware	 to	 target	 individuals.	One	of	 these	 tools	was	called	“FinSpy	Mobile”.
“FinFisher”	 is	 a	 suite	 of	 commercial	 surveillance	 tools	 that	 are	 sold	 to
governments	 as	 legitimate	 programs,	which	 have	 been	 used	 to	 target	 different
activists	and	other	people,	so	they	could	see	what	they're	up	to.
“XAgent”	was	 another	Malware.	 This	 also	 came	 out	 in	 2015,	which	 is	 also	 a
surveillance	 tool	 that	 targeted	 specific	 people,	 other	 government	 individuals,
military	individuals,	journalists,	and	so	on.
This	one	could	be	installed	on	both	jailbroken	and	non-jailbroken	devices.	This
particular	 suite	 of	 tools	 would	 do	 a	 combination	 of	 a	 phishing	 attack	 called
“Island	Hopping”,	so	phones	of	friends	and	associates	of	the	actual	target	were
first	infected,	and	then	used	to	pass	on	the	spyware	link.
This	was	based	on	 the	 social	 engineering	aspect	 that	 a	 target	 is	more	 likely	 to
click	 on	 links	 from	 people	 they	 know.	 Once	 installed,	 it	 would	 collect	 text
messages,	contact	lists,	pictures,	GPS	locations,	a	list	of	apps	installed,	a	list	of
processes	that	were	running	and	WiFi	status	of	the	device	and	so	on.
This	is	also	the	piece	of	malware	that	gets	a	lot	of	people	concerned	because	it
could	switch	on	the	phone's	microphone	and	record	everything	that	is	heard.
We	also	have	“DropOutJeep”.	This	is	a	tool	that	the	NSA	uses,	and	this	malware
can	 pull	 or	 push	 files	 to	 a	 device,	 look	 at	 text	messages,	 contacts,	 voicemail,
GPS	locations,	turn	on	the	mic	and	so	on.
There's	 been	 some	 speculation	 that	 this	 particular	 tool	 had	 some	 help	 from

Apple,	but	Apple	has	denied	it,	saying	that	they've	never	worked	with	the	NSA
to	create	a	backdoor	to	any	of	their	products.
We	 also	 have	 the	 “Hacking	 Team	 Tools”.	 This	 one's	 interesting	 because	 the
Hacking	Team	itself	got	hacked.	They	sell	offensive	 intrusion	and	surveillance
components	to	governments	and	law	enforcement	agencies,	or	at	least	they	used
to.
Either	 way,	 this	 particular	 piece	 of	 spyware	 was	 designed	 to	 target	 specific
people,	instead	of	looking	at	broad	surveillance	of	the	public.	Their	primary	tool
was	 a	 remote	 control	 system,	 did	 require	 a	 jailbroken	 device,	 but	 they	 were
looking	at	implementing	this	on	non-jailbroken	devices	too.

There's	 also	 an	 attack	 framework	 that's	 out	 there	 called	 “Inception”.	 This
particular	 framework	 was	 designed	 to	 steal	 information	 using	 phish	 emails.
These	phish	emails	were	saying	that	it	was	an	update	from	WhatsApp,	and	if	you
clicked	on	 it,	 it	 triggered	a	download	of	a	Daemon	installer	package.	This	was
focused	 on	 jailbroken	 devices.	 They	 made	 it	 look	 like	 it	 was	 coming	 from	 a
“Cydia”	 store,	 and	once	 installed,	 the	malware	would	 steal	your	address	book,
phone	number,	MAC	addresses	and	so	on.

Other	 people	 have	 taken	 this	 same	 framework,	 and	 they've	 repackaged	 it	 and
referred	to	it	as	“Cloud	Atlas”.	There	are	other	targeted	tools	out	there	as	well,
such	as	“Copy9”	and	“Copy10”.	These	 two	are	both	 spying	 tools	 that	 allowed
parents	to	check	on	their	child	or	what	their	child	was	up	to.
Similarly,	 there's	 also	 1mole	 and	 FlexSPY,	 and	 most	 of	 these	 again	 were
advertised	as	“keep	an	eye	on	your	kids”.
Then	we	 have	 the	 traditional	 type	 of	malware	 coming	 from	 the	 desktop	 side,
such	as	the	“iKeyGuard”	and	“iKeyMonitor”.	“iKeyGuard”	is	a	keylogging	tool,
and	“iKeyMonitor”	would	keep	 track	of	what	your	kid	was	doing	on	 their	cell
phone.	There's	also	“InnovaSPY”,	“mSPY”	and	“ownSPY”.
Moreover,	 there	 is	 also	 “MobiStealth”,	 “SpyKey”,	 “StealthGenie”,	 and
“TrapSMS”.	All	these	products	would	spy	on	either	application,	the	full	device,
or	look	at	specific	applications	like	text	messaging.
There	are	even	tools	out	there	for	research,	meaning	proof	of	concept,	looking	at
what	 else	 could	 be	 done.	 For	 example,	 we	 have	 “iSAM”,	 which	 affects	 both
jailbroken	 and	 non-jailbroken	 devices,	 and	 it	 scans	 for	 jailbroken	 devices	 that
have	SSH	running	and	 the	default	password,	and	 it	 can	also	 jailbreak	a	device
that	hasn't	been	jailbroken.

There's	also	a	tool	called	“Instastock”.	This	has	demonstrated	that	there	are	flaws
in	 Apple's	 restriction	 on	 code	 signing	 on	 IOS	 devices.	 The	 app	 is	 initially
accepted	and	then	pulled	from	the	AppStore	automatically.
There's	 also	 a	 device	 called	 “Mactans”,	which	was	 presented	 back	 in	 2013	 at
BlackHat.	 This	 device	 looked	 like	 a	 charger,	 and	 if	 you	 leave	 it	 around,
somebody	will	pick	it	up	thinking	it’s	an	Apple	charger,	plugging	it	in,	it	injects
a	malware	on	the	device.
There	 is	also	“XARA”.	This	 is	also	an	 interesting	one	because	security	people
went	 through	 and	 found	 methods	 to	 do	 cross-app	 resource	 access,	 meaning
getting	 past	 the	 sandboxing,	 and	 they	 were	 able	 to	 make	 attacks	 on	 the	 IOS
platform.	They	have	submitted	some	malicious	proof	of	concept	apps	 to	Apple
and	the	AppStore,	and	Apple	approved	it.
The	researchers	immediately	removed	the	apps	from	the	store,	to	see	if	it	would
get	passed,	which	makes	you	wonder	what	the	attackers	are	doing,	right?

There's	another	tool	called	“Jekyll”.	This	is	for	researchers,	so	they	can	demo	or
show	a	method	of	getting	malicious	apps	approved	for	the	AppStore	by	masking
legitimate	features	to	evade	the	detection	of	the	malware,	but	the	malware	would
be	triggered	once	the	app	was	installed	on	the	IOS	device.
Apple	got	this	app	approved	through	the	AppStore	with	this	method,	but	later	it
was	 pulled	 by	 the	 researchers.	 “NeonEggShell”	was	 another	 similar	 tool.	 This
particular	 proof	 of	 concept	 was	 an	 interesting	 one	 because	 the	 researcher
demonstrated	how	easy	it	was	to	take	over	an	entire	device	with	a	piece	of	code
that	was	no	bigger	than	a	Twitter	post,	which	is	no	more	than	120	characters.

Chapter	24	Malware	&	Spyware	on	Android

If	you	think	IOS	is	terrible	when	it	comes	to	Malware,	well,	it's	even	worse	on
the		Android	platform.	Still,	you	have	to	remember	why	it	is	worse.	The	answer
is	because	of	 the	market	share.	There	are	many	iPhones	out	 there,	but	Android
has	more.	Currently,	at	the	beginning	of	2020,	87%	of	the	market	share	is	owned
by	Android.
When	 it	 comes	 to	 Android,	Malware	 doesn't	 require	 the	 device	 to	 be	 rooted.
Instead,	there	is	a	tool	called	“AccuTrack”,	which	turns	your	smartphone	into	a
GPS	 tracker.	We	 also	 have	 “Ackposts”,	 which	 is	 a	 Trojan	 that	 steals	 contact
information,	and	then	uploads	them	to	a	remote	server.
There	 is	 also	 “BankBot”	 that	 steals	 user's	 banking	 information	 and	 mobile
accounts	 from	 devices.	 There	 is	 another	 tool	 called	 “BinV”	 which	 is	 also	 a
banking	Trojan,	but	it	targets	Brazilian	users	only.

Another	tool	called	“Boxer”	that’s	also	a	Trojan	that	would	send	SMS	messages
to	premium	rated	numbers	so	that	it	can	inflate	your	phone	bill.	There	is	another
one	called	“CounterClank”	that	had	an	extremely	aggressive	ad	network,	and	it
did	have	the	capability	of	stealing	privacy-related	information	so	that	they	could
target	ads	at	you.
We	 also	 have	 “Dogowar”,	 which	 was	 a	 spam	 SMS	 messenger	 malware	 that
would	send	out	to	all	your	contacts	and	result	in	you	having	fewer	friends.
There's	 also	 “FakeAngry”	 which	 was	 a	 backdoor	 Trojan	 that	 could	 receive	 a
connection	from	a	CNC	server.	There's	also	“FakeAV”,	which	was	a	fake	anti-
virus	 product,	 but	 this	 one	 too	 could	 intercept	 incoming	 and	 outgoing	 phone
calls	as	well	as	your	voicemails.
There	 is	 also	 a	 tool	 called	 “FakeBank”.	 This	 opened	 up	 a	 backdoor	 and	 stole
information.	This	was	so	bad	that	it	also	could	infect	a	connected	PC.	So	if	you
connected	your	phone	to	your	PC	to	download	your	files,	it	would	trick	the	users
into	 exchanging	 their	 bank	 information,	 like	 their	 login	 information	via	 a	 fake
site.

Another	tool	was	called	“FakeNetflix”	which	was	stealing	user	credentials	from
Netflix.	“FakePlay”	was	an	application	that	runs	in	the	background	and	gathers
SMS	 information,	 and	 then	 sends	 it	 to	 a	 proxy	 address	 that	 runs	 at	 a	 device
administrator	privilege	level.
Android	does	have	device	administrators,	and	your	applications	can	request	that

level	of	authority.	A	good	example	 is	an	application	 that	 stores	passwords	and
generates	passwords	for	different	sites.	This	 is	 for	making	sure	you	don’t	have
the	same	passwords	on	all	the	websites	that	you	are	using.
Well,	 one	 of	 the	 features	 of	 that	 application	 is	 that	 if	 you	 make	 it	 a	 device
administrator,	it	can	then	monitor	your	device,	so	for	example,	when	you	launch
an	app	for	internet	banking	purposes	based	on	your	thumbprint,	it	will	auto-fill
in	your	information	for	you	to	log	on.
There's	also	another	tool	called	“GingerBreak”.	This	particular	piece	of	malware
would	 root	 your	 device	 without	 your	 knowledge.	 There	 are	 also	 tools	 like
“MMarketPlay”,	 that	was	 focused	more	 on	 the	Asian	market	 because	 it	was	 a
Trojan	 that	 automatically	 blocked	 applications	 on	 the	 Chinese	 Android
Marketplace.
There's	 also	 “Obad”,	 which	 was	 a	 multi-functional	 Trojan	 Malware.	 It	 could
send	 SMS	messages	 to	 a	 premium-rate	 number,	 and	 it	 could	 download	 other
malware	programs,	install	them	on	the	infected	device,	or	send	them	further	via
Bluetooth,	and	remotely	perform	commands	from	a	console.

“NikiSpy”	is	another	piece	of	malware	that	would	gather	information	such	as	the
IMSI	or	IMEI	number	of	the	device,	GPS	location	and	then	would	upload	it	to	a
URL.
There's	also	“SMSZombie”	that	was	extremely	stubborn	and	hard	to	remove,	but
its	primary	 function	 is	 that	 it	was	used	 to	exploit	 a	vulnerability	 in	 the	mobile
payment	systems	used	by	Chine	Mobile.
We'll	cover	mobile	payments	shortly,	but	some	of	this	Malware	I	mentioned	are
more	 current,	 and	 a	 lot	 of	 them	 deal	 with	 banking	 or	 mobile	 payment
applications.
There's	 also	 “SlemBunk”	 that	 pushes	 out	 a	 fake	 login	 interface	 when	 the
application's	running	in	the	background,	and	it	does	that	in	the	effort	to	phish	for
credentials	for	your	banking	institutions.
The	app	stays	incognito	after	running	for	the	first	time,	but	it	just	sits	there	and
monitors	the	activities	that	the	device	is	experiencing.	It	can	detect	when	certain
legitimate	 apps	 are	 launched,	 and	 it	 displays	 the	 corresponding	 fake	 login
interface.
From	there,	those	credentials	are	then	transmitted	to	a	remote	CNC	server.	This
particular	malware	is	disguising	itself	as	a	Flash	player	or	a	WhatsApp	update	on
the	 infected	system.	There	are	over	70	 legitimate	apps	 for	 financial	companies

that	can	emulate	its	login	interface.
There's	also	“Cetifi-Gate”	which	is	a	vulnerability	that	allows	an	application	to
gain	access	or	privileged	access	 rights	on	a	device.	This	allows	 the	attacker	 to
steal	personal	information,	track	device	location,	turn	mics	on	or	off,	and	much
more.
What's	 happening	 here	 is	 that	 the	 attacker	 is	 using	 a	 vulnerability	 that	 allows
them	to	take	advantage	of	insecure	apps,	certified	by	OEMs	and	carriers	to	gain
unrestricted	access	to	any	device	that	includes	screen-scraping,	keylogging.
There	is	many	more	Android	Malware	that	I	could	mention,	but	I	am	sure	you
get	the	picture	of	how	bad	it	is	when	it	comes	to	the	Android	platform.	Instead,
let’s	move	on	and	discuss	Mobile	Payments.

Chapter	25	Android	Pay	&	Apple	Pay

I	 want	 to	 discuss	 mobile	 payments	 in	 terms	 of	 you	 as	 an	 end-user	 making
payment	via	your	mobile	device.	When	it	comes	 to	security,	 if	you	 look	at	 the
technology	that's	being	utilized	in	the	back	end,		it	 looks	better	than	any	of	the
credit	card	technologies	that	we're	still	using.
Still,	we	are	about	to	take	a	closer	look	at	what’s	happening	when	we	try	to	pay
with	our	devices.	We'll	look	at	Secure	Element	versus	Host	Card	Emulation,	as
well	as	Android	Pay	and	Apple	Pay.
Then	we'll	take	a	look	at	other	mobile	payment	options	that	involve	our	mobile
devices,	 which	 would	 be	 our	 mobile	 credit	 card	 interfaces.	 Let's	 begin	 by
looking	at	Secure	Element	and	Host	Card	Emulation.

They	are	also	known	as	SE	versus	HCE.	Let's	first	talk	about	what	Apple	does
with	 the	 secure	 element.	 When	 it	 comes	 to	 the	 secure	 aspect,	 you	 need	 to
understand	that	Apple	wasn't	the	only	player	in	this	particular	technology.
Google	used	to	use	this	as	well,	but	they've	moved	on.	The	way	this	works	with
secure	elements	is	that	on	your	device,	you've	got	several	different	mechanisms
in	 place	 that	 help	 with	 the	 communication	 when	 you're	 trying	 to	 pay	 for
something	with	your	phone.
With	SE	or	secure	element,	it	stores	the	credit	card	and	cardholder	data	and	does
a	 cryptography	 process.	 During	 a	 transaction,	 what	 happens	 is	 that	 the	 SE
emulates	a	contactless	card	using	industry-standard	protocols	to	help	the	whole
authorization	of	 the	 transaction.	The	SE	 itself	could	be	either	embedded	 in	 the
phone	or	could	be	embedded	inside	of	the	mobile	provider's	SIM	card.
HCE	is	a	hard-based	card	emulation.	This	 is	where	 the	card	emulation	and	 the
secured	element	are	in	separate	areas.	When	it	comes	to	host	card	emulation,	you
need	to	understand	a	couple	things.
First	of	all,	again,	Google	used	to	use	SE	but	they	moved	over	to	HCE.	In	fact,
Microsoft	 announced	 that	Windows	 is	 supporting	HCE.	What	 happens	 is	 that
there	is	no	more	secure	element	involved.

We're	 going	 to	 separate	 this	 into	 different	 areas.	 When	 an	 Android	 phone	 is
tapped	 against	 a	 contactless	 terminal,	 the	 NFC	 controller	 inside	 the	 phone
redirects	the	communication	from	the	terminal	to	the	host	operating	system	and
the	phone's	HCE	implementation	guarantees	that	any	NFC	data	received	by	the
processing	app	that	was	obtained	directly	from	the	controller.

Therefore,	there's	no	way	to	spoof	a	payment	app	with	data	from	another	source
because	they	are	sandboxing	it.	Because	the	app	is	sandboxed,	it	ensures	that	its
data	isn't	available	to	the	other	apps	on	the	device.
Performing	all	those	functions	of	a	secure	element	in	software	still	has	a	security
risk	associated	with	it.	But	to	help	us	out,	Visa	and	Mastercard	are	implementing
cloud-based	 stable	 features,	 and	what	 this	means	 is	 that	 some	of	 the	 functions
that	 the	 physical	 secure	 element	 provide	 will	 be	 performed	 on	 Visa	 and
Mastercard	servers	over	the	internet.

Android	Pay
Android	 Pay	 is	 the	 replacement	 for	Google	Wallet,	 not	 that	Google	Wallet	 is
wholly	 gone.	When	 it	 comes	 to	Android	Pay,	 it	 supports	 fingerprint	 scanning,
but	 it's	 not	 necessarily	 required.	 If	 your	 device	 doesn't	 have	 it,	 you	 can	 use	 a
PIN.	 If	 possible,	 you	want	 to	 use	 the	 fingerprint	 feature	 because	 biometrics	 is
much	safer,	but	if	you	do	have	to	use	a	PIN,	don't	use	a	pin	like	1-2-3-4.
Another	 feature	 that	 Android	 Pay	 has	 is	 the	 ability	 to	 support	 dead	 zone
transactions,	 and	what	we	mean	by	 this	 is	 that	 you	might	be	 in	 an	 area	where
your	 phone	 doesn't	 have	 service.	 How	 do	 you	 go	 through	 an	 authorized
payment?
Well,	 you	 don't	want	 it	 to	 go	 unlimited	 so	 that	Android	 Pay	 can	 do	 a	 limited
number	of	transactions	in	these	dead	zones.	How	does	it	do	that?	Well,	you	can
still	use	secure	elements	if	you	need	to,	because	it's	backward	compatible.
Whenever	 you	make	 a	 purchase,	 a	 token	 is	 created,	 which	 replaces	 your	 real
credit	card	number	with	a	16-digit	number,	and	this	 is	called	tokenization.	The
other	advantage	is	the	ability	to	have	reward	cards	associated	with	your	Android
Pay	applications.
Android	 Pay	 isn't	 just	 for	 buying	 things	 in	 shops	 because	 you	 can	 use	 it	with
apps	as	well	if	the	developer	puts	in	an	Android	Pay	button.	Google	Wallet	also
reintroduced	as	a	peer-to-peer	payment	app,	where	you	bump	phones	together	or
you	 even	 put	 your	 phones	 next	 to	 each	 other	 to	make	 a	 payment.	 In	 terms	 of
security	perspective,	most	of	these	apps	have	security	mechanisms	to	require	you
to	verify	either	through	fingerprint	or	PIN	that	you	want	to	transfer	that	money.

Apple	Pay

Apple	 is	 using	 the	 NFC	 chip	 inside	 the	 iPhone.	 It's	 also	 inside	 of	 the	 Apple
Watch.	 It	 does	 rely	 on	 fingerprint	 scanning.	 Apple	 Pay	 currently	 accepts
payments	over	2M	retail	locations,	and	Apple	gets	a	cut	of	all	the	transactions.
When	you	set	up	Apple	Pay,	a	lot	of	people	get	concerned	because	the	first	thing
you	 do	 is	 you	 take	 a	 photo	 of	 your	 credit	 card.	You	 don't	 necessarily	 need	 to
worry	about	this	because	according	to	Apple,	whether	you	take	a	picture	or	you
type	in	your	credit	card	information,	it	gets	encrypted	and	it's	sent	to	the	Apple
servers.
Apple	then	decrypts	the	data,	figures	out	who	your	payment	system	is	through,
such	 as	 Visa	 or	 Mastercard,	 then	 re-encrypts	 the	 data	 with	 a	 key	 that	 was
provided	to	them	by	the	credit	card	company.
It	 then	 sends	 that	 encrypted	 data	 along	with	 some	 other	 information	 like	 your
iTunes	and	App	Store	account	activity,	 information	about	your	phones	such	as
the	phone	number,	the	name,	the	model,	and	your	geographic	data,	and	the	bank
then	looks	at	that	information,	determines	if	that's	you,	and	issues	back	a	DAN,
aka	dynamic	account	number.

This	gets	issued	back	to	Apple.	But	Apple	doesn't	have	any	way	of	decrypting	it,
so	they	create	a	dynamic,	secure	code	which	is	then	stored	on	your	SE.
Mobile	Credit	Card	Interfaces
There	 are	 several	 mobile	 credit	 card	 interfaces	 out	 there.	 One	 of	 the	 more
popular	ones	all	has	mobile	card	readers	 that	we	plug	 into	our	mobile	devices,
but	the	more	popular	ones	are	called	Square.
Since	“Square”	became	so	popular,	other	companies	have	released	their	versions
of	 readers,	 such	 as	 Gopay,	 which	 is	 done	 by	 QuickBooks.	 But,	 there	 is	 also
PayPal,	Amazon	Pay,	Local	Register	and	there's	like	many	more.
The	 downside	 is	 that	 some	 of	 these	 are	 hardware-based.	 Often	 these	 devices
don’t	 know	what	 app	 it's	 talking	 to.	Therefore,	 during	 a	purchase,	 a	malicious
merchant	 or	 third	 party	 can	 record	 several	 extra	 encrypted	 swipes	 of	 a	 credit
card.
Provided	that	the	swipes	don't	get	sent	to	the	Square	servers,	they	can	then	play
these	back	into	the	Square	Register	app	at	a	later	time	to	modify	the	transaction.
In	 summary,	 we	 looked	 at	 mobile	 payments	 and	 talked	 about	 the	 difference
between	secured	elements	versus	host	card	emulation.	Both	of	 them	have	 their
advantages	 and	 disadvantages.	 Apple	 has	 invested	 in	 the	 secure	 element,	 but
they	 could	 quickly	move	 over	 to	 host	 card	 emulation,	 or	 Google	 could	move

over	to	secure	emulation.	It	just	depends	on	which	one's	going	to	end	up	being
better	for	everybody	all	around.
Due	to	rapid	changes	in	technology,	in	the	upcoming	years,	we	might	see	better
payment	options	with	even	better	security,	but	time	will	tell	for	sure.

Conclusion

I	hope	this	book	was	able	to	get	you	started	on	your	pursuit	of	becoming	an	Elite
hacker	and	hopefully	you	will	choose	to	become	an	Ethical	Hacker.
In	 case	 you	 found	 some	 of	 the	 techniques	 and	 strategies	 I	 have	 demonstrated
being	 advanced	 at	 first,	 it’s	 ok,	 however	 repetition	 and	 on-going	 practice	will
help	you	to	become	an	IT	Professional	in	no	time.
If	you	wish	to	check	out	my	previous	books,	feel	free	to	look	up:

Volume	1	-	Hacking	–	beginners	guide
Volume	2	-	17	Must	Tools	Every	Hacker	Should	Have
Volume	3	-	Wireless	Hacking
Volume	4	-	17	Most	dangerous	hacking	attacks
Volume	5	-	10	MOST	DANGEROUS	CYBER	GANGS
HACKING	WITH	KALI	LINUX:	Penetration	Testing	Hacking	Bible
HACKING:	Social	Engineering	Attacks,	Techniques	&	Prevention
HACKING:	Hacking	Firewalls	&	Bypassing	Honeypots
HACKING:	Denial	of	Service	Attacks
HACKING:	How	to	Hack	Web	Apps

…or	better	yet,	you	can	check	out	my	3	Books	and	5	Books	Bundle	by	visiting
my	Author	Page	on	Amazon.

Thanks	again	for	purchasing	this	book.
Lastly,	if	you	enjoyed	the	content,	please	take	some	time	to	share	your	thoughts
and	post	a	review.	It’d	be	highly	appreciated!

https://www.amazon.com/gp/product/1546511881/ref=dbs_a_def_rwt_hsch_vapi_taft_p1_i6
https://www.amazon.com/gp/product/154668364X/ref=dbs_a_def_rwt_hsch_vapi_taft_p1_i5
https://www.amazon.com/gp/product/1547193921/ref=dbs_a_def_rwt_hsch_vapi_taft_p1_i4
https://www.amazon.com/gp/product/1548121916/ref=dbs_a_def_rwt_hsch_vapi_taft_p1_i0
https://www.amazon.com/gp/product/197956504X/ref=dbs_a_def_rwt_hsch_vapi_taft_p1_i8
https://www.amazon.com/dp/B07ZP8FH9M
https://www.amazon.com/HACKING-Engineering-Attacks-Techniques-Prevention-ebook/dp/B081BC9QZ9/ref=tmm_kin_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.com/HACKING-Hacking-Firewalls-Bypassing-Honeypots/dp/1711826898/ref=tmm_pap_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.com/gp/product/1676820868/ref=dbs_a_def_rwt_hsch_vapi_taft_p1_i2
https://www.amazon.com/HACKING-How-Hack-Web-Apps-ebook/dp/B083P3KNDD/ref=tmm_kin_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.com/dp/B082Q253X6
https://www.amazon.com/Hacking-Step-Step-implementation-demonstration/dp/1979683239/ref=tmm_pap_swatch_0?_encoding=UTF8&qid=&sr=
https://www.amazon.com/Alex-Wagner/e/B0716M4S6M/ref=dp_byline_cont_book_1

About	the	Author

Alex,	originally	from	Germany,	currently	living	in	the	UK.	Alex	is	a	Network	&
Security	Engineer,	Ethical	Hacker	having	over	10	years	of	experience	within	the
IT	field.
Alex	 already	 written	 8	 books,	 all	 revolving	 around	 Ethical	 Hacking,	
Cybersecurity	and	various	Linux	Tutorials.
Occasionally	 filing	 contract	 roles	 and	 helping	 large	 Companies	 to	 identify
Security	Vulnerabilities,	 in	European	Countries	as	well	Honk	Kong,	Singapore
and	sometimes	in	the	US.

From	Alex:
“I	 do	 my	 best	 to	 keep	 myself	 up	 to	 date	 with	 Technology	 and	 innovation	 of
Hacking	 methods	 by	 studying	 every	 day,	 but	 I	 also	 would	 like	 to	 share	 my
experience	 and	 knowledge	 with	 the	 world,	 especially	 those	 are	 new	 to	 IT
Security,	and	Ethical	Hacking.
My	intention	is	to	teach	you	what	I	have	learned	for	years	by	explaining	Hacking
methods	I	have	experienced	and	the	reason	why	these	activities	has	become	and
formed	such	a	large	Cyber	Criminal	Organizations.
I	will	be	providing	Hacking	strategies	and	step-by-step	implementations	in	order
to	 provide	 you	 with	 some	 homework	 by	 building	 your	 home	 lab	 and	 start	 to
practice	how	so	you	can	start	your	career	and	become	an	Ethical	Hacker.”

	Chapter 1 Common mobile platform terminologies...
	Chapter 2 Attack Vectors & Countermeasures...
	Chapter 3 Introduction to NFC Tags..
	Chapter 4 How to Install Android in Hyper-V...
	Chapter 5 Android Architecture..
	Chapter 6 Android Hardware Function Basics...
	Chapter 7 Android Root Level Access..
	Chapter 8 Rooting Android..
	Chapter 9 The danger of Free Apps..
	Chapter 10 Android Attack Types...
	Chapter 11 Securing Android Devices...
	Chapter 12 IOS Architecture Basics...
	Chapter 13 IOS Hardware Security..
	Chapter 14 IOS App Security...
	Chapter 15 IOS Jailbreak Types..
	Chapter 16 IOS Jailbreaking..
	Chapter 17 Securing IOS Devices...
	Chapter 18 Windows Phone Architecture..
	Chapter 19 BlackBerry Architecture..
	Chapter 20 Mobile Device Management..
	Chapter 21 Security Recommendations...
	Chapter 22 Spiceworks & Solarwinds..
	Chapter 23 Malware & Spyware on IOS..
	Chapter 24 Malware & Spyware on Android...
	Chapter 25 Android Pay & Apple Pay...
	Conclusion..
	About the Author...

