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Chapter 1
Introduction

The man who is a pessimist before 48 knows too much; if he is
an optimist after it he knows too little.

M. Twain

Abstract This chapter opens the book by introducing the characteristics and
particularities of critical infrastructures. Their existence and interplay forms a vital
pillar of contemporary societies, and their protection is a top duty of governments
and security research. Recent years have shown a paradigm shift of cyber-attacks
from specific individual threat and attack scenarios, to a modern combination of
various attack types and strategies to what we call an advanced persistent threat
(APT) today. This term describes a diverse class of attacks that all share a set of
common characteristics, which presents new challenges to security that demand
urgent and continuous action by practitioners, researchers and every stakeholder
of a critical infrastructure. The main focus of the book is describing game theory as
a tool to establish security against APTs, and to this end, the introduction here starts
with the abstract characteristics of an APT, showcasing them with a set of selected
real-life documented cases of APTs that ends the chapter.

1.1 What are Critical Infrastructures?

In today’s life, society is using and relying on numerous services, which satisfy the
basic needs of people and guarantee a smooth flow of the everyday life. Among
those services are the supply with basic resources (e.g., electricity, communication,
heating, etc.), vital supplies (e.g., water, food, medicine and health care, etc.) as
well as industrial goods (e.g., oil, gas, etc.) and general services (e.g., transportation,
cash and financial services, etc.). The organizations and companies providing these
services are called Critical Infrastructures (CIs) and represent the backbone of
today’s society. A core characteristic of a CI is that any failure of a CI, either in
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Fig. 1.1 Schematic representation of the complex network of CI

part or as a whole, will have considerable impact not only on the infrastructure itself
but also on the social well-being of people [6].

Over the last decades, the interrelations among CIs have increased such that CIs
have become more and more dependent on each other. These dependencies emerged
due to the fact that national and international supply chains have become more
important and many infrastructures depend on the resources other infrastructures
provide (cf. Fig. 1.1). The most prominent example is power supply; almost every
modern organization relies on a continuous availability of electricity such that CI
can provide their main services to full capacity. A shortage in power distribution or
even a blackout will either reduce the general output of the depending CIs or even
make it impossible for the CIs to provide its service. Figure 1.1 shows a schematic
illustration of such dependencies among CIs in multiple domains, which go far
beyond the supply with electric power.

Further, CIs also heavily rely on the exchange of information due to the uprising
digitalization of those infrastructures. Hence, a smooth operation of the communi-
cation infrastructure and a uninterrupted connection to the Internet has become a
core requirement. For example, CIs are using Industrial Control Systems (ICSs)
and Supervisory Control and Data Acquisition (SCADA) systems to remotely
monitor physical systems within their premises and control multiple (even highly
important) processes. If communication is interrupted, those systems might shut
down immediately or simply cannot be reached any more (cf. real-life examples in
Sect. 1.4) and the CI might have to operate the respective systems manually (if this
is possible at all).

Due to these facts, the CIs within a nation or even within a region have
evolved into a highly complex and sensitive infrastructure network with a variety
of interdependencies among them, as illustrated in Fig. 1.1. Thus, incidents within
a single CI can have far-reaching consequences, not only causing damages and
financial losses within that CI but also affecting multiple other infrastructures as
well as society as a whole. For example, a local power outage can cause a cellular
antenna tower to shut down and interrupt the mobile communication network in that
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area. Such indirect consequences are often referred to as cascading effects and they
impose a major problem. In general, they are hard to identify and thus difficult to
assess as well as to prepare for. Therefore, during a risk analysis or the general risk
management process of a CI, a particular focus lies on cascading effects. Chapter 2
provides more detailed information on how to model and describe the cascading
effects among CIs and how to integrate them into a CI’s risk analysis. To better
illustrate how cascading effects can manifest themselves in real-life, a few examples
of documented incidents over the last two decades follow in Sect. 1.4.

1.2 Security Challenges for Critical Infrastructures

In general, CIs have to face a broad variety of security challenges and threats in
their daily business. These are ranging from natural disasters of various kinds over
technical faults and human failure up to intentional attacks from the physical and the
cyber domain. Depending on the geographical location of a CI, its business domain
and the applied technical equipment, these threats can vary. In other words, a CI
located at the sea (e.g., a sea port) has to deal with different natural disasters than
an infrastructure located in the mountains (e.g., a dam). Further, an infrastructure
from the chemical industry has to deal with other technical threats than an airport or
a telecommunication provider.

Therefore, CI operators and the respective security officers need to become
aware of their individual threat landscape, adapt to the requirements towards risk
management and implement a large collection of security measures to be prepared
against these threats or counter them. In this context, threats stemming from natural
disasters and technical failures are quite static and change slowly (if at all) over time.
However, threats from the cyber domain have increased massively, in particular over
the last decade, and are considered to be highly dynamic due to the rapidly changing
software landscape. In addition to the increasing digitization in CIs, the effects of
a cyber attack can be tremendous (as briefly sketched in the following Sects. 1.4.3
and 1.4.4), such that cyber threats have become a major concern for CI operators.

Section 1.2.1 provides a short overview on the security challenges stemming
from natural disasters and technical failures. A strong focus is here on the security
challenges stemming from cyber threats in Sect. 1.2.2. The information presented
in both sections is coming mainly from well-established threat catalogs, i.e., the
European Anion Agency for Cybersecurity (ENISA) Threat Landscape [20] and the
German Federal Office for Information Security (BSI) IT-Grundschutz Catalog [2].
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1.2.1 Natural and Physical Threats

1.2.1.1 Natural Disasters

In the context of the physical domain, natural disasters represent threats with a
potentially very high impact on an entire CI as well as on its environment. Examples
are extreme weather conditions, storms or floods or very high temperatures but
also fires or lightning strikes need to be considered. Whether an infrastructure is
particularly exposed to some specific natural disaster depends on its geographical
location and the environmental conditions.

1.2.1.2 Technical Failures

Critical infrastructures also operate numerous technical equipment, which is
required to keep the services provided by the infrastructure running. These physical
devices can be subject to different potential failures and malfunctions. The reasons
for such a failure can be manifold, ranging from aging of material up to flaws in the
operating software systems or even human failure during operation and maintenance
of those systems. Such failures and malfunctions are usually limited to individual
machinery (or parts thereof), data storage or network connections and can be fixed
or repaired by the operator of the system (or some sub-contractor) in a certain
amount of time.

1.2.1.3 Disruptions and Outages

A special case of a technical failure is a disruption or outage of an essential service
required by the infrastructure to provide its operation. Any CI is depending on
several of such critical services (e.g., power, gas, telecommunication etc.) due to the
high interdependencies and interoperability in today’s supply networks (cf. Fig. 1.1
above). Hence, any incident in one of those supply networks may lead to far reaching
consequences affecting also the CI itself. Although many different reasons can cause
an incident in one of these networks (even a cyber attack, for example), for the
individual infrastructure as a consumer of the service provided by the network, this
can be considered as a technical failure. Such an incident may range from a short-
term loss of the service up to a large-scale network outage affecting the functionality
of a CI for a longer period. In the context of CIs, the outage of the power supply
as well as of communication networks can be seen as major concerns (as briefly
mentioned in Sect. 1.1). Additionally, not only technical but also social networks
need to be considered, such as, for example, the absence of personnel required to
operate the machinery within a CI.
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1.2.2 Cyber Threats

1.2.2.1 Distributed Denial of Service

With a lot of communication services using the Internet or at least being reachable
from the outside world, shutting down such services by generating a high load of
traffic is nowadays a common attack vector. This is achieved by creating massive
amounts of connection requests targeted at a specific device, which is then no longer
able to perform it tasks due to the continuous handling of the requests. Additionally,
the current trend towards the Internet of Things (IoT), i.e., connecting small devices
to the Internet with low or no security measures installed, makes it much easier for
adversaries to take over control of a huge number of devices and thus creating a
Distributed Denial of Service (DDoS) attack.

1.2.2.2 Malware and Ransomware

In recent years, malicious code and software, i.e., “malware”, has been on the
rise and becoming a major threat for cyber systems. The variety of malware, its
sophistication and the number of systems targeted by it are huge. Hence, it is
very difficult to protect systems from being infected by malware. Additionally, a
wide range of functions can be implemented by malware such that it can tamper
cyber systems on the communication as well as on the operation level. Hence, the
proper functioning of a CI can be affected (as described in Sect. 1.4.4), leading to
a multitude of different effects. In the context of malware, these effects can range
from the retrieval of information by a malicious party up to an injection of fraudulent
information or commends into the communication channel. Ransomware on the
other hand follows a different principle, i.e., it encrypts the entire infected system
or crucial data stored on it and demands a ransom (often some amount of Bitcoin)
in exchange for the decryption key.

1.2.2.3 Spear Phishing Attacks

Another threat vector that has gained popularity over the last years are phishing
mails. Such emails appear to the recipient as genuine mails but contain either a
link pointing to a malicious website or an attachment (e.g., a Portable Document
File (PDF) or Office document) equipped with some malicious code. In both
cases, the goal of the attacker is to trick the recipient into clicking on the link or
opening the attachment. In this case, a malware or ransomware is loaded onto the
recipient’s system and is then causing additional damage (see also examples in the
following section). In general, such phishing mails are not targeted and sent to a
large number of recipients, which makes it easier for an observant user to identify
the attempt. However, some phishing attacks are more elaborated and targeted to
a certain organization or even to one specific user or a specific user group within
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an organization. Such a targeted attack is then called spear phishing attack. In that
case, it is much harder even for a trained user to identify the mail as a phishing
attempt. Still, to craft such an attack, a lot more effort is required. In particular,
social engineering (see the following paragraph) is applied as an important tool in
the preparation phase to tailor the mail and thus the attack to perfectly fit to the
recipients.

1.2.2.4 Social Engineering

With all the technical means available for protecting cyber systems today, the main
cause of incidents in the cyber domain is human failure. Hence, social engineering
approaches [12, 19] try to exploit this concept and trick the person operating a
system to introduce some malicious software into the system. In this way, an
adversary is able to surpass all technological protection mechanism (e.g., firewalls
or intrusion protection systems) and get direct access to the internal networks of an
organization. Since control and protection mechanisms are usually not as strict in
the internal network as they are on the perimeter, this makes social engineering such
a highly critical threat.

1.3 Advanced Persistent Threats (APT)

1.3.1 Characteristics

Among today’s security challenges for CIs, one of the most complex and severe are
Advanced Persistent Threats (APTs). These attacks combine different techniques
and attack strategies from the physical and the cyber domain and are very difficult
to detect. Although there is no common consensus on how to specifically define an
APT due to their variety and diversity, some shared characteristics are commonly
accepted as distinguishing features in relation to other attacks. Among these, an
APT has at least the following characteristics:

1. Targeted: an APT usually aims at a very specific victim and goal. For the victim,
this means that the attack is often “hand-crafted” to fit the particularities of the
target systems, which in turn means that standard technical security precautions
like firewalls, virus scanners or similar are of limited efficacy. With respect to the
attacker’s goal, we can broadly distinguish two classes of APTs, both of which
require distinct modeling and treatment:

• Gaining control over a running service: the adversary’s goal is to take over
the system for as long as s/he can. However, this does not necessarily mean
that the adversary wishes to shut down the targeted system, in particular, if
the system should act as a platform from which further attacks are mounted
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(like a base camp). For example, the APT could aim at limiting bandwidth or
blocking certain content in a multimedia streaming network. In this case, the
attacker’s goal would be to keep the system alive, but at a level that s/he can
maintain or cut down at will. An example of a game model to counteract this
type of APT is FlipIt, which we discuss in Sect. 9.3.

• Hitting a vital target: the purpose of this attack is to shut down the targeted
system or cause at least some permanent damage. Here, unlike in the previous
case, the time spent in the system is of less importance than the point that
the attacker can reach within the system. For example, if the attacker wants
to disrupt a nuclear power reactor, remaining in the systems for any period
of time, no matter how long or short, that lets the adversary cause a nuclear
meltdown or a comparable catastrophe would be the APT goal here. An
example game model designed for defense against this second type of APT
is Cut-The-Rope, discussed in Sect. 9.4.

2. Stealthy and Slow: an additional goal of an APT is often to stay undetected.
While this is not surprising and can be considered as a goal for many attacks,
the distinguishing fact of an APT is the time scale; an APT is hardly an ad hoc
nor quick strike, but rather follows a sophisticated plan of penetration to never
cause much attention and therefore always remain under the radar. The rationale
is to prepare the attack up to a point where it is hardly – if at all – possible to
counteract if the attack is detected.

3. Unbounded resources: budget limits are usually hard to assume reliably for
an APT. Following contemporary findings, most reported cases of successfully
implemented APTs were driven by well organized teams with very high, up
to presumably unlimited, resources. In this context, we often see that the
achievement of the goal (i.e., the infiltration of a system) weighs much higher
than the investment made for this purpose. This is due to the fact that many of
these groups are – or are supposed to be – state sponsored [8]. In this sense, the
economic reasoning of security to be given if an attack is more expensive than
the revenues upon success, this may not apply for an APT.

1.3.2 Life-Cycle

In terms of their chronology and life-cycle as well as by their aforementioned
characteristics, APTs are diverse in the actions they take and strategy they follow.
However, a sequence of steps can be outlined in accordance with [1, 7, 28], which
describes the general modus operandi of an APT. This is called the kill chain.
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1.3.2.1 Step 1: Reconnaissance

In the initial step of an APT, an attacker chooses the target system or network of
his attack. Therefore, the attacker starts to “hunt” for potential targets (e.g., IT
systems or pieces of infrastructure with specific vulnerabilities); alternatively, the
attack can already be tailored to a specific organization or sector. If the target system
is identified, the attacker starts to collect as much information available as possible
about it by using open data sources like websites, social media and others. The aim
is to gain detailed knowledge about the target’s infrastructure, e.g., hardware and
software in use, organizational structure, employees and others.

1.3.2.2 Step 2: Initial Compromise

When this information is available, the attacker starts to craft an attack with the aim
to compromise a weak systems within the organization. Therefore, technical as well
as social skills are used. On the technical side, the attackers are looking for known
vulnerabilities in the identified IT systems by searching respective databases, e.g.,
the National Vulnerability Database (NVD) operated by the National Institute of
Standards and Technology (NIST), or crawling the dark web for zero-day exploits
(i.e., vulnerabilities in software, which are yet unknown, and guidelines how to
exploit them). On the social side, the attackers start to identify personnel at the
targeted organization (e.g., security officers, network administrators but also normal
users) and use social engineering (cf. also Sect. 1.2.2) to obtain detailed information
about them. The aim is to find either vulnerable systems within the organization,
which are accessible from the outside, or personnel which can easily be infiltrated.
Therefore, the attackers create emails containing malicious links or documents (i.e.,
spear phishing mails, cf. also Sect. 1.2.2). These emails are specifically tailored to
the targeted person such that there is a high probability that the person will click on
the link or open the document. In this way, a malware is downloaded or an exploit is
created, which can then be used by the attacker to gain access to the targeted system
(cf. also Sect. 1.2.2).

1.3.2.3 Step 3: Establish Foothold

The malware initially loaded onto the target systems in the previous step usually
creates a backdoor for the attacker to install additional software on the system.
This software has some remote administrative functionality, which allows the
attacker to install additional tools (e.g., command and control software) or establish
communication lines (e.g., Virtual Private Network (VPN) tunnels) to the outside
world. The attacker’s communication with the compromised system is in general
stealthy and hard to spot by an administrator, since it usually blends into the normal
network traffic. This makes it more difficult for the organization’s security officers
to detect the attacker’s presence in the internal network.
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1.3.2.4 Step 4: Escalate Privileges

After having established the presence in the compromised system, the attacker
tries to identify additional user accounts with higher privileges (e.g., domain
administrators or accounts used for maintenance or service). Most commonly, key
loggers or network sniffing tools are used to achieve that; however, passwords from
other users can also be exfiltrated from respective databases. In this way, the attacker
can escalate the privileges gained by the initial compromise and gain access to
additional systems and domains in the organization’s network.

1.3.2.5 Step 5: Internal Reconnaissance

Besides looking for user accounts with a higher security level on the initially
compromised system, the attacker also scans the network for other important
systems, domains or networks. In this way, the attacker obtains an overview on
the network structure and the systems running in the organization. This information
allows him to identify additional vulnerabilities and load malware to exploit them
via the command and control tools installed in Step 2. Since the attacker is now
operating within the organization’s network, he has additional capabilities to exploit
vulnerabilities of systems, which would not be accessible from the outside world
(i.e., from the general Internet).

1.3.2.6 Step 6: Move Laterally

If the internal reconnaissance was successful and the attacker was able to identify
other vulnerable infrastructure in the network, he will start compromising those
other systems by performing Steps 2, 3 and 4 on them. In short, the attacker will
exploit the detected vulnerabilities to gain a foothold in the new system, then install
command and control software therein to finally escalate privileges on the newly
compromised systems. As one reason for moving laterally is to gain access to more
important systems in the organization, the risk of being detected by an administrator
or security officer can be another reason for an attacker to move to a different system.

1.3.2.7 Step 7: Maintain Presence

With the attacker obtaining control over an increased number of systems in the
organization’s network, he is able to establish multiple communication channels
to the outside world to maintain his connection to the remote command and control
tools. This leaves him with additional capabilities to operate in the network even if
one of the existing channels is discovered and closed or if his presence is detected
and removed from one system. At this point, it is extremely difficult to completely
remove the presence of the attacker from the organization’s network.
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1.3.2.8 Step 8: Complete Mission

When the attacker has reached its final target, i.e., a specific server or (industrial)
control system, and gained control over it, the last phase starts. In case of an
(industrial) control system, the attacker can gain or already has gained enough
privileges on the device due to the malware and exploits installed in the previous
steps to perform any desired task (e.g., switch off a transformer substation as
happened in the example of the Ukraine described in Sect. 1.4.3). In case the attacker
wants to exfiltrate specific data hosted on a server, he can achieve that via the
communication channels established in the previous steps. Since an organization
usually handles a lot of data going in and out of its network, it is difficult to identify
data exfiltration at that point. The attacker has the opportunity to use various tools
to obfuscate the source or destination of the data stream, to encrypt the payload or
hide the data in a standard data stream.

1.3.2.9 Step 9: Cover Tracks

After completing the mission, the attacker erases all traces of his presence in
the system. However, the attacker might also leave some backdoors, tools and
communication channels operational to be able to return and compromise the
organization again.

1.4 Selected Real-Life Incidents

In the following, we will present a list of a few selected and well documented attacks
on CIs. We neither claim this list to be complete nor covering the most severe cases
that ever existed, and there might be an undocumented black-count. Nonetheless,
the examples in the next sections shall illustrate how past incidents caused failures
within a CI and furthermore point out the direct consequences of those incidents
as well as on the aforementioned cascading effects. We will loosely distinguish
between natural and man-made causes as well as unintentional and intentional
causes. The examples shall give an idea how vulnerabilities within CIs could look
like and which potential cascading effects a single incident might have.

1.4.1 The Blackout in Italy (2003)

In 2003, Italy experienced a major blackout on Sunday, September 28th, starting
shortly after 3:30 in the morning and lasting for several hours [30]. The blackout
had far-reaching consequences for various infrastructures all over Italy as well as the
Italian population and caused a financial damage of over 1.100 million Euros [26].

The blackout was caused by a series of events resulting in an overload of several
main power lines coming from Switzerland, France, Austria and Slovenia. The
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initial event was a tree flashover at the Swiss 380 kV line “Mettlen-Lavorgo”,
which caused the tripping of this important supply line [30]. With the failure of the
“Mettlen Lavorgo” line, other 380 kV power lines took over the load while several
attempts for re-closing the line were executed. As a result of the balancing attempt,
one of those lines, the “Sils-Soazza” line, which is the closest to the “Mettlen-
Lavorgo” line, also suffered an overload. This overload was acceptable for 15
minutes according to operational standards (and according to expert opinions) for
such an emergency. During that period, several countermeasures (i.e., reducing the
power consumption for about 300 MW) were implemented in Italy and Switzerland
to restore the agreed schedule [30]. However, these measures were not sufficient
and about 25 minutes after the outage of the “Mettlen-Lavorgo” line, also the “Sils-
Soazza” line tripped.

The loss of two important power lines had a strong impact on the remaining
connections to France, Austria and Slovenia, causing them to collapse almost
immediately after the outage of the “Sils-Soazza” line [30]. As a result, the Italian
power grid was isolated from the European grid. This affected the network in
Northern Italy as instability phenomena and overloads happened, resulting in an
unsatisfactory low voltage level in the entire Italian network. Although frequency
control measures were set in place automatically, turbine tripping, underfrequency
relay opening, loss of excitation and other incidents caused the outage of several
generating units, which should cushion the effects from the overload [30]. The result
was a drop of the frequency below the 47.5 Hz threshold and the blackout of the
entire network.

The recovery process started immediately, such that the northern part of the
Italian network was back online about 5 hours after the blackout, the central part
about 7 hours and main Italy about 13 hours after the blackout happened. As the last
part, the island of Sicily was energized about 18 hours after the initial events [30].

1.4.2 The Transportation Gridlock in Switzerland (2005)

In 2005, the entire Swiss railway service was shut down for three hours due to
human misjudgment and maintenance work. Over 200.000 commuters were affected
and got stuck either on the trains or at the train stations; the shutdown caused a
financial damage of over five million Swiss Francs [27].

In the late afternoon of June 22nd 2005, two power lines “Amsteg – Steinen”
in the central Swiss Kanton Uri were switched off due to construction work at the
tracks at that time [13]. This switch off was planned and checked about a week
before the incident and according to existing documentation, the remaining power
line was supposed to handle the additional load without problems. However, the two
lines could not be switched back on after the construction work was completed and
the additional third line could not hold the overload.

It has to be noted at this point that the Swiss railway operates their own power
grid, including power plants and the distribution network. Due to the special
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topology of the Swiss railway power grid, the power line “Amsteg – Steinen” is
crucial since it connects three of the main power plants of the Swiss railway operator
with the rest of the network. After the third line tripped due to the overload, the
Kantons Uri and Tessin were cut off the remaining grid, which caused an overload
of the power grid and the shutdown of three power plants in this region [13]. Hence,
a blackout occurred in this region and the railway operator started the recovery
process to bring them back online.

On the remaining side of the network, the power loss was supposed to be
compensated via connections to the power grid of the German railway operator.
Due to the resulting heavy load, those connections failed; at this point, the Swiss
railway operator was also selling electricity to neighboring countries. Since the
operators were mainly occupied with recovering from the first blackout in the
Kantons Uri and Tessin, the problems with the connections to the German power
grid stayed unobserved. Those issues combined caused also a blackout in the
remaining network.

1.4.3 The Attack on the Ukrainian Power Grid (2015)

The Ukrainian power grid fell victim to a major cyber attack in 2015, when hackers
managed to gain access to the critical systems of three major power distribution
companies (so called “oblenergos”) in the Ukraine. They caused a large power
outage in most parts of the country, which lasted for about six hours and left
approximately 225.000 households without electricity by switching off about 30
substations [14, 18]. The attack is seen as an APT, since it was very well prepared
by the adversaries as well as highly sophisticated (cf. also Sect. 1.3 for details on
the characteristics of an APT). Further, the 2015 attack is also known the first cyber
attack that directly caused power outages.

The attack applied six adversarial techniques over a time period of several
months (cf. also Fig. 1.2) to prepare and execute the attack. With these techniques,
the attackers followed the main steps of the ICS Cyber Kill Chain [1] (which
are also reflected in the individual steps of an APT as described in Sect. 1.3).
The attack started with an analysis of open source information about the three
power distributors followed by a serious of spear phishing attacks on them. Those
attacks were particularly targeted at the power providers by using information from
openly available sources (e.g., on Remote Terminal Unit (RTU) and ICS vendors
used in these companies) and social media (e.g., on senior personnel working in
these companies) [18]. The targets received crafted emails with word documents
including an exploit to install the BlackEnergy 3 malware [29] on the system.
This malware provides several tools to an attacker, starting from simple network
scanning up to key logging and remote desktop functionality, which enable a hostile
takeover of the infected system and the potential to infiltrate the network the system
is connected to.
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Fig. 1.2 Illustration of the steps during the hack of the Ukranian power grid [18]

Using the capabilities of the BlackEnergy 3 malware, the adversaries started
gain a foothold in the infected infrastructures. This was achieved by collecting user
credentials (account name and password) from various users in the systems and, in
this way, escalate their privileges in the infected infrastructures, e.g., by identifying
administrators and exfiltrating their passwords or by tampering the authentication
functionalities of the system. In this way, the adversaries were able to use genuine
user accounts and follow standard ways of communication in the networks, which
made it more difficult to identify them as malicious parties.

One possibility used by the adversaries to get access to the ICS was to use VPN
tunnels from the business network to the ICS network. This was achieved mainly
because the VPN connections did not use two-factor authentication, which made it
easier for the adversaries to gain access remotely. Additionally, the adversaries were
able to control systems in the ICS network due to a remote access functionalities,
which were natively built into the ICS systems, and firewall not blocking these
commands [14].

In this way, the adversaries finally gained access to the command and control
systems in the distribution networks, which allowed them to manipulate their
operation and shut them down remotely. In detail, the adversaries developed on the
one hand applications to communicate with the Distribution Management System
(DMS) environments operated by the organizations and on the other hand malicious
firmware for the serial-to-ethernet devices used by the power distributors [18].
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Using the stolen credentials, the adversaries then were able to take over the relevant
workstations and install the crafted tools on them. This allowed them to take 27
substations offline and upload the firmware to the serial-to-ethernet devices, which
locked the operators out of the infected workstations since the altered firmware did
not allow remote commands to be issued.

In addition to the above activities, the adversaries started a Denial of Service
(DoS) attack on the call service center of the power providers [34]. One effect of
this was that the operators in the service center were overwhelmed with fake calls
and real customers, who were experiencing the power outage, could not get through.
As a consequence, the operators were not aware of the full impact of the situation.
A second effect of the DoS attack was that the customers became frustrated because
they could not reach the distribution network operators to obtain more information
about the blackout situation.

1.4.4 The WannaCry and NotPetya Malware Infections (2017)

In the year 2017, two major malware infections took place all over the globe;
the WannaCry [31] infection in May and the NotPetya [32] infection in June.
Both malware infections had a particularly high expansion all over the world, with
WannaCry affecting over 200.000 computers globally and NotPetya causing about
10 billion Dollar of damage due to the shutdown of critical systems [11]. In that
way, NotPetya had the largest economic effect of any malware infection yet (even
more than WannaCry) and has been of major concern for cyber security experts,
information security officers and infrastructure operators in 2017 and beyond.

NotPetya originated in the Ukraine, spreading from the premises of a software
company named Linkos Group. One of their main products was the tax accounting
tool M.E.Doc [4], which almost every company doing business in the Ukraine
was using. Due to a lack of security functionality in the update servers of Linkos,
a back-door was established by some hackers. This back-door granted them the
ability to push a malicious patch of M.E.Doc to the company’s customers. This
patch contained the NotPetya malware and was automatically distributed to all
organizations who were using the accounting software.

The malware itself is applying the EternalBlue exploit [21], which takes
advantage of a vulnerability in Microsoft’s Server Message Block (SMB) protocol
and allows an attacker to execute arbitrary code on the target computer. Using this
functionality, NotPetya is able to infect computers on the same (local) network and
also remote computers that are connected via SMB. Further, it uses the Mimikatz
malware [10], which allows the attackers to extract Windows passwords from the
system’s RAM and thus get access to the local system as well as other systems
where the local user has access to. By using these two exploits, NotPetya became
the fastest spreading malware so far [11].

On an infected system, NotPetya starts to encrypt all files on the hard drive of
the system (in contrast to the related malware Petya, which encrypts only the master
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file table containing all information on the files, directories and metadata located on
the hard drive). Additionally, the malware could also completely wipe all files on
the system or rewrite them such that they can’t be recovered after decryption. This
functionality is initialized by forcing a restart of the system, after which the system
can’t reboot again and a screen is displayed telling that some ransom has to be paid.

Among the multitude of companies hit by the NotPetya Malware, the highest-
grossing impact was encountered by the pharmaceutical company Merck (around
870 million Dollars), the European branch of the delivery company FedEx (roughly
400 million US Dollar), the French construction company Saint-Gobain (around
384 million US Dollar) and the Danish shipping and logistics company Maersk
(around 300 million US Dollar) [11]. In particular in the case of Maersk, the
consequences were highly visible: the infection with the NotPetya malware and
the consequent shutdown of a high number of critical systems within Maersk own
network caused several processes in the logistic supply chain to break down. For
example, operations at the Maersk terminal at the second largest port in India, the
Jawaharlal Nehru Port Trust near Mumbai, have been disrupted due to the infection
of Maersk’s systems such that loading and unloading of vessels was not possible
any more [24]. At another of Maersk’s terminals in Elizabeth, New Jersey, the
registration of trucks picking up or dropping off containers at the port and the
general logistics of the containers (i.e., their location etc.) is completely digitalized
and supported by the Maersk systems [11]. Hence, the NotPetya infection of
Maersk’s network caused a shutdown of the registration at the entrance gate to the
port, leaving the trucks no way to either enter or leave the port.

1.4.5 The Blackout in Venezuela (2019)

From March 7th to March 14th 2019, a blackout took place in Venezuela and
lasted one week. It was the biggest power outage in the history of Venezuela [5].
Although Venezuela has been experiencing power outages on a frequent basis over
the last years, the one in March 2019 had wide-spreading impact on several major
cities in Venezuela, including the capital Caracas, influencing the social life of the
population. Outages of telecommunication and banking as well as shortages of food
and water supply, irregularities in health care and also outages of the transportation
system were just a few consequences of the blackout. Additionally, the blackout was
followed by a serious of smaller outages from March to July with shorter duration
and minor impacts each.

Venezuela is in a particular situation when it comes to power supply, since
about 70% to 80% of the nation’s overall power supply is coming from the
hydroelectric power plant at the Gurí Dam [5, 23]. Additionally, most of the bigger
cities in Venezuela are powered by the San Geronimo B substation, which is
directly connected to the Gurí Dam. A vegetation fire overheated these power lines
connecting the substation to the dam and caused the lines to shut down. The resulting
power loss caused the turbines at the hydroelectric plant to increase their speed and
overload the systems. Although safety systems were in place inside the dam and
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tried to decrease the power input, the system became uncontrollable and the power
generators of the dam had to be disconnected. As a consequence, the frequency in
the grid could not be stabilized and started to fluctuate, thus overloading two other
power plants at Caruachi and Macagua [17].

As a measure to increase resilience, a number of thermal power plants are put
in place in Venezuela, which should take over the load in case of a power shortage
or blackout. However, these power plants were not running at the time the incidents
happened due to maintenance reasons and a shortage of fuel [16]. Hence, it was
particularly difficult to stabilize the frequency of the electrical grid and bring it back
online.

The consequences of the blackout were manifold, particularly due to the length
of the outage. In detail, almost the entire telecommunication infrastructure of
Venezuela was shut down [22], which also affected television (i.e., news broad-
casting) and the connection to the Internet. As a second (and related) consequence,
banks and the financial system were not able to operate any more, which affected the
availability of cash. The use of payment cards and ATMs was not possible and most
financial transactions were falling back onto the US Dollar [25]. Without a sufficient
power supply, refrigerators were also not working any more, which directly affected
the food supply and caused retailers of meat and fish to close down since it was no
longer possible to keep the goods fresh [9]. Further, the water distribution system
was equally affected by the power outage, leaving large parts of the major cities in
Venezuela without water supply for days.

Furthermore, the medical supply and health care suffered from the blackout.
Although hospitals were equipped with power generators, they were unable to run
at full capacity due to a shortage in the fuel supply. As a result, only the emergency
rooms had lighting and standard surgeries could not be carried out properly as the
chance of an infection was too high. Consequently, several deaths were reported
in different hospitals, which could be directly related to the blackout [15]. From
an industry perspective, the power outage heavily influenced the oil production,
causing some oil rigs to shut down completely and cutting the overall oil production
of Venezuela in half for some time [33].

After seven days, most parts of the country regained a stable power supply;
however, 30-day power rationing was necessary after the incident because the
grid was not able to run at full capacity. In that time, additional blackouts were
encountered at the end of March and beginning of April, which also affected large
parts of the country, reducing the operation of telecommunication, traffic and the
public sector [3].

References

1. Assante MJ, Lee RM (2015) The Industrial Control System Cyber Kill Chain. SANS White
Paper, SANS, Bethesda. https://www.sans.org/reading-room/whitepapers/ICS/industrial-
control-system-cyber-kill-chain-36297

https://www.sans.org/reading-room/whitepapers/ICS/industrial-control-system-cyber-kill-chain-36297
https://www.sans.org/reading-room/whitepapers/ICS/industrial-control-system-cyber-kill-chain-36297


References 19

2. Bundesamt für Sicherheit in der Informationstechnik (2016) IT-Grundschutz Catalogue. BSI,
Bonn. https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html. English
Version

3. CGTN (2019) Maduro announces 30 days of electricity rationing in Venezuela. Egypt
independent. https://news.cgtn.com/news/3d3d514f31557a4e33457a6333566d54/index.html

4. Cimpanu C (2017) Petya ransomware outbreak originated in ukraine via tainted account-
ing software. https://www.bleepingcomputer.com/news/security/petya-ransomware-outbreak-
originated-in-ukraine-via-tainted-accounting-software/

5. Dube R, Castro M (2019) Venezuela blackout plunges millions into darkness. Wall
Street J. https://www.wsj.com/articles/venezuela-blackout-stretches-across-country-closing-
schools-and-businesses-11552053011

6. European Commission (2008) COUNCIL DIRECTIVE 2008/114/EC of 8 December 2008 on
the identification and designation of European critical infrastructures and the assessment of
the need to improve their protection. Off J Eur Union (L345):75–82. http://eur-lex.europa.eu/
legal-content/EN/TXT/PDF/?uri=CELEX:32008L0114&from=EN

7. FireEye (2013) APT1. Exposing one of China’s cyber espionage units. Technical report,
FireEye Inc., Milpitas. https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/
mandiant-apt1-report.pdf

8. FireEye (2019) Cyber threat intelligence reports. https://www.fireeye.com/current-threats/
threat-intelligence-reports.html

9. France24 (2019) Race against time in blackout-hit Venezuela to save food stocks. France
24. https://www.france24.com/en/20190311-race-against-time-blackout-hit-venezuela-save-
food-stocks

10. Greenberg A (2017) How the Mimikatz hacker tool stole the world’s passwords. Wired. https://
www.wired.com/story/how-mimikatz-became-go-to-hacker-tool/

11. Greenberg A (2018) WIRED: the untold story of NotPetya, the most devastating cyberattck in
history. https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-
world/

12. Hadnagy C (2011) Social engineering. Wiley, Indianapolis. http://media.obvsg.at/
AC08377030-1001

13. Hess H, Lehmann P (2005) Neue Erkenntnisse zum Stromausfall. https://www.gotthardbahn.
ch/downloads/stromausfall_medienkonferenz2.pdf

14. ICS-CERT (2016) Cyber-attack against Ukrainian critical infrastructure. https://ics-cert.us-
cert.gov/alerts/IR-ALERT-H-16-056-01

15. Jones S (2019) Venezuela blackout: what caused it and what happens next? The Guardian.
https://www.theguardian.com/world/2019/mar/13/venezuela-blackout-what-caused-it-and-
what-happens-next

16. Kurmanaev A, Herrera I, Krauss C (2019) Venezuela blackout, in 2nd day, threatens food
supplies and patient lives. The New York Times. https://www.nytimes.com/2019/03/08/world/
americas/venezuela-blackout-power.html

17. La Patilla (2019) El origen de la falla que causó el mega apagón en Venezuela (informe de la
UCV). LaPatilla.com. http://www.lapatilla.com/2019/03/13/el-origen-de-la-falla-que-causo-
el-mega-apagon-en-venezuela/

18. Lee RM, Assante MJ, Conway T (2016) Analysis of the cyber attack on the Ukrainian power
grid. Technical report, E-ISAC, Washington. https://ics.sans.org/media/E-ISAC_SANS_
Ukraine_DUC_5.pdf

19. Mann I (2008) Hacking the human. Gower, Aldershot
20. Marinos L, Lourenco M (2019) ENISA threat landscape 2018. Technical report,

ENISA, Ispra. https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018/
at_download/fullReport

21. MS-ISAC (2019) EternalBlue. Security primer SP2019-0101, multi-state information shar-
ing & analysis center (MS-ISAC). https://www.cisecurity.org/wp-content/uploads/2019/01/
Security-Primer-EternalBlue.pdf

https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
https://news.cgtn.com/news/3d3d514f31557a4e33457a6333566d54/index.html
https://www.bleepingcomputer.com/news/security/petya-ransomware-outbreak-originated-in-ukraine-via-tainted-accounting-software/
https://www.bleepingcomputer.com/news/security/petya-ransomware-outbreak-originated-in-ukraine-via-tainted-accounting-software/
https://www.wsj.com/articles/venezuela-blackout-stretches-across-country-closing-schools-and-businesses-11552053011
https://www.wsj.com/articles/venezuela-blackout-stretches-across-country-closing-schools-and-businesses-11552053011
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0114&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0114&from=EN
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/current-threats/threat-intelligence-reports.html
https://www.fireeye.com/current-threats/threat-intelligence-reports.html
https://www.france24.com/en/20190311-race-against-time-blackout-hit-venezuela-save-food-stocks
https://www.france24.com/en/20190311-race-against-time-blackout-hit-venezuela-save-food-stocks
https://www.wired.com/story/how-mimikatz-became-go-to-hacker-tool/
https://www.wired.com/story/how-mimikatz-became-go-to-hacker-tool/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
http://media.obvsg.at/AC08377030-1001
http://media.obvsg.at/AC08377030-1001
https://www.gotthardbahn.ch/downloads/stromausfall_medienkonferenz2.pdf
https://www.gotthardbahn.ch/downloads/stromausfall_medienkonferenz2.pdf
https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01
https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01
https://www.theguardian.com/world/2019/mar/13/venezuela-blackout-what-caused-it-and-what-happens-next
https://www.theguardian.com/world/2019/mar/13/venezuela-blackout-what-caused-it-and-what-happens-next
https://www.nytimes.com/2019/03/08/world/americas/venezuela-blackout-power.html
https://www.nytimes.com/2019/03/08/world/americas/venezuela-blackout-power.html
http://www.lapatilla.com/2019/03/13/el-origen-de-la-falla-que-causo-el-mega-apagon-en-venezuela/
http://www.lapatilla.com/2019/03/13/el-origen-de-la-falla-que-causo-el-mega-apagon-en-venezuela/
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018/at_download/fullReport
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018/at_download/fullReport
https://www.cisecurity.org/wp-content/uploads/2019/01/Security-Primer-EternalBlue.pdf
https://www.cisecurity.org/wp-content/uploads/2019/01/Security-Primer-EternalBlue.pdf


20 1 Introduction

22. NetBlocks (2019) Second national power outage detected across Venezuela. https://netblocks.
org/reports/second-national-power-outage-detected-across-venezuela-dQ8o728n

23. Newman LH (2019) Why it’s so hard to restart Venezuela’s power grid. Wired. https://www.
wired.com/story/venezuela-power-outage-black-start/

24. PTI (2017) New malware hits JNPT operations as APM terminals hacked glob-
ally. http://indianexpress.com/article/india/cyber-attack-new-malware-hits-jnpt-ops-as-apm-
terminals-hacked-globally-4725102/

25. Rosati A (2019) Venezuela is now awash in U.S. dollars. Bloomberg.com. https://
www.bloomberg.com/news/articles/2019-06-18/once-forbidden-u-s-dollar-is-suddenly-
everywhere-in-venezuela

26. Schmidthaler M, Reichl J (2016) Assessing the socio-economic effects of power outages ad
hoc. Comput Sci Res Dev 31(3):157–161. https://doi.org/10.1007/s00450-014-0281-9

27. Schweizer Radio und Fernsehen (SRF) (2014) Schweiz – Der Blackout 2005 – ein schwarzer
Tag für die SBB. Schweizer Radio und Fernsehen (SRF). https://www.srf.ch/news/schweiz/
der-blackout-2005-ein-schwarzer-tag-fuer-die-sbb

28. Secureworks (2019) Advanced persistent threats – learn the ABCs of APT: part A. https://
www.secureworks.com/blog/advanced-persistent-threats-apt-a

29. ThreatStop (2016) Black energy. Security report, ThreatStop, Carlsbad. https://www.
threatstop.com/sites/default/files/threatstop_blackenergy.pdf

30. UCTE (2004) Final report of the investigation committee on the 28 September 2003 blackout
in Italy. Technical report, Union for the Coordination of Electricity Transmission (UCTE).
http://www.rae.gr/old/cases/C13/italy/UCTE_rept.pdf

31. US-CERT (2017) Alert (TA17-132a) indicators associated with WannaCry ransomware.
https://www.us-cert.gov/ncas/alerts/TA17-132A

32. US-CERT (2017) Alert (TA17-181a) petya ransomware. https://www.us-cert.gov/ncas/alerts/
TA17-181A

33. Zerpa F (2019) Venezuela blackouts cut oil output by half in March. Houston Chron-
icle. https://www.chron.com/business/energy/article/Venezuela-Blackouts-Cut-Oil-Output-
by-Half-13743951.php

34. Zetter K (2016) Everything we know about Ukraine’s power plant hack | WIRED. https://www.
wired.com/2016/01/everything-we-know-about-ukraines-power-plant-hack/

https://netblocks.org/reports/second-national-power-outage-detected-across-venezuela-dQ8o728n
https://netblocks.org/reports/second-national-power-outage-detected-across-venezuela-dQ8o728n
https://www.wired.com/story/venezuela-power-outage-black-start/
https://www.wired.com/story/venezuela-power-outage-black-start/
http://indianexpress.com/article/india/cyber-attack-new-malware-hits-jnpt-ops-as-apm-terminals-hacked-globally-4725102/
http://indianexpress.com/article/india/cyber-attack-new-malware-hits-jnpt-ops-as-apm-terminals-hacked-globally-4725102/
https://www.bloomberg.com/news/articles/2019-06-18/once-forbidden-u-s-dollar-is-suddenly-everywhere-in-venezuela
https://www.bloomberg.com/news/articles/2019-06-18/once-forbidden-u-s-dollar-is-suddenly-everywhere-in-venezuela
https://www.bloomberg.com/news/articles/2019-06-18/once-forbidden-u-s-dollar-is-suddenly-everywhere-in-venezuela
https://doi.org/10.1007/s00450-014-0281-9
https://www.srf.ch/news/schweiz/der-blackout-2005-ein-schwarzer-tag-fuer-die-sbb
https://www.srf.ch/news/schweiz/der-blackout-2005-ein-schwarzer-tag-fuer-die-sbb
https://www.secureworks.com/blog/advanced-persistent-threats-apt-a
https://www.secureworks.com/blog/advanced-persistent-threats-apt-a
https://www.threatstop.com/sites/default/files/threatstop_blackenergy.pdf
https://www.threatstop.com/sites/default/files/threatstop_blackenergy.pdf
http://www.rae.gr/old/cases/C13/italy/UCTE_rept.pdf
https://www.us-cert.gov/ncas/alerts/TA17-132A
https://www.us-cert.gov/ncas/alerts/TA17-181A
https://www.us-cert.gov/ncas/alerts/TA17-181A
https://www.chron.com/business/energy/article/Venezuela-Blackouts-Cut-Oil-Output-by-Half-13743951.php
https://www.chron.com/business/energy/article/Venezuela-Blackouts-Cut-Oil-Output-by-Half-13743951.php
https://www.wired.com/2016/01/everything-we-know-about-ukraines-power-plant-hack/
https://www.wired.com/2016/01/everything-we-know-about-ukraines-power-plant-hack/


Chapter 2
Critical Infrastructures

None of us knows what might happen even the next minute, yet
still we go forward. Because we trust. Because we have Faith.

P. Coelho

Abstract This chapter refines the introduction of security in critical infrastructures
by going into deeper details about how threats and countermeasures differ and
are specific for the physical domain, the cyber domain and intermediate areas.
Gaining an understanding of these differences is crucial for the design of effective
countermeasures against the diverse nature of today’s advanced persistent threats
(APTs). As even local incidents may have far-reaching consequences beyond the
logical or physical boundaries of a critical infrastructure, we devote parts of the
chapter to a discussion and overview of simulation methods that help to model
and estimate possible effects of security incidents across interwoven infrastructures.
Such simulation models form an invaluable source of information and data for the
subsequent construction of game-theoretic security models discussed in the rest of
the book.

2.1 Examples and Definitions of Critical Infrastructures

2.1.1 What Makes an Infrastructure “Critical”?

Critical Infrastructures (CIs) are essential for security and welfare of a society
as they provide crucial products and services. Goods such as drinking water or
electricity are part of our everyday life and are typically assumed to be available
24 hours a day. However, recent incidents in connection with the security of cyber-
physical systems within CIs such as the cases already mentioned in Chap. 1 or the
more complex examples of Stuxnet [52] and WannaCry [92], raised awareness of
the vulnerability of CIs and the strong dependence on computer networks. As also
described to some degree in the previous chapter, such incidents demonstrate the
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strong interdependencies among CIs within a region, a country or also all over
the world. While a rough classification of these interdependencies is possible [83],
the effects of these relations are more challenging to assess. The analysis of an
entire network of CIs is complex, where the biggest challenge is understanding the
dynamics inside the network.

A formal definition of a critical infrastructure is difficult to find due to the high
variability among the different CIs and the changes in their interdependencies.
Infrastructures are influenced by emerging technologies, digitalization, growing
interconnections and interdependencies but also by statutory provisions and new
laws. Still, it is possible to identify factors that characterize an infrastructure as
critical. One relevant definition of CIs is given be the German BSI in [100]:

Critical infrastructures are organisational and physical structures and facilities of such vital
importance to a nation’s society and economy that their failure or degradation would result
in sustained supply shortage, significant disruptions of public safety and security or other
dramatic consequences.

Another definition is given by the European Council in its Directive 2008/
114/EC [32]:

[. . . ] ‘critical infrastructure’ means an asset, system or part thereof located in Member States
which is essential for the maintenance of vital societal functions, health, safety, security,
economic or social well-being of people, and the disruption or destruction of which would
have a significant impact in a Member State as a result of the failure to maintain those
functions;

From both definitions we see that a CI is characterized by its high importance for
the societal and economic well-being as well as the public health and safety of a
nation.

When looking at the various sectors, which are considered to be critical, then we
see that the list is different for different countries. For example, the German BSI
assigns the following sectors to CIs [100]:

• Transport and traffic (air, maritime, inland waterway, rail, road, logistics)
• Energy (electricity, oil, gas)
• Information technology and telecommunication
• Finance and insurance sector
• Government and public administration
• Food (industry, trade)
• Water (water supply, sewage disposal)
• Health
• Media and culture

The European Union characterizes the following eleven sectors as critical (whereas
only “Energy” and “Transport” are mentioned in the directive) [32]:

• Energy
• Nuclear industry
• Information, Communication Technologies (ICT)
• Water
• Food
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• Health
• Financial
• Transport
• Chemical Industry
• Space
• Research Facilities

On the other hand, the American government distinguishes 13 types of critical
infrastructures as of 2002 [69]:

• Agriculture
• Food
• Water
• Public Health
• Emergency Services
• Government
• Defense Industrial Base
• Information and Telecommunications
• Energy
• Transportation
• Banking and Finance
• Chemical Industry
• Postal and Shipping

From all three lists we can see that the sectors energy, ICT (or communication in
general), transportation, finance, water, health, chemical industry can be considered
as the most important in terms of their criticality.

2.1.2 Threats

In the last decade, the number of publicly known security incidents in CIs has
increased. At the same time, these incident have been triggered by a broader
range of events than ever before. Increasing interdependencies among CIs yield to
impairment or failure of a CI due to an impairment or failure of other CIs. These
cascading effects can be caused, for example, due to natural threats or due to cyber
attacks, as the case studies from Sect. 1.4 demonstrate.

These manifold and constantly changing interdependencies challenge CI opera-
tors. Limited availability or even failure of one CI affects other CIs depending on it,
directly or indirectly. The high complexity and diversity inside the network enables
the development of cascading effects. This makes it difficult to assess consequences
of an impairment, both for accidental and intentional incidents.

Our goal in this chapter is demonstrating the diversity of the term “security” in
the context of CIs, and to see how game theory has been and can further be applied
to security problems in this field. To illustrate the various aspects of security of CIs,
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we here describe some specific risks CI operators face in addition to the general
challenges already described in Chap. 1. This list is not intended to be complete but
aims at illustrating the diversity of threats and risks faced by CIs.

As briefly mentioned in the previous section, CIs can be found in various sectors.
Alas, when hearing the term CI, people may first think about goods and services
consumed on a daily basis, such as electricity or water. The awareness is typically
lower when it comes to transportation, unless the functionality is limited, e.g., due
to bad weather conditions. The importance of food suppliers is even less understood
by many people, sometimes including the operators themselves. Further, most
operators have a very limited awareness of risks related to IT security. Passwords
may be simple to guess, employees may lack training about avoiding malware and/or
dangers of social engineering attacks. Between 2015 and 2017, nine case studies on
IT security of CIs in Germany have been conducted and analyzed in [60]. Major
challenges faced by the participants are the following:

• Remote maintenance of CIs allows a higher level of control and a greater flex-
ibility of working times, but also introduces risks if not implemented correctly
and used with care. Threats to a remotely controlled system include cyber attacks
that yield disruption of service, unauthorized access to sensitive process data or
unauthorized manipulation (e.g., after getting access to credentials).

• Hospitals need to protect personal and health data of patients from both unau-
thorized access and modification. Prevention focuses especially on employers’
awareness since social engineering attacks are still new to this sector.

• Food producers, such as a dairy, need to ensure the quality of their products and
prevent attackers from adding chemicals.

• In finance, business processes must be secure. In particular, money transfer
should be reliable and protected against unauthorized access or manipulation.

• Enterprises that sell software need to care about cyber attacks first because they
need to assure the quality of their products and second due to the customer
data they use or process. In case a product is manipulated, it might no longer
satisfy the customers wishes and the company suffers from damaged reputation;
additionally, there is a risk the product is used for espionage.

• Email communication may be classified depending on the content of the message.
If sensitive data is sent without restrictions, consequences range from reputation
damage to monetary loss or information for more advanced attacks (such as an
APT).

• When the police uses photography for documentation, it is necessary to assure
authentication of the images, i.e., no errors or intentional changes should occur
at any point. Additionally, secure storage is required and unauthorized access
should not be possible.

• Coordination of (disaster) relief forces must still be possible in case IT support
fails. In particular, communication should be separated from the classical Infor-
mation and Communication Technology (ICT) network to ensure emergency
calls are possible in any case.
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• The German armed forces are not a CI in the classical sense, however, they
strongly contribute to the safety of the population and thus need to be protected
from targeted (cyber) attacks. Among potential aims of attacks are gain of
information, destabilization, air sovereignty or supply with medicine.

The various threats and risks a CI might face can roughly be classified depending
on which part of the CI an incident first affects. Thus, we will generally distinguish
between the cyber domain in Sect. 2.2, the physical domain in Sect. 2.3, and more
advanced attacks that target the cyber-physical system as a compound, in Sect. 2.4
in context with our exposition of existing game theoretic models for security in CIs.
However, before investigating security in more detail, we next provide the basic
notation as well as a definition of a CI.

Functionality of CIs is of high relevance for a society and thus government,
organizations and researchers jointly work on increasing the security of CIs. While
there is a decent amount of publications focusing on what has happened and what
may happen in the future (e.g., [2] or similar), the literature on analytical models
is less rich. Game theory has been frequently applied to investigate the security
of critical infrastructures and the corresponding models are often termed security
games [51]. Such models are quite natural as soon as security is threatened by a
strategic attacker, which is the case in many cyber or cyber-physical attacks (at least
for the successful attacks). Even for non-intentional threats such as natural disasters,
the game theoretic approach may yield some useful insights, if a zero-sum game is
set up that assumes a hypothetic (strategic) attacker trying to cause as much damage
as possible. While this view is somewhat pessimistic, it yields results that can be
interpreted as bounds to the possible payoffs and suggest actions to be on the safe
side. Some security games have successfully been put to practice, e.g., by the Los
Angeles International Airport [73], by the United States Transportation Security
Administration [74] or by the United States Coast Guard [96].

The next three sections review game theoretic approaches to security of CIs,
focusing on how to model the most frequent or pressing threats and attacks. The last
section of this chapter then gives on overview on existing approaches to simulate
consequences of security incidents in CIs.

2.2 Cyber Security

Numerous press reports on recent incidents indicate the vulnerability of infrastruc-
tures to cyber attacks. Successful cyber attacks are usually highly strategic and use
both profound technical knowledge and information about the targeted CI (e.g., by
social engineering). A popular method to learn about potential attacks on a network
is the use of honeypots. While honeypots look like a ordinary part of the network
they do not contain sensitive information but aim at distracting the attacker to learn
about his behavior. If the attacker recognizes the target to be a honeypot, he may in
turn deceive the defender by choosing different attack strategies than he would use
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for real network components. This interplay may be modeled as a one-shot Bayesian
game of incomplete information between attacker and defender.

In the context of IoT networks, [59] proposed a model where the defender faces
an attacker of unknown type, either active or passive. Regardless of the type, the
attacker sends a signal “suspicious” or “normal”, corresponding to the way his
attack looks from the outside. Based on the signal, the defender decides whether to
accept the traffic as regular or rerouting it to a honeypot. The existence of a Perfect
Bayesian Nash Equilibriums (PBNEs) is shown in the paper and verified using a
MATLAB simulation.

Electricity is of crucial importance for operation of any other CI and with
the development of smart grids its availability may be reduced by attacks on
the communication network. Attackers are typically acting strategically and smart
which makes a game theoretic analysis applicable. Assuming the worst case, i.e.,
that the attacker aims for maximal damage, [18] applies a zero-sum game between
attacker and defender to analyze several intelligent attacks, such as vulnerability
attack or data injection. The robustness of the network is measured in terms of
percolation-based connectivity which allows determination of the defense cost.

2.2.1 Hacking

Incidents such as hacking of the computer controlling containers (enabling drug
traffic) in Antwerp [6] or the hacking of the Ukrainian power grid in 2015 and 2016
[20, 48, 106] had significant effects on power grids, hospitals and ports and rose
awareness among CI operators. Applying game theoretic models to cyber attacks
almost always implicitly assumes an intelligent attacker who acts rationally. This
assumption is valid in the case of targeted attacks that involve information gathering
as a first step, e.g., through social engineering in combination with publicly available
information.

2.2.2 Malware and Ransomware

The Wannacry ransomware [19] and the NotPetya malware [36] (both in 2017)
affected many CIs that so far only had a limited awareness of cyber attacks, such as
ports [58]. In case of a malware attack, the assumption of a rational attacker may not
always be satisfied, e.g., if it is designed in such a way that is reaches as many people
as possible. However, the worst case where the attacker aims at causing maximal
damage can still be analyzed using zero-sum game models. The effect of malware
in a wireless network was studied in [54] through a zero-sum differential game.

Similar to an epidemic model, a network node can be either susceptible to a
malware, infected by a malware or already out of use. Differential equations are
given that describe the evolution of the number of nodes in each state. Saddle-point
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strategies are computed. A zero-sum game with stochastic payoffs was applied
to the impact of a malware attack on a European Utility network in [57]. In this
setting, the payoffs are estimated through a percolation-based model that imitates
the spreading of the malware through the utility network. The defender tries to
minimize the damage in the sense that he wants to minimize the likelihood for the
maximal damage; see also [54]. Strategies to protect a power grid against cyber
attacks and ways to mitigate the propagation of malware have in identified in [99]
using coloring games.

2.3 Physical Security of Critical Infrastructures

Despite the fact that many recent attacks on CIs start in the cyber domain, it is
nonetheless important to keep an eye on the physical security. Besides natural
hazards such as flood or earthquake, intentional attacks may focus on the physical
domain. Many of these attacks focus on the physical part of communication systems,
including ICSs. Protection of a chemical plant is optimized by considering a game
between security defender and adversary based on a general intrusion detection
model [107]. Relaxing the assumption of simultaneous moves of attacker and
defender, a Bayesian Stackelberg game is introduced in [108] and illustrated with a
case study.

2.3.1 Eavesdropping

A frequent passive attack is eavesdropping where the attacker reads data that has
been sent but does not change it. We will skip eavesdropping threats for now as we
will revisit this issue in deeper detail in Chap. 11. It is, however, worth mentioning
that even sophisticated communication infrastructures like quantum networks may
be susceptible to eavesdropping attacks by invalidations of underlying security
assumptions such as trusted relay [65, 80], but can be hardened against such threats
with help from game theory. We will have to say more about this in Chap. 11.

2.3.2 Jamming

The active counterpart to an eavesdropping attack is jamming, where the attacker
either blocks data transmission by deleting some data or changes the content and
forwards manipulated data. The first type of jamming threatens availability of the
systems while the second one challenges integrity. Blocking data exchange between
sensors and control units of a Cyber-Physical System (CPS) may result in a DoS
attack. In the context of remote state estimation, [63] suggested a zero-sum game
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between sensor and attacker to identify optimal times when to send data. The
authors therein prove existence of a Nash equilibrium and propose an algorithm to
compute it. Further game models about jamming are applied in [1, 111].

2.3.3 Terrorist Attacks

Terrorist attacks on oil and gas pipelines are investigated in [82] where the most
attractive targets of an attack as well as optimal defense strategies are determined
through a pipeline security game.

Antagonistic attacks on electric power network have been analyzed in [47] using
a zero-sum game between attacker and defender for the case of a planned attack. For
a random attack, the defender solves an optimization problem trying to minimize
the expected consequences of the attack. In case the attacker tries to maximize
the probability that his payoff is above a predefined level, the two extreme cases
(worst case vs. random case) provide bounds for the expected consequences. The
article illustrates how to evaluate defending strategies using the Swedish national
high voltage system.

2.4 Cyber-Physical Security of Critical Infrastructures

The ongoing digitalization also affects CIs. It enables controlling processes and
smooth operation, e.g., by means of ICSs, but also paves the way for new risks. The
growing interconnectivity of cyber and physical systems increases the vulnerability
of CIs. The interplay between physical and cyber systems typically yields to a
situation where threats are not simply the sum of the threats to the subsystems.
Rather, the two parts may amplify one another during an attack, and this section
focuses on this hybrid system. Models of cyber-physical systems used to pay only
limited attention to this interaction in the past.

Interdependencies between two systems affects the effort to protect the two
systems [41] and changes the impact of attacks. Further, it enables new types of
attacks. Sophisticated attackers often exploit combinations of several weaknesses
related to the cyber and the physical domain to reach their goal. This motivated
a joint treatment under the term cyber-physical security, which gained a lot of
attention recently. As the language that describes strategic interaction, game theory
offers a variety of models for such complex attacks. An overview on dynamic game
models for cyber-physical security from the game theoretic perspective is given
in [31], while we here present different models that deal with specific threats for
cyber-physical systems. Coordinated cyber-physical attacks on a power grid have
been modeled through a stochastic game in [104]. As one of the first game theoretic
models that explicitly accounts for interdependencies between cyber and physical
components, the proposed resource allocation stochastic game is used to minimize
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the physical impact of the attack. The impact is quantified by an optimal load
shedding technique. Existence of equilibria is shown with methods based on the
minimax Q-learning algorithm.

Attackers who plan and perform an APTs typically have a lot of information
on both the organizational structure as well as technical details of the system
they attack [81]. The information ranges from knowledge about vulnerabilities of
SCADA server, controllers and network switches to information about employees
and their responsibilities. The preparation of an APT is often unnoticed by the
targeted organization and this stealthiness makes it very hard to predict the impact
to the CI. Game theory models with probability distribution-valued payoffs take
into account this unpredictability of the effect of an attack but are still able to
find solutions. The price for this higher model accuracy is the task to estimate
payoff distributions for each scenario (for each goal, if several are optimized
simultaneously). The estimation of such payoffs depends on the considered scenario
and on the data available. Payoff estimation may be based on expert assessments and
testbed simulations, in case the required resources are available [35]. If such an in-
depth analysis is not possible, a model of the CI’s dynamics is required. Several
classes of models exist that describe the consequences of an incident and take into
account cascading effects inside a cyber-physical system, which nowadays CIs are.
The currently most frequently used approaches are described in the next section.

2.5 Simulation of Effects of Security Incidents

In the highly interconnected network of CIs, a security incident does not only affect
a single CI operator but also others, depending on the affected one (e.g., a shortage
in the power supply may affect the functionality of hospitals or water providers).
Such cascading effects can be observed in various fields with increasing frequency,
including the CI network. While triggers for cascading failures are manifold some
characteristics of cascading behavior can be identified, at least in some domains.
If available, this information needs to be taken into account in order to model
cascading failures adequately.

2.5.1 Network Models

General observations of cascading failures indicate the existence of two phases,
namely the slow cascading phase, where things still seem to work properly, and a
fast cascading phase, where the system is out of control. Another general feature is
the difficulty of measuring the impact of cascading failures that are due to the high
complexity and many diverse indirect costs (ranging from monetary cost to working
hours of employees or even reputation). Typically, only limited data is available on
incidents that caused cascading effects. Whenever possible, historical data is used
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in combination with expert knowledge to keep the number of assumptions limited.
Existing studies as presented in [71] help to identify failure patterns or to identify
interdependencies that are not obvious at first glance. Furthermore, uncertainties
challenging the interdependencies among infrastructures are discussed in [40].

Despite the strong diversity of models of cascading effects, a rough classification
helps to get an overview of the different lines of reasoning. An overview of models
and simulation approaches for CI systems is given in [70] and a compact comparison
between the different models for cascading failures in power systems is presented in
[37]. In the remainder of this section, we group existing approaches into five classes
according to their main focus, namely topological models, stochastic models,
dynamic simulation models, agent based models and economy based models. This
list is not exhaustive since other models exist that do not belong to any of the five
groups but the ones discussed here include the most developed approaches.

A formal analysis of cascading effects requires a formal description of the
involved systems as a very first step. Typically, this is done through a network model
that describes each system through a graph where the components are represented
by nodes and connections are represented by edges between them. In the case
of a cyber-physical system, a network description of the entire system may be
done in two steps. First, both the cyber and the physical system are modeled by
a subnetwork (based on the expertise of potentially different experts of the field).
Second, interdependencies between the two systems need to be identified and are
represented as edges between components of the two subnetworks. While this
network representation is quite simple, it helps to get an overview of the situation.
Furthermore, properties of the resulting overall graph provide basic information
about the system. Additionally, simulations are possible to estimate the impact of
failures.

2.5.1.1 Graph-Based Models

Many models of cascading failures are based on physical network topology’s
properties. For example, node degrees are used as weights in [101, 103] and local
flow distribution rules in this weighted graph allow analysis of the consequences
of an edge failure. Further, betweenness centrality has been used to investigate
overload breakdowns in scale-free networks [45, 46]. Triggered events and random
failure in power grids are compared in [55] by means of graphical topological
indices. Additionally, topological properties may be used to define terms such
as capacity, e.g. through a node capacity model as proposed in [66]. Most of
these models assume that a component is either working properly or fails, i.e., its
functionality is measured on a binary scale.

Most topological models are very general and work for any complex network,
i.e., they are usually not limited to a specific sector. Thus, such models may yield
misleading results for specific sectors [44]. Still, they provide a good basis for more
advanced models, e.g. to investigate the impact of topology on cascading failures
in power grids [22]. Several extensions work with maximum flow theory to model
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the behavior of power networks, for example, in [34] to identify critical lines and
in [33] to model invulnerability of power grids. While these models are generally
applicable, they often lack a detailed representation of the actual situation and thus
are error-prone when it comes to predictions.

2.5.1.2 Interdependent Network Models

Different networks become more and more interconnected for many reasons (includ-
ing digitalization) and recent research focuses on such networks of networks [94].
This development also affects CIs that depend on one another or are controlled by
SCADA networks. These interconnections between formerly independent systems
enable advanced attacks [98] in many domains. Recent examples of such incidents
include the attack on the Ukrainian power grid in 2015 [61], where the attacker
remotely controlled the SCADA system to interrupt operation of the electricity
network. While security issues in cyber-physical systems have been recognized
[30], research based on interdependent models is still limited. In addition to the
cyber-physical dependencies, interdependencies between CIs cause new threats.
Such interconnected CIs have been analyzed and classified in [84]. In more detail,
consequences of a failure in the electrical grid on a telecommunication network has
been investigated in [85] based on an interdependent network model and simula-
tions. Vulnerability and robustness of interconnected networks against cascading
failures has been investigated in [10] with the finding that interconnected networks
do behave different than single networks. In particular, removal of critical nodes may
yield to complete fragmentation of the formerly interdependent networks. Multiple
dependencies have further been explored in [93] to analyze the robustness of a power
grid. A mitigation strategy against cascading failures in coupled networks has been
proposed in [91] and tested with historical data.

2.5.2 Stochastic Models

A core feature of cascading behavior is its unpredictability due to the high com-
plexity and the huge number of factors that may initiate or exacerbate the cascade.
Besides the complexity issue, many factors are simply unknown, such as hidden
failures in power grids, or cannot be measured at all, e.g., indirect dependencies. In
the light of the sheer impossibility of an exact prediction, stochastic models are a
natural choice to describe the situation. Additionally, such models allow simulation
that may be used to validate the model or make predictions and allow simulation of
various possible events. While popular stochastic processes such as Markov chains
and branching processes are often used for modeling, other approaches exist as well.
For example, the model in [110] describes the failure dynamics of the entire network
through a power flow model for the failure propagation combined with a stochastic
model for the time between failures. In this way, it provides a simulation of the
cascading procedure and investigates the systems robustness.
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2.5.2.1 Markov Chain Models

The simplest and best known stochastic model is a Markov chain, as it takes into
account a certain degree of dependence but is not too complex at the same time
as they only have limited memory. Still, the state space may grow exponentially
when a more detailed description of the state is needed. On the other hand, there
is a rich theory behind Markov chain models, allowing computation of stationary
distributions or path lengths. Advanced Markov models with memory exist [105],
but these are not (yet) used very frequently due to the more complex mathematics
behind the models (in particular, transition matrices need to be replaced by
transitions tensors).

A discrete Markov chain model that describes the functionality of lines in a
power grid on a binary scale has been introduced in [102] (it has to be noted that
the time between two state changes is considered as infinitesimal). The main idea
there is to deduce the transition probabilities of the Markov chain from a stochastic
flow distribution model in order to capture cascading effects. The probabilities of
line overloading are computed for a given line flow. A continuous-time Markov
chain model that describes the system dynamics of power grids is introduced in
[79]. The complexity of Markov models is handled by construction of an abstract
state space where a state contains all information relevant for the dynamics of the
system. This model allows to predict the evolution of the blackout probability as
well as an asymptotic analysis on the blackout size. An extension of the model is the
interdependent Markov chain model to describe cascading failures in interdependent
networks [78]. The introduced model showed that interdependencies can highly
affect the distributions of failure sizes in the two systems. Simulations demonstrate
that systems with exponentially distributed failure sizes seem to be less robust
against cascading failures than power-law distributed failure sizes.

2.5.2.2 Branching Process Models

A more complex model of growth and reproduction is a branching process. Most
branching process models are not very specific and only provide a general estimate
of the impact of cascading failure. On the other hand, these models are analytically
and computationally tractable and allow direct simulation of the cascading process.
Applications to cascading problems have been introduced in [24] where events are
grouped into generations and the propagation process is described by a Poisson
branching process. Based on this model, the extent of cascading outages in a power
grid has been estimated [23] and mitigation strategies have been investigated [28].

A Galton-Watson branching process model and the associated estimators have
been used to predict the failure distribution in electric power systems [27] and black-
out size distributions [75]. Interactions between failures in different components are
investigated and simulated in [77]. The influence of interactions on the failure is
studied in order to mitigate cascading failures. A multi-type branching process was
used to analyze the statistics of cascading outages in [76].
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2.5.2.3 High-Level Stochastic Models

A disadvantage of models describing the detailed evolution of cascading failures is
the corresponding high running time of simulations based on these models. This
is particularly an issue when aiming at real time predictions of the propagation
mechanism. In this situation, it is often preferable to use high-level statistical
models that provide an overview on the cascading process. The CASCADE model
[25, 26] initiates a cascading effect by randomly assigning disturbance loads to some
components of an electric power transportation system and uses simplified formulas
to describe the redistribution of loads, which yields to a cascade. This simplification
yields fast estimates of the number of failed components as well as the distribution of
blackout size. Based on this model, reliability of power systems has been analyzed
in [29]. In some situations, the CASCADE model yields results similar to those
resulting from a branching process model [56].

2.5.3 Dynamic Simulation Models

Whenever detailed information about the system at hand is available, more accurate
predictions based on more involved simulation models are possible. Since such
simulations are more evolved, they are less applicable for real time predictions.
Researchers at Oak Ridge National Laboratory (ORNL) proposed a dynamic model
describing the cascading process in a power grid (e.g., due to a failing transmission
line) based on a linear programming approach in [14]. This ORNL-PSerc-Alaska
(OPA) model did not provide an accurate simulation of blackouts due to line outage
and has thus been extended in [95]. This improved OPA model allows simulation
of the patterns of cascading blackouts in power systems as it takes into account
the dynamics as well as the potential mitigation actions. A nonlinear dynamic
model for cascading failures in power systems is the Cascading Outage Simulator
with Multiprocess Integration Capabilities (COSMIC) model introduced in [97]
that describes many mechanisms by recursive computations of the corresponding
differential equations. A dynamic probabilistic risk assessment is used in [42] to
describe the coupling between events in cascading failure and the dynamic response
of the grid to the perturbation. The model has been extended to capture the fact
that cascading outages of power grids often consist of two different phases (a slow
and a fast one) [43]. A load flow model that takes into account hidden failures was
introduced in [16].

2.5.4 Agent-Based Models

In case the dynamics among the different components of a system of CIs are known,
agent-based models may provide an adequate description of the behavior of the
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overall system. Agent-based models can be built from existing system dynamic
models or discrete event models [8]. Numerous agent-based models have been
developed by Sandia National Laboratories and by Argonne National Laboratory to
describe interdependencies between infrastructures. Sandia first developed a model
called ASPEN [5] that has been extended and modified several times to model
interdependent infrastructures [4, 9].

More recent extensions such as the NISAC Agent-Based Laboratory for Eco-
nomics (N-ABLE) model are used to investigate physical effects of cyber-attacks in
infrastructures [53]. In this setting, the agent-based model is applied to simulate
interactions between economic agents (e.g., firms) that rely on infrastructures
such as electric power or transportation systems. The simulation thus yields an
estimate of the consequences of failures in these systems in the real world. Argonne
introduced an agent-based model for power systems called Spot Market Agent
Research Tool (SMART II) in 2000 [67] that takes into account the topology of
the network. The model has been extended to investigate natural gas infrastructures
and their interdependencies with power infrastructures based on the Flexible Agent
Simulation Toolkit (FAST) simulation software [68].

Agent-based models are also used to model risk responses in a complex society
[12], which in turn provide a basis to simulate responses of society to incidents in
critical utilities [11]. Applications include the interaction between communication
systems and transportation systems in case of an evacuation [3] or interdependencies
between web systems and critical information infrastructures in case of a natural
disaster [13]. Further, these models can be used to analyze maintenance strategies in
CIs [50]. Impacts of a malicious cyber-attack on a power system have been analyzed
in [7], where society is regarded as a group of interacting agents. A simulation model
in the context of interdependent CIs was introduced in [15].

Generally, agent-based models provide detailed information about potential
consequences of incidents for a given scenario and thus allow for very detailed
“What-If” analysis. However, due to the detailed knowledge that is required to
build these models, they are typically very specific. If the system changes, agent
based models need to be adapted to the new situation. Furthermore, they are built
on assumptions about the behavior of the agents. Such assumptions are usually
subjective and hard to justify. Especially, if information about the agent’s behavior
or motivation is missing, agent-based models are not suitable.

2.5.5 Economy Based Methods

Since critical infrastructures are crucial for production and economy in general, their
interdependencies may as well be investigated with economic models [87]. The two
most widely used methods in this context are input-output models and computable
general equilibrium models, both described in more detail below.
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2.5.5.1 Input-Output Models

Input-output models have been introduced in the early 1950s [62] to describe
production and consumption of industry sector. Based on this the Input-Output
Inoperability Model (IIM) has been proposed in [39] to investigate the risk that a
CI is not able to perform its tasks, i.e., the risk of inoperability of an infrastructure.
During recent years, the IIM model has been applied to investigate disruptions
to economic systems [89], risk analysis in interdependent infrastructures [17, 38],
effects on international trade [49] as well as risk propagation in CIs [72].

The extended dynamic IIM [64] describes the development of the inoperability
over time including recovery over time. These high-level models are applicable in
various situations, ranging from natural disasters [21] to intentional attacks [90]
and provide both analytical results and an intuitive understanding of the analyzed
dependencies. However, these models are typically not capable of providing
detailed information about interdependencies for single components or of taking
into account real-time outputs. Even more restrictively, the model assumes linear
interdependence and can thus only provide approximate solutions.

2.5.5.2 Computable General Equilibrium Models

Computable general equilibrium models can be seen as extensions of input-output
models [86]. Improvements compared to existing input-output models include
factors such as non-linearity or consumers responses to prices. Several extensions
exist, including a spatial computable general equilibrium model as used in [109]. A
drawback of these models is that they are trained under normal working conditions
(e.g., from historical data) and thus only describe interdependencies in this setting,
which might change after extreme events. Advanced computable general equilib-
rium models support investigation of resilience [88]. While computable general
equilibrium models capture more details than classical input-output models, they
require a lot of data (e.g., to estimate elasticity values for resilience) and on
assumptions on the form of production or utility functions. The latter will play a
central role in game theoretic models, as goal functions for optimization. For a
decision maker, they act as security “scores” to quantify risk and security like a
benchmark figure. We will formally introduce these concepts later in Chap. 3.

2.6 Viewing Security as a Control Problem

The complexity of interdependencies between CIs, and the diverse factors of
uncertainty induced by external factors beyond our control, as well as the potential
of errors from the inside (human failure, software flaws, technical breakdowns, any
many others) make the establishment of security a problem of “controlling risk
under uncertainty”. Figure 2.1 shows an abstraction of the situation, with the CI
being the central area of interest (of cloudy shape in the picture), and with external
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actors taking influence on it. Decision theory is herein the search for optimal action
to keep natural external factors under control, while game theory is about dealing
with rationally acting opponents (shown on the right). This difference is explored
in deeper detail in Chap. 3, with all game models to follow fitting into this bigger
picture in their own particular way. Their use is basically for the “players” outside
the CI, while the inner dynamics of the CI under security control is in many cases
most accurately captured by simulation models. We leave the latter as a separate
challenge outside the scope of the book, since simulation will be of primary use
when it comes to the construction of games, specifically utility functions and loss
distributions. Our main focus in the rest of the book is helping the defending player
in making decisions against both rational and irrational actors as well as taking
influence on a CI from outside or inside.
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Chapter 3
Mathematical Decision Making

I am prepared for the worst, but hope for the best.
B. Disraeli

Abstract Since both, decision- and game theory vitally employ optimization at
their core, this chapter will provide the basic ideas, concepts and modeling aspects
of optimization. It is intended to provide the mathematical basics for the further
chapters. The presentation is to the point of a simple, compact and self-contained
description of: (i) what is decision- and game-theory about, (ii) how do the two
areas differ, and (iii) how does the practical work with these models look like
when we strive for solutions. Specifically, we discuss preference relations, real
and stochastic ordering relations and optimization as the most general covering
framework, including single- and multi-goal optimization, with applications in
being decision theory and game theory. Numeric examples accompany each section
and concept. The opening of the chapter will specifically set the notation for
all upcoming (mathematical) descriptions, to be consistent throughout the entire
presentation (and book).

3.1 Preference and Ordering Relations

Many situations in life, not limited to the context of critical infrastructure protection,
call for a choice among a number of options. Depending on the kind of choice,
this may be the selection of some item from a finite collection, say, to buy a new
security tool, or the determination of the time to implement a certain (fixed) action,
say, a security patrol, patch or similar. Decisions about timing are examples of
choices made from infinite sets (as the time is a continuous quantity), but both,
discrete and continuous choices can be unified under the common denominator
of decision theory. So, given two actions a1, a2 with a meaning specific to the
(here arbitrary) context, how would a decision maker be able to choose between
a1 and a2, or maybe even decide to refrain from the decision at all? In absence of
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any criterion to judge a1 relative to a2, the decision is impossible, unless ad hoc
reasons apply. Since relying on coincidental serendipity in all imaginable situations
is clearly nonsense, we require a systematic way of inference to guide a decision
maker along justified routes to a best decision. The exact meaning of “best” is the
key concept to be defined, and decision theory is technically a re-axiomatization of
statistical inference towards exactly solving the choice problem in flexible ways.

Ever since humans are involved in this process, decision theory has received a
lot of criticism up to rejection by some statisticians, based on the argument that
subjective decision making processes are almost always impossible to capture to
the accuracy required for mathematics/statistics to work. We will touch some of
these issues later in Chap. 6, and postpone a continuation of this discussion until
then. For now, we are interested in how actions can be judged against one another,
so as to make a choice, even though none of the available options may be “good” in
an absolute sense.

Most generally, if a set AS of actions is available to choose from, suppose that
the elements of AS admit some relation �, with the understanding that a1 � a2
means action a2 to be preferable over action a1. In mathematical decision theory, it
is common practice to quantify actions by assigning a number g(a) to the action a,
and to define a1 � a2 if and only if g(a1) ≤ g(a2), provided that such a function
g exists. Indeed, the existence of the function g depends on what requirements we
impose on the preference relation �. Some properties may be necessary to assure the
existence of g, and others may be required so that g is feasible for a mathematical
use (e.g., to be linear, continuous, etc.). Note that for the same reason, we clearly
cannot call � an “ordering” relation, since such relations have a precisely defined
set of properties, i.e., we call ≤ an ordering relation , if it is:

• Reflexive: every element x satisfies x ≤ x.
• Antisymmetric: if two elements x, y satisfy x ≤ y and y ≤ x then x = y, i.e.,

they are identical.
• Transitive: if x ≤ y and y ≤ z, then also x ≤ z.

The properties of preference relations are similar but not identical, and we will
discuss the complete list in Chap. 5. Generally, neither preference nor ordering
relations are special cases of one another. For both kinds of relations, we call them
total (meaning that any two elements are comparable), if any two elements x, y

satisfy the relation as x ≤ y and y ≤ x, or x � y and y � x, respectively. If there are
incomparable elements, we call the respective ordering partial . In this case, there
exist elements x, y such that neither x ≤ y nor y ≤ x, respectively neither x � y

nor y � x hold.
Let (R,≤) be an arbitrary set whose elements are totally ordered (a common

choice, though not the only one, is R = R), and let g : AS → (R,≤) take values
in R. We say that the function g represents the ordering relation ≤ on AS, if

∀a1, a2 : a1 � a2 ⇐⇒ g(a1) ≤ g(a2). (3.1)
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Many practically relevant instances of preference have representations by real-
valued, even continuous, functions g, but the representation is nontrivial in general.

The common development of mathematical decision theory starts from a system-
atic identification of what properties a reasonable preference relation should have,
imposes them as axioms, and derives the existence of a continuous and real-valued
function g to make it useful with optimization theory. Whether these assumptions
accurately reflect decision making processes in reality is a different story. The
bottom line of Chap. 5 will be a discussion of empirical findings on when and how
the axioms are violated in reality, and how the situation can be fixed again to retain
a working decision theory.

For the moment, however, we will continue with the assumption that a function
g is available to quantify and thereby rank actions against one another. The value
assigned by g be of diverse type, but in almost all cases is either a score, measure or
metric. Even though sometimes understood so, the terms are not synonymous, and
it pays to bear in mind the differences:

• A score is a number that by itself carries no meaning, and only serves for
comparative purposes; say, we may prefer action a1 over action a2, if the former
scores higher than the latter. The absolute value of the score, however, may be
void of semantic. Scores are what risk is typically quantified in, by assigning
consecutive loss ranges to consecutive scores. Likewise, security vulnerabilities
can be compared in terms of scores, compiled from categorical assessments of
a vulnerability’s characteristics such as required adversary’s skill level, time to
exploit, and similar. The Common Vulnerability Scoring System (CVSS) is a
well known example and application of this method; with a CVSS number itself
having no meaning beyond that of an indicator of severity of some vulnerability.

• A measure is similar to a score, but has a meaning on its own, i.e., even in absence
of competing action’s measures. In the context of risk assessment, two common
instances of measures are (among many others):

– Probabilities: each action a may trigger different events to unfold, and the
relative frequency of occurrences of such an event (as a consequence of an
action a) approximates the probability of that event, conditional on the action
a. Uncertainty in the consequences of an action then needs reasoning about
which effects are probable or unlikely to occur, towards an aid of what action
to choose.

– Losses, revenues or utilities: A loss, conversely a revenue or utility, generally
quantifies (dis)advantage as a consequence of an action a. The terms revenue,
utility or payoff are often used synonymously, and a loss is numerically often
taken as the same concept only with a negative sign. The quantification of
loss in absolute terms can be arbitrary, including monetary units, gain/loss of
reputation (say if a company acquires/loses customers or market share), up
to saved/lost human lives (with the latter being tied to complex ethical issues
which we refrain from discussing any further here).
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• A metric quantifies the difference between two items. As such, it is similar to a
score in the sense of having no semantics (or even being undefined) for a single
item, and is only useful to compare objects. Unlike a score, however, a metric
usually does not help ranking two objects or actions, but is primarily intended to
measure the similarity value of a metric with a meaning, as for a measure just
explained above.

It should be noted that the terms measure and metric have rigorous mathematical
meanings, and the mathematical objects must not be mixed up with our description
above. We will not explore the depths of measure theory or the theoretical
applications of metrics in the following, unless this is necessary for our exposition.

3.2 Optimization

The function g now provides us with the means to quantify actions and to mutually
rank them, which leads us to the question “Which a∗ among all elements a ∈ AS

is the best choice?” and thus to a general optimization problem. Our exposition will
evolve around the following generic problem description: let C be a set, and let
g : Ω → (R,≤) be a function, whose domain Ω covers C, and whose image space
is ordered (to ease matters, we will assume ≤ to be a total order on R). In most of
what follows, we will take C as some action space AS, but for a sound assurance
of best decisions, i.e., optima, to exist over the set C, it is often useful to extend
C into a larger set Ω ⊃ C, say, by taking Ω as the convex hull of C, which we
formally denote as Ω = Δ(C), but other choices are possible too (yet we will not
have much use for them). The set Δ(AS) is defined as Δ(AS) = {(p1, . . . , pn) ∈
[0, 1]n : p1 + p2 + . . . + pn = 1}. The simplex extends the set of (deterministic)
actions into randomized actions, meaning that a decision maker can, whenever the
decision comes up, take a different action to behave optimal in a long run. We will
later see that the existence of optimal behavior can depend on the freedom to change
behavior.

In this notation, we can think of an optimization problem as the task to compute
an element x0 so that

[g(x0) ≤ g(x) ∀x ∈ C] or [g(x0) ≥ g(x) ∀x ∈ C], (3.2)

where the left is a minimization problem , and the right is a maximization problem.
We write argminx∈C g(x) to reference the point x0 at where g attains a minimum, as
opposed to writing minx∈C g(x) for the minimum value at this (herein untold) point
x0 (likewise for maximization problems). Generally, “argmin” will be a set of values
in C (the optimum point is generally not unique), while “min” will be a single value
in the domain of g. The function g is also called the goal function. For mathematical
games, the goal will always be some utility function, whose particularities and
construction are discussed later. The assumption that ≤ and ≥ are total orders in
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(3.2) assures that if an optimal value (not location of) g(x0) will be unique, if it
exists. This uniqueness is lost if the ordering is weakened into a partial one, which
unavoidably happens for multicriteria optimization (as discussed in the following
Sect. 3.3).

For finite action spaces with n choices, this amounts to finding an optimum of g

on the n-dimensional unit cube [0, 1]n ⊂ Rn, while for infinite (continuous) action
spaces, the simplex Δ becomes the set of all (continuous) distributions defined on
AS; turning the sum in the above definition into an integral. Since we will hardly
require this more general setting throughout the rest of this book, we leave this
remark here for only for the sake of completeness.

The set C indeed can (and will in many cases) contain a multitude up to infinitely
many options to choose from (even for a finite set AS, the simplex Δ(AS) will be
a continuum). In these cases, analytic properties of the function g like continuity,
differentiability, convexity or others may become important aids to algorithmically
perform the optimization. The methods to carry out an optimization in most cases
depend on the structure and implied properties of g.

3.3 Multiple Goal Optimization

Many practical situations require a consideration of several scores or measures at
the same time. For example, a company may be concerned about financial gains,
market share, customer satisfaction, and many other aspects, all of which demand
optimized decision making. In this case, we need to consider several goal functions
and have to adapt the generic optimization problem defined in (3.2) accordingly.

Let there be d > 1 individual goal functions g1, . . . , gd for optimization, then we
can put them together as a vector-valued goal function g : AS → Rd , written out as
g(a) = (g1(a), g2(a), . . ., gn(a)). Without loss of generality, we may think of the
optimization to be all minimizations or all maximizations (by multiplying each goal
function by−1, accordingly to change the goal from “min” to “max” or vice versa).
Therefore, the formulation of (3.2) needs a redefinition of the ≤ and ≥ relations
between elements of Rd . To this end, we let two vectors x = (x1, . . . , xd), y =
(y1, . . . , yd) ∈ Rd satisfy x ≤ y if and only if xi ≤ yi for all coordinates i =
1, 2, . . . , d (for example, x = (1, 2, 3) ≤ y = (1, 2, 4)). Likewise, x ≥ y holds if
and only if xi ≥ yi for all coordinates i = 1, 2, . . . , d; the strict versions of both
relations is defined in the natural way. The negation of x > y is the relation x ≤1 y,
meaning that there exists some coordinate i0 for which xi0 ≤ yi0 , no matter what
the other coordinates do. For instance, x = (1, 3, 2) ≤1 y = (4, 4, 1), since the
second coordinates in both vectors satisfy the≤ relation (which is enough, although
x3 ≥ y3). The relation≥1 is defined alike, as the complement of the strict < relation
between x and y. The ≤ and ≥ relations on Rd are antisymmetric, transitive and
reflexive, but unlike ≤ on R, the induced order is only partial (for example, neither
relation would hold between the two vectors x = (1, 3) and y = (3, 1)). The strict
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relations on Rd behave like their siblings in R, but the ≤1 and ≥1 relations are only
reflexive, but neither transitive nor antisymmetric.

Since Rd is only partially ordered, we cannot hope for a maximum or minimum
to be found, but can only find maximal and minimal values. The difference to
a maximum/minimum roots only in the partiality of the order: a minimum is
“globally” optimal, meaning that it is ≤ to all other elements in the image space
of g. A minimal element may have incomparable other elements, so that it is only
smaller than some, but not smaller than all other elements, namely those to which it
has no defined ≤-relation (likewise, for a maximal element).

Rewriting (3.2) in terms of ≤ thus complicates matters of finding a solution
not only because the optimal value g(x0) is no longer unique, but much less
conveniently, we may find different candidate optima x = g(x0) and y = g(x1)

which do not ≤- or ≥-relate to each other, hence are incomparable.
A choice for a “better” of x and y could be made by looking at the coordinates,

with different ways of defining a preference: A lexicographic order x ≤lex y
considers the coordinates from left to right, and puts x ≤lex y if x1 < y1 and orders
them as x ≥lex y if x1 > y1. Upon a tie x1 = y1, the process is repeated with the
second coordinate and defines the same outcomes, and so on (exactly as one would
order words of a language alphabetically, based on the first letter, and upon equality,
ordering two words according to the second letter, and so forth). If all coordinates
are equal, we have x = y.

It is worth noting that this ordering can extend any ordering on scalars to vectors,
with the resulting order being total/partial if the underlying order is total/partial.
This is an alternative way of defining even a total order on Rd , but relies on an
explicit ranking of coordinates in terms of importance. Looking at our optimization
problem, this can be reasonable if the goals themselves can be put in some order of
priority, but disregards quantitative trade-offs between goals. For example, goal g1
may be the most important, but a suboptimal value for it may still be bearable if the
second and the third important goal can be made large (or small) to compensate for
the suboptimality of goal g1. This leads to the traditional method of scalarization.

The above problem can be solved using the traditional method of scalarization.
A scalarization of a vector-valued optimization problem means defining a new goal
function by assigning a weight (priorities, importance, etc.) wi ∈ R to the goal
function gi : Ω → R for i = 1, 2, . . . , n, and optimizing the function

g∗ : Ω → R, g∗ :=
n∑

i=1

wi · gi. (3.3)

Without loss of generality, we can additionally assume that all weights are ≥ 0,
and that

∑
i wi = 1; for otherwise, if wi < 0, we may replace gi by −gi , and

if
∑

i �= 1, we can just multiply g∗ by a some constant to normalize the sum of
weights to a unit, which leaves the locations of optima (i.e., the sets “argmin” and
“argmax”) unchanged, and only amounts to a multiplication of the optimal value by
the same constant. Expression (3.3) goes with the untold assumption of the goals to
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be independent, since the formula does not include any mixed terms. Relaxations of
this assumption lead to the Choquet integral, whose discussion follows in Sect. 3.6.

In compiling all goals into a single, now scalar-valued, function g∗, we recover
the familiar setting of single-criteria optimization. This simplification comes at the
price of being necessarily subjective to the extent of how the weights are defined.
Additional complications come in if the goals cannot be added meaningfully, say,
if g1 measures monetary gains from installing a new process, while g2 quantifies
efficiency of that process in terms of computational time. Numerically, the two
numbers are always addable, but semantically, the sum of the two will have no
meaning by itself; in our terminology introduced in Sect. 3.1 above, g∗ is thus in
any case a score.

Nonetheless, the scalarized goal function g∗ admits a useful interpretation of
optimality, based on the choice of wi ≥ 0 and

∑n
i=1 wi = 1: geometrically,

this makes the optimization happen on the convex hull of all goals, seeking the
optimum at the border of the resulting convex set. This implies that any solution
x0 = argmaxa∈AS g∗(a) is Pareto-optimal. This means that every alternative point
x1 �= x0 might improve some goal gi , i.e., gi(x1) ≥ g(x0), but necessarily there
will be another goal gj for which gj (x1) < gj (x0). In our above terminology, a
Pareto-optimum is thus a point x0 for which g(x) ≤1 g(x0) for all x ∈ Ω . That is,
we cannot simultaneously improve on all goals, since any improvement in one goal
requires some additional price to be paid in another goal. Figure 3.1 illustrates this
effect with two goals: any movement towards a larger g(x1) or g(x2) will necessarily
decrease the other goal’s value (due to the convexity of the set). The set of all Pareto-
optimal points is called the Pareto front. Geometrically, it is a part of the boundary
of the convex hull induced by the weighted sum (3.3) defining g∗.

Now the question arises, how is the scalarization method better than a lexico-
graphic order? After all, the lexicographic order can easily be made total, has no
need for importance weights and only requires importance ranks. Nevertheless, a
flavor of subjectivity in the choices of weights or goal ranks remains in any case.
However, if the coordinate functions take only discrete and finitely many values,
we can find weights to define g∗ such that the numeric order on g∗ equals a

Fig. 3.1 2-dimensional
example of a Pareto front

g(x∗
2)

g(x∗
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lexicographic order on the underlying vectors. To illustrate this, consider a simple
example:

Example 3.1 (Numeric vs. lexicographic order of integers) Let all coordinate func-
tions take values in the range {0, 1, 2, . . . , 9}, and define the weights to be wi :=
10i . Then, g∗ = ∑n

i=1 wigi will take values being integers in base 10. Attaching
leading zeroes to equalize the length of two such integers (within a computer, the
bitlengths of any two integers would be equal anyway), it is immediately obvious
that the lexicographic order per digit comes up equal to the numeric order of the
represented numbers. Obviously, working with more than the 10 numbers above
works similarly, only changing the radix of the resulting numeric representative. 

3.4 Decision Theory

Decision theory is concerned with choosing optimally from a set of actions, given
that the consequences, i.e., scores, are either fully determined by the action, or
subject to uncertainty induced by nature. This means that whatever uncertainty
comes into play has no rational intention to work against the decision maker, though
it is the latter’s duty to act best in light of this. When looking into the context
of security, a decision problem can be formulated on any kind of action set; for
example, which anti-malware software to buy given some available offers (this is
an optimization over a discrete set), when to conduct the next security training for
employees (this is technically an optimization over an infinite, but practically finite,
set since it is a choice of a calendar date), or when to expect an attack (this is a
choice over continuous time, since the attacker can become active at any point in
time, not bound to working hours of its victim).

Some practical situations may allow for the specification of a deterministic
function value g(a), ideally computable from a. However, in many practical cases
the outcome g(a) from an action a may be better described as a random value, either
with a known distribution F , perhaps with a deterministic part in it that we may be
able to compute. For example, the consequence of an action a may be likely to be
g(a), except for some random variation around it, often expressed by writing

X = g(a)+ η, (3.4)

with η having some fixed probability distribution. This may occur if the decision
maker intends to take action a, but due to circumstances beyond her/his own
control, ends up adopting another action a′. If η has zero mean, then g(a) is what
the decision maker expects to get from action a, while in reality, the result may
differ. From a modeling perspective, we may use g(a) as an approximation of
the actual consequence, taking uncertainty into account as a random error term
η = g(a) − g(a′), whose distribution may be known. This is one simple way of
modeling uncertainty.
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A different approach takes the goal function for our optimization as

X = g(a + η), (3.5)

where η may even depend on the action a. We may think of the decision maker
acting with a trembling hand. This is essentially different to (3.4), and the two
coincide only if g is linear in (3.5).

Doing the optimization under such uncertainty is possible in several ways, the
simplest of which is just “averaging out” the randomness by replacing the random
quantity in (3.4) or (3.5) using the expectation operator. If the error term in (3.4) has
zero-mean, taking expectations leaves us with the deterministic expected outcome
g(a). Things are more involved in (3.5), where the expectation w.r.t. the distribution
of g(a + η) amounts to a transformation of the probability densities. The result
then depends on the properties of g and the shape of η’s distribution. Practically,
in absence of either, we may resort to simulations (see Sect. 2.5 for details). If
we can acquire an arbitrary lot of stochastically independent (or at least pairwise
independent) samples from the random quantity, having the (analytic) assurance that
the expectation or at least the variance is finite, the law of large numbers kicks in
and for a sequence of samples X1, X2, . . . from (3.4) or (3.5), their long-run average
converges to the expectation with probability 1. More precisely, we can compute

Xn := 1

n

n∑

i=1

Xi, (3.6)

over all n sample values that we have, assured that any deviation ε > 0 from the
true average E(X), no matter how small, will happen with vanishing probability in
the long run: for all ε > 0, we have limn→∞ Pr(|Xn − E(X)| > ε) = 0.

A more sophisticated way of handling the uncertainty is improving our infor-
mation about η by virtue of experience. This is a Bayesian approach to decision
making, outlined in Sect. 3.4.1. In absence of a hypothesis or the ability to improve
it (say, if we cannot observe the adversary because it remains stealthy), a worst-case
oriented analysis seeks the best decision under worst possible circumstances. This
is the minimax type of decision further described in Sect. 3.4.2.

Both methods depend on optimization, which in turn rests on a proper preference
relation on the action space (as already discussed in previous Sect. 3.2). A decision
maker will seek an action with optimal consequences, captured by the scores that
the utility function assigns, taken as an optimization goal g. The simplest choice is
that of a utility function being the expectation of g(a) w.r.t. the uncertainty that goes
with the action, either because a is not exactly realized (trembling hand; cf. (3.5))
or because of external random influences (like in (3.4)), or both.

Exploiting the freedom that the goal function g can, but does not need to, map
into the reals, we gain widely extended possibilities over traditional methods: if we
can let an action a’s score g(a) be from the set of hyperreals (∗R,≤) ⊃ (R,≤) [10],
we can represent whole probability distributions as a “scalar” hyperreal number.
Moreover, and more importantly, the hyperreal space is totally ordered, which
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lets us do optimization in a restricted yet still useful form. A certain (large) class
of probability distributions (specified within Definition 3.1) has a set of unique
representatives in the ordered hyperreal space. Returning to our previous intuition,
we can then rank two actions based on the probability distribution of their outcomes
(a concept that we will later revisit under the name prospect). A preference between
such distributions can then be derived from the ordering of their representatives in
∗R, much similar as to how we would order values from R. This is one example of
a so-called stochastic order. A simple direct definition of a partial such order calls
two random variables X1, X2 (say, scores assigned to actions a1, a2) as X1 ≤st X2
if and only if

Pr(X1 ≥ t) ≤ Pr(X2 ≥ t) for all t ∈ (−∞,∞). (3.7)

We call this the standard stochastic order. It is easy to construct examples of
random variables that do not satisfy this relation in either direction, so ≤st is in any
case partial. Upon assuming that the random outcomes are bounded and absolutely
continuous w.r.t. some measure (Lebesgue or counting), we can fix the partiality to
obtain a total ordering as follows:

Definition 3.1 (Stochastic �-order) Let two random variables X1, X2 with distri-
butions F1, F2 be given such that both are ≥1, both share the same compact support
Ω ⊂ R, and both are either categorical or have a continuous density functions f1, f2
and satisfying f1(a) �= f2(a) at a = max Ω in the continuous case (only). Then,
we can put the two into the order X1 � X2, if and only if there exists some t0 ∈ Ω◦
(where Ω◦ is the interior of Ω) such that

Pr(X1 ≥ t) ≤ Pr(X2 ≥ t) for all t > t0. (3.8)

Definition 3.1 is a special case of the more general definition putting two distri-
butions into�-order that equals the hyperreal order of their moment-sequences. It is
given in this form here for reasons of similarity to the standard stochastic order (cf.
(3.7)), from which we distinguish it by the symbol �. Working out the threshold
t0 is rarely needed explicitly, since the ordering is decidable from looking at the
tail region (largest risks or losses) from the right end of the support, given that
f1(a) �= f2(a).

In many practical cases, the decision about the stochastic �-order boils down to
deciding a lexicographic order. This holds for categorical as well as for continuous
random variables, as long as the support is common between all objects under
comparison:

Theorem 3.1 ([10]) Let X ∼ F1, Y ∼ F2 be two random variables, with
distribution functions F1, F2.

If X, Y are categorical with a common ordered support Ω = {c1 > c2 > . . .

> cn}, and with f1, f2 being the respective (empirical) probability mass functions
(vectors), then X � Y ⇐⇒ f1 ≤lex f2, where

fi = (fi(c1), fi(c2), . . . , fi(cn)) ∈ Rn. (3.9)
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If F1, F2 are continuous with differentiable density functions f1, f2 ∈ C∞(Ω) on a
common compact support Ω = [a, b] ⊂ [1,∞), we have X � Y if and only if

((−1)k · f (k)
1 (b))k∈N ≤lex ((−1)k · f (k)

2 (b))k∈N. (3.10)

Remark 3.1 The condition on the smoothness of the density functions in Theo-
rem 3.1 is in fact less restricting than it appears, as we can always find an arbitrarily
close approximation from within C∞ to any given density function, by smoothing
with a Gaussian kernel (with a bandwidth made small enough to achieve the
desired security by convolution; see Sect. 12.4.3 for more details). Likewise, the
condition f1(a) �= f2(a) for continuous distributions is satisfiable by truncating the
distributions, while preserving a proximum up to any desired accuracy.

The focus on the tail of a distribution makes the � order interesting for risk
management purposes, as it judges on extremal outcomes. In other words, a risk
manager would perhaps not bother too much mitigating a risk that is anyway already
very low. So, the ranking should be on the high-risk actions, which a tail order
like (3.8) is more explicit about; specifically, the threshold t0 would then draw
the line between anticipated disruptions that are acceptable according to business
continuity management, and those which need an optimal decision and explicit risk
management. Similarly, the upper bound on the losses (maximum value b, largest
category c1 in Theorem 3.1 or compactness of the utility range in Definition 3.1)
corresponds to the practical assumption that losses could be infinite, but practically,
there will be an upper limit above which larger losses make no difference any more
(an infrastructure will at some point be just broken, no matter how much more
damage is caused beyond what happened already).

The value b in Definition 3.1 also has a practical meaning as being the anticipated
maximum loss that an action may cause, and hence we would not distinguish losses
above b or category c1 any further; any extreme damage of this scale is equally
worse than another (for example, if an enterprise runs bankrupt due to a huge
financial loss, it does not matter any more if it is because of 100 million or 120
million; the enterprise is in both cases no longer existing).

In the context of a computer system, an excess of this value may be considered
as the event of a zero-day exploit, and the probability for losses larger than t0 is then
relevant for risk management. In the terms above, this would be the tail mass of the
distribution beyond t0, which the �-ordering minimizes by construction. We will
further elaborate on this in Sect. 12.6.2.

For the practical relevance of stochastic orders, suppose that an action a may have
consequences on a whole scale of possible outcomes, say u1 ≥ u2 ≥ u3 ≥ . . . un,
each outcome possibly occurring with some associated (known) probability pi =
Pr(action a has the payoff ui). The set of pairs {(ui, pi) : i = 1, 2, . . .} is nothing
else than a discrete probability distribution, elsewhere also called a prospect. If the
outcome of an action is uncertain in this way, the stochastic �-ordering offers a
natural and handy tool to rank actions and take optimal decisions.
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Indeed, taking the “score” of an action as being just the hyperreal representative
of the probability distribution of outcomes, the ordering implied within the space
(∗R,≤) is exactly the stochastic �-order characterized by (3.8).

Using stochastic orders is not generally compatible with Bayesian or minimax
decisions, but the specific �-ordering is admissible for both kinds of decision
making.

3.4.1 Bayesian Decisions

The Bayesian method implements the intuition of reducing uncertainty upon data.
A bit more formally, if uncertainty comes in via a random error term η (cf. (3.4)
or (3.5)), we start from an “initial guess” about how this uncertainty looks like.
That is, we define an a priori probability density f (η), and start collecting data by
observing the utilities after taking actions. This data can take any form (including
but not limited to observed utilities), but let us generally assume, without substantial
loss of generality, that it is a set of real values d ∈ Rn.

Remark 3.2 Practically, most information will not come in a handy numeric form.
For example, security incident reports, technical support tickets, etc. are all textual
data. For these to fit into the entire numeric world of statistics, decision and game
theory, a “conversion” of textual information into representative numerical data is
necessary. A first step towards this are document term matrices, basically providing
word counts to indicate topics in a text based on frequent occurrence of technical
terms. This is already a simple form of representing a text as a (now numeric) matrix,
on which subsequent analyses can be conducted. Nevertheless, such simple methods
do not say anything about semantics and content of a text – therefore concepts from
Natural Language Processing are used. However, we do not go into detail about
these data preparation and information retrieval aspects, and rather refer to the vast
lot of literature on this topic.

A Bayesian choice is an optimal decision in light of data d ∈ Rn, and the
resulting a posteriori uncertainty about η described by the conditional density
f (η|d). This latter item is obtained from Bayes’ theorem directly via

f (η|d) = f (d|η) · f (η)

f (d)
, (3.11)

with the terms meaning the following:

• f (d|η) is the so-called likelihood function. Intuitively, this is the probability of
observing exactly the data d, under a given value for η.

This term is generally obtained from domain knowledge about how the data
d is being generated, given η. If d is a sample from a random variable with
probability density function f : Rn × H → R, η ∈ H is the parameter pinning
down the concrete member from the family f (d, ·), the likelihood function is
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exactly f (d, ·), only with “switched roles” of the parameters from Rn and from
H : for a distribution, we usually fix the parameter η (e.g., mean and standard
deviation to define a Gaussian distribution) and leave the variable d to vary.
Conversely, the likelihood function fixes the data d, and lets the parameter η vary
over the set of admissible choices. Each such choice gives a different probability
to observe exactly the data d. In the typical application of maximum likelihood
estimation, we then seek a setting of η that maximizes the chances to observe
exactly the given data. Its use in Bayesian decision making is slightly different.

• The term f (η) is the (unconditional) distribution of η; this is exactly our a priori
distribution, i.e., our so far best hypothesis regarding the uncertainty about η.

• The denominator f (d) is the unconditional distribution of the data, obtained by
“integrating out” the parameter η over its whole space of possibilities. Formally,
this term comes from the law of total probability and is

f (d) =
∫

η∈H
f (d, η)f (η)dη, (3.12)

where the integral reduces to a sum if H is discrete. Although the denominator is
– technically – just there to renormalize (3.11) into a proper probability density,
its numerical evaluation imposes the majority of computational overhead tied to
Bayesian methods. Designated software aid to help with this task is provided by
tools like BUGS (“Bayesian Updating using Gibbs Sampling”) [4]. Essentially,
these exploit ergodic theorems like the aforementioned law of large numbers, in
a highly sophisticated fashion.

In some cases, however, the computational burden and the implied statistical
skills necessary to evaluate (3.12) can be avoided by resorting to a proper choice
of the prior density f (η) relative to the likelihood function: If the two are chosen
conjugate to each other, then the posterior distribution f (η|d) takes the same
shape as the prior f (η), so that the evaluation of (3.12) can be spared; see
Example 3.2. In many other applications, however, the evaluation of (3.12) may
reduce to a sum of only a few possible settings for η, which applies to many game
theoretic models striving for (perfect) Bayesian equilibria; see Definition 4.3. We
will continue this thought later in the context of such equilibria and game theory.

Having computed the posterior distribution f (η|d) given our (new) knowledge d, a

Bayesian decision = argmax
a∈AS

Ef (η|d)[g(a)],

= argmax
a∈AS

∫

η∈H
g(a) · f (η|d)dη

that is, we optimize (w.l.o.g. maximize) the average utility quantified by the goal
function g, where the average, i.e., expectation, is w.r.t. the posterior distribution.
If H is countable or finite, then the integral is replaced by a simple sum over all
η ∈ H .
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Example 3.2 (The β-reputation model) This technique was first described in [2],
and later applied for forecasting security incidents in [11]. We illustrate the general
technique in the context of intrusion detection.

Consider a security administrator having an Intrusion Detection System (IDS)
with an unknown detection rate η. More precisely, we will think of η as the false-
positive alert probability of the IDS. The choice to be made is whether to become
active or not upon an alert by the IDS, since it could be a false alarm, and the
security administrator wants to waste as little time and resources as possible (this is
the optimization part of the decision making).

The natural behavior of a person would be learning about the false positive rate
from experience, and this is exactly what a Bayesian decision is, merely making
this intuition rigorous. Hence, in our example the administrator starts from an initial
hypothesis on a false positive rate. This is its a priori distribution that we here
(for reasons to become clear soon) fix as a β-distribution η ∼ Be(a, b) with two
parameters a, b > 0 to be fixed at the start. The density function of the family
Be(a, b) is fβ(x|a, b) = xa−1(1 − x)b−1/B(a, b), where B(a, b) is Euler’s beta
function. The mean value of this distribution takes a particularly handy form in
being

Efβ(·|a,b)(η) =: η = a

a + b
,

which will become useful later.
The choice of a, b is arbitrary in first place, but made to reflect the initial belief

about the false positive rate. Suppose this to be η ≈ 0.05, i.e., 5% false alerts, then
we may choose the a priori distribution Be(5, 95), so that the a priori distribution
has the mean 5/(5+ 95) = 0.05, reflecting our initial belief.

Suppose that incidents come in stochastically independent and at a constant
average rate per time unit. Let n be the number of alerts d = (d1, d2, . . . , dn) in the
last period of data collection, and divide this count into n = d++d−, distinguishing
the number of false positives d− from the number of true positives d+ (observe that
we cannot count the false negatives, as those are naturally not seen).

Now, let us do a Bayes update: for the likelihood function, each false positive
comes in with probability η, and the chance to get d− false positives among a total
of n alerts is Binomially distributed with parameters n and η. That is, the likelihood
function for n in each time unit is the binomial density

fbin(x|n, η) =
(

n

x

)
ηx(1− η)n−x.

This likelihood function is conjugate to the β-distribution, which means that the a
posteriori density f (η|d) will again be a β-distribution and can directly be given
(without any need to evaluate (3.12)) as

f (η|d) = Be(a + d−, b + d+), (3.13)



3.4 Decision Theory 57

in a slight abuse of notation, where the right hand side term represents the density
function with the given parameters, of course.

Let us consider (3.13) relative to our initial intuition: the Bayes update assigns
a simple meaning to the parameters a, b of our chosen prior, namely a counts the
negative experience, i.e., false negatives, while b counts the positive experience,
i.e., true positives. Consider what happens if we let either experience become
overwhelming: if the true positives d+ tend to infinity (relative to the false alerts),
then E(η) → 0, reflecting that we gain unconditional trust eventually. Conversely,
if the number d− of false alerts tends to infinity, relative to a (bounded or less
largely growing opposite experience count d+), the distrust converges as E(η)→ 1,
corresponding to the learning effect that the IDS apparently produces almost only
false alerts. Both cases are consistent with the intuitive conclusions that we would
draw from long run experience, thus subjectively justifying the method in this
example context.

Finally, let us return to the Bayesian decision still pending for the security
administrator: suppose that going after a correct alert prevents damage of magnitude
L1, as opposed to an unnecessary investment of −L2 being the time and resources
wasted on a false alert. A Bayesian decision averages these two outcomes based on
the most recent posterior learned so far. Let this be

f (η|d) = Be(a +
∑

i

d−i , b +
∑

i

d+i )

for the collections
{
d+i
}N

i=1 and
{
d−i
}N

i=1 constituting an entirety of N updates in
the past. Then, we find

η = a +∑N
i=1 d−i(

a +∑N
i=1 d−i

)
+
(
b +∑N

i=1 d+i
) ,

and the a posteriori expected utility per action is

a1 := “becoming active” has expected utility = (1− η) · L1 + η · (−L2)

a2 := “ignore the alert” has expected utility = (1− η) · L1.

(3.14)
In other words, if the security administrator chooses to do something (become
active), then there is a chance of (1−η) to prevent damage (L1), but another chance
of η to waste resources (−L2). Conversely, if s/he chooses to ignore the alert, then
s/he misses out on a fraction of (1 − η) true positives, causing the proportional lot
of damage.

The Bayesian choice minimizes the damage by picking the choice a ∈ AS =
{become active, ignore} with the smaller expected damage based on (3.14). Since
the value of η is based on experience, this opens an attack vector via causing
alert fatigue. In this case, the adversary may go causing as many false alerts as
possible to “train” the Bayesian estimator for η towards complete distrust in the
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quality of the IDS. Consequently, the security administrator will have stronger
and stronger belief (represented by a posterior β-distribution whose one parameter
substantially grows over the other), and choosing to ignore more and more alerts.
Having “conditioned” the security administrator accordingly, the real attack may
start, ironically, exploiting the Bayesian learning mechanism that we just described.
A similar concept is known from machine learning, where adversarial examples
are constructed to trick machine learning models into making false predictions.
Minimax decisions, discussed in Sect. 3.4.2 are one way to avoid this possibility, at
the price of taking more pessimistic choices, and not necessarily using all available
knowledge. 

3.4.2 Minimax-Decisions

Bayesian learning usually hinges on as much data, i.e., incident information, as one
can get, but this is in conflict with the usual goal of security being exactly on the
prevention of incidents. In other words, we should not depend on learning only
from our own experience (since we would probably not survive the necessary lot
of security incidents to carry the learning to convergence). Threat intelligence and
sharing information is thus crucial for learning strategies to be effective, but again,
security may incentivize people to keep such information private, as publishing it
may damage one’s reputation.

Minimax decisions avoid the dependence on continuously incoming new infor-
mation to learn from, and instead adopts a worst-case hypothesis to make a decision.
While a Bayesian decision seeks the best outcome under a hypothesized set of
possibilities (the posterior distribution), a minimax decision assumes the worst
outcome possible and looks for the best decision then (“hope for the best, but prepare
for the worst”).

To this end, we formally replace the posterior expectation argmaxa∈AS

Ef (η|d)[g(a)] in a Bayesian decision by the worst-case setting for η, which governs
the (random) consequence g(a). That is,

Minimax decision = argmax
a∈AS

[min g(a, ·)]

where the second minimum is over all possible values that g may take upon a given
a and some unknown influence here denoted as the second anonymous parameter
“·” to g. This means that we consider g in any nontrivial case as a random variable,
with a known or unknown distribution. If g is continuous, it may attain its minimum
for a least-favourable such distribution f ∗, giving min g(a) = Ef ∗ [g(a, ·)]. In this
view, a minimax decision appears as a special case of a Bayesian decision.

Remark 3.3 In a more general setting, we would need to replace each min and max
by an infimum (i.e., the largest lower bound) and supremum (i.e., the smallest upper
bound), which avoids (here omitted) conditions for the optima to be attained. We
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will have no need to dig into the technicalities to an extent where this becomes
relevant, so we will not discuss the general setting any further.

In general, there is no golden rule telling which kind of decision to prefer over
the other, and the “meta choice” for the decision making paradigm depends on
the availability, reliability, accuracy and usefulness of the data at hand, but also
on the possible consequences. Not all kinds of losses are equally comparable on
a continuous scale, such as loss of human lives may not be differently bearable
whether it is only one or a hundred people dying. In airline security, for example,
one would not make much of a difference between terrorist attack letting an airplane
crash with two people or two-hundred people in it; the important fact is that either
incident shows that the attack was doable and successful. Hence, a minimax decision
appears in order. Conversely, when dealing with phishing emails, the minimax
paradigm would prescribe to never open an email attachment or hyperlink any more,
but for that reason this choice will cause business disruptions in the long run (so,
the attack was still sort of successful, only in a different way). Here, a Bayesian
decision appears in order, letting the receiver of emails learn to recognize phishing
attempts and distinguish them from legitimate traffic by learning from experience.

Example 3.3 (continuation of Example 3.2) If the security administrator cannot
update the hypothesis on η, s/he may consider a worst-case scenario instead. With
the losses as before, the administrator can choose to ignore the alarm, which gives
at most a damage of L1 if the alarm was actually real. Or s/he can choose to always
react on the alarm, which incurs a waste of L2 resources. Not knowing about what
actually is happening, the security officer pessimistically may choose to “always
react” if L1 > L2, since the waste is less than the potential damage. Conversely, if
L1 < L2, then “always ignoring” would be the better choice. If L1 = L2, then either
decision is as good as the other, and all three cases constitute a minimax decision.
Systematically, and towards generalizing it to more than two options, we can set up a
tableau showing each combination of choice (per row) against the unknown instance
of reality (in the column); for the example being, this tableau looks as follows:

real false
become active 0 L2

ignore L1 0
(3.15)

Now, a minimax decision should be optimal under the worst case – that worst
case being the maximal loss per possibility, which amounts to the per-column
maximum. That is max {0, L1} = L1 and max {L2, 0} = L2. The minimax choice
is for the lesser of the two, hence is for “becoming active” if L2 < L1, because this
action attains the minimum, or for “ignoring” if L1 < L2, because the minimum of
column-maxima is attained for this action under that circumstance.

A Bayesian decision would give the same results, if assign the respective
probability 1 to the respective worst case column. That is, a least favourable
distribution is a Bernoulli distribution over {real alarm, false alarm} with Pr(false
alarm) = η, and given by
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η =
{

0, if L2 < L1

1, if L1 ≤ L2

Imposing the so-defined value into (3.14) reproduces the just described minimax
decision. Apparently, an adversary cannot count on alert fatigue, since the security
administrator no longer adapts its behavior to incoming information that the
adversary could use to influence it. But this advantage is bought at the price of
ignoring possible knowledge gained over the lifetime of the system. 

3.5 Game Theory

As mentioned in the previous section, in decision theory the outcome of a decision
can depend on uncertainty introduced by nature, which is per definition irrational
and has not intention whatsoever to act for or against the decision maker. However,
when we now also consider actions of further rational entities, let us call them
players, which might have their own incentives, we end up with game theory.

The general setting of game theory is very similar to that of decision theory,
only that we consider several action spaces AS1, . . . , ASn, and utility functions
u1, . . . , un hereafter, for a total of n interacting entities (which can, but does
not need to include nature). The utility functions are generally mappings ui :∏n

i=1 ASi → (R,≤), where the image set can be replaced by any (totally) ordered
set.

The definition of a utility function may, but does not need to, include actions from
all other players, up to the possibility of a player’s utility to depend not at all on any
other’s strategy. One example of such a player is nature, which acts irrespectively of
whatever the players may do.

3.5.1 Normal Form Games

If all action sets ASi for i = 1, 2, . . . , n are finite, then we may directly specify
utility values for the i-th player by a tableau, with |ASi | rows, and

∏n
j=1,j �=i

∣∣ASj

∣∣
columns, specifying the value of ui(a1, . . . , ai−1, ai, ai+1, . . . , an) per table cell for
the given vector of actions. A game specified like this is said to be in normal form.
It is common notation to abbreviate this cumbersome specification as ui(ai, a−i ),
in which a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈ AS−i , where AS−i is the cartesian
product of all action spaces, excluding ASi .

Definition 3.2 ((Non-Cooperative) Game) A game is a triple Γ = (N, S,H),
with N being a set of players, S being the family (set) of all action spaces and H

the set of all utility functions. To each player i ∈ N , we associate an action space
ASi ∈ S. Further, the set H contains all utility functions ui : ASi × AS−i → R,
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where R is a totally ordered set of payoffs. If N is finite and all action spaces ASi ∈
S are finite, then the game itself is called finite.

We will hereafter speak about “games”, meaning non-cooperative games without
ambiguities. Most of the time, we will put R := R in Definition 3.2, but other
choices are admissible, such as R :=∗ R. Observe that the finiteness condition is
optional on any of the involved sets, i.e., games can be with infinitely many players
and infinite (up to uncountable) action spaces. If the game is finite, we shall hereafter
call it a matrix game.

Like decision theory, we can then ask for an optimal action of the i-th player,
given that the actions of all other players are known. Suppose that all players �= i

have chosen their actions, jointly listed in the vector a−i , then the best response BRi

of the i-th player (w.l.o.g.) maximizes the utility:

BRi(a−i ) = argmax
a∈ASi

ui(a, a−i ). (3.16)

This is generally a set-valued mapping, and called the best response correspon-
dence. If all players mutually act best against their respective other players, we have
an equilibrium:

Definition 3.3 (Equilibrium) An equilibrium of a game Γ is a vector of strategies
(a∗1 , a∗2 , . . .) ∈∏i∈N ASi so that

for all i ∈ N : a∗i ∈ BR(a∗−i ). (3.17)

Informally, equilibria are behavioral rules in which no player gains any benefit
by unilaterally deviating from the equilibrium; in this sense, the equilibrium is an
optimal decision for an individual player. However, we stress that it may nonetheless
be possible to gain more by teaming up with other players, coordinate actions among
the group, and share the joint revenue obtained in this way. This is the route to
cooperative game theory, which we will not further explore in this book, since our
attention will be on non-cooperative games and equilibria (as already mentioned
above). The term “non-cooperative” still thus does not imply any conflicts of
interests between the players, and exclusively refers to the equilibrium being optimal
for a selfish player. Games in security naturally have conflicts of interests between
the players.

For finite two-player games, the utility functions for each player admit the
particular handy specification as a matrix A1 over the set R, with |AS1| rows and
|AS2| columns for player 1; respectively transposed as A2 ∈ R|AS2|×|AS1| for player
2. In some cases, a game’s description can be simplified by removing actions that
cannot be optimal.

Definition 3.4 (Domination) Let a game Γ = (N, S,H) be given. A strategy a ∈
ASi is said to weakly dominate another strategy b ∈ ASi , if ui(a, a−i ) ≥ ui(b, a−i )

for all a−i of opponent strategies. If the inequality is strict, we say that the strategy
is strictly dominated, or just dominated.
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That is, dominated strategies are those for which there is another strategy giving
better utility in all cases. Consequently, we can safely delete such strategies from
an action space, since it would in any equilibrium necessarily be played with zero
probability.

Example 3.4 (Game with Dominated Strategies) Consider the following two-
person zero-sum matrix game, i.e., a game where the goals of the two players
are completely opposite and thus the utilities sum up to zero (see below for a
more detailed explanation of zero-sum games). The game has action spaces AS1 =
{a1, . . . , a4} and AS2 = {b1, . . . , b4}, and payoffs for player 1 defined as

b1 b2 b3 b4
a1 1 3 2 4
a2 0 3 1 3
a3 1 4 2 1
a4 2 1 0 2

If player 1 is maximizing, then strategy a2 gives the utilities (0, 3, 1, 3) ≤
(1, 3, 2, 4) that strategy a1 would deliver. Thus, strategy a2 is weakly dominated
from player 1’s view, and can be deleted. Likewise, for the minimizing player 2,
strategy b3 is better than strategy b2, since the second and third column satisfy
(3, 3, 4, 1) > (2, 1, 2, 0), so the second strategy is strictly dominated for player
2. It follows that both can delete their respective strategies and instead analyze the
simpler game now being

b1 b3 b4
a1 1 2 4
a3 1 2 1
a4 2 0 2

The equilibria, in the sense of actions to be played optimally, are the same, since
only actions were excluded that would not have appeared in any equilibrium. 

While the deletion of dominated strategies leaves the set of equilibria unchanged,
the existence of equilibria in first place is a different question.

Example 3.5 (APT as “hide-and-seek”) Let us adopt a simplified view on an APT,
taking this as an instance of a defender chasing an attacker in some system. Let the
defender know that the attacker is present but stealthy, and let the attacker strive
for a stealthy takeover. To ease matters further, assume that the system has only
two locations 1 and 2 to conquer, with the defender guarding those two. The action
spaces for both players are thus AS1 = AS2 = {1, 2} (the generalization to more
than two locations is obvious). Assume that the defender always notices the presence
of an attacker (in an intended oversimplification of reality, but sufficient for the
illustrative purpose of the example), then we can define the utility functions of the
defending player 1 and the attacking player 2 as



3.5 Game Theory 63

u1(a1, a2) =
{

0, if a1 �= a2

1, otherwise.
and u2(a1, a2) =

{
1, if a1 �= a2

0, otherwise.

That is, the defender loses if it checks the wrong place (a1 �= a2), in which case the
attacker wins, and vice versa.

Is there an equilibrium, in the sense of a best behavior for both actors? The
answer is no, since if the defender were to choose a∗1 = 1, then the attacker would
always win by choosing a∗2 = 2. But if a∗2 = 2, the defender’s best reply is to play
a∗1 = 2 as well, contrary to our assumption that a∗1 was optimal. The same reasoning
holds for the assumption that a∗1 = 2, giving a∗2 = 1 as optimal for the attacker, and
hence rendering a∗1 = 1 optimal for the defender. Since the situation is symmetric,
the attacker also has no optimal choice within AS2, so an equilibrium does not exist.


Example 3.5 gives the crucial hint on that extension, since we just need to allow

an optimal action to prescribe “jumping around” between different elements of
the action space, if no action is by itself optimal. That is, if choosing one action
causes another player to choose a proper action in response, which again forces the
first player to revise its behavior, we end up with an infinite sequence of choices,
delivering an infinite sequence of utilities per round of the game. Taking the long-run
average (fraction) of times when a certain action is chosen defines, if it converges, a
probability mass function on the action space of a player. Averaging the utilities in
the long run as well, in the same way as for the law of large numbers (3.6), we can
ask for optimality of the long-run average of utility, induced by a randomized choice
from the respective action set. This is precisely the way to assure the existence of
equilibria in (most) games, including that of Examples 3.4 and 3.5.

Definition 3.5 (Mixed Extension of a Game) For a game Γ = (N, S,H),
the mixed extension is the game (N, S′,H ′), with the strategy spaces and utility
functions being defined as follows:

• S′ = {Δ(AS)|AS ∈ S}, where Δ(AS) is the set of probability distributions
defined on the set AS.

• H ′ = {u′i : Δ(ASi) × Δ(AS−i ) → R, with u′i (ai , a−i ) = Eai ,a−i
(ui)}. That is,

u′i gives the expected utility, based on the probability distributions of choices of
all players.

An equilibrium in mixed strategies is a vector of distributions (a∗i )i∈N such that
for all i ∈ N : Ea∗i ,a∗−i

(ui) ≥ Ea,a∗−i
(ui) for all a ∈ Δ(ASi).

Example 3.6 (Continuation of Example 3.5) Suppose the defender would choose to
check location 1 for 75% of the time, and look after location 2 for only 25% of the
time. Then, the following attacker can go for location 1 with probability p, and for
location 2 with probability 1− p. Writing this down as a tableau,
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check location

1 2
1
4

3
4

attack location
1 1− p 0 1

2 p 1 0

we find the expected utility for the attacker by applying (3.18) to be

u2((1− p, p), a∗1 = (1/4, 3/4)) = 3

4
· p · 0+ 3

4
(1− p) · 1+ 1

4
· p · 1+ 1

4
· p · 0

= 3

4
(1− p)+ 1

4
p = 3

4
− p

2

The attacker’s utility is thus maximal at p = 0, giving a∗2 = (0, 1) and u∗2 = 3/4. 
Theorem 3.2 (Nash, 1951 [5]) Every finite game has an equilibrium in mixed
strategies.

For Example 3.5, an equilibrium in mixed strategies would be a∗1 = (1/2, 1/2) =
a∗2, i.e., both players choose the locations equiprobable.

Theorem 3.2 can be strengthened into assuring equilibria to exist also in infinite
games.

Theorem 3.3 (Glicksberg, 1952 [1]) If for a game in normal form, the strategy
spaces are nonempty compact subsets of a metric space, and the utility-functions
are continuous w.r.t the metric, then at least one equilibrium in mixed strategies
exists.

The continuity assumption in Glicksberg’s theorem is crucial, as for discontin-
uous utility functions, equilibria may no longer exist (a counterexample is due to
[15]). Unfortunately, such cases can become relevant in security, as, for example,
disappointment rates in games generally lead to discontinuous utilities (but let us
postpone this discussion until Sect. 12.6.1).

Remark 3.4 The literature uses the terms “equilibrium” and “Nash equilibrium”
widely synonymous, and so will we do. Historically, the difference originates from
the equilibrium concept being introduced by von Neumann and Morgenstern [6] for
two person games, and later extended by Nash to n person games allowing also for
nonlinear utilities.

Mixed strategies are of particular relevance in security, since it is generally not a
good practice to statically implement some security precautions and never update,
revise or improve them. In the long run, the adversary will learn about the security
mechanism, adapt to it, and ultimately break it. In this context, mixed strategies
represent nothing else than a repeated change of security precautions to force the
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attacker to continuously re-adapt to changes of the situation. Or, almost as a proverb:
“security is never finished”.

If the game has vector-valued payoffs, we can transfer the idea of “loss from
unilateral deviation” to the multi-dimensional case by demanding that if a player
i unilaterally deviates from the equilibrium will degrade its payoff in at least one
coordinate of the goal function gi , even though a gain in the other coordinates
of the player’s goal function gi may occur. This is the concept of a Pareto-Nash
equilibrium.

Definition 3.6 (Pareto-Nash Equilibrium) Let Γ = (N = {1, . . . , n}, S = {AS1,

. . . , ASn} ,H) be a (mixed extension) of a game, in which each player has the d-
dimensional utility function ui : ∏i∈N Δ(ASi) → (Rd,≤). Let the players be all
maximizers (w.l.o.g., since the case of minimizing players is defined analogously).
We call a set of elements (x∗1, . . . , x∗n) a Pareto-Nash equilibrium if, for each i ∈ N ,
we have

ui (x, x∗−i ) ≤1 ui (x∗i , x∗−i ) ∀x ∈ Δ(ASi).

If AS is finite with, say k = |AS| elements, we call Δ(AS) the simplex
constructed over AS, or also the convex hull. It is the set of all (p1, . . . , pk) ∈ [0, 1]
such that p1 + p2 + . . . + pk = 1. Since it creates no ambiguity, we will hereafter
by default always consider games to be mixed extensions, and decisions to be
randomized in general. This view canonically includes pure strategies by putting
all probability mass onto a single element in the action space (thus making the
mixed strategies into degenerate distributions). Consequently, we shall not further
distinguish utilities defined on action spaces

∏
i∈N ASi from expected utilities

defined over
∏

i∈N Δ(ASi) in notation, and write ui to mean the (expected) utility of
the i-th player (in mixed strategies). The two coincide for degenerate distributions.

The expected utility in this setting, with the mixed strategies denoted as x ∈
Δ(AS1), y ∈ Δ(AS2) for player 1 and player 2 respectively, is

Ex,y(u1) = xT · A1 · y =
|AS1|∑

i=1

|AS2|∑

j=1

xi · aij · yj . (3.18)

The formula for player 2 is analogous.
Both, Theorems 3.2 and 3.3 also assure the existence of Pareto-Nash equilibria

if the vector-valued utility functions are all scalarized (3.3). The work of [3] then
characterizes Pareto-Nash equilibria as (normal) Nash equilibria in certain such
scalarized games.

In many cases, it pays to adopt a more accurate model of the conflict than just
defining a utility as a consequence of multiple actions chosen at the same time. If the
attacker adapts its actions to what the defender does, we can have a leader-follower
situation, leading to a Stackelberg equilibrium, whose discussion we postpone until
Sect. 4.2.
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3.5.2 Zero-Sum Games

The symmetry of utilities, as in Example 3.5 for instance, is a special case, and
generally does not need to hold. If a game is such that

∑ui

i∈N = const, then we call it
a constant-sum game. The utilities in Example 3.5 satisfy this property, since there,
u1(a1, a2)+ u2(a1, a2) = 1, for all a1, a2. A game is called zero-sum, if the sum of
utilities is constant zero. For two players, this corresponds to the setting where the
attacker’s intentions are exactly opposite to the defender’s objectives (“your pain
is my gain”). Zero-sum games, however, have two important uses (in theory and
practice):

Two games Γ1 = (N1, S1,H1) and Γ2 = (N2, S2,H2) are called strategically
equivalent, if they have the same set of equilibria. This indeed requires N1 � N2,
and S1 � S2, where the isomorphism � is interpretable as the sets being identical
except for the naming of their elements.

If a game Γ = (N, S,H) is constant-sum, say with
∑

i∈N ui = c ∈ R, then we
can find values α, β ∈ R such that α · (∑i∈N ui

)+β = 0, and define a strategically
equivalent game Γ ′ with N, S and the utilities being u′i := α · ui + β. The affine
transformation x �→ α · x + β apparently leaves all optimum points unchanged,
except for the possibility of turning a maximization into a minimization (and vice
versa), if α < 0. Thus, whenever we have a constant sum game, we may equivalently
and without loss of generality, speak about a respective zero-sum game.

Apparently, Examples 3.4 and 3.5 force us to extend Definition 3.2. Let us take
a closer look for zero-sum games, as in Example 3.4, but for a general matrix
A = (aij ): any row that the maximizing player 1 would choose will cause player
2 to select the column that minimizes the utility for its opponent. Thus, the least
that player 1 can achieve is v = maxi (minj (aij )). For Example 3.4, this would
be v = maxi (1, 0, 1, 0) = 1. Likewise, player 1 will choose the row giving the
maximum after player 2 has chosen its column; thus, the best possible is then v =
minj (maxi (aij )). Again, for Example 3.4, this comes to v = minj (2, 4, 2, 4) = 2.
The observation that v ≤ v is no coincidence and systematically holds for any
function f : R2 → R (without further hypothesis) whenever a minimum and
maximum exists; the minimax inequality is

max
x

min
y

f (x, y) ≤ min
x

max
y

f (x, y) (3.19)

The gap that we can compute in this way for a game, which is v − v = 1 for
Example 3.4, indicates that the optimum for both players apparently lies somewhere
in between the two bounds. The minimax theorem (a special case of Theorem 3.2)
states that this optimum is achievable, if we extend the game in the proper way.

The practical and important use of zero-sum games, and stems from them being
worst-case models: take two games Γ0, Γ1, with the same player set N and (mixed)
strategy sets S = {Δ(AS1),Δ(AS2)}, but with different payoff structures H0 =
{u1,−u1}, and H1 = {u1, u2}. Writing out the equilibrium Definition 3.3 for the
two-player zero-sum setting gives for a utility-maximizing player 1,
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u1(x, y∗) ≤ u1(x∗, y∗) ≤ u1(x∗, y), (3.20)

where the left inequality follows since player 1 can only lose by unilateral deviation,
as can player 2 if it deviates, since this increases the revenue for player 1 (by the
zero-sum property of the game). Let us denote the equilibria in Γ0, Γ1 by (x∗0, y∗0)
and (x∗1, y∗1).

Imagine a situation in which player 1 follows an equilibrium strategy x∗0 in
the zero-sum game Γ0, while player 2 follows an equilibrium strategy y∗1 in the
(nonzero-sum) game Γ1. Most likely, the equilibria will not be the same, i.e.,
x∗0 �= x∗1 and y∗0 �= y∗1. Then, player 2 deviates from player 1’s perspective,
thus increasing player 1’s actual payoff over what is expected. Likewise, player
1 deviates from the optimal behavior in Γ2, thus increasing the payoff for player 2
in this game again by the definition of an equilibrium. It follows that

u1(x∗0, y∗0) ≤ u1(x∗0, y) for all y ∈ Δ(AS2). (3.21)

This means that irrespectively of how player 2 acts within AS2, player 1 can at least
gain a minimum payoff by (i) presuming a zero-sum game, although this need not
be the case in reality, and (ii) acting according to this zero-sum equilibrium (i.e.,
optimal) strategy. Apparently, the zero-sum assumption may be overly pessimistic,
and the attacker’s intentions may be far from exactly opposing, but this assumption
spares the defender from pondering about the actual intentions of its adversary. In
this way, the zero-sum assumption simplifies matters in practice, as the defender
only needs to be confident about the attacker’s action space, but does not need to
hypothesize about the (hidden) intentions behind an attack.

Although equilibria are generally not unique, the equilibrium payoff in a zero-
sum game is the same for every equilibrium. This makes the following definition
sound:

Definition 3.7 ((Saddle-Point) Value of a Game) Let Γ be a two-player zero-
sum game, with any equilibrium (x∗, y∗). The saddle-point value, or shortly called
value, of the game is val(Γ ) = u1(x∗, y∗).

For a finite game with payoff matrix A for player 1, the value is given by (x∗)T ·A·y∗.
The validity of the lower bound (3.21) against every behavior of the opponent merits
paying special attention to such strategies:

Definition 3.8 (Security Strategy) Let Γ = (N, S,H) be a game. A security
strategy for the i-th player is a (mixed) strategy a∗i ∈ Δ(ASi) such that

a∗i ∈ argmax
a∈Δ(ASi)

min
a−i

ui(a, a−i ), (3.22)

That is, a security strategy is a minimax decision that bounds the best achievable
utility in light of any (mixed) strategy of the opponents of player i. Expression
(3.21) asserts a zero-sum equilibrium behavior as an example of a security strategy
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in a general (not necessarily zero-sum) game between two players. The existence
of security strategies is a simple consequence of the definition of an equilibrium,
and their computation amounts to merely the respective player taking its opponent
payoff to be precisely opposite to one’s own utility, whether or not this assumption
may be accurate in practice. Wrapping up the discussion surrounding expressions
(3.20) and (3.21), we can conclude an existence result:

Theorem 3.4 (Existence of Security Strategies) Let a two-player game Γ =
(N = {1, 2} , S = {AS1, AS2} ,H = {u1, u2}) be given. A security strategy
for player i in Γ is given by a Nash-equilibrium strategy in the zero-sum game
Γi,0 = (N, S,Hi,0 = {ui,−ui}).
Note that the one seeking a security strategy herein intentionally disregards the
payoff structure of the second player (more formally, only ui but not the opponent’s
utility u−i appears in Γi,0). From a security practitioner’s perspective, this has the
appeal of sparing hypotheses on the opponent’s incentives. In other words, security
strategies need no adversary modeling in the context of game theory, since all that
is needed is one’s own utility or damage assessment.

Example 3.7 ([7, 12]) Consider the two-person non-constant sum game with pay-
off structure as two matrices, jointly denoted as a tableau of pairs (u1(i, j), u2(i, j))

for each strategy profile (i, j) ∈ AS1 × AS2 of the two players:

Player 1

Player 2
(2, 0) (2, 0) (1, 4) (3, 1) (2, 3)

(1, 1) (2, 3) (2, 1) (2, 3) (4, 2)

(0, 2) (3, 2) (0, 1) (2, 3) (2, 1)

(0, 2) (4, 2) (1, 0) (0, 2) (1, 2)

(2, 3) (2, 1) (4, 3) (4, 1) (3, 0)

This game has multiple equilibria with values v1 ∈ E1 =
{

2, 4, 8
3 , 18

7 , 9
4 , 14

5

}
for

player 1, and v2 ∈ E2 = {2, 3} for player 2.
Now, let us compute a security strategy for the defender, by replacing the utilities

for player 2 by the negative values as for player 1. The resulting game is a zero-sum
matrix game (with the same entries as on the left side for player 1 in the bimatrix
game):

2 2 1 3 2
1 2 2 2 4
0 3 0 2 2
0 4 1 0 1
2 2 4 4 3
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The saddle-point value of this game for player 1 is v1 = 2 = min E1, so the
bound that Definition 3.8 speaks about in (3.22) is even tight (although not generally
so). 

If the defender has multiple assets to protect or a player has multiple goals
to optimize, the concept of a security strategy is extensible this multi-criteria
optimization situation. Essentially, the defender is then playing a one-against-all
game: it defines a distinct utility function per goal, but all utility functions having
the same unified action space AS1 as their domain; only being individually distinct
w.r.t. the goal that they quantify. Also, we may allow for different actions for each
attack, i.e., not all actions in the common domain AS1 may be relevant for all goals.
For example, an eavesdropping attack on confidentiality may require other actions
than a DoS attack on the same system.

Let the utility be defined in terms of loss, so that we have a utility minimizing
defender, facing a multi goal optimization problem, as in Sect. 3.3. We can model
this situation as a multi-objective two-player game: Let the defender have defined
functions u

(1)
1 , u

(2)
1 , . . . , u

(d)
1 , corresponding to d ≥ 1 security goals. To each of

these, we can associate an (independent hypothetical) attacker with its own action
space AS

(1)
2 , . . . , AS

(d)
2 . Without loss of generality, we can unify all these actions

in a common action space for all attackers, by taking the union AS2 = ⋃d
i=1 AS

(d)
2

and letting the adversary’s utility be −∞ whenever this value would in connection
with a certain action in AS2. For example, if an action a ∈ AS2 has some utility
for eavesdropping, i.e., a ∈ AS

(eavesdrop)

2 , but is useless for a DoS (i.e., u
(DoS)
2 is

undefined since a /∈ AS
(DoS)
2 ), then we just define the utility to be unfavourable

against, in fact dominated by, any other action for the DoS attacker, so it would
never choose it, just like if it would not be in the action space at all. In this way, we
assure that if an action is unavailable for a specific attacker, it will in any case be
dominated, and thus will not show up in any equilibrium.

To simultaneously minimize the loss, the defender thus proceeds by defining a
weighted sum of utilities for each (hypothetical) adversary and analyzes the two-
person game with attacker utility after scalarizing it (cf. (3.3)):

u2 := w1 · u(1)
2 + w2 · u(2)

2 + . . .+ wd · u(d)
2 , (3.23)

for weights w1 · · ·Wd that the defender needs to choose all ≥0 and constrained to
satisfy w1 +w2 + . . .+wd = 1. Where do the weights come from? If the defender
has information on how likely each type of attacker is, the weights in (3.23) can be
set to the corresponding likelihoods. For example, if a DoS attacker is considered
twice as likely as an eavesdropper, we have two adversaries, and define the weights
wDoS = 2/3 and weavesdropper = 1/3. If no such hypothesis appears reasonable or
is possible, the defender may instead assign goal priorities, and define the weights
accordingly to reflect them; cf. Sect. 3.3.
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To put this to work, the defender now needs to define the specific utilities per
security goal, i.e., for each attacker j = 1, 2, . . . , d. Two situations are herein
possible:

1. The defender has an adversary model so as to know the intentions and incentives
behind attack type j . In that case, the defender may be able to define an accurate
utility function u

(j)

2 to embody this knowledge.
2. The defender does not know the payoffs for the attacker. Then, the defender may

instead model her/his own losses u
(j)

1 and put u
(j)

2 := −u
(j)

1 as a substitute. This
is equivalent to going for a minimax decision, i.e., a security strategy against the
j -th type of attack(er).

Definition 3.9 (Multi-Goal Security Strategy (MGSS)) Let Γ = (N =
{1, 2} , S = {AS1, AS2} ,H) be a multi-criteria two-player game, with continuous
vector-valued payoffs u1 = (u

(i)
1 , . . . , u

(d)
1 ) : AS1 × AS2 → Rd for d ≥ 1 for the

first player. A multi-goal security strategy (with assurance) for a maximizing player
1 is a strategy x∗ ∈ Δ(AS1) together with a vector v = (v1, . . . , vd) such that the
following holds:

1. The assurances are the component-wise guaranteed payoffs for player 1, i.e. for
all goals i = 1, 2, . . . , d , we have

vi ≤ u
(i)
1 (x∗, y) ∀y ∈ Δ(AS2), (3.24)

with equality being achieved by at least one choice y∗i ∈ S2.
2. At least one assurance becomes void if player 1 deviates from x∗ by playing

x �= x∗. In that case, some y0 ∈ Δ(AS2) exists such that

u1(x, y0) ≤1 v. (3.25)

Observe that this definition is agnostic of the second player’s utility; in fact, the
characteristic of a security strategy is precisely that we do not need to know this
information. The existence of MGSS is assured under the same conditions as for
Nash equilibria [8]. The existence result is a generalization of Theorem 3.4 that
relates to the existence of Pareto-Nash equilibria:

Theorem 3.5 (Existence of MGSS [8]) Let a security system be modelled as a
multi-criteria two-person game Γ . For any such game, there is an auxiliary game
Γ ′, such that (v, x∗) is a MGSS, if and only if, it forms a Pareto-Nash equilibrium
in the auxiliary game Γ ′ with the assurances being the saddle-point values of Γ ′.

The computation of an MGSS is possible by Fictitious Play (FP), which we
discuss further in Sect. 12.3.4.

The multi goal defense that the defender adopts here can be viewed as a special
case of what we call a Bayesian game. In such a game, a player is uncertain about
the particular type of opponent, but knows the set Θ of possible types and individual
payoff structures they have. Nature, as an irrational third entity, then decides on the
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type θ ∈ Θ based on a probability distribution that is known to the defender. This
one, in turn, takes an optimal decision based on the knowledge θ , i.e., a Bayesian
decision (cf. Sect. 3.4.1). If the attacker is such that it partly exposes its type by
sending a signal (even if unintended), the defender may refine its guess about the
adversary type into a posterior distribution conditional on the signal, and again takes
a Bayesian decision. We will revisit this later in the context of signaling games (see
Chap. 4, and Example 3.8 in the next section).

3.5.3 Extensive Form Games

In many situations, it pays to look deeper into the interaction dynamics, since some
actions of one player may enable or prevent subsequent actions of other players.
Like in many board games, players can take actions in a prescribed order, and may
not necessarily be informed about what the other player has done or can do next.
The latter are called games with imperfect information (card games are an example,
since players usually do not see their opponents deck), and the former are called
games without perfect recall (for example, some card games allow exchanging parts
of the deck without showing the old and new cards to the others). Security games
can exhibit both, for the defender and attacker in similar ways: if the defender does
not know where the attacker is located in a system, we have a situation of imperfect
information. Likewise, if the defender notices suspicious activity in the system, the
attack path over which the adversary came in may be ambiguous, thus the game has
no perfect recall.

The examples above induce a couple of apparent ingredients necessary for an
accurate description of a game, which we call extensive form. Like a normal form
game, it has a finite set of players N , each i ∈ N endowed with an action space
ASi . The game play is in discrete time steps, meaning that the game allows different
players or groups of players to move at the same instant of time, and allowing other
player (groups) to move afterwards, and so on. A particular instance of the game
then gives rise to a history h = (a1, a2, . . .) with elements from

⋃
i∈N ASi of action,

where we assume all action spaces ASj to be pairwise disjoint, so that the history
is unambiguous on which player took what action. The empty sequence of zero
length corresponds to no player having moved yet, i.e., the beginning of the game.
We denote this special state of the game as n. We say that the move a continues a
history h, if this move (by whatever player takes it) is allowed by the game’s rules to
follow at the stage of the game, after the history h, i.e., h′ = (h, a) is again a valid
history for the game.

Given some history h, an extensive form game further defines (i) which player(s)
are allowed to take their actions next, and (ii) defines a set of admissible actions
at this stage of the game. Both depend on the history h, and for (i), we define a
set-valued mapping p(h) = {j ∈ N : player j is to move next}, and for (ii),
we define the set Z(h) = {a ∈ ⋃

j∈p(h) ASj : player j can take action a to
continue the history h}. If we restrict our attention only to those actions that the
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i-th player can take, we write Zi(h). The definition of what is possible and who is
allowed to move is told by the rules of the game. In cases where multiple players
can move simultaneously (not necessarily independent of one another) the value of
p(h) is a set with two or more elements, but in many cases will specify exactly
one j ∈ N to move next in the game. When p(h) =, there are no more moves
possible, and the game terminates by assigning a utility to all players. A history
with p(h) = is called terminal. Otherwise, if p(h) �= ∅ (i.e., there is a player that
can move), and Z(h) �= ∅, we call the history finite. A history that can be continued
ad infinitum is called infinite. For example, Chess admits situations with moves to
lead into periodicity (“eternal Chess”). Some repeated security games are as well
examples of games that never terminate (“security is never done”).

The entirety of all histories (including finite, terminal and infinite ones) consti-
tutes the game tree B , whose root is n. In this tree, each history h defines a unique
path from the root n to the last action in the history h, which we will call a node v

in the tree B. A terminal history is thus a path from the root node n to a leaf node
(final action) v.

The number of v’s children in B is the number |p(h)| of players that can move,
multiplied by the number of actions |Z(h)| that each player i ∈ p(h) has in this
moment v. If a node is such that no player can move any more, then the game ends,
with the utility function specifying the payoffs for each player in this terminal state
of the game. The game tree B is thus the collection of all possible evolutions of the
game. It is generally an infinite graph, since not all instances of the game necessarily
need to terminate.

We call a game finite, if the graph B is finite, i.e., all sequences of moves
terminate sooner or later, in which case a utility is assigned to each player. Normal
form games necessarily terminate after one step, since the utility is gained after
having taken action. This distinguishes actions in the sense that we had so far, from
strategies in extensive form games: a strategy is a prescription of which action to
take in any given state of the game. In other words, being at some node v in the game
tree B, a strategy tells the moving player which action to take next. Optimizing these
strategies is the same as computing equilibria. Indeed, enumerating all terminal
paths in the tree B and collecting the utilities gained at their ends, we can convert
the game tree into a matrix, i.e., normal form, representation of the game. The action
sets that used to label the rows and columns of the matrix (in a two-player setting)
then correspond to the action spaces that we had in the chapter up to this section.
Now, for extensive form games, we have narrowed the understanding of an “action”
into being a possible move at the current state of the game.

Unless the players can observe all other’s actions, a player may be unable to
determine the exact location of the game in the full tree B of possibilities. That
is, from player i’s perspective, knowing that player j can move next, player i

can partition the set {v ∈ B : j ∈ p(h)} into sets I1, . . . , Ijk
, with the following

property: any two game states v,w in the same set I� are such that the possible
moves of player j are the same, regardless of whether it starts from v or w. We
call this an information set. If the two possible nodes v,w in B are in different
information sets (for player i), then the information gained (hence the name) is
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the particular set of actions that player j can take from now on. It is often useful
to include “nature” as a zeroth player (for example, if a board game prescribes to
throw a dice, we may think of this random event being nature choosing a number
between 1 and 6).

Example 3.8 (Phishing Game [16]) Consider a simple game of email correspon-
dence, with player 1 being the receiver of emails, and player 2 being any (unknown)
sender. The sender of an email can be phishing or honest, and “nature”, coming in
as a third player 0, decides about the type of sender. The game (tree) thus starts with
player 0’s move, and then enters an information set for player 1, since this one does
not know whether the email was phishing or honest. It thus cannot determine which
kind it was, unless there was, say, a digital signature attached to the email. In that
case, we know that the email is honest, corresponding to a third child of node n in
the tree, which lies in another, now singleton, information set.

The game specification is directly visible from the tree, and in our previous
notation is listed in the following table. Note that the phishing adversary is not even
explicitly included:

h n (n,1) (n,2) (n,3)
next move
function

p(h) {0} {1} {1} {1}

actions
available

Z(h) {phishing,
honest+no
signature,
signature}

{open,
delete}

{open,
delete}

{open}

When it is player 1’s move, this one can decide to open or leave the email
unattended if the game is in any state as in information set I1, or it can only open the
email if it is digitally signed (information set I2). The payoffs could then be assigned
as follows: if the receiver opens a phishing mail, then it scores a loss of −1, while
the phisher has won (payoff+1). If the phishing email gets deleted, the phisher loses
as well (payoff −1), and the receiver gains nothing (payoff 0). If an honest email
is accidentally considered as phishing and deleted, the receiver suffers a loss −1,
while the phisher gains nothing (utility 0, since this email was not sent by her/him).
Likewise, the phisher gains nothing in the other case, where the email came from an
honest sender, is digitally signed, and gets opened. The respective utilities appear in
brackets (receiver utility, phisher’s utility) underneath the terminating nodes in the
game tree in Fig. 3.2. 

“Nature” is generally useful to include as a distinct “player 0”, whenever external
forces are relevant that no player can influence, but whose circumstances determine
what happens in the game. This virtual zero-th player is not assigned any utility, but
has an action space in each state of the game, and all players know the probability
of each possible action that nature can take when it is its move (i.e., p(h) = {0}).
When throwing a dice, this is trivial, as any fair dice will equiprobably come up
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with numbers 1, . . . , 6. For the phishing game of Example 3.8, things are more
complicated, since player 1 would need to estimate the likelihood to receive a
phishing mail.

This was the last ingredient to an extensive form game, which unifies all the
components explained so far:

Definition 3.10 (Extensive Form Game) A game in extensive form is a six-tuple
consisting of the following:

1. The players, forming a finite set N

2. The possible game plays, specified as a game tree B with root n. Let F be the set
of terminal or infinite histories in B.

3. A rule who’s move it is: This is a function p telling which player(s) can move
in each state of the game, i.e., for each node v ∈ B reached over a history h of
actions, p(h) ⊆ N specifies which player(s) move next.

4. Randomness: If there is an element of randomness (not uncertainty), we include a
virtual player 0 “Nature” with action set AS0 and define a probability distribution
over AS0, conditional on each node v ∈ B.

5. Information sets: For all i ∈ N , this is a partition of the set of all {v ∈ B :
v wascequence h of moves, and p(h) = i}.

6. Utility functions u : F → R|N |, specifying the utility that each player gets when
the game finishes.

n

no
sig.

no
sig.

dig.
sig.

open delete open delete open

phisher

honest

honest

(−1, +1) (0, −1) (+1, 0) (−1, 0) (+1, 0)

phisher or
honest?

I1 I2

Fig. 3.2 Phishing Game Example
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Note that the randomness and information sets are optional in this definition: a
“player” 0 is not required, if the game does not involve randomness (for example,
Chess). Likewise, the information sets can all be singleton, in case that the current
state of the game is always fully known to all players, and we say the game has
perfect information. This is crucially different from complete information: while
perfect information means that a player is at every time informed about the current
state of the game, complete information means that every player is certain about
all details of the game itself, which in particular includes the payoffs that the
opponents receive. The two properties are independent, and security has both, games
with perfect but incomplete information, and games with imperfect yet complete
information (and of course both at the same time):

Example 3.9 (Imperfect but complete information) Consider a network in which
Alice wants to send a message to Bob. Let the graph be such that there are k ≥ 2
node-disjoint paths connecting the two, and Alice can choose any path out of
these k at random to transmit her message. The adversary, in turn, can choose
any intermediate node in the network to eavesdrop, and hope for the message to
pass by. This game has imperfect information, since Alice does not know where
the adversary is, but it is a complete information game, since the objectives of all
players are clear (as is the rest of the game specification). We will revisit this game
for a more detailed analysis in Sect. 11.2. 
Example 3.10 (Perfect but incomplete information) Imagine a quantum network,
which is well known to provide perfect point-to-point confidentiality by eaves-
dropping detection on the quantum bit exchange. Assume that Alice and Bob
are in the quantum network and trying to send messages. They react on each
incident of eavesdropping by stopping the transmission and resort to either (i)
pausing until the eavesdropper is gone, (ii) switching to a classical encryption
to save key material until case (i) occurs, or (iii) switch to an alternative route
when they find out that the currently chosen path is insecure. Since the eaves-
dropper cannot hide due to the properties of the quantum link, the game has
perfect information. The information is nonetheless incomplete, since the actual
objective of the attacker remains hidden: it can be a DoS via eavesdropping,
as this in any case causes a blockage of the channel or at least a fallback to
a weaker form of encryption [14]. It can, however, also be still a sophisticated
eavesdropping attempt by enforcing a redirection of traffic through a vulnerable
node [9]. We will come back to this application context in Sect. 11.2, where
we shall unconditionally quantify the end-to-end security in quantum networks
by means of multipath transmission and proving security using game theoretic
models. 

Whenever the game has complete information and is finite, we can enumerate all
paths from the game tree’s root until the leafs (terminal nodes) and record the actions
made by all players and assigned utilities (provided that the number of paths is
small enough to make a complete list in reasonable computational time). Doing this
enumeration for both players naturally creates action sets for them, whose members



76 3 Mathematical Decision Making

are then called strategies. A strategy (in an extensive form game) is a prescription
of what action to take every stage (i.e., node) of the game tree.

Strategies are sequences of actions that are determined by the moves of the
players as the game proceeds. For a normal form game, a strategy is just a member
of the action set: each player picks a member ai from its action set ASi and the i-th
player i ∈ N gets the utility as told by ui(ai, a−i ). The mechanism of the gameplay,
however, is not further looked into, since it is all embodied in the utility function.
Strategies in extensive form games are exactly different in this aspect, since they
describe in detail how the game proceeds from the first moves down until the point
when the utilities are being paid to the players.

The conversion from extensive to normal form by enumerating strategies, i.e.,
paths in the game tree, is generally neither unique nor reversible, since without
additional information, the extensive form game cannot be recovered from the
normal form. We will come back to specific examples of games in extensive form
in Chap. 4, when we describe leader-follower situations in security that naturally
lend themselves to extensive form models. Using such a model, Example 4.1 will
describe the transition to normal form game using two different extensive form
games.

3.6 Extended Concepts: Modeling Goal Interdependence

While scalarizing a multi-objective optimization is the traditional method, more
general techniques arise if we explicitly specify how the goals interact, instead of
only saying how much weight we put on each goal individually. Formally, let there
be n goals, taking specific values gi . Moreover, let the values be sorted in ascending
order 0 ≤ g(1) ≤ g(2) ≤ . . . ≤ g(n). The discrete Choquet integral, acting as an
aggregation operator in our case, replaces (3.3) by the expression

g∗ :=
n∑

i=1

w(i) · g(i), (3.26)

in which w(i) := μ(A(i))− μ(A(i+1)) with A(i) := {i, i + 1, . . . , n} represents the
set of all goals with increasing indices starting at index i. The interesting part is
the (so-far) unspecified function μ here, which “valuates” the set of goals in their
entirety, and taking their interplay into account. The difference w(i) is thus nothing
else than a value (a gain or loss) assigned to the situation when the i-th goal is
included (set A(i)) or excluded (set A(i+1)) from the consideration. Depending on
how much the absence of this goal affects the overall aims, the function μ plays the
role of the importance weights again. Formally, it is called a capacity function, and
needs to satisfy μ(∅) = 0 and monotony [A ≤ B] ⇒ μ(A) ≤ μ(B). The name
Choquet integral comes from the similarity to Riemann sums, which the concept can
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indeed resemble, if we add additional properties to the capacity function to make it
a measure.

While appealing, the practical application of this method comes with the price-
tag of needing to specify not only the importance per goal, but also the importance
of all combinations of goals towards a total specification of the capacity μ. That is,
(3.26) does only help including the interplay of goals to the extent that we already
know and explicitly modeled these beforehand. In the extreme case, we end up
specifying μ pointwise on all subsets of the goals {1, 2, . . . , n}, which are 2n many.
Thus, practically, we usually confine this to specifying only the importance weights
directly (as in (3.3)), and perhaps pairwise or triple-wise interplays (ending up in a
number of hand-crafted values for μ that is quadratic or cubic in n).

Fuzzy logic offers yet further possibilities of multi-criteria decision making, all of
which boil down to certain (partly heuristic) aggregation functions. While this offers
the full flexibility of constructing an aggregation that accounts for the particularities
of and mechanisms behind the goal’s interdependence, this freedom comes with the
price tag of a much more complicated interpretation of the underlying heuristics
and mathematical concepts. Although logical connectives like triangular norms
and co-norms come out of precise mathematical requirements and enjoy strong
connections to statistics (copulae theory), the practical choice from the (continuum)
of aggregation operators that fuzzy logic offers, enjoys much less help from theory
to make reasonable design choices. Nonetheless, fuzzy theory is remarkably popular
and successful in problems of multi-criteria decision making, yet beyond the scope
of our account here (see [13] for a comprehensive treatment).
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Chapter 4
Types of Games

Life is not a game. Still, in this life, we choose the games we live
to play.

J.R. Rim

Abstract This chapter introduces the most important classes of games underlying
practical security models. These include Stackelberg games, Nash games, signaling
games, and games with distribution-valued payoffs. The latter build upon empirical
methods and data science to construct games from data, but also reveals theoretic
connections to multi-criteria optimization using lexicographic goal priorities (that
classical games cannot deal with, but distribution-valued games can handle). Each
game description is accompanied by examples from the security domain to motivate
and illustrate the use of the individual model. Each class of game is discussed in
relation to the other types, highlighting pros and cons, las well as applications,
detailed in later chapters.

4.1 Overview

Game theory has been used in a wide variety of security and cyber-security contexts.
This lot roots in a few different types of game theoretic models that we discuss in
more details in this chapter. Among the application areas are intrusion detection
systems [59, 60, 67], adversarial machine learning [30, 51, 53, 54, 56], proactive and
adaptive defense [6, 7, 20, 47, 64, 66, 68], cyber deception [18, 28, 34, 36, 58, 61],
communications channel jamming [2, 50, 62, 65, 69, 70], Internet of Things [8–
11, 24, 28, 32, 33, 35, 72], secure industrial control systems [1, 26, 61, 63] and
critical infrastructure security and resilience [3, 3, 16, 17, 21, 22, 41]. In each of
these contexts, attackers and defenders attempt to rationally optimize their actions
by anticipating the actions of the other players. Hence, game theory captures the
fundamental properties of these interactions.
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Table 4.1 Players, types, actions, and utility functions for three games

Players N Types Θ Actions AS Utility Duration

Stackelberg
game

Typically L : aL ∈ ASL L : uL(aL, aF ) ∈ R One-shot

between
leader L

uniform F : aF ∈ ASF F : uF (aL, aF ) ∈ R leader-follower

and
follower F

structure

Nash game Typically V : aV ∈ ASV V : uV (aV , aW ) ∈ R Simultaneous

between
semetric

uniform W : aW ∈ ASW W : uW (aV , aW ) ∈ R move structure

players V

and W

Signaling
game

S has S : aS ∈ ASS S of each type One-shot

between
sender S

multiple R : aR ∈ ASR θ ∈ Θ : uθ
S(aS, aR) ∈ R sender-receiver

and
receiver R

types θ ∈ Θ R : uR(θ, aS, aR) ∈ R structure

Game with Multiple types S : aS ∈ ASS For each player i ∈ N Various,

distribution
valued

possible but R : aR ∈ ASR ui(xi , x−i )(t) = Pr(U ≤ t) is including all of

payoffs not necessary uR(θ, aS, aR) a distribution the above

In Sects. 4.2 and 4.3, we briefly introduce two of the most common game-
theoretic models used in defensive deception for cybersecurity and privacy: Stack-
elberg and Nash games. In Sect. 4.4 we address signaling games, which study
scenarios of incomplete information. Section 4.5 describes the more general class
of games with uncertainty, where otherwise crisp real-valued payoffs are replaced
by random variables that are stochastically ordered. Table 4.1 summarizes the
components of the games.

All three games are static games (where we take one-shot interactions to be static
although they are not simultaneous). In addition, while Stackelberg and Nash games
typically do not include multiple types, Bayesian Stackelberg and Bayesian Nash
games do allow multiple types.

4.2 Stackelberg Game

In Stackelberg games [48], the follower moves after knowing the leader’s action.
Often, cybersecurity models take the defender as L and the attacker as F , assuming
that the attacker will observe and react to defensive strategies. Their structure is
often conveniently described by a game tree, i.a., in extensive form.
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Stackelberg games are solved backwards in time (sometimes also called back-
ward induction). Let BRF : ASL → Δ(ASF ) define a best-response function
of the follower to the leader’s action, in mixed strategies to simplify matters here.
BRF (aL) gives the optimal aF to respond to aL. The best-response function could
also include a set of equally good actions, i.e., this is why the power set is used. The
best response function is defined by

BRF (aL) = argmax
aF∈ASF

uF (aL, aF ) . (4.1)

Based on anticipating F ’s best response, L chooses optimal action a∗L which satisfies

a∗L ∈ argmax
aL∈ASL

uL (aL, BRF (aL)) . (4.2)

Then, in equilibrium, the players’ actions are
(
a∗L, a∗F

)
, where a∗F ∈ BRF

(
a∗L
)
.

Definition 4.1 (Stackelberg equilibrium) In a two-player game Γ = (N =
{L,F } , S = {Δ(ASL),Δ(ASF )} , H = {uL, uF }), a Stackelberg equilibrium is
a pair of strategies (a∗L, a∗F ) for the leader and the follower, respectively, if a∗L is
optimal, given the leader’s information, and a∗F ∈ BR(a∗L), is the optimal response
of the follower (player 2), given that the leader does a∗L.

The existence of a pure-strategy Stackelberg equilibrium for finite games is
guaranteed. The applications of Stackelberg games in security have been pervasive
including data privacy [30, 31], infrastructure security [4, 5, 63], virus spreading
[14, 19] and cyber insurance [13, 52, 57]. In [5], a three-stage dynamic game is
formulated between an attacker and a network designer. The network designer
first designs an infrastructure network before the attack and recovers the network
from the damages of the attacker. The adversary attacks the infrastructure network
once the infrastructure is built with the aim to disconnect the network while the
network designer aims to keep the network connected by designing secure and
resilient networks before and after the attack, respectively. The two-player game
is an extended version of the Stackelberg game where the network designer is the
leader in the first stage and the follower in the last stage of the game. The attacker
is a follower after the first stage of the game but the leader of the second stage
of the game. In [57], the authors have established a bi-level game-theoretic model
that boasts the feature of a Stackelberg game where the insurance designer is the
leader who announces an insurance policy for the user. The user can be viewed as
a follower who plays a zero-sum game with an attacker whose outcome determines
the cyber risks for the user. The goal of the insurance is to further mitigate the
damage of the attacks on the user. The interactions among the three players can be
captured by a two-level game structure in which one game is nested in the other.

Example 4.1 (From extensive to normal form) Let us rephrase the hide-and-seek
game from Example 3.5 in extensive form, letting both players, denoted as “def.”
and “adv.” in Fig. 4.1, take the leader’s role. First, let the defender lead, modeling
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def.

adv. adv.

(+1, −1) (−1, +1) (−1, +1) (+1, −1)

check location 1 check location 2

attack
location 1

attack
location 1

attack
location 2

attack
location 2

Fig. 4.1 Extensive form game for Example 3.5

the hypothesis that the attacker can observe the defender and react accordingly.
Figure 4.1 shows the extensive form game tree, with payoffs denoted as pairs
(defender’s utility, adversary’s utility).

The normal form game is found by systematically enumerating all possible
choices of all players, and tabulating them. This leads to a payoff matrix, in which
the column player’s strategies are written as pairs (X, Y ), where X is the action
following strategy “check location 1”, and Y is strategy following the defender’s
previous action “check [location] 2”. For example, the revenue noted in the cell at
location “check [location] 1”/“(attack [location] 1, attack [location] 2)” is obtained
as follows: the defender (leader) has chosen to check location 1. The attacker having
chosen the first column, will look up the action to follow that particular history, i.e.,
if the defender’s previous action was to check location 1. The prescription of the
first column’s strategy is to react by attacking location 1, which gives the revenue
+1 for the defender, and −1 for the attacker. Note that the second prescription in
that column would also be to attack location 1, but this action would follow the
defender’s previous action to check location 2. Thus, this payoff is irrelevant to fill
that table cell.

Similarly, if the defender chooses to check location 2 and the attacker picks
the first column, that the history to react on would be “check 2”, on which the
prescription is to attack location 1 (second entry in the column’s label, according
to our naming convention). In that case, the adversary scores +1, and the defender
suffers a loss (−1), with the respective cell entry being (−1,+1) accordingly.

Carrying this systematic enumeration of possibilities to the end of considering all
possible scenarios in the game tree, we find the normal form representation of the
game, as shown in Fig. 4.2. The bold-printed entries therein mark the equilibrium,
in fact a Stackelberg equilibrium, for this leader-follower game.
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adversary (follower)
attack 1, attack 1 attack 1, attack 2 attack 2, attack 1 attack 2, attack 2

defender
(leader)

check 1 (1,-1) (1,-1) (-1,1) (-1,1)
check 2 (-1,1) (1,-1) (-1,1) (1,-1)

Fig. 4.2 Normal form of the extensive form game in Fig. 4.1

adv.

def. def.

(+1, −1) (−1, +1) (−1, +1) (+1, −1)

attack location 1 attack location 2

check
location 1

check
location 1

check
location 2

check
location 2

Fig. 4.3 Variant with leading attacker

The expected revenue for the defender in this game is −1, consistently with the
fact that the attacker can perfectly adapt to the defender’s action, since it can observe
the defensive precautions and can act accordingly. This means that the defender’s
actions should be hidden from the attacker. However, note that this confidentiality
does not extend to keeping the action space also confidential. Indeed, the defender
can let the attacker know what actions are possible in principle, but must keep only
the concrete current move as a secret. Risk management, along trust-establishing
measures, recommends to publish what is done for security, but at the same time
prescribes to be confidential about the details. The game theoretic analysis of this
particular game teaches the same lesson upon a purely mathematical analysis, which
hereby justifies this best practice. We will have to say more about this in Chap. 6.

Let us turn around things to look at the situation where the adversary moves first.
Figure 4.3 shows the resulting game tree, with payoff annotation (u1, u2) in the leafs
referring to the defender’s and attacker’s payoffs respectively.

The construction of the normal form game works as before, only the shape of
the tableau changes into the defender now having follow-up strategies to whatever
the adversary did first (note that this version would anyhow be realistic only in a
reactive setting, where the defender repairs damage due to adversarial actions, so
not all combinations of actions, i.e., strategies, may be practically meaningful).
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Fig. 4.4 Normal form of the
extensive form game in
Fig. 4.3

adversary (leader)
attack 1 attack 2

defender
(follower)

check 1, check 1 (+1,-1) (-1,+1)
check 1, check 2 (+1,-1) (+1,-1)
check 2, check 1 (-1,+1) (-1,+1)
check 2, check 2 (-1,+1) (+1,-1)

As with the previous game, we highlighted one equilibrium in bold, in Fig. 4.4.
It gives the payoff +1 to the defender, and −1 to the attacker.


This conversion assures the existence of equilibria just as for normal form games,

although an equilibrium has then a more complex interpretation: it is a path in the
game tree that reaches the simultaneously optimal utility for all players, or if the
equilibrium is in mixed strategies, it is a randomized optimal choice of action for
each player in each node of the game tree. Note that this path not necessarily means
that each player behaves optimal in each stage of the game. Adding this requirement
leads to a refinement of (Nash-)equilibria. We emphasize that this concept applies
to general extensive form games, not necessarily only to Stackelberg games.

Definition 4.2 (Subgame Perfect Equilibrium (SPE)) Let a game Γ in extensive
form be given, whose game tree is B. A subgame in Γ consists of a subtree B ′
of B, with all other items in Γ applied to the subtree B ′ only. An equilibrium in
Γ is subgame perfect, if it induced an equilibrium (of any kind, including Nash,
Stackelberg, . . . ) for every subgame of Γ .

If the game Γ is finite, we call the longest path in B from the root to a leaf the
length �(Γ ) of the game. An SPE can be found by induction on the games length
�(Γ ): if �(Γ ) = 1, then starting from the root node n, the first move taken by the
players p(n) immediately deliver payoffs. This is just as for a finite normal form
game, and there is an equilibrium by Nash’s Theorem 3.2. Now, suppose that we
have found subgame perfect equilibria up to length �(Γ ) = k, and we are about
to take the (k + 1)-st move. Let the history (of length k) up to this point be h
(generically).

• If nature is to make the next move, then the equilibrium payoffs in the subgame
of length k + 1 are the weighted average of utilities that all players receive in
all actions that nature can play, with weights being the likelihoods for these
actions (remember that for player 0, Definition 3.10 requires this information
as available).

• If a player i �= 0 is to move, then it selects that action a ∈ Z(hi , h−i ) from the
available ones, that maximizes this player’s outcome among all possibilities, i.e.,
the subgames until this point in the game, or equivalently, the nodes reachable in
k steps from the root. This works only if all information sets are singleton, so it
is clear which nodes can be reached, also taking the other player’s actions into
account.
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In each step, we can do this for all (perhaps exponentially many) paths of length
k, to find an SPE for a game of length �(Γ ) = k + 1, thus proving the following
existence result:

Theorem 4.1 ([25]) Every game in extensive form and with perfect information has
a subgame perfect equilibrium.

The proof of Theorem 4.1 is in fact based on backward induction (also used to
analyze Stackelberg games): to find a subgame perfect equilibrium, one starts by
considering the final mover’s action to maximize this player’s utility (based on the
fact that these utilities are all specified directly) in all possible circumstances, i.e., a
minimax decision. Then, one presumes that this action has been taken, and repeats
to find the butlast player’s action to maximize their utilities, and so on, until the
root node is reached. The strategies remaining by that point are the subgame perfect
equilibria.

Example 4.2 (Continuation of Example 4.1) Let us apply backward induction on
the extensive form game of Fig. 4.1. The last player to move is the attacker, who
will choose to attack location 2, whenever the game is in the left branch of the tree,
and to attack location 1, when the game is in the right branch of the tree. Assuming
those actions to be adopted, the defender has no real choice any more, since it can
only choose to lose −1 in the left branch, or lose −1 in the right branch. This
delivers the equilibria that we already know, appearing bold-printed in the tableau
in Fig. 4.2. Also, it shows that the two equilibria are both subgame perfect. 

Backward induction fails if there are information sets with two or more elements,
simply because we would end up in a set whose nodes are indistinguishable. That is,
whenever we enter it coming from the root node in B, we have no way of assuring
to leave the information set via the intended node.

To fix this, a player needs a belief on how likely each element in an information
set is. This belief is a probability distribution Δ(I) supported on the respective
information set containing the current stage, and the action is chosen so as to
maximize the expected utility based on the belief about the current state of the game,
conditional on the history h of moves up to this point. A Perfect Bayesian Nash
Equilibrium (PBNE), which we will discuss in more detail in Sect. 4.4, is therefore
based on two hypotheses:

Sequential rationality: Each information set I in the game is associated with an
(a priori) belief Δ(I) assigning likelihoods to all nodes in the information set.
Moves are made as Bayesian decisions based on the belief, i.e., maximize the
expected utility.

Consistency: Before making the choice for a move out of an information set, the
belief Δ(I) is updated using Bayes’ rule, conditional on the history h of moves,
lasting in I .

The player thus makes a Bayesian decision if it currently is inside an information
set, and otherwise takes a minimax decision (as in backward induction). Prominent
instances of games with PBNE are signaling games (see Sect. 4.4), where the beliefs
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are imposed on the particular type of adversary that the defender is facing. This is
similar to the weights to scalarize a multi goal optimization problem as in Eq. (3.23),
where we had multiple virtual adversaries representing different security goals to
protect. Signaling games generalize this view.

4.3 Nash Game

While in Stackelberg games players move at different times, in Nash games [27]
players move simultaneously. For the comparison, consider a simple Stackelberg
game like shown in Fig. 4.5a, relative to the same game formulated as a Nash game
in Fig. 4.5b. Nash games are played with prior commitment, by which each player
commits to his or her strategy before knowing the other player’s move. Typically,
two-player games of prior commitment are shown in matrix form. Figure 4.5b,
however, gives a tree diagram of a two-player game in order to show the difference
between this game and a Stackelberg game. Players V and W act simultaneously, or
at least without knowing the other player’s action. The dashed line connecting the
two nodes for W denotes that W does not know which node the game has reached,
because she does not know which move V has chosen. This is an instance of an
information set (see Definition 3.10).

A Nash equilibrium is a solution concept that describes a point where no player
has no incentives to deviate unilaterally. Unlike Expressions (4.1) and (4.2), we now
need to satisfy the following conditions simultaneously, and in no preference of one
over the other:

(
a∗V , a∗W

)
such that

a∗V ∈ BRV

(
a∗W

)
, (4.3)

a∗W ∈ BRW

(
a∗V
)
. (4.4)

Equations (4.3) and (4.4) lead to solving for fixed points of the joint map
(BRV ,BRW) and a Nash equilibrium is a point that consistently satisfies the system
(4.3) and (4.4). The existence of Nash equilibrium in general requires the mixed
extension of a game (Definition 3.5).

In many cybersecurity applications, zero-sum and nonzero-sum games have
used to describe security applications such as jamming and eavesdropping in
communication networks [50, 69–71], configurations of intrusion detection systems
[59, 67], and infrastructure protections [17, 23]. In [59], the interaction between an
attacker and an intrusion detector system is captured by a zero-sum game where
the attacker chooses a sequence of attacks that can evade the detection while the
system administrator aims to configure the intrusion detection system to increase the
probability of detection, while reducing the overhead of the detection. In [23], the
authors have established a zero-sum game for a large-scale infrastructure network
in which each infrastructure node defends itself against an adversary and the risk
connected to each node can propagate over the network. The complexity of dealing
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uL(d, t),
uF (d, t)

uL(d, b),
uF (d, b)

uL(u, t),
uF (u, t)

uL(u, b),
uF (u, b)

(a) Stackelberg Game (leader-follower)

V

d u

tt bb

WW

uV (d, t),
uW (d, t)

uV (d, b),
uW (d, b)

uV (u, t),
uW (u, t)

uV (u, b),
uW (u, b)

(b) Nash Game (with mutual prior commitment)

Fig. 4.5 Illustration of two game structures: Stackelberg game and Nash game

with the large-scale game can be reduced by developing approximate computational
methods and leveraging the sparsity of the network connections; i.e., the nodes are
not fully connected. In [69], the authors have formulated a non-cooperative game
between the users and the malicious node in the context of relay station-enabled
wireless networks. The goal of each wireless user is to choose the serving relay
station that can optimize the security and quality-of-service of its transmission,
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given the presence of interference as well as of a malicious node. Conversely, the
malicious node’s objective is to decide on whether to eavesdrop, jam, or use a
combination of both strategies, in a way to reduce the overall transmission rate of the
network. To algorithmically solve this game, FP is applicable, which lets the users
and the malicious node iteratively reach a mixed-strategy Nash equilibrium (see
Sect. 12.3.4 for details on the general ideas behind FP). The results have also shown
that the proposed approach enables the wireless users to significantly improve their
average expected utilities which reflect the security and the quality-of-service (in
terms of transmission rate) perceived over the chosen relay stations.

4.4 Signaling Game

Continuing the comparison between Stackelberg-, Nash and signaling games,
consider Fig. 4.6 as a generalization of the previous two games, where there are now
two kinds of player S, and with nature as the zero-th player determining the type at
random. Having fixed this choice, each type of sender may act differently and in
particular according its own individual incentives. In a general signaling game, the
sender S, who has access to private information, transmits a message to a receiver
R. The message is not verifiable, so R does not know the underlying information
with certainty. Depending on whether the receiver can distinguish different types of
senders based on the message (signal) it receives, we distinguish separating from
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Fig. 4.6 Signaling game example
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pooling equilibria (and types in between). Either, the revelation of one’s own type
or the hiding thereof to the receiver can be in the sender’s interest.

Signaling games, like Stackelberg games, are two-player dynamic interactions
(Fig. 4.6). Signaling games typically label the players as sender S and receiver R.

The additional component of signaling games is that the sender has access to some
information unknown to the receiver. This is called the sender’s type θ ∈ Θ. The
receiver only learns about the type based on the sender’s action. For this reason,
the sender’s action (here aS) is referred to as a message. The message need not
correspond to the sender’s type.

For a generic example, let the set of types of S be Θ = {θB, θM }, where θB

represents a benign sender, and θM represents a malicious sender. Let p(θ) denote
the prior probability with which S has each type θ ∈ Θ. The utility functions depend
on type, i.e., uM

S (aS, aR) and uB
R (aS, aR) give the utility functions for malicious

and benign senders, respectively. The function uR (θ, aS, aR) gives the utility for
the receiver when the type of S is θ, the sender message is aS, and the follower
action is aR. R forms a belief μR (θ | aS) that S has type θ given that he sends
message aS ∈ ASS. To be consistent, this belief should be updated in accord with
Bayes’ law. A strategy pair in which S and R maximize their own utilities, together
with a belief which is consistent, form a PBNE (cf. [12]). In some PBNE, S can
cause R to form a specific false belief.

The two-action signal game can be further generalized a signaling game with
a finite number of actions. The general setting of the game is presented as follows.
First, nature draws a type ti for the sender a set of feasible types T = {t1, t2, · · · , tI }
according to a probability distribution p(ti), where p(ti) > 0 for every i and∑I

i=1 p(ti) = 1. The sender observes ti , and then chooses a message mj from a
set of feasible messages M = {m1, · · · ,mJ }. The receiver observes mj , and then
chooses an action ak from a set of feasible actions A = {a1, · · · , aK }. Payoffs are
eventually given by the functions uS(ti , mj , ak) and uR(ti, mj , ak). The solution
concept of signaling games is PBNE. It requires the following conditions to hold
consistently:

Condition 1 (Belief Formation) The receiver forms a belief about the type after
observing the message mj ∈ M sent by the sender. This belief is denoted by the
conditional distribution μR(ti |mj), where μR(ti |mj) ≥ 0 for each ti ∈ T , and

∑

ti∈T
μR(ti |mj) = 1, mj ∈ M.

Note that the sender’s belief of the type is obviously represented by the probability
measure p : T → [0, 1].
Condition 2 (Receiver’s Problem) For every message mj that is received, the
receiver maximizes the expected utility, given the belief μR(ti |mj), as follows:
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max
ak∈A

ūR(mj , ak) :=
∑

ti∈T
μR(ti |mj)uR(Ti,mj , ak).

As a result, the receiver’s strategy is given by the mapping a∗ : M → A.

Condition 3 (Sender’s Problem) For every type ti ∈ T , the sender’s message
maximizes the following utility, anticipating receiver’s strategy a∗(mj ):

max
mj∈M

uS(ti , mj , a
∗(mj ))

As a result, the receiver’s strategy is given by the mapping m∗ : T → M .

This condition is in the same spirit as in the definition of Stackelberg equilibria for
leader-follower situations.

Condition 4 (Bayes Rule Consistency) The strategies mj = m∗(ti), ti ∈ T , is
used to update the receiver’s belief μR(ti |mj):

μR(ti |mj) = p(ti)σ (mj |ti )∑
t ′i∈T p(t ′i )σ (mj |t ′i )

, if
∑

t ′i∈T
p(t ′i )σ (mj |t ′i ) > 0,

μR(ti |mj) = any probability distribution, if
∑

t ′i∈T
p(t ′i )σ (mj |t ′i ) = 0,

where σ(mj |ti ) is a distribution induced by the mapping m∗. If m∗ is singleton, then
σ(mj |ti ) = 1 if mj = m∗(ti).

Note that this Bayesian rule depends on the strategy of m∗ (and finding m∗ depends
on a∗). The PBNE requires these conditions to be satisfied at the same time, i.e.,

Definition 4.3 (Perfect Bayesian Nash Equilibrium (PBNE)) A pure-strategy
PBNE of the signaling game is a pair of strategies m∗, a∗, μR , satisfying the four
conditions above.

One way to find a PBNE is to fix μR and find a∗,m∗ (this process is the same
as finding Stackelberg equilibrium), and then find μR that will be consistent with
a∗ and μ∗R that is obtained. This approach may require some iterations between μR

and a∗,m∗ for complex games.
It is important to stress that not only the receiver can maintain a belief, but

generally every player in a signaling game may have some hypothesis on the types
of the other players. Our description follows the most common instance of a two-
player signaling game, but the generalization to more than two players follows the
same ideas.

The application of signaling games in cybersecurity is enormous. One key
application domain is cyber deception [29, 35, 36, 49, 55]. The modeling of the
asymmetric information between an attacker and a defender captures the incomplete
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information of the players about the other player’s objectives, capabilities, and
preferences. In [37], a taxonomy of defensive cyber deception has been proposed
and the main literature has recently been summarized. In [36], signaling games
are extended by including a detector that gives off probabilistic warnings when
the sender acts deceptively. The role of the detector has played an important role
in the equilibria of the game. It has been found through equilibrium analysis that
the high-quality detectors eliminate some pure-strategy equilibria. Detectors with
high true-positive rates encourage more honest signaling than detectors with low
false-positive rates, and surprisingly, deceptive senders sometimes benefit from
highly accurate deception detectors. In [55], the authors have used a signaling
game framework to study GPS signal spoofing where an attacker can deceive a
GPS receiver by broadcasting incorrect GPS signals. Defense against such attacks
is critical to ensure the reliability and security of many critical infrastructures.
The authors have proposed a signal framework in which the GPS receiver can
strategically infer the true location when the attacker attempts to mislead it with
a fraudulent and purposefully crafted signal. The equilibrium analysis enables the
development of a game-theoretic security mechanism to defend against the civil
GPS signal spoofing for critical infrastructures. In [16], the signaling games have
been extended to a multi-stage framework to address emerging security challenges
from APTs which exhibit the stealthy, dynamic and adaptive attack behaviors. The
multi-stage game captures the incomplete information of the players’ type, and
enables an adaptive belief update according to the observable history of the other
player’s actions. The solution concept of PBNE under the proactive and reactive
information structures of the players provides an important analytical tool to predict
and design the players’ behavior. It has been shown that the benefit of deception of
the private attackers’ types and motivate defender’s use of deception techniques to
tilt the information asymmetry.

4.5 Games Over Stochastic Orders

Conventional games require payoffs to come as crisp numbers, and signaling games
are one way of bringing in uncertainty by letting there be randomly chosen kinds
of opponents (player types). Still, the rewards for each type are quantified in real
numbers, and towards a more powerful model of uncertainty, it is natural to ask if
the rewards can be something more complex, say whole random variables. This is
indeed possible, if we use stochastic orders to replace the natural ordering of the
numbers in R.

When people cannot specify precise outcomes like monetary gains or losses, we
can often resort to categories describing an uncertain outcome in natural language
terms, and then assign the rank of the category as payoff in the game (we will
come back to this in Chap. 6 about risk management). For example, if we speak
about losses, but cannot be more precise than a subjective estimate of the loss being
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“negligible”, “low”, “high” or “very high”, then we can assign payoffs 1, . . . , 4 to
represent the (relative) order position of the categories.

If we can make a reasonable assignment to a fixed category, then we are back
at normal games with real-valued (e.g., integer) payoffs. If the uncertainty in this
specification, however, extends to ambiguity in what the payoff would be even on
a categorical scale, then we need a more powerful object to express what could
happen in the current state of the game.

Stochastic orders, which we briefly met in Sect. 3.4, Definition 3.1, allow using
whole probability distributions as the payoff. That is, instead of saying that the
payoff in any given state of a game (whether it is in normal or extensive form)
is “exactly u”, we can specify that the payoff is uncertain and a random variable
U ∼ F , where the distribution F can take up all the uncertainty information
available. Later, in Chap. 6, we will revisit this concept under the different name of
a prospect. One way of computing data about possible payoffs as cascading effects
may imply, or prospects, is simulation, as we discussed in Sect. 2.5, to understand
the direct and indirect effects of security incidents. Empirical game theory can use
such simulated or otherwise collected empirical data to define the game models
and especially payoff specifications from this information. In doing so, we open
the whole spectrum of tools from data science to model uncertain outcomes as
probability distributions. In many cases, the models are Gaussian distributions, or
more heavy tailed distributions from actuarial science [15], and an easy and quick
way back to the familiar real-valued setting of game theory is just taking the average
from the data or distributions to work as the payoff value definition. For example,
knowing that a payoff is random, say a Gaussian variable U ∼ N (μ, σ 2), the
conventional game would simply replace U by its expectation and work with μ as
the real-valued revenue to represent U .

Games over stochastic orders, on the contrary, use the full object U and impose
a stochastic order to define optimality among random variables. The chosen order
should, at least, be total to assure that there is a sound definition of optimality, and
the �-order given in Definition 3.1 is one possible choice, which is tailored for
applications in risk management (as being a stochastic tail order).

The �-ordering is defined and constructed as a replacement for ≤ on R, so that
in particular all so-far described game models transfer almost without change to
the setting where their utility functions describe not a numeric payoff but rather a
probability distribution over the possible payoffs. We shall therefore refrain from
repeating all that has been described so far, since the changes are mostly in the
details of the algorithms to solve the game, but not in the underlying concepts [38–
40, 42–46].

A point worth mentioning, however, relates to multi-criteria games and the
possibility of lexicographically ordering the optimization goals if scalarization is
unwanted or not reasonable in practice.

Example 4.3 (Lexicographic Goal Priorities) One example for this is the different
importance assigned to the goals of confidentiality, integrity and availability in
production-oriented enterprises, vs. companies whose business model roots in
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information processing: for the latter, the priorities are clearly (C) confidentiality,
(I) integrity, and (A) availability. Conversely, a production-oriented company may
first strive for availability (A), then for integrity (I) and last (but not least) for
confidentiality (C). The lexicographic order in both cases are thus reversed: “C-I-A”
for information-processing, vs. “A-I-C” for production. 

Somewhat unpleasantly, the ≤lex ordering has no representation by any con-
tinuous and real-valued function in the sense of (3.1). It does have, however, a
representation by functions that take values outside the reals, say ∗R. A suitable
representation is offered by the stochastic � ordering. Namely, both the ordering of
real numbers as well as the lexicographic order on Rn can be exhibited as special
cases of the stochastic �-ordering of Definition 3.1 (note that within R, the ≤lex
relation equals the canonic ordering of the reals):

Theorem 4.2 For every two elements x, y ∈ Rn with n ≥ 1, there are categorical
distributions FX, FY such that x ≤lex y if and only if FX � FY .

The construction of the representing distributions FX, FY in Theorem 4.2 is indeed
simple: let any two vectors x, y ∈ Rn be given. First, observe that we can add
a constant α to both so that x + α · (1, 1, . . . , 1) > 0 where the > holds per
component. If we add the same constant α to x and y, the order between the two
remains unchanged. Call the so-shifted vectors x′, y′.

Next, we can pick a value λ > 0 so that λ · ∥∥x′
∥∥

1 < 1 and λ · ∥∥y′
∥∥

1 < 1. As
before, multiplying by a positive constant leaves the two vectors or reals in the same
order.

Since the scaled vectors have a 1-norm < 1, we can add an (n+ 1)-th coordinate
to construct the vectors x′′ := (x′, 1 − ∥∥x′

∥∥
1) and y′′ := (y′, 1 − ∥∥y′

∥∥
1). By

construction, these vectors have (i) all nonnegative entries, and (ii) entries that
add up to 1, so that they form probability distributions FX, FY with x′′, y′′ as their
probability masses. These are exactly the ones that Theorem 4.2 speaks about.

As a special case for Rn = R, we obtain the ordering of real values preserved
if we embed them into Bernoulli distributions: w.l.o.g., take properly scaled and
shifted values 0 < a, b < 1, then a ≤ b if and only if the two Bernoulli distributions
FA, FB with mass vectors x′′ = (1− a, a) and y′′ = (1− b, b) satisfy FA � FB by
Theorem 3.1.

This trick straightforwardly applies to larger sets of real values or vectors, as
long as we shift and scale all of them by the same constants, which then creates
a strategically equivalent game having the same set of equilibria as the original
one. As an independent value, Theorem 4.2 enables the use of lexicographic orders
for game theory, which is not possible in the standard setting of game theory,
since the lexicographic order provably has no representation by a continuous and
real-valued utility function. The transition to the setting of stochastic orders and
hyperreal numbers to do game theory is then even unavoidable. The practical use
of this method, especially the application of Theorem 4.2 is made easy by software
implementations that we discuss in Sect. 12.4.3 later.
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70. Zhu Q, Song JB, Başar T (2011) Dynamic secure routing game in distributed cognitive radio
networks. In: Global telecommunications conference (GLOBECOM 2011), 2011 IEEE. IEEE,
pp 1–6
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Chapter 5
Bounded Rationality

No rational argument will have a rational effect on a man who
does not want to adopt a rational attitude.

K. Popper

Abstract This chapter revisits the concept of a utility function, first introduced
in Chap. 3, from an axiomatic viewpoint. We review the fundamental principles
of decision making as axioms that induce the existence of (continuous) utility
functions. Since empirical research of decision situations in real life has shown
considerable deviations between mathematical rationality and human behavior, we
continue with a series of possible explanations by relaxing or dropping individual
axioms from the set of fundamental principles, to explain the difference between
human behavior and the utility maximization paradigm. This establishes valuable
lessons for the construction of games, say if payoff models are constructed from
subjective data (interviews, expert estimates, or similar), but also highlights the need
to consider individual risk perception and attitude though the utility function design
in a game theoretic model.

5.1 Utility Maximization and Rationality

It is not surprising that game- and decision theory is subject to some criticism since
people just not tend to behave like perfectly rational utility maximizers. We shall
not speculate about the possible reasons as to why this is the case, but stress that
this makes game theory particularly applicable to defenses that a technical system
can implement (in a perfectly rational manner), while involving human actors, one
needs to account for the possibility that the final decision made by the human is to
act arbitrarily. Games that consider uncertainty in the utilities can – to an extent
– account for this by stochastically ordering random utilities whose distribution
can be modeled more explicitly than just defining an average. However, doing so
requires insights and models from psychology. Including aspects of efforts to play
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equilibria or to avoid disappointments are in any case only auxiliary aspects to be
included in the modeling, but eventually, the quality of predicted behavior (of the
defender, and more importantly the adversary) will to a significant extent depend
on the quality with which the utilities are defined. Security strategies slightly ease
life here by sparing models for the attacker’s revenues, and letting us rest on a
(hopefully accurate) specification of the action spaces. This robustness is bought at
a more pessimistic prediction of achievable security (i.e., coarser bounds in (3.22)
and (3.24)).

The typical setting of game and decision theory assumes a rational actor
seeking to maximize a benefit by choosing an action from a defined set. This pre-
sumes unbounded cognitive abilities, since the mathematical optimization implicitly
invoked herein may be complex and hard to handle. However, decisions in real
life, are additionally constrained by time, available information (reasoning under
uncertainty) or not need to be optimal, as long as a desired level of benefit is
achieved (satisficing). This may occur when the additional cost towards optimality
are perceived as outweighing the additional gains in the optimum. Though such
reasoning can in principle – but usually not without severe difficulties – be embodied
in a properly designed utility function, reality still shows discrepancies between the
hypothesis of a truly rational individual and the actual choices made. Nevertheless,
those must not be called irrational or dumb: irrationality is a chosen deviation
from reason, which does not preclude hidden different reasons to act like observed.
Neither is bounded rationality not equal to dumb, since individuals may also here
have hidden, unknown or more complex incentives than what the mathematical
optimization (in an oversimplification of matters) may assume. In essence, bounded
rationality means decision making under limitations of cognitive efforts, available
information, or other factors that would determine which option is rationally best.

It will pay to take a systematic look at where the concept of utility maximization
(equivalently loss minimization in risk management) originates from. This will
help understanding the reasons as to why intelligent and adaptive individuals may
nonetheless choose to act seemingly non-utility-maximizing. The first mentioning
of utility maximization dates back to Bernoulli in the Saint Petersburg game, and to
B. Pascal, with his famous argument why it is rational to believe in god.

Example 5.1 (A Utility-Maximizer’s Argument for the Belief in God) Pascal’s
argument was actually a utility maximizing one: if god does not exist and hence
death is the end of everything, then it does not matter whether or not we believe
in any religion – there is neither harm nor gain to be expected, we would get
zero utility. Otherwise, if god does exist, then not having believed could cause
tremendous trouble in the afterlife! If god exists and we believe in religion, then we
can expect rewards or punishment depending on how our religious performance has
been. In any case, not believing in god always ends up with an expected negative
reward, as opposed to believing in god, which gives us at least the chances for a
positive outcome in the afterlife. Hence and logically, it is rational to believe in god
(based on a utility maximization argument). 
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This appealing connection between science and religion as in Example 5.1 should
not be overstressed, since the two satisfy intrinsically different needs. Still, acting
according to religious standards may appear as boundedly rational on grounds of
this apparently not being utility maximizing (after all, religious ethics should teach
not to egoistically pursue ones own welfare on costs borne by others). The point of
this is the existence of hidden agendas that may not become visible by the means
applied to define utility functionals. Those are, as usual in mathematics, axioms
that are regarded as fundamental laws governing the choice behavior. All of these
can be put to question, each case directing us to another set of models for bounded
rationality.

5.2 The Fundamental Principles of Decision Making

The derivation in the following is a condensed version of the introduction done by
C.P. Robert in [17]; we will draw from his account only to the extent necessary for
correctness and sufficient to understand why the axiomatic route to model decision
making is not necessarily taking us where we want to get.

In Chap. 3, we assumed the existence of some preference relation among the set
of choices for a decision problem. This choice set has been an action set AS with
elements denoted as a ∈ AS, and a preference relation a1 � a2 defined between
actions. The more general approach does not consider actions for themselves,
but rather assumes decisions to be made towards rewards that follow actions as
a consequence. Preferences between actions are then determined by the rewards
implied by the actions. A reward, in that sense, is thus more or less a quantification
of an action, similarly to the utility functions from Chap. 3, but not precisely
equivalent to them, since two actions a1, a2 were preferred as a1 � a2 if and only if
some utility function u assigned ordered values u1(a1) ≤ u1(a2).

However, the more practical setting is that not the action but rather its conse-
quence would determine the preference. This means that we assign a reward r(a)

to an action a, and impose the preference relation on the rewards. Conceptually,
we may simplify matters by thinking of actions being even characterized by their
rewards (although there may not be a one-to-one correspondence), but the thinking
is that what the decision maker ultimately seeks is a reward, and the action itself is
only the way of getting it (but as long as the reward is achieved, the decision maker
may not care what particular action it may take to get it).

It is thus useful, though not particularly more complicated, to think in terms of
rewards, rather than actions, and to let the decision problem be among rewards, with
associated actions available to achieve the sought optimal reward. More formally,
we will let the ordered set (R,�) contain all rewards, with some preference (not
ordering) relation � on it. The determination of � is a matter of a function u that
represents the preference relation exactly like in (3.1), and our immediate goal
for now is finding conditions on the preference relation � that let us construct a
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representative function u. Consistent with the literature, and also with Chap. 3, we
shall refer to u as a utility function, synonymously also a payoff.

To start with, a reasonable preference should at least satisfy the following
requirements:

Ax1 (Completeness): either we have r1 � r2 or r2 � r1
Ax2 (Transitivity): if r1 � r2 and r2 � r3 then r1 � r3.

Both appear the least necessary if we want to speak about a “best” decision. For
example, under incompleteness, there would be incomparable rewards and hence
actions among which we cannot choose based on the rewards. Likewise, without
transitivity, we could have circular preferences like r1�r2�r3�r1, so that every pair
of rewards from {r1, r2, r3, r4} is preferable like ri � rj , no matter how we compare
them. So, no option could ever be “best”, and speaking about utility optimization
seems senseless. Somewhat surprisingly, transitivity can nonetheless be dropped as
a requirement if we move to regret theory in Sect. 5.6.

Like for ordering relations, we define equivalence between rewards as r1 ∼ r2 :
⇐⇒ (r1 � r2) ∧ (r2 � r1), i.e., both rewards are �-preferable over another and
hence “equally” good.

Actions in real life hardly come with deterministic consequences. Especially in
security, investing in additional precautions may or may not work out, or it may be
effective only against a specific limited set of known weaknesses. For example, a
virus scanner may catch a malware or could miss it, depending on the update status
and many other factors. We thus extend the concept of a reward to that of a prospect,
which is a list of possible rewards associated with individual probabilities. This is
similar in spirit to a randomized action, and in fact precisely the continuation of
the ideas motivating the use of stochastic orders in Sect. 3.4, and games over such
orders (Sect. 4.5).

Definition 5.1 (Prospect) A prospect is a triple (a, p, u) that associates an
action a with a set of possible rewards u = (r1, . . . , rk) and probabilities p =
(p1, . . . , pk) = (Pr(r1), . . . , Pr(rk)) to receive them, where p1+p2+ . . .+pk = 1.
Prospects are explicitly denoted as 2× n matrices

(
r1 r2 . . . rn

p1 p2 . . . pn

)
,

or, whenever the reward set R = {r1, . . . , rn} is clear from the context and in a
fixed order, we may use the abbreviated notation of a prospect as only the vector of
probability masses p = (p1, . . . , pn) ∈ Δ(R).

As an example, think of a patch or system update that may but does not need
to effectively close or remove a vulnerability. It may well happen that, after the
patch, certain attacks are no longer possible (this could be a first possible outcome,
happening with probability p1), or remain possible because the patch did not apply
for the vulnerability (probability p2), or the attack remains possible but has only
become harder (probability p3), which is an intermediate reward.
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Example 5.2 (Cascading Effects and Prospects from Simulation) More elaborate
examples arise when we simulate the impacts of attacks in a complex system.
Section 2.5 outlined a variety of models to assess direct and indirect consequences
of a security incident, by simulating cascading effects. The bottom line of all these
simulation methods is that they come up with a series of scenarios, each of which
may correspond to one out of several impact categories (as commonly defined in risk
management; see Fig. 6.2 in Chap. 6). Let the impact categories be collected in some
(usually ordered) set R = {r1, . . . , rn}. Upon many repetitions of the simulation, let
pi be the relative frequency of the impact category ri to come up in the experiments.
Then, the pair ((r1, . . . , rn), (p1, . . . , pn)) is nothing else than an empirical estimate
of a prospect, coming as a direct output artefact of a probabilistic simulation. 

Prospects generalize the crisp payoffs from game theory to the random ones that
we already had in the context of games with probability distributions as payoffs
in Sect. 4.5. Under this view, a prospect is nothing else than a payoff that is a
distribution and not a number. Ordering prospects then calls for stochastic orders
like �, like ordering numbers works with the natural numeric ordering ≤. The
decision challenge is the same in both cases.

Let us assume that all consequences and associated probabilities are known to the
decision maker. In choosing among prospects, the decision maker faces a situation
of risk. This is different from a situation of uncertainty, where parts of the prospect
(either a consequence or a probability) is unknown to the decision maker.

Formally, let us carry over the � relation to the so convexified space of prospects,
i.e., the set Δ(R) of probability distributions over the reward space R. In game
theory, this would be the action space, but since we are considering a more general
view to explain why games may not reflect people’s actions in real life, we shall use
the more general terminology here. Let us assume that transitivity and completeness
carry over to the set Δ(R), whose elements can be seen as prospects (similar to
mixed strategies in the vocabulary of game theory). For example, we may compare
two prospects by comparing their mean, but for a general (axiomatic) start, we
require completeness and transitivity of � on Δ(R) in exactly the form as stated
above. For a representation of the preference like in (3.1), we need some more
assumptions:

Ax3 (Conservation of orderings under indifferent alternatives): for any two pros-
pects p, q and any value 0 < α < 1 call α · p + (1 − α) · q the mixture. Axiom
Ax3 asks for the condition that given any α ∈ (0, 1),

if p � q then (1− α) · p+ α · r � (1− α) · q+ α · r

for every r ∈ Δ(R). That is, if two prospects are �-preferable over one another
and there is any third alternative that may kick in with probability α, then
this deviation – since it applies to either option – does not change the overall
preference (hence we are indifferent under a change that applies identically to
two choices).

Ax4 (Closedness): if p � q � r, then there exist values α, β ∈ (0, 1) such that
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α · p+ (1− α) · r � q � β · p+ (1− β) · r

Accepting the axioms Ax1, . . . , Ax4 as “fundamental principles of decision
making”, their consequence (especially using the closedness axiom) is the existence
of the sought (so far only presumed to exist) utility function:

Lemma 5.1 ([17, Lem.2.2.2]) If r1, r2 and r are rewards in R with r1 � r2 and
r1 � r � r2 then there is a unique value 0 < v < 1 such that r ∼ v · r1+ (1− v) · r2.
From this value v, we can define a utility function as

u(r) =
⎧
⎨

⎩

v, if r2 � r � r1 and r ∼ v · r1 + (1− v) · r2;
− v

1−v
, if r2 ∼ v · r1 + (1− v) · r; and

1
v
, if r1 � v · r + (1− v) · r2

Lemma 5.1 for the first time semi-explicitly defines a utility function from first
principles (being the axioms Ax1 until Ax4). Observe that we can allow the rewards
to be even infinite. However, infinity is an opaque concept for many individuals, and
things can be dramatically simplified if we confine ourselves to bounded rewards.
That is, there are two values r1, r2 such that

[r1, r2] = {r : r1 � r � r2} (5.1)

and Pr([r1, r2]) = 1 (i.e., bounded support; an assumption that was also required
for the construction of the stochastic �-ordering; cf. Definition 3.1). The so-defined
utility function preserves the �-ordering on R, and obeys the boundary conditions
u(r1) = 1 and u(r2) = 0. Most importantly, by linearization, it extends to finite
rewards between the extremes [r1, r2] by defining

α(r) := u(r)− u(r1)

u(r2)− u(r1)
, and β :=

∫ r2

r1

α(r)dp(r),

where p is a prospect defined on R (and the integral must hence be understood as
of Lebesgue-Stieltjes type). What is interesting is that by virtue of a fifth axiom, the
utility function becomes unique up to certain affine transformations:

Ax5 (Linearization): let δr1 and δr2 be the specific prospects corresponding to
the extremes of the reward scale [r1, r2] (i.e., point masses assigning the full
probability mass to the ends of the reward scale).
If a prospect p is∼-equivalent to α(r) · δr1 + (1−α(r))δr2 , then this equivalence
holds on average.

Under this additional linearization hypothesis, we get the following uniqueness
result:

Theorem 5.1 ([17, Thm.2.2.4]) If p, q are prospects from Δ(R) where R is
bounded like in (5.1), then we have:
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Existence: there is a function u on R so that p � q if and only if Ep(u(r)) ≤
Eq(U(r)).

Uniqueness: if u′ is another utility function satisfying the above equivalence
relation, then there are values a > 0 and b such that u′(r) = a · u(r)+ b.

The uniqueness statement of Theorem 5.1 is easily recognized as the condition of
strategic equivalence of strategies in game theory.

So much for the axiomatic groundwork that underlies most of the decision
making theory. The whole story so far, implicitly, reveals two other aspects that
close the loop back to bounded rationality:

1. The entire development focused on only a single measure to be optimized.
Namely, we derived the utility function as mapping from the reward space R

into the real numbers R. The main reason is that R is a totally ordered space,
but none of the spaces Rk for k > 1 has a natural ordering on it (except
for the lexicographic perhaps). Hidden incentives, e.g., avoidance of regret or
disappointment counting as further goals besides the explicitly modeled utilities
are thus one possible reason of bounded rationality.

2. Each of the axioms (completeness, transitivity, indifference, closedness and
linearization) should be consistent with empirical findings for the development
to deliver an accurate model of people’s decision making. Indeed, there is
considerable empirical evidence showing violations of more than one of these
assumptions.

Our exposition hereafter partly draws from [21]: bear in mind that we are not
looking for occasional random violations here, which we could in any case allow
and attribute to imprecise conditions or other errors in the data. Rather, we will
look for systematic violations of the assumptions underneath the constructions of
utility functions. These will not cover all the above axioms, but even one violation
would already be sufficient to invalidate the entire construction. On the bright side,
violations of these assumptions open directions to new developments and models,
some of which we are going to touch briefly hereafter.

5.3 Violations of the Invariance Axiom

The most famous example of a systematic violation of the indifference under
equivalent alternatives (axiom Ax3) is perhaps Allais’ paradox or more generally
coined the common consequence effect [1]. Consider two prospects defined as
follows:

p1: win 1 million with probability 1.
q1: win 5 million with probability 0.1, win 1 million with probability 0.89, or win

nothing with probability 0.01.

Which of the two prospects would you choose? Choosing p1 is attractive since it
makes the person a millionaire instantly and without risk. Choosing q1 may be even
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more attractive, since the chances to win the million are only slightly worse, but
there is a considerable chance to win even five millions. Based on expected utilities
(for p being 1 million, and for q1 being 5 × 0.1 + 1 × 0.89 = 1.39 million) we
would pick q1 for the higher expected gains.

Now, consider a slightly modified choice:

p2: win 1 million with probability 0.11 or win nothing with probability 0.89.
q2: win 5 million with probability 0.1, or win nothing with probability 0.9.

The odds seem quite similar here, but the prizes are considerably different. Again,
based on expected utility, for p2 we have 1 × 0.11 + 0 × 0.89 = 0.11 and q2
expectedly gives 5 × 0.1 + 0 × 0.9 = 0.5, so a utility-maximizer would go for q2
here.

Based on a “fully rational” decision making that is consistent with the indepen-
dence axiom, people would be expected to choose the q-prospectives across this pair
of choices. Empirically, however, it turned out that people were picking option p1 for
the certainty of becoming rich, as opposed to picking q2 for the much higher gains
at approximately the same chances for the alternative. This is apparently not what
utility maximization would predict (but was exactly what M. Allais had predicted).
Numerous studies have ever since confirmed his finding, pointing out a systematic
violation of axiom Ax3 apparently.

Where does the violation root? The independence axiom overlooks that people
take into account alternatives in their decision making and the “appeal” of an
option may strongly depend on what other actions have to offer. The possible
disappointment in going for the larger gain may be much more of an incentive to go
with the safer option, which is why people would pick the certainty to become rich
over the odds to become even richer (or not). On the contrary, if the magnitude of
gains is chosen such that the small differences in the probabilities make a significant
difference in the utility outcome (and hence the preference), but this difference is
not sufficient to convince the decision maker, then the choice is made without regard
of the utility function, whose evaluation would require much more cognitive efforts
than are required to base the decision just on an approximate comparison of odds.

The overall point of the Allais’ paradox is that options cannot be valuated (by a
utility function) and compared independently from each other – at least this is not
what people would do; they prefer a more “holistic” comparison including more
alternatives. There is also an empirically verified break-even point in the number
of choices: too many choices make the decision over-proportionally hard, so that
to reduce cognitive efforts, we may just regard a selection of a few options and
abandon perhaps the mathematically optimal ones; this is the well-known paradox
of choice[12].

A related phenomenon is the common ratio effect (see, e.g., [13]): as before, let
the choices be among two prospects each, and let us use utility maximization as a
predictor, compared to what people were observed to do in reality.
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The question of choice is now for the following prospects:

p: either take 10 Dollar for sure or take a gamble to win 16 Dollar with an 80%
chance.

q: either win 16 Dollar with chance 20% or win 10 Dollar with a 25% chance.

In p, many people would rather take the 10 Dollar than enter a gamble, since the
latter has the risk of giving zero revenue. The same people, however, would in
q choose the gamble for the 16 Dollar, since the odds are approximately similar
in the two options. This is indeed incompatible with the independence axiom,
since expected utilities point towards a different outcome: let us slightly abuse
our notation to write E(16) and E(10) to mean the expectations of 16 Dollar or
10 Dollar gains from our choice. Towards a contradiction, let us assume that the
individuals from which the finings above were reported mentally were following
a utility maximization principle. Then, the preference of the 10 Dollar-option in q
over the 16 Dollar-option in q would mean 0.8×E(16) < 1 ·E(10) or equivalently
E(16) < 1.25 × E(10). Likewise, the preference of the 16 Dollar-option in q over
the 10 Dollar-option in q would mean 0.2× E(16) > 0.25× E(10) or equivalently
E(16) > 0.25

0.2 × E(10) = 1.25× E(10), which is an obvious contradiction [6].
Again, where does the problem arise? The general issue occurs when two

revenues r1 � r2 are given, whose likelihoods to occur are scaled by the same factor.
In the above example, the revenues are r1 = 10 � r2 = 16, but the chances to get
them have been modified by a factor of 4 in both cases. The empirical evidence
shows that people may prefer certainty in one case, but become more willing to
take a risk when the chances are approximately similar (as achieved by the common
scaling).

5.4 Decision Weights

Recognizing that options are usually ranked relative to the whole set of alternatives,
people have modified the expected utility formula for a prospect

p =
(

r1 r2 · · · rn

p1 p2 · · · pn

)
=
(

r
p

)

from Ep(r) = ∑
i pi · ri into the scalar product Ep(r) = w(p)T r in which the

additional weighting function w : [0, 1]n → [0, 1]n assigns different importance to
the rewards based on what the probabilities are. Depending on how w is chosen,
different choice models arise, not all of which may be plausible. An example
illustrating this possibility has been given by [21, p. 346f]: let w : [0, 1] → [0, 1] be
a convex function, then over the interior of the probability scale, w(p)+w(1−p) <

1 and there will be an ε > 0 so that a prospect p =
(

x x + ε

p 1− p

)
will be rejected

in favour of the alternative prospect q that rewards x with probability 1. Even so,
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despite the fact that p clearly dominates q by our specific choice of ε. The avoidance
of this effect can be cast into a requirement on its own: we would certainly like the
utility function to be monotone, meaning that if a prospect q is dominated by another
prospect p, written as q � p, then the utility for the latter should be less than for the
dominating prospect; the monotony requirement reflecting dominance in the utility
function formally manifests in the familiar form: q � p should imply u(q) ≤ u(p).

First-order dominance among prospects is defined by treating the prospects
as distributions and imposing the usual stochastic order (3.7) on them, with the
additional condition that the inequality should be strict at least once. Intuitively, a
prospect p dominates the prospect q if for all possible outcomes, p rewards at least
as much utility than q, and strictly more utility in at least one case of outcome.

Deciding dominance correctly can be an intricate matter for an individual, as
Tversky and Kahneman [24] have shown empirically by the following poll: a total
of 88 participants were asked to choose between the following two prospects,
describing a gamble where a colored ball is drawn from an urn, and gains or losses
are tied to the outcome color. The fraction of balls in the urn is different for each
colors (and trivially corresponds to the likelihood of drawing the respective ball).
The first choice is between prospects

pA =
(

0$ win 45$ win 30$ lose 15$ lose 15$
90%(white) 6%(red) 1%(green) 1%(blue) 2%(yellow)

)

qA =
(

0$ win 45$ win 45$ lose 10$ lose 15$
90%(white) 6%(red) 1%(green) 1%(blue) 2%(yellow)

)

Obviously, pA dominates qA, since the gains under choice pA are larger or equal
than the rewards under qA. Quite expectedly, all participants went for qA. Now, the
choice was slightly modified by combining the “loss-cases” (blue and yellow ball)
into all yellow balls with a total of 3%, resp., 2% in the urn (and 15 Dollar loss). The
gains and losses are left unchanged relative to one another, so that the new choice is
between

pB =
(

0$ win 45$ win 30$ lose 15$
90%(white) 6%(red) 1%(green) 3%(yellow)

)

qB =
(

0$ win 45$ win 45$ lose 15$
90%(white) 6%(red) 1%(green) 2%(yellow)

)

Now, conversely to before, qB dominates qA but this dominance is much harder to
notice for a human being. We say that it is framed or intransparent. In effect, 58
out of the same 88 individuals from before again chose qA despite it is arguably the
worse option. This outcome is interpreted as people not intentionally acting against
dominance, but do so mostly in cases where the dominance relation is not obvious.

A more drastic example is that of the “Asian disease” [23]: people where asked to
choose one out of two medications for a (hypothetical) potentially lethal disease. Out
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of a total of 600 patients, medication A would save 200 lives, and under medication
B, 400 patients would die. Obviously, the choices are objectively indifferent, but
the way in which they are formulated already creates preferences in the decision
maker’s minds.

While this framing was done by packing negative attributes into simpler terms
(like replacing all blue balls by yellow ones), the converse effect by “unpacking
positive attributes” can be used to make an option subjectively more attractive than
it actually is. This is the event-splitting effect. Empirical studies conducted by [22]
and [11] confirm a change of tendency towards choosing options more likely when
their positive consequences are more exposed (by splitting them into sub-events).

5.5 Rank-Dependence and Prospect Theory

As we have seen before, approximately equal likelihoods may cause an individual
to abandon this information and make the decision depend only on the respective
consequence directly (not its expectation). The weighting functions can be used
to adjust the probabilities accordingly, say, probabilities that are typically over or
underrated can be corrected. Likewise can losses and gains be weighted differently
by individuals. This idea is at the core of two more directions to redefine utility
functions towards better approximations of real-life decision making, or similarly,
explain effects of bounded rationality attributed to violations of the utility maximiz-
ing principle.

One type of such modification is rank-dependent expected utility theory, origi-
nally proposed by [16]: this assumes that the choice does not only depend on the
absolute probabilities in the prospect, but also on their relative order (rank). Let the
prospect be composed from n possible outcomes r1�r2� . . .�rn sorted from worst
to best (ascending). In a rank-based approach, we can define decision weights to be
wi = π(pi+pi+1+. . .+pn)−π(pi+1+. . .+pn) for i = 1, 2, . . . , n−1 and wn =
π(pn). The herein new function π is a probability weighting function. As suggested
by [10], the function π can be chosen to “correct” subjective errors made in the
assessment of objective probabilities by individuals. So, an under- or overestimation
of probabilities due to optimistic or pessimistic attitudes of an individual could
be corrected by a proper choice of π (indeed, connections between the curvature
of π and optimism/pessimism have been studied [7, 16, 27]). The choice of w,
respectively based on the choice of π , can be made such that the resulting utility
function remains monotone (to be consistent with dominated alternatives). See also
[26] for a more recent application to scheduling.

Prospect theory [13] extends this idea by embedding the weighting in a two-
stage process of decision making: first, prospects are adapted by subjects according
to several heuristics, some of which we have already met, i.e., combination of
options for simplification, cancellation of approximately equivalent options, etc. In
the second phase, the choices among the edited prospects are made by valuating
gains and losses relative to a reference point. This amounts to applying again a
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Fig. 5.1 Valuation of
outcomes in prospect theory
(example)

losses (x < 0) gains (x > 0)

outcome valuation

Fig. 5.2 Prelec’s probability
weighting functions πα

α = 0.8

α = 0.5

α = 0.2

weighting functionw and/or a probability weighting function π . This editing is
called coding, and the outcome and probability valuations are typically asymmetric
S-shaped functions; examples of which have been given by [15, 25] and are plotted
in Figs. 5.1 and 5.2. Prelec’s proposal of the probability weighting function πα(x) =
exp(−(− ln x)α) for a parameter 0 < α < 1 is a popular choice, even in security
applications [19].

5.6 Violations of Transitivity and Regret Theory

Sometimes, choices are not made towards maximal utility, but – subjectively equiv-
alent – towards avoiding disappointment or regret. While we will go into further
detail on disappointment in Sect. 7.4, let us first look at how regret theory [2, 8, 14]
works. Here, the choice is made by comparing consequences of alternatives. Like in
a two-person game, only now played in the mind of the decision maker, the person
first determines the current state s of the world. Then, actions are compared pairwise
depending on the state s; suppose the rewards are r1,s and r2,s . The consequences
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of the two actions are measured by a function M(as, bs) that �-increases in the
first and �-decreases in the second argument. So, if the alternative r2,s is preferable
over r1,s , then by the downward monotony of M , the alternative can suppress a
choice of r1,s upon regret if r2,s is not chosen. Likewise, it can enhance a choice
of r1,s as an alternative to r2,s since r1,s is preferable over r2,s and there would
be regret again (just being rejoicing in that case). Nonetheless, the individual still
maximizes some utility, only that it depends on the state of the world now too. The
person would maximize an expectation based on the state of the world given as∑

s Pr(s) · M(ri,s , rj,s) to compare any two rewards ri,s and rj,s . This method of
comparison applies to actions only, but can be extended to prospects by using the
function M as in a two-person game to define a preference between two prospects
p, q in the world’s state s as

p � q ⇐⇒
∑

i,j

pi · qi · ψ(i, j) ≤ 0, (5.2)

with ψ(i, j) = M(ri,s , rj,s) −M(rj,s, ri,s). The function ψ herein just tells by its
sign which action would be regretted when chosen over the alternative. As usual,
we assume stochastic independence of consequences between different actions
(otherwise we would make an action’s effects depend on an alternative action that
has never been taken). The function ψ lets us define a concept of regret aversion:
let r � s � t be three rewards, then regret aversion implies that for these three,
we should have ψ(r, t) � ψ(r, s) + ψ(s, t) (like a triangle inequality). Now, let us
suppose regret aversion as the driving force behind decisions, and remember that in
regret theory, it matters how consequences are assigned to states. The example of
[21] uses a choice between three rewards r1, r2 and r3 and rewards r1 � r2 � r3.
However, the particular assignment of rewards to actions depends on the state of
the world. For example, suppose that the choice is in a security game, where the
attacker determines the state s (e.g., one out of three possible states s1, s2, s3) of the
system and the defender has to make a choice. Let the outcomes under each state
and action be given by the matrix (i.e., similar to a matrix game)

s1 s2 s3
tabrulecolor

r1 tabrulecolor z tabrulecolor y tabrulecolor x tabrulecolor
tabrulecolor

r2 tabrulecolor x tabrulecolor z tabrulecolor y tabrulecolor
tabrulecolor

r3 tabrulecolor y tabrulecolor x tabrulecolor z tabrulecolor
tabrulecolor

in which we let ψ(r, s) denote the entry in row r and column s. Assuming regret
aversion, preference among the actions is determined by the sign of the expression
ψ(r, s)+ψ(s, t)−ψ(r, t), and under our assumed preference of rewards, we would
get the preference r2 � r1 when comparing r2 to r1. Comparing the other two pairs
in the same way, it is easy to see that we get a cyclic preference structure here being
r2�r1, r3�r2 and r1�r3, so transitivity is obviously violated. How does this fit into
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our imagination of a choice being rational if it maximizes utility? Apparently, the
cycles implied by intransitivity preclude a meaningful definition of a “best” action.

In fact, a quick answer is already available to us thanks to game theory: the cyclic
structure above is nothing special in games where a Nash equilibrium does not exist
in pure strategies, but does exist in mixed strategies. Example 3.6 already illustrated
this in a spot checking game. By comparing the payoff structures in Example 3.6,
we recognize the cyclic preference structure from the above 3 × 3-game also in
this previous 2 × 2-payoff matrix: if the defender would check location 1 (all the
time), then the attacker would adapt to this by attacking at location 2 (all the time),
consequently. Hence, it is better for the defender to check location 2, but if it does
so all the time, then the attacker again adapts by attacking at location 1, and so on.

5.7 Border Effects

Similar to the cancellation of approximately equal probabilities (related actions
would be considered as nearly identically likely to happen, so the decision would
depend only on the quantitative magnitude of the rewards), border effects describe
a sensitivity of the choice to extreme outcomes. Decision rules derived with this
finding in mind can be constructed by introducing proper decision weights, or
apply a “correction” of probability values near the two ends of the scale (hence
the name “border” effect), similar as done in prospect theory. As a third alternative,
the preference � itself can be designed to account for this sensitivity; a concrete
example of which is the stochastic �-order introduced in Sect. 3.1.

The �-ordering is explicitly sensitive to extreme outcomes, but rather insensitive
on the opposite lower end of the loss scale. An additional appeal of stochastic orders
in general stems from their natural compatibility to procedural theories of choice,
discussed next. In general, an attitude of risk aversion paired with pessimism may
over-proportionally weigh possibilities of extreme events, i.e., rational behavior then
means just “avoiding the worst”, than “seeking the optimal”. The former appears
equally rational, only under a different definition than a maximization, and we will
revisit the idea later in the context of disappointment (Sect. 7.4).

5.8 Procedural Theories

Thinking of your own set of decision heuristics, it may hardly be the case that all
decisions are made under strict objectives of maximal utility. Instead, an individual
may adapt the decision making depending on the state of the world, current
subjective goals, available information and many other factors. Procedural theories
embody a potentially large set of rules that may come to application depending on
the current situation. Although this is much less mathematically sophisticated than
an axiomatic approach starting from first principles (like the axioms above to define
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a utility function from it), we must bear in mind that we are dealing with people,
whose behavior is much less exact and deterministic as we may assume. Indeed,
though procedural methods may be criticized as cumbersome relative to the more
elegant optimization of functions, theories of well-behaved preferences (according
to mathematical definitions) do not seem to provide adequate explanations for
various effects observed in practice [21, pg.363]. Such deviations can, in an abuse
of the term, be coined as decisions of bounded rationality, but this also raises the
question of whether it might just have been the wrong utility function that was
maximized in theory.

The appeal to procedural theories is the freedom to basically encode anything
into the decision making mechanism, which opens possibilities to account for all the
findings of psychology, sociology and related fields (e.g., [5, 9, 18, 20, 20]) in the
design of a decision making framework. Probabilistic elements are easy to include,
and simulations of agent based (i.e., procedural) models can be implemented [3, 4].
Indeed, there is no conceptual barrier to use a heterogeneous pool of agents in a
prediction of possible choices made by an individual, thus letting the simulation
model use different theories of choice that may accurately or incorrectly apply to the
given individual at different times or in different situations. In addition, simulation
can deliver additional information about the “why” of a decision that plain utility
maximization cannot. One example is the rate of disappointment that an analysis of
pure maximization of utilities cannot deliver directly. Avoidance of disappointment
is closely akin to the psychological mechanisms that inspired regret theory, and a
general form of a pessimistic choice model.

Wrapping up, bounded rationality may in some cases just be another word for the
humble insight that “all models are wrong [. . . ]”1 in explaining rational behavior as
“utility maximizing”. Rather, there is not necessarily anything wrong with the basic
paradigm of defining rationality as guided towards maximal benefit, only this benefit
may not be as measurable or crisp as we would like it to be. For example, companies
may seek maximal profit, but security generates no return on investment. Instead, it
is an investment made to protect assets and to enable profits (continuously), and its
main purpose is to create trust. This is an intrinsically incommensurable concept,
since trust has subjectively distinct meanings.
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Part II
Security Games



Chapter 6
Risk Management

If you can’t measure it, you can’t improve it.
P. Drucker

Abstract This chapter embeds game theoretic techniques and models inside the
ISO31000 risk management process, as a generic template for the general duty
of risk control. We observe similarities between risk management processes and
extensive form games, accompanied by the possibility of using game-theoretic
algorithms and methods in various steps of a risk management process. Examples
include decision making for risk prioritization, choice of best risk mitigation actions
or optimal resource allocation for security. To this end, we discuss a variety of
systematic methods for adversarial risk analysis (ARA), resilience management (in
relation to risk management), level-k thinking, and the assessment of action spaces
and utilities for games.

6.1 Steps in a Risk Management Process

Risk management is the duty of a system administration to continuously and per-
manently maintain awareness, countermeasures and mitigation plans for anything
unexpected that could happen in the system’s environment and bears potential harm.
For enterprise environments, various standards have been compiled from experience
and best practices, so as to provide a generic guideline that risk managers can follow.
Being widely similar in the overall process phases themselves, and differing mostly
in the individual details on what steps to take in each phase, we shall take the
ISO31000 as a generic underlying model throughout this chapter. Our exposition
draws from [35], which already establishes strong connections between game theory
and risk management. This correspondence extends further to other standards [12].

The following phases, taken from the ISO 31000 standard, are essentially present
in almost every risk management guideline or standard. The steps build upon one
another and are thus practically completed in order of appearance:
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1. Establishing the context: obtain an understanding of what is under risk. This
includes gaining a maximum detailed view on the overall system, typically
an enterprise, uncovering all its vital components, their interdependency and
potential cascading effects upon external influences on parts of the system. The
context can be divided into external and internal aspects, which define the scope
of the risk management process as such, and the (qualitative or quantitative)
management criteria that are relevant to impose.

2. Risk identification: the full picture of the system gets further decomposed into
assets, threats to these assets and vulnerabilities of these assets; the latter of
which are typically properties or characteristics of an asset that allow a threat
scenario to occur in reality.

3. Risk analysis: for each threat scenario (anticipated in the previous and rigorously
defined in this phase), consequences are analyzed and likelihood of occurrence
are estimated. In a quantitative risk assessment, the product of the two would
give the common risk formula as

risk = impact× likelihood, (6.1)

which appears at least at some point in most quantitative and also qualitative risk
management frameworks. Observe the similarity of (6.1) to expected utilities:
multiplying outcomes of a random variable by the respective likelihoods (and
adding them up) means taking expectations, so risk as computed via (6.1) can
essentially be understood as expected loss.

4. Risk evaluation: Based on a list of risks with ratings that formulas like (6.1)
induce, a selection, ranking and severity level classification is made. This is
mainly a matter of prioritizing risks towards subsequent mitigation actions.
Understanding risk as expected loss and defining a ranking in the sense of a
preference relation � among risks based on their scoring using formula (6.1),
connects this step to Theorem 5.1. Note that a generalized approach replacing
(6.1) by a whole distribution object and �-stochastically ordering these for a risk
evaluation is equally admissible.

5. Risk treatment: working through the list of risk in descending order of importance
(based on the previous phase), we proceed by identifying threat scenarios,
defense strategies (tailored to the threats), mitigation actions (implementing the
defenses), and implementation strategies. The latter may fall into one of the
following (partly overlapping) classes of action, where any choice herein is
always a matter of an a-priori cost-benefit analysis and tradeoffs (e.g., with help
from game theory):

• accepting the risk (if the risk, i.e., the likelihood and impact is below a
predefined threshold)

• preventing the risk (by eliminating vulnerabilities or switching to completely
different systems, if possible)

• relieving risks (by reducing the impact or the likelihood, if the event cannot
be prevented)
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• transferring the risk (by buying insurance for it. We will have more to say
about this in Chap. 7).

The whole process almost naturally allows for a game theoretic perspective on
it, such as was done by [26]: the construction of a mathematical two-person game
bears striking similarities to the above risk assessment process, since strategies for
both players are identified, corresponding to a threat analysis (strategies for one
player) and defense actions (strategies for the other player). The definition of payoffs
corresponds to the impact analysis, usually done during the identification of risks
(step 2) and the analysis of risks (step 3).

The practical process is often part of the business continuity management and
disaster recovery, which entail (among others) business impact analyses to first
identify critical assets, their degree of potential affection, costs and consequences
of outages and recovery.

Finding optimized (equilibrium) strategies for both players manifests itself as
the phase of risk treatment. The optimization of opposing interests is necessary at
several points in the risk management process, since besides the natural conflict
of interest between the defender (strategically the risk manager, operationally its
subordinates) and the attacker (being rational as having intentions or even non-
rational in being nature itself), we have also the matter of cost-benefit analysis, and
– not to forget – matters of conflicting interests in the impact of implementations of
mitigation actions. For example, people may accept the need for surveillance since
it is necessary for security, but nonetheless may find it unpleasant to be checked
themselves (even if it is for the good of the overall community). The accurate quan-
tification of goals is typically necessary for any numeric optimization, but numeric
accuracy is precisely what we usually cannot assure in practical applications. Goals
like reputation, customer convenience, even monetary impacts are notoriously hard
to quantify, and probabilistic models, no matter how sophisticated, at some stage
necessarily rely on empirical data. In absence of an empirical data fundament, say,
due to the (fortunate) rarity of catastrophic events, getting the numbers into the game
theoretic models becomes difficult. This is one reason why game theory has been
coined unpopular for risk management matters in the past [2].

In this context, not even the equilibrium concept may obviously be useful in the
practical implementation. To illustrate this, we will look at a passenger check at
the airport as an example and include “convenience” as a qualitative goal for each
passenger (engaging as a player) to apply [13]. Certainly, people find it convenient
to know that airport security is there to protect from hazards on the plane, but
being under a check oneself is rarely felt comfortable. So, what would be a Nash
equilibrium here? If everyone cooperates, then everyone feels uncomfortable by the
checks. So, the individually selfish optimum is to refuse the screening and have
others contribute. However, if everybody acts selfish in this way, then the threat
fully kicks back in since nobody is screened anymore. Mechanisms to implement the
optimal balance can be found by game theory, but the typical multitude of equilibria
may nonetheless induce implausible or impractical equilibrium strategies [32]. Still,
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game theory remains a tool to optimize any kind of the balance between conflicting
goals as mentioned above.

On the bright side, most of these issues can be addressed by adapting the models
accordingly and by changing the perspective hereto. Insofar it concerns qualitative
goals, it is a standard procedure to involve experts for their domain knowledge and
assessment about qualitative goals. Data collected from such surveys, interviews
and other sources (up to social media analysis) can then form a solid data base for
building payoff models upon. In turn, it is possible to compile these into values
for a game theoretic analysis, or let the games directly work with them (by using
stochastic orders as discussed in Sect. 3.4; see also [29]). Other qualitative goals
like “convenience” may even admit quantitative measures, e.g., for a passenger
screening, we may assume the “degree of annoyance” as proportional to the
frequency of a check [31].

6.2 Resilience Analysis

Complementary to risk analysis is resilience analysis, with the two being con-
trastable in various ways. One is viewing risk management as a bottom-up approach
that starts with data collection, followed by model building and risk characterization.
Resilience management can be viewed as coming from the opposite direction
and working top-down: it starts with the goal identification for the management,
followed by decision models, specifying which metrics, measures or other ways
are useful to quantify values for the decision maker, and culminating in the
quantification of actions [19]. Neither can be taken as a cover, substitute or general
improvement of the other, since the differences between the two are the angles of
view on the same problem, and both may aid one another: resilience management
is (among others) concerned with recovery from incidents, potential long-term
damages thereof and with rare events. This view can be included in risk management
at various stages, say, during a (long-term) impact and likelihood assessment, as
well as in the risk treatment stage, when risks are relieved or transferred (thus,
enabling a fast recovery by buying insurance and taking precautions beforehand).
Likewise, resilience management is not only a matter of bouncing back from an
impact, but centers on the integration of risk perception, risk mitigation and risk
communication; all three of which are matters that run “laterally” to the generic
risk management process (see Fig. 6.1). We leave a deeper discussion to literature
related to this book (e.g., [20]), and continue our focus on how game theory fits into
both management approaches here. That is, throughout the process, game theory
can primarily help with security resource investment optimization [10] during risk
treatment, but extends even to matters of risk prioritization (e.g., by using a score
that is derived from a game model, or at least adopting the concept of orderings on
spaces of arbitrary structure; typically the action spaces).

Let us return to formula (6.1) as our starting point to establish of game theory
as a tool for risk and resilience management. The product is essentially a numeric
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Fig. 6.1 Generic risk assessment process (based on ISO31000)

quantity (even if it is taken over ranks rather than crisp numbers), and as such, game
theory can optimize the term as a goal function. This is a challenge on its own [2]
and typically calls for sophisticated probabilistic models.

Remark 6.1 Whenever the modeling is based on empirical data, the usual statis-
tical preprocessing is required, including (but not limited to) outlier elimination,
normalization of data, debiasing and denoising; basically all that data science
has to offer here. If the data is subjective and about risk, then many subjective
factors come into play in addition [4, 9, 22, 34, 37, 40, 41], such as personal risk
affinity or aversion, background (social, cultural, religious, and others, in addition
to expertise). More importantly, risk assessment is nonconstant over time, since
the subjective awareness and feeling about risk is highly dependent on recent
individual experience and information from personal conversations, social media,
news reports, and many other sources.

6.3 Quantifying Security

Security is often understood as a state of a system in which all feasible precautions
against all known and relevant threats have been adopted. As such, it is not a quantity
arising from some physical process, and cannot be “measured” like other physical
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values. Nonetheless, reaching a state of security can be thought of as an event, to
which we can assign probabilities.

Remark 6.2 Conditions under which security is reached may be diverse and depend
on the context, application, and range from fully mathematical definitions (examples
are given in Chap. 11) up to qualitative indications such as risk standard certification
(e.g., ISO, Common Criteria, or similar).

This leads to quantitative measures of security, as opposed to security metrics
or scores, as defined in Chap. 3. Scores and metrics are usually for absolute
assessments, as opposed to metrics, which typically serve a relative investigation.
Both, scores and measures lend themselves to relative comparisons too, but none of
the three necessarily can substitute or even induce the other.

Practical quantifications of impacts and likelihoods are known to be error-prone,
as the following Example 6.1 illustrates.

Example 6.1 (risk assessment for lightning strike [21]) In the area of Munich
(Germany), the chances for a lightning strike are known to be roughly 1.26× 10−6,
based on meteorological long-term records. Let the impact be estimated to be
roughly 10,000 Euros. Then formula (6.1) yields an expected loss of ≈0.126 Cent,
which does not provide a plausible justification for a countermeasure. Nonetheless,
a lightning protection is surely advisable. This is the issue of multiplying large
with small numbers, no matter how well-justified those are on statistical grounds.
Examples like this lead to the recommendation of using quantitative scales to
measure both, impact and likelihood, since either may be difficult for an expert
to assess. 

To ease the duty for the expert, we can let experts give their answers in terms
that are familiar and suitable for the domain, and specify how these map into risk
categories for a qualitative assessment (to be subsequently used with optimizations,
or simply with formula (6.1)). For an expert assessment, the number of categories
on the scales for impact and likelihood should be even to avoid data or answers on
the exact middle of the scale, as those are least informative and may be picked by
people in lack of any better idea. The beauty of game theory here is its possibility
to define payoffs in any scale or unit, provided that the resulting quantifications are
comparable (totally ordered; see Sect. 5 for a continuation of this point).

One example of such a “catalog based” quantification and definition of security
is given in Fig. 6.2a for impacts, and in Fig. 6.2b for the likelihoods. Goals are often
multi-dimensional, since a decision maker has to care not only for avoidance of
monetary losses, but also needs to balance investments against benefits, including
effects on the reputation, potential legal consequences, and many more. This points
out a general issue with security, since any investment into it bears no direct return.
Rather, investments in security are made to avoid losses, and acting selfishly towards
maximizing the own benefit is not necessarily the same thing as loss minimization.

Categorical quantifications fall in the above category security scores, since the
category value is a mere name without a physical meaning behind the number.
Security measures usually require more formalism behind them, and in most cases
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risk category loss category
loss of intellectual property damage to reputation harm to customers . . .

negligible (1) < 500 $ not noticeable none . . .
noticeable (2) between 500 $

and 10.000 $
noticeable loss of cus-
tomers (product substi-
tuted)

inconvenience experienced
but no physical damage
caused

. . .

low (3) > 10.000 $ and 50.000 $ significant loss of cus-
tomers

damages to customers’
property, but nobody
injured

. . .

medium (4) > 50.000 $ and 200.000 $ noticeable loss of market
share (loss of share value at
stock market)

reported and confirmed in-
cidents involving light in-
juries

. . .

high (5) > 200.000 $
and 1 Mio. $

potential loss of marked
(lead)

reported incidents involv-
ing at least one severe in-
jury but with chances of to-
tal recovery

. . .

critical (6) > 1 Mio. $ chances of bankrupt unrecoverable harm caused
to at least one customer

. . .

(a) Example Impact Categories [27]

likelihood category name frequency (examples of qualitative descriptions)
1 negligible occurs roughly once per decade, or every 50 years on average
2 rare occurs once per year (on average)
3 medium can be expected once per month
4 likely may occur several times per month (or even per day)

(b) Example Likelihood Categories

Fig. 6.2 Examples of qualitative security definitions

are defined as likelihoods for the secure state to arise. The exact definition of this
event is dictated by the context, and in case of probabilistic security models, is
derived from analyses of success chances for the attacker. We will meet examples
from cryptography illustrating this in Chap. 11.

At this point, it is important to bear in mind the lessons learned from bounded
rationality (Chap. 5): the particular way of how questions are formulated can
strongly effect subjective ratings on the given scale. For an example referring to
Fig. 6.2a, one could define the categories for the risk dimension “harm to customers”
as “x out of y customers affected”, or “p% of customers affected” (with p = x/y)
or equivalently “every k-th customer on average affected” (with k ≈ y/x). All three
are equivalent statements, but just like as in Sect. 5.4, the way people categorize the
risk may be strongly different in the three cases despite the numerical equivalence.
Likewise, subjective risk attitudes and individual over- or under-ratings of impacts
and likelihoods need to be considered, which is where weighting functions and
prospect theory (see Sect. 5.5) provide useful insights and tools.

Concepts “in between” can be operationalized too: suppose that the categories
define the units in which the data collection for a risk assessment is carried out.
Consequently, each expert in a group of people may utter its subjective rating of
impacts and likelihoods. It is straightforward to compile this data into a categorical
distribution, supported on the set of risk categories as the definitions (like Fig. 6.2)
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prescribe. This kind of data processing is particularly flexible, since it provides
empirical distributions. These, in turn, can go as priors into a Bayesian analysis,
or otherwise be used with game theory directly. The latter method was put to
practice in the risk management project “HyRiM” (Hybrid Risk Management
for Utility Providers [14]), which specifies a risk management process based on
ISO31000, and has each phase therein instantiated by game theory with empirical
distributions replacing the usual numerical payoffs (as a practical instance of the
games described in Sect. 4.5). The use of systematically, and sometimes partly
subjectively, constructed priors receives attention in the next section, where we
extend the view on modeling not only the risk as such, but also its origins.

6.4 Adversarial Risk Analysis

Knowing the environment and the enemy is a basic requirement for any effective
protection. The famous “Art of War” [38] puts the value of this knowledge in
eloquent terms:

If you know the enemy and know yourself, you need not fear the result of a hundred battles.
If you know yourself but not the enemy, for every victory gained you will also suffer a
defeat. If you know neither the enemy nor yourself, you will succumb in every battle.

The truth in this statement was known long before game theory was invented
to mathematically prove Sun Tzu right in teaching that knowing yourself and
the enemy, we do not need to fear the competition. This is what adversarial risk
analysis aims at: it adapts the defense to the best hypothesis about upcoming attacks
that we can set up based on the information in our hands. If there is no or no
reliable information, the next best we can do is substitute the missing data about
the enemy by the known information about our own intentions. Zero-sum games are
the proper models for this pessimistic attitude. Sun Tzu’s insight wisely extends to
this situation, since by optimizing worst-case average outcomes, gains and losses
will alternatingly occur.

Regardless of whether we model our own or the adversary’s intentions, a
systematic approach is always advisable, and influence diagrams [25] provide one
such method. Influence diagrams bear a close similarity to decision trees, Bayesian
networks, and also to extensive form representation of games. All three enable
a graphical and easy to understand representation of factors relevant for decision
making. Let us take a step-by-step approach through the use of influence diagrams
towards adversarial risk assessment [32]. An influence diagram comes, in its basic
form, as a directed acyclic graph G = (V ,E), with every node in V falling into one
out of three categories:

Action nodes (rectangles): these represent a particular action available to the
player following up a precursor situation (node) in the graph. These nodes may
represent one action or a choice from a set of actions, which may depend on
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information available a priori. Such information is displayed by incoming edges
to the action node (as we will see in Fig. 6.3d).

Uncertainty or chance nodes (ovals): The outcome of an action is hardly ever
deterministic and in most cases influencing or subject to probabilistic factors,
represented by uncertainty nodes. Those are usually tagged with probability dis-
tributions conditional on the variables that the parent nodes represent. Formally,
if an uncertainty node w has parents u → w and v → w, it would carry
a conditional distribution FW(w|u, v), where all three nodes are considered as
random variables. For the example of an action node, say, u, the randomness in
u relates to the current choice from the action set. Remember that chance nodes
also appear in extensive form games, modeling actions taken by the (irrational)
zero-th player “nature”.

Utility nodes (hexagons): those model net values for a decision maker, which are
functionally or probabilistically dependent on their parents in the graph.

Let us hereafter generally speak about an item in an influence diagram mean an
object (distribution, function, set) assigned to a node in the graph.

An edge u → v between two nodes u, v ∈ V means that v’s state depends on
the state of its parent nodes, where the dependency can be probabilistic for chance
nodes or functional for utility nodes. Action nodes are where rational choices can
be made, such as by utility maximization principles or others.

An influence diagram can thus be used as a graphical representation of relevant
factors in a decision and risk management problem. It allows for a systematic
decomposition of the situation into factors relevant for the decision making, includ-
ing their interdependence. The acyclicity of the diagram then enables a systematic
approach to identify which data items require specification and data collection. The
overall method may (but does not need to) proceed as follows: to any node v ∈ V ,
we assign a variable with the same name. To ease the notation in the following, let
us write v synonymously to mean a node G or the variable relevant in the decision
model. For every v ∈ V , call Pa(v) := {u ∈ V : (u→ v) ∈ E} the set of parents of
the node v in the graph G. Likewise, call Ch(v) := {u ∈ V : (v→ u) ∈ E} the set
of v’s children in G. Since the diagram is acyclic, there must be some nodes whose
parent set is empty, and another set of nodes that have no children. Initialize P as
an ordered list of nodes without parents, and follow these steps:

1. For each v ∈ P , specify the following items, depending on v’s type:

• if v is a chance node, construct a distribution for the random variable v,
conditional on v’s parents. Formally, we need the distribution Fv(x|Pa(v)) :=
Pr(v ≤ x|Pa(v)). If Pa(v) = ∅, then the distribution is unconditional.

• if v is a utility node, specify a function fv that takes all values of v’s parents as
input to define the value for v (hence, utility nodes would usually not appear
without parents, since this would make the utility function constant in this
view). In a slight abuse of notation, we may write fv : dom(Pa(v)) → R,
where dom is the domain in which the parent variables to v take their values.
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• if v is an action node, specify a set of values that v may take. These variables
are the ones to vary during a subsequent optimization, say game theoretic or
other.

2. Since we are now done with v, remove it from the set P and put v’s descendant
nodes Ch(v) into P . Then, start over again with Step 1, until the set P has run
empty.

We stress that the order in which nodes are processed in the above procedure
naturally depends on which items are required for the next node to be properly
specified. This lack of specification in the above procedure makes it somewhat
incomplete, but as we will see from the examples to follow, it is generally not
difficult to iterate through the list of nodes in the proper order, or even resort to
a reversed approach, i.e., a recursive bottom-up procedure that starts the above
specification from the nodes without children.

We illustrate the above procedure by working through a series of examples of
influence diagrams that may generically appear in different situations. The diagrams
evolve stepwise, with gray nodes highlighting the difference to the previous picture,
respectively. The first diagram in Fig. 6.3a shows a simple situation where an action
taken by the decision maker directly leads to a utility. According to the above
algorithm, our duty is (iteration 1) to specify the action space, and (iteration 2),
to specify the utility function on the action space.

Traditional statistical risk analysis adds an element of randomness to this, which
appears as a chance node in Fig. 6.3b. This node, labeled “action” has no parents,
and is thus a natural influence on the utility. In addition, the decision maker may
choose its actions to influence (say, prevent, mitigate, take general precautions
against) a threat. The arrow from the “action” node to the “threat” node expresses
this. According to the algorithm, we start with P = {action}, and specify an
action space (as before), and a distribution for the threat. For natural disasters,
such as floods, fires, lightning strikes, or others, we may rely on statistical data
for that matter. For example, in domains like insurance distribution models (e.g.,
extreme value distributions) are known, which may be instantiated and assigned
to the “threat”-node here. Armed with both, the procedure prescribes (in its third
iteration) the specification of a new utility function that takes the action and the
random variable for the threat as input. Its output is thus another random variable,
whose distribution is parameterized by the action, and otherwise determined by the
transformation of the distribution of the “threat” variable. Since there is no other
rational actor in this picture taking actions related to the “threat”, we are still in a
non-adversarial setting here (the only adversaries are nature, resp., chance).

An adversarial risk analysis now adds further action items and players (not
necessarily visually distinct) to the picture, shown in Fig. 6.3c. Renaming the natural
hazard into a “threat”, we may let the threat be under influence of another actor with
its own action space.

Remark 6.3 The terms hazard and threats are often used synonymous; both
describing conditions or situations that may cause harm (such as natural disasters,
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human errors, or others). Occasionally, a distinction is made between hazard and
threat, in the latter being a hazard that is actually upcoming and to be expected.
This is already a combination with the likelihood, but not with a vulnerability,
and as such not automatically the same as a risk, which is the coincidence of a
threat and a condition (the vulnerability) that enables the negative impacts of the
threat.

If this actor is rational, it may itself act towards utility maximization. Thus, the
influence diagram grows by two new (grayish) items. Note that the labels are now
extended by the items to be specified, which can be different (and entirely unrelated)
to one another. In this example, let the first player (with white action and utility
nodes) be the defender opposing an adversary who maintains the gray boxes. The
items to be specified for both players are subscripted by “D” and “A” respectively,
abbreviating the generic names “Daphne” and “Apollo” in the text to follow. The
instantiation of the diagram starts with the nodes having no parents, which are now
the two action spaces (in any order), and in the next steps would proceed with the
distribution of the threat, conditional on both player’s actions, and conclude with the
specification of utility functions based on the threat and actions (of the respective
player).

Figure 6.3c shows no dependency among the two action nodes, which allows
the players to take moves simultaneously or asynchronously. In a leader-follower
situation, the defender may move first, and the adversary may react upon. This
would correspond to an arrow from the white to the gray action node, as displayed
in Fig. 6.3d. Note that the sequence of specification following from the above
procedure is now different: we start with the defender’s action, on which the
adversary’s action follows (in the second iteration of the procedure). In being a
utility maximizer, the adversary will thus observe the current action (from the white
action node), and determine its best response to it. For that matter, it requires
its own utility function and threat model, so the procedure can for convenience
be reversed into a bottom-up specification. Essentially, the influence diagram in
Fig. 6.3d requires the following to be specified:

• the action spaces ASD and ASA for the defender and the attacker,
• utility functions u1 : ASD×T and u2 : ASA×T for both players, where T is the

set of threats that can occur, either naturally or rationally triggered by a rational
player,

• a conditional probability distribution FT (t |a, d), where t is the threat variable
(e.g., the impact that it has), and d ∈ ASD, a ∈ ASA are the actions of both
players.

It is possible and often convenient to add further arcs or nodes to the diagram,
just as the situation may require. For instance, a two-person game with random
payoffs can be modeled with arcs from both action spaces into both utility functions,
which effectively models that the utilities of both players depend on their actions (as
usual in game theory). Likewise, items appearing in a risk management process like
“impacts”, “costs”, etc. can as well be brought into the diagram, which may then
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look like as in Fig. 6.3e, or even more detailed or complex. However, the symmetry
in these examples is, a mere coincidence, and generally such diagrams need not to
be symmetric.

6.4.1 Assessment of Utilities and Chances

Returning to Fig. 6.3d for completing the discussion, how would the decision maker
proceed in a leader-follower scenario to get a best decision? In the first step, suppose
that all of the items listed above are known to both parties, and that both know that
the other party knows (common knowledge assumption). As modeled in Fig. 6.3d,
Daphne takes a first move d, to which Apollo takes a best response by maximizing
the expected utility, i.e., his reply to Daphne’s action (indicated by the arc from her
action node to Apollos action node) is

a∗(d) = argmax
a

EFT (t |a,d)(uA(a, t)) =
∫

Ω

uA(a, t)fT (t |a, d)dt, (6.2)

in which fT denotes the conditional density of the threat variable T on the (fixed)
action d of Daphne and (varying) action a ∈ ASA that Apollo may take, and the
integration range is over the support Ω of fT . In turn, Daphne will seek her best
reply to Apollo’s move a∗, which for Daphne means computing

d∗ = argmax
d

EFT (t |a∗,d)(uA(a, t)) =
∫

Ω

uD(d, t)fT (t |a∗, d)dt.

The pair (d∗, a∗(d∗)) is a (Stackelberg) equilibrium in this sequential game,
provided that all items in the influence diagram are common knowledge to both
parties. What if this is not the case? The lack of knowledge can be addressed in
various ways, so let us assume that Daphne knows only ASD, uD and the conditional
threat distribution FT , but lacks information on uA and ASA.

In a Bayesian approach, Daphne would make up a hypothesis about the unknown
items, essentially in form of an a priori distribution FA over the pair (uA,ASA).
The precise choice of this prior is the typically hardest part in a Bayesian analysis,
and some (suggested) choices include uniform distributions, non-informative priors,
or level-k thinking (discussed later). In any case, Daphne needs to empathize with
Apollo, and, in putting herself in Apollo’s shoes, hypothesize about what his options
and utilities could be. Given ideas about these, she can compile the prior distribution
FA. Then, she fixes a decision d = d0 and samples from FA (using Monte-Carlo
simulation) to get set of n random instances of uA and ASA. Each of these can then
be used with (6.2) to get a sequence of best replies a∗1 , a∗2 , . . . , a∗n , to Daphne’s
action d. Using this simulated data, Daphne can then come up with another
empirical probability density p̂D(a|d0) reflecting how she thinks that Apollo will
reply to her action d0. The whole procedure is of course repeated for all her actions



130 6 Risk Management

accordingly, to define a probability density p̂D(a|d) to model Apollo’s random
replies a to Daphne’s random actions d. She then goes to compute her best reply
under what she expects from Apollo, i.e., she computes

d∗ = argmax
d∈ASD

∑

a∈ASA

p̂D(a|d)EFT (t |a,d)(uA(a, t)). (6.3)

So far, Daphne’s agenda is straightforward to carry out, but the specification
of the prior distribution FA remains unclear yet. In many situations, Daphne
can reasonably ad hoc presume something about Apollo’s skill level, technical
or monetary resources, inner and extrinsic motivations, and other factors [5, 18].
Assumptions on bounded resources are common in cryptography (see Chap. 11), but
limited budget or knowledge may be reasonable to assume elsewhere too. Standards
like CVSS explicitly account for required time to exploit, necessary background
skills (up to insider knowledge) and many other aspects that may be relevant and
useful to model the attacker’s possibilities (i.e., the set ASA) or capabilities.

However, the issue becomes much more involved if the players take actions
independently, such as in Fig. 6.3c: now, for Daphne to reason about Apollo’s
behavior, she must consider that Apollo, by symmetry, will do the same to assess
her behavior. If we adopt a common knowledge assumption again, then Daphne and
Apollo may both have a probabilistic idea about the other’s behavior (a common
prior from which both, Daphne’s and Apollo’s items in the influence diagram are
sampled). Under this common prior assumption, Harsanyi [11] proposed the use of
PBNEs. Essentially, Daphne (likewise Apollo) assumes that Apollo (resp. Daphne)
will behave like in one of n known ways or types, each of which has its individual
utility function uA. Each type occurs with likelihood pi for i = 1, 2, . . . , n, and this
distribution is known to Daphne and Apollo, so that she can analogously rewrite
(6.3) into (a minimax decision problem)

d∗ = argmax
d∈ASD

n∑

i=1

p̂i · EFT (t |a∗(i),d)(uA(a∗(i), t)), (6.4)

where a∗(i) is the best reply under each of the potential types of Apollo (which
is computable, since we know the individual payoffs and other parameters). In
carrying the Bayesian approach further, both could then update their beliefs based on
what they observe from the other player. A robust alternative hereto [1] is Daphne
assuming a worst-case type (disregarding any likelihood herein) and change (6.4)
into

d∗ = argmax
d∈ASD

[
min

i
EFT (t |a∗(i),d)(uA(a∗(i), t))

]
,

assuming that she will always face the worst possible Apollo (among all known
kinds i = 1, 2, . . .).
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Alas, this does not ultimately settle the issue of requiring a prior distribution,
either on the influence diagram items, or on player types together with their
respective descriptions (corresponding to what we have in the influence diagram).
Without a common knowledge assumption, Daphne could start pondering about how
Apollo would behave, and by symmetry, Apollo would do the same reasoning about
Daphne. From Daphne’s view, Apollo is rational and hence will adapt his behavior
to what he thinks Daphne does. So, in addition to her own (known) behavior, she
would need a hypothesis about what Apollo thinks she does. Likewise, Apollo
would try to anticipate Daphne’s behavior based on what he thinks she thinks that
he does. This thinking-about-what-the-other-is-thinking-about-me reasoning can be
continued ad infinitum, and would impute an unrealistic level of strategic thinking
on both sides.

Level-k thinking systematizes the idea [33] of strategic sophistication in a clever
way to offer a reasonable stopping point in the above regress: it puts players into
classes of ascending strategic sophistication, starting with the simplest players being
at level 0. Those act entirely random and without any strategic preference among
their actions. Formally, they randomize their choices uniformly over their action
spaces. A level 1 player assumes his opponent to be a level 0 player, thus acts
best against an opponent who takes action uniformly at random. A level 2 player
assumes a level 1 opponent, and so on. For Daphne and Apollo, they can easily
utilize this idea to construct priors iteratively: Daphne starts with presuming Apollo
to play at level 0. Hence, she uses a uniform prior distribution p

(0)
D (a|d) over all

parameters that are unknown to her. Based on this hypothesis, she uses Monte-Carlo
sampling from the prior, empirical distributions therefrom, and (6.3) to compute the
best replies to a level 0 Apollo, which puts herself into level 1. Then, turning into
Apollo’s role, Daphne computes Apollo’s best response against a level 0 version of
herself (Daphne), using a uniform prior for level 0, sampling, and optimization as
in (6.3) (only from Apollo’s perspective). The optimal solutions for both, Daphne
and Apollo, then relate to level 1 players. In turn, Daphne can use Apollo’s level
1 response as a prior, do the sampling, and compute her best reply to the level 1
Apollo. This puts her on level 2. Likewise, Apollo can use Daphne’s level 1 behavior
as a prior distribution and compute his best reply to a level 1 Daphne. Now, we have
level 2 priors for both, Daphne and Apollo, and both may restart until the desired
level of strategic sophistication is reached.

The benefit of this method lies in the fact that experimental evidence underpins
level-k thinking as explanation for human behavior, so choosing the priors in this
way enjoys empirical support [6–8, 17]. Moreover, a strategic sophistication above
level k = 3 is unusual in practice, which is already a practical a suggestion on where
to stop the recursion.

Example 6.2 (Level-k Defender in Cyber Deception) Imagine a cyber deception
defense based on honeypots. A level-1 defender would assume a level-0 adversary,
which comes as the assumption of the attacker not recognizing whether or not it has
hit the honeypot or the real system. In that sense, the attacker is “unaware” of the
defender’s strategy, or equivalently, a level below the defender.
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A level-2 defender, in turn, assumes a level-1 attacker. This adversary thus has the
same knowledge as a level-1 defender from before, so it knows about the honeypot
and will recognize it. As a strategy, the attacker may thus deliberately attack the
honeypot as a decoy action, so as to trick the defender into thinking that it hit the
honeypot only. In a sense, the attacker thus plays its own deception game with the
defender. The defender thus knows that the attacker knows about the honeypots
being in place. It can thus decide on its own whether or not to “believe” that the
activity on the honeypot was the only sign of an attack, or that it possibly was a
decoy action to hide the real adversarial activity.

A level-3 defender would assume a level-2 adversary, which in turn means that
the attacker knows that the defender will be skeptic even if there is suspicious
activity on the honeypot. The defender thus thinks about what the attacker thinks
about what the defender may do, and so on. 

Bayesian reasoning about the attacker is not the only possibility, yet from
a stochastic viewpoint, it appears as the most natural approach to consider the
maximal lot of information available, when modeling the adversary. An alternative
that leads Daphne to a more minimax-like reasoning is her assuming Apollo’s
intentions to be exactly opposite to hers, in absence of better knowledge. In
the influence diagram, this would correspond to substituting the unknown utility
function uA by the known −uD , effectively creating a something like a zero-sum
game model. However, we cannot substitute action spaces accordingly, and zero-day
exploits are on example of unexpected attacks that have obviously been contained
in Apollo’s action space, but were unknown to Daphne. So, she could not prepare
for it (despite any strategic sophistication).

6.4.2 Assessment of Action Spaces

Systematic approaches to the assessment of action spaces differ in the target entity:
for the defender (Daphne), large catalogues are available in various standards on
security risk management (e.g., [3, 15, 24] to name a few). Those are also available
to Apollo, helping him to assess Daphne’s action space. For Daphne, to reason about
Apollo’s action spaces, she can resort to known catalogues of vulnerabilities and
ethical hacking resources [23, 36] and Topological Vulnerability Analysis (TVA)
[16]. A popular tool here are attack graphs, in which nodes correspond to logical
points inside a system (machines, places, or similar), which are related by arcs that
show how a child node can be reached from a parent node during an attack. Such
trees are typically annotated by pre- and post-conditions, telling which exploits,
vulnerabilities and services are available to traverse from one node to the next.
Enumerating all paths from initial entry nodes of the attacker down to the target
asset gives the action space model for the attacker. An example instance of this
process is given in Sect. 9.4 in the context the Cut-The-Rope game.



References 133

Zero-day exploits can be included in these attack graphs by resorting to their
general characteristics, in lack of any possible estimate on impact or likelihood.
We will look into heuristic risk assessments for zero-day attacks in Sect. 12.6.2.2.
Specifically, the only safe assumption on a zero-day exploits regard network
connections from the source to the victim, services offered by the victim and existing
privileges on the source to exploit the service. These correspond to worst-case pre-
and post-conditions (say, if the zero-day exploit is assumed to create alleviated
privileges on the target machine), from which we can derive attack paths (scenarios)
as elements of the action space estimates (say, by path enumeration, Bayesian
network analysis [39], subjective expert surveys [30] or other means).

Viewed from a different angle, zero-day exploits can be thought of attacks yet
outside the known action spaces. The risk of these is thus a matter of how likely the
action space is incomplete. In some specialized situations [28], this incompleteness
can, upon discovery, be easily fixed, since for some communication games (see
Sect. 11.2), it suffices to counteract the zero-day exploit only in a single out of the
many possibilities in ASA, to completely restore security. Attack trees offer similar
possibilities, since if the connectivity of the attack graph is low, it suffices to add
protection to only a few nodes in the network, perhaps. The precise condition uses
domination between strategies, and follows later as Theorem 12.1 in Sect. 12.6.2.1,
where Example 12.6 is given to illustrate the effect of extending the action space.
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Chapter 7
Insurance

Insurance: An ingenious modern game of chance in which the
player is permitted to enjoy the comfortable conviction that he is
beating the man who keeps the table.

A. Bierce

Abstract Cyber insurance provides users a valuable additional layer of protection
to transfer cyber data risks to third-parties. An incentive-compatible cyber insurance
policy can reduce the number of successful cyber-attacks by incentivizing the adop-
tion of preventative measures in return for more coverage and the implementation of
best practices by pricing premiums based on an insured level of self-protection. This
chapter introduces a bi-level game-theoretic model that nests a zero-sum game in a
moral-hazard type of principal-agent game to capture complex interactions between
a user, an attacker, and the insurer. The game framework provides an integrative
view of cyber insurance and enables a systematic design of incentive-compatible
and attack-aware insurance policy. The chapter also introduces a new metric of
disappointment rate that measures the difference between the actual damage and
the expected damage.

7.1 Why Cyber-Insurance?

Cyber risks for infrastructures are of growing concerns, not only due to the advent
of APTs (see Chap. 1). The cyber risk will not only create cyber incidents including
identity theft, cyber extortion, and network disruption, but also can lead to the
malfunction of the entire infrastructure and its key services to users and customers.
It becomes a critical issue for operators to safeguard infrastructures from the
intentional and unintentional actions that would inflict damage on the system.
Conventional countermeasures include installing IDS, blacklisting malicious hosts,
filtering/blocking traffic into the network. However, these methods cannot guarantee
perfect security and can be evaded by sophisticated adversaries despite the advances
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in technologies. Therefore, cyber risks are inevitable and it is essential to find other
means to mitigate the risks and impact.

Cyber insurance is an important tool in risk management to transfer risks [52, 53];
cf. Chap. 6. Complement to the technological solutions to cybersecurity, cyber
insurance can mitigate the loss of the targeted system and increase the resiliency
of the victim by enabling quick financial and system recovery from cyber incidents.
Such scheme is particularly helpful to small and medium size infrastructure systems
that cannot afford a significant investment in cyber protection. At the time of writing
this book, the market of cyber insurance is still in its infancy. U.S. penetration
level of the insured is less than 15%. Promisingly, the market is growing fast at
a 30% annual growth rate since 2011. The key challenge with cyber insurance
lies in the difficulty to assess different types of cyber risks and impact of the
cyber incidents that are launched by resourceful adversaries who are stealthy and
purposeful. The design of cyber insurance also needs to take into account moral
hazards and adverse selection problems. The insured tend to lack in incentives to
improve their security measures to safeguard against attacks. As the nodes in the
cyber space are increasingly connected, the unprotected cyber risks can propagate
to other uninsured nodes. With asymmetric information of the insured, the insurer
also has tendency to increase the premium rates for higher risks, making the cyber
insurance less affordable to end users.

In this chapter, we aim to provide a baseline framework to understand the
interactions among the players in the cyber insurance market and leverage it to
design optimal cyber insurance for the infrastructure services. One key application
of the framework is to provide assurance to the infrastructure managers and users
and transfer their risks when the attack on power grid fails to provide electric
power to a food processing plant, when cloud servers break down and fail to
provide airline customer check-in information, and when the trains collide due to
the communication systems fail. It is clear that cyber insurance plays a key role in
mitigating the cyber risks that interconnect the communications and information
systems of an infrastructure with their physical impact on the infrastructure or
linked infrastructures. The interdependencies among (critical) infrastructures, ICT,
and their operators and users can propagate the cyber risks and exacerbate the
damages on the critical infrastructures. To this end, the understanding of the cyber
insurance of interconnected players is the key to the holistic understanding of the
risk management of interdependent infrastructures.

This chapter will first present a principal-agent game-theoretic model to capture
the interactions between one insurer and one customer. The insurer is deemed as
the principal who does not have incomplete information about customer’s security
policies. The customer, which refers to the infrastructure operator or the customer,
implements his local protection and pays a premium to the insurer. The insurer
designs an incentive compatible insurance mechanism that includes the premium
and the coverage policy, while the customer determines whether to participate in the
insurance and his effort to defend against attacks. The chapter will also focus on an
attack-aware cyber insurance model by introducing the adversarial behaviors into
the framework. The behavior of an attacker determines the type of cyber threats,
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e.g. denial of service (DoS) attacks, data breaches, phishing and spoofing. The
distinction of threat types plays a role in determining the type of losses and the
coverage policies. The data breaches can lead to not only financial losses but also
damage of the reputations. The coverage may only cover certain agreed percentage
of the financial losses.

7.2 Background

The challenges of cyber security are not only technical issues but also economic
and policy issues [3]. Recently, the use of cyber insurance to enhance the level of
security in cyber-physical systems has been studied [22, 23]. While these works
deal with externality effects of cyber security in networks, few of them take into
account in the model the cyber attack from a malicious adversary to distinguish
from classical insurance models. In [28], the authors have considered direct and
indirect losses, respectively due to cyber attacks and indirect infections from other
nodes in the network. However, the cyber attacks are taken as random inputs rather
than a strategic adversary. The moral hazard model in economics literature [15, 16]
deal with hidden actions from an agent, and aims to address the question: How does
a principal design the agent’s wage contract to maximize his effort? This framework
is related to insurance markets and has been used to model cyber insurance [6] as
a solution for mitigating losses from cyber attacks. In addition, in [1], the authors
have studied a security investment problem in a network with externality effect.
Each node determines his security investment level and competes with a strategic
attacker. Their model does not focus on the insurance policies and hidden-action
framework. In this work, we enrich the moral-hazard type of economic frameworks
by incorporating attack models, and provide a holistic viewpoint towards cyber
insurance and a systematic approach to design insurance policies. The network
effect on security decision process has been studied in [27]. The authors have
considered a variation of the linear influence networks model in which each node
represents a network company and directed links model the positive or negative
influence between neighbor nodes.

Game-theoretic models are natural frameworks to capture the adversarial and
defensive interactions between players [11, 17, 18, 24, 25, 37, 50, 54, 56, 57]. Game
theory can provide a quantitative measure of the quality of protection with the
concept of Nash equilibrium where both defender and an attacker seek optimal
strategies, and no one has an incentive to deviate unilaterally from their equilibrium
strategies despite their conflict for security objectives. The equilibrium concept also
provides a quantitative prediction of the security outcomes of the scenario the game
model captures. In most cases, this will be an expectation of loss, while in other
(generalized) cases, it can also be the likelihood for extreme events (such as for
zero-day exploits, and games over stochastic tail orders). Later, in Sect. 7.4, we will
also discuss how to handle excesses over what is expected.
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There are various types of game models that can capture different class of adver-
saries. For example, games of incomplete information are suitable for understanding
cyber deception [17, 29, 32, 33, 50, 57]; dynamic games are useful for modeling
cyber-physical system security [8, 18, 25, 43–47]; and zero-sum and Stackelberg
games for security risk management (see Chap. 6, [30, 31, 41, 48, 49, 51]. In this
work, we build a zero-sum game between an attacker and a defender to quantify
the cybersecurity risks associated with adversarial behaviors. This game model is
nested in the principle-agent game models to establish an integrated framework that
captures the defender, the attacker, and the insurer.

7.3 Three-Person Game Framework for Cyber Insurance

In this section, we introduce a principal-agent model for cyber insurance that involve
users and insurers. Users here can refer to an infrastructure operator that manages
cyber networks that face threats from an attacker, making users vulnerable to data
breaches, task failures, and severe financial losses. The objective of the users is
to find an efficient way to mitigate the loss due to the cyber attacks. To this
end, there are two main approaches. One is to deploy local protections, such as
firewalls and IDSs [4, 35], frequent change of passwords [36], timely software
patching and proactive moving target defenses [19]; see also Sect. 12.5. These
defense mechanisms can reduce the success rate of the attacks, but cannot guarantee
perfect network security for users. There are still chances for the users to be hacked
by the attackers. The other approach is to adopt cyber-insurance. The users pay a
premium fee so that the loss due to cyber attacks can be compensated by the insurer.
This mechanism provides an additional layer of mitigation to reduce the loss further
that the technical solutions of the first approach cannot prevent. To capture the two
options in our framework, we allow users to decide their protection levels as well as
their rational choice of participation in the insurance program.

Attackers are the adversaries who launch cyber-attacks, such as node capture
attacks [39] and denial of services (DoS) attacks [20], to acquire private data from
users or cause disruptions of the network services. Hence, the objective of the
attacker is to find an efficient attack strategy to inflict as much damage to the users
as possible. We use attack levels to represent different attack strategies to capture
various types of attacks of different levels of severity. A higher attack level is more
costly to launch, but it will create more severe damage. Since the loss of the users
not only depends on the attack strategies but also insurance policies. The optimal
strategy of the attacker will also be influenced by the coverage levels of an insurance
policy.

An insurer is a person or company that underwrites an insurance risk by
providing users an incentive compatible cyber-insurance policy that includes a
premium and the level of coverage. The premium is a subscription fee that is paid
by the users to participate in the insurance program while the coverage level is
the proportion of loss that will be compensated by the insurer as a consequence of
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successful cyber attacks. The insurers have two objectives. One is to make a profit
from providing the insurance, and the other one is to reduce the average losses of the
users, which is also directly related to the cost of the insurer. An insurer’s problem
is to determine the subscription fee and the coverage levels of the insurance. Note
that the average losses depend on both users’ local protection levels and attackers’
attack levels. Moreover, the rational users will only enroll in the insurance when the
average reduction in the cost is higher than or equal to the premium he paid to the
insurer.

The objectives of users, attackers, and insurers, and the effects of their actions
are all intertwined. We use a three-player game to capture the complex interactions
among the three parties. The conflicting objectives of a customer and an attacker
can be captured by a local game at each node in which the customer determines a
defense strategy while the adversary chooses an attack strategy. The outcome of the
local interactions at each node determines its cyber risk and the cyber insurance is
used as an additional method to further reduce the loss due to the cyber risk. The
insurers are the leaders or principals in the framework who design insurance policies
for the users while the users can be viewed as followers or agents who determine
their defense strategies under a given insurance policy.

7.3.1 Attack-Aware Cyber Insurance

We first formulate the game between the customer and the attacker, then we describe
the insurer’s problem under the equilibrium of the customer and the attacker’s game.
An illustration of the cyber-insurance model is shown in Fig. 7.1: in this game, the
action pair (pc, pa) chosen by the customer and the attacker results in a risk level
not directly observable by the insurer. The insurer designs an insurance policy that
includes a premium subscription fee and the coverage level to cover part of the loss
due to the cyber attack.

customer pc

subscription fee T insurance company
S, T

risk level
R = r(pc, pa)

direct loss
X = G(R, θ)

effective loss
ξ = X − S(X)

attacker: pa uncertainty θ

coverage S

Fig. 7.1 Illustration of three-player cyber insurance game
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Let pc ∈ [0, 1] and pa ∈ [0, 1] denote the local protection level of the
customer and the attack level of the attacker. On one hand, a large pc indicates
a cautious customer while a small pc indicates that the customer is reckless. A
reckless customer may click on suspicious links of received spam emails, fail to
patch the computer system frequently, and leave cyber footprints for an adversary
to acquire system information. On the other hand, a large pa indicates a powerful
attacker, and a small pa indicates a powerless attacker. The abstraction of using pc

and pa captures the effectiveness of a wide range of heterogeneous defense and
attack strategies without a fine-grained modeling of individual mechanisms. This
will allow us to focus on the consequence of security issues and the choice of a
mechanism that induces the result.

The action pair of the customer and the attacker (pc, pa) determines the risk
level of the customer R ∈ R≥0. A larger pc and a smaller pa indicate a higher risk
level of the customer. We use the following risk function r to denote the connections
between the customer’s and the attacker’s actions and the risk level of the customer.

Definition 7.1 Function r(pc, pa) : [0, 1]2 → R≥0 gives the risk level R of the
customer with respect to the customer’s local protection level pc and the attack’s
attack level pa . Moreover, it is assumed to be continuous on (0, 1]2, convex and
monotonically decreasing on pc ∈ [0, 1], and concave and monotonically increasing
in pa ∈ [0, 1].
Note that the monotonicity in pc ∈ [0, 1] indicates that a larger local protection
level of customer leads to a smaller risk level of customer while the monotonicity in
pa ∈ [0, 1] indicates that a larger attack level of attacker leads to a larger risk level
of customer. Since r is convex on pc, the risk decreases smaller when the customer
adopts larger local protection level. Since r is concave on pa , the risk increases
faster when the attacker conducts a higher attack level. Without loss of generality,
we use the following risk function,

r(pc, pa) = log

(
pa

pc

+ 1

)
. (7.1)

Similar types of functions have also been widely used in jamming attacks in wireless
networks [2, 24] and rate control problems [21, 55]. Under the risk level of R,
the economic loss of the customer can be represented as a random variable X

measured in monetary units (e.g., US Dollar, Euro, etc.), which can be expressed as
X = G(R, θ), where θ is a random variable with probability density function g that
captures the uncertainties in the measurement or system parameters. For example, a
data breach due to the compromise of a server can be a consequence of low security
level at the customer end. The magnitude of the loss depends on the content and
the significance of the data, and the extent of the breach. The variations in these
parameters are captured by the random variable θ . Since the risks of being attacked
cannot be perfectly eliminated, the customer can transfer the remaining risks to the
third party, the insurer, by paying a premium or subscription fee T for a coverage
of S(X) when he faces a loss of X, where S : R≥0 → R≥0 is the payment function
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that reduces the loss of the customer if he is insured. Thus, the effective loss ξ to the
customer becomes ξ = X − S(X).

Given the attacker’s action pa and the insurer’s coverage function S, the customer
aims to minimize the average effective loss by finding the optimal local protection
level p∗c . Such objective can be captured by the following optimization problem

min
pc∈[0,1]Eθ [H(ξ)] = Eθ [H(X − S(X))], (7.2)

where H : R≥0 → R≥0 is the loss function of the customer, which is increasing on
ξ . The subscription fee T is not included in this optimization problem, as the fee is
a constant decided by the insurer.

The loss function H(ξ) indicates the customer’s risk attitude or propensity. A
convex H(ξ) indicates that the customer is risk-averse, i.e., the customer cares more
about the risk, while a concave H(ξ) indicates that the customer is risk-taking, i.e.,
he cares more about the cost, rather than the risk. A linear H(ξ) in ξ indicates
that the customer is risk-neutral. In this paper, we consider a risk-averse customer,
and use a typical risk-averse loss function that H(ξ) = eγ ξ with γ > 0, where γ

indicates how much the customer cares about the loss.
Note that the cost function in (7.2) can be expressed explicitly as a function of

X. Thus, problem (7.2) can be rewritten by taking expectations with respect to the
sufficient statistics of X. Let f be the probability density function of X. Clearly, f

is a transformation from the density function g (associated with the random variable
θ ) under the mapping G. In addition, g also depends on the action pair (pc, pa)

through the risk variable R. Therefore, we can write f (x|pc, pa) to capture the
parameterization of the density function. Without loss of generality, we assume that
X follows an exponential distribution, i.e., X ∼ E x( 1

R
), where R := r(pc, pa) is

the risk level of the customer. The exponential distribution has been widely used in
risk and reliability analysis[5, 9, 12, 26]. Thus the density function can be written as

f (x|pc, pa) = 1

R
e−

1
R

x = 1

r(pc, pa)
e
− 1

r(pc,pa)
x

= 1

log(
pa

pc
+ 1)

e
− 1

log(
pa
pc
+1)

x

,∀x ∈ R≥0.

The average amount of loss given actions pc and pa is E(X) = R = r(pc, pa) =
log(

pa

pc
+ 1); cf. (7.1). For small pc and large pa , the risk level of the customer R

tends to be large, which leads to a large average loss of the customer. We further
assume that the insurance policy S(X) is linear in X, i.e., S(X) = sX, where s ∈
[0, 1] indicates the coverage level of the insurance. Hence, the effective loss is given
by ξ = (1−s)X. The average effective loss given the insurance coverage level s and
the action pair (pc, pa) is E(ξ) = E((1−s)X) = (1−s)E(X) = (1−s) log(

pa

pc
+1).

When s is large, the effective loss is small. As a result, we arrive at
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E[H(ξ)] :=
∫

xi∈R≥0

H(x − S(x))f (x|pc, pa)dx

= 1
R

∫ ∞

0
e[γ (1−s)− 1

R
]xdx

= 1
1−γ (1−s)R

= 1
1−γ (1−s) log(

pa
pc
+1)

.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(7.3)

The loss is finite if γ (1− s)− 1
R

< 0, i.e., when

1− γ (1− s) log

(
pa

pc

+ 1

)
> 0. (7.4)

Otherwise, the loss expectation will eventually become infinite, i.e., E[H(ξ)] → ∞.
In this regime, no insurance scheme can be found to mitigate the loss. Condition
(7.4) gives a feasible set of parameters under which cyber insurance is effective and
provides a fundamental limit on the level of mitigation. Note that minimizing (7.3)
is equivalent as minimizing γ (1 − s) log(

pa

pc
+ 1) under the feasibility condition

(7.4). The customer’s problem can be rewritten as follows:

min
pc∈[0,1] Ju(pc, pa, s) := γ (1− s)R = γ (1− s) log(

pa

pc
+ 1)

s.t. 1− γ (1− s) log(
pa

pc
+ 1) > 0.

⎫
⎬

⎭ (7.5)

Problem (7.5) captures the customer’s objective to minimize average effective loss
given the attack level pa and the insurance coverage level s. On the other hand, the
attacker aims to find the optimal attack level p∗a that maximizes the average loss
of the customer given its local protection level and insurer’s coverage level s. Such
conflicting interests of the customer and the attacker constitutes a zero-sum game,
which takes the following minimax or max-min form,

min
pc∈[0,1] max

pa∈[0,1]K(pc, pa, s)

s.t. pc, pa, and γ satisfy (7.4)
or

max
pa∈[0,1] min

pc∈[0,1]K(pc, pa, s)

s.t. pc, pa, and γ satisfy (7.4)
(7.6)

where

K(pc, pa, s) := γ (1− s)R + cupc − capa

= γ (1− s) log(
pa

pc

+ 1)+ cupc − capa, (7.7)

The first term of the objective function K captures the average effective loss given
insurance coverage level s, the local protection level pc and the attack level pa .
The second and third terms indicate the cost of the customer and the attacker,
respectively. cu ∈ R>0 is the cost parameter of the customer. A larger cu indicates
that local protection is costly. ca ∈ R>0 denotes the cost parameter of the attacker
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to conduct an attack level of pa . A larger cu indicates that a cyber-attack is costly.
Note that cu and ca can be interpreted as the market price of local protections
and cyber-attacks, and they are known by the insurer. The constraint indicates the
feasible set of the customer. Note that if s, pc, and pa are not feasible, K is taken
to be an infinite cost. Minimizing K(pc, pa, s) captures the customer’s objective
to minimize the average effective loss with the most cost-effective local protection
level. Maximizing K(pc, pa, s) captures the attacker’s objective to maximize the
average effective loss of the customer with least attack level. Note that the minimax
form of (7.6) can be interpreted as a worst-case solution for a customer who uses a
security strategy by anticipating the worst-case attack scenarios.

Furthermore, problem (7.6) yields an equilibrium with saddle-point to the
insurance coverage level s comes as an instance of Definition 3.3 for the two-player
special case:

Definition 7.2 (Insurance Game) Let ASu(s), ASa(s) and ASu,a(s) be the action
sets for the customer and the attacker given an insurance coverage level s. Then
the strategy pair (p∗c , p∗a) is an equilibrium of the zero-sum game defined by the
triple Γz := ({User,Attacker}, {ASu(s), ASa(s), ASu,a(s)},K), if for all pc ∈
ASu(s), pa ∈ ASa(s), (pc, pa) ∈ ASu,a(s),

K(p∗c , pa, s) ≤ K(p∗c , p∗a, s) ≤ K(pc, p
∗
a, s), (7.8)

where K and ASu,a(s) is the objective function and feasible set defined in (7.7) and
by (7.4).

Note that under a given insurance coverage level s, (p∗c , p∗a) must satisfy the feasible
constraint (7.4). Thus, we aim to look for a constrained saddle-point of the zero-sum
game with coupled constraints on the strategies of the players.

Proposition 7.1 Given an insurance coverage level s that satisfies

1− γ (1− s) log

(
cu

ca

+ 1

)
> 0, (7.9)

there exists a unique equilibrium of the zero-sum game Γz from Definition 7.2, given
by

p∗c = γ (1−s)
cu+ca

, p∗a = cuγ (1−s)
ca(cu+ca)

. (7.10)

Proposition 7.1 shows that the saddle-point of the zero-sum game between the
customer and the attacker is related to the insurer’s policy s. Note that when s is
large, both the p∗c and p∗a is small, indicating that both the customer and the attacker
will take weak actions. Moreover, we have the following observations regarding the
saddle-point, i.e., security strategy.

Remark 7.1 (Peltzman Effect) When the insure provides higher coverage level s,
the saddle-point risk of the customer p∗c tend to be smaller, i.e., the customer
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takes a weaker local protection. Such risky behavior of the customer in response
to insurance is usually referred as Peltzman effect [34].

Corollary 7.1 (Invariability of the saddle-point ratio) The saddle-point satisfies
p∗a
p∗c
= cu

ca
, i.e., the ratio of the actions of the customer and the attacker is only related

to cu and ca , and it is independent of the insurer’s policy s. In particular, when

cu = ca , p∗a
p∗c
= 1, i.e., the saddle-point strategy becomes symmetric, as p∗c = p∗a =

γ (1−s)
cu+ca

= γ (1−s)
2cu

= γ (1−s)
2ca

.

Remark 7.2 (Constant Cost Determined saddle-point Risk) The customer has a

constant saddle-point risk level R∗ = r(p∗c , p∗a) = log
(

p∗a
p∗c
+ 1

)
= log

(
cu

ca
+ 1

)

at the equilibrium, which is determined by the costs of adopting protections and
launching attacks. The ratio is independent of coverage level s.

Corollary 7.2 At the saddle-point, the average direct loss of the customer is

E(X) = R∗ = log
(

cu

ca
+ 1

)
, the average effective loss of the customer is E(ξ) =

E((1 − s)X) = (1 − s)E(X) = (1 − s)R∗ = (1 − s) log
(

cu

ca
+ 1

)
, the average

payment of the insurer to the customer is E(sX) = sE(X) = sR∗ = s log
(

cu

ca
+ 1

)
.

Corollary 7.1 indicates the constant saddle-point strategy ratio of the customer
and the attacker, which is determined only by the cost parameters cu and ca , i.e.,
the market prices or costs for applying certain levels of protections and attacks,
respectively. As a result, the saddle-point risk level of the customer is constant, and
only determined by the market as shown in Remark 7.2. Thus, the average direct loss
is constant as shown in Corollary 7.2. However, when the insurance coverage level
s does not satisfy (7.9), the insurability of the customer is not guaranteed, which is
shown in the following proposition.

Proposition 7.2 (Fundamental Limits on Insurability) Given an insurance cov-

erage level s that 1 − γ (1 − s) log
(

cu

ca
+ 1

)
≤ 0, (p∗c , p∗a) does not satisfy the

feasible inequality (7.4), thus, the average direct of the customer is E(X) → ∞,
and the zero-sum game Γz from Definition 7.2 does not admit a finite equilibrium
loss. Thus, the customer is not insurable, as the insurance policy cannot mitigate
his loss. The insurer will not also provide insurance to the customer who is not
insurable.

From (7.4) and (7.9), we also get:

Proposition 7.3 Under an insurable scenario, the cost parameter of the customer
must satisfy cu < ca(1 − e−γ (1−s)), and the local protection level of the customer
must satisfy pc >

γ (1−s)
ca

eγ (1−s).

It is important to note that the customer must pay a subscription fee T ∈ R≥0 to be
insurer. The incentive for the customer to buy insurance exists when the average loss
at equilibrium under the insurance is lower than the loss incurred without insurance.
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If the amount of the payment from the insurer is low, then the customer tends not
to be insured. In addition, if the payment is low, then the risk for the insurer will be
high and the customer may behave recklessly in the cyber-space.

7.3.2 Insurer’s Problem

The insurer announces the insurance policy {s, T }, where s indicates the coverage
level, T indicates the subscription, and then the customer’s and the attacker’s
conflicting interests formulates a zero-sum game, which yields a unique solution
as shown in Proposition 7.1, with the corresponding equilibrium loss as shown in
Corollary 7.2. Note that T is the gross profit of the insurer as he charges it from the
customer first, but when the customer faces a loss X, the insurer must pay sX to the
customer. The operating profit of the insurer can be captured as T − sX. The insurer
cannot directly observe the actions of the customer and the attacker. However, with
the knowledge of the market, i.e., the cost parameters of the customer cu and the
attacker ca , the insurer aims to minimize the average effective loss of the customer
while maximizing his operating profit.

Recall Corollary 7.2, the average effective loss of the customer at saddle-point is

E(ξ) = (1− s)E(X) = (1− s)R∗ = (1− s) log
(

cu

ca
+ 1

)
, which is monotonically

decreasing on s. When the customer is under full coverage, the average loss with
the payment T is (1 − s)R∗ + T

∣∣
s=1 = T . When the customer does not subscribe

to an insurance, the average direct loss is R∗. Thus, the customer has no incentive
to insure if the cost under fully coverage is higher than that under no insurance,
i.e., T > R∗. Moreover, for T ≤ R∗, the customer will choose to insure if the
average loss under the given coverage level s is lower than under no insurance, i.e.,
(1 − s)R∗ + T ≤ R∗. Therefore, we arrive at the following conditions, where the
annotation “-c” indicates them as relating to the customer:

Condition 1 (Individual Rationality (IR-c)) The subscription fee must satisfy

T ≤ Tmax := R∗ = log
(

cu

ca
+ 1

)
, so that the customer prefer to subscribe the

insurance.

Condition 2 (Incentive Compatibility (IC-c)) For the subscription fee T ≤ Tmax,
the customer will subscribe the insurance if the coverage level s satisfies s ≥ s0 =
T
R∗ = T

log
(

cu
ca
+1

) .

The customer will enroll only when (IR-c) and (IC-c) constraints are satisfied.
Note that when cu is large and ca is small, i.e., the saddle-point risk level R∗ is high,
Tmax is large and s0(T ) is small, i.e., when the cost of the customer to put local
protections is large, and the cost of the attacker to conduct cyber-attack is small, the
price of the subscription fee is large, but the minimum coverage is low. Note that s0
is monotonically increasing on T , moreover, when T = 0, s = 0, i.e., the customer
will accept any coverage level when there is no charge for the insurance premium.
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When T = Tmax, s = 1, i.e., the customer only accept a full coverage when the
subscription fee is the maximum.

The insurer charges a subscription fee T from the customer, i.e., the insurer has
a gross profit of T . However, the insurer also pays the customer an average amount

of sR∗ = s log
(

cu

ca
+ 1

)
from Corollary 7.2. Thus, the average operating profit of

the insurer is T − sR∗, which must be larger than or equal to 0 so that the insurer
will provide the insurance. Thus, we have the following conditions for the insurer,
again marked by the annotation “-i” hereafter:

Condition 3 (Individual Rationality (IR-i)) The insurer will provide the insur-

ance if T − sR∗ = T − s log
(

cu

ca
+ 1

)
≥ 0.

Recall Proposition 7.2, the insurer will provide the insurance when the customer
is insurable, i.e., inequality (7.9) must be satisfied. Thus, we reach the following
proposition that indicates the feasible coverage level.

Condition 4 (Feasibility (F-i)) The coverage level s is feasible, i.e., the customer
is insurable, when s > 1− 1

γ log
(

cu
ca
+1

) .

Conditions 3 and 4 indicate the individual rationality constraint (IR-i) and the
feasibility constraint (F-i) of the insurer, respectively. With the (IR-c) and (IC-c)
constraints for the customer and the (IR-i) and (F-i) constraints for the insurer,
the insurer’s objective to minimize the average effective loss of the customer and
maximize the operating profit can be captured using the following optimization
problem:

min{0≤s≤1,T≥0} Ji(s, T ) := γ (1− s) log
(

cu

ca
+ 1

)
+ cs(s log( cu

ca
+ 1)− T )

s.t. (IR-c), (IC-c), (IR-i), (F-i).
(7.11)

Note that the first term of the objective function is the average effective loss of the
customer under the coverage s, as the insurer also aims to reduce the loss of the
customer from the attacker. Minimizing the second term of the objective function
captures the insurer’s objective of making profit. Note that parameter cs indicates
the trade-off of a safer customer and a larger profit of the insurer.

Furthermore, the solution of problem (7.11) and the corresponding equilibrium
from Definition 7.2 yields an equilibrium for the bi-level game that can be defined
as

Definition 7.3 Let ASi be the action set for the insurer, ASu(s) and ASa(s)

be the action sets for the customer and the attacker as dependent on
the insurance coverage level s. The strategy tuple (p∗c , p∗a, {s∗, T ∗}) is
called an equilibrium of the bi-level game defined by the triple Γ :=
({User,Attacker, Insurer},{ASu(s), ASa(s), ASi}, {K,−K, Ji}), if {s∗, T ∗}
solves problem (7.11) with the equilibrium objective function J ∗i , and the strategy
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pair (p∗c , p∗a) is the saddle-point value of the zero-sum game defined in Definition
7.2 with the objective function K∗ under the insurance policy {s∗, T ∗}.
Note that the insurer’s Problem (7.11) is a linear programming problem as the
objective function and all the constraints are linear in s and T . Instead of solving this
problem, we first observe that (IR-i) and (IC-c) together indicate that the insurance
policy s and T must satisfy

T = sR∗ = s log

(
cu

ca

+ 1

)
. (7.12)

Corollary 7.3 Equality (7.12) indicates the following observations:

(i) Zero Operating Profit Principle: The insurer’s operating profit is always 0, as
T − sR∗ = 0.

(ii) Linear Insurance Policy Principle: The insure can only provide the insurance
policy s and T that satisfies (7.12), so that the customer subscribes to the
insurance and the insurer provides the insurance.

With (7.12), the linear insurance policy indicates that the ratio of the subscription
and the coverage level only depends on the saddle-point risk R∗, which is deter-
mined by the costs seen in Remark 7.2. It provides a guidance for designing the
insurance policy.

With (7.12), the optimal insurance for the insurer can be summarized using the
following proposition:

Proposition 7.4 The optimal insurance policy for the insurer is

s∗ = 1, T ∗ = Tmax = log

(
cu

ca

+ 1

)
. (7.13)

Proposition 7.4 shows that a full coverage level and a maximum subscription fee are
the optimal insurance policy of the insurer. Together with Proposition 7.1, we have
the following proposition of the equilibrium of the bi-level game.

Proposition 7.5 The bi-level game admits a unique equilibrium (p∗c , p∗a, {s∗, T ∗}) =
(0, 0, {1, log

(
cu

ca
+ 1

)
}). At the equilibrium, the insurer provides a full coverage

for the customer and charges a maximum subscription fee from the customer. The
customer and attacker have no incentives to take actions at the equilibrium as the
cost would be too high. The equilibrium also demonstrates that cyber insurance
will effectively mitigate the loss.

The analysis of the bi-level structure of the game informs the optimal insurance
policies to transfer risks from one node to the insurer. The framework can also be
extended to a scheme over interdependent infrastructures.The cyber risks at one
node can propagate to other nodes when there are cyber, physical, human, and
social interdependencies. The insurance of one node can play a important role
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in well-being of the entire system. We can anticipate that the insurance problem
should take into account network effects. This research can also be further extended
to investigate the impact of dynamic evolutions of the risks on the mechanism of
insurance and the protection behaviors of the agents.

7.4 Disappointment Rates

Extending the framework to the perspective of the customer, one question is to
set the amount of insurance coverage level, or insured amount. Naturally, a person
would buy insurance for the expected loss, and following a systematic method, one
could use optimization and game theory to take actions towards optimizing this
expectation. In principle, it thus seems simple and obvious to:

1. Use game theory to optimize actions for loss minimization,
2. and buy insurance for the expected loss occurring in the worst case (e.g., after

playing a security strategy if we know nothing, or equilibrium, if we know
something about the opponent’s incentives).

This simple approach, however, may fail in practice.
A subjective problem of maximizing expectations is the potential subjective

misunderstanding of the statistical concept of expectation that may incorrectly be
taken as an outcome that “should occur most of the time” (it is “expected”). It is
obvious that such thinking is flawed, as even the expected number of points on a
normal dice is 3.5, but the dice can only come up with integer points 1, 2,. . . , 6.
In playing a game with real-valued rewards (for simplicity since we can now take
� as the familiar ≤ ordering on R), for example, at an equilibrium strategy x∗
that maximizes the payoffs expectable from it, the saddle-point value is nonetheless
an average. This means that in many repetitions of the game, we will precisely
get a reward below and above the average; only the long run average of these
will converge to the expected value. Optimizing an expectation, however, does
not automatically also optimize the fluctuation around it. Consider Fig. 7.2 as an
illustration: there, two actions are shown with different expected outcomes marked
by the vertical lines. Following a loss minimizing paradigm, one would clearly vote
for action a1 here, because action a2 on average causes larger losses. However,
the losses are in both cases random, and differently distributed, and in fact, taking
action a1 leaves a much larger chance of suffering very high damages, as opposed
to action a2, which on average incurs more loss, but will surely not admit as much
damage as is possible by taking action a1. Knowing this, a decision maker could
reasonably argue for action a2, which – seemingly – is a violation of expected utility
maximization, but given the prospects and not only the average losses, deciding for
a2 is still not a case of bounded rationality.

In the concrete incident of the reward being less than the game’s value, the
decision maker or player in the game would be disappointed since it get less from the
game than we expected. Conversely, we may be positively surprised to get more in
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frequency

loss

action a1

action a2

preferred expectation
under a1 worse expectation

but less uncertainty!

Fig. 7.2 Decision making disregarding uncertainty

the opposite case, but the subjective valuation of both does not need to be identical.
Though mathematics considers only the long run average (by the law of large
numbers) as v = limn→∞ 1

n

∑n
i=1 ri , so it does not matter if ri > v or ri < v. But

empirical evidence suggests that people do take either incident differently severe,
as prospect theory describes with help of probability weighting functions (Figs. 5.1
and 5.2).

If an individual is not only striving for maximal average rewards but also seeks
to avoid disappointment, then a further quantity that we seek to optimize is Pr(R >

E(R)), when R is the random payoff obtained from the decision. Thinking in terms
of effective losses, one could also set the limit as proportionally larger than E(R)

or larger than the expectation by a fixed amount that reflects the maximum bearable
effective loss. This would determine the coverage level.

None of this is in fact not covered by standard game theory, which maximizes
E(R) only. The theory of disappointment [7, 14] centers decision making on the
disappointment ratio d = Pr(R > E(R)) for a minimizing, equivalently d =
Pr(R < E(R)) for a maximizing decision maker. It is easy to see that a conventional
equilibrium calculation does not tell us anything about the shape of the random
variable R, which we have to compute from the equilibrium. For a standard matrix
game with real-valued entries, A ∈ Rn×m, the expectation under the equilibrium
strategy (x∗, y∗) is directly computable as v = (x∗)T · A · y∗, and the ratio d can to
be approximated by simulating the game and counting the cases where the random
choice (e∗i )T · A · ej is less or larger than v.

Example 7.1 (Disappointment at Equilibrium in a Matrix Game) Consider the
zero-sum two-player game with payoff structure

A =
(

3 2
1 6

)
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whose equilibrium is x∗ = (5/6, 1/6) and y∗ = (2/3, 1/3) with the saddle-point
v = 8/3.

What would be the disappointment rate that a maximizing first player would
experience if both (the defender and the adversary) follow the equilibrium?

For the answer, observe that the payoff matrix A, only those entries aij < v ≈
2.667 are relevant and count as 1; all others count as zero. This gives the new matrix
of disappointment indicators being

D =
(

0 1
1 0

)

Calling this matrix D, its reward at A’s equilibrium is (x∗)T ·D·y∗ = 7/18 ≈ 38.9%,
which is the probability for a maximizer to get disappointed. That is, even though
both players optimize their behavior, player 1 has a dramatically high chance of not
as much as the equilibrium promised. 

The disappointment rate is always linked to a goal and equilibrium in the game,
and if there are multiple security goals, each can induce its own disappointment
rate. Formally, let a game Γ be given, where player i is minimizing and follows the
equilibrium x∗i , and her/his opponent play x∗−i . The disappointment on player i’s
utility ui is defined as

dui
(ai, a−i ) :=

{
1, if u(ai, a−i ) > E(x∗i ,x∗−i )

(ui)

0, otherwise.
(7.14)

on all choices of pure strategies ai ∈ ASi and a−i ∈ AS−i . Apparently, this function
already depends on the equilibrium, and in turn, including it in the game, makes
the equilibrium conversely depend on the function dui

. More problematically, if
defined as in (7.14), this is a discontinuous utility function, so that none of the so-
far given existence results (Nash’s Theorem 3.2 or Glicksberg’s Theorem 3.3) apply
any more. See Fig. 7.3 for an illustration.

In fact, the discontinuity can even remove all equilibria from the game, leaving
it as one without optima in the sense we are looking for. Restoring the existence of
equilibria then calls for more technical conditions imposed on the game, which we
not further explore here [40].

An immediate way to escape the issue is to redefine the disappointment as a
continuous function, e.g., by putting

dui
(ai, a−i ) := max

{
0, λ · [u(ai, a−i )− E(x∗i ,x∗−i )

(ui)]
}

, (7.15)

for a parameter λ > 0 to penalize the amount of excess over the expected loss.
This gives an amount proportional to the lot of “unexpected” damage, or zero
otherwise (since the expected loss bound apparently was correct). This setting may
be particularly interesting in its account to maybe accept losses that are slightly
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optimized (equilibrium)
expected loss

events of
loss exceeding
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(disappointment)
counted by the
payoff function

0

0

1

jump discontinuity
⇒ Nash’s theorem inapplicable!

loss distribution

disappointment payoff

losslow high

losslow high

Fig. 7.3 Illustration of disappointment rate as utility

more than expected, but with the tolerance against such events to become less and
less the more excess loss we suffer. By scaling the so-defined function by a positive
factor, we can control the tolerance to be more or less.

In the form as (7.15), we are back with a game having all continuous payoff
functions, and the existence of equilibria follows again by fixed point theorems (also
underlying Nash’s original result).

Technically, even simpler to handle are games where the payoffs are not
real numbers but distributions as we described in Sect. 4.5. The disappointment
associated with a random utility X ∼ F(ai, a−i ) whose distribution F depends on
the chosen actions is then given by dX := Pr(X > E(X)), and easy to work out if
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the known distribution F is given (which it is not, if the game is using utilities taking
values in R only). It can be shown that for finite (matrix) games, this is a continuous
function without any further technical modifications like (7.15). The reason is
actually not in the different game concept as such, but rather in the way of modeling
it: while a conventional game is expressed with real-valued utility functions, crisp
payoff values contain not enough information to derive the disappointment rate from
this data. On the contrary, modeling the payoffs as distributions establishes enough
data to (i) define a crisp payoff, and (ii) compute a disappointment rate from it,
both of which can easily go into a conventional equilibrium calculation for the
resulting Multi-Objective Game (MOG). The algorithmic details are very simple,
yet we postpone their presentation until Chap. 12 for the sake of having introduced
helpful some software tools until then.

Distribution-valued games as introduced in Sect. 4.5 have the appeal of allowing
a direct computation of d from the saddle-point as a random variable V , since in
this setting, V comes as a distribution function from which the area d to the left or
right of the first moment is directly computable by integration. This process is even
automatable in software, as we show in Sect. 12.6.1.

Games with payoffs defined from R cannot naturally include disappointment as
a goal to optimize for two reasons:

1. If the utility only comes as a number, such values do not contain the information
about the fluctuation around the mean, and this lost information hence cannot be
included in the optimization. Doing so requires an enriched model, expressing
the utility as a whole distribution, rather than only as a real number. In that
case, however, it is perhaps cheaper and more efficient to use stochastic orders
and distribution-valued games as in Sect. 4.5 directly. Alternatively, one could
include the variance as a second goal to optimize, making the game multi-
objective (see Sect. 3.5.1).

2. The expression Pr(R > E(R)) is in fact the expectation of an indicator variable,
and as such seemingly fits into the game-theoretic framework of optimizing an
expected utility. Involving an indicator function, however, makes the resulting
goal functional discontinuous, so that neither Nash’s theorem, nor any result
building upon it guarantee the existence of an equilibrium. In fact, games
without equilibria are known [38], and the absence of equilibria is explicitly
due to discontinuities in the payoff functions. Fixing this requires a smooth
approximation to the indicator, some proposed examples are found in the
literature [40].

Pessimism and optimism have both been recognized as linked to the shape of
how individuals rate different outcomes of potential actions, expressible by utility
weighting functions with different curvature (convex for a risk seeker, concave for
a risk avoider , or linear for risk neutrality). If we assume u as twice-differentiable,
then the quantity λu(x) := −u′′(x)/u′(x) is the Arrow-Pratt coefficient of absolute
risk aversion [13, pg.23]. Its definition partly roots in Theorem 5.1, since the
derivations “cancel out” the shifting and scaling (the variables a and b in the
Theorem), so that we can think of an individual with utility function u being
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more risk averse than another individual with utility function v if and only if
λu(x) < λv(x) for all x. Note that this applies to decision problems again, and
not to game problems, where the utility would be stochastic and depend on other
player’s actions. In such random outcomes, risk aversion or risk seeking can be
linked to the skewness of the utility distributions [10, 42] and also the weight of
the distributions’s tails (with heaviness of the tails allowing extreme events to occur
more often).

In light of this, let us reconsider the case of distribution valued games under the
�-ordering (of Definition 3.1) again: though the definition of� does not specifically
depend on the third moment or any curvature, it does account for the mass in the
distributions tails, and thus somewhat “controls” parts of the disappointment ratio
(though not being designed for that purpose). A second element of pessimism is
induced by the (not necessarily realistic) assumption of a zero-sum competition.
While mainly adopted for matters of theoretical convenience and ease of modeling,
it may be overly pessimistic to ascribe exactly the opposite of the defender’s
incentives to the adversary. However, this modeling appeals to the concept of
disappointment aversion, and as such can be preferable over the attempt to create
a more accurate adversarial model (see Sect. 6.4 that may still fail to predict the
adversary’s behavior (and hence cause disappointment). In essence, the zero-sum
assumption is perhaps unrealistic in some cases, but it is a provable worst-case
assumption and as such can never disappoint (only lead to positive surprise if the
actual damage suffered is less than what the defender was prepared for).

Reacting on disappointments is in many cases a myopic behavior, which in turn
is occasionally also coined an element of bounded rationality. However, only so if
we define rationality as utility maximizing. A myopic attitude underneath decision
making may also root in the simple thinking of why bother with what could happen
in farer future if this cannot be reliably predicted anyway? Games are designed
to optimize the average over the upcoming eternity, so, why should an individual
care for a long run average revenue if the game cannot run forever in practice?
Such thinking is particularly justified in security where the ability to take damage
is naturally bounded from below. Even if the game guarantees some acceptable
(desired) average reward, this assurance does not extend to saving the defender from
suffering arbitrarily large damage. Thus, a myopic element is one of survival for the
defender, since it cannot allow for the (cumulative) damage to eventually “destroy”
the asset (kill the defender) before the game along further repetitions compensates
these losses by larger rewards to get closer to the equilibrium payoff (reached in the
theoretical limit).
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Chapter 8
Patrolling and Surveillance Games

Under observation, we act less free, which means we effectively
are less free.

E. Snowden

Abstract Patrolling and surveillance games both deal with a chasing-evading
situation of an adversary trying to escape detection by either a mobile defender
(patrolling) or a fixed defender (surveillance). Both kinds of games are played
on graphs as abstract models of an infrastructure, and we review a variety of
closed-form solutions for optimal patrolling in different classes of graph topologies.
Applications include patrolling along lines (borders, pipelines, or similar), harbors
(tree-structured graphs), and large geographic areas in general (planar graphs and
maps). For surveillance and patrolling, we give hints on how to estimate the
necessary resources, and how to include imperfectness and uncertainty, related to the
detection capabilities, but also the chances of the adversary escaping the view of the
patroller or surveillance. In complex terrain, we will discuss the use of simulation
and empirical games (over real-valued and stochastic orders).

8.1 The General Setting

Whenever a certain terrain defined by physical boundaries (museum, airport, city
district, warehouse, or similar) needs protection, patrolling games may be a model to
consider. They assume a mobile defender obliged with the continuous surveillance
of the area, but who is (generally) unable to rely on sensor information or has
otherwise no means of seeing remote areas beyond its proximity. If remote sensing
is doable, we are getting into surveillance games that we postpone until Sect. 8.8,
not the least so, since it changes the nature of the game from a pursuit-evasion style
for patrolling, into the different matter of optimizing sensor placement.

In a patrolling game, the defender usually acts alone and on its own. This is in
somewhat contrast to practical situations of security guards, which often work in
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teams, have access to surveillance equipment and are in continuous contact with
each other. However, towards a simplification of the models, and without loss of
too much generality, we may think of a collaborating team of defenders as a single
entity, replacing the multitude of persons by the ability to check several locations
at the same time. This amounts into a change of the area’s topology, but leaves the
underlying ideas and results about patrolling games unchanged.

Most (but not all) patrolling game models discussed hereafter are discrete, and
start by dividing the terrain into a finite set of zones. This division can adhere to
natural circumstances, such as floor layouts in buildings, or geographic regions
separated by borders, rivers, mountains, but is generally unconstrained and up
to our own choice. Commonly, some zones define regions of particular interest
or importance (e.g., offices), while others are of less or secondary interest (e.g.,
hallways). As a systematic aid for the division, we may ask for how many zones are
meaningful, and there is a famous theorem about art galleries that may help here.

8.2 The Art Gallery Theorem

This elegant result in combinatorics and graph theory is concerned with the
following situation: given a museum with precious paintings on the walls, whose
floor plan constitutes a polygon with n edges (walls), answer the following question:
how many stationary guards (each with a 360 degrees field of view) are necessary
to keep all paintings (walls) in vision and protected?

Computing the minimal number of guards required is NP-hard in general, but
there is a simple upper bound to this number given by the following theorem:

Theorem 8.1 (Chvátal’s Watchmen Theorem [11]) If S is a polygon with n

vertices, then there is a set T of at most n/3 points of S such that for any point
p of S there is a point q of T with the line p—q lying entirely in S.

The points in T are exactly the surveillance watchmen, or cameras, while the
mentioned line is the line of sight from the camera placed at point q to the wall
(painting) at position p. Chvátal’s original proof was shortened by S. Fisk [15] into
a five line argument of unbeatable elegance: treat the floor layout as a planar graph
G, and add an artificial vertex v0 that is connected to all vertices in G, making up
the planar graph G′. By the four-coloring theorem [8], we can color G′ using four
colours, which, excluding the color for v0 leaves G as three-colorable. Now, let T be
the smallest set of vertices that all have the same color (there are only three of them
to choose from). Then, |T | ≤ n/3 necessarily. Moreover, every point p in S lies in
some triangle (because every planar graph can be triangulated), and every triangle
in S has a point p ∈ T on it. Since the triangles are convex, there must be a line of
sight from q to p, thus proving the theorem. Figure 8.1 depicts the proof idea.

Remark 8.1 Though the art gallery theorem allows for an architecture of arbitrary
shape, it nonetheless assumes no “holes” in the layout, such as a patio that would be
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(a) Initial terrain (b) Triangulation into zones
and 3-coloring

(c) Guard placement (blue
nodes)

Fig. 8.1 Art gallery theorem illustration

drawn as an inner polygon on its own (see Fig. 8.2a for an example, where the inner
gray area could be a mountain, for instance). A deeper look at the argument above
reveals that it implicitly uses Jordan’s curve theorem to assure that the interior and
the exterior of the polynomial are both connected regions, so that (i) the connection
to the outer “artificial” node retains a planar graph, and (ii) the triangulation is
possible without troubles. As long as the museum’s layout is drawable by a single
polygon, the theorem applies. Otherwise, we refer to more refined versions thereof,
collected in [21].

8.3 From Art Galleries to Patrolling Games

The art gallery theorem is helpful for both, patrolling and surveillance games,
since:

• it helps with the definition of zones by referring to triangulation of the area,
• and it also upper-limits the number of surveillance cameras (or guards) in terms

of the area’s boundary geometry: no more than n/3 cameras with 360 degrees
panoramic view would be required for n walls to the outside.

Once the terrain is divided into zones, or locations, edges may express reacha-
bility of one zone from another. Figure 8.2 shows some examples: a natural habitat
(Fig. 8.2a) may have a mountain in the middle, so that zones are reachable from
each other if they are adjacent. Other terrains may be different, such as buildings
(Fig. 8.2b) or harbours (Fig. 8.2c), define the edges in the graph in terms of physical
reachability over doors, docks, or similar. For the building, but also for any other
terrain, we can color the graph nodes to indicate the criticality of a zone, using
a simple scale like green/yellow/red to denote normal, medium and high security
areas.

The output of this modeling defines a graph that is the “playground” for the
actual patrolling game. The use of a game-theoretic treatment lies in the insight of
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Fig. 8.2 Example of dividing
different terrains into zones

(a) Natural habitat

(b) Building, with color codes indicating zone criticality

(c) Harbour
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how the patroller should randomize its patrols to prevent being predictable by the
attacker. However, the humble maximum entropy heuristic [16] that prescribes to
uniformly at random visit each location 1, 2, . . . , n with the same likelihood 1/n is
also not recommended [5]. Game theory helps here to find an optimal randomization
strategy.

In the following, let the playground for the patrolling game be a graph G =
(V ,E) with n = |V | vertices that correspond to zones that need regular checkups,
and edges between zones i, j , whenever zone j is reachable from i. Depending
on the topology (geography) or other constraints, it may be convenient to let G be
directed (e.g., if a zone is reachable from another, but the direct way back is not
possible), or to weigh the edges, for example, by assigning distances or other costs
to them. We will make use of these modifications where appropriate.

8.4 A Simple Matrix Game Model

In the simplest setting, the strategies for both, the patroller and the attacker, are
just visiting the spots or zones that correspond to the nodes in the graph (cf.
Example 3.5). Both players pick their location i, j to visit (either for checking or
for causing damage), and the game rewards the players accordingly with

u1(i, j) = −u2(i, j)=
{

0, if i=j , i.e., the guard catches the intruder at position i;
1, if i �= j , i.e., the intruder went uncaught,

which defines the (n × n)-payoff matrix A for a loss-minimizing defender as
player 1. This is a diagonal matrix, and games with such payoffs admit closed
form solutions that we will describe in more detail in Sect. 12.3.3. The particular
game defined above has the saddle-point value is val(A) = 1/n. In a slight
generalization, one could redefine the diagonal elements with the security clearance
level of different zones, corresponding to the potential loss of business value or the
amount of damage expected in zone i when the adversary is not discovered there.

Off-diagonal nonzero elements may be inserted if there are chances that the
defender being in a zone will notice (or otherwise check) a nearby zone directly
or a remote zone by using surveillance aids (including fellow guards patrolling at
the same time).

In any case, this modeling is very simple and appealing for its computational
feasibility, since the size of the graph, i.e., the number of zones, directly determines
the size of the game.

However, this model oversimplifies practical matters, since it may prescribe
practically cumbersome strategies: imagine the guard being instructed to check far-
away rooms repeatedly, leaving aside locations along the way, which may intuitively
appear reasonable to check first. Nevertheless, strictly following the randomization
would mean, for example, checking the first floor (of a building), then, e.g., the
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27th floor, and then go back to check the 3rd floor again, and so on. Such a naive
randomization may just not be feasible in practice.

A more informed model [25] adds the cost for changing strategies over repeti-
tions of the game: in the graph, let us label edges with the distances that the guard
has to overcome when going from location i to location j . It is a straightforward
matter to run a Floyd-Warshall shortest-path algorithm [12] on the so-obtained
weighted graph, to obtain a distance matrix S = (sij )i,j∈V , giving the shortest travel
distance sij from zone i to zone j . Adding this cost as a secondary minimization
goal in addition to the aim of catching the intruder makes the game multi-objective,
and the techniques and solution concepts from Chap. 3 apply. We will postpone an
algorithmic solution to the problem until Sect. 12.5; specifically, the equilibrium is
obtained from solving problem (12.6).

8.5 Graph Traversal Games

The original term “patrolling game” has been introduced in the literature to describe
a class of games being played on a graph, yet adding an element of time to
the consideration (which was not present in the previous section, other than for
the game being repeated at its natural periodicity, e.g., a work-day, shifts, or
similar) [5].

Fix a discrete time horizon T ∈ N and consider the game played over the finite
period T = {0, 1, . . . , T − 1}. We may think of T as defining a shift for the
patroller, and the definition of its length is duty of some authority, obliged to pick T

with respect to effectiveness in terms of cost criteria or other constraints. Later, we
will give results supporting this choice.

As before, the attacker randomly picks a zone to visit (and cause damage, steal
sensitive data, do poaching, etc.) over a time-span of m time units starting at time τ ,
thus being in zone i for the interval I = {τ, τ + 1, . . . , τ +m− 1}. The pair (i, I )

then fully describes this attack strategy.
The patroller (defender), in turn takes routes through the graph, visiting a zone in

each time unit. The patrollers strategy is thus a walk w : T → V , for which w(t)

gives the current location of the patroller at time t = 0, 1, . . . , T − 1.

Remark 8.2 The terms “walk” and “path” are often used synonymously, but some
authors distinguish the two as a walk admitting cycles in graph (meaning that a
location may be visited along a walk more than once), while a path visits each
location only once; in a way, it is the most direct (not necessarily shortest) route
between two locations. We shall not make much use of this distinction in the
following, and will use the terms walk and path widely synonymous.

The intruder is caught if the patroller visits the attacker’s location during the
time when it is active, i.e., if i ∈ w(I) for the defender’s strategy w and attacker’s
strategy (i, I ). Correspondingly, the game is 0-1-valued in the sense of paying
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u1(w, (i, I )) = −u2(w, (i, I )) =
{

1, if i ∈ w(I);
0, otherwise.

with the long-run average over u1 again being the likelihood for the attacker to get
caught. For repetitions, it is useful to think of T to define a period of the game,
i.e., a single round of the game runs from time t = 0 until time t = T − 1, and
the game starts afresh at time t = T and runs until time t = 2T − 1, and so
on. For this to be meaningful, we need to constrain the walks to start and finish at
the same location. This actually simplifies matters of analysis, as it lets us assume
that attacks take place equiprobable in any time interval. Nevertheless, repetition is
no necessity, and the literature distinguishes one-shot from periodic variants, with
different results about either type. Hereafter, we let Γ o denote the one-shot variant,
where the game is played over only a single period T , and we let Γ p be the periodic
version just described. For both variants, we add the parameters V, T and m, to
express properties of the game that depend on these values.

It is straightforward to set up another matrix game in this setting, if we fix
a set of walks (routes), and consider all possible combinations of location i and
interval I of adversarial activity there. The number of such strategies will become
considerably large, so that methods for strategy reduction appear in order and will
receive attention later.

Games defined in the framework above admit a set of closed form results
about their saddle-point values, i.e., chances to catch the intruder. Among the most
important facts [5] are the following:

1. val(Γ (V, T ,m)) is nondecreasing in m and does not increase if edges are added
to the graph, irrespectively of whether the game is one-shot or periodic. This is
due to the fact that catching a “faster” attacker (using a smaller m) is less likely
than catching a slower one. Also, adding new strategies to the game (a new edge
to use for a walk) cannot worsen the situation of the defending patroller.

2. val(Γ p(V, T ,m)) ≤ val(Γ o(V, T ,m)), since the walks in the periodic game are
constrained (see above) over those in the one-shot version.

3. If two adjacent zones i, j are merged into one new zone k, where the zone k is
connected to all previous neighbors of i and j , then the value of the game on the
so-simplified graph becomes larger or equal to the original value (irrespectively
of whether the game is repeated or one-shot). Informally and intuitively, this is
because the patroller is now checking two zones i, j at once by visiting location
k, provided that the optimal route in the original is played “accordingly” on the
smaller graph.

4. 1
n
≤ val(Γ (V, T ,m)) ≤ m

n
, for both, Γ = Γ o and Γ = Γ p and any

configuration (V , T ,m). Equality at both ends of the range is achievable by
uniformly random strategies:

• If the defender uniformly at random picks a location and waits for the attacker,
then the minimum value bound is attained.

• If the attacker uniformly at random picks a location to attack for a fixed
interval I , then the maximum bound to the value is attained.
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5. Regarding the shift length T , the following can be useful to make model design
choices:

• Extensions are not doing better, i.e., val(Γ o(V, T + 1,m)) ≤ val(Γ o(V, T ,

m)). This is because the attacker retains at least the same strategies in the
shorter game, but gets more chances to act due to the longer period. This does
not hold for periodic games, as counterexamples show [5].

• Longer shifts can be better of the game is repeated: val(Γ p(V, k · T ,m)) ≥
val(Γ p(V, T ,m)) for all k = 1, 2, . . ., simply because the patroller can repeat
any optimal T -periodic walk in Γ p(V, T ,m) for k times in val(Γ p(V, k ·
T ,m)) for at least the same success rates as in the shorter game. However,
there are more strategies available to the patroller in the game with period kT ,
so the value may even increase.

6. Optimal generic strategies: If a patrol w is such that a node i appears on every
sub-path of w of length m, then we call this strategy intercepting, since it
will eventually intercept every attack on nodes that it contains. A set of such
intercepting strategies such that every node in V is contained in an intercepting
strategy is called a covering set. A covering strategy is a uniformly random pick
from a minimal (in terms of cardinality) such covering set C of patrols.

Likewise, for the attacker, if a patrol w is such that it cannot at the same time
intercept two nodes i and j within the time-span m, we call these two locations
independent. This occurs if either location i and j are so far from each other
that it takes longer than m to traverse from one to the other (in the one-shot
case), or T ≤ 2d(i, j), since the patroller will return to its origin after finishing a
round and thus not reach the other location in time. Suppose the attacker knows
a maximal (in terms of cardinality) set D of independent nodes, then it can pick
a location uniformly at random from D and attack there during an a priori fixed
attack interval m. We call this the attacker’s independent strategy.

These two generic behavior patterns lead to tight bounds for the saddle-point
value of the game, which are

1

|C| ≤ val(Γ (V, T ,m)) ≤ 1

|D| . (8.1)

The defender can play the covering strategy to attain the lower bound. The
attacker can play the independent strategy to attain the upper bound.

Certain classes of graphs admit sharper assertions:

Hamiltonian graphs: These are graphs that have a spanning cycle without self-
intersections, i.e., there is a circular walk that visits each zone exactly once. A
simple example is that of a cycle Cn with n nodes, such as could model the outer
fence of a region, military basis, or similar.
If the graph G is Hamiltonian, then
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val(Γ o(V, T , n)) = m

n
, and val(Γ p(V, T , n)) ≤ m

n
.

Deciding whether or not a graph is Hamiltonian is generally NP-complete [17],
but some sufficient conditions that imply the existence of a Hamiltonian cycle
(though not giving any hint on how to find it), are easy to check:

• The complete graph is Hamiltonian (trivially, but interestingly, since this is
the model where every location is reachable from every other location, such
as is the case on water areas).

• Dirac’s theorem: if every among the n vertices in G has a degree ≥ n/2, then
G is Hamiltonian.

• If any two non-adjacent nodes u, v have degrees that satisfy deg(u)+deg(v) ≥
|V |, then G is Hamiltonian.

Bipartite graphs: A graph G = (V ,E) is bipartite, if its vertex set can be
partitioned into two sets V1, V2 such that edges all run between V1 and V2 or
vice versa, but no edge lies entirely within V1 or within V2.
Important special cases of such graphs include trees, which can naturally arise
for areas like harbors (cf. Fig. 8.2c), airports and many others.
If the graph is bipartite, with a = |V1| ≤ b = |V2| (without loss of generality),
then

val(Γ o(V, T ,m)) ≤ m

2b
and val(Γ p(V, T ,m)) ≤ m

2b
.

Both bounds are tight and attainable if the bipartite graph is complete in the one-
shot case, or if it is complete and T = 2kb for some integer k in the periodic
case.

Line Graphs: These are simply linear arrangements of nodes, i.e., each node has
at most two neighbors.
Important applications include protection of a country’s border area, a pipeline,
or similar. Though such a terrain may not necessarily correspond to a straight
line, the area under protection is often divisible into a sequence of adjacent zones,
yielding a line graph according to the procedure above.
If G is a line and n ≤ m+ 1, then

val(Γ o(V, T ,m)) = m

2(n− 1)
and val(Γ p(V, T ,m)) ≤ m

2(n− 1)
.

The latter bound is tight and is attained for T = 2k(n− 1) with some integer k.
Moreover, the bound (8.1) becomes explicit for line graphs [22], as

⌈
n

�m/2� + 1

⌉−1

≤ val(Γ (V, T ,m)) ≤
⌊

n+m− 1

m

⌋−1

,
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which again applies to both, one-shot and periodic games, where tightness of
both bounds holds for the aforementioned generic covering and independent
strategies. It is interesting to note that the intuitive behavior of traversing the line
(or parts of it) back and forth turns out as optimal under certain conditions on the
length n of the line and the attack duration m [22]. For example, if n ≤ (m+2)/2,
then the patroller can intercept every possible attack by simply going back and
forth between the end nodes. Likewise, if n < m + 1, then the attacker has an
optimal strategy of attacking simultaneously at both ends of the line (diametrical
strategy). Other configurations are slightly more complex and we refer to the
literature (including [7]) for details omitted here for brevity.

Line graphs are of particular use: first, they admits a closed form analysis also
in continuous time (see Sect. 8.7). Second, many general graph topologies are
decomposable into line graphs (trivially, since a single edge constitutes a line graph
already, and any more complex structure can be built from this). We will make use
of this in the next section.

8.6 Strategy Reduction Techniques

8.6.1 Decomposition

This means dividing the graph into smaller parts (line, complete and hence Hamil-
tonian, or others, not necessarily equally sized or isomorphic), to which specialized
results, e.g., closed formulae, could apply. Imagine that the adversary enters the
system at any point, at which it plays the “local game” against the patroller. Each
local game has its own playground being another part in the graph and embodies
all the timing matters of pursuit and evasion between the guards and the intruder.
This elevates our view to see the patrolling as a nested “game of games”. On the
global view, it is a simple diagonal game like in Sect. 8.4 (see Sect. 12.3.3), in which
each payoff is now defined by the subgame played locally. Under this intuition, the
following result is evident:

Theorem 8.2 ([5]) Suppose the graph G = (V ,E) is decomposed into N smaller
graphs Gi = (Vi, Ei) for i = 1, 2, . . . , N such that V = V1 ∪ V2 ∪ . . . VN , and
where two nodes in Gi are adjacent if they were adjacent in G. Then, the value
val(Γ (V, T ,m)) of the patrolling game, whether one-shot or periodic, satisfies

val(Γ (V, T ,m)) ≥
(

N∑

i=1

1

val(Γ (Vi, T ,m))

)−1

.

This means that, in absence of exact results on the perhaps complex zone
topology at hand, we can resort to a decomposition of the graph into smaller
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graphs of easy-to-analyze topology, about which closed-form statements can be
made. Theorem 8.2 then allows to combine the individually optimal strategies for
patrolling the subgraphs into a performance estimate for the original (complex)
topology.

At the same time, decomposition constitutes a heuristic for strategy reduction, if
the smaller graphs can be chosen with a smaller feasible set of strategies.

8.6.2 Contraction

The idea of contraction is, like for domination, to retain strategies only if they
contribute something nontrivial to the game. The intuition is simple: why consider
longer routes in the system, if those bear larger risks for the intruder to be detected
(as they give the defender more time and space to catch it)? If coming over a shorter
route is preferable over the longer route, i.e., the faster strategy dominates the slower
strategy, we can safely exclude them from the game. An algorithm from [9] roughly
proceeds as follows:

1. Compute the pairwise shortest paths between all zones, i.e., nodes in the graph
(e.g., by using the Floyd-Warshall algorithm).

2. Construct a new graph by unifying all shortest paths into the output graph.

Obviously, this procedure retains shortest connections between all nodes. In addi-
tion, we may decide to remove some nodes if they can naturally be covered along the
way of checking other nodes. For example, if three zones are in line, corresponding
to a part v0—v1—v2, so that v1 is bypassed on the way from v0 to v2 or vice
versa, we may be able to merge v1 into one of the neighbors to simplify the model
further.

As an example, consider the graph in Fig. 8.3: initially, all the edges are in the
graph, but retaining only those edges that are on some shortest path (between any
two locations), we end up with two edges being removed in the example graph.

Fig. 8.3 Strategy reduction
by retaining shortest paths
only 1

3
2

+

+

+

+

2

1 4

3

7 1

1 6
2

3

(a) All nodes reachable

1

3
2

2

1 4

3

1

1
2

3

(b) Shortest paths



170 8 Patrolling and Surveillance Games

8.6.3 Symmetrization

Less obvious is the possibility of treating certain short paths in the graph as
“equivalent”, if we can reasonably assume that attacks occur equiprobable on them.
This technique is called symmetrization [5] and best illustrated by an example:
consider the graph in Fig. 8.4, where nodes 2 and 3 are symmetrically arranged
around the path from 1 to 4. Thus, patrolling through the nodes 2 and 3 and randomly
attacking nodes 2 and 3 is essentially no different to treating these two possibilities
as a single scenario, without changing the actual value of the game. More formally,
we can look for an automorphism on G. This is a permutation π : V → V that
maps a graph G into the graph G′ = (π(V ),E′) with (u, v) ∈ E′ if and only if
(π−1(u), π−1(v)) ∈ E, i.e., there is an edge in G′ if and only if the same edge is in
G (likewise defined for undirected graphs). Intuitively, an automorphism thus only
“renames” the vertices but leaves all neighborhood relations (edges) unchanged.

Under such an automorphism π , we can call two patroller strategies, i.e., walks,
w1 �= w2, equivalent, if w1 maps to w2 under π . For the example graph in Fig. 8.4,
an automorphism would be the mapping π = {1 �→ 1, 2 �→ 3, 3 �→ 2, 4 �→ 4,
5 �→ 5}, so that the walk 1→ 2→ 4 under π maps to 1→ 3→ 4 and vice versa,
thus making them equivalent. Likewise, an attacker possibly picking locations i, j

makes no difference in choosing one or the other, if π(i) = j and π(j) = i. In that
case, we call the locations i and j again equivalent.

The crux of knowing a set S = {s1, s2, . . . , sd} of equivalent strategies (for either
the patroller or the attacker) is that we can treat S as a single strategy, in which
we uniformly at random pick an element to play in the actual game. That is, the
game’s setup and analysis has all equivalent strategies condensed into single entities,
while for the actual game play of such a (condensed) strategy S, the player would
uniformly pick a random element from S and play it. The choice of different such
sets S is, however, optimized by game theory. The resulting games typically have
less strategies and are thus easier to study, since the value of the game remains
unchanged upon symmetrization [1, 2].

Fig. 8.4 Kite graph

3

2

1 4 5
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8.7 Further Variations of Patrolling Games

8.7.1 Patrolling in Continuous Time

In continuous time, the setup is as before, with the following changes [6]:

• The attacker can pick any position in the graph, not necessarily only vertices, but
it can also be on any point on an edge.

• a patroller’s strategy is a function w : [0,∞)→ V that satisfies d(w(t), w(t ′)) ≤∣∣t − t ′
∣∣ for all t, t ′ ≥ 0, where d is the distance function on the graph, being a

metric in the topological sense (see the glossary for a formal definition).
• The time horizon is infinite, so that periodic versions of the game merely appear

if a walk is cyclic.

The remaining parts of the setting go unchanged, i.e., the attacker still picks a
position x to attack during a time interval I = [y, y+r] ⊂ [0,∞) when the attacker
hits us at time y for duration r . Many of the previous results hold in a similar form
for continuous games, such as the bound (8.1) translates into

r

�CPT

≤ val(Γ ) ≤ r

�G

,

in which �G is the total length of G, which is just the sum of all edge lengths, and
�CPT is the length of a Chinese Postman Tour (CPT). This is a cycle in G that
visits every node at least once, but, unlike in the Traveling Salesperson Problem
or for a Hamilton cycle, is allowed to visit vertices more than just once. Still, we
are interested only in the shortest such tour, but the relaxation lets us compute the
shortest such tour polynomial time [14].

8.7.2 Accumulation Games

Some patrolling games are not concerned with catching an intruder itself, but with
cleaning up his “footprints”. For example, if the intruder leaves a certain amount of
hazardous material in an area, which the defender may not clean up to the desired
amount, then the game is lost for the patroller (likewise, if the patroller gets enough
of the attacker’s leftovers collected, the game ends in favour of the defender). These
games enjoy many applications, such as for example, for keeping the pollution of a
region under control.

Such models employ similar ideas and concepts as described above, and have
been studied in [3, 20], with explicit optimal strategies for the attacker being known
in various configurations of the game [4].
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8.7.3 Covering Games

Similar to patrolling, yet different in the way the game is set up is the model [23]
related to guarding against terrorist attacks on airports. In a nutshell, the defender’s
strategies are to guard (or not guard) certain locations, while the attacker’s intention
is to hit the same locations or at least cause maximal damage. Each strategy (for both
players) is tailored to the particularities of the protection and the attack and damage
potential for the adversary. Eventually, it is again a game where the defender selects
an area to protect and the second player chooses an area to hit. It is generally a
nonzero-sum game, since the defender is additionally constrained to assign limited
resources to the defense (thus enforcing perhaps a reassignment at random from
time to time, if not everything can be covered continuously and at all times), and the
gain for the attacker is the damage, and not equal to the expenditures of the defender
(who has a gain from protecting its area, but also costs by doing so).

8.8 Surveillance Games

Surveillance extends patrolling by adding stationary equipment and other aids
to the protecting player. There is no apparent consensus in the literature on
how a surveillance game is typically defined, but the most common problem
summarized under the term concerns the optimal placement of sensors. The meaning
of “optimal” differs between applications, and includes metrics of field of view
coverage [10, 18, 19], localization error, rates of detection [24], or others. Generally,
the problem is thus one of multi-criteria optimization, in which cost constraints are
commonly included. In light of the latter, we may also seek to optimize the amount
of redundant sensor coverage (i.e., zones that are covered by multiple sensors,
watchmen, or other means at the same time). The example formalization given
below has this secondary goal included.

As before, the modeling starts with a division of the area into zones or locations
of interest, and introducing variables to measure the coverage of zones by the
surveillance equipment layout. The Art Gallery Theorem, and its relatives [21],
provide us with upper bounds to the number of sensors required. Surveillance games
strive for lower bounds and the additional information of where to optimally place
them. Note that the short proof of Theorem 8.1 is nonconstructive and silent about
where to place the watchmen; it exploits the mere existence of a (usually non-
unique) coloring to assert the claimed number of positions. Finding the coloring
itself is the computationally expensive part.

A simple yet instructive modeling is the following, based on [13]: let the zones
be enumerated from 1, . . . , n, and for each possible sensor location (not the sensor
itself, since we assume all of them to be identical), define an indicator variable

sj :=
{

1, if the sensor is located at location j ;
0, otherwise,
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where the variable j runs over all possible sensor locations, abstractly enumerated
as j = 1, 2, . . . , m, but augmented by background information on the real physical
locations. This background information then determines the performance indicator
and region cover set, which are

λij :=
{

1, if zone i would be covered by sensor at location j ;
0, otherwise,

Ni :=
{
j : λij = 1

}

Overall, we are interested in a full, or at least maximal, coverage of the entire area,
so we define a third indicator to tell whether a region is covered by any sensor:
put mi := 1 if and only if a region i is covered by some sensor, and set to zero
otherwise. Likewise, we are free to define another indicator to account for multiple
sensors covering the same area. Note that this kind of redundancy can be wanted,
e.g., if the area is important and we care for reliability of the surveillance system, or
unwanted, if cost is the primary concern, and the surveillance sensors are expensive
or difficult to install or maintain. For simplicity, we leave the problem formulation
with a single goal, leaving further goals as straightforward extensions to the above
modeling.

Zones may have individual importance (values) for an attacker, which we reflect
by assigning a weight αi to the i-th zone. In absence of knowledge about the
attacker’s intentions or value that it assigns to the nodes, we may substitute our
own security clearance or business value located in a zone or node as the value that
it has for the attacker (worst-case assumption giving a zero-sum model).

The overall goal function for the optimization then comes to a sum of these
scores, conditional on whether or not the zone is covered. Formally, the total score,
measured in units of value for the zones, is then

∑
i∈Zones αi ·mi .

Budget constraints can come in different forms, such as limits on the number of
sensors, total cost to install sensors at different locations, and similar. If only the
number of sensors is constrained by a maximum number s, but we do not care for
cost, we add a constraint

∑
j sj ≤ s. If a sensor at location j has a cost cj , and

the total cost must not exceed a budget limit C, then the respective constraint is∑
j sj · cj ≤ C. It goes without saying that the set of constraints is freely definable

for the application at hand, and our choice is made only for illustration purposes.
The resulting problem is of mixed-integer kind, and stated as follows:

maximize z =∑
i αi ·mi

subject to
∑

j∈Ni
sj −mi ≥ 0 for all i (full coverage);∑

j sj ≤ s; (limited number of sensors)∑
j sj · cj ≤ C; (limited installation budget)
sj ,mi ∈ {0, 1} for all i, j.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(8.2)
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Only the first and the last constraint are necessities, since the cost constraints can
vary and depend on the context. The first constraint assures that the i-th zone
is covered by a sensor, and the last constraint defines the variables as decision
indicators. This prevents fractional assignments, like “0.5 sensors”, which would
not be meaningful.

The tricky part when implementing (8.2) is the definition of the set Ni , since this
depends on the physical characteristics of the sensor (camera’s field of view, motion
detection’s range and resolution, or similar). Further challenges and modifications
of (8.2) include the following:

• Alternative goals: the definition of other relevant goals, such as location or
motion detection errors, backup coverage (i.e., multiple sensors for the same
location), up to matters of privacy infringement and user’s convenience in
presence of the surveillance system[24]. The latter two factors have no general
mathematical model and must rely on empirical studies (interviews), besides
being tightly constrained by legislation (e.g., the EU data privacy regulation or
others).

• Imperfect performance: if a sensor is not fully reliable, then a straightforward
modification to account for errors is letting some of the decision variables
range over the unit interval [0, 1] rather than {0, 1}. For example, λij ∈ [0, 1]
can express a partial coverage of the i-th zone by a sensor, expressed as a
(percentage) fraction of the zone’s area. Likewise, redefining mi := Pr(sensor
detects adversarial activity in zone i) accounts for not fully reliable detection
machinery. Though this leads to a partial relaxation of the mixed integer problem
(which eases matters of solving it), this comes at the price of new challenges
concerning reliable estimates for the now involved probabilities.

Even in an exact form like (8.2), closed form solutions to the optimization
generally do not exist (or are at least unknown).

The above computational and modeling tractability matters merit the use of
simulation for the surveillance problem. Here, we basically replace the goal function
by a white-box simulator outputting the sought score(s), e.g., detection rates, motion
errors, or others. Problem (8.2) models a static placement of sensors, but does not
account for a rational adversary seeking to escape detection. A surveillance game
extends the placement problem in this way:

Player 1 (the defender) is in charge of placing the sensors; a repeated game
herein assumes that the sensory is mobile (thus, bringing the concept close to
a patrolling game again, though the defender’s strategy is no longer constrained
to be a walk in a graph).

Player 2 (the attacker) plays “cops and robbers” with the defender, thereby
bypassing locations that the defender would check (e.g., by placing sensors),
and aiming at its own goal(s), which can include (but are not limited to):

• reaching a certain target zone: APTs, as being highly targeted attacks,
typically fall into this category, since the goal is reaching a vulnerable spot
to hit a maximum number of secondary targets in a single blow.
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• causing damage in as many or as valuable zone(s) as possible: this is also
relevant for APTs, insofar it models phases of information gathering to
prepare for the planned attack.

A game can be useful to circumvent the NP-hardness of typical sensor placement
problems, and be interesting to account for hypothesis on the adversary’s behavior.
This can be integrated by making the game Bayesian, with different adversaries
playing against the defender. Modeling this is subject of independent lines of
research (such as crime prediction or adversarial risk assessment; see Sect. 6.4), but
we emphasize the following possibility: when a priori information about an attacker
is available telling that some locations will be hit more likely than others, then we
may convert the set of possible locations, i.e., the strategy space for the attacker,
into an equally sized set of adversary types, each of which exclusively attacks the
respective location. The a priori information on the likelihood of locations being
under attack then naturally translates into the same likelihoods imposed on the
attacker types, and a PBNE (see Definition 4.3) is the proper solution concept. We
will come back to this in the context of the Cut-The-Rope game in Sect. 9.4.

In a simulation, we can let the attacker come over different a priori presumed
routes, and also let it hit different targets with individual likelihoods (thus incorpo-
rating adversary behavior models in a different way), and test the performance of
a proposed fixed sensor placement. This corresponds to a (1 × m)-matrix game, in
which the defender adopts a fixed layout of sensors, and the attacker takes one out
of m possible routes. Transposing the payoff structure, we can also ask for the best
among a given set of n sensor layouts against a fixed route of the attacker (playing
an (n × 1)-matrix game). If n sensor layouts have been fixed, and m routes for
the attacker are presumed, then the game delivers an optimal randomized choice of
sensor layout against the adversary.

In the full modeling with a matrix A = (aij ) ∈ Rn×m, only pure equilibrium
strategies for the defender lend themselves to a physical layout of sensors. If the
game has all equilibria in mixed strategies, then several options are open:

• approximate the optimal mixed strategy by a pure strategy available that is closest
from above or below. Since the optimum must lie between the bounds that the
minimax inequality (3.19) gives, whichever value in

{
max

x=1,...,n
min

y=1,...,m
aij , min

x=1,...,n
max

y=1,...,m
aij

}

comes closer to the optimum can tell which action needs to be taken.
• treat the mixed strategy as if it would be pure, by a partial assignment of

resources. For a mobile sensor (e.g., a mobile ID scanner) this could be a part-
time installment somewhere, or for a team of several patrolling guards, a schedule
that they may follow to check locations at random (similar to a patrolling game),
or on-demand assignment of security guards that do not patrol, but rather protect
their assigned location.
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• adopt a greedy approach by taking the equilibrium probabilities as weights to
prioritize pure actions. That is, we simply implement those actions with the
highest probability in the equilibrium, to the extent that we can afford within
the budget.

References

1. Alonso NZ, Terol PZ (1993) Some games of search on a lattice. Naval Res Logist 40(4):525–
541. https://doi.org/10.1002/1520-6750(199306)40:4<525::AID-NAV3220400407>3.0.CO;
2-B

2. Alpern S, Asic M (1985) The search value of a network. Networks 15(2):229–238. https://doi.
org/10.1002/net.3230150208

3. Alpern S, Fokkink R (2014) Accumulation games on graphs. Networks 64(1):40–47. https://
doi.org/10.1002/net.21555

4. Alpern S, Fokkink R, Kikuta K (2010) On Ruckle’s conjecture on accumulation games. SIAM
J Control Optim 48(8):5073–5083. https://doi.org/10.1137/080741926

5. Alpern S, Morton A, Papadaki K (2011) Patrolling games. Oper Res 59(5):1246–1257. https://
doi.org/10.1287/opre.1110.0983

6. Alpern S, Lidbetter T, Morton A, Papadaki K (2016) Patrolling a pipeline. In: Zhu Q, Alpcan
T, Panaousis E, Tambe M, Casey W (eds) Decision and game theory for security. Lecture notes
in computer science. Springer International Publishing, Cham, pp 129–138

7. Alpern S, Lidbetter T, Papadaki K (2017) Periodic patrols on the line and other networks.
ArXiv:1705.10399v1 [math.OC]

8. Appel K, Haken W (1989) Every planar map is four colorable, vol 98. American Mathematical
Society, Providence. https://doi.org/10.1090/conm/098

9. Basak A, Fang F, Nguyen TH, Kiekintveld C (2016) Combining graph contraction and strategy
generation for green security games. In: Zhu Q, Alpcan T, Panaousis E, Tambe M, Casey
W (eds) Decision and game theory for security. Lecture notes in computer science. Springer
International Publishing, Cham, pp 251–271

10. Bodor R, Drenner A, Schrater P, Papanikolopoulos N (2007) Optimal camera placement for
automated surveillance tasks. J Intell Robot Syst 50(3):257–295. https://doi.org/10.1007/
s10846-007-9164-7

11. Chvátal V (1975) A combinatorial theorem in plane geometry. J Combin Theory Ser B 18:39–
41

12. Cormen TH, Leiserson CE, Rivest RL (1994) Introduction to algorithms. MIT Press,
Cambridge

13. Debaque B, Jedidi R, Prevost D (2009) Optimal video camera network deployment to support
security monitoring. In: 12th international conference on information fusion, 2009. IEEE,
Piscataway, pp 1730–1736

14. Edmonds J, Johnson EL (1973) Matching, Euler tours and the Chinese postman. Math Program
5(1):88–124. https://doi.org/10.1007/BF01580113

15. Fisk S (1978) A short proof of Chvátal’s Watchman theorem. J Combin Theory Ser B
24(3):374. https://doi.org/10.1016/0095-8956(78)90059-X

16. Fox CR, Bardolet D, Lieb D (2005) Partition dependence in decision analysis, resource
allocation, and consumer choice. In: Zwick R, Rapoport A (eds) Experimental business
research. Springer, Dordrecht/Berlin, pp 229–251. https://doi.org/10.1007/0-387-24244-9_10

17. Garey MR, Johnson DS (1979) Computers and intractability. Freeman, New York
18. Hörster E, Lienhart R (2006) On the optimal placement of multiple visual sensors. In:

Aggarwal JK, Cucchiara R, Prati A (eds) Proceedings of the 4th ACM international workshop
on video surveillance and sensor networks – VSSN’06, p 111. ACM Press, New York. https://
doi.org/10.1145/1178782.1178800

https://doi.org/10.1002/1520-6750(199306)40:4<525::AID-NAV3220400407>3.0.CO;2-B
https://doi.org/10.1002/1520-6750(199306)40:4<525::AID-NAV3220400407>3.0.CO;2-B
https://doi.org/10.1002/net.3230150208
https://doi.org/10.1002/net.3230150208
https://doi.org/10.1002/net.21555
https://doi.org/10.1002/net.21555
https://doi.org/10.1137/080741926
https://doi.org/10.1287/opre.1110.0983
https://doi.org/10.1287/opre.1110.0983
https://doi.org/10.1090/conm/098
https://doi.org/10.1007/s10846-007-9164-7
https://doi.org/10.1007/s10846-007-9164-7
https://doi.org/10.1007/BF01580113
https://doi.org/10.1016/0095-8956(78)90059-X
https://doi.org/10.1007/0-387-24244-9_10
https://doi.org/10.1145/1178782.1178800
https://doi.org/10.1145/1178782.1178800


References 177

19. Indu S, Chaudhury S, Mittal N, Bhattacharyya A (2009) Optimal sensor placement for
surveillance of large spaces. In: 2009 third ACM/IEEE international conference on distributed
smart cameras (ICDSC). IEEE, pp 1–8. https://doi.org/10.1109/ICDSC.2009.5289398

20. Kikuta K, Ruckle WH (2002) Continuous accumulation games on discrete locations. Naval
Res Logist 49(1):60–77. https://doi.org/10.1002/nav.1048

21. O’Rourke J (1987) Art gallery theorems and algorithms. The international series of mono-
graphs on computer science, vol 3. Oxford University Press, New York

22. Papadaki K, Alpern S, Lidbetter T, Morton A (2016) Patrolling a border. Oper Res 64(6):1256–
1269. https://doi.org/10.1287/opre.2016.1511

23. Pita J, Tambe M, Kiekintveld C, Cullen S, Steigerwald E (2011) GUARDS – innovative
application of game theory for national airport security. In: IJCAI 2011, pp 2710–2715 . https://
doi.org/10.5591/978-1-57735-516-8/IJCAI11-451

24. Rass S, Alshawish A, Abid MA, Schauer S, Zhu Q, de Meer H (2017) Physical intrusion games
– optimizing surveillance by simulation and game theory. IEEE Access 5:8394–8407. https://
doi.org/10.1109/ACCESS.2017.2693425

25. Rass S, König S, Schauer S (2017) On the cost of game playing: how to control the expenses
in mixed strategies. In: Decision and game theory for security. Springer, Cham, Switzerland
[S.l.], pp 494–505

https://doi.org/10.1109/ICDSC.2009.5289398
https://doi.org/10.1002/nav.1048
https://doi.org/10.1287/opre.2016.1511
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-451
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-451
https://doi.org/10.1109/ACCESS.2017.2693425
https://doi.org/10.1109/ACCESS.2017.2693425


Chapter 9
Optimal Inspection Plans

Truth is confirmed by inspection and delay; falsehood by haste
and uncertainty.

Tacitus

Abstract In this chapter, we consider games for the computation of optimal
strategies of how, how often, and when to inspect along a production line, or general
industrial process. We review basic concepts of statistical tests, conducted whenever
the defender chooses its action to “inspect”, and to understand cheating strategies
for the adversary trying to escape detection along the statistical test. This non-
detection game is then embedded into an outer sequential game over several stages
of inspection, accounting for limited resources and possibilities of the defender to
check repeatedly. We also consider inspections as a defense pattern against advanced
persistent threat (APT), with two models suitable for two distinct type of APTs: the
FlipIt game is discussed as a model when the APT’s goal is to gain longest possible
control over an infrastructure, without wishing to damage or destroy it permanently.
Complementary to this is the Cut-The-Rope game about defending against an APT
whose goal is hitting a vital asset and to destroy or at least permanently damage a
critical infrastructure.

9.1 Repeated, Independent Inspections

An inspection game typically runs between two players, which we hereafter call
the inspector, player 1, and the inspectee, player 2. In many practical cases, the
“inspectee” will not be a rationally acting entity, but rather some object of inspection
that is only partially under an adversarial influence. For example, the inspector could
be in charge of product quality control. The products under check themselves are
clearly not acting against the intentions of the inspector, but an adversary seeking to
damage the company’s reputation may fiddle with the production line to cut down
the production volume by decreasing quality or customer satisfaction due to low
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quality that made it through the checks, because the (rational) adversary tricked the
inspector to miss the deficiencies or flaws.

Our exposition here follows the models presented in [1], and we consider the
object under inspection to define only the “playground” on which both, the honest
inspector and the hostile inspectee act with opposite intentions as follows: The
inspector seeks to detect illegal behavior, and suffers a loss of−1 for every violation
of the inspectee that went undetected. For detecting a violation, the inspector gets
the payoff −a (with a ∈ (0, 1)), and the inspectee receives −b with b > 0. If
a false alarm is raised, then the inspector gets −e and the inspectee receives −h

with 0 < h < b. This (simple) model assumes that alarms are for both parties
undesirable, whereas variations of it may declare a high rate of false alarms as
an attack strategy on its own, driving the alarm response teams into alert fatigue.
The change to the above setting is just a change of sign in the inspectee’s payoff
towards receiving +h for a false alarm. We leave this change of numeric value
without further discussion, except for stressing that the constraints and relations put
on the values a, b, e and h may vary and depend on the application. For example,
one could impose e < a to express that a false alarm is less inconvenient than
a detected violation that equivalently indicated a failure of the defenses violation
(since the latter demonstrates that the safety precautions have already failed).

For the inspection itself, the inspector runs a (statistical) test on the objects or
artefacts presented to him, maintaining an alarm set as a collection of events that
raise an alarm. Generally, the inspector will decide upon alerting others by sampling
either attributes or variables related to the alarm conditions:

• Attribute sampling means testing or estimating the count of items in a population
that has certain characteristic features, based on a small selection of items (a
matter of classical statistics, like inferring the number of smokers in a public
community, based on a survey among a much smaller group).

• Variable sampling regards estimates of values, averages or other characteristics of
some variable (on a continuous scale), to assess whether or not the performance
lies within the limits told by the specification. For example, if the variable is
the amount of electromagnetic radiation emitted by a device, the sampling aims
at judging the whole batch regarding average performance within the (legal or
technical) specification’s limits.

Both techniques are closely related and have applications in accounting and audit-
ing, environmental control, security checks at airports, crime control (by optimized
patrolling), intrusion detection systems, and many others.

The alarm set defined by the inspector is generally a specification of conditions
or circumstances that would raise an alarm. The form of these is generally unspecific
and depends on the application.

Example 9.1 (possible definitions of alarm sets) Some, among many more possi-
bilities to define alarm sets include:

• For standard statistical tests (e.g., quality checks): test statistics (e.g., F-tests
of samples against reference groups), with the alarm set being defined as
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{z > q1−α}, where z is the test statistic, and q1−α is the respective (1−α)-quantile
of the test distribution. We will revisit the particular instance of likelihood ratio
test in Example 9.2 later.

• For intrusion or malware detection, this could be a match of certain (known) virus
patterns found within files, emails or similar. Formally, the representation would
again be a set {virus pattern 1, virus pattern 2, . . . , }, where the alarm is raised if
the inspector comes across any of these patterns.

• For email filtering, the alarm set could be the event of sending more than a
certain limit of emails per hour (e.g., any mail traffic above 100 mails per hour is
suspicious activity).

• For tax fraud [11], one (among many more sophisticated indicators of fraud)
regards the distribution of the first (leading) digit: those should adhere to the
Benford distribution [2], which puts the mass Pr(first digit = d) = log((d +
1)/d) for d = 1, 2, . . . , 9. Any “significant” deviation from this distribution is a
(weak) signal of manipulation in the data (not necessarily adversarial, but at least
a reason to take a second look).

We remark that the test of Benford’s law has much wider applicability than
just tax fraud, and applies to many data series under the condition that these arise
from complex interplay of at least two sources, and have neither a systematic
assignment (like serial numbers, account numbers, psychological prices, etc.)
nor been artificially modified (e.g., truncated, rounded, or similar).

• For credit rating [15], the alarm set could be the set {z > k} for 0 < k < 1 setting
the threshold of the scoring z that typically comes out of a logistic regression
model on the customer’s attributes. It hence depends on the customer, and is
calculated during an “inspection” of the customer to assess credit eligibility.
The threshold value k is a constant and defines the desired minimal score for
eligibility of a credit grant.


As an inspection game is centered on the inspector performing a statistical test,

whose outcome determines the revenues for both players, four basic cases are
possible, which commonly come in arrangement of a confusion matrix:

In statistical test theory, false-negatives are called errors of the first kind, and
false-positive events are errors of the second kind. Most statistical tests (in the
classical sense of test theory) let the test designer fix an acceptance level α for
errors of first kind, which in turn sets the bar on when to reject the test’s hypothesis
(in the example above and many others, the bar is the (1− α)-quantile of some test

Table 9.1 Confusion matrix – general structure

Actual condition

Everything is okay Illegal behavior

Condition decided Everything is okay True positive False positive

Upon the test Illegal behavior False negative True negative
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cases valid under
the null hypothesis

cases valid under
the alternative hypothesis

decision
threshold

false
acceptance

region
(area = β)

false
rejection
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Fig. 9.1 Negative correlation between errors of first and second kind

distribution). It is basically the probability of raising an alarm though everything is
actually okay, and typical values for α used in test theory are 5% or 1% (Table 9.1).

More subtle is the likelihood β for errors of the second kind. We typically have
only implicit control over this parameter (neither can we choose or fix it a priori),
and it negatively correlates with the value of α. Visually, one can think of the test
separating “good” from “bad” cases, but both are randomly distributed around the
respective null- and alternative hypothesis. The area to the left and right of the
decision threshold is precisely the value of α and β that measures the performance
of the test. Figure 9.1 illustrates how the two kinds of errors correlate when testing
a null hypothesis against an alternative. Figure 9.1 visually explains the negative
correlation by shifting the decision bar (vertical line) to the left or right, thus
shrinking and enlarging the α and β areas complementary to one another.

Since the inspector can choose only one of the two error likelihoods, typically α,
the inspectee can try maximizing the error of the second kind to escape detection.
This error is governed by the alternate test hypothesis that the inspector can only
assume, but which the attacker may control (see Fig. 9.1): the inspectee’s strategy
would be shifting the curves close to one another, in order to maximize the second
kind error, i.e., the chances to go undetected with a violation.

The inspection game thus breaks down into two nested games:

1. Maximize the error of second kind to escape detection by the inspector, who only
can choose an acceptable likelihood for false alarms. This is the non-detection
game.

2. Maximize the actual payoff during the inspection itself, with the payoffs defined
as above. This is the actual inspection game.
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Towards a formal model, let us write δ for the statistical test, and let α(δ) be the
error of first kind in the instance of δ that the inspector defines. For a fixed test δ

the strategy of the inspector is only the choice of an alarm set Z, generically taking
the form Z = {δ(x) > k}, where x is the data that the inspector has, δ(x) is the test-
statistic, and k is the threshold defined for the test. This generic formula includes,
among others, all the examples given above.

For the inspectee, a strategy consists of a test cheating strategy ω (whose actual
form depends on how the test works), and a probability q for acting illegal in this
way in the actual inspection game. The value q is what the defender optimizes with
help from game theory. Often, there may be infinitely many ways of fiddling with
the test, but as we will later see (in Sect. 9.1.1), it is often more handy to stick with
a finite set of possible adversarial actions. We let AS2 be the set of all violation
strategies (allowing for an infinitude or continuum, but working out examples using
only finitely many).

The non-detection game is zero-sum and consists of the inspector choosing the
best test among the available ones, to achieve the desired false alarm probability.
Let us write AS1(α) to mean the set of candidate tests with the chosen value α.
Any (strategic) choice δ ∈ AS1(α) in turn defines the alarm set Z in the subsequent
inspection game. The inspectee, in turn, tries to maximize the rate of undetected
violations, β, by choosing ω from the set AS2 of possible violation strategies, i.e.,
the non-detection game has the saddle-point value

β(α) := min
δ∈AS1(α)

max
ω∈AS2

β(δ, ω). (9.1)

Again, graphically, the inspector’s choice is between tests, which determine the
shape of the distributions in Fig. 9.1. The shaping is done by choosing different tests,
while the optimization of β is up to the adversary’s choice of cheating strategy. Note
that the inspection game is of Nash-type, while the inner non-detection sub-game
(that is played whenever the inspectee chooses to cheat in the inspection game),
is of Stackelberg-type, since the inspectee’s cheating strategy follows from the test
that the inspector applies. Opposed to this are the actions of the inspectee, trying to
maximize the area β to the right of the decision bar, which depends on the value α

that is known to both players.
In game theoretic thinking, the inspector wants to maximize the chances of

detecting illegal behavior, by testing for the normal behavior formulated as some
null hypothesis H0. If the adversary acts illegally, then the alternative hypothesis H1
is true, so that H0 should be rejected. The probability for this to happen is known as
the power of the test:

Definition 9.1 (Power of a statistical test) Let δ be a statistical test of some null
hypothesis, and let H1 be any alternative to H0. The power of the test δ is the
probability of rejecting H0 if the alternative H1 is true.

Example 9.2 will show an example calculation of the power. Rephrasing this
definition in formal terms, with
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• H0 being the “baseline”, in the sense of regular/expected/normal situation that
the inspector wants to see, and

• H1 being a potential adversarial influence by the inspectee,

then we have

β(α) := 1− (power of the test against H1) = 1− Pr(reject H0|H1 is true),

where the dependence on α is herein implicit as it determines the testing procedure
(more specifically the boundary between rejection and acceptance regions for the
test statistic. It will follow in precise terms later as Theorem 9.1).

The power of a test is usually not exactly computable, unless all alternative
hypotheses occur with known probabilities. Since those are exactly the strategies of
the adversary deviating from the normal behavior being the null hypothesis H0, one
can simplify matters by assuming only a finite set of actions for the attacker, each of
which results in a different alternative hypothesis H1. For a fixed such hypothesis,
we can work out the power (see Example 9.2), and concretely construct the most
powerful test δ∗ ∈ Δ (in terms of optimal β). This is then the explicit solution to the
inspector’s minimization problem in (9.1).

To assure that (9.1) has a saddle-point, we must in addition impose the following
standard assumption on β as a function of α:

β(0) = 1, β(1) = 0 and β is convex and continuous at 0. (9.2)

9.1.1 Solving the Non-detection Game

For an a priori fixed α, the inspector can directly construct the optimal test for
any given alternative hypothesis, i.e., adversarial action, H1, against the expected
(normal) behavior H0.

For the test, let X be the inspected variable, which, under normal conditions, has
the distribution Pr(X|H0) with density f0(x). Likewise, under adversarial influence
H1 of the inspectee, X has a different distribution Pr(X|H1), with density f1(x).
Figure 9.1 illustrates these densities as the left and right bell-shaped curves.

The test statistic is the likelihood ratio

Λ(x) := f1(x)

f0(x)
, (9.3)

with the convention that Λ := 1 if the quotient takes a “0/0” form, and letting
Λ := ∞, if the denominator is zero. These two special cases should either not occur,
or correspond to situations where the test as such becomes trivial or deterministic.
We will go into more details along Remarks 9.2 and 9.3. Let the auxiliary function
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(b) Testing with continuous densities

Fig. 9.2 Example plots of α(x)

G(λ) := Pr(Λ(X) > λ|H0) denote the likelihood for the quotient Λ to exceed a
given value x under regular circumstances H0.

The decision threshold (see Fig. 9.1) is any value k that lies within the bounds

lim
ε→0

G(k − ε) =: G(k − 0) ≤ α ≤ G(k), (9.4)

with the shorthand notation G(k−0) meaning the limit towards k upon approaching
from the left. To determine k, note that G is generally non-increasing and right-
continuous. If f0, f1 are both continuous and f1 > 0 everywhere, then k is the
unique solution of the equation G(k) = α, as in Fig. 9.2b. Otherwise, if Λ has
jumps because f0 and f1 are discrete or categorical, any value on the vertical axis
that lies “between the jump values” is admissible. Figure 9.2a marks an example
such interval of possible choices for k with a thick line on the abscissa.

Remark 9.1 (Practical approximation of the decision threshold) A difficult step
is usually the determination of the function G, which amounts to computing
the probability of Λ(X) when X is distributed assuming the null hypothesis. If
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a sufficient lot of “training data” regarding the normal situation (without any
adversarial influence) is available, then we can approximate k empirically: let the
data be a set of samples from X under H0 enumerated as x1, x2, . . . , xN . We
can construct an empirical distribution estimate F̂Λ from the transformed data
Λ(xi) for i = 1, 2, . . . , N .The sought k is obtained from the quantile function
of F̂Λ. This process is widely supported by software, such as R [12], which has
the built-in functions ecdf to construct F̂Λ directly from the precomputed values
Λ(x1), . . . , Λ(xn), and the generic function quantile to compute k from.

With k being determined (numerically), the test’s decision is as follows:

reject H0 if Λ(x) > k, and
accept H0 if Λ(x) < k.

(9.5)

The case of equality Λ(x) = k will occur with zero probability if f0, f1 are
continuous distributions, so the inspector does not need to worry about this
possibility. This can also happen for discrete or categorical densities f0, f1. Both
cases correspond to the optimum being a “pure” strategy for the inspector in this
game.

Otherwise, when the event f0(X) = k ·f1(X) has a nonzero chance to occur, then
the test can be inconclusive for the given data (since the choice of k is such that we
could make it in favour of both possible outcomes, by choosing k near either end of
the interval; cf. Fig. 9.2a). In that case, we must repeated the test on fresh data. The
final decision of the test then depends on the total set of collected test outcomes.
This corresponds to the situation where the inspector’s optimal strategy is thus a
randomized strategy. The test’s decision variable can then be defined between as the
value

(α −G(k))/(1−G(k)) ∈ (0, 1). (9.6)

The admissibility of this testing prescription is captured by Theorem 9.1. We
state the result in full detail (from [9]). In a slight abuse of notation, let us write
δ to denote the (entire) statistical test, applied to the data x in possession of the
inspector. The concrete value δ(x) will be the decision outcome of the test, including
the inconclusive case with the fractional value given above in (9.6).

Theorem 9.1 (Neyman-Pearson Lemma [9, 10]) Let f0, f1 be densities condi-
tional on a null-hypothesis H0 and alternative hypothesis H1. Define the likelihood
ratio Λ(x) as in (9.3), using (9.6) for the case of equality. Then, the following
holds:

1. First kind error level assurance: The so-defined statistical test δ with the constant
k satisfies

EH0(δ(X)) = α. (9.7)



9.1 Repeated, Independent Inspections 187

2. Optimality: If a test satisfies (9.7) and (9.5), then it is the most powerful (in
the sense of Definition 9.1) in testing H0 against H1 among all tests at level α

(probability of error of the first kind).
3. Uniqueness: If a test is most powerful at level α for testing H0 against H1, then

for some k it satisfies (9.5) with probability 1 (relative to the measure induced by
H0 and H1). It also satisfies (9.7), unless there exists a test at level < α and with
power 1 (see Remark 9.2 below).

Remark 9.2 Taking k = ∞ in the theorem means rejecting whenever f1(x|H1) >

0. This is the most powerful test for level α, and has power 1, equivalently β = 0,
i.e., no error of the second kind. However, it is also most impractical in all cases
where the distributions induced by H0 and H1 overlap, and the test will basically
reject whenever there is even the slightest chance of the alternative hypothesis to
hold; however, this may include cases where there is simply a “natural” randomness
in the data of the inspector that could but not necessarily point out an adversarial
activity.

However, if the adversary’s actions H1 are, such that under any possible H1,
the supports of the densities f0 and f1 are disjoint, then any action of the attacker
will have an unquestionable effect in the system that the inspector will detect. Such
cases are usually coverable by rule-based alerting systems, which simply test for
conditions that should never occur in a normal system state. If this is applicable,
then the non-detection game becomes trivial, since there is no way to hide for the
attacker due to the existence of a (100% reliable) deterministic test. This is again
consistent with Theorem 9.1, since it admits that there are better tests, but only and
precisely in the situation just described.

Remark 9.3 Likewise as in Remark 9.2, we can reject whenever f0(x|H0) = 0,
i.e., only when there is zero chance of H0 to hold. This is most optimistic towards
accepting H0 by taking k = 0 in Theorem 9.1, and the most powerful test at level
α = 0, i.e., without error of first kind. However, it also maximizes the error of
second kind, obviously, much in the interest of the adversarial inspectee.

Example 9.2 (adapted [9]) Suppose that a system is such that the inspector mea-
sures (and checks) a certain parameter X that should, under normal circumstances,
have zero mean and a known variance σ 2. As an example, you may consider X to be
the deviation from the normal supply voltage level of an energy provider’s network.
Under regular conditions, the value should be, e.g., 220 V, and the deviation X from
this nominal voltage is X ∼ N (0, σ 2). Assuming a hacking attack, suppose that
the adversary managed to deactivate parts of the energy system to “overpower” it
and to cause damage. In that case, there may be a positive deviation X with the same
variance.

The non-detection game is then about the inspector testing for such events, while
the attacker wants to be stealthy and escape the detection.

Now, we design the optimal test for the inspector. The null-hypothesis is H0 :
μ = E(X) = 0, and the alternative hypothesis is H1 : μ = E(X) = ξ , for some
ξ that the inspector fixes a priori. A possible choice could be the amount of voltage
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excess that the system could handle or that naturally could occur (e.g., putting ξ ≈
3σ ). Whatever rationale is behind the choice of ξ , let us assume that the inspector
alerts the incident response forces if he determines that the nominal voltage hits the
upper acceptable limit.

The likelihood ratio is the quotient of two normal distributions, which is

fN (x|μ = ξ, σ 2)

fN (x|μ = 0, σ 2)
= exp(− 1

2σ 2 (x − ξ)2)

exp(− 1
2σ 2 x2)

= exp

(
ξ · x
σ 2 −

ξ2

2σ 2

)

Since the exponential function is strictly increasing and ξ > 0, we can resort to the

simpler term exp
(

ξ ·x
σ 2

)
for the maximization to get the region where f1(x)/f0(x) >

k. This is, up to multiplicative constants, again a Gaussian density, so that we can
equivalently look for the value k′ for which Pr(X > k′) = α, where the probability
distribution is Gaussian. This value is k′ = σ · z1−α , where z1−α is the (1 − α)-
quantile of the standard normal distribution. Thus, the test rejects H0 if and only if
the likelihood ratio is > σ · z1−α for the chosen α.

What is the power of this test against the (specific) H1? It is given by region of
rejection for H0 if H1 is true, i.e., it is the integral over the Gaussian density under
H1 for the region > k = σ ·z1−α . Conversely, for the specific violation strategy H1 ∈
AS2, the chance for the inspector to accept the observation as “normal” (adopting
H0), is

β(α) =
∫ σ ·z1−α

−∞
fN (t |μ = ξ, σ )dt.

Taking, for example, σ = 1, ξ = 1 and α = 0.05, we get z1−α ≈ 1.644854 and
β(0.05) ≈ 0.740489.

Note that β > α, which is a general fact that holds for every so-constructed most
powerful test, unless H0 = H1. 
Remark 9.4 Practical statistical tests often deliver the so-called p-value as an
auxiliary output of the test function. The common use of this value is to accept
the null hypothesis whenever the p-value is larger than α. Formally, the p-value is
the area under the curve to the left of the test statistic’s value. It thus measures how
strongly the data contradicts the null hypothesis, and small p-values indicate that
the observed data is unlikely under the null hypothesis.

Let us now return to the solution of (9.1): The definition of Λ already shows why
it is usually helpful to pin down the alternative hypothesis, and to this end, assume
a finite set AS2 of actions for the adversary. Since the inspectee maximizes over
violation strategies ω in (9.1), each of these defines its own alternative hypothesis H1
by shaping the according conditional distribution to maximize the false acceptance
region of size β (see Fig. 9.1). Thus, the inspector needs to construct an optimal
test against the worst such alternative hypothesis, which is doable if there are only
finitely many violation strategies ω ∈ AS2. Given these violation possibilities,
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the inspector’s task is the determination of the resulting conditional densities
f1(x|H1(ω)) when H1(ω) is the alternative hypothesis resulting from the adversary
taking action ω ∈ AS2. The process is much like the consequence assessment as
part of the risk analysis in risk management (see Chap. 6) or the general distribution-
valued games of Sect. 4.5.

Let AS2 = {ω1, ω2, . . . , ωm} be an enumeration of (presumed) violation
strategies, with corresponding densities f1,j = f1(x|H1(ωj )) for the alternative
hypotheses implied by action j . For each of these, let δj be the individually optimal
test as constructed like above. Since the inspector is unaware of what action the
inspectee took, the inspector will need to pick a test δi for i ∈ {1, . . . , m} at
random, whose power against the inspectee’s choice ωj ∈ AS2, i.e., the alternative
hypothesis f1,j is the value (cf. Fig. 9.1),

βij =
∫ ki

−∞
f1,j (t)dt,

when ki is the decision threshold for the i-th test. The values βij for i, j = 1, . . . , m

form an (m × m)-matrix that represents problem (9.1) as a zero-sum matrix game,
whose saddle-point value is exactly β(α).

9.1.2 Solving the Inspection Game

By definition, the game is of leader-follower type, since the inspector follows a
publicly known policy (not the least so to establish transparency as a confidence-
building measure), and the inspectee can adapt to it.

Written as a two-person game, the inspector’s action space concerns only the
choice of α ∈ [0, 1], which determines the test by techniques like the Neyman-
Pearson Lemma (see Sect. 9.1.1). The inspectee’s choice is only whether or not to
violate, since if the latter entails the best violation strategy adapted to the test that
the inspector uses. Note that the game in extensive form, shown in Fig. 9.3 has an
information set for the inspector, since this one does not know whether a legal action
or violation occurred. This secret choice by the inspectee determines whether H0 or
H1 is true. However, the test is reliable when it rejects H0, i.e., indicates a violation.

The game in Fig. 9.3 generally has a unique mixed equilibrium: Let q ∈ [0, 1] be
the probability of a legal action, and (1 − q) be the likelihood for a violation, and
let q∗ be the optimal choice. If q∗ = 0, then the inspector would have chosen a test
δ∗ without false alarms, but this necessarily increases the inspectee’s chances to go
undetected (since it increases the errors of second kind). Conversely, if q∗ = 1, then
the inspector could maximize its payoff by always raising an alarm, irrespectively of
what happened. However, if h < b (as we assumed above), then the optimal choice
of the inspectee would not be q∗ = 1 any more. The uniqueness of the strategies
is only up to equivalence of their effects, since all equilibria strategies deliver the
same value as the game is zero-sum.
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Fig. 9.3 Leader-follower inspection game with perfect recall

Theorem 9.2 ([1]) Assume that for any false alarm probability α, the non-
detection game (9.1) has a value β(α) satisfying (9.2), where the optimal violation
procedure ω∗ does not depend on α. Then, the inspection game in Fig. 9.3 with
parameters a, b, e and h has an equilibrium (α∗, q∗), where:

• α∗ is the solution of the equation

− h · α∗ = −b + (1− b)β(α∗), (9.8)

where β is given by (9.1) for the optimal test to a value α using the Neyman-
Pearson Lemma (see Sect. 9.1.1).

• the value q∗ is

q∗ = Pr(legal action) = e

e − (1− a)β ′(α∗)
,

in which β ′ is any sub-derivative of the function β at α∗.

In response to α, the inspectee would thus violate, whenever α < α∗, and act legally
if α ≥ α∗.

To operationalize Theorem 9.2, one may follow these steps:
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• Adopt assumptions on what the adversary could do to shape the distribution of
the alternative hypothesis H1 in the worst case for the inspector. Together with
the distribution of how things should look like in the normal case (situation H0),
construct a likelihood ratio test statistic, using the Neyman-Pearson Lemma, i.e.,
Theorem 9.1.

Upon input of a significance level α, implement an algorithm to compute the
value β, resulting from the distribution of the likelihood quotient, which may
need an analytical workout beforehand.

• Do a numeric (perhaps black-box) solution of (9.8), using the just implemented
procedure to determine α∗. Note that this is the point where the hypothesis of
the optimal violation strategy to not depend on α comes into play: if it were
dependent on α, the two steps would become woven with each other, and we
would not have a function to compute β on input α. By the above stage of
identification of worst-case attack behavior, which is nothing else than fixing
the optimal ω∗ before setting any value for α, we assure this hypothesis of
Theorem 9.2.

9.2 Sequential and Dependent Inspections

Some applications may restrict the inspector to perform a limited number of checks.
As an example, consider a production line of n stages, along which at most m < n

inspections happen. Let I (n,m) denote the equilibrium payoff for the inspector, and
let V (n,m) be the equilibrium payoff for the inspectee (violator). Suppose further
that a legal action has zero payoff for both players (since the inspector did what was
his job anyway, and the violator failed), and let a caught violation cause a loss of
−a for the inspector and −b for the attacking inspectee.

Though the game spans several stages, it is 2 × 2 and as such has an explicit
solution (given later in Sect. 12.3.2), attained if the inspectee is indifferent between
legal action and violation. Thus, we come to a partially recursive equation for V and
I ,

V (n,m) = b · V (n− 1,m)+ V (n− 1,m− 1)

V (n− 1,m− 1)+ b + 1− V (n− 1,m)
(9.9)

with initial conditions given by

I (n, n) = V (n, n) = 0 for n ≥ 0;
I (n, 0) = −1, V (n, 0) = 1 for n > 0.

}
(9.10)

Theorem 9.3 Assume that the recursive inspection game with payoffs as in Fig. 9.4
is such that after each stage, both players are informed about whether there has been
a violation (i.e., both players know about the game state after a stage). Furthermore,
let the initial conditions be (9.10). Then, the inspectee’s equilibrium payoff is
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Fig. 9.4 Sequential
inspection game Example
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,

and the inspector’s payoff is

I (n,m) = −
(
n−1
m

)
∑m

i=0

(
n
i

)
(−a)m−i

.

The equilibrium strategies are determined inductively (starting from n,m =
0, 1, . . ., using the above quantities by substituting the values into the game matrix
in Fig. 9.4, and computing the equilibrium strategies from the resulting (numeric)
2× 2-matrices.

The applicability of Theorem 9.3 is sort of debatable by its hypothesis on the
player’s state to be common knowledge after each stage; this may not be accurately
true in reality, since the inspector will typically not be informed about a violation
that was missed. Changing the model accordingly to account for this lack of
information renders the recursive structure generally invalid, and the game is usually
not directly solvable any more. However, if the game is 2 × 2 or diagonal, one can
obtain closed form expressions like (9.9) from the formulas given in Chap. 12 to get
a partial recursion equation to define the equilibrium point, and numerically, i.e.,
iteratively, solve it starting from the initial conditions. In practice, this may already
be enough to work with.

We devote the next Sect. 9.3 to games that accounts for such a stealthy inspectee.

9.3 Inspections Against Stealthy Takeover

Suppose that the inspector chooses random time instances to check and perhaps
reset certain system components, thereby dropping out a potential intruder having
conquered the component in the past (e.g., by installing a trojan backdoor or
similar). Whenever the attacker becomes active, we assume that a component is
captured, and (unknowingly) recaptured later by the inspector (since the attacker
is stealthy). The game described and analyzed in the following carries the name
FlipIt in the literature. It models the first type of APT as introduced in Sect. 1.3.
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normal
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controls inspection takeover

time

Fig. 9.5 Temporal takeovers against inspections over time

The game is about both players optimizing their strategies for inspection and
takeover, where the goal function is like an indicator pointing up or down, depending
on who is currently having control over the component.

Figure 9.5 illustrates the situation over time, with bullets marking points in time
where inspections occur. Those “flip” the control indicator accordingly, and the
overall revenue in the game depends on the time that either player has the component
(or system) under its control, taking costs for moves into account. To start with, let
Ci(t) ∈

{
0, (−1)i−1

}
for i = 1, 2 be an indicator variable telling whether the i-th

player has the control at time t ; we let player 1 be the defender, and player 2 be the
attacker. The average time of control for a player is then γi(t) = 1

t

∫ t

0 Ci(τ )dτ (this
roughly corresponds to the average payoff obtained in a repeated game, discounted
payoff in a stochastic game or continuous payoff functions in differential games).
Apparently, the value Ci(t) depends on the inspections and takeovers of both
players, and we shall keep this dependence in mind implicitly, so as to ease notation
by omitting the strategies for the moment.

Taking over a component is typically associated with costs; at least the defender
may need to do a temporary shutdown for a patch, upgrade or reset of system parts.
If, up to time t , the i-th player (i ∈ {1, 2}) took a total of ni(t) actions, each imposing
a cost of ki ∈ R, then we can refine the game’s payoff into the average time of
control, minus the average efforts for it, formally being ui(t) := γi(t)− ni(t)·ki

t
.

Remark 9.5 The practical challenge of putting this setting to work lies in the
(reliable) estimation of the cost parameters k1, k2. The dependence of the equilibria,
describing the optimal inspection and attack patterns below, depend on how these
two quantities relate to each other. From the inspector’s perspective, estimating k1
may require careful efforts but is generally doable, yet the information to base
an estimate of k2 on is much sparser. One possible source of information are
CVSS, since these typically involve assessments of the skill level, cost or general
complexity entailed by a specific attack. This information may aid an expert estimate
of the cost k2.

For the actual game, let us assume that the inspection strategy is chosen once and
forever at the beginning of the game, and the optimization is towards an infinite time
horizon, by setting the player’s revenue to
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ui := lim inf
t→∞ ui(t), (9.11)

where the actual value of ui depends on the inspection and attack regime, both of
which determine the temporal shape of the indicator function Ci(t), as illustrated
in Fig. 9.5. Having defined the utility function for both players, let us now write
ui(s1, s2) to make the dependence on the strategies explicit, since the equilibria will
depend on the choice of s1, s2, and are known for some concrete inspection regimes.

9.3.1 Periodic Inspections

In a periodic inspection with random phase, the defender inspects exactly every
δ time units, with the first inspection occurring at a randomly chosen time t0 ∼
U (0, δ). The random phase is thus the value t0. For example, this regime would be
played by an IT administrator conducting a weekly checkup (the time unit δ would
be one week, accordingly), always on the same day of the week. The weekday is the
random phase, and is chosen uniformly at random at the beginning.

This inspection strategy is widely deterministic, with the only uncertainty for the
attacker being in the random phase. Consequently, we must assume that the attacker
never knows or ever figures out when the inspections occur. Under this (practically
strong) hypothesis, the game admits explicit equilibria. To distinguish the strategies
from others, we write periodic(α) to denote a periodic strategy by either player.
Then, we have the following equilibria [4]:

Let the game be as such that both, the defender and the attacker act periodically
with rates αi = 1/δi and random phases ti ∼ U (0, αi) for i ∈ {1, 2}. Then, the
game has the following expected revenues, where the averaging is over many game
instances with random phases:

• If the defender plays at least as fast as the attacker, i.e., α1 ≥ α2, then

u1(periodic(α1), periodic(α2)) = 1− α2

2α1
− k1α1;

u2(periodic(α1), periodic(α2)) = α2

2α1
− k2α2.

• Otherwise, if the defender plays slower than attacker, i.e., α1 < α2, then

u1(periodic(α1), periodic(α2)) = α1

2α2
− k1α1;

u2(periodic(α1), periodic(α2)) = 1− α1

2α2
− k2α2.

with the Nash equilibrium at the periods
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α∗1 =
1

2k2
, α∗2 =

k1

2k2
2

if k1 < k2

α∗1 = α∗2 =
1

2k1
if k1 = k2

α∗1 =
k2

2k2
1

, α∗2 =
1

2k1
if k1 > k2.

Not surprisingly, the equilibria are determined by the cost of the moves for each
player, and if the defender’s and attacker’s moves have roughly equal cost, then no
player has a substantial advantage over the other. Conversely, if the defender plays
much faster than the attacker, i.e., at rate α1 > 1

2k2
, then the attacker’s investment to

reconquer exceeds the payoffs for having the control. Thus, the attacker’s average
gain would be negative, and the optimal (in the sense of economic) behavior in that
setting is to not attack at all.

The (equilibrium) payoffs given above are averages over random phases, so to
keep the performance promise, the defender needs to restart the strategy with a
fresh random phase from time to time. Thus, the above results hold for a repeated
game. Asymptotically, the payoffs as told above are attained when the defender
rephases the game at times Tj = j2. This has the appeal of growing intervals of
“temporarily fixed” inspection intervals, yet comes at the price of not knowing when
the convergence to the equilibrium kicks in (the convergence is by the law of large
numbers, indicating that the variances of u1, u2 will ultimately vanish).

This suggests the idea of speeding up convergence by rephasing more often,
which leads to another instance of the same game: let the inspections (and attacks)
have random inter-occurrence times, which are not an integer multiple of some
period. Interestingly, it can be shown that any such strategy is strongly dominated by
a periodic strategy with the same rate, so this change of the game does not improve
the situation for either player. This is practically good news for the defender, since a
periodic inspection strategy is much easier to “live” than inspecting at random time
instants.

9.3.2 Leading Defender and Following Attacker

Let us now drop the assumption that the attacker does not know when the inspection
occurs. The leader-follower situation is thus such that the defender announces
the inspection rate α1, which the following attacker adapts itself to by picking
α∗2 := argmaxx u2(α1, x) as a best reply. The inspector presumes this in advance
and will hence in first place pick α∗1 be the best reply to α∗2 . The resulting
equilibrium is [4]:
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• If k2 < (4 − √12)k1, then the optimal rates are α∗1 = k2
8k2

1
, α∗2 = 1

4k1
, with

maximal revenues for both players being u1(periodic(α∗1), periodic(α∗2)) =
k2
8k1

and u2(periodic(α∗1), periodic(α∗2)) = 1− k2
2k1

.

• If k ≥ (4 − √12)k1, then the optimal rates are α∗1 ↘ 1
2k2

, α∗2 =
0, with revenues u1(periodic(α∗1), periodic(α∗2)) ↗ 1 − k1

2k2
and

u2(periodic(α∗1), periodic(α∗2)) = 0, where ↗,↘ denote convergence from
below, respectively, above.

Thus, if the attacker’s cost for a hostile takeover is larger than ≈53% of the
defender’s cost to regain control, then the attack is simply not economic any
more.

9.3.3 Inspections at Random Times

Now, let us assume that the attacker gets to know when the last inspection was
done, and let the inspector choose the time of next inspection only based on the last
inspection. That is, the inspector does not care about the past, but when the current
inspection is finished, decides at random when to do the next inspection.

This convention implies that the times between two inspections must be exponen-
tially distributed, since this is the only continuous distribution that is memoryless,
meaning that the inter-occurrence times between two events are stochastically
independent. Practically, this choice is appealing, since even if the attacker keeps
record of the past inspections, this information is in no way helpful for determining
the time of the next inspection. As in the leader-follower scenario just described, we
assume that the attacker knows the average rate of inspections. Even if the defender
does not announce this information explicitly, if the attacker notes the inspection
(e.g., if the previously installed trojan just disappeared or stopped working due to a
patch), then a statistical estimate the rate of inspections is easy.

The inspector’s strategy is called exponential at rate λ, or equivalently, the
number of inspections per time unit would follow a Poisson distribution (which
is the only discrete memoryless distribution). Like as for periodic inspections,
let us write expon(λ) to denote the strategy to inspect at random times with
E x(λ)-distributed pauses (the number of inspections would thus be have a Poisson
distribution). This strategy is generally superior over periodic inspections, at least
against a periodically active adversary. Knowing the rate λ, the attacker’s best action
depends on the cost of conquer [4]:

• If λ ≥ 1
k2

, then the strongly dominant strategy (among the periodic ones) for the
attacker is not playing at all.

• Otherwise, if λ ≤ 1
k2

, then the optimal attack period

δ∗ = 1

α
(9.12)
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is the unique solution of the equation e−λδ∗(1+ λδ∗) = 1− λk2.

Under this optimal choice, the equilibria of the game are known [4]:

• If k1 ≥ 0.854k2, the inspector’s optimal rate is λ∗ = 1
k2
· (1− (1+ z)e−z), with z

being the unique solution to the equation k1/k2 = z−3(ez−1−z). The attacker’s
maximum payoff is attained at period δ∗ = z/λ∗, and the equilibrium payoffs are

u1(expon(λ∗), periodic(1/δ∗)) = 1− 1− e−z

z
− k1

k2
[1− (1+ z)e−z] ≥ 1− k1

k2

u2(expon(λ∗), periodic(1/δ∗)) = e−z

• If k1 < 0.854k2, then the inspector should play at rate λ = 1/k2 to receive the
payoff u2 = 1− k1/k2, and which forces the attacker to drop out.

This result naturally raises the question of other strategies for the attacker than
periodic ones (even though these were recognized to dominate random inter-attack
times, if the attacker does not know when the inspections occurred). A greedy
attacker could seek to optimize u2 over the time period when the inspector is
inactive. Generally, if the inspection occurs at time steps ti and ti+1, then the greedy
attacker would try taking over soon after ti , but must expect the next inspection at
a random time in future (since ti+1 is yet unknown). So, the question is when to
take action for the attacker, since if the inspection will soon follow the takeover, the
investment k1 for this move could be more than the benefit of having control for a
short time. Conversely, conquering too late will obviously reduce the revenue for
the attacker. Thus, the attacker’s problem would be optimizing the time of attack,
based on an estimate f̂0 that is the probability density of the inspector’s next move
at time ti+1.

It turns out that under exponential inspections, the optimum for the attacker is just
the value δ∗ told by (9.12), which generally dominates the periodic attack strategy.
For other inspection regimes, such as periodic or variants thereof, a greedy attack
strategy can often outperform the attacker’s optima as given so far. Thus, letting
the attacker be greedy generally invalidates the equilibria given above, and calls the
defender for the computation of best replies explicitly in this situation.

9.4 Inspections Against Stealthy Intrusions

While FlipIt laid the focus on minimizing the time of being hiddenly under
the attacker’s control, inspections may alternatively or additionally aim at keeping
the attacker away from the critical system parts at all (expressed as a proverb:
the devil takes the hindmost; our point is that indeed only the hindmost is taken).
This corresponds to the second type of APT introduced in Sect. 1.3, where the
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aim is killing the victim and not maximizing the time of control over it. The game
described in the following has the name Cut-The-Rope [13].

Remark 9.6 The situation is actually similar to what the human immune system
does each day: the immune system cannot possibly keep pathogenes out of the body,
but it mostly keeps the disease agents under sufficient control to prevent them from
reaching vital parts of the body or grows into a dangerous infection. The intrusion
games described here follow exactly the same intuition.

Shifting the focus away from the duration of annexion to the event of hitting
the target itself, the gameplay changes into a tug war between the inspector and
the attacker. In particular, and consistent with the assumption of unlimited budgets
backing up the APT attacker, the defender has no hope of playing such that the
attacker will drop out.

The battle field can then be a physical area like in the patrolling games of
Chap. 8, or a cyberspace, if the intrusion occurs through the network channels.
Conceptually, the game models are indifferent, only the way they are set up is
distinct. We shall illustrate the matter using a cyber intrusion scenario in which
the attacker digs its tunnel through the logical enterprise network, by establishing
an initial point of contact (e.g., by social engineering techniques like phishing,
virulent USB gimmicks, stolen passwords, or other means), and works its way
through the network in alternating phases of spying out the technical systems and
penetrating them by tailor-made exploits. This is the practically reported pattern
that contemporary APTs would follow, and it is exactly the dynamic that defines the
game itself [14]; see Chap. 1.

TVA is the process of (semi-automatic) identification of scenarios along which
an intruder could sneak into a system. It builds up graphs whose nodes correspond to
physical or logical points in the system that the adversary can overtake hop-by-hop
until it reaches the goal point in the system (which may be a database with sensitive
business information, or any valuable asset of an enterprise.)

Remark 9.7 In other contexts such as hacking conventions, we find similar competi-
tions called “capture-the-flag”. There, the goal is for a team to conquer an asset, and
the winner is typically the fastest team. Cut-The-Rope is similar in spirit, though
it has only one player seeking to “capture the asset”, while the second (defending)
player’s duty is to keep the attacker away from it. The battlefield of a capture-the-
flag game and Cut-The-Rope, however, are essentially the same.

Figure 9.6 shows a toy example from [5–7] that we will use for our exposition
throughout this section. The attack graph, whether obtained from a TVA or by other
means, is already the first out of three ingredients for the intrusion game setup. We
stress that TVA is only a (convenient) possibility of constructing the playground for
Cut-The-Rope, but any other method that delivers a systematic model of how the
attacker can break in and conquer the victim system is equally applicable.
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workstation
(machine 0) firewall

router

file server
(machine 1)

database server
(machine 2)

Fig. 9.6 Infrastructure for the stealthy intrusion game; Example from [16]

9.4.1 Setting up the Game

9.4.1.1 Step 1: Preparing the Battlefield

Let an attack graph G = (V ,E) or attack tree (see Fig. 9.7 for an example) be
obtained as an output artefact from a TVA or by other means. Calling the nodes in
Fig. 9.6 0 (workstation), 1 (file server) and 2 (database server), let the attacker target
machine 2. We assume that each machine runs certain services like File Transfer
Protocol (FTP) ftp(i, j), Remote Shell (RSH) rsh(i, j) or Secure Shell (SSH)
ssh(i, j) to denote the service on machine j being remotely available from machine
i. The implementation of each service may be vulnerable to certain exploits like
a buffer overflow (bof) or similar. The attack tree systematically enumerates the
possibilities, and displays preconditions as rectangles, and (adversarial) actions as
ellipses, both annotated by respective predicates as just described. For example, an
FTP access exploit from machine i to a remote host being machine j is denoted as
ftp_rhosts(i, j). A buffer overflow exploit on the SSH implementation is denoted
as ssh_bof(i, j), when it starts from machine i towards machine j . The penetration
thus proceeds by stepwise establishment of trust relations trust(i, j), meaning that
machine i grants access from machine j , perhaps allowing execution privileges on
machine j , written as the predicate execute(j).
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ftp(0,2) execute(0) ftp(0,1) ssh(0,1)
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Fig. 9.7 Example Attack Graph G = (V = {1, 2, . . . , 10 = v0} , E) [16]

The initial attacker’s position is having full execution rights on the workstation,
with the goal gaining full execution rights on the database server. Hereafter and for
ease of referencing, let us assign numeric names to each node in the attack graph,
displayed as circled numbers in Fig. 9.7.

From the tree, the inspector can successively enumerate all paths in the attack
graph, starting from the entry node (here node 1©) where the adversary can make
the initial contact, up to the target node (here node 10©). The number of paths is



9.4 Inspections Against Stealthy Intrusions 201

Table 9.2 APT scenarios (adversary’s action set AS2, based on Fig. 9.7)

No. Strategy description as attack path

1 execute(0) → ftp_rhosts(0,1) → rsh(0,1) → ftp_rhosts(1,2) → rsh(1,2) →
local_bof(2)→ full_access(2)

2 execute(0) → ftp_rhosts(0,1) → rsh(0,1) → rsh(1,2) → local_bof(2) →
full_access(2)

3 execute(0)→ ftp_rhosts(0,2)→ rsh(0,2)→ local_bof(2)→ full_access(2)
4 execute(0) → rsh(0,1) → ftp_rhosts(1,2) → rsh(1,2) → local_bof(2) →

full_access(2)
5 execute(0)→ rsh(0,1)→ rsh(1,2)→ local_bof(2)→ full_access(2)
6 execute(0)→ rsh(0,2)→ local_bof(2)→ full_access(2)
7 execute(0) → sshd_bof(0,1) → ftp_rhosts(1,2) → rsh(0,1) → rsh(1,2) →

local_bof(2)→ full_access(2)
8 execute(0)→ sshd_bof(0,1)→ rsh(1,2)→ local_bof(2)→ full_access(2)

Table 9.3 Correspondence of attack trees/graphs and extensive form games

Extensive form game Attack tree/graph

Start of the game Root of the tree/graph

Stage of the gameplay Node in the tree/graph

Allowed moves at each stage
(for the adversary)

Possible exploits at each node

End of the game Leaf node (attack target)

Strategies Paths from the root to the leaf (= attack vectors)

Information sets Uncertainty in the attacker’s current position and move

generally exponential, so that strategy reduction heuristics (like in Sect. 8.6) are
advisable; some of which are even part of automated tools for the vulnerability
assessment [3].

Table 9.2 lists these for the example infrastructure displayed in Fig. 9.6. This list
is already the action space for the attacking player 2, thus completing the first third
of the model. The correspondence of extensive form games and attack trees, indeed,
reaches much farther, as Table 9.3 summarizes.

9.4.1.2 Step 2: Inspection Strategies

We assume a periodic action of both players that does not necessarily entail them
to take action simultaneously, but we let them become active in rounds. For the
inspector, this corresponds to a periodic strategy in terms of Sect. 9.3; the same
goes for the attacker, though we can allow multiple penetration moves to occur in
between two inspections, by proper definition of the payoffs in step 3.

However, the action space for the inspector directly follows from the attacker’s
action space, i.e., by setting up a list of devices that should undergo a periodic
checkup, and are feasible to inspect. This device list corresponds to a selection
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AS1 ⊆ V of nodes in the attack graph G = (V ,E), since an inspection on a device
manifests in G as the inspection of a certain node. It is important to keep in mind
that an inspection hereby can mean various things, not only patching or installing
some additional protection, but also a humble change of access credentials. In this
context, we need to note that changing a password or other access credential is
normally a simple matter, unlike taking off a whole machine for a complete re-
installation, which disrupts the daily business and as such is typically avoided if
possible. Hence, the latter is perhaps the more realistic setting, as it is (i) usually
cheaper and faster to accomplish, and (ii) leaves the attack tree unchanged. Our
game model in the following assumes a static such attack tree.

The number of strategies for the inspector is thus bounded by the number of
nodes (e.g., exploits) in the attack tree. So, although the number of exploits may
not be exponential, it can nonetheless be large, so that grouping exploits and
vulnerabilities of similar kind together may be advisable to boil down a large
number of spot checking points. For example, we may not distinguish different types
of buffer overflow vulnerabilities, but generically call a node a “buffer overflow”
(like ssh_bof in Fig. 9.7), or a remote shell exploit (not being too specific if this
works using privilege escalation, theft of access credentials, or by other means).
Keeping the attack tree generic in this sense also keeps it more static upon the
defender’s actions (under the hypothesis that no action of the inspector would clean
all buffer overflows or remove all possibilities to acquire unintended permissions).

Based on Table 9.2, the inspector’s strategies can be defined towards intercepting
the known attack strategies. For example, if the inspector can spot check the
“workstation (machine 0)”, the “file server (machine 1)”, or the “database server
(machine 2)” in Fig. 9.6, the action space for the defender is essentially the entire
set AS1 = V in the attack graph in Fig. 9.7.

This completes the second out of three ingredients for the simple stealthy
intrusion game model.

9.4.1.3 Step 3: Payoff Assessment

The inspector’s problem is finding the optimal strategy for spot checking, i.e.,
compute the optimal randomized choice x ∈ Δ(AS1), for which we will need a
proper definition of payoffs. We adopt the worst-case perspective for the defender,
and explicitly model the adversary’s payoffs in the following.

Essentially, the attacker could be anywhere in G, and especially so since it can
move at any point in time, while the defender may become active periodically (we
will later generalize this towards letting the defender also act in continuous time,
for example, if there is a 24/7 security response team in charge). In any case, the
inspector must consider that the intruder could be anywhere in the network, and s/he
can only hypothesize about certain likelihoods for the attacker to be somewhere after
the inspection. Call Θ ⊆ V the set of possible locations, and let θ be a particular
such location, for which the defender may presume a likelihood Pr(θ). In absence
of a reasonable guess for the distribution (Pr(θ))θ∈Θ , the defender can put Pr(θ) :=
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1/ |Ω| as a non-informative choice of a uniformly random location. Each starting
location then defines a distinct adversary type, making the game Bayesian.

We let the attacker take a random number, in fact any number, of attack steps
between times when the defender becomes active. As in Sect. 9.3.1, let us assume
a periodic(1/δ) defense, meaning that the defender becomes active every δ units
of time. Then, allowing the attacker to take any random number of steps during
idle times of the defender, the attacker will take a Poisson distributed number N ∼
Pois(λ) of steps, with λ being the attack rate. This value is the average number of
attack steps accomplished per δ time units. It is assumed to be common knowledge
(see Sect. 6.4.1), and a value that the defender needs to estimate a priori.

Further, we let the attacker be rational in choosing the path πθ =
(θ, w1, w2, . . . , v0) according to being the shortest or “easiest” (e.g., offering
perhaps not fewer but simpler exploits than an alternative) route towards v0. Along
the attack path πθ , we assume that it leaves backdoors or other aids for a quick
return later on, to further study and penetrate deeper into the system (to retain the
stealthiness of the attack, to avoid causing too much noise to escape detection). Call
V (πθ ) = {θ,w1, w2, . . . , v0} the entirety of nodes on the attack path πθ as defined
before.

When the defender takes action, it picks a node to inspect, and cleans it from
any malware that it finds. If, during this cleaning, one of the attacker’s backdoors
disappears (such as shown in Fig. 9.8a for a check at node 3©), this sends the attacker
back to the point right before where the defender has just spot-checked. Otherwise,
if the defender was checking a node that the attacker has not passed yet or will not
pass at all because s/he is on an entirely different route, nothing happens and the
defender’s action was without any effect (e.g., if the inspector checks at node 6© in
Fig. 9.8a).

Example 9.3 (Success or failure of an inspection) If the attacker successfully
installed a backdoor on the file server, and the inspector is currently on the
workstation, then this is a miss, and the intruder will still be on the router. Likewise,
if the intruder’s malware is on the file server, and becomes dysfunctional upon a
patch or software update done by the inspector, it sends the intruder back to an
earlier point on the attack path. In either case, the inspector may not be aware of this
success or failure, and can only update its hypothesis based on what would happen
if the attacker were hit or missed by the inspection. However, the inspector is not
successful in any of the following cases:

• Inspecting at a point that is not on the attack path chosen by the adversary
• Inspecting at a point that is on the attack path, but that the attacker has not yet

reached (in that case, the defender was there too early)


Remark 9.8 Our modeling assumes no lateral movement of the attacker. That is, if
an attack path π gets intercepted by the inspector, the attacker is assumed to keep
on moving along the same path π towards v0. A real life attacker may nonetheless
switch to another attack path π ′, but this is included in our modeling by assuming
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yet another adversary type that uses the path π ′ instead. Since the game is such
that the defender acts against all possible adversary types, whether or not the real
adversary moves laterally from the path π to the path π ′ makes no difference for the
inspector’s defense, since s/he is anyway taking both adversary types into account.

The chain of backdoors or other aids that let the attacker return over and over
again is called the “rope”, and the event of the defender disabling one of these
backdoors to “cut” the way back leads to the game’s name being Cut-The-Rope.

The utility for the adversary starting from node θ is then found by computing
its location on the attack path πθ , conditional on the spot checks as done by the
defender. To this end, let dπ(u, v) be the graph-theoretic distance counting the edges
on the subsection from u to v on a path π in G, and recall that the adversary takes a
Poissonian number of steps (we can drop the θ -index of π to ease our notation here
without creating ambiguities). Then, the probability for the attacker to be at node v

on the path π has the conditional distribution

Pr(adversary’s location = v|V (π)) = fPois(λ)(dπ (θ, v))

PrPois(λ)(V (π))
, (9.13)

in which fPois(λ)(x) = λx

x! e
−λ is the density of the Poisson distribution, and

Pr
Pois(λ)

(V (π)) =
∑

x∈V (π)

Pr
Pois(λ)

(dπ (θ, x)) =
∑

x∈V (π)

fPois(λ)(dπ (θ, x)).

See Fig. 9.9a for an example relating to attack path no. 1 in Table 9.2.
Now, the inspector comes along and spot-checks and in the best case, cuts the

rope behind the attacker. Let c ∈ V be the inspected node, then the afterwards
perhaps truncated attack path is (cf. Fig. 9.9b),

π |c =
{

(θ, w1, w2, . . . , wi−1), if c = wi for some wi on π

(θ,w1, . . . , v0), otherwise.

Cutting the rope then means conditioning the distribution of the adversary’s location
on the updated path π |c. The formula is the same as (9.13), only with π replaced
by π |c now. If the inspector takes random spot checks c ∼ x ∈ Δ(AS1) on AS1 ⊆
V follows the defender’s mixed spot checking strategy x (possibly degenerate if
pure), and the set of paths π along which the attacker steps forward (at rate λ) is
determined by the random starting position θ ∼ Θ , the utility distribution for the
attacker is now fully given as

U(x, θ, λ) = (Pr(adversary’s location = v|V (π |c)))v∈V . (9.14)

Figure 9.9b shows an example of a truncated distribution upon an inspection of a
node on the path.
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Fig. 9.9 Payoff distributions in Cut-The-Rope
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Expression (9.14) holds for the attacker starting from θ ∈ V , and since the
inspector is unaware of the attacker’s location (stealthiness of the APT), s/he
imposes its belief about the adversary’s type, i.e., starting location, to define the
ex ante payoff as

U ′(x, λ) =
∑

θ∈Θ
Pr
Θ

(θ) · U(x, θ, λ) (9.15)

This is equivalent to writing U(x, θ, λ)(v) = Prx(adversary’s location = v|θ, λ),
since this is by construction the distribution of the attacker’s location, conditional on
the starting point θ . In this view, however, (9.15) is just the law of total probability,
turning U ′ into the distribution of the attacker’s location (by scalarization).

This distribution is �-minimized by the defender, and likewise �-maximized by
the attacker. Since both, the attack graph and the defender’s strategy sets are finite,
the game is a mere matrix game, with distribution-valued payoffs, and as such falling
into the category of games that we had in Sect. 4.5. Carrying out this optimization
is a matter of implementing the steps so far, and in fact short enough to merit a full
implementation as Listing 12.2, given in Chap. 12.

9.4.2 Inspections at Random Times

We can easily replace the assumption of a periodic inspection by an exponential
strategy expon(λD) for the inspector. Like in FlipIt, the inspector may become
active in random intervals following an exponential distribution with rate parameter
λD , and so does the attacker at rate λ. Both of these values refer to average counts
of activity over the same unit of time.

The change to the model is trivial, as it merely means replacing the Poissonian
Pois(λ) distribution by a geometric distribution in (9.13) with parameter λD/(λ+
λD). Everything else remains unchanged and thus we won’t got into further detail
on this here.

9.4.3 Probabilistic Success on Spot Checks

Similarly, we can incorporate probabilities to capture the inspector’s failure to clean
a node from malware. Suppose that an inspection of node c ∈ V is successful with
probability pc only. The according change to the model is again only in (9.13),
which now becomes

Pr(adversary’s location = v) =
pc · Pr(adversary’s location = v|V (π |c))
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+ (1− pc) · Pr(adversary’s location = v|V (π))

This is a simple mix of successful and unsuccessful cutting, but besides this formula
to replace (9.13), nothing else changes.

9.4.4 Probabilistic Success on Exploits

Probabilistic success may also be a matter for the attacker, and with resilience values
q(e) that describe the probability to be successful on an exploit e, the likelihood to
take d steps on the attack path πθ is (assuming stochastic independence of exploits)
given as

Pr(d) =
d∏

k=1

q(ek),

when the attack path is π = (e1, e2, . . .). Like as in the previous cases, we
just replace the Poisson density fPois by Pr(d), and can leave everything else
unchanged.

The challenge in this variation is the estimation of the exploit success probabili-
ties Pr(e), and may receive practical aid from heuristic rules to derive Pr(e) from a
CVSS score [8] or similar.

9.4.5 Security Strategy Computation

It turns out that a PBNE (Definition 4.3) fits as a solution concept here, endowing the
inspector with an optimal defense against the presumed set of adversary types (with
probabilities imposed thereon). Computationally, we can consider the inspector’s
problem as a one-against-all competition, where the defender simultaneously faces
exactly one adversary of type θ for all types θ ∈ Θ . Then, condition (9.15) is just
a scalarization of some multi-criteria security game, and the PBNE is equal to an
MGSS (Definition 3.9) and vice versa. This lets us compute the PBNE by FP; see
Fig. 12.3 and Chap. 12.

Cut-The-Rope is designed for ease of implementation and generalization, but
unlike FlipIt does not lend itself to analytic studies as easily. It is more for
practical matters of computing defenses, but has the unique feature of allowing
different time axes (discrete and continuous) for the defender and the attacker. A
generalization not explored but easy to bring in is an account for the costs of moving
or spot checking, or similarly, measuring security in more than one dimension. Both
generalizations cast the game from one to several goals (adding a quadratic cost
term like described in Sect. 12.5, or adding further payoff distributions to measure
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further security goals relevant for risk management; see Chap. 6). In any case, the
solution as implemented in Chap. 12 will remain applicable in this multidimensional
setting, only requiring a change of how the game is constructed, but no change in
how equilibria are computed.
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Chapter 10
Defense-in-Depth-Games

Without struggle, success has no value.
A. Lauritsen

Abstract In this chapter, we adopt a holistic cross-layer viewpoint towards a
hierarchical structure of ICS and the attack models. The physical layer is comprised
of devices, controllers and the plant whereas the cyber layer consists of routers,
protocols, and security agents and manager. The physical layer controllers are often
designed to be robust, adaptive, and reliable for physical disturbances or faults.
With the possibility of malicious behavior from the network, it is also essential
for us to design physical layer defense that take into account the disturbances and
delay resulting from routing and network traffic as well as the unexpected failure of
network devices due to cyber-attacks. On the other hand, the cyber security policies
are often designed without consideration of control performances. To ensure the
continuous operability of the control system, it is equally important for us to design
security policies that provide maximum level of security enhancement but minimum
level of system overhead on the networked system. The physical and cyber aspects
of control systems should be viewed holistically for analysis and design.

10.1 The Need for Cross-Layer Security

The integration of IT infrastructure with ICS has created a closed network of
systems embedded in the publicly accessible network. The integration brings many
cost and performance benefits to the industry as well as arduous challenges of
protecting the automation systems from security threats [6]. IT networks and
automation systems often differ in their security objectives, security architecture and
quality-of-service requirements. Hence, the conventional IT solutions to security
cannot be directly applied to control systems. It is also imperative to take into
account many control system specific properties when developing new network
security solutions. In this chapter, we introduce a framework to assess the impact
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of cyber-security policies on various control system performances and design an
optimal security policy for a large-scale networked ICS.

Due to the total isolation of control systems from the external networks, control
system security has historically been defined as the level of reliability of the system,
with designs aimed at increasing the reliability and the robustness of the system,
rather than considering the network security. Hence, merging a modern IT architec-
ture with an isolated network that does not have built-in security countermeasure
is a challenging task. From a mitigation perspective, simply deploying IT security
technologies into a control system may not be a viable solution. Although modern
control systems use the same underlying protocols that are used in IT and business
networks, the very nature of control system functionality may make even proven
security technologies inappropriate.

Sectors such as energy, transportation and chemical, have time-sensitive require-
ments. Hence, the latency and throughput issues with security strategies may
introduce unacceptable delays and degrade acceptable system performance. The
requirement of accessibility of control systems is a distinct factor that distinguishes
it from its IT counterpart. Understanding the system tradeoff between security and
system accessibility would enable us to learn the fundamental limitations and design
principles for secure control systems. Security solutions at the physical and the
cyber-layer of an integrated control system need to take into account the interaction
between these two layers. Figure 10.1 illustrates the concept of defense in-depth
as a nested structure. The target assets are safeguarded using multiple layers of
protections including authorization and access control, firewalls, IDS, and DMZs,
physical patrolling and surveillance. The figure also illustrate the interconnection
between the physical and the cyber security of the system.

In this chapter, we adopt a holistic cross-layer viewpoint towards a hierarchical
structure of ICS and the attack models. The physical layer is comprised of devices,
controllers and the plant whereas the cyber-layer consists of routers, protocols,
and security agents and manager. The physical layer controllers are often designed
to be robust, adaptive, and reliable for physical disturbances or faults. With the
possibility of malicious behavior from the network, it is also essential for us to
design physical layer defense that take into account the disturbances and delay
resulting from routing and network traffic as well as the unexpected failure of
network devices due to cyber-attacks. On the other hand, the cyber-security policies
are often designed without consideration of control performances. To ensure the
continuous operability of the control system, it is equally important for us to design
security policies that provide maximum level of security enhancement but minimum
level of system overhead on the networked system. The physical and cyber-aspects
of control systems should be viewed holistically for analysis and design.

10.2 Socio-Cyber-Physical Security Threats

With the emergence of cyber-physical systems in recent years and the increased
interaction between physical infrastructures and people, on the one hand, as well as
technology and computational components, on the other hand, a special focus has
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been laid on cyber-crimes and how to improve cyber-security in the contemporary
complex workplace. In contrast, physical security has been relatively overlooked
or improperly enforced in some places. Cyber security aims at protecting assets
and resources in cyberspace by blocking unauthorized remote access to networks
and assets. Still, the attackers have the opportunity to gain access by physically
entering an organization’s premises and connecting to the network, servers, or any
other device available on site. Traditionally, physical security of enterprises has been
mainly shaped by the castle (fortress) protection model, which aims at building a
hard shell around a presumably trusted area encompassing different valuable assets
varying from people, hardware and software to data and information resources.
Therefore, various security controls have been deployed and mounted at the outer
boundaries of the facility of interest establishing the so-called security perimeter. In
general, the perimetric controls are designed and implemented with the D5 strategy
in mind; i.e. Demarcation, Deter, Detect, Delay and Defend [9]. Demarcation refers
to the process of creating boundaries around important assets. These boundaries
should be visible to avoid innocent boundary crossings and to simplify identifying
hostile intentions.

The goal of deterrence is to create an unattractive environment for potential
adversaries. Security lighting, fences, monitoring points, and surveillance systems
are, for example, effective deterrents since they are able to reduce an attacker’s
opportunity to commit his attack unobserved. However, deterrent efforts are not
enough to keep adversaries out. Therefore, it is of vital importance for the perimeter
to be able to detect unwanted activities and to delay potential perpetrators long
enough to allow security forces or first responders to intercept and defend by
denying access to the internal critical assets and resources. An enterprise’s security
perimeter can include common protecting components and mechanical barriers
such as fences, walls, monitoring points, entrance gates or doors, vehicle barriers,
security lighting, landscaping, video surveillance systems, alarm systems, guards,
intrusion detection systems, among others. For example, closed circuit television
cameras are increasingly used to provide features such as standard monitoring,
recording, event detection and forensic analysis. They transmit video signals over
dedicated coaxial cables or any common computer network to a specific video
control system and to a limited number of monitors in a central monitoring station
that is mostly serviced by a third party contractor. In addition to this, the physical
access is sometimes limited to authorized users with valid credentials such as
identity badges. Due to the fixed installation of these security solutions, they tend to
remain static and inflexible in their operation.

Although all of these controls have been used to ensure that any contact with the
protected assets is authorized, a breach of the physical security remains probable
due to accidents, human errors or even targeted attacks. Attackers leverage the
static nature of these mechanisms and the predictable placement of their devices
to sneak into the facility. Moreover, the ongoing trend demanding enterprises to
become more flexible and dynamic, as well as the increasing rate of collaboration
and interconnection, make the solid security perimeter of these systems very porous.
As a result, the perimeter is no more able to keep risk resources in the outside
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environment. The current tendency of an organization to extend beyond their
conventional borders to reach other entities such as vendors, business partners,
service providers or even customer, results in having different external entities
within the system such as temporary workers, interns, independent contractors and
subcontractors, or visitors. Even if the access to the industrial sensitive zones is
tightly controlled at the borders, behind the borders the freedom of movement
is almost entirely ensured for ordinary organization’s personnel as well as for
temporary ones. Therefore, potential adversaries can exploit the dynamic nature of
the systems and lack of a proper resource management strategy to cause loss and
damage.

As a result, the assumption that the inside does not have attack sources and
it is outfitted with less protection is no more valid. Undetectability within the
system complex will give the adversary a good opportunity to reconnaissance the
target area, to gather some sensitive information, and to probably cover the tracks
of ongoing attacks, too. Nowadays attackers will exploit different attack vectors
trying repeatedly to adapt to the defender strategies [2]. Therefore, it is highly
important to maintain situational awareness even within the system complex so that
the potential intruders can remain detectable and the security managers are able to
respond timely. Having dynamic and mobile surveillance systems (or strategies)
will definitely increase the system robustness and increase the attack costs and
complexity. This, in turn, will give the system’s defenders the advantage to stay
ahead of the attackers in the respective security game.

10.2.1 Cyber-Physical Threats

Cyber security is a broad term that comprises technical, organizational but also staff-
related aspects, and as such cannot be covered by purely technical security notions.
However, and conversely, organizational assumptions and those on the staff indeed
are crucially underlying any technical precaution. The most important examples are
security notions in cryptography, which effectively equal security to the secrecy of
the underlying keys (we will discuss the formal notions in Chap. 11). Once a key is
known, any security proof or other formal argument of security becomes void. This
extends to many (if not all) other technical security precautions as well, since access
credentials are to be protected, but at some point, the protection must ultimately rely
on human behavior and awareness. This is essentially the point where attacks are
mounted for the mere reason of efficiency: stealing an access credential or spying
out a cryptographic key is in most cases much cheaper than running an expensive
(and time-consuming) cryptanalysis.

The achievements of cryptography and related areas (see [3]) have made the
attacker concentrate its efforts on the weakest element, which is the human;
and this weakness is very well documented [8]. Although solutions to some
vulnerabilities have been proposed [14], there remains much to be done. Essentially,
social engineering is a matter of exploiting human’s unawareness of a threat.
Consequently, awareness training, spot checks, etc. appear to be only a few natural
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countermeasures, but none of which has a permanent effect. An effective protection
against social engineering thus calls for a continuous information and training
campaign, which costs money and time, and the question of an optimal investment
in these measures directly relates security to economics. However, the tradeoff
between security investment and the positive effects of it (the return-of-investment)
also exists in the opposite direction on the attacker’s side, which directly induces a
non-formal yet practically effective understanding of security that we describe next.

10.2.2 Security Economics

Security is usually not about making an attack impossible, since it is fully sufficient
to render an attack non-economic. That is, if the investment of the attacker exceeds
the revenue received upon success, it is simply not meaningful to mount the attack.
Consequently, our attack/defense model will consider costs incurred throughout the
lifetime of the intrusion attempt, by measuring the “optimal” cost/benefit tradeoff
in the defense. The resulting model, in light of this balance and conflict, is thus a
two-player game between the defender seeking to maximize the attacker’s costs,
opposing an attacker attempting to minimize its investment in order to maximize
the final payoff. This can be quantified by the damage caused, minus the investment
that has been necessary, or, in a more sophisticated fashion, by considering a multi-
objective optimization and treating investments and returns as separate goals (see
Sects. 3.3 and 12.5).

10.3 Multi-layer Framework for Defense in Depth

The cyber-infrastructure serves as an interface between the controller and the
physical plant. The control signals are sent through a security enhanced IT
infrastructure such as wireless networks, the Internet and Local Area Networks
(LANs). The security architecture of the IT infrastructure is designed to enable
the security practice of defense in depth for control systems [13]. Figure 10.1
illustrates the concept of in-depth defensive as a combination of different game
models, with an adversary playing different games per layer towards the target
assets. The cascading countermeasures using a multitude of security devices and
agents, ranging from physical protections to firewalls and access control, can offer
the administrators more opportunities for information and resources control with the
advent of potential threats. However, it also creates possible issues on the latency
and the packet drop rate of communications between the controller and the plant.

Here, we describe a unifying security model for this cyber-physical scenario and
investigate the mitigating strategies from the perspectives of control systems as well
as of cyber-defenses. At the physical layer, we often aim to design robust or adaptive
controllers that take into account the uncertainties and disturbances in the system to
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in differentgames
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Fig. 10.1 Defense in-depth security mechanism to protect the target assets

enhance robustness and reliability of the system. At the cyber-level, we often employ
IT security solutions by deploying security devices and agents in the network. The
security designs at the physical and the cyber-layers usually follow different goals
without a unifying framework.

APTs are one of the emerging threats for ICS. Unlike the automated probes and
amateurish hackers, APTs have specific targets and conduct thorough research to
expose the system architecture, valuable assets, and even defense strategies so that
they can tailor their strategies and make the cryptography, firewalls, and intrusion
detection systems invalid. APTs are also deceptive and can stealthily stay in the
system for a long time, e.g., a replay attack which replays the prerecorded standard
sensory data to deceive the monitor during the attack. Various examples have been
reviewed in Sect. 1.4.

Defense in depth is a useful class of strategies to defend against such sophisti-
cated attacks. The defense-in-depth employs a holistic approach to protect assets
across the cyber-physical layers of the system, taking into account interconnections
and interdependencies of these layers. The design of defense-in-depth strategies
provides efficient cross-layer protection that holistically deters attacks and reduces
cybersecurity risks.
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To develop a formal design paradigm, we leverage game-theoretic methods
to capture constraints on the defense, consequences of attacks, and attackers’
incentives quantitatively. In particular, we introduce a multistage game framework
to model the long-term interaction and stealthiness of APTs. We divide the entire life
cycle of APTs into multiple stages where at each stage, both players take actions,
make observations, and then move to the next stage. Section 1.3.2 outlined the
details of this multi-stage nature of an APT that we call the kill chain [2]. The main
idea of defense-in-depth games is to model each stage as its own distinct game, and
letting the outcome of one game determine the initial strategic position of the player
when the next game starts. This can mean having (or not having) certain strategies or
having a payoff structure that depends on what happened in the previous stage of the
chain of games. A defense-in-depth game model is thus a set of game models that
are in a way nested, and with each game being chosen to best model the respective
phase. In particular, this can entail structurally very different game models in each
phase. We describe one possible set of models in the following, emphasizing, that
the full spectrum of game theoretic models (as described throughout this book) may
find application in different practical circumstances.

During the reconnaissance phase, the threat actor probes the system and obtains
intelligence from open-source or inside information. The reconnaissance phase
identifies vulnerable targets and increases the success of the initial compromise.
After APTs obtain the private key and establish a foothold, they escalate privilege,
propagate laterally in the cyber-network, and finally either access confidential
information or inflict physical damages. The chain structure of APTs can be mapped
into a multistage game, where each stage is described by a local interaction between
an attacker and a defender whose outcome leads to the next stage of interactions.
The goal of the APT is to reach the targeted physical assets while the defender aims
to take actions at multiple stages of the kill chain to thwart the attack or reduce its
impact.

One key challenge of the game-theoretic framework is to capture the stealthy and
deceptive behaviors in the network. Let us use the multistage game of incomplete
information [4] to model the information asymmetry between players. To this end,
we introduce the notion of types to characterize the private information of the
players in the game. For example, the type of users, legitimate or adversarial,
is private to the users or the attackers themselves. On the other hand, the level
configuration of the network, which can be low or high, is private to the network
administrator, i.e., the defender. The defender does not know the users’ type because
of the stealthy nature of APTs, and she can also hide or obfuscate her type via
defensive deception techniques such as the moving target defense and the honeypot
deployment [1, 7]. Players’ types determine their utilities and affect their behaviors.
Thus, each player observes and analyzes behaviors of the other player at each stage
to form a belief of the other’s type. When observations are available during their
persistent interactions, players continuously update their beliefs via the Bayesian
rule (see Definition 4.3).

Both players act strategically according to their beliefs to maximize their utilities.
The PBNE provides a useful prediction of their policies at every stage for each
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type since no players benefit from unilateral deviations at the equilibrium. The
computation of PBNE is challenging due to the coupling between the forward belief
update and the backward policy computation. We first formulate a mathematical
programming problem to compute the equilibrium policy pair under a given belief
for a one-stage Bayesian game. Then, we extend this approach to compute the
equilibrium policy pair under a given sequence of beliefs for multistage Bayesian
games by constructing a sequence of nested mathematical programming problems.
Finally, we combine these programs with the Bayesian update and propose an
efficient algorithm to compute the PBNE.

The proposed modeling and computational methods have been shown to be
capable of hardening the security of a broad class of industrial SCADA systems.
In [5], we have used Tennessee Eastman (TE) process as a case study and provides
design guidelines for defense against APTs that can infiltrate into the cyber-network
through spoofing emails, then escalate privileges, tamper the sensor reading, and
decrease the operational efficiency of the TE process without triggering the alarm.
The dynamic games approach offers a quantitative way to assess the risks and
provides a systematic and computational mechanism to develop proactive and
strategic defenses across multiple cyber-physical stages of the operations. First,
we observe that defense at the final stage is usually too late to be effective when
APTs have been well-prepared and ready to attack. We need to take precautions and
proactive responses in the cyber-stages when the attack remains “under the radar”
so that the attacker becomes less dominant when they reach the final stage. Second,
the online learning capability of the defender plays an important role in detecting
the adversarial deception and tilting the information asymmetry. It increases the
probability of identifying the hidden information from the observable behaviors,
threatens the stealthy attacker to take more conservative actions, and hence reduces
the attack loss. Third, defensive deception techniques are shown effective to increase
the uncertainties of the attacks and their learning costs and hence reduce the
probability of successful attacks.

10.4 Multi-layer Games for Strategic Defense in Depth

Recent work on game-theoretic modeling of APTs [10–12] suggests decomposing
a general attack into the following three phases as a simplified representation of the
kill chain. The main observation here is that a physical intrusion can work along the
same lines:

(1) Initial penetration (phase one): this phase is completed if the attacker has
established in initial contact with the victim infrastructure; more precisely, a
contact point within the system has been set up; typically, a piece of malware
has been installed via a successful phishing email (see also Example 3.8), or
similar. For a pure physical access attempt, a logical entry point can be used to
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gather information about legitimate employees, so as, for example, to create a
validly looking fake identity.

(2) Learning and Propagation (phase two): this phase comprises a possibly long
period in which the attacker remains stealthy and gathers information about the
victim’s infrastructure. The goal is to penetrate the facilities as deep as possible,
in order to get near neuralgic points where damage can be caused subsequently.

(3) Damaging (phase three): this is the time when the attacker becomes visibly
active and attempts to cause damage by virtue of all previously acquired
knowledge. In particular, this phase may not require physical presence if it
is supported by a (parallel) cyber-attack having left secret installations of
malware and backdoors in the victim’s infrastructure. Each of these phases is,
in the game-theoretic treatment of [12], modeled as a designated type of game;
specifically:

Phase one is captured by a matrix game since there are only finitely many
strategies (social engineering, compromising third party suppliers, etc.), to get into
the infrastructure at first place. Also, no such strategy may be guaranteed to work,
so repeating the attempts is usually necessary (phishing is a good example, since the
success of it is due to the mass of emails, which corresponds to a repetition of the
strategy).

Phase two is modeled as a sequential game, in which the attacker’s goal is to
complete a stage-by-stage path from the initial contact point (end of phase 1) up
to the target asset (beginning of phase 3). In case of cyber-attacks, a “stage” may
physically correspond to a certain sub-network or computer and the respective “next
stage” is any subnet or computer that is “closer” to the target. The understanding of
closeness herein depends on the domain context, and can be a certain distance in
terms of network node hops, a certain level of privileges due to the position in the
company’s hierarchy, or –in the case of physical security that we consider hereafter–
the number of rooms and security checks to pass until the target asset becomes
accessible.

Phase three is again modeled as a matrix game, with the concrete set of
possibilities (for the attacker and the defender) being dependent on the type of
access that the attacker has gained. For example, if the adversary has full access to a
central server, then the configuration or data within the server may be compromised.
The respective defense strategy, in that case, is an integrity check of both, the
configuration and data. Clearly, both actions have to be repeated, thus justifying
the matrix game model here. For high-security applications, a physical separation
between the high-security domain and the outer company intranet (having an
internet connection) may be found. In such cases, strategies from social engineering,
e.g., bring-your-own device, must be added to the phase three game. For example,
the physical separation between networks can be overcome, if a legitimate person
with access to the target can be tricked into plugging a virulent USB stick inside,
so that the malware can jump over the physical boundary. Likewise, compromising
the machinery used inside the high-security domain by compromising a third party
supplier is another way of penetrating a physical separation. However, all of these
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Fig. 10.2 Attack Phases in a game-theoretic view

strategies, depend on information learned in phase two, so the games are clearly
connected to each other.

Figure 10.2 displays the modeling graphically and illustrates its relation to
defense in depth. That is, defense in depth considers a number of protective shells
around an asset, assuming that all of them have to be penetrated in sequence to get
to the inner treasure. Our phase two game models exactly this view, with the games
in phase one and three corresponding to the start and finish of the attack.
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Chapter 11
Cryptographic Games

Security is a process, not a product.
B. Schneier

Abstract The term “game” has substantially different meanings within the security
area, depending on whether we speak about cryptographic security in particular, or
system security in a more general setting that includes quantitative security with
help of game theory. Game theory and cryptography are, however, of mutual value
for each other, since game theory can help designing self-enforcing security of
cryptographic protocols, and cryptography contributes invaluable mechanisms to
implement games for security. This chapter introduces both ideas, being rational
cryptography for the design of protocols that use rationality to incentivize players to
follow faithfully, but also addresses the classical security goals like confidentiality,
integrity, availability and authenticity by describing security games with quantitative
and unconditional security guarantees. The chapter closes with a connection
between network design for security and the P/NP question whose discovery is made
with help from game theory.

11.1 Rational Cryptography

The combination of games and cryptography dates back to the days when public
key cryptography has first seen formal notions of security. Initially, games were
used to formalize notions of security and aid proofs in cryptography. However, this
application of games differs from the newer area of rational cryptography in the
particular use of games and its entailed understanding of security:

• In classical cryptography, a game is used to define a specific attack scenario
and the resilience against this scenario in “almost” all cases. The game itself
fixes how the attacker may interact with the honest party towards some security
breach (i.e., disclosure of secrets, impersonation, etc.). In describing a form of
interaction, the “game” is here similar to an algorithm, which is then further used
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in complexity-theoretic reduction arguments. To illustrate how this is different to
the game-theoretic treatments elsewhere in this book, we will exemplify below
one particular game and one notion of security for a specific encryption function,
and show how the game is used to prove security in the classical cryptographic
realm.

• In rational cryptography, we seek to incentivize the attacker in a way that it is
in its best interest not to attack at all. The game is here somewhat less restrictive
in allowing the attacker to follow or deviate from a protocol. The goal lies in
finding a design such that there is no incentive for the attacker to deviate from
the cryptographic protocol, or in other words, to behave honestly. Thus, security
would be self-enforcing.

Classical cryptography pursues strict worst-case assurances like claiming that the
attacker will learn nothing significant in almost all but a negligible fraction of cases.
Utility maximization arguments of rational cryptography are weaker in demanding
only average case optimal behavior, thus allowing the attacker to succeed or
fail in the intended security breaches alternatingly. It is then a matter of clever
combinations of cryptographic primitives with game theoretic incentive design
(utility functions) to keep the likelihood of a security breach within acceptable
bounds. Examples related to very basic security notions like confidentiality or
authenticity will be postponed until Sect. 11.2. For now, we start with the more
“traditional” use of games in cryptography, to prepare the transition to modern
concepts of rational cryptography, but also to shed some more light on what kind of
security assurance cryptography can offer using game-based definitions.

Remark 11.1 We will intentionally deviate slightly from the notation used through-
out the rest of this book, denoting cryptographic security games with the symbol
Game, and letting algorithms use calligraphic letters. This is for the twofold reason
of (i) emphasizing the conceptual difference to the mathematical games (denoted as
Γ ) discussed so far and later, and (ii) being more consistent with the cryptographic
literature, where the security parameters that the games depend on play a central
role. Hence, the “more complex” notation is important and justified, and for that
reason also adopted in this chapter.

11.1.1 Game-Based Security and Negligible Functions

Much classical cryptography uses so-called “game-based security definitions”.
While leaving comprehensive accounts of this approach to textbooks on cryptology
[15], we shall look at a game-based definition of confidentiality for probabilistic
public-key encryption in the following example. This is to expose the difference in
both, the way the game is defined as well as the way it is used for a security analysis.

Example 11.1 (Game-based Security by Indistinguishability against Chosen Plain
Attacks (IND-CPA)) Given an encryption function, its security regarding confiden-
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tiality can informally be understood as follows: we say that an encryption function is
secure if it produces “indistinguishable” ciphertexts. Herein, we say that two cipher-
texts c0, c1 encapsulating distinct plaintexts m0 �= m1 are indistinguishable, if no
randomized algorithm that runs in polynomial time (in the length of the ciphertexts
and the other related system parameters) can tell an encryption for m0 apart from
an encryption of m1. In other words, the relation between two ciphertexts {c0, c1}
and the known inner plaintexts {m0,m1} should remain effectively undecidable (in
polynomial time and with a noticeable chance of correctness, where “noticeable”
has a rigorous meaning given later). It can be shown that this requirement is
equivalent to the inability to compute anything meaningful from a given (single)
ciphertext; a property that we call semantic security.

A game-based definition of security in terms of indistinguishability frames the
above decision problem into a non-cooperative interaction between two parties,
where the challenger (player 1) asks the attacker (player 2) to decide which plaintext
among a given set of two candidates (chosen by the attacker) has been encrypted.
If the attacker answers correctly, it wins the game, otherwise, it looses (and the
challenger would score accordingly). Thus, the game is implicitly zero-sum, though
this is usually not stated or used anyhow.

The game takes three phases and is generally described as an experiment, similar
to an extensive form game, in a notation like the following: As is common, we
write pk, sk to mean public and private keys, as well as we let Gc and Gm

denote the ciphertext and plaintext spaces (typically Abelian groups). The public-
key encryption scheme comes as a triple of algorithms (G,E,D) where G is a
probabilistic algorithm for key generation. This algorithm takes a security parameter
n ∈ N to construct keys, plain- and ciphertext groups Gm and Gc with bitlengths,
i.e., cardinalities, depending on n (practically, the choice of n would allude to
recommendations published by related institutions, such as available at [14], among
others). The symbols Epk,Dsk denote the encryption function using key pk and
decryption function using the key sk, respectively. Both mappings are between the
plain- and ciphertext groups Gm and Gc, in the respective order. The attacker, in
turn, is modeled as a probabilistic Turing machine A that is assumed to run in
polynomial time in its inputs.

Following the above outline, the security game is then played like shown
in Fig. 11.1 for a chosen plaintext attack: it starts with the challenger (honest
player) initializing the cryptographic mechanisms using the publicly known security
parameter n. Then, the attacker (dishonest player 2) is allowed to ask for encryptions
of plaintexts of its own choice (the number of which can be at most polynomial in
n). In the second phase, the attacker chooses two plaintexts m0,m1 of the same
length (to avoid a trivial win), and sends them to the challenger, claiming that it
can still recognize m0 and m1 after being encrypted. The challenger picks on out
of the two at random, and sends back the ciphertext. The attacker wins, if it can
correctly tell which mb ∈ {m0,m1} has been encrypted. In that case, the game
rewards the attacker with 1, or rewards zero otherwise. This outcome is denoted

as the random variable GameA Epk(·)
IND-CPA(n). The superscript notation A Epk(·) hereby
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Fig. 11.1 Game-based security against chosen plaintext attacks [38]

denotes oracle access of A to the encryption function Epk . Its dependency on the
security parameter n is crucial in the following, since the game’s analysis regards
asymptotic properties of the sequence of random variables indexed by the security
parameter n. However, despite Fig. 11.1 being interpretable as a game in extensive
form, the analysis is not for saddle-point values, but rather seeks an upper bound to
the game’s worst-case outcome.

This game is essentially zero-sum in the sense that it assigns a utility to the
attacker, usually called the attacker’s advantage. For this example, it is defined to be

AdvA
IND-CPA(n) := Pr[b∗ = b], where the dependency on n is via GameA Epk(·)

IND-CPA(n),
assuming that both players act optimal. 

Based on the description given in Example 11.1, a game theoretic analysis would
look for saddle-points to determine the simultaneously optimal behavior for both
parties in the game. On the contrary, cryptography assumes that both parties a
priori act optimal already, and tries to bound the game’s outcome AdvA

IND-CPA(n)

asymptotically in n. Along this route, the game then becomes the object of a
complexity-theoretic reduction argument that generically runs as follows, where
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different notions of security (e.g., against chosen ciphertext attacks, or others)
mainly differ in the games under study:

1. Assume the existence of an attacker A who would gain a non-negligible utility

AdvA
IND-CPA in GameA Epk(·)

IND-CPA (aiming at a proof by contradiction). The exact
meaning of “negligible” will be clarified later in Definition 11.1; essentially, it is
an asymptotic condition based on the parameter n to the above game.

2. Construct another algorithm A ′ that invokes A as a subroutine, and show that
A ′ could be used to solve some computationally intractable problem P that
has been fixed a priori (typical examples are factorization of large integers, the
computation of discrete logarithms, deciding upon quadratic residuosity among
many others).

3. Since P is believed to be unsolvable in polynomial time (asymptotically as the
sizes of the instances of P grow), but the polynomial-time algorithm A ′ could
still do it, this contradiction refutes the existence of the attacker A , thus proving
the encryption to be secure using the cryptographic game.

On an abstract level, this is the basic structure that reductionist security proofs
throughout cryptography follow (see [41] for numerable examples). This approach
to security is successful for cryptographic purposes, but different from a game
theoretic analysis in two respects: first, it does not look for optimal behavior, but
rather rules out winning strategies (only). Second, the analysis looks for worst-case
bounds to the utility values, rather than for average-case optimality as game theory
would do.

This entails that some impossibility results found in cryptography need recon-
sideration under the game theoretic perspective [11], which is one benefit that
game theory offers for cryptography. In order to properly study cryptographic
competitions like the game in Fig. 11.1 from a game theoretic viewpoint, we need
to first incorporate the computational notions into the game theoretic definitions.
Primarily, this concerns the dependency of the game on the security parameter, that
optimality conditions of game theory (such as for equilibria) should include. The
basic elements of this formalization are summarized in Definition 11.1.

Definition 11.1 (Asymptotic Relations and Negligible Functions) Let f, g :
N → R be given. We write f ≤asymp g if an integer n0 exists for which
f (n) ≤ g(n) whenever n ≥ n0. The relation ≥asymp is defined mutatis mutandis.
The function f is called negligible, if f ≤asymp 1/|p| for all polynomials p, and
called noticeable if g ≥asymp 1/p0 for some polynomial p0.

As with Landau-symbols, we write negl(n) to anonymously denote a function
that is negligible in n. With this, we write f ≈negl g if |f − g| is negligible.
Likewise, we write f ≤negl g if f ≤asymp g + negl, and f ≥negl g if f ≥asymp
g − negl. The complement relation to ≤negl is written as >noticbl and means
f ≥ g + ε, where ε is a noticeable function.

Example 11.2 (negligible and non-negligible functions) It is easy to see that all
constants are non-negligible, as well as are functions like 1/ log(n) or reciprocal
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polynomials such as n−3. On the contrary, the function 2−n would be negligible, as
it decays faster than any polynomial. 

The set of negligible functions is closed under addition and scalar multiplication,
and as such behaves like a vector space; a property that is frequently used
implicitly. The above reductionist security argument for Example 11.1 would then
be formalized by writing AdvA

IND-CPA(n) ≈negl 1/2. This expresses that once the
security parameter is sufficiently large, the attacker has no noticeably better chance
of winning than it would have by a fair coin toss. To see this at work, Example 11.3
instantiates the generic argument for the game in Fig. 11.1.

Example 11.3 (Game-Based Security Analysis of ElGamal Encryption) ElGamal
encryption [24] is an asymmetric scheme that works over a finite cyclic group G

with generator g ∈ G. The encryption under a public key pk = gs sends a plaintext
m ∈ N to a ciphertext (c1, c2) = (gr ,m·pkr), where r, s are random secret elements
chosen from G. Here, pk is the public key, and the secret decryption key would
be sk = s. For completeness (yet not needed in the following), we note that the
decryption would first construct the value K = (c1)

s = (gr)s = gsr = (gs)r = pkr

and then recover m = c2 ·K−1 in G.
Let us go back to Fig. 11.1, and assume that the attacker would have a “winning”

strategy in the sense that it can act towards AdvA
IND-CPA(n) >noticbl 1/2. The

problem P to base the security upon is the following: given a triple of values
(a, b, c) in some finite cyclic group G generated by some element g ∈ G, decide
if there are integers x, y such that (A,B,C) = (gx, gy, gxy). We call this decision
the Diffie-Hellman (DH) problem, and its input is called a DH triple. It is widely
believed that for properly chosen groups G that every polynomial time algorithm
A taking (A,B,C) as input and running in a time that is at most polynomial in the
order of the group G, has a chance Pr(A (A,B,C) = 1) ≤negl 1/2 of recognizing
DH triples correctly among all possible triples (i.e., A (A,B,C) returns 1 if a DH
triple is found, or zero to indicate a non-DH triple). This is the DH assumption and
the computational intractability hypothesis upon which our security proof will rest
(i.e., be conditional on assuming “only negligibly better chances to decide correctly
that by an uninformed yet fair coin toss”).

Assuming an attacker A that could win GameA Epk(·)
IND-CPA(n), we can deduce that

the DH problem is solvable with noticeable chances, i.e., Pr(A (A,B,C) = 1) =
1/2 + ε >noticbl 1/2 whenever (A,B,C) is a DH triple. Here, ε(n) is noticeable
as a function of n. We construct a distinguisher algorithm D that works as follows:

on input of a triple (A = gx, B = gy, C = gz), it starts GameA Epk(·)
IND-CPA(n) with the

attacker (i.e., algorithm) A taking (A,B,C) as input and outputting a guess for it
to be a DH triple. In the challenge phase, upon receiving (m0,m1) in the IND-CPA
game, we pick a random β ∈ {0, 1} and respond with the ciphertext (B,mβ · C).
Now, distinguish two cases:
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1. if z = xy, then the response constructed by D is a properly distributed ElGamal
ciphertext, and by our hypothesis on A , the attacker will correctly recognize the
inner plaintext with noticeable likelihood Pr[A (gx, gy, gxy)] >noticbl 1/2.

2. if z �= xy, then the response (B,mβ · C) is stochastically independent of β,
and hence no algorithm, regardless of complexity, can correctly guess β with a
chance > 1/2. Hence, Pr[A (gx, gy, gxy)] = 1/2.

By the law of total probability, we thus find that the algorithm D can use A to
recognize DH triples with a likelihood of

Pr(D(A,B,C) = 1) = 1

2
Pr(D(gx, gy, gxy) = 1)+ 1

2
Pr(D(gx, gy, gz) = 1)

= 1

2
·
(

1

2
+ ε

)
+ 1

2
· 1

2
= 1

2
+ ε >noticbl

1

2
,

where ε is a noticeable function. However, the DH assumption states just the
opposite for any algorithm running in polynomial time, including D in particular.
This contradiction means that the attacker A cannot exist, conditional on the
computational intractability of the DH problem. 
Remark 11.2 In being asymptotic, claims of security phrased in terms of negligibil-
ity are usually silent about “how large” the security parameter n in general should be
for the asymptotic relation to hold. This lack of detail in many asymptotic security
proofs has been subject of criticism and a subsequently quite emotional controversy
[21].

11.1.2 Honesty and Rationality

Rational cryptography changes the perspective by not bounding but rather opti-
mizing the attacker’s advantage, being redefined as a proper utility function. To
properly transfer the computational asymptotic relations used in the traditional
cryptographic setting, it starts by redefining equilibria and optimality in terms of the
relations given in Definition 11.1. This modification allows for a negligible amount
of “violation” of optimality, which is necessary to account for the underlying
cryptographic primitives and computational intractability hypothesis behind them.
The point of negligibility in all game theoretic definitions in rational cryptography is
making an allowance up to anything that is less than what a polynomially bounded
attacker could achieve (since an exponentially fast attacker is neither realistic nor
theoretically meaningful).

Rational cryptography in most instances is about one of the following things:

Protocol analysis (game theory): here, we analyze a cryptographic protocol from
a game-theoretic view, i.e., by asking for the best moves of each player per stage
of the game (like in Fig. 11.1 or suitably adapted to the situation at hand). In
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many cases, this uses relaxed definitions of security that in turn allow for better
complexities than achievable in classical schemes [4].

Protocol construction (mechanism design): here, we look for cryptographic prim-
itives to enforce some desired optimal rewards (in the defender’s interest) in each
stage of a (cryptographic) security mechanism. Game theoretic concepts are then
used as a guidance for the design itself, whereas cryptography is used to enforce
certain desired equilibria.

As far as it concerns the analysis, Example 11.3 has a clearly defined incentive in
recognizing one out of two plaintexts. An implicit assumption is here the willingness
of the players to engage in the game and to follow its rules. In other cases, this
engagement cannot be safely assumed, and the players may be willing to interact
with another party only if there is an incentive to do so; the players would act
rational.

Likewise, the attacker would be rational in the sense of perhaps pursuing other
goals than what the game defines. To illustrate this, we look at secret sharing as
another popular cryptographic primitive.

Example 11.4 ((k, n)-secret sharing) Secret sharing is one particularly rich and
widely studied cryptographic concept studied in rational cryptography. In one of
its basic forms [39], we have a secret m ∈ F from some, usually finite, field F,
and embody it in a randomly chosen polynomial p(x) = m + a1x + a2x

2 + . . . +
ak−1x

k−1. The goal is storing m with a set of n ≥ k (potentially distrusted) parties
P1, . . . , Pn, such that no party or coalition of parties can discover the secret m. The
secret remains reconstructible only under a set of defined conditions. For the original
scenarios of the polynomial, each party Pi receives the value si := p(i), called a
share. Clearly, it takes at least k or more samples from the polynomial p to uniquely
recover it by interpolation. This already represents the above mentioned condition:
we can distribute m over a set of n servers, assuring that no coalition of ≤ k − 1
parties can recover it. However, with ≥ k data items p(i1), p(i2), . . . , p(ik), the
secret m can be recovered by interpolating through the data points and evaluating
the resulting polynomial as m = p(0). Hence, this is called a k-out-of-n secret
sharing, or threshold scheme. 

In case of secret sharing, the “game” could relate to various stages of the
protocol, i.e., the initial construction and distribution of the shares, their use (e.g.,
for computations on the shared secret), or the reconstruction phase where the secret
shall be recovered with help of (at least) k out of n players. This is the stage that we
are interested in here, so let us take a closer look.

In a reconstruction game, let the players act rational by letting them freely decide
with whom they want to exchange information and potentially open their privately
owned shares. By construction, this is an n-person game for an (k, n)-secret sharing
scheme. Example 11.4 assumes that the players just cooperate in the reconstruction,
but why would they? From a fixed player’s perspective, e.g. player P1, it is not
necessarily beneficial to open its own share, depending on how many others are
willing to do the same: let k be the number of required collaborators among n players
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in total, and let t of them be present for the reconstruction. Then, the reconstruction
game admits the following Nash equilibria [17]:

• For any t, k, n, it is a Nash equilibrium to refrain from revealing the share. Then,
nobody learns anything, but in turn, also nobody has an information gain over,
e.g. P1, which it could count as a personal loss.

• If t > k, then it is an equilibrium for all players to reveal their shares, so that all
players learn the same information and are thus “equally rewarded” again.

If t = k, then P1 can gain even more by letting all others reveal their shares but
keeping its own share secret. Then every other player has only t − 1 < k shares,
thus learns nothing, and only P1 gets to know the secret. So, this configuration is
not even a Nash equilibrium.

These considerations show that the incentive to interact with others can be
individually different, and even be a matter of timing (i.e., if player P1 were the
last to reveal, it could just change its mind to remain the only one to reconstruct
the secret). Thus, studying secret sharing from this more utility-driven perspective
is nontrivial and paying, if a self-enforcing reconstruction protocol can be created
to end up in the second of the aforementioned equilibria (in all cases).

From the above cases, we can derive local preferences for each player, which
then induce utility functions as in Sect. 5:

• player Pi prefers outcomes in which it learns the secret, and
• if player Pi learns the secret, then it prefers outcomes in which as few other

players as possible learn the secret as well.

These preferences can be formalized by indicator variables telling whether or not
a player learns the secret, and adding them up to count the total number of players
having the secret in the end. The utility implied by this preference relation is what
rational secret sharing protocols can optimize by drawing from the whole set of
possible protocol structures: it is up to each player to decide for itself what to do
with the shares, e.g., broadcast them to everyone, or sending them individually to
others over private channels, or act otherwise. Further, cryptographic protocols for
consensus finding and commitments can be involved, in order to establish mutual
trust relationships and to form trusted coalitions for the reconstructions before any
share is actually revealed. The entirety of protocols arising from such considerations
are summarized as rational secret sharing [19].

What a player can (and would) do of course depends on the goal, which so
far has been learning the secret itself, but preventing others from learning it. In
dropping the first goal, a player could merely mount a denial-of-service by blocking
shares, or otherwise may fiddle with the reconstruction to cause an incorrect result.
The scheme of Example 11.4 is particularly rich in structure here, as it enjoys a
natural relation to Reed-Solomon codes for error correction [23]. If we let t be the
number of actively malicious players in the reconstruction, e.g., we add strategies of
blocking shares or sending incorrect values for the reconstruction, then the following
facts about (k, n)-secret sharing hold:
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1. without any error correction being applied to the set of shares before the
reconstruction, a malicious player can send a modified share to let the other
(honest) players reconstruct the value m− c for any chosen value c instead of m

[42].
2. up to t < n/3 shares can be corrupted (in the sense of actively modified by a

malicious party Pi) but the secret m remains recoverable.
3. If n/3 < t < k shares are modified, then an incorrect secret will be recovered

without notice by the honest players, even though an attacker still did not learn
the secret.

4. Up to t < min {k, n/2} shares can even be held back by the malicious parties. In
that case, the adversarial players cannot learn anything about the secret, but the
secret remains reconstructible by the honest players too.

Hence, the attacker can mount an active attack by modification (cases 2 and 3) or
a denial-of-service (case 3); the list is further comprehended in [29].

Now, suppose the game modeling of the secret sharing reconstruction phase is
such that the action sets of players include sending modified shares, blocking their
own shares or those of others. Then, at least the above four outcome possibilities
need to be added to the game dynamics, besides others that are possible due to the
structure of the reconstruction process.

A rationally cryptographic analysis can then proceed by defining a utility
function for each player, in which it assigns different rewards to each possible
outcome (e.g., learning the secret, preventing others from learning it, allowing only
the fewest possible number of others to get the secret, enforcing a changed output,
etc.). Then, we can redefine the utility function as a weighted sum of revenues per
security incident or protocol outcome. Given a list of security incidents indexed by
an integer j , together with respective numeric rewards denoted as γj for the j -th
such incident, the utility for an attacking player could be set to

uattacker :=
∑

j

Pr (attacker causes security breach no. j) · γj , (11.1)

which would be usable for all players i = 1, 2, . . . , n, besides the revenue for acting
honestly (as was outlined above). In many cases, acting dishonestly can even yield
to losses. Among such possibilities are putting the attacker into danger of becoming
discovered (and hence excluded from the protocol), or making the corruption of
parties so costly and difficult that the investment would exceed the gains from
recovering the secret (e.g., if the secret is short-term relevant only, so that by the
time when the attacker would have reconstructed it, it already became useless).

11.1.3 Rational Interactive Proofs

Leaving the secret sharing showcase example behind, we will now look at a more
general setting of a cryptographic protocol between two parties. Protocols consist
of a sequence of steps, each of which offers different ways of action to cause certain
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security breaches [11]. The point of game theory herein is pinning down a behavior
that optimizes the outcome for all players simultaneously. This optimization treats
players as Interactive Turing Machines (ITMs), whose utility is determined by how
the ITM behaves, e.g., using a formula like (11.1). Since optimization over the set of
all ITM is not practically achievable (in absence of the typically necessary algebraic
and geometric structure), the optimization is always towards enforcing a desired
equilibrium by using, respectively prescribing, proper cryptographic mechanisms
to keep the probabilities in (11.1) under control. For example, if a security breach
concerns a private share to leak out to another player, encryption would be added to
the protocol (see Example 11.3). Likewise, if players agree to mutually open their
shares but are unsure if the information being sent is correct, then cryptographic
commitments can be brought into the game for verifiability [12], and so forth.

Since many cryptographic mechanisms come with security assurances that are
only valid asymptotically, the respective asymptotic versions of optimality to define
equilibria need to be used. Example 11.3 shows one possible reason for such
negligible terms to arise from the intractability assumptions on which the security of
the cryptographic primitive rests. Since we cannot hope to find the globally optimal
ITM among the set of all possible ITMs, the cryptography to build the protocol
is chosen to enforce a certain desired equilibrium, based on the utility-induced
preferences, while the numeric rewards themselves may be of secondary interest
only.

In any case, the analysis will here consider utilities derived from likelihoods
of certain security incidents, which in turn follow from the properties of the
involved cryptography. General assumptions made in the game theoretic analysis
often include confidential and authentic channels. Both can in turn be realized on
grounds of game-theoretic considerations, and we will devote the entire Sect. 11.2
to exemplify how this can be done, leveraging the secret sharing scheme of
Example 11.4.

Like game theory concepts can be relaxed by cryptographic notions, crypto-
graphic objects can also be rephrased in game theoretic terms. Let us showcase one
such approach by taking an example of how an interactive proof in cryptography
would translate into a rational proof in rational cryptography.

Example 11.5 (Rational Proofs; definition taken from [4]) Let f be a function that
a prover P shall evaluate on behalf of a verifier V (e.g., P could be a cloud, and V

could be its customer). A rational proof system for f is a pair of algorithms (P, V )

that satisfy the following properties:

1. The honest prover always replies correctly: let the output of the interaction
between P and V upon the input x be denoted as (P, V )(x). Then, we demand
∀x : Pr((P, V )(x) = f (x)) = 1.

2. A dishonest prover always gains less than an honest prover (rationality): Let
u((P, V )(x)) be the rewards for an honest player, and likewise let u((P̃ , V )(x))

be the reward for a dishonest player (upon the same input and the same verifier).
Then, we demand an equilibrium condition like (3.17):
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∀P̃ ∀x : E(u((P, V )(x))) ≥negl E(u((P̃ , V )(x))).

In both cases, the asymptotics are w.r.t. the bitlength of x. To avoid trivialities,
an obvious additional requirement is V taking much less effort to engage in the
interaction with P than if V would evaluate f itself (efficiency). Formally, it should
run in polynomial time in the size of the smallest circuit to evaluate f .

The difference between a rational proof and a (cryptographically strong) interac-
tive proof is the latter demanding to catch a cheating prover with a chance ≈negl 1,
as opposed to a rational proof that only seeks to catch a cheater with a small yet
noticeable probability. In many cases, this allows for much better complexities (i.e.,
running times) than under stronger cryptographic requirements. 

In both branches of rational cryptography (protocol design or security analysis),
the underlying cryptography or the general security primitives are in the center of
attention. Regardless of whether the application operates on the rational versions of
secret sharing, secure function evaluation, or others, the existence of cryptographic
primitives realizing the mechanism is assumed to be at the core of the analysis.
Typically, the investigation takes these primitives to be idealistic and replaces them
by their realistic counterparts in a second step. In this context, these assumptions
concern unconditionally confidentiality, integrity, availability and authenticity of
communication channels (CIA+), a game theoretic analysis can help constructing
secure realistic such ingredients. It therefore pays to look deeper into the game
theoretic analysis and design of communication infrastructures; not only for them
being fundamental to more sophisticated applications of rational cryptography
thereon, but also for being themselves critical infrastructures. We devote Sect. 11.2
to that matter, alluding to the aforementioned matters of protocol analysis and
infrastructure design aided by game theory.

11.2 Communication Games

Computational intractability assumptions are a successful yet nonetheless unverified
foundation of secure communication [21], and even claims of unconditionally
secure communication such as are attributed to quantum key distribution networks
(as one example) are, strictly speaking, not without hypotheses, but come with
verified or at least verifiable assumptions to base their security upon for quantum
cryptography [8, 40], or for transmissions over multiple paths [9, 27, 43]. Both,
quantum key distribution and multi-path transmission are open to game theoretic
analyses [30, 32], with the appeal that the game and its analysis are particularly
simple in that case, with the techniques themselves enjoying much wider applica-
bility [13, 20, 22, 25].
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11.2.1 Confidential Transmission Games

The playground in the following is a communication network connecting multiple
entities in a bidirectional fashion. Let us think of this network as a graph G =
(V ,E) with nodes V and direct communication channels u—v between (physically
adjacent) connected nodes u, v ∈ V .

An attack scenario in this context involves a corrupted set of nodes U ⊆ V ,
with explicit constraints imposed on either which specific subsets can be corrupted
(making up a family of potentially hostile nodes), which is called an adversary
structure, or how many nodes can be corrupted at most (as would be the case in
threshold cryptography). In both cases, the adversary structure A is a subset of 2V ,
and lists all sets that the attacker can simultaneously compromise.

Like in a person-in-the-middle attack, the hostile (i.e., corrupted) nodes are
located at unknown positions between the honest sender and receiver in the network;
the exact locations are only known to the attacker. Furthermore, we assume that the
attacker’s servant nodes collaborate in the sense that they either drain information
that they give to the attacker, or upon its request behave arbitrarily different to what
the sender and receiver presume (active attacks by not following any protocol any
more). In the realm of rational cryptography, we may additionally assign adversarial
efforts to conquer nodes (called a costly corruption [11]), but let us keep things
simple here by leaving this generalization aside.

A multipath transmission based on threshold secret sharing then roughly follows
these steps (cf. [9] for one provably optimal example scheme):

1. Put the message m through an (k, n)-secret sharing scheme (as in Example 11.4),
yielding the shares s1, . . . , sn.

2. Send each share over its own channel to the receiver, which is node-disjoint with
other channels to the same destination. These channels may indeed run through
dishonest nodes, but as long as less than k such channels are intercepted, the
secret is perfectly protected by the sharing mechanism.

3. At the receiver’s side, reconstruct the secret upon all incoming shares (some of
which may went missing if the nodes were actively blocking, or were actively
modified, or simply eavesdropped and sent elsewhere for reconstruction).

It is evident that for this protocol to work, the network topology needs to provide
multiple paths between the sender and the receiver, from which a random subset of
n paths can be chosen. Similarly obvious is the fact that the attacker will seek to
intercept as many paths as it can, to maximize its chances to get k or more shares.
This is the game being played, which lets:

• player 1 (the sender) choose the delivery paths,
• player 2 (the attacker) choosing the nodes to compromise.

Remark 11.3 The enforcement of multiple, and in this case non-intersecting routes
is technically possible in various ways, including virtual LANs, source routing
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(RFC 7855 [28], though this is not usually supported for security reasons), or more
recently, preferred path routing [6].

The game’s payoff is a 0/1-valued indicator variable, which, depending on the
defined security goal, is determined by the properties of the underlying sharing
scheme. Threshold secret sharing is a particularly illustrative example here, as its
effects depend on what we ask for (continuing the remarks following Example 11.4):

Confidentiality: the message is safe as long as no more than k shares get into the
attacker’s hands. Security is here defined “unconditionally” in the sense of not
using any intractability hypothesis, as follows: We call a transmission ε-private
if the transcript of a transmission (i.e., the entirety of information that can be
collected by eavesdropping) for distinct messages m1 �= m2 has approximately
the same distribution up to a statistical distance of less than 2ε. The statistical
distance here refers to metrics on the distributions of the random variables
representing the transcript information (typically strings or more complex com-
pound hence multivariate random variables). The rationale is that small distances
between the distributions imply that there is no significant information about a
message contained, since the empty message (that has trivially no information
in it) would essentially produce an almost identically distributed transcript (this
is the same idea as behind the computational indistinguishability described in
Examples 11.1 and 11.3).

Integrity: a (k, n)-secret sharing can detect and correct up to n/3 modifications. A
manipulation of up to n/2 shares can be detected but no longer corrected (security
against passive adversaries) [23].

Availability: Up to min {k, n/2} shares can be blocked overall (thus imposing a
natural bound on k relative to n), without affecting the privacy of the message (at
least), whereas we would have to choose k so small that sufficiently many shares
come in for a correct reconstruction. Otherwise, the secret may still be safe upon
a failure yet the receiver may as well be unable to recover it. In this context,
the related security concept is called δ-reliability, meaning that the receiver with
probability ≥ 1− δ terminates having recovered the correct message emitted by
the receiver.

Protocol analysis [43] would ask for the optimal coincidence of ε-privacy and δ-
reliability that we call (ε, δ)-security. The notable difference made by game theory
is the reversal of quantifiers: while the graph topology usually determines the ε, δ for
the security, game theory in a subsequent step can help tuning these values towards
any desired security level. If this fails, we can go back and try to alter the network
structure to get better ε, δ values. Game theory can help in this aspect as well,
and we shall look into this shortly afterwards in Sect. 11.2.4. The optimum is of
course (0, 0)-security, which we call perfect security. The reachability of this limit
is characterized by a result of [2], based on the concept of subconnectivity against
so-called k-active adversaries: The graph G = (V ,E) is said to be A (k)(s, t)-
subconnected, if removing the nodes within the union of any k sets in A ⊆ 2V
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from G leaves at least one s—t-path. An active attacker, who can corrupt up to k

sets in A is said to be k-active.

Theorem 11.1 A sender s can do Perfectly Secure Message Transmission (PSMT)
with a receiver t in the network graph G if and only if the network is A (2)(s, t)-
subconnected.

The point of a game theoretic treatment is the insight that we can run the same
scheme like we would play a repeated game with constant payoff matrix: instead
of transmitting all shares in parallel, we can transmit them sequentially and take
another random path in each round. Overall, we end up with the attacker (player
2) catching the share in some rounds and missing it in other rounds of the game. If
the attacker notes 1 for a caught share and notes 0 for a miss, then the saddle-point
value v of the resulting matrix game has a neat interpretation as being a bound to

Pr(message m gets disclosed) ≤ v.

The strategy sets for the players in this game are easy to define (see Fig. 11.2):

• For the sender and receiver (player 1): a set AS1 = {π1, π2, . . .} of paths in G

that can be chosen for the transmission (the entirety of which is exponentially
many in general, but can be restricted to any feasible choice thereof).

• For the attacker (player 2): a family of node sets AS2 ⊆ 2V that can be
compromised, assuming that the hostile nodes may change but do not accumulate
(i.e., the attacker must release some nodes before conquering new ones, which
can be enforced by other optimized inspections [7]). For example, a threshold
assumption would limit the cardinality |X| ≤ t for every X ∈ AS2 to a fixed
number t of compromised nodes per round.

• In each repetition of the game, let π ∼ x ∈ Δ(AS1) be a random choice of paths,
and let Y ∼ y ∈ Δ(AS2) be a randomly chosen set of compromised nodes.

+
+

attacker picks
random sets X ∼ y∗

to wiretap

sender picks route
π ∼ x∗ at random

X2

sender s
(player 1)

eavestropping attacker
(player 2)

receiver r

X1

network

π2

π1

Fig. 11.2 Illustration of a Multipath Communication Game (Definition 11.2)
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The attacker scores 1 if and only if π ⊆ X (in a slight abuse of notation), i.e.,
the chosen paths all run through compromised nodes, and scores 0 otherwise
(as implied by the cryptographic secret sharing). The sender, acting as player 1,
minimizes the average of this indicator, being Pr(x,y)(π ∈ X), over varying x.
Likewise, the attacker, acting as player 2, maximizes Pr(x,y)(π ∈ X) by varying
y. Hence, the game is zero-sum.

If the sender plays its optimal strategy x∗ from any equilibrium (x∗, y∗) ∈ Δ(AS1)×
Δ(AS2), and with v being the saddle-point value of this 0-1-valued matrix game
(recall that AS1, AS2 are both finite), this is nothing else than a security strategy,
and as such satisfies

Pr(successful attack | y) ≤ v for all y ∈ Δ(AS2).

Furthermore, for every x �= x∗, there is an attack strategy yx ∈ Δ(AS2) for which
Pr(successful attack|yx) > v, i.e., the path choice x∗ is optimal. This is nothing
else than a moving target defense based on cryptography and optimized with game
theory.

In this context, cryptography tells us that we cannot achieve perfectly secure
communication unless the network graph has really strong connectivity (relative
to the collection of distrusted nodes). However, the game theoretic analysis lets us
reconsider problems in classical cryptography by resorting to a weaker notion of
bounding the probability for a privacy breach rather than demanding it to be “zero
up to a negligible error”. In repeating the protocol as such (e.g., by a recursive
application of it to send a single share only with chance ≤ v < 1 of getting
caught), we can even lower the bound v exponentially fast towards zero. This can
be achieved by increasing the number of shares as well as the number of rounds
and simply splitting the message initially into a sequence of bitstrings r1, r2, . . . , rk
whose bitwise XOR recovers m = r1 ⊕ r2 ⊕ . . .⊕ rk .

Remark 11.4 The mapping that sends a bitstring m to a set of n bitstrings ri all of
the same length as m and recovering m by the exclusive-or of all these strings is the
special case of a n-out-of-n threshold secret sharing, since any out of the n strings
ri that is unknown to the attacker will perfectly conceal the message m similar as a
one-time pad.

We send each ri for i = 1, . . . , k over a multipath scheme (like the above),
with the game theoretic assurance that the attacker can learn ri with a likelihood
≤ v < 1. If any of the ri goes missing for the attacker, this piece acts like a one-
time pad protecting m, thus the attacker learns nothing about m. Conversely, the
chances to catch all ri over k rounds is ≤ vk → 0 as k increases. We call that an
arbitrarily confidential communication [31, 33], since it can be made ε-private for
any chosen ε > 0 and has an overhead that is polynomial in log(1/k). The precise
setup is the following:

Definition 11.2 (Multipath Communication Game [31]) Let a graph G =
(V ,E), an integer k ≥ 1 and a pair of distinct nodes s, t ∈ V be given. Assume
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that an s-t-communication runs over k paths chosen from the action set AS1 for
the sender, in the presence of an attacker described as an adversary structure
A ⊆ 2V . This set of vulnerable nodes defines its action set AS2 = A (the
cardinality of AS2 should be feasibly small). The quantitative security assurance
(in the sense of Definition 3.9) of this s-t-communication is defined as ρ(s, t) =
1 − maxx∈Δ(AS1) miny∈Δ(AS2) xT Ay = 1 − val(A), where A ∈ {0, 1}|AS1|×|AS2|
models the zero-sum communication game with the payoffs as defined by

aij =
{

1, if the s-t-transmission remained secret;
0, otherwise,

and where the sender is a utility maximizer.
For general communication protocols, but in particular those that can be framed

as a game in the sense of Definition 11.2, we can slightly weaken the notion of
PSMT to be easier to achieve but retaining almost its full strength:

Definition 11.3 (Arbitrarily Secure Message Transmission (ASMT) [31]) A
communication protocol is called arbitrarily secure, if for every ε > 0, δ > 0,
we can run it to achieve ε-privacy and δ-reliability. We call the protocol efficient, if
the overhead is polynomial in log 1

ε
and log 1

δ
.

The result making the above intuition rigorous is the following, whose proof is
found in [36], and respective protocol is given in [31]. Note that the next result
is agnostic of any underlying secret sharing or other means of channel encoding,
and exclusively relies on how the communication game’s payoff structure looks like
(that in turn depends on the underlying transmission technique, e.g., secret sharing
with transmission over multiple paths, or other). Furthermore, it does not depend on
computational intractability hypotheses.

Theorem 11.2 Let Alice and Bob set up their game matrix with binary entries aij ∈
{0, 1}, where aij = 1 if and only if a message can securely and correctly be delivered
by choosing the i-th pure strategy, and the adversary uses his j -th pure strategy for
attacking. Then ρ(A) ∈ [0, 1], and

1. If ρ(A) < 1, then for any ε > 0 there is a protocol so that Alice and Bob can
communicate with an eavesdropping probability of at most ε and a chance of at
least 1− ε to deliver the message correctly.

2. If ρ(A) = 1, then the probability of the message being extracted and possibly
modified by the adversary is 1.

While appealing in its assurance that we can run arbitrarily secure communication
by trading computational (hard to verify) intractability hypothesis by easily verifi-
able connectivity hypotheses on the network graph, this leaves the question of what
to do if the vulnerability ρ(A) = 1. This case can occur in either of the following
circumstances:

• The network is such that it simply does not admit a sufficient number of paths
to effectively do multipath transmission. In that case, we may try to extend the
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network towards stronger connectivity. We will discuss this possibility later in
Sect. 11.2.4.

• There was an attack that the defender simply did not anticipate, e.g., a zero-day
exploit that basically defeated all precautions available in the defender’s action
set. Handling zero-day exploits is a different story that whose discussion we
postpone until Sect. 12.6.2.

In extending this idea further, robustness against routing can be taken into the
game to extend the attacker’s capabilities even towards redirecting the previously
chosen paths to some extent [32].

11.2.2 Authentication Games

The goal of authenticity can also be cast into a multipath game between an honest
sender-receiver pair s, r ∈ V against an active adversary having corrupted a subset
of nodes in the network G = (V ,E), excluding s and r to avoid trivialities. An
authentication game [34] can mimic the way in which handwritten signatures would
be verified in the paper-based world: there, a sample of a handwritten signature
would be left with the verifying instance, to let a future signature be checked. The
digital counterpart would either be an authentically available public key (to verify
a digital signature), or, more simply, use common secrets known to the sender s

and its neighbors, who may later verify a signature on behalf of s. In detail, we
assume that the sender s of an authentic message m shares common distinct secrets
with n of its neighbors N1, . . . , Nn in the network graph G. Call these secrets
k1, . . . , kn, and write MAC(m, k) for the Message Authentication Code (MAC)
of m created under the secret key k. Further, let Hash be a cryptographically secure
hash function. To authenticate the message m, the sender attaches a set of MACs
{ai := MAC(Hash(m), ki)}ni=1 to the message m. Upon reception of the message
m′ by the designated receiver r , it computes the hash value h′ = Hash(m′) and asks
each of s’ neighbors to verify the given message-MAC pair (h, ai) (see Fig. 11.3 for
an illustration).

It is easy to see that if m′ = m went unmodified, then the MAC verification will
come back positive and s’ MAC on m is verified without revealing m to the verifying
party, since it is covered as a hash code (this of course assumes that m has enough
min-entropy to thwart guessing attacks based on repeated trial hashing). Conversely,
if m′ �= m, then the MAC verifications will fail. The protocol’s outcome can then be
defined based on the condition under which r accepts m as authentic. For example,
it could require all or at least one MAC verification to come back positive to the
receiver for accepting m to be authentic. The “strength” of the authentication then
of course depends on the condition of acceptance adopted by the receiver.

It is worth noting that for some instances of MACs based on universal hashing
[5, 18, 26], the scheme offers unconditional security, meaning that no computational
intractability assumptions are involved.
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Fig. 11.3 Multipath authentication

Like for the previous multipath transmission, setting up the game is equally
straightforward in terms of a matrix of indicator variables to quantify the protocol’s
outcome. From this matrix, a conventional equilibrium can be computed to deliver
both, the best set of nodes or neighbors for the attacker to conquer (at random), and
the best choice of neighbors to ask for the verification.

11.2.3 Practical Implementations

Note that for both schemes, the full set of paths through a network would in general
be exponential and as such not feasible. Likewise, only few networks will have
sufficient connectivity to allow for many different paths to choose from. Most likely,
the topology will be such that there are “bottleneck” nodes or bridges, i.e., nodes or
edges that must be passed by any path connecting s to r . However, the benefit of
a game theoretic analysis lies in the game to naturally dig up such neuralgic spots,
which can the be further secured by implementing additional security precautions,
or at least adopt assumptions (as, for example, is done in the trusted relay model of
most practical quantum key distribution networks). For the analysis, a feasibly small
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set of paths is already sufficient; if the game comes up with a winning strategy for
the attacker, more paths (if they exist) or more security could be added. In fact, in
case of a simple indicator-variable payoff matrix as we have above, adding only one
strategy that avoids the attack in only one case can already be enough to run the
protocol in an arbitrarily secure fashion again [35].

Similar concerns apply for the theoretically exponentially large set of subsets that
an adversary may conquer. If we limit ourselves to saying that at most k nodes out of
n are potentially hostile, this still leaves O(nk) possibilities, which is still infeasible
even for moderately small k.

The more practical approach is letting the respective adversary structure (cf.
Sect. 11.2.1) be defined by common properties of the nodes that would enable
the same exploits. That is, if a set of machines run the same operating systems,
presumably with the same vulnerabilities, then it can be assumed that an exploit
will open up all machines of the same configuration. Likewise, if a certain set of
machines is under administration of the same person, social engineering on this
person may grant access to the entire set of machines, and so on. Each such exploit
would then go into the action space for the attacker and define the set of hereby
compromised nodes per round of the game.

Practical reports on prototype implementations of such schemes exist [33]:
Fig. 11.4 shows screenshots from an experimental prototype that operationalizes
Theorem 11.2 for confidential transmission that is authenticated by “playing” the
game from Fig. 11.3. In the figure, the left window is the sender, the middle window
shows what a person-in-the-middle would gain from eavesdropping, and the right
window is the receiver’s view.

In the experimental setup, the set of paths used for transmission is based on
an enumeration of all paths in a software overlay network. Therein, the set of
vulnerable nodes is determined by conditions on properties of the local computers
on which the prototype software instances are running. The actual protocols run
on the application layer. On lower layers, the paths could be realized by creating
virtual LANs, each representing a specific connection, but the administrative burden
to maintain all these for all pairs of nodes may quickly become cumbersome and
impractical even for small network instances. In contrast, using an overlay network
admits automated (self-configuring) paths and routing, which is almost a plug-and-
play solution for confidential transmission with arbitrarily strong security, using
game theory.

Returning to the discussion about rational cryptography, note that we here
have an example of where game theory helps to design new protocols in light of
theoretical limits (e.g., Theorem 11.1) imposed by the strength of cryptographic
security concepts. In letting the attacker be successful in a small fraction of
time, which is fixed and noticeable (as in the sense of Definition 11.1) but still
controllable, we can run cryptographic schemes in a more powerful form than its
standard use. This may be more than sufficient in many practical applications.
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Fig. 11.4 Screenshots from an experimental multipath transmission prototype [33]

11.2.4 On Network Design Using Game Theory

Taking Theorem 11.1 as a starting point, we can go and look for network topology
designs such that the communication game that we run in the network has
optimal performance measured in game theoretic terms. Continuing the thoughts
of Sect. 11.2.1, we can take the saddle-point value of the communication game as a
goal function to optimize, i.e., we have a graph augmentation problem. This is done
by looking at different edge-extensions to the network G = (V ,E), e.g., a subset
E+ ⊆ V ×V with E+∩E = ∅ (we would not add existing edges). Suppose further
that each such new edge comes with a cost told by a function c : V × V → R

with c(e) = 0 whenever e ∈ E (existing edges do not cost anything). Then,
we can formulate two versions of a network optimization problem, based on the
communication game in Sect. 11.2.1, illustrated in Fig. 11.5.

Problem 1 (best security under limited budget) Minimize the saddle-point value v

of the communication game played over the graph G′ = (V ,E ∪ E+), within to a
given budget limit c(E+) ≤ L. Here, we vary over E+ ⊆ (V × V ) \ E and put
c(E+) :=∑

e∈E+ c(e).

Problem 2 (cheapest extension for desired security) Minimize the cost c(E+)

towards lowering the attack chances below a given threshold (risk acceptance level)
L ≥ v. The symbols c,E+ and v are the same as in the previous problem, i.e., the
game is played over an extended network G′ = (V ,E ∪ E+).
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Fig. 11.5 Edge extensions to increase connectivity (dashed edges are in E+)

Both problems relate to optimal graph extensions in terms of edges, and aim
at increasing node connectivity. However, the game theoretic analysis reveals an
interesting connection between efficient approximations to the above problems and
the P/NP question [10], namely the following:

Theorem 11.3 ([31]) The following three statements are equivalent:

1. There exists a polynomial time algorithm to find an approximate solution to
Problem 1 (best security under limited budget).

2. There exists a polynomial time algorithm to find an approximate solution to
Problem 2 (cheapest extension for desired security)

3. P = NP

In this context, “approximate” characterizes an algorithm, which returns an answer
to the optimization problem and the error relative to the true optimum is bounded
by a constant.

Theorem 11.3 is somewhat devastating since it tells that security measured like in
the communication game in Sect. 11.2.1 is computationally intractable to achieve
unless the network is small or already has the necessary connectivity. On the
bright side, however, the game theoretic analysis hereby provided a positive
conclusion about the impact of the P/NP question on the possibility of confidential
communication:

• If P �= NP, then the known encryption algorithms (candidates are from the
post quantum realm [3] such as McElice encryption) will most likely (though
yet unverified [16]) continue in successfully protecting confidentiality against
polynomially bounded adversaries. Thus, in this case we are (to nowadays public
knowledge) safe by known public key encryption algorithms.

• Otherwise, if P = NP, then the design of communication networks that allow for
arbitrarily secure communication against computationally unbounded attackers
(implied by the use of secret sharing, which does not hinge on any computa-
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tional intractability) becomes practically doable. Hence, we become safe again
by building proper communication infrastructures, even though much of the
classical intractability-based cryptography would be no longer secure.

11.3 Critical Remarks

Not only cryptography can benefit from game theory, also the opposite is naturally
possible by faithful cryptographic implementations of equilibria. In fact, the validity
of a game’s prediction of behavior relies on the players following their best strategies
(equilibria). The enforcement of these can be aided by cryptographic techniques [1].

The combination of game theory and cryptography is an interesting and fruitful
field of research, yet a direct comparison of classical vs. rational cryptography
appears opaque: the assurances of reductionist arguments are only as good as the
underlying computational intractability assumptions are true, and hold asymptoti-
cally and hence not in every instance of the system. Likewise, the assurances of
rational cryptography in turn are only as good as the utility definitions are accurate.
If we assume actors in a cryptographic scheme to behave rational, then utilities that
appear plausible from a cryptographic perspective, may still be subject to issues of
bounded rationality (see Chap. 5), and as such be nonetheless inaccurate in reality.

Despite the potential of rational cryptography, it has not seen too many practical
implementations, yet (at least by the time of writing this book); neither in its
pure form nor as a foundation for more sophisticated matters of secure function
evaluation. Perhaps a reason is that in many cases it appears simpler (and more
“direct”) to incentivize actors by contractual regulations, fees and penalties, rather
than to count on the protocol involvement to be in the party’s own natural interest.
As for secure function evaluation, cryptographic solutions thereto compete with
much simpler methods of just using virtualization technology, access control, good
contract design and insurances, in order to cover all matters of misbehavior or
technical failures. Moreover, most secure function evaluation frameworks apply
transformations to a certain representation of a fixed function in order to securely
evaluate it, and as such do not provide a universal computer that would be secure
(any such computer built on encryption only would in simple instances be vulnerable
to side-channel attacks [37] unless further security is imposed).

Simply imagine the options to be either (a) implementing a sophisticated, elegant
yet individual cryptographic circuit to compute a fixed function or run a fixed
algorithm, or (b) deploy your own hardened environment (operating system) with
access control and sandboxing (in a cloud), so that you can compute any function or
run any algorithm of your own choice. Which would you choose for an economic,
simple to use, deploy and maintain?
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Chapter 12
Practicalities

Nothing is more practical than a good theory.
K. Lewin

Abstract This chapter discusses the use of data and data science to choose values
for model parameters, and suggests a few methods and literature pointers to
techniques that can be helpful to instantiate models. Furthermore, we review a
set of selected software tools that help with the setup and equilibrium analysis of
practical game theoretic models. We revisit various examples throughout the book in
a tutorial-like step-by-step approach describing how game models can be analyzed.
The focus is herein on openly and freely available software, parts of which is open
source. Where applicable, we also give closed form solutions to certain classes of
games, and generic transformations to make game theoretic problems solvable with
help of optimization software. This shall equip practitioners with direct tools to use
in practice, and with further literature pointers.

12.1 Data Science and Choice of Model Parameters

After having made a choice for a particular (game-theoretic) model, the practical
question of how to choose the model parameters in many cases is left unanswered
in the literature. An explicit exception is the choice of parameters for probability
distributions, for which a rich theory on point estimation and confidence regions is
available (see, e.g., [30] for a start).

For the challenge of choosing parameters in the game theoretic models covered
in this book and more widely found in the literature, it is useful to distinguish some
types of parameters in models, to which different methods of parameter estimation
are applicable. Broadly, and non-exhaustively speaking, the variables that appeared
throughout are either probabilities, risks and losses, or general (other) parameters.
We dedicate a subsection in the following to each type.
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12.1.1 Probability Parameters

These are typically values between 0 and 1, and in most cases refer to chances or
odds for some event to occur or some condition to hold. Examples include beliefs
in Bayesian models, probabilities for success or failure of certain attacks, errors in
statistical tests (cf. Chap. 9), or just ratings on the scale [0, 1], such as, e.g., in the
insurance context (see Chap. 7).

As far as statistical testing is concerned, these tests enjoy a rich theory on
experimental design [9] to obtain practical guidance from. In absence of such
help, machine learning techniques (supervised and unsupervised) can help with an
automated estimation of parameters. As one example, logistic regression provides a
handy method of estimating a parameter in the range [0, 1] from labeled empirical
data. The process roughly proceeds as follows:

• Identify variables that may determine the parameter p in question; call these
variables x1, . . . , xk , allowing them to be individually numerical or categorical
(both types admissible within the so identified set).

• Collect a number n of instances with concrete values for this variable set, and, for
each concrete set of values (x1,i , . . . , xk,i ), add an indicator pi ∈ {0, 1} related
to this configuration, and do so for all records i = 1, 2, . . . , n. The value p = 1
may herein indicate the event or condition about which p speaks to hold, and
p = 0 would correspond to the opposite.

• To the so-labeled data, fit a logistic regression model, to get a point estimate of
the value p by means of maximum-likelihood estimation, together with detailed
information on the significance of the identified variables that is useful to revise
the estimate or improve the data quality, if necessary.

Example 12.1 (Credit Risk Estimation) The most popular example to illustrate the
above procedure is the estimation of risk for credit loans. There, the variables
x1, . . . , xk relate to customer’s properties like income, marital status, owned assets
(like a house, car, . . . ), and others. Based on a collection of such information from
(real) customers, and the according labels pi = 0 if the customer was denied the
loan, or pi = 1 if the customer was granted the credit, logistic regression can take
the data from a new customer to compute a rating in the range [0, 1], which banks
can take as a risk score to make a decision about a pending credit loan application.
The process is in almost all steps automated and implemented in R with the function
glm (“generalized linear model”); see the documentation of this function within R
for extensive examples and literature pointers. 
Remark 12.1 (Data science requires, not replaces, human intelligence) The term
“big data” can quickly become overstressed, and having many records in a database
does not mean that they are all complete or contain useful information. Data
preparation, which includes cleansing, outlier elimination, treatment of missing
values, etc., is in order before moving to any analysis of the data. More importantly,
it is crucial to not fall victim to “easy” mistakes in a statistical data analysis, which
include:
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• Formulating hypothesis or tests after the data has been collected. Such post-hoc
analysis is often prone to looking for patterns that one might suspect to have seen
in the data. The proper approach is to first have the question and then collect the
data that is useful to answer it (the converse method may lead to data dredging,
which effectively means forging scientific results).

• Concluding about causality from correlation: correlation measures are a popular
measure to discover seeming interdependence between variables in data, how-
ever, pure data does cannot tell anything about causal effects. Those can only
be assessed upon a properly designed experiment, but never recognized in plain
data.

Big data can make a lot of sense, but, equally easy, can also lead to lots of nonsense
in careless hands [29].

12.1.2 Learning Parameters Over Time

If a parameter has been chosen, it may be worth updating it continuously or from
time to time, to improve the model accuracy. Bayesian methods are a natural way
of doing this, besides other methods from machine learning (e.g., Q-learning or
reinforcement learning).

We already met a simple Bayesian learning rule in Example 3.2: this method
takes a probability parameter p as β-distributed random variable, and uses the
concrete value p = E(Be(a, b)) as the concrete value for the probability parameter.
If new data comes in independently, we can use a Poissonian likelihood, and do a
simple update by either increasing the parameter a or the parameter b by 1, just as
we described in Example 3.2. It can be shown that this method eventually converges
to the true value of p. Moreover, the method is generalizable to more than one
parameter even. See [28] for algorithmic details on this method.

Generally, this learning strategy has the issue of potentially slow convergence
and some “symmetry” in the way of how trust is gained or lost: while human
reactions may be towards losing trust faster than gaining it, a β-reputation model
becomes more and more stable in the long run. As time goes by and updates
come in, the parameter value computed from the β-distribution will become more
and more insensitive to future updates. Practically, it thus pays to “reset” the
model from time to time, meaning to restart the Bayesian updating afresh from
a new a priori distribution that approximates the current information but with the
smallest parameters possible (to make the model more reactive to updates again).
Reinforcement learning also addresses the issue by randomly deviating from what
the model told, to explore alternative possibilities and perhaps find even better
parameter choices in this way.
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12.2 Risk and Loss Parameters

The phenomena discussed in Chap. 5 (among others in this context), like the
Ellsberg paradox, the Saint Petersburg paradox, or more recent discoveries like
reversed common ratio effects [3], can be taken as justifications to as why in security
risk management, people should never be confronted with or asked about specifying
probabilities. As the common ratio effect and the Allais paradox demonstrate,
decision making can consider probabilities, but there is an apparent tendency to
simplify matters in many cases, such as options being certain or alternatives with
roughly equal odds. Utility theory is very much exact in comparing options even
in these cases, as opposed to human reasoning that at some point switches the
decision mechanism to a simpler version that disregards some aspects for the sake
of simplicity. For this reason, security risk management typically recommends to
use qualitative scales of probability that abstract from numbers at all, in order to
avoid such unwanted simplifications. Example 6.1 also illustrates the issue.

Graphical methods of risk specification [33] avoid asking for explicit numbers,
and only require people to mark a point or “region of possibilities” on a given
categorical scale to specify a risk (for example, as Fig. 6.2 proposes or similar).

Figure 12.1 shows a screenshot of a research prototype software implementing
this method [28, 33]: the program resemblers the risk matrix picture as an entry field
to specify a likelihood and impact range on categories displayed at the borders. The
categories themselves then define a grid, on which the user can draw a rectangular
region to indicate the presumed locations on the impact and likelihood scales, as
well as the uncertainty about the risk. The area of the rectangle then visualizes
the uncertainty in the risk estimate as the product of uncertainties related to the
impact and likelihood. To account for weighting and valuation effects (see Figs. 5.1
and 5.2), the grid itself is also resizable, so that categories can be made smaller or
larger, according to the subjective opinions. We remark that graphical specifications
also exist for probability parameters, such as transition matrices for Markov chains.
See [28] for details. An empirical study on several related (and similar) methods is
provided by [10].

12.2.1 General Parameters Derived from Statistical Models

Many stochastic models assume Gaussian distributions for error terms or other
probabilistic parameters. This is in most cases a choice for technical and analytical
convenience, but despite its wonderful theoretical properties, the Gaussian distribu-
tion should not be overly used, since there are very many practical circumstances in
which random values have a distribution that is far from Gaussian.

Many domains, especially in the insurance context, have well-studied distribution
models, and actuarial science [11, 13, 15, 16] offers lots of distribution models
specifically to describe extreme phenomena for risk management.
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Fig. 12.1 Graphical specification of risks (research prototype [33])

In absence of domain knowledge, one may resort to non-parametric statistics
[12] that works without explicit hypotheses about the shape of a distribution. One
example are kernel density estimates that we will later in this chapter operationalize
to model zero-day risks.

The method of computing a parameter (of any kind) from a distribution model
behind it is generally applicable whenever data is available. Such data may come
from experts directly (bearing in mind the impacts of human error in estimation,
and phenomena as we discussed in Chap. 5), or from simulation models, such as
those from Sect. 2.5, among others.

Generally, if parameters are to be estimated from data, the process to follow is the
general data science workflow, summarized in Fig. 12.2. A game theoretic model,
specifically parameters therein, are then obtained by transforming the data model,
usually a probability distribution, into a representative value for the parameter in
question. The simplest method is taking averages from the data, and if uncertainty
shall be included, the statistical variance is a popular measure. The function “f ”
in Fig. 12.2 is then the simple arithmetic or expectation operator E, w.r.t. the
distribution that was modeled. More complex aggregation methods are, however,
also admissible and applied (e.g., opinion pooling [7, 8]). Since aggregating a
distribution model into one (or more) summary statistics is in most cases tied to
information loss, a “lossless” use of the whole distribution is possible in the special
case when the distribution is to define a payoff parameter, and the game uses
stochastic orders. In that case, we can use the data model directly “as is” in the
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understand the context

data collection

data understanding

data preparation

deployment

model evaluation

data modeling

distribution-valued game
(Sect. 4.5)

conventional game
(real-valued payoffs)

iterate (return to
previous phase)

payoff = distribution
(use “as is”)

payoff = f(distribution)
(some transformation needed)

as in risk manage- ↔
ment (Chapt. 6)

simulation (Sect. 2.4) →
interviews (Chapt. 5) →

choice of game ←
model (Chapt. 4)

see Remark 12.1 ←

Fig. 12.2 Data Science Workflow (generic, adapted)

game model, and need no aggregation function f . See [24] for more details on this
process.

12.3 Analytic Solutions for Special Games

12.3.1 Equilibria and Security Strategies

Let a two-player zero-sum game Γ be given by its payoff matrix A ∈ Rn×m,
implicitly fixing the player set N = {1, 2} and the strategy spaces as labels to the
rows and columns of the payoff matrix A. The game’s equilibrium and saddle-point
value, which by Theorem 3.4 lead to security strategies as well, are computable from
a linear optimization problem based on the payoff matrix A.

Since the game is only between two players, the inner optimization in (3.22) is
over the mixed strategies of the attacker, which is a convex set. The optimum on that
set can only appear on some of the edge points, which makes the inner optimization
easy, because mina2∈Δ(AS2) u2(a, ai) = mina2∈AS2 u2(a, a2) = mini=1,...,m aT Aei ,
with ei being the i-th unit vector. The outer optimization then boils down to a
humble linear program, since all that the defender needs to do is determining the best
mix of defense actions so as to maximize the revenue, which leads to the defender’s
problem:
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v → maxx∈Rn

subject to v ≤ xT Aei for i = 1, . . . , m;∑n
j=1 xj = 1;

xj ≥ 0, for i = 1, . . . , n.

⎫
⎪⎪⎬

⎪⎪⎭
(12.1)

The optimal solution is v = val(A) = maxx∈Δ(AS1) miny∈Δ(AS2) xT Ay =
u1(x∗0, y∗0), in the notation of equation (3.21). The value v obtained in this way
is thus the lower bound (3.21) achieved by the security strategy x∗0 as being the
optimal x obtained as output of (12.1). The validity of (3.21) then holds conditional
on the exhaustiveness of the attacker’s action set AS2. Unless there are unexpected
actions /∈ AS2 played by the attacker, v bounds the achievable revenue (or sufferable
damage) irrespectively of how the attacker behaves within AS2. If a new attack
outside AS2 was observed, we can extend the action space accordingly, and in some
cases, even restore security against such unexpected actions (see Sect. 12.6.2.1).

12.3.2 2 × 2-Games

If the game is zero-sum, with only two actions for only two players, it admits a
direct computation of the equilibrium from the game matrix

A =
(

a b

c d

)
, with a, b, c, d ∈ R.

If any of the two rows or columns dominates the other, then we have a pure strategy
equilibrium, and are done. Otherwise, if the equilibrium is mixed, we can compute
the saddle-point value as

val(A) = a · d − b · c
(a + d)− (b + c)

, (12.2)

and with the optimal strategies x∗ = (p, 1− p), y = (q, 1− q) with

p = d − c

(a + d)− (b + c)
and q = d − b

(a + d)− (b + c)
. (12.3)

12.3.3 Diagonal Games

If the game is zero-sum between two players, and has a diagonal game matrix A =
diag(a11, . . . , ann), we can also give a closed form expression for the saddle-point
value as
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val(A) =
(

n∑

i=1

1

aii

)−1

(12.4)

and with the equilibrium strategy being the same for both players,

x∗ = y∗ =
(

v

aii

)n

i=1
(12.5)

12.3.4 Fictitious Play

An iterative method to compute an equilibrium is also suggested by another
inspection of Example 3.5: by simulating the gameplay, optimizing the so-far
average of (simulated) rounds of the game based on keeping records of what each
player does, we can compute equilibria for more general classes of games, even. The
resulting algorithm is shown in Fig. 12.3. It converges to an equilibrium for zero-
sum games [31], all 2 × n-matrix games (even if not zero-sum [2, 19]), potential
games, games with identical interests (i.e., when all players use the same utility
function) [19], or games whose equilibria are found by systematical removal of
dominated strategies [21] (by a continuation of the process started in Example 3.4).

FP has an exponential worst-case convergence rate [4]. It is, however, nonetheless
interesting to note the combined use of minimax and Bayesian decisions: the
algorithm starts from a minimax decision (in lack of better knowledge at the
beginning), and continues with Bayesian decisions in each iteration, since it takes
the decision optimal in consideration of so-far observed behavior of the other
players.

Remark 12.2 The process has quite some similarity to learning parameters from
β-distributions (see Example 3.2); indeed, the updating in step 3b is viewable as a
Bayesian update on a β-prior.

FP is interesting for its technical simplicity, since it merely uses the ordering
relation, either real (≤) or stochastic (�), on the payoff space, but nothing beyond
this explicitly. Also, as an algorithm, its applicability extends widely beyond finite,
two-player or zero-sum games.

A particularly useful application of FP is the computation of MGSS if the
defender has multiple security goals, e.g., the protection of privacy (confidentiality),
but also defending against a DoS (availability), or manipulation of processes
(integrity, authenticity). The FP algorithm from Fig. 12.3 is generalizable to a one-
against-all player game while retaining its convergence properties (cf. [26, 32]).
We shall refrain from diving into deeper details, and refer the reader to the software
support available, specifically the HyRiM package for the R statistical programming
environment (see Sect. 12.4.3). Listing 12.1 shows an implementation of plain FP in
R.
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Given a game Γ = (N,S,H), with finite set N and finite strategy sets ASi for all players i ∈ N.
Initialization:

1. Let each player i ∈ N maintain a vector xi = (x1,x2, . . . ,x|ASi|), which we will iteratively
update. In the k-th iteration, we will denote the current approximation of the equilibrium as
x(k)i .

2. Each player i ∈ N determines the first action (0-th iteration) as a minimax decision, i.e., it
starts with x(0)i ∈ argmaxa∈ASi argminai∈AS−i

ui(a,a−i).

Simulation of the game play:

1. Initialize the iteration counter k ← 0
2. Keep track of the total gains in variables ti, starting from ti ← 0 for all i ∈ N.
3. Loop over all players i ∈ N, and for the i-th player, do the following:

a. Let x(k)−i be collection of all so-far recorded behavior of players �= i. Choose the next ac-
tion for player i to be optimal w.r.t. the expected utility based on the recorded behavior,
i.e., choose

a(k) ∈ argmax
a∈ASi

E
(1/k)·x(k)−i

(ui). (12.6)

b. Each player is told the action a(k), and accordingly updates the history of moves of
player i into incrementing (by 1) the entry in x(k+1) corresponding to action a(k). Keep
record of the so-far total payoff per player by updating ti ← ti+ui(a(k),x(k)).

4. Once this has been done for all players i ∈ N, increment the iteration counter k ← k+ 1
and repeat the procedure from step 3. Stop the iteration, as soon as the average payoffs per
round, i.e., 1

k ti i N , has converged (in any norm applicable to that vector).

Fig. 12.3 FP for maximizing players in a finite game

12.4 Software Support

The GAMBIT software [18] and the GAME THEORY EXPLORER (GTE) both provide
convenient analytics for games in normal and extensive form, and also come with
a graphical user interface to specify the games. However, both are limited to games
with scalar payoffs, i.e., admitting only a single security goal. Multi-goal security
strategies for two-player games in normal form are subject of the HyRiM package
[23] for R. Alas, the package cannot handle extensive form games as of version
1.0.4.

Our exposition in the following is not about showing that there is one system
that can cover all needs, but rather pointing one (most) convenient software to deal
with games of different type. For games in extensive form, GAMBIT is a convenient
choice, as is the GTE, and we will use both to revisit some of the example games
from previous chapters to recover the results given there. For empirical game theory
and especially distribution valued games in normal form, the HyRiM package in R is
a convenient choice, whereas it is fair to mention that the Comprehensive R Archive
Network (CRAN) has lots of packages to offer for game theory (just to mention [6]
as a non-exhaustive list of examples), all with their distinct strengths and useful for
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Listing 12.1 Two-player zero-sum FP implemented in R [22]

1 #code for Fictious Play
2 #payoff matrix A with m rows, n columns, and iterations T must

first be defined
3 #m and n must be at least 2 because of max and min functions
4 library(matrixStats)
5
6 T <- 1000
7 # A <- matrix(c(<your data>), ...)
8
9 m <- nrow(A)

10 n <- ncol(A)
11 x <- rep(0,m)
12 y <- rep(0,n)
13
14 # get starting points (arbitrarily, since convergence is

assured)
15 rowMinima <- rowMins(A)
16 row <- which.max(rowMinima)
17 colMaxima <- colMaxs(A)
18 col <- which.min(colMaxima)
19 U <- A[,col]
20 y[col] <- y[col] + 1
21 V <- rep(0,n)
22
23 for(it_num in 1:T) { # begin FP algorithm
24 # let player 1 move
25 Umax <- max(U) # pick the best action
26 row <- which.max(U)
27 V <- V + A[row,] # accumulate payoffs
28 x[row] <- x[row] + 1 # record actions
29 # let player 2 move (exactly like player 1, only minimizing)
30 Vmin <- min(V)
31 col <- which.min(V)
32 U <- U + A[,col]
33 y[col] <- y[col] + 1
34 }
35
36 xeq <- x / T # approximate equilibrium strategy for player 1
37 yeq <- y / T # ...and for player 2
38 v <- t(xeq) %*% A %*% yeq # approximate the saddle point value

different purposes, extending up to cooperative game theory that we did not cover
here.

Table 12.1 shows a comparative overview table including only the systems
used for this book. The software used here all comes with free licenses, but
as such also without warranties. Beyond these open-access available packages,
general software for symbolic or numeric computations, such as MATLAB [17],
OCTAVE [1], MATHEMATICA [14], in many cases offer sophisticated routines to
compute equilibria by solving linear or nonlinear optimization problems. Since a
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Table 12.1 Overview table of software used in this book

System GAMBIT GTE R package HyRiM

Extensive form games Yes Yes No

Normal form games Yes Yes Yes

Distribution-valued games No No Yes

Multi-objective and lexicographic orders No No Yes

comprehensive account for this area would be a book on its own, we leave the
pointer to this route here, but do not follow it any further.

The next three sections illustrate the three packages listed in Table 12.1 by
revisiting the examples given earlier in the book, and show how to obtain the
equilibria for them. The fact that we use a different package in each case does not
mean that a package is incapable of handling the other two cases, unless Table 12.1
says so, so the reader is advised to choose the most convenient and most reliable
package in each of her/his own cases. We start with GAMBIT to solve games in
extensive form.

12.4.1 Solving Extensive-Form Games

GAMBIT is one of the earliest available implementations of an algorithmic toolbox
to compute Nash- and other equilibria. It comes with a graphical interface to specify
a game in extensive or normal form, and lets the user pick different algorithms to
try when computing equilibria. Not all algorithms may be equally successful, so it
is generally advisable to try more than one option offered by GAMBIT.

For illustration, let us start with a GAMBIT model of the phishing game from
Fig. 3.2 in Chap. 3. Figure 12.4a shows the representation of the extensive form
game as a graph, especially visualizing the information sets that appear as nodes
connected by two dotted vertical lines. The nodes in the information set are labeled
no sig. (“no signature”) above and 1:1 below, indicating that these refer to the
move “no sig.” that is indistinguishable whether made by a phisher or an honest
sender (appearing as labels next to the move), and belong to information set #1
that player 1 (the receiver) maintains (hence the label “1 : 1 = player:information-
set-no.”). Next to the leaf nodes and highlighted in the player’s colors appear the
utilities, as they have been set in Fig. 3.2, only that the game tree is plotted vertical
there and drawn horizontally in GAMBIT. As a neat feature, we can ask GAMBIT

to give the reduced normal form version of the game (where “reduced” means after
elimination of dominated strategies), the result of which is shown in Fig. 12.4b.

The computation of equilibria is up to the user clicking the respective compu-
tation button in the toolbar (second from the right), which asks (see Fig. 12.5 for
the dialogue) how many equilibria shall be sought, by which method, and on which
representation of the game (extensive or normal form). The results then appear in
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Fig. 12.4 Example of using GAMBIT to compute equilibria
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Fig. 12.5 Equilibrium
computation dialogue in
GAMBIT

the lower part of the window, where this game admits apparently three equilibria,
one of which is even in pure strategies (the last one in the list).

Using the extensive form, we can also compute a Stackelberg equilibrium, such
as for the hide-and-seek game with, for example, a leading attacker in Fig. 4.3.
Figure 12.6 shows the model, equivalent normal form (cf. Fig. 4.4), and computed
equilibria.

GAMBIT is a convenient tool to study games “interactively”, since the game is
easy to manipulate (e.g., change of strategies, modification of information sets,
altering of payoffs, etc.). The “Tools” menu offers also the computation of other
equilibria than Nash’s, and what is particularly interesting, also an analysis for
dominated strategies. Doing this beforehand can provide interesting insights about
the model itself.

12.4.2 Solving Normal-Form Games

The GTE is an alternative to GAMBIT, offering roughly the same possibilities, but
doing so in a more wizard-like fashion. That is, to specify a game in extensive form,
the user follows a sequence of steps, starting with (i) the specification of the game
tree, (ii) specification of players, (iii) definition of information sets, (iv) entering the
moves (action sets), and (v) defining the payoffs (GAMBIT asks for the same inputs,
but lets a user take the steps them in any order; whether a systematic sequential
specification or a “more free” specification is more convenient is a subjective matter
of convenience for a user).

For larger strategic games, such as the 5× 5 two-player nonzero-sum game from
Example 3.7, we can conveniently enter the payoff matrices for the two players
separately in the graphical user interface of the GTE, as shown in Fig. 12.7.

Upon solving for an equilibrium, it prints out (see Fig. 12.8) a detailed and
comprehensive description of equilibria obtained (of course, those match the ones
given in Example 3.7, which were found using GAMBIT).
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Fig. 12.6 Example of using GAMBIT to compute equilibria
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Fig. 12.7 Normal form game in the GTE

It is generally advisable to perhaps try different (both) systems on larger games
or those with more than two players, since the algorithms implemented in GAMBIT

or the GTE may perform different and may also individually fail for different game
models.

Neither software can, however, solve games with multiple objectives or with
uncertainty in the payoffs, which is that the HyRiM package for R can do.

12.4.3 Solving Distribution-Valued Games

Unlike the previous two systems, HyRiM is not a standalone software, but rather
a package extension to the R language for statistics and data science. It is thus
installable directly through the R environment from CRAN [6]. Similar to GAMBIT,
the process to set up and analyze game puts is widely unconstrained in the order
of completion of steps, but the overall steps are the same as for other systems.
As a restriction, HyRiM does not support the construction of strategic form games
(in R, the games package [5] can do this for example, but only for scalar and
real-valued utility functions), and can only construct normal form games. Since the
package is desigend for the computation of MGSS, it will only compute zero-sum
equilibria. Internally, it applies FP (adapted and largely extended from the work of
[36]), which makes the algorithm robust and applicable to very large games (perhaps
with many dimensions), but at the price of delivering only approximate equilibria
(higher accuracy takes more iterations).

Among the software discussed here and found elsewhere in the literature,
HyRiM is the only implementation of games over stochastic orders and with
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SUCCESS

Strategic form: 

5 x 5 Payoff player 1

  a b c d e
A 2 2 1 3 2
B 1 2 2 2 4
C 0 3 0 2 2
D 0 4 1 0 1
E 2 2 4 4 3

5 x 5 Payoff player 2

  a b c d e
A 0 0 4 1 3
B 1 3 1 3 2
C 2 2 1 3 1
D 2 2 0 2 2
E 3 1 3 1 0

EE = Extreme Equilibrium, EP = Expected Payoffs

Rational:

EE 1 P1: (1) 0 0 0 1 0 EP=    2 P2: (1) 1/2 1/2 0   0   0 EP= 2 
EE 2 P1: (1) 0 0 0 1 0 EP=    4 P2: (2)   0   1 0   0   0 EP= 2 
EE 3 P1: (1) 0 0 0 1 0 EP=  8/3 P2: (3)   0 2/3 0 1/3   0 EP= 2 
EE 4 P1: (1) 0 0 0 1 0 EP= 18/7 P2: (4)   0 4/7 0 1/7 2/7 EP= 2 
EE 5 P1: (1) 0 0 0 1 0 EP=  9/4 P2: (5) 1/4 1/2 0   0 1/4 EP= 2 
EE 6 P1: (1) 0 0 0 1 0 EP= 14/5 P2: (6)   0 3/5 0   0 2/5 EP= 2 
EE 7 P1: (2) 0 0 0 0 1 EP=    2 P2: (7)   1   0 0   0   0 EP= 3 
EE 8 P1: (2) 0 0 0 0 1 EP=    4 P2: (8)   0   0 1   0   0 EP= 3 

Decimal:

EE 1 P1: (1) 0 0 0 1.0   0 EP=     2.0 P2: (1)  0.5     0.5   0       0       0 EP= 2.0 
EE 2 P1: (1) 0 0 0 1.0   0 EP=     4.0 P2: (2)    0     1.0   0       0       0 EP= 2.0 
EE 3 P1: (1) 0 0 0 1.0   0 EP= 2.66667 P2: (3)    0 0.66667   0 0.33333       0 EP= 2.0 
EE 4 P1: (1) 0 0 0 1.0   0 EP= 2.57143 P2: (4)    0 0.57143   0 0.14286 0.28571 EP= 2.0 
EE 5 P1: (1) 0 0 0 1.0   0 EP=    2.25 P2: (5) 0.25     0.5   0       0    0.25 EP= 2.0 
EE 6 P1: (1) 0 0 0 1.0   0 EP=     2.8 P2: (6)    0     0.6   0       0     0.4 EP= 2.0 
EE 7 P1: (2) 0 0 0   0 1.0 EP=     2.0 P2: (7)  1.0       0   0       0       0 EP= 3.0 
EE 8 P1: (2) 0 0 0   0 1.0 EP=     4.0 P2: (8)    0       0 1.0       0       0 EP= 3.0 

Connected component 1:
{1}  x  {1, 2, 3, 4, 5, 6}

Connected component 2:
{2}  x  {7, 8}

Fig. 12.8 Equilibrium computation report as delivered by the GTE

multiple objectives. Since it is based on the stochastic �-ordering, it is as well
the only package that can handle games using lexicographic orders by internally
operationalizing Theorem 4.2. Like GAMBIT and GTE, it also supports finding an
equilibrium for normal-form games with purely real-valued payoffs.

The general procedure to follow using the package is here given in an extended
version that involves the collection of data about the competitive situation to define
the utilities (including uncertainty). We include this step here to highlight that the
embedding of the process in R, rather than invoking a standalone software for the
game only, opens up all the possibilities to use data science techniques for the
modeling.
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We discuss the typical steps in the following, refraining from going too deep
into the parameters or other settings taken by the respective functions (the R help
with examples is the more extensive resource to consult here), but discuss what is
generally to be done and what functions and commands could be helpful to this
end.

1. Collect data about the situation that the game shall model. More specifically,
gather empirical data and define a crisp utility values or payoff distributions.
If the data is a set of observations (samples from a continuous outcome, or
discrete and perhaps subjective risk assessments) called payoff_data, the
construction of a loss distribution is straightforward by issuing

> lossDistribution(payoff_data)

perhaps adding the optional parameter discrete=TRUE to get a categorical
distribution. If the payoff is a real number, and hence payoff_data is a list
of numbers obtained by any means of data science, there is no need to call
lossDistribution, as the next steps can take the number as direct input.

2. Construct the game: the package supports n×m matrix games with any number
d ≥ 1 of goals. The payoffs go into the game model as consecutive list of
matrices Ai for all goals i = 1, 2, . . . , d that goes in as a list object in
R with entries (vec(A1), vec(A2), . . . , vec(Ad)), where vec here denotes the
“vectorization” of a matrix by rows or by columns (the choice is up to the user),
which can be, for the example of a 3× 3-matrix:

• vectorization by rows:

A =
⎛

⎝
a b c

d e f

g h i

⎞

⎠ becomes “flattened” into vec(A)=(a, b, c, d, e, f, g, h, i)

• vectorization by columns:

A =
⎛

⎝
a b c

d e f

g h i

⎞

⎠ becomes “flattened” into vec(A)=(a, d, g, b, e, h, c, f, i)

The construction of the game is by a call to the function mosg (“multi-objective
security game”):

> G <- mosg(n, m, goals = d, losses = L, ...)

in which L is a list object that consists of all payoff distributions (constructed
by calls to lossDistribution) or a vector of real values if the game has
payoffs in R.
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Depending on whether the payoff list is organized by rows or by columns, one
can add the parameter byrow = TRUE or byrow = FALSE (meaning to take
the list by rows or columns) to the call to mosg.

3. Compute an equilibrium, i.e., a multi-goal security strategy; the respective
function is named by the according acronym mgss:

> eq <- mgss(G)

The number of iterations of FP that the function executes on the game object
defaults to 1000, but can be set to any value by adding the respective parameter
to the call. Other parameters for further fine-tuning are available, and explained
in the manual for the package and function.

From here onwards where the equilibrium object has been constructed (we call
it eq here), the analysis proceeds further “as usual” in R, i.e., the common generic
functions for explorative analysis of data and objects (summary, plot, and others)
are all provided by the package. This works like any other statistical data analysis,
and thus left aside here.

Let us illustrate the use of the HyRiM package by providing a full implementation
of Cut-The-Rope from Sect. 9.4.5, picking up on the equilibrium computation
step explicitly and numerically.

Example 12.2 (Solving Cut-The-Rope with R/HyRiM)
Continuing the example running throughout Sect. 9.4, Listing 12.2 shows a full

implementation of the game playground, specifically the paths in the attack graph
(Fig. 9.6) in lines 2–12. Most of the code is about setting up the game data (action
spaces with cardinalities n and m in lines 13–16, specification of attack rates and
adversary types in lines 17–22, and constructing the game matrices in the loop from
line 25 until 52). The actual application of the package is in lines 49 (where the loss
distribution is constructed as a Poisson density), line 50 (where the payoffs are all
collected in a linearly ordered list object), and lines 54 and 55, where the game
is constructed (mosg) and solved (mgss) for a security strategy.

Running the code brings up a (9 × 8)-matrix game by an enumeration of 9 spot
checking locations vs. 8 paths chosen by the attacker, with payoffs being discrete
distributions over the location set V in the attack graph (variable V in the code).
Figure 12.9 show parts of the resulting game matrix. The rows are indexed by the
locations that the inspector can check, the columns correspond to the attack paths
from Table 9.2. Each cell contains a distribution that is a truncated Poissonian (with
λ = 2 for the example; line 17 in the code) and with its masses assigned to the
locations as passed along each attack path. The vertical axis respectively shows the
probabilities for the attacker to be at the respective position.

This game admits a PBNE in pure strategies advising the defender to periodically
patch potential local buffer overflows at machine 2 (an optimal pure strategy being
local_bof(2)), while the attacker is best advised to the attack path execute(0)→
ftp_rhosts(0,2)→ rsh(0,2)→ local_bof(2)→ full_access(2). This is intuitively
not surprising, since all attack paths intersect at the node local_bof(2), making this
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Listing 12.2 Full implementation of Cut-The-Rope in R

1 library(HyRiM)
2 target <- 10 # this is the target node
3 # these are the routes (enumerated from the attack graph)
4 routes <- list(c( 1, 2, 3, 4, 6, 7, target),
5 c( 1, 2, 3, 6, 7, target),
6 c( 1, 8, 9, 7, target),
7 c( 1, 3, 4, 6, 7, target),
8 c( 1, 3, 6, 7, target),
9 c( 1, 9, 7, target),

10 c( 1, 5, 4, 3, 6, 7, target),
11 c( 1, 5, 6, 7, target))
12 V <- unique(unlist(routes)) # get all nodes from all routes
13 as1 <- setdiff(V, target) # the defender can check everywhere
14 as2 <- routes # action space for the attacker
15 m <- length(as2)
16 n <- length(as1)
17 attackRate <- 2 # parameter lambda
18 # assume one adversary type per starting point
19 advTypes <- setdiff(V, target)
20 # no a priori information about the type
21 # i.e., a uniform prior
22 Theta <- rep(1/n, times = length(advTypes))
23
24 payoffMatrix <- list() # to take up the utility distributions
25 for(i in 1:n) { # run over all spots to inspect
26 for(j in 1:m) { # run over all attack paths
27 U <- rep(0, length(V))
28 path <- as2[[j]]
29 for(type in advTypes) {
30 # adversary moves only if it is on this path
31 if (type %in% path) {
32 route <- path[which(path == type):length(path)]
33 # let the adv. take a Poisson number of steps
34 pdfD <- dpois(x=0:(length(route)-1),lambda=attackRate)
35 pdfD <- pdfD / sum(pdfD)
36 cutPoint <- min(which(route == i),length(route)+1)-1
37 # truncate the distribution
38 payoffDistr <- pdfD[1:cutPoint]/sum(pdfD[1:cutPoint])
39 L <- rep(0, length(V))
40 L[route[1:cutPoint]] <- payoffDistr
41 }
42 else { # otherwise, the adversary doesn’t move
43 L <- c(1, rep(0, length(V)-1))
44 }
45 # update the mix over all adversary types
46 U <- U + Theta[type] * L
47 }

48 # construct the loss distribution
49 ld <- lossDistribution(U, discrete=TRUE, dataType="pdf",

supp=range(V), smoothing="always", bw = 0.2)
50 payoffMatrix <- append(payoffMatrix, list(ld))
51 }
52 }
53 # construct and solve the game
54 G <- mosg(n,m,1,losses = payoffMatrix, byrow = TRUE)
55 eq <- mgss(G) # compute a multi-goal security strategy
56 print(eq) # printout the equilibrium (optimal defense)
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Fig. 12.9 Example game matrix for Cut-The-Rope

the system’s “sweet spot” to guard. Under restricted possibilities for spot checking,
i.e., a change of the defender’s action space, other (also mixed) equilibria arise.

Analytically, it can be shown that the optimal defense is to “guard” a min-
imum cardinality cut that is graph-theoretically closest to the asset to protect.
Rephrasing this with a folklore metaphor, if you keep your friends close, then
Cut-The-Rope’s advice is “keep the enemy closer”. Essentially, the region that
the defender should pay most attention to is computable by walking outwards from
v0 along all attack paths and thereby determining the set of nodes that cuts all attack
paths towards v0, and are possible to inspect and hence safeguard. 
We will let further examples of using the package follow in later sections, and close
the discussion at this point.

12.5 Cost of Playing Equilibria

Mixed equilibria prescribe to change action upon every round of the game. This may
be optimal, but is not necessarily also feasible; consider the next example:

Example 12.3 (Patrolling in a Building) Imagine a building with 10 floors, and
a security guard taking rounds to check each floor. Furthermore, suppose that the
room layout is such that more “sensitive” parts of the building are concentrated on
some floors, while others may be more or less open to the public. One can then
compute an optimal pattern for the security guard to check the floors at random,
so as to maximize chances to catch an intruder. Any such mixed equilibrium or
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security strategy x∗ = (p1, . . . , p10) could, in a naive attempt, be implemented by
approximating the values p1, . . . , p10 by rationals, and define a roundtrip to check
floors in a fixed sequence (f1, f2, . . . , fm) ∈ {1, . . . , 10}m so that the number of
times that fi is checked equals (or at least approximates) the prescribed equilibrium
frequency pi to check that floor. Repeating this patrolling schedule, the security
guard eventually ends up doing optimal by playing a mixed equilibrium strategy.

The prescribed schedule can even be further constrained to list the floors in
adjacent order, to make patrolling efficient (meaning that we would send the guard
from one floor fk to the next floor fk+1 being either directly above or directly below
the current floor fk). While convenient for the security guard, the implementation
of the equilibrium makes it easy for the adversary to sneak in, once the schedule and
route of the guard is known.

The proper way of implementing the equilibrium is thus really doing random
spot checks on each floor, so as to minimize the foresight that an intruder can gain
on where to expect the guard. However, this means that the guard will, from time to
time, need to go from floor 1, up to floor 8, then back to floor 2 and then again up to
floor 10, and so on. An equilibrium played like this is still optimal and achieves the
desired defense, but is apparently inconvenient for the security guard. Eventually,
this person will then end up deviating from the equilibrium, simply to ease the
daily business. This would already count as bounded rationality, though it roots
in reasonable thinking. 

It is a well known effect that cumbersome security can incentivize users to
find creative workarounds to it. Examples range from sending an email without
encryption because the certificates expired and we cannot get a new certificate in
time, up to asking storing sensitive information on privately owned USB sticks
because the online cloud storage rejected a login (even though only due to an
unnoticed typo in the password).

Overly simple game theoretic models exhibit the same dangers, unless the efforts
to change the current behavior accordingly is not included in the game model.
Intuitively, we can account for such costs by assuming that the defender also
plays “against itself”, meaning that every defense action needs some investment
to change it. That is, to the existing utility structure, we add another loss function
s : AS1 × AS1 → R, whose value s(a, b) measures the efforts (in the sense of
losses) incurred when player 1 switches from the current action a ∈ AS1 to the next
action b ∈ AS1. Typically, we would set s(a, a) = 0, since not changing the action
between two rounds does not cause any cost.

This function is always minimized, and can be included as a further goal in the
game. If the strategy spaces are finite, the function s admits a specification as a
matrix S. The losses for switching from one to the next strategy are then given by
xT ·S ·x, when x is a mixed strategy (observe that this is almost the same form as for
a normal matrix game, only that player 1 now has become its own opponent in this
regard). For a finite two-player matrix game with payoff structure A, the payoff is
the bilinear form xT Ay, when player 1 chooses x and player 2 chooses y. Likewise,
if player 1 is “its own opponent”, the same intuition leads to the quadratic form
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xT Sx. And this intuition is indeed provably correct, as directly follows from the law
of total probability using the stochastic independence of rounds (see [25, 34] for
proofs).

Solving the problem with the switching cost as a secondary goal is a humble
matter of scalarization and adding the quadratic term to the conditions in (12.1), as
a weighted sum with α ∈ (0, 1) to scalarize the MOG. This gives

v → min
subject to v ≤ α · xT Sx+ (1− α)xT Aei for i = 1, . . . , m;∑n

j=1 xj = 1;
xj ≥ 0, for i = 1, . . . , n.

⎫
⎪⎪⎬

⎪⎪⎭

(12.6)
The choice of α in (12.6) deserves some discussion and practical care: the

extreme choices α = 0 or α = 1 make no sense, since α = 0 lets (12.6) become the
original linear optimization problem (12.1), so the extension disappears. Conversely,
α = 1 makes the problem ignore the regular revenues of the game and puts all focus
on the switching. Doing so, however, makes all pure strategies into equilibria, if
s(a, a) = 0 or, equivalently, the matrix S has all zeroes on the diagonal.

Remark 12.3 The derivation of (12.6) does not depend on the assumption that
s(a, a) = 0 for all a ∈ AS1. Thus, one could define a penalty s(a, a) = sa for
a defender who chooses to stay with a strategy for the next round. This could, for
example, model an explicit incentive to switch actions.

The choice of α should be made to roughly equalize the changes in the scalarized
utility that the terms xT · A · y and xT · S · x contribute: if A is such that a small
change in x or y causes a huge change of utility, this change may outweigh the gains
contributed by the second term. In that case, the resulting equilibrium is not too
much different to one without the switching cost term. Likewise, if the quadratic
term changes largely relative to the change of the utility xT Ay, then the model
becomes overly focused on the switching cost, and we suffer a considerable loss
of utility. This effect is easy to visualize by examples. Note that the matrix S is
in general not symmetric and hence not definite (Example 12.3 is such a case).
This needs to be kept in mind when selecting the proper nonlinear optimization
algorithms (as some methods may rely on these properties of the matrix S).

Example 12.4 ([25]) Let the payoff matrix A and the switching cost matrix S be
given as

A =
⎛

⎝
4 8 6
9 3 8
7 6 3

⎞

⎠ , and S =
⎛

⎝
0 1 1
2 0 1
1 3 0

⎞

⎠ .

Let u1(x, y) = xT Ay be the payoff function, and let uswitch = xT Sx be the cost for
player 1 to change action when playing a mixed strategy x.
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Analyzing the game in the usual way, e.g., by solving (12.6) with α = 0 to
“deactivate” the switching cost matrix S, yields v0 = val(A) ≈ 6.0889 at an
equilibrium strategy x∗0 ≈ (0.511, 0.311, 0.178).

Instantiating and solving (12.6) with α = 0.5, corresponding to equal priority on
game payoffs (losses) and switching cost, gives v ≈ 3.36 at the new equilibrium
x∗ ≈ (0.2, 0, 0.8). Doubling v to cancel out the equal weights α = 1/2 for
both goals, gives the total sum cost in the game, coming to 2 · v = u1(x∗, y∗) +
uswitch(x∗, y∗) ≈ 6.72. Naturally, this loss is higher than in the conventional game
without switching, so let us look how costly both equilibria are in playing them:

(x∗0)T Sx∗0 ≈ 0.88 and (x∗)T Sx∗ ≈ 0.32.

Not surprisingly, x∗ is cheaper to play than x∗0. However, the costs of 0.88 have to
be added to the loss v0 = 6.0889, making the total payoff v0 + 0.88 ≈ 6.9689.
So, a disregard of the switching costs comes at additional cost and is suboptimal
compared to the “more informed” approach. This makes the account for switching
worthwhile.

Now, consider slightly different payoff structure

A =
⎛

⎝
4 9 7
8 3 6
6 8 3

⎞

⎠

and the same switching cost matrix S from before.
Disregarding switching costs, we get v0 = val(A) ≈ 6.08889 attained at

x∗0 ≈ (0.422, 0.467, 0.111) and coming in at cost (x∗0)T Sx∗0 ≈ 0.892346. Taking
the switching cost into account gives v ≈ 3.69388, playable at cost (x∗)T Sx∗ ≈
0.816326 (cheaper, as expected), but being more expensive in total: we have
2 · v ≈ 7.38776, as opposed to v0 + 0.986173 ≈ 6.98123. This is a case where
the additional cost from the deviation from x∗0 is higher than the cost reduction from
playing the cheaper equilibrium x∗. This is intrinsically attributable to the Pareto-
Nash equilibrium tradeoff, and becomes effective due to the low cost values in S. If
those costs would increase, e.g., if we redo the calculation with 2 · S, then the cost-
optimized equilibrium becomes profitable again. This means that the magnitude of
the costs modeled by S should bear a meaningful relation to the magnitude of the
other goals in the MOG, when switching cost is an issue. 

The fine-tuning of the parameter α is thus not a matter of declaring priorities
between the two goals (utility vs. switching cost), but must rather be made by
solving (12.6) for several trial values of α, and looking for an equilibrium that
achieves a reasonable utility. The savings on the switching costs S = (sij ) should
not be all outweighed by the loss of utility that the adapted behavior, which
deviates from the original equilibrium without S, gives. For a practical choice,
α := 1/ maxij

{|sij |
}

may be an initial guess for an (in any case necessary) fine-
tuning of the model.



272 12 Practicalities

12.6 Making the Most Out of Uncertainty

Perhaps unexpected at first glance, but uncertainty does not only cause difficulties,
it can in fact be helpful in practical situations. The following sections consider
two ways of turning uncertainty in the modeling into an advantage. The first is a
smoothing effect that comes with payoff models constructed from empirical data.
One example where this is helpful are disappointment rates from Chap. 7. The
probability to “be disappointed” during a game round is a goal function that classical
games, i.e., those over R, cannot naturally handle, but distribution-valued games can
do this without much effort. We use Sect. 12.6.1 to show how.

The second positive use of uncertainty lies in the intrinsic account for zero-day
exploits, which can be seen as a worst case instance of uncertainty in our modeling.
Unexpected attacks, equivalently inaccurate assumptions on the attacker’s action
spaces, can be accounted for in the payoff construction by adding uncertainty to the
data. We will discuss this in Sect. 12.6.2.

12.6.1 Including Disappointment in Finite Games

Let us now complete the picture of how to handle disappointment rates in general
games, which was left open in Sect. 7.4. In the following, we describe a generic
procedure to include disappointments in any game whose payoff is modeled with
distributions. Assume that we used R [22] and the HyRiM package [23] for the
underlying data science, and that we constructed a distribution-valued game that
is available as an object G in our R workspace. Then, adding an account for
disappointment to this game is a matter of taking the following steps:

1. For every distribution Fij in the payoff matrix A = (Fij )
n,m
i,j=1 of the game,

replace this by its expectation, thus recovering a game over real values. This
is a matter of invoking the mean function on all entries in the payoff list of the
object G, as done in line 3 of Listing 12.3.

2. Likewise, compute the disappointment rate for all distributions Fij in of the
game, which is the probability mass assigned by Fij in the region [E(X),∞).
The function disappointmentRate does this upon invocation on a loss-
Distribution object; see line 6 of Listing 12.3.

3. Add the so-constructed list of disappointment rates as a second goal to the game
(line 9), and solve it using the same techniques as in Sect. 12.4.3.

Remark 12.4 Note that this technique naturally casts a distribution-valued game
back into a game with real values, which is an inevitable effect if we want to escape
the discontinuity issue of the disappointment rate function. Indeed, the intuitive
reason why this works is that the modeling of payoff distributions rather than
numbers adds more information to a game than in the other case as if the game
would have been set up with real-valued utilities in first place. It is this additional
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Listing 12.3 Running an Equilibrium analysis with disappointment rates

1 payoffs <- G[,,1]$losses # get the losses for the first goal
2 # boil down all the loss distributions to their means
3 expectations <- unlist(lapply(payoffs, mean))
4 # compute the disappointment probability for each distribution
5 # using the HyRiM::disappointmentRate function
6 disapp_rate <- unlist(lapply(payoffs, disappointmentRate))
7 # put the two new goals together in a fresh game
8 gameWithDisappointment <- c(expectations, disapp_rate)
9 G2 <- mosg(n=G$nDefenses,

10 m=G$nAttacks,
11 losses=gameWithDisappointment,
12 goals=2, # only the original goal + disappointment
13 goalDescriptions=c("mean damage", "disappointment

rate"),
14 defensesDescr = G$defensesDescriptions,
15 attacksDescr = G$attacksDescriptions)
16 # our choice of alpha_1 = 0.1, alpha_2 = 0.9
17 # in the scalarization, is *arbitrary* and only
18 # for the example to roughly equalize the goal’s
19 # magnitudes (for more meaningful results)
20 eq <- mgss(G2,weights=c(0.1,0.9))
21 print(eq)

information collected about the tails of the distribution that Listing 12.3 compiles
into the disappointment rate as a second goal. This information would not have been
available after a direct definition of the real-valued utilities only.

Example 12.5 (Cut-the-Rope with Disappointments) Let us continue our anal-
ysis of the previous instance of Cut-The-Rope, redefined with disappointments
in the way as Listing 12.3 instructs. We obtain the following equilibrium as output
of the print(eq) statement in the last line:

equilibrium for multiobjective security game (MOSG)

optimal defense strategy:
prob.

1 0.511
2 0.000
3 0.107
4 0.000
5 0.000
6 0.382
7 0.000
8 0.000
9 0.000
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worst case attack strategies per goal:
mean damage disappointment rate

1 0.0000000 0.583416583
2 0.0000000 0.000000000
3 0.3526474 0.000000000
4 0.0000000 0.002997003
5 0.0000000 0.000000000
6 0.0000000 0.000000000
7 0.6473526 0.413586414
8 0.0000000 0.000000000

Since this is a MGSS, the defender knows that by playing the optimal defense, it
gets the assured mean losses and disappointments computable by v1 = d∗ ·A1 · a∗1,
and v2 = d∗ ·A2 ·a∗2, in which d∗ is the optimal defense computed above, and a1, a2
are the worst case attack strategies per goal. The matrices A1, A2 are the variables
expectations and disapp_rate in Listing 12.3. We get these matrices easily
by issuing the commands

A1 <- matrix(expectations,
nrow=G$nDefenses, ncol=8, byrow=TRUE)

A2 <- matrix(disapp_rate,
nrow=G$nDefenses, ncol=8, byrow=TRUE)

on the R prompt. Given these, we can directly evaluate the above bilinear functions
(and coerce the resulting 1 × 1 matrix to a number by applying as.numeric) to
obtain the assured performance in terms of loss and disappointment for the game
G2, which are

> as.numeric(t(eq$optimalDefense)
%*% A1 %*% eq$optimalAttacks[,1])

[1] 3.914974
> as.numeric(t(eq$optimalDefense)

%*% A2 %*% eq$optimalAttacks[,2])
[1] 0.4290704

Now, to see the effect of the disappointment to be included, let us construct another
game with the same payoffs, but without the disappointment rate. We call this game
G3 and compute its equilibrium as follows:

G3 <- mosg(n=G$nDefenses,
m=G$nAttacks,
losses=expectations,
goals=1, # only the goal (no disappointment)
goalDescriptions=c("mean damage"),
defensesDescr = G$defensesDescriptions,
attacksDescr = G$attacksDescriptions)

eq_without_disap <- mgss(G3)
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Note that the exclusion of disappointment here enables the attacker to find another
strategy by which it can cause perhaps less damage on average, but still gain a larger
chance of causing more harm than the defender expects. Letting the adversary still
play by the equilibrium from the previous game G2 with equilibrium eq, we can
confirm this effect:

> as.numeric(
t(eq_without_disap$optimalDefense)
%*% A1 %*% eq$optimalAttacks[,1])

[1] 3.892734
> as.numeric(

t(eq_without_disap$optimalDefense)
%*% A2 %*% eq$optimalAttacks[,2])

[1] 0.4314893

As we see, the average damage disregarding disappointments is 3.892734, which
is less than 3.914974 under the previous calculation. However, this seeming
improvement comes with the caveat of now having a higher chance to suffer a
damage >3.892734, namely with likelihood ≈43.15%, as opposed to the “safer”
defense that has only a chance of ≈42.91% to exceed the expectation. 

The tradeoff that became visible in the end of Example 12.5 is intrinsic to the
scalarization approach when solving multi-objective games, and the magnitudes of
how much is gained when we choose between either way of analyzing the game
also depends on our choice of α (in this example analysis, we chose α = 0.1, but
other values would be equally admissible and bring up different results). The bottom
line is that including disappointment rates is possible and easy – Listing 12.3 is in
fact not specific for any game, and generically applies to any other game equally
well – yet requires manual fine-tuning and some trials to obtain a practically viable
(optimal) defense.

Knowing how much loss to expect is important to know for what amount we need
to buy insurance. In the same way, knowing how likely a disappointment is means
preparing for the case when even the insurance coverage leaves a residue damage
to be covered on our own. We can deal with this by setting the insured value to a
proportion of the expectation, e.g., we may buy insurance for 120% of how much
we expect, to cover a 20% excess on the losses that we actually bear in reality (or
any other larger amount).

12.6.2 Risks for Zero-Day Exploits

Zero-day exploits are characterized by them being unknown to the security officer by
the time when they become effective in a system. From the defender’s perspective,
counting the date of the exploit becoming known as day zero, the exploit happens on
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the same day, hence the name “zero-day exploit”. Practically, these are relevant for
the possibly large damage that they can cause, simply because they are unexpected.

12.6.2.1 A Posteriori Mitigation of Zero-Day Exploits

In a game theoretic model, a zero-day exploit would manifest as the adversary
playing a strategy z /∈ AS2, when AS2 is the action set that the defender anticipated
for its opponent. In other words, the adversary plays some unexpected move, that
may well defeat all defense strategies that player 1 could adopt. Let us return to the
communication games of Sect. 11.2 to illustrate this.

Example 12.6 (Zero-day attack on a multipath communication game) Let us
reconsider the multipath communication game from Sect. 11.2.1. Suppose that the
transmission uses a single path from AS1 = {π1, π2, π3} and that the attacker wins
if and only if it intercepts exactly that path by eavesdropping on any node from the
adversary structure {{v1} , {v2} , {v3}} = A . The resulting payoff matrix is actually
a plain diagonal game given by

A v1 v2 v3

π1 0 1 1
π2 1 0 1
π3 1 1 0

A dominating strategy for the adversary may arise if we have mistakenly assumed
the threshold as too low or had the wrong adversary structure. In either case, a
“zero-day exploit” column ZD may appears that outperforms all others. This new
column corresponds to a strategy that entirely breaks the protocol and makes the
whole transmission insecure by Theorem 11.2:

A|ZD v1 v2 v3 ZD

π1 0 1 1 0
π2 1 0 1 0
π3 1 1 0 0

has the saddle-point value v = val(A|ZD) = 0,

and hence the vulnerability 1 − v = ρ(A|ZD) = 1, so there is no longer a way of
secure communication, as Theorem 11.2 tells. 

Upon observing such a dominated strategy, it is useful to know that it can suffice
to fix the situation only in one circumstance, instead of having to mitigate the attack
in all cases. Namely, there is the following fact:

Theorem 12.1 ([27]) Take a real number M > 0. Let A ∈ [0,M]n×m be a game-
matrix with value val(A) > 0. Extend A by one column c for the adversary, such that
c does not dominate all columns in A, and write (A|c) for the so-extended matrix.
Then val((A|c)) > 0.
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We illustrate the application of Theorem 12.1 by continuing Example 12.6:

Example 12.7 (Mitigating an adversarial winning strategy) Suppose that the
defender manages to patch or otherwise avoid the zero-day exploit on the first path
only, changing it into the updated strategy π ′1. Then, the new game matrix, including
the former zero-day exploit strategy ZD, has become

A|ZD v1 v2 v3 ZD

π ′
1 0 1 1 1

π2 1 0 1 0
π3 1 1 0 0

and now has the saddle-point value v = val(A|ZD) = 1

2
,

so that the possibility to do ASMT is fully restored, based on Theorem 11.2. 
The lesson to take away from Examples 12.6 and 12.7 is that even upon the
discovery of an unexpectedly powerful attack, we may not need to mitigate the risk
in all cases, but only need to avoid falling victim to the attack in all cases. The latter
can be a much weaker goal to achieve in practice.

12.6.2.2 Heuristic Modeling of Zero-Day Risks

Consider a situation where we have a hypothesis on the attacker’s possible actions,
coming as some, in our cases at least compact, action set AS2 = {a1, a2, . . .}.
Assume that we have assigned losses to each of these actions, in light of all what the
defender can do within its action set AS1. That is, we either have anticipated loss
values u(di, aj ) for all defense actions di ∈ AS1, or we have assigned losses to the
event of action ai ∈ AS2 occurring, if our adversary is nature.

Now, suppose that losses have not been set to crisp numbers, but rather have been
compiled from empirical data, e.g., expert polls (for example, by using a textual
questionnaire or a graphical specification like in Fig. 12.1), big data, experience, or
other sources. The point is that the valuation of each action a ∈ AS2 as a loss is
uncertain, which can mean various things:

• the assessment of the action can be inconsistent and non-consensual between data
sources. That is, given action a ∈ AS2, several experts may have different and
diverging opinions about what would happen under event a.

• the assessment comes with some measure of accuracy, e.g., a confidence interval,
or another subjective rating of “how sure” the expert is about the loss to expect
under event a ∈ AS2.

As this method of modeling is a kind of data science, we will refer to R in the
discussion to follow, and will illustrate the respective steps by using the HyRiM
package. This environment conveniently equips us with everything needed in the
following.
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When constructing payoff distributions from empirical data, a non-parametric
loss distribution is constructible by a kernel density estimate, which takes a set of
observations x1, . . . , xN and constructs an empirical distribution function as the sum

f (x) :=
N∑

i=1

1

h ·N k

(
x − xi

h

)
, (12.7)

using a kernel function k, that needs to satisfy k(x) ≥ 0 for all x and
∫
R k(t)dt = 1.

The parameter h is the bandwidth parameter. For our purposes, it can be interpreted
as a measure of uncertainty in the data. In R, the construction of f from observations
is directly doable by a call to the density function from the base installation of R.

Remark 12.5 (Practical handling of the bandwidth parameter h) To assure conver-
gence of the kernel density estimate to the true underlying unknown distribution,
the value h needs to depend on n in an explicitly constrained way, and will need to
go to zero as n tends to infinity. Choosing h properly is the “art” of constructing a
good kernel density estimate, but practically, many systematic and heuristic methods
are available to data scientists here. We shall not worry too much about choosing
this value, since the way we will practically use (12.7) will internally invoke these
heuristics for us. In R, the easiest such rule is accessible via the function nrd0, but
more sophisticated techniques are available in many packages, such as [20, 35].

A popular choice in practice is taking k as the density of the standard Gaussian
distribution (this choice has the additional appeal of putting the resulting kernel
density f into C∞(R), so that Theorem 3.1 would apply to �-compare the kernel
densities. The HyRiM package [23] makes use of this). In the discrete case, a
similar smoothing is applicable with a proper discrete distribution (e.g., a discretized
version of the Gaussian density).

Since we want to make decisions about security, the next step is to stochastically
order the kernel densities to set up and solve decision or game problems.

A neat consequence of this non-parametric modeling of payoff distributions is
the fact that their support extends over whole R (or whole N in the discrete case),
but for the computation of an equilibrium, needs to be truncated at the maximum
relevant loss b > 1 or to some largest loss category c1 to �-order the distributions,
equivalently prospects. Table 6.2a on impact categories would, in the description of
the largest impact category, provide an example choice for b for a company using
this impact scale. Generally, the value b would be the largest loss above which it
does not make sense to distinguish any more. As an extreme example, a small start-
up company would not bother any more if the liabilities are 1 million or 10 million,
since the company would be equally bankrupt in both cases.

If we use Gaussian kernels (continuous or discretized versions thereof), the
loss density will assign positive likelihood to losses in the range Z = (b,∞) of
observations x1, . . . , xN . The value b is what a user can pick freely when computing
a multi-goal security strategy, i.e., a zero-sum equilibrium by calling

> mgss(G, cutOff = b)
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The region Z is the range of losses that were never observed. This region
is, however, exactly where zero-day exploit events live, if we interpret them
as unexpected yet very powerful attacks that cause losses beyond all that was
anticipated; formally, losses that are larger than our chosen risk acceptance threshold
b. By our construction, however, loss events in Z have a positive likelihood to occur
in every scenario in AS1×AS2 under the non-parametric loss density model (12.7).

Figure 12.10 illustrates the effect: The lot of mass assigned to the region Z is the
heuristic probability estimate for the risk of zero day exploits accumulating in the
tails of the loss distribution; specifically, Fig. 12.10a depicts a loss distribution with
mass put on the “zero-day area” Z shaded in gray. It has two appealing properties:

1. The heuristically presumed risk for zero-day exploits becomes larger the more
data we have that speaks about large losses to be expected. For example, the more
experts provide assessments in the large loss range, the larger will the probability
for zero-day exploits be assumed in the game; see Fig. 12.10b.

2. The mass put on the region Z also grows if we consider the data to be more
uncertain; see Fig. 12.10c.

Practically, one does typically not have to go through the mathematical construc-
tion of the nonparametric density given by (12.7), since this formula is a standard
tool in statistics. In R, we can plainly use the lossDistribution function from
the HyRiM package, to construct a loss distribution of the proper form (12.7) in
both, a continuous and discrete version, by supplying the data, and the bandwidth
parameter bw to express the uncertainty h. The call to construct a loss distribution
is then a matter of one command on the R prompt:

> ld <- lossDistribution(
dat = observations,
smoothing = "always",
bw = h)

to construct a loss distribution from the set of observations, and using the
bandwidth value h to express the uncertainty. Omitting this parameter makes
lossDistribution internally invoke a heuristic choice rule to pick a proper
value for h. Coming back to the control of zero-day risks, supplying larger values for
h and/or adding more observations near the upper end of the loss scale will increase
the presumed zero-day risk. The specification smoothing = "always" advises
the function to do make use of the uncertainty parameter h explicitly, for otherwise,
lossDistribution leaves the data by default unmodified and “as is”.

If the loss distribution for a given scenario is available in our R workspace as
the object ld, constructed from a previous call to lossDistribution like the
above, we can get the probability presumed for a zero-day exploit in this case,
equivalently the mass that ld puts on Z, as Pr(X > b) = 1− FX(b) for X ∼ ld,
by calling

> 1 - cdf(ld, x = b)
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Fig. 12.10 Implicit heuristic inclusion of zero-day risks in the payoff distribution

where cdf returns the cumulative distribution function’s value at x for the supplied
loss distribution ld.

Since the construction of loss distributions essentially always works using data
and with calls to lossDistribution, we actually have no additional burden to
explicitly take zero-day risks into account here, except for a custom choice of the
bandwidth and the collection of observations. Besides that, however, the modeling
automatically assigns a heuristic lot of risk to zero-day exploits, the exact lot of
which is based on the uncertainty in the data. We get this feature “for free”.

In connection with the design of our games to yield optimal behavior that
minimizes the chances for high losses, the likelihood for zero-day exploits is then
automatically kept low as well, since the �-optimal decisions are those that have
all their masses shifted towards lowest damages as much as possible. Therefore,
practically, we can adjust our modeling account for zero-day exploits by adding
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more pessimistic observations to the data sets from which we construct the loss
distributions. But from that point onwards, the construction automatically considers
extreme events in the way as we want it without further explicit considerations.

References

1. GNU Octave (2019). https://www.gnu.org/software/octave/
2. Berger U (2005) Fictitious play in 2×n games. J Econ Theory 120(2):139–154. https://doi.org/

10.1016/j.jet.2004.02.003. https://linkinghub.elsevier.com/retrieve/pii/S0022053104000626
3. Blavatskyy PR (2010) Reverse common ratio effect. J Risk Uncertain 40(3):219–241. https://

doi.org/10.1007/s11166-010-9093-x
4. Brandt F, Fischer F, Harrenstein P (2010) On the rate of convergence of fictitious play. In:

Kontogiannis S, Koutsoupias E, Spirakis P (eds) Algorithmic game theory. Lecture notes in
computer science, vol 6386. Springer, Berlin/Heidelberg, pp 102–113. https://doi.org/10.1007/
978-3-642-16170-4_10

5. Brenton K, Signorino CS (2014) Estimating extensive form games in R. J Stat Softw 56(8):1–
27. http://www.jstatsoft.org/v56/i08/

6. Cano-Berlanga S, Gimenez-Gomez JM, Vilella C (2015) Enjoying cooperative games: the R
package gametheory. Working paper no 06; CREIP

7. Carvalho A, Larson KA (2013) Consensual linear opinion pool. In: IJCAI ’13. AAAI Press, pp
2518–2524

8. Dietrich F, List C (2017) Probabilistic opinion pooling generalized. Part one: general agendas.
Soc Choice Welf 48(4):747–786. https://doi.org/10.1007/s00355-017-1034-z

9. Field AP, Hole G (2003) How to design and report experiments. Sage Publications Ltd,
London/Thousand Oaks

10. Goerlandt F, Reniers G (2016) On the assessment of uncertainty in risk diagrams. Saf Sci
84:67–77. https://doi.org/10.1016/j.ssci.2015.12.001. https://linkinghub.elsevier.com/retrieve/
pii/S0925753515003215

11. Herath HSB, Herath TC (2011) Copula-based actuarial model for pricing cyber-insurance
policies. Insur Markets Companies Anal Actuarial Comput 2(1):14

12. Higgins JJ (2004) An introduction to modern nonparametric statistics. Brooks/Cole, Pacific
Grove

13. Hogg RV, Klugman SA (1984) Loss distributions. Wiley series in probability and mathe-
matical statistics applied probability and statistics. Wiley, New York. https://doi.org/10.1002/
9780470316634

14. Inc., W.R (2019) Mathematica, Version 12.0. https://www.wolfram.com/mathematica. Cham-
paign

15. Klugman SA, Panjer HH, Willmot GE (1998) Loss models. A Wiley-Interscience publication.
Wiley, New York. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470391341

16. Mainik G, Rüschendorf L (2013) Ordering of multivariate risk models with respect to
extreme portfolio losses. In: Rüschendorf L (ed) Mathematical risk analysis. Dependence,
risk bounds, optimal allocations and portfolios. Springer series in operations research and
financial engineering, pp 353–383. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-
3-642-33590-7_14

17. MathWorks (2019) MATLAB – the language of technical Computing. https://www.mathworks.
com/products/matlab.html

18. McKelvey RD, McLennan AM, Turocy TL (2007) Gambit: software tools for game theory,
version 0.2007.12.04. http://www.gambit-project.org

19. Monderer D (1996) Fictitious play property for games with identical interests. J Econ Theory
68:258–265. http://linkinghub.elsevier.com/retrieve/pii/S0022053196900149

https://www.gnu.org/software/octave/
https://doi.org/10.1016/j.jet.2004.02.003
https://doi.org/10.1016/j.jet.2004.02.003
https://linkinghub.elsevier.com/retrieve/pii/S0022053104000626
https://doi.org/10.1007/s11166-010-9093-x
https://doi.org/10.1007/s11166-010-9093-x
https://doi.org/10.1007/978-3-642-16170-4_10
https://doi.org/10.1007/978-3-642-16170-4_10
http://www.jstatsoft.org/v56/i08/
https://doi.org/10.1007/s00355-017-1034-z
https://doi.org/10.1016/j.ssci.2015.12.001
https://linkinghub.elsevier.com/retrieve/pii/S0925753515003215
https://linkinghub.elsevier.com/retrieve/pii/S0925753515003215
https://doi.org/10.1002/9780470316634
https://doi.org/10.1002/9780470316634
https://www.wolfram.com/mathematica
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470391341
https://doi.org/10.1007/978-3-642-33590-7_14
https://doi.org/10.1007/978-3-642-33590-7_14
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://www.gambit-project.org
http://linkinghub.elsevier.com/retrieve/pii/S0022053196900149


282 12 Practicalities

20. Moss J, Tveten M (2019) kdensity: kernel density estimation with parametric starts and
asymmetric kernels. https://CRAN.R-project.org/package=kdensity. Pack. ver. 1.0.1

21. Nachbar JH (1990) “Evolutionary” selection dynamics in games: convergence and limit
properties. Int J Game Theory 19(1):59–89. http://link.springer.com/10.1007/BF01753708

22. R Core Team (2018) R: a language and environment for statistical computing. R foundation
for statistical computing, Vienna. https://www.R-project.org/

23. Rass S, König S, Alshawish A (2020) HyRiM: multicriteria risk management using zero-sum
games with vector-valued payoffs that are probability distributions. https://cran.r-project.org/
package=HyRiM. Version 1.0.5

24. Rass S, Konig S, Schauer S (2017) Defending against advanced persistent threats using game-
theory. PLoS ONE 12(1):e0168675. https://doi.org/10.1371/journal.pone.0168675

25. Rass S, König S, Schauer S (2017) On the cost of game playing: how to control the expenses
in mixed strategies. In: Decision and game theory for security. Springer, Cham, pp 494–505

26. Rass S, Rainer B (2014) Numerical computation of multi-goal security strategies. In: Pooven-
dran R, Saad W (eds) Decision and game theory for security. LNCS 8840. Springer, pp
118–133. https://doi.org/10.1007/978-3-319-12601-2_7

27. Rass S, Schartner P (2011) Information-leakage in hybrid randomized protocols. In: Lopez
J, Samarati P (eds) Proceedings of the international conference on security and cryptography
(SECRYPT). SciTePress – Science and Technology Publications, pp 134–143

28. Rass S, Schauer S (2019) Refining stochastic models of critical infrastructures by
observation. In: Proceedings of the 56th ESReDA seminar, European atomic energy
community, No JRC118427 in JRC Publications, pp 212–223. Publications Office
of the European Union. https://ec.europa.eu/jrc/en/publication/critical-services-continuity-
resilience-and-security-proceedings-56th-esreda-seminar

29. Rass S, Schorn A, Skopik F (2019) Trust and distrust: on sense and nonsense in big data.
In: Kosta E, Pierson J, Slamanig D, Fischer-Hübner S, Krenn S (eds) Privacy and identity
management. Fairness, accountability, and transparency in the age of big data, vol 547.
Springer International Publishing, Cham, pp 81–94. http://link.springer.com/10.1007/978-3-
030-16744-8_6

30. Robert CP (2001) The Bayesian choice. Springer, New York
31. Robinson J (1951) An iterative method for solving a game. Ann Math 54:296–301
32. Sela A (1999) Fictitious play in ‘one-against-all’ multi-player games. Econ Theory 14:635–

651. https://doi.org/10.1007/s001990050345
33. Wachter J, Grafenauer T, Rass S (2017) Visual risk specification and aggregation. In:

SECURWARE 2017: the eleventh international conference on emerging security information,
systems and technologies. IARIA, pp 93–98

34. Wachter J, Rass S, König S (2018) Security from the adversary’s inertia–controlling conver-
gence speed when playing mixed strategy equilibria. Games 9(3):59. https://doi.org/10.3390/
g9030059

35. Wand M (2019) KernSmooth: functions for Kernel smoothing supporting Wand & Jones
(1995). https://CRAN.R-project.org/package=KernSmooth. Pack. ver. 2.23-16

36. Washburn A (2001) A new kind of fictitious play. Nav Res Logist 48(4):270–280. http://doi.
wiley.com/10.1002/nav.7

https://CRAN.R-project.org/package=kdensity
http://link.springer.com/10.1007/BF01753708
https://www.R-project.org/
https://cran.r-project.org/package=HyRiM
https://cran.r-project.org/package=HyRiM
https://doi.org/10.1371/journal.pone.0168675
https://doi.org/10.1007/978-3-319-12601-2_7
https://ec.europa.eu/jrc/en/publication/critical-services-continuity-resilience-and-security-proceedings-56th-esreda-seminar
https://ec.europa.eu/jrc/en/publication/critical-services-continuity-resilience-and-security-proceedings-56th-esreda-seminar
http://link.springer.com/10.1007/978-3-030-16744-8_6
http://link.springer.com/10.1007/978-3-030-16744-8_6
https://doi.org/10.1007/s001990050345
https://doi.org/10.3390/g9030059
https://doi.org/10.3390/g9030059
https://CRAN.R-project.org/package=KernSmooth
http://doi.wiley.com/10.1002/nav.7
http://doi.wiley.com/10.1002/nav.7


Acronyms

APT Advanced Persistent Threat
ARA Adversarial Risk Assessment
ASMT Arbitrarily Secure Message Transmission
BSI Federal Office for Information Security
CI Critical Infrastructure
CPS Cyber-Physical System
CPT Chinese Postman Tour
CRAN Comprehensive R Archive Network
CVSS Common Vulnerability Scoring System
DDoS Distributed Denial of Service
DH Diffie-Hellman
DMS Distribution Management System
DoS Denial of Service
ENISA European Anion Agency for Cybersecurity
FP Fictitious Play
FTP File Transfer Protocol
GTE GAME THEORY EXPLORER

ICS Industrial Control System
ICT Information and Communication Technology
IDS Intrusion Detection System
IIM Input-Output Inoperability Model
IND-CPA Indistinguishability Against Chosen-Plaintext Attacks
ITM Interactive Turing Machine
IoT Internet of Things
LAN Local Area Network
MAC Message Authentication Code
MGSS Multi-Goal Security Strategy
MOG Multi-Objective Game
NIST National Institute of Standards and Technology
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NVD National Vulnerability Database
PBNE Perfect Bayesian Nash Equilibrium
PDF Portable Document File
PSMT Perfectly Secure Message Transmission
RSH Remote Shell
RTU Remote Terminal Unit
SCADA Supervisory Control and Data Acquisition
SMB Server Message Block
SPE Subgame Perfect Equilibrium
SSH Secure Shell
TVA Topological Vulnerability Analysis
VPN Virtual Private Network



Glossary

Metric and Metric Space Given a vector space V , a metric is a function d : V ×
V → R that satisfies three properties:

• positive definiteness: d(x, y) ≥ 0 for all x, y ∈ V , and d(x, y) = 0 ⇐⇒
x = y.

• symmetry: d(x, y) = d(y, x) for all x, y ∈ V

• triangle inequality: d(x, y) ≤ d(x, z)+ d(z, y) holds for all x, y, z ∈ V

A metric space is a vector space V , together with a metric d as just defined. We
stress that the term “metric” introduced on page 46 is to be strictly distinguished
from the mathematical concept described above.

Open, Closed, Bounded set In a metric space (V , d), a set X ⊆ V is open if
for every point x ∈ X, we can find some ε > 0 such that the ball Bε(x) =
{y ∈ V : d(x, y) < ε} of radius ε and center at x is entirely enclosed in X, i.e.,
Bε(x) ⊆ X. The set of all such inner points in a set X is denoted as Xo. The
value of ε may herein depend on x. An example of an open set is the open
interval {x : 0 < x < 1} = (0, 1), which contains all numbers between 0 and
1, excluding these two. A set is called closed, if its complement set is open (note
that this admits that there are sets that are neither open nor closed, such as the
half-open/half-closed set {x : 0 ≤ x < 1} in R). The smallest closed set Y that
covers a given set as X ⊆ Y is called the closure of X and denoted as Y = X.
We call a set X bounded, if there is some ε > 0 such that X ⊆ Bε(0), i.e., X is
itself enclosed in some (sufficiently large) ball centered at the origin.

Compact set A subset X ⊆ Rn is compact if and only if it is closed and bounded.
A typical example in R is the closed interval [a, b] = {x : a ≤ x ≤ b}. In
particular, every finite set is compact. The more general topological definition
(such as Theorem 3.3 assumes) considers a given (possibly) infinite collection of
sets Ci whose union covers X, i.e., X ⊆⋃

i Ci , and calls a set X compact, if and
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only if every infinite cover of X contains a finite number of sets Ci1 , . . . , Cik that
already cover X ⊆ Ci1 ∪ Ci2 ∪ . . . ∪ Cik .

Convexity and Concavity A set X is called convex, if the straight line connecting
any two distinct points p, q ∈ X is itself entirely contained in X. For sets in
Rn, the smallest convex set covering X is called the complex hull, and given by
the simplex Δ(X). A function f : Rn → R with n ≥ 1 is called convex, if
the set {y : y ≥ f (x), x ∈ Rn} of points above the function’s graph is convex. A
function is called concave, if −f is convex. Note that this means that there are
functions that are neither convex nor concave.

Normal or Gaussian Distribution With μ ∈ R and σ > 0, a real-valued random
variable X ∼ N (μ, σ ) has a Gaussian distribution, if its density function is
given by

fX(x|μ, σ) = 1

σ
√

2π
exp

[
−1

2

(
x − μ

σ

)2
]

.

Exponential Distribution Given a parameter λ > 0, a real-valued random variable
X ∼ E x(μ, σ ) has an exponential distribution, if its density function is given by

fX(x|λ) =
{

λ · e−λx, for x ≥ 0
0, otherwise.

This distribution is useful to model, among others, the time between two
independent events (in our case, e.g., independent security incidents, random
inspections, etc.). The parameter λ is called the rate parameter, and may be
understood as the average waiting time between two events.
As an interesting and even characteristic (unique) feature, this distribution is
memoryless, meaning that: if we know that it has been t time units since the last
event, the chances to wait for another x time units is independent of t ; formally
meaning that Pr(X ≥ x + t |X ≥ t) = Pr(X ≥ x).

Poisson Distribution Given a parameter λ > 0, a random variable X ∼ Po(λ)

taking values in N has a Poissonian distribution, if its density function is given
by

Pr(X = k) = fX(k|λ) = λk

k! e
−λ, for k = 0, 1, 2, . . .

This distribution describes the number of (stochastically independent) events
to occur per time unit, taking λ as the average number of such events. It
relates to the exponential distribution as follows: if λ events occur on average
with a Poissonian distribution, then the pause times between two consecutive
occurrences is E x(1/λ)-distributed.
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Geometric Distribution Given a parameter 0 < p < 1, a random variable X has
a geometric distribution, if its density function is given as

Pr(X = k) = fX(k|p) = p(1− p)k−1 for k = 1, 2, 3, . . . .

It describes the number k of trials until the first occurrence of the respective event
that p relates to (in an alternative definition, one can also count the number of
failures until the first occurrence of the event, in which case we would include
k = 0 and have the density p(1 − p)k). Like the exponential distribution in the
continuous case, this is the only discrete distribution that is memoryless, meaning
that even if we know that we have taken t trials until now without the event having
occurred, the chances for another x trials until the event happens is independent
of the past number t .

Beta Distribution Given two parameters a, b > 0, a random variable X ∼
Be(a, b) distribution, if its density function is given by

fX(x|a, b) =
{

xa−1(1−x)b−1

B(a,b)
, if 0 ≤ x ≤ 1

0, otherwise.

with B(a, b) = Γ (a) · Γ (b)/Γ (a + b) and Γ (x) = ∫∞
0 tx−1e−t dt being

Euler’s Gamma-function. This extends the factorial to non-integer values, but
for an integer n, we have Γ (n) = (n − 1)!. The β-distribution is particularly
useful as a prior distribution for a Bayesian update, if the likelihood function
has a Poissonian, geometric, binomial or negative binomial distribution (see [17,
Chp.3.3] for further details). Its primary use for our purpose is for Bayesian
learning of probability parameters, such as described in Example 3.2, and
Sect. 12.1.2.

Support Given a probability density function f , the support of the density, or
random variable to which it refers, is the closure of the set {x : f (x) > 0}, where
f takes strictly positive values. Intuitively yet with care, this may be thought of
the set of values that the random variable can possibly take realizations from.

Continuous function Given a function f : X → Y between two metric spaces,
let for a set V the set f−1(V ) = {x : f (x) ∈ V } be the collection of all points
that map into V under f . The set f−1(V ) is called the pre-image of V under f .
The function f is called continuous, if the pre-image of every open set is again
an open set.
In the special case of a function f : R → R, one can intuitively think of f to
have neither poles or jumps.
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General notation
Typeface Denotes
Lower-case letters like x, y, v, . . . Scalars (e.g., real values)
Upper case letter like A,B, . . . Sets and random variables
Bold-printed lower-case letter like x, y, . . . Vectors
Bold-printed upper-case letter like A, B, . . . Matrices
Calligraphic letters like F Probability distributions

Symbol Explanation See also
Special sets and symbols

Kn×m Set of (n×m)-matrices with entries from the
set K

A× B Cartesian product of A and B, i.e., set of all
pairs (a, b) with a ∈ A, and b ∈ B∏

i Ai Cartesian product of multiple sets
or simple product of numbers

ai i-th coordinate of vector a
a−i Vector a excluding the i-th coordinate
F,G Finite field or finite group
diag(a) Diagonal matrix with elements from a

on the diagonal
A|v Block matrix; matrix A with the

additional column v.
AS Action space (essentially a set) pg. 46
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Symbol Explanation See also
2V Power set of V

Δ(X) Unit simplex over the set X pg. 46
|X| Cardinality of a set or absolute value (for

scalars like random variables)
R≥0 Nonnegative reals
C∞(Ω) Set of infinitely often differentiable functions

over the set Ω

dom(f ) Domain of a function f

minX f ,
maxX f

Minimum and maximum values attained by
the expression f , with variables varying over
the set X

argminX f ,
argmaxX f

Sets of points in X where a minimum or
maximum is attained by the expression f

x∗ Optimal value (element from argmin or
argmax)

vec(A) Vectorization of the matrix A pg. 265
f |x=t Substitution of t for x in the expression f

‖·‖p General p-norm in Rn, defined as
‖(x1, . . . , xn)‖p =

(∑n
i=1 |xi |p

)1/p,
for p > 0

Probability and statistics
X ∼ F or X ∼
x

Random variable X having distribution F or
categorical distribution given by the probabil-
ity mass vector x

fX(x|α) Conditional density of a random variable X on
values (e.g., one or more parameter) α

pg. 286ff

FX(t |Y ) Distribution of X conditional on Y ,
being FX(t |Y ) = Pr(X ≤ t |Y )

EF Expectation w.r.t. distribution F

η Empirical mean value for the variable η, i.e.,
an average over sampled values (data)

p̂ Empirical estimate for the value p or an
empirical distribution

pg. 186

μ(θ), μ(θ |a) Belief about adversary type θ , and conditional
belief given the information a

pg. 89

N (μ, σ ) Gaussian distribution with mean μ and stan-
dard deviation σ

pg. 286

U (a, b) Uniform distribution over the interval
[a, b] ⊂ R

E x(λ) Exponential distribution with rate parameter
λ, e.g., governing inspection intervals

pg. 286
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Symbol Explanation See also
Po(λ) Poisson distribution with rate parameter λ pg. 286
Be(a, b) β-Distribution pg. 287

Relations
≤ General ordering relation pg. 44
≤1,≥1 Orders on Rn, complement relations to

the coordinate-wise ≤,≥ relations (partial
orders) on Rn

pg. 47

� Stochastic tail ordering pg. 52
≤st Standard stochastic order pg. 52
� Preference relation pg. 44
≤lex, ≥lex Lexicographic orders on Rn pg. 48
(R,≤) Ordered set

Games
Γ = (N, S,H) Game with player set N , strategy sets S and

set H of utility functions
pg. 60

BRi Best response correspondence for the i-th
player in a game

pg. 61

val(Γ ), val(A) Saddle-point value of a game Γ , or of the
matrix if Γ is two-player finite zero-sum and
representable by a payoff matrix A

pg. 67

Z(h), Zi(h) Set of moves of all players, or just the i-th
player in an extensive form game, based on
the current history h of moves

pg 71

p(h) Set of players that can move given the current
state of an extensive form game, described by
the history h

pg. 72

�(Γ ) Length of the extensive form game Γ (depth
of the game tree)

pg. 84

periodic(λ) Inspection strategy to take exactly λ

inspections per time unit with fixed pause
times in between

pgs. 192,201

expon(λ) Inspection strategy to take a random number
of inspections per time unit, with random
pause time ΔT ∼ E x(λ) in between

pgs. 196,207

Graphs and networks
G = (V ,E) Graph with node set V and edge set

E ⊆ V × V
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Symbol Explanation See also
Pa(v) Parent set of all nodes with edges incoming to

v in a directed graph
Ch(v) Children of the node v in a directed graph, i.e.,

the set of all nodes to which edges outgoing
from v lead

Cryptography related symbols
Epk(m), Dsk(c) Encryption of a message m under a public key

pk, and decryption of a ciphertext c under a
secret key sk

pg. 224

negl anonymous negligible function in one param-
eter

pg. 227

A f algorithm A with oracle-access to some
function f

pg. 224

≤asymp,≥asymp Asymtotic orders pg. 227
≤negl,≥negl Less- or greater than up to a negligible (asymt-

potic) difference
pg. 227

≈negl,>noticbl Equal up to negligible error or greater than
with noticeable difference

pg. 227
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Symbols
2×2-game, 255

A
Accumulation game, 171
Action

node, 124
space, 46
vs. strategy, 72

Advanced persistent threat, 8, 14, 29
characteristics, 8
kill chain, 9, 14, 217

simplified, 218
life-cycle, 9

Adversary modeling, 68, 124
Airport security, 172
Alert

false negative/false positive, 181
fatigue, 57, 60, 180

Allais’ paradox, 105
Attack

graph, 132, 198 (see also topological
vulnerability analysis)

path, 71, 203, 208, 266
Authentication game, 240

B
Backward induction, 81, 85
Bayesian equilibrium, 55, 85, 90, 175, 208, 217

computation, 90
pooling/separating, 89

Bayesian game, 26, 27, 70, 175, 203

Belief, 85, 250
β-reputation, 55, 251
Big data, 250
Border effect, 112
Bounded rationality, 99, 100, 150, 155, 245,

269
Branching process model, 32
Buffer overflow exploit, 199
Business

continuity management, 53, 119
impact analysis, 119

C
Cascading effect, 5, 12, 23, 29, 92, 103, 118
Chinese Postman Tour (CPT), 171
Choice paradox, 106
Choquet integral, 49, 76
Chosen plaintext attack, 224
Common

consequence effect, 105
knowledge, 129, 130, 203
ratio effect, 106

Computable general equilibrium model, 35
Confidential transmission game, 235
Constant-sum game, 66
Cooperative game theory, 61
Covering game, 172
Critical infrastructure, 3, 21

definition of a, 21
model

agent-based, 33
dynamical system, 26, 33
economy-based, 34
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Critical infrastructure (cont.)
graph-based, 30
interdependencies, 31
stochastic, 31

Cryptography
rational, 224

Cut-The-Rope, 132, 175, 266
with disappointment aversion, 273

D
D5 strategy, 213
Data science, 92, 121, 253, 264
Deception game, 131, 140
Decision

Bayesian, 55, 59, 71, 85, 129
framed, 108
intransparent, 108
minimax, 51, 58, 59, 67, 70, 85, 130, 132,

145
Defense-in-depth, 215, 217

game, 217
Definition

asymptotic relations, 227
cryptographic security, 239
dominance, 61
equilibrium, 61
extensive form game, 74
IND-CPA security, 224
mixed extensions, 63
multi-goal security strategy, 70
negligibility, 227
a non-cooperative game, 60
of the ≤st -order, 52
Pareto-Nash equilibrium, 65
perfect Bayesian equilibrium, 90
power of a statistical test, 183
prospect, 102
saddle-point, 67
security strategies, 67
Stackelberg equilibrium, 81
subgame perfect equilibrium, 84

Denial of service, 16, 27, 69, 75, 256
distributed, 7

Diagonal game, 255
Differential game, 26
Diffie-Hellman (DH) problem, 228
Disappointment, 100, 106, 151, 272
Distribution

Beta, 287
exponential, 196, 286
Gaussian, 286
geometric, 207, 287
Normal, 286

Poisson, 196, 203, 286
Dominance

first-order, 108
of prospects, 108
of strategies, 61, 255, 259

E
Encryption

ElGamal, 228
game-based security, 226
semantic security, 225

Equilibrium, 61, 119
existence, 64
by linear optimization, 254
in mixed strategies, 63
non-existence, 154
two-player zero-sum, 145

Event splitting effect, 109
Example

alarm sets, 180
APT as hide-and-seek, 62, 68, 256
backward induction, 85
β-reputation, 55, 59
cost of playing mixed strategies, 270
credit risk, 250
cryptographic security, 224, 228
disappointment calculation, 151, 273
of dominated strategies, 62
imperfect information, 75
imperfect inspections, 203
incomplete information, 75
inspection game, 266
insurance game, 145
leader-follower game, 81, 85
level-k deception, 131
lexicographic goal priorities, 92
multipath transfer attack, 276
negligible function, 227
Neyman-Pearson test, 187
patrolling game, 268
phishing game, 73
quantitative risk assessment, 122
rational proof, 233
secret sharing, 230
simulation and prospects, 103
with unexpected actions, 277

Extensive form game, 71, 125
action, 76
computing equilibria, 259
conversion to normal form, 76, 81
finite, 72
information set, 72, 86
move, 76
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strategy, 76
tree, 72
utility function, 72

F
Fictitious play, 88, 208, 258
Finite game, 61, 72
FlipIt, 192
Function

negligible, 227
noticeable, 227

G
Game

bi-level, 148
in cryptography, 224
with distribution-valued payoff, 29
with imperfect information, 71, 75
with incomplete information, 26, 75, 140,

217
matrix, 61, 86
mixed extension of, 63
nested, 168, 182, 217
nonzero-sum, 86
over lexicographic order, 264
with perfect recall, 71
periodic, 165
with prior commitment, 86
strategic equivalence, 66
strategy reduction, 165
with stochastic payoffs, 27
with timing, 164, 192
tree, 72, 80
with uncertainty, 91 (see also Signaling)
zero-sum, 26, 27, 66, 86, 124, 132, 140,

145, 155, 173, 189, 238, 254
Goal

function, 46
importance, 48, 49, 69, 77, 271

H
High-level stochastic model, 33
History, 71

continuation, 71
finite, 72
terminal, 72

Honeypot, 25, 131, 217

I
Indistinguishability, 225, 236
Influence diagram, 139

Information set, 72
Input-output model, 35
Inspection game, 182

attack rate, 203
inspection rate, 195, 196
non-detection sub-game, 182
periodic, 194, 203
with random times, 196, 207
repeated, 195
See also Statistical test

Insurance, 81, 252, 275
coverage level, 150
game, 81

Intractability, 228, 239, 240
Intrusion detection game, 140

L
Leader-follower game, 65, 76, 81, 82, 85, 90,

128, 189, 195, 196
Length of a game, 84
Level-k

deception, 131
thinking, 129, 131

Lexicographic order, 48
Loss, 45

effective, 144, 151
expected, 118

M
Machine learning, 250
Malware, 7, 26, 102, 181, 218
Markov chain model, 32
Matrix game, 61
Maximal element, 48
Maximization problem, 46
Maximum, 48
Measure, 45, 122
Metric, 46, 64, 122, 236, 285

space, 285
Minimal element, 48
Minimax

decision, 70
inequality, 66

Minimization problem, 46
Minimum, 48
Mixed strategy, 46, 269
Moving target defense, 140, 217, 238
Multi-goal security strategy, 70, 208

existence, 70
Multi-path transmission, 235
Myopia, 155
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N
Nash equilibrium, 64, 86, 112, 231
Natural disaster, 6
Network design game, 81, 243
Non-cooperative game, 60
Non-parametric statistics, 253, 278
Normal form game, 60, 259, 261

O
One-against-all game, 69, 208, 256
One-shot game, 26, 165
Optimization, 46

goal function, 46
maximization, 46
minimization, 46
multiple goals, 47
utility function, 46

Order
lexicographic, 48, 264
partial, 47
relation, 44
representation by a function, 44
standard stochastic, 52
stochastic, 52, 91, 139

P
Pareto

-Nash equilibrium, 65, 271
-front, 49
-optimality, 49, 271

Partial ordering, 44
Patrolling game

airport, 167
in continuous time, 171
fence control, 166
harbor, 167
pipeline, 167
water area, 167

Peltzmann effect, 145
Perfect recall, 71
Person-in-the-middle, 235
Phishing, 7, 14, 73, 218

game, 259
spear, 7

Preference
cyclic, 111, 112
relation, 44, 51

Prospect, 52, 53, 92, 102
dominance, 108
theory, 123

Prospect theory, 109

Q
Quantum network, 27, 234, 241

R
Ransomware, 7, 26
Regret

aversion, 111
theory, 102, 110

Relation
asymptotic, 227
ordering, 44
partial order, 44
preference, 44, 51, 118, 231
total order, 44

Return-on-investment, 113, 122, 215
Revenue see Loss
Reward, 101

equivalence, 102
Risk, 81

analysis, 118, 189
attitude, 109, 112, 123, 124, 143, 154
avoider, 143, 154
awareness, 214
graphical specification, 252
management, 5, 53, 83, 91, 92, 100, 117,

124, 140, 189, 252
neutrality, 154
seeker, 143, 154
tolerance, 153
transfer, 119, 138
treatment, 120
vs. uncertainty, 103

S
Saddle-point (value), 67, 145, 150, 165, 226,

237, 255
calculation, 254

Satisficing, 100
Scalarization, 48, 65, 69, 207, 270
Score, 35, 45, 49, 122

CVSS, 45
Secret sharing, 230

adversary structure, 235, 242
Nash equilibrium, 231
threshold scheme, 230, 235, 236

Security
arbitrarily strong, 239
from graph augmentation, 243
from graph subconnectivity, 236
IND-CPA, 224
investment, 9, 113, 120, 122, 138, 215
perfect, 236
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ε-privacy, 236
reductionist, 227
δ-reliability, 236
self-enforcing, 224
semantic, 225
strategy, 67, 70, 100, 145, 150, 238

existence, 68
multi-criteria, 208

Sensor placement game, 172
Signaling game, 85
Similarty see Matric
Simplex, 46
Simulation, 26, 34, 92, 103, 129,newline 174,

253
agent based, 113

Social engineering, 8, 24, 198, 214, 242
Spear phishing, 14
Stackelberg equilibrium, 65, 82, 129, 140, 261

computation, 81
Stackelberg game see Leader-follower game

27, 183
Statistical test, 189

alternative hypothesis, 183
null hypothesis, 183
power, 183
p-value, 188

Stealthy
intrusion game, 202 (see also Cut-The-

Rope)
takeover, 192 (see also FlipIt)

Stochastic
game, 28

Stochastic order, 52, 103
standard, 52

Strategic equivalence, 66, 105
Strategy

dominated, 69
mixed, 46, 63, 64, 103, 269
multi-goal security, 70
randomized, 186
reduction, 62, 168–170, 201
security, 67
vs. action, 72

Subgame perfect equilibrium, 84
computation, 85
existence, 85

Support, 287
Surveillance game, 174

T
Technical failure, 6
Theorem

art gallery, 160, 172
Dirac’s, 167
Glicksberg’s, 64
minimax, 66
Nash’s, 64
Neyman-Pearson’s, 186

Topological vulnerability analysis, 132, 198,
199

Total ordering, 44
Trusted relay, 27, 241

U
Uncertainty, 125
Utility

discontinuous, 154
function, 35, 46, 102

existence, 104
monotone, 108

function vs. reward, 101
maximization principle, 125
nodes, 125
rank-dependent, 109
See also Loss

V
Value see saddle-point value 67

W
Weighting

function, 107, 109, 110, 123, 151, 154
Prelec’s, 110
see also Choquet integral

Z
Zero-day exploit, 53, 133, 139, 240, 272
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