

National Security Agency

Cybersecurity Technical Report

UEFI Secure Boot

Customization

 September 2020 ver. 1.0

 S/N: U/OO/168873-20

PP-20-0652

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 ii

Notices and history

Document change history

Date Version Description

15 September 2020 1.0 Publication Release.

Disclaimer of warranties and endorsement

The information and opinions contained in this document are provided "as is" and without any
warranties or guarantees. Reference herein to any specific commercial products, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Government. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government, and shall not be used for advertising or product endorsement
purposes.

Trademark recognition

Dell, EMC, Dell EMC, iDRAC, Optiplex, and PowerEdge are registered trademarks of Dell, Inc.

HP, HPE, HP Enterprise, iLO, and ProLiant are registered trademarks of Hewlett-Packard
Company.

Linux is a registered trademark of Linus Torvolds.

Microsoft, Hyper-V, Surface, and Windows are registered trademarks of Microsoft Corporation.

Red Hat, Red Hat Enterprise Linux (RHEL), CentOS, and Fedora are registered trademarks of
Red Hat, Inc.

VMware and ESXI are registered trademarks of VMware, Inc.

Trusted Computing Group, TCG, Trusted Platform Module, TPM, and related specifications are
property of the Trusted Computing Group.

Unified Extensible Firmware Interface, UEFI, UEFI Forum, and related specifications are
property of the UEFI Forum.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 iii

Publication information

Author(s)

National Security Agency
Cybersecurity Directorate
Endpoint Security Division
Platform Security Section

Contact information

Client Requirements / General Cybersecurity Inquiries:
Cybersecurity Requirements Center, 410-854-4200, Cybersecurity_Requests@nsa.gov

Media inquiries / Press Desk:
Media Relations, 443-634-0721, MediaRelations@nsa.gov

Purpose

This document was developed in furtherance of NSA's cybersecurity missions. This includes its
responsibilities to identify and disseminate threats to National Security Systems, Department of
Defense information systems, and the Defense Industrial Base, and to develop and issue
cybersecurity specifications and mitigations. This information may be shared broadly to reach all
appropriate stakeholders.

Additional resources

Please visit the NSA Cybersecurity GitHub at https://www.github.com/nsacyber/Hardware-and-
Firmware-Security-Guidance for additional resources relating to UEFI Secure Boot and the
customization process.

https://www.github.com/nsacyber/Hardware-and-Firmware-Security-Guidance
https://www.github.com/nsacyber/Hardware-and-Firmware-Security-Guidance

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 iv

Executive summary

Secure Boot is a boot integrity feature that is part of the Unified Extensible Firmware Interface
(UEFI) industry standard. Most modern computer systems are delivered to customers with a
standard Secure Boot policy installed. This document provides a comprehensive guide for
customizing a Secure Boot policy to meet several use cases.

UEFI is a replacement for the legacy Basic Input Output System (BIOS) boot mechanism. UEFI
provides an environment common to different computing architectures and platforms. UEFI also
provides more configuration options, improved performance, enhanced interfaces, security
measures to combat persistent firmware threats, and support for a wider variety of devices and
form factors.

Malicious actors target firmware to persist on an endpoint. Firmware is stored and executes
from memory that is separate from the operating system and storage media. Antivirus software,
which runs after the operating system has loaded, is ineffective at detecting and remediating
malware in the early-boot firmware environment that executes before the operating system.
Secure Boot provides a validation mechanism that reduces the risk of successful firmware
exploitation and mitigates many published early-boot vulnerabilities.

Secure Boot is frequently not enabled due to issues with incompatible hardware and software.
Custom certificates, signatures, and hashes should be utilized for incompatible software and
hardware. Secure Boot can be customized to meet the needs of different environments.
Customization enables administrators to realize the benefits of boot malware defenses, insider
threat mitigations, and data-at-rest protections. Administrators should opt to customize Secure
Boot rather than disable it for compatibility reasons. Customization may – depending on
implementation – require infrastructures to sign their own boot binaries and drivers.

Recommendations for system administrators and infrastructure owners:

 Machines running legacy BIOS or Compatibility Support Module (CSM) should be
migrated to UEFI native mode.

 Secure Boot should be enabled on all endpoints and configured to audit firmware
modules, expansion devices, and bootable OS images (sometimes referred to as
Thorough Mode).

 Secure Boot should be customized, if necessary, to meet the needs of organizations and
their supporting hardware and software.

 Firmware should be secured using a set of administrator passwords appropriate for a
device's capabilities and use case.

 Firmware should be updated regularly and treated as importantly as operating system
and application updates.

 A Trusted Platform Module (TPM) should be leveraged to check the integrity of firmware
and the Secure Boot configuration.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 v

Contents

Notices and history ...ii

Document change history ..ii
Disclaimer of warranties and endorsement ..ii
Trademark recognition ..ii

Publication information ..iii

Author(s) ..iii
Contact information ...iii

Purpose ..iii
Additional resources ...iii

Executive summary .. iv

Contents .. v

1 Unified Extensible Firmware Interface (UEFI) .. 1

2 UEFI Secure Boot .. 2

2.1 Platform-Specific Caveats ... 4

3 Use Cases For Secure Boot ... 5

3.1 Anti-Malware ... 5

3.2 Insider Threat Mitigation .. 6
3.3 Data-at-Rest ... 7

4 Customization .. 7

4.1 Dependencies .. 7
4.2 Backup Factory Values .. 8

4.2.1 Backup Secure Boot Values .. 9
4.2.2 EFI Signature List (ESL) Format.. 11

4.3 Initial Provisioning of Certificates and Hashes ... 12

4.3.1 Create Keys and Certificates .. 13

4.3.2 Sign Binaries .. 14
4.3.3 Calculate and Capture Hashes .. 15
4.3.4 Load Keys and Hashes ... 17

4.4 Updates and Changes .. 22

4.4.1 Update the PK ... 22
4.4.2 Update a KEK .. 22
4.4.3 Update the DB or DBX ... 23
4.4.4 Update MOK or MOKX .. 23

4.5 Validation ... 23

5 Advanced Customizations .. 24

5.1 Trusted Platform Module (TPM) ... 24
5.2 Trusted Bootloader .. 26

6 References .. 27

Cited Resources ... 27
Command References ... 27
Uncited Related Resources ... 27

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 vi

7 Appendix ... 28

7.1 UEFI Lockdown Configuration .. 28
7.2 Acronyms ... 30
7.3 Frequently Asked Questions (FAQ) .. 32

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 1

1 Unified Extensible Firmware Interface (UEFI)

Unified Extensible Firmware Interface (UEFI) is an interface that exists between platform
hardware and software. UEFI is defined and updated via specifications maintained by the UEFI
Forum industry body. Support for UEFI is a requirement for some newer software and hardware.
Legacy boot solutions, such as Basic Input/Output System (BIOS), are being phased out in
2020 (Shilov 2017).

UEFI defines a consistent Application Programming Interface (API) and a set of environment
variables common to all UEFI platforms. Uniformity enables OS, driver, and application
developers to build for UEFI regardless of platform, architecture, vendor, or assortment of
system components. Manufacturers and developers can take advantage of UEFI’s extensibility
to create additional features, add new product support, and create protocols to support
emerging solutions.

Legacy BIOS involves a wide variety of unique implementations, update solutions, and
interpretations of platform services (e.g. Advanced Configuration and Power Interface (ACPI)).
UEFI establishes a standard that separates portions of code into modules, defines mechanisms
for module interaction, and empowers component vendors to reuse modules across product
lines. Modules also enable vendors to swap out content via updates that can be delivered
remotely over commercial infrastructure management and update solutions (Golden 2017).

UEFI boot occurs in standards-defined phases (UEFI Forum 2017). Figure 1 shows an overview
of the phases. The SEC, PEI, DXE, and BDS phases are handled by platform firmware. The
Bootloader and OS Kernel phases are handled by software.

UEFI Boot Phases

Legacy BIOS has been part of the computing ecosystem since 1975. UEFI entered the
standards and commercial world in 2005 after having existed as an internal Intel Corporation
project for many years prior (referred to as Extensible Firmware Interface – EFI). The UEFI
Forum and vendor partners recognized the potential for disruption migrating from BIOS to UEFI
would cause on the computing industry and established products. Therefore, UEFI
implementations historically have offered the following operating modes to meet customer
needs:

Security Phase
(SEC)

• Initialize Static
Root of Trust for
Measurement
(SRTM)

• Perform firmware
integrity checks

Pre-EFI Init
Phase (PEI)

• Initialize Core
Root of Trust for
Measurement
(CRTM), CPU,
chipset, RAM,
protocols,
handlers, built-in
devices

• Begin firmware-
controlled Secure
Boot

Driver eXecution
Environment

(DXE)

• Discover I/O
buses, expansion
components (e.g.
RAID, NIC,
USB), and device
firmware

• Execute firmware
modules

• Parallel
execution for
speed

Boot Device
Select (BDS)

• Initialize UEFI
system table,
boot manager,
apps (e.g. UEFI
shell, UEFI
config), network
connections,
remote
management

• Read bootable
EFI partitions

Bootloader

• SHIM, GRUB,
SysLinux, Boot
Manager for
Windows,
rEFInd, and other
bootable binaries

• Can directly boot
kernels

• Begin software-
controlled Secure
Boot

OS Kernel

• Set up initial
filesystem,
system modules,
policies, drivers,
and apps

• Init OS runtime
environment and
user experience
layer

• Kernel enforces
Secure Boot for
driver signing

Boot Process

Figure 1 - An enumeration of UEFI firmware and software boot phases.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 2

 UEFI Native Mode is UEFI without any accommodation for legacy devices. UEFI makes
changes to the way devices and components execute their firmware and access system
resources as compared to older BIOS implementations. Native mode implements pure
UEFI and requires devices, components, and software to be UEFI-ready. UEFI Native
Mode is a requirement for utilizing UEFI Secure Boot.

 Legacy BIOS Mode or Compatibility Support Module (CSM) are accommodations for
devices and components that are not designed for use with UEFI. BIOS behavior is
emulated to allow devices incompatible with UEFI's architectural and access control
paradigms to be used on modern systems. Leveraging legacy mode or CSM
reintroduces security, access control, and memory vulnerabilities addressed by the UEFI
standard and prohibits the use of UEFI Secure Boot.

2 UEFI Secure Boot

Secure Boot is a feature added to UEFI specification 2.3.1. Each binary (module, driver, kernel,
etc.) used during boot must be validated before execution. Validation involves checking for the
presence of a signature that can be validated by a certificate or by computing a SHA-256 hash
that matches a trusted hash. Several value stores are used to identify content that is trusted or
untrusted. Figure 2 shows the sequence of checks. The value stores are:

 Platform Key (PK) is the master hierarchy key certificate. Only one PK may exist on the

system as a RSA-2048 public key certificate. In the most secure usage, PKs are unique
per endpoint and maintained by the endpoint owner or infrastructure operators. The PK
private key can sign UEFI environment variable changes or KEK, DB, and DBX changes
that can be validated by the PK certificate. The PK cannot be used for signing
executable binaries that are checked at boot time. Keep the PK private key secure and
store it on a different device.

o Note: A PK certificate must be in place for Secure Boot to begin enforcement.
Some vendors ship devices with random PKs or a common/shared PK. Endpoint
owners may also install their own PK as part of the customization process.
Carefully consider the balance between administrative overhead and security. A
unique PK per endpoint provides greater security against UEFI
compromise across an infrastructure, but may reduce the speed at which
administrators can deploy changes compared to a common/shared PK.

 Key Exchange Keys (KEKs) are normally used by vendors, such as the system vendor
and the OS vendor, who have a need to update the DB or DBX. One or more KEKs are
typically present on a system as RSA-2048 public key certificates. Different endpoints
may have the same KEK(s) – they are not unique to an endpoint. KEKs may sign
changes to the DB and DBX. KEKs can also be used to sign bootable content. However,
replacing a KEK is difficult because involvement from the PK is required. Therefore,
KEKs should only be used to make changes to the DB and DBX. Remember to keep the
KEK private key secure.

 Allow list Database (DB) can contain SHA-256 hashes or RSA 2048 public key
certificates. Binaries that have signatures that can be validated by a certificate will be
allowed to execute at boot time. Likewise, binaries with computed SHA-256 hashes that
match a trusted hash will also be allowed to boot even in the absence of a signature.

 Deny list Database (DBX) can contain SHA-256 hashes or RSA 2048 public key
certificates. The DBX has ultimate veto power at boot time. Any binary hash that

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 3

matches a DBX hash or has a signature verified by a DBX certificate will be prevented
from executing at boot time. DBX is normally leveraged to target errantly signed binaries
such as malware or debug bootloaders. DBX is normally checked first (except when
MOKX is present; see below).

 Machine Owner Key (MOK) is not part of the UEFI Secure Boot standard. MOK is used
by Linux implementations. MOK functions identically to the DB and becomes initialized
by the pre-bootloader Shim. Linux distributions utilize MOK keys to sign their own
binaries rather than utilizing the process of having Microsoft or Original Equipment
Manufacturers (OEM) sign every update or variation. Shim is signed by Microsoft and
therefore works on most computers supporting Secure Boot Standard Mode. MOK can
store SHA-256 hashes and RSA public key certificates. Some Linux kernels leverage
MOK for driver signing checks instead of or in addition to DB, DBX, and KEK.

 Machine Owner Key Deny list (MOKX) is also not part of the UEFI Secure Boot
standard. MOKX exists in Linux implementations and functions like the DBX. The
bootloader Shim is responsible for initializing MOKX. Some Linux kernels leverage
MOKX for driver signing checks instead of or in addition to DBX. MOKX is normally
checked first when present – even before the DBX.

Figure 2 shows the order of operations during UEFI Secure Boot checks. MOKX and DBX are
checked first since they have absolute veto power. If no match is made after checking the
KEK(s), a binary is assumed to be untrusted. Reaching a denied (or unknown/no match) state
only blocks the object that was checked – boot continues for other binaries.

UEFI Secure Boot Check Priority

Vendor implementations of Secure Boot typically have the first three operating modes:

 Standard Mode enforces signature and hash checks on boot time executables.
Standard mode is the default configuration for most modern computers, particularly
those shipping with Microsoft Windows installed. A Microsoft KEK and pair of Microsoft
DB certificates – one for validating Microsoft products and another for products
evaluated by Microsoft – make up the minimal Standard Mode configuration. DBX
hashes representing errantly signed or revoked boot time binaries are also typically
included. System vendors may include their own KEK and/or DB certificate. Standard
Mode supports many versions of Windows, Linux distributions, and a wide variety of
hardware and software solutions.

o Note: Switching to Standard Mode may set Secure Boot to factory default values

and remove any custom values.

 User/Custom Mode also enforces signature and hash checks on boot time executables.
However, unlike Standard Mode, Custom Mode allows the system owner to narrow or
expand the selection of trusted hardware and software solutions by changing the

MOKX
Deny

DBX
Deny

MOK
Allow

DB
Allow

KEK
Allow

No Match
Deny

Figure 2 - Order of operations during UEFI Secure Boot checks. Checks contained within dashed lines only take
place when the Shim bootloader is used AND after its initialization in the UEFI bootloader phase (i.e. firmware

OROMs are not checked against MOKX and MOK; kernels are checked against MOKX and MOK).

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 4

contents of the Secure Boot PK, KEK, DB, and/or DBX data stores. Endpoint
administrators may append new certificates and hashes to Secure Boot, or they may
also remove, replace, or clear existing certificates and hashes. Custom Mode allows
endpoints to be configured to trust a narrow selection of hardware and software trusted
by the owner, or expand upon the Standard Mode ecosystem.

 Disabled Mode does not utilize Secure Boot validation, so any well-structured EFI
binary will execute at boot regardless of hashes or signatures. Disabled mode is the
default in Legacy or Compatibility Support Module (CSM) modes.

 Setup Mode may be an option while a system does not have a PK installed. Setup

mode typically allows for KEK, DB, and DBX values to be readily manipulated as the
system owner “claims ownership” of the Secure Boot implementation. Establishing a PK
will drop the system out of Setup Mode and into User/Custom Mode at the next boot.

 Audit Mode may be an option to gather debugging information about the results of
Secure Boot checks. Administrators can see what parts of the boot process were
validated, what the validation results were, and identify problems with boot components
and policies to tailor implementation to their mission security needs.

 Deployed Mode may be an option which enforces the current Secure Boot configuration

without the distinction of Standard vs User/Custom configuration. Values loaded into
Secure Boot policy are enforced as is. The system does not distinguish between the
factory default Standard values and User/Custom values.

Platform firmware performs boot signature checking up to the bootloader. Software components
that participate in the boot process, such as the bootloader, kernel, initial file system, drivers,
kernel modules, policies, and more, must continue the signature checking scheme in software.
In Microsoft Windows, signature checking is performed by the Windows Boot Manager and
Windows kernel. In Red Hat Enterprise Linux (RHEL), signature checking is performed by Shim,
GRUB, and the Linux kernel. Red Hat utilizes a MOK stored in a Microsoft-signed build of Shim
to validate GRUB, the kernel, drivers, and other binaries.

2.1 Platform-Specific Caveats

The extent to which Secure Boot validates the boot process varies based on platform and boot
configuration. In general, most enterprise UEFI implementations provide the following options:

 Thorough or Full Boot provides the maximum amount of protection by using Secure
Boot throughout the boot process. Integrity, signature, and hash checks are performed.
All authorized firmware binaries are executed. Alerts may be generated for hardware
changes, chassis intrusions, and component states. The Thorough Boot option is
typically the default behavior on servers, storage arrays, and blades. Thorough Boot
prioritizes security over speed. Boot time takes the longest in Thorough Boot.

 Fast Boot or Minimal Boot minimizes boot time by skipping numerous checks, which

may or may not include Secure Boot checks. Boot speed is prioritized over some
security features and/or additional features and peripheral support at boot time. Malware
like LoJax can slip by on some systems (Schlej 2018). Fast Boot is normally found
enabled on consumer devices. When Fast Boot is a configurable toggle, disabling Fast
Boot typically results in Thorough Boot.

o Note: Fast/Minimal boot may behave differently depending on system vendor,
and also vary across a single vendor’s product line. A business-class desktop or

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 5

server may perform all Secure Boot checks in Fast/Minimal while a consumer-
oriented tablet or notebook from the same vendor skips checks.

 Automatic Boot attempts to detect when changes have occurred to the early stages of
UEFI boot. Automatic Boot invokes Fast/Minimal Boot when no changes are detected.
Thorough/Full Boot is invoked once after each significant change is detected. Changing
firmware, changing hardware, bootloader updates, or toggling options in UEFI
configuration may be sufficient to trigger Thorough/Full Mode on the next boot.

Always prefer the thorough or full boot option when unsure of the vendor
implementation. Fast, minimal, and automatic may miss changes that could compromise

system integrity – again, depending on vendor implementation.

Some vendors also allow the use of Compatibility Support Module (CSM) Legacy Mode if
Secure Boot fails. Such systems fall back to Legacy Mode when a Secure Boot check fails.
Disable CSM to prevent legacy fallback mode from bypassing Secure Boot protections.
Warnings and tooltips calling for CSM to stay enabled in UEFI configuration should be ignored
unless a compatibility issue arises.

3 Use Cases For Secure Boot

3.1 Anti-Malware

Secure Boot shares similarities with allow listing technologies. Rather than looking for malware
via a long deny list of known-bad signatures, Secure Boot works from a short allow list of trusted
certificates and hashes. Any binary that fails validation is prevented from running at boot-time.

Consider the case of a bootloader that ignores Secure Boot’s software component and performs
no signature checks. Such a bootloader could load any operating system, a compromised
kernel, compromised modules, and other forms of malware. A bootloader debug policy with
such characteristics accidentally leaked from Microsoft in 2016 (Mendelsohn 2016). The debug
bootloader featured a signature trusted by the Microsoft Windows Production CA certificate
stored in the DB of most machines.

Revoking the certificate by moving it to the DBX would invalidate a large number of otherwise
trustworthy boot executables. System vendors chose to leverage the DBX by adding a SHA-256
hash of the debug bootloader. Because most machines have a Microsoft or system vendor
KEK, a KEK-signed DBX append command via an update package was sufficient to deny list
the debug bootloader.

UEFI implementations normally rely on a set of boot options to determine which devices and
partitions get utilized. The options are checked sequentially until an option provides the
opportunity to move beyond the BDS phase. Failure of a boot option does not stop boot
when other options are available. A machine could fail Secure Boot validation on the debug

Microsoft bootloader, but then succeed on the normal, non-debug bootloader or a PXE boot.

As another malware example, consider the case of a malicious UEFI module such as LoJax.
LoJax is a malicious modification of the anti-theft solutions known as Computrace and LoJack.
Secure Boot will not be able to validate LoJax against any DBX, DB, or KEK meaning that use
of LoJax during boot should be prevented. However, many workstation systems ship configured
in Fast Boot mode which skips checks on the PEI, DXE, and BDS phases of UEFI boot. Use
Thorough Mode to force early-boot Secure Boot checks. Most servers ship with Thorough Mode
enabled by default. Always check UEFI configuration upon receipt of a new system.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 6

Figure 3 displays how the anti-malware properties of Secure Boot would affect LoJax. Assuming
the system boots in Thorough Mode, LoJax would be denied execution at boot time while all
other UEFI services operate normally. Modules and drivers in DXE can execute in parallel.
Systems that pause and display a Secure Boot validation warning or error may need to be
configured to continue boot on errors/warnings or use a shorter message timeout.

UEFI Selective Module/Driver Blocking

3.2 Insider Threat Mitigation

Organizations may block access to USB ports, restrict network use, and monitor user activity to
combat insider threats. Secure Boot can help by closing a threat vector many organizations may
not plan for – malicious physical access. Few restrictions and monitoring capabilities can cope
with an insider that has physical access to a machine. The insider can boot to removable media
or alter system hardware components.

Organizations can leverage Secure Boot to mitigate insider threat by removing the Microsoft
UEFI Marketplace CA DB certificate and adding individual hardware components on a machine,
such as the storage controller and network interfaces, to the DB allow list as SHA-256 hashes.
Such an implementation allows Secure Boot, at boot time, to trust only the hardware that should
be present on a machine rather than external devices. Insiders are unable to boot to external
media or to unexpected network interfaces.

Additionally, removal of the Microsoft UEFI Marketplace CA DB certificate distrusts all versions
of Linux. Shim, the Linux pre-bootloader, is signed by Microsoft. Organizations can sign or hash
their own Shim to tailor boot to a specific build of Linux. Tailoring requires the organization to
produce its own DB key and certificate. Insiders wouldn’t be able to boot to Linux live images on
removable or network media.

Note: Modification of the DB or DBX does not require modification of the KEK or PK. Partial

customization is supported on most systems.

Finally, organizations can remove the Microsoft Windows Production CA DB certificate to
distrust all versions of Windows and Microsoft bootloaders. Individual trusted bootloaders and
kernel builds of Windows can be hashed and placed in the DB. Booting to older or unapproved
versions of Windows would be impossible.

Customizing Secure Boot to counter insider threat requires protection of the UEFI
administrative credentials. If the malicious actor can access the UEFI configuration, then the
customizations can be reverted or disabled. Protect the UEFI administrative credentials and

 DXE Phase Storage RAID NIC GPU LoJax USB Audio Shell

PEI Phase

BDS Phase

Figure 3 - Secure Boot in Thorough Boot mode denying execution to Lojax malware and a Shell app. Boot
continues, although a warning or prompt about Secure Boot policy-violating content may be shown to the user.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 7

consider placing a unique credential on each endpoint.

3.3 Data-at-Rest

Secure Boot can interact with Microsoft BitLocker and Linux Unified Key Subsystem (LUKS) Full
Disk Encryption (FDE) solutions. Secure Boot configuration data is recorded to the TPM at boot
time. BitLocker and LUKS (via extension) can use the TPM when wrapping keys for storage.
Secure Boot data stores must be in the trusted state to unlock the storage volume decryption
key. Tampering will change UEFI and/or Secure Boot values which would lead to failure to
decrypt when unlocking the storage key.

Updates to Secure Boot or UEFI firmware require adjustment of BitLocker and LUKS TPM
values. Many Windows UEFI update mechanisms automatically suspend BitLocker or prompt
the user before applying the update. LUKS may have a similar mechanism depending on Linux
distribution and selected options. BitLocker and LUKS protection can be enabled again on the
next boot. Failure to disable BitLocker or LUKS prior to a firmware or Secure Boot update may
require use of the system recovery key at the next boot or can cause permanent data loss if the
recovery key cannot be found.

4 Customization

Modifying Secure Boot may render a system unbootable. The system is not “bricked” or
permanently damaged. If a system enters the unbootable state try – in order – rebooting,
temporarily disabling Secure Boot, reverting to the default Secure Boot configuration, or
performing a firmware reset.

4.1 Dependencies

Dell PowerEdge R640 with iDRAC9, Dell OptiPlex 9020, and Dell Precision 7710 were used
while testing commands in the customization section. Instructions relevant to Windows were
tested on Windows 10 version 1809. Instructions relevant to Linux were tested on Red Hat
Enterprise Linux (RHEL) 7.6.

The following dependencies are required for all devices intended to receive Secure Boot

customization:

 A device with support for UEFI boot and Secure Boot customization. Not all devices
allow Secure Boot customization (e.g. Microsoft Surface devices).

 An operating system that supports UEFI boot. The OS does not need to support Secure
Boot. Most products that advertise Secure Boot support include Microsoft signatures for
boot binaries. Secure Boot customization does not require Microsoft signatures.
Operating systems and hypervisors that are compatible with UEFI boot include:

o Microsoft Windows 10, 8.1, 8, or 7

o Red Hat Enterprise Linux (RHEL) 8, 7, or 6

o Hypervisors that supports UEFI boot for their kernels such as VMware ESXI 7.0,
6.7, or 6.5 or Microsoft Hyper-V 6.0 or 5.0

 UEFI emulation for VMs is not required. If supported, then VMs may
support Secure Boot customization if and only if the hypervisor provides
the customization option.

The following dependencies are required on a development or testing machine:

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 8

 (Linux and/or Windows) Openssl 0.9.8

 (Windows only) PowerShell 3.0 or newer

 (Linux only) SBSignTools 0.9 or newer from distribution repository or

https://git.kernel.org/scm/linux/kernel/git/jejb/sbsigntools.git

 (Linux only) PESign 0.9 or newer from distribution repository or

https://github.com/rhboot/pesign

 (Linux only) EfiTools 1.8 or newer from distribution repository or

https://git.kernel.org/pub/scm/linux/kernel/git/jejb/efitools.git

 (Linux only) Shim bootloader 1.0.4 or newer from https://github.com/rhboot/shim

Keys, certificates, hashes, and other data can be generated on one machine to be shared on
other devices. User endpoints should not generate Secure Boot content. User endpoints should
also not store any private keys relating to Secure Boot values.

The Shim bootloader included with Linux distributions normally features an OS vendor MOK
provided at compile time. Deletions and additions to the MOK database may be ignored by
Shim instances included with distributions depending on compilation options. Compile a custom
Shim from source to disable the inclusion of an OS vendor certificate in the MOK. Both Shim
and GRUB are capable of reading UEFI Secure Boot values so an OS vendor MOK may not be
necessary during full customization. A vendor MOK from Red Hat, for example, will validate
many RHEL, CentOS, and Fedora images and allow them to boot with more boot flexibility than
desired in some use cases. The following sections assume MOK is not utilized.

4.2 Backup Factory Values

Figure 4 displays the distribution of certificates and hashes in a Dell system at the time of
publication. The Dell systems used to produce this report feature a PK certificate, Microsoft KEK
certificate, two Microsoft DB certificates, and several DBX SHA-256 hashes. Newer systems
add a second KEK and some hashes to the DB. Individual models vary. Key distribution from
other vendors will be similar. DB and DBX may change over time via updates. Additional SHA-
256 hashes in the DB and DBX are likely and have been omitted to save space. Backing up
factory values requires saving values in each of the Secure Boot value stores (PK, KEK, DB,
and DBX).

https://git.kernel.org/scm/linux/kernel/git/jejb/sbsigntools.git
https://github.com/rhboot/pesign
https://git.kernel.org/pub/scm/linux/kernel/git/jejb/efitools.git
https://github.com/rhboot/shim

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 9

Potential Secure Boot Vendor Values

4.2.1 Backup Secure Boot Values

Linux Terminal

Linux provides multiple solutions for reading UEFI Secure Boot values. Two tools are commonly
available: efivar and efi-readvar (part of the efi-tools package). Both applications can output
Secure Boot values, but only efi-readvar can export data to EFI Signature List (ESL) files. Each
ESL can contain multiple entries. For example, the db.old.esl may contain multiple certificates
and multiple SHA-256 hashes in the same ESL file. Use the following commands to backup
factory values:

efi-readvar –v PK -o PK.old.esl

efi-readvar –v KEK –o KEK.old.esl

efi-readvar –v db –o db.old.esl

efi-readvar –v dbx –o dbx.old.esl

Break individual certificates and hashes out into discrete files. The following commands will
result in DER-format certificates and SHA-256 hashes. Certificate file extensions of DER are
equivalent to CER and may not be recognized by OS utilities (renaming extensions may be
helpful). Hash file extensions of HASH are binary blobs equivalent to HSH used by many UEFI
implementations. The HASH and HSH extensions are likely not recognized by OS utilities.

sig-list-to-certs PK.old.esl PK

sig-list-to-certs KEK.old.esl KEK

sig-list-to-certs db.old.esl db

sig-list-to-certs dbx.old.esl dbx

Unfortunately, hash files do not contain meta information used to derive meaning. Hashes are
presented as binary data with no file name, purpose, or timestamp associated with them.
Consult the system vendor to determine the purpose of a hash or search for the value via the
Internet.

Windows PowerShell

Backup the existing Secure Boot values to EFI Signature Lists (ESL) via PowerShell. Each list
can be later restored by Set-SecureBootUEFI if needed.

Get-SecureBootUEFI –Name PK –OutputFilePath PK.old.esl

PK KEK DB DBX

Certificate
Dell

Certificate
Dell

Certificate
Microsoft

Certificate
Microsoft

Production

Certificate
Microsoft

Third-party

Hash
Onboard NIC

Hash
Onboard

RAID

Hash
Evil

Bootlooader

Hash
Superfish

Figure 4 – Abbreviated distribution of certificates and hashes in one of the author’s Dell systems.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 10

Get-SecureBootUEFI –Name KEK –OutputFilePath KEK.old.esl

Get-SecureBootUEFI –Name db –OutputFilePath db.old.esl

Get-SecureBootUEFI –Name dbx –OutputFilePath dbx.old.esl

There is no built-in way to process ESL files to separate individual certificates and hashes.
External utilities, such as sig-list-to-certs from efitools, can be used to separate the certificates
and hashes should more than one exist in each file. Certificates in the ESL files are DER
encoded. See section 4.2.2 for information about ESL file anatomy to enable a manual
separation of certificates and hashes.

UEFI Configuration

Some UEFI configuration tools feature a Secure Boot key management menu. Image 1 displays
an example implementation. The option to select PK, KEK, DB, or DBX is usually available next
to a "save to file" or "export" option. Save each value store to an external USB drive or to a
memorable place within the system’s storage drive if offered. Some utilities can only save
backup files to the EFI directory on storage drives. Backups may have the .bin extension or no
extension at all. However, the format will be an EFI Signature List (ESL) detailed in the section
4.2.2.

Keytool

Keytool is an EFI utility application that can be booted like a bootloader or kernel. Use the "boot
to file" or "one shot boot menu" or "add boot option" capabilities of most UEFI implementations
to add keytool.efi as a bootable target. Bcdedit can be used to add keytool.efi from within

First, select a data

store.

Second, save the contents to a file.

Repeat for each type of data store.

Image 1 - Dell OptiPlex 7050 workstation UEFI configuration screenshot showing default Secure Boot policy export.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 11

Windows, and efibootmgr can be used from the Linux terminal (Keytool must be in the EFI boot
directory). Once Keytool has loaded, use the "save keys" option to automatically write ESL files
for each data store. The files will be PK.esl, KEK.esl, db.esl, dbx.esl, and MokList.esl. The files
will be stored together in the same path as Keytool.

efibootmgr –c –L "KeyTool" –l "\EFI\redhat\keytool.efi"

bcdedit /copy {bootmgr} /d "KeyTool"

bcdedit /set {<GUID from previous command>} path \EFI\utils\keytool.efi

Dell RACADM

Vendor-specific, remote scripting solutions can be leveraged to interact with Secure Boot. A
wide variety of platforms and solutions exist. Dell iDRAC 9 and RACADM have been chosen as
an example. Equivalents likely exist for servers from other vendors.

To back up the existing Secure Boot values via RACADM, first establish a secure remote
connection. Use the following command to take inventory of all configured Secure Boot values.

racadm bioscert view –all

Each certificate will have a corresponding thumbprint value. Each hash will have a
corresponding hash value. Cycle the -t flag value (0 for PK, 1 for KEK, 2 for DB, and 3 for DBX)
to access each Secure Boot data store. Cycle the –k value (0 for certificate thumbprint, 1 for hex
hash) to switch selection mode. Enter a specific thumbprint or hash after the –v to select the
individual record. RACADM does not produce ESLs – only individual records. DER and CER
extensions are interchangeable. HSH files are binary blobs.

racadm bioscert export –t 0 –k 0 –v <thumbprint> -f PK.der

racadm bioscert export –t 1 –k 0 –v <thumbprint> -f KEK_1.der

racadm bioscert export –t 2 –k 0 –v <thumbprint> -f DSK_1.der

racadm bioscert export –t 2 –k 1 –v <hex_hash> -f DB_1.hsh

4.2.2 EFI Signature List (ESL) Format

ESL files contain binary data corresponding to the following format:

EFI_SIGNATURE_LIST {

 EFI_GUID SignatureType {

 UINT32 Data1

 UINT16 Data2

 UINT16 Data3

 UINT8 Data4[8] }

 UINT32 SignatureListSize

 UINT32 SignatureHeaderSize //usually 00000000

 UINT32 SignatureSize

 UINT8 SignatureHeader[SignatureHeaderSize]//usually omitted

 EFI_SIGNATURE_DATA Signature[SignatureSize] {

 UUID OriginatorUUID

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 12

 UINT8 Payload[SignatureSize - sizeof(UUID)] } }

Each ESL file contains one or more signature list structures. An individual signature list structure
can only contain objects of the certificate type or the hash type. Both certificates and hashes
cannot coexist in the same list structure. However, they may both occupy the same ESL file if
both a certificate signature list structure and a hash signature list structure are defined in
sequence.

Figure 5 provides an example ESL file in hexadecimal representation (ESL files are binary files;
not text). A single hash is present in the example file. The hash was taken from the
HelloWorld.efi binary in efi-tools.

Sample EFI Signature List (ESL) File

Table 1 lists EFI_GUID values for common ESL signature list data objects. Binary files output by
efi-readvar and Get-SecureBootUEFI typically present values in Little Endian format. Source
code and documentation usually display values in the Big Endian format. The UINT32 and
UINT16 values will have a different byte order depending on where and how data is viewed.

EFI_GUID Name Value

EFI_CERT_X509_GUID
0xA5C059A1, 0x94E4, 0x4AA7, 0x87, 0xB5, 0xAB, 0x15, 0x5C, 0x2B,
0xF0, 0x72

EFI_CERT_SHA256_GUID
0xC1C41626, 0x504c, 0x4092, 0xAC, 0xA9, 0x41, 0xF9, 0x36, 0x93,
0x43, 0x28

Table 1 – Common EFI_GUID values for signature list objects

Note that GUIDs and UUIDs are similar. However, EFI GUID structures observe an 8-4-4-16
format in source code. UUID structures, in contrast, observe an 8-4-4-4-12 format.

4.3 Initial Provisioning of Certificates and Hashes

Initial provisioning of a system requires the creation of three new signing keys. The first will be a
new PK, the second a new KEK, and the third will be placed in the DB. No DBX entry will be
used. This section also requires the creation of a new hash to be placed in the DB. Assume that
the DB signing key will be used to sign bootloaders and kernels while the hash represents a
RAID controller. In a later section, the KEK will be used to authorize a DB change.

EFI_GUID Signature Type Signature List Size Signature Header Size

Payload (SHA-256 hash or signature)

Signature Size

Originator UUID

26 16 C4 C1 4C 50 92 40 AC A9 41 F9 36 93 43 28 4C 00 00 00 00 00 00 00

30 00 00 00 50 AB 5D 60 46 E0 00 43 AB B6 3D D8 10 DD 8B 23 2C 34 E2 79

D7 2E B8 18 9A E3 31 D7 E2 F3 19 92 14 2B 02 78 F1 27 EE BB 8C 52 66 4B

95 F7 B5 84

Figure 5 - An ESL file containing a single SHA-256 entry is displayed in hexadecimal format.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 13

4.3.1 Create Keys and Certificates

OpenSSL (Linux and Windows)

The CRT file extension is used to denote PEM certificates, and the CER file extension is used to
denote DER-encoded certificates. The PEM and DER extensions are not used because many
UEFI configuration interfaces and OS implementations do not recognize PEM and DER as valid
certificate file extensions.

The following instructions create three keys with self-signed certificates in PEM format. Keys
intended for the DB or DBX are labeled as Database Signing Key (DSK):

openssl req –new -x509 –newkey rsa:2048 –subj "/CN=Custom PK/" –keyout
PK.key –out PK.crt –days 3650 –nodes –sha256

openssl req –new -x509 –newkey rsa:2048 –subj "/CN=Custom KEK/" –keyout
KEK.key –out KEK.crt –days 3650 –nodes –sha256

openssl req –new -x509 –newkey rsa:2048 –subj "/CN=Custom DB Signing Key
1/" –keyout dsk1.key –out dsk1.crt –days 3650 –nodes –sha256

The following instructions create Certificate Signing Requests (CSR) for the KEK and DSK.
UEFI lacks the ability to process certificate chains or check revocation lists so the utility of using
CSRs is limited. A CSR can also be generated for the PK, but is omitted in this example.
Generating CSRs is optional.

openssl req –out KEK.csr –key KEK.key –new

openssl req –out dsk1.csr –key dsk1.key –new

The CSRs are signed by a Certificate Authority (CA). The CA signing commands are normally
executed by the CA owner and are provided in case the local organization has its own CA. The
length of a certificate’s validity may vary according to policies. Remember to flag, via CA
configuration, the signed KEK and DSK certificates as able to perform signing actions.

openssl x509 –CA ca.crt –Cakey ca.key –Caserial ca.seq –in KEK.csr –req –
days 3650 –out KEK.crt

openssl x509 –CA ca.crt –Cakey ca.key –Caserial ca.seq –in dsk1.csr –req –
days 3650 –out dsk1.crt

The following instructions convert PEM certificates into DER format. Most UEFI
implementations require DER format certificates when loading through the UEFI configuration
interface (may also be referred to as F2 BIOS configuration).

openssl x509 –outform der –in PK.crt –out PK.cer

openssl x509 –outform der –in KEK.crt –out KEK.cer

openssl x509 –outform der –in dsk1.crt –out dsk1.cer

Windows PowerShell

Windows machines have alternative options to OpenSSL. Built-in utilities, provided by Microsoft,
can be leveraged instead of open source solutions. However, most UEFI implementations prefer
cross-platform implementations that may not accept keys, certificates, and signatures created
by Microsoft utilities. Also, not all OpenSSL features are duplicated by Microsoft utilities.

To create new keys and certificates:

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 14

makecert –n "CN=Custom PK" –a sha256 –r –sv PK.pvk PK.cer

makecert –n "CN=Custom KEK" –a sha256 –r –sv KEK.pvk KEK.cer

makecert –n "CN=Custom DSK1" –a sha256 –r –sv DSK1.pvk DSK1.cer

To convert the keys from PVK to PFX format for use with Microsoft’s signing tool:

pvk2pfx –pvk DSK1.pvk –spc PK.cer –pfx PK.pfx –f

pvk2pfx –pvk DSK1.pvk –spc KEK.cer –pfx KEK.pfx –f

pvk2pfx –pvk DSK1.pvk –spc DSK1.cer –pfx DSK1.pfx –f

4.3.2 Sign Binaries

Linux Terminal

A tool named pesign can provide information about signatures contained in a binary. Use the
following command to list signatures. The file shimx64.efi is used as an example:

pesign -S -i=shimx64.efi

Pesign can also be used to remove signatures. Most UEFI implementations only read
one/the first signature in a binary. Remove or overwrite existing signatures before
signing. Use the following command to remove all signatures or add the -u option to specify a
signature:

pesign -r -i=shimx64.efi -o=shimx64.efi

A tool named sbsign or sbsigntool can be downloaded for use on Linux. SBSign can sign a
variety of EFI files – most importantly bootloaders and kernels – for use with customized Secure
Boot. SBSign can be used to sign content for Linux, Windows, hypervisors, and more as long as
binaries follow EFI specifications.

The following example command signs the shimx64.efi bootloader. The signed file will be output
as shimx64.efi.signed which may need to be renamed because some UEFI implementations
ignore bootable files that do not end in .efi. Sign-in-place does not function at the time of
publication. Note that Shim is originally signed with a Microsoft UEFI Marketplace key – a
signature that should be removed with pesign prior to signing with sbsign if and only if the
Microsoft UEFI certificates have been removed from Secure Boot. Make a backup copy of
binaries that have been signed by an external source in case reverting to a factory configuration
is necessary.

sbsign --key dsk1.key --cert dsk1.crt shimx64.efi

Remember to sign the pre-bootloader (Shim), bootloader (GRUB), and kernel at a minimum.
Files are named differently based on distribution and version.

Windows PowerShell

Some versions of signtool do not automatically overwrite signatures. To remove an existing
signature from an EFI binary (such as Shim):

signtool remove /s shimx64.efi

To sign an EFI binary (such as Shim) using the PFX key:

signtool sign /f DSK1.pfx /fd sha256 shimx64.efi

Remember that the Windows bootloader and kernel are already signed by Microsoft. A copy of

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 15

Shim supplied from a leading Linux distribution, such as Red Hat Enterprise Linux, also carries
a Microsoft signature. Do not delete or remember to append Microsoft’s DB keys back into the
Secure Boot DB to enable use of the Microsoft signing chain. Also append the Microsoft KEK to
the Secure Boot KEK list to enable automatic additions to Secure Boot’s DB via Windows
Update. Remember to include DBX entries intended to revoke select Microsoft signatures too.

4.3.3 Calculate and Capture Hashes

Hashes used by Secure Boot must be in the SHA-256 format. There are multiple ways to
represent hashes: binary BIN or HSH files, hexadecimal TXT files, and binary ESL files. UEFI
configuration utilities typically use binary files with the HSH extension. Keytool and command
line utilities use ESL.

HelloWorld.efi is used for the following examples. DB allow list hashes should normally be
reserved for content that cannot be signed or cannot be altered from the vendor-provided state
(e.g. storage array controller firmware or a hypervisor binary that already has a vendor
signature). DBX deny list hashes should normally be reserved to remove trust from signed
binaries without revoking the corresponding certificate/key (e.g. previously signed bootloader
that is vulnerable to recent exploits). Applying a signature and creating a DB hash for the same
binary is redundant and unnecessary.

Some systems are capable of generating hashes of their storage controllers as well as network
interfaces and other components. Some vendors provide Secure Boot hashes of expansion
devices via their websites or upon request. End users are usually not permitted to sign their own
firmware images for expansion devices thus necessitating hash capture and loading to the DB.

OpenSSL (Linux and Windows)

To create a text hexadecimal hash:

openssl dgst –sha256 –hex –out helloworld.txt helloworld.efi

To create a binary hash:

openssl dgst –sha256 –binary –out helloworld.hsh helloworld.efi

The above commands create individual hash files. Some loading methods may require the use
of individual hashes. Hashes can also be consolidated into a single ESL file which can be
signed to become an AUTH file.

Linux Terminal

To create a text hexadecimal hash:

sha256sum -b helloworld.efi | cut –d " " –f 1 > helloworld.txt

To create a binary hash in the ESL format:

hash-to-efi-sig-list helloworld.efi hashes.esl

The above commands create individual hash files. Multiple hashes can be compiled into a
single ESL file. ESL files can be signed to become AUTH files. See section 4.3.1.

Windows PowerShell

To create a text hexadecimal hash:

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 16

get-filehash –algorithm SHA256 helloworld.efi | select –ExpandProperty hash
> helloworld.txt

To create a binary hash:

$hashString = get-filehash –algorithm SHA256 helloworld.efi | select –
ExpandProperty hash

$hashBytes = [byte[]]::new($hashString.length / 2)

For($i=0; $i –lt $hashString.length; $i+=2) { $hashBytes[$i/2] =
[convert]::ToByte($hashString.Substring($i, 2), 16) }

$hashBytes | set-content helloworld.hsh –encoding byte

The above commands create individual hash files. Some loading methods may require the use
of individual hashes. Hashes can also be consolidated into a single ESL file which can be
signed to become an AUTH file. Creating an ESL file via PowerShell is a manual process due to
the lack of an available Windows utility.

UEFI Configuration

Some UEFI configuration interfaces allow the capture of system hardware hashes. Most servers
– and systems that are placed in thorough boot (non-fast boot) mode – audit the hashes or
signatures of system hardware resources in addition to software such as Shim, GRUB, and the
Windows bootloader. Hardware resources typically audited at boot time include network
interfaces, storage controllers, video cards, and storage devices. Hashes representing system
hardware may be preloaded into the DB by the system vendor, provided via UEFI configuration,
listed in a system manifest, listed online, or provided upon customer request.

Some vendors consider boot hashes proprietary information. Be sure to indicate to the vendor
that SHA-256 hashes of component firmware for use with UEFI Secure Boot customization are
desired. Hashes of UEFI firmware (e.g. SEC and PEI phases) are not necessary. Image 2
displays the UEFI Configuration hash capture mechanism of a Dell PowerEdge R730. Each
hardware component can have a SHA-256 hash written to the boot partition or an external
storage device for importation into a customized Secure Boot policy (configuration usually
cannot traverse file systems beyond the boot partition). Then, the hashes should be loaded into
the DB or DBX.

Note: Only Dell servers from the 14th generation (and some models from the 13th generation)
provide a UEFI configuration GUI mechanism for capturing hashes at the time of this report’s
publication. Image 2 displays a Dell 13th generation server configuration interface featuring hash
capture. Similar options are not found in Dell workstation products nor products from other
vendors as of publication time.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 17

4.3.4 Load Keys and Hashes

Linux Terminal

Certificates and hashes must be converted to ESL files before they may be loaded into Secure
Boot. The following commands perform conversion. HelloWorld.efi is used as an example EFI
binary to hash, and multiple EFI binaries can be listed. However, hash-to-efi-sig-list
does not allow hashing of drivers, modules, or non-EFI binaries or input of external/arbitrary
hashes (e.g. OpenSSL generated hash).

cert-to-efi-sig-list –g "$(uuidgen)" PK.crt PK.esl

Firmware images loaded during DXE

phase may be required at BDS phase.

Capture each device’s hash. Each hash is exported as a

SHA-256 .hsh file. Import each

.hsh to the Secure Boot

Custom Policy DB allow list.

Image 2 - A Dell PowerEdge R730xd server firmware component hash export utility contained within the F2
UEFI Configuration interface. The custom policy option needed to be enabled to expose hash export

functionality. The hash capture feature was not available on the Optiplex 7050 – shown in Image 1 – at
publication time.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 18

cert-to-efi-sig-list –g "$(uuidgen)" KEK.crt KEK.esl

cert-to-efi-sig-list –g "$(uuidgen)" dsk1.crt dsk1.esl

hash-to-efi-sig-list helloworld.efi hashes.esl

Some tools require the use of signed ESL files – AUTH files – even when Secure Boot is not
enforcing or does not have a PK loaded. Only AUTH files can be used to carry out updates
to Secure Boot’s value stores while Secure Boot is enforcing checks. Changes to the PK
and KEK(s) can only be authorized by a PK. Changes to the DB and DBX can be authorized by
a KEK. Signing the PK with itself is redundant to some implementations, but Keytool will not
recognize ESL extension files as input. The last command simply renames the PK ESL file to an
AUTH file.

sign-efi-sig-list –k PK.key –c PK.crt PK PK.esl PK.auth

sign-efi-sig-list –k PK.key –c PK.crt KEK KEK.esl KEK.auth

sign-efi-sig-list –k KEK.key –c KEK.crt db dsk1.esl dsk1.auth

sign-efi-sig-list –k KEK.key –c KEK.crt db hashes.esl hashes.auth

cp PK.esl PKnoauth.auth

Loading data into Secure Boot must be done with the DB or DBX first, then the KEK, and finally
the PK. Once the PK is loaded, Secure Boot will restrict all four value stores to signed updates
only and may automatically go into enforcing mode. Add the -a flag when loading DSK or KEK
to append values to the existing entries rather than erasing existing values.

efi-updatevar –e –f dsk1.esl db

efi-updatevar –a –e –f hashes.esl db

efi-updatevar –e –f KEK.esl KEK

efi-updatevar –e –f PK.esl PK

If the above commands fail, use the AUTH files instead of ESL files. Also try the PKnoauth.auth
file. Use of the append feature may also experience key store size limitations. Some systems do
not support multiple KEK values, and some have tight limits on the size of the DB and DBX.

The above commands are not guaranteed to work due to the number and variety of vendor
implementations. Permission errors are common due to UEFI implementation issues. Try
another method of loading values if permission errors are unavoidable. Notify the OEM of UEFI
Secure Boot flaws if the other methods fail too.

Windows PowerShell

While Secure Boot is in setup mode, PowerShell commands may be able to update Secure
Boot values. The following commands create ESL data objects.

$dbobject = (Format-SecureBootUEFI –Name db –SignatureOwner 00000000-0000-
0000-0000-000000000000 –Time 2018-01-01-T01:01:01Z –CertificateFilePath
dsk1.crt –FormatWithCert –SignableFilePath db.esl)

$KEKobject = (Format-SecureBootUEFI –Name KEK –SignatureOwner 00000000-
0000-0000-0000-000000000000 –Time 2018-01-01-T01:01:01Z –
CertificateFilePath KEK.crt –FormatWithCert –SignableFilePath KEK.esl)

$PKobject = (Format-SecureBootUEFI –Name PK –SignatureOwner 00000000-0000-
0000-0000-000000000000 –Time 2018-01-01-T01:01:01Z –CertificateFilePath
PK.crt –FormatWithCert –SignableFilePath PK.esl)

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 19

$dbhashobj = (Format-SecureBootUEFI –Name db –SignatureOwner 00000000-
0000-0000-0000-000000000000 –Time 2018-01-01-T01:01:01Z –ContentFilePath
helloworld.hsh –Algorithm sha256 –SignableFilePath dbhash.esl)

PowerShell can also be used to convert ESL files into AUTH files. Only AUTH files can be
used to update Secure Boot values while enforcing signature checks. The PK can sign

itself and KEK(s). A KEK can sign DB data. Similar to Linux, a copy of the unsigned PK file is
generated in case Keytool needs to be executed. Keytool only accepts files with the AUTH
extension when setting the PK. First, convert OpenSSL keys to the PFX format if necessary:

openssl pkcs12 –export –in PK.crt –inkey PK.key –out PK.pfx –name "PK"

openssl pkcs12 –export –in KEK.crt –inkey KEK.key –out KEK.pfx –name "KEK"

openssl pkcs12 –export –in dsk1.crt –inkey dsk1.key –out dsk1.pfx –name
"dsk1"

Next, sign ESL files to create AUTH files:

signtool sign /fd sha256 /p7 .\ /p7co 1.2.840.113549.1.7.1 /p7ce db.auth /a
/f .\KEK.pfx /p password db.esl

signtool sign /fd sha256 /p7 .\ /p7co 1.2.840.113549.1.7.1 /p7ce
dbhash.auth /a /f .\KEK.pfx /p password dbhash.esl

signtool sign /fd sha256 /p7 .\ /p7co 1.2.840.113549.1.7.1 /p7ce KEK.auth
/a /f .\PK.pfx /p password KEK.esl

signtool sign /fd sha256 /p7 .\ /p7co 1.2.840.113549.1.7.1 /p7ce PK.auth /a
/f .\PK.pfx /p password PK.esl

cp PK.esl PKnoauth.auth

Loading data into Secure Boot must be done with the DB or DBX first, then the KEK, and finally
the PK. Once the PK is loaded, Secure Boot will restrict all four value stores to signed updates-
only and may automatically go into enforcing mode. Add the –AppendWrite flag when loading
the DSK or KEK to append values to the existing entries rather than overwriting existing values.

$dbobject | Set-SecurebootUEFI

$dbhash | Set-SecurebootUEFI -AppendWRite

$KEKobject | Set-SecurebootUEFI

$PKobject | Set-SecurebootUEFI

Alternatively, use the following commands to utilize AUTH files for signed updates (-
AppendWrite may also be added to the following commands):

$dbobject | Set-SecurebootUEFI –SignedFilePath db.auth

$dbhash | Set-SecurebootUEFI –SignedFilePath dbhash.auth -AppendWrite

$KEKobject | Set-SecurebootUEFI –SignedFilePath KEK.auth

$PKobject | Set-SecurebootUEFI –SignedFilePath PK.auth

UEFI Configuration

UEFI Configuration implementations typically have some sort of toggle or mode setting that
allows Secure Boot customization. Some machines may have a state called Setup Mode that
allows the replacement or appending of new values. Setup Mode transitions to User Mode once
customization values are successfully loaded. Some implementations only offer User or Custom

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 20

Mode – setup is implied if User/Custom is set while Secure Boot is disabled.

Image 3 shows the customization screen on a Dell OptiPlex 7050. Checking "Enable Custom
Mode" is required to replace or append values. Checking the box does not clear any data from
Secure Boot – only the "Replace from File" and "Delete" options clear data. Use the "Replace
from File" option to overwrite the existing PK, KEK, DB, or DBX values. Use the "Append from
File" option to add additional certificates and/or hashes to the factory-default Microsoft and Dell
values. Certificates in the DER format and SHA-256 hashes in the HSH format are accepted.

DER and HSH files should be placed on a thumb drive or within the /boot/efi directory for easy
access. Image 4 shows the file browser available through UEFI Configuration. The file browser
does not support all file systems (e.g. NTFS and EXT4 usually are not supported).

Images 3 – Screenshot from a Dell OptiPlex 7050. The Secure Boot Custom Policy configuration options are
shown along with the selections to append, replace, or remove data.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 21

Keytool

Keytool has the ability to edit Secure Boot data stores. First select Edit; then select DB, DBX,
KEK, or PK (PK should be last). The edit screen will show a UUID for each value present. Some
UUIDs may be identical or zeros depending on how each was loaded. Use the Add New Key
option to append a new certificate or hash (ESL or AUTH format required). Use the Replace
option to swap existing UUID entries with new values.

Keytool may or may not have the ability to replace or delete the existing keys and start fresh
depending on UEFI implementation. Keytool is usually a reliable way to replace the PK even
when UEFI configuration or command line calls fail. Keytool is easiest to use when the custom
Secure Boot ESL and AUTH files are located in the same directory as the Keytool.efi file.
Launching Keytool may require setting it as a boot entry via UEFI configuration, efibootmgr in
Linux, bcdedit in Windows, or by launching it via UEFI Shell. See section 4.2.1 for more details.

Dell RACADM

First establish a secure remote connection to the target system. By default, RACADM appends
values to the Secure Boot data stores – overwriting is not performed. To delete all existing
values, use:

racadm bioscert delete -all

To selectively delete existing values, use the –t flag to specify data store (0 for PK, 1 for KEK, 2
for DB, and 3 for DBX), optionally add the –k value for form factor (0 for certificate, 1 for hash),
and optionally add the –v flag (certificate thumbprint or hex hash) to remove a specific entry.

Image 4 – Screenshot from a Dell Optiplex 7050 showing the file browser available within F2 UEFI
Configuration.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 22

racadm bioscert delete –t 0 –k 0 –v <PK_thumbprint>

To import new certificates and hashes, use the –t flag to specify data store and the –k flag for
form factor. Use the –f flag for filename.

racadm bioscert import –t 0 –k 0 –f PK.der

racadm bioscert import –t 1 –k 0 –f KEK.der

racadm bioscert import –t 2 –k 0 –f dsk1.der

racadm bioscert import –t 2 –k 1 –f hash.hsh

4.4 Updates and Changes

Updates and changes require repeating many of the steps found in the "4.3 Initial Provisioning
of Certificates and Hashes" section. Updates to the DB or DBX must be signed by a KEK.
Updates to a KEK must be signed by the PK. Unsigned updates or "noauth" updates are not
permitted while UEFI Secure Boot is in enforcing, user, or custom mode (vendors may use
different terminology).

4.4.1 Update the PK

First, identify the mechanism for loading the new PK. Remote console, UEFI configuration, and
Keytool typically permit PK replacement once Secure Boot has been temporarily disabled or
placed into Custom/Setup mode. Run-time scripting solutions and Keytool require the new PK to
be signed by the old PK when replacing the PK value while Secure Boot is active/enforcing, and
physical presence is usually required to confirm the change on next boot.

Continue by ensuring the new PK is in the proper format and state for the selected loading
method. Create a new RSA 2048 key pair and certificate unless a certificate has already been
provided for use. Have a CA sign the certificate, if required, before use. For UEFI configuration
and scripting solutions, ensure that the certificate is in DER/CER format and convert if
necessary. For Keytool and console commands, create an ESL file, unsigned "noauth" file
based on the ESL, self-signed AUTH file, or AUTH file signed by the currently loaded PK which
will be replaced.

Finally, validate that Secure Boot is enabled and query the UEFI variable representing the new
PK. Verify that the new PK is utilized.

4.4.2 Update a KEK

First, identify the mechanism for loading the new KEK. Remote console, scripting, UEFI
configuration, and Keytool are all possible solutions. Remote console, UEFI configuration, and
Keytool usually allow unsigned KEK changes while Secure Boot is disabled. Remote console
and UEFI configuration usually allow unsigned KEK changes while Secure Boot is in
Custom/User mode. Run-time scripting solutions and Keytool require each KEK update ESL to
be signed by the PK while Secure Boot is active/enforcing. The existing KEKs may optionally be
preserved when loading the new KEK.

Continue by ensuring the new KEK is in the proper format and state. Create a new RSA 2048
key pair and certificate unless a certificate has already been provided for use. Have a CA sign
the certificate, if required, before use. For UEFI configuration and scripting solutions, ensure
that the certificate is in DER/CER format and convert if necessary. For Keytool and console
commands, create an ESL file and, if available, a PK-signed AUTH file.

Finally, validate that Secure Boot is enabled and query the UEFI variable representing the new

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 23

KEK. Consider testing the new KEK by signing DB and/or DBX changes following the
instructions in the next section.

4.4.3 Update the DB or DBX

First, identify the mechanism for loading the new DB or DBX value. Remote console, scripting,
UEFI configuration, and Keytool are all possible solutions. DB updates can take the form of
certificates, SHA-256 hashes, or ESL/AUTH files. DB updates that are signed by a KEK are
permissible at all times. Unsigned updates can be accomplished via UEFI Configuration and
remote console tools.

Continue by ensuring that the new DB entry is in the correct format. For a certificate, create a
new RSA 2048 key pair and certificate unless a new certificate has already been provided for
use. Convert to DER/CER format if in PEM/CRT format. Place the certificate in an ESL file and
sign it with a KEK for the endpoint receiving the update.

For a hash, validate that the SHA-256 format is correct. Convert the hash file into an ESL file.
Have the private key of a KEK sign the ESL file to convert the ESL into an AUTH file.

4.4.4 Update MOK or MOKX

Changes to MOK and MOKX require the use of mok-manager (mmx64.efi), mok-util (mok-
util.efi), or Keytool (keytool.efi). Keys and hashes used are identical to those stored in the DB
and DBX. However, MOK tools require data to be provided in only ESL or AUTH format. Section
4.3.4 provides instructions for interacting with Keytool.

4.5 Validation

UEFI Messages

UEFI error messages are normally printed to the primary display adapter and logged in the
UEFI and OS event logs. Remote management tools, such as Dell iDRAC and HP iLO, also
register UEFI events in a Baseband Management Controller (BMC) log. Some systems provide
only error messages while other systems may also provide success messages. An absence of
error messages, Secure Boot enabled in custom mode, and successful boot may indicate a
valid launch. However, administrators should double-check that the signatures on bootable
binaries match trusted certificates. Unintentionally leaving MOK or the Windows Production CA
certificates in place is a common implementation oversight that looks like a success. Untrusted
code may also be skipped, without an error message, hiding a potential problem.

Linux

Use dmesg to determine if Secure Boot is enabled, enforcing, and what values are in use. The
first command below will show only Secure Boot status. A status of "could not be determined"
means that Secure Boot is not operating. The second command will return summary information
about value stores, certificates, and hashes detected during boot (value stores can be read
without Secure Boot being in an enforcing mode). Both commands may be run with user
permissions.

dmesg | grep –i "secure boot"

dmesg | grep –i uefi

More specific information can be gathered via using efi-readvar. In particular, watch for the
presence of unintended certificates in the DB or MOK. Use the -v and -s options to select a

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 24

specific variable type and entry:

efi-readvar

efi-readvar –v db –s 0

Finally, mokutil can be queried to check Secure Boot enforcement status by using the following
command:

mokutil --sb-status

PowerShell

PowerShell has a straightforward way to verify that Secure Boot is enabled, loaded with keys,
and enforcing. The following command will return True when Secure Boot is not disabled, has a
PK, and bootable binaries passed signature checks.

Confirm-SecureBootUEFI

Dell RACADM

Use the following command:

racadm get BIOS.SysSecurity.SecureBoot

A result of "enabled" or 1 indicates that Secure Boot is successfully provisioned and enforcing
on the queried endpoint.

5. Advanced Customizations

Secure Boot is designed to complement many existing security solutions. Technologies such as
security chips, boot image protection, memory protections, side channel mitigations,
virtualization, malware scanners, and similar can operate alongside Secure Boot. This section
focuses on a pair of boot security solutions that may seem redundant with Secure Boot.
However, proper implementation can provide a defense-in-depth security solution.

5.1 Trusted Platform Module (TPM)

Trusted Platform Module (TPM) may be leveraged to validate the integrity of UEFI Secure Boot.
TPM Platform Configuration Register (PCR) 7 captures integrity measurement events that
summarize the PK, KEK, DB, and DBX. Use the values contained within the PK, KEK, DB, and
DBX to calculate what PCR 7 should be, and compare the calculated value to the value
reported at run time.

Note that Shim extends MOK, MOKX, GRUB, and kernel measurements into PCR 7. Be sure to
include these extensions when calculating PCR 7. Remember that MOK is similar to the DB
while MOKX is similar to the DBX.

A TPM Quote Digest is a summary of PCR values. A PCR is a digest/summary of individual
measurement events. A measurement event contains the Event Digest which, in the case of
PCR 7, is the summary/hash of an individual UEFI variable.

Figure 6 -shows the relationship between TPM Quote, PCR, and Event/Measurement. TPM
Quotes, PCRs, and measurement events are made up of a series of one-way SHA hashes.
Knowing the data used to create a measurement event allows administrators/developers to
wrap the data in the appropriate structures and calculate the measurement event. Knowing all
the measurement events for a specific PCR allows an administrator/developer to calculate the

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 25

PCR. Knowing all the PCR values allows an administrator/developer to calculate a Quote. The
reverse direction is not possible due to the one-way nature of SHA hashes and TPM extensions.

TPM PCR Hash Relationships

To calculate PCR 7 when Secure Boot values are known, consult the TCG EFI Platform
Specification (TCG 2014; Section 7.1). Each TPM event log record contains the following
information found in section 7.1:

typedef struct{

TCG_PCRINDEX PCRindex;

 TCG_EVENTTYPE EventType;

 TCG_DIGEST Digest; //Event measurement

 //Hash of EFI_VARIABLE_DATA

 UINT32 EventSize;

 UINT8 Event[1]; //EFI_VARIABLE_DATA

} TCG_PCR_EVENT;

The measurement information used to extend PCRs is captured in the TCG_PCR_EVENT
TCG_DIGEST object as defined in the UEFI Specification (TCG 2014; Section 7.8). The Digest
will be a SHA-1 hash in the case of TPM 1.x. In the case of TPM 2.x TCG_PCR_EVENT
records for SHA-1, SHA-256, SHA-384, SHA-512, and/or other hash algorithms will be recorded
since TPM 2.x supports multiple collections of PCRs at different hash strengths (TPM 2.x is
“Crypto Agile” with a wide variety of implementations possible).

The Digest values are not hashes of raw data, defined as individual certificates and hashes,
present in the DB, DBX, KEK, and PK. Digest values are hashes of the raw data wrapped in EFI
metadata. In other words: Secure Boot data records, such as a DB hash or a KEK certificate,
are placed in an EFI_SIGNATURE_DATA structure that is a component of the
EFI_VARIABLE_DATA structure. EFI_VARIABLE_DATA is the structure that is hashed to form
a TCG_DIGEST measurement which is extended to a PCR.

Each Digest value is the hash of an EFI_VARIABLE_DATA structure. EFI_VARIABLE_DATA is
defined by UEFI Forum’s UEFI Specification (UEFI Forum 2017; Section 31.4). For each Secure
Boot entry in the PK, KEK, DB, and DBX, hash the following structure to determine the
measurement data used to extend a PCR:

typdef struct{

 EFI_GUID VariableName; //see table below

 UINT8 UnicodeNameLength; //db, PK = 2; dbx, KEK = 3

Quote
Digest

PCR 0

Event
0.0

Event
0.1

[...]
Event

0.n

PCR 1

Event
1.0

Event
1.1

[...]
Event

1.n

[...] PCR n

Event
n.0

Event
n.1

[...]
Event

n.n

Figure 6 - The relationship between Quote, PCR, and Event/Measurement.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 26

 UINT8 VariableDataLength; //SignatureOwner +

SignatureData[]

 CHAR16 Unicodename[]; //db, dbx, KEK, PK in

unicode chars

 UINT8 VariableData[]; //EFI_SIGNATURE_DATA

} EFI_VARIABLE_DATA

EFI_GUID values are also defined by the UEFI Forum standards body (UEFI Forum 2017;
Section 7.3). EFI_GUID values used to describe TPM events are similar to the ones found in
ESL files. Table 2 shows the GUIDs that are likely to be observed.

EFI_GUID Value

DB and DBX records identified as
EFI_IMAGE_SECURITY_DATABASE_GUID

0x719B2CB, 0x93CA, 0x11D2, 0Xaa, 0x0D, 0x00, 0xE0,
0x98, 0x03, 0x2B, 0x8C

PK and KEK records identified as
EFI_GLOBAL_VARIABLE

0x8BE4DF61, 0x93CA, 0x11D2, 0xAA, 0x0D, 0x00,
0xE0, 0x98, 0x03, 0x2B, 0x8C

Table 2 – EFI GUIDs observed with TPM events.

The UINT8 VariableData array contains the structure EFI_SIGNATURE_DATA. The entire
certificate or hash binary blob contributing to a given PCR event/measurement is stored in the
SignatureData array.

typdef struct{

 EFI_GUID SignatureOwner;

 UINT8 SignatureData[]; //certificate or hash raw data

} EFI_SIGNATURE_DATA

5.2 Trusted Bootloader

Trusted bootloaders use both UEFI Secure Boot and TPM. Secure Boot performs an active
boot-time signature enforcement role while TPM records the state of the machine during UEFI
initialization – that is to say TPM provides a check on Secure Boot's state. Examples of trusted
bootloaders include Trusted Shim (TPM-extended Shim), Trusted GRUB, Trusted Boot (TBoot),
TPM-rEFInd, newer Windows bootloaders, and similar boot-time security solutions. Some
trusted bootloaders can be provided a "check file" or "configuration file" that includes TPM PCR
hashes. The bootloader and supporting check/configuration file may also be signed by a key
recognized by Secure Boot.

The TPM PCR values queried at boot time may differ from those reported from within the
operating system. Bootloaders typically do not extend PCRs 0-3. Shim is known to extend PCR
7.

Always validate the signatures present on a bootloader. Bootloaders typically have a signature
from the OS vendor or Microsoft which are typically intended for use with Secure Boot in the
default, system vendor-provided state. When customizing Secure Boot, always ensure that
specific bootloaders work as intended. Developing the Secure Boot customization guidance in
this document revealed a common mistake of accidentally leaving a DB or MOK certificate
behind resulting in trusting more hardware and software objects than intended at boot time.

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 27

Some bootloaders are incorporated into Full Disk Encryption (FDE) solutions and wrap a
decryption key with a specific set of TPM PCR values. Ensure that PCR 7 is one of the PCRs in
the selection mask. A PCR-wrapped secret will only be revealed when PCR 7 is in the correct
state thus providing confidence in the integrity of Secure Boot values corresponding to a specific
PCR 7 value.

6 References

Cited Resources

Golden, Barry. "Windows UEFI firmware update platform." Windows Documents, Microsoft
Corporation, 20 Apr. 2017, https://docs.microsoft.com/en-us/windows-
hardware/drivers/bringup/window-uefi-firmware-update-platform

Mendelsohn, Tom. "Secure Boot snafu: Microsoft leaks backdoor key, firmware flung wide
open." Ars Technica, Conde Nast, 11 Aug. 2016, https://arstechnica.com/information-
technology/2016/08/microsoft-secure-boot-firmware-snafu-leaks-golden-key

Schlej, Nikolaj. Twitter. 27 Sep. 2018.
https://twitter.com/NikolajSchlej/status/1045359752077660161

Shilov, Anton. "Intel to Remove Legacy BIOS Support from UEFI by 2020." AnandTech, Future
PLC, 22 Nov. 2017, https://www.anandtech.com/show/12068/intel-to-remove-bios-support-from-
uefi-by-2020

Trusted Computing Group (TCG). "TCG EFI Platform Specification For TPM Family 1.1 or 1.2."
TCG Published Specifications. 27 Jan. 2014, https://trustedcomputinggroup.org/wp-
content/uploads/TCG_EFI_Platform_1_22_Final_-v15.pdf

UEFI Forum. "Unified Extensible Firmware Interface Specification." UEFI Forum Published
Specifications. May 2017, https://uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf

Command References

Bottomley, James. "UEFI Secure Boot." James Bottomley’s random Pages. 8 Jul. 2012.
https://blog.hansenpartnership.com/uefi-secure-boot

Murphy, Finnbarr. "List EFI Configuration Table Entries." Musings of an OS plumber. 24 Oct.
2015. https://blog.fpmurphy.com/2015/10/list-efi-configuration-table-entries.html

Sakaki. "Sakaki’s EFI Install Guide/Configuring Secure Boot." Gentoo Wiki, Gentoo Linux. 29
Aug. 2017. https://wiki.gentoo.org/wiki/Sakaki’s_EFI_Install_Guide/Configuring_Secure_Boot

Uncited Related Resources

Hucktech. Firmware Security. 28 Jan. 2019. https://firmwaresecurity.com

NSA analysts, researchers, and contractors who contributed to pilots of customized Secure
Boot. See https://www.github.com/nsacyber/Hardware-and-Firmware-Security-
Guidance/tree/master/secureboot for more resources, scripts, and solutions.

Partners, vendors, and support personnel who provided information and produce improvements.

https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/window-uefi-firmware-update-platform
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/window-uefi-firmware-update-platform
https://arstechnica.com/information-technology/2016/08/microsoft-secure-boot-firmware-snafu-leaks-golden-key
https://arstechnica.com/information-technology/2016/08/microsoft-secure-boot-firmware-snafu-leaks-golden-key
https://twitter.com/NikolajSchlej/status/1045359752077660161
https://www.anandtech.com/show/12068/intel-to-remove-bios-support-from-uefi-by-2020
https://www.anandtech.com/show/12068/intel-to-remove-bios-support-from-uefi-by-2020
https://trustedcomputinggroup.org/wp-content/uploads/TCG_EFI_Platform_1_22_Final_-v15.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_EFI_Platform_1_22_Final_-v15.pdf
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf
https://blog.hansenpartnership.com/uefi-secure-boot
https://blog.fpmurphy.com/2015/10/list-efi-configuration-table-entries.html
https://wiki.gentoo.org/wiki/Sakaki's_EFI_Install_Guide/Configuring_Secure_Boot
https://firmwaresecurity.com/
https://www.github.com/nsacyber/Hardware-and-Firmware-Security-Guidance/tree/master/secureboot
https://www.github.com/nsacyber/Hardware-and-Firmware-Security-Guidance/tree/master/secureboot

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 28

7 Appendix

7.1 UEFI Lockdown Configuration

Option
Recommended

Setting
Comment

Admin password Set UEFI administrative control options access

Boot mode UEFI
Use UEFI boot mode instead of Legacy, CSM, or
BIOS

Boot sequence * OS drive first. Disable devices not used for boot

C states / S3 sleep Enable CPU energy-saving features

Chassis intrusion Log case-opening events

Computrace Anti-theft solution on some machines

CPU XD support Enable Execute-disable bit feature

eSATA port Disable Enable if external SATA ports are used

ExpressCard Disable Enable if required by expansion device

Extended Page Tables / EPT Enable Intel-only. Equivalent to RVI

External USB ports * Disable unused ports

Fan control Auto Customizable cooling fan thresholds/levels

Fastboot Auto Shortens some device self-check routines

Free-fall protection Relevant to spinning platter hard drives

HyperThread / SMT Enable CPU scheduling optimizer

Integrated NIC Enable
Enable PXE if required by organization; Disable if
not used

Internal modem Disable Enable if required for legacy network

Keyboard backlight May have levels of brightness

Legacy OROMs Disable
Disable unless required by expansion devices
(video card, storage controller, etc.)

Microphone Defer to organizational policies

Module bay Enable
Laptops with hot-swap bays; Controls disc media
device

Multi-core support All
Controls energy use, heat, and performance of
CPU

Non-admin password
changes

Disable Do not allow non-admins to alter system config

Non-admin user setup
lockout

Enable Only allow admins into UEFI config

Optimus / Dynamic graphics Enable/Auto Energy-saving graphics switching

OROM keyboard access Disable Only enable for administrators

Overclocking Increase CPU performance above factory limits

Parallel Port Disable Enable if required for legacy device

Password bypass Defer to organizational policies

Password configuration Defer to organizational policies

Rapid start Accelerated boot from slow storage drives

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 29

Option
Recommended

Setting
Comment

Rapid virtualization indexing
/ RVI

Enable AMD-only. Equivalent to EPT

SATA Operation AHCI
Enable RAID or IRST (Intel Rapid Storage
Technology) if appropriate

SATA password Not set Stops boot drive access. Interrupts updates

SATA ports Connected only Disable SATA ports not in use

Secure Boot custom mode Disable Enable custom if using custom key chain

Serial Port Disable Enable if required for legacy device

SMART Reporting Enable Storage drive error reporting mechanism

SmartCard Storage drive error reporting function

SpeedStep / CPU power
states

Enable CPU energy-saving features

Storage OROM access Disable Only enable for administrators

Strong passwords Enable
Applies password complexity requirements to
UEFI configuration accounts

System password Not set Stops system boot process. Interrupts updates

Tagged TLB Enable

TPM ACPI support Enable Controls loading of measurements during boot

TPM PPI deprovision
override

Enable Allows OS to clear and re-enable TPM

TPM PPI provision override Enable Allows OS to activate TPM

TPM security
Enable and

Activate
Send power and I/O to the TPM

Trusted execution / TXT

Windows: used when Trusted eXecution Engine
(TXE) is installed. Linux and hypervisors: install
TBoot and follow directions. Provision with TXT
disabled. Enabling TXT locks NVRAM

TurboBoost / TurboCore Enable CPU performance boost feature

UEFI Network Stack Enable
Enable if PXE or image servers are used by
organization; Disable if not used

UEFI Secure Boot Enable
Use in conjunction with supporting OS and/or
hypervisor

Unobtrusive mode Disables or dims system indicator lights

USB Boot Support Disable
Allows USB devices to boot; May be needed by
some developers

USB power share Disable Charges devices through USB power

USB wake support Allow USB devices to wake computer on action

User password Set UEFI user boot configuration options access

Video adapter Auto
Switches between integrated and discrete
graphics if present

Virtualization / VT-x / VPro Enable Virtualization extensions for hypervisors

VT-d / Virt directed I/O Enable Hypervisor performance optimization

Wake on AC Influences boot behavior after power loss

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 30

Option
Recommended

Setting
Comment

Wake on LAN
Allows monitoring of network traffic for wake
commands

Webcam

Wireless switch changes Defer to organizational wireless access policy

WLAN Wireless network toggle

WWAN Cellular network toggle

XMP memory profiles High-performance RAM profiles

7.2 Acronyms

Acronym Meaning

ACPI Advanced Configuration and Power Interface

AD Microsoft corporation product Active Directory

AHCI Advanced Host Controller Interface

AMD Microprocessor company named Advanced Micro Devices

ARM Microprocessor company formerly known as Advanced RISC Machine

BDS Boot Device Select UEFI boot phase

BIOS Basic Input/Output System

BMC Baseband Management Controller

CA Certificate Authority

CPU Central Processing Unit

CRTM Core Root of Trust for Measurement starts system integrity hashing chain

CSM Compatibility Support Module providing some BIOS functions omitted from UEFI

DB Secure Boot Allow list Database

DBK Database Key used with Secure Boot databases

DBX Secure Boot Deny list Database

DoD US government Department of Defense

DOS Disk Operating System

DXE Driver Execution Environment UEFI boot phase

EFI
Extensible Firmware Interface – the foundation which UEFI is built upon. Originally
created by Intel corporation as a proprietary solution. Binaries designed to run in the
UEFI environment may also be called EFI binaries as opposed to UEFI binaries

EPT Extended Page Tables Intel corporation equivalent to RVI

eSATA External Serial Advanced Technology Attachment

FIPS Federal Information Processing Standard

GNOME Linux desktop user environment

GPT GUID Partitioning Table

GRUB Linux boot loader

GUI Graphical User Interface

HDD Hard Disk Drive

I/O Input/Output

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 31

Acronym Meaning

IMA Integrity Measurement Architecture provides runtime TPM hashing

IRST Intel corporation Rapid Storage Technology for attached storage disks

IT Information Technology (department or device)

KEK Secure Boot Key Exchange Key

LAN Local Area Network connection

LCP Launch Control Policy used by TBoot

LDAP Lightweight Directory Access Protocol is Linux equivalent to Microsoft AD

LUKS Linux Unified Key Setup used for drive encryption

MBR Master Boot Record partition scheme

MBR2GPT Utility to convert from MBR disks to GPT disks

MOK Machine Owner Key used for Linux extension of Secure Boot

NIC Network Interface Controller

NVRAM Non-Volatile Random-Access Memory storage space on TPMs

OROMs Option Read-Only Memory firmware configuration branching mechanism

OS Operating System such as Microsoft Windows or Red Hat Linux

PC Personal Computer

PCR Platform Configuration Register used by TPM to store hashes of integrity hashes

PEI Pre-EFI Initialization phase for UEFI boot

PK Secure Boot Platform Key

PPI Physical Presence Interface

RAID Redundant Array of Independent Disks

RAM Random-Access Memory

rEFInd UEFI Boot Loader

RHEL Red Hat Enterprise Linux operating system

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RSA Ron Rivest, Adi Shamir, and Leonard Adleman cryptosystem algorithms

RVI Rapid Virtualization Indexing AMD corporation equivalent to EPT

S3 Sleep state 3 shuts down power to most PC components except RAM

SATA Serial Advanced Technology Attachment

SEC Security phase of UEFI boot

SHA Secure Hashing Algorithm

SMT Symmetric Multithreading for multiple CPU cores, threads, paths

TBoot Trusted Boot open source Intel mechanism

TLB Translation Look-aside Buffer memory management accelerator

TPM Trusted Platform Module security chip

TXE Trusted Execution Environment restricted kernel memory space

TXT Intel corporation Trusted Execution Technology

UEFI
Unified Extensible Firmware Interface that is a derivative from the proprietary EFI
solution created by Intel corporation. Governed by an industry consortium called the
UEFI Forum

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 32

Acronym Meaning

USB Universal Serial Bus connects peripheral devices

VMK Volume Management Key for Microsoft Bitlocker

VPRO
Intel corporation branding for devices supporting multiple virtualization enhancements
and TBoot

VSM Virtual Secure Mode suite of device-hardening features in Microsoft Windows

VT-d Virtualization Technology for Directed I/O

WLAN Wireless Local Area Network

WLAN Wireless Local Area Network

WWAN Wireless Wide Area Network normally indicates presence of cellular adapter

XD Execute Disable bit allows CPU to disable execution in memory spaces

XMP Extreme Memory Profile used for controlling RAM timing

7.3 Frequently Asked Questions (FAQ)

Does Secure Boot customization require replacing the PK and KEK?

No. Secure Boot customization can be partial in implementation. Customizers may add/append
additional records to the DB, DBX, or KEK without clearing or replacing existing values.
Likewise, customizers may remove individual records from the DB, DBX, or KEK rather than
completely clearing each value store.

What is the difference between the Microsoft Windows Production CA and UEFI Third
Party Marketplace CA DB certificates?

The Microsoft Windows Production CA signs all things specific to the Windows operating
system environment. The Windows boot manager, kernel, and drivers are commonly validated
by the Production CA cert. The UEFI Third Party Marketplace CA signs content not related to
Windows such as storage controller firmware, graphics card firmware, UEFI driver modules, and
Linux bootloaders.

How do I make a driver compatible with Secure Boot?

Many Linux anti-malware solutions include drivers that do not have Secure Boot signatures. To
solve the problem, do not disable Secure Boot. Instead, create an RSA 2048 public key
certificate. Use the corresponding private key to sign the driver using sbsigntool, pesign, or
similar. Switch to Secure Boot custom/user mode in the UEFI configuration, and then append
the custom certificate into the machine's DB using UEFI configuration, Keytool, or similar. Do
not make changes to the PK, KEK, or DBX. The driver should be validated by the custom
certificate following the next boot. Remember to sign updates to the driver before distributing to
endpoints.

How do I revoke signatures?

First, determine which certificate is responsible for validating a revoked signature. UEFI Secure
Boot has limited space available – the amount varies based on make and model of device. If a
large number of signatures are to be revoked, consider migrating to a new certificate and
placing the old one in the DBX. If a manageable number of signatures are to be revoked, create
a list of SHA-256 hashes corresponding with each binary to be revoked. Compile the hashes
into an ESL file. Use Keytool to load the ESL file into the DBX at boot time.

Does UEFI Secure Boot understand Certificate Revocation Lists (CRL)?

National Security Agency | Cybersecurity Technical Report

UEFI Secure Boot Customization

 U/OO/168873-20 | PP-20-0652 | Sep 2020 Ver. 1.0 33

No. Most UEFI implementations lack the memory space and processing power needed to
navigate the internet and parse CRL information. Revocations and certificate chains are ignored
by Secure Boot. Software and system vendors usually provide DBX patches to handle
revocation actions.

My endpoint won't accept a new KEK, DB, or DBX entry. What should I do?

First, check the firmware version of the endpoint to determine if an update is available.
Individual firmware releases can contain bugs to the Secure Boot customization implementation.
Next, check to see if there are known limitations to a specific make and model of endpoint. You
may need to reach out to the system vendor if a firmware update does not resolve the problem
and firmware storage capacity is not an issue.

Where is MOK and MOKX?

Machine Owner Key (MOK) and MOK Exclusion (MOKX) are extensions of UEFI Secure Boot.
The bootloader Shim is responsible for setting up MOK and MOKX. Shim is usually found on
Linux systems and not found on Windows systems. MOK and MOKX do not exert any
enforcement action until the Bootloader Phase of UEFI Boot (i.e. boot devices, OROMs, and
firmware modules are not checked against MOK and MOKX).

Shim features a signature from Microsoft and embedded MOK certificate from a Linux
distribution or power user. Shim and MOK allow the open source software community to realize
the advantages of Secure Boot without needing to seek Microsoft review/approval for every
bootloader, kernel, and module. Microsoft signs Shim, Shim sets up MOK, MOK validates the
second bootloader (commonly GRUB), MOK validates the Linux kernel, and MOK validates
kernel modules. Most computing products available today do not ship with a Linux distribution
KEK or DB certificate – Shim creates a software solution to a firmware limitation driven by
market share.

MOK functions like the DB, and MOKX functions like the DBX. MOK and MOKX extend the
function of DB and DBX, effectively. Remember that DB and DBX are available prior to the
bootloader phase of UEFI boot. However, MOK and MOKX are initialized during the bootloader
phase if and only if Shim is used. MOK and MOKX can only be used part-way through the
bootloader phase and in following phases.

What devices ship with UEFI Secure Boot as an option?

Most business and consumer devices intended to run Microsoft Windows support Secure Boot.
Servers, blade arrays, laptops, desktops, tablets/2-in-1s, all-in-one PCs, small form factor PCs,
mobile phones, Internet of Things (IOT) devices, and similar products are likely to have Secure
Boot support. Devices supporting other operating systems may also have unutilized Secure
Boot support.

Where can I get more information, scripts, guidance, strategies, and other resources?

Visit the NSA Cybersecurity GitHub at https://www.github.com/nsacyber/Hardware-and-
Firmware-Security-Guidance for additional resources. A section specific for Secure Boot is
located at https://www.github.com/nsacyber/Hardware-and-Firmware-Security-
Guidance/tree/master/secureboot. Scripts, use cases, and resources for navigating
customization on a variety of vendor implementations will be posted over time.

https://www.github.com/nsacyber/Hardware-and-Firmware-Security-Guidance
https://www.github.com/nsacyber/Hardware-and-Firmware-Security-Guidance
https://www.github.com/nsacyber/Hardware-and-Firmware-Security-Guidance/tree/master/secureboot
https://www.github.com/nsacyber/Hardware-and-Firmware-Security-Guidance/tree/master/secureboot

