

ANDROID
SECURITY

ATTACKS AND DEFENSES

ABHISHEK DUBEY | ANMOL MISRA

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130403

International Standard Book Number-13: 978-1-4822-0986-0 (eBook - ePub)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all
materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized
in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microɹlming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-proɹt organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

Dedication

To Mom, Dad, Sekhar, and Anupam
- Anmol

To Maa, Papa, and Anubha
- Abhishek

Contents

Dedication

Foreword

Preface

About the Authors

Acknowledgments

Chapter 1 Introduction
1.1 Why Android
1.2 Evolution of Mobile Threats
1.3 Android Overview
1.4 Android Marketplaces
1.5 Summary

Chapter 2 Android Architecture
2.1 Android Architecture Overview

2.1.1 Linux Kernel
2.1.2 Libraries
2.1.3 Android Runtime
2.1.4 Application Framework
2.1.5 Applications

2.2 Android Start Up and Zygote
2.3 Android SDK and Tools

2.3.1 Downloading and Installing the Android SDK 29
2.3.2 Developing with Eclipse and ADT
2.3.3 Android Tools
2.3.4 DDMS
2.3.5 ADB
2.3.6 ProGuard

2.4 Anatomy of the “Hello World” Application

2.4.1 Understanding Hello World
2.5 Summary

Chapter 3 Android Application Architecture
3.1 Application Components

3.1.1 Activities
3.1.2 Intents
3.1.3 Broadcast Receivers
3.1.4 Services
3.1.5 Content Providers

3.2 Activity Lifecycles
3.3 Summary

Chapter 4 Android (in)Security
4.1 Android Security Model
4.2 Permission Enforcement—Linux
4.3 Android’s Manifest Permissions

4.3.1 Requesting Permissions
4.3.2 Putting It All Together

4.4 Mobile Security Issues
4.4.1 Device
4.4.2 Patching
4.4.3 External Storage
4.4.4 Keyboards
4.4.5 Data Privacy
4.4.6 Application Security
4.4.7 Legacy Code

4.5 Recent Android Attacks—A Walkthrough
4.5.1 Analysis of DroidDream Variant
4.5.2 Analysis of Zsone
4.5.3 Analysis of Zitmo Trojan

4.6 Summary

Chapter 5 Pen Testing Android
5.1 Penetration Testing Methodology

5.1.1 External Penetration Test

5.1.2 Internal Penetration Test
5.1.3 Penetration Test Methodologies
5.1.4 Static Analysis
5.1.5 Steps to Pen Test Android OS and Devices 100

5.2 Tools for Penetration Testing Android
5.2.1 Nmap
5.2.2 BusyBox
5.2.3 Wireshark
5.2.4 Vulnerabilities in the Android OS

5.3 Penetration Testing—Android Applications
5.3.1 Android Applications
5.3.2 Application Security

5.4 Miscellaneous Issues
5.5 Summary

Chapter 6 Reverse Engineering Android Applications
6.1 Introduction
6.2 What is Malware?
6.3 Identifying Android Malware
6.4 Reverse Engineering Methodology for Android Applications
6.5 Summary

Chapter 7 Modifying the Behavior of Android Applications without Source Code
7.1 Introduction

7.1.1 To Add Malicious Behavior
7.1.2 To Eliminate Malicious Behavior
7.1.3 To Bypass Intended Functionality

7.2 DEX File Format
7.3 Case Study: Modifying the Behavior of an Application
7.4 Real World Example 1—Google Wallet Vulnerability 161
7.5 Real World Example 2—Skype Vulnerability (CVE-2011-1717)
7.6 Defensive Strategies

7.6.1 Perform Code Obfuscation
7.6.2 Perform Server Side Processing
7.6.3 Perform Iterative Hashing and Use Salt

7.6.4 Choose the Right Location for Sensitive Information
7.6.5 Cryptography
7.6.6 Conclusion

7.7 Summary

Chapter 8 Hacking Android
8.1 Introduction
8.2 Android File System

8.2.1 Mount Points
8.2.2 File Systems
8.2.3 Directory Structure

8.3 Android Application Data
8.3.1 Storage Options
8.3.2 /data/data

8.4 Rooting Android Devices
8.5 Imaging Android
8.6 Accessing Application Databases
8.7 Extracting Data from Android Devices
8.8 Summary

Chapter 9 Securing Android for the Enterprise Environment
9.1 Android in Enterprise

9.1.1 Security Concerns for Android in Enterprise
9.1.2 End-User Awareness
9.1.3 Compliance/Audit Considerations
9.1.4 Recommended Security Practices for Mobile Devices

9.2 Hardening Android
9.2.1 Deploying Android Securely
9.2.2 Device Administration

9.3 Summary

Chapter 10 Browser Security and Future Threat Landscape
10.1 Mobile HTML Security

10.1.1 Cross-Site Scripting
10.1.2 SQL Injection
10.1.3 Cross-Site Request Forgery

10.1.4 Phishing
10.2 Mobile Browser Security
10.3 10.2.1 Browser Vulnerabilities
10.4 The Future Landscape

10.3.1 The Phone as a Spying/Tracking Device
10.3.2 Controlling Corporate Networks and Other Devices through Mobile

Devices
10.3.3 Mobile Wallets and NFC

10.4 Summary

Appendix A

Appendix B
B.1 Views
B.2 Code Views
B.3 Keyboard Shortcuts
B.4 Options

Appendix C

Glossary

Index

Foreword

Ever-present cyber threats have been increasing against mobile devices in recent years.
As Android emerges as the leading platform for mobile devices, security issues associated
with the Android platform become a growing concern for personal and enterprise
customers. Android Security: Attacks and Defenses provides the reader with a sense of
preparedness by breaking down the history of Android and its features and addressing
the methods of attack, ultimately giving professionals, from mobile application
developers to security architects, an understanding of the necessary groundwork for a
good defense.

In the context and broad realm of mobility, Dubey and Misra bring into focus the rise
of Android to the scene and the security challenges of this particular platform. They go
beyond the basic security concepts that are already readily available to application
developers to tackle essential and advanced topics such as attack countermeasures, the
integration of Android within the enterprise, and the associated regulatory and
compliance risks to an enterprise. By reading this book, anyone with an interest in
mobile security will be able to get up to speed on the Android platform and will gain a
strategic perspective on how to protect personal and enterprise customers from the
growing threats to mobile devices. It is a must-have for security architects and
consultants as well as enterprise security managers who are working with mobile
devices and applications.

Dr. Dena Haritos Tsamitis
Director, Information Networking Institute (INI)

Director of Education, Training, and Outreach, CyLab
Carnegie Mellon University

Dr. Dena Haritos Tsamitis heads the Information Networking Institute (INI), a global,
interdisciplinary department within Carnegie Mellon University’s College of
Engineering. She oversees the INI’s graduate programs in information networking,
information security technology and management, and information technology. Under
her leadership, the INI expanded its programs to global locations and led the design of
bicoastal programs in information security, mobility, and software management in
collaboration with Carnegie Mellon’s Silicon Valley campus. Dena also directs education,
training and outreach for Carnegie Mellon CyLab. She serves as the principal
investigator on two educational programs in information assurance funded by the NSF—
the CyberCorps Scholarship for Service and the Information Assurance Capacity Building
Program—and she is also the principal investigator on the DOD-funded Information
Assurance Scholarship Program. She received the 2012 Barbara Lazarus Award for
Graduate Student and Junior Faculty Mentoring from Carnegie Mellon and the 2008

Women of Inɻuence Award, presented by Alta Associates and CSO Magazine, for her
achievements in information security and education.

Preface

The launch of the Apple iPhone in 2007 started a new era in the world of mobile devices
and applications. Google’s Android platform has emerged as a serious player in the
mobile devices market, and by 2012, more Android devices were being sold than
iPhones. With mobile devices becoming mainstream, we have seen the evolution of
threats against them. Android’s popularity has brought it attention from the “bad guys,”
and we have seen attacks against the platform on the uptick.

About the Book
In this book, we analyze the Android platform and applications in the context of
security concerns and threats. This book is targeted towards anyone who is interested in
learning about Android security or the strengths and weaknesses of this platform from a
security perspective. We describe the Android OS and application architecture and then
proceed to review security features provided by the platform. We then describe
methodology for analyzing and security testing the platform and applications. Towards
the end, we cover implications of Android devices in the enterprise environment as well
as steps to harden devices and applications. Even though the book focuses on the
Android platform, many of these issues and principles can be applied to other leading
platforms as well.

Assumptions
This book assumes that the reader is familiar with operating systems and security
concepts. Knowledge of penetration testing, threat modeling, and common Web
application and browser vulnerabilities is recommended but not required.

Audience
Our book is targeted at security architects, system administrators, enterprise SDLC
managers, developers, white-hat hackers, penetration testers, IT architects, CIOs,
students, and regular users. If you want to learn about Android security features,
possible attacks and means to prevent them, you will ɹnd various chapters in this book
as a useful starting point. Our goal is to provide readers with enough information so
that they can quickly get up and running on Android, with all of the basics of the
Android platform and related security issues under their belts. If you are an Android
hacker, or if you are very well versed in security concerns of the platform, this book is
not for you.

Support

Errata and support for this book are available on the CRC Press website and on our site:
www.androidinsecurity.com. Our site will also have downloads for applications and
tools created by the user. Sample applications created by the authors are available on
our website under the Resource section. Readers should download apk ɹles from our
website and use them in conjunction with the text, wherever needed.
Username: android
Password: ISBN-10 number of the book—1439896461

Structure
Our book is divided into 10 chapters. Chapter 1 provides an introduction to the mobile
landscape. Chapters 2 and 3 introduce the reader to the Android OS and application
architecture, respectively. Chapter 4 delves into Android security features. Chapters 5
through 9 cover various aspects of security for the Android platform and applications.
The last chapter looks at the future landscape of threats. Appendixes A and B (found
towards the end of the book) talk about the severity ratings of Android permissions and
the JEB Decompiler, respectively. Appendix C shows how to crack SecureApp.apk from
Chapter 7 and is available online on the book’s website (www.androidinsecurity.com).

http://www.androidinsecurity.com
http://www.androidinsecurity.com

About the Authors

Anmol Misra
Anmol is a contributing author of the book Defending the Cloud: Waging War in
Cyberspace (Inɹnity Publishing, December 2011). His expertise includes mobile and
application security, vulnerability management, application and infrastructure security
assessments, and security code reviews.

He is currently Program Manager of the Critical Business Security External (CBSE)
team at Cisco. The CBSE team is part of the Information Security Team (InfoSec) at
Cisco and is responsible for the security of Cisco’s Cloud Hosted Services. Prior to joining
Cisco, Anmol was a Senior Consultant with Ernst & Young LLP. In his role, he advised
Fortune 500 clients on deɹning and improving Information Security programs and
practices. He helped large corporations to reduce IT security risk and achieve regulatory
compliance by improving their security posture.

Anmol holds a master’s degree in Information Networking from Carnegie Mellon
University. He also holds a Bachelor of Engineering degree in Computer Engineering.
He served as Vice President of Alumni Relations for the Bay Area chapter of the
Carnegie Mellon Alumni Association.

In his free time, Anmol enjoys long walks on the beaches of San Francisco. He is a
voracious reader of nonɹction books—especially, history and economics—and is an
aspiring photographer.

Abhishek Dubey
Abhishek has a wide variety of experience in information security, including reverse
engineering, malware analysis, and vulnerability detection. He is currently working as a
Lead/Senior Engineer of the Security Services and Cloud Operations team at Cisco. Prior
to joining Cisco, Abhishek was Senior Researcher in the Advanced Threat Research
Group at Webroot Software.

Abhishek holds a master’s degree in Information Security and Technology
Management from Carnegie Mellon University and also holds a B.Tech degree in
Computer Science and Engineering. He is currently pursuing studies in Strategic
Decisions and Risk Management at Stanford University. He has served as Vice President
of Operations and Alliances for the Bay Area chapter of the Carnegie Mellon Alumni
Association. This alumni chapter is 5,000 students strong.

In his free time, Abhishek is an avid distance runner and photographer. He also enjoys
rock climbing and being a foodie.

Acknowledgments

Writing a book is never a solo project and is not possible without help from many
people. First, we would like to thank our Editor, John Wyzalek at CRC Press, for his
patience and constant commitment to the project. We would also like to thank the
production team at Derryɹeld Publishing—Theron Shreve and Marje Pollack. Theron has
guided us from start to ɹnish during the production of this book. Marje has been patient
through our many revisions and has helped us to convert our “write-ups” into the
exciting book you have in your hands.

We would like to thank Dena Tsamtis (Director, Information Networking Institute,
Director of Education, Training, and Outreach, CyLab, Carnegie Mellon University),
James Ransome (Senior Director, Product Security, McAfee Inc), and Gary Bahadur
(CEO at Razient) for their help and guidance over the years. We would also like to
thank Nicolas Falliere (Founder, JEB Decompiler) for giving us early access to the JEB
Decompiler. Many others have helped us along the way, as well, but it is not possible to
list all of their names here.

- Anmol & Abhishek

I would like to take this opportunity to express my profound gratitude to my mentors
David Veach (Senior Manager at Cisco) and Mukund Gadgil (Vice President of
Engineering-Upheels.com) for their continued and exemplary guidance. I have learned
so much from both of you over the years. I couldn’t be more thankful to my friends Anuj,
Varang, Erica, and Smita who have constantly pushed me over the years to achieve my
goals and who have been there with me through thick and thin. You all are “Legendary
Awesome”! Lastly, I would like thank Maa, Papa, and my sister, Anubha, for your
unquestioned support in everything I have done. All my achievements in life are because
of you.

- Abhishek

I would like to thank Bill Vourthis (Senior Manager at Ernst & Young), David Ho
(Manager at Cisco), and Vinod (Jay) Jayaprakash (Senior Manager at Ernst & Young)
for their guidance and encouragement over the years. I would also like to give my
heartfelt thanks to my mentor Nitesh Dhanjani (Executive Director at Ernst & Young) for
his guidance and encouragement. I would like to thank my family—Mom, Dad, and my
brothers, Sekhar and Anupam—for supporting me in all my endeavors and for just being
there. Mom, Dad – You are the backbone of our family and all I have achieved is
because of you. It has not been easy to put up with my intense schedule. Now that I
have finished this book, I promise I will be timely in replying to calls and e-mails.

- Anmol

http://Engineering-Upheels.com

Chapter 1
Introduction

In this chapter, we introduce the reader to the mobile devices landscape and
demonstrate why Android security matters. We analyze the evolution of mobile security
threats, from basic phones to smartphones (including ones running the Android
platform). We move on to introduce Android history, releases, and marketplaces for
Android applications.

1.1 Why Android
The number of mobile and Internet users on mobile devices has been skyrocketing. If
statistics are any indication, the adoption of mobile devices in emerging and advanced
economies has just started and is slated for huge growth in the next decade (see Figure
1.1).

According to data available through Wikipedia (see Figures 1.2 and 1.3), the Android
platform runs on 64% of smartphones and on about 23.5% of all phones
(http://en.wikipedia.org/wiki/Mobile_operating_system). Approximately 37% of all
phones today are smartphones, leaving a whopping 60%+ of phones open to future
adoption. Given that Android’s share of the smartphone market has been rising steadily,
the Android platform is slated for similar growth in the near future. Emerging markets
and advanced economies alike are slated for increased smartphone adoption, with
Android at the heart of it. Even during the recent economic downturn, the number of
smartphone users continued to increase steadily. Mobile devices will form the majority
of Internet-accessing devices (dwarɹng servers and personal computers [PCs]) in the
near future.

http://en.wikipedia.org/wiki/Mobile_operating_system

Figure 1.1 Basic vs. Smartphone Ownership in the United States

Figure 1.2 Global Smartphone Adoption (Source: http://en.wikipedia.org/wiki/Mobile_operating_system)

Until recently, smartphones were not “must-have” items and were considered only for
tech-savvy or gadget geeks. The ɹrst Windows handheld devices (Windows CE) were
introduced in 1996. The ɹrst true mobile smartphone arrived in the year 2000, when the
Ericsson R380 was released, and it featured Nokia’s Symbian operating system. For
awhile, there were cell phones and PDAs—separate devices (anyone remember iPaq?).

In 2002, both Microsoft and RIM released smartphones (Windows CE and Blackberry),
respectively. While corporate adoption picked up after the release of the Blackberry, the
end-user market really started picking up after the introduction of Apple’s iPhone, in
2007. By then, RIM had a majority share of the corporate market. Around the same
time, Google decided to jump into the mobile device market. If mobile devices were
going to represent most user activity in the future, it meant that users would be using
them for searching the Internet—a core Google service. Advertising dollars would also
be increasingly focused on mobile devices, as mobile devices allow for much more
targeted ads. Searching “pizza” on a desktop/laptop can provide information about a
user’s location through the IP address, among other information. However, with a cell
phone, the user’s GPS location can be used to display “relevant ads” of places nearby.

The Open Handset Alliance (OHA) made its debut in 2007, and in 2008, Android was
released.

The computational power of mobile devices has grown exponentially (see Figure 1.4).
The HTC EVO 4G phone has the Qualcomm 8650 1 Ghz processor, 1 GB ROM (used for
system software), and 512 MB of RAM. In addition, it has 802.11b/g, Bluetooth
capability, an 8.0 MP camera, GPS, and HDMI output. The phone speciɹcations are
powerful enough to beat a desktop conɹguration for a typical user a few years ago.

http://en.wikipedia.org/wiki/Mobile_operating_system

Again, this trend is likely to continue.

Figure 1.3 Global Smartphone Sales Q1 (Source: http://en.wikipedia.org/wiki/Mobile_operating_system)

Figure 1.4 Comparison of Apple iPhone, DroidX, and an Old PC

Android’s share of mobile devices has been increasing at a steady rate (see Figure
1.5). Android devices surpassed iPhone sales by 2011. By mid-2011, there were about
half a million Android device activations per day (see Figure 1.6). Figure 1.7 shows the
number of carriers as well as manufacturers that have turned to Android.

http://en.wikipedia.org/wiki/Mobile_operating_system

After the launch of the iPad, many manufacturers turned to Android as the platform
for their oʃerings. The Samsung Galaxy Tab is a perfect example of this. Other
manufacturers (e.g., Dell, Toshiba) have also started oʃering tablets with Android as
their platform (see Figure 1.8). A trend is likely to continue wherein the tablet market
uses two major platforms—IOS and Android.

1.2 Evolution of Mobile Threats
As mobile devices have evolved from basic to smartphones, threats to mobile devices
have evolved in parallel. Smartphones have a larger attack surface compared to basic
phones in the past. In addition, the usage patterns of mobile devices have also evolved.
Basic phones were primarily used for text messaging and phone calls. Today
smartphones are used for everything one can imagine using a computer for—performing
routine banking transactions, logging onto Facebook, directions, maintaining health and
exercise records, and so forth.

Figure 1.5 Mobile OS Market Share

Figure 1.6 Number of Android Activations per Day (Jan. 11–Dec. 11)

Figure 1.7 Android Phones for Major Carriers

For a long time, Nokia’s Symbian OS was the primary target of attackers due to its
penetration in the mobile market. As the market share of Symbian continues to decline

and there is a corresponding increase in the share of Android devices and iPhones,
attackers are targeting these platforms today.

Symbian is still the leading platform for phones outside the United States and will be
a target of attackers in the foreseeable future. However, Android and iPhone attacks are
increasing in number and sophistication. This reɻects the fact that bad guys will always
go after the most popular platform. As Android continues to gain in popularity, threats
against it will continue to rise.

Figure 1.8 Android Devices from Major Manufacturers

Looking at the threat landscape for Android devices, it is clear that attacks against
Android users and applications have increased quite a bit over the last couple of years.
As Android adoption picks up, so does the focus of attackers to target the platform and
its users. Android malware has seen an upward trend, as well.

This trend does not only apply to Android devices. Mobile phones have increased in
their functionality as well as attack surfaces. The type of data we have on a typical
smartphone and the things we do with our phone today are vastly diʃerent from just a
few years ago.

Attacks on basic phones targeted Short Message Service (SMS), phone numbers, and
limited data available to those devices. An example of such an attack is the targeting of
premium SMS services. Attackers send text messages to premium rate numbers or make
calls to these numbers. An attack on an Android or smartphone is diʃerent and more
sophisticated—for example, a malicious application accessing a user’s sensitive
information (personal data, banking information, chat logs) and sending it to potential
attackers. Smartphones are susceptible to a plethora of application-based attacks
targeting sensitive information.

The following is a sample data set on a typical smartphone:

1. Corporate and personal e-mails

2. Contacts (along with their e-mail and personal addresses)
3. Banking information
4. Instant Messaging logs
5. Pictures
6. Videos
7. Credit card Information
8. Location and GPS data
9. Health information
10. Calendar and schedule information

Attacks on a smartphone running on the Android platform could result in leakage of
the above data set. Some possible attacks that are more devastating include social
engineering, phishing, spooɹng, spyware, and malware—for example, a mobile
application subscribing a user to a premium service. The user would then incur data and
usage charges, in addition to subscription fees. Smartphone browsers are miniature
compared to their desktop counterparts. Therefore, encryption functionality on a
smartphone OS as well as browser can be limited and can take more time to respond
compared to on a PC—for example, revoking certificates from mobile browsers.

Until now, we have focused on attacks on applications and protocols used for
communication on the Web. Another class of attacks is on the cellular technology itself.
GSM and CDMA are the most widely used communication standards. Carriers use one or
the other standard for providing cellular service (i.e., calls, SMS). As the adoption of
cellular devices increase, these standards have come under increasing scrutiny from
researchers and attacks from malicious users.

GSM is used on a majority of cellular phones in the world (200+ countries, 4 billion+
users). GSM uses A5/1 encryption to provide over-the-air communication privacy (i.e.,
to encrypt SMS and telephone conversations). Although it was initially kept a secret, it
was reversed engineered, and some details became public knowledge through leaks. In
the early 1990s, A5/1 was shown to be broken in research papers/academia. By 2009,
researcher Karsten Nohl demonstrated an attack that could allow someone to determine
the encryption key used for protecting SMS and telephone conversations. Even more
interesting was the fact that this could be accomplished with relatively inexpensive
equipment. A5/1 uses a 64-bit key and can be attacked using hardware available today.
Given two encrypted, known plaintext messages, the secret key can be found in a
precomputed table. Given the increasing use of cellular devices for Radio Frequency
Identiɹcation (RFID)/Near Field Communication (NFC), this can result in the
compromise of not only SMS and voice communications but also of data (e.g., credit
card payments).

Many users are not aware of the risks and threats to their mobile devices, which are
similar to those on a PC. Although the majority of users use some kind of protection on

their desktops or laptops (e.g., antivirus software), they are oblivious to the need to
protect their mobile devices. The majority of users are not technically savvy enough to
understand the implications of performing certain actions on their cellular devices. Jail-
breaking or rooting is an example. Users are also placing their trust in applications they
install from an application repository, whether it be the App Store (iPhone) or the
Android Market. Malware applications were found on the Android Market disguised as
popular applications. For a typical user, a $0.99 application download is becoming
routine practice, and if a user regularly downloads and installs an application, the
security or behavior of an application might go unnoticed.

Increasingly, workers are bringing their own devices to work and shunning their
company-sponsored devices. The use of Android devices and iPhones continues to rise in
the business environment. However, corporate policies have not kept up with users as
they still focus on securing “full-ɻedged” PC devices more than mobile devices. This
exposes their environment to attacks that leverage mobile devices and users. In fact, it
might be easier to compromise mobile devices in many cases than their desktop
counterparts, where corporate dollars are still being spent. Threats yet to materialize
but not considered as such by researchers/business enterprises are those coming from
state-sponsored entities, such as government intelligence agencies. One can imagine
attacks possible in cyber-warfare, such as the spreading of mobile malware, which could
clog the communication medium.

1.3 Android Overview
Android is more than just an operating system. It is a complete software stack. Android
is based on the Linux kernel and builds on a solid foundation provided by Linux. It is
developed by the OHA, which is led by Google. In this section, we brieɻy cover the
history of Android, releases, and features on a typical Android device.

Android did not start at Google. Google acquired Android Inc. in 2005. As mentioned
earlier, Google was instrumental in creating the OHA, in 2007. Initially, a total of
eighty-six companies came together to form the OHA. Android code was open sourced by
Google under the Apache license. The Android Open Source Project (AOSP) was tasked
with maintaining and further development of Android. Major telecommunication
companies, such as HTC, LG, Motorola, and Qualcomm, are members of the OHA. This
group is committed to the development of open standards for mobile devices. The AOSP,
led by Google, develops and maintains the Android platform.

Android is open source and business friendly. Its source code is available under the
Apache License version 2.0. Linux Kernel changes are available under GNU v2.0. All
applications on Android are created equal. For example, although there is a built-in
browser, a user can download another browser (e.g., Firefox, Opera), and it will be
treated the same as a built-in browser. The user can choose to replace built-in
applications with applications of their choice. Licensing considerations were one of the
reasons Android developed the Dalvik virtual machine instead of using the Java virtual

machine.
Many versions of Android have been released since its original release, each adding

new features and capabilities and ɹxing bugs in the previous releases. Each is name
after a dessert (in alphabetical order).

Figure 1.9 presents a summary of Android releases and the main features
corresponding to each release, and Figure 1.10 shows the distribution of Android
releases on devices currently in use.

The Android software stack provides many features for users and developers, as well
as for manufacturers. A summary of major Android features is outlined in Figure 1.11.

Figure 1.9 Android Releases

Figure 1.10 Distribution of Android Versions on Devices

1.4 Android Marketplaces
Android applications can be downloaded and installed from multiple Android Markets.
Although the Android Market from Google is the largest repository, there are other
places where users can download applications (e.g., Amazon). This is very diʃerent
from the iPhone App Store. There is no rigorous veriɹcation of an application (or
security review of an application) when it is uploaded to the market. One can easily
develop a malicious application (e.g., a free version of a popular software) and upload
it to the Google Android Market. Most likely, it will be discovered and removed.
However, since there are multiple marketplaces, one will still be able to target Android
users from secondary sources (see Figure 1.12). Android leaves it up to the user to accept
the risk if they choose to install software from untrusted sources. This is less than ideal
and should be compared to the Apple App Store, where every application goes through a
security review before it is approved for public distribution. Problems regarding the
Android Market model are summarized below:

Figure 1.11 Major Android Features

1. There is no rigorous scrutiny of an application, even on the primary Android
Market.

2. The user has the responsibility for verifying (and accepting) the risk of an
application available from secondary markets.

3. Android applications with explicit content (e.g., adult content) can be downloaded
and installed without verification (e.g., by a minor with a cell phone device).

Table 1.1 shows a selected list of Android application markets.

Figure 1.12 Installing Applications from Unknown Sources

Table 1.1 – Android Application Markets

Market Name URL

Google Android
Market

https://play.google.com/store*

Amazon
Appstore

http://www.amazon.com/b?node=2350149011*

SlideMe http://slideme.org/*

GetJar http://www.getjar.com/*

Soc.io http://soc.io/*

1 Mobile http://www.1mobile.com/*

Appbrain http://www.appbrain.com/*

AppsLib http://appslib.com/*

Handango http://www.handango.com*

Motorola
http://www.motorola.com/Consumers/US-EN/Consumer-Product-
and-Services/APPS/App-Picks*

GoApk http://bbs.anzhi.com/*

Androidblip http://www.androidblip.com/*

AndroidPit http://www.androidpit.com/*

https://play.google.com/store
http://www.amazon.com/b?node%3D2350149011
http://slideme.org/
http://www.getjar.com/
http://soc.io/
http://www.1mobile.com/
http://www.appbrain.com/
http://appslib.com/
http://www.handango.com
http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/APPS/App-Picks
http://bbs.anzhi.com/
http://www.androidblip.com/
http://www.androidpit.com/

Appoke http://appoke.com/*

AppstoreHQ http://www.appstorehq.com/*

BlapkMarket http://blapkmarket.com/en/login/*

Camangi http://www.camangimarket.com/index.html*

Indiroid https://indiroid.com/*

Insyde Market http://www.insydemarket.com/*

Appstoreconnect http://appstoreconnect.com/publish/*

Mobihand http://www.mobihand.com/*

Applanet http://applanet.net/*

Handster http://www.handster.com/*

Phoload http://www.phoload.com/*

1.5 Summary
In this chapter, we reviewed the mobile devices landscape and the explosion in the
adoption of mobile devices. Android has emerged as the leading platform of choice for
smart phones and tablets (an alternative to the iPad). We reviewed statistics on Android
adoption and market share. We then covered the evolution of threats against mobile
devices—both against the applications as well as against the cellular technology itself.
We concluded the chapter with an overview of Android marketplaces and their possible
impact on Android security. Taken together, we can conclude that Android security is
becoming an important issue to users, corporations, developers, and security
professionals. Starting with Chapter 2, we will cover the underpinnings of the Android
platform and then move on to discuss Android security issues.

http://appoke.com/
http://www.appstorehq.com/
http://blapkmarket.com/en/login/
http://www.camangimarket.com/index.html
https://indiroid.com/
http://www.insydemarket.com/
http://appstoreconnect.com/publish/
http://www.mobihand.com/
http://applanet.net/
http://www.handster.com/
http://www.phoload.com/

Chapter 2
Android Architecture

In this chapter, we introduce the reader to Android architecture. We cover various layers
in the Android software stack, from the Linux kernel to applications, as well as the
extent to which they have security implications. We then walk the reader through the
Android start-up process and setup of the Android environment, and we present the
various tools available to us through the Android Software Development Kit (SDK). We
also provide hands-on instruction for downloading and installing the Android SDK and
interacting with shell commands.

2.1 Android Architecture Overview
Android can be thought of as a software stack comprising diʃerent layers, each layer
manifesting well-deɹned behavior and providing speciɹc services to the layer above it.
Android uses the Linux kernel, which is at the bottom of the stack. Above the Linux
kernel are native libraries and Android runtime (the Dalvik Virtual Machine [VM] and
Core Libraries). Built on top of this is the Application framework, which enables Android
to interact with the native libraries and kernel. The topmost layer comprises the Android
applications. The following is a detailed discussion of each of these layers. Figure 2.1
depicts the conceptual layers in the Android Stack, and Figure 2.2 describes the various
components found within each of these layers.

Figure 2.1 Conceptual Layers in the Android Stack

2.1.1 Linux Kernel
The Linux kernel is found at the bottom of the Android stack. It is not the traditional
Linux system that is usually seen (e.g., Ubuntu). Rather, Android has taken the Linux
kernel code and modiɹed it to run in an embedded environment. Thus, it does not have
all the features of a traditional Linux distribution. Speciɹcally, there is no X windowing
system in the Android Linux kernel. Nor are there all the GNU utilities generally found
in /bin in a traditional Linux environment (e.g., sed, etc.). In addition, many of the
conɹguration ɹles are missing, that is, the /etc/shadow ɹle for storing password hashes.
Table 2.1 shows the Android version and the corresponding Linux kernel version that it
is based on. The Android team forked the Linux kernel to use within an embedded

environment. The Android team maintains this fork. Changes in the Linux kernel are
incorporated in the fork for use in future Android releases. This is important because
many security changes and enhancements are made to the Linux kernel on an ongoing
basis, and by actively accommodating these in the Android fork of the Linux kernel, the
users get the best of what Linux has to offer.

The Android Kernel fork has made many enhancements to the original Linux kernel,
and recently a decision was made by the Linux Community to include these
enhancements in the next Linux kernel release (3.3).

Linux provides Android with a solid foundation to build upon. Among the features that
Android relies on are the hardware abstraction and drivers, security, and process and
memory management. By relying on Linux for hardware abstraction, Android can be
ported to variety of devices. The Linux kernel also has a robust device driver model for
manufacturers to use. Of utmost importance (except for security), the Linux kernel
provides a hardware abstraction layer in the Android stack. Linux has a well-understood
and tested driver model. Hardware drivers for many common devices are built into the
kernel and are freely available. There is an active development community that writes
drivers for the Linux kernel. This is an important consideration on two fronts: It enables
Android to support a vast array of devices, especially from a tablet viewpoint, and it
makes it easy for manufacturers and developers to write drivers in a well-understood
way. Android relies on Linux for basic OS functionality, that is, I/O, memory, and
process management. Figure 2.3 shows the Linux kernel version (cat/proc/version) for
Android 2.3.3.

Figure 2.2 Different Components within Layers of the Android Stack (Source:
http://en.wikipedia.org/wiki/Android_[operating_system])

Table 2.1 – Linux Kernel Versions for Android Releases

Android Version Linux Kernel Version

Android Cupcake 1.5 Linux Kernel 2.6.27

Android Donut 1.6 Linux Kernel 2.6.29

Android Éclair 2.0/2.1 Linux Kernel 2.6.29

Android Froyo 2.2 Linux Kernel 2.6.32

Android Gingerbread 2.3.× Linux Kernel 2.6.35

Android Honeycomb 3.× Linux Kernel 2.6.36

Android Icecream Sandwich 4.× Linux Kernel 3.0.1

http://en.wikipedia.org/wiki/Android_operating_system

From a security standpoint, Linux provides a simple but secure user- and permissions-
based model for Android to build on. In addition, the Linux kernel provides Android with
process isolation and a secure IPC. Android has also trimmed down the Linux kernel,
thus reducing the attack surface. At the core, the Linux kernel allows an Android
application to run as a separate user (and process). The Linux user-based permissions
model prevents one application from reading another application’s information or from
interfering with its execution (e.g., memory, CPU, devices). Android has also made
certain enhancements to the Linux kernel for security purposes—for example, restricting
access to networking and Bluetooth features, depending on the group ID of the calling
process. This is accomplished through the ANDROID_PARANOID_NETWORK kernel build
option. Only certain group IDs, for example, have special access to networking or
Bluetooth features). These are deɹned in /include/linux/android_aids.h (in-kernel source
tree). In Code Snippet 1, the kernel group AID_INET is deɹned with group ID 3003. A
calling process will need to be a member of this group to create/open IPv4 and IPv6
sockets.

Figure 2.3 Linux Kernel Version

Code Snippet 1 – include/linux/android_aid.h

Once these kernel groups are deɹned in include/linux/android_aid.h, they are then
mapped to the logical group “inet” in the
/system/core/include/private/android_ɹlesystem_conɹg.h ɹle. Code Snippet 2, below, is
from the android_ɹlesystem_conɹg.h ɹle. Note that the logical name “inet” is mapped to
“AID_INET”. AID_INET and has group ID 3003.

Code Snippet 2 – android_filesystem_config.h

When an Android application requests permission to access the Internet, it is
essentially seeking permission to open the IPv4 and IPv6 sockets. Application
permissions are then mapped to the “inet” group name through the
/system/etc/permissions/platform.xml ɹle. The following snippet of xml maps the
application’s permission to AID_INET:

Figure 2.4 shows an application that has permissions to access the Internet.

In addition to mapping the Kernel group IDs to logical names, there are other
important components of the android_ɹlesystem_conɹg.h ɹle, from a security
standpoint. This ɹle also deɹnes ownership rules for various directories and ɹles in the
Android ɹle system. For example, /data/app directory is owned by the AID_SYSTEM
user and group (see Figure 2.5). This mapping is deɹned here through the following
line: { 00771, AID _ SYSTEM, AID _ SYSTEM, “data/app” }. The ɹrst string deɹnes
permission (771), the second and third strings are user and group IDs of the owner, and
the last string is the directory itself.

Figure 2.4 Application Accessing Internet Permission Belongs to Group ID 3003 (AID_INET)

Figure 2.5 User System Owns /data directory as Defined in android_filesystem_config.h

Code Snippet 3 – Directory and File Permissions

The Android kernel also makes certain enhancements to the Linux kernel, including
Binder IPC mechanisms, Power Management, Alarm, Low Memory Killer, and Logger.
The logger provides a systemwide logging facility that can be read using the logcat
command. We cover logcat in detail in our Android Tools section later in this chapter.

2.1.2 Libraries
Android includes a set of C and C++ libraries used by diʃerent components of the
Android system (see Table 2.2). Developers use these libraries through the Android
application framework. At times, this layer is referred to as the “native layer” as the
code here is written in C and C++ and optimized for the hardware, as opposed to the
Android applications and framework, where it is written in Java. Android applications
can access native capabilities through Java Native Interface (JNI) calls. Most of the
libraries are used without much modiɹcation (SSL, SQLite, etc.). One exception is the
bionic or System C library. This library is not a typical libc but a trimmed down version
of it based on the BSD license and optimized for an embedded platform.

Table 2.2 – Android Native Layer Libraries

Library Description

Media
Libraries

Enables playback and recording of audio and video formats. Based on
OpenCore from PacketVideo

SQLite
Provides relational databases that can be used by applications and
systems

SSL Provides support for typical cryptographic functions

Bionic System C library

WebKit Browser-rendering engine used by Android browsers

Surface
Manager

Provides support for the display system

SGL Graphics engine used by Android for 2D

Figure 2.6 Compilation Process for Java Virtual Machine (JVM) and Dalvik Virtual Machine (DVM)

2.1.3 Android Runtime
Android Runtime can be thought of as comprising two diʃerent components: the Dalvik
VM and Core Libraries.

Android applications are written in Java. These applications are then compiled into
Java class ɹles. However, Android does not run these class ɹles as they are. Java class
ɹles are recompiled into dex format, which adds one more step to the process before the
applications can be executed on the Android platform. The Dex format is then executed
in a custom Java Virtual Machine (JVM)-like implementation—the Dalvik VM. Figure
2.6 shows the distinction between the compilation steps for a typical JVM versus the
Dalvik VM. The Dalvik VM relies on the Linux kernel for providing lower level
functionality (e.g., memory management).

Android includes a set of Core Libraries that provides most of the functionality
available in Java application programming interfaces (APIs). However, available

APIs_are a trimmed-down version of what one would expect to see in a J2SE. For
example, although there is no support for Swing or AWT, Core Libraries include
Android-speciɹc libraries (e.g., SQLlite, OpenGL). Whereas using J2SE would result in
overhead in an embedded environment, using J2ME would have licensing and security
implications. Using J2ME would require paying licensing fees to Oracle for each device.
For security reasons, each Android application runs in its own VM. For J2ME
implementation, all applications would be running inside on a VM, thus creating a
weaker security sandbox.

2.1.4 Application Framework
The Android application framework provides a rich set of classes provided (for
developers) through Java APIs for applications. This is done through various Application
Manager services. The most important components within this layer are Activity
Manager, Resource Manager, Location Manager, and Notiɹcation Manager. Table 2.3
summarizes the main services provided through this layer.

Table 2.3 – Android Application Framework Layer Services

Service Description

Activity
Manager

Manages the activity lifecycle of applications and various application
components. When an application requests to start an activity, e.g.,
through startActivity(), Activity Manager provides this service.

Resource
Manager

Provides access to resources such as strings, graphics, and layout files.

Location
Manager

Provides support for location updates (e.g., GPS)

Notification
Manager

Applications interested in getting notified about certain events are
provided this service through notification manager, e.g., if an application
is interested in knowing when a new e-mail has been received, it will use
the Notification Manager service.

Package
Manager

The Package Manager service, along with installd (package management
daemon), is responsible for installing applications on the system and
maintaining information about installed applications and their
components.

Content Enables applications to access data from other applications or share its

Providers own data with them

Views
Provides a rich set of views that an application can use to display
information

2.1.5 Applications
By default, Android comes with rich set of applications, including the browser, the SMS
program, the calendar, the e-mail client, maps, Contact Manager, an audio player, and
so forth. These applications are written in the Java programming language. Google Play
(the marketplace for Android) provides alternatives to these applications, if the user so
desires. Android does not diʃerentiate between applications written by users or
provided by the OS—for example, the browser application. A user can download Firefox,
Opera, or other browsers, and Android will treat them the same as the built-in browser.
Users can replace default applications with their own chosen applications. We cover
Android application architecture in detail in Chapter 3.

2.2 Android Start Up and Zygote
As we have discussed, Android is not Linux but is based on the Linux kernel, and there
are some similarities but also signiɹcant diʃerences between them. All Android
applications at the core are low-level Linux processes. Each application runs as a
separate process (with some exceptions), and, by default, there is one thread per
process. Like most Linux-based systems, boot loader at the startup time loads the kernel
(a modiɹed Linux kernel tailored for Android) and starts the init process. All other
processes are spawned from the init process. The init process spawns daemons (e.g., adb
daemon, USB, and other hardware daemons). Once it has ɹnished launching these
daemons, init then launches a process called “zygote.” This zygote process, in turn,
launches the ɹrst DVM and preloads all core classes used by the applications. It then
listens on a socket interface for future requests to spawn off new DVMs.

When a new application is launched, the zygote receives a request to launch a new
Dalvik VM. The zygote then forks itself and launches a new process that inherits the
previously initialized VM. The launching of a separate VM does not result in a
slowdown, as shared libraries are not copied unless the application makes any changes
and modiɹes them. After the zygote is started by init, it forks itself and starts a process
called system server. The system server then starts all core Android services, such as
Activity Manager. Once all of the core services are launched, the platform is ready to
launch applications as desired by the user. Each application launch results in the forking
of the zygote and the creation of a new Dalvik VM.

2.3 Android SDK and Tools
In this section, we set up an environment for developing and running Android

applications. Although developers are the primary target for many of these tools, it is
important for us (the users) to be familiar with them and to use them when performing
a security review of an Android application. By the end of this section, you should be
able to set up an Android environment on your system and develop, compile, run, and
debug an application.

The major components of the Android environment are as follows:

1. Android SDK
2. Eclipse IDE and ADT
3. Tools (including DDMS, logcat)

2.3.1 Downloading and Installing the Android SDK
The Android SDK is what we need to develop and run applications. The SDK includes the
Android libraries, tools, and sample applications to get us started. The SDK is available
for free from the Android website. To use the SDK, you will need to install the Java SDK.
Below are steps for setting up the Android SDK on your system:

1. Download the SDK appropriate for your platform (Windows, Mac, Linux). If you
are using the 64-bit version of Windows, you might need to tweak a few things, but
set up is pretty straightforward. On the Mac and Linux, just unzip the ɹle to the
desired location and you will have access to the Android tools. Figure 2.7 shows
utilities in the tools directory after unzipping the downloaded SDK package.

2. Update your PATH variable so that you can access tools from the command line
even outside the SDK directory. PATH should be set to <path to SDK>/tools and
<path to SDK>platform-tools.

Figure 2.7 Utilities Available under /tools

Figure 2.8 Android SDK Manager

3. Start the SDK manager by typing “android.” Select the Android version of interest
to you and download the corresponding packages. Figure 2.8 shows the Android
SDK Manager.

To get started with Android, create an Android Virtual Device (AVD) through the SDK
Manager (Figure 2.9). Once you create an AVD, you can launch it from the AVD
Manager (accessible from the SDK Manager) or from the command line through the
“emulator” command. The Android emulator is a full implementation of the Android
stack provided to us through the SDK to test and debug applications. This comes in
handy when we do not have access to the actual device.

2.3.2 Developing with Eclipse and ADT
Eclipse is an open-source Integrated Development Environment (IDE) with many tools
to aid in application development. It is quite popular among Java developers. Eclipse
plugins are also available for other languages (C, C++, PHP, and so forth). For
Android, we recommend Eclipse Classic IDE. You can download Eclipse from

http://www.eclipse.org/downloads/.
To use Eclipse to develop/review Android applications, you will need to download the

Android Development Tools (ADT) plugin. Steps to set up ADT on Eclipse are as follows:

1. Open Eclipse and then select “Help-> Install New Software.”
2. Add the following URL: https://dl-ssl.google.com/android/eclipse/ (see Figure

2.10).
3. Select “Developer Tools” and click next. Accept terms and click “Finish.”
4. Select “Eclipse” -> Preferences -> Android, point to the SDK folder, and click OK.

2.3.3 Android Tools
The Android SDK provides us with useful tools for the development, testing, and analysis
of applications. Table 2.4 presents the main tools and their descriptions. A detailed
discussion of all of these tools is outside scope of this book. However, we will examine
three of the tools—Dalvik Debug Monitoring Service (DDMS), Android Debug Bridge
(ADB), and ProGuard—in some detail here. Table 2.4 summarizes the tools available
through the SDK and their purpose. The Eclipse ADT plugin provides access to these
tools through Eclipse IDE. Especially of interest to us is DDMS perspective, which
provides us with information on Dalvik VMs running our applications. For more
information regarding these tools, please refer to the following URL:
http://developer.android.com/guide/developing/tools/index.html

http://www.eclipse.org/downloads/
https://dl-ssl.google.com/android/eclipse/
http://developer.android.com/guide/developing/tools/index.html

Figure 2.9 Creating a New Android Virtual Device (AVD)

Figure 2.10 Developer Tools Available Through ADT for Eclipse

Table 2.4 – Android Tools Available through SDK

Tool Usage

android
To run SDK manager from the command line. This lets the user
manage AVDs and installed components of SDK.

emulator
Enables us to run the mobile device emulator on a computer. This is
especially useful if you don’t have access to a mobile device.

ddms

Enables debugging of applications. It provides the following
information: port-forwarding services, screen capture on the device,
thread and heap information on the device, logcat, process, and radio
state information, incoming call and SMS spoofing, location data
spoofing, and so forth.

hierarchyviewer Allows us to debug the user interface.

hprof-conv Allows us to convert the HPROF file output from Android to a standard

format that can be viewed with profiling tools.

sqlite
Allows us to review sqlite3 databases created/used by Android
applications

adb

Allows us to communicate to emulator instances or mobile devices
through the command line. It is a client-server application that
enables us to interact with the running emulator (or device instances).
One can, for example, install an apk through the adb shell, view
running processes, and so forth.

proguard Built-in code obfuscation tool provided by Android

traceview A graphical analysis tool for viewing logs from applications

dx Converts .class byte code to .dex byte code used by Dalvik

mksdcard Used for creating SD card disk images used by the emulator

2.3.4 DDMS
The emulator (or cell phone screen) enables us to view an application’s behavior at a UI
level. However, to understand what is going on under the surface, we need the DDMS.
The DDMS is a powerful tool that allows us to obtain detailed information on running
processes, review stack and heap information, explore the ɹle system of the
emulator/connected device, and more. The Eclipse ADT plugin also provides us with
access to logs generated by logcat.

Figure 2.11 shows the DDMS tool launched by typing ddms into your development
system. It can also be launched from Eclipse ADT by accessing DDMS perspective (Figure
2.12). As can be seen from Figure 2.11, DDMS provides us with quite a bit of
information about processes running on the device or emulator. Toward the top left
corner, there is a list of running processes. Clicking on any of these processes provides
us with additional information that we can examine. For example, it lists the process ID
—the application name (com.Adam.CutePuppiesWallpaper), in our case. We can also
examine stack and heap information, threads associated with the process, and so forth,
by choosing various tabs toward the upper right hand corner. The bottom half of the
DDMS provides us with detailed event information for the emulator. In our example, by
launching the wallpaper application, you can see that the MCS_BOT_Service is launched.
After this, the application throws “Unknown Host Exception” for “k2homeunix.com” and
exits.

2.3.5 ADB

http://k2homeunix.com

ADB is a client-server application that provides us with a way to communicate with an
emulator/device. It is composed of three components: ADB daemon (/sbin/adbd), which
runs on the device/emulator; service, which runs on the development system, and client
applications (e.g., adb or ddms), which are used to communicate to the daemon through
the service. ADB allows us to execute interactive commands on the emulator or the
device, such as installing apk ɹles or pulling/pushing ɹles and shell commands (through
the adb shell). The ADB shell on an emulator provides us with a root shell with access to
almost everything. However, on a device, we will log in as a shell user and thus will be
limited in our ability to perform sensitive operations.

Table 2.5 presents important commands that we can execute through ADB. For a full
list of commands, please refer to the documentation provided through the following
URL: http://developer.android.com/guide/developing/tools/adb.html.

2.3.6 ProGuard
ProGuard is a code-obfuscation tool that is part of the Android SDK. Since Java classes
can be easily decompiled, it is a good idea to perform code-obfuscation as part of the
development and building of an application. The ProGuard tool shrinks, optimizes, and
obfuscates code by removing unused codes as well as renaming classes, ɹelds, and
methods. This can increase the time required to reverse engineer an application by
someone else. The steps to enable ProGuard are outlined below:

http://developer.android.com/guide/developing/tools/adb.html

Figure 2.11 DDMS Tool Provided through the Android SDK

Figure 2.12 DDMS Perspective through Eclipse ADT

Table 2.5 – ADB Commands

Purpose ADB Command

Issuing ADB
Commands

adb [-d] [-e] [-s <Serial Number>] command This command will
invoke the adb client. If there are multiple targets/instances of
devices/emulator running, -d option will specify which instance
command should be directed to. –e option will direct the command to
the running emulator instance.

List of devices
connected to
the adb server

adb devicesThe output will print the serial number of each device
attached as well as its state (offline, device).

Installing an adb –s emulator-5556 install helloworld.apkThis command will install

application
(apk)

the helloworld.apk application on the emulator instance with serial
number 5556

Copying files
to/from
device/emulator

adb pull <remote> <local>adb push <local> <remote>adb pull
will copy file reference by <remote>path to one referenced by
<local>adb push will copy file referenced by <local>path to one
referenced by <remote>

View log
information

adb logcatThis will print log data to screen

Interactive shell
commands

adb shell <command>This will execute shell commands—e.g., adb
shell ps will provide process listing running on the emulator or the
device

Examining
SQLite
databases

adb shell sqlite3This will drop us to sqlite3 command line utility
through which we can analyze SQLite databases on the system

1. Download and install the latest SDK. Setting up your project using older versions of
SDK may cause errors. If you have set up your project using the latest version of
SDK, skip to Step 4.

2. If you created your project using an older version of SDK, you will need to update
the project. Execute the command below to display a list of Android API versions
and choose the version appropriate for your SDK:
D:\eclipse\workspace>android.bat list targets\

3. Update your project, if necessary, with the target API version:
D:\eclipse\workspace>android update project –name Hello World –target 3 –
path D:\eclipse\workspace\HelloWorld\

4. Run the ant command from your project directory:
D:\eclipse\workspace\HelloWorld\ant

5. Edit the local.properties file and add the following line:
proguard.config=proguard.cfg

6. Build the project in release mode:
ant release

2.4 Anatomy of the “Hello World” Application
It is important to analyze the anatomy of the simple “Hello World” application to
become familiar with various ɹles and components within the project and application.

Create a Hello World application by opening Eclipse, setting build target (i.e., Android
release version on which code will be executed) to your desired API, and selecting the
application and package name. Once you ɹnish, your project directory should contain a
listing similar to the one shown in Table 2.6. Two ɹles are of special signiɹcance to
security: AndroidManifest. xml and strings.xml under the /res directory.

2.4.1 Understanding Hello World
Next, we will analyze the source code of the Hello World application to get an overview
of how it works. At the heart of every Android application is activity.

Table 2.6 – Anatomy of an Android Application Folder

Folder Comments

src
The code for the application resides in this folder. In our case, the
HelloActivity.java file will be located here

gen
The code generated for resources defined in the /res folder is
located here

Android 2.3.3
This contains the android.jar file for the targeted version of
Android

assets
Files that you would like to be bundled with your application
reside in this folder

bin
For compiling and running the application, this folder will
contain the Android application (apk) as well as classes.dex files

res

This is where resources for your application will be stored. These
resources include layout, values (including strings), and
drawables. Layouts, strings, and other resources are defined in
XML files. R class enables us to access these resources and their
values in Java code. Once resources are defined in XML files
(e.g., layout.xml, string.xml and so forth), one can reference
them in the application code by referring their resource ID. The
strings.xml file is of special interest to security professionals.
String values used by the application can be defined here. Many
applications choose to store sensitive information here, but it is

not a good place because simple reverse-engineering techniques
can divulge them

AndroidManifest.xml

Defines Android application components (activities, services,
Broadcast Receivers), package information, permissions required
by applications to interact with other applications as well as to
access protected API calls, and permissions for other applications
to interact with application components

proguard-project.txt Configuration file for ProGuard

An activity is a single screen that a user interacts with on screen—for example, the
screen where the user enters his user ID and password to log onto the Twitter
application.

A useful application comprises multiple activities (one activity per screen that the user
will encounter). However, for our simple application, we only have one activity (a
single screen), which displays “Hello World, HellloWorldActivity.” This screen/activity is
displayed when the application is launched and writes “Hello Logcat” to log.

Figure 2.13 shows the screen launched by HelloWorldActivity. Code Snippet 3 shows
the source code for our application. After deɹning the package name
(com.androidsecurity.helloworld), we import a few classes that we need to write a fully
functional application. Some of these are mandatory (e.g., android. app.Activity),
whereas others are application dependent (e.g., android.util.Log). If we do not need
logging functionality in the application, we can skip importing this class. Activity is a
base class that is needed if an application requires visual components/UI/screens. The
application activity class (HelloWorldActivity) will need to extend the base activity class
and override the OnCreate() method to add custom functionality. In the application, we
override OnCreate() to set how the screen/UI will look, as well as to write a line to
logcat. We set the layout of the screen through setContentView(R.layout.main). If we
have multiple screens, we could choose a diʃerent layout for each screen by
setContentView(R. layout.secondlayout). secondlayout will correspond to the
secondlayout.xml ɹle. R class provides us with a way to reference the layout and
variables deɹned in XML ɹles in Java code. This is a glue between views/xml ɹles and
Java. Finally, we log “Hello LogCat!” to the log ɹle by Log.v(“Hello World”, “Hello
LogCat!”). Log.v indicates that we want verbose log (as opposed to other logging levels,
such as debug, warning, and so forth). “Hello World” in the above line tags the event to
be logged, and “Hello LogCat!” sets the value of the line itself.

Figure 2.13 HelloWorldActivity

Code Snippet 3 – HelloWorldActivity Source Code

The layout or structure of a screen/visual component is deɹned in XML ɹles. Since our
application has only one activity, we deɹne only one layout (/res/layouts/main.xml).
Code Snippet 4 describes the main.xml layout code. We basically create a linear layout
and write text onto the screen through TextView. The text to be written is determined by
@string/hello. This line basically tells the application to display a string value stored in
the variable named “hello.” The value of “hello” is deɹned in /res/values/strings.xml
(Code Snippet 5). There are two string values in this ɹle “hello” set to “Hello World,
HelloWorldActivity” and “app_name” set to “Hello World.” The string “app_name” is
referenced by the Manifest.xml file.

Code Snippet 4 – main.xml file

Code Snippet 5 – strings.xml file

As seen from the Console window within Eclipse’s Java perspective (Figure 2.14),
after launching the Android emulator, the application apk (HellloWorld. apk) is
installed. Activity (com.androidsecrity.helloworld.HellloWorldActivity) is then begun.
Note that activity is referenced through the package name (com.
androidsecurity.helloworld).

Figure 2.15 shows the logcat entry written by our application.

2.5 Summary
In this chapter, we reviewed the Android Software Stack as well as the various layers
within it. We examined in detail the Linux kernel and its security-related mechanisms,
which Android relies on. We discussed Zygote and Android start up and then moved onto
setting up the Android environment for development and testing purposes. We reviewed
various tools available to us through the Android SDK. We concluded the chapter by
examining the structure of a typical Android project and application. The reader should
now be familiar with different terms used across the stack.

Figure 2.14 Console Messages while Running the HelloWorld Application

Figure 2.15 Logcat Entry Written by the HelloWorld Application

Chapter 3
Android Architecture

In this chapter, we introduce the reader to Android Application Architecture. We present
various components that make up an Android application, and we demonstrate how
these components work when an application is running, through the use of logcat. We
then cover the application lifecycle phases of an Android application. By end of the
chapter, the reader will be able to describe the typical components of an Android
application, determine when to use these components, and understand application
lifecycle phases.

3.1 Application Components
A typical Android application is usually rich in functionality—for example, the built-in
clock application. This application has the following basic functions: displaying time (in
time zones), setting alarms, and setting a stopwatch. Basically, these are three diʃerent
screens of the same application. Besides its obvious functionality, this application needs
to communicate with back-end servers for time updates, execute a component in the
background (service) for alarms, synchronize with a built-in processor clock, and so
forth. Thus, even a simple Android application has multiple building blocks. There are
four main components of an Android application: activities, BroadcastReceivers,
ContentProviders, and services. These components interact with each other

Figure 3.1 Components of an Android Application

(or with components of other applications) through messages called Intents. Figure
3.1 depicts the main components of an Android application.

3.1.1 Activities
Activities are basically screens that the user sees or interacts with visually. They can be
thought of as visual user interface (UI) components of an application. Most applications
will have multiple activities (one for each screen that the user sees/interacts with). The

user will switch back and forth among activities (in no particular order, at times). For
seamless end-user experience, the user is able to launch diʃerent activities for the same
application in any order (with some exceptions). The user can also launch the activity of
another application (through Intents, covered later in the chapter), as shown in Figure
3.2. Every Android application has an activity that is launched when an application
starts. From this activity, the user can then navigate to diʃerent activities or
components within the application. There is usually a way for the user to revert to a
previous activity. In a nutshell, through the activity UI screen, the user interacts with the
application and accesses its functionality. Examples of activities are:

Figure 3.2 Activity Interaction between Android Applications

- Log-in screen of an application
- Composing an e-mail
- Sending a photo through an e-mail

An application consists of multiple activities tied together for end-user experience.
Usually, when an application starts, there is a “main” activity that is launched and a UI
screen is presented to the user.

The activity class creates screens, and developers can create UI components using
setContentView(View). One has to create a subclass of the “activity” class to create an
activity. In this class, one has to implement (override) relevant callback methods that
will be called when an activity is created, transitioned (paused, stopped, sent into the
background), or destroyed. There are quite a few callback methods. However, the most
important ones (frequently used) are OnCreate() and OnPause().

- OnCreate(Bundle): This is where activity is initialized, and every activity class
implements this method. Usually, setContentView(Int) is called within OnCreate()
and deɹnes the UI of the screen/activity. ɹndViewById(Int) is used to ɹnd
resources and interact with them programmatically.

- onPause(): If a user decides to leave an activity, the saving of the state or important
operations are performed by this method.

Other important methods for an activity class are as follows: onStart(), onRestart(),
onResume(), onStop(), and onDestroy(). We cover these in our discussion on Activity
Lifecycles later in the chapter.

Code Snippet 1 shows the deɹnition of a typical activity class (Activity A, in this
case). The Activity A class extends the base class (activity), deɹnes the variables, and

then overrides and implements callbacks—speciɹcally OnCreate(). Inside OnCreate(),
activity defines the UI by calling setConventView() and findViewById().

Code Snippet 1 – Activity A OnCreate() Method

Every activity in an application needs to be declared inside the Manifest ɹle. Any
activity that is not declared in Manifest won’t be registered in the system and thus won’t
be allowed to execute.

Code Snippet 2 shows the Manifest ɹle with declarations for activities. Activity
declaration is done through <activity> tag and is a child of the <application>
element in the ɹle. Inside the <activity> tag, we deɹne attributes for that activity.
android:name provides the class name for the activity. <activity> tag contains the
Intent filters as well as the metadata for an activity.

The Manifest ɹle needs to have an entry for each activity in an application. In the
snippet here, the application is composed of three diʃerent activities—A, B, and C. As is
evident from the Manifest ɹle, Activity A is the main activity and is launched when the
application starts. Also note that Activity A has Intent defined. For this Intent, the action
is MAIN and the category is set to LAUNCHER, thus enabling the activity to be available
in the application launcher and enabling the user to start the application.

For detailed information on other attributes, please refer to the following URL:
http://developer.android.com/guide/topics/manifest/activity-element.html

http://developer.android.com/guide/topics/manifest/activity-element.html

Code Snippet 2 – Activities in Manifest File

Since an application can start activities within other applications, we need to limit the
ability of other applications to start a particular activity. This is enforced using
permissions in the Android Manifest ɹle. Other applications will need to request access
to these permissions through uses-permission. Activity permissions (applied under
<activity> tag through android:permission) enable us to restrict who can start that
activity. The permission is checked when Context.startActivity() or
Activity.startActivityForResult() are called. If the caller does not have permission, the
request to start an activity is denied.

3.1.2 Intents
Intents are messages through which other application components (activities, services,
and Broadcast Receivers) are activated. They can be thought of as messages stating
which operations/actions need to be performed. Through Intents, the Android provides a
mechanism for late run-time binding between application components (within the same
application or among diʃerent applications). Intents themselves are objects containing
information on operations to be performed or, in the case of Broadcast Receivers, on
details of an event that occurred.

Consider an application like the N.Y. Times. Within this application, there are
diʃerent activities—an activity that presents a list of articles available, an activity that
displays an article, a dialog activity that allows us to mark it as favorite, and so forth.
This application also allows us to share articles with others by sending links in e-mails.
As shown in Figure 3.3, these interactions are achieved by switching between diʃerent
activities through Intents.

Intents are delivered by various methods to application components depending on
whether the component is a service, activity, or a Broadcast Receiver, as presented in
Table 3.1.

Intent is a data structure designed to hold information on events or operations to be
performed. Intents contain two primary pieces of information:

- Action to be performed

- Data on which action will be performed, expressed as Uniform Resource Identiɹer
(URI)

Shown below are a few examples of action/data pairs:

- ACTION_DIAL content://contacts/people/1
This will display the number of the person in the phone dialer.

- ACTION_DIAL tel:123
This will display the number 123 in the phone dialer.

Figure 3.3 Use of Intents

Table 3.1 – Methods Delivering Intents to Components

Application
Components

Methods

Activity Context.startActivity()Activity.startActivtyForResult()Activity.setResult()

Service Context.startService()Context.bindService()

Broadcast
Receivers

Context.sendBroadcast()Context.sendOrderedBroadcast()Context.sendStickyBroadcast()

There are other pieces of information that can be provided in an Intent:

- Category – provides information on the category of action. If it is set to
CATEGORY_LAUNCHER, this activity will appear in the application launcher.

- Type – provides explicit type of Intent data (thus bypassing built-in evaluation).
- Component – provides name of the component that will handle the Intent. This is

not a required ɹeld. If it is empty, other information provided in the bundle will be
used to identify the appropriate target.

- Extras – any additional information that needs to be provided. These extra pieces of
information are provided through android.os.Bundle.

Through attributes, Intents allow the expression of operations and events. For
example, an activity can pass on an Intent to the e-mail application to compose an
application with an e-mail ID. Intents can be classiɹed into two diʃerent types: explicit
and implicit.

Explicit Intents provide the component name (class name) that must be invoked
through the Intent. This is usually for inter-application components, since other
applications would not typically know component names. Here is a typical invocation
of explicit Intent:

Intent i = new Intent(this,<activity_name>.class);

Implicit Intents, on the other hand, are used to invoke components of diʃerent
applications (e.g., photo application sending an e-mail Intent to e-mail application to
send a photo through an e-mail). They do not provide the speciɹc component name to
be invoked but rely on the system to ɹnd the best available component to be invoked.
For this to be possible, each component can provide Intent-ɹlters—structures that
provide information on which Intents can be handled by particular components. The
system then compares ɹlters to the Intent object and selects the best available
component for it. Intent-ɹlters provide a way to specify which Intents a component is
willing to handle and can help de-limit the invoking of a component through implicit
Intent. If a component does not have Intent-ɹlters, it can only receive explicit Intents.
Note that Intent-ɹlters cannot be relied on for security because one can always send an
explicit Intent to it, thus bypassing the ɹlters. Component speciɹc permissions should
always be deɹned to restrict who can access a particular component through Intents. In
addition, limited data can be passed through Intents. However, any sensitive

information, such as passwords, should never be sent through Intents, as these can be
received by malicious components.

A typical invocation of implicit Intent is as follows:

Intent I = new Intent(Intent.ACTION_VIEW, Uri.parse (http://www.google.com));

When an Intent object is compared to a ɹlter by the system, the three ɹelds (elucidated
in Table 3.2) are tested/compared, and thus a component servicing the Intent needs to
provide this information in its filter.

The Manifest.XML ɹles for Phone and Browser applications are presented in Figures
3.4 and 3.5. Both of these applications are installed by default on Android devices, and,
thus, other applications can leverage them for making calls and browsing the web. The
Phone application provides many Intent ɹlters, including android.intent.action_CALL
with data type of “tel.” If an application tries to make a phone call, an Intent will be
sent to the Phone application with data type (number to call). The Browser application
provides Intent ɹlters for android.intent.action_VIEW, among others. This enables other
applications to pass the URL to the Browser application.

Table 3.2 – Intent Fields and Their Descriptions

Intent
Field

Purpose

Action
A string with the name of the action being performed or event that has taken
place (in the case of Broadcast Receivers). Examples: ACTION_CALL,
ACTIION_TIMEZONE_CHANGED

Data
URI and MIME type of data to be acted upon. Example: ACTION_VIEW will
have URL associated with it while ACTION_CALL will have tel: data type

Category
Provides additional information on the kind of component that should
handle/service the Intent. Categories can be set to CATEGORY_HOME,
CATEGORY_LAUNCHER, CATEGORY_BROWSABLE, and so forth

http://www.google.com

Figure 3.4 Manifest.XML File for Phone Application

Figure 3.5 Manifest.XML File for Browser Application

3.1.3 Broadcast Receivers
Broadcast Receivers deal with Intents. They are a means whereby Android applications
and system components can communicate with each other by subscribing to certain
Intents. The receiver is dormant until it receives an activating Intent; it is then activated
and performs a certain action. The system (and applications) can broadcast Intents to
anyone who is interested in receiving them (although this can be restricted through
security permissions). After an Intent is broadcasted, interested receivers having
required permissions can be activated by the system.

The Android system itself broadcasts Intents for interested receivers. The following is
a list of Android System Broadcast Intents:

• ACTION_TIME_TICK

• ACTION_TIME_CHANGED
• ACTION_TIMEZONE_CHANGED
• ACTION_BOOT_COMPLETED
• ACTION_PACKAGE_ADDED
• ACTION_PACKAGE_CHANGED
• ACTION_PACKAGE_REMOVED
• ACTION_PACKAGE_RESTARTED
• ACTION_PACKAGE_DATA_CLEARED
• ACTION_UID_REMOVED
• ACTION_BATTERY_CHANGED
• ACTION_POWER_CONNECTED
• ACTION_POWER_DISCONNECTED
• ACTION_SHUTDOWN

An alarm application might be interested in receiving the following two broadcasts
from the system: ACTION_TIME_CHANGED and ACTION_TIMEZONE_CHANGED.
Broadcast Receivers themselves do not have a UI component. Rather, the application
(through the activity) will deɹne the onReceive() method to receive and act on a
broadcast. The activity will need to extend the android.content.BroadcastReceiver class
and implement onReceive().

An application can send broadcasts to itself or to other applications as well. Broadcast
Receivers need to be registered in the Manifest.xml ɹle. This enables the system to
register your application to receive particular broadcast. Let’s take the example of our
time application. To receive ACTION_TIME_CHANGED and
ACTION_TIMEZONE_CHANGED broadcasts, the application needs to declare the register
method in the Manifest.xml ɹle with events we are interested in receiving. By doing
this, we register our BroadcastReceivers with the system which activates our receiver
when the event happens. Code Snippet 3 shows the Manifest.xml ɹle with a declaration
for TimeReceiver. The TimeReceiver will override the callback onReceive().

We need to request permissions required to receive Intents to receive certain
broadcasts.

Code Snippet 3 – Registering Broadcast Receivers

To receive certain broadcasts, one will need to have requisite permissions (e.g., to
receive BOOT_COMPLETED broadcast, one needs to hold RECEIVE_BOOT_COMPLETED
permission). In addition, BroadcastReceiver permissions restrict who can send
broadcasts to the associated receiver. When the system tries to deliver broadcasts to
receivers, it checks the permissions of the receiver. If the receiver does not have the
required permissions, it will not deliver the Intent.

3.1.4 Services
A service is an application component that can perform long-running operations in the
background for an application. It does not have a UI component to it, but it executes
tasks in the background—for example, an alarm or music player. Other applications can
be running in the front while services will be active behind the curtain even after the
user switches to a diʃerent application component or application. In addition, an
application component may “bound” itself to a service and thus interact with it in
background; for example, an application component can bind itself to a music player
service and interact with it as needed. Thus, service can be in two states:

- Started
- Bound

When an application component launches a service, it is “started.” This is done
through the startService() callback method. Once the service is started, it can continue to
run in the background after the starting component (or its application) is no longer
executing.

An application component can bind itself to a service by calling bindService(). A
bound service can be used as a client-server mechanism, and a component can interact
with the service. The service will run only as long as the component is bound to it. Once
it unbinds, the service is destroyed. Any application component (or other applications)
can start or bind to a service once it receives the requisite permissions. This is achieved
through Intents.

To create a service, one must create a subclass of service and implement callback
methods. Most important callback methods for service are onStartcommand(), onBind(),
onCreate(), and onDestroy().

onStartCommand()

This callback method is called by the system when another application component
requests a particular service to be started by calling startService(). This service then will
run until it encounters stopSelf() or stopService().

onBind()

This callback method is called when another component would like to be bound to the
service by calling bindService().

onCreate()

When the service is ɹrst created, this method will perform initial setup before calling
onStartCommand() or onBind().

onDestroy()

This callback method is called when the service is no longer needed or being used.

Note that an Android will stop a service in case it needs to recover system resources
(e.g., it is low on memory). As with other components, one needs to declare services in
the Manifest.xml ɹle. Services are declared under the <service> tag as a child of the
<application> tag. Code Snippet 4 depicts a typical declaration of service in the
Manifest ɹle. The android:name attribute speciɹes a class name for the service. A
service can be invoked by other applications if it has defined Intent-filters.

Code Snippet 4 – Services in the Manifest File

As with other application components, one can restrict which applications can start or
bind to a service. These permissions are deɹned within the <services> tag and are
checked by the system when Context.startService(), Context.stopService(), or
Content.bindService() are called. If the caller does not have required permissions, the
request to start or bound to a service is denied.

3.1.5 Content Providers
Content providers provide applications with a means to share persistent data. A content
provider can be thought of as a repository of data, and diʃerent applications can deɹne
content providers to access it. Applications can share data through Intents. However,
this is not suited for sharing sensitive or persistent data. Content providers aim to solve
this problem. Providers and provider clients enable a standard interface to share data in
a secure and eɽcient manner—for example, the Android’s Contacts Provider. The
Android has a default application that accesses this provider. However, one can write an
application that has a diʃerent UI accessing and presenting the same underlying data
provided by the Contacts Provider. Thus, if any application makes changes to the

contacts, that data will be available for other applications accessing the Contacts
Provider. When an application wants to access data in a content provider, it does so
through ContentResolver().

The content provider needs to be declared like other application components in the
Manifest.xml ɹle. One can control who can access the content provider by deɹning
permissions inside the <provider> tag. One can set android:readPermission and
android.writePermission to control the type of operations other application components
can perform on content providers. The system will perform a check for requisite
permissions when Content.Resolver. query(), Content.Resolver.insert(),
Content.Resolver.update(), and Content. Resolver.delete() methods are called. If the
caller does not have requisite permissions, the request to access the content provider is
denied.

3.2 Activity Lifecycles
In this chapter, we have introduced activities and discussed callback methods that
activities implement, such as onCreate(), onPause(), onStart(), onRestart(), onResume(),
onStop(), and onDestroy(). We will now cover activity lifecycles in a bit more detail.

As we have seen, activities are UI screens for users to interact with. A typical
application consists of multiple activities, and the user seamlessly switches back and
forth between them. The user can also launch the activity of another application (done
through Intents). It is important to understand activity lifecycles, especially for
developers, because when activities are switched or terminated, certain callback
methods need to be implemented. If an activity does not implement required callbacks,
this can lead to performance and/or reliability issues.

Activities are managed as an activity stack. When the user navigates an application,
activities go through diʃerent states in their lifecycle. For example, when a new activity
is started, it is put on top of the stack (and have user focus) and becomes the running
activity, with previously running activity pushed below it on the stack. The system will
call diʃerent lifecycle methods for diʃerent states of activities. It will call either
onCreate(), onRestart(), onStart(), or onResume() when an activity gains focus or comes
to the foreground. The system will call a diʃerent set of callbacks (e.g., onPause())
when an activity loses focus.

- Active/Running: Activity is in this state if it is in the foreground and has user focus.
- Paused: Activity is in this state if it has lost focus but is still visible, as non–full-size

activity has taken focus. Activity still retains state information and can be killed in
case the system is low in resources.

- Stopped: If an activity loses focus to a full-screen activity, then its state changes to
Stopped. The activity still retains state information and can be killed in case the
system is low in resources.

- Inactive/Killed: A system can kill activity if it is in paused or stopped state. When re-

launched, activity will have to initialize its state and member information again.

Figure 3.6 shows important paths in lifecycle activity. Rectangles represent diʃerent
callback methods that can be implemented when an activity moves between states.
Ovals represent different states an activity can be in.

By the time an activity is destroyed, it might have gone through multiple iterations of
becoming active or inactive(paused). During each transition, callback methods are
executed to transition between states. It is useful to look at an activity timeline from
three different views:

Figure 3.6 Activity Lifecycle and Callback Methods

- Entire lifetime: The timeline of an activity between the ɹrst call to onCreate() and
the call to onDestroy() is its entire lifetime. This includes all iterations that an
activity will go through until it is destroyed. onCreate() sets up the state for an
activity (including resources), while onDestroy() frees up resources consumed by
the activity.

- Visible lifetime: This lifetime corresponds to the time a user sees activity on screen.
This happens between one cycle of onStart() and onStop(). Although activity might
be visible, the user might not necessarily be able to interact with it.

- Foreground lifetime: This lifetime corresponds to the time that a user can actually
interact with the activity. This happens between the call to onResume() and the call
to onPause().

Table 3.3 – Activity Lifecycle Callback Description

Method Description

onCreate()
Called when an activity is first launched. Performs initial setup for an
activity

onRestart() Called when an activity was stopped early and needs to be restarted

onStart()
Called when an activity comes to foreground and becomes available to
the user for interaction

onResume()
Called when an activity comes to the foreground and starts interacting
with the user

onPause()
Called when the system would like to resume previously paused activity.
Changes that need to be saved are usually made in this method before an
activity pauses itself

onStop() Called when an activity is no longer visible to the user

onDestroy() Called when the system wants to free up resources

Callback methods and their descriptions relevant to activity lifecycles are described in
Table 3.3.

We will review an activity lifecycle by walking through an application (available
from developer.android.com). We have modiɹed the code to output information to
logcat. The application is composed of three diʃerent activities (UI screens)—Activity A,
B, and C (see Figure 3.7). The user can switch between these activities by clicking a
button provided on the activity. Switching between activities launches various callback
methods, and previously running activity is put on the stack. The user can also return to
previously running activity using the application. Let’s walk through the following
sequence of activity switching: launching Activity A, Activity B, and Activity C and then
coming back to Activity B and Activity A. We will review the output from logcat to see
the lifecycle methods being called.

Activity Lifecycle Demonstration

1. Launch Activity A by starting the application (as this is our main activity).
Reviewing output from logcat (see Figure 3.8) shows that the following methods

http://developer.android.com

are called in order: onCreate(), onStart() and onResume() after the Activity
Manager starts the main activity (Activity A, in our case).

2. Launch Activity B by clicking the “Start B” button. Upon reviewing the output in
logcat (see Figure 3.9), we see that onPause() was called in Activity A, thus putting
it on the stack. Activity B then was started by the Activity Manager, and methods
onCreate(), onStart(), and onResume() were called. Once Activity B came to the
foreground, onStop() was called from Activity A. We observe the same sequence of
callback methods when we switch to Activity C from Activity B (see Figure 3.10). 3.
Now click the “Finish C” button in Activity C and observe the sequence of callback
methods (see Figure 3.11). We see that onPause() is called from Activity C; then,
the next activity on the stack (Activity B) is started. Once Activity B is in the
foreground, onStop() and onDestroy() are called for Activity C, thus freeing up
resources for the system. We observe a similar sequence of callback methods when
we “Start A” from Activity B (Figure 3.12).

Figure 3.7 Screenshot of Activity Lifecycle Application

Figure 3.8 Activity Lifecycle: Activity A Launched

Figure 3.9 Activity Lifecycle: Activity B Launched

Figure 3.10 Activity Lifecycle: Activity C Launched

Figure 3.11 Activity Lifecycle: Activity C Completed

Figure 3.12 Activity Lifecycle: Activity A Is Launched

3.3 Summary
In this chapter, we discussed Android application components (activities, Broadcast
Receivers, Content Providers, and services) in detail. We also discussed Intents—
messages sent between application components or within applications. We then
discussed activity lifecycles and diʃerent callback methods that are implemented by the
activities. The reader should now be able to describe the major components of Android
applications, the interactions between them, and the activity lifecycle methods.

Chapter 4
Android (in)Security

In this chapter, we turn our focus to Android’s built-in security mechanisms at the
platform level as well as its application layers. The reader should be familiar with
Android architecture (covered in Chapter 2) and Android application basics (building
blocks, frameworks) (covered in Chapter 3). This chapter builds on an understanding of
the platform and application layers to demonstrate the security features provided by
Android. This chapter also introduces the reader to diʃerent Interprocess
Communication (IPC) mechanisms used by Android application components.

DETOUR

Diʃerent applications and processes need to communicate with each other and share data/information. This
communication occurs through the IPC mechanism—for example, in Linux, signals can be used as a form of IPC.

4.1 Android Security Model
Android developers have included security in the design of the platform itself. This is
visible in the two-tiered security model used by Android applications and enforced by
Android. Android, at its core, relies on one of the security features provided by Linux
kernel—running each application as a separate process with its own set of data
structures and preventing other processes from interfering with its execution.

At the application layer, Android uses ɹner-grained permissions to allow (or disallow)
applications or components to interact with other applications/components or critical
resources. User approval is required before an application can get access to critical
operations (e.g., making calls, sending SMS messages). Applications explicitly request
the permissions they need in order to execute successfully. By default, no application has
permission to perform any operations that might adversely impact other applications,
the user’s data, or the system. Examples of such operations include sending SMS
messages, reading contact information, and accessing the Web. Playing music ɹles or
viewing pictures do not fall under such operations, and, thus, an application does not
need to explicitly request permissions for these. Application-level permissions provide a
means to get access to restricted content and APIs.

Each Android application (or component) runs in a separate Dalvik Virtual Machine
(VM)—a sandbox. However, the reader should not assume that this sandbox enforces
security. The Dalvik VM is optimized for running on embedded devices eɽciently, with
a small footprint. It is possible to break out of this sandbox VM, and, thus, it cannot be
relied on to enforce security. Android permission checks are not implemented inside the
Dalvik VM but, rather, inside the Linux kernel code and enforced at runtime.

Access to low-level Linux facilities is provided through user and group ID enforcement,

whereas additional ɹne-grained security features are provided through Manifest
permissions.

4.2 Permission Enforcement—Linux
When a new application is installed on the Android platform, Android assigns it a
unique user id (UID) and a group id (GID). Each installed application has a set of data
structures and ɹles that are associated with its UID and GID. Permissions to access these
structures and ɹles are allowed only to the application itself (through its ID) or to the
superuser (root). However, other applications do not have elevated superuser privileges
(nor can they get them) and, thus, cannot access other applications’ ɹles. If an
application needs to share information with other application(s) or component(s), the
MAC security model is enforced at the application layer (discussed in the next section).

It is possible for two applications to share the same UID or run in the same process.
This can be the case if two applications have been signed by the same key (see
application signing in Chapter 3). This should underscore the importance of signing keys
safely for developers. Android applications run in separate processes that are owned by
their respective UID and thus sandboxed from each other. This enables applications to
use native code (and native libraries) without worrying about security implications.
Android takes care of it.

Figure 4.1 id Command on the Emulator

Note that Linux is a multi-user multitasking OS. In contrast, Android is meant to
deliver single-user experience. It leverages a security model meant for multiple users in
Linux and applies to applications through Linux permissions.

Figure 4.1 is a screenshot showing the UID of the user when connected to the Android
emulator. In this case, UID (and GID) = 0. This has special signiɹcance in the *NIX
environment, as this denotes superuser (equivalent to Administrator in a traditional
Windows environment). A superuser can perform pretty much all operations and access
all files.

Note: Obtaining the shell through the emulator will give you root user access.
However, if you perform this test on the phone, you will be assigned a “system” or
“shell” UID, unless, of course, you have rooted your phone.

Each application installed on Android has an entry in /data/data directory. Figure 4.2
is a screenshot showing the ls –l command on this directory. The output lists permissions
for each directory along with owner (UID), group (GID), and other details. As the reader
can see, any two-application directories are owned by respective UIDs.

In the screenshot presented in Figure 4.2, app_1 (htmlviewer) owns the

com.android.htmlviewer directory, and, thus, it cannot access ɹles in the
com.android.music directory, which is owned by app_5.

If Android applications create new ɹles using getSharedPreferences(),
openFileOutput(), or openOrCreateDatabase() function calls, the application can use
MODE_WORLD_READABLE and/or MODE_WORLD_WRITEABLE ɻags. If these ɻags are
not set carefully, other applications can read/write to ɹles created by your application
(even if the files are owned by your application).

The UID of an application is the owner of the process when the application runs. This
enables it to access ɹles (owned by the UID), but any other process cannot directly
access these ɹles. They will have to communicate through allowed IPC mechanisms.
Each process has its own address space during execution, including stack, heap, and so
forth.

Figure 4.3 is a screenshot demonstrating the output of the “ps” command. The ps
command provides a list of processes running and corresponding state information. As
can be seen in this screenshot, each process (application) belongs to the corresponding
UID.

Figure 4.2 ls Command Executed on /data/data Shows Directory Ownership

The com.mj.iCalender process is owned by app_36 (UID 36), which the iCalender
application was assigned during the install process. Many processes are owned by the
root or system user. The root user owns daemons (e.g., init) and the system user owns
service managers. These are special processes that manage and provide Android
functionality and thus are not controlled by the user.

http://com.android.htmlviewer

Figure 4.3 ps Command Shows Process Ownership

An application can request to share a UID by using “android:shareUserId” in the
Manifest ɹle (discussed later). Android will grant the request if the application has been
signed by the same certiɹcate. An entry in the Manifest ɹle to request the same UID
looks like this:

4.3 Android’s Manifest Permissions
The Linux kernel sandboxes diʃerent applications and prevents them from accessing
other applications’ data or user information, or from performing operations such as
accessing the Internet, making phone calls, or receiving SMS messages. If an application
needs to perform the aforementioned operations (e.g., Internet access), read the user’s
information (e.g., contacts), or talk to other applications (e.g., communicate with the e-
mail application), the application needs to speciɹcally request these permissions (MAC
model). Applications declare these permissions in their configuration file (Manifest.xml).
When an application is installed, Android prompts the user to either allow or reject
requested permissions (see Figure 4.4). A user cannot select certain permissions—that is,
allow access to the Internet and reject SMS access. The application requests a set of
permissions, and the users either approve or deny all of them. Once the user has
approved these permissions, Android (through the Linux kernel) will grant access to the
requested operations or allow interaction with diʃerent applications/components.
Please note that once the user has approved permissions, he cannot revoke them. The
only way to remove the permissions is to uninstall the application. This is because
Android does not have the means to grant permissions at runtime, as it will lead to less
user-friendly applications.

Android permissions are also displayed to the end-user when downloading
applications from the “oɽcial” Android market (see Figure 4.5). However, this might
not always be the case, as there are quite a few sources for Android applications. If the
user just downloads .apk ɹles, a warning about security implications will only be

displaced during runtime.

Figure 4.4 Android Requesting User Consent during Install Process

4.3.1 Requesting Permissions
Since an Android application cannot perform any operations that would adversely
impact the user’s experience or access any data on the device by default, it needs to
request these “protected” features explicitly. These are requested in the
AndroidManifest.xml ɹle and are usually called Manifest permissions (compared to the
Linux permissions discussed earlier). Requested permissions are contained within <uses-
permission> tags within the ɹle. Below is an example of an application that is
requesting Internet access and reads MMS and SMS messages:

Figure 4.5 YouTube Application Permissions Listing (Android Marketplace) (Google and the Google logo are registered
trademarks of Google Inc., used with permission.)

If an application tries to perform an operation for which it has no permission (e.g.,
read SMS), Android will typically throw a SecurityException back to the application. The
Android system provides default permission deɹnitions (Manifest Permissions). These
cover lot of application functionality (reading SMS, sending MMS, accessing the
Internet, mounting ɹle systems). However, an application can deɹne its own
permissions. This would be needed if the application would like to expose its
functionality (through activities or other components) for use with other applications or
if the application wants to enforce its own permissions (not known to other
applications).

If an application wants to control which applications (or their components) can
start/access its activities, it can enforce using this type of permission in the Manifest
permission file:

In the above snippet, android:name describes the name of a newly created
permission, which can be used by applications (including this one) through the <uses-
permission> tag in the Manifest ɹle. The android:label provides a short name for the
permission (which is displayed to the user) while android:description provides the user
with information on the meaning of the permission. For example, the label can be
EXPENSIVE FEATURE, while the description can be something like, “This feature will
allow the application to send premium SMS messages and receive MMS. This can add to
your costs as it will be charged to your airtime.” The android:protectionLevel deɹnes the
risk the user will be taking by allowing the application to use this permission. There are
four different levels of protection categories (see Table 4.1):

You can obtain a list of all permissions by group through the following command
(Figure 4.6)

Table 4.1 – Android User Protection Levels

Protection
Level

Description

Normal

This is the default value. It allows an application to get access to isolated
features that pose minimal risk to other applications, the user, or the
system. It is granted automatically by the system, but the user can still
review it during the install time.

Dangerous
Allows the application to perform certain operations that can cost the user
money or use data in a way that can impact the user in a negative manner.
The user needs to explicitly approve these permissions.

Signature
Granted only if the application signed with the same certificate as the
application that declared the permission.

Signature Granted only to applications that are in the Android system image or that

or system are signed with the same certificates as those in the system image

A detailed description of permissions deɹned in the system can be obtained through
(Figure 4.7)

To obtain descriptions of all permissions deɹned on the device you can use (Figure
4.8)

4.3.2 Putting It All Together
To sum up, the Linux kernel sandboxes applications and provides security by enforcing
UID/GID permissions. An application can request additional permissions that, if
approved by the end-user, will be allowed through Android runtime. All applications
(Java, native, and hybrid) are sandboxed in the same manner.

Figure 4.6 Android Permissions on System (by group)

To allow certain low-level permissions, Android needs to map the permission string to
the group that can access the functionality. For example, if an application requests
access to the Internet (android.permission.INTERNET), Android (after approval from the
user) will add the application to the inet group. An application needs to be a member of
this group to access the Internet. This mapping is deɹned through the platform.xml ɹle
(found under /system/etc/platform-xml)/). High-level permissions are restricted by
Android runtime. This is essential, as an application can be requesting more permissions
than were authorized by the end-user.

/system/etc/platform-xml deɹnes mapping between lower level system user IDs and

group IDs (uid/gid) and certain permissions (see Figure 4.9).
For example, an application Foobar needs to access the Internet and read SMS and

MMS messages. Its permission request entries would look like Figure 4.10.

Figure 4.7 adb shell pm list permissions –f output

Figure 4.8 adb shell pm list permissions –s output

Figure 4.9 Mapping of android:permission.INTERNET to inet GID in /system/etc/platform.xml

When this application is installed, Android will ask the user if he or she consents to
the application using the above permissions. If the user consents, Android will look up
the “android:permission.INTERNET” entry in the platform.xml ɹles. To access the
Internet, an application needs to be added to the inet group. When
android.permission.INTERNET permission is approved, Android looks up the
corresponding GID in the file. The application then runs with the inet GID attached to its
process and is, thus, able to access the Internet. For android.permission.READ_SMS and
android.permission.READ_MMS, the Android runtime permission manager will
determine if an application has access to perform these operations.

On the device itself, there is no Manifest XML ɹle for an application. A Manifest XML
ɹle is used by developers to create an apk ɹle. To determine the permissions that a
particular installed package has on the system, we need to review
/data/system/packages.xml as show in Figure 4.11.

There are multiple instances in which permissions can be enforced:

Figure 4.10 Permissions for the Application Foobar

Figure 4.11 Permissions for an Installed Application (/data/system/packages.xml)

– When an application is executing
– When an application executes certain functions that it is not authorized to
– When an application starts an activity which it is not authorized to
– When an application sends or receives broadcasts
– When accessing/updating Content Providers
– When an application starts a service

4.4 Mobile Security Issues
The Android platform suʃers from “traditional” security concerns, just like any other
mobile OS. The issues discussed below are common to all mobile platforms, not just the
Android. Some of these issues are also found on traditional devices (laptops), whereas

some are specific to mobile devices.

4.4.1 Device
Many of us have, at some point, lost a cellular device. Before the advent of
smartphones, it meant losing one’s contact information. On a typical (Android)
smartphone today, however, the following is true for most of us:

– E-mails saved on the mobile device
– Auto sign-in to Facebook, Twitter, YouTube, Flickr, and more
– Bank account information
– Location and GPS data
– Health data

Unless the device is encrypted, the loss of a cell phone implies a potential data
disclosure risk, as well. Plug in a cellphone to a computer, and various tools (including
forensic tools) will do the rest.

4.4.2 Patching
Android’s latest version is 3.2. However, most devices in use today are running anything
from Android 1.5 to Android 2.3, with 2.2 and 2.3 being the most popular releases.
Furthermore, these devices are updated/modiɹed by the respective manufacturers. Thus,
it is diɽcult to apply patches in a timely manner given the lack of uniformity of the OS
used. Compare this to the iPhone, where IOS 3 and IOS 4 are the only versions available
today.

4.4.3 External Storage
Removable external storage compounds the data security issue. It is much easier to lose
SD cards than to lose a cell phone. In most cases, data is not encrypted, thus giving very
easy access to the user’s data. SD cards also travel through multiple devices, thus
increasing the risk of malicious software ending up on the device. Finally, removable
storage is often more fragile, which can lead to data loss/corruption.

4.4.4 Keyboards
Although a very popular feature, touch screen keyboards can give goose bumps to a
security professional. They provide a perfect opportunity for shoulder surɹng, if you are
accessing sensitive data in a train or in a coʃee shop. Tablets are even worse culprits,
with full-size soft keyboards and letters being reɻected back to the user in plaintext for
few seconds. Smudges on the screen may also aid an attacker.

4.4.5 Data Privacy

One of the most popular applications on Android is Google Maps. Many other
applications are also interactive and can use the user’s location information. They can
store this information in its cache, display ads based on this data, or show us the nearest
coʃee shot. Bottom line: This data is available for any application that has the right
permissions. Over a period of time, this data can reveal sensitive information about a
user’s habits, essentially acting as a GPS tracking in the background.

4.4.6 Application Security
Mobile applications are still vulnerable to the same attacks as traditional, full-ɻedged
information technology (IT) applications. SQL Inject (SQLi), Cross-Site Request Forgery
(XSRF), and Cross-Site Scripting (XSS) are not only possible on mobile platforms and
applications but can lead to more serious attacks, given the nature of data available on
a mobile device. Weak Secure Sockets Layer (SSL) or lack of encryption, phishing,
authentication bypass, and session ɹxation are all issues likely to be present in mobile
applications.

4.4.7 Legacy Code
Much of the underlying code used by cell phones for GSM or CDMA communication has
not changed much over the years. These device drivers were written without security
practices in mind and thus are vulnerable to old-school attacks (e.g., buʃer overɻows).
New devices continue to rely on this code. In fact, new code is being added on the top of
existing code.

4.5 Recent Android Attacks—A Walkthrough
In the ɹrst week of March 2011, a malware—DroidDream—hit the Android platform.
Android is a much more open platform compared to iOS and, thus, has a lenient
marketplace policy. Google does not tightly control applications that show up in the
market. In fact, Google does not even control all channels of distribution, unlike Apple.
Various ways to get applications on Android are as follows:

– Official Android market (Google)
– Secondary Android markets (e.g., Amazon)
– Regional Android markets and app stores (e.g., China, Korea)
– Sites providing apk files to users

Similar to other Android malware, such as Geinimi and HongTouTou, DroidDream was
“hidden” or “obfuscated” inside a legitimate-looking application. Regular users having
no reasons to distrust the Android market downloaded the application and ended up
having an infected device.

After the outbreak of this malware, Google took an extraordinary step—the remote

wiping of devices that were infected (approximately 50 applications were considered to
be malicious). DroidDream and its variants gained access to sensitive user and device
information and even obtained root access. For a complete list of malicious applications
on the list, perform a search on Google for “MYOURNET.”

4.5.1 Analysis of DroidDream Variant
The authors analyzed this malware to determine the permissions used by it and potential
implications. After installing the malware on an emulator, we reviewed the permissions
requested by the application (see Figure 4.12).

Figure 4.12 Permissions for the Malware DroidDream (/data/system/packages.xml)

There are three permissions requested by the application—READ_PHONE_STATE,
SET_WALLPAPER, and INTERNET.

From the permissions requested, it appears to be a wallpaper application. However, it
wants to access the phone state, as well. An application having access to this permission
can access the following information

– IMEI number (a.k.a. Device ID)
– Phone Number
– Sim Serial Number
– Subscriber ID (IMSI)

Below is the snippet of code that would enable an application to obtain sensitive
phone information:

After the malware has obtained the above device information, it can potentially send
it to a remote server. This will be permitted, as the malware has requested another
important permission: android.permission.INTERNET

DETOUR

The International Mobile Equipment Identity (IMEI) number is a 15–17 digit number that is used to uniquely identify a
mobile device on a network. Mobile operators use this number to disable devices that are stolen or lost.

4.5.2 Analysis of Zsone
We will now analyze a Trojan named zsone, which was distributed under diʃerent
names (iCalendar, iMatch, and others). It hit the Android platform during the summer of
2011 and tried to send SMS messages without the user’s permissions. Just like
DroidDream, it was pulled off of the Android market.

Upon analysis of the permissions requested by this calendar application, we found
that it had access to the following:

None of the permissions (see Figure 4.13) requested by the application relate to its
functionality—that is, a calendar application. Essentially, the ability to send and receive
SMS, provide location based on CELL-ID or Wi-FI, and read the phone state all point to
a malicious application. Below is a snippet of code that demonstrates the application
sending an SMS message without user intervention:

4.5.3 Analysis of Zitmo Trojan
Most of the leading banks today oʃer mobile banking applications. Initially, banks used
simple one-factor authentication (username and password) to allow users to log on to
the bank’s mobile site and view ɹnancial information. Since it is easier to defeat this
form of authentication (cracking passwords, MITM, social engineering), banks have
started to rely on two-factor authentication. In addition to the passwords, they will
usually send an SMS message (a ɹve-to-six digit one-time PIN) to the user’s cell phone
device and require this as part of the overall authentication process.

The Zitmo Trojan on Android aims to defeat this mechanism by intercepting SMS
messages that are sent by banks to its customers. This worm was ɹrst discovered for
Symbian (Nokia) devices in September 2010. Now, it is available for Android, as well.
Trojan essentially aids the Zeus crime kit. The Zeus kit is installed when an unsuspecting
user visits a malicious site. Installation of the Zeus kit enables attackers to steal
credentials—one part of the two-factor authentication. Installing Zitmo provides them
with the second—TAN messages from the bank.

Figure 4.13 Permissions for the Malware zsone (/data/system/packages.xml)

Figure 4.14 Zitmo Malware Application on Android

The malware application itself disguises itself as “Trusteer Rapport” (see Figure 4.14.

It gets installed as a “com.systemsecurity6.gms” application—a name that makes it
difficult to identify it as malware for a normal user.

Figure 4.15 shows the output from the ps command. The Zitmo malware runs as
“com.systemsecurity6.gms.”

Zitmo requests the following permissions (see Figure 4.16):

READ_PHONE_STATE gives it access to the IMEI number, SIM card number. and other
unique phone data. RECEIVE_SMS allows it to intercept TAN numbers sent by bank
websites. Once it has intercepted TAN numbers, it sends this to the Command and
Control (C&C) Center because it also has INTERNET permission.

4.6 Summary
In this chapter, we covered the kernel and application layers of the Android Security
Model. The reader should now have an understanding of how Android uses the Linux
kernel to enforce the permission-based security model. We walked through Manifest
permissions and demonstrated why these are important for an application from a
security perspective. We reviewed the security landscape for mobile devices, including
those running the Android OS. Finally, we analyzed malicious applications and
demonstrated how one can start analyzing them based on permissions requested.

Figure 4.15 ps Command Output (with Zitmo running)

Figure 4.16 Zitmo Permissions

Chapter 5
Pen Testing Android

In this chapter, we focus on pen testing the Android platform and applications. We start
by covering penetration methodology, discussing how to obtain details on the Android
operating system. We then turn to pen testing Android applications and discuss security
for Android applications. Towards the end, we talk about relatively newer issues
(including storage on clouds) and patching. Finally, we showcase recent security issues
for Android applications.

The reader should now be familiar with Android architecture (covered in Chapter 2),
Android application basics (building blocks, frameworks; covered in Chapter 3), and
Android permissions and security models (covered in Chapter 4).

5.1 Penetration Testing Methodology
A penetration test (also pen test) is a method of evaluating the security of systems by
simulating an attack from malicious insiders or outsiders. The goal is to discover issues
before they are discovered by attackers with malicious intents and to ɹx them. Testing
often happens just before a product is released, to ensure security, or after it has been
out, and to ensure that no vulnerabilities have been introduced. Source code review or
static analysis compliments a pen test. A static analysis ideally should be performed
before a pen test and should be a component of the Software Development Life Cycle
(SDLC) cycle. If a static analysis is performed before the pen test and ɹndings from it
are remediedbefore product development is complete, a pen test will result in relatively
fewer ɹndings. This allows for a relatively cleaner pen test report that can be shared
with customers, if needed, thereby providing them with an assurance of security for the
product.

Pen tests can be classiɹed into two categories—internal and external—depending on
the vantage point of the simulated tests. Below are overviews of internal and external
pen tests, guidelines for conducting pen tests, a static analysis, and steps to follow in
pen testing an Android OS and devices.

5.1.1 External Penetration Test
External pen tests are performed by security professionals outside the network who are
only provided with limited information. Enterprise networks are protected by a
multitude of ɹrewalls with Access Control Lists (ACL) that block oʃ most of the ports
that can be accessed from the outside. In an external pen test, the only information
security professionals are given are URLs or IP addresses. Many of the tools/techniques
used by security professionals for external pen tests will encounter ɹrewalls, and these
ɹrewalls will usually prevent them from probing the internal networks. This prevents

them from identifying vulnerabilities that exist but are protected by ɹrewalls or other
defenses.

For example, a rooted Android device is running a service on port 850. Firewalls are
usually conɹgured so as not to allow probes to this port (and thus protects services
running on this port). Thus, a pen test from the outside will not detect a service running
on this port. However, if a rooted Android device is an running httpd server on port 80,
it is more likely to be discovered by an external pen test, since port 80 is usually
accessible through a firewall.

5.1.2 Internal Penetration Test
Internal pen test are not hindered by ɹrewalls (although they might be, if there is tiered
architecture), and it is, therefore, easier to obtain information on internal systems
(systems that have private IPs, etc.).

Continuing our example of a rooted Android device running service on port 850, in an
internal pen test, security professionals are more likely to discover this port (and
service), as it probably won’t be blocked by a ɹrewall. If a service is communicating
with other devices, it can be probed.

The rule of thumb is that an internal penetration test will highlight more issues
compared to an external penetration test. External penetration tests rely on the fact that
attackers can’t access devices in the network. However, it does not mean that issues in
internal pen tests are of less severity. Insiders can still exploit these issues. In addition,
attackers from the outside might be able to exploit these issues as part of larger attacks,
where they can, in fact, get inside the network.

5.1.3 Penetration Test Methodologies
Peer-reviewed methodologies for performing pen tests step by step exist. NIST 800-115
and OSSTMM are two such guidelines. The idea is not to follow them every step of the
way, but to use them as guidelines and modify them as needed in conducting a pen test.

A typical pen test can be broadly divided into the following four stages:

1. Planning: Identify goals for the exercise and obtain approvals and logistics.
2 . Discovery: Obtain information on target(s). Information includes IP addresses,

contact information, system information (OS versions), applications, and
databases, etc.

3 . Attacks: Based on information discovered in Stage 2, identify any systems,
applications, and databases that are vulnerable and validate these vulnerabilities.
If necessary, loop back into the discovery phase.

4 . Reporting: Based on this assessment, categorize issues by severity—critical, high,
medium, and low—and provide this analysis to management, along with
recommendations.

5.1.4 Static Analysis
Although not part of penetration testing, static analysis is an important tool for security
professionals. It helps to identify software code–related issues early in the development
cycle (or if the product has been released, later during security assessments). A static
analysis tool is executed against a code base. Tools use algorithms to analyze various
code paths and ɻow and provide a list of potential security issues. There is often some
percentage of false positives. The beauty of the static analysis is that developers can use
it without any outside help and understand/improve their coding practices to prevent
such issues in the future.

As far as Android is concerned, we can analyze security at two diʃerent layers
(skipping the hardware layers, which is the focus of another book): operating systems
(OS) and applications.

5.1.5 Steps to Pen Test Android OS and Devices
For most Android devices running in an environment, one of the major issues can arise
if it is rooted. Rooted devices are more at risk, since a user would be running with
elevated privileges, and attackers can leverage this to compromise the device. In
addition, it is useful to analyze issues in the OS stack itself (although this requires access
to the source code of the kernel, libraries, etc.). A mix of black box and white box testing
is usually the best approach, wherein security professionals have access to devices on the
network and they can probe further if they sense suspicious activities on the device.

1. Obtain the IP address of the Android device(s).
2. Run an NMAP scan to see the services that are running on those devices.
3. For suspicious devices (e.g., rooted devices), capture and analyze packets through

Wireshark.
4. If device is deemed compromised, use utilities like busybox to explore device

internals (which processes are running, etc.) and for forensics.
5. Perform a static analysis of the source code of the libraries and OS. Speciɹcally look

for codes contributed by vendors such as HTC. Code should be reviewed for the
following type of issues: resource leaks, null pointer references, illegal access
operations, and control flow issues, which can potentially bypass security checks.

6. Review conɹguration ɹles and code for plain text passwords and other sensitive
data that is being stored without appropriate security considerations.

5.2 Tools for Penetration Testing Android
Android comes with limited shell, and there might be times when security professionals
need access to more information than provided by the Android OS (by design). There are
diʃerent tools that can be leveraged for this purpose. Nmap—network scanner;
Wireshark—network sniʃer; and BusyBox—a collection of command line tools (e.g.,

ifconfig) are among some of the most useful tools.

5.2.1 Nmap
Assuming you don’t have access to the device itself, but are looking on the network for
Android devices, Nmap scans can help. The Nmap scan launches a SYN (synchronize)
scan against the IP and looks for OS ɹngerprinting and version detection (see Figure
5.1). Our scan results showed no open ports

Figure 5.1 Nmap SYN Scan against an Android Device

(services) and, therefore, did not provide very useful information regarding the
Android device. If any of the ports were open, we might have wanted to explore it a bit
further.

5.2.2 BusyBox
Android comes with limited shell utilities. The BusyBox package provides many
commonly found UNIX utilities for Android. These can become handy during learning,
exploring, pen testing, and forensics on an Android device. Since it runs on Android,
utilities might not support all options, such as the ones on desktop versions.

Below are instructions for installing and running BusyBox on an emulator (see Figure
5.2). For an Android device, you will need to root it to be able to install this package
and make it run successfully.

From the terminal inside the Linux system, launch adb shell and perform the following
(assuming you have binary handy):

Figure 5.2 ifconfig Command After Installing BusyBox

At this point, utilities should be found in the /data/busybox directory. Change that
directory (or update the PATH variable), and you can start using common UNIX
commands.

Figure 5.3 netstat Command After Installing BusyBox

Figure 5.4 Open Ports through pscan

As is visible from the output of the ifconɹg command (Figure 5.2), the emulator’s IP

address is 10.0.2.15—a special IP address reserved for the emulator. If your device was
on a network, you might see something like 192.168.0.104 IP. 10.0.2.2 IP is the alias for
the 127.0.0.1 loop back address on the development system (i.e., the system running the
emulator). 10.0.2.1 is the router/gateway, and 10.0.2.3 is the first DNS server.

As can be seen from the screenshots (Figures 5.3 and 5.4), port 80 is open (httpd was
running on the device). On a typical Android device, this would require further
exploration.

5.2.3 Wireshark
If you would like to analyze traɽc from an Android device, you will probably need to
root the device (to use something like Wireshark on the device) or you will need access
to a router. In our case, we are running tcpdump (installed on a Linux system) and
capturing traɽc in an emulator. We can then open the ɹle in Wireshark, as shown in
Figure 5.5.

To launch tcpdump and capture traɽc from the emulator on a development machine,
you can use: emulator –tcpdump <output file> -avd <avd device name>

The traɽc shown in Figure 5.5 was captured during a web browser request to open
www.google.com. As can be seen from the Wireshark listing, the DNS server is 10.0.2.3
and the router/gateway is 10.0.2.2. The source 10.0.2.15 (emulator) sends a HTTP GET
request to www.google.com (see Figure 5.6).

5.2.4 Vulnerabilities in the Android OS
The Android OS is based on the Linux OS, which is at its core. It is open source, and,
thus, people are free to develop and contribute/re-use code. Google has an oɽcial
Android team that is responsible for the Vanilla Android OS. However, since it is open
source and free, everyone is free to check out code, modify, and ship the software.
Diʃerent vendors—HTC, Samsung, etc.—seem to modify the OS per their needs,
although the device is still said to run “Android.”

http://www.google.com
http://www.google.com

Figure 5.5 tcpdump Output in Wireshark

Figure 5.6 HTTP GET Request in Wireshark

Before we explore the types of issues that can be found in the Android OS, it might be
worthwhile to wonder who is ultimately responsible for these issues? Is it Google (since
they are ones who have ownership of Android oɽcial releases) or is it the vendors, such
as HTC, who take the Vanilla OS and make modifications?

We can even go beyond this. Android OS leverages drivers contributed to Linux. These
drivers might be used without any consideration for their security implications. In
addition, many drivers might have old code, with new code being added on top of it.
Security issues at any of the lower layers lacks clear accountability.

Typical issues found in C/C++ code and potentially found in the Android OS would
be in resource leaks, memory corruption, control ɻow issues, dataaccess violations, and
pointer references. Often, dead code (code written but not used by any code ɻow path)
will be encountered, and it should be pointed out to the users.

5.3 Penetration Testing—Android Applications

Most of the pen testing eʃorts described on Android will be focused on applications—
both built in (e.g., browser, maps) and third-party applications (found on the Android
Market).

5.3.1 Android Applications
Penetration testing for an Android application is like testing any other software on a
platform. Things to consider while pen testing an Android application include attack
surface, interactions with other components (internally and externally),
communications, and storage.

Attack Surface: Every pen test focuses at the core on the functionality of an
application. Depending on the functions and features provided by an application, the
eʃorts of the pen tester are on items that are relevant and critical (e.g., authentication,
data, etc.), and tests are performed on relevant underlying components. Local
components not handling critical data should be tested diʃerently (and less time should
be spent on them, compared to components interacting with outside
applications/systems).

Interactions with Other Components: An application interacts with other Android
applications and outside servers through various Interprocess Communication (IPC)
mechanisms. These include socket-based communications, Remote Procedure Calls
(RPC), passing/receiving broadcasts, Intents, and other Android-speciɹc IPC
interactions. Many of these communications are possible through permissions, and, thus,
it is paramount to look at the following:

– Permissions and application requests
– Functionality that an application exposes to other Android applications

The reader should be familiar with Android permissions (covered in Chapter 4).
Permissions are deɹned in the Manifest.xml ɹle. A tester will need to decompile the APK
ɹle to access this ɹle and review it. Steps for decompiling the APK ɹle and obtaining the
Manifest.XML file are shown Figures 5.7 and 5.8.

APK ɹles are bundles of various ɹles. These include META-INF, res,
AndroidManifes.XML, classes.dex, and resources.arsc ɹles/directories. Apktool can be
used to extract the AndroidManifest.XML from an apk ɹle. Usage: apktool decode
<apkname> <directory>

For Android-speciɹc components (Intents, Broadcast Receivers), the tester needs to at
least ensure the following:

1. Sensitive data is not being passed for IPC communications (e.g., in Intents,
broadcasts, etc.).

2. Intent ɹlters are not being used for security purposes. Although Intent ɹlters can
control which Intents are processed by an application, this only applies to implicit

Intents. An application can always force the processing of an Intent by creating an
explicit Intent.

3. Sticky broadcasts are not being used when sensitive data is transmitted, since the
application cannot control who receives these broadcasts.

Figure 5.7 Extracting Manifest Permissions Files through apktool

Figure 5.8 Example of a Manifest Permission File Extracted from apk

4. Permissions requested by the applications are not more than ones needed for
application functionality—that is, the principle of least privilege is being applied.

Communications: It is important to determine if communications of the application with

outside systems/servers is over a secure channel. Connections should be encrypted. It is
also important to review how servers/systems are chosen for communication.

Data: At the core of every application assessment is the data handled by that
application. Typical applications can read/write data in the form of ɹles or databases.
Both of these can be made readable by the application only or by the outside world.
When sensitive data is being handled by an application, it is prudent to review its ɹle
and database operations for permissions. A tester should also review the application
logs and shared preferences to see if there is data being inadvertently exposed. Most of
the applications communicate with the external environment (or the Web), and a lot of
data is stored on remote servers/databases. The tester should review data being
transmitted and stored on oʃsite servers/applications. Another thing to review is how
sensitive parameters are being passed/stored (e.g., credentials).

Proper Use of Cryptography: The tester should look at the standard cryptographic practices
of an application. For example, is the application checking preapproved public keys
during the certiɹcate check process? How does the application validate certiɹcates?
Does the application do strict certificate checks?

Passing Information (including parameters) to Browsers: The tester should see if the
application is opening a browser application, and, if so, how it is passing the necessary
parameters (i.e., through GET or POST requests).

Miscellaneous: Applications can be reviewed for services running in the background to
see their impact on resources. There are a few additional steps that are needed as part
of pen testing an Android application. Since Android applications are coded in Java, it
is essential to review Java code for typical vulnerabilities. If an application is relying on
underlying native code or libraries, it would be prudent to validate vulnerabilities in the
native code, as well. Finally, it is important to review how an application is handling
storage (covered later).

To review an application’s communication with the outside world, you will need to set
up a proxy to intercept traffic between the application and the Web. This can be done as
follows:

Figure 5.9 Setting up a Proxy on an Android Device

Intercepting traffic for browser (HTTP) applications:

1. Download and install proxy (e.g., Burp Suite) on the host/development system.
Turn on the “intercept” option.

2. Set up a proxy from the Android phone/emulator (see Figure 5.9). In our example,
we are using an emulator. Thus, we will need to use a “10.0.2.2” IP address as the
proxy.

3. Open the browser on Android and type a URL.
4. Review captured traffic through the Burp Suite (see Figures 5.10 and 5.11).

Intercepting traffic for other applications:

1. Start the application (in our case, we chose the Internet Relay Chat (IRC)
application Yaaic) (see Figure 5.12).

Figure 5.10 Intercept of Android Browser Communication through Burp

Figure 5.11 Credentials in Plain Text (URL) Captured through Burp

Figure 5.12 Yaaic Application on Android

2. Capture traɽc through Wireshark and ɹlter by the phone’s IP address (in our case,
192.168.0.107).

3. Review captured traɽc through various options in Wireshark (see Figures 5.13
(a)M and (b).

5.3.2 Application Security
We covered pen-testing steps for Android-speciɹc issues. In addition to these, any
Android application needs to be analyzed (and code reviewed) for usual security ɻaws
in the code and the design. These issues can be broadly classified, as shown in Table 5.1:

Issues need to be mapped by severity (critical, high, medium, and low) and level of
diɽculty in exploiting them (high, medium, and low). The following is a summary of
some of the classification categories outlined in Table 5.1:

1. Authentication Issues: Validates that user credentials are not being transmitted over
unencrypted channel and if authentication mechanisms are in alignment with
standard practices.

Figure 5.13 (a) Packet Capture of Yaaic Communication through Wireshark; (b) Analysis of Packets Captured through
Wireshark

2 . Access Controls: Validates that authenticated users can only access resources and
functionality in line with their credentials and that they are not able to bypass
access controls.

3. Logs: Validates that logs do not contain sensitive information, and that logs are not
accessible by unnecessary applications and that they have appropriate permissions.

4 . Cryptography: Validates that sensitive communications occur only over secure
channels and that strong ciphers are used for this communication. Validate that
there are no propriety cryptographic protocols being used in the application.

5 . Data Leakage: Validates that the application is not accidently exposing data that
otherwise should not be available to other applications through logs, IPC calls, URL
calls, files, and so forth.

6 . Data Validation: Validates that the application does not use input from untrusted
sources directly into SQL queries and other sensitive operations.

Figure 5.13(b)

Table 5.1 – Application Security Issues

Security Issue Description

Authentication Issues related to user identification

Access Control Issues related to user rights after authentication

Auditing and
Logging

Issues related to logs and auditing

Cryptography Issues related to encryption and securing communications

Credential Handling
Issues related to the handling of user passwords and other
credentials

Data Handling Issues related to the handling of data vis-à-vis its sensitivity

Data Leakage Issues related to accidental or unintended leakage of information

Error Checking Issues related to reporting errors without providing too much data

Input Validation Issues related to validating untrusted user input

Session
Management

Issues related to best practices for user session management

Resource Handling Issues related to the handling of resources, including memory

Patching Issues related to timely patching/upgrade of software

7. Error Reporting: Validates that when an application throws an error, it does not log
and report the entire stack track and does not contain sensitive information.

8. Session Management: Validates that the application follows best practices for session
management, including time out, session identifiers, token use, and so forth.

9. URL Parameters: Ensures that the application does not pass sensitive parameters to
URLs in plain text.

1 0 . Predictable Resources: Validates that an application is not generating
tokens/identifiers that can be easily guessed.

Pen Testing should provide an application benchmark against the following best
practices:

1. Timely patching libraries and applications as vulnerabilities are identified.
2. Sensitive information (e.g., SSN) is not passed as a parameter through a URL.

Information in a URL is accessed through the GET request, and this can be logged
at multiple places. A POST request solves this problem. However, although
information through a POST request is not visible in a URL, a POST request can still
reveal this information in the request-header. For truly sensitive information, one
should always use an HTTPS connection.

3. Brute force attacks are not possible due to a limited number of attempts to
authenticate.

4. A Secure Sockets Layer (SSL) is used pervasively to request resources.
5. Session identifiers are not sent in URLs.
6. Tokens are not easily guessable.
7. Password complexity is enforced.
8. Log files do not contain sensitive information and are protected appropriately.
9. Files are encrypted on local and external storage.
10. Proper data validation is performed to prevent XSS, SQLi, command injection, etc.

Code review of an Android application can identify the following issues:

1 . Command Injection: Attacker can inɻuence which command is executed or the
environment in which it is executed, thus bypassing security controls. Typical
examples include user input being used in SQL query constructed to query SQLite
DBs.

2. Resource Leaks: Application does not relinquish resources after being used (e.g., ɹle
handling, etc.). This can result in performance issues but can also be available for
malicious users/applications.

3 . Error Handling: An application does not take in to account structure/ɻow on a
particular error and thus does not perform all housekeeping/access control checks
needed if a particular code path is executed.

4 . Unsafe Java Native Interface (JNI) Calls: Since Android applications can call native
code written in C through JNI, this exposes applications to underlying issues in the
native code.

5.4 Miscellaneous Issues

5.4.1 Data Storage on Internal, External, and Cloud
There are various locations available for Android application data storage, including
ɹles, databases, preferences, and cache. Data can be stored in the internal memory or
on an external card. If data is stored in plain text and the device is compromised or
stolen, data will be exposed. It is usually a best practice to encrypt data that is being
stored. The application needs to ensure that a strong encryption algorithm is being used
to do this. In-house encryption is usually is the weakest compared to publicly available
encryption tools.

A pen tester needs to review the following locations for data storage—local: ɹles,
SQLite DBs, cache, and preferences; and external: files, cloud.

Code review can help identify places where ɹle/data storage occurs. Typical
operations that need to be reviewed include the opening/creating of ɹles, accessing the
directory and its contents, accessing cache/preferences, opening/creating a database,
and so forth.

5.5 Summary
This chapter introduced the reader to penetration testing on Android. We covered how
to pen test the Android OS. We also discussed application security, pen testing Android
applications, and static analysis. We analyzed recent security issues with Android
applications.

We suggest that the reader download a few open-source applications for Android or
write one and then try out the techniques described in this chapter. The authors also
have an application on their website that the user can experiment with.

Chapter 6
Reverse Engineering Android Applications

In this chapter, we will cover malware basics—how to identify malware, malware
behavior, and malware features. We will then discuss a custom Android BOT application
created by the authors and demonstrate to the reader how potential malware can bypass
Android built-in checks.

The Android BOT walkthrough will include stealing a user’s browser history and Short
Message Service (SMS) as well as call logs, and it attempts to drain the phone’s battery.
We will also present a sample application to show the readers how to reverse engineer
or analyze malicious applications. After completing this chapter, the reader will be able
to write Android BOT in Java. The reader will also become familiar with reverse
engineering tools and will be able to decompile any Android application.

6.1 Introduction
Reverse engineering is the process of discovering the technological principles of a
device, object, or system through analysis of its structure, function, and operation
(http://en.wikipedia.org/wiki/Reverse_engineering). It often involves taking something
(e.g., a mechanical device, electronic component, software program, or biological,
chemical, or organic matter) apart and analyzing its workings in detail to be used in
maintenance, or to try to make a new device or program that does the same thing
without using or simply duplicating (without understanding) the original.

The typical user today downloads or buys software and installs it without thinking
much about its functionality. A few lines of description and some reviews might be
enough to persuade the user to try it. Except for well-known software (written by
software companies such as Microsoft or Apple) or through the open-source community,
it can be diɽcult to verify the authenticity of available software or vouch for its
functionality. Shareware/trial-ware/free software is available for personal computers
(PCs) and is now available for mobile devices, as well, and only requires one click to
install it. Hundreds of software applications pop up everyday in the marketplace from
seasoned to newbie developers.

The problem is compounded for mobile devices, especially Android. With no rigorous
security review (or gate) on multiple Android marketplaces, there are many
opportunities for malicious software to be installed on a device. The only gate seems to
be during the install process, when the user is asked to approve requested permissions.
After that, the user’s trust in an application is complete. Users, therefore, don’t
understand the full implications of the utilities and software that they install on their
devices. Given the complexity and interdependencies of software installed, it can
become confusing even for seasoned professionals to ɹgure out if a software package is

http://en.wikipedia.org/wiki/Reverse_engineering

trustworthy. At these times, the need for reverse engineering becomes crucial.
Reverse engineering comprises a set of techniques that can identify how software is

going to behave. Often this process can be completed without access to the source code.
Reverse engineering is useful for the security analysis of software for the following

purposes:

1 . Identifying malicious software/code: Security companies use reverse engineering
techniques to identify how a particular piece of malware (virus, worm, etc.)
behaves and develop a solution to counter it. Reverse engineering can also aid in
the development of heuristics that can identify future malicious software behavior
before it can impact users.

2. Discovering ɻaws/security issues: Reverse engineering is one of the last techniques
used by security professionals to validate that software does not have ɻaws/issues
that can be exploited. For example, reverse engineering can help identify if an
application is providing a lot of useful information to an attacker or has
predictable data in the stack/heap.

3. Identifying unintended functionality in software: Reverse engineering might be used by
developers of particular software to identify if there are potentially unintended
consequences of its functionality, and if so, they can take appropriate measures to
mitigate them.

Reverse engineering has been around for a long time—competitors trying to reverse
engineer popular products, the government trying to reverse engineer defense
technologies of their opponents, mathematicians trying to reverse engineer ciphers.
However, we would like to note that this chapter is not about reverse engineering
Android applications for any purpose.

It is illegal to reverse engineer software applications. It infringes on the copyrights of
developers and companies. It is punishable by law, including copyright laws and digital
rights acts. Our sole purpose in demonstrating techniques in this chapter is to decipher
and analyze malicious software. We provide guidelines on how potentially malicious
software can be reviewed and differentiated from legitimate software/downloads.

Android has some useful tools that are available for aiding the reverse engineering
process. We have covered some of them in previous chapters, and we will cover some of
them here. We will now walk the reader through the process of analyzing an application
(using reverse engineering techniques) for malicious behavior. The application used here
has been developed for demonstration purposes only by the authors of this book.

6.2 What is Malware?
Malware (or malicious software) is software code designed to disrupt regular operations
and collect sensitive and/or unauthorized information from a system/user. Malware can
include viruses, worms, Trojans, spyware, key loggers, adware, rootkits, and other

malicious code.
The following behavior can typically be classified as malware:

1. Disrupting regular operations: This type of software is typically designed to prevent
systems from being used as desired. Behavior can include gobbling up all system
resources (e.g., disk space, memory, CPU cycles), placing large amounts of traɽc
on the network to consume the bandwidth, and so forth.

2. Collecting sensitive information without consent: This type of malicious code tries to
steal valuable (sensitive) information—for example, key loggers. A key logger
tracks the user’s keys and provides them to the attacker. When the user inputs
sensitive information (e.g., SSN, credit card numbers, and passwords), these can all
potentially be logged and sent to an attacker.

3. Performing operations on the system without the user’s consent: This type of software
performs operations on systems/other applications, which it is not intended to do—
for example, a wallpaper application trying to read sensitive ɹles from a banking
application or modifying files so that other applications are impacted.

6.3 Identifying Android Malware
Our focus here is to identify behavior that can be classiɹed as malware on Android
devices. As we have seen, this can be at the OS level (Android/Linux kernel) or at the
application level. The question here is, how do we detect suspicious applications on
Android and analyze them? The methodology we propose will help security
professionals identify suspicious behavior and evaluate applications. Below is our
methodology, followed by a case study using a malicious application written by the
authors:

1. Source/Functionality
This is the ɹrst step in identifying a potentially suspicious application. If it is
available on a non-standard source (e.g., a website instead of the Android Market),
it is prudent to analyze the functionality of the application. In many cases, it might
be too late if the user already installed it on a mobile device. In any case, it is
important to note the supposed functionality of an application, which can be
analyzed through Steps 2 to 4.

2. Permissions
Now that you have analyzed and you understand the expected behavior of the
application, it is time to review the permissions requested by the application. They
should align with the permissions needed to perform expected operations. If an
application is asking for more permissions than it should for providing
functionality, it is a candidate for further evaluation.

3. Data
Based on the permissions requested, it is possible to draw a matrix of data elements

that it can have access to. Does it align with the expected behavior? Would the
application have access to data not needed for its operations?

4. Connectivity
The ɹnal step in our methodology is to analyze the application code itself (covered
later). The reviewer needs to determine if the application is opening sockets (and
to which servers), ascertain what type of data is being transmitted (and if
securely), and see if it is using any advertising libraries, and so forth.

6.4 Reverse Engineering Methodology for Android Applications
In the previous section, we described the methodology for assessing suspicious Android
applications. In this section, we apply this methodology to analyze a wallpaper
application developed by the authors.

Step 1: Review source and functionality of the application

The application is available for download from the authors’ website
(www.androidinsecurity.com) or from the Android Market. If this application was
available only from a non-standard source (e.g., webpage), then it would deɹnitely
merit further review. Upon installing the application on an emulator, it seems like an
off-the-shelf wallpaper application (see Figures 6.1 and 6.2).

Step 2: Review permissions used by the application

We covered Android permissions in Chapter 4 and how to access the Manifest.xml ɹle
(which has the permissions listing) in Chapter 5. Using the apktool on the Cute Puppies
Wallpaper application developed by the authors, we can access the list of permissions
requested by this application (see Figures 6.3 and 6.4).

As is evident from Figure 6.4, the application seems to be requesting too many
permissions. Table 6.1 summarizes the permissions requested, their uses on the Android
device, and if they are required for a wallpaper application. The application is
requesting far too many permissions than are needed.

http://www.androidinsecurity.com

Figure 6.1 Installing the Wallpaper Application through the Command Line

Figure 6.2 Application Screenshots

Step 3: Review Interprocess Communication (IPC) mechanisms used by the
application
Next we analyze the IPC mechanisms used by the application (see Figure 6.5). We look
for Intents and Intent ɹlters in the AndroidManifest ɹle. We also analyze components
associated with these Intents (e.g., service, receiver, activity, etc.). Table 6.2 shows the
IPC mechanisms defined by the application and our analysis of them.

Figure 6.3 Extracting AndroidManifest.XML through apktool

Figure 6.4 Permissions Listed in AndroidManifest for Wallpaper Application

Step 4: Analyze code to review open ports, data shared/transmitted, socket
connections, and so forth

Decompiling APK to obtain Java code

Finally, we decompile the application code into readable Java code. We then review the
code to gain insight into the application’s behavior. The Android Package ɹles (APK) is
a compressed ɹle that contains the classes.dex ɹle, among other things. APK ɹles can be
easily decompressed, and classes.dex ɹle can be extracted. DEX is Java Byte Code for
Dalvik Virtual Machine. It is optimized for running on small devices. The dex2jar utility
(available from http://code.google.com/p/dex2jar/downloads/list) allows us to convert
classes.dex ɹles into jar ɹles (see Figure 6.6). The resulting jar ɹles can be viewed in a
Java decompiler (e.g., JD) (see Figure 6.7).

Analyze code for open ports, data shared/transmitted, and open sockets

We now analyze jar ɹles in a Java de-compiler. As shown in Figure 6.7, opening the
classes.jar ɹle in JD-GUI, we see the following class ɹles that comprise the Java archive
(jar file):

1. BotBroadcastHander
2. BotClient
3. BotLocationHandler
4. BotSMSHandler
5. BotService
6. BotWorker
7. CutePuppiesWallpaper
8. R

Table 6.1 – Permissions Listed in the AndroidManifest for the Wallpaper
Application

Permission Purpose Required?

RECEIVE_BOOT_COMPLETED

Allows an application to
receive the
ACTION_BOOT_COMPLETED
that is broadcast after the
system finishes booting

Maybe. The application
might need this to set the
wallpaper, depending on
the functionality

http://code.google.com/p/dex2jar/downloads/list

INTERNET
Allows an application to
open network sockets

Maybe. Application
might need this to
communicate with the
external server to access
new wallpapers

ACCESS_COARSE_LOCATION
Allows an application to
access coarse (e.g., Cell-ID,
WiFi) location

No. Application does not
need location data

ACCESS_FINE_LOCATION
Allows an application to
access fine (e.g., GPS)
location

No. Application does not
need location data

READ_PHONE_STATE
Allows read-only access to
phone state

No. Application does not
need to read phone state

SET_WALLPAPER
Allows an application to set
the wallpaper

Yes. This is in line with
the application’s
functionality

WRITE_CONTACTS
Allows an application to
write (but not read) the
user’s contacts data

No. Application does not
need to access contact
data

READ_CONTACTS
Allows an application to
read the user’s contacts data

No. Application does not
need to access contact
data

RECEIVE_SMS
Allows an application to
read SMS messages

No. Application does not
need to access SMS

READ_OWNER_DATA Custom permission
Maybe. Looks suspicious.
The application does note
need to read owner data.

READ_HISTORY_BOOKMARKS

Allows an application to
read (but not write) the
user’s browsing history and

No. Application does not
need to access history

bookmarks data

WRITE_HISTORY_BOOKMARKS

Allows an application to
write (but not read) the
user’s browsing history and
bookmarks

No. Application does not
need to access history
data

Figure 6.5 IPC Mechanisms Used by the Cute Puppies Wallpaper Application

Table 6.2 – IPC Mechanisms Used by the Cute Puppies Wallpaper Application

IPC Component Intent Filter Analysis

Receive

RECEIVER
com.adam.CutePuppiesWallpaper.
BotBroadcastHandler

android.intent.action.
BOOT_COMPLETED

broadcast once
phone boot is
completed. Not
required

RECEIVER
com.adam.CutePuppiesWallpaper.
BotSMSHandler

android.provider.
Telephony.SMS_RECEIVED

Receive
broadcast when
SMS is received.
Not required

SERVICE
com.adam.CutePuppiesWallpaper.
BotService

com.adam.CutePuppiesWallpaper.
BotService

Background
service. May be
needed

ACTIVITYCutePuppiesWallpaper android.intent.action.MAIN

Main activity
when the
application is
launched

It seems that CutePuppiesWallpaper is the ɹle in which the main activity might be
defined. We look next at the contents of this file through JD-GUI.

Analysis of CutePuppiesWallpaper.class file:
As seen from the screenshot depicted in Figure 6.8, this class ɹle deɹnes the integer
array that points to wallpaper (deɹned in the resources R ɹle). It then starts BotService
in the background. We now look at the BotService.class file.

Analysis of BotService.class file

As seen from the screenshot depicted in Figure 6.9, when bot service is started it
initializes BotClient. The constructor to the BotClient includes an external URL
(“k2.homeunix.com”) and socket port 1500. It then calls the BotClient. Run() method.
We now analyze the BotClient.class file to analyze the functionality defined there.

Figure 6.6 Using dex2jar to Convert classes.dex File to Jar Format

http://k2.homeunix.com

Figure 6.7 Using Java Decompiler to View Java Code from Decompiled Jar File

Figure 6.8 CutePuppiesWallpaper Class

Figure 6.9 BotService.class

Analysis of BotClient.class file

When the BotClient.Run() method is called, it, in turn, calls ConnectToServer() and then
MasterCommandProcessor(). ConnectToServer establishes the socket connection to the
this.hostUri on port this.port. It also creates input and output streams that read/write
from this channel (see Figure 6.10). It then starts the MasterCommandProcessor()
thread. Inside Run(), the command from the server is read into localObject1, as shown
i n Figure 6.11. The value is then checked against integer values 101 through 106.
Depending on the value, the corresponding BotWorker class method is called to return
the requested information to the remote server. For example, if the value of localObject1
is 101, bwr.

Figure 6.10 BotClient.class – ConnectToServer()

Figure 6.11 BotCIient.cIass – MasterCommandProcessor()

Figure 6.12 BotClient.class – MasterCommandProcessor()

GetContactInfo is called and contact information is sent to the remote server (see Figure
6.12). SendDataToMaster() writes to the output socket stream, thus sending data to the
remote server.

Analysis of BotWorker.class file

As shown in Figures 6.12 and 6.13, depending on the value of localObject1, BotClient
calls various methods in BotWorker class. For example, if the value of localObject1 is
101, BotWorker.GetContactInfo() is called by BotClient. The actual function of getting
contact information from the device is deɹned in the BotWorker class. This class also
deɹnes similar methods to obtain browser history, device information, package
information, and SMS data (see Figure 6.14). Table 6.3 lists various methods deɹned in
BotWorker class.

Figure 6.13 GetContactInfo() called by BotClient when localObject1 = 101

Figure 6.14 Methods Defined in BotWorker Class

Table 6.3 – Various Methods Defined in BotWorker Class

Method Name Description

BotWorker (ContentResolver
paramContentResolver, Context paramContext)

Constructor method for BotWorker
class (Figure 6.15)

GetBrowserHistory() Provides browser history (Figure 6.16)

GetContactInfo()
Provides contacts information (Figure
6.17)

GetCurrentLocation() Provides location data (Figure 6.18)

GetDeviceID()
Provides device information (Figure
6.19)

GetPackagesInstalled()
Provides listing of packages installed
on device (Figure 6.20)

GetReceivedSMS()
Obtains SMS messages received on the
device (Figure 6.21)

ReadContacts() Reads contact data (Figure 6.22)

Figure 6.15 BotWorker Constructor

Figure 6.16 GetBrowserHistory() in BotWorker

Analysis of BotLocationHandler.class file

BotClient calls bwr.GetCurrentLocation() to obtain location data. This, in turn, calls
BotLocationHandler().GetLastLocation() deɹned in the BotLocationHanlder.class. It
obtains the current location of the BOT client (Figure 6.23).

Analysis of BotSMSHandler.class file

BotClient calls bwr.GetReceivedSMS() to obtain SMS data. GetReceivedSMS() in
BotWorker calls GetMessages() deɹned in BotSMSHandler class. onReceive() in the class
listens for incoming SMS messages and buʃers them to send them to the remote server
(Figure 6.24).

Putting it all together—CutePuppiesWallpaper Application Analysis
Based on our analysis so far, we can conclude that the CutePuppiesWallpaper
application is malicious. As soon as the application is launched, it starts a background
service. The application contains a proof-of-concept BOT, which connects to the master
Command and Control Center (CnC) using socket connections. It then waits for
commands from the CnC. The center can send different commands to BOT on the device.

Figure 6.17 GetContactInfo() in BotWorker

Figure 6.18 GetCurrentLocation() in BotWorker

Although it is supposed to be a wallpaper application, it requests permission, such as
RECEIVE_SMS, and deɹnes Intent ɹlters for SMS receivers. By performing a code
analysis, we conclude that it creates a backdoor to a remote server. Based on commands
sent by the remote server, it can transfer any of the following information to the BOT
server: contact information, browser history, SMS messages, location (including GPS co-
ordinates), packages installed on the device, IMEI number of the device, and so forth.

From Figure 6.12, we can construct Table 6.4, illustrating diʃerent commands sent by
the BOT Master.

From our analysis, we can conclude the workɻow of the CutePuppies Wallpaper
application (see Figure 6.25).

A user downloads the application from either the Android Market or through another
source and installs it on the device. When the user launches the application on the
device, the BOT service gets started in the background and the BOT client contacts the
CnC. The BOT server establishes a connection with the client and sends a command to
the BOT client. The BOT client processes the command from the CnC and sends data
back to the server.

Figure 6.19 GetDeviceID() in BotWorker

Figure 6.20 GetPackagesInstaIIed() in BotWorker

Figure 6.21 GetReceivedSMS() in BotWorker

Figure 6.22 ReadContacts() in BotWorker

Figure 6.23 GetLastLocation() Defined in BotLocationHandIer.cIass

Figure 6.24 GetMessages() Defined in BotSMSHanIder.cIass

Table 6.4 – Commands Sent by CnC to BOT Client

Command Purpose

MCS_CONTACTS_INFO Get contact information

MCS_BROWSER_HISTORY Get browser history

MCS_SMS Get incoming messages

MCS_LOCATION Get GPS information from device

MCS_PACKAGES Get list of applications installed

MCS_DEVICE_INFO Get device information

6.5 Summary
In this chapter, we discussed malware and behavior that constitutes malware. We then
discussed malicious behavior in the context of Android applications and walked the
reader through the methodology available to analyze Android applications for malicious
behavior. We then covered a case study where we demonstrated a step-by-step analysis
of a malware application to determine its behavior and functionality.

Figure 6.25 Workflow

Chapter 7
Modifying the Behavior of Android Applications without
Source Code

This chapter builds on Chapter 6. We begin by discussing potential use cases for
recompiling/modifying the behavior of applications. We show how to analyze and
debug Android application binaries. We cover the .dex ɹle format and show how to
decompile and recompile Android applications without having access to source code,
thus changing the application’s behavior. We demonstrate how an attacker can change
an application’s behavior by decompiling the application, changing the smali code, and
recompiling it.

7.1 Introduction
The techniques covered in this chapter are not generally used by a typical user or
developer. A person using the techniques covered here is probably attempting one of the
following (which is unethical if not illegal):

1. To add malicious behavior
2. To eliminate malicious behavior
3. To bypass intended functionality

7.1.1 To Add Malicious Behavior
It should be noted that doing this is illegal. Malicious users can potentially download an
Android application (apk), decompile it, add malicious behavior to it, repackage the
application, and put it back on the Web on secondary Android markets. Since Android
applications are available from multiple markets, some users might be lured to install
these modified malicious applications and thus be victimized.

7.1.2 To Eliminate Malicious Behavior
The techniques listed here can be used to analyze suspicious applications, and, if
illegal/malicious behavior is detected, to modify them and remove the illegal/malicious
behavior. Analyzing an application for malicious behavior is ɹne and necessary for
security and forensics purposes. However, if there is indeed such behavior detected,
users should just remove the application and do a clean install from a reliable source.

7.1.3 To Bypass Intended Functionality
A third potential use of the techniques listed here could be to bypass the intended
functionality of an application. Many applications require a registration code or serial

key before being used or they can only be used for a speciɹed trial period or show ads
when being used. A user of these techniques could edit smali code and bypass these
mechanisms.

7.2 DEX File Format
We covered the Dalvik Virtual Machine (VM) in Chapter 2. The Dalvik VM is a register-
based virtual machine designed to run Android applications. The Dalvik VM enables
applications to run eɽciently on devices in which battery life and processing power are
of paramount important. Android applications written in Java are compiled into Java
byte code using a Java compiler. For a Java application to run on Android, there is one
extra step that is added, that is, converting .class ɹles (Java byte code) to .dex ɹles (Dex
ɹle or Dalvik byte code). Dex code is executed by the Dalvik virtual machine. Whereas
there are multiple .class ɹles, there is only one .dex ɹle, in which all relevant class ɹles
are compiled by the Dalvik dx compiler. Figure 7.1 shows the file structure of .dex files.

Figure 7.1 Anatomy of a .DEX File

The Android SDK comes with a dexdump tool that can be used to get a dump of dex
file content. However, it is not very informative for a novice reading it.

Figure 7.3 shows dex ɹle header information (through dexdump –f) for a classes.dex
ɹle obtained by compiling HelloActivity.java (see Figure 7.2). As seen in Figure 7.3, the
Classes.dex ɹle contains information on the dex ɹle itself, including checksum, ɹle size,
header size, and size and oʃsets to various sections of the .dex ɹle. .dex ɹle contains the
following sections: header, string, type, ɹeld, method, class, and data. There is an entry
for each class in the program. Figure 7.4 shows an entry for the HelloActivity class. This
entry also displays methods (init, OnCreate). Figure 7.5 displays an entry for the R
class.

Figure 7.2 Simple “Hello World” Program for Android

Figure 7.3 Header Information in classes.dex for HelloActivity

As can be seen in Figures 7.4 and 7.5, the output from dexdump does not provide
intuitive information. Although it is helpful for understanding bits and pieces of the
application’s behavior, it is not quite readable. Therefore, we will use smali/baksmali
assembler/disassembler to analyze and modify the .dex format ɹle instead, as the smali
ɹle is easy to understand. Smali takes .dex ɹles and produces smali ɹles, which are more
readable and have debugging, annotations, line information, and so forth. Baksmali
enables the assembling of smali ɹles back to the .dex format. The ApkTool enables us to
repackage the modified .dex file into an apk file.

7.3 Case Study: Modifying the Behavior of an Application
We will now demonstrate how application behavior can be modiɹed by decompiling it
into smali code, recompiling it, and then packaging it into an apk ɹle. The authors have
created a simple application that requires the user to enter the correct passcode before
using the application. We will demonstrate how a malicious user can potentially bypass
this intended functionality. See App Screenshots in Figures 7.6 and 7.7.

Figure 7.4 HelloActivity Class Information in classes.dex

Figure 7.5 R Class Information in classes.dex

Figure 7.6 Secure App on Android Emulator

The ɹrst step in analyzing or to reverse engineering an application is to understand
its behavior. Typically, this entails installing and using the application and reviewing its
various functions. In our case, we can install the application on an emulator and try to
use it. As depicted in Figure 7.8, launching the application presents the user with a
password screen. At this point, we don’t know the length of the password required or if
passwords are numeric (PIN) or actual passwords. We learn (by trial and error) that the
application only accepts digits as a password. We also note that the maximum number
of digits the application allows us to enter is 4. Thus, we can conclude that the password
is all numeric and is 4 digits in length.

Step 1: Decompile the application

We can decompile the application ɹle (apk) by using apktool. Figure 7.9 shows
SecureApp.apk decompiled into a secure_app folder. Browsing through the folder (Figure
7.10), we note that there is a smali folder. Smali ɹles are found in the test directory.
Note that there are smali ɹles (Figure 7.11) beginning with both KeyPad and R preɹxes.
We can conclude from this that the application had two Java ɹles—KeyPad.java and
R.java.

Figure 7.7 Successful Login on Secure App

Step 2: Make changes to the application

Reading through the smali code for the KeyPad$1.smali ɹle (Figure 7.12), we conclude
that SHA-256 is being used for hashing password user inputs from the login screen of the
application. This password is then compared against the stored password and if they
match, the user is logged into the application.

The hash is loaded into v8 and compared with v10 (line 51 in Figure 7.13). If these
values are the same, the user is logged in. We can create a SHA-256 hash value and
create an entry to input into v8, thus modifying the password to our choice and
bypassing authentication. Figure 7.13 shows the original smali ɹle created by apktool,
and Figure 7.14 shows the modiɹed smali ɹle with the following entry (SHA-256 hash of
“1234” with a salt): const-string v8,

“2DD225ED6888BA62465CF4C54DB21FC17700925D0BD0774EE60B600B0172E916”

Note that there is usually a “salt” passed onto the hash algorithm. Finding out the
value of the salt (and that of the hash of the original password) is left to the reader as
an exercise. Once the reader is able to obtain the hash and the salt, he or she can brute
force it by computing the hashes of generated passwords and comparing it with the
stored hash in the file. The answers are provided toward the end of the book.

Step 3: Recompile the application

Modiɹed smali code can be reassembled and packaged into an apk ɹle through the
following command: apktool b (Figure 7.15). New Apk ɹle will be placed in dist
directory (Figure 7.16).

Figure 7.8 Analyzing an Application’s Behavior

Figure 7.9 Decompiling SecureApp.apk Using apktool

Figure 7.10 Smali files Created by apktool

Figure 7.11 KeyPad.smali File

Figure 7.12 SHA-256 String in KeyPad$1.smali

Figure 7.13 if-eqz v10 Compares Computed Hash Value with the Hash Value in v8.

Figure 7.14 Entering Hash Value of Our Choice in v8

A new apk needs to be signed before it can be installed on the device or emulator. The
Signapk tool (Figure 7.17) is freely available on the Web for download. After installing
the modiɹed apk, the reader can use “1234” as the password string to use the
application.

Figure 7.15 Additional Directories Created by apktool b Command

The methodology listed above can be used to analyze, decompile, and recompile an
existing application. We provided an example of an application created by the authors
and vulnerability that could have been exploited to bypass authentication and get access
to application data or functionality. The vulnerability described here was not
theoretical. There have been cases where a similar issue could have resulted in
compromised user data.

7.4 Real World Example 1—Google Wallet Vulnerability
Google Wallet is mobile payment software developed by Google. It allows users to store
(securely) credit card numbers, gift cards, and so forth, on their cell phones. It uses Near
Field Communication (NFC) to make secure payments on PayPass-enabled terminals at
checkout counters (e.g., MasterCard’s PayPass). The idea is to use cell phones to make
purchases instead of using physical credit/debit/gift cards.

Figure 7.16 New apk Will Be Placed in dist Directory

Figure 7.17 Signing New APK File

Note: NFC is a set of standards that allows mobile devices to communicate through radio
frequencies with devices nearby. This can be leveraged for transactions and data
exchange.

NFC uses RFID to communicate wirelessly. Security was provided through a device—
Secure Element (SE), which was used to encrypt sensitive data (e.g., a credit card
number). To access this information, the user needed to provide a 4-digit PIN. After ɹve
invalid attempts, data would be wiped out.

It turned out that the PIN was stored in the sqlite database in binary format. Data was
compiled using Google’s “protocol buʃers”—a library for serializing data for message
passing between systems. Contents of the PIN could be obtained from this binary string.
It included a salt and a SHA 256 hash string. One can easily brute force this PIN
knowing that the PIN could only be four digits. One would need to root the device to

obtain this data, and this is something that can be accomplished without much eʃort, as
there are many tools available to root Android devices. For further details refer to the
following URL:
https://zvelo.com/blog/entry/google-wallet-security-pin-exposure-vulnerability

7.5 Real World Example 2—Skype Vulnerability (CVE-2011-1717)
In 2011, it was discovered that Skype for Android was storing sensitive user information
(e.g., user IDs, contact information, phone numbers, date of birth, instant messaging
logs, and other data) in a sqlite3 database. However, the application did not secure this
database with proper permissions (world readable), and thus any application or user
could access it. Also, data was being stored unencrypted (in plain text) in the sqlite3
database Android Police discovered the vulnerability, and they also had a proof-of-
concept application that exploited the issue, thus obtaining data from the Skype
application.

7.6 Defensive Strategies
In this section, we cover ɹve main strategies to prevent reverse engineering of an
application or to minimize information leakage during the reverse engineering process.

7.6.1 Perform Code Obfuscation
Code Obfuscation is the deliberate act of making source code or machine code difficult to
read/understand by humans and thus making it a bit more diɽcult to debug and/or
reverse engineer only from executable ɹles. Companies use this technique to make it
harder for someone to steal their IP or to prevent tampering.

Most Android applications are written in Java. Since Java code gets compiled into
byte code (running on a VM) in a class ɹle, it is comparatively easier to reverse
engineer it or to decompile it than binary executable ɹles from C/C++. Consequently,
we cannot rely only on code obfuscation for protecting intellectual property or users’
privacy. We need to assume that it is possible for someone to decompile the apk and
more or less get access to the source code. Instead of relying completely on code
obfuscation, we suggest relying on “Server Side Processing,” where possible (covered in
the following section).

One of the freely available Java obfuscators that can be used with Android is
ProGuard. ProGuard shrinks and obfuscates Java class ɹles. It is capable of detecting
and removing unused classes, ɹelds, methods, and so forth. It can also rename these
variables to shorter (and perhaps meaningless) names. Thus, the resulting apk ɹles will
require more time to decipher. ProGuard has been integrated into the Android-built
system. It runs only when an application is built in the release mode (and not in the
debug mode).

To use ProGuard and enable it to run as part of the Ant or Eclipse build process, set

https://zvelo.com/blog/entry/google-wallet-security-pin-exposure-vulnerability

the proguard.conɹg property in the properties.cfg ɹle. This ɹle can be found in the root
directory of the project (see Figure 7.18).

The screenshots in Figures 7.19 and 7.20 show decompiled code in JD-GUI. Figure 7.19
shows code when code obfuscation (through ProGuard) was not used. Figure 7.20 shows
it after using ProGuard. As you can see, ProGuard shortens class names and renames
them. It also performs such operations on methods and ɹelds. Since this is a simple
application, code obfuscation does not result in much diʃerence between the
screenshots. With a complex application, the resulting output would be much better.

ProGuard might not be one of the best obfuscators out there for Java. However, it is
something that one should definitely use in the absence of other options.

Figure 7.18 proguard.cfg File in Eclipse

Figure 7.19 Code without Obfuscation (in JD-GUI)

Figure 7.20 Code with Obfuscation (in JD-GUI)

7.6.2 Perform Server Side Processing
Depending on the type of application, it might be possible to perform sensitive
operations and data processing on the server side. For example, for an application that
pulls data from the server to load locally (e.g., twitter), much of the application logic is
performed on the server end. Once the application authenticates successfully and the
validity of the user is veriɹed, the application can rely on the server side for much of the
processing. Thus, even if compiled binary is reverse engineered, much of the logic would
be out of reach, as it will be on server side.

7.6.3 Perform Iterative Hashing and Use Salt
Hash functions can be susceptible to collision. In addition, it might be possible to brute
force hash for weaker hash functions. Hash functions make it very diɽcult to brute force

(unless you are a government agency with enormous computing power) while providing
reasonably high collision resistance. The SHA-2 family fits this category.

A stronger hash can be obtained by using salt. In cryptography, a salt consists of
random bits and is usually one of the inputs to the hash function (which is one way and
thus collision resistant). The other input is the secret (PIN, passcode, or password). This
makes brute force attacks more diɽcult, as more time/space is needed. The same is true
for rainbow tables. Rainbow tables are a set of tables that provide precomputed
password hashes, thus making it easier to obtain plaintext passwords. They are an
example of space-time or timememory trade oʃ (i.e., increasing memory reduces
computation time).

In addition, we recommend using iterative hashing for sensitive data. This means
simply taking the hash of data and hashing it again and so on. If this is done a suɽcient
number of times, the resultant hash can be fairly strong against brute force attacks in
case an attacker can guess or capture the hash value.

7.6.4 Choose the Right Location for Sensitive Information
The location of sensitive information (and access to it) matters as much as the
techniques described above. If we store strong hashes at a publicly accessible location
(e.g., values.xml or on an sd card or local ɹle system with public read attributes to it),
then we make it a bit easier for an attacker. Android provides a great way to restrict
access—data can only be explicitly made available through permissions wherein, by
default, only the UID of the app itself can access it.

An ideal place for storing sensitive information would be in the database or in
preferences, where other applications don’t have access to it.

7.6.5 Cryptography
In the iterative hashing section, we discussed how to make a user’s passwords or
sensitive information stronger through the use of cryptography (hashing and salt).
Cryptography can also be used to protect a user’s data. There are two main ways of
doing this for Android: (1) Every application can store data in an encrypted manner
(e.g., the user’s contact information can be encrypted and then stored in a sqlite3
database). (2) Use disk encryption, wherein everything written to the disk is
encrypted/decrypted on the ɻy. System administrators prefer full-disk encryption, so as
not to rely on developers to implement encryption capabilities in their Apps.

7.6.6 Conclusion
Access Control (relying on the OS to prevent access to critical ɹles), cryptography
(relying on encryption as well as hashing to protect conɹdential data [e.g., tokens] and
to verify the integrity of an application), and code obfuscation (making it diɽcult to
decipher class ɹles) are the main strategies that one should leverage to prevent the

reverse engineering of applications. Both the Google Wallet vulnerability and the Skype
issue would have been prevented if developers and system administrators had made
appropriate use of access controls and cryptography.

7.7 Summary
In this chapter, we discussed potential scenarios of disassembling and reassembling an
Android application without having access to source code. We then demonstrated this
through the use of a SecureApp written by the authors. We presented security best
practices to prevent reverse engineering as well as the potential leaking of sensitive
information through it. The reader should try to develop an Android application (or
download SecureApp from the book’s website—www.androidinsecurity.com) and try the
techniques listed in this chapter.

http://www.androidinsecurity.com

Chapter 8
Hacking Android

In this chapter, we introduce forensics and techniques used to perform it. We walk the
reader through the Android ɹle system, directories, and mount points. We cover SD card
analysis and Android-speciɹc techniques to perform forensics. Finally, we walk the
reader through an example that demonstrates topics covered in this chapter.

8.1 Introduction
Mobile device forensics is a branch of digital forensics that relates to the recovery of
digital evidence or data from a mobile device under forensically sound conditions
(http://en.wikipedia.org/wiki/Mobile_device_forensics).

As discussed in Chapter 1, mobile devices today are a diʃerent beast. They are used
for all kind of communications, transactions, and tasks. The following kinds of personal
information are typically found on a smartphone: contacts, photos, calendars, notes,
SMS, MMS, e-mail, browser history, GPS locations, social media information, ɹnancial
data, passwords, and so forth. You get the idea! If we have a device that is evidence in a
legal investigation or needs to be analyzed for a security investigation, it can provide a
goldmine of information, provided one knows how to extract this information carefully.
Our focus in this chapter is on extracting as much information as we can, rather than
“extracting under forensically correct” conditions. The latter is a topic for a diʃerent
book.

To perform forensics on Android devices, it is important to understand the Android
system. We have already covered Android architecture and the security model. In this
chapter, we will walk through ɹle system speciɹcs (directories, ɹles, mount points, and
ɹle systems). We need to understand how, where, and what type of data is stored on the
device, to perform the actual extraction of useful information. Data can be stored on a
file system as files, in application/system-specific formats, or in SQLite DBs.

8.2 Android File System
In this section, we will review the Android File System by looking at various mount
points (Figure 8.1) on a typical Android device, as well as its directory structure, which
might be of interest to us for gathering useful information.

8.2.1 Mount Points
Let’s look at various partitions on an Android device and analyze relevant ones for their
directory structures. Typing “adb shell mount” (Figure 8.2) shows mounted ɹle systems
on the device, whereas typing “adb shell cat /proc/ɹlesystems” gives us a listing of

http://en.wikipedia.org/wiki/Mobile_device_forensics

supported ɹle systems (see Figure 8.3) . Table 8.1 shows various partitions and their
descriptions.

8.2.2 File Systems
Android supports quite a few ɹle systems (based on the Linux kernel). One can obtain a
list of supported ɹle systems by typing “cat /proc/ɹlesystems” at the command line. As
can be seen from Figure 8.3, the nodev entry next to ɹle system indicates that there is
no physical device associated with that particular ɹle system, thus making a nodev
virtual ɹle system. Note that Android supports ext2, ext3, and ext4 ɹle systems (used by
Linux systems) and the vfat ɹle system used by Windows-based systems. Since it is
targeted for mobile devices, Android supports YAFFS and YAFFS2 ɹle systems (needed to
support NAND chips used in these devices). Table 8.2 provides more information on
these file systems.

8.2.3 Directory Structure
Let’s look at the directory structure of a typical Android device. One can access the ɹle
system through the command line (adb) or through Eclipse/DDMS (Figure 8.4). There
are three main directories that are of interest to us: /system, /sdcard, and /data. As
mentioned earlier, /system holds most of the Operating System (OS) ɹles, including
system applications, libraries, fonts, executables, and so forth. /sdcard is a soft link to
the /mnt/sdcard and refers to the SD card on the device. /data directory contains user
data. More speciɹcally, each application has an entry in /data/app/<application
name>, and user data resides in /data/data/<application_name>. On the device itself,
one would not be able to access the /data folder, as it is accessible only to the system
user (as opposed to the shell user). We use an emulator to demonstrate the contents of
the /data directory. Since user data for an application resides in
/data/data/<application_name>, it is important that only that application has access
to that particular folder. This is accomplished through user permissions (each
application has its own UID, and only that UID/user has permissions to access the
folder). Table 8.3 provides a summary of important ɹles/directories on Android that an
application might interact with. We will cover the structure of the /data/data/folder
later in this chapter.

Figure 8.1 Mount Points on an Android Device

Figure 8.2 Directory Structure of an Android Device (ADB)

Figure 8.3 File Systems of an Android Device

8.3 Android Application Data
In this section, we cover how applications can store persistent data and also review the

contents of the /data/data folder and how they can be used to retrieve useful
information.

8.3.1 Storage Options
Android provides multiple options whereby an application can save persistent data
(depending on the application’s needs). Table 8.4 shows various options for storing
data.

Table 8.1 – Overview of Mounted File Systems on an Android Device

Mount Point Description

/

This is a read-only root file system and is mounted by the kernel
before any other file system. It contains important system
information, including boot configuration and libraries that the
kernel needs at startup.

/system
Contains system libraries, executable, fonts, system applications, and
configuration files. Subdirectories include ban, lib, etc, bin, app,
media, fonts, and so forth. Permissions on this file system are ro.

/cache
Contains temporary files such as browser cache and downloads. It
also contains files that are recovered when a repair to a corrupted
file system is performed. Permissions on this file system are rw.

/data
Contains user and application data, including userinstalled
applications, settings, and preferences.

/mnt/sdcard
This partition points to the SD card. Note that this is a FAT32 file
system and has rw permissions.

/mnt/secure/asec
This is an encrypted container on the SD card for apps that are
installed on the SD card.

Table 8.2 – Different Kinds of File Systems on Android

File
System

Description

YAFFS
These are fast and robust file systems used by many mobile devices to support
NAND or NOR flash chips. They are specifically designed to be used in

and
YAFFS2

embedded devices. Yaff2 is a newer version of file system (Yaffs1 supported
512-byte page flash, whereas Yaffs2 supports 2k-byte page flash, as well). For
more details refer to http://www.yaffs.net/

ext2,
ext3,
and
ext4

These file systems (second, third, and fourth extended file systems) are
commonly used by the Linux kernel. Ext 2 was introduced in the early 1990s to
resolve issues in the ext file system used by the Linux kernel. Ext 3 added
journaling capability, among other features, to ext 2. Ext 4 further added new
capabilities to ext3, including supporting large file systems and file sizes,
extents (replaced block mapping present in ext2 and ext3), and so forth.

vfat
This is a FAT32 file system from Microsoft. Linux kernel implementation of it is
referred to as VFAT. This file system is used by Android primarily for SD cards.

http://www.yaffs.net/

Figure 8.4 Directory Structure of an Android Device (DDMS)

Table 8.3 – Important Files/Directories on Android

Directory/File Description

cache
Temporary information such as browser cache,
settings, or recovered files.

/sdcard
Used by the application to store data (music
files, downloads, photos, and so forth).

/vendor
Contains files specific to the vendor of the
device (Samsung, HTC, and so forth)

/system
The Android system. Contains configuration
files, binaries, system applications, and so
forth.

/system/etc/permissions/platform.xml
Maps permissions between lower-level user
ID/group ID to permission names used by the
system.

/system/app
System applications (preinstalled with the
device).

/system/bin Binary executables (e.g., ls, mount)

/system/buid.prop Device-specific settings and information.

/data/data User data for installed applications.

/data/app User-installed applications.

/data/app-private
User-installed applications (usually paid
applications).

/mnt/asec Container for an application on the SD card.

8.3.2 /data/data
Now that we have covered options available to an application for storing data, let’s
examine some real-world applications and analyze their /data/data/ directory. We
installed the Seesmic application, which allows you to connect you to multiple social

media accounts. Figure 8.5 shows subdirectories of the /data/data/com.seesmic
application. The Seesmic application has three folders: databases, libs, and shared_prefs.
Accessing the /data/data directory on the device would not be possible, as permissions
are restricted to the system owner (as opposed to the shell user). One has to either root
the phone or image it to be able to obtain access to the contents of this directory.

Table 8.4 – Overview of Storage Options for Android Applications

Storage
Option

Description

Shared
Preferences

Stores private data in key-value format. Any primitive data (Booleans,
float, int, strings, etc.) can be saved using Shared Preferences.

Internal
Storage

Stores private data on the internal memory. An application can save files
directly onto the internal memory (as opposed to external memory, such as
an SD card). Files are protected through file permissions, with an
application being the owner of the file. Note that one needs to use the
MODE_PRIVATE option to create a file. Using MODE_WORLD_READABLE
or MODE_WORLD_WRITABLE will make a file accessible to other
applications.

External
Storage

Stores data on shared external storage. Files saved to external storage are
world readable, and there is no file permission-based security.

SQLite
Databases

Stores data in a private database accessible only to an application.

Network
Connection

Stores data on a network server.

Looking at the folder structure suggests that the application might be storing some
data in SQLite databases, as well as in the form of Shared Preferences. It might be
worthwhile to investigate these ɹles and see if we can gather more information.
Browsing to the shared_prefs directory and performing “cat” on one of the XML ɹles, we
get information used by the application (key-value pairs). Please note Figure 8.6. One of
the key-value ɹgures deɹned in the ɹle is req_token_secret, and another is req_token. If
application developers are not careful, they might store all kinds of sensitive
information in here (including passwords in plaintext).

Figure 8.5 Directories Inside /data/data for the Seesmic Application

Figure 8.6 Contents of One of the XML Files in the shared_prefs Folder

We have noted that there is a database folder inside /data/data/com.seesmic.
Browsing to the folder, we ɹnd a database named twitter.db, indicating that the user of
the device had a twitter account. Let’s see if we can get details of the twitter account
from the database. This can be done through the sqlite3 command line utility. As seen
from Figure 8.7, we can understand the schema of the database and then query diʃerent
tables to retrieve information.

8.4 Rooting Android Devices
Android, by default, comes with a restricted set of permissions for its user. These
restrictions have been carefully designed to prevent malicious applications (and users)
to circumvent controls provided by the Android security model. They are also sometimes

used to prevent a particular functionality from being accessed or changed (e.g.,
tethering or installing proxy, and so forth). Rooting an Android device can be useful
when we need to analyze a device. When we log on to a shell (through adb shell), the
UID of the user is “shell.” We can’t really access directories such as /data, as we don’t
have suɽcient permission. Thus, we need to elevate our privileges to super user. The
process of getting these is called rooting. Typically, a vulnerability in the system when
exploited successfully allows us to become a super user. One can download
corresponding <version>Break. apk ɹles from the web and root a device. In the
following, we walk a user through rooting the Android Froyo 2.2.

Figure 8.7 Contents of SQLite DB

1. Determine the version of the Android OS running on your device. This can be found
by going to “Settings” -> “About Phone.” This should give you the Android and
kernel version details (Figure 8.8).

2. Connecting through the adb shell and executing the “ID” command should show you
as a “shell” user (UID = 2000 [shell]).

3. Download Gingerbreak.apk (Figure 8.9) (given you are running Android Froyo
2.2.2, Honeycomb, Gingerbread).

Figure 8.8 Android Version

Figure 8.9 Gingerbreak Application

4. Enable USB Debugging.
5. Install Gingerbreak on the phone by executing the following command “adb install

gingerbreak.apk.”
6. Open the Gingerbreak application on the phone. This will install the super user

application.
7. Now, connect to the device using the command line (adb) and execute the su

command (see Figure 8.10). You should now be rooted on the device and be able to

browse to directories such as /data/data.

8.5 Imaging Android
It is sometimes useful to create an image of the Android device and analyze it using
various tools available on your workstation. This is especially true in the case of an
investigation where the original ɹle system needs to be preserved for evidence/future
reference. We may also not want to work directly oʃ the device but, rather, a copy of it
for investigation/analysis. Below are instructions for imaging an Android device:

Figure 8.10 Root Shell on an Android Device

1. Download mkfs.yaʃs2 and copy it onto the SD card connected to your device,
through the following command:

2. Open adb shell and change to root user (su). Change the permission of
/mnt/sdcard/tmp/yaffs2 file to 755

3. Create an image of the Android device by executing the command that follows. This
will create data.img, which will contain the image of the Android device

4. Pull data onto your workstation by using the “pull” command from adb shell

Now that you have the device image on your workstation, you can use tools such as
yaʃey to analyze the image (Figure 8.11), browse through diʃerent directories, review
ɹles, and so forth. Yaʃey is available at the following URL:
http//code.google.com/p/yaffey/.

8.6 Accessing Application Databases
As discussed earlier in the chapter, applications can store structured data in SQLite
databases. Each application can create DB ɹles under the
/data/data/<appname>/databases folder. Although we can root a device and analyze
databases through the sqlite3 command line utility, it is convenient to image the device
and analyze it using workstation tools such as yaʃey and the SQLite browser. Below are
steps to retrieve the database files and view them in SQLite:

1. Root and image the /data partition on your phone (as shown in the previous
section).

2. Download and install SQLite browser from
http://sqlitebrowser.sourceforge.net/index.html.

3. Browse to the SQL database of an application through yaʃey and pull the
application database onto your workstation (see Figure 8.12) or execute the
command below:

4. Open twitter.db in the SQLlite database browser (see Figure 8.13).

http://code.google.com/p/yaffey/
http://sqlitebrowser.sourceforge.net/index.html

Figure 8.11 Analyzing a Device Image through Yaffey

Figure 8.12 Database Location for a Twitter Application

Figure 8.13 Analyzing a Twitter DB in the SQLite DB Browser

8.7 Extracting Data from Android Devices
In the previous section, we showed how to root an Android device and obtain useful
information stored on it. While we can certainly do this piece-by-piece, there are tools
that can help us to do this more eɽciently—for example, the MOBILedit application. On
a rooted device, MOBILedit allows us to extract all kinds of information from the device
(contact information, SMS messages, databases from diʃerent applications, and so
forth). Below are steps to extract information from a device using this application:

1. Make sure your device is rooted (see previous sections in this chapter).
2. Download and install the MOBILedit application (Figure 8.14).
3. Input your device’s IP address into the MOBLedit application (see Figure 8.15).
4. Once the application connects to your device, you can download/view information,

including call data, SMS messages, photos, and so forth (see Figure 8.16).

5. You can also download data from the MobilEdit and use the techniques described in
the previous sections to do a further analysis analysis (see Figure 8.17).

8.8 Summary
In this chapter, we described diʃerent ɹle systems used by Android. We reviewed
relevant partitions and mount points that would of interest to security professionals to
to analyze a device or applications. We reviewed diʃerent mechanisms through which
an application can store persistent data (databases, preferences, ɹles, and so forth) and
how to obtain and analyze these bits. We covered steps to root an Android device
(though this will be diʃerent from release to release) and how to use third-party
applications to retrieve data from Android devices.

Figure 8.14 MOBILedit Application after Launching

Figure 8.15 Connecting to an Android Device Using MOBILedit

Figure 8.16 Obtaining Contact Data, SMS/MMS, E-mail, and Photos

Figure 8.17 Obtaining Data from the File System on the Device

Chapter 9
Securing Android for the Enterprise Environment

In this chapter, we look at security concerns for deploying Android and Android
applications in an enterprise environment. We ɹrst review security considerations for
mobile devices, in general, as well as Android devices, in particular. We then move on
to cover monitoring and compliance/audit considerations, as well as end-user training.
We then look at hardening Android and developing secure applications for the Android
platform.

9.1 Android in Enterprise
From an enterprise perspective, there are diʃerent ways of looking at Android in the
environment, with the main being the following three: deploying Android devices,
developing Android applications, and the implications of allowing Android applications
in the environment.

The deployment of Android devices and applications is primarily an IT function,
whereas developing secure Android applications is part of either
development/engineering teams or IT-development teams.

9.1.1 Security Concerns for Android in Enterprise
As we discussed in Chapter 1, today’s mobile devices, including Android cell phones, are
evolving at a rapid rate in terms of hardware and software features.

Our assessment of threats, as well as security controls, has not kept up with the
evolution of these features. These devices, we would argue, need more protection due to
the features available on them, as well as the proliferation of threats to them. Before
such devices can be deployed in an enterprise (or applications developed), it is essential
that we carefully consider threats to mobile devices, as well as to enterprise resources
arising from mobile devices (and users). This can be done using a threat model. In threat
modeling, we analyze assets to protect, threats to these assets, and resulting
vulnerabilities. We propose appropriate security controls to mitigate these threats and
vulnerabilities.

As covered brieɻy in Chapter 4, Android suʃers from traditional security concerns,
similar to any other mobile OS. We expand on them here and include ones we
intentionally left out in that discussion. The following are security concerns that are
applicable to Android mobile devices (http://csrc.nist.gov/publications/drafts/800-
124r1/draft_sp800-124-rev1.pdf):

1. Lack of physical control of devices

http://csrc.nist.gov/publications/drafts/800-124r1/draft_sp800-124-rev1.pdf

2. Use of untrusted mobile devices
3. Use of untrusted connections and networks
4. Use of untrusted applications
5. Connections and interactions with other systems
6. Use of untrusted content
7. Use of location services
8. Lack of control on the patching of applications and the OS

Lack of Physical Control of Devices

Mobile devices are physically under the control of end users (not system administrators
or security professionals). The fact that a device is with the user pretty much all the time
increases the risk of compromise to an enterprise’s resources. From shoulder surɹng to
the actual loss of the physical device, threats arise from the lack of physical control of
these devices. Mobile devices are more likely to be lost, stolen, or are temporarily not
within the user’s immediate reach or view. Enterprise security should assume that once
stolen or lost, these devices could fall into malicious hands, and thus security controls to
prevent disclosure of sensitive data must be designed with this assumption.

Considering the worst-case scenario in which a lost or a stolen device falls into
malicious hands, the best way to prevent further damage will be to encrypt the mobile
device (if the storing of sensitive data is allowed) or not allowing devices to access
sensitive information (not really possible with Android smartphones). To prevent
shoulder surɹng, it might be prudent to use privacy screens (yes, there are ones for
phones). In addition, a screen lock (requiring a password/PIN) should be a requirement
for using these devices, if access to enterprise resources is desired. The best practice
would be to authenticate to a diʃerent application each time one uses it, although this is
tedious, and, most likely, users will not adhere to this (imagine logging into the
Facebook application on an Android device every time one uses it).

Use of “User-Owned” Untrusted Devices

Many enterprises are following a BYOD (bring your own device) model. This essentially
means that users will bring their own mobile device (which they purchase) and use it to
access company resources. This poses a risk because these devices are untrusted (and not
approved) by enterprise security, and one has to rely on end users for due diligence.
Thus, the assumption that all devices are essentially untrusted is not far-fetched.

Security policies need to be enforced even if these devices are owned by the users. In
addition, these devices and applications on them need to be monitored. Other solutions
include providing enterprise devices (which have a hardened OS and preapproved
applications and security policies) or allowing user-owned devices, with sensitive
resources being accessed through well-protected sandboxed applications.

Connecting to “Unapproved and Untrusted Networks”

Mobile devices have multiple ways to connect: cellular connectivity, wireless, Bluetooth
connections, Near Field Communication (NFC), and so forth. An enterprise should
assume that any or all of these means of connectivity are going to be employed by the
end user. These connectivity options enable many types of attacks: sniɽng, man-in-the-
middle, eavesdropping, and so forth. An example of such an attack would be the end
user connecting to any available (and open) Wi-Fi network and thus allowing an
attacker to eavesdrop on communications (if not protected).

Making sure communications are authenticated before proceeding and then encrypted
can effectively mitigate risk from this threat.

Use of Untrusted Applications

This essentially replicates the problem on desktop/laptop computers. End users are free
to install any application they choose to download. Even if the device is owned and
approved by an enterprise, users are likely to install their own applications (unless
prevented by the security policy for the device). For Android, a user can download
applications from dozens of application markets or just download an application oʃ the
Internet.

There are several options for mitigating this threat. An enterprise can either prohibit
use of third-party applications through security policy enforcement or through
acceptable use policy guidelines. It can create a whitelist of applications that users are
allowed to install and use if they would like to access company resources through their
Android devices. Although this might prevent them from installing an application (e.g.,
Facebook), they might still be able to use this application through other means (e.g.,
browser interface). The most eʃective mitigating step here is educating the end user,
along with policy enforcement. The monitoring of devices is another step that can be
taken.

Connections with “Untrusted” Systems

Mobile devices synchronize data to/from multiple devices and sources. They can be used
to sync e-mails, calendars, pictures, music, movies, and so forth. Sources/destinations
can be the enterprise’s desktops/laptops, personal desktops/laptops, websites, and
increasingly, these days, cloud-based services. Thus, one can assume any data on the
device might be at risk.

If the device is owned by the enterprise, security policies on the device itself can be
enforced to prevent it from backing up or synchronizing to unauthorized sources. If the
user owns the device, awareness and monitoring (and maybe sandbox applications) are
the way to go.

Unknown Content

There can be a lot of untrusted content on mobile devices (e.g., attachments, downloads,
Quick Response (QR) codes, etc.). Many of these will be from questionable or unknown
sources and can pose risks to user and enterprise data. Take, for example, QR codes.
There can be malicious URLs or downloads hidden throughout these codes, but the user
might not be aware of these, thus falling victim to an attack.

Installing security software (anti-virus) might mitigate some risk. Disabling the
camera is another option to prevent attacks such as those on QR codes. Awareness,
however, is the most effective solution here.

Use of GPS (location-related services)

Increasingly, mobile devices are being used as a navigation device as well as to ɹnd
“information” based on location. Many applications increasingly rely on location data
provided through GPS capabilities in mobile devices. From Facebook to yelp, the user’s
location is being used to facilitate user experience. This has a downside, aside from
privacy implications. Location information can be used to launch targeted attacks or
associate users’ activities based on their location data.

Disabling the GPS is one way to mitigate the risk. However, this is not possible for
BYOD devices. Another possibility is to educate users on the implications of using
location data. Policies preventing some applications (e.g., social media applications) to
use location information can also be implemented through policy enforcement.

Lack of Control of Patching Applications and OS

This is an especially acute problem in BYOD environments. Users can bring their own
devices and may not patch or update their OS/applications for security ɹxes that
become available, thus exposing enterprise resources to security risks. Think of all the
diʃerent Android versions (from 2.2.21 to 4.x) in your environment today and the
potential security risks for each of them. Users probably have not upgraded or kept up-
to-date with security ɹxes for Android itself. In addition, many users don’t install
application updates.

Monitoring the devices and trying to ascertain information about the respective
versions of their OS/applications can provide information that can be use to ɻag out
insecure OS/applications. Users can then be forced to either upgrade or risk losing
access to enterprise resources.

9.1.2 End-User Awareness
Any strategy for securing mobile devices or enterprise resources being accessed through
mobile devices must include end-user training. Users should be made aware of the risks
(listed above) and understand why security controls are necessary. Adhering to these
controls should be part of acceptable-use policy, and users should be required to review
this at least annually. In addition, annual security-awareness training and a follow-up

quiz might imbibe some of these best practices in their minds. Secure awareness should
be complemented by warning users when they are about to perform an unwarranted
action (e.g., access unwanted site, download malicious code, etc.).

9.1.3 Compliance/Audit Considerations
Enterprise security needs to be demonstrated to customers, auditors, and other
stakeholders. Increasingly, mobile devices are an integral part of the “computing
infrastructure” of an enterprise and are thus probed in depth by auditors. Although
current security certiɹcations (standards) have not kept up with threats to mobile
devices, they do require that basic security practices be applied to mobile devices (and
applications developed for mobile devices). Failing to secure your mobile
devices/infrastructure can risk audit ɹndings and ɹnes, in many cases (depending on
regulation/standards).

ISO 27002 is a widely used security standard published by the ISO/IEC body. It lists 39
control objectives and 130+ security controls for securing an enterprise environment.
Many of these controls directly or indirectly provide guidance to securing mobile
devices, data, and applications on them. Control 9.2.5 addresses physical security
concerns, control 10.8.1 addresses information exchange, and control 11.7.1 speciɹcally
mandates security policy and measures that address threats from mobile devices.

In addition to the controls mentioned above, many other controls are applicable to
mobile devices. Examples of such controls would be regular patching, security scanning,
hardening, cryptography, and so forth. The control objective, “Information systems
acquisition, development and maintenance,” requires that security be taken into account
while developing information systems and applications. Coding best practices (input
validation, output encoding, error checking, etc.) is covered as part of this objective.
Other standards (NIST 800-53, PCI DSS) have similar requirements for protecting mobile
devices. At the core, these standards mandate performing regular assessment of threats
on mobile assets, identify security issues, and implement controls, as well as educate end
users and developers.

9.1.4 Recommended Security Practices for Mobile Devices

Security controls can be divided into four main categories:

1. Policies and restrictions on functionality: Restrict the user and applications from
accessing various hardware features (e.g., camera, GPS), push conɹgurations for
wireless, Virtual Private Network (VPN), send logs/violations to remote server,
provide a whitelist of applications that can be used, and prevent rooted devices
from accessing enterprise resources and networks.

2. Protecting data: This includes encrypting local and external storage, enabling VPN
communications to access protected resources, and using strong cryptography for
communications. This also should include a remote wipe functionality in the case of

a lost or stolen device.
3. Access controls: This includes authentication for using the device (e.g., PIN, SIM

password) and per-application passwords. A PIN/Passcode should be required after
the device has been idle for few minutes (the recommendation is 2–5 minutes).

4. Applications: This includes application-speciɹc controls, including approved
sources/markets from which applications can be installed, updates to applications,
allowing only trusted applications (digitally signed from trusted sources) to be
installed, and preventing services to backup/restore from public cloud-based
applications.

9.2 Hardening Android
In the previous section, we reviewed common threats to mobile devices and some of the
mitigation steps one can take. In this section, we will cover in detail how to conɹgure
(harden) an Android device to mitigate the risks. We divide this section into two:
hardening Android devices by conɹguration changes (hardening) and developing
Android applications that are secure.

9.2.1 Deploying Android Securely
Out of the box, Android does not come with all desired conɹguration settings (from a
security viewpoint). This is especially true for an enterprise environment. Android
security settings have improved with each major release and are fairly easy to configure.
Desired conɹguration changes can be applied either locally or can be pushed to devices
by Exchange ActiveSync mail policies. Depending on the device manufacturer, a device
might have additional (manufacturer or third-party) tools to enhance security.

Unauthorized Device Access

As mentioned earlier in the chapter, lack of physical control of mobile devices is one of
the main concerns for a user and for an enterprise. The risk arising out of this can be
mitigated to a certain extent through the following configuration changes:

Setting Up a Screen Lock

After enabling this setting, a user is required to enter either a PIN or a password to
access a device. There is an option to use patterns, although we do not recommend it. To
enable this setting, go to “Settings” -> “Security” -> “Screen Lock” and choose between
the “PIN” and “Password” option. We recommend a strong password or an 8-digit PIN
(see Figure 9.1). Once “Screen Lock” is enabled, the automatic timeout value should be
updated as well (Figure 9.2)

Setting up the SIM Lock

Turning on the “SIM card lock” makes it mandatory to enter this code to access “phone”
functionality. Without this code, one would not be able to make calls or send SMS
messages. To enable SIM lock, go to “Settings” -> “Set up SIM card lock” (see Figures
9.3 and 9.4) and enable “Lock SIM card.” Pick a value that is diʃerent from the screen
lock.

Figure 9.1 Enabling Screen Lock

Remote Wipe

System administrators can enable the “Remote Wipe” function through Exchange
ActiveSync mail policies. If a user is connected to the corporate Exchange server, it is
critical to enable this feature in case the device is lost or stolen. There are other settings
that can be pushed as well (e.g., password complexity). These are covered later in this
chapter.

Remote Wipe essentially wipes out all data from the phone and restores it to factory
state. This includes all e-mail data, application settings, and so forth. However, it does
not delete information on external SD storage.

Other Settings

In addition to the above settings, we strongly recommend disabling the “Make
passwords visible” option. This will prevent shoulder surɹng attacks, as characters won’t
be repeated back on screen if you are typing a password or PIN. Go to “Settings” and
uncheck “Make passwords visible” (see Figure 9.5).

Figure 9.2 Automatic Lock Timeout Value

Figure 9.3 Enable SIM Card Lock

It is also recommended to disable “Allow installation of apps from unknown sources.”
As we have mentioned before, there are secondary application stores apart from Google
Play, and it is prudent to not trust applications from these sources before ascertaining
their authenticity. Disabling this option will prevent applications from being installed
from other sources (see Figure 9.5).

As a rule of thumb, it is recommended to turn oʃ services that are not being used. A
user should turn oʃ “Bluetooth,” “NFC,” and “Location features” unless using them
actively (see Figure 9.6), as well as the “Network notiɹcation” feature from the Wi-Fi
settings screen (see Figure 9.7). This will make the user choose a connection rather than
connecting to any available network. Discourage backing up of data to “Gmail or
Google” accounts or Dropbox. Create a whitelist of applications and educate users on
the list so they do not install applications outside of the approved list.

Figure 9.4 Enter SIM Card Lock PIN

Figure 9.5 Disabling “Make Passwords Visible” and “Unknown Sources”

Figure 9.6 Disabling “Location Services”

Figure 9.7 Disabling “Network Notification”

A new feature of Android 4.2 enhances protection against malicious applications.
Android 4.2 has a feature that, if enabled, veriɹes an application being installed with
Google. Depending on the risk of the application, Android warns users that it is
potentially harmful to proceed with the installation. Note that some data is sent to
Google to enable this process to take place (log, URL, device ID, OS, etc.). To turn on
this feature, go to “Settings” -> “Security” -> “Verify Apps.”

Another useful feature might be to enable “Always on VPN.” This prevents
applications from connecting to the network unless VPN is on. We also recommend
turning oʃ the USB debugging feature from phones (see Figure 9.8). USB debugging
allows a user to connect the phone to an adb shell. This can lead to the enumeration of
information on the device.

Browser is one of the most commonly used applications on Android devices. Browser
security and privacy settings should be ɹne-tuned (e.g., disable location access). Figure
9.9 shows security settings for the screen browser.

Figure 9.8 Disabling “USB Debugging”

Figure 9.9 Browser Security Settings

Encryption

Android 3.0 and later have the capability to perform full-disk encryption (this does not
include the SD card). Turning this feature on encrypts all data on the phone. In case the
phone is lost or stolen, data can not be recovered because it is encrypted. The caveat
here is that the screen lock password has to be the same as encryption password. Once
the phone is encrypted, during boot time you will be required to enter this password to
decrypt the phone.

To turn on encryption, prepare your phone by going through the following steps:

1. Set up a strong PIN or password
2. Plug in and charge your phone

Once ready to encrypt the phone, go to “Settings” -> “Security” -> “Encrypt Phone.”
Enable “Encrypt phone” and enter a lock screen password or PIN. Once the encryption

process is complete, you will be required to decrypt your phone at boot time by entering
the screen lock password or PIN. Figure 9.10 shows the “Encrypt phone” screen from the
security settings.

9.2.2 Device Administration
The Android Device Administration APIs have been available since Android 2.2. These
APIs allow security-aware enterprise applications to be developed.

Figure 9.10 Encrypt Phone

The built-in e-mail application leverages this API to improve Exchange support and
enables administrators to enforce certain security settings, such as remote wipe, screen
lock, time out, password complexity, and encryption. Mobile Device Management
(MDM) applications from third-party providers leverage these APIs.

System administrators or developers write security-aware applications leveraging
these APIs. Such an application can enforce a local or remote security policy. Policy can
be either hard coded in an application (local) or can be fetched from a remote server
(e.g., E-mail Exchange server—see Figure 9.11). Typically, such an application will need
to be installed by users from Google Play or another installation medium. In the case of
e-mail, a default e-mail application comes preinstalled, and thus it is easiest to push
security policies through this application if the devices are to sync/connect to a
corporate Exchange server. Once the application is installed (or conɹgured, in the case
of e-mail), the system prompts the user to enable the device admin application. If the
user consents, security policies are enforced going forward, and if he or she does not, the
user won’t be able to use certain functionality (i.e., connect to corporate resources, sync
with Exchange server).

Figure 9.11 E-mail Application Pushing Server Specified Policies

Below are some of the policies supported by Device Administration APIs. These
policies can be enforced by the device admin application.

- Password enabled
- Minimum password length
- Strength/complexity of passwords
- Password expiry
- Password history restrictions
- Screen lock timeout
- Storage encryption
- Remote wipe

Figure 9.12 Policies Pushed through the E-mail Application

Figure 9.12 shows policies pushed by the e-mail application. This is typical policy
enforcement in a corporate environment.

9.3 Summary
In this chapter, we ɹrst reviewed security concerns for deploying mobile devices in an
enterprise environment and how to mitigate them. We then walked through Android
security settings that enable us to mitigate some of the risk. Finally, we concluded by
looking at the Device Administration API mechanism that can be used to enforce security
policies on Android devices.

Chapter 10
Browser Security and Future Threat Landscape

In this chapter, we review HTML and browser security on mobile devices. We cover
diʃerent types of attacks possible, as well as browser vulnerabilities. We then discuss
possible advanced attacks using mobile devices.

10.1 Mobile HTML Security
The increasing adoption of mobile devices and their use as a means to access
information on the Web has led to the evolution of websites. Initially, mobile browsers
had to access information through traditional (desktop-focused) websites. Today most of
these websites also support Wireless Application Protocol (WAP) technology or have an
equivalent mobile HTML (trimmed-down sites for mobile devices).

WAP speciɹcation deɹnes a protocol suite that enables the viewing of information on
mobile devices. The WAP protocol suite is composed of the following layers (Figure
10.1): Wireless Datagram Protocol (WDP), Wireless Transport Layer Security (WTLS),
Wireless Transaction Protocol (WTP), Wireless Session Protocol (WSP), and Wireless
Application Environment (WAE). The protocol suite operates over any wireless network.
Table 10.1 describes different layers in the protocol suite.

In a typical Internet or WWW model, there is a client that makes a request to a server.
The server processes the request and sends a response (or content) back to the client
(see Figure 10.2). This is more or less same in the WAP model, as well. However, there is
a gateway or proxy that sits between the client and the server that adapts the requests
and responses (encodes/decodes) for mobile devices (see Figure 10.3). WAP 2.0 provides
support for richer content and end-end security than WAP 1.0.

Figure 10.1 WAP Protocol Suite

WAP 1.0 did not provide end-end support for SSL/TLS. In WAP 1.0, communications
between a mobile device and WAP gateway could be encrypted using WTLS. However,
these communications would terminate at the proxy/gateway server. Communications
between the gateway and application/HTTP server would use TLS/SSL. This exposed
WAP 1.0 communications to MITM (Man-In-The-Middle) attacks. In addition, all kinds
of sensitive information would be available on the WAP gateway (in plaintext). This
meant that a compromise of the WAP gateway/proxy could result in a severe security
breach. WAP 2.0 remediates this issue by providing end-end support for SSL/TLS.

WAP and Mobile HTML sites are also susceptible to typical Web application attacks,
including Cross-Site Scripting, SQL Injection, Cross-Site Request Forgery, and Phishing.
Mobile browsers are fully functional browsers with functionality that rivals desktop
versions. They include support for cookies, scripts, ɻash, and so forth. This means that
users of mobile devices are exposed to attacks similar to those on desktop/laptop
computers. We will cover these attacks brieɻy. A good source for detailed information
on these attacks is the Open Web Application Security Project (OWASP) website.

Table 10.1 – WAP Protocols

Layer Description

Wireless
Datagram
Protocol

Lowest layer in the suite. Provides unreliable data to upper layers (i.e.,
the UDP) and functions somewhat like the transport layer. Runs on top of

(WDP) bearers, including SMS, CSD, CDPD, and so forth

Wireless
Transport
Layer
Security
(WTLS)

Provides public-key cryptography security mechanisms

Wireless
Transaction
Protocol
(WTP)

Provides transaction reliability support (i.e., reliable requests and
responses)

Wireless
Session
Protocol
(WSP)

Provides HTTP functionality

Wireless
Application
Environment
(WAE)

Provides Wireless Markup Language (WML), WMLScript, and WTA
(Wireless Telephony Application Interface). WML is a markup language
like HTML, WMLScript is a scripting language like JavaScript, and WTA
provides support for phone functionality

Figure 10.2 WWW Model

Figure 10.3 WAP Model

10.1.1 Cross-Site Scripting
Cross-Site Scripting (XSS) allows the injection of client-side script into web pages and
can be used by attackers to bypass access controls. XSS attacks can result in attackers
obtaining the user’s session information (such as cookies). They can then use this

information to bypass access controls. Figure 10.4 shows reɻected XSS in a vulnerable
website accessed through the Android browser.

At the heart of XSS attacks is the fact that untrusted user input is not thoroughly
vetted and is used without sanitization/escaping. In the case of XSS, user input is not
sanitized for and is then either displayed back to the browser (reɻected XSS) or stored
(persistent XSS) and viewed later.

Mobile sites are as prone to XSS attacks as their regular counterparts, as mobile HTML
sites might have even less controls around validating/sanitizing user input. Treating
mobile HTML sites like regular websites and performing proper validation of user input
can prevent a site from being vulnerable to XSS attacks.

Figure 10.4 Example of XSS on Mobile Device

10.1.2 SQL Injection
SQL injection allows the injection of an SQL query from a client into an application. A
successful SQL query (or attack) can provide attackers with sensitive information and
enable them to bypass access controls, run administrative commands, and
query/update/delete databases.

At the heart of SQL injection attacks is the fact that untrusted user input is directly
used in crafting SQL queries without validation. These SQL queries are then executed
against the backend database.

Similar to XSS, mobile HTML and WAP sites are prone to SQL injection attacks.
Mobile sites might have the same ɻaws as their desktop counterparts, or, even worse,
they might not be performing the validation of user input when accepting inputs
through mobile sites. Using parameterized queries or stored procedures can prevent SQL
injection attacks.

10.1.3 Cross-Site Request Forgery

A Cross-Site Request Forgery (CSRF, XSRF) attack results in unwanted (unauthorized)
commands from a user already authenticated to a website. The website trusts an
authenticated user and, therefore, commands coming from him, as well. In CSRF, the
website is the victim of the trust in the user, whereas in XSS, the user is the victim of the
trust in the server/website.

It is typical for a user to be authenticated to multiple websites on a mobile device.
Thus, CSRF attacks are possible, just as they are on desktop/laptop computers. In
addition, small interface and UI layouts can disguise CSRF attacks (e.g., an e-mail with
a URL link) and trick the user into performing unwanted operations on a website.

10.1.4 Phishing
Phishing attacks target unsuspecting users and trick them into providing sensitive
information (e.g., SSN, passwords, credit card numbers, etc.). Through social
engineering, attackers trick users to go to legitimate-looking websites and perform
certain activities. Users trusting the source for this request (e.g., typically in an e-mail)
performs the recommended operation and, in turn, provides an attacker with sensitive
data.

As an example, a user gets an e-mail that seems legitimate and looks like it came from
his bank. It is requesting the user to change his password due to a recent security breach
at the bank. For his convenience, the user is provided with a URL to change his
password. On clicking the link, the user is taken a website that looks like the bank’s
website. The user performs the password-reset operation and, in turn, provides the
current password to the attacker.

Such attacks are even more diɽcult for users to recognize on mobile devices. Due to
small UI real estate, users can’t really read the entire URL that they are viewing. If they
are being redirected to a website, they would not be able to tell it easily on a mobile
device. Diʃerences between legitimate and fake websites are not easy to distinguish on
a small UI screen of mobile devices. If URLs are disguised (e.g., tiny URL) or if these are
URLs that are sent through a Short Message Service (SMS) message (tiny URL via SMS),
it is even more diɽcult to distinguish between legitimate and fake requests. Many users
(even ones who are aware of such attacks) can be tricked into going through with an
attack. As mentioned in the previous chapter, Quick Response (QR) codes can also be
used for such attacks.

10.2 Mobile Browser Security
In this section, we review recent browser vulnerabilities on Android platforms, as well
as drive-by-download attacks.

10.2.1 Browser Vulnerabilities
As of the writing of this chapter, there are ~200+ Common Vulnerabilities and

Exposures (CVEs) related to the Android platform (search cve.mitre.org for “android”).
Of these, many are related to browsers (either built-in browsers or downloadable
browsers, such as Firefox). Table 10.2 describes the following CVEs: CVE 2008-7298,
CVE 2010-1807, CVE 2010-4804, CVE 2011-2357, and CVE 2012-3979, as well as their
descriptions, as depicted on the NIST website
(http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE).

CVE 2008-7298 can result in attackers modifying or deleting cookies; CVE 2010-1807
can allow attackers to execute arbitrary code or cause application crashes; CVE 2010-
4804 could cause information leakage on an SD Card; CVE 2011-2357 can cause an XSS
attack; and CVE 2012-3979 can cause code execution. If we look at computer browser
vulnerabilities, we see that vulnerabilities found on mobile browsers are of a similar
nature. Often, mobile application development does not follow established Security
Development Lifecycle (SDL) processes, and they are treated as “plug-ins” or
applications with lesser relevance. This can result in one or more controls (e.g., threat
modeling, static and dynamic analysis, penetration testing, code review) not being
applied to mobile application development.

Table 10.2 – Examples of Browser-Related Vulnerabilities of Android Devices

Vulnerability Description

CVE 2008-
7298

The Android browser in Android cannot properly restrict modifications
to cookies established in HTTPS sessions, which allows man-in-the-
middle attackers to overwrite or delete arbitrary cookies via a Set-
Cookie header in an HTTP response. This is due to the lack of the HTTP
Strict Transport Security (HSTS) enforcement

CVE 2010-
1807

WebKit in Apple Safari 4.x before 4.1.2 and 5.x before 5.0.2; Android
before 2.2; and webkitgtk before 1.2.6. Does not properly validate
floating-point data, which allows remote attackers to execute arbitrary
code or cause a denial of service (application crash) via a crafted HTML
document, related to nonstandard NaN representation

CVE 2010-
4804

The Android browser in Android before 2.3.4 allows remote attackers to
obtain SD card contents via crafted content:// URIs, related to (1)
BrowserActivity.java and (2) BrowserSettings.java in
com/android/browser/

Cross-application scripting vulnerability in the Browser URL loading
functionality in Android 2.3.4 and 3.1 allows local applications to

http://cve.mitre.org
http://web.nvd.nist.gov/view/vuln/detail?vulnId%3DCVE

CVE 2011-
2357

bypass the sandbox and execute arbitrary Javascript in arbitrary
domains by (1) causing the MAX_TAB number of tabs to be opened, then
loading a URI to the targeted domain into the current tab, or (2)
making two startActivity function calls beginning with the targeted
domain’s URI followed by the malicious Javascript while the UI focus is
still associated with the targeted domain

CVE 2012-
3979

Mozilla Firefox before 15.0 on Android does not properly implement
unspecified callers of the—android_log_print function, which allows

remoteattackers to execute arbitrary code via a crafted web page that
calls the JavaScript dump function

Source: http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE (vulnerability
descriptions from NVD list).

Drive-by Downloads

Drive-by downloads have been an issue with computers for some time. However, we are
starting to see them as an emerging threat on mobile devices, as well. A drive-by
download is basically malware that gets downloaded and often installed when a user
visits an infected website.

Recently, we saw the ɹrst drive-by download malware for Android (named
“NonCompatible”). When visiting an infected website, the browser could download this
malware ɹle. However, it can’t install itself without user intervention. In addition,
installation from non-trusted sources needs to be enabled for the user to install this
malware. An attacker can disguise such a download by renaming it as a popular
Android application or updates to Android itself. Users are willing to install such ɹles
without much thought and, thus, end up infecting their devices with malware.

As long as “side loading” and installation of applications from “non-trusted” sources is
disabled, such malware should not be able to impact Android devices.

10.3 The Future Landscape
Thus far, we have covered vulnerabilities that have been widely exploited or can be
exploited today. In this section, we talk about possible attacks on Android devices in the
near future. Note that these attacks cannot be executed by amateurs and would require
planning, execution, and resources probably available to organized crime, state, and
intelligence agencies. Although scenarios in this section seem futuristic, in reality, they
are very possible and for the future, quite probable. We now present the following
scenarios—using a phone as a spying/tracking device, controlling corporate networks

http://web.nvd.nist.gov/view/vuln/detail?vulnId%3DCVE

and other devices through mobile devices, and exploiting Near Field Communication
(NFC) on mobile devices.

10.3.1 The Phone as a Spying/Tracking Device
Imagine exploiting vulnerabilities on an Android device or application and gaining full
access to a phone. Rooted Android phones are most vulnerable to these kinds of attacks.
One can potentially turn a phone into a tracking and spying device. Consider the
following functionalities that can be potentially exploited: the camera and photos, GPS
co-ordinates, the microphone, e-mail and chat information, social media information
(location of restaurants, places of interest), medical information (e.g., hospital and
clinics visited, doctors searched or met), medicines looked up through the device, and so
forth.

One could argue that an exploited smartphone could be the best tracker/spy that one
can get, as it will provide you with every little bit of information to piece together the
daily routines of users and people around them. A user not aware of such a compromise
would carry it willingly and so would a malicious user who is intentionally using the
device as a tracking/spying mechanism. Smartphones are preferred devices for
organized crime, criminals, terrorists, and law enforcement agencies alike. Given the
things you can accomplish using these devices, they can also be a great tool for law
enforcement. All of this should raise concerns for a typical user in terms of security and
privacy.

10.3.2 Controlling Corporate Networks and Other Devices through Mobile
Devices

Exploiting vulnerabilities on mobile applications or the Android platform itself can lead
to other security concerns. Besides being a corporate espionage tool, it can be used to
launch attacks against corporate resources and even control corporate information
systems.

As we have already seen, corporations do not really control Android devices
purchased and owned by users. Most companies do not require the hardening of these
devices to the extent that they should. The patching of applications and platforms is not
something that security administrators always control in a BYOD world. All of this has
very signiɹcant implications for information resources in a corporate environment. The
fact that these devices are not covered by typical security controls (e.g., security scans,
patching, incident response) adds to the risk. Rooted devices can expose not only the
user but also the environment to security attacks. With all kind of applications available
on Android (e.g., Wireshark), as well as the possibly of writing custom applications to
launch security attacks, one can imagine the headaches security professionals will have
dealing with these devices in their environments. In a diʃerent scenario, more and more
home appliances and systems are controlled through mobile devices. A vulnerable or
exploited Android device can be used to attack these appliances and devices.

10.3.3 Mobile Wallets and NFC
We brieɻy covered NFC in Chapter 7 and discussed Google Wallet vulnerability.
Increasingly, retailers and banks are looking to use NFC for processing payments.
Although still in its infancy, concerns have been raised about privacy and security issues
using NFC for mobile wallet functionality. In addition to concerns around secure NFC
applications, there are other issues with such a mechanism, such as eavesdropping,
interception, and loss of control. NFC is essentially a radio communication, and it is
possible to eavesdrop on communication, if in range. NFC is limited in range compared
to Radio-Frequency Identiɹcation (RFID), although it is possible to amplify this using an
antenna. Assuming that communication is secure (encrypted), it is still possible to
perform traɽc analysis. Another issue is the possibility of a lost/stolen phone, in which
case all of the user’s bank and credit card information can be at risk (including
corporate cards). Although users might be eager to adopt this feature, they often do so
without having an understanding of the risk or best practices they need to follow.

NFC is not only used for payment processing. The recently launched Samsung Galaxy
S III uses NFC to transfer contents from one device to another, seamlessly, by placing
the devices back-to-back. Although this is a user-friendly feature, it can have serious
implications for security, including data security. Imagine that data can be directly sent
to devices that are even beyond the control of security administrators.

10.4 Summary
In this chapter, we reviewed mobile HTML security (including WAP). We covered typical
attacks possible on mobile websites. We then walked through browser vulnerabilities
and drive-by downloads. We then covered possible advanced attacks through mobile
devices.

Appendix A

In Chapter 4, we discussed Manifest permissions that are requested by applications for
performing operations such as accessing the Internet, sending SMS messages, and so
forth. We have rated these permissions based on their security implications. Permission
to access SMS messages or install packages is rated higher in terms of security
implications (severity) than permission to access battery statistics. The table below
shows the assigned score and severity/risk rating.

Score Description/Risk

4 Critical

3 High

2 Medium

1 Information Disclosure

Table A.1 comprises a comprehensive list of Android “Manifest Permissions.” It
contains a description as well as the risk rating assigned to each permission listed.

Table A.1 – Manifest Permissions

Permission Name Description
Risk

Rating

ACCESS_CHECKIN_PROPERTIES

Allows read/write access to the
“properties” table in the checkin
database, to change values that
get uploaded

2

ACCESS_COARSE_LOCATION

Allows an app to access
approximate location derived
from network location sources
such as cell towers and Wi-Fi

2

ACCESS_FINE_LOCATION

Allows an app to access precise
location from location sources
such as GPS, cell towers, and Wi- 2

Fi

ACCESS_LOCATION_EXTRA_COMMANDS
Allows an application to access
extra location provider commands

2

ACCESS_MOCK_LOCATION
Allows an application to create
mock location providers for
testing

1

ACCESS_NETWORK_STATE
Allows applications to access
information about networks

1

ACCESS_SURFACE_FLINGER
Allows an application to use
SurfaceFlinger’s low level features

1

ACCESS_WIFI_STATE
Allows applications to access
information about Wi-Fi networks

1

ACCOUNT_MANAGER
Allows applications to call into
AccountAuthenticators

4

ADD_VOICEMAIL
Allows an application to add
voicemails into the system

3

AUTHENTICATE_ACCOUNTS
Allows an application to act as an
AccountAuthenticator for the
AccountManager

4

BATTERY_STATS
Allows an application to collect
battery statistics

1

BIND_ACCESSIBILITY_SERVICE
Must be required by an
AccessibilityService, to ensure that
only the system can bind to it

1

BIND_APPWIDGET

Allows an application to tell the
AppWidget service which
application can access
AppWidget’s data

1

Must be required by device

BIND_DEVICE_ADMIN administration receiver, to ensure
that only the system can interact
with it

2

BIND_INPUT_METHOD
Must be required by an
InputMethodService, to ensure
that only the system can bind to it

1

BIND_REMOTEVIEWS
Must be required by a
RemoteViewsService, to ensure
that only the system can bind to it

1

BIND_TEXT_SERVICE Must be required by a TextService 1

BIND_VPN_SERVICE
Must be required by an
VpnService, to ensure that only
the system can bind to it

2

BIND_WALLPAPER
Must be required by a
WallpaperService, to ensure that
only the system can bind to it

1

BLUETOOTH
Allows applications to connect to
paired bluetooth devices

2

BLUETOOTH_ADMIN
Allows applications to discover
and pair bluetooth devices

2

BRICK
Required to be able to disable the
device (very dangerous!)

3

BROADCAST_PACKAGE_REMOVED

Allows an application to
broadcast a notification that an
application package has been
removed

2

BROADCAST_SMS
Allows an application to
broadcast an SMS receipt
notification

3

BROADCAST_STICKY Allows an application to
broadcast sticky intents

2

BROADCAST_WAP_PUSH
Allows an application to
broadcast a WAP PUSH receipt
notification

2

CALL_PHONE

Allows an application to initiate a
phone call without going through
the Dialer user interface for the
user to confirm the call being
placed

4

CALL_PRIVILEGED

Allows an application to call any
phone number, including
emergency numbers, without
going through the Dialer user
interface for the user to confirm
the call being placed

4

CAMERA
Required to be able to access the
camera device

4

CHANGE_COMPONENT_ENABLED_STATE

Allows an application to change
whether an application
component (other than its own) is
enabled or not

1

CHANGE_CONFIGURATION
Allows an application to modify
the current configuration, such as
locale

1

CHANGE_NETWORK_STATE
Allows applications to change
network connectivity state

1

CHANGE_WIFI_MULTICAST_STATE
Allows applications to enter Wi-Fi
Multicast mode

1

CHANGE_WIFI_STATE Allows applications to change Wi-
Fi connectivity state

1

CLEAR_APP_CACHE

Allows an application to clear the
caches of all installed applications
on the device

2

CLEAR_APP_USER_DATA
Allows an application to clear
user data

2

CONTROL_LOCATION_UPDATES
Allows enabling/disabling
location update notifications from
the radio

2

DELETE_CACHE_FILES
Allows an application to delete
cache files

2

DELETE_PACKAGES
Allows an application to delete
packages

3

DEVICE_POWER
Allows low-level access to power
management

2

DIAGNOSTIC
Allows applications to read-write
to diagnostic resources

1

DISABLE_KEYGUARD
Allows applications to disable the
keyguard

2

DUMP
Allows an application to retrieve
state dump information from
system services

2

EXPAND_STATUS_BAR
Allows an application to expand
or collapse the status bar

1

FACTORY_TEST
Run as a manufacturer test
application, running as the root
user

3

FLASHLIGHT Allows access to the flashlight 1

FORCE_BACK
Allows an application to force a
BACK operation on whatever is
the top activity

1

GET_ACCOUNTS
Allows access to the list of
accounts in the Accounts Service

3

GET_PACKAGE_SIZE
Allows an application to find out
the space used by any package

1

GET_TASKS
Allows an application to get
information about the currently or
recently running tasks

2

GLOBAL_SEARCH

This permission can be used on
content providers to allow the
global search system to access
their data

2

HARDWARE_TEST
Allows access to hardware
peripherals

2

INJECT_EVENTS

Allows an application to inject
user events (keys, touch,
trackball) into the event stream
and deliver them to ANY window

3

INSTALL_LOCATION_PROVIDER
Allows an application to install a
location provider into the
Location Manager

2

INSTALL_PACKAGES
Allows an application to install
packages

3

INTERNAL_SYSTEM_WINDOW
Allows an application to open
windows that are for use by parts
of the system user interface

3

INTERNET
Allows applications to open
network sockets

3

KILL_BACKGROUND_PROCESSES
Allows an application to call
killBackgroundProcesses()

2

MANAGE_ACCOUNTS

Allows an application to manage
the list of accounts in the
AccountManager

3

MANAGE_APP_TOKENS

Allows an application to manage
(create, destroy, Z-order)
application tokens in the window
manager

3

MASTER_CLEAR 3

MODIFY_AUDIO_SETTINGS
Allows an application to modify
global audio settings

1

MODIFY_PHONE_STATE
Allows modification of the
telephony state—power on, mmi,
etc

2

MOUNT_FORMAT_FILESYSTEMS
Allows formatting file systems for
removable storage

2

MOUNT_UNMOUNT_FILESYSTEMS
Allows mounting and unmounting
file systems for removable storage

2

NFC
Allows applications to perform
I/O operations over NFC

3

PERSISTENT_ACTIVITY

This constant was deprecated in
API level 9. This functionality will
be removed in the future; please
do not use. Allow an application
to make its activities persistent

2

PROCESS_OUTGOING_CALLS
Allows an application to monitor,
modify, or abort outgoing calls

3

Allows an application to read the

READ_CALENDAR user’s calendar data 3

READ_CALL_LOG
Allows an application to read the
user’s call log 3

READ_CONTACTS
Allows an application to read the
user’s contacts data

3

READ_EXTERNAL_STORAGE
Allows an application to read
from external storage

3

READ_FRAME_BUFFER
Allows an application to take
screen shots and more generally
get access to the frame buffer data

3

READ_HISTORY_BOOKMARKS
Allows an application to read (but
not write) the user’s browsing
history and bookmarks

3

READ_INPUT_STATE
This constant was deprecated in
API level 16. The API that used
this permission has been removed

3

READ_LOGS
Allows an application to read the
low-level system log files

3

READ_PHONE_STATE
Allows read-only access to phone
state

3

READ_PROFILE
Allows an application to read the
user’s personal profile data

3

READ_SMS
Allows an application to read SMS
messages

3

READ_SOCIAL_STREAM
Allows an application to read
from the user’s social stream

3

READ_SYNC_SETTINGS
Allows applications to read the
sync settings

2

READ_SYNC_STATS Allows applications to read the
sync stats

2

READ_USER_DICTIONARY
Allows an application to read the
user dictionary

2

REBOOT
Required to be able to reboot the
device

2

RECEIVE_BOOT_COMPLETED

Allows an application to receive
the ACTION_BOOT_COMPLETED
that is broadcast after the system
finishes booting

2

RECEIVE_MMS

Allows an application to monitor
incoming MMS messages, to
record or perform processing on
them

3

RECEIVE_SMS
Allows an application to monitor
incoming SMS messages, to record
or perform processing on them

3

RECEIVE_WAP_PUSH
Allows an application to monitor
incoming WAP push messages

3

RECORD_AUDIO
Allows an application to record
audio

3

REORDER_TASKS
Allows an application to change
the Z-order of tasks

2

RESTART_PACKAGES
This constant was deprecated in
API level 8. The restartPackage()
API is no longer supported

2

SEND_SMS
Allows an application to send SMS
messages

3

SET_ACTIVITY_WATCHER
Allows an application to watch
and control how activities are 2

started globally in the system

SET_ALARM

Allows an application to
broadcast an Intent to set an
alarm for the user

1

SET_ALWAYS_FINISH

Allows an application to control
whether activities are immediately
finished when put in the
background

1

SET_ANIMATION_SCALE
Modify the global animation
scaling factor

1

SET_DEBUG_APP
Configure an application for
debugging

1

SET_ORIENTATION
Allows low-level access to setting
the orientation (actually rotation)
of the screen

1

SET_POINTER_SPEED
Allows low-level access to setting
the pointer speed

1

SET_PREFERRED_APPLICATIONS

This constant was deprecated in
API level 7. No longer useful; see
addPackageToPreferred() for
details

1

SET_PROCESS_LIMIT

Allows an application to set the
maximum number of (not needed)
application processes that can be
running

1

SET_TIME
Allows applications to set the
system time

1

SET_TIME_ZONE
Allows applications to set the
system time zone

1

SET_WALLPAPER Allows applications to set the
wallpaper

1

SET_WALLPAPER_HINTS
Allows applications to set the
wallpaper hints

1

SIGNAL_PERSISTENT_PROCESSES

Allow an application to request
that a signal be sent to all
persistent processes

1

STATUS_BAR
Allows an application to open,
close, or disable the status bar and
its icons

1

SUBSCRIBED_FEEDS_READ
Allows an application to allow
access to the subscribed feeds
ContentProvider

1

SUBSCRIBED_FEEDS_WRITE 1

SYSTEM_ALERT_WINDOW

Allows an application to open
windows using the type
TYPE_SYSTEM_ALERT, shown on
top of all other applications

1

UPDATE_DEVICE_STATS
Allows an application to update
device statistics.

1

USE_CREDENTIALS
Allows an application to request
authtokens from the
AccountManager

1

USE_SIP
Allows an application to use SIP
service

1

VIBRATE Allows access to the vibrator 1

WAKE_LOCK

Allows using PowerManager
WakeLocks to keep processor
from sleeping or screen from

1

dimming
WRITE_APN_SETTINGS

Allows applications to write the
apn settings

1

WRITE_CALENDAR
Allows an application to write
(but not read) the user’s calendar
data

2

WRITE_CALL_LOG
Allows an application to write
(but not read) the user’s contacts
data

2

WRITE_CONTACTS
Allows an application to write
(but not read) the user’s contacts
data

3

WRITE_EXTERNAL_STORAGE
Allows an application to write to
external storage

3

WRITE_GSERVICES
Allows an application to modify
the Google service map

2

WRITE_HISTORY_BOOKMARKS
Allows an application to write
(but not read) the user’s browsing
history and bookmarks

2

WRITE_PROFILE
Allows an application to write
(but not read) the user’s personal
profile data

2

WRITE_SECURE_SETTINGS
Allows an application to read or
write the secure system settings

2

WRITE_SETTINGS
Allows an application to read or
write the system settings

2

WRITE_SMS
Allows an application to write
SMS messages

2

Allows an application to write

WRITE_SOCIAL_STREAM (but not read) the user’s social
stream data

2

WRITE_SYNC_SETTINGS
Allows applications to write the
sync settings

1

WRITE_USER_DICTIONARY Allows an application to write to
the user dictionary

1

Appendix B: JEB Disassembler and Decompiler Overview

In Chapters 6 and 7, we showed how to decompile and reverse engineer Android apps
with diʃerent open source tools. In Appendix B we are going to do a quick overview of
JEB. JEB is an Android app disassembler and decompiler. It can handle APK or DEX
files. The analyses can be saved to JDB files.

The workspace is divided into four areas, as seen in Figure B.1:

1 - The menu and toolbar, at the top
2 - The console window and status bar, at the bottom
3 - The class hierarchy browser
4 - A tab folder consisting of many important subviews

B.1 Views
Within a workspace, views representing portions of the analyzed ɹle are contained
within the tab folder (4). The views can be closed and reopened via the Windows menu.
Here is a list of common views:

• T h e Assembly view. This view contains the disassembly code of all classes
contained in the DEX ɹle. This view is interactive. The assembly can be exact Smali
or simplified Dalvik assembly for improved clarity.

Figure B.1 JEB Main Window

• The Decompiled view. This view contains the decompiled byte-code of a class, in
Java. Switching back and forth with the assembly view can be done by pressing the
Tab key, while the caret is positioned on a class.

• The Strings view. This view contains the list of strings present in the DEX ɹle.
Double-clicking on a string switches back to the assembly view and positions the
caret on the first occurrence in which the string is being used.

• The Constants view. This view contains a list of numerical constants present in
the DEX ɹle. Double-clicking on a constant switches back to the assembly view and
positions the caret on the first occurrence in which the constant is being used.

• Th e Manifest view. This view represents the decompressed manifest of the
application.

• The Resources view. This tree view allows the user to explore the applications
decompressed resources.

• The Assets view. This view is very similar to the Resources view and is used to
browse an assets files.

• The Certificates view. This view oʃers a human-readable representation of the
certificates used to sign the APK.

• The External Classes/Methods/Fields view. These views list the external (outside
the DEX file) classes, methods, and fields referenced and used within the DEX file.

• The Notes view. This view is a placeholder for analysis notes.

The class hierarchy view (3) contains the entire list of classes present in the DEX ɹle.
Classes are organized by package.

Clicking or double-clicking on a class name will bring up the Assembly view and
position the caret on the chosen class.

For the sake of clarity, the user may decide to temporarily mask inner classes by
marking the appropriate checkbox at the bottom of the tree.

B.2 Code Views
The assembly and decompiled code views are the most crucial views when it comes to
analyzing an app. These code views are interactive and work hand-in-hand.

Both views contain interactive items: they can be classes, ɹelds, methods, opcodes,
instructions, comments, and so forth.

When users set the focus on either one of these views, they can:

• Rename items (N): Classes, ɹelds, and methods can be renamed. Changes are
reɻected in the other view. In the decompiled view, variables and parameters can
also be renamed. External items (those not deɹned in the DEX ɹle) cannot be
renamed.

• Insert comments (C): Comments may be speciɹc to a class, a ɹeld, a method, or a
speciɹc method instruction. Comments can be text, audio, or both. Audio comments
are denoted by a bang character (!) prepended to the optional text comment.

• Examine cross references (X): Most interactive items can be cross-referenced to see
where they are used. The cross-references are listed by order of appearance in the
code. Double-click a cross-reference to jump to its location.

• Navigate (Enter): A user can “follow” items. In in this context, it means jumping to
the deɹnition of that item. For instance, following a method call to foo() means
jumping to the location where foo() is defined.

From the assembly view, the user can decide to decompile a class by pressing
Tab. The current view will switch to the decompiled view for the target class, and the
caret will be positioned on the closest high-level Java item that matches the source byte-
code instruction. Conversely, when positioning the caret on a high-level Java item and
switching back to the assembly view, JEB tries to position the caret on the low-level
byte-code instruction that most closely matches the source Java statement.

B.3 Keyboard Shortcuts
Keyboard shortcuts (see Table B.1) can be used within the code views. For improved
productivity, it is highly recommended to use them. Experienced reverse-engineers will
recognize the shortcuts used by standard disassembler tools.

B.4 Options
The Edit/Options menu allows users to customize various aspects and styles of JEB. The
options are grouped into various categories (general/speciɹc to the assembly view,
speciɹc to the code view, etc.), and most of them are self-explanatory, as can be seen in
Figure B.2.

The show debug directives/line numbers options show the speciɹc metadata in the
assembly code. The user should be aware that such metadata can be easily forged, and
therefore, should not be trusted.

The keep Smali compatibility option will try to produce assembly code compliant with
Smali. Compliance in this context means, for instance, invoke instructions with
parameters first, fully qualified method names and class names, specific switch structure,
and so forth. By disabling the Smali compatibility, a user can greatly improve the
readability of the assembly code.

Table B.1 Keyboard Shortcuts Available within Code View

Shortcut Description

Tab
Decompile a class (when in assembly view) / Switch back to assembly (when
in decompiled view)

N Rename an internal item (class, field, method, variable)

C (or
Slash)

Insert a comment

X
Examine the cross-references of an interactive item (xrefs can be double-
clicked and followed)

Enter Follow an interactive item

Escape Go back to the previous caret position in the follow-history

Ctrl-
Enter

Go forward to the next caret position in the follow-history

F5 Refresh/synchronize the code view

Figure B.2 JEB Options

Figure B.3 JEB Code Style Manager

Style options include font selection (which affect various views) and color styles.

The default font is set to a standard ɹxed font, usually Courier New. This may vary
from system to system. Recent versions of Courier New have a good amount of Unicode
glyphs. However, yours may not have the CJK glyphs, which are essential when dealing
with Asian locale apps. Should that happen, other fonts may be used, such as Fang Song
on Windows, or Sans on Ubuntu. These fonts oʃer good BMP support, including CJK,
Russian, Thai, and Arabic.

The “Style manager” button allows the user to customize colors and aspects of various
interactive items. This aʃects the code views as well as the XML views used to render
the manifest and other XML resources. Foreground and background colors as well as
font attributes for interactive items can be customized (see Figure B.3).

Appendix C: Cracking the SecureApp.Apk Application

In this appendix, we detail how a malicious user can reverse engineer and modify the
behavior of a particular application. In Chapter 7, we showed this using the
SecureApp.apk application as one of many ways in which a malicious user can achieve
this. In this tutorial, we will demonstrate a few ways in which a malicious user can
modify an application’s behavior to add or remove functionality.

Due to the hands-on nature of this exercise, this appendix is available on the book’s
website—www.androidinsecury.com—in the Chapters section. All ɹles related to this
exercise are available in the Resource section of the website. You will need the following
credentials to access the files under the Resource section.

Username: android
Password: 1439896461

http://www.androidinsecury.com

Glossary

Chapter 1

A5/1 Encryption A stream cipher used to provide over-the-air communication privacy
in the GSM cellular telephone.
(http://en.wikipedia.org/wiki/A5/1_encryption_algorithm)

AOSP Android Open Source Project

OHA Open Handset Alliance

Chapter 2

/etc/shadow ɹle Used to increase the security level of passwords by restricting all but
highly privileged users’ access to hashed password data.
(http://en.wikipedia.org/wiki/Shadow_(file))

Abstract Window Toolkit (AWT) Java’s platform-independent windowing graphics
and user-interface widget toolkit.

Android Development Tools (ADT) A plug-in for Eclipse IDE to develop Android
applications.

API Application Programming Interface

Daemon A computer program that runs as a background process.
(http://en.wikipedia.org/wiki/Daemon_(computing))

Dalvik Debug Monitor Service (DDMS) A debugging tool that provides port
forwarding services. (http://developer.android.com/tools/debugging/ddms.html)

SDK Software Development Kit

Chapter 3

Broadcast Receivers Enable applications to receive intents that are broadcast by the
systems of other applications.

Intents Messages through which other application components (activities, services, and
Broadcast Receivers) are activated.

http://en.wikipedia.org/wiki/A5/1_encryption_algorithm
http://en.wikipedia.org/wiki/Shadow_file
http://en.wikipedia.org/wiki/Daemon_computing
http://developer.android.com/tools/debugging/ddms.html

Chapter 4

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Identity

IPC Interprocess Communication

MAC Mandatory Access Control refers to a type of access control by which the operating
system constrains the ability of a subject to perform some sort of operation on an object.
(http://en.wikipedia.org/wiki/Mandatory_access_control)

Superuser A user account used for system administration.

TAN Tax Deduction Account Number

Chapter 5

JNI Java Native Framework, which enables Java code running in a Java Virtual
Machine to call and be called by native applications.
(http://en.wikipedia.org/wiki/JNI)

OS Fingerprinting A passive collection of conɹguration attributes from a remote
device. (http://en.wikipedia.org/wiki/TCP/IP_stack_fingerprinting)

OSSTMM Open Source Security Testing Methodology Manual

Pen Testing Penetration testing is a method of evaluating the security of a computer
system by simulating an attack from malicious outsiders.
(http://en.wikipedia.org/wiki/Pen_testing)

RPC Remote procedure call is an inter-process communication that allows a computer
program to cause a function to execute in another address space.
(http://en.wikipedia.org/wiki/Remote_procedure_call)

Static Analysis The analysis of computer software that is performed without actually
executing programs. (http://en.wikipedia.org/wiki/Static_program_analysis)

SYN Scan In this type of scanning, the SYN packet is used for port scans.

Chapter 6

AndroidManifest An Android manifest ɹle provides essential information the system
must have before it can run any of the application code.
(http://developer.android.com/guide/topics/manifest/manifest-intro.html)

http://en.wikipedia.org/wiki/Mandatory_access_control
http://en.wikipedia.org/wiki/JNI
http://en.wikipedia.org/wiki/TCP/IP_stack_fingerprinting
http://en.wikipedia.org/wiki/Pen_testing
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Static_program_analysis
http://developer.android.com/guide/topics/manifest/manifest-intro.html

APK Android Application Package File

apktool A tool to reverse engineer Android apps.

BOT Application A proof-of-concept Android application written by the authors to
demonstrate security issues with the Android OS.

CnC A central server for a BOT network which issues commands to all BOT clients.

Cute Puppies Wallpaper An application developed by the authors for analysis.

Decompile Process of converting executable binary to a higher level programming
language.

DEX Dalvik Executable Format

dex2jar A tool to work with Android .dex and java .class ɹles.
(http://code.google.com/p/dex2jar/)

Inter-process Communication A set of methods for the exchange of data among one or
more processes. (http://en.wikipedia.org/wiki/Inter-process_communication)

jar Java Archive; an aggregate of many Java class files.

jd-gui A standalone graphical utility that displays Java source code .class ɹles.
(http://java.decompiler.free.fr/?q=jdgui)

Key Logger An application that can log keys pressed by the user. The key logger can be
legitimate, but more often than not, most key logger applications are malicious in
nature.

Malware Short for malicious (or malevolent) software, is software used or created by
attackers to disrupt computer operation. (http://en.wikipedia.org/wiki/Malware)

Reverse Engineering The process of discovering the technological principles of a
device, object, or system through analysis of its structure, function, or operation.
(http://en.wikipedia.org/wiki/Reverse_engineering)

Chapter 7

Access Control Refers to exerting control over who can interact with a resource.
(http://en.wikipedia.org/wiki/Access_control)

Assembler Creates object code by translating assembly instruction mnemonics into
opcodes. (http://en.wikipedia.org/wiki/Assembly_language)

http://code.google.com/p/dex2jar/
http://en.wikipedia.org/wiki/Inter-process_communication
http://java.decompiler.free.fr/?q%3Djdgui
http://en.wikipedia.org/wiki/Malware
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/wiki/Assembly_language

Baksmali A dissembler for dex format used by Dalvik.

Brute Force Problem-solving methods involving the evaluation of every possible answer
for fitness. (http://en.wikipedia.org/wiki/Brute_force)

Byte Code Also know as a p-code; a form of instruction set designed for eɽcient
execution by a software interpreter. (http://en.wikipedia.org/wiki/Bytecode)

dexdump Android SDK utility to dump disassembled dex files.

Disassembler Translates machine language into assembly language.

Disk Encryption A technology that protects information by converting information into
unreadable code. (http://en.wikipedia.org/wiki/Disk_encryption)

Google Wallet An app on the Android platform that stores users credit and debit card
information for online purchases on the Android platform.

Hash Functions An algorithm that maps large data sets of variable length to smaller
data sets of a fixed length. (http://en.wikipedia.org/wiki/Hash_function)

NFC Near Field Communication

Obfuscation The hiding of intended meaning in communication making communication
confusing, ambiguous, and harder to interpret.
(http://en.wikipedia.org/wiki/Obfuscation)

ProGuard The proguard tool shrinks, optimizes, and obfuscates Android application
code by removing unused code and renaming classes, ɹelds, and methods with obscure
names. (http://developer.android.com/tools/help/proguard.html)

Rainbow Tables A precomputed table for reversing cryptographic hash functions for
cracking password hashes. (http://en.wikipedia.org/wiki/Rainbow_table)

RFID Radio Frequency Identification

“salt” Used in cryptography to make it harder to decrypt encrypted data by hashing
encrypted data.

SHA-256 A 256-bit SHA hash algorithm.

Signapk An open source utility to sign Android application packages.
(http://code.google.com/p/signapk/)

Smali An assembler for dex format used by Dalvik.

http://en.wikipedia.org/wiki/Brute_force
http://en.wikipedia.org/wiki/Bytecode
http://en.wikipedia.org/wiki/Disk_encryption
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Obfuscation
http://developer.android.com/tools/help/proguard.html
http://en.wikipedia.org/wiki/Rainbow_table
http://code.google.com/p/signapk/

SQlite A relational database management system contained in a small C programming
library. (http://en.wikipedia.org/wiki/SQLite)

Chapter 8

adb Also known as Android Debug Bridge; a command line to communicate with an
Android emulator/device.

ext2 Second extended file system is a file system for Linux kernel.

ext3 Third extended file system is a file system for Linux kernel.

ext4 Fourth extended file system is a file system for Linux kernel.

Gingerbreak An Android application to root the Android Gingerbread version.

MOBILedit MOBILedit is a digital forensics tool for cell phone devices.

nodev A Linux partition option that prevents having special devices on set partitions.

Rooting A process for allowing users of smartphones, tablets, and other devices to
attain privileged control. (http://en.wikipedia.org/wiki/Android_rooting)

Seesmic A cross-platform application that allows users to simultaneously manage user
accounts for multiple social networks. (http://en.wikipedia.org/wiki/Seesmic)

vfat An extension that can work on top of any FAT file system.

Virtual File System (VFS) Allows client applications to access diʃerent types of
concrete ɹle systems in a uniform way.
(http://en.wikipedia.org/wiki/Virtual_file_system)

YAFFS (Yet Another Flash File System) The ɹrst version of this ɹle system and works
on NAND chips that have 512 byte pages. (http://en.wikipedia.org/wiki/YAFFS)

YAFFS2 (Yet Another Flash File System) The second version of YAFFS partition.

Chapter 9

Acceptable Use Policy (AUP) A set of rules applied by the owner of a network that
restrict the ways in which the network, website or system may be used.
(http://en.wikipedia.org/wiki/Acceptable_use_policy)

Bluetooth A wireless technology standard for exchanging data over short distances.
(http://en.wikipedia.org/wiki/Bluetooth)

http://en.wikipedia.org/wiki/SQLite
http://en.wikipedia.org/wiki/Android_rooting
http://en.wikipedia.org/wiki/Seesmic
http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/YAFFS
http://en.wikipedia.org/wiki/Acceptable_use_policy
http://en.wikipedia.org/wiki/Bluetooth

BYOD Bring Your Own Device

Exchange ActiveSync (EAS) An XML-based protocol that communicates over HTTP (or
HTTPS) designed for synchronization of email, contacts, calendar, and notes.
(http://en.wikipedia.org/wiki/Exchange_ActiveSync)

Google Play Formerly known as the Android Market; a digital application distribution
platform for Android developed and maintained by Google.
(http://en.wikipedia.org/wiki/Google_Play)

Hardening Usually the process of securing a system by reducing its surface of
vulnerability. (http://en.wikipedia.org/wiki/Hardening_(computing))

IEC International Electrotechnical Commission

ISO 27001-2 An information security standard published by the International
Organization for Standards (ISO). (http://en.wikipedia.org/wiki/ISO/IEC_27002)

Man-in-the-Middle (MITM) A form of active eavesdropping in which the attacker
makes independent connections with the victims and relays the messages between them.
(http://en.wikipedia.org/wiki/Man-in-the-middle)

Near Field Communication (NFC) A set of standards for devices to establish radio
communication with each other by touching them together or bringing them into close
proximity. (http://en.wikipedia.org/wiki/Near_field_communication)

NIST 800-53 Recommended Security Controls for Federal Information Systems and
Organizations. (http://en.wikipedia.org/wiki/NIST_Special_Publication_800-53)

Patching A security patch is a change applied to an asset to correct the weakness
described by a vulnerability.
(http://en.wikipedia.org/wiki/Patch_(computing)#Security_patches)

Payment Card Industry Data Security Standard (PCI DSS) An information security
standard for organizations that handle cardholder information for major credit/debit
cards. (http://en.wikipedia.org/wiki/PCI_DSS)

Remote Wipe Ability to delete all the data on a mobile device without having physical
access to the device.

Shoulder Surɹng Refers to using direct observation techniques, such as looking over
someone’s shoulder, to get information.
(http://en.wikipedia.org/wiki/Shoulder_surfing_(computer_security))

SP800-124 A National Institute of Standards & Technology (NIST) standard that makes

http://en.wikipedia.org/wiki/Exchange_ActiveSync
http://en.wikipedia.org/wiki/Google_Play
http://en.wikipedia.org/wiki/Hardening_%28computing%29
http://en.wikipedia.org/wiki/ISO/IEC_27002
http://en.wikipedia.org/wiki/Man-in-the-middle
http://en.wikipedia.org/wiki/Near_field_communication
http://en.wikipedia.org/wiki/NIST_Special_Publication_800-53
http://en.wikipedia.org/wiki/Patch_%28computing%29#Security_patches
http://en.wikipedia.org/wiki/PCI_DSS
http://en.wikipedia.org/wiki/Shoulder_surfing_computer_security

recommendations for securing mobile devices.
(http://csrc.nist.gov/publications/nistpubs/800-124/SP800-124.pdf)

Whitelist A list or register of entities that, for one reason or another, are being
provided a particular privilege, service, mobility, access or recognition.
(http://en.wikipedia.org/wiki/Whitelist)

Chapter 10

CSRF/XSRF Cross-Site Request Forgery

Drive-by Downloads Any download that happens without a person’s knowledge; often
a computer virus, spyware, or malware. (http://en.wikipedia.org/wiki/Drive-
by_download)

HTML Hyper Text Markup Language

OWASP An open-source application security project.

Phishing The act of attempting to acquire information by masquerading as a
trustworthy entity. (http://en.wikipedia.org/wiki/Phishing)

QR Code (Quick Response Code) The trademark for a type of matrix barcode.
(http://en.wikipedia.org/wiki/QR_code)

SQLi SQL Injection

WAE Wireless Application Environment

WAP Wireless Application Protocol

WDP WAP Datagram Protocol

WML Wireless Markup Language

WSP Wireless Session Protocol

WTA Wireless Telephony Application

WTLS Wireless Transport Layer Security

WTP Web Tools platform

XSS Cross-Site Scripting

http://csrc.nist.gov/publications/nistpubs/800-124/SP800-124.pdf
http://en.wikipedia.org/wiki/Whitelist
http://en.wikipedia.org/wiki/Drive-by_download
http://en.wikipedia.org/wiki/Phishing
http://en.wikipedia.org/wiki/QR_code

Index

/data/data, 73, 74, 172, 173, 176–178, 181, 183
/etc/shadow, 18

Access Control List (ACL), 98
ACL. See Access Control List
activity, 3, 27, 28, 39–43, 47–51, 53, 57, 61–70, 78, 86, 100, 124, 128, 196, 217
activity lifecycle, 49, 61–70
adb, 22, 28, 31, 35, 38, 78, 79, 81, 82, 101, 170, 172, 180, 181, 183, 206
ADB. See Android Debug Bridge
ADT. See Android Development Tools
analyze, 1, 39, 90, 99, 100, 103, 119, 121–125, 128, 144, 147, 148, 150, 161, 170, 176,

180, 181, 183, 187, 194
Android architecture, 17, 71, 97, 169
Android attack, 88
Android BOT, 119
Android Debug Bridge (ADB), 22, 28, 31, 35, 38, 78, 79, 81, 82, 101, 170, 172, 180, 181,

183, 206
Android Development Tools (ADT), 28, 31, 33, 35, 37

Android kernel, 18, 25
Android Manifest, 51, 223
Android marketplace, 13, 16, 77, 120

Android Open Source Project (AOSP), 11
Android Package files (APK), 35, 43, 75, 76, 78, 83, 88, 107, 108, 125, 148, 150, 153,

155, 156, 160–163, 180, 181
Android releases, 11, 12, 18, 20
Android runtime, 17, 26, 79, 80, 83
Android SDK, 17, 28–31, 35, 36, 46, 149
Android stack, 17–19, 31
Android start up, 28, 43
AOSP. See Android Open Source Project
APK. See Android Package files

Apktool, 107, 123, 124, 150, 153, 155, 156, 161
application-based attack, 9
application components, 47, 51, 60, 70, 71
application framework, 17, 25–27
application security, 87, 113, 116, 118, 216
assembly, 233, 235, 236, 238

attack surface, 5, 9, 20, 106

Bluetooth, 4, 21, 195, 203
BotWorker, 125, 132, 134, 136–141
bring your own device (BYOD), 195–197, 221
broadcast, 51, 57, 58, 70, 86, 107
Broadcast Receiver, 51, 57, 58, 70, 107
browser vulnerability, 213, 218, 222
brute force, 117, 155, 162, 167
Burp Suite, 110
BusyBox, 100–102
BYOD. See bring your own device

callbacks, 49, 61
CDMA, 10, 88
cloud, 117, 118
CnC. See Command and Control Center
code, 11, 18, 21, 22, 25, 35, 39, 41–43, 49, 50, 58–60, 63, 72, 88, 90, 91, 97, 99, 100,

103, 106, 109, 113, 117, 118, 120–122, 125, 129, 139, 147, 148, 150, 154, 155,
163, 165, 166, 168, 183, 196, 197, 199, 218, 233, 235–238

code obfuscation, 163, 168
Command and Control Center (CnC), 139, 144
compliance, 193, 197
compliance/audit considerations, 193
content provider, 60, 70, 86
controlling corporate networks, 220, 221
Cross-Site Request Forgery (CSRF, XSRF), 87, 217
Cross-Site Scripting (XSS), 87, 117, 214, 216–218
cryptography, 109, 114, 167, 168, 198

CSRF. See Cross-Site Request Forgery
CutePuppiesWallpaper, 35, 125, 128, 130, 137

Dalvik Debug Monitoring Service (DDMS), 28, 31, 34–37, 170, 175
Dalvik Virtual Machine (DVM), 11, 17, 26, 28, 72, 125, 148
database, 99, 109, 117, 118, 162, 168, 176–178, 183, 185, 187, 217
data privacy, 87
data storage, 117, 118
DDMS. See Dalvik Debug Monitoring
Service
decompile, 107, 119, 125, 147, 148, 153, 161, 163, 235, 236
decompiler, 125, 129, 233
decompiling APK, 125
defensive strategies, 163
device access, 199
device administration, 208, 210, 211
API, 208, 210, 211
DEX, 26, 107, 125, 128, 147–152, 233, 235, 236
dexdump tool, 149
DEX file format, 147, 148
directory ownership, 74
directory structure, 170, 172, 175
disassembler, 150, 233, 236
disk encryption, 168
drive-by-download, 218
DroidDream, 88, 89, 91
variant, 88
DVM. See Dalvik Virtual Machine
dynamic analysis, 218

Eclipse, 28, 31, 33, 35, 37, 39, 43, 163, 164, 170
encryption, 9, 10, 87, 118, 168, 207–210
end-user awareness, 197
enterprise, 11, 98, 193–199, 208, 211
error handling, 117

ext2, 170
external storage, 87, 91, 117, 198
extracting data, 187

file system, 23, 35, 78, 167, 169, 170, 173, 174, 181, 187, 191
flash, 215
forensics, 100, 101, 148, 169

GID. See group id
Gingerbreak, 180, 181
Global Smartphone Sales, 4
Google Wallet, 161, 168, 221
GPS, 4, 9, 22, 86, 87, 139, 169, 196, 198, 220
group id (GID), 21, 23, 72, 73, 79, 80, 83
GSM, 10, 88

hacking, 169
hardening Android, 193, 199
hashing, 154, 167, 168
Hello World, 39, 41–43, 149
Honeycomb, 12
HTML security, 213, 222

imaging Android, 181
Intents, 48, 51–54, 57–61, 70, 97, 107, 124
intercepting traffic, 110
internal storage, 117, 118
Interprocess Communication (IPC), 20, 25, 71, 73, 107, 114, 124, 127, 128
investigation, 169, 181, 183
IPC. See Interprocess Communication
ISO 27002, 198
iterative hashing, 167, 168

JD-GUI, 125, 128, 163, 165, 166

kernel version, 18, 20, 180
keyboard, 87

Legacy Code, 88
library, 17, 25, 26, 28, 29, 72, 100, 109, 116, 122, 162, 172
Linux kernel, 11, 17, 18, 20, 21, 25, 26, 28, 43, 71, 72, 75, 79, 94, 122, 170
LogCat, 25, 28, 35, 41–43, 45, 47, 63

malicious software, 87, 120, 121. See also malware
malware, 9–11, 88–90, 92, 93, 119–122, 144, 220. See also malicious software
man-in-the-middle (MITM), 91, 195, 214
Manifest, 42, 50, 51, 54–60, 72, 75, 76, 78, 83, 94, 107, 108, 123, 223, 224, 226, 228,

230, 232, 235, 238
Manifest Permissions, 72, 75, 76, 78, 94, 107
MDM. See Mobile Device Management
MITM. See man-in-the-middle
mkfs, 183
mobile browser security, 218
Mobile Device Management (MDM), 209
MOBILedit, 187–189
mobile security issue, 86
mobile threats, 5
Mobile Wallets, 221
mount points, 169–171, 187

NAND, 170
native layer libraries, 25
near field communication (NFC), 10, 22, 161, 162, 195, 203, 220–222
NFC. See near field communication
NIST 800-53, 198
NIST 800-115, 99
OHA. See Open Handset Alliance
OnCreate, 41, 42, 49, 50, 59, 61–63, 150
onDestroy, 49, 59, 61, 62, 70
OnPause, 49, 61–64

OnRestart, 49, 61
onResume, 49, 61–63
OnStart, 49, 61–63
onStop, 49, 61, 62, 64, 70
Open Handset Alliance (OHA), 4, 11

Package Manager, 27
partitions, 170, 187
patching, 86, 97, 116, 194, 197, 198, 221
PCI DSS, 198
penetration testing, 97, 99, 100, 106, 118, 218. See also pen testing
external, 98
internal, 98
pen testing, 97, 98, 101, 106, 109, 116, 118. See also penetration testing
permission, 20, 22, 23, 25, 51, 54, 57–60, 72, 73, 75–85, 87–95, 97, 107–109, 114, 120,

122, 123, 125, 126, 139, 162, 167, 172, 176, 178, 180, 183, 223, 224, 226, 228,
230, 232

permission enforcement, 72
persistent, 60, 173, 187, 216
persistent XSS, 216
phishing, 9, 87, 215, 217
process ownership, 74
ProGuard, 31, 35, 39, 40, 163, 164

QR. See quick response
quick response (QR), 196, 218

rainbow tables, 167
receiver, 51, 57, 58, 70, 107, 124, 139
reflected XSS, 216
remote wipe, 198, 200, 201, 209, 210
reporting, 99, 116
resource, 27, 43, 49, 51, 59, 61, 62, 70, 72, 100, 106, 107, 109, 114, 116, 117, 121, 128,

194–198, 210, 220, 221, 235, 238
reverse engineering, 119–121, 123, 153, 163, 168

RFID, 10, 162, 222
risk, 10, 14, 78, 86, 87, 100, 194–197, 199, 206, 211, 221, 222, 223
rooting, 10, 178, 180

salt, 155, 162, 167, 168
screen lock, 194, 199, 200, 207–210
SDK. See Software Development Kit
SecureApp.apk, 153, 156
security issue, 16, 86, 87, 97, 99, 106, 116, 118, 120, 198, 221
security model, 71–73, 93, 94, 169, 180
security practices, 88, 197, 198
sensitive information, 9, 54, 87, 114, 116, 117, 121, 167, 168, 177, 194, 214, 217
server side processing, 163, 167
service, 3, 9, 10, 17, 27, 28, 31, 35, 47, 51, 58–60, 70, 75, 86, 90, 98, 100, 101, 109, 119,

124, 128, 137, 139, 194, 196, 199, 203, 205, 218
session management, 116
severity, 99, 113, 223

shell, 17, 22, 24, 25, 35, 73, 78, 79, 81, 82, 100, 101, 170, 172, 176, 180, 182, 183, 206
Short Message Service (SMS), 9, 10, 27, 72, 75, 76, 78, 80, 83, 91, 93, 119, 136, 137,

139, 169, 187, 190, 200, 218
SignApk tool, 160
SIM card, 93, 199, 200, 202, 203
SIM lock, 199, 200
Skype vulnerability, 162
Smali, 147, 148, 150, 154–158, 233, 236, 238
smartphone, 1–5, 9, 86, 169, 194, 221
SMS. See Short Message Service
Software Development Kit (SDK), 17, 28–31, 34–36, 39, 46, 149
spying, 220, 221
spying/tracking device, 220
SQL injection, 214, 217
SQlite, 25, 117, 118, 162, 170, 177, 179, 183, 186
browser, 183
static analysis, 97–100, 118

strings, 23, 39, 42, 43, 235
strings.xml, 39, 42, 43
Symbian, 3, 8, 91

tool, 17, 25, 28, 29, 31, 33–36, 43, 86, 98–100, 118, 119, 121, 149, 160, 162, 181, 183,
187, 199, 221

trojan, 90, 91, 121

UID. See user id
unapproved networks, 195
unknown content, 196
unknown source, 14, 196, 202, 204
untrusted application, 194, 195
untrusted device, 195
untrusted networks, 195
untrusted systems, 196
user id (UID), 40, 57, 72–75, 79, 80, 167, 172, 180

verify apps, 206
vfat, 170
vulnerability, 97–99, 103, 109, 116, 161, 162, 168, 180, 194, 213, 218–222

WAP. See Wireless Application Protocol
WDP. See Wireless Datagram Protocol
Wireless Application Protocol (WAP), 213–215, 217, 222
Wireless Datagram Protocol (WDP), 213
Wireless Transaction Protocol (WTP), 213
Wireshark, 100, 103–105, 113, 114, 221
WTP. See Wireless Transaction Protocol

XML, 22, 39, 42, 43, 54–60, 75, 76, 80, 83, 85, 89, 92, 107, 123, 124, 167, 177, 178, 238
XSRF. See Cross-Site Request Forgery
XSS. See Cross-Site Scripting

Yaaic application, 113
yaffey, 183, 184

yaffs2, 170, 183

Zitmo, 91, 93–95
Zsone, 90, 92
zygote, 28, 43

	Title Page
	Copyright
	Dedication
	Contents
	Foreword
	Preface
	About the Authors
	Acknowledgments
	Chapter 1 Introduction
	Chapter 2 Android Architecture
	Chapter 3 Android Application Architecture
	Chapter 4 Android (in)Security
	Chapter 5 Pen Testing Android
	Chapter 6 Reverse Engineering Android Applications
	Chapter 7 Modifying the Behavior of Android Applications without Source Code
	Chapter 8 Hacking Android
	Chapter 9 Securing Android for the Enterprise Environment
	Chapter 10 Browser Security and Future Threat Landscape
	Appendix A
	Appendix B
	Appendix C
	Glossary
	Index

