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Foreword

Fifty years ago, there was no Internet. Not everyone had a telephone, and they
were all analog. There was no WWW, no “cloud.” Our cars were all mechanical,
microwave ovens were still too big and expensive for most homes, and there
were only a handful of universities offering classes in the new field of “computer
science.” If we wanted to find some facts about coconut exports from Malaysia or a
chronological list of Viceroys of Peru, there was no Google:Instead, we needed to
visit a library and consult paper books and encyclopedia.

The world has changed considerably in a matter of decades—less than an
average human lifespan. Many children growing up today may never have seen a
landline telephone or an analog clock, referenced a bound encyclopedia, or know
what a “long-distance” call means other than in a history class or by watching old
movies on their tablets. The pace of innovation seems to be increasing, outpacing
the predictions of technologists and science fiction authors alike.

Some basic concepts thread themselves through these changes in technology
and have been present for millennia. How do we secure information from being
read by the unauthorized? How do we prevent forgeries and theft? How do we
verify identity at a distance? And how can we be sure that the measures we take
to safeguard our information, property, and identities areproof against malicious
attack? Whether our information is on a paper ledger or a spreadsheet in a cloud
container, we want to have confidence that it is protected.

Cryptography has been—and continues to be—a linchpin of ourstored in-
formation and communications’ trustworthiness. We can encrypt economic transac-
tions ranging from online shopping to cryptocurrency to international banking so
as to prevent theft and fraud. People use encryption to hide political and religious
communications from oppressive governments. We all employdigital signatures to
sign contracts. Companies use cryptographic hash codes to protect the software in
electronic voting machines and critical security patches.Cryptography is all around
us; although we don’t see it, we depend on cryptography’s correct functioning in
dozens of different ways every day.

Rolf Oppliger wrote his first book on cryptography in 2005, and I wrote the
forward to it. We both knew the history of cryptography: For much of the past,

xvii



xviii

it was the domain of government agents, clandestine lovers,and smugglers. We
also saw how it had become a critical component of network communications,
international finance, and everyday commerce in a matter of afew decades. I don’t
think either of us envisioned how much the world would embrace fast-changing
digital technologies and thus have an even greater relianceon strong cryptography.

What we (and others) have also learned—repeatedly—over thelast few
decades is that knowing powerful cryptographic methods is not sufficient on its own.
The implementations of those algorithms and supporting mechanisms (e.g., random
number generation, key sharing) must be correct as well. That is why this current
book delves deeper into considerations of how algorithms are actually constructed
and realized. As such, it presents enhanced tutelage in the basics of how and why to
use cryptography suitable for its increasing importance.

In the next 15–20 years, we are likely to see much more innovation. Many of
the items around us will have embedded, communicating processors in the Internet
of Things. Self-driving vehicles will be commonplace, quantum computation may be
widely used, and direct human-computer interfaces might provide greater bandwidth
from system to brain than our biological eyes can sustain. Whatever technology
may be deployed, I am confident that cryptography will still be a crucial element to
protect our privacy and our digital property, attest to our identities, and safeguard
our systems’ integrity. To function in that world, people will need to understand
cryptographic mechanisms and their applications. You holdin your possession a
valuable guide to how to do just that. As such, this is more than a primer—it is a
prospectus for future success.

Eugene H. Spafford
Professor, Purdue University

June 2021



Preface

Necessity is the mother of invention,
and computer networks are the mother of modern cryptography.

— Ronald L. Rivest1

Any sufficiently advanced technology is indistinguishablefrom magic.

— Arthur C. Clarke2

With the current ubiquity of computer networks and distributed systems in general
and the Internet in particular, cryptography has become a key enabling technology
to secure the information infrastructure(s) we are building, using, and counting on in
daily life. This is particularly true for modern cryptography.3 The important role of
(modern) cryptography is, for example, pointed out by the first quote given above.
As explained later in the book, the quoted cryptographer—Ronald L. Rivest—is one
of the leading pioneers and experts of modern cryptography,and he coinvented the
Rivest, Shamir, Adleman (RSA) public key cryptosystem thatis omnipresent and in
widespread use today.

According to the second quote given above, cryptography sometimes looks
magical and seems to solve problems one would consider impossible to solve at
first sight, such as exchanging a secret key in public, tossing a coin over a public
network, or proving knowledge of some fact without leaking any information about
it. Unfortunately, most of these solutions don’t come with amathematically rigorous
proof, but only with a reduction proof that is relative to some other problem and
relies on specific assumptions. Consequently, we don’t really know whether the

1 In “Cryptography as Duct Tape,” a short note written to the Senate Commerce and Judiciary
Committees in opposition to mandatory key recovery proposals on June 12, 1997 (the note is
available electronically at http://theory.lcs.mit.edu/∼rivest/ducttape.txt).

2 This quote is also known as Clarke’s third law.
3 In Chapter 1, we explain what modern cryptography means andhow it actually differs from classical

cryptography.
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claimed solution really or only seemingly works and is therefore “indistinguishable
from magic.” The fundamental question whether cryptography is science or magic
was first asked by James L. Massey in a 2001 eyeopening talk4 and later reopened by
Dieter Gollmann in 2011.5 Even today it remains a key question and a particularly
interesting and challenging research topic. It boils down to the question of whether
one-way functions really exist (given the fact that we “only” have candidates for
such functions at hand). At the end of the book, we’ll revisitthis point and argue
that telling cryptography apart from magic and illusion is sometimes difficult if not
impossible, and we’ll coin the termcryptollusionfor this purpose.

Due to its important role, computer scientists, electricalengineers, and applied
mathematicians should be educated in both the theoretical principles and practical
applications of cryptography. Cryptography is a tool, and as such it can provide
security only if used properly. If not used properly, it may fail to provide security,
and the result may even be worse than not using cryptography in the first place. This
is because users think they are protected, whereas in reality this is not the case, and
this, in turn, may lead to inappropriate or incorrect behavior. We know from daily
life that incorrect user behavior may lead to security breaches.

There are many books that can be used for educational purposes (e.g., [1–33]
itemized in alphabetical order).6 Among these books, I particularly recommend [2, 3,
13, 24, 26, 28] to teach classes, [20] to serve as a handy reference for cryptographic
algorithms and protocols (also available electronically on the Internet7), [12] to pro-
vide a historical perspective, and [4] to overview practically relevant cryptographic
standards.

In the early 2000s (when most of the books mentioned above were not
yet available), I spent a considerable amount of time writing a manuscript that
I could use to lecture and teach classes on cryptography. I then decided to turn
the manuscript into a book that would provide a comprehensive overview about
contemporary cryptography. In 2005, the first edition of theresulting book was
published in Artech House’s Information Security and Privacy Series8 [34], and
the second edition was released in 2011 [35]. The target audience of either edition
included mathematicians, computer scientists, and electrical engineers, both in
research and practice. It goes without saying that this alsoincluded computer
practitioners, consultants, and information security officers who wanted to gain
insight into this fascinating and quickly evolving field.

4 https://techtv.mit.edu/videos/16442-cryptography-science-or-magic.
5 https://www.youtube.com/watch?v=KOlOqb8q2Gs.
6 In addition to these books, Dan Boneh and Victor Shoup are drafting “A Graduate Course in Applied

Cryptography” that is available from https://toc.cryptobook.us.
7 http://www.cacr.math.uwaterloo.ca/hac.
8 https://www.esecurity.ch/serieseditor.html.
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Many things have happened since then, and two trends have made it parti-
cularly difficult to come up with a third edition of the book: On the one hand,
the entire field has expanded in many ways, making it more and more difficult to
remain comprehensive. On the other hand, the gap between theory and practice
has become very large (if not too large). To put it in Albert Einstein’s words: “In
theory, theory and practice are the same. In practice, they are not.” Today, there
are theoretical cryptographers working on proofs and new constructs that hardly
have real-world consequences, whereas there are practicalcryptographers working
on trying to securely implement cryptographic primitives and combine them in
security protocols and applications in some ad hoc manner. Working in one of these
worlds does not necessarily mean that one also understands the other world. It has
therefore become important to let practitioners know abouttheoretical results and
breakthroughs and theorists know about what can actually gowrong in the practice.
So theorists and practitioners can learn from each other, but to do so they have to
understand each other first.

Against this background, I have changed both the title and the focus of the
new book: The new title isCryptography 101: From Theory to Practice, and the
new focus is to bring theory and practice in line and to bridgethe currently existing
gap between them. Honestly speaking, another subtitle would have beenFrom
Practice to Theory, because it better mirrors my own course of action, but this order
is somehow unusual and therefore not used here. Anyway, the resulting book is
intended to be accessible to both theorists and practitioners, and to provide them
with sufficient information to understand the other world. Its structure still follows
[34] and [35], but most parts have been written entirely fromscratch.

Cryptography 101: From Theory to Practiceis still tutorial in nature. It starts
with two chapters that introduce the topic and briefly overview the cryptographic
systems (or cryptosystems) in use today. The book then addresses unkeyed cryp-
tosystems (Part I), secret key cryptosystems (Part II), andpublic key cryptosystems
(Part III). Part III also includes cryptographic protocolsthat make use of public
key cryptography, such as key exchange and zero-knowledge protocols. Finally, the
book finishes with some conclusions (Part IV) and several appendixes about discrete
mathematics, probability theory, information theory, andcomplexity theory.

Each chapter is intended to be comprehensive on its own and almost all
include a list of references that can be used for further study. Where necessary
and appropriate, I have added uniform resource locators (URLs) as footnotes to the
text. The URLs point to corresponding information pages on the Web. While care
has been taken to ensure that the URLs are valid now, unfortunately—due to the
dynamic nature of the Internet and the Web—I cannot guarantee that these URLs
and their contents remain valid forever. In regard to the URLs, I apologize for any
information page that may have been removed or replaced since the time of writing



xxii

and publishing of the book. To make the problem less severe, Ihave not included
URLs that can be expected to be removed or replaced soon.

Readers who like to experiment with cryptographic systems are invited to
download, install, and play around with some of the many software packages that
have been written and are available for demonstrational andeducational purposes.
Among these packages, I particularly recommend CrypTool (with its many variants)
that is publicly and freely available,9 and that provides insight into the basic working
principles of the cryptographic algorithms and protocols in use today. If you are
particularly interested and savy in mathematics, then you may use the open source
software system Sage10 that yields a viable alternative to commercial software
packages, like Maple, Mathematica, or MATLAB.

If you want to implement and market some of the cryptographictechniques
or systems addressed in this book, then you must be cautious and note that the
entire field of cryptography is tied up in patents and corresponding patent claims.
Consequently, the situation is highly involved, and you must make sure that you
have appropriate licenses or a good lawyer (and preferably both). This is particularly
important if you intend to distribute and commercialize theimplementation.

To make things worse, regulations for both the use and the import and export
of cryptographic products differ from country to country.11 Most importantly, with
regard to the export of cryptographic products, the situation is involved. In the United
States, for example, the Bureau of Industry and Security (BIS) of the Department
of Commerce (DoC) has been in charge of export controls since1996. The rules
governing exports and reexports of cryptographic productsare found in the Export
Administration Regulations (EAR). If a U.S. company wants to sell a cryptographic
product overseas, it must have export approval according tothe EAR.

In January 2000, the DoC published a regulation implementing the White
House’s announcement of a new framework for U.S. export controls on encryption
items.12 The policy was in response to the changing global market, advances in
technology, and the need to give U.S. industry better accessto these markets, while
continuing to provide essential protections for national security. The regulation
enlarged the use of license exceptions, implemented the changes agreed to at the
Wassenaar Arrangement13 on export controls for conventional arms and dual-use

9 https://www.cryptool.org.
10 https://www.sagemath.org.
11 There are usually no regulations for the import of cryptographic products. A respective survey is, for

example, available at http://www.cryptolaw.org. As of this writing, the latest version is 27.0 from
2013.

12 The announcement was made on September 16, 1999.
13 The Wassenaar Arrangement (https://www.wassenaar.org) is a treaty originally negotiated in July

1996 and signed by 31 countries to restrict the export of dual-use goods and technologies to specific
countries considered to be dangerous.
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goods and technologies in December 1998, and eliminated thedeemed export
rule for encryption technology. In addition, new license exception provisions were
created for certain types of encryption, such as source codeand toolkits. Some
countries, such as Cuba, Iran, Iraq, Libya, North Korea, Sudan, and Syria, are
exempted from the regulation. We are not going to address legal issues surrounding
the use and export of cryptographic products in this book, but note again that you
may want to talk to a lawyer before you either use or export cryptographic products.

Last, but not least, it is important to note thatCryptography 101: From The-
ory to Practiceaddresses only the materials that are published and available in the
open literature. These materials are, for example, presented and discussed at the con-
ferences held by the International Association for Cryptologic Research (IACR14).
There may (or may not) be additional and complementary materials available in the
backyards of secret services and intelligence agencies. These materials are subject
to speculations and rumors; sometimes they provide a starting point for best-selling
books and movie plots, and sometimes they even turn out to be true in the aftermath.
In this book, we do not speculate about these materials. It is, however, important to
note and keep in mind that these materials still exist and that their mere existence
may make this book or parts of it obsolete (once their existence becomes known).
For example, the notion of public key cryptography was invented by employees of a
British intelligence agency a few years before it was published in the open literature
(Section 1.3). Also, the data encryption standard (DES) wasdesigned to be resistant
against differential cryptanalysis—a cryptanalytical attack against block ciphers that
was discussed in the public literature only two decades after the standardization of
the DES (Section 9.6.1.4). There are certainly many other (documented or undocu-
mented) examples that may illustrate the point.

I hope thatCryptography 101: From Theory to Practiceserves your needs.
Also, I would like to take the opportunity to invite you as a reader to let me
know your opinions and thoughts. If you have something to correct or add, please
let me know. If I have not expressed myself clearly, please let me know, too. I
appreciate and sincerely welcome any comment or suggestionin order to update
the book in future editions and to turn it into an appropriatereference book that
can be used for educational purposes. The best way to reach meis to send a
message torolf.oppliger@esecurity.ch. You may also visit my home-
page atrolf-oppliger.com or rolf-oppliger.ch, the book’s home-
page athttps://books.esecurity.ch/crypto101.html (to find post
errata lists, additional information, and complementary material), or my blogs at
https://blog.esecurity.ch for information security and privacy in gen-
eral, andhttps://cryptolog.esecurity.ch for cryptology in particular.
I’m looking forward to hearing from you in one way or another.

14 https://www.iacr.org.
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Chapter 1

Introduction

In this chapter, we pitch the field and introduce the topic of the book, namely cryp-
tography, at a high operating altitude and level of abstraction. More specifically,
we elaborate on cryptology (including cryptography) in Section 1.1, address crypto-
graphic systems (or cryptosystems for short) in Section 1.2, provide some historical
background information in Section 1.3, and outline the restof the book in Section
1.4. The aim is to lay the basics to understand and put into proper perspective the
contents of the book.

1.1 CRYPTOLOGY

The termcryptologyis derived from the Greek words “kryptós,” meaning “hidden,”
and “lógos,” meaning “word.” Consequently, the term cryptology can be paraphrased
as “hidden word.” This refers to the original intent of cryptology, namely to hide the
meaning of words and to protect the confidentiality and secrecy of the respective data
accordingly. As will (hopefully) become clear throughout the book, this viewpoint
is too narrow, and the term cryptology is currently used for many other security-
related purposes and applications in addition to the protection of the confidentiality
and secrecy of data.

More specifically, cryptology refers to the mathematical science and field of
study that comprises cryptography and cryptanalysis.

• The term cryptography is derived from the Greek words “kryptós” (see
above) and “gráphein,” meaning “to write.” Consequently,the meaning of
the term cryptography can be paraphrased as “hidden writing.” According
to the Internet security glossary provided in Request for Comments (RFC)
4949 [1], cryptography also refers to the “mathematical science that deals with

1
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transforming data to render its meaning unintelligible (i.e., to hide its semantic
content), prevent its undetected alteration, or prevent its unauthorized use.
If the transformation is reversible, cryptography also deals with restoring
encrypted data to intelligible form.” Consequently, cryptography refers to the
process of protecting data in a very broad sense.

• The termcryptanalysisis derived from the Greek words “kryptós” (see above)
and “analýein,” meaning “to loosen.” Consequently, the meaning of the term
can be paraphrased as “to loosen the hidden word.” This paraphrase refers to
the process of destroying the cryptographic protection, or—more generally—
to study the security properties and possibilities to breakcryptographic tech-
niques and systems. Again referring to [1], the term cryptanalysis refers to the
“mathematical science that deals with analysis of a cryptographic system in
order to gain knowledge needed to break or circumvent1 the protection that
the system is designed to provide.” As such, the cryptanalyst is the antago-
nist of the cryptographer, meaning that his or her job is to break or—more
likely—circumvent the protection that the cryptographer has designed and
implemented in the first place. Quite naturally, there is an arms race going on
between the cryptographers and the cryptanalysts (but notethat an individual
person may have both skills, cryptographic and cryptanalytical ones).

Many other definitions for the terms cryptology, cryptography, and crypt-
analysis exist and can be found in the literature (or on the Internet, respectively). For
example, the term cryptography is sometimes said to more broadly refer to the study
of mathematical techniques related to all aspects of information security (e.g., [2]).
These aspects include (but are not restricted to) data confidentiality, data integrity,
entity authentication, data origin authentication, nonrepudiation, and/or many more.
Again, this definition is broad and comprises anything that is directly or indirectly
related to information security.

In some literature, the term cryptology is said to also include steganography
(in addition to cryptography and cryptanalysis).

• The termsteganographyis derived from the Greek words “steganos,” meaning
“impenetrable,” and “gráphein” (see above). Consequently, the meaning of
the term can be paraphrased as “impenetrable writing.” According to [1], the

1 In practice, circumventing (bypassing) the protection ismuch more common than breaking it.
In his 2002 ACM Turing Award Lecture (https://amturing.acm.org/vp/shamir2327856.cfm or
https://www.youtube.com/watch?v=KUHaLQFJ6Cc), for example, Adi Shamir—a coinventor of
the RSA public key cryptosystem—made the point that “cryptography is typically bypassed, not
penetrated,” and this point was so important to him that he put it as a third law of security (in
addition to “absolutely secure systems do not exist” and “tohalve your vulnerability you have to
double your expenditure”).
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term refers to “methods of hiding the existence of a message or other data.
This is different than cryptography, which hides the meaning of a message
but does not hide the message itself.” Let us consider an analogy to clarify
the difference between steganography and cryptography: ifwe have money to
protect or safeguard, then we can either hide its existence (by putting it, for
example, under a mattress), or we can put it in a safe that is asburglarproof as
possible. In the first case, we are referring to steganographic methods, whereas
in the second case, we are referring to cryptographic ones. An example of
a formerly widely used steganographic method is invisible ink. A message
remains invisible, unless the ink is subject to some chemical reaction that
causes the message to reappear and become visible again. Currently deployed
steganographic methods are much more sophisticated, and can, for example,
be used to hide information in electronic files. In general, this information is
arbitrary, but it is typically used to identify the owner or the recipient of a file.
In the first case, one refers todigital watermarking, whereas in the second
case one refers todigital fingerprinting. Both are active areas of research.

The relationship between cryptology, cryptography, cryptanalysis, and stega-
nography is illustrated in Figure 1.1. In this book, we only focus on cryptography
in a narrow sense (this is symbolized with the shaded box in Figure 1.1). This can
also be stated as a disclaimer: we elaborate on cryptanalysis only where necessary
and appropriate, and we do not address steganography at all.There are other
books that address cryptanalysis (e.g., [3–5]) or provide useful information about
steganography in general (e.g., [6, 7]) and digital watermarking and fingerprinting
in particular (e.g., [8, 9]).

Figure 1.1 The relationship among cryptology, cryptography, cryptanalysis, and steganography.

Interestingly, cryptographic and steganographic technologies and techniques
are not mutually exclusive, and it may make a lot of sense to combine them. For
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example, the open source disk encryption software VeraCrypt2 employs stegano-
graphic techniques to hide the existence of an encrypted disk volume (known as a
“hidden volume”). It is possible and likely that we will see more combinations of
cryptographic and steganographic technologies and techniques in future products.

1.2 CRYPTOGRAPHIC SYSTEMS

According to [1], the termcryptographic system3 (or cryptosystem) refers to “a
set of cryptographic algorithms together with the key management processes that
support use of the algorithms in some application context.”Again, this definition is
fairly broad and comprises all kinds of cryptographic algorithms and—as introduced
below—protocols. Hence, the notion of an algorithm4 captured in Definition 1.1 is
key for a cryptographic system.

Definition 1.1 (Algorithm) An algorithm is a well-defined computational proce-
dure that takes a value as input and turns it into another value that represents the
output.

In addition to being well-defined, it is sometimes required that the algorithm halts
within a reasonable amount of time (for any meaningful definition of “reasonable”).
Also, Definition 1.1 is rather vague and not mathematically precise. It neither states
the computational model for the algorithm, nor does it say anything about the
problem the algorithm is supposed to solve, such as, for example, computing a
mathematical function. Consequently, from a theoretical viewpoint, an algorithm
can be more precisely defined as a well-defined computationalprocedure for a well-
defined computational model for solving a well-defined problem. This definition,
however, is a little bit clumsy and therefore not widely usedin field. Instead, people
usually prefer the simpler (and more intuitive) definition stated above.

In practice, a major distinction is made between algorithmsthat are determin-
istic and algorithms that are not (in which case they are probabilistic or randomized).

2 VeraCrypt (https://www.veracrypt.fr) is a fork of the formerly very popular but discontinued
TrueCrypt project.

3 In some literature, the termcryptographic schemeis used to refer to a cryptographic system.
Unfortunately, it is seldom explained what the difference is between a (cryptographic) scheme
and a system. So for the purpose of this book, we don’t make a distinction, and we use the term
cryptographic system to refer to either of them. We hope thatthis simplification is not too confusing.
In the realm of digital signatures, for example, people often use the term digital signature scheme
that is not used in this book. Instead, we consistently use the term digital signature system to refer
to the same construct.

4 The termalgorithm is derived from the name of the mathematician Mohammed ibn-Musa al-
Khwarizmi, who was part of the royal court in Baghdad and lived from about 780 to 850.
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• An algorithm isdeterministicif its behavior is completely determined by the
input. This also means that the algorithm always generates the same output
for the same input (if executed multiple times).

• An algorithm isprobabilistic(or randomized) if its behavior is not completely
determined by the input, meaning that the algorithm internally employs some
(pseudo)random values.5 Consequently, a probabilistic algorithm may gener-
ate different outputs each time it is executed with the same input.

Today, probabilistic algorithms play a much more importantrole in cryptog-
raphy than they used to play in former times. Anyway, an algorithm may be imple-
mented by a computer program that is written in a specific programming language,
such as Pascal, C, or Java. Whenever we describe algorithms in this book, we don’t
use a specific programming language, but we use a more formal and simpler notation
that looks as follows:

(input parameters)

computational step
. . .

computational step

(output parameters)

The input and output parameters are written in brackets at the beginning and at
the end of the algorithm description, whereas the body of thealgorithm consists of a
sequence of computational steps that are executed in the specified order. Throughout
the book, we sometimes introduce cryptosystems as sets of algorithms that are each
written in this notation.

If more than one entity is involved in the execution of an algorithm (or
the computational procedure it defines, respectively), then one is in the realm of
protocols—a term that originates from diplomacy. Definition 1.2 captures the notion
of a protocol.

Definition 1.2 (Protocol) A protocol is a distributed algorithm in which two or
more entities take part.

Alternatively, one can define a protocol as a distributed algorithm in which
a set of more than one entity (instead of two or more entities)takes part. In this
case, it is immediately clear that an algorithm also represents a protocol, namely
one that is degenerated in the sense that the set consists of just one entity. Hence,

5 A value is random (pseudorandom) if it is randomly (pseudorandomly) generated.
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an algorithm can also be seen as a special case of a protocol. The major distinction
between an algorithm and a protocol is that only one entity isinvolved in the former,
whereas two or more entities are involved in the latter. Thisdistinguishing fact is
important and must be kept in mind when one talks about algorithms and protocols—
not only cryptographic ones. It means that in a protocol the different entities may
have to send messages to each other, and hence that a protocolmay also comprise
communication steps (in addition to computational steps).As such, protocols tend
to be more involved than algorithms and this also affects their analysis. Similar to an
algorithm, a protocol may be deterministic or probabilistic, depending on whether
the protocol internally employs random values. For the purpose of this book, we
are mainly interested in cryptographic algorithms and protocols as suggested in
Definitions 1.3 and 1.4.

Definition 1.3 (Cryptographic algorithm) A cryptographic algorithmis an algo-
rithm that employs and makes use of cryptographic techniques and mechanisms.

Definition 1.4 (Cryptographic protocol) A cryptographic protocolis a protocol
that employs and makes use of cryptographic techniques and mechanisms.

Remember the definition for a cryptographic system (or cryptosystem) given
at the beginning of this section. According to this definition, a cryptosystem may
comprise more than one algorithm, and the algorithms need not be executed by
the same entity, that is, they may be executed by multiple entities in a distributed
way. Consequently, this notion of a cryptosystem also captures the notion of a
cryptographic protocol as suggested in Definition 1.4. Hence, another way to look
at cryptographic algorithms and protocols is to say that a cryptographic algorithm
is asingle-entity cryptosystem, whereas a cryptographic protocol is amulti-entityor
multiple entities cryptosystem. These terms, however, are not used in the literature,
and hence we don’t use them in this book either.

At this point in time, it is important to note that a typical cryptographic ap-
plication may consist of multiple (cryptographic) protocols, that these protocols and
their concurrent execution may interact in subtle ways, andthat the respective inter-
dependencies may be susceptible tomulti-protocol attacks.6 As its name suggests,
more than one protocol is involved in such an attack, and the adversary may employ
messages from one protocol execution to construct valid-looking messages for other
protocols or executions thereof. If, for example, one protocol uses digital signatures
for random-looking data and another protocol is an authentication protocol in which
an entity must digitally sign a nonce to authenticate itself, then an adversary can
use the first protocol as an oracle and has it digitally sign a nonce from the second

6 The notion of achosen protocolor multi-protocol attackfirst appeared in a 1997 paper [10], but the
problem had certainly preexisted before that.
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protocol. This is a simple and straightforward attack that can be mitigated easily
(for example, by using two distinct keys). However, more involved interactions and
interdependencies are possible and likely exist, and hencemulti-protocol attacks
tend to be powerful and difficult to mitigate. Fortunately, many such attacks have
been described in scientific papers, but only few have been mounted in the field so
far—at least as far as we know today.

In the cryptographic literature, it is common to use human names for entities
that participate in cryptographic protocols, such as a Diffie-Hellman key exchange.
For example, in a two-party protocol the participating entities are usually calledAlice
andBob. This is a convenient way of making things unambiguous with relatively
few words, since the pronounshecan be used for Alice, andhecan be used for Bob.
The disadvantage of this naming scheme is that people automatically assume that the
entities refer to human beings This need not be the case, and Alice, Bob, and all other
entities are rather computer systems, cryptographic devices, hardware modules,
smartcards, or anything along these lines. In this book, we don’t follow the tradition
of using Alice, Bob, and the rest of the gang. Instead, we use single-letter characters,
such as A, B, and so on, to refer to the entities that take part and participate in
a cryptographic protocol. This is admittedly less fun, but more appropriate (see,
for example, [11] for a more comprehensive reasoning about this issue). In reality,
the entities refer to social-technical systems that may have a user interface, and the
question of how to properly design and implement such an interface is key to the
overall security of the system. If this interface is not appropriate, then phishing and
many other types of social engineering attacks become trivial to mount.

The cryptographic literature provides many examples of more or less useful
cryptographic protocols. Some of these protocols are overviewed, discussed, and
put into perspective in this book. To formally describe a (cryptographic) protocol in
which A and B take part, we use the following notation:

A B
(input parameters) (input parameters)

. . . . . .
computational step computational step

. . . . . .
−→
. . .
←−

. . . . . .
computational step computational step

. . . . . .

(output parameters) (output parameters)
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Some input parameters may be required on either side of the protocol (note that
the input parameters need not be the same). The protocol thenincludes a sequence of
computational and communication steps. Each computational step may occur only
on one side of the protocol, whereas each communication steprequires data to be
transferred from one side to the other. In this case, the direction of the data flow is
indicated by an arrow. The set of all data that is communicated this way refers to
the protocol transcript. Finally, some parameters may be output on either side of
the protocol. These output parameters actually represent the result of the protocol
execution. Similar to the input parameters, the output parameters need not be the
same on either side. In many cases, however, the output parameters are the same. In
the case of the Diffie-Hellman key exchange, for example, theoutput is the session
key that can subsequently be used to secure communications.

1.2.1 Classes of Cryptographic Systems

Cryptographic systems may or may not use secret parameters (e.g., cryptographic
keys). If secret parameters are used, then they may or may notbe shared among the
participating entities. Consequently, there are three classes of cryptographic systems
that can be distinguished.7 They are captured in Definitions 1.5–1.7.

Definition 1.5 (Unkeyed cryptosystem)An unkeyed cryptosystemis a crypto-
graphic system that uses no secret parameter.

Definition 1.6 (Secret key cryptosystem)A secret key cryptosystemis a crypto-
graphic system that uses secret parameters that are shared among the participating
entities.

Definition 1.7 (Public key cryptosystem)A public key cryptosystemis a crypto-
graphic system that uses secret parameters that are not shared among the partici-
pating entities.

In Chapter 2, we informally introduce and briefly overview the most important
representatives of these classes. These representatives are then formally addressed
in Part I (unkeyed cryptosystems), Part II (secret key cryptosystems), and Part III
(public key cryptosystems) of the book. In these parts, we provide more formal
definitions of both the cryptosystems and their security properties. In the rest of this
section, we continue to argue informally about the securityof cryptographic systems
and the different perspectives one may take.

7 The classification scheme was created by Ueli M. Maurer.
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1.2.2 Secure Cryptographic Systems

The goal of cryptography is to design, implement, and employcryptographic sys-
tems that are “secure.” But to make precise statements aboutthe security of a partic-
ular cryptosystem, one must formally define the term security. Unfortunately, reality
looks different, and the literature is full of cryptographic systems that are claimed to
be secure without providing an appropriate definition for it. This is dissatisfactory,
mainly because anything can be claimed to be secure, unless its meaning is precisely
nailed down.

Instead of properly defining the term security and analyzingwhether a cryp-
tographic system meets this definition, people often like toargue about key lengths.
This is because the key length is a simple and very intuitive security parameter. So
people frequently use it to characterize the cryptographicstrength of a system. This
is clearly an oversimplification, because the key length is asuitable (and meaningful)
measure of security if and only if an exhaustive key search isthe most efficient way
to break it. In practice, however, this is seldom the case, and there are often simpler
ways to break the security of a system (e.g., simply by reading out some keying
material from the memory). In this book, we avoid discussions about key lengths.
Instead, we refer to the recommendations8 compiled and hosted by BlueKrypt.9

They provide practical advice to decide what key lengths areappropriate for any
given cryptosystem (even using different methods).

In order to discuss the security of a cryptosystem, there aretwo perspectives
one may take: a theoretical one and a practical one. Unfortunately, the two perspec-
tives are fundamentally different, and one may have a cryptosystem that is theoret-
ically secure but practically insecure (e.g., due to a poor implementation), or—vice
versa—a cryptosystem that provides a sufficient level of security in practice but
is not very sophisticated from a theoretical viewpoint. Letus have a closer look
at both perspectives before we focus on some general principles for the design of
cryptographic systems.

1.2.2.1 Theoretical Perspective

According to what has been said above, one has to start with a precise definition
for the term “security” before one can argue about the security of a particular
cryptosystem. What does it mean for such a system to be “secure”? What properties
does it have to fulfill? In general, there are two questions that need to be answered
here:

8 https://www.keylength.com.
9 https://www.bluekrypt.com.
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1. Who is the adversary; that is, what are his or her capabilities and how powerful
is he or she?

2. What is the task the adversary has to solve in order to be successful; that is, to
break the security of the system?

An answer to the first question comprises the specification ofseveral parame-
ters related to the adversary, such as his or her computing power, available memory,
available time, types of feasible attacks, and access to a priori information. For some
of these parameters, the statements can be coarse, such as the computing power and
the available time are finite or infinite. The result is athreats model(i.e., a model of
the adversary one has in mind and against whom one wants to protect oneself).

An answer to the second question is even more tricky. In general, the adver-
sary’s task is to find (i.e., compute, guess, or otherwise determine) one or several
pieces of information that he or she should not be able to know. If, for example, the
adversary is able to determine the cryptographic key used toencrypt a message, then
he or she must clearly be considered to be successful. But what if he or she is able
to determine only half of the key, or—maybe even more controversial—a single bit
of the key? Similar difficulties occur in other cryptosystems that are used for other
purposes than confidentiality protection.

Figure 1.2 Security game in the ideal/real simulation paradigm.

The preferred way to deal with these difficulties is to define asecurity game
in the ideal/real simulation paradigmillustrated in Figure 1.2. On the left side,
there is a system that is eitherideal or real, meaning that it is either a theoretically
perfect system for the task one has in mind (ideal system) or it is a real-world
implementation thereof (real system). If, for example, thereal system is a block
cipher used for symmetric encryption, then the ideal systemcan be thought of as
a pseudorandom permutation. The adversary on the right sidecan interact with the
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(ideal or real) system in some predefined way, and his or her task is to tell the two
cases apart. Again referring to a block cipher, it may be the case that the adversary
can have arbitrary plaintext messages be encrypted or arbitrary ciphertext messages
be decrypted. The type of interaction matters and must therefore be part of the
specification of the security game. In either case, the adversary wins the game if
he or she is able to tell whether he or she is interacting with an ideal or a real system
with a probability that is better than guessing. If the adversary is not able to do so,
then the real system is indistinguishable from an ideal one,and hence it has all the
relevant properties of it, including its security. It is therefore as secure as the ideal
system. Most security proofs in cryptography follow this line of argumentation and
define the task the adversary needs to solve (in order to be successful) in this game-
theoretic way. We will see many examples throughout the book.

As captured in Definition 1.8, a definition for a secure cryptographic system
must start with the two questions itemized above and their respective answers.

Definition 1.8 (Secure cryptographic system)A cryptographic system issecureif
a well-defined adversary cannot break it, meaning that he or she cannot solve a
well-defined task.

This definition gives room for several notions of security. In principle, there is
a distinct notion for every possible adversary combined with every possible task. As
a general rule of thumb, we say that strong security definitions assume an adversary
that is as powerful as possible and a task to solve that is as simple as possible. If
a system can be shown to be secure in this setting, then there is a security margin.
In reality, the adversary is likely less powerful and the task he or she must solve is
likely more difficult, and this, in turn, means that it is veryunlikely that the security
of the system gets broken.

Let us consider a provocative question (or mind experiment)to clarify this
point: If we have two safesS1 andS2, whereS1 cannot be cracked by a schoolboy
within one minute andS2 cannot be cracked by a group of world-leading safe crack-
ers within one year, and we ask the question whetherS1 or S2 can be considered to
be more secure, then we would unanimously opt forS2. The argument would go as
follows: If even a group of world-leading safe crackers cannot crackS2 within one
year, then it very unlikely that a real-world criminal is able to crack it in a shorter
but more realistic amount of time, such as one hour. In contrast, the security levelS1

provides is much less convincing. The fact that even a schoolboy can crackS1 within
one minute makes us believe that the criminal is likely to be successful in cracking
the safe within one hour. This gives us a much better feeling about the security of
S2. In cryptography, we use a similar line of argumentation when we talk about the
strength of a security definition.



12 Cryptography 101: From Theory to Practice

If we say that an adversary cannot solve a task, then we can still distinguish the
two cases in which he or she is simply not able solve it (independent from his or her
computational resources) or he or she can in principle solveit but doesn’t have the
computational resources to do so, meaning that it is computationally too expensive.
This distinction brings us to the following two notions of security.

Unconditional security: If an adversary with infinite computing power is not able
to solve the task within a finite amount of time, then we are talking about
unconditionalor information-theoretic security. The mathematical theories
behind this notion of security are probability theory and information theory,
as briefly introduced in Appendixes B and C.

Conditional security: If an adversary is in principle able to solve the task within
a finite amount of time but doesn’t have the computational resources to
do so,10 then we are talking aboutconditional or computational security.
The mathematical theory behind this notion of security is computational
complexity theory, as briefly introduced in Appendix D.

The distinction between unconditional and conditional security is at the core of
modern cryptography. Interestingly, there are cryptosystems known to be secure in
the strong sense (i.e., unconditionally or information-theoretically secure), whereas
there are no cryptosystems known to be secure in the weak sense (i.e., conditionally
or computationally secure). There are many cryptosystems that are assumed to be
computationally secure, but no proof is available for any ofthese systems. In fact,
not even the existence of a conditionally or computationally secure cryptosystem
has been proven so far. The underlying problem is that it is generally impossible
to prove a lower bound for the computational complexity of solving a problem. To
some extent, this is an inherent weakness or limitation of complexity theory as it
stands today.

In addition to the unconditional and conditional notions ofsecurity, people
often use the termprovable securityto refer to another—arguably strong—notion
of security. This goes back to the early days of public key cryptography, when
Whitfield Diffie and Martin E. Hellman proposed a key exchangeprotocol [12]11

(Section 12.3) and a respective security proof. In fact, they showed that their protocol
is secure unless somebody is able to solve a hard mathematical problem (that is
strongly related to the discrete logarithm problem). The security of the protocol is
thus reduced to a hard mathematical problem (i.e., if somebody is able to solve

10 It is usually assumed that the adversary can run algorithms that have a polynomial running time.
11 This paper is the one that officially gave birth to public key cryptography. There is a companion

paper entitled “Multiuser Cryptographic Techniques” thatwas presented by the same authors at the
National Computer Conference on June 7–10, 1976.
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the mathematical problem, then he or she is also able to breakthe security of
the protocol). This is conceptually similar to proving thatsquaring a circle with
compass and straightedge is impossible. This well-known fact from geometry can
be proven by reducing the problem of squaring a circle to the problem of finding a
non-zero polynomialf(x) = anx

n + . . . + a1x + a0 with rational coefficientsai
for i = 0, 1, . . . , n, such thatπ is a root; that is,f(π) = 0. Because we know thatπ
is not algebraic (it is transcendental), we know that such a polynomial does not exist
and cannot be found in the first place. Conversely, this implies that a circle cannot
be squared with a compass and straightedge.

More specifically, the basic concept of a reduction proof is to show that break-
ing a cryptosystem is computationally equivalent to solving a hard mathematical
problem. This means that one must prove the following two directions:

• If the hard problem can be solved, then the cryptosystem can be broken.

• If the cryptosystem can be broken, then the hard problem can be solved.

Diffie and Hellman only proved the first direction, and they did not prove the
second direction.12 This is unfortunate, because the second direction is important for
security. If we can prove that an adversary who is able to break a cryptosystem is
also able to solve the hard problem, then we can reasonably argue that it is unlikely
that such an adversary exists, and hence that the cryptosystem in question is likely to
be secure. Michael O. Rabin13 was the first researcher who proposed a cryptosystem
[14] that can be proven to be computationally equivalent to amathematically hard
problem (Section 13.3.2).

The notion of (provable) security has fueled a lot of research since the late
1970s. In fact, there are many (public key) cryptosystems proven secure in this sense.
It is, however, important to note that a complexity-based proof is not absolute, and
that it is only relative to the (assumed) intractability of the underlying mathematical
problem(s). This is a similar situation to proving that a problem isNP-hard. It
proves that the problem is at least as difficult as other problems inNP, but it does
not provide an absolute proof of its computational difficulty.14

There are situations in which a security proof requires an additional as-
sumption, namely that a cryptographic primitive–typically a cryptographic hash
function—behaves like a random function. This leads to a newparadigm and

12 This was changed in [13] and some follow-up publications.
13 In 1976, Michael O. Rabin and Dana S. Scott jointly received the ACM Turing Award for their work

on nondeterministic machines that is key to theoretical computer science and complexity theory.
This work was not yet directly related to cryptography.

14 Refer to Appendix D to get a more detailed overview aboutNPandNP-hard problems.
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methodology to design cryptographic systems that are “provably secure” in theran-
dom oracle model(in contrast to thestandard model) [15]. The methodology em-
ploys the idea of an ideal system (as introduced above) and consists of the following
three steps:

• First, one designs an ideal system that uses random functions15 (also known
as random oracles), most notably cryptographic hash functions.

• Second, one proves the security of the ideal system.

• Third, one replaces the random functions with real ones.

As a result, one obtains an implementation of the ideal system in the real world
(where random functions do not exist). Due to the use of random oracles, this
methodology is known asrandom oracle methodology, and—as mentioned above—
it yields cryptosystems that are secure in the random oraclemodel. As further ad-
dressed in Section 8.4, such cryptosystems and their respective “security proofs”
are widely used in the field, but they must be taken with a grainof salt. In fact,
it has been shown that it is possible to construct cryptographic systems that are
provably secure in the random oracle model, but become totally insecure whenever
the cryptographic hash function used in the protocol (to replace the random oracle)
is instantiated. This theoretical result is worrisome, andsince its publication many
researchers have started to think controversially about the random oracle methodol-
ogy and the usefulness of the random oracle model per se. At least it must be noted
that formal analyses in the random oracle model are not security proofs in purely
mathematical parlance. The problem is the underlying idealassumptions about the
randomness properties of the cryptographic hash functions. This is not something
that is otherwise used in mathematically rigorous proofs.

In this book, we don’t consider provable security (with or without the random
oracle model) as a security notion of its own. Instead, we seeit as a special case of
conditional security, namely one where the intractabilityassumption represents the
condition.

1.2.2.2 Practical Perspective

So far, we have argued about the security of a cryptosystem from a purely theoretical
viewpoint. In practice, however, any (theoretically secure) cryptosystem must be
implemented, and there are many things that can go wrong here(e.g., [16]). For
example, the cryptographic key in use may be kept in memory and extracted from

15 The notion of a random function is briefly introduced in Section 2.1.2 and more thoroughly
addressed in Chapter 8.
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there, for example, using a cold boot attack16 [17], or the user of a cryptosystem may
be subject to all kinds of phishing and social engineering attacks.

Historically, the first such attacks tried to exploit the compromising emana-
tions that occur in all information-processing physical systems. These are uninten-
tional intelligence-bearing signals that, if interceptedand properly analyzed, may
disclose the information transmitted, received, handled,or otherwise processed by
a piece of equipment. In the late 1960s and early 1970s, the U.S. National Secu-
rity Agency (NSA) coined the termTEMPESTto refer to this field of study (i.e.,
to secure electronic communications equipment from potential eavesdroppers), and
vice versa, the ability to intercept and interpret those signals from other sources.17

Hence, the term TEMPEST is a codename (not an acronym18) that is used broadly to
refer to the entire field of emission security or emanations security (EMSEC). There
are several U.S. and NATO standards that basically define three levels of TEMPEST
requirements: NATO SDIP-27 Levels A, B, and C. This is beyondthe scope of this
book.

In addition to cold boot attacks and exploiting compromising emanations,
people have been very innovative in finding possibilities tomount attacks against
presumably tamper-resistant hardware devices that employinvasive measuring tech-
niques (e.g., [18, 19]). Most importantly, there are attacks that exploit side channel
information an implementation may leak when a computation is performed. Side
channel information is neither input nor output, but refersto some other information
that may be related to the computation, such as timing information or power con-
sumption. Attacks that try to exploit such information are commonly referred to as

16 This attack exploits the fact that many dynamic random access memory (DRAM) chips don’t lose
their contents when a system is switched off immediately, but rather lose their contents gradually
over a period of seconds, even at standard operating temperatures and even if the chips are removed
from the motherboard. If kept at low temperatures, the data on these chips persist for minutes
or even hours. In fact, the researchers showed that residualdata can be recovered using simple
techniques that require only temporary physical access to amachine, and that several popular disk
encryption software packages, such as Microsoft’s BitLocker, Apple’s FileVault, and TrueCrypt (the
predecessor of VeraCrypt) were susceptible to cold boot attacks. The feasibility and simplicity of
such attacks has seriously challenged the security of many disk encryption software solutions.

17 https://www.nsa.gov/news-features/declassified-documents/cryptologic-
spectrum/assets/files/tempest.pdf.

18 The U.S. government has stated that the term TEMPEST is notan acronym and does not have any
particular meaning (it is therefore not included in this book’s list of abbreviations and acronyms).
However, in spite of this disclaimer, multiple acronyms have been suggested, such as “Transmitted
Electro-Magnetic Pulse / Energy Standards & Testing,” “Telecommunications ElectroMagnetic Pro-
tection, Equipment, Standards & Techniques,” “Transient ElectroMagnetic Pulse Emanation STan-
dard,” “Telecommunications Electronics Material Protected from Emanating Spurious Transmis-
sions,” and—more jokingly—“Tiny ElectroMagnetic Particles Emitting Secret Things.”
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side channel attacks. Let us start with two mind experiments to illustrate the notion
of a side channel attack.19

• Assume somebody has written a secret note on a pad and has tornoff the paper
sheet. Is there a possibility to reconstruct the note? An obvious possibility is
to go for a surveillance camera and examine the respective recordings. A less
obvious possibility is to exploit the fact that pressing thepen on the paper sheet
may have caused the underlying paper sheet to experience some pressure, and
this, in turn, may have caused the underlying paper sheet to show the same
groove-like depressions (representing the actual writing). Equipped with the
appropriate tools, an expert may be able to reconstruct the note. Pressing the
pen on a paper sheet may have caused a side channel to exist, even if the
original paper sheet is destroyed.

• Consider a house with two rooms. In one room are three light switches and
in the other room are three lightbulbs, but the wiring of the light switches and
bulbs is unknown. In this setting, somebody’s task is to find out the wiring, but
he or she can enter each room only once. From a mathematical viewpoint, one
can argue (and prove) that this task is impossible to solve. But from a physical
viewpoint (and taking into account side channel information), the task can be
solved: One can enter the room with the light switches, permanently turn on
one bulb, and turn on another bulb for some time (e.g., a few seconds). One
then enters the room with the lightbulbs. The bulb that is litis easily identified
and refers to the switch that has been permanently switched on. But the other
two bulbs are not lit, and hence one cannot easily assign themto the respective
switches. But one can measure the temperature of the lightbulbs. The one that
is warmer more likely refers to the switch that has been switched on for some
time. This information can be used to distinguish the two cases and to solve
the task accordingly. Obviously, the trick is to measure thetemperature of the
lightbulbs and to use this information as a side channel.

In analogy to these mind experiments, there are many side channel attacks
that have been proposed to defeat the security of cryptosystems, some of which
have turned out to be very powerful. The first side channel attack that opened
people’s eyes and the field in the 1990s was a timing attack against a vulnerable
implementation of the RSA cryptosystem [20]. The attack exploited the correlation
between a cryptographic key and the running time of the algorithm that employed
the key. Since then, many implementations of cryptosystemshave been shown to be
vulnerable against timing attacks and some variants, such as cache timing attacks
or branch prediction analysis. In 2003, it was shown that remotely mounting timing

19 The second mind experiment was proposed by Artur Ekert.
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attacks over computer networks is feasible [21], and since 2018 we know that almost
all modern processors that support speculative and out-of-order command execution
are susceptible to sophisticated timing attacks.20 Other side channel attacks exploit
the power consumption of an implementation of an algorithm that is being executed
(usually called power consumption or power analysis attacks [22]), faults that are
induced (usually named differential fault analysis [23, 24]), protocol failures [25],
the sounds that are generated during a computation [26, 27],and many more.

Side channel attacks exploit side channel information. Hence, a reasonable
strategy to mitigate a specific side channel attack is to avoid the respective side
channel in the first place. If, for example, one wants to protect an implementation
against timing attacks, then timing information must not leak. At first sight, one may
be tempted to add a random delay to every computation, but this simple mechanism
does not work (because the effect of random delays can be compensated by having an
adversary repeat the measurement many times). But there maybe other mechanisms
that work. If, for example, one ensures that all operations take an equal amount of
time (i.e., the timing behavior is largely independent fromthe input), then one can
mitigate such attacks. But constant-time programming has turned out to be difficult,
certainly more difficult than it looks at first sight. Also, itis sometimes possible
to blind the input and to prevent the adversary from knowing the true value. Both
mechanisms have the disadvantage of slowing down the computations. There are
fewer possibilities to protect an implementation against power consumption attacks.
For example, dummy registers and gates can be added on which useless operations
are performed to balance power consumption into a constant value. Whenever an
operation is performed, a complementary operation is also performed on a dummy
element to assure that the total power consumption remains balanced according
to some higher value. Protection against differential fault analysis is less general
and even more involved. In [23], for example, the authors suggest a solution that
requires a cryptographic computation to be performed twiceand to output the result
only if they are the same. The main problem with this approachis that it roughly
doubles the execution time. Also, the probability that the fault will not occur twice
is not sufficiently small (and this makes the attack harder toimplement, but not
impossible). The bottom line is that the development of adequate and sustainable
protection mechanisms to mitigate differential fault analysis attacks remains a timely
research topic. The same is true for failure analysis and acoustic cryptanalysis, and
it may even be true for other side channel attacks that will befound and published
in the future. Once a side channel is known, one can usually dosomething to avoid
the respective attacks. But keep in mind that many side channels may exist that are
still unknown today.

20 The first such attacks have been namedMeltdown and Spectre. They are documented at
https://www.spectreattack.com.
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The existence and difficulty of mitigating side channel attacks have inspired
theoreticians to come up with a model for defining and delivering cryptographic
security against an adversary who has access to informationleaked from the physical
execution of a cryptographic algorithm [28]. The original term used to refer to
this type of cryptography isphysically observable cryptography. More recently,
however, researchers have coined the termleakage-resilient cryptographyto refer to
essentially the same idea. Even after many years of research, it is still questionable
whether physically observable or leakage-resilient cryptography can be achieved in
the first place (e.g., [29]). It is certainly a legitimate andreasonable design goal, but
it may not be a very realistic one.

1.2.2.3 Design Principles

In the past, we have seen many examples in which people have tried to improve the
security of a cryptographic system by keeping secret its design and internal working
principles. This approach is sometimes referred to as “security through obscurity.”
Many of these systems do not work and can be broken trivially.21 This insight has a
long tradition in cryptography, and there is a well-known cryptographic principle—
Kerckhoffs’s principle22—that basically states that a cryptographic system should be
designed so as to remain secure, even if the adversary knows all the details of the
system, except for the values explicitly declared to be secret, such as secret keys
[30]. We follow this principle in this book, and we only address cryptosystems for
which we can assume that the adversary knows the details. This assumption is in
line with our requirement that the adversaries should be assumed to be as powerful
as possible (to obtain the strong security definitions detailed in Section 1.2.2).

In spite of Kerckhoffs’s principle, the design of a secure cryptographic system
remains a difficult and challenging task. One has to make assumptions, and it is
not clear whether these assumptions really hold in reality.For example, one usually
assumes a certain set of countermeasures to protect againstspecific attacks. If the
adversary attacks the system in another way, then there is hardly anything that can
be done about it. Similarly, one has to assume the system to operate in a “typical”
environment. If the adversary can manipulate the environment, then he or she may
be able to change the operational behavior of the system, andhence to open up
new vulnerabilities. The bottom line is that cryptographicsystems that are based
on make-believe, ad hoc approaches, and heuristics are often broken in the field in
some new and ingenious ways. Instead, the design of a secure cryptographic system
should be based on firm foundations. Ideally, it consists of the following two steps:

21 Note that “security through obscurity” may work outside the realm of cryptography.
22 The principle is named after Auguste Kerckhoffs, who lived from 1835 to 1903.
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1. In a definitional step, the problem the cryptographic system is intended to
solve is identified, precisely defined, and formally specified.

2. In a constructive step, a cryptographic system that satisfies the definition
distilled in step one, possibly while relying on intractability assumptions, is
designed.

Again, it is important to note that most parts of modern cryptography rely
on intractability assumptions and that relying on such assumptions seems to be
unavoidable. But there is still a huge difference between relying on an explicitly
stated intractability assumption or just assuming (or rather hoping) that an ad hoc
construction satisfies some unspecified and vaguely specified goals. This basically
distinguishes cryptography as a science from cryptographyas an art.

1.3 HISTORICAL BACKGROUND INFORMATION

Cryptography has a long and thrilling history that is addressed in many books (e.g.,
[31–33]). In fact, probably since the very beginning of the spoken and—even more
importantly—written word, people have tried to transform “data to render its mean-
ing unintelligible (i.e., to hide its semantic content), prevent its undetected alteration,
or prevent its unauthorized use” [1]. According to this definition, these people have
always employed cryptography and cryptographic techniques. The mathematics be-
hind these early systems may not have been very advanced, butthey still employed
cryptography and cryptographic techniques. For example, Gaius Julius Caesar23

used an encryption system in which every letter in the Latin alphabet was substituted
with the letter that is found three positions afterward in the lexical order (i.e., “A” is
substituted with “D,” “B” is substituted with “E,” and so on). This simple additive
cipher is known asCaesar cipher(Section 9.2). Later on, people employed encryp-
tion systems that used more advanced and involved mathematical transformations.
Many books on cryptography contain numerous examples of historically relevant
encryption systems—they are not repeated in this book; the encryption systems in
use today are simply too different.

Until World War II, cryptography was considered to be an art (rather than
a science) and was primarily used in military and diplomacy.The following two
developments and scientific achievements turned cryptography from an art into a
science:

23 Gaius Julius Caesar was a Roman emperor who lived from 102 BC to 44 BC.
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• During World War II, Claude E. Shannon24 developed a mathematical the-
ory of communication [34] and a related communication theory of secrecy
systems [35] when he was working at AT&T Laboratories.25 After their pub-
lication, the two theories started a new branch of research that is commonly
referred to asinformation theory(refer to Appendix C for a brief introduc-
tion to information theory). It is used to prove the unconditional security of
cryptographic systems.

• As mentioned earlier, Diffie and Hellman developed and proposed the idea of
public key cryptography at Stanford University in the 1970s.26 Their vision
was to employ trapdoor functions to encrypt and digitally sign electronic
documents. As introduced in Section 2.1.3 and further addressed in Chapter
5, a trapdoor function is a function that is easy to compute but hard to
invert—unless one knows and has access to some trapdoor information. This
information represents the private key held by a particularentity.

Diffie and Hellman’s work culminated in a key agreement protocol (i.e., the
Diffie-Hellman key exchange protocol described in Section 12.3) that allows two
parties that share no secret to exchange a few messages over apublic channel and
to establish a shared (secret) key. This key can, for example, then be used to encrypt
and decrypt data. After Diffie and Hellman published their discovery, a number of
public key cryptosystems were developed and proposed. Someof these systems are
still in use, such as RSA [37] and Elgamal [38]. Other systems, such as the ones
based on the knapsack problem,27 have been broken and are no longer in use. Some
practically important public key cryptosystems are overviewed and discussed in Part
III of this book.

24 Claude E. Shannon was a mathematician who lived from 1916 to 2001.
25 Similar studies were done by Norbert Wiener, who lived from 1894 to 1964.
26 Similar ideas were pursued by Ralph C. Merkle at the University of California at Berkeley [36].

More than a decade ago, the British government revealed thatpublic key cryptography, including
the Diffie-Hellman key agreement protocol and the RSA publickey cryptosystem, was invented
at the Government Communications Headquarters (GCHQ) in Cheltenham in the early 1970s by
James H. Ellis, Clifford Cocks, and Malcolm J. Williamson under the namenonsecret encryption
(NSE). You may refer to the note “The Story of Non-Secret Encryption” written by Ellis in 1997 to
get the story (use a search engine to find the note in an Internet archive). Being part of the world of
secret services and intelligence agencies, Ellis, Cocks, and Williamson were not allowed to openly
talk about their discovery.

27 Theknapsack problemis a well-known problem in computational complexity theoryand applied
mathematics. Given a set of items, each with a cost and a value, determine the number of each item
to include in a collection so that the total cost is less than some given cost and the total value is
as large as possible. The name derives from the scenario of choosing treasures to stuff into your
knapsack when you can only carry so much weight.
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Since the early 1990s, we have seen a wide deployment and massive commer-
cialization of cryptography. Today, many companies develop, market, and sell cryp-
tographic techniques, mechanisms, services, and products(implemented in hardware
or software) on a global scale. There are cryptography-related conferences and trade
shows28 one can attend to learn more about products that implement cryptographic
techniques, mechanisms, and services. One must be cautioushere, because the term
crypto is sometimes also used in a narrow sense that is limited to blockchain-based
distributed ledger technologies (DLTs). This is especially true since the rise of Bit-
coin and other cryptocurrencies.

The major goal of this book is to provide a basic understanding of what is
actually going on in the field. If you want to learn more about the practical use
of cryptography to secure Internet and Web applications, you may also refer to
[39–42] or any other book about Internet and Web security in general, and Internet
security protocols in particular. These practical applications of cryptography are not
addressed (or repeated) in this book.

In Section D.5, we briefly introduce the notion of a quantum computer. As
of this writing, the issue of whether it is possible to build and operate a sufficiently
large and stable quantum computer is still open and controversially discussed in the
community. But if such a computer can be built, then we know that many cryptosys-
tems in use today can be broken efficiently. This applies to almost all public key
cryptosystems (because these systems are typically based on the integer factoriza-
tion problem or discrete logarithm problem that can both be solved on a quantum
computer in polynomial time), and it partly applies to secret key cryptosystems (be-
cause it is known how to reduce the steps required to perform an exhaustive key
search for ann-bit cipher from2n to 2n/2). Against this background, people have
started to look for cryptographic primitives that remain secure even if sufficiently
large and stable quantum computers can be built and operated. The resulting area of
research is known aspost-quantum cryptography(PQC). In the last couple of years,
PQC has attracted a lot of interest and funding, and many researchers have come up
with proposals for PQC. In the case of secret key cryptography, resistance against
quantum computers can be provided by doubling the key length. This is simple and
straightforward. In the case of public key cryptography, however, things are more
involved and new design paradigms are needed here. This is where code-based, hash-
based, lattice-based, isogeny-based, and multivariate-based cryptosystems come into
play. As further addressed in Section 18.3, there is a NIST competition going on to
evaluate and standardize one or more post-quantum public key cryptographic algo-
rithms. However, unless major advances in building large quantum computers are
made, it is unlikely that PQC will be widely used in the field. The currently known

28 The most important trade show is the RSA Conference held annually in the United States, Europe,
and Asia. Refer to https://www.rsaconference.com for moreinformation.
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post-quantum cryptosystems are simply too inefficient or require significantly longer
keys than the traditional (non-PQC) ones.

1.4 OUTLINE OF THE BOOK

The rest of this book is organized as follows:

• In Chapter 2, “Cryptographic Systems,” we introduce, briefly overview, and
put into perspective the three classes of cryptographic systems (i.e., unkeyed
cryptosystems, secret key cryptosystems, and public key cryptosystems) with
their major representatives.

• In Chapter 3, “Random Generators,” we begin Part I on unkeyedcryptosys-
tems by elaborating on how to generate random values or bits.

• In Chapter 4, “Random Functions,” we introduce the notion ofa random func-
tion that plays a pivotal role in contemporary cryptography. Many cryptosys-
tems used in the field can, at least in principle, be seen as a random function.

• In Chapter 5, “One-Way Functions,” we focus on functions that are one-way.
Such functions are heavily used in public key cryptography.

• In Chapter 6, “Cryptographic Hash Functions,” we conclude Part I by outlin-
ing cryptographic hash functions and their use in contemporary cryptography.

• In Chapter 7, “Pseudorandom Generators,” we begin Part II onsecret key
cryptosystems by elaborating on how to use a pseudorandom generator seeded
with a secret key to generate pseudorandom values (instead of truly random
ones).

• In Chapter 8, “Pseudorandom Functions,” we do something similar for ran-
dom functions: We explain how to construct pseudorandom functions that use
a secret key as input and generate an output that looks as if itwere generated
by a random function.

• In Chapter 9, “Symmetric Encryption,” we overview and discuss the symmet-
ric encryption systems that are most frequently used in the field.

• In Chapter 10, “Message Authentication,” we address message authentication
and explain how secret key cryptography can be used to generate and verify
message authentication codes.
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• In Chapter 11, “Authenticated Encryption,” we conclude Part II by combining
symmetric encryption and message authentication in authenticated encryp-
tion. In many regards, AE represents the state of the art of cryptography as it
stands today.

• In Chapter 12, “Key Establishment,” we begin Part III on public key cryp-
tosystems by elaborating on the practically relevant problem of how to estab-
lish a secret key that is shared between two or more entities.

• In Chapter 13, “Asymmetric Encryption,” we overview and discuss the asym-
metric encryption systems that are most frequently used in the field.

• In Chapter 14, “Digital Signatures,” we elaborate on digital signatures and
respective digital signature systems (DSSs).

• In Chapter 15, “Zero-Knowledge Proofs of Knowledge,” we explore the
notion of an interactive proof system that may have the zero-knowledge
property, and discuss its application in zero-knowledge proofs of knowledge
for entity authentication.

• In Chapter 16, “Key Management,” we begin Part IV by discussing some
aspects related to key management that represents the Achilles’ heel of applied
cryptography.

• In Chapter 17, “Summary,” we conclude with some remarks about the current
state of the art in cryptography.

• In Chapter 18, “Outlook,” we predict possible and likely future developments
and trends in the field, including PQC.

This book includes several appendixes. Appendixes A to D summarize the
mathematical foundations and principles, including discrete mathematics (Appendix
A), probability theory (Appendix B), information theory (Appendix C), and com-
plexity theory (Appendix D). Finally, a list of mathematical symbols and a list of
abbreviations and acronyms are provided at the end of the book.

Note that cryptography is a field of study that is far too broadto be addressed
in a single book, and that one has to refer to additional and more in-depth material,
such as the literature referenced at the end of each chapter,to learn more about a
particular topic. Another possibility to learn more is to experiment and play around
with cryptographic systems. As mentioned in the Preface, there are several software
packages that can be used for this purpose, among which CrypTool is a particularly
good choice.

The aims of this book are threefold: (1) to provide an overview, (2) to give
an introduction into each of the previously mentioned topics and areas of research
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and development, and (3) to put everything into perspective. Instead of trying to be
comprehensive and complete, this book tries to ensure that you still see the forest for
the trees. In the next chapter, we delve more deeply into the various representatives
of the three classes of cryptosystems introduced above.
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Chapter 2

Cryptographic Systems

As mentioned in Section 1.2.1, there are three classes of cryptographic systems:
unkeyed cryptosystems, secret key cryptosystems, and public key cryptosystems.
In this chapter, we introduce, overview, and provide some preliminary definitions
for the most important representatives of these classes in Sections 2.1–2.3, and we
conclude with some final remarks in Section 2.4. All cryptosystems mentioned in
this chapter will be revisited and more thoroughly addressed in later chapters of the
book.

2.1 UNKEYED CRYPTOSYSTEMS

According to Definition 1.5, unkeyed cryptosystems use no secret parameters. The
most important representatives are random generators, random functions, one-way
functions, and cryptographic hash functions. We address them in this order.

2.1.1 Random Generators

Randomness is the most important ingredient for cryptography, and most crypto-
graphic systems in use today depend on some form of randomness. This is certainly
true for key generation and probabilistic encryption, but it is also true for many
other cryptographic algorithms and systems. In Section 9.3, we will see that a per-
fectly secret encryption system (i.e., the one-time pad), requires a random bit for the
encryption of every single plaintext message bit. This means that the one-time pad
(in order to provide perfect secrecy) requires huge quantities of random bits. But
also in many other cases do we need ways to generate sequencesof random values
or bits. This is where the notions of arandom generatoror a random bit generator
as captured in Definition 2.1 come into play.

27
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Definition 2.1 (Random generator) A random generatoris a device that outputs a
sequence of statistically independent and unbiased values. If the output values are
bits, then the random generator is also called arandom bit generator.

A random bit generator is depicted in Figure 2.1 as a gray box.It is important
to note that such a generator has no input, and that it only generates an output.
Also, because the output is a sequence of statistically independent and unbiased
bits, all bits occur with the same probability; that is, Pr[0] = Pr[1] = 1/2, or—more
generally—all2k differentk-tuples of bits occur with the same probability1/2k for
all integersk ≥ 1. Luckily, there are statistical tests that can be used to verify these
properties. Passing these tests is a necessary but usually insufficient prerequisite
for the output of a random generator to be suitable for cryptographic purposes and
applications.

Figure 2.1 A random bit generator.

It is also important to note that a random (bit) generator cannot be imple-
mented in a deterministic way. Instead, it must be inherently nondeterministic, mean-
ing that an implementation must use some physical events or phenomena (for which
the outcomes are impossible to predict). Alternatively speaking, every (true) random
generator requires a naturally occurring source of randomness. The engineering task
of finding such a source and exploiting it in a device that may serve as a generator of
binary sequences that are free of biases and correlations isa very challenging one.
As mentioned above, the output of such a generator must fulfill statistical tests, but
it must also withstand various types of sophisticated attacks.

Random generators and their design principles and securityproperties are
further addressed in Chapter 3.

2.1.2 Random Functions

As mentioned above, a random generator is to output some random-looking values.
In contrast, arandom function(sometimes also called arandom oracle) is not
characterized by its output, but rather by the way it is chosen. This idea is captured
in Definition 2.2.
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Definition 2.2 (Random function) A random functionis a functionf : X → Y
that is chosen randomly fromFuncs[X,Y ] (i.e., the set of all functions that map
elements of the domainX to elements of the codomainY ).

For input valuex ∈ X , a random function can output any valuey = f(x) ∈
f(X) ⊆ Y . The only requirement is that the same inputx always maps to the same
outputy. Except for that, everything is possible and does not reallymatter (for the
function to be random).

Figure 2.2 Elements ofFuncs[{a, b}, {1, 2, 3}].

Note that there are|Y ||X| functions in Funcs[X,Y ], and this number is
incredibly large—even for moderately sizedX andY . If X = {a, b} andY =
{1, 2, 3}, then Funcs[X,Y ] comprises32 = 9 functions, and this number is
sufficiently small that its elements can be illustrated in Figure 2.2. If we moderately
increase the sets and letX be the set of all 2-bit strings andY the set of all 3-bit
strings, then|X | = 22 and |Y | = 23, and henceFuncs[X,Y ] already comprises
(23)2

2

= (23)4 = 212 = 4, 096 functions. What this basically means is that there
are4, 096 possible functions to map 2-bit strings to 3-bit strings. This can no longer
be illustrated. Let us consider an even more realistic setting, in whichX andY are
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both 128 bits long. Here,Funcs[X,Y ] comprises

(2128)2
128

= 2128·2
128

= 22
7·2128 = 22

135

functions, and this number is so large that it would require2135 bits, if one wanted
to number the functions and use an index to refer to a particular function from
Funcs[X,Y ]. This is clearly impractical.

Also note that random functions are not meant to be implemented. Instead,
they represent conceptual constructs that are mainly used in security proofs. Re-
ferring to the security game of Figure 1.2 in Section 1.2.2.1, the random function
yields the ideal system and it is shown that no adversary can tell the real system (for
which the security needs to be proven) apart from it. If this can in fact be shown,
then the real system behaves like a random function, and this, in turn, means that
the adversary must try out all possibilities. Since there are so many possibilities, this
task can be assumed to be computationally infeasible, and hence one can conclude
that the real system is secure for all practical purposes.

If X = Y andFuncs[X,X ] is restricted to the set of all possible permutations
of X (i.e.,Perms[X ]), then we can say that arandom permutationis a randomly
chosen permutation fromPerms[X ]. Everything said above is also true for random
permutations.

We revisit the notions of random functions and random permutations, as well
as the way they are used in cryptography in Chapter 4.

2.1.3 One-Way Functions

Informally speaking, a functionf : X → Y is one way if it is easy to compute
but hard to invert. Referring to complexity theory,easymeans that the computation
can be done efficiently (i.e., in polynomial time), whereashard means that it is not
known how to do the computation efficiently, that is, no efficient algorithm is known
to exist.1 More formally, the notion of aone-way functionis captured in Definition
2.3 and illustrated in Figure 2.3.

Definition 2.3 (One-way function) A functionf : X → Y is one wayif f(x) can
be computed efficiently for allx ∈ X , butf−1(f(x)) cannot be computed efficiently,
meaning thatf−1(y) cannot be computed efficiently fory ∈R Y .

In this definition,X represents the domain off , Y represents the range,
and the expressiony ∈R Y reads as “an elementy that is randomly chosen from
Y .” Consequently, it must be possible to efficiently computef(x) for all x ∈ X ,

1 Note that it is not impossible that such an algorithm exists; it is just not known.
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Figure 2.3 A one-way function.

whereas it must not—or only with a negligible probability—be possible to compute
f−1(y) for a y that is randomly chosen fromY . To be more precise, one must
state that it may be possible to computef−1(y), but that the entity that wants to
do the computation does not know how to do it. In either case, Definition 2.3 is
not precise in a mathematically strong sense, because we have not yet defined what
an efficient computation is. In essence, a computation is said to be efficient if the
(expected) running time of the algorithm that does the computation is bounded by a
polynomial in the length of the input. Otherwise (i.e., if the expected running time
is not bounded by a polynomial in the length of the input), thealgorithm requires
super-polynomial time and is said to be inefficient. For example, an algorithm that
requires exponential time is clearly superpolynomial. This notion of efficiency (and
the distinction between polynomial and superpolynomial running time algorithms)
is yet coarse, but still the best we have to work with.

There are many real-world examples of one-way functions. If, for example,
we have a telephone book, then the function that assigns a telephone number to each
name is easy to compute (because the names are sorted alphabetically) but hard
to invert (because the telephone numbers are not sorted numerically). Also, many
physical processes are inherently one way. If, for example,we smash a bottle into
pieces, then it is generally infeasible to put the pieces together and reassemble the
bottle. Similarly, if we drop a bottle from a bridge, then it falls down, whereas the
reverse process never occurs by itself. Last but not least, time is inherently one way,
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and it is (currently) not known how to travel back in time. As aconsequence of this
fact, we continuously age and have no possibility to make ourselves young again.

In contrast to the real world, there are only a few mathematical functions
conjectured to be one way. The most important examples are centered around
modular exponentiation: Either f(x) = gx (mod m), f(x) = xe (mod m), or
f(x) = x2 (mod m) for a properly chosen modulusm. While the argumentx is in
the exponent in the first function,x represents the base of the exponentiation function
in the other two functions. Inverting the first function requires computing discrete
logarithms, whereas inverting the second (third) functionrequires computing e-th
(square) roots. The three functions are used in many public key cryptosystems: The
first function is, for example, used in the Diffie-Hellman keyexchange protocol
(Section 12.3), the second function is used in the RSA publickey cryptosystem
(Section 13.3.1), and the third function is used in the Rabinencryption system
(Section 13.3.2). We will discuss all of these systems laterin the book. It is, however,
important to note that none of these functions has been shownto be one way in a
mathematically strong sense, and that it is theoretically not even known whether one-
way functions exist at all. This means that the one-way property of these functions
is just an assumption that may turn out to be wrong (or illusory) in the future—we
don’t think so, but it may still be the case.

In the general case, a one-way function cannot be inverted efficiently. But
there may still be some one-way functions that can be inverted efficiently, if and—
as it is hoped—only if some extra information is known. This brings in the notion of
a trapdoor (one-way) functionas captured in Definition 2.4.

Definition 2.4 (Trapdoor function) A one-way functionf : X → Y is a trapdoor
function(or a trapdoor one-way function, respectively), if there is some extra infor-
mation (i.e., thetrapdoor) with whichf can be inverted efficiently (i.e.,f−1(f(x))
can be computed efficiently for allx ∈ X or f−1(y) can be computed efficiently for
y ∈R Y ).

Among the functions mentioned above,f(x) = xe (mod m) andf(x) =
x2 (mod m) have a trapdoor, namely the prime factorization ofm. Somebody who
knows the prime factors ofm can also efficiently invert these functions. In contrast,
the functionf(x) = gx (mod m) is not known to have a trapdoor ifm is prime.

The mechanical analog of a trapdoor (one-way) function is a padlock. It can
be closed by everybody (if it is in unlocked state), but it canbe opened only by
somebody who holds the proper key. In this analogy, a padlockwithout a keyhole
represents a one-way function. In the real world, this is nota particularly useful
artifact, but in the digital world, as we will see, there are many applications that
make use of it.
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If X andY are the same, then a one-way functionf : X → X that is a
permutation (i.e.,f ∈ Perms[X ]), is called aone-way permutation. Similar to
Definition 2.4, a one-way permutationf : X → X is a trapdoor permutation(or a
trapdoor one-way permutation, respectively), if it has a trapdoor. Consequently, one-
way permutations and trapdoor permutations are special cases of one-way functions
and trapdoor functions, namely ones in which the domain and the range are the same
and the functions themselves are permutations.

One-way functions including trapdoor functions, one-way permutations, and
trapdoor permutations are further addressed in Chapter 5. In this chapter, we will
also explain why one has to consider families of such functions to be mathematically
correct. In Part III of the book, we then elaborate on the use one-way and trapdoor
functions in public key cryptography.

2.1.4 Cryptographic Hash Functions

Hash functions are widely used and have many applications incomputer science.
Informally speaking, a hash function is an efficiently computable function that takes
an arbitrarily large input and generates an output of a usually much smaller size.
This idea is captured in Definition 2.5 and illustrated in Figure 2.4.

Definition 2.5 (Hash function) A functionh : X → Y is a hash function, if h(x)
can be computed efficiently for allx ∈ X and|X | ≫ |Y |.

Figure 2.4 A hash function.

The elements ofX andY are typically strings of characters from a given
alphabet. IfΣin is the input alphabet andΣout is the output alphabet, then a hash
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functionh can be written ash : Σ∗in → Σn
out, or h : Σnmax

in → Σn
out if the input

size is restricted tonmax for some technical reasons.2 In either case, the output isn
characters long. In many practical settings,Σin andΣout are identical and refer to
the binary alphabetΣ = {0, 1}. In such a setting, the hash functionh takes as input
an arbitrarily long bitstring and generates as output a bitstring of fixed sizen.

In cryptography, we are talking about strings that are a few hundred bits long.
Also, we are talking about hash functions that have specific (security) properties,
such as one-wayness (or preimage resistance, respectively), second-preimage re-
sistance, and/or collision resistance. These properties are introduced and fully ex-
plained in Chapter 6. In the meantime, it suffices to know thata hash function used
in cryptography (i.e., a cryptographic hash function), must fulfill two basic require-
ments:

• On the one hand, it must be hard to invert the function; that is, the function is
one-way or preimage resistant.3

• On the other hand, it must be hard to find a collision, meaning that it is either
hard to find a second preimage for a given hash value; that is, the function is
second-preimage resistant, or it is hard to find two preimages that hash to the
same value (i.e., the function is collision resistant).

According to Definition 2.6, the first requirement can be combined with any of the
two possibilities from the second requirement.

Definition 2.6 (Cryptographic hash function) A hash functionh is cryptographic,
if it is either one-way and second-preimage resistant or one-way and collision
resistant.

Cryptographic hash functions have many applications in cryptography. Most
importantly, a cryptographic hash functionh can be used to hash arbitrarily sized
messages to bitstrings of fixed size. This is illustrated in Figure 2.5, where the
ASCII-encoded message “This is a file that includes some important but long
statements. Consequently, we may need a short representation of this file.” is hashed
to 0x492165102a1a9e3179a2139d429e32ce4f7fd837 (in hexadecimal
notation). This value represents thefingerprint or digestof the message and—in
some sense—stands for it. The second-preimage resistance property implies that it is
difficult—or even computationally infeasible—to find another message that hashes
to the same value. It also implies that a minor modification ofthe message leads to
a completely different hash value that looks random. If, forexample, a second point
were added to the message given above, then the resulting hash value would be

2 One such reason may be that the input length must be encoded in a fixed-length field in the padding.
3 The two terms are used synonymously here.



Cryptographic Systems 35

0x2049a3fe86abcb824d9f9bc957f00cfa7c1cae16 (that is completely
independent from0x492165102a1a9e3179a2139d429e32ce4f7fd837).
If the collision resistance property is required, then it iseven computationally
infeasible to find two arbitrary messages that hash to the same value.4

Figure 2.5 A cryptographic hash function.

Examples of cryptographic hash functions that are used in the field are MD5,
SHA-1 (depicted in Figure 2.5), the representatives from the SHA-2 family, and
SHA-3 or KECCAK. These functions generate hash values of different sizes.5

Cryptographic hash functions, their design principles, and their security prop-
erties are further addressed in Chapter 6.

Random generators, random functions, one-way functions, and cryptographic
hash functions are unkeyed cryptosystems that are omnipresent in cryptography, and
that are used as building blocks in more sophisticated cryptographic systems and ap-
plications. The next class of cryptosystems we look at are secret key cryptosystems.
Referring to Definition 1.6, these cryptosystems use secretparameters that are shared
among all participating entities.

2.2 SECRET KEY CRYPTOSYSTEMS

The most important representatives of secret key cryptosystems are pseudorandom
generators, pseudorandom functions, systems for symmetric encryption and mes-
sage authentication, as well as authenticated encryption.For all of these systems we
briefly explain what they are all about and what it means by saying that they are

4 Because the task of finding two arbitrary messages that hashto the same value is simpler than finding
a message that hashes to a given value, collision resistanceis a stronger property than second-
preimage resistance.

5 The output of MD5 is 128 bits long. The output of SHA-1 is 160 bits long. Many other hash
functions generate an output of variable size.



36 Cryptography 101: From Theory to Practice

secure. Note, however, that the notion of security will be explained in more detail in
the respective chapters in Part II of the book.

2.2.1 Pseudorandom Generators

In Section 2.1.1, we introduced the notion of a random generator that can be used
to generate random values. If a large number of such values isneeded, then it may
be more appropriate to use apseudorandom generator(PRG) instead of—or rather
in combination with—a true random generator. More specifically, one can use a
random generator to randomly generate a short value (i.e., aseed), and a PRG to
stretch this short value into a much longer sequence of values that appear to be
random. The notions of a PRG and apseudorandom bit generator(PRBG) are
captured in Definition 2.7.

Definition 2.7 (PRG and PRBG) A PRGis an efficiently computable function that
takes as input a relatively short value of lengthn, called theseed, and generates
as output a value of lengthl(n) with l(n) ≫ n that appears to be random (and is
therefore calledpseudorandom). If the input and output values are bit sequences,
then the PRG is a PRBG.

Figure 2.6 A PRBG.

A PRBG is illustrated in Figure 2.6.6 Formally speaking, a PRBGG is a
mapping fromK = {0, 1}n to {0, 1}l(n), wherel(n) represents a stretch function
(i.e., a function that stretches ann-bit input value into a longerl(n)-bit output value
with n < l(n) ≤ ∞):

G : K −→ {0, 1}l(n)

Note that Definition 2.7 is not precise in a mathematically strong sense, be-
cause we have not yet defined what we mean by saying that a bit sequence “appears
to be random.” Unlike a true random generator, a PRG operatesdeterministically,

6 Note the subtle difference between Figures 2.1 and 2.6. Both generators output bit sequences. But
while the random bit generator has no input, the PRBG has a seed that represents the input.
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and this, in turn, means that a PRG always outputs the same values if seeded with
the same input value. A PRG thus represents afinite state machine(FSM), and hence
the sequence of the generated values needs to be cyclic (witha potentially very large
cycle). This is why we cannot require that the output of a PRG is truly random, but
only that it appears to be so (for a computationally bounded adversary).

This is the starting point for a security definition: We say that a PRG is secure,
if its output is indistinguishable from the output of a true random generator. Again
referring to the security game of Section 1.2.2.1, we consider an adversary who can
have a generator output arbitrarily many values, and his or her task is to decide
whether these values are generated by a true random generator or a PRG (i.e.,
whether they are randomly or pseudorandomly generated). Ifhe or she can do so
(with a probability that is better than guessing), then the PRG does not appear to
behave like a random generator and is therefore not assumed to be secure. Needless
to say that the adversary can employ all statistical tests mentioned in Section 2.1.1
and further explored in Section 3.3 to make his or her decision.

We will explore PRGs and (cryptographically) secure PRGs inmore detail in
Chapter 7. As suggested by the title of [1], pseudorandomness and PRGs are key
ingredients and have many applications in cryptography, such as key generation and
additive stream ciphers.

2.2.2 Pseudorandom Functions

We have just seen how to use a PRG to “simulate” a true random generator (and this
is why we call the respective generatorpseudorandominstead ofrandom). Follow-
ing a similar line of argumentation, we may try to “simulate”a random function as
introduced in Section 2.1.2 with apseudorandom function(PRF). Remember that a
random functionf : X → Y is randomly chosen fromFuncs[X,Y ], and that the
size of this set; that is|Funcs[X,Y ]| = |Y ||X|, is so incredibly large that we cannot
number its elements and use an index to refer to a particular function. Instead, we can
better use a subset ofFuncs[X,Y ] that is sufficiently small so that we can number its
elements and use a moderately sized index to refer to a particular function from the
subset. If we use a secret key as an index into the subset, thenwe can have something
like a random function without its disadvantages. This is the plan, and a respective
definition for a PRF is given in Definition 2.8.7

Definition 2.8 (PRF) A PRFis a familyF : K×X → Y of (efficiently computable)
functions, where eachk ∈ K determines a functionfk : X → Y that is

7 The notion of a function family (or family of functions, respectively) is formally introduced in
Section A.1.1. Here, it is sufficient to have an intuitive understanding for the term.
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indistinguishable from a random function; that is, a function randomly chosen from
Funcs[X,Y ].

Note that there are “only”|K| elements inF , whereas there are|Y ||X|
elements inFuncs[X,Y ]. This means that we can use a relatively small key to
determine a particular functionfk ∈ F , and this function still behaves like a random
function, meaning that it is computationally indistinguishable from a truly random
function. In our security game this means that, when interacting8 with either a
random function or a PRF, an adversary cannot tell the two cases apart. In other
words, he or she cannot or can only tell with a negligible probability whether
he or she is interacting with a random function or “only” a pseudorandom one.
Such a PRF (that is indistinguishable from a random function) then behaves like
a random function and is considered to be “secure,” meaning that it can be used for
cryptographic purposes and applications.

A pseudorandom permutation(PRP) is defined similarly: A PRP is a family
P : K × X → Y of (efficiently computable) permutations, where eachk ∈ K
determines a permutationpk : X → X that is indistinguishable from a random
permutation; that is, a permutation randomly chosen fromPerms[X ].

PRFs and PRPs are important in modern cryptography mainly because many
cryptographic constructions that are relevant in practicecan be seen this way: A
cryptographic hash function is a PRF (with no key); a key derivation function (KDF)
is a PRF with a seed acting as key; a block cipher is a PRP; a PRG can be built from
a PRF and vice versa, and so on. PRFs and PRPs and their security properties will
be further addressed in Chapter 8.

2.2.3 Symmetric Encryption

When people talk about cryptography, they often refer to confidentiality protection
using asymmetric encryption systemthat, in turn, can be used to encrypt and
decrypt data.Encryptionrefers to the process that maps a plaintext message to a
ciphertext, whereasdecryptionrefers to the reverse process (i.e., the process that
maps a ciphertext back to the plaintext message). Formally speaking, a symmetric
encryption system (orcipher) can be defined as suggested in Definition 2.9.

Definition 2.9 (Symmetric encryption system)Let M be a plaintext message
space,9 C a ciphertext space, andK a key space. Asymmetric encryption system
or cipherrefers to a pair(E,D) of families of efficiently computable functions:

8 Interacting means that the adversary can have arbitrarilymany input values of his or her choice be
mapped to respective output values.

9 In some other literature, the plaintext message space is denoted byP .
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• E : K ×M → C denotes a family{Ek : k ∈ K} of encryption functions
Ek :M→ C;

• D : K × C → M denotes a family{Dk : k ∈ K} of respectivedecryption
functionsDk : C →M.

For every messagem ∈ M and keyk ∈ K, the functionsDk andEk must be inverse
to each other; that is,Dk(Ek(m)) = m.10

In a typical setting,M = C = {0, 1}∗ refers to the set of all arbitrarily long binary
strings, whereasK = {0, 1}l refers to the set of alll bits long keys. Hence,l stands
for the key length of the symmetric encryption system (e.g.,l = 128).

While the decryption functions need to be deterministic, the encryption func-
tions can be deterministic or probabilistic. In the second case, they usually take some
random data as additional input (this is not formalized in Definition 2.9). As will
become clear later in the book, probabilistic encryption functions tend to be more
secure than deterministic ones.

In the description of a (symmetric or asymmetric) encryption system, we often
use an algorithmic notation:Generate then stands for a key generation algorithm
(that can be omitted in the symmetric case because the key is just randomly
selected fromK), Encrypt for an algorithm that implements the encryption function,
andDecrypt for an algorithm that implements the decryption function. Using this
notation, the working principle of a symmetric encryption system is illustrated in
Figure 2.7. First, theGenerate algorithm generates a keyk by randomly selecting
an element fromK. This key is distributed to either side of the communication
channel (this is why the encryption system is called “symmetric” in the first place),
namely to the sender (or the sending device, respectively) on the left side and the
recipient (or the receiving device, respectively) on the right side. The sender can
encrypt a plaintext messagem ∈ M with its implementation of the encryption
function orEncrypt algorithm andk. The resulting ciphertextc = Ek(m) ∈ C is
sent to the recipient over the communication channel that can be insecure (drawn as
a dotted line in Figure 2.7). On the right side, the recipientcan decryptc with its
implementation of the decryption function orDecrypt algorithm and the same key
k. If the decryption is successful, then the recipient is ableto retrieve and continue
to use the original messagem.

The characteristic feature of a symmetric encryption system is in fact that
k is the same on either side of the communication channel, meaning that k is a
secret shared by the sender and the recipient. Another characteristic feature is that
the system can operate on individual bits and bytes (typically representing astream

10 In some symmetric encryption systems, it does not matter whether one encrypts first and then
decrypts or one decrypts first and then encrypts: that is,Dk(Ek(m)) = Ek(Dk(m)) = m.
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Figure 2.7 The working principle of a symmetric encryption system.

cipher) or on larger blocks (typically representing ablock cipher). While there are
modes of operation that turn a block cipher into a stream cipher, the opposite is not
known to be true, meaning that there is no mode of operation that effectively turns a
stream cipher into a block cipher.

To make meaningful statements about the security of a symmetric encryption
system or cipher, one must define the adversary and the task heor she needs to solve
to be successful (Definition 1.8). With regard to the adversary, one must specify
his or her computing power and the types of attacks he or she isable to mount,
such as ciphertext-only attacks, chosen-plaintext attacks, or even chosen-ciphertext
attacks. With regard to the task, one must specify whether heor she must decrypt a
ciphertext, determine a key, determine a few bits from either the plaintext or the key,
or do something else. Consequently, there are several notions of security one may
come up with. If, for example, an adversary has infinite computing power but is still
not able to decrypt a ciphertext within a finite amount of time, then the respective
cipher is unconditionally or information-theoretically secure. We already mentioned
that the one-time pad yields an example of such an information-theoretically secure
cipher (that provides perfect secrecy). If the adversary istheoretically able to decrypt
a ciphertext within a finite amount of time, but the computingpower required to do
so is beyond his or her capabilities, then the respective cipher is “only” conditionally
or computationally secure. This means that the system can bebroken in theory
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(e.g., by an exhaustive key search), but the respective attacks are assumed to be
computationally infeasible to mount by the adversaries onehas in mind.

In Chapter 9, we will introduce, formalize, discuss, and putinto perspective
several notions of security, including semantic security.If a cipher is semantically
secure, then it is computationally infeasible to retrieve any meaningful information
about a plaintext message from a given ciphertext, even if the adversary can mount a
chosen-plaintext attack, and hence has access to an encryption oracle. All symmetric
encryption systems in use today are at least semantically secure. In this chapter,
we will also outline ciphers that are either historically relevant, such as the Data
Encryption Standard (DES) and RC4, or practically important, such as the Advanced
Encryption Standard (AES) and Salsa20/ChaCha20. Note thatthere are many other
ciphers proposed in the literature. The majority of them have been broken, but some
still remain secure.

2.2.4 Message Authentication

While encryption systems are to protect the confidentialityof data, there are appli-
cations that require rather the authenticity and integrityof data to be protected—
either in addition or instead of the confidentiality. Consider, for example, a financial
transaction. It is nice to have the confidentiality of this transaction be protected, but
it is somehow more important to protect its authenticity andintegrity. The typical
way to achieve this is to have the sender add anauthentication tagto the message
and to have the recipient verify the tag before he or she accepts the message as being
genuine. This is conceptually similar to an error correction code. But in addition to
protect a message against transmission errors, an authentication tag also protects a
message against tampering and deliberate fraud. This meansthat the tag itself needs
to be protected against an adversary who may try to modify themessage and/or the
tag.

From a bird’s eye perspective, there are two possibilities to construct an au-
thentication tag: Either through the use of public key cryptography and adigital sig-
nature(as explained later in this book) or through the use of secretkey cryptography
and amessage authentication code(MAC11). The second possibility is captured in
Definition 2.10.

Definition 2.10 (MAC) A MAC is an authentication tag that can be computed and
verified with a secret parameter (e.g., a secret key).

In the case of a message sent from one sender to one recipient,the secret
parameter must be shared between the two entities. If, however, the message is sent

11 In some literature, the termmessage integrity code(MIC) is used synonymously and interchange-
ably. However, this term is not used in this book.
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to multiple recipients, then the secret parameter must be shared among the sender
and all receiving entities. In this case, the distribution and management of the secret
parameter yields a major challenge (and is probably one of the Achilles’ heels of the
entire system).

Similar to a symmetric encryption system, one can introduceand formally
define a system to compute and verify MACs. In this book, we sometimes use the
termmessage authentication systemto refer to such a system (contrary to many other
terms used in this book, this term is not widely used in the literature). It is formalized
in Definition 2.11.

Definition 2.11 (Message authentication system)LetM be a message space,T a
tag space, andK a key space. Amessage authentication systemthen refers to a pair
(A, V ) of families of efficiently computable functions:

• A : K ×M→ T denotes a family{Ak : k ∈ K} of authentication functions
Ak :M→ T ;

• V : K ×M × T → {valid, invalid} denotes a family{Vk : k ∈ K} of
verification functionsVk :M×T → {valid, invalid}.

For every messagem ∈ M and keyk ∈ K, Vk(m, t) must yieldvalid if and
only if t is a valid authentication tag form andk; that is, t = Ak(m), and hence
Vk(m,Ak(m)) must yieldvalid.

Typically,M = {0, 1}∗, T = {0, 1}ltag for some fixed tag lengthltag, andK =
{0, 1}lkey for some fixed key lengthlkey . It is often the case thatltag = lkey = 128,
meaning that the tags and keys are 128 bits long each.

The working principle of a message authentication system isdepicted in
Figure 2.8. Again, theGenerate algorithm randomly selects a keyk from K that
is sent to the sender (on the left side) and the recipient (on the right side). The
sender uses the authentication function orAuthenticate algorithm to compute an
authentication tagt from m andk. Both m and t are sent to the recipient. The
recipient, in turn, uses the verification function orVerify algorithm to check whether
t is a valid tag with respect tom andk. The resulting Boolean value yields the output
of theVerify algorithm; it can either bevalid or invalid.

To argue about the security of a message authentication system, we must
define the adversary and the task he or she must solve to be successful (i.e., to
break the security of the system). Similar to symmetric encryption systems, we may
consider adversaries with infinite computing power to come up with systems that
are unconditionally or information-theoretically secure, or—more realistically—
adversaries with finite computing power to come up with systems that are “only”
conditionally or computationally secure.
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Figure 2.8 The working principle of a message authentication system.

As we will see in Chapter 10, there are message authentication systems that
are unconditionally or information-theoretically secure, but require a unique key to
authenticate a single message, and there are systems that are “only” conditionally or
computationally secure, but can use a single and relativelyshort key to authenticate
multiple messages. Needless to say, this is more appropriate and useful, and hence
most systems used in the field are conditionally or computationally secure. Further-
more, the notion of (computational) security we are headingfor is unforgeability,
meaning that it must be computationally infeasible to generate a valid tag for a new
message. This requirement will be clarified and more precisely defined in Chapter
10, when we elaborate on message authentication, MACs, and respective message
authentication systems.

2.2.5 Authenticated Encryption

For a long time, people used symmetric encryption systems toencrypt messages
and message authentication systems to generate MACs that were then appended to
the messages. But it was not clear how (i.e., in what order), the two cryptographic
primitives had to be applied and combined to achieve the bestlevel of security. In
general, there are three approaches or generic compositionmethods. Letm ∈ M be
a message,ke an encryption key, andka an authentication key from respective key
spaces. The generic composition methods can then be described as follows:
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• In Encrypt-then-MAC(EtM) the messagem is first encrypted, and the result-
ing ciphertext is then authenticated, before the ciphertext and the MAC are
sent together to the recipient. Mathematically speaking, the data that is sent
to the recipient isEke(m) ‖ Aka(Eke(m)). EtM is used, for example, in IP
security (IPsec).

• In Encrypt-and-MAC(E&M) the messagem is encrypted and authenticated
independently, meaning that—in contrast to EtM—a MAC is generated for
the plaintext and sent together with the ciphertext to the recipient. In this case,
the data that is sent to the recipient isEke(m) ‖ Aka(m). E&M is used, for
example, in Secure Shell (SSH).

• In MAC-then-Encrypt(MtE) a MAC is first generated for the plaintext mes-
sage, and the message with the appended MAC is then encrypted. The re-
sulting ciphertext (that comprises both the message and theMAC) is then
sent to the recipient. In this case, the data that is sent to the recipient is
Eke(m ‖ Aka(m)). MtA was used, for example, in former versions of the
SSL/TLS protocols [2].

Since 2001 it is known that encrypting a message and subsequently applying a
MAC to the ciphertext (i.e., the EtM method), provides the best level of security [3],
and most of today’s security protocols follow this approach, i.e., they apply message
encryption prior to authentication. More specifically, most people combine message
encryption and authentication in what is calledauthenticated encryption(AE) or
authenticated encryption with associated data(AEAD). AEAD basically refers to
AE where all data are authenticated but not all data are encrypted. The exemplary use
case is an IP packet, where the payload is encrypted and authenticated but the header
is only authenticated (because it must be accessible to the intermediate routers in the
clear). AE is further addressed in Chapter 11. Most importantly, there are several
modes of operation for block ciphers that provide AE (or AEAD, respectively).

The next class of cryptosystems we look at are public key cryptosystems.
According to Definition 1.7, these are cryptosystems that use secret parameters that
are not shared among all participating entities, meaning that they are held in private.

2.3 PUBLIC KEY CRYPTOSYSTEMS

Instead of sharing all secret parameters, the entities thatparticipate in a public key
cryptosystem hold two distinct sets of parameters: One thatis private (collectively
referred to as theprivate or secret keyand abbreviated assk), and one that is
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published (collectively referred to as thepublic keyand abbreviated aspk).12 A
necessary but usually not sufficient prerequisite for a public key cryptosystem to be
secure is that both keys—the private key and the public key—are yet mathematically
related, but it is still computationally infeasible to compute one from the other.
Another prerequisite is that the public keys are available in a form that provides
authenticity and integrity. If somebody is able to introduce faked public keys, then
he or she is usually able to mount very powerful attacks. Thisis why we usually
require public keys to be published in some certified form, and hence the notions of
(public key) certificates and public key infrastructures (PKI) come into play. This
topic will be further addressed in Section 16.4.

The fact that public key cryptosystems use secret parameters that are not
shared among all participating entities suggests that the respective algorithms are
executed by different entities, and hence that such cryptosystems are best defined as
sets of algorithms (that are then executed by these different entities). We adopt this
viewpoint in this book and define public key cryptosystems assets of algorithms. In
the case of an asymmetric encryption system, for example, there is a key generation
algorithmGenerate, an encryption algorithmEncrypt, and a decryption algorithm
Decrypt. TheGenerate andEncrypt algorithms are usually executed by the sender
of a message, whereas theDecrypt algorithm is executed by the recipient(s). As
discussed later, other public key cryptosystems may employother sets of algorithms.

In the following sections, we briefly overview the most important public key
cryptosystems used in the field, such as key establishment, asymmetric encryption,
and digital signatures. The overview is superficial here, and the technical details
are provided in Part II of the book (this also applies to zero-knowledge proofs of
knowledge that are not addressed here).

Because public key cryptography is computationally less efficient than secret
key cryptography, it usually makes a lot of sense to combine both types of cryptog-
raphy inhybrid cryptosystems. In such a system, public key cryptography is mainly
used for authentication and key establishment, whereas secret key cryptography is
used for everything else (most notably bulk data encryption). Hybrid cryptosystems
are frequently used and very widely deployed in the field. In fact, almost every non-
trivial application of cryptography employs some form of hybrid cryptography.

2.3.1 Key Establishment

If two or more entities want to employ and make use of secret key cryptography,
then they must share a secret parameter that represents a cryptographic key. Con-
sequently, in a large system many secret keys must be generated, stored, managed,

12 It depends on the cryptosystem whether it matters which set of parameters is used to represent the
private key and which set of parameters is used to represent the public key.
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used, and destroyed (at the end of their life cycle) in a secure way. If, for example,
n entities want to securely communicate with each other, thenthere are

(
n
2

)

=
n(n− 1)

1 · 2 =
n2 − n

2

such keys. This number grows in the order ofn2, and hence the establishment of
secret keys is a major practical problem—sometimes called then2-problem—and
probably the Achilles’ heel of the large-scale deployment of secret key cryptography.
For example, ifn = 1, 000 entities want to securely communicate with each other,
then there are

(
1, 000
2

)

=
1, 0002 − 1, 000

2
= 499, 500

keys. Even for moderately largen, the generation, storage, management, usage, and
destruction of all such keys is prohibitively expensive andthe antecedent distribution
of them is next to impossible. Things even get worse in dynamic systems, where
entities may join and leave at will. In such a system, the distribution of keys is
impossible, because it is not even known in advance who may want to join. This
means that one has to establish keys when needed, and there are basically two
approaches to achieve this:

• The use of akey distribution center(KDC) that provides the entities with the
keys needed to securely communicate with each other;

• The use of akey establishment protocolthat allows the entities to establish the
keys themselves.

A prominent example of a KDC is the Kerberos authentication and key dis-
tribution system [4]. KDCs in general and Kerberos in particular have many disad-
vantages. The most important disadvantage is that each entity must unconditionally
trust the KDC and share a master key with it. There are situations in which this
level of trust is neither justified nor can it be accepted by the participating enti-
ties. Consequently, the use of a key establishment protocolthat employs public key
cryptography yields a viable alternative that is advantageous in most situations and
application settings.

In a simple key establishment protocol, an entity randomly generates a key and
uses a secure channel to transmit it to the peer entity (or peer entities, respectively).
The secure channel can be implemented with any asymmetric encryption system:
The entity that randomly generates the key encrypts the key with the public key of
the peer entity. This protocol is simple and straightforward, but it has the problem
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that the security depends on the quality and security of the key generation process—
which yields a PRG. Consequently, it is advantageous to havea mechanism in place
that allows two (or even more) entities to establish and agree on a commonly shared
key. This is where the notion of a key agreement or key exchange protocol comes
into play (as opposed to a key distribution protocol).

Even today, the most important key exchange protocol was proposed by
Diffie and Hellman in their landmark paper [5] that opened thefield of public key
cryptography. It solves a problem that looks impossible to solve: How can two
entities that have no prior relationship and do not share anysecret use a public
channel to agree on a shared secret? Imagine a room in which people can only shout
messages at each other. How can two persons in this room agreeon a secret? As we
will see in Chapter 12, theDiffie-Hellman key exchange protocolsolves this problem
in a simple and ingenious way. In this chapter, we will also discuss a few variants
and their security, and say a few words about the use of quantum cryptography as an
alternative way of exchanging keying material.

2.3.2 Asymmetric Encryption Systems

Similar to a symmetric encryption system, an asymmetric encryption system can
be used to encrypt and decrypt plaintext messages. The majordifference between a
symmetric and an asymmetric encryption system is that the former employs secret
key cryptography and respective techniques, whereas the latter employs public key
cryptography and respective techniques.

As already emphasized in Section 2.1.3, an asymmetric encryption system can
be built from a trapdoor function—or, more specifically—from a family of trapdoor
functions. Each public key pair comprises a public keypk that yields a one-way
function and a private keysk that yields a trapdoor (needed to efficiently compute
the inverse of the one-way function). To send a secret message to the recipient, the
sender uses the recipient’s public key and applies the respective one-way function
to the plaintext message. The resulting ciphertext is then sent to the recipient. The
recipient, in turn, is the only entity that supposedly holdsthe trapdoor (information)
needed to invert the one-way function and to decrypt the ciphertext accordingly.
More formally, an asymmetric encryption system can be defined as in Definition
2.12.

Definition 2.12 (Asymmetric encryption system)An asymmetric encryption sys-
temconsists of the following three efficient algorithms:
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• Generate(1k) is a probabilistic key generation algorithm that takes as input a
security parameter1k (in unary notation13), and generates as output a public
key pair(pk, sk) that is in line with the security parameter.

• Encrypt(pk,m) is a deterministic or probabilistic encryption algorithm that
takes as input a public keypk and a plaintext messagem, and generates as
output a ciphertextc = Encrypt(pk,m).

• Decrypt(sk, c) is a deterministic decryption algorithm that takes as inputa
private keysk and a ciphertextc, and generates as output a plaintext message
m = Decrypt(sk, c).

For every plaintext messagem and public key pair(pk, sk), theEncrypt and
Decrypt algorithms must be inverse to each other; that is,Decrypt(sk,Encrypt(pk,
m)) = m.

Figure 2.9 The working principle of an asymmetric encryption system.

13 This means that a 1 is repeatedk times.



Cryptographic Systems 49

The working principle of an asymmetric encryption system isillustrated in
Figure 2.9. At the top of the figure, theGenerate algorithm is to generate a public key
pair for entity A that is the recipient of a message. In preparation for the encryption,
A’s public keypkA is provided to the sender on the left side. The sender then subjects
the messagem to the one-way function represented bypkA, and sends the respective
ciphertextc = EncryptpkA

(m) to A. On the right side, A knows its secret keyskA
that represents a trapdoor to the one-way function and can beused to decryptc and
retrieve the plaintext messagem = DecryptskA

(c) accordingly. Hence, the output
of theDecrypt algorithm is the original messagem.

There are many asymmetric encryption systems that have beenproposed in the
literature, such as Elgamal, RSA, and Rabin. These systems are based on the three
exemplary one-way functions mentioned in Section 2.1.3 (inthis order). Because
it is computationally infeasible to invert these functions, the systems provide a
reasonable level of security—even in their basic forms (that are sometimes called
textbook versions).

In Chapter 13, we will elaborate on these asymmetric encryption systems,
but we will also address notions of security that cannot be achieved with them.
The strongest notion of security is again defined in the game-theoretical setting:
An adversary can select two equally long plaintext messagesand has one of them
encrypted. If he or she cannot tell whether the respective ciphertext is the encryp-
tion of the first or the second plaintext message with a probability that is better
than guessing, then the asymmetric encryption system leaksno information and is
therefore assumed to be (semantically) secure. This may hold even if the adversary
has access to a decryption oracle, meaning that he or she can have any ciphertext
of his or her choice be decrypted—except, of course, the ciphertext the adversary is
challenged with. We will more thoroughly explain this setting and present variants
of the basic asymmetric encryption systems that remain secure even in this setting.

2.3.3 Digital Signatures

Digital signatures can be used to protect the authenticity and integrity of messages,
or—more generally—data objects. According to [6], adigital signaturerefers to
“a value computed with a cryptographic algorithm and appended to a data object
in such a way that any recipient of the data can use the signature to verify the
data’s origin and integrity.” Similarly, the term digital signature is defined as “data
appended to, or a cryptographic transformation of, a data unit that allows a recipient
of the data unit to prove the source and integrity of the data unit and protect
against forgery, e.g. by the recipient” in ISO/IEC 7498-2 [7]. Following the second
definition, there are two classes of digital signatures:
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• If data representing the digital signature is appended to a data unit (or mes-
sage), then one refers to adigital signature with appendix.

• If a data unit is cryptographically transformed in a way thatit represents both
the data unit (or message) that is signed and the digital signature, then one
refers to adigital signature giving message recovery. In this case, the data
unit is recovered if and only if the signature is successfully verified.

In either case, the entity that digitally signs a data unit ormessage is called the
signeror signatory, whereas the entity that verifies the digital signature is called the
verifier. In a typical setting, both the signer and the verifier are computing devices
operating on a user’s behalf. The formal definitions of the two respective digital
signature systems (DSS) are given in Definitions 2.13 and 2.14.

Definition 2.13 (DSS with appendix)A DSS with appendixconsists of the follow-
ing three efficiently computable algorithms:

• Generate(1k) is a probabilistic key generation algorithm that takes as input a
security parameter1k, and generates as output a public key pair(pk, sk) that
is in line with the security parameter.

• Sign(sk,m) is a deterministic or probabilistic signature generation algorithm
that takes as input a signing keysk and a messagem, and generates as output
a digital signatures for m.

• Verify(pk,m, s) is a deterministic signature verification algorithm that takes
as input a verification keypk, a messagem, and a purported digital signature
s for m, and generates as output a binary decision whether the signature is
valid.

Verify(pk,m, s) must yieldvalid if and only ifs is a valid digital signature for
m andpk. This means that for every messagem and every public key pair(pk, sk),
Verify(pk,m, Sign(sk,m)) must yieldvalid.

Definition 2.14 (DSS giving message recovery)A DSS giving message recovery
consists of the following three efficiently computable algorithms:

• Generate(1k) is a probabilistic key generation algorithm that takes as input a
security parameter1k, and generates as output a public key pair(pk, sk) that
is in line with the security parameter.

• Sign(sk,m) is a deterministic or probabilistic signature generation algorithm
that takes as input a signing keysk and a messagem, and generates as output
a digital signatures giving message recovery.
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• Recover(pk, s) is a deterministic message recovery algorithm that takes as
input a verification keypk and a digital signatures, and generates as output
either the message that is digitally signed or a notificationindicating that the
digital signature is invalid.

Recover(pk, s) must yieldm if and only ifs is a valid digital signature form
andpk. This means that for every messagem and every public key pair(pk, sk),
Recover(pk, Sign(sk,m)) must yieldm.

Note that theGenerate andSign algorithms are identical in this algorithmic
notation, and that the only difference refers to theVerify andRecover algorithms.
While theVerify algorithm takes the messagem as input, this value is not needed
by theRecover algorithm. Instead, the messagem is automatically recovered if the
signature turns out to be valid.

Figure 2.10 The working principle of a DSS with appendix.

The working principle of a DSS with appendix is illustrated in Figure 2.10.
This time, theGenerate algorithm is applied on the left side (i.e., the signer’ side).
The signer uses the secret keyskA (representing the trapdoor) to sign messagem;
that is,s = Sign(skA,m). This messagem and the respective signatures are then
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sent to the verifier. This verifier, in turn, uses theVerify algorithm to verifys. More
specifically, it takesm, s, andpkA as input values and ouputs eithervalid or invalid
(obviously depending on the validity of the signature).

Figure 2.11 The working principle of a DSS giving message recovery.

If the DSS is giving message recovery, then the situation is slightly different.
As illustrated in Figure 2.11, the beginning is the same. Butinstead of sendingm
ands to the recipient, the signatory only sendss. The signature encodes the message.
So when the recipient subjectss to theRecover algorithm, the output is eitherm (if
the signature is valid) orinvalid.

With the proliferation of the Internet in general and Internet-based electronic
commerce in particular, digital signatures and the legislation thereof have become
important and timely topics. In fact, many DSS with specific and unique properties
have been developed, proposed, and published in the literature. Again, the most
important DSSs are overviewed, discussed, and put into perspective in Chapter 14.
These are RSA, Rabin, Elgamal, and some variations thereof,such as the Digital
Signature Algorithm (DSA) and its elliptic curve version (ECDSA).

Similar to asymmetric encryption systems, the security discussion for digital
signatures is nontrivial and subtle, and there are several notions of security discussed
in the literature. The general theme is that it must be computationally infeasible for
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an adversary to generate a new valid-looking signature, even if he or she has access
to an oracle that provides him or her with arbitrarily many signatures for messages
of his or her choice. In technical parlance, this means that the DSS must resist
existential forgery, even if the adversary can mount an adaptive chosen-message
attack. Again, we will revisit this topic and explain the various notions of security
for DSSs, as well as some constructions to achieve these levels of security in Chapter
14.

2.4 FINAL REMARKS

In this chapter, we briefly introduced and provided some preliminary definitions for
the most important representatives of the three main classes of cryptosystems distin-
guished in this book, namely unkeyed cryptosystems, secretkey cryptosystems, and
public key cryptosystems. We want to note (again) that this classification scheme is
somewhat arbitrary, and that other classification schemes may be possible as well.

The cryptosystems that are preliminarily defined in this chapter are revisited,
more precisely defined (in a mathematically strong sense), discussed, and put into
perspective in the remaining chapters of the book. For all ofthese systems, we also
dive more deeply into the question of what it means for such a system to be secure.
This leads us to various notions of security that can be foundin the literature. Some
of these notions are equivalent, whereas others are fundamentally different. In this
case, it is interesting to know the exact relationship of thenotions, and what notion
is actually the strongest one. We then also provide cryptosystems that conform to
this (strongest) notion of security.

Following this line of argumentation, it is a major theme in cryptography to
better understand and formally define notions of security, and to prove that particular
cryptosystems are secure in this sense. It is another theme to start with cryptographic
building blocks that are known to be secure, and to ask how these building blocks
can be composed or combined in more advanced cryptographic protocols or systems
so that their security properties still apply. Alternatively speaking, how can secure
cryptographic building blocks be composed or combined in a modular fashion
so that the result remains secure? This is an interesting andpractically relevant
question addressed in cryptographic research areas and frameworks likeuniversal
composability[8] or constructive cryptography[9]. These topics are beyond the
scope of this book and not further addressed here. Instead, we “only” provide an
overview of the cryptographic building blocks that are available and that are assumed
to be secure when considered in isolation. Just keep in mind that a cryptosystem that
is secure in isolation does not need to remain secure when combined or composed
with others. So, research areas and frameworks like universal composability and
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constructive cryptography are crucial for the overall security of a cryptographic
application.
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Chapter 3

Random Generators

Random numbers should not be generated with a method chosen at
random.

— Donald E. Knuth1

As mentioned in Section 2.1.1, randomness is the most important ingredient for
cryptography, and most cryptographic systems in use today require some form of
randomness (as we will see throughout the book). As suggested by Knuth’s leading
quote, random numbers must be generated carefully and should not be generated
with a method chosen at random. This is the theme of this chapter. We give an
introduction in Section 3.1, overview and discuss some possible realizations and
implementations of random generators in Section 3.2, address statistical randomness
testing in Section 3.3, and conclude with some final remarks in Section 3.4. Unlike
many other chapters that follow, this chapter is kept relatively short.

3.1 INTRODUCTION

The termrandomnessis commonly used to refer to nondeterminism. If we say
that something israndom, we mean that we cannot determine its outcome, or—
equivalently—that its outcome is nondeterministic. Whether randomness really ex-
ists is also a philosophical question. Somebody who believes that everything is de-
termined and behaves in a deterministic way would typicallyargue that randomness
does not exist. If, for example, we consider a coin toss, thena physicist knowing

1 Donald Ervin Knuth is an American computer scientist who was born in 1938.
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precisely the weight of the coin, the initial position, the forces applied during the
toss, the wind speed, as well as many other parameters that are relevant, should in
principle be able to predict the outcome of a toss (i.e., heador tail). If this is not
possible, then this is due to the fact that coin tossing is a chaotic process. Chaos
is a type of behavior that can be observed in systems that are highly sensitive to
initial conditions. The evolution of such systems is so sensitive to initial conditions
that it is simply not possible to determine them precisely enough to make reliable
predictions about the future behavior. One could say that any form of determinism
is then hidden behind the complexity of the chaotic system. For the purpose of this
book, we don’t address the philosophical question and simply assume that systems
sometimes are so chaotic that they cannot be predicated, andhence that randomness
exists. This is also in line with the present knowledge in quantum physics, where we
have to assume that randomness exists in the first place.

If we assume the existence of randomness, then we may ask whether it is
possible to measure it in one way or another. For example, onemay ask for a
given value whether it is random or not. Is, for example, 13 random? Or is 27
random? Is 13 more random than 27, or—vice versa—is 27 more random than
13? Unfortunately, questions like these don’t make a lot of sense unless they are
considered in a specific context.

In theory, there is a measure of randomness for a finite sequence of values.
In fact, theKolmogorov complexitymeasures the minimal length of a program
for a Turing machine2 that is able to generate the sequence. Unfortunately, the
Kolmogorov complexity is inherently noncomputable; that is, it is not known how
to compute the Kolmogorov complexity for a given sequence ofvalues, and hence it
is not particularly useful.

If we know that a bit sequence is generated with alinear feedback shift register
(LFSR) as introduced in Section 9.5.1, then we can use thelinear complexityto
measure its randomness. In fact, the linear complexity stands for the size of the
shortest LFSR that can generate the sequence. This measure peaks to the difficulty of
generating—and perhaps analyzing—the bit sequence. Thereis an algorithm created
by Elwyn R. Berlekamp and James L. Massey [1] that can be used to compute
the linear complexity of a bit sequence. Note, however, thatthe linear complexity
(and hence also theBerlekamp-Massey algorithm) assumes that the bit sequence is
generated with an LFSR. Consequently, it is possible that a bit sequence has a large
linear complexity but can still be generated easily with other means. This possibility
cannot be excluded.

For the rest of this chapter we leave aside the questions whether randomness
exists and how to measure it. Instead, we elaborate on the question of how to
generate random values. In Definition 2.1, we introduced thenotions of a random

2 Refer to Section D.5 for an introduction to Turing machines.
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generator and a random bit generator—the latter was also depicted in Figure 2.1. In
short, it is a device or algorithm that outputs a sequence of statistically independent
and unbiased bits. This means that the bits occur with the same probability; that is,
Pr[0] = Pr[1] = 1/2, and that all2k possiblek-tuples occur approximately equally
often; that is, with probability1/2k for all k ∈ N.

If we can generate random bits, then we can also generate (uniformly dis-
tributed) random numbers of any size. If, for example, we want to construct ann-bit
random numbera, then we setbn = 1, use the random generator to generaten− 1
random bitsbn−1, . . . , b1, and set

a =

n∑

i=1

bi2
i−1 (3.1)

Similarly, if we want to construct a number that is randomly selected from the
interval [0,m] for m ∈ N, then we setn to the length ofm, i.e.,n = ⌊logm⌋ + 1,
and use the random generator to generaten random bitsb1, . . . , bn. If a constructed
according to (3.1) is smaller or equal tom, then we use it. If, however,a is bigger
thanm, then we don’t use it and generate another number instead. Consequently, in
what follows we only elaborate on the generation of random bits, and we assume
that the construction of random numbers from random bits canalways be done this
way.

3.2 REALIZATIONS AND IMPLEMENTATIONS

The relevant RFC 4086 (BCP 106) [2] recommends the use of special hardware to
generate truly random bits. There are, however, situationsin which special hardware
is not available, and software must be used instead. Consequently, there is room
for both hardware-based and software-based random generators. Some general ideas
about how to realize and implement such generators are overviewed next. Afterward,
we also introduce and outline some deskewing techniques.

3.2.1 Hardware-Based Random Generators

Hardware-based random generators exploit the randomness that occurs in physical
processes and phenomena. According to [3], examples of suchprocesses and phe-
nomena include:

• The elapsed time between emission of particles during radioactive decay;

• The thermal noise from a semiconductor diode or resistor;
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• The frequency instability of a free-running oscillator (e.g., [4]);

• The amount a metal-insulator-semiconductor capacitor is charged during a
fixed period of time (e.g., [5]);

• The air turbulence within a sealed disk drive that causes random fluctuations
in disk drive sector read latency times (e.g., [6, 7]);

• The sound from a microphone or video input from a camera.

It goes without saying that any other physical process or phenomena may be
employed by a hardware-based random generator. When designing such a generator,
it may also be a natural choice to take advantage of the inherent randomness of
quantum physics and to resort to the use of a quantum process as a source of
randomness. This generally allows selecting a very simple process as a source of
randomness. The first example itemized above falls into thiscategory. But due to the
use of radioactive materials, the respective generators are involved and may cause
health concerns for its users.

A simpler technique to build a hardware-based random generator based on
quantum physics is to employ an optical quantum process as a source of randomness.
From a quantum physics viewpoint, light consists of elementary particles known as
photons. In many situations, photons exhibit a random behavior. If, for example,
a photon is sent to a semitransparent mirror, then the photonis reflected with a
probability of0.5 and it continues its transmission with the remaining probability
of 0.5. Using two single-photon detectors, the two cases can be distinguished and
the result can be turned into one bit. There are commerciallyavailable random
generators that work this way and can generate millions of (random) bits per second.

Hardware-based random generators could easily be integrated into contempo-
rary computer systems. However, this is not always the case,and hence hardware-
based random generators are neither readily available nor widely deployed in the
field.

3.2.2 Software-Based Random Generators

First of all, it is important to note that designing a random generator in software is
even more difficult than doing so in hardware. Again, a process is needed to serve
as a source of randomness. According to [3], the following processes may be used
to serve as a source of randomness for a software-based random generator:

• The system clock (e.g., [8]);

• The elapsed time between keystrokes or mouse movements;
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• The content of input/output buffers;

• The input provided by the user;

• The values of operating system variables, such as system load or network
statistics.

Again, this list is not comprehensive, and many other processes may be used
as a source of randomness for a software-based random generator. Anyway, the
behavior of a process may vary considerably depending on various factors, such
as the computer platform, operating system, and software inuse, but it may still be
difficult to prevent an adversary from observing (or even manipulating) a process.
For example, if an adversary has a rough idea of when a random bit sequence was
generated, he or she can guess the content of the system clockat that time with a
high degree of accuracy. Consequently, care must be taken when the system clock
and the identification numbers of running processes are usedto generate random bit
sequences. This type of problem gained a lot of publicity in 1995, when it was found
that the encryption in Netscape browsers could easily be broken due to the limited
range of its randomly generated values. Because the values used to determine session
keys could be established without too much difficulty, even U.S. domestic browsers
with 128-bit session keys carried at most 47 bits of entropy in their session keys [9].
Shortly after this revelation, it was found that the MIT implementation of Kerberos
version 4 [10] and the magic cookie key generation mechanismof the X windows
system both suffered from a similar weakness.

Sometimes, it is possible to use external (i.e., external tothe computer system
that needs the randomness) sources of randomness. For example, a potential source
of randomness is the unpredictable behavior of the stock market. This source, how-
ever, has some disadvantages of its own. For example, it is sometimes predictable
(e.g., during a crash), it can be manipulated (e.g., by spreading rumors or by placing
a large stock transaction), and it is never secret, but the search for external sources
of randomness remains an interesting research area. The U.S. NIST has a respective
project that aims at implementing interoperable randomness beacons.3 They provide
a source of randomness, but—due to their public nature—their output should never
be used directly as cryptographic keys.

In [2], it is argued that the best overall strategy for meeting the requirement
for unguessable random bits in the absence of a single reliable source is to obtain
random input from a large number of uncorrelated sources andto mix them with a
strong mixing function. A strong mixing function, in turn, is one that combines two
or more inputs and produces an output where each output bit isa different complex
nonlinear function of all input bits. On average, changing an input bit will change

3 https://csrc.nist.gov/projects/interoperable-randomness-beacons.
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about half of the output bits. However, because the relationship is complex and
nonlinear, no particular output bit is guaranteed to changewhen any particular input
bit is changed. A trivial example for such a function is addition modulo232. More
general strong mixing functions (for more than two inputs) can be constructed using
other cryptographic systems, such as cryptographic hash functions or symmetric
encryption systems.

3.2.3 Deskewing Techniques

Any source of random bits may be defective in the sense that the output bits are
biased (i.e., the probability of the source emitting a 1 is not equal to1/2) or
correlated (i.e., the probability of the source emitting a 1depends on previously
emitted bits). There are severaldeskewing techniquesthat can be used to generate a
random bit sequence from the output of such a defective random bit generator:

• If, for example, a defective random generator outputs biased (but uncorrelated)
bits, then a simple deskewing technique created by John von Neumann can be
used to suppress the bias [11]. Therefore, the output bit sequence is grouped
into a sequence of pairs of bits, where each pair of bits is transformed into a
single bit:

– A 10 pair is transformed to1;

– A 01 pair is transformed to0;

– 00 and11 pairs are discarded.

For example, the biased bit sequence 11010011010010 is transformed
to 001, and this binary sequence is still uncorrelated and now also unbiased. It
goes without saying that von Neumann’s technique is far frombeing optimal,
and so the technique was later generalized and optimized to achieve an output
rate near the source entropy [12–14].

• If a defective random generator outputs correlated bits, then the situation
is generally more involved. A simple deskewing technique isto decrease
correlation by combining two (or even more) sequences.

The cost of applying any deskewing technique is that the original bit sequence
is shortened. In the case of von Neumann’s technique, for example, the length
of the resulting sequence is at most one quarter of the lengthof the original
sequence. This illustrates the fact that a deskewing technique can also be seen as
a compression technique. After its application, any bias issilently removed and no
further compression should be possible.
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In practice, a simple and straightforward deskewing technique is to pass a
bit sequence whose bits are biased and/or correlated through a cryptographic hash
function or a block cipher (with a randomly chosen key). The result can be expected
to have good randomness properties, otherwise the cryptogrphic primitives are
revealed to be weak.

3.3 STATISTICAL RANDOMNESS TESTING

While it is impossible to give a mathematical proof that a generator is a random
(bit) generator, statistical randomness testing may help detecting certain kinds of
defects or weaknesses. This is accomplished by taking a sample output sequence
of the generator and subjecting it to some statistical randomness tests. Each test
determines whether the sequence that is generated possesses a certain attribute that
a truly random sequence would be likely to exhibit.

The first statistical tests for random numbers were published by Maurice
George Kendall and Bernard Babington-Smith in 1938 [15]. The tests were built
on statistical hypothesis tests, such as the chi-square test that had originally been
developed to distinguish whether or not experimental phenomena match up with
their theoretical probabilities. Kendall and Babington-Smith’s original four tests
took as their null hypothesis the idea that each number in a given random sequence
has an equal chance of occurring, and that various other patterns in the data should
also be distributed equiprobably. These tests are:

• The frequency testchecks that all possible numbers (e.g., 0, 1, 2, . . . ) occur
with roughly the same frequency (i.e., the same number of times);

• Theserial testchecks the same thing for sequences of two numbers (e.g., 00,
01, 02, . . . );

• The poker testchecks for certain sequences of five numbers at a time based
on hands in a poker game;

• Thegap testlooks at the distances between 0s (in the binary case, for example,
00 would be a distance of 0, 010 would be a distance of 1, 0110 would be a
distance of 2, . . . ).

The tests do not directly attest randomness. Instead, each test may provide
some probabilistic evidence that a generator produces sequences that have “good”
randomness properties. In other words, if a sequence fails any of these tests, then the
generator can be rejected as being nonrandom. Only if the sequence passes all tests
(within a given degree of significance, such as 5%) can the generator be accepted as
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being random. This is conceptually similar to primality testing outlined in Appendix
A.2.4.3.

As random numbers became more and more common, more tests of increasing
sophistication were developed and are currently being used:

• In 1995, George Marsaglia published a suite (or battery) of statistical ran-
domness tests and respective software, collectively referred to as theDiehard
tests.4 They are widely used in practice.

• In 2007, Pierre L’Ecuyer and Richard Simard published another test suite
(together with respective software) that is known asTestU01[16].

• In the recent past, the U.S. NIST has become active in the fieldand published a
statistical test suite for random and pseudorandom number generators suitable
for cryptographic applications. The suite comprises, among other tests, the
universal statistical test that was created by Ueli M. Maurer [17]. The basic
idea behind Maurer’s universal statistical test is that it should not be possible to
significantly compress (without a loss of information) the output sequence of
a random generator. Alternatively speaking, if a sample output sequence can
be significantly compressed, then the respective generatorshould be rejected
as being defective. Instead of actually compressing the sequence, Maurer’s
universal statistical test computes a quantity that is related to the length of the
compressed sequence. The NIST test suite has been revised several times, and
the most recent revision was done in April 2010 [18].

The Diehard tests, TestU01, and the NIST test suite represent the current state
of the art in statistical randomness testing. If you have to test an output sequence,
then you should go for any or several of these tests.

3.4 FINAL REMARKS

Random generators are at the core of most systems that employcryptographic
techniques in one way or another. If, for example, a secret key cryptosystem is being
used, then a random generator should generate a shared secret to be established
between the communicating peers. If a public key cryptosystem is used, then
a random generator should be used to generate the respectivepublic key pairs.
Furthermore, if the cryptosystem is probabilistic, then a random generator should
be used for every cryptographic operation, such as encryption or digital signature
generation.

4 http://www.stat.fsu.edu/pub/diehard.
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In this chapter, we elaborated on random generators and overviewed and dis-
cussed some possible realizations and implementations thereof. There are hardware-
based and software-based random generators. In either case, deskewing techniques
may be used to improve the defectiveness of a random generator, and statistical
randomness testing may be used to evaluate the quality of theoutput. In practice,
it is often required that random bit generators conform to a security level specified
in FIPS PUB 140-2 [19]. Hence, there is room for conformance testing as well as
evaluation and certification here.

From an application viewpoint, it is important to be able to generate truly
random bits (using a random generator) and to use them as a seed for a PRG. The
PRG can then be used to generate a potentially infinite sequence of pseudorandom
bits. It depends on a secret key (i.e., the seed), and therefore represents a secret key
cryptosystem. PRGs are addressed in Chapter 7.
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Chapter 4

Random Functions

This chapter is very short and has a clear mission: It introduces, briefly explains,
and puts into perspective the notion of a random function that is key to theoretical
considerations in many security analyses and proofs. In some literature, random
functions are called random oracles, and we use the terms synonymously and
interchangeably here. We introduce the topic in Section 4.1, elaborate on how one
would implement a random function (if one wanted to) in Section 4.2, and conclude
with some final remarks in Section 4.3. Contrary to all other chapters and appendixes
in this book, this chapter does not come with a list of references.

4.1 INTRODUCTION

In the previous chapter, we elaborated on random generators, and we argued that
a “good” random generator must output values (or bits in the case of a random
bit generator) that have “good” randomness properties—forwhatever one may call
“good.” We also said that these properties cannot be measured directly, but can only
be measured indirectly by showing that no statistical randomness test is able to find
a defect. The point to remember is that a random generator outputs values that look
random, and hence that it is mainly characterized by its output.

When we talk about random functions (or random oracles) in this chapter,
the focus is not the output of such a function, but rather the way it is chosen. We
already captured in Definition 2.2 that it is a functionf : X → Y that is chosen
randomly fromFuncs[X,Y ]; that is, the set of all functions that map elements of
a domainX to elements of a rangeY . We also said that there are|Y ||X| such
functions, and that this number is incredibly large—even for moderately sizedX
andY . Remember that in a realistic setting, in whichX andY are sequences of 128
bits each,Funcs[X,Y ] comprises22

135

functions, and that2135 bits are needed to
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refer to a particular function inFuncs[X,Y ]. This is clearly infeasible to be used
in the field, and yet this huge quantity is what makes random functions attractive
in security considerations: If one can show that a function behaves like a random
function, then one can be pretty sure that an adversary is notgoing to guess or
otherwise determine the map of a given argument. The set of possibilities is simply
too large.

A special class of random functions occurs ifX = Y and one only considers
permutations ofX ; that is,Perms[X ]. Instead of|X ||X|, there are|X |! permutations
in Perms[X ], so the mathematical formula is different, but the resulting number
of possibilities is again incredibly large. In our example with 128-bit strings, for
example, it is|2128|!—again a number beyond imagination. Following the same line
of argumentation as above, a randomly chosen permutation fromPerms[X ] yields a
random permutation.

Note that the term random function is somehow misleading, because it may
lead one to believe that some functions are more random than others or—more
generally—that randomness is a property that can be attributed to a function per
se. This is not true, and the attribute random in the term random function only refers
to the way it is chosen from the set of all possibilities. The same reasoning also
applies to the term random permutation.

4.2 IMPLEMENTATION

In contrast to the header of this section, random functions (and random permuta-
tions) are purely theoretical and conceptual constructs that are not meant to be imple-
mented. Referring to the security game introduced in Section 1.2.2.1 (and illustrated
in Figure 1.2), a random function yields an ideal system an adversary has to tell
apart from a real system (i.e., a given cryptosystem for which the security needs to
be shown). If the adversary cannot tell the two systems apart, then the cryptosystem
under consideration behaves like a random function, and this, in turn, means that
the adversary must try all possible functions. Since there are so many possibilities
(as there are elements inFuncs[X,Y ] or Perms[X ]), this task can be assumed to
be computationally intractable for the adversary one has inmind, and hence the
cryptosystem can be assumed to be secure.

According to the way it is defined, a random function can output any value
y = f(x) ∈ f(X) ⊆ Y for input valuex ∈ X . The only requirement is that
the same input valuex always maps to the same output valuey. Except for that,
everything is possible and does not really matter (for the function to be random).
In an extreme case, for example, it is even possible that the function that maps
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all x ∈ X to zero is chosen randomly fromFuncs[X,Y ]. This means that it is a
perfectly valid random function in spite of the fact that this may contradict intuition.

x
f

f(x)

Figure 4.1 A random functionf .

Let us assume that we still want to implement a random function (in spite of
the concerns expressed above). How would we do this? A randomfunction is best
thought of as a black box that has a particular input-output behavior that can be
observed by everybody, meaning that anybody can feed input valuesx ∈ X into the
box and observe the respective output valuesf(x) ∈ Y . This is illustrated in Figure
4.1. Again, the only requirement is that if a specific input value x is fed multiple
times into the box, then the output valuef(x) must always be the same. This can be
achieved easily with some internal state.

Another way to think about a random functionf is as a large random tableT
with entries of the formT [x] = (x, f(x)) for all x ∈ X . The table can either be
statically determined or dynamically generated.

• If T is statically determined, then somebody must have flipped coins (or used
any other source of randomness) to determinef(x) for all x ∈ X and put
these values into the table.

• If T is dynamically generated, then there must be an algorithm and a respec-
tive program that initializes the table with empty entries and that proceeds as
follows for every input valuex ∈ X : It checks whetherT [x] is empty. If it
is empty, then it randomly choosesf(x) from Y , writes this value into the
appropriate place ofT [x], and returns it as a result. IfT [x] is not empty, then
it returns the corresponding value as a result.

In either case, implementing a random function (if one has a random generator
to start with) seems trivial, and it is a simple programming exercise to implement
one. However, one should not get too excited about the result, because—due to the
fact that it is a purely theoretical and conceptual construct—it won’t serve any useful
purpose in the field, meaning that one cannot solve any real-world problem with a
random function.
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4.3 FINAL REMARKS

The sole purpose of this chapter was to introduce the notionsof a random function
and a random permutation. Now that we have done so, we are ready to use them in
various settings. In fact, many cryptographic primitives and cryptosystems used in
the field can be seen as either a random function or a random permutation. More
precisely, they are not truly random but show a similar behavior and are thus in-
distinguishable from them. To emphasize this subtle difference, such functions and
permutations are called pseudorandom, and we are going to address pseudorandom
functions and permutations in Chapter 8. For example, a cryptographic hash function
yields a pseudorandom function, and a block cipher yields a pseudorandom permu-
tation. We will come across random and pseudorandom functions and permutations
at many places throughout the book, and it is therefore key tounderstand their notion
and the intuition behind their design.



Chapter 5

One-Way Functions

As mentioned before, one-way functions (and trapdoor functions) play a pivotal role
in contemporary cryptography, especially in the realm of public key cryptography.1

In this chapter, we elaborate on such functions. More specifically, we introduce
the topic in Section 5.1, overview and discuss a few candidate one-way functions
in Section 5.2, elaborate on integer factorization algorithms and algorithms for
computing discrete logarithms in Sections 5.3 and 5.4, briefly introduce elliptic
curve cryptography in Section 5.5, and conclude with some final remarks in Section
5.6.

5.1 INTRODUCTION

In Section 2.1.3, we introduced the notion of a one-way function in Definition 2.3
and depicted it in Figure 2.1. We said that a functionf : X → Y is one way, if
f(x) can be computed efficiently for allx ∈ X , butf−1(f(x)) cannot be computed
efficiently, meaning thatf−1(y) cannot be computed efficiently fory ∈R Y . We
also said that the definition is not precise in a mathematically strong sense and
that one must first introduce some complexity-theoretic basics (mainly to define
more accurately what is meant by saying that one can or one cannot “compute
efficiently”).

Using complexity theory as summarized in Appendix D, the notion of a one-
way function is now more precisely captured in Definition 5.1.

1 In many textbooks, one-way functions are introduced together with public key cryptography. In this
book, however, we follow a different approach and introduceone-way functions independently from
public key cryptography as unkeyed cryptosystems.
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Definition 5.1 (One-way function) A function f : X → Y is one way if the
following two conditions are fulfilled:

• The functionf is easy to compute, meaning that it is known how to efficiently
computef(x) for all x ∈ X ; that is, there is a probabilistic polynomial-time
(PPT) algorithm2 A that outputsA(x) = f(x) for all x ∈ X .

• The functionf is hard to invert, meaning that it is not known how to efficiently
computef−1(f(x)) for x ∈R X (or f−1(y) for y ∈R Y ); that is, there is no
known PPT algorithmA that outputsA(f(x)) = f−1(f(x)) for x ∈R X (or
A(y) = f−1(y) for y ∈R Y ).3 In either case, it is assumed that the values
of X (andY ) are uniformly distributed, and hence thatx (or y) is sampled
uniformly at random fromX (or Y ).

Another way to express the second condition is to say that anyPPT algorithm
A that tries to invertf on a randomly chosen element of its range4 only succeeds
with a probability that is negligible.5 More formally, this means that there is a
positive integern0 ∈ N, such that for every PPT algorithmA, everyx ∈ X , every
polynomialp(·), and alln0 ≤ n ∈ N the following relation holds:

Pr[A(f(x), 1b) ∈ f−1(f(x))] ≤ 1

p(n)

In this notation,b refers to the bit length ofx, and hence the PPT algorithmA is
actually given two arguments:f(x) and b in unary notation. The sole purpose of
the second argument is to allowA to run in time polynomial in the length ofx,
even iff(x) is much shorter thanx. In the typical case,f is length-preserving, and
hence the second argument1b is redundant and represents just a technical subtlety.
Using the two arguments, the algorithmA is to find a preimage off(x). The formula
basically says that the probability ofA being successful is negligible, meaning that
it is smaller than the reciprocal of any polynomial inn. This captures the notion of
a one-way function in a mathematically precise way.

2 In Section 1.2, we introduced the notion of a probabilisticalgorithm. As its name suggests, a PPT
algorithm is probabilistic and runs in polynomial time.

3 Note thatA is not required to find the correct value ofx. It is only required to find some inverse of
f(x) or y. If, however, the functionf is injective, then the only inverse off(x) or y is x.

4 See Section A.1.1 for the subtle difference between the codomain and the range of a function.
5 The notion of anegligible functionis captured in Definition D.1. In essence, the success probability

of a PPT algorithmA is negligible if it is bound by a polynomial fraction. It follows that repeating
A polynomially (in the input length) many times yields a new algorithm that also has a success
probability that is negligible. Put in other words, events that occur with negligible probability remain
negligible even if the experiment is repeated polynomiallymany times. This property is important
for complexity-theoretic considerations.
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In addition to this notation, there are other notations thatcan be used to express
the same idea. For example, the following notation is sometimes also used in the
literature:

Pr[(f(z) = y : x
r← {0, 1}b; y ← f(x); z ← A(y, 1b)] ≤ 1

p(n)

It says that ifx is sampled uniformly at random from{0, 1}b (i.e., allx ∈ {0, 1}b are
equally probable),y is assignedf(x), andz is assignedA(y, 1b), then the probability
thatf(z) equalsy—and henceA is successful in invertingf—is negligible. The two
notations are equivalent, and either one can be used.

Besides the notion of a one-way function, we also introducedthe notion of
a trapdoor (one-way) function in Definition 2.4. We said thata one-way function
f : X → Y is a trapdoor function(or a trapdoor one-way function, respectively),
if there is some extra information, i.e., atrapdoor, with which f can be inverted
efficiently, i.e.,f−1(f(x)) can be computed efficiently forx ∈R X (or f−1(y) for
y ∈R Y ). Consequently, the notion of a trapdoor function can be defined by simply
prepending the words “unless some extra information (i.e.,a trapdoor) is known” in
front of the second condition in Definition 5.1. This is not done here. Instead, we
refer to an alternative way of defining a trapdoor function inDefinition 5.2. Again,
the two ways of defining a trapdoor function are equivalent.

Definition 5.2 (Trapdoor function) A one-way functionf : X → Y is a trapdoor
functionif there is a trapdoor informationt and a PPT algorithmI that can be used
to efficiently computex′ = I(f(x), t) with f(x′) = f(x).

Referring to Section 2.1.3, aone-way permutationis a one-way function
functionf : X → X , whereX andY are the same andf is a permutation; that
is, f ∈ Perms[X ]. Similarly, a one-way permutationf : X → X is a trapdoor
permutation(or a trapdoor one-way permutation, respectively), if it has a trapdoor.
We already stressed the fact that one-way permutations and trapdoor permutations
are special cases of one-way functions and trapdoor functions, namely ones in which
the domain and the range are the same and the functions are permutations.

Instead of talking about one-way functions, trapdoor functions, one-way per-
mutations, and trapdoor permutations, people often refer to families of such func-
tions and permutations. To understand why this is the case, one has to consider
a complexity-theoretic argument: Many cryptographic functions required to be one
way output bit strings of fixed length. For example, cryptographic hash functions are
required to be one way (among other things) and output strings of 160 or more—
but always a fixed number of—bits (Chapter 6). Given this fact, one may ask how
computationally expensive it is to find a preimage of a given value, and hence to



74 Cryptography 101: From Theory to Practice

invert such a function. If the function outputsn-bit values, then2n tries are usually
sufficient to invert the function and find a preimage for a given hash value.6 Be-
cause2n is constant for a fixedn ∈ N, the computational complexity to invert the
function—using the big-O notation introduced in Section D.3—isO(1) and hence
trivial. So the complexity-theoretic answer to the question stated above is not par-
ticularly useful, and one cannot say that inverting such a function is intractable. If
one wants to use complexity-theoretic arguments, then one cannot have a constantn.
Instead, one must maken variable, and it must be possible to letn grow arbitrarily
large. Consequently, one has to work with a potentially infinite family7 of functions,
and there must be at least one function for every possible value ofn. Following this
line of argumentation, the notion of a family of one-way functions is captured in
Definition 5.3.

Definition 5.3 (Family of one-way functions) A family of functionsF = {fi :
Xi → Yi}i∈I is a family of one-way functionsif the following two conditions are
fulfilled:

• I is an index set that is infinite;

• For everyi ∈ I there is a functionfi : Xi → Yi that is one-way according to
Definition 5.1.

The notion of a family also applies to trapdoor functions, one-way permu-
tations, and trapdoor permutations. For example, a family of one-way functions
{fi : Xi → Yi}i∈I is a family of one-way permutations, if for every i ∈ I fi is
a permutation overXi (i.e., Yi = Xi), and it is afamily of trapdoor functions, if
everyfi has a trapdoorti. In this book, we sometimes use the terms one-way func-
tions, trapdoor functions, one-way permutations, and trapdoor permutations when
we should use the terms families of such functions and permutations (to be math-
ematically correct). We make this simplification, because we think that it is more
appropriate and sometimes simpler to understand—but we arewell aware of the fact
that we lack formal correctness.

The notion of a one-way function suggests thatx—in its entirety—-cannot be
computed efficiently fromf(x). This does not exclude the case that some parts ofx
can be determined, whereas other parts cannot. In 1982, it was shown by Andrew C.

6 In a more thorough analysis, the probability of successfully inverting the function and finding a
preimage int tries is equal to1− (1 − 1/2n)t. If t = 2n, then this value is very close to 1. After
2n tries, it is therefore almost certain that a preimage is found.

7 In some literature, the terms “classes,” “collections,” or “ensembles” are used instead of “families.”
These terms refer to the same idea.
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Yao8 that every one-way functionf must have at least onehard-core predicate; that
is, a predicate9 that can be computed efficiently fromx but not fromf(x) [1]. The
respective notion of a hard-core predicate is rendered moreprecise in Definition 5.4
and is illustrated in Figure 5.1.

Definition 5.4 (Hard-core predicate) Let f : X → Y be a one-way function. A
hard-core predicateof f is a predicateB : X → {0, 1} that fulfills the following
two conditions:

• B(x) can be computed efficiently for allx ∈ X ; that is, there is a PPT
algorithmA that can outputB(x) for all x ∈ X .

• B(x) cannot be computed efficiently fromy = f(x) ∈ Y for x ∈R X ; that is,
there is no known PPT algorithmA that can outputB(x) from y = f(x) for
x ∈R X .

The point is that PPT algorithmA can computeB(x) from x but not from
y = f(x). Again, there are multiple possibilities to formally express this idea; they
are all equivalent and not repeated here.

After Yao had introduced the notion of a hard-core predicate, Manuel Blum10

and Silvio Micali11 used it to design and come up with a PRG that is—as they called
it—cryptographically secure [2]. The notion of a cryptographically secure PRG is
further addressed in Section 7.3. In short, such a PRG applies a one-way function and
extracts a hard-core predicate from the result in each step.This is not very efficient,
but it allows one to mathematically argue about the cryptographic strength of such a
PRG.

5.2 CANDIDATE ONE-WAY FUNCTIONS

As mentioned in Section 2.1.3, there are only a few functionsconjectured to be
one way, and almost all practically relevant functions are centered around modular
exponentiation: The discrete exponentiation functionf(x) = gx (mod m), the

8 In 2000, Andrew Chi-Chih Yao received the Turing Award in recognition of his contributions to
the theory of computation, pseudorandom number generation, cryptography, and communication
complexity.

9 A predicateis a function whose output is a single bit.
10 In 1995, Manuel Blum received the Turing Award for his contributions to the foundations of

computational complexity theory and its application to cryptography and program checking.
11 In 2012, Silvio Micali, along with Shafi Goldwasser, received the ACM Turing Award for his

transformative work that laid the complexity-theoretic foundations for the science of cryptography,
and in the process pioneered new methods for efficient verification of mathematical proofs in
complexity theory.
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Figure 5.1 A hard-core predicate of a one-way functionf .

RSA functionf(x) = xe (mod m), and the modular square functionf(x) =
x2 (mod m) for some properly chosen modulim. These functions are at the
core of public key cryptography as it stands today (Part III of the book). Unless
somebody is able to build a sufficiently large quantum computer, they cannot be
inverted efficiently, meaning that the best known algorithms to invert them on
currently available hardware are superpolynomial (i.e., they have an exponential or
subexponential time complexity). These algorithms are briefly addressed in Sections
5.3 and 5.4.

In the following subsections, we use the discrete exponentiation, RSA, and
modular square functions to construct three families of one-way functions:Exp,
RSA, andSquare. Note that we use boldface characters to refer to a function family,
whereas we use normal characters to refer to distinct functions within these families.
It is known that the most significant bit (MSB) yields a hard-core predicate forExp,
RSA, andSquare, whereas the least significant bit (LSB) yields another hard-core
predicate forRSA andSquare[3, 4].
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5.2.1 Discrete Exponentiation Function

In the real numbersR, the exponentiation function maps arbitrary elementsx ∈ R
to other elementsy = exp(x) = ex ∈ R, whereas the logarithm function does the
opposite; that is, it mapsx to ln(x). This is true for the basee, but it is equally true
for any other basea ∈ R. Formally, the two functions can be expressed as follows:

Exp : R −→ R Log : R −→ R

x 7−→ ax x 7−→ loga x

In R, both the exponentiation function and the logarithm function are continuous
and can be computed efficiently, using approximation procedures. However, in a
discrete algebraic structure, it is usually not possible touse the notion of continuity
or to approximate a solution. In fact, there are cyclic groups (that need to be discrete
and finite) in which the exponentiation function—that is called thediscrete expo-
nentiation function—can be computed efficiently (using, for example, the square-
and-multiply algorithm outlined in Algorithm A.3), but theinverse function—that is
called thediscrete logarithm function—cannot be computed efficiently (i.e., no effi-
cient algorithm is known to exist and all known algorithms have a superpolynomial
time complexity). If we write such a groupG multiplicatively, then we refer to the
multiplication as the group operation. Also, we know from discrete mathematics that
such a group has many elements that may serve as a generator (or primitive root),
and we fix a particular one. Using such a groupG with generatorg, we can express
the discrete exponentiation and logarithm functions as follows:

Exp : N −→ G Log : G −→ N

x 7−→ gx x 7−→ logg x

The discrete exponentiation function Exp maps a positive12 integerx to the element
gx of G by multiplying the generatorg x times to itself. The discrete logarithm
function Log does the opposite: It maps an elementx ofG to the number of timesg
must be multiplied to itself to yieldx. In either case, the finite set{1, . . . , |G|} can
be used instead ofN.

Depending on the nature ofG, no efficient algorithm may be known to exist to
compute Log. The most prominent example of a group that is widely used in practice
is a properly crafted subgroup of〈Z∗p, ·〉; that is, the set of all integers between 1 and
p − 1 (wherep is prime) together with the multiplication operation. We sometimes

12 Note that the restriction to positive integers only is notmandatory, and that Exp can also be defined
for negative integers. However, it simplifies things considerably if one only considers positive
integers here.
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useZ∗p to refer to this group. Because the order ofZ∗p is p − 1 and this number
is even,Z∗p has at least two nontrivial subgroups; that is, one of order 2and one of
orderq = (p−1)/2. If q is a composite number, then the second subgroup may have
further subgroups. We are mainly interested in the other case, whereq is prime. In
this case,q is called aSophie Germain primeandp is calledsafe(Section A.2.4.4).
Theq-order subgroup ofZ∗p is the one we use asG. It is isomorphic toZq (Definition
A.20), and it is generated by an elementg of orderq that is called agenerator. If we
iteratively apply the multiplication operation tog, all q elements ofG are generated
sooner or later. Needless to say there are groups in which thealgorithms to compute
discrete logarithms are less efficient than in this group, such as groups of points on
elliptic curves (Section 5.5).

The discrete exponentiation function is well understood inmathematics, and
there are many properties that can be exploited in interesting ways. One such
property is that it yields a group isomorphism (Section A.1.3) from the additive
group〈Zp−1,+〉 to the multiplicative group〈Z∗p, ·〉. This means that

Exp(x+ y) = Exp(x) · Exp(y)

and this, in turn, implies the fundamental exponent lawgx+y = gxgy.
Earlier in this chapter, we argued that we have to consider families of one-

way functions to use complexity-theoretic arguments. In the case of the discrete
exponentiation function inZ∗p, p andg may define an index setI as follows:

I := {(p, g) | p ∈ P∗; g generatesG ⊂ Z∗p with |G| = q = (p− 1)/2}

In this notation,P∗ refers to the set of all safe primes (Section A.2.4), andG denotes
a q-element sugroup ofZ∗p. Using I, one can define theExp family of discrete
exponentiation functions

Exp := {Exp : N −→ G, x 7−→ gx}(p,g)∈I

and theLog family of discrete logarithm functions

Log := {Log : G −→ N, x 7−→ logg x}(p,g)∈I

If one wants to useExp as a family of one-way functions, then one has to make
sure that discrete logarithms cannot be computed efficiently in the group that is
considered. This is where thediscrete logarithm assumption(DLA) comes into
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play. It suggests that a PPT algorithmA that is to compute a discrete logarithm
can succeed only with a probability that is negligible.13

There are several problems phrased around the DLA and the conjectured one-
way property of the discrete exponential function: Thediscrete logarithm problem
(DLP), the (computational)Diffie-Hellman problem(DHP), and thedecisional
Diffie-Hellman problem(DDHP) that are rendered more precise in Definitions 5.5
to 5.7. In these definitions, the problems are specified in an abstract notation using
a cyclic groupG and a generatorg, whereas the numerical examples are given in
a specific group, namelyZ∗7 = {1, 2, 3, 4, 5, 6} with generatorg = 5.14 We don’t
care about the Pohlig-Hellman algorithm here, and hence we don’t use a prime-order
subgroup ofZ∗7.

Definition 5.5 (DLP) Let G be a cyclic group with generatorg. The DLP is to
determinex ∈ N fromG, g, andgx ∈ G.

In our numerical example withZ∗7 andg = 5, the DLP forgx = 4 yields
x = 2, becausegx = 52 (mod 7) = 4. Here, the group is so small that all possible
values ofx can be tried out. It goes without saying that this does not work for
large groups (i.e., groups with many elements). Also, the cyclic nature ofG makes
it impossible to find an efficient algorithm to solve the DLP byapproximation.
The situation is fundamentally different from the continuous case of using the
exponentiation and logarithm functions inR.

Definition 5.6 (DHP) LetG be a cyclic group,g a generator ofG, andx andy two
positive integers that are smaller than the order ofG; that is, 0 < x, y < |G|. The
DHP is to determinegxy fromG, g, gx, andgy.

In our example,x = 3 and y = 6 yield gx = 53 (mod 7) = 6 and gy =
56 (mod 7) = 1. Here, the DHP is to determinegxy = 518 (mod 7) = 1 from
gx = 6 andgy = 1. As its name suggests, the DHP is at the core of the Diffie-
Hellman key exchange protocol that is addressed in Section 12.3.

13 It is important to note that computing a discrete logarithm may be possible and efficient for some
input values. For example, we see in Section 5.4.1.3 that there is an efficient algorithm due to
Stephen Pohlig and Martin Hellman [5] that can be used to compute discrete logarithms inZ∗

p

if p − 1 has only small prime factors (Section 5.4.1). To avoid this situation, one requires that
|Z∗

p| = p − 1 is only divided by 2 and a primeq. This, in turn, means thatZ∗
p has aq-element

subgroup, and all computations are done in this group. This defeats the Pohlig-Hellman algorithm
to efficiently compute discrete logarithms.

14 Note that the element 5 is a generator, as it generates all 6elements ofZ∗
7 : 50 = 1 ≡

1 (mod 7) → 1, 51 = 5 ≡ 5 (mod 7) → 5, 52 = 25 ≡ 4 (mod 7) → 4, 53 = 125 ≡
6 (mod 7) → 6, 54 = 625 ≡ 2 (mod 7) → 2, and55 = 3125 ≡ 3 (mod 7) → 3. The
resulting elements 1, 5, 4, 6, 2, and 3 (that are underlined) form the entire group. Another generator
would beg = 4. In general, there areφ(φ(p)) generators inZ∗

p. In this example,p = 7 and hence
there areφ(φ(p)) = φ(6) = generators, namely 4 and 5.
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Definition 5.7 (DDHP) LetG be a cyclic group,g a generator ofG, andx, y, andz
three positive integers that are smaller than the order ofG; that is,0 < x, y, z < |G|.
The DDHP is to decide whethergxy or gz solves the DHP forgx andgy, if one is
givenG, g, gx, gy, gxy, andgz.

In our example,x = 3, y = 6, and z = 2 yield gx = 53 (mod 7) = 6,
gy = 56 (mod 7) = 1, andgz = 52 (mod 7) = 4. In this case, the DDHP is
to determine whethergxy = 1 (see above) orgz = 4 solves the DHP forgx = 6 and
gy = 1. Referring to the previous example, the correct solution here is 1.

Figure 5.2 The DLP, DHP, and DDHP.

All DLA-based problems, i.e., the DLP, DHP, and DDHP, are illustrated
in Figure 5.2. An interesting question is how they relate to each other. This is
typically done by giving complexity-theoretic reductionsfrom one problem to
another (Definition D.4). In fact, it can be shown that DHP≤P DLP (i.e., the DHP
polytime reduces to the DLP), and that DDHP≤P DHP (i.e., the DDHP polytime
reduces to the DHP) in a finite group. We can therefore give an ordering with regard
to the computational complexities of the three DLA-relatedproblems:

DDHP≤P DHP≤P DLP

This basically means that the DLP is the hardest problem, andthat one can trivially
solve the DHP and the DDHP if one is able to solve the DLP. In many groups, the
DLP and the DHP are known to be computationally equivalent [6, 7], but this needs
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to be the case in all groups. If one has a group in which the DHP is as hard as
the DLP, then one can safely build a cryptosystem on top of theDHP. Otherwise,
one better relies on cryptosystems that are based on the DLP.As a side remark we
note that if one found a group in which the DHP is easy but the DLP is hard, then
one would also have a good starting point to build a fully homomorphic encryption
system (Section 13.5). This would be good news and could possibly enable many
interesting applications.

Interestingly, there are also groups in which the DDHP can besolved in
polynomial time, whereas the fastest known algorithm to solve the DHP still requires
subexponential time. This means that in such a group, the DDHP is in fact simpler
to solve than the DHP, and such groups are sometimes calledgap Diffie-Hellman
groups, or GDH groupsfor short. Such groups are used, for example, in the BLS
DSS briefly mentioned in Section 14.2.7.4.

In either case, it is important to better understand the DLP and to know the
algorithms (together with their computational complexities) that can be used to
solve it and compute discrete logarithms accordingly. Someof these algorithms are
overviewed in Section 5.4.

5.2.2 RSA Function

The RSA function refers to the second type of modular exponentiation mentioned
in Section 2.1.3, namelyf(x) = xe (mod m), wherem represents a composite
integer usually written asn. More specifically,n is the product of two distinct primes
p andq; that is,n = pq, ande is relatively prime toφ(n), whereφ(n) refers to
Euler’s totient function (Section A.2.6). Usingn and e, the RSA functioncan be
defined as follows:

RSAn,e : Zn −→ Zn

x 7−→ xe

The function operates onZn and basically computes the e-th power ofx ∈ Zn.
Sincee is relatively prime toφ(n), the function is bijective for allx that are invertible
modulon; that is,gcd(x, n) = 1. But, in this context, it can be shown that the
function is also bijective ifgcd(x, n) = p orgcd(x, n) = q. This means thatRSAn,e

yields a permutation on the elements ofZn, and that it has an inverse function that
computes e-th roots. To be able to compute the inverse function, one must know
the multiplicative inverse elementd of e moduloφ(n). The same RSA function
parametrized withn andd (i.e.,RSAn,d), can then be used to compute the inverse



82 Cryptography 101: From Theory to Practice

of RSAn,e as follows:

RSAn,d : Zn −→ Zn

x 7−→ xd

Both xe andxd can be written modulon, and in either case it is clear that the
result yields an element ofZn. RSAn,e can be efficiently computed using modular
exponentiation. In order to computeRSAn,d, however, one must know eitherd, one
prime factor ofn (i.e.,p or q), orφ(n). Any of these values yields a trapdoor to the
one-wayness ofRSAn,e. As of this writing, no polynomial-time algorithm is known
to compute any of these values fromn ande (unless one has a sufficiently large
quantum computer at hand).

If we want to turn the RSA function into a family of one-way functions, then
we must define an index setI. This can be done as follows:

I := {(n, e) | n = pq; p, q ∈ P; p 6= q; 1 < e < φ(n); (e, φ(n)) = 1}

It means thatp andq are distinct primes,n is their product, and1 < e < φ(n) is
randomly chosen and coprime toφ(n). UsingI, the family of RSA functions can be
defined as follows:

RSA := {RSAn,e : Zn −→ Zn, x 7−→ xe}(n,e)∈I

This family of RSA functions is called theRSA family. Becausee andd are somehow
symmetric in the sense that they are multiplicative inverseto each other modulo
φ(n), the family comprisesRSAn,e andRSAn,d. Also, because each RSA function
RSAn,e has trapdoors (as mentioned above) and yields a permutationoverZn, the
RSA family actually represents a family of trapdoor permutations. This suggests that
RSAn,e is hard to invert (for sufficiently largen and without knowing a trapdoor).
This fact has not be proven so far, meaning that it is only assumed thatRSAn,e is
hard to invert. In fact, theRSA assumptionsuggests that any PPT algorithm can invert
RSAn,e with a success probability that is negligible. There is a slightly stronger
version of the RSA assumption known as thestrong RSA assumption. It differs from
the RSA assumption in that the success probability for the PPT algorithm remains
negligible even if it can select the value ofe.

An obvious way to invertRSAn,e is to determine a trapdoor, most notably
the prime factorization ofn. This means that theinteger factoring problem(IFP)
captured in Definition 5.8 needs to be solved.

Definition 5.8 (IFP) Let n ∈ N be positive integer. The IFP is to determine the
distinct valuesp1, . . . , pk ∈ P ande1, . . . , ek ∈ N with n = pe11 · · · pekk .
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The IFP is well defined, because every positive integer can befactored
uniquely up to a permutation of its prime factors (Theorem A.7). Note that the
IFP need not always be intractable, but that there are instances of the IFP that are
assumed to be so. In fact, theinteger factoring assumption(IFA) suggests that any
PPT algorithm that is to factorizen succeeds with only a negligible probability.
Again, this is just an assumption for which we don’t know whether it really holds.
To better understand the IFP and the plausibility of the IFA,we have a look at the
currently available integer factorization algorithms in Section 5.3.

Under the IFA and RSA assumption, theRSA problem(RSAP) captured in
Definition 5.9 is computationally intractable.

Definition 5.9 (RSAP) Let (n, e) be a public key withn = pq andc ≡ me (mod
n) a ciphertext. The RSAP is to determinem; that is, computing theeth root of c
modulon, if d, the factorization ofn, i.e.,p andq, andφ(n) are unknown.

It is obvious that RSAP≤P IFP (i.e., the RSAP polytime reduces to the IFP).
This means that one can invert the RSA function if one can solve the IFP. The
converse, however, is not known to be true, meaning that it isnot known whether
a simpler way exists to invert the RSA function than to solve the IFP.

According to the strong RSA assumption, the value ofe may also be consid-
ered as a parameter. In this case, the resulting problem is called theflexible RSAP:
For any givenn andc, find values fore andm such thatc ≡ me (mod n). Obvi-
ously, the flexible RSAP is not harder to solve than the RSAP, meaning that one can
solve the flexible RSAP if one can solve the RSAP (simply fix an arbitrary value for
e and solve the respective RSAP).

The RSAP is at the core of many public key cryptosystems, including, for
example, the RSA public key cryptosystem used for asymmetric encryption (Section
13.3.1) and digital signatures (Section 14.2.1).

5.2.3 Modular Square Function

If we start with the “normal” RSA function inZ∗n (wheren is a composite integer
and the product of two primes), but we replacee that needs to be relatively prime
to φ(n) with the fixed value 2,15 then the resulting function represents themodular
square function. It is defined as follows:

Squaren : Z∗n −→ QRn

x 7−→ x2

15 Note thate = 2 is not a valid value for the “normal” RSA function because 2 cannot be relatively
prime toφ(n). This value is equal top − 1 timesq − 1 that are both even, soφ(n) is also even.
This, in turn, means that 2 andφ(n) have 2 as a common divisor and hence cannot be coprime.
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Note that 2 is not relatively prime toφ(n), and henceSquaren is not bijective and
does not yield a permutation overZ∗n. In fact, the range of the modular square
function isQRn; that is, the set of quadratic residues or squares modulon (Section
A.3.7), and this is a proper subgroup ofZ∗n; that is,QRn ⊂ Z∗n. This means that
there are valuesx1, x2, . . . in Z∗n that are mapped to the same valuex2 in QRn,16

and henceSquaren is not injective and the inversemodular square root function

Sqrtn : QRn −→ Z∗n
x 7−→ x1/2

is not defined (since it is not injective). To properly define it, one has to make sure
thatSquaren is injective and surjective, and hence bijective. This can be achieved
by restricting its range toQRn, wheren is a Blum integer (Definition A.32); that is,
n is the product of two primesp andq that are both equivalent to 3 modulo 4; that
is, p ≡ q ≡ 3 (mod 4).17 In this case, the modular square function is bijective and
yields a permutation overQRn, and hence the modular square root function always
has a solution. In fact, everyx ∈ QRn has four square roots modulon, of which
one is again an element ofQRn. This unique square root ofx is called theprincipal
square rootof x modulon.

To turn the modular square function into a family of trapdoorfunctions, one
can define an index setI as follows:

I := {n | n = pq; p, q ∈ P; p 6= q; |p| = |q|; p, q ≡ 3 (mod4)}

UsingI, one can define the family of modular square functions as follows:

Square := {Squaren : QRn −→ QRn, x 7−→ x2}n∈I

This family is called theSquare family, and the family of inverse functions is defined
as follows:

Sqrt := {Sqrtn : QRn −→ QRn, x 7−→ x1/2}n∈I

This family is called theSqrt family. The Square family is used by some public
key cryptosystems, including the Rabin public key cryptosystem (Section 13.3.2). In
the case of the “normal” RSA function, we said that the problems of computing e-th

16 To be precise, there are always two valuesx1 andx2 that are mapped to an element inQRn.
17 Note that it is not sufficient to restrict the range toQRn. If, for example,n = 15 (that is the product

of two primes but is not a Blum integer), thenQRn = {1, 4}, but the list of squares ofQRn only
comprises 1 (note taht42 (mod 15) = 1). In contrast, ifn = 21 (that is a Blum integer), then
QRn = {1, 4, 16} and the list of squares is the same set.
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roots inZn and factoringn are not known to be computationally equivalent. This is
different here: Modular squares can always be computed efficiently, but modular
square roots (if they exist) can be computed efficiently if and only if the prime
factorization ofn is known. This means that the problems of computing square roots
in QRn and factoringn are computationally equivalent. This fact distinguishes the
security properties of the Rabin public key cryptosystem from those of RSA. But it
also has some practical disadvantages that makes it less attractive to be used in the
field.

For everyn ∈ I, the prime factorsp andq or φ(n) yield trapdoors. Conse-
quently, if one can solve the IFP, then one can also invert themodular square function
for n and break the respective public key cryptosystem. We look atthe algorithms to
solve the IFP next, and we therefore use theL-notationintroduced in Section D.4. It
allows us to specify where the time complexity of an algorithm really is in the range
between a fully polynomial-time algorithm and a fully exponential-time algorithm.
It really helps to get yourself familiar with the L-notationbefore delving into the
details of the next two sections.

5.3 INTEGER FACTORIZATION ALGORITHMS

The IFP has attracted many mathematicians in the past, and there are several integer
factorization algorithms to choose from. Some of these algorithms are special-
purpose, whereas others are general-purpose.

• Special-purpose algorithmsdepend upon and take advantage of special prop-
erties of the composite integern that needs to be factorized, such as its size,
the size of its smallest prime factorp, or the prime factorization ofp − 1.
Hence, these algorithms can only be used if certain conditions are fulfilled.

• In contrast,general-purpose algorithmsdepend upon nothing and work
equally well for alln.

In practice, algorithms of both categories are usually combined and used one
after another. If one is given an integern with no further information, then one
first tests its primality before one applies integer factorization algorithms. In doing
so, one employs special-purpose algorithms that are optimized to find small prime
factors first before one turns to the less efficient general-purpose ones. Hence, the
invocation of the various algorithms during the factorization of n gives room for
optimization—in addition to the optimization of the algorithms themselves.

Let us overview and briefly discuss the most important (special-purpose and
general-purpose) algorithms next. We useb to refer to the bit length ofn; that is,
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b = log2(n) = ln(n)/ln(2) = ln(n)/0.693 . . . ≈ ln(n). For the sake of simplicity,
we ignore the constant factorln(2) ≈ 0.693 . . . in the denominator of the fraction,
and we approximate the bit length ofn with the natural logarithm here.

5.3.1 Special-Purpose Algorithms

We start with trial division before we briefly touch on more sophisticated algorithms,
such asP ± 1 and elliptic curve method (ECM), and Pollard Rho.

5.3.1.1 Trial Division

If n is a composite integer, then it must have at least one prime factor that is less
or equal to

√
n. Consequently, one can factorizen by trying to divide it by all

prime numbers up to⌊√n⌋. This simple and straightforward algorithm is called
trial division. If, for example,n is a 1024-bit integer, then it requires

√
21024 =

(21024)1/2 = 21024/2 = 2512 divisions in the worst case. The algorithm thus has a
time complexity ofO(

√
n), and this value grows exponentially with the bit lengthb:

O(
√
n) = O(eln

√
n) = O(eln(n

1/2)) = O(e
1
2 ln(n)) = O(e

b
2 )

Exponential time complexity is beyond what is feasible today, and hence the trial
division algorithm can only be used for the factorization ofintegers that are suffi-
ciently small (e.g., smaller than1012) or smooth (Appendix A.2.5). This turns trial
division into a special-purpose algorithm. In contrast to the time complexity, the
space complexity of the algorithm is negligible (because there are no intermediate
results that need to be stored and processed).

5.3.1.2 P ± 1 and ECM

In the early 1970s John M. Pollard18 developed and proposed a special-purpose
integer factorization algorithm known asp− 1 [8]. The algorithm got its name from
the fact that it can be used to factorize an integern and find a prime factorp, if and
only if p−1 isB-smooth (Definition A.27). If, for example,p = 13, thenp−1 = 12
is 3-smooth and 3 is the respective smoothness bound (because12 = 3·22, and hence
all prime factors are less or equal than 3). Generally speaking, if p = qk1

1 . . . qkr
r for

q1, . . . , qr ∈ P andk1, . . . , kr ∈ Z, thenp − 1 is B-smooth, if allqi ≤ B for
i = 1, . . . , r (andB-powersmooth, if allqki

i ≤ B).
When one wants to apply Pollard’sp − 1 integer factorization algorithm,

one typically neither knows the prime factors ofp − 1 (i.e., q1, . . . , qr), nor the

18 John Michael Pollard is a British mathematician who was born in 1941.



One-Way Functions 87

smoothness boundB. Instead, one has to start with a value forB that looks
reasonable, such asB = 128. If one later finds out that it doesn’t work with this
value, then one may multiplyB with s = 2, 3, . . . and work with the respective
valuesB = 128 · s. Since one also doesn’t know theqi (andqki

i ) for i = 1, . . . , r,
one computes the auxiliary value

M =
∏

q∈P;qα≤B
qα

as the product of all primesq ∈ P that are smaller or equal thanB with some
exponentα. This value depends onq andB, and could therefore also be written
as α(q, B). It refers to the largest integer such thatqα ≤ B; that is, α =
⌊log(B)/log(q)⌋.

According to the assumption thatp − 1 is B-smooth and the wayM is
generated (as the product of all primes less or equal thanB), p− 1 dividesM (i.e.,
p − 1|M ), and this means—according to Fermat’s little theorem (Theorem A.9)—
that for alla ∈ Z with gcd(a, n) = 1

aM ≡ ak(p−1) ≡ 1 (mod p)

must hold for somek ∈ N, and hencep dividesaM − 1:

p|aM − 1

Becausep also dividesn, we may computegcd(aM − 1, n). The result may be
trivial (i.e., 1 orn), but it may also refer to a nontrivial divisorp. Otherwise,B can
be multiplied with the next-biggers or an entirely new value forB can be used. In
either case, the algorithm can be repeated until a valid prime factor1 < p < n is
found.

Algorithm 5.1 Pollard’sp− 1 integer factorization algorithm.

(n)

repeat
selectB anda
M =

∏

q∈P;qα≤B qα

p = gcd(aM − 1, n)
if p = 1 or p = n then restart the algorithm or exit

until 1 < p < n

(p)
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The resultingp−1 integer factorization algorithm is summarized in Algorithm
5.1. It takes as inputn, and it tries to output a prime factorp of n. The algorithm is
probabilistic in the sense that it selects a smoothness boundB and a small integer
a > 1, such asa = 2. In the general case,a is likely to be coprime withn (otherwise
gcd(a, n) already reveals a prime factor ofn). It then computesM as described
above, and determines the greatest common divisor ofaM − 1 andn.19 If the result
is 1 orn, then only a trivial factor is found, and the algorithm can berepeated (with
another value forB20). If the result is different from 1 orn, then a prime factorp is
found and the algorithm terminates.

If, for example, we want to factorizen = 299, then we may fixa = 2 and start
with B = 3. In this case,M = 2 · 3 = 6 andgcd(aM − 1, n) = gcd(26− 1, 299) =
gcd(63, 299) = 1. This divisor is trivial, and hence the algorithm must be repeated
with a larger value forB. If B = 4, thenM = 22 · 3 = 12 andgcd(aM − 1, n) =
gcd(212 − 1, 299) = gcd(212 mod 299 − 1, 299) = gcd(208, 299) = 13. This
value is nontrivial (i.e.,1 < 13 < 299), and hence it is a divisor that yields the
output of the algorithm. If we chose a larger value forB, such asB = 10, then
M = 23 · 32 · 5 · 7 = 2520 andgcd(22520 mod 299− 1, 299) = 13 would yields the
same divisor of 299.

Note again that one knows neither the prime factorization ofp−1 norB before
the algorithm begins. So one has to start with an initially chosenB and perhaps
increase the value during the execution of the algorithm. Consequently, the algorithm
is practical only ifB is sufficiently small. For the typical size of prime numbers
in use today, the probability that the algorithm succeeds israther small. But the
existence of the algorithm is still the main reason why some cryptographic standards
require that RSA moduli are the product of strong primes (Section A.2.4.4).21

After the publication of Pollard’sp − 1 algorithm, several researchers came
up with modifications and improvements. For example, in the early 1980s, Hugh
C. Williams22 proposed thep + 1 algorithm [9] that is similar to Pollard’sp − 1
algorithm, but requiresp + 1 to be smooth (instead ofp − 1). The resulting
algorithm is mathematically more involved than Pollard’sp− 1 algorithm, as it uses
Lucas sequences to perform exponentiation in a quadratic field. This is not further
addressed here.

In the late 1980s, Hendrik W. Lenstra23 proposed yet another modification of
Pollard’sp− 1 algorithm that is even more efficient [10]. Due to the fact that it uses

19 To compute this value, it is not necessary to compute the huge integeraM . Instead, the algorithm
can computeaM mod n, an integer that is smaller thann.

20 More precisely, ifgcd(aM − 1, n) = 1, thenB is too small, and ifgcd(aM − 1, n) = n, thenB
is too big.

21 A primep is strong ifp− 1 has at least one large prime factor.
22 Hugh Cowie Williams is a Canadian mathematician who was born in 1943.
23 Hendrik Willem Lenstra is a Dutch mathematician who was born in 1949.
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elliptic curves overGF (p), it is called ECM. It is still a special-purpose algorithm
with a subexponential time complexity ofLp[1/2,

√
p], wherep refers to the smallest

prime factor ofn. In a typical setting, all prime factors ofn are equally large, and
hencep is roughly of size

√
n. In this case,p is sufficiently large so that the ECM

cannot be considered a threat against the standard RSA public key cryptosystem
that uses two primes. However, it must still be taken into account, especially when
one implements multiprime RSA, wheren may have more than two prime factors.
This is nonstandard but sometimes still used in the field. Forexample, the tenth and
eleventh Fermat numbers,F10 = 22

10

+1 andF11 = 22
11

+1, were factorized with
the ECM in 1995 and 1988, respectively. Due to the fact thatF10 andF11 consist of
4 and 5 prime factors, these results went largely unnoticed in public (in contrast to
F8 andF9 mentioned below).

5.3.1.3 Pollard Rho

In 1975 (and hence only one year after the release of hisp−1 algorithm), Pollard pro-
posed another probabilistic integer factorization algorithm that has become known as
Pollard Rho(or Pollardρ) [11]. Again, it is well suited to factorize integers that have
a small prime factor (i.e.,n = pk1

1 . . . pkr
r for p1, . . . , pr ∈ P, k1, . . . , kr ∈ Z, and

at least one of the prime factorsp1, . . . , pr is small). A slightly modified version of
this algorithm was used, for example, to factorize the 78-digit eighth Fermat number
F8 = 22

8

+1 in 1980, as this number unexpectedly turned out to have a small prime
factor.

At its core, the Pollard Rho algorithm uses a simple functionf and a starting
valuex0 to recursively compute a sequence(xi)i≥0 of pseudorandom values accord-
ing to xi = f(xi−1) for i = 1, 2, . . . Typically, a quadratic congruential generator
(QCG) is used to serve asf , meaning that the recursive formula becomes

xi+1 = (x2i + a) mod n (5.1)

for somea, n ∈ Z anda < n.24 This generates a sequence of valuesx0, x1, x2, . . .
that eventually falls into a cycle, meaning that thex-values start repeating them-
selves (this needs to be the case because there onlyn values between 0 andn− 1).
The expected time until this happens and the expected lengthof the cycle are both
proportional to

√
n.

If, for example, we start withx0 = 2 and subject this starting value to
xi+1 = (x2i +1) mod 209 (meaning thatn = 209 anda = 1), then the sequence that

24 Note that a linear congruential generator (LCG) as introduced in Chapter 7 could also be used here
(instead of a QCG). Compared to a QCG, however, a LCG generates sequences of numbers with
pseudorandomness properties that are not as good as those generated with a QCG.
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is generated starts with the valuex1 = 5 before it falls into a cycle withx2 = 26,
x3 = 49, x4 = 102, andx5 = 163. The next value to be generated (i.e.,x6) is equal
tox2, and hence the length of the cycle is6− 2 = 4. The name rho (ρ) is taken from
the fact that there is a starting sequence (also known astail) that finally leads to a
cycle. This can be well visualized with the Greek letter rho.

To find a cycle, one can proceed naı̈vely as just described (and store all
intermediate values), or one can use a cycle detection method created by Robert
Floyd that has small memory requirements. The idea is to check for eachk =
1, 2, . . . whetherxk equalsx2k. Technically, this means that one uses two variables
x andy (with the same starting valuex0) and has one of them proceed twice as
fast; that is,xi+1 = f(xi) andyi+1 = f(f(yi)) for i > 0. This means that each
possible cycle length is tried out. If the value is correct, then the respectivex and
y values are equal. In our example, we start withk = 1 and computex1 = 5 and
y1 = x2 = 26. For k = 2, we havex2 = 26 and computey2 = x4 = 102. For
k = 3, we havex3 = 49 andy3 = x6 = 26. Finally, fork = 4, we havex4 = 102
andy4 = x8 = 102. This means thatx4 andx8 are equal and that all intermediate
values are part of a cycle with length four. This confirms the previous result in a way
that doesn’t require to store intermediate values.

The Pollard Rho integer factorization algorithm uses Floyd’s cycle-finding
method to probabilistically factorizen. Let us assume that we have found a cycle
and hence two valuesx andy for whichx ≡ y (mod p) but x 6≡ y (mod n). The
first equivalence suggests thatp dividesx − y; that is,p | (x − y), whereas the
second equivalence suggests thatn doesn’t dividex − y; that is,n ∤ (x − y). In
combination, the result is that a prime factorp for n may be derived from such a
pair (x, y) by computing the greatest common divisor from|x − y| andn; that is,
p = gcd(|x − y|, n). If p = n, then the algorithm fails and must be restarted from
scratch. The resulting algorithm is summarized in Algorithm 5.2.25 There is even an
improved version created by Richard P. Brent [12] that is notaddressed here.

Let us consider a simple example withn = 8051 and f(x) = x2 +
1 (mod 8051). After having initializedx = y = 2 andp = 1, the algorithm enters
the while-loop. In the first iteration, the new value forx is 22 + 1 = 5 (the modulus
n = 8051 does not matter here), and the new value fory—after having applied
f twice—is 52 + 1 = 26. The algorithm thus computesgcd(|5 − 26|, 8051) =
gcd(21, 8051) = 1, and this yields the trivial prime factor 1. This means that the
algorithm remains in the while-loop. In the second iteration, the new value forx is
againf(5) = 26, and the new value fory is f(f(26)) = f(262 + 1) = f(677) =
6772+1 = 458, 330 ≡ 7474 ( mod 8051). So after the second iteration,x = 26 and
y = 7474. This time,gcd(|26 − 7474|, 8051) = gcd(7448, 8051) = 1, and hence

25 Note that the algorithm can be optimized in a way that the gcd is not computed in each step of the
loop.
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Algorithm 5.2 Pollard Rho integer factorization algorithm.

(n)

x = 2
y = 2
p = 1
while p = 1

x = f(x)
y = f(f(y))
p = gcd(|x− y|, n)

if p = n then exit and return failure

(p)

the while-loop must be iterated again. In the third iteration,x is set tof(26) = 677,
and y is set tof(f(7474)). f(7474) = 55, 860, 677 ≡ 2839 (mod 8051) and
f(2839) = 28392 + 1 = 8, 059, 922 ≡ 871 (mod 8051), meaning thatf(f(7474))
is equal to871. After the third iteration, one hasx = 677 andy = 871, and hence
gcd(|677−871|, 8051) = gcd(194, 8051) = 97. This terminates the while-loop, and
because97 6= 8051, 97 is indeed a nontrivial prime factor of8051. It is simple to
find the other prime factor by computing8051/97 = 83. Note that another function
f may have found 83 first, and that there is nothing special about 97 or 83. If p
were equal ton in the end, then the algorithm would fail and need to be started from
scratch (using another functionf ).

Obviously, the efficiency of the algorithm depends on how fast an(x, y)-pair
with 1 < gcd(|x − y|, n) < n is found. Due to the birthday paradox (Section 6.1),
such a pair is found after approximately1.2

√
p numbers have been chosen and tried

out. This means that the algorithm has a time complexity ofO(
√
p), wherep is the

smallest prime factor ofn. As p is at most
√
n, this means that the time complexity

of the Pollard Rho integer factorization algorithm is

O(

√√
n) = O( 4

√
n) = O(n1/4) = O(eln(n

1/4)) = O(e
1
4 ln(n)) = O(e

b
4 )

This complexity is again exponential in the length ofn, and hence the algorithm can
only be used ifp is small compared ton. For the sizes of integers in use today,
the algorithm is still impractical (this also applies to Brent’s improved version).
Contrary to the time complexity, the space complexity of thealgorithm (and most of
its variants) is negligible. Again, this is mainly due to Floyd’s cycle-finding method.
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5.3.2 General-Purpose Algorithms

In contrast to special-purpose algorithms, general-purpose integer factorization al-
gorithms work equally well for all integersn, meaning that there is no special re-
quirement regarding the structure ofn or its prime factors. Most importantly, these
algorithms are used ifn is the product of two equally sized prime factors.

Most general-purpose integer factorization algorithms inuse today exploit an
old idea that is due to Fermat. The idea starts from the fact that every odd integer
n ≥ 3 can be written as the difference of two squares:

n = x2 − y2

for some integersx, y ∈ N, wherey may also be zero. According to the third
binomial formula,x2−y2 is equal to(x+y)(x−y), and this suggests thatp = (x+y)
andq = (x − y) are the two (nontrivial) factors ofn (in fact, it can be shown that
x = (p + q)/2 andy = (p − q)/2). For example, if one wants to factorizen = 91,
then one has to find two integers for which the difference of the squares is equal to
this value. In this example,x = 102 = 100 andy = 32 = 9 satisfy this property,
and hencep = 10+3 = 13 andq = 10− 3 = 7 yield the two (prime) factors of 91.
Note that13 · 7 = 91, as well as10 = (13 + 7)/2 and3 = (13− 7)/2).

Fermat also proposed a simple method to find a valid(x, y)-pair: Start with
x = ⌈√n⌉ and computez = x2 − n. If z is a square, meaning there is ay with
y2 = z, then(x, y) is a valid pair. Otherwise, one incrementsx and repeats the
method for this value. In the end, one hasx andy and can determine the two factors
(x+ y) and(x− y).

If, for example,n = 10033, then one starts withx = ⌈
√
10033⌉ = 101,

computes1012 − 10033 = 10201 − 10033 = 168, and recognizes that 168 is
not a square. Hence, one repeats the method withx = 102: 1022 − 10033 =
10404 − 10033 = 371. This is not a square either, and one repeats the method
with x = 103: 1032 − 10033 = 10609 − 10033 = 576. This is a square (since
576 = 242), and hence(103, 24) is a valid pair and can be used to compute the
(nontrivial) factors103+24 = 127 and103−24 = 79 (note that127 ·79 = 10033).

Fermat’s factorization method is efficient (and hence practical) if x andy are
similarly sized and not too far away from

√
n. Otherwise, the method gets inefficient,

becausex is always incremented by only one. In general, one cannot make the
assumption thatx andy are near, and hence one follows a more general approach.
In fact, one looks for(x, y)-pairs that satisfy

x2 ≡ y2 (mod n)
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and

x 6≡ ±y (mod n)

If such a pair is found, then a nontrivial factor ofn can be found with a success
probability of 1/2 by computinggcd(x − y, n) (with another probability of1/2
a trivial factor1 or n is found). So factorizingn can be reduced to finding such
(x, y)-pairs. There are several algorithms that can be used for this purpose, such as
continued fraction26 and some sieving methods based on [15], such as thequadratic
sieve(QS27) [16] and thenumber field sieve(NFS) [17]. All of these algorithms
have a subexponential time complexity. Continued fraction, for example, has a time
complexity of

O(e
√

2ln(n)ln(ln(n))) = Ln[1/2,
√
2]

For integers under 120 decimal digits or so, the QS is the mostefficient general-
purpose integer factorization algorithm with a time complexity of Ln[1/2, 1]. For
several years it was believed that this complexity is as goodas it can possibly be.
The QS was used, for example, to factorize the 129-digit integer RSA-129 (see
below). To factorize integers beyond 120 digits, however, the NFS is the factorization
algorithm of choice today. There are actually two variants of the NFS: thespecial
number field sieve(SNFS) and thegeneral number field sieve(GNFS). As its name
suggests, the GNFS is still a general-purpose algorithm, whereas the SNFS is a
special-purpose one. It applies to integers of the formn = re− s for smallr and|s|.
Both algorithms have a time complexity ofLn[1/3, c], wherec = 3

√

32/9 ≈ 1.526

for the SNFS andc = 3
√

64/9 ≈ 1.923 for the GNFS. The SNFS was used, for

example, in 1990 to factorize the 155-digit ninth Fermat numberF9 = 22
9

+1 [18].28

While the SNFS is asymptotically the most efficient variant of the NFS, the GNFS
works for all integers and is simpler to implement in a distributed environment. It
is therefore often used in distributed integer factorization projects launched on the
Internet.

Similar to the QS algorithm, the NFS algorithm (and its variants) consists of
two steps, of which one—the so-called relation collection step—can be parallelized
and optimized by the use of special hardware devices. In fact, there have been many

26 This method was first described in the 1930 [13] and later adapted for implementation on computer
systems in the 1970s [14].

27 The QS algorithm was proposed at EUROCRYPT ’84. This fact illustrates the importance of number
theory in general, and integer factorization in particular, for modern cryptography.

28 NoteF9 consists of 3 prime factors, whereas all previous Fermant numbers are either prime
themselves (F1 − F4) or are the product of only 2 prime factors (F5 − F8).
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such devices proposed in the literature. Examples include the The Weizmann Insti-
tute Key-Locating Engine (TWINKLE) [19, 20], The Weizmann Institute Relation
Locator (TWIRL) [21], SHARK [22], and Yet Another Sieving Device (YASD) [23].
The design and implementation of these devices is a topic of its own that is beyond
the scope of this book and therefore not addressed here.

5.3.3 State of the Art

After the publication of the RSA public key cryptosystem (Section 13.3.1), a
challenge was posted in the August 1977 issue ofScientific American[24]. In fact,
an amount of USD 100 was offered to anyone who could decrypt a message that was
encrypted using a 129-digit integer acting as modulus. The number became known
as RSA-129, and it was not factored until 1994 (with a distributed version of the QS
algorithm [25]).

RSA-129 = 1143816257578888676692357799761466120102182967212

4236256256184293570693524573389783059712356395870

5058989075147599290026879543541

= 3490529510847650949147849619903898133417764638493

387843990820577

∗
3276913299326670954996198819083446141317764296799

2942539798288533

Until 2007, RSA Security29 had sponsored a few cryptographic challenges, includ-
ing the RSA Factoring Challenge, to learn more about the actual difficulty of fac-
toring large integers of the type used in the RSA public key cryptosystem. Most
importantly, the following RSA numbers have been factorized so far (among many
others):

• RSA-576 (2003)

• RSA-640 (2005)

• RSA-704 (2012)

29 As its name suggests, RSA Security was a company founded in1986 to market the RSA public
key cryptosystem and some related cryptographic techniques. In 2006, it was acquired by EMC
Corporation, and in 2016, EMC Corporation was acquired by Dell Technologies. More recently, on
September 2, 2020, RSA announced its new status as an independent company (that is independent
from either EMC or Dell).
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• RSA-768 (200930)

The factorization of RSA-576 and RSA-640 was awarded with a cash prize of USD
10,000 and USD 20,000. All subsequent RSA challenge numberswere factorized
after the challenge became inactive (i.e., after the acquisition of RSA Security), so
that the originally promised cash prize was not paid out. Butpeople still continue
with the challenge, and the latest achievements include RSA-240 referring to a 795-
bit number (December 2019) and RSA-250 referring to a 829-bit number (February
2020). Furthermore, the next big RSA challenge numbers (in the sense that a cash
prize was originally promised) are 896, 1,024, 1,536, and 2,048 bits long.

The bottom line is that the current state of the art in factorizing large integers
is still below 1,024 bits. So an RSA key of that size should still be sufficient. But
due to the fact that such keys tend to have a long lifetime, it is safer and highly
recommended to switch to longer keys.

As mentioned earlier, the NFS (including the SNFS and the GNFS) is the
best known algorithm to factorize integers with more than 120 digits. However,
this is only true as long as nobody is able to build a quantum computer (Section
D.5). If somebody had a quantum computer at hand, then he or she could use a
polynomial-time algorithm to solve the IFP that is due to Peter W. Shor [26, 27].31

More specifically, Shor’s algorithm has a cubic time complexity (i.e., O((lnn)3))
and a linear space complexity (i.e.,O(lnn)). This means that a quantum computer
needsc · lnn qubits to factorize an integern (for a small constant factorc). This
translates to a few thousands of qubits, and this is far beyond what is technically
feasible today, as people are currently able to build quantum computers with “only”
about 50–70 qubits.

5.4 ALGORITHMS FOR COMPUTING DISCRETE LOGARITHMS

There are several public key cryptosystems whose security is based on the compu-
tational intractability of the DLP (Definition 5.5) in a cyclic group or some related
problem. If somebody were able to efficiently compute discrete logarithms, then he
or she would be able to break these systems. It is therefore important to know the
best (i.e., most efficient) algorithms that can be used to actually compute discrete
logarithms. Again, there are two classes of such algorithms:

30 Surprisingly, RSA-768 was factored three years before RSA-704, even though it refers to a larger
integer.

31 In 1999, Shor won the prestigious Gödel Prize for this work and the development of algorithms to
solve the IFP and the DLP on a quantum computer.
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• Generic algorithmswork in any cyclic group, meaning that they do not
attempt to exploit the special properties of the group in which the discrete
logarithms need to be computed.

• Nongenericor special-purpose algorithmsattempt to exploit special proper-
ties of the cyclic group in which the discrete logarithms need to be computed,
meaning that these algorithms are specifically designed to work in a specific
group.

It goes without saying that nongeneric (or special-purpose) algorithms are
typically more efficient than generic ones. But we start withgeneric ones first.

5.4.1 Generic Algorithms

There are a few generic algorithms that can be used to solve the DLP in a cyclic
groupG with generatorg. Due to a result of Victor Shoup [28], we know that
O(

√

|G|) is a lower bound for the time complexity of a generic algorithm, and that
improvements are only possible if the prime factorization of |G| is known. In this
case (and if the prime factors of|G| are sufficiently small), then the Pohlig-Hellman
algorithm [5] based on the Chinese remainder theorem (CRT, Theorem A.8) can be
used to more efficiently solve the DLP.32 Let

|G| = pe11 p
e2
2 . . . pell

be the prime factorization of|G|. To compute the discrete logarithmx = logg h,
the Pohlig-Hellman algorithm follows a divide-and-conquer approach: Rather than
dealing with the large groupG, it computes smaller discrete logarithmsxi in the
subgroups of orderpeii (e.g., using Shanks’ baby-step giant-step algorithm or Pollard
Rho) and then uses the CRT to compile the desired valuex from allxi (i = 1, . . . , l).
The time complexity of the resulting algorithm depends on the prime factors of|G|,
and to mitigate the attack,|G| must have a prime factor that is at least2160.

Before we address the aforementioned algorithms of Shanks and Pollard, we
say a few words about brute-force search.

5.4.1.1 Brute-Force Search

The simplest and most straightforward generic algorithm tosolve the DLP isbrute-
force search, meaning that one successively computes powers ofg (i.e., g1, g2,
g3,. . . ), until one reachesh. For a randomly chosenh, one can expect to find the

32 According to [5], the algorithm was independently discovered by Roland Silver (a few years earlier)
and Richard Schroeppel and H. Block, none of whom published the result.
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correct exponent after checking half of the possible values(i.e., |G|/2). This means
that brute-force search has a time complexity of

O(|G|)

To make a brute-force search prohibitively expensive, one must use a groupG that
is sufficiently large. For example, in the case of the cyclic groupZ∗p for prime p,
(p − 1)/2 checks are required on the average to compute a discrete logarithm. So
|G| = p − 1 should be at least in the order of280. It goes without saying that this
only holds if a brute-force attack is the only feasible attack, and that this is seldom
the case (as there are almost always more efficient algorithms to compute discrete
logarithms). Two examples are outlined next.

5.4.1.2 Baby-Step Giant-Step Algorithm

One algorithm that is more efficient than brute-force searchis generally credited to
Daniel Shanks.33 It is basically a time-memory trade-off, meaning that it runs faster
than brute-force search, but it also uses some extra memory.

The goal of the algorithm is to determine the valuex = logg h. The algorithm

therefore requires a parametert that is typically set to the ceiling of
√

|G|; that is,
t = ⌈

√

|G|⌉. Using this parameter,x can be written as

x = xgt− xb

with 0 ≤ xg, xb < t.34 The algorithm is namedbaby-step giant-step, because it
consists of two respectively named steps:

• In the giant-step, the algorithm computes the pairs(j, (gt)j = gtj) for all
0 ≤ j < |G|/t ≈ t, sorts these pairs according to the second componentgjt,
and stores them in a (now sorted) table.

• In thebaby-step, the algorithm computeshgi for i = 0, 1, 2, . . . until it yields a
value that is contained in the table from the giant-step. In this case,hgi = gxgi

is equal togtj , and this, in turn, suggests that

gtxg

gxb
gi = gtj

33 Daniel Shanks was an American mathematician who lived from 1917 to 1996. The baby-step giant-
step algorithm appeared in a 1971 publication by him, but it is sometimes rumored that the Russian
mathematician Alexander Gelfond, who lived from 1906 to 1968, already knew the algorithm in
1962.

34 The subscripts stand for “giant” and “baby.”
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This is becausegxgi = gxgt−xbgi = gtxgg−xbgi = gtxg/gxb · gi. The
equation holds forxb = i andxg = j, and hencex = xgt− xb = jt− i.
The baby-step giant-step algorithm outputsx that solves the DLP forh in G

with generatorg.
If, for example,G is Z∗29 and the generator isg = 11, then we may want

to solve the DLP forh = 3 (meaning that we are looking forx ∈ N with
11x (mod 29) = 3). Using the baby-step giant-step algorithm, one first setst =
⌈
√
28⌉ = 6, and then computes the giant-step table as follows:

j gtj

0 116·0 = 110 ≡ 1 (mod 29)
1 116·1 = 116 ≡ 9 (mod 29)
2 116·2 = 1112 ≡ 23 (mod 29)
3 116·3 = 1118 ≡ 4 (mod 29)
4 116·4 = 1124 ≡ 7 (mod 29)
5 116·5 = 1130 ≡ 5 (mod 29)

Strictly following the algorithm, this table would have to be sorted according
to the second componentgtj (i.e., the value that is underlined). Because the numbers
are small, this sorting step is not performed here. Instead,we jump directly into the
baby-step: In the first iteration,i is set to zero, andhgi equals3 · 110 = 3 · 1 = 3.
This value does not match any of the underlined values in the giant-step table. In the
second iteration,i is set to one, andhgi equals3 ·111 = 3 ·11 = 33 ≡ 4 (mod 29).
This value matches the value forj = 3 in the giant-step table. This means thati = 1
andj = 3, and hencex = 3 · 6− 1 = 17. The correctness of this value follows from
1117 (mod 29) = 3.

The time and space complexities of the baby-step giant-stepalgorithm are
both O(

√

|G|) (for t = ⌈
√

|G|⌉). In a group of order280, this complexity is
O(
√
280) = O(280/2) = O(240). In other words, in order to obtain a complexity of

280, one must employ a group with2160 elements. In the case ofZ∗p, for example,
this suggests thatpmust be at least 160 bits long. Unfortunately, there are evenmore
powerful (special-purpose) algorithms to solve the DLP inZ∗p, and hence even larger
bit lengths forp are usually required.

5.4.1.3 Pollard Rho

As pointed out in 1978 by Pollard [29], a similar idea as used in his Rho integer
factorization algorithm can be used to solve the DLP with thesame time complexity
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as the baby-step giant-step algorithm but only little memory. In 1999, it was shown
that the algorithm can be parallelized [30], and this makesPollard Rho(ρ) the most
efficient generic algorithm to solve the DLP known to date.

The Pollard Rho algorithm exploits the birthday paradox anduses a pseu-
dorandom (iterating) functionf : G → G to find a sequence of group elements
(yi)i≥0 = y0, y1, y2, . . . that represents a random walk (through all elements of
the group). The walk is computed according toy0 = gα0hβ0 for someα0 andβ0
randomly chosen from{0, 1, . . . , |G|−1} andyk+1 = f(yk) for k ∈ N. This means
that it must be possible to efficiently computeαk+1 andβk+1 fromαk andβk such
thatf(yk) = yk+1 = gαk+1hβk+1 . This implies that while computingyk (k ∈ N),
one can keep track of the corresponding sequences of exponents; that is,(αk) and
(βk) with yk = gαkhβk . Sooner or later, one finds a pair of matching values(yi, yj),
and in this case,yi = yj suggests thatgαihβi = gαjhβj . Sinceh = gx, this implies

gαigβix ≡ gαjgβjx

If gcd(βi − βj , |G|) = 1, thenx can be computed as

x = (αj − αi)(βi − βj)−1 (mod |G|)

Note that the iterating functionf can be arbitrary and that Pollard made some
proposals here. These proposals have been optimized to compute sequences of group
elements that more closely resemble a random walk.

The Pollard Rho algorithm is simple and straightforward, but—according
to Shoup’s result mentioned above—it is as efficient as a generic algorithm can
possibly be (with time complexityO(

√

|G|)). To get more efficient algorithms, one
has to consider nongeneric (special-purpose) algorithms as addressed next.

5.4.2 Nongeneric (Special-Purpose) Algorithms

All algorithms addressed so far (except the Pohlig-Hellmanalgorithm) are com-
pletely independent from the group in which the discrete logarithms need to be
computed, meaning that they work in all cyclic groups. As mentioned earlier, this
is not true for nongeneric (special-purpose) algorithms. These algorithms exploit
special properties of the groups in use and are therefore more powerful.

Most importantly, theindex calculus method(ICM) yields a probabilistic
algorithm to compute discrete logarithms inZ∗p and some other groups (but it does
not work in all cyclic groups).35 Without going into details, we note that the time

35 The ICM was first described by a French mathematician namedMaurice Kraitchik in a book on
number theory published in 1922. After the discovery of the Diffie-Hellman key exchange, the
method was revisited and many cryptographers working in theearly days of public key cryptography
shaped it and presented it in the form we know it today.
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complexity of the ICM isLp[1/2, c] for some small constantc, such as
√
2. Also, the

ICM inspired many researchers to come up with new algorithmsor apply existing
algorithms to the DLP. For example, the NFS algorithm that has been invented to
solve the IFP can also be used to solve the DLP. Remember that it has a running
time complexity ofLp[1/3, c], and hence it is one of the algorithms of choice to be
used inZ∗p.

If applied to an extension fieldFq with q = pn for some primep ∈ P, even
more efficient versions of the ICM exist. Most of them have a time complexity of
Lq[1/3, c] for some small constantc (this is comparable to the NFS algorithm). In
2013, however, Antoine Joux significantly improved the state of the art in solving
the DLP in an extension field with small characteristic. The time complexity of
his algorithm is almostLq[1/4, c] [31, 32]. Although this is not yet polynomial
(remember that the first parameter in the L-notation must be zero for an algorithm
to run in polynomial time), it is pretty close and people sometimes call it quasi-
polynomial. In some extension fields, this is by far the most efficient algorithm that
can be used today to solve the DLP.

5.4.3 State of the Art

If we are working inZ∗p, then state of the art in computing discrete logarithms is
directly comparable to the state of the art in factoring integers. There are only a
few exceptional cases in which computing discrete logarithms is more efficient than
factoring integers. This suggests that the bit length ofp (if we work in Z∗p) should
be comparable to the bit length of the modulusn used in a cryptosystem whose
security depends on the IFA. In either case, 1,024 bits provide a security level that
is comparable to 80 bits in the secret key case, whereas 2,048bits provide a security
level that is comparable to 112 bits. It goes without saying that this security level is
more appropriate today. If we work inZ∗p, then special care must be taken thatp− 1
does not have only small prime factors. Otherwise, the Pohlig-Hellman algorithm
can be used to efficiently compute discrete logarithms.

If we work in a group in which the nongeneric (special-purpose) algorithms do
not work, then the state of the art in computing discrete logarithms is worse than the
state of the art in factoring integers. In this case, we have to use generic algorithms
(that do not have subexponential running times). The best algorithms we can use in
this case have a time complexity ofO(

√

|G|). This fact is, for example, exploited
by the XTR public key cryptosystem36 and elliptic curve cryptography as addressed
next.

36 The term XTR stands for ECSTR, which is an abbreviation for“Efficient and Compact Subgroup
Trace Representation” [33].
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5.5 ELLIPTIC CURVE CRYPTOGRAPHY

Public key cryptosystems get their security from the assumed intractability of
inverting a one-way function, but inverting such a functionmay not be equally
difficult in all algebraic structures and groups. For example, we have seen in
the previous section that there are nongeneric algorithms to invert the discrete
exponentiation function in the multiplicative group ofZ∗p with subexponential
running time, but that these algorithms do not work in all cyclic groups. In particular,
the algorithms do not work in groups of points on an elliptic curve over a finite field.
In such a group, one has to use a generic algorithm to compute adiscrete logarithm,
and these algorithms have an exponential time complexity ofO(

√

|G|).
If an instance of the DLP is harder to solve in a particular cyclic group,

then the cryptosystems that are based on this instance may employ shorter keys
to achieve the same level of security. This is the major advantage ofelliptic curve
cryptography(ECC): It works with shorter keys and can therefore be implemented
more efficiently. Note, however, that it is still possible that nongeneric algorithms
with subexponential running time to solve the DLP exist for such groups—we
simply don’t know any of them. The lower boundO(

√

|G|) only applies to generic
algorithms, so it cannot be taken as an argument to exclude their existence.

ECC employs groups of points on an elliptic curve over a finitefieldFq, where
q is either an odd prime (in the case of a prime field) or a power ofa prime. In the
second case, only the prime 2 is used in standard ECC, meaningthat only extension
fields of characteristic 2 (q = 2m for somem ∈ N) are considered. Such fields are
also called binary extension fields, andm refers to the degree of such a field.37 To
keep things as simple as possible, we make the following two restrictions regarding
the elliptic curves we consider:

• First, we only consider elliptic curves over a prime field forsome odd prime
p ∈ P, denoted asZp.

• Second, we only consider elliptic curves overZp defined by the Weierstrass
equation

y2 ≡ x3 + ax+ b (mod p) (5.2)

for a, b ∈ Zp and4a3 + 27b2 6≡ 0 (mod p).

37 An odd prime is typically used for software implementations, whereas a power of 2 is typically used
for hardware implementations.
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For any givena andb in Zp, (5.2) yields pairs of solutionsx, y ∈ Zp that can
be formally expressed as follows:

E(Zp) = {(x, y) | x, y ∈ Zp ∧
y2 ≡ x3 + ax+ b (mod p) ∧
4a3 + 27b2 6≡ 0 (mod p)}

The resulting setE(Zp) consists of all(x, y) ∈ Zp × Zp = Z2
p that yield a solution

to (5.2). We can graphically interpret(x, y) as a point in the(x, y)-plane, wherex
represents the coordinate on the horizontal axis andy represents the coordinate on
the vertical axis. Such an(x, y) refers to a point on the elliptic curveE(Zp). The
respective plot looks chaotic and does not resemble the elliptic curves one can define
over the real numbersR that are sometimes used to visualize the notion of an elliptic
curve.

In addition to the points on the curve, one also considers apoint at infinity
(typically denotedO). This point yields the identity element that is required toform
a group. If we useE(Zp) to refer to an elliptic curve defined overZp, thenO is
usually included implicitly.

Let us consider an exemplary elliptic curve that we are goingto use in the
book. Forp = 23 anda = b = 1 (note that4 · 13 + 27 · 12 6≡ 0 (mod 23)), the
elliptic curvey2 ≡ x3 + x + 1 is defined overZ23. BesidesO, the elliptic curve
E(Z23) comprises the following 27 elements or points in the(x, y)-plane:

(0, 1) (0, 22) (1, 7) (1, 16) (3, 10) (3, 13) (4, 0)
(5, 4) (5, 19) (6, 4) (6, 19) (7, 11) (7, 12) (9, 7)
(9, 16) (11, 3) (11, 20) (12, 4) (12, 19) (13, 7) (13, 16)
(17, 3) (17, 20) (18, 3) (18, 20) (19, 5) (19, 18)

Together withO, this sums up to 28 points or elements. In general, letn be the
number of points on an elliptic curve over a finite fieldFq with q elements. We then
know thatn is of the order ofq. In fact, there is a theorem due to Helmut Hasse38

that boundsn as

q + 1− 2
√
q ≤ n ≤ q + 1 + 2

√
q

In our example, Hasse’s theorem suggests thatE(Z23) has23 + 1 − 2
√
23 =

14.44 . . . and23 + 1 + 2
√
23 = 35.56 . . . elements. 28 is in this range.

In addition to a set of elements, a group must also have an associative
operation. In ECC, this operation is usually called addition (mainly for historical

38 Helmut Hasse was a German mathematician who lived from 1898 to 1979.



One-Way Functions 103

reasons), meaning that two points on an elliptic curve are added.39 In general, the
addition operation can be explained geometrically or algebraically. The geometric
explanation is particularly useful if two points on an elliptic curve overR are added.
LetP = (x1, y1) andQ = (x2, y2) be two distinct points on an elliptic curveE(R).
The sum ofP andQ, denotedR = (x3, y3), is constructed in three steps:

1. Draw a line throughP andQ;

2. This line intersectsE(R) in a third point;

3. R is the reflection of this point on thex-axis.

If P = (x1, y1), then the double ofP , denotedR = (x3, y3), can be
constructed in a similar way:

1. Draw the tangent line toE(R) atP ;

2. This line intersectsE(R) in a second point;

3. R is the reflection of this point on thex-axis.

The following algebraic formulas for the sum of two points and the double of
a point can be derived from the respective geometric interpretation:

1. P +O = O + P = P for all P ∈ E(Zq).

2. If P = (x, y) ∈ E(Zq), then(x, y) + (x,−y) = O. The point(x,−y) is
denoted−P and called the negative ofP . Note that−P is indeed a point on
the elliptic curve (e.g.,(3, 10) + (3, 13) = O).

3. LetP = (x1, y1) ∈ E(Zq) andQ = (x2, y2) ∈ E(Zq) with P 6= −Q, then
P +Q = (x3, y3) where

x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

and

λ =

{
y2−y1

x2−x1
if P 6= Q

3x2
1+a
2y1

if P = Q

39 By contrast, the group operation inZ∗
p is multiplication. The differences in the resulting additive

notation and multiplicative notation can sometimes be confusing.
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Consider the elliptic curveE(Z23) defined above. LetP = (3, 10) and
Q = (9, 7) be two elements from this group. ThenP + Q = (x3, y3) is computed
as follows:

λ =
7− 10

9− 3
=
−3
6

=
−1
2

= 11 ∈ Z23

x3 = 112 − 3− 9 = 6− 3− 9 = −6 ≡ 17 (mod 23)

y3 = 11(3− (−6))− 10 = 11(9)− 10 = 89 ≡ 20 (mod 23)

Consequently,P +Q = (17, 20) ∈ E(Z23).
On the other hand, if one wants to addP = (3, 10) to itself, then one has

P + P = 2P = (x3, y3), and this point is computed as follows:

λ =
3(32) + 1

20
=

5

20
=

1

4
= 6 ∈ Z23

x3 = 62 − 6 = 30 ≡ 7 (mod 23)

y3 = 6(3− 7)− 10 = −24− 10 = −11 ≡ 12 (mod 23)

Consequently,2P = (7, 12), and the procedure can be iterated to compute arbitrary
multiples of P : 3P = (19, 5), 4P = (17, 3), 5P = (9, 16), 6P = (12, 4),
7P = (11, 3), 8P = (13, 16), 9P = (0, 1), 10P = (6, 4), 11P = (18, 20),
12P = (5, 4), 13P = (1, 7), 14P = (4, 0), 15P = (1, 16), 16P = (5, 19),
17P = (18, 3), 18P = (6, 19), 19P = (0, 22), 20P = (13, 7), 21P = (11, 20),
22P = (12, 19), 23P = (9, 7), 24P = (17, 20), 25P = (19, 18), 26P = (7, 11),
27P = (3, 13), and28P = O. After having reachednP = O, a full cycle is finished
and everything starts from scratch. So29P = P = (3, 10), 30P = 2P = (7, 12),
and so on. In this example, the order of the groupn is 28, and—according to
Lagrange’s theorem—the order of an element must dividen. For example, the point
(4, 0) has order 2 (that divides 28); that is,2(4, 0) = 28P = O. In ECC, all standard
curves are chosen so thatn is prime. In such a group, every element has ordern
and may serve as a generator. This is different from other cyclic groups, where a
generator needs to be found in the first place.

In 1901, Henri Poincaré40 proved that for every elliptic curveE(Zp), the group
of points on that curve (together with the point at infinity) and the addition operation
as explained above form a cyclic group. ECC uses such a group and exploits the fact
that a DLP can be defined in it. As captured in Definition 5.10, the resulting DLP is
called theelliptic curve discrete logarithm problem(ECDLP) and it is structurally
identical to the DLP from Definition 5.5.

40 Henri Poincaré was a French mathematician who lived from1854 to 1912.
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Definition 5.10 (ECDLP) Let E(Fq) be an elliptic curve overFq, P a point on
E(Fq) of ordern = |E(Fq)|, andQ another point onE(Fq). The ECDLP is to
determine anx ∈ Zn withQ = xP .

The ECDLP thus asks for the number of times a pointP on an elliptic curve
needs to be added to itself so that the total sum hits another pointQ on the curve.
Compared to the DLP in a cyclic groupG, P plays the role of the generatorg and
Q refers toh (with h = gx).

As mentioned above, subexponential algorithms are not known to exist to
solve the ECDLP. This has the positive side effect (from the cryptographer’s view-
point) that the resulting elliptic curve cryptosystems areequally secure with smaller
key sizes than their conventional counterparts, meaning that the strength-per-key-bit
is substantially bigger in ECC than it is in conventional DLP-based cryptosystems.
Thus, smaller parameters can be used in ECC than with DLP-based systems for the
same level of security. The advantages that can be gained from smaller parameters
include faster computations in some cases41 as well as shorter keys and certificates.
These advantages are particularly important in environments where resources like
computing power, storage space, bandwidth, and power consumption are constrained
(e.g., smartcards). For example, to reach the security level of 2,048 (3,072) bits in a
conventional public key cryptosystem like RSA, it is estimated that 224 (256) bits
are sufficient in ECC [34]. This is more or less the order of magnitude people work
with today.

Based on the intractability assumption of the ECDLP, Neal Koblitz [35] and
Victor Miller [36] independently proposed elliptic curve cryptosystems in the mid-
1980s. The cryptosystems are best viewed as elliptic curve versions of DLP-based
cryptosystems, in which the groupZ∗p (or a subgroup thereof) is replaced by a group
of points on an elliptic curve over a finite field. Consequently, there are elliptic curve
variants of cryptosystems that only need the mathematical structure of a group, such
as Diffie-Hellman, Elgamal, DSA, and many more.42 In fact, almost all DLP-based
cryptosystems have an elliptic curve variant (some of them are addressed in Part
III of this book). As mentioned above, these cryptosystems have the advantage that
they can be used with shorter keys. This is different when it comes to IFP-based
cryptosystems like RSA or Rabin. The respective cryptosystems employ elliptic
curves over a ringZn (instead of a finite field) and are mathematically more involved
(e.g., [37–40]). They are mainly of academic interest, because they offer almost no
practical advantage over RSA or Rabin. In fact, they rely on the same mathematical

41 Most importantly, 256-bit ECC is faster than 3072-bit RSAwhen computing with private keys.
When computing with public keys, 3072-bit RSA is still faster than 256-bit ECC, especially when
the standard RSA public exponente = 216 + 1 is used.

42 There is even an ECC version for the Diffie-Hellman integrated encryption scheme (DHIES) known
as the elliptic curve integrated encryption scheme (ECIES).
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problem, so an adversary being able to factorizen can either break RSA and Rabin
or any elliptic curve variant thereof.

The efficiency advantages of ECC are not free and come with some disadvan-
tages. Most importantly, elliptic curve cryptosystems tend to be more involved and
less well understood than their DLP-based counterparts. This means that care must
be taken to implement the systems properly and to avoid pitfalls that are well known.
For example, it has been shown that the ECDLP sometimes reduces to the DLP
in an extension field, where the ICM can be used to compute discrete logarithms
[41]. Because the reduction is only efficient for a special class of elliptic curves—
so-calledsupersingular curves—such curves should be avoided in the first place.
Luckily, there is a simple test to ensure that an elliptic curve is not supersingular.
Some other vulnerabilities and potential attacks are knownand discussed in the
literature (e.g., [42–46]). A related disadvantage of ECC is that it may be possible
to hide backdoors. This became particularly obvious when itwas publicly disclosed
that theDual Elliptic Curve Deterministic Random Bit Generator(Dual EC DRBG)
standardized in NIST SP 800-90A (2006) contained a backdoor.43 The standard was
withdrawn in 2014, but since then people have remained worried about the possibil-
ity of backdoors being placed in standardized and not sufficiently well understood
groups based on elliptic curves.

A distinguishing feature of ECC is that every user may selecta different ellip-
tic curveE(Fq)—even if all users employ the same finite fieldFq. From a security
perspective, this flexibility has advantages (because it provides agility), but it also
has disadvantages (because it makes interoperability difficult and—as mentioned
above—it may raise concerns about backdoors). Furthermore, implementing an el-
liptic curve cryptosystem is neither simple nor straightforward, and there are usually
many possibilities to do so, some of them even covered by patent claims.

Against this background, several standardization bodies have become active
and are trying to specify various aspects of ECC and its use inthe field. Most
importantly, theelliptic curve digital signature algorithm(ECDSA) is the elliptic
curve analog of the DSA that was originally proposed in 1992 by Scott Vanstone44

in response to NIST’s request for public comments on their first proposal for the
DSA [47]. Starting in 1998, it was first accepted as an ISO/IECstandard; that is,
ISO/IEC 14888-3 [48] that was later complemented by ISO/IEC15946-1 [49], the
ANSI (X9.62) [50], and the IEEE in their standard specifications for public-key
cryptography (IEEE Std 1363-2000). Finally, NIST has incorporated the ECDSA in
FIPS 186 (since version 2) that is now (in its fourth version)the primary reference

43 The possibility that the DualEC DRBG may comprise a backdoor was first reported by Dan
Shumov and Niels Ferguson at the rump session of the CRYPTO 2007 conference. It was later
confirmed by the revelations of Edward Snowden.

44 Scott Vanstone was a Canadian mathematician and cryptographer who lived from 1947 to 2014.
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for the ECDSA and the curves that can be used [51]. It recommends various elliptic
groups over a prime fieldFp (or GF (p)) or a characteristic two (or binary) finite
field F2m (orGF (2m)) for somem ∈ N (standing for the degree of the field). The
curves are summarized in Table 5.1, where the details can be found in [51]. In the
left column, five curves over prime fields, denoted as P-XXX (where XXX stands
for the bit length of the field size), are itemized that are frequently used in the field.
This is particularly true for P-256 that is by far the most widely deployed elliptic
curve. In the right column, five curves over binary fields, denoted as B-XXX, and
five Koblitz curves—sometimes also called anomalous binarycurves—denoted as
K-XXX, are itemized. These curves are less frequently used in the field.

Table 5.1
Elliptic Curves Specified for ECDSA

GF (p) GF (2m)

P-192 K-163, B-163
P-224 K-233, B-233
P-256 K-283, B-283
P-384 K-409, B-409
P-512 K-571, B-571

Mainly due to the the DualEC DRBG incident, people are worried about
elliptic curves suggested by U.S. governmental bodies likeNIST. This also applies
to the curves promoted by the Standards for Efficient Cryptography Group (SECG45)
that are in line with the NIST recommendations. The ellipticcurves specified by the
SECG (as of 2010) are summarized in Table 5.2. Most importantly, secp256k1 is the
elliptic curve that is used for ECDSA signatures in Bitcoin.

In addition to the elliptic curves promoted by NIST and SECG,there are
only a few alternatives. In 2005, for example, a German working group called
ECC-Brainpool specified a suite of elliptic curves that are collectively referred
to as theBrainpool curves. They are supported by the IETF [52] and used in
many Internet security protocols. But their security is notwithout question,46 and
hence researchers have launched theSafeCurvesproject47 to evaluate the strength of
currently deployed elliptic curves and specify new curves in full transparency (also
with regard to their design criteria). The most important curves that have come out

45 The SECG is an industry consortium founded in 1998 to develop commercial standards to facilitate
the adoption of efficient cryptography and interoperability across a wide range of computing
platforms.

46 https://bada55.cr.yp.to/bada55-20150927.pdf.
47 https://safecurves.cr.yp.to.
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Table 5.2
Elliptic Curves Specified by SECG

GF (p) GF (2m)

secp192k1, secp192r1 sect163k1, sect163r1, sect163r2
secp224k1, secp224r1 sect233k1, sect233r1
secp256k1, secp256r1 sect239k1
secp384r1 sect283k1, sect283r1
secp521r1 sect409k1, sect409r1

sect571k1, sect571r1

of this project areCurve25519(Ed25519),48 Ed448-Goldilocks, andE-521. These
curves are increasingly used on the Internet, for example, in the realm of end-to-end
encrypted (E2EE) messaging [53].

5.6 FINAL REMARKS

In this chapter, we elaborated on one-way functions and trapdoor functions. We
also defined the notion of a family of such functions, and we overviewed and
discussed some functions that are conjectured to be one way or trapdoor. More
specifically, we looked at the discrete exponentiation function, the RSA function,
and the modular square function. We further looked at hard-core predicates and
algorithms for factoring integers and computing discrete logarithms. Having some
basic knowledge about these algorithms is important to understand the state of the
art in public key cryptography.

Most public key cryptosystems in use today are based on one (or several) of
the conjectured one-way functions. This is also true for ECCthat operates in cyclic
groups in which known special-purpose algorithms to compute discrete logarithms
do not work. From a practical viewpoint, ECC is interesting because it allows us
to use smaller keys while maintaining the same level of security (compared to
other public key cryptosystems). This is advantageous especially when it comes
to implementing cryptographic systems and applications inenvironments that are
somehow restricted, such as smartcards. For the purpose of this book, however,
we don’t make a major distinction between public key cryptosystems that are
based on the DLP and systems that are based on the ECDLP. They both use the

48 Because Curve25519 cannot be used for digital signatures(including ECDSA) natively, people have
come up with a DSS called Ed25519 (http://ed25519.cr.yp.to).
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mathematical group structure, but the underlying operations between group elements
are significantly different.

It is sometimes recommended to use cryptosystems that combine different
types of one-way functions in one way or another. If one of these functions turns
out not to be one-way, then the other functions may still prevail and keep on
securing the cryptosystem. Obviously, this strategy becomes useless if all functions
simultaneously turn out not to be one-way or a hardware device can be built that
allows an adversary to efficiently invert them, such as a quantum computer. As this
is not likely to be the case anytime soon, the strategy still remains reasonable.
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Chapter 6

Cryptographic Hash Functions

In this chapter, we elaborate on cryptographic hash functions. More specifically,
we introduce the topic in Section 6.1, address a basic construction—the Merkle-
Damgård construction—in Section 6.2, elaborate on the historical perspective and
the development of the cryptographic hash functions used inthe field in Section 6.3,
overview in detail some exemplary hash functions in Section6.4, and conclude with
some final remarks in Section 6.5.

6.1 INTRODUCTION

As mentioned in Section 2.1.4 and captured in Defintion 2.5, ahash functionis an
efficiently computable functionh : Σ∗in → Σn

out that takes an arbitrarily long1 input
wordx ∈ Σ∗in (with Σin representing the input alphabet andΣ∗in the domain ofh)
and generates an output wordy ∈ Σn

out (with Σout representing the output alphabet
andΣn

out the range ofh) of fixed sizen. According to Definition 2.6, such a hash
function iscryptographicif has some of the following three properties.

• A hash functionh is preimage resistantor one-wayif it is computationally
infeasible to find an input wordx ∈ Σ∗in with h(x) = y for an output wordy
that is sampled uniformly at random fromΣn

out, i.e.,y ∈R Σn
out.

• A hash functionh is second-preimage resistantor weak collision resistantif
it is computationally infeasible to find a second input wordx′ ∈ Σ∗in with
x′ 6= x andh(x′) = h(x) for an input wordx that is sampled uniformly at
random fromΣ∗in (i.e.,x ∈R Σ∗in).

1 Remember from Section 2.1.4 that for technical reasons oneusually has to assume a maximum
lengthnmax for input words. In this case, the hash function is formally expressed ash : Σnmax

in →
Σn

out.

113
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• A hash functionh is collision-resistantor strong collision resistantif it is
computationally infeasible to find two input wordsx, x′ ∈ Σ∗in with x′ 6= x
andh(x′) = h(x).

Again referring to Definition 2.6, a cryptographic hash function must be one-
way and either second-preimage resistant or collision-resistant. There are a few
additional comments to make at this point:

• In some literature, collision-resistant hash functions are calledcollision free.
This term is wrong, because—due to the pigeonhole principle—collisions
must always occur if one uses a hash function that compressesarbitrarily long
input words to output words of a fixed (and shorter) length.

• In a complexity-theoretic setting, one cannot say that finding a collision for
a given hash function is a difficult problem. In fact, finding acollision (for a
given hash function) is only a problem instance (refer to Appendix D.2 for a
discussion about the difference between a problem and a problem instance).
This is because there is always an efficient algorithm that finds a collision,
namely one that simply outputs two words that hash to the samevalue.
Thus, the concept of collision resistance only makes sense if one considers
a sufficiently large family (or class) of hash functions fromwhich one is
chosen at random.2 An algorithm to find collisions must then work for all
hash functions of the family, including the one that is chosen at random. This
also means that complexity theory is an inappropriate tool to argue about the
collision resistance of a particular hash function (e.g., SHA-1).

• A collision-resistant hash function is always second-preimage resistant be-
cause it is then computationally infeasible to find any collision, including
one for a particular preimage. The converse, however, is nottrue; that is, a
second-preimage resistant hash function need not be collision resistant (this
is why the termsweak collision resistantand strong collision resistantare
sometimes used in the first place). Consequently, collisionresistance implies
second-preimage resistance, but not vice versa.

• A (strong or weak) collision-resistant hash function need not be preimage
resistant. Consider the following pathological example toillustrate this point:3

If g is a collision-resistant hash function that generates ann-bit output, then

2 This line of argumentation is similar to the one that has ledus to talk about families of one-way
functions (instead of one-way functions) in the previous chapter.

3 The example was created by Ueli M. Maurer.
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one can define a(n+ 1)-bit hash functionh as follows:

h(x) =

{
1 || x if | x |= n
0 || g(x) otherwise

The hash functionh is still collision-resistant: Ifh(x) begins with 1, then
there is no collision, and ifh(x) begins with 0, then finding a collision means
finding a collision forg (which is assumed to be computationally intractable
due to the collision resistance property ofg). But h is not preimage-resistant.
For all h(x) that begin with a one, it is trivial to find a preimage (just drop
the one) and to inverth accordingly. Consequently,h is a hash function that is
collision-resistant but not preimage-resistant. The bottom line is that preimage
resistance and collision resistance are inherently different properties that must
be distinguished accordingly.

• Last but not least, we note that the notion of a collision can be generalized to a
multicollision where more than two input words are hashed tothe same value.
More specifically, anr-collision is anr-tuple of input values(x1, . . . , xr),
such thath(x1) = . . . = h(xr). Forr = 2, anr-collision refers to the standard
notion of a collision. So the more interesting cases occur for r > 2. We already
mentioned here that finding multicollisions is not substantially more difficult
than finding “normal” collisions, but we more thoroughly address the issue
and its implications at the end of the chapter.

In practice,Σin andΣout are often set to{0, 1}, and hence a respective hash
function can be seen as a well-defined mapping from{0, 1}∗ to {0, 1}n, wheren
refers to the output length of the hash function.

A practically relevant question is how large the parametern should be. If it
is large, then the cryptographic hash function is not so efficient (because the hash
values require a lot of resources to process, store, and transmit). On the other hand,
it cannot be too short either, because otherwise finding collisions becomes simple.
So there is a trade-off to make:n should be as short as possible, but as long as
needed.

Against this background, a lower bound forn is usually obtained by the
birthday attack. This attack is based on thebirthday paradoxthat is well known
in probability theory. It basically says that the probability of two persons in a group
sharing the same birthday is greater than1/2, if the group (chosen at random) has
more than 23 members. This number is surprisingly low, and this is why it is called
a paradox. To obtain the result, one employs a sample spaceΣ that consists of
all n-tuples over the 365 days of the year (i.e.,| Σ |= 365n). Let Pr[A] be the
probability that at least two out ofn persons have the same birthday, meaning that



116 Cryptography 101: From Theory to Practice

a birthday collision occurs. This value is difficult to compute directly. It is much
simpler to compute Pr[A], which is the probability that alln persons have distinct
(i.e., different) birthdays, meaning that no birthday collision occurs, and to derive
Pr[A] from there. Following this line of argumentation, Pr[A] can be computed for
0 ≤ n ≤ 365 as follows:

Pr[A] = 1− Pr[A]

= 1− | A || Σ |

= 1− 365

365
· 364
365
· . . . · 365− n+ 1

365

= 1− 365 · 364 · . . . · (365− n+ 1) · 1

365n

= 1− 365!

(365− n)! ·
1

365n

= 1− 365!

(365− n)!365n

On line 3, the first person has365 possible days for which he or she does not produce
a collision, the second person has365− 1 = 364 possible days for which he or she
does not produce a collision, and so on, until the n-th personhas365−n+1possible
days for which he or she does not produce a collision. The overall probability Pr[A]
is therefore

365

365
· 364
365
· . . . · 365− n+ 1

365

and this value can be used in the formula given above. Obviously (and again due to
to the pigeonhole principle), Pr[A] is equal to 1 forn > 365. In this case, it is no
longer possible that alln persons have different birthdays.

The surprising fact is that Pr[A] grows very rapidly, and thatn must only be
23 to reach a probability greater or equal than1/2.4 More specifically, ifn = 23,
then

Pr[A] = 1− 365!

(365− 23)!36523

= 1− 365!

(342)!36523

= 1− 365 · 364 · · ·343
36523

≈ 0.508.

4 Forn = 40, the probability is already about0.9 or 90%.
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In contrast, if we fix the date and ask for the number of personsthat are required
to make the probability that at least one person has exactly this date as his or her
birthday, thennmust be much larger. In this case, Pr[A] refers to the probability that
at least one ofn persons has the given date as his or her birthday, and Pr[A] refers
to the opposite (i.e., the probability that no person has hisor her birthday on that
particular date). We can compute

Pr[A] = 1− Pr[A]

= 1−
(
364

365

)n

because each person has a probability of364/365 to have a birthday that is distinct
from the given date. If we want Pr[A] to be larger than1/2, then we must solve

1−
(
364

365

)n

≥ 1

2

for n. This means that

(
364

365

)n

≥ 1

2

and hence

n · log
(
364

365

)

≥ log

(
1

2

)

This, in turn, means that

n ≥ log
(
1
2

)

log
(
364
365

) ≈ 251

and hencenmust be equal or larger than about 251 (the exact value largely depends
on the accuracy of computing the logarithm function). Compare this value to 23 that
has been the answer to the previous question. The differenceexceeds intuition and
is therefore called a paradox.

Applying the line of argumentation to hash functions means that finding two
persons with the same birthday reveals a collision (i.e., a collision in the strong
sense), whereas finding a person with a given birthday reveals a second preimage
(i.e., a collision in the weak sense). Hence, due to the birthday paradox, one can
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argue that collision resistance is inherently more difficult to achieve than second-
preimage resistance, and this, in turn, suggests that collision resistance is a stronger
property than second-preimage resistance.

Mathematically speaking, finding collisions for a hash function h is the same
problem as finding birthday collisions. For a hash function that producesn-bit output
values, there are not 365 possible values but2n. The question is how many messages
x1, x2, . . . , xt one has to hash until one has a reasonable probability thath(xi) =
h(xj) for two distinct messagesxi 6= xj . Following the line of argumentation given
above, one can compute the probability that no collision occurs—let’s again call it
Pr[A]—as follows:

Pr[A] =

(
2n − 0

2n

)(
2n − 1

2n

)(
2n − 2

2n

)

. . .

(
2n − (t− 1)

2n

)

=

t−1∏

i=0

2n − i
2n

=

t−1∏

i=0

(

1− i

2n

)

Remember that the Taylor series expansions of the exponential function is defined
as follows:

ex =
∞∑

i=0

xi

i!

=
x0

0!
+
x1

1!
+
x2

2!
+
x3

3!
+ . . .

= 1 + x+
x2

2
+
x3

6
+ . . .

This series converges very rapidly for very small valuesx ≪ 1, and hence only the
first two summands really matter. Therefore, the following approximation can be
used:

e−x ≈ 1− x
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Because1/2n ≪ 1, we can use this approximation to rewritePr[A] as follows:

Pr[A] =

t−1∏

i=0

(

1− i

2n

)

≈
t−1∏

i=0

e−
i

2n

= e−
0

2n · e− 1
2n · e− 2

2n · e− 3
2n · . . . · e− (t−1)

2n

= e−
0+1+2+3+...+(t−1)

2n

= e−
t(t−1)
2·2n

= e−
t(t−1)

2n+1

Recall thatPr[A] refers to the probability that no collision occurs, but thatwe
are interested in the complementary probabilityPr[A] = 1 − Pr[A]; that is, the
probability that a collision is found int messagesx1, x2, . . . , xt. More specifically,
we wonder how many messages need to be hashed until a collision occurs with
probabilityPr[A]. This, in turn, means that we have to expresst in relation toPr[A].
We start with the approximation

Pr[A] ≈ 1− e−
t(t−1)

2n+1

and solve it fort. We therefore rewrite the approximation as

1− Pr[A] ≈ e−
t(t−1)

2n+1

and compute the logarithm on either side:

ln(1− Pr[A]) ≈ − t(t− 1)

2n+1
· ln e = − t(t− 1)

2n+1

The right equation holds becauseln e = 1. The approximation can be written as

−t(t− 1) ≈ 2n+1 · ln(1 − Pr[A])

and

t(t− 1) ≈ 2n+1 · (− ln(1− Pr[A]))

Because− lnx = ln(1/x), this can be written as

t(t− 1) ≈ 2n+1 · ln
(

1

1− Pr[A]

)
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For t ≫ 1, it holds thatt2 ≈ t(t − 1). This means that we can approximatet as
follows:

t ≈
√

2n+1 · ln
(

1

1− Pr[A]

)

= 2(n+1)/2

√

ln

(
1

1− Pr[A]

)

This approximation stands for the relationship between thenumber of hashed
messagest needed for a collision as compared to the output lengthn of the hash
function and the collision probabilityPr[A]. The most important consequence is
that the number of messages needed to find a collision is roughly equal to the square
root of the number of possible output values (i.e., about

√
2n = 2n/2), and this

is why the birthday attack is sometimes also called thesquare root attack. If, for
example, we want to find a collision for a hash function with an80-bit output and
success probability 0.5 (50%), then we have to hash about

t ≈ 2(81)/2

√

ln

(
1

1− 0.5

)

≈ 240.2

messages. This is perfectly feasible today, and hence we have to use hash functions
that generate significantly longer output values. The smallest length in use today is
128 bits. Due to the birthday attack, the respective security level is equivalent to 64
bits, and hence people currently prefer hash functions thatgenerate longer output
values. In fact, it is commonly agreed that 160 bits is the minimum output length
for a cryptographic hash function in use today, and people prefer even longer output
values (as we will see later in this chapter).5

In addition to preimage, second-preimage, and collision resistance, there are a
few other properties of hash functions sometimes mentioned(and discussed) in the
literature. We don’t use them in this book, but we still want to mention them for the
sake of completeness.

• A hash functionh is noncorrelatedif its input bits and output bits are not
correlated in one way or another. Needless to say, this property must be
fulfilled by all cryptographic hash functions used in the field.

5 One reason why people may prefer longer hash values is the impact a quantum computer may have.
Using such a computer, the security level of ann-bit hash function decreases to the cube root ofn
(instead of the square root ofn). This means that a cryptographic hash function that generates 256-
bit hash values has a security level of

√
2256 = 2256/2 = 2128 against conventional computers,

but only 3
√
2256 = 2256/3 ≈ 285 against quantum computers. This clearly speaks in favor of using

longer hash values.
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• A hash functionh is generalized collision resistantif it is computationally
infeasible to find two input valuesx andx′ with x′ 6= x such thath(x) and
h(x′) are similar in some specific way (e.g., they are equal in some bits).

• A hash functionh is weakened collision resistantif it is computationally
infeasible to find two input valuesx andx′ with x′ 6= x andh(x) = h(x′)
such thatx andx′ are similar in some specific way (e.g., they are equal in
some bits). Hence, the notion of weakened collision resistance is conceptually
similar to the notion of generalized collision resistance,but the similarity
applies to the preimages.

According to Definition 2.6, there are cryptographic hash functions that are
one-way and second-preimage resistant (type I) and somewhat stronger functions
that are one-way and collision-resistant (type II). In manyapplications, the use of
cryptographic hash functions of type I would be sufficient, but people still prefer
to use cryptographic hash functions of type II, mainly to achieve a security margin.
This is reasonable from a security perspective, but it may lead to a deprecation of a
function that would still work perfectly fine in a particularcontext.

In general, there are many ways to construct a cryptographichash function.
Referring to ISO/IEC 10118-1 [1], there are hash functions that employ block
ciphers (ISO/IEC 10118-2 [2]), dedicated hash functions (ISO/IEC 10118-3 [3]),
and hash functions based on modular arithmetic (ISO/IEC 10118-4 [4]). Mainly due
to their performance advantages, dedicated hash functionsare usually the preferred
choice.

6.2 MERKLE-DAMG ÅRD CONSTRUCTION

Most dedicated cryptographic hash functions in use today follow a construction
that was independently proposed by Ralph C. Merkle and Ivan B. Damgård in
the late 1980s [5, 6].6 According to this construction, aniterated hash functionh
is computed by repeated application of a collision-resistant compression function
f : Σb+l −→ Σl with b, l ∈ N to successive blocksx1, . . . , xn of a messagex.7 As
illustrated in Figure 6.1, the compression functionf takes two input values:

1. A b-bit message blockxi for i = 1, . . . , n;

2. An l-bit chaining valueHi for i = 1, . . . , n.

6 Both papers were presented at CRYPTO ’89.
7 Note that the input alphabetΣin and the output alphabetΣout are assumed to be the same here

(denoted asΣ).
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f
l bitsl bits

b bits

Figure 6.1 A compression functionf .

In a typical setting,l is 160 or 256 bits8 andb is 512 bits. The output of the
compression function can be used as a newl-bit chaining value, which is input to
the next iteration of the compression function. This is continued until all message
blocks are exhausted.

f
IV=H

x1 x2

f f

xn

g h(x)
0

H1 Hn

Figure 6.2 An iterated hash functionh.

There are many possibilities to construct a compression function f . A pos-
sibility that is frequently used is to apply a block cipherE on a chaining value
Hi, where the message block is used as a key. Formally, this means thatHi =
Exi(Hi−1) ⊕ Hi−1 for i = 1, . . . , n. This construction is known asDavies-Meyer
compression function, and it is used in most cryptographic hash functions outlined
in Section 6.4.

Using an arbitrary compression function, an iterated hash functionh can be
constructed as illustrated in Figure 6.2. In this figure,f represents the compression

8 In the past,l used to be 128 bits. However, all cryptographic hash functions that use this bitlength
for l have become susceptible to some birthday attacks. Most of these attacks are not particularly
devastating, but their mere existence suggests that one should move to longer values forl, such as
160 or 256 bits.
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function andg represents an output function (that can also be the identityfunction).
The messagex is padded to a multiple ofb bits and divided into a sequence ofn b-bit
blocksx1, . . . , xn. The compression functionf is then repeatedly applied, starting
with an initial value (IV = H0) and the first message blockx1, and continuing with
each new chaining valueHi and successive message blockxi+1 for i = 1, . . . , n.
After the last message blockxn is processed, the final chaining valueHn is subject
to the output functiong,9 and the output of this function yields the output of the hash
functionh for x; that is,h(x). The bottom line is that an iterative hash functionh
for x = x1x2 . . . xn can be recursively defined as follows:

H0 = IV

Hi = f(Hi−1, xi) for i = 1, . . . , n

h(x) = g(Hn)

As mentioned above, the message to be hashed must be padded toa multiple ofb
bits. One possibility is to padx with zeros. Padding with zeros, however, may also
introduce some ambiguity aboutx. For example, the message 101110 padded to 8
bits would be 10111000 and it is then unclear how many trailing zeros were present
in the original message. Several methods are available to resolve this problem.
Merkle proposed to append the bitlength of messagex at the end ofx. Following
this proposal, the padding method of choice in currently deployed hash functions is
to append a one, a variable number of zeros, and the binary encoding of the length
of the original message to the message. We revisit this simple padding scheme when
we discuss the hash function MD4 in the subsequent section.

Merkle and Damgård showed that finding a collision forh in their construc-
tion; that is, finding two input valuesx andx′ with x 6= x′ andh(x) = h(x′), is at
least as hard as finding a collision for the underlying compression functionf . This
means that iff is a collision-resistant compression function andh is an iterated hash
function that employsf in the proposed way, thenh is a cryptographic hash function
that is also collision-resistant. Put in other words: The iterated hash function inherits
the collision resistance property from the underlying compression function. This can
be turned into Theorem 6.1.

Theorem 6.1 If the compression functionf is collision-resistant, then the iterated
hash functionh that is built according to the Merkle-Damgård construction is also
collision-resistant.

Proof. Suppose we can construct a collision forh; that is,h(x) = h(x′) for two
differentx = x1x2 . . . xn andx′ = x′1x

′
2 . . . x

′
n′ . It then follows thatHn = Hn′ ,

9 In some literature, the output function is also called thefinalization function.
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and hencef(Hn−1, xn) = f(Hn′−1, x′n′). Either we have found a collision for the
compression functionf or the inputs forf are the same; that is,(Hn−1, xn) =
(Hn′−1, x′n′). This means thatHn−1 andHn′−1 are equal, andxn and x′n′ are
equal. Sincexn andx′n′ refer to the last block of the respective messages, they
also include the lengths. It thus follows that the lengths are equal, as well; that
is, n = n′. CombiningHn−1 = Hn′−1 with Hn−1 = f(Hn−2, xn−1) and
Hn′−1 = f(Hn′−2, x′n′−1), we can recursively continue the proof. Because the
messagesx andx′ are different,xi andx′i must be different at some pointi, and
this, in turn, means that we get a collision forf . This contradicts our assumption
and completes the proof.

�

In the literature, there are many collision-resistant compression functions that
can be turned into collision-resistant cryptographic hashfunctions with the Merkle-
Damgård construction. Some examples are given in this chapter. More recently,
researchers have come up with alternative designs for cryptographic hash functions
that are also collision-resistant. Most importantly, SHA-3 no longer follows the
Merkle-Damgård, which is outlined toward the end of the chapter.

6.3 HISTORICAL PERSPECTIVE

The driving force behind the development of cryptographic hash functions was pub-
lic key cryptography in general and digital signatures in particular. Consequently,
the former company RSA Security (Section 5.3.3) played a crucial role in the devel-
opment and deployment of many practically relevant cryptographic hash functions.
The first such function developed by RSA Security was acronymed MD—standing
for message digest. It was proprietary and never published. MD2 specified in RFC
1319 [7] was the first published cryptographic hash functionthat was used in the
field.10 When Merkle proposed a cryptographic hash function called SNEFRU that
was several times faster than MD2,11 RSA Security responded with MD412 specified
in RFC 1320 [8] and addressed in Section 6.4.1. MD4 took advantage of the fact
that newer processors could do 32-bit operations, and it wastherefore able to run

10 MD2 was, for example, used in the secure messaging products of RSA Security.
11 The function was proposed in 1990 in a Xerox PARC technicalreport entitledA Software One Way

Function.
12 There was an MD3 cryptographic hash function, but it was superseded by MD4 before it was ever

published or used.
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faster than SNEFRU. In 1991, SNEFRU and some other cryptographic hash func-
tions were successfully attacked13 using differential cryptanalysis [9]. Furthermore,
some weaknesses were found in a version of MD4 with only two rounds instead of
three [10]. This did not break MD4, but it made RSA Security sufficiently nervous
that it was decided to strengthen MD4. The result was MD5 specified in RFC 1321
[11] and addressed in Section 6.4.2. MD5 is more secure than MD4, but it is also a
little bit slower.

During the 1990s, a series of results showed that MD4 was insecure [12] and
MD5 was partially broken [13, 14].14 The situation changed fundamentally when a
group of Chinese researchers led by Xiaoyun Wang published collisions for MD4,
MD5, and a few other cryptographic hash functions in 2004 and2005 [15].15 The
collisions referred to pairs of two-block (i.e., 1,024-bit) messages and two such
message pairs were presented. Since this presentation, many colliding message pairs
have been found and researchers have been able to improve thecollision attacks
against MD5 or apply them in more realistic settings. In 2008, for example, a group
of researchers was able to create a rogue CA certificate due toan MD5 collision.16

The bottom line is that MD4, MD5, and the other cryptographichash functions
attacked by Wang et al. should no longer be used. Nevertheless, MD4 and MD5
may still serve as study objects for the design principles ofiterated hash functions.
As such, they are also addressed in this book.

In 1993, the U.S. NIST proposed theSecure Hash Algorithm(SHA), which
is similar to MD5, but more strengthened and also a little bitslower. Probably after
discovering a never-published weakness in the original SHAproposal,17 the U.S.
NIST revised it and called the new version SHA-1. As such, SHA-1 is specified in

13 The attack was considered successful because it was shownhow to systematically find a collision
(i.e., two messages with the same hash value).

14 In 1993, Bert den Boer and Antoon Bosselaers found collisions for the compression function of
MD5 [13]. In fact, they found pairs of different message blocks and chaining values that compress
to the same value. In 1996, Hans Dobbertin improved this result by finding collisions for different
message blocks that employ the same chaining value [14]. Because this chaining value was still
different from the IV employed by MD5, this result couldn’t be turned into a real attack against the
collision resistance property of MD5.

15 The original paper is available at http://eprint.iacr.org/2004/199.pdf. It was submitted for the
CRYPTO ’04 Conference. Due to a translation error in the Chinese version of Bruce Schneier’s
book entitledApplied Cryptography, however, the paper had a subtle flaw and was rejected for
the conference. Nevertheless, Wang still attended the conference and presented a corrected version
of her results during the rump session. A corrected version of the paper was later submitted to
EUROCRYPT ’05 and published in the respective conference proceedings [15].

16 http://www.win.tue.nl/hashclash/rogue-ca.
17 At CRYPTO ’98, Florent Chabaud and Antoine Joux publisheda weakness of SHA-0 [16]. This

weakness was fixed by SHA-1, so it is reasonable to assume thatthey found the original weakness.
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the Federal Information Processing Standards Publication(FIPS PUB) 180,18 also
known asSecure Hash Standard(SHS). FIPS PUB 180 was first released in 1995.

The second revision of FIPS PUB 180, FIPS PUB 180-2, was released in
August 2002 and became effective in February 2003. In addition to superseding
FIPS 180-1, FIPS 180-2 added three new algorithms that produce and output larger
hash values: SHA-256, SHA-384, and SHA-512. The SHA-1 algorithm specified in
FIPS 180-2 is the same algorithm as the one specified in FIPS 180-1, although some
of the notation has been modified to be consistent with the notation used in SHA-
256, SHA-384, and SHA-512. In February 2004, NIST publisheda change notice for
FIPS 180-2 to additionally include SHA-224.19 SHA-224 is identical to SHA-256,
but uses different initialization values and truncates thefinal hash value to 224 bits.
SHA-224, SHA-256, SHA-384, and SHA-512 generate hash values of 224, 256,
384, and 512 bits. The complexities of collision attacks against these hash functions
is roughly

√
2224 = 2

224
2 = 2112 (SHA-224),2128 (SHA-256),2192 (SHA-384),

and2256 (SHA-512). This means that the respective security levels are comparable
to those that can be achieved with 3DES, AES-128, AES-192, and AES-256 in this
order. So the hash lengths are not randomly chosen but intentionally crafted.

The third revision of FIPS PUB 180, FIPS PUB 180-3, was released in October
2008 and officially introduced SHA-224 as part of the SHS.

In March 2012, a fourth revision of FIPS PUB 180, FIPS PUB 180-4, was
released [19].20 In addition to SHA-1, SHA-224, SHA-256, SHA-384, and SHA-
512, this document also specifies SHA-512/224 and SHA-512/256, two versions of
SHA-512 that generate 224-bit or 256-bit output values. Allalgorithms specified in
FIPS PUB 180-4 together with their length parameters (i.e.,message, block, word,
and hash value sizes), are summarized in Table 6.1. The majordistinction is between
SHA-1, SHA-224, and SHA-256 on the one hand, and SHA-384, SHA-512, SHA-
512/224, and SHA-512/256 on the other hand. While the first group operates on 32-
bit words and 512-bit message blocks, the second group operates on 64-bit words
and 1024-bit message blocks. In either case, a message blockconsists of 16 words.
Except from this distinction, the inner working principlesof all cryptographic hash
functions specified in FIPS PUB 180-4 are very similar. This will become clear when
we step through the functions in Section 6.4.4.

The cryptographic hash functions specified in FIPS PUB 180-4can be used for
the processing of sensitive unclassified information. Onlythe use of SHA-1 must be
considered with care and should be avoided whenever possible. According to NIST
Special Publication 800-131A, for example, SHA-1 should nolonger be used for the

18 SHA-1 is also specified in informational RFC 4634 [17].
19 SHA-224 is also specified in informational RFC 3874 [18].
20 The applicability clause of FIPS PUB 180-4 was slightly revised in August 2015. The publication

is currently complemented by FIPS PUB 202 (as addressed below).
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Table 6.1
Secure Hash Algorithms as Specified in FIPS 180-4 [19]

Algorithm Message Size Block Size Word Size Hash Value Size

SHA-1 < 264 bits 512 bits 32 bits 160 bits
SHA-224 < 264 bits 512 bits 32 bits 224 bits
SHA-256 < 264 bits 512 bits 32 bits 256 bits
SHA-384 < 2128 bits 1,024 bits 64 bits 384 bits
SHA-512 < 2128 bits 1,024 bits 64 bits 512 bits
SHA-512/224 < 2128 bits 1,024 bits 64 bits 224 bits
SHA-512/256 < 2128 bits 1,024 bits 64 bits 256 bits

generation of digital signatures (for other applications,the use of SHA-1 may still
be appropriate).

One year after the publication of collisions for MD4, MD5, and other crypto-
graphic hash functions, Wang et al. presented collisions for SHA-1 [20]. Their attack
requires only269 (instead of280 in a brute-force attack) hash operations to find a
collision in SHA-1, but the attack can be improved theoretically to 263 operations.
The attack was widely discussed in the media and made people nervous about the
security of all deployed cryptographic hash functions. In November 2005, NIST held
a workshop on the topic. The recommendations that came out ofthis workshop were
that one should:

1. Transition rapidly to the stronger SHA-2 family of hash functions—especially
for digital signatures;

2. Encourage cryptographic hash function research to better understand hash
function design and attacks;

3. Run a competition for one (or several) standardized cryptographic hash func-
tion(s).

The third recommendation was rapidly put in place and a respective SHA-3
competition was initiated in 2007.21 Until the end of October 2008, NIST received
64 submissions from the international cryptographic research community. In De-
cember 2008, NIST selected 51 algorithms for round 1 of the SHA-3 competition.
In July 2009, this field was narrowed to 14 algorithms for round 2, and in December

21 http://www.nist.gov/hash-competition.
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2010, NIST announced five finalists for round 3: BLAKE,22 Grøstl,23 KECCAK,24

JH,25 and Skein26 (in alphabetical order). BLAKE, Grøstl, and KECCAK were Eu-
ropean proposals, whereas JH was from Singapore, and Skein was the only proposal
from the United States.

On October 2, 2012, NIST officially announced the selection of K ECCAK

as the winner of the SHA-3 competition and the new SHA-3 hash function (the
names KECCAK and SHA-3 are sometimes used synonymously and interchange-
ably). KECCAK was designed by a team of cryptographers from Belgium and Italy.
According to NIST, KECCAK was chosen “for its elegant design, large security mar-
gin, good general performance, excellent efficiency in hardware implementations,
and for its flexibility.” It is intended to complement the existing SHA-2 family of
cryptographic hash functions (rather than to replace it), and hence SHA-2 and SHA-
3 are likely to coexist in the future (and they really do as onecan observe today).

In addition to the cryptographic hash functions proposed byRSA Security and
NIST, there are also a few other proposals, such as RIPEMD-128 and RIPEMD-160
[21, 22],27 HAVAL [23], Tiger and Tiger2,28 as well as Whirlpool.29 The security of
these hash functions is not as thoroughly examined as the security of the other hash
functions mentioned above. Therefore, their security should be taken with a grain
of salt, and they should be used defensively. Anyway, they are not addressed in this
book.

6.4 EXEMPLARY HASH FUNCTIONS

In this section, we delve more deeply into some exemplary hash functions that
are used in the field. This includes MD4, MD5, SHA-1, the SHA-2family, and
KECCAK/SHA-3. MD4, MD5, and SHA-1 are addressed mainly because they are
important milestones in the development of cryptographic hash functions. From
today’s perspective, they should no longer be used (becausepeople have been
able to find collisions). Instead, the cryptographic hash functions of choice are
the representatives from the SHA-2 family, the finalists of the SHA-3 competition,

22 http://131002.net/blake.
23 http://www.groestl.info.
24 http://keccak.noekeon.org.
25 http://www3.ntu.edu.sg/home/wuhj/research/jh.
26 http://skein-hash.info.
27 There are also 256- und 320-bit versions of RIPEM, known asRIPEM-256 and RIPEM-320. But

these versions of RIPEM are hardly used in practice.
28 http://www.cs.technion.ac.il/∼biham/Reports/Tiger.
29 Whirlpool is a predecessor of KECCAK. Further information about Whirlpool is available at

http://www.larc.usp.br/∼pbarreto/WhirlpoolPage.html.
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and—most importantly—KECCAK/SHA-3. If you are not particularly interested in
the technical details of these hash functions, then you may skip this section without
difficulty.

6.4.1 MD4

As mentioned above, MD4 was proposed in 1990 and specified in RFC 1320 [8].30

It follows the Merkle-Damgård construction and uses a Davies-Meyer compression
function with b = 512 and l = 128, so the length of an MD4 hash value is 128
bits. MD4 was designed to be efficiently executed on 32-bit processors with a little-
endian architecture.31

Letm = m0m1 . . .ms−1 be ans-bit message that is to be hashed. MD4 first
generates an arrayw of n 32-bit words

w = w[0] ‖ [1] ‖ . . . ‖ w[n− 1]

wheren is a multiple of 16; that is,n ≡ 0 (mod 16). Hence, the bitlength ofw is a
multiple of32 · 16 = 512 bits. Thes bits ofm are distributed as follows:

w[0] = m0m1 . . .m31

w[1] = m32m33 . . .m63

. . .

w[n− 1] = ms−32ms−31 . . .ms−1

More specifically, the arrayw is constructed in two steps:

• First,m is padded so that the bitlength is congruent to 448 modulo 512. The
padding consists of a one and a variable number of zeros. Notethat padding
is always performed, even if the length of the message is already congruent to
448 modulo 512. Also note that the padded message is 64 bits short of being
a multiple of 512 bits.

30 The original version of MD4 was published in October 1990 in RFC 1196. A slightly revised
version was published soon after in April 1992 in RFC 1320. This was the same time when the
RFC documents specifying MD2 [7] and MD5 [11] were also published.

31 A little-endian architecturemeans that a 4-byte worda1a2a3a4 is stored asa4a3a2a1 and
represents the integera4224 + a3216 + a228 + a1. In a big-endian architecture, the same 4-
byte word would be stored asa1a2a3a4 and represent the integera1224 + a2216 + a328 + a4.
It is rumored that Rivest designed MD4 for a little-endian architecture mainly because he observed
that big-endian architectures are generally faster and could therefore better afford the processing
penalty (of reversing each word before processing it).



130 Cryptography 101: From Theory to Practice

• Second, a 64-bit binary representation ofs (i.e., the bitlength of the original
message before padding), is appended to the result of the first step. In the
unlikely case ofs being greater than264, only the low-order 64 bits ofs are
used (i.e.,s is computed modulo264). In either case, the 64 bits yield the last
two words ofw; that is,w[n− 2] andw[n− 1].

Original message 10000000000000 (s)

1 - 512 bits 64 bits

2

Multiple of 512 bits

Figure 6.3 The structure of a message preprocessed to be hashed using MD4.

The structure of a message preprocessed to be hashed using MD4 is illustrated
in Figure 6.3. The bitlength is a multiple of 512 bits, and hence the number of 32-
words is a multiple of 16. This is the starting point of the MD4algorithm overviewed
in Algorithm 6.1. It takes as input ans-bit messagem, and it generates as output a
128-bit hash valueh(m). Internally, the algorithm uses four 32-bit registersA, B,
C, andD.

The algorithm starts with the construction of ann-word arrayw as described
above and the initialization of the four registers with constant values. These values
are constructed as follows:

0111 0110 0101 0100 0011 0010 0001 0000 = 0x76543210 = 0x67452301

1111 1110 1101 1100 1011 1010 1001 1000 = 0xFEDCBA98 = 0xEFCDAB89

1000 1001 1010 1011 1100 1101 1110 1111 = 0x89ABCDEF = 0x98BADCFE

0000 0001 0010 0011 0100 0101 0110 0111 = 0x01234567 = 0x10325476

On the left side, there are four lines of eight 4-bit counters. The counter starts
on the right sides of the first line with 0000 and goes up to 1111on the left side
of the second line. The same is done on line three and four, butthis time it starts
with 0000 on the left side of line four and goes up to 1111 on theright side of line
three. In each line, the eight 4-bit values represent eight hexadecimal digits that are
written in big-endian format. The eight digits refer to fourbytes, and if each of these
bytes is written in little-endian format, then one ends withthe values that stand in
the rightmost column. These are the constant values that areused to initialize the
four registersA,B, C, andD (in this order).

After this initialization, the arrayw is processed inn/16 iterations. In each
iteration, the next 16 words (512 bits) ofw are stored in arrayX and the values of
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Algorithm 6.1 The MD4 hash function (overview).

(m)

Constructw = w[0] ‖ w[1] ‖ . . . ‖ w[n− 1]
A = 0x67452301
B = 0xEFCDAB89
C = 0x98BADCFE
D = 0x10325476
for i = 0 to n/16 − 1 do

for j = 0 to 15 doX[j] = w[i · 16 + j]
A′ = A
B′ = B
C′ = C
D′ = D

Round 1 (Algorithm 6.2)
Round 2 (Algorithm 6.3)
Round 3 (Algorithm 6.4)
A = A+A′

B = B + B′

C = C + C′

D = D +D′

(h(m) = A ‖ B ‖ C ‖ D)

the four registersA,B, C, andD are stored inA′,B′, C′, andD′ for later reuse. In
the main part of the algorithm, the compression function is applied in three rounds
(i.e., Round 1, Round 2, and Round 3). These rounds are summarized in Algorithms
6.2, 6.3, and 6.4. In each round, the registers are updated ina specific way using the
16 words ofX . Finally, the four registers are updated by adding back the original
values that have been stored inA′, B′, C′, andD′. After then/16 iterations, the
actual contents of the four registers are concatenated, andthe resulting4 · 32 = 128
bits yield the outputh(m) of the hash function.

In the three round functions of Algorithms 6.2, 6.3, and 6.4,the “normal”
Boolean operators∧ (AND), ∨ (OR),⊕ (XOR), and¬ (NOT) are applied bitwise
on words to form the following three logical functionsf , g, andh:

f(X,Y, Z) = (X ∧ Y ) ∨ ((¬X) ∧ Z)
g(X,Y, Z) = (X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z)
h(X,Y, Z) = X ⊕ Y ⊕ Z

Each of these functions is used in one particular round:f in round 1,g in round
2, andh in round 3. Each function takes as input three 32-bit words and produces as
output a 32-bit word. The truth table of the functions is illustrated in Table 6.2.
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Algorithm 6.2 Round 1 of the MD4 hash function.

1.A = (A+ f(B, C,D) +X[0])
y←֓ 3

2.D = (D + f(A,B, C) +X[1])
y←֓ 7

3.C = (C + f(D,A,B) +X[2])
y←֓ 11

4.B = (B + f(C,D,A) +X[3])
y←֓ 19

5.A = (A+ f(B, C,D) +X[4])
y←֓ 3

6.D = (D + f(A,B, C) +X[5])
y←֓ 7

7.C = (C + f(D,A,B) +X[6])
y←֓ 11

8.B = (B + f(C,D,A) +X[7])
y←֓ 19

9.A = (A+ f(B, C,D) +X[8])
y←֓ 3

10.D = (D + f(A,B, C) +X[9])
y←֓ 7

11.C = (C + f(D,A,B) +X[10])
y←֓ 11

12.B = (B + f(C,D,A) +X[11])
y←֓ 19

13.A = (A+ f(B, C,D) +X[12])
y←֓ 3

14.D = (D + f(A,B, C) +X[13])
y←֓ 7

15.C = (C + f(D,A,B) +X[14])
y←֓ 11

16.B = (B + f(C,D,A) +X[15])
y←֓ 19

• The functionf is known as theselection function, because if the n-th bit ofX
is 1, then it selects the n-th bit ofY for the n-th bit of the output. Otherwise
(i.e., if the n-th bit ofX is 0), it selects the n-th bit ofZ for the n-th bit of the
output.

• The functiong is known as themajority function, because the n-th bit of the
output is 1 if and only if at least two of the three input words’n-th bits are 1.

• Last but not least, the functionh simply adds all input words modulo 2.

In addition to these logical functions, MD4 also employs theinteger addition modulo
232 operation (+) and the circular left shift (rotate) operation for words. More
specifically,X

y←֓ c refers to thec-bit left rotation (circular left shift) of wordw
(with 0 ≤ c ≤ 31).

Note that all operations employed by MD4 are fast and can be implemented
efficiently in hardware and software. Also note that rounds 2and 3 take into account
two constantsc1 (in round 2) andc2 (in round 3). They are defined as follows:

• c1 = ⌊230
√
2⌋ = 1, 518, 500, 249 (decimal)= 101101010000010011110011

0011001 (binary) = 0x5A827999 (hexadecimal);
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Algorithm 6.3 Round 2 of the MD4 hash function.

1.A = (A+ g(B, C,D) +X[0] + c1)
y←֓ 3

2.D = (D + g(A,B, C) +X[4] + c1)
y←֓ 5

3.C = (C + g(D,A,B) +X[8] + c1)
y←֓ 9

4.B = (B + g(C,D,A) +X[12] + c1)
y←֓ 13

5.A = (A+ g(B, C,D) +X[1] + c1)
y←֓ 3

6.D = (D + g(A,B, C) +X[5] + c1)
y←֓ 5

7.C = (C + g(D,A,B) +X[9] + c1)
y←֓ 9

8.B = (B + g(C,D,A) +X[13] + c1)
y←֓ 13

9.A = (A+ g(B, C,D) +X[2] + c1)
y←֓ 3

10.D = (D + g(A,B, C) +X[6] + c1)
y←֓ 5

11.C = (C + g(D,A,B) +X[10] + c1)
y←֓ 9

12.B = (B + g(C,D,A) +X[14] + c1)
y←֓ 13

13.A = (A+ g(B,C,D) +X[3] + c1)
y←֓ 3

14.D = (D + g(A,B, C) +X[7] + c1)
y←֓ 5

15.C = (C + g(D,A,B) +X[11] + c1)
y←֓ 9

16.B = (B + g(C,D,A) +X[15] + c1)
y←֓ 13

• c2 = ⌊230
√
3⌋ = 1, 859, 775, 393 = 1101110110110011110101110100001

= 0x6ED9EBA1.

A reference implementation of MD4 in the C programming language is given in
Appendix A of [8]. Again, note that the security of MD4 was breached a long time
ago, and that it must not be used anymore. We only use it as a starting point to
explain MD5 and SHA-1.

6.4.2 MD5

As mentioned above, MD5 is a strengthened version of MD4 thatwas proposed in
1991 and specified in RFC 1321 [11]. It is conceptually and structurally very similar
to MD4, and hence Algorithm 6.5 that overviews the MD5 hash function looks like
Algorithm 6.1 that overviews MD4. The main difference is that MD5 invokes four
rounds (instead of three). This is advantageous from a security viewpoint, but it is
disadvantageous from a performance viewpoint. In fact, theadditional round in MD5
decreases its performance in proportion (i.e., for about one third or 30%). The four
rounds of MD5 are specified in Algorithms 6.6 to 6.9. There area few differences in
the rounds and operations they consist of:
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Algorithm 6.4 Round 3 of the MD4 hash function.

1.A = (A+ h(B,C,D) +X[0] + c2)
y←֓ 3

2.D = (D + h(A,B, C) +X[8] + c2)
y←֓ 9

3.C = (C + h(D,A,B) +X[4] + c2)
y←֓ 11

4.B = (B + h(C,D,A) +X[12] + c2)
y←֓ 15

5.A = (A+ h(B,C,D) +X[2] + c2)
y←֓ 3

6.D = (D + h(A,B, C) +X[10] + c2)
y←֓ 9

7.C = (C + h(D,A,B) +X[6] + c2)
y←֓ 11

8.B = (B + h(C,D,A) +X[14] + c2)
y←֓ 15

9.A = (A+ h(B,C,D) +X[1] + c2)
y←֓ 3

10.D = (D + h(A,B,C) +X[9] + c2)
y←֓ 9

11.C = (C + h(D,A,B) +X[5] + c2)
y←֓ 11

12.B = (B + h(C,D,A) +X[13] + c2)
y←֓ 15

13.A = (A+ h(B,C,D) +X[3] + c2)
y←֓ 3

14.D = (D + h(A,B,C) +X[11] + c2)
y←֓ 9

15.C = (C + h(D,A,B) +X[7] + c2)
y←֓ 11

16.B = (B + h(C,D,A) +X[15] + c2)
y←֓ 15

• The majority functiong of MD5 was changed from

g(X,Y, Z) = (X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z)

to

g(X,Y, Z) = ((X ∧ Z) ∨ (Y ∧ (¬Z))

to make it less symmetric. Also, a new logical functioni was introduced to be
used in the fourth round. This function is defined as follows:

i(X,Y, Z) = Y ⊕ (X ∨ (¬Z))

The other two logical functions,f andh, remain unchanged. The truth table
of all logical functions employed by MD5 is illustrated in Table 6.3. Note that
the columns forf andh are the same as in Table 6.2, the column forg is
slightly different, and the column fori is entirely new.

• The MD5 hash function employs a 64-word tableT (instead ofc1 andc2) that
is constructed from the sine function. LetT [i] be the i-th element of the table
T , then

T [i] = ⌊4, 294, 967, 296 · | sin(i)|⌋
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Table 6.2
Truth Table of the Logical Functions Employed by MD4

X Y Z f g h

0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 0 1 0
1 1 0 1 1 0
1 1 1 1 1 1

wherei is in radians. Because4, 294, 967, 296 is equal to232 and| sin(i)| is
a number between0 and1, each element ofT is an integer that represents 32
bits. Consequently, the tableT provides a “randomized” set of 32-bit patterns,
which should eliminate any regularities in the input. The elements ofT are
listed in Table 6.4. As an example, let’s look atT [1]: The sine of 1 in radian
is 0.8414709848 . . ., and this value multiplied with4, 294, 967, 296 is equal
to a value whose integer part is 3614090360 or 0xD76AA478. This is the first
entry inT . All other entries are generated the same way.

Again, a reference implementation for MD5 in the C programming language is
given in Appendix A of [11]. It is known that MD5 is susceptible to collision attacks,
and such attacks have been successfully mounted in the past.While a “normal”
collision search attack requires264 messages to be hashed, the collision attack of
Wang et al. [15] requires about239 messages to be hashed and the best-known attack
only 232. This value is sufficiently small to turn the attack into a practical threat. The
bottom line is that MD5 (like MD4) must not be used anymore.

6.4.3 SHA-1

SHA-1 is conceptually and structurally similar to MD5 (and hence also to MD4). As
mentioned in Section 6.3, it was the first cryptographic hashfunction standardized
by the U.S. NIST [19] as part of the SHS (that currently also comprises a few
other cryptographic hash functions from the SHA-2 family).The two most important
differences between SHA-1 and MD5 are that SHA-1 was designed to run optimally
on computer systems with a big-endian architecture (instead of a little-endian
architecture), and that it employs five registersA, B, C, D, andE (instead of only
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Algorithm 6.5 The MD5 hash function (overview).

(m)

Constructw = w[0] ‖ w[1] ‖ . . . ‖ w[n− 1]
A = 0x67452301
B = 0xEFCDAB89
C = 0x98BADCFE
D = 0x10325476
for i = 0 to n/16 − 1 do

for j = 0 to 15 doX[j] = w[i · 16 + j]
A′ = A
B′ = B
C′ = C
D′ = D

Round 1 (Algorithm 4.6)
Round 2 (Algorithm 4.7)
Round 3 (Algorithm 4.8)
Round 4 (Algorithm 4.9)
A = A+A′

B = B + B′

C = C + C′

D = D +D′

(h(m) = A ‖ B ‖ C ‖ D)

four).32 Five times 32 equals 160, and hence the output length of a SHA-1 hash value
is 160 bits (instead of 128 bits as with MD4 and MD5).

Instead off , g, h, andi, SHA-1 uses a sequence of 80 logical functionsf0,
f1, . . . ,f79 that are defined as follows:

ft(X,Y, Z) =







Ch(X,Y, Z) = (X ∧ Y )⊕ ((¬X) ∧ Z) 0 ≤ t ≤ 19
Parity(X,Y, Z) = X ⊕ Y ⊕ Z 20 ≤ t ≤ 39
Maj(X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z)⊕ (Y ∧ Z) 40 ≤ t ≤ 59
Parity(X,Y, Z) = X ⊕ Y ⊕ Z 60 ≤ t ≤ 79

Note that theParity function occurs twice (for20 ≤ t ≤ 39 and60 ≤ t ≤ 79).
Also note that⊕ can be replaced by∨ in the formulas to computeCh andMaj
without changing the result. The truth table of these functions is illustrated in Table
6.5 (where forParity function occurs twice for the sake of completeness).

Instead ofc1 andc2 (as with MD4) or the 64 words of theT table (as with
MD5), SHA-1 uses 4 constant 32-bit words that are used to build a sequence of 80

32 Needless to say, the registerE requires a new initialization value that is 0xC3D2E1F0 (see
Algorithm 6.10).
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Table 6.3
Truth Table of the Logical Functions Employed by MD5

X Y Z f g h i

0 0 0 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 1 1 0
0 1 1 1 0 0 1
1 0 0 0 0 1 1
1 0 1 0 1 0 1
1 1 0 1 1 0 0
1 1 1 1 1 1 0

wordsK0,K1, . . . ,K79. This sequence is defined as follows:

Kt =







⌊230
√
2⌋ = 0x5A827999 0 ≤ t ≤ 19

⌊230
√
3⌋ = 0x6ED9EBA1 20 ≤ t ≤ 39

⌊230
√
5⌋ = 0x8F1BBCDC 40 ≤ t ≤ 59

⌊230
√
10⌋ = 0xCA62C1D6 60 ≤ t ≤ 79

Note that the first two words are equal toc1 andc2 from MD4, and that the second
two words are generated in a similar way.

The SHA-1 hash function is overviewed in Algorithm 6.10. There are three
main differences to MD4 (Algorithm 6.1) and MD5 (Algorithm 6.5):

• First, the preprocessing of a message is similar to MD4 and MD5, but there
are two subtle differences:

1. As mentioned above, SHA-1 assumes a big-endian architecture (i.e., the
leftmost byte of the binary representation ofs also appears leftmost).

2. Whilew is an array of 32-bit words in MD4 and MD5, SHA-1 uses an
arrayb of 16-word blocks instead. Hence,b[i] (i = 0, 1, . . . , n−1) refers
to a 16-word block that is16 · 32 = 512 bits long.

• Second, SHA-1 uses each 16-word block fromb to recursively derive an 80-
word message scheduleW as follows:

Wt =

{
b 0 ≤ t ≤ 15

(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)
y←֓ 1 16 ≤ t ≤ 79
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Algorithm 6.6 Round 1 of the MD5 hash function.

1.A = (A+ f(B, C,D) +X[0] + T [1])
y←֓ 7

2.D = (D + f(A,B, C) +X[1] + T [2])
y←֓ 12

3.C = (C + f(D,A,B) +X[2] + T [3])
y←֓ 17

4.B = (B + f(C,D,A) +X[3] + T [4])
y←֓ 22

5.A = (A+ f(B, C,D) +X[4] + T [5])
y←֓ 7

6.D = (D + f(A,B, C) +X[5] + T [6])
y←֓ 12

7.C = (C + f(D,A,B) +X[6] + T [7])
y←֓ 17

8.B = (B + f(C,D,A) +X[7] + T [8])
y←֓ 22

9.A = (A+ f(B, C,D) +X[8] + T [9])
y←֓ 7

10.D = (D + f(A,B, C) +X[9] + T [10])
y←֓ 12

11.C = (C + f(D,A,B) +X[10] + T [11])
y←֓ 17

12.B = (B + f(C,D,A) +X[11] + T [12])
y←֓ 22

13.A = (A+ f(B,C,D) +X[12] + T [13])
y←֓ 7

14.D = (D + f(A,B, C) +X[13] + T [14])
y←֓ 12

15.C = (C + f(D,A,B) +X[14] + T [15])
y←֓ 17

16.B = (B + f(C,D,A) +X[15] + T [16])
y←֓ 22

The 16 words ofb become the first 16 words ofW . The remaining80− 16 =
64 words ofW are generated according to the formula. Note that neither MD4
nor MD5 uses a message schedule.

• Third, SHA-1 does not operate in “official” rounds. Instead,the algorithm has
an inner loop that is iterated 80 times. Since the iterationsuse four different
f -functions, the resulting algorithm can still be seen as onethat internally
operates in rounds (sometimes calledstages).

Because SHA-1 uses five registersA, B, C, D, andE (instead of only four)
and the operations are more involved, SHA-1 is a little bit less efficient than its
predecessors. On the other hand, SHA-1 hash values are longer than MD4 and
MD5 hash values (160 instead of 128 bits), and hence SHA-1 is potentially more
resistant against collision attacks. So people had been advocating the use of SHA-1
(instead of MD4 or MD5) for quite some time. But as mentioned above, SHA-1 was
theoretically broken in 2005 [20]. While a “normal” collision attack against SHA-1
requires280 messages to be hashed, this attack requires only269 messages. This is
clearly more efficient than brute force, but the respective attack is still difficult to
mount in practice. Since 2005, the attack has been improved (e.g., [24]), both in
terms of finding collisions for reduced-round versions of SHA-1, as well as finding
collisions for the full version of SHA-1.
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Algorithm 6.7 Round 2 of the MD5 hash function.

1.A = (A+ g(B,C,D) +X[1] + T [17])
y←֓ 5

2.D = (D + g(A,B, C) +X[6] + T [18])
y←֓ 9

3.C = (C + g(D,A,B) +X[11] + T [19])
y←֓ 14

4.B = (B + g(C,D,A) +X[0] + T [20])
y←֓ 20

5.A = (A+ g(B,C,D) +X[5] + T [21])
y←֓ 5

6.D = (D + g(A,B, C) +X[10] + T [22])
y←֓ 9

7.C = (C + g(D,A,B) +X[15] + T [23])
y←֓ 14

8.B = (B + g(C,D,A) +X[4] + T [24])
y←֓ 20

9.A = (A+ g(B,C,D) +X[9] + T [25])
y←֓ 5

10.D = (D + g(A,B, C) +X[14] + T [26])
y←֓ 9

11.C = (C + g(D,A,B) +X[3] + T [27])
y←֓ 14

12.B = (B + g(C,D,A) +X[8] + T [28])
y←֓ 20

13.A = (A+ g(B,C,D) +X[13] + T [29])
y←֓ 5

14.D = (D + g(A,B, C) +X[2] + T [30])
y←֓ 9

15.C = (C + g(D,A,B) +X[7] + T [31])
y←֓ 14

16.B = (B + g(C,D,A) +X[12] + T [32])
y←֓ 20

In 2011, the U.S. NIST finally deprecated SHA-1, and disallowed its use for
digital signatures by the end of 2013. This was a wise decision, because a few years
later two devastating attacks brought SHA-1 to the end of itslife cycle: An attack
called SHAttered33 in 2017 and a chosen-prefix attack called “SHA-1 is a Shambles”
in 2019.34 In light of these attacks, SHA-1 should really be replaced byanother
cryptographic hash function as soon as possible, preferably by a representative of
the SHA-2 family or KECCAK/SHA-3.

6.4.4 SHA-2 Family

As mentioned above, FIPS PUB 180-4 [19] specifies multiple cryptographic hash
functions in addition to SHA-1 that are collectively referred to as theSHA-2 family.
The output length of these hash functions is part of their name, so SHA-224 refers
to a function that outputs 224-bit hash values. The same is true for SHA-256, SHA-
384, and SHA-512. SHA-512/224 and SHA-512/256 are similar to SHA-512, but
their output is truncated to 224 and 256 bits, respectively.

The cryptographic hash functions from the SHA-2 family employ the sameCh
andMaj functions that are used in SHA-1. They can be applied to 32-bit or 64-bit

33 https://shattered.io.
34 https://sha-mbles.github.io.
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Algorithm 6.8 Round 3 of the MD5 hash function.

1.A = (A+ h(B,C,D) +X[5] + T [33])
y←֓ 4

2.D = (D + h(A,B,C) +X[8] + T [34])
y←֓ 11

3.C = (C + h(D,A,B) +X[11] + T [35])
y←֓ 16

4.B = (B + h(C,D,A) +X[14] + T [36])
y←֓ 23

5.A = (A+ h(B,C,D) +X[1] + T [37])
y←֓ 4

6.D = (D + h(A,B,C) +X[4] + T [38])
y←֓ 11

7.C = (C + h(D,A,B) +X[7] + T [39])
y←֓ 16

8.B = (B + h(C,D,A) +X[10] + T [40])
y←֓ 23

9.A = (A+ h(B,C,D) +X[13] + T [41])
y←֓ 4

10.D = (D + h(A,B, C) +X[0] + T [42])
y←֓ 11

11.C = (C + h(D,A,B) +X[3] + T [43])
y←֓ 16

12.B = (B + h(C,D,A) +X[6] + T [44])
y←֓ 23

13.A = (A+ h(B,C,D) +X[9] + T [45])
y←֓ 4

14.D = (D + h(A,B, C) +X[12] + T [46])
y←֓ 11

15.C = (C + h(D,A,B) +X[15] + T [47])
y←֓ 16

16.B = (B + h(C,D,A) +X[2] + T [48])
y←֓ 23

words. In the case of SHA-224 and SHA-256, these two functions are complemented
by the following four functions that take a 32-bit input wordX and generate a 32-bit
output word:

Σ
{256}
0 (X) = (X

x→֒ 2)⊕ (X
x→֒ 13)⊕ (X

x→֒ 22)

Σ
{256}
1 (X) = (X

x→֒ 6)⊕ (X
x→֒ 11)⊕ (X

x→֒ 25)

σ
{256}
0 (X) = (X

x→֒ 7)⊕ (X
x→֒ 18)⊕ (X →֒ 3)

σ
{256}
1 (X) = (X

x→֒ 17)⊕ (X
x→֒ 19)⊕ (X →֒ 10)

Note that the last terms in the computation ofσ
{256}
0 andσ{256}1 comprise thec-

bit right shift operator (֒→) instead of thec-bit circular right shift (right rotation)
operator (

x→֒) used elsewhere.
All other hash functions from the SHA-2 family use similar functions that take

a 64-bit input wordX and generate a 64-bit output. These functions are defined as
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Algorithm 6.9 Round 4 of the MD5 hash function.

1.A = (A+ i(B,C,D) +X[0] + T [49])
y←֓ 6

2.D = (D + i(A,B,C) +X[7] + T [50])
y←֓ 10

3.C = (C + i(D,A,B) +X[14] + T [51])
y←֓ 15

4.B = (B + i(C,D,A) +X[5] + T [52])
y←֓ 21

5.A = (A+ i(B,C,D) +X[12] + T [53])
y←֓ 6

6.D = (D + i(A,B,C) +X[3] + T [54])
y←֓ 10

7.C = (C + i(D,A,B) +X[10] + T [55])
y←֓ 15

8.B = (B + i(C,D,A) +X[1] + T [56])
y←֓ 21

9.A = (A+ i(B,C,D) +X[8] + T [57])
y←֓ 6

10.D = (D + i(A,B, C) +X[15] + T [58])
y←֓ 10

11.C = (C + i(D,A,B) +X[6] + T [59])
y←֓ 15

12.B = (B + i(C,D,A) +X[13] + T [60])
y←֓ 21

13.A = (A+ i(B,C,D) +X[4] + T [61])
y←֓ 6

14.D = (D + i(A,B, C) +X[11] + T [62])
y←֓ 10

15.C = (C + i(D,A,B) +X[2] + T [63])
y←֓ 15

16.B = (B + i(C,D,A) +X[9] + T [64])
y←֓ 21

follows:

Σ
{512}
0 (X) = (X

x→֒ 28)⊕ (X
x→֒ 34)⊕ (X

x→֒ 39)

Σ
{512}
1 (X) = (X

x→֒ 14)⊕ (X
x→֒ 18)⊕ (X

x→֒ 41)

σ
{512}
0 (X) = (X

x→֒ 1)⊕ (X
x→֒ 8)⊕ (X →֒ 7)

σ
{512}
1 (X) = (X

x→֒ 19)⊕ (X
x→֒ 61)⊕ (X →֒ 6)

While SHA-1 uses four 32-bit words to represent the constantsK0,K1, . . . ,K79,
SHA-224 and SHA-256 use the same sequence of 64 distinct 32-bit words to
represent the constants

K
{256}
0 ,K

{256}
1 , . . . ,K

{256}
63 .

These 64 words are generated by taking the first 32 bits of the fractional parts of the
cube roots of the first 64 prime numbers. In hexadecimal notation, these words are
as follows:

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174
e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da
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Table 6.4
The Elements of TableT Employed by the MD5 Hash Function

T [1]=0xD76AA478 T [17]=0xF61E2562 T [33]=0xFFFA3942 T [49]=0xF4292244
T [2]=0xE8C7B756 T [18]=0xC040B340 T [34]=0x8771F681 T [50]=0x432AFF97
T [3]=0x242070DB T [19]=0x265E5A51 T [35]=0x6D9D6122 T [51]=0xAB9423A7
T [4]=0xC1BDCEEE T [20]=0xE9B6C7AA T [36]=0xFDE5380C T [52]=0xFC93A039
T [5]=0xF57C0FAF T [21]=0xD62F105D T [37]=0xA4BEEA44 T [53]=0x655B59C3
T [6]=0x4787C62A T [22]=0x02441453 T [38]=0x4BDECFA9 T [54]=0x8F0CCC92
T [7]=0xA8304613 T [23]=0xD8A1E681 T [39]=0xF6BB4B60 T [55]=0xFFEFF47D
T [8]=0xFD469501 T [24]=0xE7D3FBC8 T [40]=0xBEBFBC70 T [56]=0x85845DD1
T [9]=0x698098D8 T [25]=0x21E1CDE6 T [41]=0x289B7EC6 T [57]=0x6FA87E4F
T [10]=0x8B44F7AF T [26]=0xC33707D6 T [42]=0xEAA127FA T [58]=0xFE2CE6E0
T [11]=0xFFFF5BB1 T [27]=0xF4D50D87 T [43]=0xD4EF3085 T [59]=0xA3014314
T [12]=0x895CD7BE T [28]=0x455A14ED T [44]=0x04881D05 T [60]=0x4E0811A1
T [13]=0x6B901122 T [29]=0xA9E3E905 T [45]=0xD9D4D039 T [61]=0xF7537E82
T [14]=0xFD987193 T [30]=0xFCEFA3F8 T [46]=0xE6DB99E5 T [62]=0xBD3AF235
T [15]=0xA679438E T [31]=0x676F02D9 T [47]=0x1FA27CF8 T [63]=0x2AD7D2BB
T [16]=0x49B40821 T [32]=0x8D2A4C8A T [48]=0xC4AC5665 T [64]=0xEB86D391

983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85
a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070
19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3
748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2

Consider the first word as an example: According to its definition, it refers to
the first 32 bits of the fractional part of the cube root of the first prime number, which
is 2. 3
√
2 = 1.25992104 . . . and hence its fractional part is0.25992104 . . . In binary

notation, this value can be written as0.01000010100010100010111110011000 that
translates to 0x428a2f98. The validity of this word can alsobe verified the other way
round: 428a2f98 when interpreted as a hexadecimal fractionrepresents

4

16
+

2

162
+

8

163
+

10

164
+

2

165
+

15

166
+

9

167
+

8

168

and this value is approximately equal to0.2599210496991873. So when one adds
back the nonfractional part (which is 1), one gets1.25992104 . . . which is the cube-
root of 2 and the original starting point of our considerations.

Similarly, SHA-384, SHA-512, SHA-512/224, and SHA-512/256 use a se-
quence of 80 distinct 64-bit words to represent the constants

K
{512}
0 ,K

{512}
1 , . . . ,K

{512}
79
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Algorithm 6.10 The SHA-1 hash function (overview).

(m)

Constructb = b[0] ‖ b[1] ‖ . . . ‖ b[n− 1]
A = 0x67452301
B = 0xEFCDAB89
C = 0x98BADCFE
D = 0x10325476
E = 0xC3D2E1F0
for i = 0 to n− 1 do

Derive message scheduleW from b[i]
A′ = A
B′ = B
C′ = C

D′ = D
E′ = E
for t = 0 to 79 do

T = (A
y←֓ 5) + ft(B,C,D) +E +Kt +Wt

E = D
D = C

C = B
y←֓ 30

B = A
A = T

A = A+A′

B = B +B′

C = C + C′

D = D +D′

E = E +E′

(h(m) = A ‖ B ‖ C ‖ D ‖ E)

These 80 words represent the first 64 bits of the fractional parts of the cube roots of
the first 80 prime numbers (so the first 32 bits of the first 64 values are the same of
before). In hexadecimal notation, these 64-bit words are asfollows:

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc
3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118
d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2
72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694
e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65
2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5
983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4
c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70
27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df
650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b
a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30
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Table 6.5
Truth Table of the Logical Functions Employed by SHA-1

X Y Z Ch = f0...19 Parity = f20...39 Maj = f40...59 Parity = f60...79

0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 0 1 0 1
0 1 1 1 0 1 0
1 0 0 0 1 0 1
1 0 1 0 0 1 0
1 1 0 1 0 1 0
1 1 1 1 1 1 1

d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8
19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8
391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3
748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec
90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b
ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178
06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b
28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c
4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

While SHA-1, SHA-224, and SHA-256 require messages to be padded to
be a multiple of 512 bits, all other hash functions from the SHA-2 family require
messages to be padded to be a multiple of 1024 bits. In this case, the length of the
original message is encoded in the final two 64-bit words (instead of the final two
32-bit words). Everything else remains the same.

All functions from the SHA-2 family operate on eight registers35A,B, C,D,
E, F ,G, andH . They are initialized as follows:

• For SHA-256, the 8 initialization values refer to the first 32bits of the
fractional parts of the square roots of the first 8 prime numbers, i.e., 2, 3,
5, 7, 11, 13, 17, and 19.

• For SHA-384, the 8 initialization values refer to the first 64bits of the
fractional parts of the square roots of the ninth through sixteenth prime
numbers, i.e., 23, 29, 31, 37, 41, 43, 51, and 53.

• For SHA-512, the 8 initialization values are generated in exactly the same
way as for SHA-256. But instead of taking the first 32 bits, thefirst 64 bits are

35 In the original specification, these registers are namedH0 to H7.
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taken from the respective values. So the first halves of the initialization values
for SHA-512 match the initialization values for SHA-256.

• For any truncated version of SHA-512 (i.e., SHA-512/224 andSHA-512/256),
FIPS PUB 180-4 specifies an algorithm to compute the respective initializa-
tion values (not repeated here).

Finally, FIPS PUB 180-4 does not specify the generation of the 8 initialization
values for SHA-224. These values refer to the second 32 bits of the 64-bit values that
are computed for SHA-384. If, for example, the first initialization value for SHA-
384 is 0xcbbb9d5dc1059ed8, then the respective initialization value for SHA-224 is
just 0xc1059ed8.

Let us briefly elaborate on the various hash functions that constitute the SHA-
2 family. We address SHA-256 first, because SHA-224 is a slight deviation from it.
This also applies to SHA-512 and the other hash functions from the SHA-2 family.

Algorithm 6.11 The SHA-256 hash function (overview).

(m)

Constructb = b[0] ‖ b[1] ‖ . . . ‖ b[n− 1]
A = 0x6A09E667 B = 0xBB67AE85
C = 0x3C6EF372 D = 0xA54FF53A
E = 0x510E527F F = 0x9B05688C
G = 0x1F83D9AB H = 0x5BE0CD19
for i = 0 to n− 1 do

Derive message scheduleW from b[i]
A′ = A B′ = B C′ = C D′ = D
E′ = E F ′ = F G′ = G H′ = H
for t = 0 to 63 do

T1 = H + Σ
{256}
1 (E) + Ch(E,F,G) +K

{256}
t +Wt

T2 = Σ
{256}
0 (A) +Maj(A,B, C)

H = G
G = F
E = D + T1

D = C
C = B
B = A
A = T1 + T2

A = A+A′ B = B +B′

C = C + C′ D = D +D′

E = E +E′ F = F + F ′

G = G+G′ H = H +H′

(h(m) = A ‖ B ‖ C ‖ D ‖ E ‖ F ‖ G ‖ H)
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6.4.4.1 SHA-256

The SHA-256 hash function is overviewed in Algorithm 6.11. It is structurally
very similar to SHA-1. But instead of five registers, it uses eight registers that
are initialized differently (as mentioned above). Also, the message scheduleW
comprises only 64 words (instead of 80) and is prepared in a slightly different way.
In fact, it is recursively derived fromb as follows:

Wt =

{
b 0 ≤ t ≤ 15

σ
{256}
1 (Wt−2) +Wt−7 + σ

{256}
0 (Wt−15) +Wt−16 16 ≤ t ≤ 63

It goes without saying that the compression function at the heart of SHA-256 also
deviates from SHA-1 and employs two temporary variablesT1 andT2 (instead of
just one).

6.4.4.2 SHA-224

The SHA-224 hash function is the same as SHA-256 with different initialization
values (as mentioned above) and the the final hash valueh(m) truncated to the
leftmost 224 bits. This means that only 7 of the 8 registers are used to form the
output, and hence that registerH does not influence the output. Everything else
remains the same.

6.4.4.3 SHA-512

The SHA-512 hash function is overviewed in Algorithm 6.12. Again, it is conceptu-
ally and structurally very similar to SHA-1 and SHA-256, butits word size is now 64
bits. Again, the message scheduleW is recursively derived fromb according to the
same formula used for SHA-256. The only difference is that the message schedule
comprises 80 words, and hence thatt runs from 0 to 79 and has 80 possible values
(instead of 64). The respective formula is as follows:

Wt =

{
b 0 ≤ t ≤ 15

σ
{512}
1 (Wt−2) +Wt−7 + σ

{512}
0 (Wt−15) +Wt−16 16 ≤ t ≤ 79

The final output of the SHA-512 hash function is the concatenation of the 8 registers
A toH . Since8 · 64 = 512, the output value is 512 bits long.

6.4.4.4 SHA-384

The SHA-384 hash function is the same as SHA-512 with different initialization
values (as mentioned above) and the final hash valueh(m) truncated to the leftmost
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Algorithm 6.12 The SHA-512 hash function (overview).

(m)

Constructb = b[0] ‖ b[1] ‖ . . . ‖ b[n− 1]
A = 0x6A09E667F3BCC908 B = 0xBB67AE8584CAA73B
C = 0x3C6EF372FE94F82B D = 0xA54FF53A5F1D36F1
E = 0x510E527FADE682D1 F = 0x9B05688C2B3E6C1F
G = 0x1F83D9ABFB41BD6B H = 0x5BE0CD19137E2179
for i = 0 to n− 1 do

Derive message scheduleW from b[i]
A′ = A B′ = B C′ = C D′ = D
E′ = E F ′ = F G′ = G H′ = H
for t = 0 to 79 do

T1 = H + Σ
{512}
1 (E) + Ch(E,F,G) +K

{512}
t +Wt

T2 = Σ
{512}
0 (A) +Maj(A,B, C)

H = G
G = F
E = D + T1

D = C
C = B
B = A
A = T1 + T2

A = A+A′ B = B +B′

C = C + C′ D = D +D′

E = E +E′ F = F + F ′

G = G+G′ H = H +H′

(h(m) = A ‖ B ‖ C ‖ D ‖ E ‖ F ‖ G ‖ H)

384 bits. This means that only 6 of the 8 registers are used to form the output
(6 · 64 = 384), and that registersG andH are not part of the final output.

6.4.4.5 SHA-512/224 and SHA-512/256

The SHA-512/224 and SHA-512/256 hash functions are the sameas SHA-512 with
different initialization values (as mentioned above) and the final hash valueh(m)
truncated to the leftmost 224 or 256 bits. We mention these hash functions just for
the sake of completeness here; they are not widely used in thefield.
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6.4.5 KECCAK and the SHA-3 Family

As mentioned in Section 6.3, KECCAK36 is the algorithm selected by the U.S. NIST
as the winner of the public SHA-3 competition in 2012.37 It is the basis for FIPS
PUB 202 [25] that complements FIPS PUB 180-4 [19], and it specifies the SHA-3
family that comprises four cryptographic hash functions and two extendable-output
functions (XOFs). While a cryptographic hash function outputs a value of fixed
length, an XOF has a variable-length output, meaning that its output may have any
desired length. XOFs may have many potential applications and use cases, ranging
from pseudorandomness generation and key derivation, to message authentication,
authenticated encryption, and stream ciphers. Except fromtheir different output
lengths, cryptographic hash functions and XOFs look very similar and may even
be based on the same construction (as exemplified here).

• The four SHA-3 cryptographic hash functions are named SHA3-224, SHA3-
256, SHA3-384, and SHA3-512. As in the case of SHA-2, the numerical
suffixes indicate the lengths of the respective hash values.38

• The two SHA-3 XOFs are named SHAKE128 and SHAKE256,39 where
the numerical suffixes refer to the security levels (in termsof key length
equivalence). SHAKE128 and SHAKE256 are the first XOFs that have been
standardized by NIST or any other standardization body.

The SHA-3 hash functions and XOFs employ different padding schemes (as
addressed below). In December 2016, NIST released SP 800-18540 that specifies
complementary functions derived from SHA-3. In particular, it specifies four types
of SHA-3-derived functions: cSHAKE, KMAC, TupleHash, and ParallelHash. The
acronym cSHAKE stands for “customizable SHAKE,” and it refers to a SHAKE
XOF that can be customized using a function name and a customization bit string.
KMAC is a keyed MAC construction that is based on KECCAK or cSHAKE,
respectively (Section 10.3.2). Finally, and as their namessuggest, TupleHash is
a SHA-3-derived function that can be used to hash a tuple of input strings, and
ParallelHash can be used to take advantage of the parallelism available in modern
processors (using a particular block size). The details of these SHA-3-derived
functions are not further addressed here; the details can befound in the NIST SP
referenced above.

36 http://keccak.team.
37 http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3standardization.html.
38 The SHA-2 hash functions are named SHA-224, SHA-256, SHA-384, and SHA-512.
39 The acronym SHAKE stands for “Secure Hash Algorithm with Keccak.”
40 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
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Unlike all cryptographic hash functions addressed so far, KECCAK and the
SHA-3 hash functions do not rely on the Merkle-Damgård construction, but on
a so-calledsponge construction41 that is based on a permutation operating on a
data structure known as thestate. The state, in turn, can either be seen as a (one-
dimensional) bitstringS of lengthb or a three-dimensional arrayA[x, y, z] of bits
with appropriate values forx, y, andz (i.e.,xyz ≤ b).

Figure 6.4 The KECCAK state and its decomposition (c© keccak.team).

41 http://sponge.noekeon.org.
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The KECCAK state represented as an arrayA and its decomposition (as
addressed below) are illustrated in Figure 6.4. This figure is used in this book
with kind permission from the developers of KECCAK under a Creative Commons
Attribution 4.0 International License (together with Figures 6.8–6.11).42

In the case of SHA-3,b = 1600, 0 ≤ x, y < 5, and0 ≤ z < w (with
w = 2l = 64 for l = 6 as addressed below). Consequently, the state is either a
stringS or a (5 × 5 × 64)-arrayA of 1600 bits (as depicted in Figure 6.4). For all
0 ≤ x, y < 5 and0 ≤ z < w, the relationship betweenS andA is as follows:

A[x, y, z] = S[w(5y + x) + z]

Following this equation, the first elementA[0, 0, 0] translates toS[0], whereas the
last elementA[4, 4, 63] translates toS[64(5 · 4) + 4) + 63] = S[64 · 24 + 63] =
S[1599].

Referring to Figure 6.4, there are several possibilities todecomposeA. If
one fixes all values on thex-, y-, andz-axes, then one refers to a singlebit; that
is, bit[x, y, z] = A[x, y, z]. If one fixes the values on they- andz-axes and only
considers a variable value for thex-axis, then one refers to arow; that is,row[y, z] =
A[·, y, z]. If one does something similar and consider a variable valuefor the y-
axis (z-axis), then one refers to acolumn(lane); that is,column[x, z] = A[x, ·, z]
(lane[x, y] = A[x, y, ·]). Lanes are important in the design of KECCAK because
they can be stored in a word and a 64-bit register of a modern processor.

If one fixes the values on they-axis and consider variables value for thex-
and z-axes, then one refers to aplane, plane[y] = A[·, y, ·]. Again, one can do
something similar and consider a fixed value for thez-axis (x-axis) to refer to aslice
(sheet), slice[z] = A[·, ·, z] (sheet[x] = A[x, ·, ·]). Some of these terms are used to
describe the working principles of KECCAK and its step mappings.

If one wants to convertA into a stringS, then the bits ofA are concatenated
as follows to formS:

S = A = plane[0] ‖ plane[1] ‖ . . . ‖ plane[4]
= lane[0, 0] ‖ lane[1, 0] ‖ . . . ‖ lane[4, 0] ‖

lane[0, 1] ‖ lane[1, 1] ‖ . . . ‖ lane[4, 1] ‖
lane[0, 2] ‖ lane[1, 2] ‖ . . . ‖ lane[4, 2] ‖
lane[0, 3] ‖ lane[1, 3] ‖ . . . ‖ lane[4, 3] ‖
lane[0, 4] ‖ lane[1, 4] ‖ . . . ‖ lane[4, 4]

42 https://keccak.team/figures.html.
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= bit[0, 0, 0] ‖ bit[0, 0, 1] ‖ bit[0, 0, 2] ‖ . . . ‖ bit[0, 0, 63] ‖
bit[1, 0, 0] ‖ bit[1, 0, 1] ‖ bit[1, 0, 2] ‖ . . . ‖ bit[1, 0, 63] ‖
bit[2, 0, 0] ‖ bit[2, 0, 1] ‖ bit[2, 0, 2] ‖ . . . ‖ bit[2, 0, 63] ‖
. . .

bit[3, 4, 0] ‖ bit[3, 4, 1] ‖ bit[3, 4, 2] ‖ . . . ‖ bit[3, 4, 63] ‖
bit[4, 4, 0] ‖ bit[4, 4, 1] ‖ bit[4, 4, 2] ‖ . . . ‖ bit[4, 4, 63]

Figure 6.5 KECCAK and the sponge construction.

The working principles of KECCAK and the sponge construction (used by
KECCAK) are overviewed in Figure 6.5. A messagem that is input on the left
side is preprocessed and properly padded (as explained below) to form a series of
n message blocksx0, x1, . . . , xn−1. These blocks are then subject to the sponge
construction that culminates in a series of output blocksy0, y1, y2, . . . on the right
side. One of the specific features of KECCAK is that the number of output blocks
is arbitrary and can be configured at will. In the case of a SHA-3 hash function,
for example, only the first output blocky0 is required and from this block only the
least significant bits are used (the remaining bits are discarded). But in the case of
a SHA-3 XOF (i.e., SHAKE128 or SHAKE256), any number of output blocks may
be used.

As its name suggests, a sponge construction can be used to absorb and squeeze
bits. Referring to Figure 6.5, it consists of two phases:

1. In theabsorbing phase, thenmessage blocksx0, x1, . . . , xn−1 are consumed
and read into the state.
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2. In the squeezing phase, an outputy0, y1, y2, . . . of configurable length is
generated from the state.

The same functionf (known as KECCAK f -function orf -permutation) is used
in either of the two phases. The following parameters are used to configure the input
and output sizes as well as the security of KECCAK:

• The parameterb refers to the state width (i.e., the bitlength of the state).For
KECCAK, it can take any valueb = 5 · 5 · 2l = 25 · 2l for l = 0, 1, . . . , 6
(i.e., 25, 50, 100, 200, 400, 800, or 1600 bits), but the first two values are only
toy values that should not be used in practice. For SHA-3, it is required that
l = 6, and, hence,b = 25 · 26 = 25 · 64 = 1600 bits. Sinceb = 5 · 5 · 2l,
the state can be viewed as a cuboid with width 5 (representingthex-axis),
height 5 (representing they-axis), and lengthw = 2l or—as in the case of
SHA-3—26 = 64 (representing thez-axis). Anyway,b is the sum ofr andc
(i.e.,b = r + c).

• The parameterr is called thebit rate (or rate in short). Its value is equal to
the length of the message blocks, and hence it determines thenumber of input
bits that are processed simultaneously. This also means that it stands for the
speed of the construction.

• The parameterc is called thecapacity. Its value is equal to the state width
minus the rate, and it refers to the double security level of the construction (so
a construction with capacity 256 has a security level of 128).

Table 6.6
The KECCAK Parameter Values for the SHA-3 Hash Functions

Hash Function n b r c w

SHA3-224 224 1600 1152 448 64
SHA3-256 256 1600 1088 512 64
SHA3-384 384 1600 832 768 64
SHA3-512 512 1600 576 1024 64

The KECCAK parameter values for the SHA-3 hash functions are summarized
in Table 6.6. Note thatb andw are equal to 1600 and 64 in all versions of SHA-
3. Also note that there is a trade-off between the rater and the capacityc. They
must sum up tob. But whetherr or c is made large depends on the application. For
any security level it makes sense to select ac that is twice as large and to use the
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remaining bits forr. If, for example, one wants to achieve a security level of 256,
thenc should be512 and the remaining1600− 512 = 1088 bits determiner.

Before a messagem can be processed, it must be padded properly (to make
sure that the input has a bitlength that is a multiple ofr). KECCAK uses a relatively
simple padding scheme known asmultirate padding. It works by appending tom a
predetermined bit stringp, a one, a variable number of zeros, and a terminating one.
The number of zeros is chosen so that the total length of the resulting bit string is a
multiple ofr. This can be expressed as follows:

Padding(m) = m ‖ p ‖ 10∗1
︸ ︷︷ ︸

multiple ofr

Note that the string0∗ = 0 . . . 0 can also be empty, meaning that it may comprise no
zeros at all. Also note that the value ofp depends on the mode in which KECCAK is
used. When using it as a hash function (and hence as a SHA-2 replacement),p refers
to the 2-bit string 01. Contrary to that, when using it to generate a variable-length
output,p refers to the 4-bit string 1111. The subtleties of these choices are provided
in [25]. Anyway, the minimum number of bits appended tom when used as a hash
function is 4 (i.e., 0111), whereas the maximum number of bits appended isr + 3
(if the last message block consists ofr− 1 bits). In the other case (i.e., when used to
generate a variable-length output), at least 6 bits and at mostr+5 bits are appended.
In either case, the result of the padding process is a series of message blocksxi
(i = 0, 1, . . .) each of which has a length ofr bits.

Figure 6.6 The KECCAK absorbing phase.

As mentioned above, the sponge construction used by KECCAK is based on
a permutation of the state. This permutation is calledf -function orf -permutation,
and it permutes the2b possible values of the state. As illustrated in Figures 6.6 and
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6.7, the samef -function is used in both the absorbing and squeezing phase.It takes
b = r + c bits as input and generates an output of the same length. Internally, the
f -function consists ofnr round functions with the same input and output behavior,
meaning that they all takeb bits as input and generateb bits of output. Remember
that l determines the state width according tob = 25 · 2l (and that SHA-3 uses the
fixed valuesl = 6 and henceb = 1600). The valuel also determines the number of
rounds according to the following formula:

nr = 12 + 2l

So the possible state widths 25, 50, 100, 200, 400, 800, and 1600 come along with
respective numbers of rounds: 12, 14, 16, 18, 20, 22, and 24. The longer the state
width, the larger the number of rounds (to increase the security level). As SHA-3
fixes the state width to 1600 bits, the number of rounds is alsofixed to 24 (i.e.,
nr = 24).

Figure 6.7 The KECCAK squeezing phase.

In each round, a sequence of five step mappings is executed, where each step
mapping operates on theb bits of the state. This means that each step mapping takes
a state arrayA as input and returns an updated state arrayA′ as output. The five step
mappings are denoted by Greek letters: theta (θ), rho (ρ), pi (π), chi (χ), and iota
(ι). While the first step mappingθ must be applied first, the order of the other step
mappings is arbitrary and does not matter. If graphically interpreted inA, the step
mappings are relatively simple and straightforward.43 But if defined mathematically,
the respective formulas look clumsy and involved. For0 ≤ x, y ≤ 4 and0 ≤ z ≤ w,
the definitions look as follows:

43 An animation is available at http://celan.informatik.uni-oldenburg.de/kryptos/info/keccak/overview.
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θ : A′[x, y, z] = A[x, y, z] +

4∑

y′=0

A[x− 1, y′, z] +
4∑

y′=0

A[x+ 1, y′, z − 1]

ρ : A′[x, y, z] = A[x, y, z − (t+ 1)(t+ 2)/2]

with 0 ≤ t < 24 and

(
0 1
2 3

)t (
1
0

)

=

(
x
y

)

in GF(5)2×2

or t = −1 if x = y = 0

π : A′[x, y] = A[x′, y′] with

(
x
y

)

=

(
0 1
2 3

)(
x′

y′

)

χ : A′[x] = A[x] + (A[x+ 1] + 1) ·A[x+ 2]

ι : A′ = A+ RC[ir]

The definitions are explained in the text that follows. The addition and multiplication
operations are always performed bitwise inGF (2). This suggests that the addition
is equal to the Boolean XOR operation (⊕) and the multiplication is equal to the
Boolean AND operation (∧). With the exception of the round constants RC[ir] used
in step mappingι, the step mappings are the same in all rounds. We now look at each
of the step mappings individually.

x

y z z

Figure 6.8 The step mappingθ. ( c© keccak.team)
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6.4.5.1 Step Mappingθ

The step mappingθ is formally defined as

A′[x, y, z] = A[x, y, z] +

4∑

y′=0

A[x− 1, y′, z] +
4∑

y′=0

A[x+ 1, y′, z − 1]

This formula means that each bit of the state is replaced withthe modulo 2 sum
of itself and the bits of two adjacent columns, namely that ofcolumn[x − 1, z]
andcolumn[x + 1, z − 1] = A[x + 1, ·, z − 1]. An algorithm that can be used to
computeθ and turnA intoA′ is sketched in Algorithm 6.13 and illustrated in Figure
6.8. Note that the algorithm can be made more efficient if the bits of an entire lanes
are processed simultaneously. The resulting algorithm deviates from Algorithm 6.13
(and this may be confusing for the reader).

Algorithm 6.13 Step mappingθ.

(A)

for x = 0 to 4 do
for z = 0 to w − 1 do

C[x, z] = A[x, 0, z]⊕A[x, 1, z]⊕A[x, 2, z]⊕A[x, 3, z]⊕A[x, 4, z]
for x = 0 to 4 do

for z = 0 to w − 1 do
D[x, z] = C[(x− 1) mod 5, z]⊕ C[(x+ 1) mod 5, (z − 1) mod w]

for x = 0 to 4 do
for y = 0 to 4 do

for z = 0 to w − 1 do
A′[x, y, z] = A[x, y, z]⊕ D[x, z]

(A′)

6.4.5.2 Step Mappingρ

The step mappingρ is formally defined as

A′[x, y, z] = A[x, y, z − (t+ 1)(t+ 2)/2]

with appropriately chosen values fort (as specified above). According to this
definition,ρ processes each lanelane[x, y] = A[x, y, ·] of the state individually
by rotating its bits by a value—called theoffset—that depends on thex and y
coordinates of the lane. This means that for each bit of the lane, thez coordinate is
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Figure 6.9 The step mappingρ. ( c© keccak.team)

modified by adding the offset modulow. The algorithm that computes theρmapping
by turningA intoA′ is sketched in Algorithm 6.14 and illustrated in Figure 6.9.

Algorithm 6.14 Step mappingρ.

(A)

for z = 0 to w − 1 doA
′[0, 0, z] = A[0, 0, z]

(x, y) = (1, 0)
for t = 0 to 23 do

for z = 0 to w doA
′[x, y, z] = A[x, y, (z − (t+ 1)(t + 2)/2) mod w]

(x, y) = (y, (2x+ 3y) mod 5)

(A′)

The function to compute the offset can be expressed mathematically (as given
above) or in a table (as given in Table 6.7). Note that the offset for lane[0, 0] is equal
to zero, so this lane is left as is and is not subject to a rotation.

6.4.5.3 Step Mappingπ

The step mappingπ is formally defined as

A′[x, y] = A[x′, y′] with

(
x
y

)

=

(
0 1
2 3

)(
x′

y′

)

Again, it operates on lanes and rearranges them at some different position. In fact,
each lanelane[x′, y′] goes to a new position (with coordinatesx andy) according
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Table 6.7
The Offset Values Used by the Step Mappingρ

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 153 231 3 10 171
y = 1 55 276 36 300 6
y = 0 28 91 0 1 190
y = 4 120 78 210 66 253
y = 3 21 136 105 45 15

Figure 6.10 The step mappingπ. ( c© keccak.team)

to a multiplication ofx′ andy′ with the (2x2)-matrix given above (note that the
elements of the matrix are fromZ5 or GF (5)). Again, the only exception is the
lane[0, 0] that remains unchanged and is not repositioned.

If one applies the matrix multiplication, then the following equations must
hold inZ5:

x = y′

y = 2x′ + 3y′

Solving these equations fory′ andx′ yields y′ = x on the one hand and2x′ =
y − 3y′ = y − 3x on the other hand. To isolatex′ in the second equation, one can
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multiply either side with2−1 = 3 ∈ Z5 results in

2x′ = y − 3x

3(2x′) = 3(y − 3x)

6x′ = 3y − 9x

x′ = 3y + x = x+ 3y

(because6x′ ≡ x′ (mod5) on the left side and−9x ≡ x (mod5) on the right
side). These are the equations that are used to determine thenew position of a lane
from its old position. The respective algorithm is sketchedin Algorithm 6.15 and
illustrated in Figure 6.10.

Algorithm 6.15 Step mappingπ.

(A[x, y])

for x = 0 to 4 do
for y = 1 to 4 do

for z = 0 to w − 1 do
A

′[x, y, z] = A[(x+ 3y) (mod 5), x, z]

(A′)

Figure 6.11 The step mappingχ. ( c© keccak.team)

6.4.5.4 Step Mappingχ

The step mappingχ is formally defined as

A′[x] = A[x] + (A[x + 1] + 1) ·A[x+ 2]
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It is the only nonlinear mapping in thef -function of KECCAK. Again, it operates
on lanes and adds each lanelane[x, y] modulo 2 (XOR) with the product (logical
AND) of the inverse oflane[x+ 1, y] andlane[x+ 2, y]. The respective algorithm
is sketched in Algorithm 6.16 and illustrated in Figure 6.11(for a single row).

Algorithm 6.16 Step mappingχ.

(A)

for x = 0 to 4 do
for y = 1 to 4 do

for z = 0 to w − 1 do
A′[x, y, z] = A[x, y, z]⊕ ((A[(x + 1) mod 5, y, z]⊕ 1) ·A[(x+ 2) mod 5, y, z])

(A′)

6.4.5.5 Step Mappingι

Finally, the step mappingι is formally defined as

A′ = A+ RC[ir]

The idea of this mapping is to add modulo 2 a predefinedw-bit constant RC[ir]
to lane[0, 0], and to leave all other 24 lanes as they are. The constant RC[ir] is
parameterized with the round index0 ≤ ir ≤ nr − 1 = 23, meaning that it yields a
different value in every round.

Algorithm 6.17 Step mappingι.

(A, ir)

for x = 0 to 4 do
for y = 1 to 4 do

for z = 0 to w − 1 do
A

′[x, y, z] = A[x, y, z]
RC = 0w

for j = 0, . . . , l doRC[2j − 1] = rc(j + 7ir)
for z = 0 to w − 1 doA

′[0, 0, z] = A
′[0, 0, z]⊕ RC[z]

(A′)

The algorithm to computeι is shown in Algorithm 6.17. First, the content of
A′ is copied toA. Thenlane[0, 0] is updated as described above.



Cryptographic Hash Functions 161

Each round constant mainly consists of zeros and is generated with an auxil-
iary functionrc. This function takes as input parameter a bytet and returns as output
parameter a bitrc(t). It is defined as the output of an LFSR that is defined as follows:

rc[t] = (xt mod x8 + x6 + x5 + x4 + 1) mod x in GF(2)[x]

The algorithm that can be used to implement the LFSR and to compute the auxiliary
functionrc is shown in Algorithm 6.18. The resulting round constants are listed in
Table 6.8, whereRC[ir] refers to the round constant used in roundir.

Algorithm 6.18 Auxiliary function rc.

(t)

if t mod 255 = 0 then return 1
R = 10000000
for i = 1 to t mod 255 do

R = 0 ‖ R
R[0] = R[0]⊕ R[8]
R[4] = R[4]⊕ R[8]
R[5] = R[5]⊕ R[8]
R[6] = R[6]⊕ R[8]
R = Trunc8[R]

(R[0])

Table 6.8
The 24 Round Constants Employed by SHA-3

RC[0] 0x0000000000000001 RC[12] 0x000000008000808B
RC[1] 0x0000000000008082 RC[13] 0x800000000000008B
RC[2] 0x800000000000808A RC[14] 0x8000000000008089
RC[3] 0x8000000080008000 RC[15] 0x8000000000008003
RC[4] 0x000000000000808B RC[16] 0x8000000000008002
RC[5] 0x0000000080000001 RC[17] 0x8000000000000080
RC[6] 0x8000000080008081 RC[18] 0x000000000000800A
RC[7] 0x8000000000008009 RC[19] 0x800000008000000A
RC[8] 0x000000000000008A RC[20] 0x8000000080008081
RC[9] 0x0000000000000088 RC[21] 0x8000000000008080
RC[10] 0x0000000080008009 RC[22] 0x0000000080000001
RC[11] 0x000000008000000A RC[23] 0x8000000080008008

Given a stateA and a round indexir, the round function Rnd refers to the
transformation that results from applying the step mappings θ, ρ, π, χ, andι in a



162 Cryptography 101: From Theory to Practice

Algorithm 6.19 KECCAK-p[b,nr ].

(S, nr)

convertS into stateA
for ir = 2l + 12− nr, . . . , 2l + 12 − 1 doA = Rnd(A, ir)
convertA into b-bit stringS′

(S′)

particular order:44

Rnd(A, ir) = ι(χ(π(ρ(θ(A)))), ir)

In general, the KECCAK-p[b, nr] permutation consists ofnr iterations of the round
function Rnd as specified in Algorithm 6.19. The algorithm takes ab-bit stringS
and a number of rounds (nr) as input parameters and computes anotherb-bit string
S′ as output parameter. The algorithm is fairly simple:S is converted to the state
A, nr round functions Rnd are applied to the state, and the resulting state is finally
converted back to the output stringS′.

The KECCAK-f family of permutations refers to the specialization of the
KECCAK-p family to the case wherenr = 12 + 12l. This means:

KECCAK-f [b] = KECCAK-p[b, 12 + 2l]

Alternatively speaking, the KECCAK-p[1600, 24] permutation, which underlies the
six SHA-3 functions, is equivalent to KECCAK-f [1600].

During the SHA-3 competition, the security of KECCAK was challenged
rigorously. Nobody found a possibility to mount a collisionattack that is more
efficient than brute-force. This has not changed since then,and hence people feel
confident about the security of SHA-3. But people also feel confident about the
security of the cryptographic hash functions from the SHA-2family.45 So whether
SHA-3 will be successfully deployed in the field is not only a matter of security.
There may be other reasons to stay with SHA-2 or move to SHA-3 (or even to any
other cryptographic hash function). The effect of these reasons is difficult to predict,
and hence it is hard to tell whether SHA-3 will be successful in the long term and
how long this may take.

44 As mentioned above, the step mappingθ must be applied first, whereas the order of the other step
mappings is arbitrary.

45 A summary of the security of SHA-1, SHA-2, and SHA-3 is given in appendix A.1 of [25].
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6.5 FINAL REMARKS

As outlined in this chapter, most cryptographic hash functions in use today follow
the Merkle-Damgård construction. This means that a collision-resistant compression
function is iterated multiple times (one iteration per block of the message). There are
two remarks to make:

• First, each iteration can only start if the preceding iteration has finished. This
suggests that the hash function may become a performance bottleneck. This
point was already made in 1995 [26], when it was argued that the hash rates of
MD5 may be insufficient to keep up with high-speed networks. The problem
is in fact the iterative nature of MD5 and its block chaining structure, which
prevent parallelism. It is possible to modify the MD5 algorithm to accommo-
date a higher throughput, but it is certainly simpler and more appropriate to
design and come up with cryptographic hash functions that natively support
parallelism.

• Second, the design of compression functions that are collision-resistant looks
more like an art than a science, meaning that there is no specific theory
on how to make compression functions maximum resistant to collisions (or
multicollisions).

Following the second remark, there are hardly any design criteria that can
be used to design and come up with new compression functions (for cryptographic
hash functions that follow the Merkle-Damgård construction) or entirely new cryp-
tographic hash functions (such as KECCAK). This lack of design criteria contradicts
the importance of cryptographic hash functions in almost all cryptographic systems
and applications in use today.

If people lack proper design criteria and come up with ad hoc designs, then
they may not be sure about the collision resistance of the respective cryptographic
hash functions. Sometimes, they try to improve collision resistance by concatenating
two (or even more) such functions. For example, instead of using MD5 or SHA-1
alone, they may apply one function after the other and concatenate the respective
hash values.46 Intuition suggests that the resulting (concatenated) hashfunction
is more collision-resistant than each function applied individually. Unfortunately,
intuition is wrong and illusive here. In 2004, it was shown byJoux that finding
multicollisions is not much harder than finding “normal” collisions in this setting,
and that this implies that concatenating the results of several iterated hash functions
in order to build a new one does not yield a secure construction [27]. Since then, we

46 Such a construction was used, for example, in SSL 3.0 to derive keying material from a premaster
secret.
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know that concatenating two (or even more) iterated hash functions does not make
the resulting hash function significantly more collision-resistant.

We use cryptographic hash functions a lot throughout the book. When com-
bined with a key, for example, they are widely used for key derivation (Section 7.4
and message authentication (Section 10.3.2). An alternative design for cryptographic
hash functions that are particularly well suited for message authentication was orig-
inally proposed by J. Larry Carter and Mark N. Wegman in the late 1970s [28, 29],
and later refined by other researchers (e.g., [30]). Insteadof using a single hash
function, they consider families of such functions from which a specific function is
(pseudo)randomly selected. Such a family consists of all hash functionsh : X → Y
that map values fromX to values fromY . More specifically, a familyH of hash
functionsh is calledtwo-universal, if for everyx, y ∈ X with x 6= y it holds that

Pr[h(x) = h(y)]
h

r← H
≤ 1

|Y |
This suggests that the images are uniformly distributed inY , and that the

probability of having two images collide is as small as possible (given the size of
Y ). This notion of universality can be generalized beyond two, but two-universal
families of hash functions are the most important use case. Using universal families
of hash functions is calleduniversal hashing, and universal hashing is the basic
ingredient for Carter-Wegman MACs addressed in Section 10.3.3. At this point in
time, we just want to introduce the term and put it into perspective. MACs require a
secret key, and hence message authentication is one of the topics that is addressed in
Part II of the book.
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Chapter 7

Pseudorandom Generators

Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.

— John von Neumann1

In Chapter 3, we introduced random generators and argued that it is inherently
difficult to implement them. We also concluded that it is sometimes appropriate
to combine them with a way of stretching a truly random bit sequence into a
much longer bit sequence that appears to be random. This is where pseudorandom
generators and pseudorandom bit generators come into play.They are the main
topic of this chapter: We provide an introduction in Section7.1, overview some
exemplary (ad hoc) constructions in Section 7.2, elaborateon cryptographically
secure pseudorandom generators in Section 7.3, and conclude with some final
remarks (especially focusing on key derivation) in Section7.4. In the end, we want
to be able to argue against John von Neumann’s quote and to show that random—or
at least random-looking—digits can in fact be produced witharithmetical methods.

7.1 INTRODUCTION

According to Section 2.2.1 and Definition 2.7, apseudorandom generator(PRG)
is an efficiently computable function that takes as input a relatively short value
of lengthn, called theseed, and generates as output a value of lengthl(n) with
l(n) ≫ n that appears to be random (and is therefore called pseudorandom). If the

1 John von Neumann was a Hungarian-American mathematician who lived from 1903 to 1957.
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input and output values are bit sequences (as depicted in Figure 2.6), then the PRG
represents apseudorandom bit generator(PRBG). In this chapter, we sometimes use
the acronym PRG to refer to both a PRG and a PRBG.

The seed of a PRG can be seen as a secret key that is the input to the “efficiently
computable function” to generate a particular output. As such, a PRG is a secret key
cryptosystem, and is therefore qualified to introduce Part II. The key question is how
to construct a function whose output looks random and cannotbe distinguished from
the output of a true random generator. This is what this chapter is all about.

In Section 2.2.1, we also said that a PRBGG is a mapping from the key space
K = {0, 1}n to{0, 1}l(n), wherel(n) represents a stretch function; that is, a function
that stretches ann-bit value into a much longerl(n)-bit value withn < l(n) ≤ ∞:

G : K −→ {0, 1}l(n)

Combining Definition 2.7 with this formalism suggests that aPRG is an efficiently
computable function that defines the mappingG. With regard to this mapping, we
said in Definition 2.7 that the output must “appear to be random.” This must be
defined more precisely. What does it mean that an output sequence appears to be
random, given the fact that we cannot measure randomness is ameaningful way?
This is particularly challenging, because—unlike a true random generator—a PRG
operates deterministically, and hence it always outputs the same values if seeded
with the same input values.

State
register

f

g

FSM

s i

si+1

x  , x  , x  , ...1 2 3

Figure 7.1 An idealized model of a PRG representing an FSM.

The fact that a PRG operates deterministically means that itrepresents a
finite state machine(FSM). An idealized model of a PRG representing an FSM is
illustrated in Figure 7.1. The model comprises the following components:
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• A state register;

• A next-state orstate-transition functionf ;

• An output functiong.

The state register is initialized with ann-bit seeds0. In each cyclei ≥ 0, the next-
state functionf computessi+1 from si; that is,si+1 = f(si), andsi is subject to
the output functiong. The result isxi = g(si), and the bit sequence

(xi)i≥1 = x1, x2, x3, . . .

yields the output of the PRG. In this idealized model, the function f operates
recursively on the state register, and there is no other input to the PRG than the
seed the PRG actually begins with. Some PRGs used in practiceslightly deviate
from this idealized model by allowing the state register to be reseeded periodically.
This may be modeled by having a functionf take into account additional sources of
randomness (this possibility is not illustrated in Figure 7.1). In this case, however,
the distinction between a PRG and a true random bit generatorgets fuzzy.

In an FSM, the number of states is finite and depends on the length of the
state register. If the seed comprisesn bits, then there are at most2n possible states
(there are fewer states if the FSM is not well designed). Thismeans that after at
most2n cycles, the FSM will be in the same state it originally started with, and
hence the sequence of output values starts repeating itself. Alternatively speaking,
the sequence of output values is cyclic (with a potentially very large cycle). This is
why we cannot require that the output of a PRG is truly random,but only that it
appears to be so. Somebody who is able to wait for a very long time and has access
to huge amounts of memory will eventually recognize that theoutput values start
to repeat themselves. This suggests that the output values are not truly randomly
generated, but generated deterministically with a PRG.

This insight may help us to clearly define what is meant by saying that the
output values “appear to be random,” and hence to more precisely define and nail
down the security of a PRG. Remember the security game from Section 1.2.2.1
and Figure 1.2: In this game, an adversary is interacting (i.e., observing the output
values) with either a true random generator (representing an ideal system) or a PRG
(representing a real system). If he or she can tell the two cases apart, then the output
values of the PRG do not appear to be random, and hence it cannot be considered
to be secure or even cryptographically secure. We formalizethis idea and line of
argumentation later in this chapter (Section 7.3).

Anyway, it is obvious that a minimal security requirement for a PRG is
that the length of the seed,n = |s0|, is sufficiently large so that an exhaustive
search over all2n possible seeds is computationally infeasible. Also, the output
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bit sequence generated by the PRG must pass all relevant statistical randomness
tests (Section 3.3). Note, however, that these results mustbe taken with a grain
of salt, because passing statistical randomness tests is a necessary but usually
insufficient requirement for a PRG to be (cryptographically) secure. For example,
the following two PRGs pass most statistical randomness tests but are still insecure
for cryptographic purposes:

• PRGs that employ the binary expansion of algebraic numbers,such as
√
3 or√

5.

• Linear congruential generators (LCG) that take as input a seedx0 = s0 and
three integer parametersa, b, n ∈ N with a, b < n, and that use the linear
recurrence

xi = axi−1 + b (mod n)

to recursively generate an output sequence(xi)i≥1 with xi < n. Linear con-
gruential generators are frequently used for simulation purposes and proba-
bilistic algorithms (see, for example, Chapter 3 of [1]), but they are highly
predictable (i.e., it is possible to infer the parametersa, b, andn given just
a few output valuesxi [2, 3]), and this makes them useless for most crypto-
graphic applications. To some extent, this also applies to QCGs introduced in
Section 5.3.1.3.

Contrary to these examples, there are PRGs that can be used for cryptographic
purposes. Some exemplary (ad hoc) constructions of PRGs areoverviewed and
discussed in the following section. Furthermore, we will see in Section 9.5 that most
additive stream ciphers in use today, such as RC4/ARCFOUR and Salsa20, yield
PRGs, meaning that additive stream ciphers and PRGs are conceptually very similar
if not identical constructs.

7.2 EXEMPLARY CONSTRUCTIONS

Before we overview some exemplary constructions for PRGs, we want to debunk a
popular fallacy: People often argue that a simple PRG can be built from a one-way
functionf by randomly selecting a seeds0, initializing the state register with this
value, incrementing the state register in each cycle (i.e.,si+1 = si + 1 for every
i > 0), and subjecting the content of the state register tof . This generates the output
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values

x1 = f(s0)

x2 = f(s1) = f(s0 + 1)

x3 = f(s2) = f(s0 + 2)

. . .

that form the output sequence

(xi)i≥1 = f(s0), f(s0 + 1), f(s0 + 2), f(s0 + 3), . . .

Unfortunately, the resulting PRG need not be secure, and there are many situations
in which the output values do not appear to be random. If, for example,g is a one-
way function, andf extendsg by appending a one to the function result ofg; that is,
f(x) = g(x)‖1, thenf is still a one-way function. However, the output values that
are generated with this function do not appear to be random, because each value ends
with a one. The bottom line is that more involved constructions are usually required
to build a PRG from a one-way function, and these constructions take advantage of
hard-core predicates. They are addressed in the following section.

If we want to construct a more secure PRG, then we may start with an LFSR.
In Section 9.5.1, we will argue that a single LFSR is not sufficient to construct a
secure PRG, but that multiple LFSRs with irregular clockingmay be used instead.
We will mention A5/1 and A5/2, CSS, and E0 that follow this design paradigm.
Furthermore, there are at least two LFSR-based PRG constructions that are known
to have good cryptographic properties: the shrinking generator and the self-shrinking
generator.

• The shrinking generator[4] employs two LFSRsA andS to generate two
sequences(ai)i≥0 and(si)i≥0. In each clock cyclei, the generator outputsai
if and only if si = 1. Otherwise,ai is discarded. The mode of operation of
the shrinking generator is illustrated in Figure 7.2. The output sequence in this
example is 0101010. . .

• The self-shrinking generator[5] employs only one LFSRA to generate the
sequence(ai)i≥0. In each clock cyclei, the generator outputsa2i+1 if and
only if a2i = 1. Otherwise,a2i+1 is discarded. The mode of operation of the
self-shrinking generator is illustrated in Figure 7.3. Theoutput sequence in
this example is 0110. . .

From an implementation viewpoint, the self-shrinking generator is advanta-
geous because it only requires one LFSR.
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S

A

(s ) =  0  1  1  0  1  1  0  0  1  1  0  1 ...i

(a ) =  1  0  1  1  0  1  1  1  0  1  0  0 ...i

Output =      0  1      0  1          0  1      0 ...

Figure 7.2 The mode of operation of the shrinking generator.

A (a ) =  1  0  1  1  0  1  1  1  0  1  1  0  ...i

Output =      0      1              1              0  ...

i=0 i=1 i=2 i=3 i=4 i=5

Figure 7.3 The mode of operation of the self-shrinking generator.

LFSRs and LFSR-based PRGs are not so popular anymore, mainlybecause
they are best implemented in hardware, and most people prefer software implemen-
tations today. A practically relevant PRG that is particularly well suited for software
implementations is specified in ANSI X9.17 [6] and outlined in Algorithm 7.1. It is
based on the block cipher DES (Section 9.6.1)—or Triple DES (3DES, also known
as TDEA) with keying option 2.2 The PRG takes as input a seeds0, a 3DES keyk,
and an integern. Here,n does not refer to the length of the seed, but rather to the
number of 64-bit strings that are generated to form the output; that is,x1, x2, . . . , xn.
D is an internally used 64-bit representation of the date and time, andI is just an
internal intermediate value that is initialized at the beginning of the algorithm (as
the 3DES encryption ofD with key k). The for-loop is iteratedn times, where in
each iteration a 64-bit output valuexi is generated (the length is 64 bits, because the
block size of DES and 3DES is 64 bits).

Besides ANSI X9.17, there are many other PRGs in practical use (e.g., [7–
9]). For example,Yarrow[8] is a PRG—or rather a family of PRGs—that employs a
particular cryptographic hash function and a particular block cipher, such asYarrow-
160with SHA-1 and 3DES in CTR mode. The design of Yarrow was latermodified
and the resulting family of PRGs was renamedFortuna[9]. While PRGs like Yarrow
and Fortuna are widely deployed in practice, there are only afew security analyses
of them (e.g., [10]). The bottom line is that most PRGs used inthe field are resistant
against known attacks and appear to be sufficiently secure for most (cryptographic)

2 In keying option 2 (Section 9.6.1.6), only two DES keys are used, andk in Algorithm 7.1 refers to
both of them.
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Algorithm 7.1 ANSI X9.17 PRG.

(s0, k, n)

I = Ek(D)
s = s0
for i = 1 to n do

xi = Ek(I ⊕ s)
s = Ek(xi ⊕ I)
outputxi

(x1, x2, . . . , xn)

applications, but they have not been proven secure in a cryptographically strong
sense. In the literature, they are sometimes calledpractically strong. Consequently,
a PRG is practically strong if there are no known attacks against it and it is
designed in an arbitrary and ad hoc way. This is fundamentally different from the
cryptographically secure PRGs addressed next.

7.3 CRYPTOGRAPHICALLY SECURE PRGs

There are several possibilities to formally define the cryptographical strength and
security of a PRG. Historically, the first definition was proposed by Manuel Blum
and Silvio Micali in the early 1980s [11]. They argued that a PRG iscryptograph-
ically secure, if an adversary—after having seen a sequence of output bits—is not
able to predict the next bit that is going to be generated witha success probability
that is substantially better than guessing. Blum and Micalialso proposed a PRG
based on the DLA that complies with this definition (Section 7.3.1). Shortly after
this seminal work, Manuel Blum—together with Leonore Blum and Michael Shub—
proposed another PRG, called theBBS PRGor squaring generator,3 that is simpler
to implement but still cryptographically secure assuming the intractability of the
quadratic residuosity problem (QRP, Definition A.31) [12] (Section 7.3.3), and other
researchers have shown the same for the IFP and the resultingRSA PRG (Section
7.3.2). As of this writing, the BBS PRG refers to the yardstick for cryptographically
secure PRGs.

As shown by Yao [14], a cryptographically secure PRG isperfectin the sense
that no PPT algorithm can tell whether ann-bit string has been sampled uniformly
at random from{0, 1}n or generated with the PRG (using a proper seed) with a
success probability that is substantially better than guessing. Note that this notion of

3 The acronym BBS is compiled from the first letters of the authors’ names.
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a perfect PRG is conceptually similar to a Turing Test4 [15] that is used in artificial
intelligence (AI). One can rephrase Yao’s result by saying that a PRG that passes the
Blum-Micali next-bit test is perfect in the sense that it also passes all polynomial-
time (statistical) tests to distinguish it from a true random generator.

The Blum-Micali and BBS PRGs, together with the proof of Yao,represent a
major achievement in the development of cryptographicallysecure PRGs. It has also
been shown that the existence of a one-way function (with a hard-core predicate)
is equivalent to the existence of a cryptographically secure PRG, i.e., one-way
functions exist if and only if cryptographically secure PRGs exist [16].

To more formally address the notion of a cryptographically secure and hence
perfect PRG, we revisit the security game mentioned earlierin this chapter. In this
game, the adversary observes the output values of either a true random generator
or a PRG, and his or her task is to tell the two cases apart, i.e., decide whether
the values (he or she observes) are generated by a true randomgenerator and
a PRG. If he or she cannot do substantially better than guessing, then the PRG
behaves like a true random generator and its output values can therefore be used
as if they were generated by a true random generator. Put in other words: A
PRG is cryptographically secure and hence perfect, if the output bit sequence
cannot be distinguished (by any PPT algorithm) from an equally long output bit
sequence generated by a true random generator, meaning thatthe two sequences are
computationally indistinguishableor effectively similar(as termed in [14]). In the
end, this leads to the same notion of cryptographical strength, but the tool to argue
about it iscomputational indistinguishability

To follow this line of argumentation, we have to introduce the notion of a
probability ensemble(in addition to Appendix B). Roughly speaking, this is a family
of probability distributions or random variablesX = {Xi}i∈I , whereI is an index
set, and each{Xi} is a probability distribution or random variable of its own.Often
I = N and eachXn must have a certain property for sufficiently largen. Against
this background, let

X = {Xn} = {Xn}n∈N = {X1, X2, X3, . . .}
4 The Turing Test is meant to determine if a computer program has intelligence. According to Alan

M. Turing, the test can be devised in terms of a game (a so-called imitation game). It is played
with three people, a man (A), a woman (B), and an interrogator(C), who may be of either sex. The
interrogator stays in a room apart from the other two. The object of the game for the interrogator is
to determine which of the other two is the man and which is the woman. He knows them by labels
X and Y, and at the end of the game he says either “X is A and Y is B”or “X is B and Y is A.”
The interrogator is allowed to put questions to A and B. When talking about the Turing Test today,
what is generally understood is the following: the interrogator is connected to one person and one
machine via a terminal, and therefore can’t see her counterparts. Her task is to find out which of
the two candidates is the machine and which is the human only by asking them questions. If the
machine can “fool” the interrogator, it is intelligent.
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and

Y = {Yn} = {Yn}n∈N = {Y1, Y2, Y3, . . .}

be two probability ensembles; that is, for alln ∈ N+ Xn andYn refer to probability
distributions on{0, 1}n. By saying t ← Xn (t ← Yn), we suggest thatt is
sampled according to the probability distributionXn (Yn). Furthermore, we say that
X is polytime indistinguishable5 from Y , if for every PPT algorithmA and every
polynomialp, there exists an0 ∈ N+ such that for alln > n0

∣
∣
∣
∣

Pr[A(t) = 1] − Pr[A(t) = 1]
t← Xn t← Yn

∣
∣
∣
∣
≤ 1

p(n)
(7.1)

This means that for sufficiently larget, no PPT algorithmA can distinguish whether
it was sampled according toXn or Yn. In some literature, the PPT algorithmA is
calledpolynomial-time statistical testor distinguisher, and it is therefore denoted as
D.

In computational complexity theory, it is assumed and widely believed that
computationally indistinguishable probability ensembles exist, and this assumption
is referred to as the general indistinguishability assumption. We say that{Xn} is
pseudorandomif it is polytime indistinguishable from{Un}, whereUn denotes the
uniform probability distribution on{0, 1}n. More specifically, this means that for
every PPT algorithmA and every polynomialp, there exists an0 ∈ N+ such that
for all n > n0

∣
∣
∣
∣

Pr[A(t) = 1] − Pr[A(t) = 1]
t← Xn t← Un

∣
∣
∣
∣
≤ 1

p(n)
(7.2)

Note that (7.2) is almost identical to (7.1). The only difference is thatt is sampled
according to the uniform probability distributionUn in the second probability of
(7.2), whereas it is sampled according toYn in (7.1). We are now ready to define the
notion of a cryptographically secure PRG. This is done in Definition 7.1.

Definition 7.1 (Cryptographically secure PRG) Let G be a PRG with stretch
functionl : N → N; that is, l(n) > n for n ∈ N. G is cryptographically secure
if it satisfies the following two conditions:

• |G(s)| = l(|s|) for everys ∈ {0, 1}∗;
• {G(Un)} is pseudorandom; that is, it is polytime indistinguishablefrom
{Ul(n)}.

5 Alternatively speaking,X is indistinguishable fromY in polynomial time.



178 Cryptography 101: From Theory to Practice

The first condition captures the stretching property of the PRG (i.e., the fact
that the output of the PRG is larger than its input), whereas the second condition cap-
tures the property that the generated pseudorandom bit sequence is computationally
indistinguishable from (and hence practically the same as)a random bit sequence.
Combining the two conditions yields a PRG that is secure in a cryptographic sense
and can hence be used for cryptographic applications.

Alternatively, the notion of a cryptographically secure PRG can also be defined
by first introducing the PRG advantage ofA with respect to PRGG, denoted
AdvPRG[A,G]. This value is a probability in the range[0, 1], and it is formally
defined as follows:

AdvPRG[A,G] =

∣
∣
∣
∣

Pr[A(G(t)) = 1] − Pr[A(t) = 1]
t

r← {0, 1}n t
r← {0, 1}l(n)

∣
∣
∣
∣

The PRG advantage ofA with respect to PRGG refers to the absolute value
of the difference of two probabilities, namely the probability thatA outputs 1 if the
input is pseudorandomly generated and the probability thatA outputs 1 if the input
is randomly generated. In the first case,t is sampled uniformly at random from
{0, 1}n and the resulting value is stretched byG to l(n), whereas in the second case,
t is sampled uniformly at random from{0, 1}l(n) and not stretched at all. Again,A
is a good distinguisher if its PRG advantage with respect toG is close to 1, and it is
a bad distinguisher if it is close to 0.

To argue about the security of PRGG, we are interested in the PPT algorithm
A with maximal PRG advantage. This yields the PRG advantage ofG:

AdvPRG[G] = max
A
{AdvPRG[A,G]}

We say that PRGG is secure, ifAdvPRG[G] is negligible; that is, for every
polynomialp, there exists an0 ∈ N+ such that for alln > n0

AdvPRG[G] ≤
1

p(n)

If we have a one-way functionf with hard-core predicateB, then the follow-
ing PRGG with seeds0 is cryptographically secure:

G(s0) = B(f(s0)), B(f2(s0)), . . . , B(f l(n)(s0))

Talking in terms of an FSM-based PRG, the state register is initialized with s0,
the next-state functionf is the one-way function (that is iterated), and the output



Pseudorandom Generators 179

functiong computes the hard-core predicateB from the state register. This idea is
used in many cryptographically secure PRGs, including, forexample, the Blum-
Micali, RSA, and BBS PRGs mentioned above and outlined next.

7.3.1 Blum-Micali PRG

The Blum-Micali PRG [11] specified in Algorithm 7.2 employs the fact that the
discrete exponentiation function is a (conjectured) one-way function (Section 5.2.1)
with the hard-core predicate MSB. It takes as input a large primep and a generator
g of Z∗p, and it generates as output a sequence(bi)i≥1 of pseudoranom bits.

Algorithm 7.2 The Blum-Micali PRG.

(p, g)

x0
r← Z∗

p

for i = 1 to∞ do
xi ≡ gxi−1 (mod p)
bi = msb(xi)
outputbi

(bi)i≥1

The algorithm starts with the initialization of the seedx0 = s0 with an
integer that is randomly chosen fromZ∗p = {1, . . . , p − 1}. Starting with this
value, the discrete exponentiation function is recursively applied according toxi =
gxi−1 (mod p) for i = 1, 2, . . . From eachxi, a pseudoranom bitbi is extracted as
follows: If xi > (p− 1)/2 thenbi is set to one, otherwise it is set to zero. Hence, the
hard-core predicate that is exploited in the Blum-Micali PRG is the MSB; that is,
whether the result of the discrete exponentiation functionis smaller or bigger than
(p−1)/2, or—equivalently—whether it belongs to the first or second half of values.

A more thorough analysis of the Blum-Micali PRG reveals the fact that more
than one bit can be extracted fromxi in each round [17]. This result can be used to
improve the efficiency of the Blum-Micali PRG considerably.

7.3.2 RSA PRG

The RSA PRG specified in Algorithm 7.3 employs the fact that the RSA function
is a (conjectured) one-way function (Section 5.2.2) with the hard-core predicate
LSB. Like the RSA public key cryptosystem, the RSA PRG takes as input a large
integern (that is the product of two large primesp andq) ande (that is a randomly
chosen integer between 2 andφ(n)− 1 with gcd(e, φ(n)) = 1). But unlike the RSA
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public key cryptosystem, the RSA PRG generates as output a sequence(bi)i≥1 of
pseudorandomly generated bits (instead of a ciphertext).

Algorithm 7.3 The RSA PRG.

(n, e)

x0
r← Z∗

n

for i = 1 to∞ do
xi ≡ xe

i−1 (mod n)

bi = lsb(xi)
outputbi

(bi)i≥1

The RSA PRG starts with the initialization of a seedx0 = s0 with a
value fromZ∗n. It then recursively generates an output bitbi by first computing
xi ≡ xei−1 (mod n) and then settingbi = lsb(xi) for i ≥ 1. Again, the output
bits are compiled into bit sequence(bi)i≥1.

The RSA PRG is more efficient than the Blum-Micali PRG, but itstrue
efficiency depends on the value fore. If, for example,e = 3, then generating an
output bit requires only one modular multiplication and onemodular squaring. Also,
it was shown in [13] that instead of extracting a single bit from eachxi, a sequence
of logn bits can be extracted simultaneously. This further improves the efficiency of
the PRG, and current research tries to enlarge the number of bits that can be extracted
simultaneously.

7.3.3 BBS PRG

The BBS PRG [12] specified in Algorithm 7.4 employs the fact that the modular
square function is a (conjectured) one-way function (Section 5.2.2), and that—
similar to the RSA function—the LSB yields a hard-core predicate. The BBS PRG
takes as input a Blum integern (i.e., an integern that is the product of two primes
p andq, each of them congruent to 3 modulo 4), and it again generatesas output a
sequence(bi)i≥1 of pseurdorandomly generated bits.

Again, the BBS PRG starts with the initialization of a seedx0 = s0. Here,x0
needs to be an integer that is coprime withn; that is,gcd(x0, n) = 1. In each step,
it then generates an output bitbi by first computingxi ≡ x2i−1 (mod n) and then
settingbi = lsb(xi) for i ≥ 1. Similar to the RSA PRG,logn bits can be extracted
in each step (instead of a single bit) to improve the efficiency of the PRG.

The BBS PRG is the preferred choice for most practitioners. On the one hand,
it is highly efficient because it requires only one modular squaring for the generation
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Algorithm 7.4 The BBS PRG.

(n)

x0
r← Z∗

n

for i = 1 to∞ do
xi ≡ x2

i−1 (mod n)

bi = lsb(xi)
outputbi

(bi)i≥1

of an output bit. On the other hand, it has the practically relevant property thatxi
can be computed directly fori ≥ 1 if one knows the prime factorsp andq of n:

xi = x
(2i) mod ((p−1)(q−1))
0

This is a property that may be useful in some situations.

7.4 FINAL REMARKS

In this chapter, we introduced the notion of a PRG and elaborated on the require-
ments for a PRG to be practically or cryptographically secure. All PRGs in use
today—independentof whether they are only practically secure or even cryptograph-
ically secure—must make the assumption that their internalstate can be kept secret,
and hence cannot be acquired by an adversary (otherwise, theadversary can forever
after predict the bits that are generated). But in practice,it may still happen that the
adversary can acquire the internal state. Maybe there is a bug in the implementation;
maybe a computer has just booted for the first time and doesn’thave a seed to start
with; or maybe the adversary has been able to read the seed filefrom disk. In either
case, an adversary may have been able to acquire the internalstate and this may make
it necessary to periodically reseed the state. Some practically secure PRGs take this
into account. In addition to the generator and a seed file, forexample, Fortuna [9] has
an accumulator that collects and pools entropy from varioussources to occasionally
reseed the generator. Needless to say, such a feature is useful in the field.

There are many applications of PRGs. If a lot of keying material is required,
then they can replace or at least complement true random bit generators. This
is advantageous because PRGs use much less randomness than true random bit
generators (they still need some randomness to start with).If a PRG is used to
derive keying material from a single master key or a password, then it is often called
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key derivation function(KDF).6 Technically speaking, a KDF can be implemented
with a PRFfk (e.g., a keyed cryptographic hash function) using a construction that
is conceptually similar to the one provided at the beginningof Section 7.2 (and
revisited in Section 8.3.1): It takes as input a source keyk that must be uniform in
a key spaceK, a context stringc, and a number of bytesl that are required, and it
outputsn blocks that are generated as follows:

KDF (k, c, l) = fk(c ‖ 0) ‖ fk(c ‖ 1) ‖ . . . ‖ fk(c ‖ n− 1) (7.3)

If l is the number of required bytes andb is the block length offk, thenn =
⌈l/b⌉ and the respective block counter is running from 0 ton − 1 (typically
written hexadecimally, i.e., 0x00 for 0, 0x01 for 1, and so on). Remember from
above that the security of the construction requiresk to be uniform inK. This
requirement is crucial and may not be the case in a real-worldsetting. If, for
example,k is the outcome of a key agreement, then it may happen thatk is biased or
originate from a relatively small subset ofK. This means that some preprocessing is
required to extract a uniform and pseudorandom key from the source key. There are
several standards that serve this purpose, such as KDF1 to KDF4 [19], and—most
importantly—theHMAC-based extract-and-expand key derivation function(HKDF)
[20] that uses the HMAC construction (Section 10.3.2.4) andfollows the extract-
then-expand paradigm, meaning that it employs the HMAC construction for both
the extraction of the uniform key from the source key and the expansion of this
key according to (7.3). More specifically, the HKDF functionconsists of an HKDP
extract functionKDFextract defined as

HKDFextract(s, k) = HMACs(k) = k′

for salts and source keyk,7 and an HKDF expand functionKDFexpand that uses
k′ to recursively compute values forT . T0 is initialized with the empty string, and

Ti = HMACk′(Ti−1 ‖ c ‖ i)

for i = 1, . . . , n (again written hexadecimally).8 Finally, the output of the HKDF
function refers tol first bytes of a string that is constructed as follows:

HKDFexpand(k
′, c, l) = T1 ‖ T2 ‖ . . . ‖ Tn

6 A KDF can be seen as a PRG because it stretches a relatively short key (that represents a seed) into a
much longer key or even multiple keys. Equivalently, it can also be seen as a PRF because it should
look like it is being chosen from the set of all possible such functions. This viewpoint is supported,
for example, by the U.S. NIST [18].

7 If no salt is provided, then the default value is an appropriately sized zero string. In HKDF
terminology,k refers to the input keying material (IKM).

8 In HKDF terminology, the output of the HKDF expand functionrefers to output keying material
(OKM).
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The HKDF function is used in almost all Internet security protocols to derivate
arbitrary long keying material from a relatively short key.

In the realm of password hashing (i.e., where one or several keys need to be
derived from a password or passphrase), there are a few complementarypassword-
based key derivation functions(PBKDF), such as PBKDF1 and PBKDF2 [21, 22].
The specialties of this use case are that a password does not provide a lot of entropy
and that the function needs to be slowed down to defeat (offline) password guessing
attacks. This is a very old idea that has its origin in the crypt function that was
originally used in the UNIX operating system to hash passwords. Another approach
to defeat password guessing attacks, especially if additional hardware is available,
is to make the PBKDFmemory-hard, meaning that the execution of the function
does not only require a lot of processing power, but also a lotof memory. Examples
of memory-hard PBKDFs are scrypt [23] and Balloon.9 Furthermore, there was a
Password Hashing Competition (PHC10) going on between 2013 and 2015. Instead
of official standardization bodies like NIST, it was organized by cryptographers
and security practitioners.Argon211 was selected as the final PHC winner, with
special recognition given toCatena,12 Lyra2,13 yescrypt, andMakwa. We close this
outline on KDFs with the note that in some literature such functions are calledmask
generation functions(MGF). So a MGF also refers to KDF, most likely implemented
with a cryptographic hash function.
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Chapter 8

Pseudorandom Functions

In this chapter, we highlight PRFs (including PRPs) as a central theme. More
specifically, we introduce the topic in Section 8.1, discusspossibilities to argue
about the security of a PRF in Section 8.2, show that PRGs and PRFs are closely
related in the sense that one construct one from the other in Section 8.3,1 elaborate
on the random oracle model in Section 8.4, and conclude with some final remarks in
Section 8.5. In contrast to many other chapters, this chapter is theoretically motivated
and sets the foundations many practical cryptosystems are based on.

8.1 INTRODUCTION

In Section 2.2.2 we briefly introduced the notion of a PRF, andin Definition 2.8 we
gave a first definition. We said that a PRF is a familyF : K×X → Y of (efficiently
computable) functions, where each keyk ∈ K determines a functionfk : X → Y
that is indistinguishable from a random function; that is, afunction randomly chosen
fromFuncs[X,Y ]. Because there is a functionfk for everyk ∈ K, there are “only”
|K| functions inF , whereas there are|Y ||X| functions inFuncs[X,Y ] (and this
number tends to be overwhelmingly large). This means that wecan use a relatively
small key to determine a particular functionfk ∈ F , but this function behaves like
a truly random function. More specifically, it is supposed tobe computationally
indistinguishable from a random function.

The same line of argumentation applies to PRPs: A PRP is a family P :
K×X → Y of (efficiently computable) permutations, where eachp ∈ K determines
a permutationpk : X → X that is indistinguishable from a random permutation;
that is, a permutation randomly chosen fromPerms[X ]. So the logic of a PRP is

1 At the end of the previous chapter, we argued that a KDF can beseen as either a PRG or a PRF. This
argument also provides evidence to the fact that PRGs and PRFs are closely related.
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essentially the same as the logic of a PRF, and many things we say about PRFs also
apply to PRPs.

In the rest of this book, we will encounter PRFs and PRPs againand again.
For example, we already saw that cryptographic hash functions behave like PRFs,
whereas KDFs are typically implemented with keyed hash functions and therefore
yield true PRFs. In Chapter 9, we will see that block ciphers represent PRPs, and
later in this chapter we will learn how to construct a PRG froma PRF and vice versa
(Section 8.3). So PRFs and PRPs are in fact omnipresent in cryptography, and they
are at the core of many cryptosystems in use today.

8.2 SECURITY OF A PRF

One of the first questions that appear in the realm of PRFs is what it means to say
that a PRF is “secure.” As is usually the case in security discussions, we start from
the security game introduced in Section 1.2.2.1 and illustrated in Figure 1.2. In this
game-theoretic setting, the adversary is interacting witheither a random function
(representing the ideal system) or a PRF (representing the real system), and his or
her task is to tell what case applies. If he or she is able to tell the two cases apart
(with a probability that is substantially greater than guessing), then he or she wins
the game, and hence he or she can break the security of the PRF.The adversary can
then distinguish the PRF from a truly random function, and this defeats the original
purpose of the PRF (remember that a PRF is intended to be indistinguishable from
a random function).

In the sequel, we want to make this intuition more concrete. We fix a function
g : X → Y that can either be random (i.e., an element fromFuncs[X,Y ], meaning
that g

r← Funs[X,Y ]) or pseudorandom (i.e., an element from a PRF family
F : K × X → Y , meaning thatk

r← K and this key fixes a functionfk from
F ), and we consider two worlds:

• In world 0,g is a random function;

• In world 1,g is a pseudorandom function.

Furthermore, we assume a PPT algorithm representing an adversaryA located
in a closed room.A’s only possibility to interact with the outside world is to run an
experiment to explore the input-output-behavior ofg. The experiment consists ofq
input valuesxi ∈ X (i = 1, . . . , q) thatA can choose and send to the outside world.
There, these input values are subject tog, and the resulting output valuesg(xi) ∈ Y
are sent back toA. This experiment is the only wayA can interact with the outside
world.
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In this experimental setting,A’s task is to decide whether it is in world 0 or 1
(i.e., whether it interacts with a random function or a PRF).After having performed
the experiment with the oracle access tog,A must make a decision (decide whether
it is in world 0 or 1), and we use the termA(g) to refer to this decision. Each
experiment has a certain probability of returning 1, where the probability is taken
over all random choices made in the experiment. The two probabilities (for the two
experiments) should be evaluated separately because they are completely different.

To see how goodA is at determining which world it is in, one may look at the
absolute difference in the probabilities that either experiment returns 1. This value is
again a probability in the range[0, 1]. It is called PRF advantage ofAwith respect to
F , and it is denoted asAdvPRF[A,F ]. Obviously,A is good if the PRF advantage
is close to 1, and it is bad if it close to 0. There are several possibilities to formally
defineAdvPRF[A,F ], and we use the following (simplified) notation here:

AdvPRF[A,F ] =

∣
∣
∣
∣

Pr[A(g) = 1] − Pr[A(g) = 1]
g

r← F g
r← Funcs[X,Y ]

∣
∣
∣
∣

To argue about the security of PRFF , we are mainly interested in the PPT
algorithmA with maximal PRF advantage. This yields the PRF advantage ofF :

AdvPRF[F ] = max
A
{AdvPRF[A,F ]}

Quite naturally, we say that PRFF is secure, ifAdvPRF[F ] is negligible; that
is, for every polynomialp, there exists an0 ∈ N+ such that for alln > n0

AdvPRF[F ] ≤
1

p(n)

The bottom line is that for a secure PRFF , there is no PPT algorithm that
can distinguish an element fromF from a truly random function. This means thatF
behaves like a random function, and hence that it can be used in place of a random
function.

8.3 RELATIONSHIP BETWEEN PRGs AND PRFs

As mentioned above, PRGs and PRFs are closely related to eachother in the sense
that one can construct one from the other. In this section, weoutline the two
respective constructions—a PRG based on a PRF and a PRF basedon a PRG—but
we don’t prove the security claims.
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8.3.1 PRF-Based PRG

As already mentioned in the realm of KDFs (Section 7.4), it isrelatively simple and
straightforward to construct a PRGG with a PRFF : One randomly selects a key
k ∈ K that fixes a particular functionfk fromF , and one then iteratively appliesfk
to an incrementing counter value (that may start with zero).If the resulting values are
taken as the output values ofG seeded withk, then the PRF-based PRG is defined
as follows:

G(k) = (fk(i))i≥0 = fk(0), fk(1), fk(2), fk(3), . . .

If F is a secure PRF, then the PRGG constructed this way can be shown to be
cryptographically secure as well. Also, its efficiency depends on the efficiency of
the underlying PRF.

8.3.2 PRG-Based PRF

More surprisingly, the close relationship also works in theopposite direction,
meaning that it is possible to construct a PRF with a PRG [1]. LetG(s) be a PRG
with stretching functionl(n) = 2n, meaning that its output is twice as long as its
input.G0(s) refers to the firstn bits ofG(s), whereasG1(s) refers to the lastn bits
ofG(s) for s ∈ {0, 1}n. Furthermore,X = Y = {0, 1}n, andx = σn · · ·σ2σ1 is the
bitwise representation ofx. Against this background, a PRG-based PRFfs : X → Y
can be defined as follows:

fs(x) = fs(σn · · ·σ2σ1) = Gσn(· · ·Gσ2(Gσ1 (s)) · · · )

The definition is simple, but the construction is not very intuitive. Let use therefore
use a toy example to explain it. Forn = 2, we can use a PRGG(s) that is defined as
follows:

G(00) = 1001

G(01) = 0011

G(10) = 1110

G(11) = 0100

For s = 10 andx = 01 (i.e., σ2 = 0 andσ1 = 1), the resulting PRF looks as
follows:

fs(x) = fs(σ2σ1) = f10(01) = G0(G1(10)) = 11
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To compute this value, we must first computeG1(10) = 10 (i.e., the last two bits of
G(10) = 1110) and thenG0(10) = 11 (i.e., the first two bits ofG(10) = 1110).
Hence, the output offs for x = 01 is 11, and every value ofs defines a particular
functionfs. Consequently, the family of all functions defined this way yields a PRF.

If G is a cryptographically secure PRG, then the PRFF constructed this way
can again be shown to be secure. In contrast to the previous case, however, the
efficiency of this construction is rather poor. Note thatG must be iteratedn times
for ann-bit PRF. Also, if one wants to turn this PRF into a PRP (e.g., to construct
a block cipher), then—according to Section 9.6.1.1—the PRFmust be input to a
three-round Feistel cipher, and this decreases the performance for another factor of
three. The bottom line is that the construction is theoretically interesting, but not
very practical.

8.4 RANDOM ORACLE MODEL

In Section 1.2.2, we introduced the notion of provable security and we mentioned
that the random oracle methodology is frequently used to design cryptographic
systems—most likely cryptographic protocols—that are provably secure in the so-
called random oracle model. The methodology was proposed byMihir Bellare and
Philip Rogaway in the early 1990s to provide “a bridge between cryptographic the-
ory and cryptographic practice” [2]. As such, they formalized a heuristic argument
that had already been vaguely expressed in [1, 3, 4].

The random oracle methodology consists of the following three steps:2

1. One designs an ideal system in which all parties—including the adversary—
have access to a random function (or random oracle, respectively).

2. One proves the security of the ideal system.

3. One replaces the random function with a PRF (e.g., a cryptographic hash
function) and provides all parties—again, including the adversary—with a
specification of this function.

As a result, one obtains an implementation of the ideal system in the real
world. Bellare and Rogaway showed the usefulness of this methodology to design
and analyze the security properties of some asymmetric encryption, digital signature,
and zero-knowledge proof systems. Meanwhile, many researchers have used the
random oracle model to analyze the security properties of many other cryptographic
systems and protocols used in the field. Note, however, that aformal analysis in the

2 In some literature, steps 1 and 2 are collectively referredto as step 1.
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random oracle model is not yet a security proof (because of the underlying ideal
assumption), but that it still provides some useful evidence for the security of the
system. In fact, Bellare and Rogaway claimed that the randomoracle model can
serve as the basis for efficient cryptographic systems with security properties that
can at least be analyzed to some extent. Because people do notoften want to pay
more than a negligible price for security, such an argument for practical systems
seems to be more useful than formal security proofs for inefficient systems.

There are basically two problems when it comes to an implementation of the
ideal system in step 3 of the random oracle methodology:

• First, it is impossible to implement a random function by a (single) crypto-
graphic hash function. In a random functionf , the preimages and images are
not related to each other, meaning thatx does not reveal any information about
f(x), and—vice versa—f(x) does not reveal any information aboutx. If the
random function is implemented with a (single) cryptographic hash function
h, then the preimagex leaks a lot of information about the imageh(x). In
fact, h(x) is then completely determined byx. This problem can be solved
by using a (large) family of cryptographic hash functions and choosing one at
random [5].

• Second, it was shown that random oracles cannot be implemented crypto-
graphically. More specifically, it was shown in [6] that an (artificially crafted)
digital signature system exists that is secure in the randomoracle model but
that gets insecure when the random oracle is implemented by a(family of)
cryptographic hash functions.

The second problem is particularly worrisome, and since itspublication many
researchers have started to think controversially about the usefulness of the random
oracle methodology in general and the random oracle model inparticular. In fact,
there is an ongoing controversy between Neal Koblitz and Alfred Menezes on one
side, and the authors of the random oracle model on the other side (e.g., [7–9]).

Anyway, a proof in the random oracle model can still be regarded as evidence
of security when the random oracle is replaced by a particular cryptographic hash
function (according to the original claim of Bellare and Rogaway). Note that no
practical protocol proven secure in the random oracle modelhas ever been broken
when used with a cryptographic hash function such as SHA-1. The protocol used in
the proof of [6] is not a natural protocol for a “reasonable” cryptographic application.
Instead, it was designed specifically for the proof, and musttherefore be taken with
a grain of salt.
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8.5 FINAL REMARKS

In this chapter, we elaborated on PRFs and their close relationship to PRGs. In
particular, we showed that it is possible to construct a PRG if one has a PRF,
and—vice versa—that it is possible to construct a PRF if one has a PRG. The
constructions are conceptually simple and straightforward, but they are not thought
to be implemented to serve any practical needs.

Having introduced the notion of a PRF, we then introduced, overviewed, and
put into perspective the random oracle methodology that is frequently used to design
cryptographic systems and protocols, and to analyze their security properties in the
random oracle model. Mainly due to a negative result [6], people have started to
think controversially about the random oracle model and to look for alternative ap-
proaches to analyze the security properties of cryptographic systems and protocols.
In fact, security proofs avoiding the random oracle model are preferred and have
started to appear in cryptographic publications. They are sometimes referred to as
proofs in the standard model. Unfortunately, there also areas in which we don’t have
proofs in the standard model and where proofs in the random oracle model is the
best we have.
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Chapter 9

Symmetric Encryption

In this chapter, we elaborate on symmetric encryption in itsfull length. More specif-
ically, we introduce the topic in Section 9.1, provide a brief historical perspective
in Section 9.2, elaborate on perfectly secure and computationally secure encryption
in Sections 9.3 and 9.4, dive deeply into stream ciphers, block ciphers, and modes
of operation (for block ciphers) in Sections 9.5–9.7, and conclude with some final
remarks in Section 9.8. Note that symmetric encryption systems are the most widely
deployed cryptographic systems in use today, and that many books on cryptogra-
phy elaborate only on these systems. Consequently, this chapter is an important and
extensive one.

9.1 INTRODUCTION

If M is a plaintext message space,C a ciphertext space, andK a key space, then—
according to Definition 2.9—asymmetric encryption systemor cipher is a pair
(E,D) of families of efficiently computable functions that are defined as follows:

• E : K ×M → C denotes a family{Ek : k ∈ K} of encryption functions
Ek :M→ C;

• D : K × C → M denotes a family{Dk : k ∈ K} of respectivedecryption
functionsDk : C →M.

For every messagem ∈ M and keyk ∈ K, the functionsDk andEk must be
inverse to each other (i.e.,Dk(Ek(m)) = m). Otherwise, a ciphertext may not be
decryptable, and hence the encryption system may not be veryuseful in the first
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place.1 To illustrate the working principles of a symmetric encryption system you
may revisit Figure 2.7. Note that a symmetric encryption system can be randomized
in the sense that the encryption function takes additional random input. As we will
see later in this chapter, randomized symmetric encryptionsystems have security
advantages and are therefore preferred most of the time.

In some symmetric encryption systems, it doesn’t matter whether one encrypts
first and then decrypts or decrypts first and then encrypts. Informulas, this means

Dk(Ek(m)) = Ek(Dk(m)) = m

Taking this idea one step further, a symmetric encryption system iscommutativeif
a message that is encrypted multiple times can be decrypted in arbitrary order. If a
messagem is encrypted twice withk1 andk2; that is,c = Ek2 (Ek1(m)), then in a
commutative encryption system

Dk2(Dk1(c)) = Dk1(Dk2(c)) = m

must hold. Similarly, ifm is encrypted three times withk1, k2, andk3; that is,
c = Ek3(Ek2 (Ek1(m))), then in a commutative encryption system

Dk3(Dk2(Dk1(c))) = Dk3(Dk1(Dk2(c))) =

Dk2(Dk3(Dk1(c))) = Dk2(Dk1(Dk3(c))) =

Dk1(Dk3(Dk2(c))) = Dk1(Dk2(Dk3(c))) = m

must all hold. It goes without saying that the notion of a commutative encryption
can be generalized to many encryption steps. If, for example, the addition modulo
2 is used to encrypt and decrypt messages, then the order of the encryption and
decryption operations does not matter, and hence the respective encryption system
is commutative (for any number of encryption steps).

In order to evaluate a particular (symmetric) encryption system, one needs
well-defined criteria. Referring to Shannon [1, 2],2 the following five evaluation
criteria may serve as a starting point.

Amount of secrecy: The ultimate goal of an encryption system is to keep plaintext
messages secret. Consequently, the amount of secrecy provided by an encryp-
tion system is an important evaluation criterion. It is particularly interesting to

1 This condition is specific for symmetric encryption systems. In asymmetric encryption systems, the
keys that select an encryption function and a decryption function from the corresponding families
are not equal and may not be efficiently computable from one another. This point is further addressed
in Chapter 13.

2 Refer to Section 1.3 for references to Shannon’s original work.
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be able to measure and somehow quantify the amount of secrecya encryption
system is able to provide. We are going to define perfect and computational
secrecy as a possible measure to be used in the field. Except for that, we don’t
have the tools to more differentially argue about the amountof secrecy pro-
vided by a (symmetric) encryption system.

Size of key: Symmetric encryption systems employ secret keys that must be se-
curely generated, distributed, managed, and memorized. Itis therefore desir-
able (from an implementation and performance viewpoint) tohave keys that
are as small as possible. The size of the key must be at least aslarge as to make
a brute-force attack or exhaustive key search computationally intractable. Be-
yond this threshold, however, the size of key is often overrated in security
discussions and analyses. Long keys are not particularly more difficult to han-
dle than short keys.

Complexity of enciphering and deciphering operations: To allow an efficient
implementation, the enciphering and deciphering operations should not be too
complex (i.e., they should be as simple as possible). This criterion used to be
important in the past. Due to the power of today’s computing devices, the
complexity of the enciphering and deciphering operations is no longer a key
issue. Currently deployed encryption systems can be efficiently implemented
even on small end-user devices.

Propagation of errors: Different symmetric encryption systems and modes of
operation have different characteristics with regard to the propagation of
errors. Sometimes propagation of errors is desirable, but sometimes it is not.
Hence, the nature and the characteristics of the application that needs to be
secured determines the requirements with regard to error propagation.

Expansion of messages:In some symmetric encryption systems, the size of a
message is increased by the encryption, meaning that the ciphertext is larger
than the underlying plaintext message. This is not always desirable, and
sometimes symmetric encryption systems are designed to minimize message
expansion. If, for example, encrypted data must be fed into afixed-length field
of a communication protocol, then the symmetric encryptionsystem must not
expand the plaintext message at all.

This list is not comprehensive, and many other and (complementary) eval-
uation criteria may be important in a specific environment orapplication setting.
Furthermore, not all criteria introduced by Shannon are still equally important today.
For example, the “size of key” and the “complexity of enciphering and deciphering
operations” criteria are not so important anymore, mainly because computer systems
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manage keys and run the enciphering and deciphering operations in a way that is
independent from the user.

9.1.1 Block and Stream Ciphers

Every practically relevant symmetric encryption system processes plaintext mes-
sages unit by unit. A unit, in turn, may be either a bit or a block of bits (e.g., one or
several bytes). Furthermore, the symmetric encryption system may be implemented
as an FSM, meaning that the i-th ciphertext unit depends on the i-th plaintext unit,
the secret key, and possibly some internal state. Dependingon the existence and use
of internal state, block ciphers and stream ciphers are usually distinguished.

• In ablock cipher, the encrypting and decrypting devices have no internal state
(i.e., the i-th ciphertext unit only depends on the i-th plaintext unit and the
secret key). There is no memory involved, except for the internal memory
that is used by the implementation of the cipher. Block ciphers are further
addressed in Section 9.6.

• In a stream cipher, the encrypting and decrypting devices have internal state
(i.e., the i-th ciphertext unit depends on the i-th plaintext unit, the secret key,
and some internal state). Consequently, stream ciphers represent theoretically
more advanced and more powerful symmetric encryption systems than block
ciphers (in practice, things are not so clear and the question of whether block
ciphers or stream ciphers are more advanced is discussed controversially).
There are two major classes of stream ciphers that differ in their state transition
function (i.e., the way the internal state is manipulated and the next state is
computed):

– In a synchronousstream cipher, the next state does not depend on the
previously generated ciphertext units.

– In a nonsynchronousstream cipher, the next state also depends on some
(or all) of the previously generated ciphertext units.

Synchronous stream ciphers are also calledadditive stream ciphers,
and nonsynchronous stream ciphers are also calledself-synchronizing stream
ciphers. In this book, we use these terms synonymously and interchangeably.
Stream ciphers are further addressed in Section 9.5.

The distinction between block ciphers and stream ciphers isless precise than
one might expect. In fact, there are modes of operation that turn a block cipher into
a stream cipher—be it synchronous or nonsynchronous. Some of these modes are
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overviewed and briefly discussed in Section 9.7—after we have introduced a few
block ciphers that are most frequently used in the field.

9.1.2 Attacks

In Section 1.2.2, we said that we must formally define the termsecuritybefore we
can make precise statements about the security of a cryptographic system, such
as a symmetric encryption system. More specifically, we mustspecify and nail
down the adversary’s capabilities and the task he or she is required to solve in
order to be successful (i.e., to break the security of the system). With regard to the
adversary’s capabilities, there are several attacks that can be distinguished, and they
are introduced here. The task to be solved and the resulting notions of security are
discussed later in the chapter. Letm1,m2, . . . ,ml ∈ M be a set ofl plaintext
message units andc1, c2, . . . , cl ∈ C the set of respective ciphertext units encrypted
with a particular keyk ∈ K.

Ciphertext-only attacks: In a ciphertext-only attack, the adversary only gets to
know one or several ciphertext unitsc1, c2, . . . , cl for somel ≥ 1 to solve the
task he or she is required to solve. Because an adversary always gets to know
messages in encrypted form (otherwise, the messages would not have to be
encrypted in the first place), ciphertext-only attacks are always feasible and
need to be mitigated in one form or another. In fact, an encryption system that
is susceptible to such attacks is totally insecure and useless, and should never
be used in the field.

Known-plaintext attacks: In aknown-plaintext attack, the adversary gets to know
one or several plaintext message and ciphertext unit pairs(m1, c1), (m2, c2),
. . . , (ml, cl) for somel ≥ 1 to solve the task he or she is required to solve.
In contrast to chosen-plaintext and chosen-ciphertext attacks (see below),
the adversary cannot choose the plaintext message and ciphertext unit pairs.
Known-plaintext attacks are possible and more likely to occur than one might
expect. Note, for example, that many communication protocols have specific
fields whose values are either known or can be easily guessed (for example, if
they are padded with zero bytes).

Chosen-plaintext attacks: In a chosen-plaintext attack(CPA), the adversary has
access to the encryption function (or the device that implements the function,
respectively) and can therefore encrypt one or several plaintext message units
m1,m2, . . . ,ml of his or her choice for somel ≥ 1. For eachmi, the
adversary gets to know the respective ciphertext unitci (1 ≤ i ≤ l). In
the simplest case, the adversary must choose the plaintext message units
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m1,m2, . . . ,ml before the attack begins. In anadaptive CPA, however, the
adversary can dynamically choose plaintext message units while the attack
is going on. Needless to say, adaptive CPAs are more powerfulthan their
nonadaptive counterparts.

Chosen-ciphertext attacks: In a chosen-ciphertext attack(CCA), the adversary
has access to the decryption function (or the device that implements the
function, respectively) and can therefore decrypt one or several ciphertext
units c1, c2, . . . , cl of his or her choice for somel ≥ 1. For eachci, the
adversary gets to know the respective plaintext message unit mi (1 ≤ i ≤ l).
Again, we distinguish whether the adversary must choose theciphertext units
c1, c2, . . . , cl before the attack begins, or whether he or she can dynamically
choose them while the attack is going on. In the second case, we call the CCA
adaptiveand use the acronym CCA2 (so CCA2 stands for an adaptive CCA).
As we will see in Section 13.1, CCAs and CCA2s are particularly important
in the realm of asymmetric encryption.

In general, there are many possibilities to mount such attacks, and we are
going to see many examples throughout the book. Because a ciphertext-only attack
is always possible, an adversary who knows the symmetric encryption system in
use can mount such an attack by trying every possible key. This attack can even
be parallelized if multiple processors are available. Let|K| be the size of the key
space (i.e., the number of possible keys),t the time it takes to test a key, andp the
number of processors performing the key search. Then each processor is responsible
for approximately|K|/p keys, and hence it takes time|K|t/p to test all possibilities.
On the average, one can expect to find the correct key about halfway through the
search, making the expected time approximately

|K|t
2p

(9.1)

This attack is known asbrute-force attackor exhaustive key search. It can be
mounted whenever the adversary is able to decide whether he or she has found the
correct key. For example, it may be the case that the decrypted plaintext message
is written in a specific language or that it otherwise contains enough redundancy to
tell it apart from gibberish. Suppose, for example, that theadversary does not know
the plaintext message (for a given ciphertext), but he or sheknows that the plaintext
message is encoded with one ASCII character per byte. This means that each byte
must have a leading zero bit, and this is often enough redundancy to tell legitimate
plaintext messages apart from illegitimate ones.

Unfortunately (from the adversary’s perspective), a brute-force attack may
also generate false positive results (i.e., keys that look like they are correct but are not
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the one actually used for encryption). The likelihood of this occurring depends on the
relative sizes of the key and plaintext message spaces. If, for example, a block cipher
has a block length of 64 bits and a key length of 80 bits, then the plaintext message
and ciphertext spaces have264 elements, whereas the key space has280 elements.
This means that there are on the average280/264 = 280−64 = 216 = 65, 536 keys
that map a given plaintext message to a given ciphertext. To find the correct key—the
so-called target key—among all possible keys, the adversary can consider a second
plaintext message-ciphertext-pair (to further reduce thenumber of possible keys). If
the target key is not yet unique, then he or she can use a third plaintext message-
ciphertext-pair, and so on. In each step, the likelihood of finding the target key
increases significantly, and normally only a few iterationsare required to uniquely
determine the target key.

Let us now provide a historical perspective and outline somesimple ciphers
one may think of at first sight. These ciphers are just examples and do not satisfy the
security requirements of cryptography as it stands today.

9.2 HISTORICAL PERSPECTIVE

Every cipher employs one or several alphabet(s) to form plaintext message, cipher-
text, and key spaces. If, for example, a single alphabetΣ = {A, . . . , Z} is used, then
all spaces consist of words that can be constructed with the capital letters fromA to
Z. These letters can be associated with the 26 elements ofZ26 = {0, 1, . . . , 25}. In
fact, there is a bijective mapping from{A, . . . , Z} into Z26, and this means thatΣ
andZ26 are isomorphic (written asΣ ∼= Z26), and hence one can work either with
Σ = {A, . . . , Z} orZ26 = {0, . . . , 25}.

If Σ ∼= Z26 = {0, . . . , 25} andM = C = K = Z26, then anadditive cipher
can be defined with the following encryption and decryption functions:

Ek : M−→ C Dk : C −→M
m 7−→ m+ k (mod 26) = c c 7−→ c− k (mod 26) = m

In this cipher, the decryption key is the additive inverse ofthe encryption key.
Consequently, it is simple for anybody knowing the encryption key to determine the
decryption key (that’s why the encryption system is called symmetric in the first
place). In Section 1.3, we mentioned the Caesar cipher that is an example of an
additive cipher with the fixed keyk = 3.
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Similar to the additive cipher, one can define amultiplicative cipher3 or
combine an additive and a multiplicative cipher in anaffine cipher. In this case,
the key spaceK consists of all pairs(a, b) ∈ Z2

26 with gcd(a, 26) = 1. As such,
the key space hasφ(26) · 26 = 312 elements and is far too small for practical use.
It can, however, be used for demonstrational purposes. In fact, the encryption and
decryption functions—E(a,b) andD(a,b)—of an affine cipher are defined as follows:

E(a,b) : M−→ C D(a,b) : C −→M
m 7−→ am+ b (mod 26) c 7−→ a−1(c− b) (mod 26)

Obviously, the multiplicative inverse element ofa (i.e.,a−1) in Z26 is needed
to properly decryptc. As explained in Appendix A, the extended Euclidean algo-
rithm (Algorithm A.2) can be used to efficiently compute thiselement.

An affine cipher can be broken with two known plaintext-ciphertext pairs. If,
for example, the adversary knows(F,Q) = (5, 16) and(T,G) = (19, 6),4 then he
or she can set up the following system of two equivalences:

a5 + b ≡ 16 (mod 26)

a19 + b ≡ 6 (mod 26)

The first equivalence can be rewritten asb ≡ 16 − 5a (mod 26) and used in the
second equivalence:19a + b ≡ 19a + 16 − 5a ≡ 14a + 16 ≡ 6 (mod 26).
Consequently,14a ≡ −10 ≡ 16 (mod 26), or 7a ≡ 8 (mod 13), respectively.
By multiplying either side with the multiplicative inverseelement of 7 modulo 26
(which is 2), one getsa ≡ 16 ≡ 3 (mod 13), and hencea = 3 andb = 1. The
adversary can now efficiently computeD(a,b) similar to the legitimate recipient of
the encrypted message.

Σ = {A, . . . , Z} ∼= Z26 is a good choice for human beings. If, however,
computer systems are used for encryption and decryption, then it is advantageous
and more appropriate to useΣ = Z2 = {0, 1} ∼= F2 and to set the plaintext message,
ciphertext, and key spaces to{0, 1}∗. More often than not, the key space is set to
{0, 1}l (instead of{0, 1}∗) for a reasonably sized key lengthl, such as 128 or 256
bits.

Additive, multiplicative, and affine ciphers are the simplest examples of
monoalphabetic substitution ciphers. In a monoalphabetic substitution cipher, each

3 The multiplicative cipher works similar to the additive cipher. It uses multiplication instead of
addition. Also, to make sure that one can decrypt all the time, one must work with{1, 2, . . . , 26}
instead of{0, 1, . . . , 25}.

4 This means that the letter “F” is mapped to the letter “Q” andthe letter “T” is mapped to the letter
“G.”



Symmetric Encryption 201

letter of the plaintext alphabet is replaced by another letter of the ciphertext alphabet.
The replacement is fixed, meaning that a plaintext letter is always replaced by the
same ciphertext letter. In the most general case, a monoalphabetic substitution cipher
can be thought of a permutation of the letters that form the (plaintext and ciphertext)
alphabet. For example, A may be mapped to S, B may be mapped to M, C may be
mapped to T, and so on. There are

|Σ|! = 26! = 403, 291, 461, 126, 605, 635, 584, 000, 000> 4 · 1026

possible permutations of the 26 letters of the Latin alphabet. Each permutation
represents a key, and hence the key space of a monoalphabeticsubstitution cipher is
huge. In fact, it turns out that the key space of a monoalphabetic substitution cipher
is not the problem. The problem is more related to the fact that monoalphabetic
substitution ciphers cannot disguise the frequency distributions of individual letters
and groups of letters. For example, the letter E is the most frequently occurring letter
in English texts. So if we have a ciphertext and we notice by counting that the letter
X occurs most frequently, then we have some evidence that E has been mapped to
the letter X. This line of reasoning can be applied to all letters of the ciphertext, and
hence it may be possible to decrypt the ciphertext using statistical arguments only
(i.e., without trying out each and every possible permutation).

An early attempt to increase the difficulty of frequency analysis attacks on
substitution ciphers was to disguise plaintext letter frequencies by homophony. In
a homophonic substitution cipher, plaintext letters can be replaced by more than
one ciphertext letter. Usually, the highest frequency plaintext letters are given more
equivalents than lower frequency letters. In this way, the frequency distribution of
ciphertext letters is flattened, making analysis more difficult.

Alternatively,polyalphabetic substitution ciphersflatten the frequency distri-
bution of ciphertext letters by using multiple ciphertext alphabets in some cyclic
way. All of these substitution ciphers are overviewed and discussed in the literature.
Most of them, including, for example, the famousVigeǹere cipher,5 are easy to break
today (but keep in mind that some of these ciphers had been believed to be secure
for centuries until their breaking became public). In the case of the Vigenère cipher,
Friedrich Kasiski and William F. Friedman published the first successful attacks in
1863 (the so-calledKasiski test) and 1925 (the so-calledFriedman testor index of
coincidence). Both statistical tests can be used to determine the numberof cipher-
text alphabets that are concurrently used. Once this numberis known, one can break
down the ciphertext into shorter trunks that are encrypted monoalphabetically.Hence
frequency analysis can again be used to break each monoalphabetic substitution

5 The Vigenère cipher is a polyalphabetic substitution cipher that was published in 1585 (and
considered unbreakable until 1863) and was widely deployedin previous centuries.
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cipher individually, and hence the cryptanalysis of the polyalphabetic substitution
cipher is reduced to the cryptanalysis of the monoalphabetic substitution cipher.
Again, refer to any book about (classical) cryptography to get more information
about these historically relevant ciphers and their cryptanalysis (some books are
itemized in the Preface). This also applies toEnigma, a portable cipher machine used
by the Germans during World War II to encrypt and decrypt secret messages. For the
purpose of this book, we don’t examine these ciphers. Instead, we focus on ciphers
that are considered to be secure and hence are practically relevant today. Before that,
we want to clearly distinguish between perfectly secure andcomputationally secure
encryptions. This is the topic of the next two sections.

9.3 PERFECTLY SECURE ENCRYPTION

As mentioned before, the field of perfectly or information-theoretically secure
encryption was pioneered by Shannon in the late 1940s [1, 2].6 The aim was to
come up with an encryption system that is perfectly secure (or secret) in the sense
that it is impossible for an adversary to derive any information about a plaintext
message from a given ciphertext.7 This must be true even if the adversary has the best
available computer technology at hand, and even if he or she is not limited in terms of
computational resources, such as time and memory. Having such an absolute notion
of security in mind, it is not obvious that perfect security (or secrecy) exists at all.
But there is good and bad news: The good news is that perfect security is in fact
possible and technically feasible. The bad news is that it isusually too expensive (in
terms of keying material) for almost all practical purposes.

As illustrated in Figure 9.1, Shannon had a particular modelof a symmetric
encryption system in mind when he developed the notion of perfect or information-
theoretical security. In this model, a source (left side) wants to transmit a plaintext
messagem to the destination (right side) over an unsecure communications channel
(dotted line). To securem during its transmission, the source has an encryption
device and the destination has a decryption device. The devices implement an
encryption and decryption algorithm8 and are both fed with the same secret keyk
generated by a key source. It is assumed that a secure channelexists between the key
source and the encryption and decryption devices. The encryption device turns the
plaintext messagem into a ciphertextc, and the decryption device does the opposite.
It is assumed that the adversary has only access to the ciphertextc and that he or she

6 Refer to Appendix C for an introduction to information theory.
7 This means that one has a ciphertext-only attack in mind when one talks about perfect secrecy and

information-theoretically secure encryption.
8 More specifically, they implement the familiesE andD of encryption and decryption functions.
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has no information about the secret keyk other than that obtained by observingc.
In this situation, the adversary tries to retrieve some useful information either about
the plaintext messagem or about the actual keyk in use.

Source Encrypt

Attacker

Decrypt Destination

Key source

k

cm m

Figure 9.1 Shannon’s model of a symmetric encryption system.

A cryptographic technique originally not envisioned by Shannon is probabilis-
tic or randomized encryption. Figure 9.2 shows such a model.In addition to the
components of the original Shannon model, this model includes a random source
that generates a random inputs for the encryption process. The random input may
either be used as an additional nonsecret “key” that is transmitted to the destination
and multiplexed with the ciphertext, or it may be used to randomize the plaintext, in
which case the adversary does not obtain the randomizer in the clear. In either case,
it is important to note that the decryption process cannot berandomized and hence
that the decryption process need not be fed withs.

Source Encrypt

Attacker

Decrypt Destination

Key source

k

cm m

Random source

s

Figure 9.2 A model of a randomized symmetric encryption system.
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Having Shannon’s model of a symmetric encryption system in mind, we want
to explore the notion of perfectly secure encryption using probability theory first. Let
m0,m1 ∈M be two equally long9 plaintext messages, andc ∈ C a ciphertext that is
the encryption of either one of these messages. If the encryption is perfectly secure,
then the probability thatc is the encryption ofm0 must be equal to the probability
thatc is the encryption ofm1. This can be formalized as follows:

Pr[Ek(m0) = c]
k

r← K
=

Pr[Ek(m1) = c]
k

r← K
(9.2)

If (9.2) holds for allm0,m1 ∈ M, c ∈ C, andk sampled uniformly at random
from K, thenc yields arguably no information about the plaintext messagethat is
encrypted (m0 orm1), and hence the encryption is perfectly secure.

Alternatively, one can say that a symmetric encryption system is perfectly
secure if for all possible pairs of plaintext messagesm0 andm1 fromM (again,
with |m0| = |m1|) and keysk sampled uniformly at random fromK the probability
distributions of the respective ciphertexts are exactly the same. Formally, this can be
expressed as follows:

{Ek(m0)} = {Ek(m1)} (9.3)

(9.2) and (9.3) nicely capture the idea. An alternative way of defining perfect security
may use random variables (Definition B.2): An encryption (process) that takes place
in a symmetric encryption system(E,D) overM, C, andK can be seen as a
discrete random experiment, whereM andK are real-valued random variables
that are distributed according to the probability distributionsPM : M → R+ and
PK : K → R+. Note thatPM typically depends on the language in use, whereas
PK is often uniformly distributed over all possible keys (i.e., all keys are equally
probable). In either case, it is reasonable to assume thatM andK are independent
from each other. In addition toM andK, there is a third random variableC that is
distributed according toPC : C → R+. This random variable models the ciphertext,
and hence its probability distributionPC is completely determined byPM andPK .
The random variableC is the one that can be observed by the adversary and from
which he or she may try to retrieve information aboutM orK.

If the two random variablesM andC are independent from each other, then
the respective probability distributionsPM andPM|C must be equal for allm ∈ M
andc ∈ C.
• PM stands for thea priori probability distribution that measures the proba-

bility with which each plaintext messagem occurs in the message spaceM
(independent from a ciphertextc that is observed);

9 Equally long means that|m0| = |m1|.
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• PM|C stands for thea posteriori probability distribution that measures the
probability with which each messagem is likely to be encrypted to ciphertext
c that is observed.

Using this terminology, a symmetric encryption system provides perfect secu-
rity, if the a priori and a posteriori probability distributions are the same, meaning
that the observation of a ciphertext gives the adversary no information about the
plaintext message that is transmitted. This idea is captured in Definition 9.1.

Definition 9.1 (Perfectly secure symmetric encryption system) A symmetric en-
cryption system(E,D) overM, C, andK is perfectly secureif PM = PM|C .

Let us consider a simple example to illustrate the notion of aperfectly secure
encryption system. LetM = {0, 1} with PM (0) = 1/4 and PM (1) = 3/4,
K = {A,B} with PK(A) = 1/4 andPK(B) = 3/4, C = {a, b} with PC(a)
andPC(b) as computed below, and encryption functionE be defined as follows:

EA(0) = a EA(1) = b EB(0) = b EB(1) = a

The probability distributionsPM andPK are independent, whereas the probability
distributionPC is determined byPM andPK . Due to the independence ofPM

andPK , one can compute the probability that the plaintext message0 is encrypted
with keyA (yielding ciphertexta) according toPMK(0, A) = PM (0) · PK(A) =
Pr[M = 0] · Pr[K = A] = 1/4 · 1/4 = 1/16. Similarly, one can compute
PMK(1, A) = PM (1) · PK(A) = Pr[M = 1] · Pr[K = A] = 3/4 · 1/4 =
3/16 (yielding ciphertextb), PMK(0, B) = PM (0) · PK(B) = Pr[M = 0] ·
Pr[K = B] = 1/4 · 3/4 = 3/16 (again, yielding ciphertextb), as well as
PMK(1, B) = PM (1) · PK(B) = Pr[M = 1] · Pr[K = B] = 3/4 · 3/4 = 9/16
(again, yielding ciphertexta). Due to the law of total probability (Theorem B.1),
the ciphertexta occurs with probabilityPC(a) = PMK(0, A) + PMK(1, B) =
1/16 + 9/16 = 10/16 = 5/8, whereas the ciphertextb occurs with probability
PC(b) = PMK(1, A) + PMK(0, B) = 3/16 + 3/16 = 6/16 = 3/8 (needless to
say,PC(a) = 5/8 andPC(b) = 3/8 must sum up to one).

Equipped with these values, one can compute the conditionalprobability that
the original plaintext message is0 if ciphertext a is observed. This probability
Pr[0|a] equals the probability that the original plaintext messageis 0 and the
ciphertext isa (i.e., PMK(0, A) = 1/16) divided by the probability that the
ciphertext isa (i.e.,PC(a) = 5/8):

Pr[0|a] = PMK(0, A)

PC(a)
=

1/16

5/8
=

1 · 8
16 · 5 =

1

2 · 5 =
1

10
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On the other hand, the probability that the original plaintext message is1 if a is
observed (i.e.,Pr[1|a]) equals the probability that the original plaintext message is
1 and the ciphertext isa (i.e.,PMK(1, B) = 9/16) divided by the probability that
the ciphertext isa (i.e.,PC(a) = 5/8):

Pr[1|a] = PMK(1, b)

PC(a)
=

9/16

5/8
=

9 · 8
16 · 5 =

9

2 · 5 =
9

10

The result is9/10. Hence, if a ciphertexta is observed, then it is the encryption
of 0 with a probability of1/10 and the encryption of 1 with a probability of9/10.
Again, the two probabilities must sum up to one, meaning thatif a ciphertexta is
observed, then it must be the case that the original plaintext message is either zero
or one (these are the only two possible messages).

Following the same line of argumentation, one can compute the conditional
probability that the original plaintext message is0 if ciphertextb is observed (i.e.,
Pr[0|b] = PMK(0, B)/PC(b) = (3/16)/(3/8) = 1/2), and the conditional
probability that the original plaintext message is1 if ciphertextb is observed (i.e.,
Pr[1|b] = PMK(1, A)/PC(b) = (3/16)/(3/8) = 1/2). Both values are equal to
1/2 and sum up to one.

The bottom line is that in neither of the two cases is the a posteriori probability
distributionPM|C equal toPM , and this, in turn, means that the encryption system is
not perfectly secure. If one wanted to make the encryption system perfectly secure,
then one would have to make the keys equally probable (i.e.,PK(A) = PK(B) =
1/2).

Using the information-theoretical notion of entropy (Section C.2), one can
follow the argumentation of Shannon and define a perfectly secure symmetric
encryption system as captured in Definition 9.2.

Definition 9.2 (Perfectly secure symmetric encryption system) A symmetric en-
cryption system(E,D) overM, C, andK is perfectly secureif H(M |C) = H(M)
for every probability distributionPM .

In his seminal work, Shannon also showed for nonrandomized symmetric
encryption systems that a necessary (but usually not sufficient) condition for such
a system to be perfectly secure is that the entropy ofK is at least as large as the
entropy ofM (this means that the secret key must be at least as long as the total
amount of plaintext that is to be transmitted). This result is formally expressed in
Theorem 9.1.

Theorem 9.1 (Shannon’s Theorem)In a perfectly secure symmetric encryption
systemH(K) ≥ H(M).
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Proof.

H(M) = H(M |C) ≤ H(MK|C)
= H(K|C) +H(M |CK)

= H(K|C)
≤ H(K)

In the first line, we employ the definition of perfect secrecy,namely thatH(M) =
H(M |C) and the fact thatH(MK|C) is at leastH(M |C). In the second line, we
use the basic expansion rule for uncertainties (generalized to conditional uncertain-
ties). In the third line, we use the fact thatH(M |CK) = 0 for any symmetric
encryption system (i.e., it is required that a plaintext canbe uniquely decrypted if a
ciphertext and a key are known). The inequality stated in thetheorem then follows
immediately.

�

A practical encryption scheme that can be shown to be perfectly secure (using
Shannon’s theorem) is theone-time padthat is usually credited to Gilbert S. Vernam
[3] and Joseph O. Mauborgne. Due to a patent10 granted to Vernam in 1919, the one-
time pad is also known as theVernam cipher.11 It consists of a randomly generated
and potentially infinite stream of key bitsk = k1, k2, k3, . . . that is shared between
the sender and the recipient. To encrypt a plaintext messagem = m1,m2, . . . ,mn,
the sender adds each bitmi (1 ≤ i ≤ n) modulo2 with a key bitki:

ci = mi ⊕ ki for i = 1, . . . , n

The ciphertextc = c1, c2, c3, . . . , cn is sent from the sender to the recipient. It is then
up to the recipient to recover the plaintext by adding each ciphertext bitci modulo2
with the corresponding key bitki:

pi = ci ⊕ ki = (pi ⊕ ki)⊕ ki = pi ⊕ (ki ⊕ ki) = pi ⊕ 0 = pi for i = 1, . . . , n

Consequently, the plaintext is recovered by adding each ciphertext bit with the
corresponding key bit. As proven below, the one-time pad provides perfect secrecy,
but the proof only applies if the key is truly random and used only once. In this case,
the ciphertext provides absolutely no information about the plaintext message.

10 U.S. Patent 1,310,719.
11 In 2011, it was observed by Steven M. Bellovin [4] that the one-time pad had been known almost

35 years earlier to a Californian banker named Frank Miller who published the cipher in a book
entitled “Telegraphic Code to Insure Privacy and Secrecy inthe Transmission of Telegrams” back
in 1882. This is long before people had the tools at hand to scientifically argue about the security of
the one-time pad.
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Theorem 9.2 (One-time pad)The one-time pad provides perfect secrecy.

Proof.
Starting with Equation (9.2), one can compute the probability Pr[Ek(m) = c] for
m ∈ M, c ∈ C, andk ∈ K. This probability equals the number of keys that mapm
to c divided by the number of all possible keys:

Pr[Ek(m) = c] =
|{k ∈ K : Ek(m) = c}|

|K|

If this probability is constant, then the respective encryption system is perfectly
secure. In the case of the one-time pad, there is just one (uniquely defined) keyk that
maps a particular plaintext messagem to a particular ciphertextc (i.e.,k = m⊕ c),
and this means that the probability is always1/|K|. This value is constant, and hence
the one-time pad provides perfect secrecy.

�

The one-time pad provides perfect security in terms of secrecy, but it neither
provides integrity nor authenticity. In fact, it is possible to modify a known ciphertext
so that it has a well-defined effect on the underlaying plaintext message. Assume,
for example, that the one-time pad has been used to encrypt the ASCII-encoded
version of the plaintext “Bob” (hence the three bytes that represent this plaintext
are0x42 for the capital letter “B,”0x6F for the letter “o,” and0x62 for the letter
“b”). Under the assumption that the adversary somehow knowsor guesses that the
plaintext refers to “Bob,” he or she can modify the ciphertext in some predictable
way. In fact, he or she can modify the ciphertext in a way that it decrypts to “Jim”
(represented by the three ASCII values0x4A, 0x69, and0x6D) instead of “Bob.”
He or she simply adds the two ASCII values bytewise modulo 2:0x42 ⊕ 0x4A =
0x08 for the first character,0x6F ⊕ 0x69 = 0x06 for the second character, and
0x62 ⊕ 0x6D = 0x0F for the third character. He or she then adds0x08, 0x06,
and0x0F bytewise modulo 2 to the first three characters of the ciphertext to change
the underlaying plaintext message from “Bob” to “Jim.”

The property of being able to modify a ciphertext in such a predictable way
is called malleability, and, in general,nonmalleability is a desired property for
an encryption system—be it symmetrical or asymmetrical. There are situations in
which an encryption system needs to be malleable, but these situations are rather
rare. The one-time pad is highly malleable because a ciphertext can be modified at
will. So secrecy (or confidentiality) and integrity are different design goals, and in
many applications both are important and must be provided inone way or another.

In addition to perfect security as expressed in Definition 9.2, Shannon also
introduced the notion of ideal security. The idea is that an adversary does not get
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any information about a key from a ciphertext of arbitrary length. Alternatively
speaking, no matter how much ciphertext an adversary knows,the entropy ofK
is not decreased. This idea is captured and formally expressed in Definition 9.3, but
it is not further used in this book.

Definition 9.3 (Ideal security) An encryption system(E,D) overM, C, andK is
ideally secureif H(K|Cn) = H(K) for all n ∈ N.

Source Encrypt

Attacker

Decrypt Destination

Key source

k

cm m

Random source

s

Public randomizer

r

Figure 9.3 A randomized symmetric encryption system that employs a public randomizer.

In summary, Shannon’s theorem says that unless two entitiesinitially share
a secret key that is at least as long as the plaintext message to be transmitted,
the adversary will always obtain some information about theplaintext message
from the ciphertext. This result has caused many cryptographers to believe that
perfect security (or secrecy) is impractical. This pessimism can be relativized by
pointing out that Shannon’s analysis assumes that, except for the secret key, the
adversary has access to exactly the same information as the communicating entities
and that this apparently innocent assumption is more restrictive than is generally
realized. For example, Maurer showed that it is possible to develop randomized
symmetric encryption systems that employ public randomizers as illustrated in
Figure 9.3 to provide perfect security even if the secret keys are smaller than the
plaintext messages [5]. The output of a public randomizer isassumed to be publicly
accessible (also to the adversary) but impossible to modify. It can be modeled
as a random variableR. There are basically two different ways of implementing
a public randomizer: broadcasting and storing. A source (e.g., a satellite) could
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broadcast random data or storage devices that contain the same random data could be
distributed. In the first case, it is possible to come up with arandomized symmetric
encryption system that employs a public randomizer and thatis perfectly secure
under the sole assumption that the noise on the main channel (i.e., the channel
from the source to the destination) is at least to some extentindependent from the
noise on the channel from the sender to the adversary. This system demonstrates
that a mere difference in the signals received by the legitimate receiver and by
the adversary, but not necessarily with an advantage to the legitimate receiver, is
sufficient for achieving security. From Maurer’s results, one may also conclude
that, for cryptographic purposes, a given communication channel that is noisy is not
necessarily bad. In addition, such a channel should not be turned into an error-free
channel by means of error-correcting codes, but rather thatcryptographic coding and
error-control coding should ideally be combined.

9.4 COMPUTATIONALLY SECURE ENCRYPTION

Formulas (9.2) and (9.3) require the probabilities and probability distributions to
be the same. This allows us to come up with an absolute notion of security (or
secrecy). In practice, however, these requirements are overly restrictive, and it may
be sufficient to only require that the probabilities and probability distributions are
computationally indistinguishable (instead of requiringthat they are the same).
This allows us to come up with a weaker notion of security, andwe call the
respective symmetric encryption systemscomputationally secure. All currently
deployed symmetric encryption systems (except the one-time pad) are not perfectly
but only computationally secure. This includes all symmetric encryption systems
outlined in the rest of this chapter.

In a perfectly secure encryption system, absolutely no information about a
plaintext message can be feasibly extracted from a ciphertext. In a computationally
secure encryption system, we deviate from this strict definition, and we want to be
sure that only negligible information can be extracted (instead of no information
at all). This idea led to the notion ofsemantic securityas originally proposed
by Shafi Goldwasser and Silvio Micali in the early 1980s.12 Informally speaking,
an encryption system issemantically secureif it is computationally infeasible to
derive any significant information about a plaintext message from a given ciphertext.
Alternatively speaking, whatever an efficient algorithmA can compute about a
plaintext message from a given ciphertext can also be computed by an efficient

12 As mentioned in Chapter 5, Shafi Goldwasser and Silvio Micali jointly received the Turing Award
in 2012.
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algorithmA′ that does not know the ciphertext in the first place. This mustapply
to every possible probability distribution for plaintext messages.

Unfortunately, it is difficult to prove the semantic security of any practically
used encryption system, and hence Goldwasser and Micali showed that semantic
security is equivalent to another notion of security calledciphertext indistinguisha-
bility under CPA(IND-CPA) [6]. This definition is more commonly used than the
original definition of semantic security, mainly because itbetter facilitates proving
the security of cryptosystems used in the field. When we say that a symmetric en-
cryption system is computationally secure, we basically mean that it is semantically
secure, and hence that it provides IND-CPA. The two notions of security are equiv-
alent.

To understand the notion of IND-CPA it is best to start from the security game
introduced in Section 1.2.2.1 (illustrated in Figure 1.2) and to fine-tune it a little bit.
Let (E,D) overM,C, andK be a symmetric encryption system for which IND-CPA
has to be shown in the game-theoretic setting. This can be done as follows:

• The adversary chooses a pair of equally long plaintext messagesm0 andm1

(i.e., |m0| = |m1|), and sends them to a challenger.

• The challenger randomly selects a keyk ∈R K and a bitb ∈R {0, 1}, and
sendsc = Ek(mb) as a challenge back to the adversary.

• It is the adversary’s task to decide whetherc is the encryption ofm0 (i.e.,
b = 0) or m1 (i.e., b = 1). Obviously, he or she can always guess with
a success probability of1/2, but the goal is to distinguish the two cases
with better odds. To do so, the adversary has oracle access tothe encryption
function Ek(·), meaning that he or she can have one or several plaintext
messagesm1,m2, . . . ,mq of his or her choice be encrypted to learn the
respective ciphertextsci = Ek(mi) for 1 ≤ i ≤ q.

After q oracle queries, the adversary has to choose and outputb′ that can
either be zero or one. The adversary is successful if the probability that b′ = b is
significantly better than guessing, meaning that

Pr[b′ = b] =
1

2
+ ǫ(n)

for a functionǫ(n) that is nonnegligible. In this case, the adversary can somehow
distinguish the two cases and tell them apart with a success probability that is better
than guessing.

Whenever people use encryption systems in the field, they go for systems that
are semantically secure and hence provide IND-CPA. This is equally true for stream
ciphers and block ciphers.
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9.5 STREAM CIPHERS

Stream ciphers have played and continue to play an importantrole in cryptography.13

Remember from Section 9.1.1 that stream ciphers use internal state, and that the i-
th ciphertext unit depends on the i-th plaintext unit, the secret key, and this state.
Also remember that it is common to distinguish between synchronous (or additive)
stream ciphers and nonsynchronous (or self-synchronizing) stream ciphers. Having
the modes of operation for block ciphers in mind (Section 9.7), it is obvious that
operating a block cipher in CFB mode yields a nonsynchronous(self-synchronizing)
stream cipher (i.e., the next state depends on previously generated ciphertext units),
whereas operating a block cipher in OFB mode yields a synchronous (additive)
stream cipher (i.e., the next state does not depend on previously generated ciphertext
units). Most stream ciphers in use today are synchronous (oradditive); they are
similar to the one-time pad (see Section 9.3) in the sense that they bitwise add
modulo 2 a plaintext message and a key stream.

Let Σ = Z2 = {0, 1},M = C = Σ∗, andK = Σn for some reasonably sized
key lengthn. To encrypt anl-bit plaintext messagem = m1 . . .ml ∈ M using an
additive stream cipher, a secret keyk ∈ K must be expanded into a stream ofl key
bitsk1, . . . , kl. The encryption function is then defined as follows:

Ek(m) = m1 ⊕ k1, . . . ,ml ⊕ kl = c1, . . . , cl

Similarly, the decryption function is defined as follows:

Dk(c) = c1 ⊕ k1, . . . , cl ⊕ kl = m1, . . . ,ml

The main question in the design of an additive stream cipher is how to expand
k ∈ K into a potentially infinite key stream(ki)i≥1. Many designs are based on
linear feedback shift registers (LFSRs). The respective LFSR-based stream ciphers
are overviewed next, before we turn our attention to other stream ciphers (not based
on LFSRs) that are currently more widely used in the field.

9.5.1 LFSR-Based Stream Ciphers

A feedback shift register(FSR) of lengthL consists of that amount of storage
elements (calledstages), each capable of storing one bit and having one input and

13 The importance of stream ciphers is controversially discussed in the community. At the Cryptogra-
pher’s Panel of the RSA Conference 2004, for example, Adi Shamir gave a short talk entitled “The
Death of the Stream Cipher.” In this talk, Shamir noticed andtried to explain why stream ciphers
are losing popularity against block ciphers. On the other hand, we have also experienced a revival
of stream ciphers, mainly due to their simplicity and efficiency.
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one output, and a clock that controls the movement of data in the FSR. The stages
are initialized with the bitss0, s1, . . . , sL−1 that collectively refer to the initial state
of the FSR. During each unit of time (clock cycle), the following operations are
performed:

• The content of stage 0 (i.e.,s0) is output as part of the output sequence.

• The content of stagei (i.e.,si) is moved to stagei−1 for each1 ≤ i ≤ L−1.
If we considered the contents of the FSR as a word, then we could call this
operation a shift right (denoted FSR→֒ 1 in this book).

• The new content for stageL − 1 is the feedback bitsj that is computed as
sj = f(s0, s1, . . . , sL−1) for some (feedback) functionf .

Figure 9.4 A feedback shift register (FSR).

A respective FSR is illustrated in Figure 9.4. At every clockcycle j, the
feedback functionf computes a new valuesj from the stages, and this value is
fed into the FSR from the left. Consequently, the contents ofall stages are shifted
to the right, and the content of the rightmost stage is the output of the FSR (for this
clock cycle). This procedure is repeated for every clock cycle. Consequently, the
FSR may be used to generate a sequence of (pseudorandom) output values. Because
the length of the FSR and hence the number of possible stages is finite, the FSR
represents an FSM and can be illustrated with a respective state diagram. If the
register has lengthL and there areq possible stage values, then the FSR represents
an FSM withqL − 1 possible states, and hence the FSR has a maximal period of
qL−1.14 In mathematics, one can use Good-deBruijn graphs to argue about an FSR.
Such graphs are not needed here, and hence we ignored them. Note, however, that
in our case,q is typically equal to two, and hence there are2L − 1 possible states.

14 We have to exclude the case in which all stages comprise a zero. Otherwise, the state of the FSR
does not change anymore.
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Figure 9.5 A linear feedback shift register (LFSR).

If the feedback functionf is the modulo 2 sum of the contents of some
stages, then the respective FSR yields an LFSR. This is illustrated in Figure 9.5.
Eachci for 1 ≤ i ≤ L represents a bit that can either be 0 or 1, and it somewhat
determines whether the respective stage value is taken intoaccount in the feedback
function. More specifically,sj is the modulo 2 sum of the contents of those stages
0 ≤ i ≤ L − 1, for whichcL−i = 1 (the closed semicircles in Figure 9.5 represent
AND gates).

Using this notation, an LFSR as illustrated in Figure 9.5 canbe specified as
〈L, c(X)〉, whereL refers to the length of the LFSR (i.e., the number of stages) and

c(X) = c1X + c2X
2 + . . .+ cLX

L

refers to theconnection polynomialthat is an element ofF2[X ]. The LFSR is called
nonsingular, if the degree ofc(X) is L, meaning thatcL = 1.

If s(t=0) = (s0, s1, . . . , sL−1) is the initial state of a LFSR with connection
polynomialc(X), then the output sequencesL, sL+1, sL+2, . . . is generated as

sL+t =

L∑

i=1

cisL+t−i = c1sL+t−1 + c2sL+t−2 + . . .+ cL+ts0

for t ≥ 0. This sequence may be infinite, but (according to what has been said
above) it must be cyclic after at most2L − 1 steps. If, for example,L = 4,
c(X) = c1X + c2X

2 + c3X
3 + c4X

4 with (c1, c2, c3, c4) = (0, 0, 1, 1), and
s(t=0) = (s0, s1, s2, s3) = (1, 0, 1, 1), then the resulting LFSR in its starting
position is illustrated in Figure 9.6. In the first clock cycle (i.e.,t = 1), s0 = 1
is the output bit and the new stage values3 is the sum modulo 2 of 0 and 1 (i.e., 1).
This means thats(t=1) = (0, 1, 1, 1). Similarly, one can construct
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s(t=2) = (1, 1, 1, 1)

s(t=3) = (1, 1, 1, 0)

s(t=4) = (1, 1, 0, 0)

s(t=5) = (1, 0, 0, 0)

s(t=6) = (0, 0, 0, 1)

s(t=7) = (0, 0, 1, 0)

s(t=8) = (0, 1, 0, 0)

s(t=9) = (1, 0, 0, 1)

s(t=10) = (0, 0, 1, 1)

s(t=11) = (0, 1, 1, 0)

s(t=12) = (1, 1, 0, 1)

s(t=13) = (1, 0, 1, 0)

s(t=14) = (0, 1, 0, 1)

s(t=15) = (1, 0, 1, 1)

At this point, one can recognize thats(t=15) = s(t=0), and hence that one period is
complete and starts from scratch.

Figure 9.6 An exemplary LFSR in its starting position.

Anyway, it can be shown that an LFSR of lengthL has an output sequence with
maximum possible period2L− 1, if and only if its connection polynomialc(X) has
degreeL and is irreducible overF2. This means thatc(X) is primitive, and hence
thatc(X) is a generator ofF∗2L , the multiplicative group of the nonzero elements of
F2L . In this sense, the exemplary LFSR from Figure 9.6 has a maximum period of
24 − 1 = 15. In either case, the output sequence may be used as a key stream in a
(LFSR-based) stream cipher.
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Because LFSRs are well understood in theory and can be implemented very ef-
ficiently in hardware, several stream ciphers employ a single LFSR with a primitive
connection polynomial. Such ciphers are susceptible to a known-plaintext attack,
meaning that2L plaintext-ciphertext pairs are usually sufficient to cryptanalyze and
break them. A stream cipher should therefore not directly use the output of a single
LFSR. In theory, people have proposed many constructions tosecurely use LFSRs in
stream ciphers. Examples include the shrinking generator [7] and the self-shrinking
generator [8] (Section 7.2), as well as the use of multiple LFSRs with irregular clock-
ing,15 such as A5/1 (using three LFSRs), the content scrambling system (CSS) for
DVD encryption (using two LFSRs), and E0 for Bluetooth encryption (using four
LFSRs). The details of these LFSR-based stream ciphers are beyond the scope of
this book, but keep in mind that all of them have been cryptanalyzed and broken in
the past. As such, they should no longer be used in the field.

9.5.2 Other Stream Ciphers

LFSR-based stream ciphers can be implemented efficiently inhardware, but they are
not particularly well suited to be implemented in software.Consequently, there is
room for other—preferably additive—stream ciphers optimized for implementation
in software. Note that such a cipher need not depend on the availability of a computer
system. For example, Bruce Schneier proposed a cipher namedSolitaire16 that
employs a shuffled deck of (Solitaire) cards to generate a stream of pseudorandom
letters (representing the key stream). On the sender’s side, each letter of the plaintext
message is encrypted by adding it modulo26 to the respective letter from the key
stream, and on the recipient’s side each ciphertext letter is decrypted by adding
it modulo 26 to the same letter from the key stream. Apart from Solitaire and a
few similar ciphers, most stream ciphers in use today require computer systems to
encrypt and decrypt messages. This is also the focus of this book.

In what follows, we briefly look at a historically relevant example of a non-
LFSR-based stream cipher known as RC4, before we turn our attention to a more
modern stream cipher known as Salsa20 and a variant known as ChaCha20. Other
stream ciphers have been nominated as part of the European Network of Excellence
for Cryptology (ECRYPT) Stream Cipher Project (eSTREAM17) that was running

15 Irregular clocking means that each LFSR has a specific position (or bit), calledclocking tap. In each
cycle, the majority bit is computed among all clocking taps.Only the LFSRs whose clocking tap
agree with the majority are actually clocked. For example, A5/1 has 3 LFSRs with clocking taps 8
for a 19-bit LFSR, 10 for a 22-bit LFSR, and again 10 for a 23-bit LFSR. In this case, the majority
is two, and hence at least two LFSRs are clocked, and all LFSRsare clocked if the 3 clocking taps
agree on the same bit.

16 http://www.schneier.com/solitaire.html.
17 https://www.ecrypt.eu.org/stream.
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from 2004 to 2008. The aim of the project was to find stream ciphers suited for fast
encryption in software (profile 1) or hardware (profile 2). There were 16 finalists,
and the eSTREAM profile 1 finally comprised HC-128, Rabbit, Salsa20/12, and
SOSEMANUK, whereas profile 2 comprised Grain (version 1), MICKEY (version
2), and Trivium. Except for Salsa20, these stream ciphers are not addressed in this
book.

9.5.2.1 RC4

In 1987, Rivest proposed a stream cipher namedRC418 that was quite widely
deployed until a few years ago. It was, for example, used for Wired Equivalent
Privacy (WEP), Wi-Fi Protected Access (WPA), and SSL/TLS protocols. The design
of RC4 was originally kept as a trade secret of RSA Security. In 1994, however, the
source code of an RC4 implementation was anonymously postedto the Cypherpunks
mailing list, and the correctness of the posting was later confirmed by comparing
its outputs to those produced by licensed implementations.Because the RC4 stream
cipher is treated as a trade secret and the term RC4 is trademarked, the algorithm that
was anonymously posted is sometimes referred to asARC4or ARCFOUR(standing
for “Alleged-RC4”). Hence, the terms RC4, ARC4, and ARCFOURall refer to the
same stream cipher.

In essence, RC4 is a synchronous (additive) stream cipher, meaning that a
sequence of pseudorandom bytes (i.e., a key stream) is generated independently from
the plaintext message or ciphertext, and this sequence is bytewise added modulo 2
to the plaintext message. The cipher takes a variable-length key k that may range
from 1 to 256 bytes (i.e., 2,048 bits). Its bytes are labeledk[0], . . . , k[255].

Algorithm 9.1 The S-box initialization algorithm of RC4.

(S, k)

j = 0
for i = 0 to 255 doS[i] = i
for i = 0 to 255 do

j = (j + S[i] + k[i] mod |k|]) mod 256
S[i]↔ S[j]

(S)

To generate a key stream, RC4 employs an arrayS of 256 bytes of state
information (called S-box). The elements of the S-box are labeledS[0], . . . , S[255].

18 The acronym RC is rumored to stand for “Ron’s Code.” Note that RC2, RC5, and RC6 are block
ciphers that are not related to RC4.
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They are initialized according to Algorithm 9.1. The algorithm takes as input an
empty S-boxS and a keyk, and it then usesk to putS into somek-dependent state.
More specifically, it initializes the 256 bytes of the state in a first for-loop with their
respective index or position number:

S[0] = 0

S[1] = 1

. . .

S[255] = 255

Afterward, it pseudorandomly permutes the bytes of the S-box in a second for-loop,
in which each0 ≤ j ≤ 255 is assigned(j + S[i] + k[i] mod |k|]) mod 256 and
the bytes at positionsi andj are swapped.

Algorithm 9.2 The RC4 PRG algorithm.

(S)

i = (i+ 1) mod 256
j = (j + S[i]) mod 256
S[i]↔ S[j]
k = S[(S[i] + S[j]) mod 256]

(k)

After the S-box has been initialized according to Algorithm9.1, i andj are
both initialized with zero (the respective initializationstepsi← 0 andj ← 0 could
be appended to Algorithm 9.1, but this is not done here). So just keep in mind that
this needs to be done before the actual encryption begins.

To encrypt a plaintext message byte, the RC4 PRG algorithm outlined in
Algorithm 9.2 must be executed and the resulting bytek (that no longer refers to
original key that is input to Algorithm 9.1) must be added modulo 2 to the respective
plaintext message byte. The RC4 PRG algorithm therefore takes as input an S-boxS
that is initialized according to Algorithm 9.1, and it generates as output a new byte
of the key stream, denotedk here. To generatek, the algorithm generates new values
for i andj: It incrementsi modulo 256, and it adds modulo 256 the byte found at
positioni in the S-Box toj. The S-box bytes at positionsi andj are then swapped,
andk is taken from the S-box at positionS[i] + S[j] modulo 256. This algorithm is
so simple that it can be implemented in only a few lines of code.

In spite of its simplicity, RC4 had been used for a very long time, until
some weaknesses and statistical defects were found. Most importantly, the key
stream generated by RC4 is biased, meaning that some byte sequences occur more
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frequently than others, and that these biases may be exploited in some attacks. For
example, we know that the probability that the second byte being generated is equal
to zero is2/256 = 1/128 (instead of1/256), and that the probability that a double
zero byte is generated is1/(256)2 + 1/(256)3 (instead of1/(256)2). Biases like
these have been exploited, for example, in some published attacks against the WEP
and the TLS protocols.19 It is sometimes recommended to discard the first 256 or 512
bytes of a key stream, but it is disputable whether this is sufficient. In fact, RC4 is
no longer a recommended stream cipher in most application settings for the Internet
(e.g., [9]).

RC4 is an additive stream cipher that is deterministic, meaning that it always
generates the same key stream if seeded with the same key. This also means that
the same ciphertext is generated each time the same plaintext message is encrypted
with the same key, and hence that the key should be changed periodically. Formally
speaking, the encryption function can be expressed as follows:

c = Ek(m) = m⊕G(k) (9.4)

In this expression,G refers to the PRG of the stream cipher,k refers to the key
(that represents the seed ofG), andm andc refer to the plaintext message and the
respective ciphertext. Many modern stream ciphers, like Salsa20 and ChaCha20,
deviate from this simple model and employ an additional nonce n, which is a
fresh and nonrepeating random value,20 when they encrypt a plaintext message. The
resulting encryption is probabilistic, meaning that a given plaintext is encrypted
differently depending on the particular nonce in use. Formally, the encryption
function of such a stream cipher can be expressed as follows:

c = Ek(m,n) = m⊕G(k, n) (9.5)

Again, the PRGG pseudorandomly generates a bit sequence that is bitwise added
modulo 2 tom to form c. But this time,G takes as input a key (seed) and a nonce.
RC4 does not take a nonce as input and is therefore not of this type. However,
something similar can be simulated by using a long-term key that is hashed with
a nonce to construct a short-term key that is then used for only one encryption. This
is always possible (not only for RC4), but makes key management more involved.
The following two stream ciphers, Salsa20 and ChaCha20, usenonces by default.
This makes it possible to use the same key to encrypt many and possibly very large
plaintext messages.

19 The most famous of these attacks is known as RC4 NOMORE (https://www.rc4nomore.com).
20 More specifically, the random value does not repeat for a given key. Once the key is changed, the

random value can be used again. So the nonrepeating value is the pair(k, n) that consists of a key
k and a noncen.
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9.5.2.2 Salsa20

Salsa2021 is an additive stream cipher—or rather a family of additive stream
ciphers—that follows the design principle mentioned above. It was originally de-
veloped by Dan Bernstein and submitted to the eSTREAM project in 2005. Since
then, it has been widely used in many Internet security protocols and applications.
Its major advantages are simplicity and efficiency both in hardware or software im-
plementations. In a typical software implementation, for example, the throughput
of Salsa20 is about five times bigger than the throughput of RC4 that is already a
fast stream cipher. As mentioned before, Salsa20 uses nonces, and it is therefore
less important to periodically refresh the key. As of this writing, there are no pub-
lished attacks against Salsa20/20 and Salsa20/12 (i.e., the reduced-round version
of Salsa20 with only 12 rounds). The best-known attack is able to break Salsa20/8
(i.e., the reduced-round version of Salsa20 with 8 rounds),but this attack is more
theoretically interesting than practical.

Salsa20 operates on 64-byte (or 512-bit) blocks of data, meaning that a
plaintext or ciphertext unit that is processed in one step is64 bytes long.22 Referring
to formula (9.5), the encryption function of Salsa20 can be expressed as follows:

c = Ek(m,n) = Salsa20encryptk (m,n) = m⊕ Salsa20expandk (n)

In this expression,Salsa20encrypt refers to the encryption function of Salsa20,
whereasSalsa20expand refers to its expansion function. Both functions are keyed
with k (that is typically 32 bytes long) and employ an 8-byte noncen.23 For the sake
of simplicity, we don’t distinguish between the Salsa20 encryption and expansion
functions, and we use the term Salsa20 to refer to either of them (from the context it
is almost always clear whether the encryption or expansion function is referred to).
In addition to the Salsa20 encryption function and expansion functions, there is also
a Salsa20 hash function that takes a 64-byte argumentx and hashes it to a 64-byte
output valueSalsa20(x). So the Salsa20 hash function does neither compress nor
expand the argument, but it can still be thought of as being a cryptographic hash
function (i.e., a function that has the same properties as a “normal” cryptographic
hash function, such as pseudorandomness). We introduce theSalsa20 hash, expan-
sion, and encryption functions in this order next.

21 https://cr.yp.to/salsa20.html.
22 In spite of this relatively large unit length, Salsa20 is still considered to be a stream cipher (and not

a block cipher).
23 As explained below,Salsa20expand

k (n) refers to the iterated application of the Salsa20 expansion
function. In each iteration, the 8-byte noncen is concatenated with an 8-byte sequence numberi. It
is iterated as many times as required until a sufficiently long key stream is generated.
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Hash Function

The Salsa20 hash function is word-oriented, meaning that itoperates on words,
referring to 4-byte or 32-bit values. It employs three basicoperations on words:

• The addition modulo232 of two wordsw1 andw2, denoted asw1 + w2.

• The addition modulo 2 (XOR) ofw1 andw2, denoted asw1 ⊕ w2.

• Thec-bit left rotation of wordw, denoted asw
y←֓ c for some integerc ≥ 0.24

For example, 0x77777777 + 0x01234567 = 0x789ABCDE, 0x01020304⊕
0x789ABCDE = 0x7998BFDA, and 0x7998BFDA

y←֓ 7 = 0111 1001 1001 1000
1011 1111 1101 1010

y←֓ 7 = 1100 1100 0101 1111 1110 1101 0011 1100 =
0xCC5FED3C. Mainly for performance reasons, the Salsa20 hash function only
uses constant values forc (in the left rotation operation) and invokes neither word
multiplications nor table lookups.

The Salsa20 hash function employs the three basic operations as building
blocks in the following auxiliary functions:

• Let y be a 4-word value that consists of the 4 wordsy0, y1, y2, andy3; that
is, y = (y0, y1, y2, y3). This means thaty is 4 · 32 = 128 bits long. The
quarterround function is defined asquarterround(y) = z = (z0, z1, z2, z3),
where

z1 = y1 ⊕ ((y0 + y3)
y←֓ 7)

z2 = y2 ⊕ ((z1 + y0)
y←֓ 9)

z3 = y3 ⊕ ((z2 + z1)
y←֓ 13)

z0 = y0 ⊕ ((z3 + z2)
y←֓ 18)

The quarterround function modifies the 4 words ofy in place; that is,y1 is
changed toz1, y2 is changed toz2, y3 is changed toz3, andy0 is finally
changed toz0. It is called “quarterround function,” because it operatesonly
on 4 words, whereas Salsa20 operates on 16 words (note that 4 is a quarter of
16).

24 Note that there is a subtle difference between ac-bit left rotation of wordw, denoted asw
y←֓ c (in

this book), and ac-bit left shift of wordw, denoted asw ←֓ c. While the first operator (
y←֓ ) means

that the bits are rotated, meaning that the bits that fall outof the word on the left side are reinserted on
the right side, this is not true for the second operator (←֓ ). Here, zero bits are reinserted on the right
side, and the bits that fall out of the word on the left side arelost. The same line of argumentation

and notation apply to thec-bit right rotation of wordw, denoted asw
x→֒ c, and thec-bit right shift

of w, denoted asw →֒ c.
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• Let y be a 16-word value(y0, y1, y2, . . . , y15) that can be represented as a
square matrix







y0 y1 y2 y3
y4 y5 y6 y7
y8 y9 y10 y11
y12 y13 y14 y15







The rowround function takesy as input and modifies the rows of the matrix in
parallel using the quarterround function mentioned above.More specifically, it
generates a 16-word output valuez = rowround(y) = (z0, z1, z2, . . . , z15),
where

(z0, z1, z2, z3) = quarterround(y0, y1, y2, y3)

(z5, z6, z7, z4) = quarterround(y5, y6, y7, y4)

(z10, z11, z8, z9) = quarterround(y10, y11, y8, y9)

(z15, z12, z13, z14) = quarterround(y15, y12, y13, y14)

This means that each row is processed individually (and independently from
the other rows), and that the four words of each row are permuted in a specific
way. In fact, the words of rowi (for 1 ≤ i ≤ 4) are rotated left fori − 1
positions. This means that the words of the first row are not permuted at all,
the words of the second row are rotated left for one position,the words of the
third row are rotated left for two positions, and the words ofthe fourth row are
rotated left for three position before the quarterround function is applied.

• Similar to the rowround function, the columnround functiontakes a 16-
word value(y0, y1, y2, . . . , y15) and generates a 16-word output according
to z = columnround(y) = (z0, z1, z2, . . . , z15), where

(z0, z4, z8, z12) = quarterround(y0, y4, y8, y12)

(z5, z9, z13, z1) = quarterround(y5, y9, y13, y1)

(z10, z14, z2, z6) = quarterround(y10, y14, y2, y6)

(z15, z3, z7, z11) = quarterround(y15, y3, y7, y11)

The columnround function is somehow the transpose of the rowround func-
tion; that is, it modifies the columns of the matrix in parallel by feeding a
permutation of each column through the quarterround function.

• The rowround and columnround functions can be combined in a doubleround
function. More specifically, the doubleround function is a columnround func-
tion followed by a rowround function. As such, it takes a 16-word sequence
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as input and outputs another 16-word sequence. Ify = (y0, y1, y2, . . . , y15) is
the input, then

z = (z0, z1, z2, . . . , z15)

= doubleround(y)

= rowround(columnround(y))

is the respective output. This means that the doubleround function first mod-
ifies the input’s columns in parallel, and then modifies the rows in parallel.
This, in turn, means that each word is modified twice.

• Finally, the littleendian function encodes a word or 4-bytesequenceb =
(b0, b1, b2, b3) in little-endian order(b3, b2, b1, b0) that represents the value
b3 · 224 + b2 · 216 + b1 · 28 + b0. This value, in turn, is typically writ-
ten in hexadecimal notation. For example,littleendian(86, 75, 30, 9) =
(9, 30, 75, 86) represents9 · 224 + 30 · 216 + 75 · 28 + 86 that can be written
as 0x091E4B56. Needless to say that the littlendian function can be inverted,
so littleendian−1(0x091E4B56) = (86, 75, 30, 9).

Putting everything together, the Salsa20 hash function takes a 64-byte se-
quencex = (x[0], x[1], . . . , x[63]) as input and generates another 64-byte sequence
Salsa20(x) = x + doubleround10(x) as output. The input sequencex consists of
16 words in littleendian form:

x0 = littlendian(x[0], x[1], x[2], x[3])

x1 = littlendian(x[4], x[5], x[6], x[7])

. . .

x15 = littlendian(x[60], x[61], x[62], x[63])

If z = (z0, z1, z2, . . . , z15) = doubleround10(x0, x1, . . . , x15), then the output of
the hash functionSalsa20(x) is the concatenation of the 16 words that are generated
as follows:

littlendian−1(z0 + x0)

littlendian−1(z1 + x1)

. . .

littlendian−1(z15 + x15)

The 20 rounds of Salsa20 come from the fact that the doubleround function is
iterated 10 times, and each iteration basically representstwo rounds, one standing
for the columnround function and one standing for the rowround function.
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Expansion Function

As its name suggests, the aim of the Salsa20 expansion function is to expand a 16-
byte inputn into a 64-byte output, using 32 or 16 bytes of keying materialand 16
constant bytes. Depending on whether the keying material consists of 32 or 16 bytes,
the constant bytes and the respective expansion functions are slightly different.

If the keying material consists of 32 bytes, then this material is split into two
halves that represent two 16-bytes keysk0 andk1. In this case, the constant bytes
look as follows (where eachσ value consists of four bytes that are encoded using
the littleendian function):

σ0 = (101, 120, 112, 97) = 0x61707865

σ1 = (110, 100, 32, 51) = 0x3320646E

σ2 = (50, 45, 98, 121) = 0x79622D32

σ3 = (116, 101, 32, 107) = 0x6B206574

The Salsa20 expansion function is then defined as follows:

Salsa20k0,k1(n) = Salsa20(σ0, k0, σ1, n, σ2, k1, σ3)

Note thatlittleendian(σ0) = littleendian(101, 120, 112, 97) = 0x61707865, so
the argument that is subject to the Salsa20 hash function starts with the four bytes
0x61, 0x70, 0x78, and 0x65.

Otherwise, for example, if the keying material consists of 16 bytes, then this
material represents a single 16-byte keyk that is applied twice. In this case, a slightly
different set of 4-byteτ constants is used

τ0 = (101, 120, 112, 97)

τ1 = (110, 100, 32, 49)

τ2 = (54, 45, 98, 121)

τ3 = (116, 101, 32, 107)

where the two bytes that are different from the respectiveσ constants are marked as
underlined. In this case, the Salsa20 expansion function isdefined as

Salsa20k(n) = Salsa20(τ0, k, τ1, n, τ2, k, τ3).

In either case,σ andτ can be seen as constantsc, k is the key, andn is the argument
of the Salsa20 expansion function. Hence, the input to the function can be written in
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a specific matrix layout:







c k k k
k c n n
n n c k
k k k c







Obviously, this layout is somewhat arbitrary and can be changed at will. As ex-
plained later, ChaCha20 is a variant of Salsa20 that uses a different matrix layout.

Encryption Function

Salsa20 is an additive stream cipher, meaning that an appropriately sized key stream
is generated and added modulo 2 to the plaintext message. TheSalsa20 expansion
function is used to generate the key stream. More specifically, let k be a 32- or 16-
byte key,25 n an 8-byte nonce, andm anl-byte plaintext message that is going to be
encrypted (where0 ≤ l ≤ 270). The Salsa20 encryption ofm with noncen under
key k is denoted asSalsa20k(m,n). It is computed asm ⊕ Salsa20k(n′), where
Salsa20k(n

′) represents a key stream that can be up to270 bytes long andn′ is
derived fromn by adding a counter. Hence, the key stream is iteratively constructed
as follows:

Salsa20k(n, 0) ‖ Salsa20k(n, 1) ‖ . . . ‖ Salsa20k(n, 264 − 1)

In each iteration, the Salsa20 expansion function is keyed with k and applied to
a 16-byte input that consists of the 8-byte nonce and an 8-byte counteri. If i is
written bitwise; that is,i = (i0, i1, . . . , i7), then the respective counter stands for
i0 + 28i1 + 216i2 + . . . + 256i7. Each iteration of the Salsa20 expansion function
yields64 = 26 bytes, so the maximal length of the key stream that can be generated
this way is264 · 26 = 264+6 = 270 bytes. It goes without saying that only as many
bytes as necessary are generated to encrypt thel bytes of the messagem. The bottom
line is that the Salsa20 encryption function can be expressed as

c = (c[0], c[1], . . . , c[l − 1]) = (m[0],m[1], . . . ,m[l− 1])⊕ Salsa20k(n′)

or

c[i] = m[i]⊕ Salsak(n, ⌊i/64⌋)[i mod 64]

25 Consider the possibility of using a 16-byte key as an option. The preferred key size is 32 bytes
referring to 256 bits.
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for i = 0, 1, . . . , l − 1. Since Salsa20 is an additive stream cipher, the encryption
and decryption functions are essentially the same (withm and c having opposite
meanings).

Because the length of a nonce is controversially discussed in the community,
Bernstein proposed a variant of Salsa20 that can handle longer nonces. More
specifically,XSalsa2026 can take nonces that are 192 bits long (instead of 64 bits)
without reducing the claimed security.

9.5.2.3 ChaCha20

In 2008, Bernstein proposed a modified version of the Salsa20stream cipher named
ChaCha20[10].27 Again, the term refers to a family of stream ciphers that comprises
ChaCha20/20 (20 rounds), ChaCha20/12 (12 rounds), and ChaCha20/8 (8 rounds).
ChaCha20 is structurally identical to Salsa20, but it uses adifferent round function
and a different matrix layout. Also, it uses a key that is always 32 bytes (256 bits)
long, a nonce that is 12 bytes (96 bits) long, and a block counter that is only
4 bytes (32 bits) long. Remember that Salsa20 nonces and block counters are 8
bytes long each. Furthermore, the ChaCha20 specification also uses another notation
to describe the quarterround function. Instead of usingy = (y0, y1, y2, y3) and
z = (z0, z1, z2, z3), it uses four 32-bit wordsa, b, c, andd. This means that

z1 = y1 ⊕ ((y0 + y3)
y←֓ 7)

z2 = y2 ⊕ ((z1 + y0)
y←֓ 9)

z3 = y3 ⊕ ((z2 + z1)
y←֓ 13)

z0 = y0 ⊕ ((z3 + z2)
y←֓ 18)

can also be written as

b = b ⊕ ((a+ d)
y←֓ 7)

c = c⊕ ((b + a)
y←֓ 9)

d = d⊕ ((c+ b)
y←֓ 13)

a = a⊕ ((d+ c)
y←֓ 18)

The operations performed by ChaCha20 are the same as the onesperformed by
Salsa20, but they are applied in a different order and each word is updated twice

26 https://cr.yp.to/snuffle/xsalsa-20081128.pdf.
27 https://cr.yp.to/chacha/chacha-20080128.pdf
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instead of just once. The advantage is that the Chacha20 round function provides
more diffusion than the Salsa20 round function. Also, the rotation distances are
changed from 7, 9, 13, and 18 to 16, 12, 8, and 7, but this difference is less important.
The ChaCha20 quarterround function updatesa, b, c, andd as follows:

a = a+ b; d = d⊕ a; d = d
y←֓ 16;

c = c+ d; b = b⊕ c; b = b
y←֓ 12;

a = a+ b; d = d⊕ a; d = d
y←֓ 8;

c = c+ d; b = b⊕ c; b = b
y←֓ 7;

Like Salsa20, ChaCha20 is an additive stream cipher, meaning that it pseudo-
randomly generates a key stream that is then added modulo 2 toencrypt or decrypt
a message. Hence, it is characterized by the PRG that is inherent in the design. The
ChaCha20 PRG is overviewed in Algorithm 9.3. It operates on a(4 × 4)-matrix
S of 4-byte words called the state. Hence, the state is exactly64 bytes long. The
ChaCha20 PRG takes as input a 32-byte keyk, a 4-byte block counteri, and a
12-byte noncen, and it generates as output a serialized version of the state. The
respective bits are then added modulo 2 to the plaintext message (for encryption) or
ciphertext (for decryption).

Algorithm 9.3 The ChaCha20 PRG algorithm.

(k, i, n)

S = σ ‖ k ‖ i ‖ n
S′ = S
for i = 1 to 10 do begin

quarterround(S′
0, S

′
4, S

′
8, S

′
12)

quarterround(S′
1, S

′
5, S

′
9, S

′
13)

quarterround(S′
2, S

′
6, S

′
10, S

′
14)

quarterround(S′
3, S

′
7, S

′
11, S

′
15)

quarterround(S′
0, S

′
5, S

′
10, S

′
15)

quarterround(S′
1, S

′
6, S

′
11, S

′
12)

quarterround(S′
2, S

′
7, S

′
8, S

′
13)

quarterround(S′
3, S

′
4, S

′
9, S

′
14)

end
S = S + S′

Serialized(S)

In step one of the ChaCha20 PRG algorithm,S is constructed as the concate-
nation of the 4 constantsσ0, σ1, σ2, andσ3 that are the same as the ones defined
for Salsa20,k, i, andn. So the 48 bytes fromk, i, andn are complemented with 16
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constant bytes, and hence the total size of the state is 64 bytes. With regard to the
matrix layout mentioned above, ChaCha20 uses the following(simplified) layout:







c c c c
k k k k
k k k k
n n n n







The first row comprises the constantsσ, the second and third rows comprise the key
k, and the fourth row comprises the noncen. To be precise, the nonce consists of a
4-byte block counteri and a 12-byte valuen that represents the actual nonce.28

In step two of the ChaCha20 PRG algorithm, the stateS is copied to the
working stateS′. This is the value that is processed iteratively in 10 rounds. In each
round, the quarterround function is applied 8 times, where the first 4 applications
refer to “column rounds” and the second 4 applications referto “diagonal rounds”
(remember that Salsa20 uses column and row rounds, but no diagonal rounds).
Diagonal rounds are new in the ChaCha20 design, and they stand for themselves.
Ten rounds with 8 applications of the quarterround functioneach yield10 ·8/4 = 20
rounds. In the end, the original content of the stateS is added modulo232 to S′,
and the result (in serialized form) refers to the 64-byte output of the ChaCha20
PRG algorithm. Serialization, in turn, is done by subjecting the words ofS to the
littleendian function and sequencing the resulting bytes.If, for example, the state
begins with the two words 0x091E4B56 and 0xE4E7F110, then the output sequence
begins with the 8 bytes 0x56, 0x4B, 0x1E, 0x09, 0x10, 0xF1, 0xE7, and 0xE4.

Similar to Salsa20, no practically relevant cryptanalytical attack against the
ChaCha20 stream cipher is known to exist. It is therefore widely used on the
Internet to replace RC4. Most importantly, it is often used with Bernstein’s Poly1305
message authentication code (Section 10.3.3) to provide authenticated encryption.

9.6 BLOCK CIPHERS

As mentioned before, every practical symmetric encryptionsystem processes plain-
text messages unit by unit. In the case of a block cipher such aunit is called ablock.
Consequently, a block cipher maps plaintext message blocksof a specific length
into ciphertext blocks of typically the same length; that is,M = C = Σn for some
alphabetΣ and block lengthn (e.g., 128 bits).

In theory, a permutation on setS is just a bijective functionf : S → S
(Definition A.22). If we fix a block lengthn and work with the plaintext message

28 Note that the block counteri and the actual noncen sum up to 16 bytes.
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and ciphertext spacesM = C = Σn, then any elementπ randomly selected from
Perms[Σn] defines a block cipher with encryption and decryption functions (Eπ and
Dπ) that are defined as follows:

Eπ : Σn −→ Σn Dπ : Σn −→ Σn

w 7−→ π(w) w 7−→ π−1(w)

There are|P (Σn)| = (Σn)! elements inPerms[Σn], and this suggests that there are
(2n)! possible permutations forΣ = {0, 1}n. This function grows tremendously (as
illustrated in Table 9.1 for the first 10 values).

Table 9.1
The Growth Rate off(n) = (2n)! for n = 1, . . . , 10

n (2n)!

1 21! = 2! = 2
2 22! = 4! = 24
3 23! = 8! = 40′320
4 24! = 16! = 20′922′789′888′000
5 25! = 32! ≈ 2.63 · 1035
6 26! = 64! ≈ 1.27 · 1089
7 27! = 128! ≈ 3.86 · 10215
8 28! = 256! ≈ 8.58 · 10506
9 29! = 512! ≈ 3.48 · 101166

10 210! = 1024! ≈ 5.42 · 102639

For a typical block lengthn of 64 bits, this suggests that there are

264! = 18, 446, 744, 073, 709, 551, 616!

possible permutation to choose from. This number is so huge that it requires more
than269 bits to encode it (this is why we have to use the factorial notation in the
formula given above). Consequently, if we want to specify a particular permutation
from Perms[{0, 1}64], then we have to introduce a numbering scheme and use
a respective index (that is approximately of that size) to refer to a particular
permutation. This269-bit number would then yield a secret key. It is doubtful
whether the communicating entities would be able to manage such a long key.
Instead, symmetric encryption systems are usually designed to take a reasonably
long key29 and generate a one-to-one mapping that looks random to someone
who does not know the secret key. So it is reasonable to use only some possible

29 A reasonably long key has more like 69 bits than269 bits.
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permutations ofΣn (from Perms[Σn]) as encryption and decryption functions and
to use comparably short keys to refer to them.

What we basically need for a block cipher is a PRP (Section 8.1) that uses
a key k from a moderately sized key spaceK to define a family of bijective
encryption functionsEk : Σn → Σn and a family of respective decryption function
Ek : Σn → Σn. To analyze the security of such a block cipher, one can studythe
algebraic properties of this PRP.

From a practical viewpoint, the design of symmetric encryption systems
combines permutations and substitutions to generate confusion and diffusion.

• The purpose ofconfusionis to make the relation between the key and the
ciphertext as complex as possible.

• The purpose ofdiffusionis to spread the influence of a single plaintext bit over
many ciphertext bits. In a block cipher, diffusion propagates bit changes from
one part of a block to other parts of the block.

These terms are frequently used in the literature for the design of block
ciphers. Block ciphers that combine permutations and substitutions in multiple
rounds (to provide a maximum level of confusion and diffusion) are sometimes
called substitution-permutation ciphers. Many practically relevant block ciphers,
including, for example, the DES, represent substitution-permutation ciphers. We
overview and discuss DES and a few other block ciphers next. In the respective
explanations, however, we are not as formal and formally correct as one can
possibly be. Instead, we adopt some terminology and notation used in the original
descriptions and specifications (to make it simpler to get into these documents).

9.6.1 DES

In the early 1970s, the U.S. National Bureau of Standards (NBS30) recognized the
importance of having a standardized block cipher for commercial use. It therefore
set up a competition for a standardized block cipher. Knowledge in block cipher
design was not widely deployed in those days, so the only company that was able to
contribute to the competition was IBM. In fact, IBM had been internally developing
a block cipher calledLucifer, and hence IBM was able to submit Lucifer to the
NBS. NBS, NSA, and IBM refined the design of Lucifer and finallystandardized
the result as DES in FIPS PUB 46 (that was first issued in 1977).Today, the FIPS
PUBs are developed and maintained by NIST. The standard was reaffirmed in 1983,
1988, 1993, and 1999, before it was officially withdrawn in July 2004. The DES

30 In the United States, the NBS later became the National Institute of Standards and Technology
(NIST).
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specification that was reaffirmed in 1999, FIPS PUB 46-3 [11],is publicly and freely
available on the Internet.31 It specifies both the DES and theTriple Data Encryption
Algorithm(TDEA) that is further addressed in Section 9.6.1.6. Contrary to the DES,
the TDEA may still be used in situations that can handle moderate performance. In
either case, cryptographic modules that implement FIPS 46-3 should also conform
to the requirements specified in FIPS 140-1 [12]. In fact, there is an increasingly
large number of DES implementations both in hardware and software that conform
to the different levels specified there.

DES is a substitution-permutation cipher. It is also the major representative of
a Feistel cipher.32 The characteristics of a Feistel cipher are overviewed first. Then
the DES encryption and decryption algorithms are described, and the security of the
DES is briefly analyzed. Finally, a variant of DES (named DESX) and TDEA are
overviewed, discussed, and put into perspective.

9.6.1.1 Feistel Ciphers

A Feistel cipher is a block cipher with a characteristic structure (also known as a
Feistel network). The alphabet isΣ = Z2 = {0, 1} and the block length is2t for a
reasonably sizedt ∈ N+. The Feistel cipher runs inr ∈ N+ rounds, wherer round
keysk1, . . . , kr are generated fromk ∈ K and used on a per-round basis.

The encryption functionEk starts by splitting the plaintext message blockm
into two halves oft bits each. LetL0 be the left half andR0 the right half ofm; that
is,m = L0 ‖ R0 = (L0, R0). For i = 1, . . . , r, a sequence of pairs(Li, Ri) is then
recursively computed as follows:

(Li, Ri) = (Ri−1, Li−1 ⊕ fki(Ri−1)) (9.6)

This means thatLi = Ri−1 andRi = Li−1 ⊕ fki(Ri−1). For example, ifi = 1,
thenL1 andR1 are computed as follows:

L1 = R0

R1 = L0 ⊕ fk1(R0)

Similarly, if i = 2, thenL2 andR2 are computed as follows:

L2 = R1

R2 = L1 ⊕ fk2(R1)

31 http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.
32 Feistel ciphers are named after the IBM researcher Horst Feistel who was involved in the original

design of Lucifer and DES. Feistel lived from 1915 to 1990 andwas one of the first nongovernment
cryptographers.
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This continues until, in the last roundr, Lr andRr are computed as follows:

Lr = Rr−1

Rr = Lr−1 ⊕ fkr (Rr−1)

The pair(Lr, Rr) in reverse order then represents the ciphertext block. Hence, the
encryption of plaintext messagem using keyk can formally be expressed as follows:

Ek(m) = Ek(L0, R0) = (Rr , Lr)

The recursive formula (9.6) can also be written as follows:

(Li−1, Ri−1) = (Ri ⊕ fki(Li), Li)

This means that it is possible to recursively computeLi−1 andRi−1 from Li, Ri,
andki, and to determine(L0, R0) from (Rr, Lr) using the round keys in reverse
order (i.e.,kr, . . . , k1). Consequently, a Feistel cipher can always be decrypted using
the same (encryption) algorithm and applying the round keysin reverse order. This
simplifies the implementation considerably.

In theory, Michael Luby and Charles Rackoff have shown that if one builds
a Feistel cipher with a round functionf that is a secure PRF, then three rounds are
sufficient to turn the Feistel cipher into a secure PRP, and hence a secure block cipher
[13]. This is a general result, and to make more precise statements about the security
of a Feistel cipher, one has to look more closely at a particular round functionf .

In addition to DES, there are many other representatives of Feistel ciphers,
such asCamellia, which is mostly used in Japan [14]. It is possible to design
and come up with iterative block ciphers that are not Feistelciphers, but whose
encryption and decryption functions (after a certain reordering or recalculation
of variables) are still similar or structurally the same. One such example is the
International Data Encryption Algorithm(IDEA) incorporated in many security
products, including, for example, former versions of Pretty Good Privacy (PGP).
Feistel ciphers have important applications in public key cryptography as well.
For example, the optimal asymmetric encryption padding (OAEP) scheme (Section
13.3.1.4) is basically a two-round Feistel cipher. We return to the DES and its
encryption and decryption functions or algorithms next.

9.6.1.2 Encryption Algorithm

As mentioned before, the DES is a Feistel cipher witht = 32 andr = 16. This
means that the block length of DES is 64 bits, and henceM = C = {0, 1}64,
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and that the DES encryption and decryption algorithms operate in 16 rounds.
Furthermore, DES keys are 64-bit strings with the additional property that the last
bit of each byte has odd parity. This means that the sum modulo2 of all bits in a byte
must be odd and that the parity bit is set accordingly. This can be formally expressed
as follows:

K = {(k1, . . . , k64) ∈ {0, 1}64 |
8∑

i=1

k8j+i ≡ 1 (mod 2) for j = 0, . . . , 7}

For example,F1DFBC9B79573413 is a valid DES key. Its odd parity can easily
be verified using the following table:

F1 1 1 1 1 0 0 0 1
DF 1 1 0 1 1 1 1 1
BC 1 0 1 1 1 1 0 0
9B 1 0 0 1 1 0 1 1
79 0 1 1 1 1 0 0 1
57 0 1 0 1 0 1 1 1
34 0 0 1 1 0 1 0 0
13 0 0 0 1 0 0 1 1

Note that the bit specified in the last column in each row refers to the parity bit
that ensures that each row has an odd number of ones. In the first row, for example,
four out of seven bits are ones, and this means that the paritybit must also be set to
one. Consequently, the first seven bits of a DES key byte determine the last bit, and
hence the size of the resulting key space is only256 (instead of264). As mentioned
earlier, the round keys derived from the DES key are the same for encryption and
decryption; they are only used in reverse order. This results from the fact that DES
is a Feistel cipher.

The DES encryption algorithm is specified in Algorithm 9.4 and illustrated in
Figure 9.7. To encrypt a 64-bit plaintext message blockm using a 64-bit keyk, the
algorithm operates in three steps:

1. The initial permutation (IP ) as illustrated in Table 9.2 is applied tom. If m =
m1m2m3 . . .m64 ∈ M = {0, 1}64, thenIP (m) = m58m50m42 . . .m7 ∈
M. This means that the 58th bit inm becomes the first bit inIP (m), the
50th bit becomes the second bit, and so on. The resultingm is then split into
two parts:L0 referring to the leftmost 32 bits ofm (denotedm|32), andR0

referring to the rightmost 32 bits ofm (denotedm|32) .

2. A 16-round Feistel cipher is then applied toL0 andR0. The round functionf
is illustrated in Figure 9.8 and addressed below. Remember that the swapping
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Algorithm 9.4 The DES encryption algorithm.

(m, k)

m = IP (m)
L0 = m|32
R0 = m|32
for i = 1 to 16 do

Li ← Ri−1

Ri ← Li−1 ⊕ fki
(Ri−1)

c← IP−1(R16, L16)

(c)

of the left and right halves is part of the structure of a Feistel cipher, and hence
that(R16, L16) is the output of this step.

3. The inverse initial permutation (IP−1) as illustrated in Table 9.3 is applied to
(R16, L16) to generate the ciphertext block; that is,c = IP−1(R16, L16).

Table 9.2
The Initial PermutationIP of the DES

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

The DES round functionf operates on blocks of 32 bits and uses a 48-bit key
ki in each roundi = 1, . . . , r, i.e.,fki : {0, 1}32 → {0, 1}32 for everyki ∈ {0, 1}48.
The working principle of the DES round functionf is illustrated in Figure 9.8. First,
the 32-bit argumentR is expanded to 48 bits using the expansion functionE :
{0, 1}32 → {0, 1}48. As shown in Table 9.4, the expansion function basically works
by doubling some input bits. IfR = r1r2 . . . r31r32, thenE(R) = r32r1 . . . r32r1.
The stringE(R) is added modulo 2 to the 48-bit keyk, and the result is split into
8 blocksB1, . . . , B8 of 6 bits each; that is,E(R) ⊕ k = B1B2B3B4B5B6B7B8

with Bi ∈ {0, 1}6 for i = 1, . . . , 8. Next, each 6-bit blockBi is transformed into
a 4-bit blockCi for i = 1, . . . , 8 using a functionSi : {0, 1}6 −→ {0, 1}4 (this
function is calledS-boxand explained later). Fori = 1, . . . , 8, we haveCi = Si(Bi),
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Figure 9.7 The DES encryption algorithm.

and henceC = C1C2 . . . C8. EachCi for i = 1, . . . , 8 is 4 bits long, so the total
length ofC is 32 bits. It is subject to the permutationP , as specified in Table 9.5.
If C = c1c2 . . . c32, thenP (C) = c16c7 . . . c25. The result isfk(R), and it is the
output of the round functionf .

The eight S-boxesS1, . . . , S8 of the DES are illustrated in Table 9.6. Each
S-box can be represented by a table that consists of 4 rows and16 columns. If
B = b1b2b3b4b5b6 is input toSi, then the binary stringb1b6 ∈ {0, 1}2 represents a
number between 0 and 3 (this number is the row index for the table), whereas the
binary stringb2b3b4b5 ∈ {0, 1}4 represents a number between 0 and 15 (this number
is the column index for the table). The output ofSi(B) is the number found in the
table (on the row that corresponds to the row index and the column that corresponds
to the column index), written in binary notation. For example, if B = 011001, then
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Figure 9.8 The DES round functionf .

the row index isb1b6 = 01 = 1 and the column index isb2b3b4b5 = 1100 = 12.
Consequently,S5(011001) refers to the decimal number 3 that can be written as a
sequence of bits (i.e.,0011). This sequence is the output of the S-box. This applies
to all inputs to the respective S-boxes.

Due to the fact that the eight S-boxesS1, . . . , S8 and the two permutations
IP and IP−1 cannot be implemented efficiently (especially in software), a new
version of DES known asDES Lightweight(DESL) has been proposed in [15]. In
the design of DESL, the eight S-boxesS1, . . . , S8 are replaced with a single S-BoxS
and the two permutationsIP andIP−1 are omitted altogether. DESL is well suited
for low-computing environments, such as the ones employed by radio frequency
identification (RFID) technologies, but the general phasing-out of DES also applies
to DESL.
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Table 9.3
The Inverse Initial PermutationIP−1 of the DES

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Table 9.4
The Expansion FunctionE of the DES

32 1 2 3 4 5 4 5 6 7 8 9
8 9 10 11 12 13 12 13 14 15 16 17
16 17 18 19 20 21 20 21 22 23 24 25
24 25 26 27 28 29 28 29 30 31 32 1

Last but not least, we must explain the key schedule; that is,how the 16 round
keysk1, . . . , k16 ∈ {0, 1}48 are generated from the DES keyk ∈ {0, 1}64. We
therefore definevi for i = 1, . . . , 16:

vi =

{
1 if i ∈ {1, 2, 9, 16}
2 otherwise (i.e., ifi ∈ {3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15})

Furthermore, we use two functions calledPC1 andPC2 (where PC stands
for permuted choice).PC1 maps a 64-bit string (i.e., a DES keyk) to two 28-bit
stringsC andD (i.e.,PC1 : {0, 1}64 → {0, 1}28 × {0, 1}28), andPC2 maps two
28-bit strings to a 48-bit string (i.e.,PC2 : {0, 1}28 × {0, 1}28 → {0, 1}48).

Table 9.5
The PermutationP of the DES

16 7 10 21 29 12 28 17
1 15 23 26 5 18 31 20
2 8 24 14 32 27 3 9
19 13 30 6 22 11 4 25
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Table 9.6
The S-BoxesS1 to S8 of the DES

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2 0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4 0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5 0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7 0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

• The functionPC1 is illustrated in Table 9.7. The upper half of the table
specifies the bits that are taken fromk to constructC, and the lower half
of the table specifies the bits that are taken fromk to constructD. If k =
k1k2 . . . k64, thenC = k57k49 . . . k36 andD = k63k55 . . . k4. Note that the
eight parity bitsk8, k16, . . . , k64 are not considered and occur neither inC nor
in D.

• The functionPC2 is illustrated in Table 9.8. The two 28-bit strings that are
input to the function are concatenated to form a 56-bit string. If this string is
b1b2 . . . b56, then the functionPC2 turns this string intob14b17 . . . b32. Note
that only 48 bits are taken into account and thatb9, b18, b22, b25, b35, b38, b43,
andb54 are discarded.

To derive the 16 round keysk1, . . . , k16 from the DES keyk, (C0, D0)
are first initialized withPC1(k) according to the construction given earlier. For
i = 1, . . . 16, the following steps are then performed:
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Table 9.7
The FunctionPC1 of the DES

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36

63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

Table 9.8
The FunctionPC2 of the DES

14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

1. Ci is set to the string that results from a cyclic shift left ofCi−1 for vi
positions.

2. Di is set to the string that results from a cyclic shift left ofDi−1 for vi
positions.

3. Ci andDi are concatenated.

4. The round keyki is the result of applying the functionPC2 to the result of
step 3 (i.e.,ki = PC2(Ci ‖ Di)).

The resulting DES key schedule calculation is summarized and illustrated in
Figure 9.9.

In the relevant literature, many examples and test vectors can be found either
to illustrate the working principles of the DES encryption algorithm or to verify the
correct input-output behavior of a specific DES implementation.33

33 Test vectors for DES encryption and decryption can be found, for example, in a NIST document
available at http://csrc.nist.gov/publications/nistpubs/800-17/800-17.pdf.
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Figure 9.9 The DES key schedule calculation.

9.6.1.3 Decryption Algorithm

Since DES is a Feistel cipher, the encryption and decryptionalgorithms are basically
the same, meaning that Algorithm 9.4 can also be used for decryption. The only dif-
ference between the DES encryption and decryption algorithms is the key schedule
that must be reversed in the case of decryption; that is, the DES round keys must be
used in reverse orderk16, . . . , k1. If the key schedule is precomputed, then using the
keys in reverse order is simple and straightforward. If, however, the key schedule
is computed on the fly, then things are slightly more involved. In this case, the key
schedule is generated as overviewed above, but cyclic shiftright operations are used
instead of cyclic shift left operations. Everything else remains the same.
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9.6.1.4 Security Considerations

Since its standardization in the 1970s, the DES has been subject to a lot of public
scrutiny. For example, people found 4 weak keys and 12 semiweak keys.

• A DES keyk is weakif DESk(DESk(m)) = m for all m ∈ M = {0, 1}64,
meaning that the DES encryption withk is inverse to itself (i.e., ifm is
encrypted twice with a weak key, then the result yieldsm again).

• The DES keysK1 andK2 aresemiweakif DESk1(DESk2(m)) = m for all
m ∈ M = {0, 1}64, meaning that the DES encryptions withk1 andk2 are
inverse to each other.

Because of their properties, weak and semiweak DES keys should not be used
in practice. As there are only16 = 24 such keys, the probability of randomly
generating one is only

24

256
= 2−52 ≈ 2.22 · 10−16

This probability is not particularly worrisome. It’s certainly equally insecure to use
a very small (large) key because an adversary is likely to start searching keys from
the bottom (top). Consequently, there is no need to worry much about weak and
semiweak keys in a given application setting.

More interestingly, several cryptanalytical attacks havebeen developed in an
attempt to break the security of DES. Examples include differential cryptanalysis
and linear cryptanalysis. Both attacks were published in the early 1990s, and are
almost 30 years old.

• Differential cryptanalysisrepresents a CPA that requires247 chosen plaintexts
to break DES [16].

• Linear cryptanalysisrepresents a known-plaintext attack that requires243

known plaintexts to break DES [17].

It goes without saying that both attacks require less plaintexts if one reduces
the number of rounds. In either case, the amount of chosen or known plaintext is far
too large to be relevant in practice. The results, however, are theoretically interesting
and have provided principles and criteria for the design of secure block ciphers
(people have since admitted that defending against differential cryptanalysis was
one of the design goals for DES [18]). Also, all newly proposed block ciphers are
routinely shown to be resistant against differential and linear cryptanalysis.

From a practical viewpoint, the major vulnerability and security problem of
DES is its relatively small key length (and key space). Note that a DES key is
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effectively 56 bits long, and hence the key space comprises only

256 = 72, 057, 594, 037, 927, 936

elements. Consequently, a key search is successful after256 trials in the worst case
and256/2 = 255 trials on the average.

Furthermore, the DES encryption has thecomplementation propertythat can
be expressed as follows:

DESk(m) = c⇐⇒ DESk(m) = c (9.7)

If one encrypts a plaintext messagem with a particular keyk, then one gets
ciphertextc. If one then encrypts the bitwise complement of the message (i.e.,m)
with the bitwise complement of the key (i.e.,k), then one also gets the bitwise
complement of the ciphertext (i.e.,c). This property can also be expressed as follows:

DESk(m) = DESk(m) (9.8)

It can be used in a known-plaintext attack to narrow down the key space with another
factor of two. If the adversary knows two plaintext-ciphertext pairs(m, c1) with
c1 = DESk(m) and(m, c2) with c2 = DESk(m), then he or she can compute
for every key candidatek′ the valuec = DESk′(m) and verify whether this value
matchesc1 or c2:

• If c = c1, then k′ is the correct key. This follows directly fromc =
DESk′ (m), c1 = DESk(m), and the fact thatc equalsc1.

• If c = c2, thenk′ is the correct key. This follows fromc = DESk′(m),
c2 = DESk(m), and the complementation property mentioned above (note
thatDESk′(m) = c2 means thatDESk′(m) = c2).

So in every trial with key candidatek′, the adversary can also verify the
complementary key candidatek′. As mentioned earlier, this narrows down the key
space with another factor of two. Hence, one can conclude that an exhaustive key
search against DES is successful after254 trials on average.

The feasibility of an exhaustive key search was first publicly discussed by
Diffie and Hellman in 1977 [19]. They estimated that a brute-force machine that
could find a DES key within a day would cost 20 million USD. Notethat an
exhaustive key search needs a lot of time but almost no memory. On the other hand,
if one has a lot of memory and is willing to precompute the ciphertextc for any given
plaintext messagem and all possible keysk, then one can store the pairs(c, k) and
quickly find the correct key in a known-plaintext attack. Consequently, there is a
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lot of room for time-memory trade-offs (this topic was first explored by Hellman in
1980 [20]).

In either case, many people have discussed the possibility to design and
actually build dedicated machines to do an exhaustive key search for DES. For
example, Michael J. Wiener proposed such a design with 57,000 chips in 1993 [21].
He came to the conclusion that a 1 million USD version of such amachine would be
capable of finding a DES key in 3.5 hours on the average. In 1997, he modified his
estimates with a factor of 6 (i.e., a 1 million USD version of the machine would be
capable of finding a DES key in 35 minutes on average and a 10,000 USD version
of the machine would be capable of finding a DES key in 2.5 days on average
[22]). These numbers are worrisome with regard to the security of DES against an
exhaustive key search.

The first real attempts at breaking DES were encouraged by theRSA Secret-
Key Challenge launched in 1997. In 1998, for example, the Electronic Frontier
Foundation (EFF) won the RSA DES Challenge II-1 using a hardware-based DES
search machine namedDeep Crack[23].34 Deep Crack cost around 200,000 USD
to build and consisted of 1,536 processors, each capable of searching through 60
million keys per second. Referring to (9.1), the time to do anexhaustive key search
is

|K|t
2p

=
256

60, 000, 000 · 2 · 1, 536 =
255

60, 000, 000 · 1, 536 ≈ 390, 937 seconds

Consequently, Deep Crack is theoretically able to recover aDES key in
approximately 6,516 minutes, 109 hours, or 4.5 days. In the RSA DES Challenge
II-1, Deep Crack was able to find the correct DES key within 56 hours.

More recently, a group of German researchers built a massively parallelCost-
Optimized Parallel Code Breaker(COPACOBANA) machine, which is optimized
for running cryptanalytical algorithms and can be realizedfor less than 10,000
USD.35 COPACOBANA can perform an exhaustive DES key search in less than
9 days on average.

Even more interestingly, one can spend the idle time of networked computer
systems to look for DES keys and run an exhaustive key search.If enough computer
systems participate in the search, then a DES key can be foundwithout having to
build a dedicated machine like Deep Crack or COPACOBANA. Forexample, the
first DES Challenge (DESCHALL) sponsored by RSA Security (with a prize of
10,000 USD) was solved in a distributed way in 1997. In the DESCHALL project,
thousands of networked computer systems were interconnected to a distributed

34 http://www.eff.org/descracker.html.
35 http://www.copacobana.org.
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system and operated from January 29, 1997, until June 17, 1997 (4.5 months). The
correct key was found after 17,731,502,968,143,872 elements (i.e., after having
searched one-fourth of the key space). The success of the DESCHALL project
had a major impact on the security of DES, because it showed that DES could be
broken without dedicated hardware. Two years later, in 1999, the participants of the
Distributed.Netproject36 broke a DES key in even less than 23 hours. More than
100,000 computer systems participated, received, and did alittle part of the work.
This allowed a search rate of 250 billion keys per second.

Against this background, it is obvious that the relatively small key length
and the corresponding feasibility of an exhaustive key search is the most serious
vulnerability and security problem of DES. There are only a few possibilities to
protect a block cipher with a small key length, such as DES, against this type of
attack. For example, one can frequently change keys, eliminate known plaintext, or
use a complex key setup procedure (or key schedule, respectively). An interesting
idea to slow down an exhaustive key search attack is due to Rivest and is known as
all-or-nothing encryption[24]. It yields an encryption mode for block ciphers that
makes sure that one must decrypt the entire ciphertext before one can determine
even one plaintext message block. This means that an exhaustive key search attack
against an all-or-nothing encryption is slowed down by a factor that depends on
the number of ciphertext blocks. This is advantageous for the encryption of large
plaintext messages. It does not help if the encrypted messages are short.

The simplest method to protect a block cipher against exhaustive key search
attacks is to work with sufficiently long keys. It is commonlyagreed today that mod-
ern ciphers with a key length of 128 bits and more are resistant against exhaustive
key search attacks. In a 1996 paper37 written by a group of well-known and highly
respected cryptographers, it was argued that keys should beat least 75 bits long and
that they should be at least 90 bits long if data must be protected adequately for the
next 20 years (i.e., until 2016). Note that these numbers only provide a lower bound
for the key length, and that there is no reason not to work withlonger keys in the
first place.38 If, for example, a key is 128 bits long, then there are

2128 ≈ 340 · 1036

possible keys. If an adversary can try out 1 million possiblekeys per second on a
particular computer system, then an exhaustive key search takes about1025 years. If

36 http://www.distributed.net.
37 http://www.schneier.com/paper-keylength.html.
38 It is sometimes argued that long keys slow down the encryption and decryption algorithms consid-

erably. This argument is false. In most symmetric encryption systems, the secret key is expanded by
a highly efficient key schedule algorithm, and this algorithm is largely independent from how many
key bits are provided in the first place.
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the same adversary has access to 1 million similar computer systems, then the attack
still lasts for1019 years. Taking into account the fact that our universe is estimated
to be roughly1.4 · 1010 years old, it is quite obvious that an exhaustive key search
against a 128-bit key is computationally infeasible.

In Appendix D.5, we introduce and put into perspective the notion of a
quantum computer. There is an algorithm created by Lov K. Grover that requires
2n/2 steps in order to perform an exhaustive key search for ann-bit key cipher
(with a key space of2n) [25], and this algorithm can be shown to be the most
efficient one [26]. In order to be resistant against such attacks, one has to double the
key length, meaning that 200-bit keys correspond to 100-bitkeys and 256-bit keys
correspond to 128-bit keys in post-quantum secret key cryptography. This explains
the standardization of 192-bit and 256-bit keys in the case of the AES (Section
9.6.2).

Coming back to DES, there are three possibilities to address(and possibly
solve) the problem of its relatively small key length:

1. The DES may be modified in a way that compensates for its relatively small
key length.

2. The DES may be iterated multiple times.

3. An alternative symmetric encryption system with a largerkey length may be
used.

The first possibility leads us to a modification of DES or the way DES is used.
Rivest’s all-or-nothing encryption mentioned above represents an example. Another
example is known as DESX (it is addressed in the following section). The second
possibility leads us to the TDEA addressed in Section 9.6.1.6. Last but not least, the
third possibility leads us to the AES addressed in Section 9.6.2.

9.6.1.5 DESX

In order to come up with a modification of DES that compensatesfor its relatively
small key length, Rivest applied Merkle’s key whitening technique [27] to DES and
proposed DESX (sometimes also written as DES-X). DESX is practically relevant
because it was the first symmetric encryption system employed by the Encrypted
File System (EFS) in the Microsoft Windows 2000 operating system.

In essence, the key whitening technique consists of steps that combine the data
with portions of the key (most commonly using a simple XOR) before the first round
and after the last round of encryption. More specifically, the DESX construction is
illustrated in Figure 9.10. In addition to the DES keyk, the DESX construction
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Figure 9.10 The DESX construction.

employs two additional 64-bit keys,k1 andk2.39 They are added modulo 2 to the
plaintext messagem before and after the DES encryption takes place. Consequently,
the DESX encryption of a plaintext messagem using keysk, k1, andk2 can be
formally expressed as follows:

c = k2 ⊕DESk(m⊕ k1)

Both additions modulo 2 are important, so neitherc = k2 ⊕ DESk(m) nor
c = DESk(m ⊕ k1) would significantly increase the resistance of DES against
exhaustive key search.

DESX requires a total of56+64+64 = 184 bits of keying material. As such,
it improves resistance against exhaustive key search considerably (e.g., [28]). In
fact, it can be shown that the computational complexity of the most efficient known-
plaintext attack is

2|k|+|k1|−t

where2t is the number of plaintext message-ciphertext pairs known to the adversary.
In this formula, it is assumed thatk1 equalsk2, and that this value corresponds to the
block length of the block cipher in use (64 bits in the case of DES). If, for example,
the adversary can collect a maximum of230 plaintext message-ciphertext pairs, then
he or she has to perform

256+64−30 = 290

DES computations to distill the target key. Given today’s technology, this computa-
tional task is surely out of reach. But keep in mind that key whitening in general, and
DESX in particular, only protect against exhaustive key search attacks, and that they
do not improve resistance against other cryptanalytical attacks such as differential
or linear cryptanalysis.

39 Note thatk1 and k2 must be different. Otherwise, the binary additions modulo 2(i.e., XOR
operations) cancel themselves out.
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Note that Merkle’s key whitening technique can be applied toany block
cipher. If, for example, one applies it to DESL, then one endsup with a symmetric
encryption system known as DESXL. It can be efficiently implemented and is not
vulnerable to exhaustive key search.

9.6.1.6 TDEA

As mentioned earlier, a possibility to address (or solve) the small key length problem
is to iterate DES multiple times. There are two points to make:

• First, multiple iterations with the same key are not much more secure than a
single encryption. This is because an adversary can also iterate the encryption
functions multiple times. If, for example, DES is iterated twice (with the same
key), then each step of testing a key is also twice as much work(because the
adversary has to do a double encryption). A factor of two for the adversary
is not considered much added security, especially because the legitimate
users have their work doubled as well. Consequently, multiple iterations must
always be done with different keys to improve security.

• Second, it was shown that the DES encryption functions are not closed with
regard to concatenation (i.e., they do not form a group [29]). If the DES
encryption functions provided a group, then there would exist a DES keyk3
for all pairs(k1, k2) of DES keys, such thatDESk3 = DESk1 ◦ DESk2 .
This would be unfortunate, and the iterated use of the DES would not provide
any security advantage.40 Because the DES encryption functions do not form
a group, this is not the case, and hence the adversary cannot simply perform an
exhaustive key search fork3 (instead of performing an exhaustive key search
for k1 andk2).

Against this background, the first (meaningful) possibility to iterate the DES
is the double encryption with two independent keys. However, it was first shown
by Diffie and Hellman that double encryption is not particularly useful due to the
existence of ameet-in-the-middle attack. Assume an adversary has a few plaintext
message-ciphertext pairs(mi, ci), whereci is derived from a double encryption of
mi with k1 andk2, and he or she wants to findk1 andk2. The meet-in-the-middle
attack is illustrated in Figure 9.11; it operates in the following four steps:

40 Consider the affine cipher as a counterexample. There is a single affine cipherE(a3,b3) which
performs exactly the same encryption and decryption as the combination of two affine ciphers
E(a1,b1) andE(a2,b2). So instead of breaking the combination, it is possible to break the single
affine cipher, and hence the combination does not increase the overall security.
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Figure 9.11 The meet-in-the-middle attack against double DES.

1. The adversary computes a first table (i.e., Table 1) with256 entries. Each entry
consists of a possible DES keyki and the result of applying that key to encrypt
the plaintext messagem1. Table 1 is sorted in numerical order by the resulting
ciphertexts. Hence, the entry(ci, ki) refers to the ciphertext that results from
encryptingm1 with ki andi = 1, . . . , 256.

2. The adversary computes a second table (i.e., Table 2) with256 entries. Each
entry consists of a possible DES keykj and the result of applying that key to
decrypt the ciphertextc1. Table 2 is sorted in numerical order by the resulting
plaintexts. Hence, the entry(mj , kj) refers to the plaintext that results from
decryptingc1 with kj for j = 1, . . . , 256.

3. The adversary searches through the sorted tables to find matching entries.
Each matching entryci = pj yieldski as a key candidate fork1 andkj as a
key candidate fork2 (becauseki encryptsm1 to a value to whichkj decrypts
c1).

4. If there are multiple matching pairs (which there almost certainly will be),41

the adversary tests the candidate pairs (k1, k2) againstm2 andc2. If multiple
candidate pairs still work form2 and c2, then the same test procedure is
repeated form3 andc3. This continues until a single candidate pair remains.
Note that the correct candidate pair always works, whereas an incorrect

41 There are264 possible plaintext and ciphertext blocks, but only256 entries in each table. Conse-
quently, each 64-bit block appears with a probability of1/256 in each of the tables, and of the256

blocks that appear in the first table, only1/256 of them also appear in the second table. That means
that there should be248 entries that appear in both tables.
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candidate pair will almost certainly fail to work on any particular (mi, ci)
pair.

The meet-in-the-middle attack is not particularly worrisome because it re-
quires two tables with256 entries each (there are some improvements not addressed
in this book). The mere existence of the attack, however, is enough reason to iterate
DES three times, and to dotriple DES(3DES) accordingly. It may be that double
DES would be good enough, but because triple DES is not much harder, it is usually
done in the first place. As mentioned earlier, FIPS PUB 46-3 specifies the TDEA,
and this specification also conforms to ANSI X9.52.

A TDEA key consists of three keys that are collectively referred to as a key
bundle (i.e.,k = (k1, k2, k3). The TDEA encryption function works as follows:

c = Ek3(Dk2(Ek1(m)))

Consequently, a TDEA or 3DES encryption is sometimes also referred to as EDE
(encrypt-decrypt-encrypt). The reason for the second iteration of DES being a
decryption (instead of an encryption) is that a 3DES implementation can then easily
be turned into a single-key DES implementation by feeding all three iterations with
the same keyk. If we then computec = Ek3 (Dk2(Ek1 (m))), we actually compute
c = Ek(Dk(Ek(m))) = Ek(m). Anyway, the TDEA decryption function works as
follows:

m = Dk1(Ek2(Dk3(c)))

FIPS PUB 46-3 specifies the following three options for the key bundle k =
(k1, k2, k3):

• Keying option 1:k1, k2, andk3 are independent keys.

• Keying option 2:k1 andk2 are independent keys andk3 = k1.

• Keying option 3: All keys are equal (i.e.,k1 = k2 = k3). As mentioned earlier,
the 3DES implementation then represents a single-key DES implementation.

Again, keying option 1 is used to make 3DES implementations backward-compatible
with single-key DES. Keying option 2 looks reasonable to use3DES with an effec-
tive key length of2·56 = 112 bits. Unfortunately, this is only wishful thinking, and it
was shown that the effective key length of 3DES with keying option 2 is somewhere
in the range of 80 bits [30]. So the remaining option to use in practice is keying
option 3. But keep in mind that, due to the meet-in-the-middle attack, the effective
key length of 3DES even with keying option 3 is not3 · 56 = 168, but somewhere
in the range of 112 bits.
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We close the section with the remark that iterating a block cipher multiple
times can be done with any block cipher and that there is nothing DES-specific
about this construction. It is, however, less frequently used with other block ciphers
(mainly because most of them have been designed to use longerkeys in the first
place).

9.6.2 AES

In the time between 1997 and 2000, NIST carried out an open competition to
standardize a successor for the DES, called the AES. In contrast with the DES
standardization effort in the mid-1970s, many parties fromindustry and academia
participated in the AES competition. In fact, there were 15 submissions qualifying as
serious AES candidates, and among these submissions, NIST selected five finalists:
MARS, RC6,42 Rijndael,43 Serpent,44 and Twofish.45 On October 2, 2000, NIST
decided that Rijndael would become the AES.46 According to [32], NIST could not
distinguish between the security of the finalist algorithms, and Rijndael was selected
mainly because of its ease of implementation in hardware andits strong performance
on nearly all platforms. The AES is officially specified in FIPS PUB 197 [33].

According to the requirements specified by NIST, the AES is a block cipher
with a block length of 128 bits and a variable key length of 128, 192, or 256 bits.47

We already mentioned why keys longer than 128 bits make sensein post-quantum
(secret key) cryptography. The respective AES versions arereferred to as AES-128,
AES-192, and AES-256. The number of rounds depends on the keylength (i.e., 10,
12, or 14 rounds). Table 9.9 summarizes the three official versions of the AES.Nb

refers to the block length (in number of 32-bit words),Nk refers to the key length
(again, in number of 32-bit words), andNr refers to the number of rounds. Note that
the official versions of the AES all work with a block size ofNb words, referring to
Nb · 32 = 4 · 32 = 128 bits. While FIPS PUB 197 explicitly defines the allowed
values forNb,Nk, andNr, future reaffirmations may include changes or additions to
these values. Implementors of the AES should therefore maketheir implementations
as flexible as possible (this is a general recommendation that does not only apply to
the AES).

42 https://people.csail.mit.edu/rivest/pubs/RRSY98.pdf.
43 The Rijndael algorithm was developed and proposed by the two Belgian cryptographers, Joan

Daemen and Vincent Rijmen. Its design and some background information is described in [31].
44 http://www.cl.cam.ac.uk/∼rja14/serpent.html.
45 https://www.schneier.com/academic/twofish.
46 Refer to the NISTReport on the Development of the Advanced Encryption Standard (AES)available

at http://csrc.nist.gov/archive/aes/round2/r2report.pdf.
47 Rijndael was originally designed to handle additional block sizes and key lengths (that are, however,

not adopted in the current AES specification).
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Table 9.9
The Three Official Versions of the AES

Nb Nk Nr

AES-128 4 4 10
AES-192 4 6 12
AES-256 4 8 14

Before we enter a more detailed description of the AES, we have to start with
a few preliminary remarks regarding the way data is processed in the encryption and
decryption algorithms.

9.6.2.1 Preliminary Remarks

Similar to most other symmetric encryption systems, the AESis byte oriented,
meaning that the basic unit for processing is a byte (i.e., a sequence of 8 bits). Each
byte represents an element ofF28 (or GF (28), respectively) and can be written in
binary or hexadecimal notation.

• In binary notation, a byte is written as{b7b6b5b4b3b2b1b0} with bi ∈ {0, 1} =
Z2
∼= F2 for i = 0, . . . , 7.

• In hexadecimal notation, a byte is written as 0xXY with X,Y∈ {0, . . . , 9,
A, . . . ,F }. Referring to the binary notation, X stands for{b7b6b5b4} and Y
stands for{b3b2b1b0}.

Alternatively, the 8 bits of a byte can also be seen and written as the coeffi-
cients of a polynomial of degree 7:

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 =

7∑

i=0

bix
i

For example, the byte{10100011}= 0xA3 can be written as polynomialx7 + x5 +
x+1; that is, for every bit equal to 1, the corresponding coefficient in the polynomial
is set to 1.

Mathematically speaking, the AES operates in the extensionfieldF28 (Section
A.1.2.5). This, in turn, means that the elements of the field are polynomials overF2

with degree equal or smaller than seven. Using these polynomials, it is simple and
straightforward to add and multiply field elements. Let us therefore have a closer
look at the addition and multiplication operations.
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Addition: If we consider bytes, then the addition is achieved by addingmodulo 2
the bits in the bytes representing the two elements ofF28 . For example,

01010111

⊕ 10000011

= 11010100

We can also use the hexadecimal or polynomial notation to addbytes. If, for
example, we use polynomials, then the addition is achieved by adding modulo
2 the coefficients for the same powers in the polynomials representing the two
elements. Hence, the example given above can be written as

(x6 + x4 + x2 + x+ 1) + (x7 + x+ 1) = x7 + x6 + x4 + x2.

Multiplication: If we consider bytes in binary or hexadecimal notation, thenthere
is no easy way to describe the multiplication operation. If,however, we
consider the polynomial notation, then the multiplicationoperation can be
easily described as a multiplication of two polynomials over Z2 modulo an
irreducible polynomial of degree 8. In the case of the AES, the irreducible
polynomial

f(x) = x8 + x4 + x3 + x+ 1

is standardized. The modular reduction byf(x) ensures that the result is
always a binary polynomial of degree less than 8, and hence that it represents
a single byte. Note that the multiplication is associative and the polynomial
1—{00000001} in binary and 0x01 in hexadecimal notation—represents the
multiplicative identity element of the multiplication operation.

Referring to Appendix A.3.6,Z2[x]f(x) represents a field iff(x) is an irre-
ducible polynomial overZ2. In the case of the AES,f(x) is an irreducible polyno-
mial overZ2 and the degree off(x) is 8. SoZ2[x]f(x) is a field that is isomorphic to
F28 . In cryptography, this field is also known as theAES field. Since it is a field, we
know that every nonzero elementb(x) (i.e., every nonzero polynomial overZ2 with
degree less than 8) has a multiplicative inverse elementb−1(x). As for any field, this
element can be efficiently computed with the extended Euclidalgorithm (Algorithm
A.2).

There are a few special cases for which the multiplication operation is simple
to compute. For example, multiplying a polynomial with the polynomial 1 is trivial,
since 1 represents the neutral element. Also, multiplying apolynomial with the
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polynomialx is simple. If we start with a polynomialb(x), thenb(x) · x refers
to the polynomial

b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x =

7∑

i=0

bix
i+1

that must be reduced modulof(x). If b7 = 0, then the result is already in reduced
form. Otherwise, ifb7 = 1, then the reduction is accomplished by subtracting (i.e.,
adding modulo 2) the polynomialf(x). It follows that multiplication byx can be
implemented efficiently at the byte level as a shift left and asubsequent conditional
addition modulo 2 withf(x). We are now ready to delve more deeply into the
internals of the AES.

9.6.2.2 State

Internally, the AES operates on a two-dimensional arrays of bytes, called theState
(note the capital letter the term starts with). The State consists of 4 rows andNb

columns. Remember from Table 9.9 thatNb = 4 for all official versions of the AES,
so the State in all official versions of the AES has 4 columns. Each entry in the
State refers to a bytesr,c or s[r, c], where0 ≤ r < 4 refers to the row number and
0 ≤ c < 4 refers to the column number. Note that the four bytessr,0, sr,1, sr,2, and
sr,3 (s0,c, s1,c, s2,c, ands3,c) in row r (columnc) of the State represent a 32-bit word,
and hence the State can also be seen as a one-dimensional array of four 32-bit words.
In fact, the views of the State as a two-dimensional 4x4 array(or matrix) of bytes or
as a one-dimensional array of four 32-bit words are equivalent. We use either view
in the sequel.

As illustrated in Figure 9.12, the 16 input bytesin0, . . . , in15 are copied
into the State at the beginning of the AES encryption or decryption process. The
encryption or decryption process is then conducted on the State, and the State’s final
bytes are copied back to the output bytesout0, . . . , out15. More formally speaking,
the input arrayin is copied into the State according to

sr,c = inr+4c

for 0 ≤ r < 4 and0 ≤ c < 4 at the beginning of the encryption (or decryption)
process. Similarly, the State is copied back into the outputarrayout according to

outr+4c = sr,c

for 0 ≤ r < 4 and0 ≤ c < 4 at the end of the encryption (or decryption). Let us
now outline the AES encryption, key expansion, and decryption algorithms, before
we analyze what is currently known about the security of the AES.
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Figure 9.12 Input bytes, State array, and output bytes of the AES.

9.6.2.3 Encryption Algorithm

The AES encryption algorithm48 is overviewed in Algorithm 9.5. The 16 input bytes
in0, . . . , in15 are first copied into the States, before an initial AddRoundKey()
transformation is applied to it. The algorithm then enters aloop that is iteratedNr−1
times, whereNr =10, 12, or 14 depending on the key length in use. In each iteration,
a round function is applied that consists of the following four transformations:

1. In the SubBytes() transformation, the bytes of the State are substituted accord-
ing to a well-defined substitution table.

2. In the ShiftRows() transformation, the rows of the State are subject to a cyclic
shift (or rotation) for a row-specific number of bytes.

48 Note that the official AES specification uses the termscipherandinverse cipherto refer to the AES
encryption and decryption algorithms. This is not in line with our use of the termcipher in this
book. In particular, we use the term to refer to a full-fledgedsymmetric encryption system and not
only to an encryption algorithm.
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Algorithm 9.5 The AES encryption algorithm.

(in)

s = in
s = AddRoundKey(s, w[0,Nb − 1])
for r = 1 to (Nr − 1) do

s = SubBytes(s)
s = ShiftRows(s)
s = MixColumns(s)
s = AddRoundKey(s, w[rNb, (r + 1)Nb − 1])

s = SubBytes(s)
s = ShiftRows(s)
s = AddRoundKey(s, w[NrNb, (Nr + 1)Nb − 1])
out = s

(out)

3. In the MixColumns() transformation, the columns of the State are subject to a
linear transformation.

4. In the AddRoundKey() transformation, a round key is addedto the State (this
is where the secret key and the respective key schedule come into play). Note
in the notation of the algorithm thatw[i] refers to the i-th word in the key
schedulew andw[i, j] refers to thej − i+1 words betweenwi andwj in the
key schedule.

Note that the SubBytes() and ShiftRows() transformations are commutative,
meaning that a SubBytes() transformation immediately followed by a ShiftRows()
transformation is equivalent to a ShiftRows() transformation immediately followed
by a SubBytes() transformation). This is not the case for allother transformations.

In Algorithm 9.5, the loop is left afterNr − 1 rounds. There is a final round
that is slightly different, as it does not include a MixColumns() transformation. In
the end, the content of the State represents the output of theAES encryption. It
is copied back into the output array. Let us now have a closer at each of the four
transformations that are the ingredients of the AES encryption algorithm.

SubBytes() Transformation

As its name suggests, the SubBytes() transformation standsfor a substitution cipher
in which each bytesr,c of the State is replaced with another bytes′r,c from a
substitution table (called S-box). The S-box of the AES is illustrated in Table 9.10.
If, for example, the input byte is 0xXY, then 0xX refers to a particular row and 0xY
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refers to a particular column in the S-box and the output is the element that can
be found at that particular position. For input byte 0x52 this means that the output
of the S-box is the element that can be found in row 5 and column2. This is the
element 0x00, and hence the output of the S-box for the element 0x52 is 0x00; that
is, S-box(0x52) = 0x00 or S-box(01010010) = 00000000.

Table 9.10
The S-Box of the AES Encryption Algorithm

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

The substitution cipher defined by the AES’ S-box is bijective and nonlinear.
The first property means that all28 = 256 possible input elements are one-to-
one mapped to unique output elements, and hence that it is possible to uniquely
inverse the SubBytes() transformation. The second property means that SubBytes(s)
+ SubBytes(s’)6= SubBytes(s + s’) for two possible statess ands′. In fact, the S-
box is the only nonlinear component of the AES, and is therefore important from a
security viewpoint.

Remember from DES that the S-boxes look random and mysterious, and that
the underlying design principles have not been published for a long time. This is
different with the AES and its S-box. This time, it is algebraically structured and
follows well-defined and well-documented design principles. In fact, the AES S-
box is constructed by subjecting each bytesr,c (0 ≤ r, c < 16) to a two-step
mathematical transformation:

1. First,sr,c is mapped to its multiplicatively inverse elementb = s−1r,c in the
AES field (the element 0x00 is mapped to itself).

2. Second, the byteb = (b7, . . . , b0) is subject to an affine transformation,
meaning thatb is first multiplied with a constant (8x8)-bit-matrix and then
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added to a constant 8-bit vector. This can be expressed as follows:















b′0
b′1
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1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
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0 0 0 1 1 1 1 1
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1
0
0
0
1
1
0















The resulting byteb′ is then written into the S-box in rowr and columnc.

Let us make an example to illustrate how the S-box is generated: For input
byte 0xC3 = (11000011) we first compute the inverse element (using, for example,
the extended Euclid algorithm). This element is 0xA3 = (10100011). We then
subject this element to the affine transformation mentionedabove. The result is
0x2E = (00101110), and this byte value can actually be found in row C (12) and
column 3 of the S-box. Similarly, the element 0x00 is self-inverse; that is, for this
element we only have to add the constant 8-bit vector 0x63 = (01100011). The
result is 0x63, and this byte thus represents the first element of the S-box. From
an implementor’s viewpoint, there are two possibilities toimplement the S-box: It is
either precomputed and statically stored somewhere or it isgenerated dynamically
on the fly (and not stored at all). Either possibility has advantages and disadvantages,
but we are not going into the details here, mainly because this book is not an
implementation manual or guideline.

Finally, we note that the nonlinerarity of the SubBytes() transformation comes
from the inversion ofsr,c; that is, if the affine transformation were applied tosr,c
instead ofs−1r,c , then the SubBytes() transformation would be linear. We also note
that the invertibility of the SubBytes() transformation requires that the matrix from
the affine transformation is invertible (i.e., its rows and columns must be linearly
independent in the AES field). This is the case here, and hencethe SubBytes()
transformation is invertible. This fact is required for theAES decryption algorithm
and its InvSubBytes() transformation.

ShiftRows() Transformation

As mentioned above and illustrated in Figure 9.13, the ShiftRows() transformation
cyclically shifts (or rotates) the bytes in each row of the State. The number of bytes
that are subject to a cyclic shift left is equal to the row number; that is, the bytes in
row r (0 ≤ r ≤ 3) are shifted forr bytes. This means that the bytes in the first row
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Figure 9.13 The ShiftRows() transformation of the AES encryption algorithm.

(i.e.,r = 0) are not shifted at all, the bytes in the second row (i.e.,r = 1) are shifted
for 1 byte, the bytes in the third row (i.e.,r = 2) are shifted for 2 bytes, and the
bytes in the fourth row (i.e.,r = 3) are shifted for 3 bytes. Formally, for0 ≤ r < 4
and0 ≤ c < Nb = 4, the ShiftRows() transformation can be expressed as follows:

s′r,c = sr,(c+shift(r,Nb)) mod Nb
(9.9)

In this formula, the shift valueshift(r,Nb) only depends on the row numberr
(becauseNb is always equal to 4):

shift(1, 4) = 1

shift(2, 4) = 2

shift(3, 4) = 3

For example,s′2,1 = s2,(1+shift(2,4)) mod 4 = s2,(1+2) mod 4 = s2,3. Note that the
elements ofs′ are the same as the elements ofs, and that only their ordering is
subject to change when the State is tranformed. Also note that a cyclic shift operation
can be trivially inverting by a respective cyclic shift right operation. Again, this used
in the AES decryption algorithm for the InvShiftRows() transformation.

MixColumns() Transformation

The MixColumns() transformation operates on each column ofthe State individu-
ally, and—as mentioned above—it subjects each column to a linear transformation.
This means that the MixColumns() transformation provides diffusion, especially if
combined with the ShiftRows() transformation. In fact, it has been shown that the
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combination of the ShiftRows() and MixColumns() transformations makes it pos-
sible that after only three rounds every byte of the State depends on all 16 input
bytes.

When the MixColumns() transformation operates on columnc (0 ≤ c < 4),
it considers the 4 bytess0,c, s1,c, s2,c, ands3,c of the State simultaneously. To keep
the notation simple, we uses0, s1, s2, ands3 to refer to these bytes. They can be
used as the coefficients of a polynomials(x) of degree 3:

s(x) = s3x
3 + s2x

2 + s1x+ s0

Note that the coefficients are bytes and elements ofF28 . This is different from the
polynomials we have seen so far (where the coefficients are bits and elements ofF2).
Also note that a column polynomials(x) can also be written as[s0, s1, s2, s3] in a
more compact representation.

The MixColumns() transformation operates ons(x) by multiplying it with a
fixed polynomialc(x) of degree 3 and reducing the result modulo a polynomial of
degree 4. The fixed polynomial isc(x) = c3x

3 + c2x
2 + c1x + c0 with c3=0x03,

c2=0x01, c1=0x01, andc0=0x02, and the polynomial to reduce the product is
x4 + 1. Note that this polynomial need not be irreducible and is notin F2 (since
x4 + 1 = (x + 1)4). Its sole purpose is to make sure that the multiplication ofs(x)
andc(x) yields a polynomial of degree 3 at most (so that the respective bytes can be
placed in a column again). The bottom line is that the MixColumns() transformation
mapss(x) to (c(x) · s(x)) mod (x4 + 1). Becausec(x) is relatively prime to
x4 + 1 in F2[x], the inverse polynomialc(x)−1 (mod x4 + 1) exists, and hence the
MixColumns() transformation is invertible.

Because this computation is involved, it is generally simpler to compute the
MixColumns() transformation for columnc (0 ≤ c < 4) as follows:







s′0,c
s′1,c
s′2,c
s′3,c







=







0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02






·







s0,c
s1,c
s2,c
s3,c







This can also be written as follows:

s′0,c = (0x02 · s0,c)⊕ (0x03 · s1,c)⊕ s2,c ⊕ s3,c
s′1,c = s0,c ⊕ (0x02 · s1,c)⊕ (0x03 · s2,c)⊕ s3,c
s′2,c = s0,c ⊕ s1,c ⊕ (0x02 · s2,c)⊕ (0x03 · s3,c)
s′3,c = (0x03 · s0,c)⊕ s1,c ⊕ s2,c ⊕ (0x02 · s3,c)
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If, for example, we are given the column vector






s0,c
s1,c
s2,c
s3,c







=







0xd4
0xbf
0x5d
0x30







and we want to compute the new elements′0,c, then we have to compute

s′0,c = (0x02 · 0xd4)⊕ (0x03 · 0xbf)⊕ (0x01 · 0x5d)⊕ (0x01 · 0x30)
s′0,c = (0x02 · 0xd4)⊕ (0x03 · 0xbf)⊕ 0x5d⊕ 0x30

The operations⊕ and· refer to the addition modulo 2 and the byte multiplication.
The byte multiplication, in turn, is best expressed in the polynomial representation.
So the first term(0x02·0xd4) refers to0000 0010·11010100orx·(x7+x6+x4+x2),
and this results inx8+x7+x5+x3. As the degree of the polynomial is larger than 7,
we have to reduce it modulo the irreducible polynomialf(x) = x8+x4+x3+x+1.
The respective division

(x8 + x7 + x5 + x3) : (x8 + x4 + x3 + x+ 1)

yields 1 and the remaining polynomial is(x7 + x5 + x4 + x+ 1). This polynomial
refers to the byte 1011 0011.

The second term(0x03 · 0xbf) refers to00000011 · 10111111 or

(x+ 1) · (x7 + x5 + x4 + x3 + x2 + x+ 1).

This multiplication results inx8 + x7 + x6+1. Again, the degree of the polynomial
is larger than 7, so we reduce it modulox8+x4+x3+x+1. The respective division

(x8 + x7 + x6 + 1) : (x8 + x4 + x3 + x+ 1)

yields 1, and the remaining polynomial is(x7 + x6 + x4 + x3 + x) that refers to the
byte 11011010.

The third and fourth terms both comprise a factor(0x01, so these terms
refer to the original values0x5d (representing 01011101) and0x30 (representing
00110000). Finally, we add the four bytes

10110011

11011010

01011101

00110000
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modulo 2 and get 0000 0100. So the resulting value fors′0,c is 0x04. The other values
of the column vector,s′1,c, s

′
2,c, ands′3,c, are computed similarly.

AddRoundKey() Transformation

In the AddRoundKey() transformation, a word of the key schedule w is added
modulo 2 to each column of the State. This means that

[s′0,c, s
′
1,c, s

′
2,c, s

′
3,c] = [s0,c, s1,c, s2,c, s3,c]⊕ w[rNb + c]

for 0 ≤ c < Nb and0 ≤ r ≤ Nr. Because the AddRoundKey() transformation only
consists of a bitwise addition modulo 2, it represents its own inverse.

9.6.2.4 Key Expansion Algorithm

The AES key expansion algorithm takes a secret keyk and generates a key schedule
w that is employed by the AddRoundKey() transformation mentioned above. The
key k comprises4Nk bytes or32Nk bits. In the byte-wise representation,ki refers
to the i-th byte ofk (0 ≤ i < 4Nk). The key schedulew to be generated is a linear
array ofNb(Nr + 1) 4-byte words, meaning that it isNb(Nr + 1) words long (the
algorithm requires an initial set ofNb words, and each of theNr rounds requiresNb

additional words of key data). Again, we usew[i] for 0 ≤ i < Nb(Nr + 1) to refer
to the i-th word in this array.

Algorithm 9.6 The AES key expansion algorithm.

(k)

for i = 0 to (Nk − 1) do
w[i] = [k4i, k4i+1, k4i+2, k4i+3]

for i = Nk to (Nb(Nr + 1) − 1) do
t = w[i− 1]
if ( i mod Nk = 0)

thent = SubWord(RotWord(t)) ⊕ RCon[i/Nk ]
else if (Nk > 6 andi mod Nk = 4)

thent = SubWord(t)
w[i] = w[i−Nk]⊕ t

(w)

The AES key expansion algorithm is summarized in Algorithm 9.6 (we
assume thatNk is included ink, so we don’t have to considerNk as an additional
parameter). The algorithm employs a round constant word array RCon[i] (1 ≤ i ≤
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Nr). The array consists of the values[xi−1, 0x00, 0x00, 0x00], with xi−1 being an
appropriate power ofx (computed in the fieldF28 using the reduction polynomial
f(x) = x8+x4+x3+x+1). The first 10 values of the Rcon array are summarized
in Table 9.11.

Table 9.11
The Round Constant Word Array Rcon

i xi−1 Rconf[i]

1 x1−1 = x0 = 1 0x01000000
2 x2−1 = x1 0x02000000
3 x3−1 = x2 0x04000000
4 x4−1 = x3 0x08000000
5 x5−1 = x4 0x10000000
6 x6−1 = x5 0x20000000
7 x7−1 = x6 0x40000000
8 x8−1 = x7 0x80000000
9 x9−1 = x8 0x1b000000

10 x10−1 = x9 0x36000000

In addition to RCon, the algorithm also employs two auxiliary functions:

• SubWord() takes a 4-byte input word and applies the S-box of the SubBytes()
transformation to each of the 4 bytes to produce an output word.

• RotWord() takes a 4-byte input word and performs a cyclic shift left (i.e., if
the input word is[a0, a1, a2, a3], then the output word is[a1, a2, a3, a0]).

The AES key expansion algorithm then works as follows: In a first loop, the
firstNk words of the key schedule are filled with the first4 ·Nk bytes of the original
key k. The rest of the key schedule is then filled in a second loop. Inthis loop,
every wordw[i] is set to the sum modulo 2 of the previous word (i.e.,w[i − 1]),
and the word that is locatedNk positions earlier,w[i −Nk]. For words in positions
that are a multiple ofNk, a transformation is applied to[wi−1] prior to the addition
modulo 2, followed by an addition modulo 2 with the round constant word RCon[i].
This transformation basically consists of a cyclic shift ofthe bytes in a word (i.e.,
RotWord()), followed by the application of a table lookup toall 4 bytes of the word;
that is SubWord().

Finally, we note that the AES key expansion algorithm forNk = 8 is slightly
different than the one forNk = 6 (i.e., AES-192) andNk = 4 (i.e., AES-128). If
Nk = 8 andi− 4 is a multiple ofNk, then SubWord() is applied tow[i− 1] prior to
the addition modulo 2 operation.
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9.6.2.5 Decryption Algorithm

The transformations used by the AES encryption algorithm can be inverted and
implemented in reverse order to produce a straightforward AES decryption algo-
rithm. The inverse transformations used in the AES decryption algorithm are called
InvSubBytes(), InvShiftRows(), and InvMixColumns(). As mentioned earlier, the
AddRoundKey() transformation is its own inverse (as it onlyinvolves a bitwise ad-
dition modulo 2). Hence, the AES decryption algorithm is formally expressed in
Algorithm 9.7. Its inverse transformations are briefly addressed next.

Algorithm 9.7 The AES decryption algorithm.

(in)

s = in
s = AddRoundKey(s, w[NrNb, (Nr + 1)Nb − 1])
for r = Nr − 1 downto 1 do

s = AddRoundKey(s, w[rNb, (r + 1)Nb − 1])
s = InvMixColumns(s)
s = InvShiftRows(s)
s = InvSubBytes(s)

s = AddRoundKey(s, w[0,Nb − 1])
s = InvShiftRows(s)
s = InvSubBytes(s)
out = s

(out)

InvMixColumns() Transformation

As it name suggests, the InvMixColumns() transformation isthe inverse of the
MixColumns() transformation. Again, it operates on the State column by column,
treating each column as a four-term polynomials(x) overF28 . More specifically,
the polynomials(x) is multiplied modulox4 + 1 with the polynomial

c−1(x) = c′3x
3 + c′2x

2 + c′1x+ c′0

wherec′3 =0x0b,c′2 =0x0d,c′1 =0x09, andc′0 =0x0e. Note that the polynomial
x4 + 1 is the same as the one used in the MixColumns() transformation.

The InvMixColumns() transformation mapss(x) to the following polynomial:

(c−1(x) · s(x)) mod (x4 + 1)
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This mapping can also be expressed as







s′0,c
s′1,c
s′2,c
s′3,c







=







0x0e 0x0b 0x0d 0x09
0x09 0x0e 0x0b 0x0d
0x0d 0x09 0x0e 0x0b
0x0b 0x0d 0x09 0x0e






·







s0,c
s1,c
s2,c
s3,c







or

s′0,c = (0x0e · s0,c)⊕ (0x0b · s1,c)⊕ (0x0d · s2,c)⊕ (0x09 · s3,c)
s′1,c = (0x09 · s0,c)⊕ (0x0e · s1,c)⊕ (0x0b · s2,c)⊕ (0x0d · s3,c)
s′2,c = (0x0d · s0,c)⊕ (0x09 · s1,c)⊕ (0x0e · s2,c)⊕ (0x0b · s3,c)
s′3,c = (0x0b · s0,c)⊕ (0x0d · s1,c)⊕ (0x09 · s2,c)⊕ (0x0e · s3,c)

for 0 ≤ c < 4.

InvShiftRows() Transformation

The InvShiftRows() transformation is the inverse of the ShiftRows() transformation.
As such, the bytes in the last three rows of the State are cyclically shifted right over
shift(r,Nb) bytes. Note that theshift function is the same for both the encryption
and decryption algorithms. Analog to (9.9), the InvShiftRows() transformation can
be specified as

s′r,(c+shift(r,Nb)) mod Nb
= sr,c

for 0 ≤ r < 4 and0 ≤ c < Nb = 4. This means that the byte at positionsr,c is
shifted to the byte at positions′r,(c+shift(r,Nb)) mod Nb

. The resulting transformation
is illustrated in Figure 9.14.

InvSubBytes() Transformation

The InvSubBytes() transformation is the inverse of the SubBytes() transformation.
Remember that the SubBytes() transformation results from taking the multiplicative
inverse of each element ofF28 and subjecting the result to an affine transformation.
These two operations are inverted in the InvSubBytes() transformation to construct
the inverse S-box as illustrated in Table 9.12: First each element inF28 is subjected
to the affine transformation that is inverse to the one used inthe SubBytes()
transformation, and then the multiplicative inverse element is computed inF28 .
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Figure 9.14 The InvShiftRows() transformation of the AES decryption algorithm.

Using Tables 9.10 and 9.12, it is simple to verify that the twoS-boxes are inverse to
each other. For example, the S-box of Table 9.10 maps the element0xa3 to 0x0a,
whereas the inverse S-box of Table 9.12 maps the element0x0a back to0xa3.

Table 9.12
The Inverse S-Box of the AES Decryption Algorithm

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
b FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

This finishes our brief exposition of the AES encryption and decryption
algorithms, and we are now ready to discuss some results fromits security analysis.

9.6.2.6 Security Analysis

In 2003, the NSA approved the AES to become a legitimate cipher to encrypt
classified information:

“The design and strength of all key lengths of the AES algorithm (i.e.,
128, 192 and 256) are sufficient to protect classified information up to
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the SECRET level. TOP SECRET information will require use ofeither
the 192 or 256 key lengths.”

In consideration of the fact that the implementation represents the Achilles’ heel of
any cryptographic system, the NSA further required that

“The implementation of AES in products intended to protect national
security systems and/or information must be reviewed and certified by
NSA prior to their acquisition and use.”

This brief announcement of the NSA is remarkable because it marks the first time
that the public has access to a cipher approved by NSA for the encryption of
information classified as TOP SECRET (at least, if the longer-key versions of the
AES are used).

Unfortunately, we don’t know what the NSA currently knows about the
security of the AES. Outside the NSA, however, the AES has been subject to a
lot of public scrutiny—especially since its standardization. There is good and bad
news:

• The good news is that the encryption system is designed in a way that lower
bounds for the complexity of differential cryptanalysis, linear cryptanalysis,
and some related attacks can be provided. Hence, it is not susceptible to these
types of attacks.

• The bad news is that new cryptanalytical techniques have been developed (and
will probably continue to be developed) that may eventuallybreak the AES
in the future. From a cryptanalyst’s viewpoint, the AES is anattractive target,
mainly because it is widely deployed in the field, and—maybe also—because
it has a rather simple mathematical structure that may be exploitable in some
yet-to-be-discovered ways.

The most common strategy to attack a block cipher is to first define a reduced-
round version of it, and then trying to attack it under some specific assumptions. If,
for example, an adversary can observe the operation of the cipher under different
but mathematically related keys, then he or she can mount arelated-key attack.
A mathematical relationship may be that the last bits of the keys are the same,
or something similar. Note that related-key attacks are theoretically interesting to
explore, but that it is not generally known how to actually mount them in the field
on a sufficiently large scale. In 2009, a few results were published that elaborate
on the resistance of the AES against such attacks. It was shown, for example, that
related-key attacks against AES-256 (AES-192) are feasible with a time complexity
of 2119 (2176). AES-128, in contrast, remains unaffected by such attacks.
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If one reduces the number of rounds, then some real attacks become feasible.
With a complexity of270, for example, one can break AES-256 up to 11 rounds.
Because the full-round-version of AES-256 employs 14 rounds, there is still a
security margin. This margin, however, is not particularlylarge, and hence people
sometimes argue that future versions of the standard shouldalso increase the number
of rounds (to make the cipher more resistant against related-key attacks). This is
a perfectly valid argument, and it is possible and very likely that the respective
standardization bodies will take this argument into account when updating the AES
specification in the future.

From a purely puristic view, a (computationally secure) encryption system
is said to bebroken if there is an attack that is more efficient than an exhaustive
key search. If the efficiency gain is small, then it is very likely that the attack is
infeasible to mount and hence not relevant in practice. In theory, however, the system
can still be called broken. In 2011, for example, a cryptanalytical attack technique
known asbiclique cryptanalysismade press headlines because it referred to such
a theoretical breakthrough. Using biclique cryptanalysis, it is possible to break the
full-round AES-128 with a computational complexity of2126.1, AES-192 with a
computational complexity of2189.7, and AES-256 with a computational complexity
of 2254.4 with small memory requirements in either case. The efficiency gains against
exhaustive key search are marginal, but they are still sufficient to claim that the AES
has been broken (at least in theory). In practice, however, neither related-key attacks
nor biclique cryptanalysis represent a serious concern forthe security of AES.

The security of the AES remains an important and timely research topic. The
situation is comparable to DES: Since its standardization,many people have tried
to attack and eventually break the encryption system. The more time passes while
nobody is finding a serious or devastating attack, the more people gain confidence
in the actual security of the system. This is where we are regarding the security of
the AES. Even after two decades of cryptanalytical research, nobody has found a
vulnerability that can be turned into a practical attack against the AES. This has
made us confident about the security of the AES.

9.7 MODES OF OPERATION

As its name suggests, a block cipher operates on blocks of relatively small and
fixed size (typical values are 64 bits for the DES and 128 bits for the AES). Since
messages may be arbitrarily long, it must be defined how a block cipher can be used
to encrypt long messages. This is where modes of operation come into play. In fact,
multiple modes of operation have been defined for block ciphers, where some of
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them actually turn a block cipher into a stream cipher (needless to say, this further
obfuscates the differences between block and stream ciphers).

Historically, the most important document was FIPS PUB 81 [34] that was
published by NIST in 1980, shortly after the standardization of the DES. The
document specifies four modes of operation for DES, namely the block cipher modes
electronic code book(ECB) andcipherblock chaining(CBC) and the stream cipher
modesoutput feedback(OFB) andcipher feedback(CFB). In 2001, NIST released
an updated document [35] that not only specifies ECB, CBC, OFB, and CFB, but
also acounter(CTR) mode that—similar to OFB mode—turns a block cipher into a
synchronous stream cipher.49 All five modes are confidentiality modes, meaning that
they protect (only) the confidentiality of messages.50 They neither provide message
authenticity nor integrity. As mentioned before, cryptographers have therefore come
up with modes of operation that provide support for AE and AEAD. These modes
are important and further addressed in Section 11.2.

Due to their importance in practice, NIST has recently reactivated its standard-
ization effort for block cipher modes. In an addendum to [35],51 for example, it has
specified three variants of CBC that use a technique known as ciphertext stealing to
avoid message expansion due to padding.52 Furthermore, it has complemented [35]
with the specifications of several modes of operation that are all part of the Special
Publication 800-38 series:

• An authentication-only mode known as CMAC [36] (Section 10.3.1.2);

• Two AEAD modes known as counter with CBC-MAC (CCM) [37, 38] and
Galois/counter mode (GCM) [39];

• Another confidentiality mode known as XTS-AES that is specifically crafted
for block-oriented storage devices [40];

• A few methods for key wrapping [41] (in which cryptographic keys are
protected instead of “normal” messages);

49 In some literature, the CTR mode is also known as theinteger counter mode(ICM) or thesegmented
integer counter(SIC) mode. These terms are not used in this book.

50 In addition to [34, 35], the ANSI specified seven modes of operation for the 3DES (also known
as TDEA) in X9.52-1998: The TDEA ECB (TECB), TDEA CBC (TCBC),TDEA CFB (TCFB),
and TDEA OFB (TOFB) modes refer to the use of TDEA in ECB, CBC, CFB, and OFB mode.
Furthermore, there are two interleaved versions of TCBC andTOFB—TDEA CBC Interleaved
(TCBC-I), and one pipelined version of TCFB—TDEA CFB Pipelined (TCFB-P). Because these
modes are not used in the field, they are not further addressedhere (they are mentioned here only
for the sake of completeness).

51 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a-add.pdf
52 In some literature, such as RFCs 2040 and 3962, the respective CBC variant is calledCTS mode,

where CTS stands for “ciphertext stealing.”
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• A few methods for format-preserving encryption [42].53

In the rest of this section, we focus on the five confidentiality modes ECB,
CBC, OFB, CFB, and CTR. Some modes require padding to align the plaintext
message length with the block length of the block cipher, andmost modes (except
ECB) also require an additional input block that acts as a dummy block to kick off
the encryption and decryption processes and provide some randomization for the
encryption function. Such a block is usually called aninitialization vector(IV) or a
nonce(i.e., a random number used only once). In general, an IV (nonce) does not
need to be secret, but it almost always has to unpredictable.Many cryptanalytical
attacks are feasible if the adversary can somehow predict the next-to-be-used IV
(nonce). In fact, the proper use of IVs (nonces) is tricky andhas become a research
topic of its own.

9.7.1 ECB

The ECB mode is the simplest and most straightforward mode ofoperation for a
block cipher. Its working principles are illustrated in Figures 9.15 (for encryption)
and 9.16 (for decryption). An arbitrarily long plaintext messagem ∈ M is split into
t n-bit blocks, wheren represents the block length of the block cipher, and each
block is then encrypted and decrypted individually. To encrypt message blockmi

(1 ≤ i ≤ t), it is subject to the encryption functionEk; that is,ci = Ek(mi), and to
decryptci (1 ≤ i ≤ t), it is subject to the respective decryption functionDk; that is,
mi = Dk(ci). In either case, the same keyk is used.

Figure 9.15 ECB encryption.

53 In a format-preserving encryption, the output (i.e., theciphertext) is in the same format as the input
(i.e., the plaintext message), whereas the meaning of “format” varies (e.g., a 16-digit credit card
number).
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If the message length is not a multiple ofn bits (i.e.,|m| 6= k · n for some
k ∈ N), then the message may need to be padded first (using either a fixed bit pattern
or some random bits). This is not further addressed here.

Figure 9.16 ECB decryption.

The ECB mode has distinct properties that are advantageous or disadvanta-
geous in a particular application setting:

• It is simple and straightforward.

• It supports parallelism (i.e., multiple blocks may be encrypted and decrypted
in parallel).

• It neither provides message expansion (beyond padding) norerror propaga-
tion.

• It does not protect the sequential ordering of the message blocks, meaning that
an adversary can delete or reorder particular blocks in a multiblock message.
This goes hand in hand with the fact that ECB is “only” a confidentiality mode.

• As its name suggests, the mode implements a code book for plaintext message
blocks, meaning that identical plaintext message blocks are always mapped to
the same ciphertext blocks. This also means that—dependingon the redun-
dancy of the data—multiblock ciphertexts may reveal statistical information
about the underlying plaintext messages.

Whether the last disadvantage is severe or not depends on theapplication in use.
If a block cipher is operated in ECB mode, for example, and theplaintext message
refers to a large and highly redundant image file, then large portions of this file
comprise similar blocks. Using one particular key, these blocks are mapped to the
same ciphertext blocks, and hence the structural properties of the image file leak.
In fact, this type of statistical information is what cryptanalysts are looking for and
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what they usually try to exploit. This is why the ECB mode is not recommended and
not used in the field. Instead, people go for modes that are more sophisticated and
less susceptible to cryptanalysis.

9.7.2 CBC

The CBC mode of operation is often used to overcome the most important disadvan-
tages of the ECB mode. In this mode, the encryption of a plaintext message block
mi not only depends onmi andk, but also on the previous ciphertext blockci−1
(or the IV in case ofm1). This means that the ciphertext blocks are cryptograph-
ically chained, and hence that one particular ciphertext block always depends on
all previous blocks. Unless the IV and all previous blocks are the same, identical
plaintext message blocks are thus mapped to different ciphertext blocks. This makes
cryptanalysis more difficult. Note that the use of an IV turnsthe encryption function
into a probabilistic one. Also note that the IV need not be kept secret, but it must be
unpredictable and its integrity needs to be protected.

Figure 9.17 CBC encryption.

The working principles of CBC encryption and decryption areillustrated in
Figure 9.17 (for encryption) and 9.18 (for decryption). Letm = m1 ‖ m2 ‖
. . . ‖ mt be at-block plaintext message, wheremt may be padded to be in line
with the block lengthn. If one wanted to avoid padding and respective message
expansion, then one would use one of the CBC variants with ciphertext stealing
(Section 9.7.2.1). To encryptm, c0 is first initialized with an IV. All plaintext
message blocksmi for i = 1, . . . , t are then added modulo 2 toci−1 (i.e., the
previous ciphertext block), and the sum is subject to the encryption functionEk
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to generateci:

c0 = IV

ci = Ek(mi ⊕ ci−1) for 1 ≤ i ≤ t

Due to the IV, the ciphertextc = c1 ‖ c2 ‖ . . . ‖ ct is one block longer than
the plaintext messagem. This means that the CBC mode is not length-preserving,
and that it has a message expansion of one block (in addition to padding). The
resultingt+ 1 ciphertext blocksc0, . . . , ct are transmitted to the decrypting device.
If the decrypting device is initialized with the same IV using some out-of-band
mechanism, thenc0 doesn’t have to be transmitted. In this case, the encryptionis
length-preserving.

Figure 9.18 CBC decryption.

On the receiving side, the decrypting device uses the IV to initialize c0. Each
ci (i = 1, . . . , t) is decrypted withk, and the result is added modulo 2 toci−1:

c0 = IV

mi = Dk(ci)⊕ ci−1 for 1 ≤ i ≤ t

The correctness of the decryption can be verified as follows:

Dk(ci)⊕ ci−1 = Dk(Ek(mi ⊕ ci−1))⊕ ci−1
= mi ⊕ ci−1 ⊕ ci−1
= mi

Again, the CBC mode has distinct properties that are advantageous or disad-
vantageous in a particular application setting:
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• It is less simple and straightforward than ECB.

• It has a chaining structure and does not support parallelism.

• Due to the IV, it has a message expansion of one block (beyond padding).54

• Due to the chaining structure, it protects the sequential ordering of the mes-
sage blocks.

• Also due to the chaining structure, some errors are propagated in this mode.
If, for example,ci is transmitted with an error, then onlyci andci+1 decrypt
incorrectly, and all other ciphertext blocks (i.e.,c1, . . . , ci−1, ci+2, . . . , ct) still
decrypt correctly (unless there are other transmission errors).

The last item—the fact that an incorrectly transmitted ciphertext block only
affects two blocks—has a useful side effect: If two entitiesdon’t share a common IV
but start with different IVs, then this difference only affects the first two ciphertext
blocks. From the third block onward, the difference doesn’tmatter anymore. This
self-synchronizing property is sometimes exploited in thefield.

For the sake of completeness, we address two variants of the “normal” CBC
mode, namely CBC withciphertext stealing(as already mentioned above) and a
mode in which an error is propagated through the entire message. This mode is
calledpropagating CBC(PCBC) mode.

9.7.2.1 Ciphertext Stealing

Again, the purpose of ciphertext stealing is to avoid padding if the plaintext message
length is not a multiple of the block lengthn, and hence to avoid a situation in which
the ciphertext is longer than the plaintext message. Letd be the bit length of the last
plaintext message blockmt (i.e.,d = |mt|) so thatn− d bits are missing in the last
plaintext block to fill an entire block.

There are multiple ways to implement ciphertext stealing, and three similar
variants of “normal” CBC mode are specified in the addendum mentioned above.
The first variant of CBC encryption with ciphertext stealing, CBC-CS1, is illustrated

54 In some implementations, people have tried to find a shortcut here. In SSL 3.0 and TLS 1.0, for
example, the last block of the previous ciphertext record was used as an IV for the encryption of the
next record. This is not in line with the normal specificationof CBC mode, but it saves one block.
Unfortunately, this deviation from the CBC mode specification was subject to a devastating attack
called browser exploit against SSL/TLS(BEAST) that could only be mitigated by making the IV
explicit in the specification of TLS 1.1. Since this TLS version, the IV for the encryption of the next
TLS record needs to be transmitted explicitly.
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Figure 9.19 CBC encryption with ciphertext stealing (CBC-CS1 variant).

in Figure 9.19.55 It deviates from “normal” CBC (Figure 9.17) in the last two
blocks. As usual, the last but one blockmt−1 is added modulo 2 toct−2, before
the sum is subject to the encryption functionEk. The result of this encryption is
ct−1 = Ek(mt−1 ⊕ ct−2), but this block is not used directly. Instead the most
significantd bits of ct−1 yield c′t−1, and then − d least significant bits ofct−1
yield c′′t−1. While c′t−1 is going to be part of the ciphertextc = c1, . . . , c

′
t−1, ct,

c′t−1 ‖ c′′t−1 is added modulo 2 tomt ‖ 00 . . . 0 (wheremt is padded withn − d
zeros to fill a block), and the sum is again subject to the encryption functionEk. The
result of this encryption yields the final ciphertext blockct:

ct = Ek(mt ‖ 00 . . . 0⊕ c′t−1 ‖ c′′t−1)

In the end, the ciphertextc consists of the blocksc1, c2, . . . , ct−2, c′t−1, andct (in
this order). All blocks (exceptc′t−1) aren bits long, whereasc′t−1 is onlyd bits long.
This means thatc is equally long asm, and hence there is no message expansion.
Then− d bits of c′′t−1 need not be part of the ciphertext because they are recovered
from ct during the decryption process.

CBC decryption with ciphertext stealing turns out to be moreinvolved. It is
illustrated in Figure 9.20. It starts with the ciphertext blocksc1, . . . , ct−2, c′t−1, and

55 The two other variants of CBC encryption with ciphertext stealing, CBC-CS2 and CBC-CS3, work
similarly but have some subtle differences regarding the order of the blocks that form the ciphertext.
CBC-CS2 is used in some other literature, whereas CBC-CS3 isused, for example, in the Kerberos
authentication and key distribution system.
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Figure 9.20 CBC decryption with ciphertext stealing (CBC-CS1 variant).

ct (wherec′t−1 is only d bits long), and recoversm1, . . . ,mt−1,mt (wheremt is
only d bits long). CBC decryption works as usual untilct−2 is processed andmt−2
is decrypted accordingly. At this point in time, decryptionjumps toct and decrypts
this block withDk. The result is one block of plaintextz′ ‖ z′′, wherez′ refers to
the most significantd bits andz′′ refers to the least significantn−d bits. Taking into
account howct is generated,z′ stands formt⊕c′t−1 andz′′ stands for00 . . . 0⊕c′′t−1.
This means thatmt can be recovered asz′ ⊕ c′t−1. The way to recovermt−1 is
more involved: The next-to-last ciphertext block (i.e.,c′t−1 that is d bits long) is
concatenated withz′′ that isn − d bits long to form the ciphertext blockct−1, and
this block is then decrypted as

mt−1 = Dk(ct−1)⊕ ct−2

The resulting plaintext messagem consists of thet blocksm1,m2, . . . ,mt, where
mt is onlyd bits long. Again, the ciphertext stealing variants 2 and 3 (i.e., CBC-CS2
and CBC-CS3) are very similar but different in some subtle details (not addressed
here).

9.7.2.2 PCBC

Similar to infinite garble extension(IGE) as used, for example, in the Telegram
E2EE messaging app [44], the design goal of PCBC was to provide an encryption
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mode that propagates a single bit error in a ciphertext to theentire decryption process
(so that the resulting plaintext message can be rejected automatically). Remember
that “normal” CBC mode only garbles two blocks of the plaintext message, whereas
the prupose of IGE and PCBC is to garble all of them. The PCBC mode was
originally designed for and used in Kerberos version 4. Since version 5, however,
Kerberos no longer supports it, and hence it has silently sunk into oblivion (Kerberos
version 5 still supports ciphertext stealing though).

Figure 9.21 PCBC encryption.

The PCBC encryption function slightly deviates from the “normal” CBC
encryption function, because it adds not onlyci−1 modulo 2 tomi but alsomi−1 (as
illustrated in Figure 9.21). The function is recursively defined as follows:

c0 = IV

ci = Ek(mi ⊕mi−1 ⊕ ci−1) for 1 ≤ i ≤ t

Similarly, the PCBC decryption function (as illustrated inFigure 9.22) works
as follows:

c0 = IV

mi = Dk(ci)⊕ ci−1 ⊕mi−1 for 1 ≤ i ≤ t

When a block cipher is used as a true block cipher, then the CBCmode (or a
variant thereof) is still in widespread use. This is about tochange, because people
move to AEAD modes that are the preferred choice today. If such a cipher with
block lengthn is used in CBC mode, then it is recommended to rekey the cipher
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Figure 9.22 PCBC decryption.

after at most2n/2 blocks. This is due to the birthday paradox that suggests that the
probability of finding a colliding block (i.e., a block that has already been encrypted
with the same key) increases with the number of already encrypted blocks. This
allows an adversary to mount specific attacks, such as Sweet3256 against 3DES (with
a block length of 64 bits) that was used in former versions of the SSL/TLS protocols.
Consequently, the block length matters and this is why one usually requires modern
block ciphers to have a block length of at least 128 bits.

Let us now have an informal look at the modes of operation thatturn a block
cipher into a stream cipher: CFB, OFB, and CTR (in this order). Having a stream
cipher is particularly important for applications that don’t require the transmission of
large messages, such as terminal protocols that are mostly character-oriented. In any
of these modes, the sending and receiving devices only use the encryption function
of the underlying block cipher. This means that these modes of operation can also
be used if the encryption function is replaced with a one-wayfunction (this may be
important if symmetric encryption systems are not available or their use is restricted
in one way or another).

9.7.3 CFB

The CFB mode turns a block cipher into a stream cipher. More specifically, it uses
the block cipher to generate a sequence of pseudorandom bits, and it then adds these
bits modulo 2 to the plaintext bits to generate the ciphertext. The resulting stream
cipher turns out be be self-synchronizing.

56 https://sweet32.info.
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Figure 9.23 CFB encryption and decryption.

The working principles of CFB encryption and decryption areillustrated in
Figure 9.23. The encryption process is drawn on the left side, whereas the decryption
device is drawn on the right side. Both processes have two registers at their disposal:
an input register I and an output register O. On either side, the registers are initialized
with the IV before the encryption and decryption processes start (this initialization
step is not visualized in Figure 9.23). Hence, the registersI and O as well as the IV
are as long as the block lengthn of the block cipher in use (e.g., 64 bits for 3DES and
128 bits for the AES). In each step,1 ≤ r ≤ n bits are processed (i.e., encrypted or
decrypted) simultaneously. The value ofr is sometimes incorporated into the name
of the mode (i.e.,r-bit CFB). Typical values forr are 1, 8, 64, and 128, and hence
the respective modes are called 1-bit CFB, 8-bit CFB, 64-bitCFB, and 128-bit CFB
(if n is larger or equal than 128).

To apply r-bit CFB, the plaintext messagem ∈ M is split into t r-bit
unitsm1, . . . ,mt, where each unitmi (i = 1, . . . , t) is encrypted and decrypted
individually and sequentially. To encryptmi (for i ≥ 1), the encryption process must
generater pseudorandom bits that are added modulo 2 tomi. To generate these bits,
the current content of I is subject to the encryption functionEk, and the result is fed
into O. Finally, the most significantr bits of O are taken as pseudorandom bits to
encryptmi. The result is the ciphertext unitci that is not only sent to the receiving
process but also fed into the sending process’ I register from the right side. This, in
turn, changes the content of I for the encryption of the next plaintext message unit
mi+1.
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On the receiving side, the decryption process uses the inverse process: It
decryptsci by adding it modulo 2 tor pseudorandom bits that are generated in
exactly the same way. Again, the content of I is subject toEk, the result is fed into
O, and the most significantr bits are taken from O to serve as pseudorandom bits.
The input register I is periodically updated by feedingci into it from the right for the
decryption of the next ciphertext unit.

Like CBC, CFB has a chaining structure that prohibits parallelism. There are
a few other disadvantages that should be kept in mind when actually using CFB:

• The major disadvantage is performance. Note that a full encryption ofn bits
is required to encryptr bits. The impact of this disadvantage depends on
the symmetric encryption system in use and the size ofr relative ton. For
example, if AES is used in the CFB mode andr is 8 bits (meaning that the
encryption is character-oriented), then the performance isn/r = 128/8 = 16
times slower than “normal” AES in ECB or CBC mode. Consequently, there is
a trade-off to make to choose an optimal value forr, and this trade-off depends
on the application.

• The size ofr also influences the error propagation of the encryption. Note
that an incorrectly transmitted ciphertext block disturbsthe decryption process
until it “falls out” of the input register. Consequently, the largerr is, the fewer
errors are propagated in CFB mode.

• As mentioned earlier, the encryption is a simple addition modulo 2, and
the block cipher is only used to generate the key stream. Thisgeneration,
however, also depends on the ciphertext bits that are fed back into the input
register (that’s why the mode is called cipher feedback in the first place).
Consequently, it is not possible to precompute the key stream.

The last point—the impossibility of precomputing the key stream—is the
major difference to the OFB mode that is addressed next.

9.7.4 OFB

The OFB mode is similar to the CFB mode, but it represents a synchronous stream
cipher. As illustrated in Figure 9.24 (and contrary to the CFB mode), the key
stream is generated independently from the ciphertext blocks. This suggests that
it can be precomputed and that the encryption has no error propagation. In some
application contexts this is advantageous, and the OFB modeis used for exactly
this reason. In other application contexts, however, the lack of error propagation is
disadvantageous, and the CFB mode is used instead.
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Figure 9.24 OFB encryption and decryption.

In OFB mode, it is particularly important that the IV is unique for every
message that is encrypted (with the same keyk). Otherwise, the same key stream
is generated, and this fact can easily be exploited in an attack. This must be taken
into account when OFB is used in the field.

9.7.5 CTR

The CTR mode was introduced in [35] to complement the CFB and OFB modes.
The basic idea of CTR mode is that key-stream blocks are generated by encrypting
successive values of a counter. A counter, in turn, can be anyfunction that produces
a sequence that is guaranteed not to repeat for a long time. Inthe simplest case, the
counter is just a value that is incremented by one in each step.

The working principles of CTR encryption and decryption areillustrated in
Figure 9.25. The input register I is the one that is incremented successively. It starts
with a value that results from the concatenation of an IV (or nonce) and a counter
initialized with zero bytes. This value is then incrementedin each step. The output
register O yields the key stream from whichr bits are taken to encrypt the nextr
plaintext unit. As usual, encryption means bitwise addition modulo 2.

The CTR mode is very similar to the OFB mode. But because thereis no
feedback or chaining, it has a random access property that makes it very well
suited for multiprocessor machines, where blocks can be encrypted and decrypted
in parallel. This is advantageous in many application settings, and hence CTR mode
is often the preferred choice today.



Symmetric Encryption 281

Figure 9.25 CTR encryption and decryption.

9.8 FINAL REMARKS

In this chapter, we elaborated on symmetric encryption systems and had a closer look
at some exemplary systems, such as the block ciphers DES (3DES) and AES, and the
stream ciphers RC4, Salsa20, and ChaCha20. These systems were chosen because
they are widely used in the field and sometimes even implemented in commercial
off-the-shelf (COTS) products. There are many other symmetric encryption systems
developed and proposed in the literature but not addressed here. Examples include
the other AES finalists (i.e., the competitors of Rijndael),the symmetric encryption
systems specified in ISO/IEC 18033,57 including, for example, the 64-bit block
cipher MISTY1 [45, 46] and the 128-bit block cipher Camellia[14], as well as more
recent proposals, like SHACAL or FOX (sometimes also referred to as IDEA-NXT
[47]).

All symmetric encryption systems in use today look somewhatsimilar in the
sense that they all employ a mixture of more or less complex functions that are
iterated multiple times (i.e., in multiple rounds) to come up with something that is
inherently hard to understand and analyze. There are also details in a cryptographic
design that may look mysterious or arbitrary to some extent.For example, the S-
boxes of DES look arbitrary, but they are not and are well chosen to protect against

57 ISO/IEC 18033 is a multipart ISI/IEC standard that specifies symmetric encryption systems. In
particular, part 3 specifies the 64-bit block ciphers TDEA, MISTY1, and CAST-128, as well as
the 128-bit block ciphers AES, Camellia, and SEED, whereas part 4 specifies ways to generate a
keystream as well as the dedicated keystream generators MUGI and SNOW (version 2).
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differential cryptanalysis (that was published almost twodecades after the specifica-
tion of the DES). Against this background, one may get the impression that it is sim-
ple to design and come up with a new symmetric encryption system. Unfortunately,
this is not the case, and the design of a system that is secure and efficient is a tricky
endeavor. Legions of systems had been proposed, implemented, and deployed before
a formerly unknown successful attack was discovered and applied to break them.
Such a discovery then often brings the end to several symmetric encryption systems.
For example, the discovery of differential cryptanalysis in the public brought the
end to many symmetric encryption systems (and other cryptosystems), including, for
example, the Fast Data Encipherment Algorithm (FEAL) and many of its variants.

Unless one enters the field of information-theoretical security, the level of
security a symmetric encryption system is able to provide isinherently difficult to
determine. How resistant is a symmetric encryption system against known and yet-
to-be-discovered cryptanalytical attacks? This questionis difficult to answer mainly
because it is not possible to say what cryptanalytical attacks are known or will be
discovered in the future. In this situation, it is simple to put in place and distribute
rumors about possible weaknesses and vulnerabilities of encryption systems. Many
of these rumors are placed for marketing reasons (rather than for security reasons).
For example, there are people (typically not selling AES encryption devices) who
argue that the fact that NIST has standardized the AES suggests that it contains
trapdoors. There are other people (typically selling AES encryption devices) who
argue that the fact that the AES has been subject to public scrutiny suggests that
it does not contain a trapdoor. Who is right? Who is able to saywho is right?
Why would you trust any particular person or group? The bottom line is that fairly
little is known about the true security of symmetric encryption systems (except for
information-theoretically secure encryption systems).
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Chapter 10

Message Authentication

In this chapter, we elaborate on message authentication, MACs, and message au-
thentication systems. More specifically, we introduce the topic in Section 10.1,
overview, discuss, and put into perspective information-theoretically and—more
importantly—computationally secure message authentication in Sections 10.2 and
10.3, and conclude with some final remarks in Section 10.4.

10.1 INTRODUCTION

In Section 2.2.4, we introduced the notion of an authentication tag, and we said that
such a tag can either be a digital signature or a MAC accordingto Definition 2.10.
There are two fundamental differences:

• Digital signatures can be used to provide nonrepudiation services, whereas
MACs cannot be used for this purpose.

• A digital signature can typically be verified by everybody,1 whereas a MAC
can be verified only by somebody who knows the secret key.

Due to these differences, it must be decided in a particular application set-
ting whether digital signatures or MACs are more appropriate to provide message
authentication. There are applications that are better served with digital signatures,
and there are applications that are better served with MACs.There is no single best
answer on what technology to use. Digital signatures are further addressed in Chap-
ter 14, but MACs are the topic of this chapter.

1 Note that there are also digital signature systems that limit the verifiability of the signatures to
specific entities. In some literature, the respective signatures are calledundeniable.
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A MAC is basically an authentication tag that is computed andverified with a
secret key. This means that the sender and the recipient(s) must share a key, and this
key can then be used to compute and verify a MAC for a particular message (ideally,
the same key is used to compute and verify MACs for several messages). Hence, a
MAC depends on both the message that is authenticated and thesecret key that only
the legitimate sender and recipient(s) are supposed to know. As pointed out later in
this chapter, some MAC constructions additionally requirea random number that
serves the prupose of a message-specific nonce.

If M is a message space,T a tag space, andK a key space, then—according
to Definition 2.11—amessage authentication systemis a pair(A, V ) of families of
efficiently computable functions:

• A : K ×M→ T denotes a family{Ak : k ∈ K} of authentication functions
Ak :M→ T ;

• V : K ×M × T → {valid, invalid} denotes a family{Vk : k ∈ K} of
verification functionsVk :M×T → {valid, invalid}.

For every messagem ∈ M and keyk ∈ K, Vk(m, t) must yieldvalid if and
only if t is a valid authentication tag form andk; that is,t = Ak(m), and hence
Vk(m,Ak(m)) yieldsvalid.

The working principle of a message authentication system (using the algo-
rithms Generate, Authenticate, andVerify) is depicted in Figure 2.8 and not re-
peated here. Typically,M = {0, 1}∗, T = {0, 1}ltag for some tag lengthltag, and
K = {0, 1}lkey for some key lengthlkey . It is often the case thatltag = lkey = 128,
meaning that the tags and keys are 128 bits long each.

To formally define a secure message authentication system, we must first de-
fine the attacks an adversary may be able to mount. In an encryption setting, the
weakest possible attack is a ciphertext-only attack. Translated to message authenti-
cation, this refers to a MAC-only attack, meaning that the adversary gets to know
only authentication tags (without learning the respectivemessages). Such an attack
does not make a lot of sense, because a MAC is always transmitted together with the
message. So MAC-only attacks only exist in theory and are notrelevant in practice
(because they do not occur). Instead, there are only two types of attacks that are
relevant and need to be distinguished:

• In a known-message attack, the adversary gets to know one or several
message-tag pairs(m1, t1), (m2, t2), . . . , (ml, tl) for somel ≥ 1.

• In a chosen-message attack(CMA), the adversary does not only know
message-tag pairs, but he or she has access to the authentication function
(or the device that implements the function, respectively)and can generate
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authentication tags for one or several messagesm1,m2, . . . ,ml of his or her
choice for somel ≥ 1. For eachmi, the adversary gets to know the respective
authentication tagti (1 ≤ i ≤ l). In the simplest (nonadaptive) case, the adver-
sary must choose the messagesm1,m2, . . . ,ml before the attack begins. In
anadaptive CMA, however, the adversary can dynamically choose messages
of his or her choice while the attack is going on. Again, theseattacks are more
powerful than their nonadaptive counterparts.

In the second part of a security definition, one must also specify the task the
adversary is required to solve in order to be successful (i.e., to break the security of
the system). With decreasing severity, the following taskscan be considered:

• In a total break, the adversary is able to determine the secret key in use,
meaning that he or she can thereafter forge a valid authentication tag for any
message of his or her choice.

• In a selective forgery, the adversary is able to forge a valid tag for a
particular—typically meaningful—message. In contrast toa total break, the
adversary does not have to determine the secret key in use. Any other mecha-
nism that allows him or her to forge a valid authentication tag is equally fine.

• In anexistential forgery, the adversary is able to forge a valid authentication
tag for an arbitrary message (that does not have to be meaningful).

Because an adversary can always guess an authentication tagthat is valid,
we cannot require that a MAC is truly unforgeable, but we require that the success
probability of doing so is negligibly small. If the tag length is ltag, then the
probability of correctly guessing a MAC is1/2ltag , and this value is in fact negligible
(since it decreases exponentially fast).

If an adversary (who can mount CMAs) is able to generate a valid message-tag
pair with a success probability that is at most negligible, then we say that the MAC
is unforgeable. More precisely, there are two notions of unforgeable MACs:

• A MAC is weakly unforgeableunder a CMA (WUF-CMA) if it is computa-
tionally infeasible for the adversary to find a message-tag pair in which the
message is “new.”

• A MAC is even strongy unforgeableunder a CMA (SUF-CMA) if it is
computationally infeasible for the adversary to find a new message-tag pair.

The difference is subtle here: In the case of a MAC that is WUF-CMA, the
message is “new” in the sense that the adversary has not yet seen any valid MAC for
this message. This is in contrast to the case of a MAC that is SUF-CMA. Here, the
message need not be “new,” meaning that the adversary may have already seen some
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valid MACs for this message, and his or her task is to find a new one.2 For the rest
of this chapter, we say that a message authentication systemis secure if the MACs it
generates are SUF-CMA. This is appropriate if a key is used toauthenticate multiple
messages.

If a key is used to authenticate a single message, then we can go for mes-
sage authentication that is information-theoretically secure. This is similar to per-
fectly secret symmetric encryption, such as that provided by the one-time pad
(Section 9.3). The respective MACs are sometimes calledone-time MACs. Due
to the requirement of using a new key for every message, the use of information-
theoretically secure message authentication systems and one-time MACs is pro-
hibitively expensive in practice, and hence computationally secure message authen-
tication systems and MACs that are SUF-CMA are usually the preferred choice.
Information-theoretically secure and computationally secure message authentication
are addressed in the following two sections.

10.2 INFORMATION-THEORETICALLY SECURE MESSAGE
AUTHENTICATION

In this section, we address message authentication that is information-theoretically
secure. As a simple and pathological example, we want to construct a message
authentication system that is information-theoreticallysecure and can be used to
authenticate messages that refer to the outcome of a coin-flipping experiment:

• H stands for head;

• T stands for tail.

This means that the message spaceM consists of the two elements H and
T (i.e.,M = {H,T}). Furthermore, the tag spaceT is to consist of a single bit
(i.e.,T = {0, 1}), and the key spaceK is to consist of all possible 2-bit keys (i.e.,
K = {0, 1}2 = {00, 01, 10, 11}). Using these ingredients, it is possible to define
an information-theoretically secure message authentication system as illustrated in
Table 10.1. The rows refer to the four possible keys and the columns refer to all valid
message-tag pairs. If, for example, the key is 01 and the outcome of the experiment
is H, then the appropriate message-tag pair is H0, where H stands for the message
and 0 stands for the tag. Similarly, if the outcome of the experiment is tail, then
the appropriate message-tag pair is T1 (for the same key). Soa 1-bit message is
always authenticated with a 1-bit tag, and a new 2-bit key is needed that cannot be

2 Obviously, this requires the authentication function to be nondeterministic, meaning that many
MACs may be valid for a particular message.
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reused. This means that2n bits of fresh keying material are needed to authenticaten
outcomes of the experiment. If, for example, we wanted to authenticate the sequence
TTHTH with the five keys 00, 10, 11, 11, and 01, then the appropriate message-tag
pairs would be T0, T0, H1, T1, and H0.

Table 10.1
An Information-Theoretically Secure Message Authentication System

H0 H1 T0 T1

00 H - T -
01 H - - T
10 - H T -
11 - H - T

To prove that the message authentication system is information-theoretically
secure, we must show that an adversary with infinite computing power and time has
no better way to forge a MAC than to guess. Because a MAC is onlyone bit long,
the success probability of correctly guessing it is1/2. If, for example, the adversary
wants to forge a MAC for message H, then the MAC is 0 if the key iseither 00 or
01, and 1 if it is 10 or 11. If the keys are equally probable, then the adversary has a
2/4 = 1/2 probability of correctly guessing the MAC, and there is nothing he or she
can do to improve this value. A similar line of argumentationapplies if the adversary
wants to modify a message-tag pair. Assume that the adversary has received H0, and
he or she wants to change the message from H to T. He or she therefore has to
generate a valid tag for this new message (without knowing the secret key). If the
adversary has received H0, then—according to Table 10.1—the only possible keys
are 00 and 01:

• If 00 is the correct key, then the message T must be authenticated with 0, and
the adversary must change the message-tag pair to T0.

• If 01 is the correct key, then the message T must be authenticated with 1, and
the adversary must change the message-tag pair to T1.

In either case, the adversary has a probability of1/2 to correctly guess
the correct key and to change the message accordingly. Again, there is nothing
the adversary can do to improve this value, and this means that the message
authentication system is in fact information-theoretically secure.

The previous example is only to illustrate how information-theoretically se-
cure message authentication works in principle. It is highly inefficient, so it can’t
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be used in practice. But there are other one-time message authentication systems—
typically based on polynomial evaluation—that are sufficiently efficient. Let us con-
sider an example to illustrate this point.3 Let p be a prime that is slightly larger
than the maximum value of a message block. If the block lengthis 128 bits, then a
possible value isp = 2128 + 51 (this number is prime). The keyk consists of two
parts,k1 andk2, that are both randomly chosen integers between1 andp − 1. To
compute a one-time MAC for messagem, the message is first cut intol = ⌈|m|/128⌉
128-bit blocksm[1],m[2], . . . ,m[l], and these blocks then represent the coefficients
of a polynomialPm(x) of degreel that is defined as follows:

Pm(x) = m[l]xl +m[l− 1]xl−1 +m[l − 2]xl−2 + . . .+m[2]x2 +m[1]x

Having this polynomial in mind, a one-time MAC (OTMAC) can bedefined as the
modulop sum ofPm evaluated at pointk1 andk2:

OTMACk(m) = Pm(k1) + k2 (mod p)

This construction yields an OTMAC that is efficient and information-theoretically
secure, meaning that it leaks no information (about anotherMAC that could be used
to authenticate another message). But it is still a one-timeMAC, meaning that it can
be used to authenticate a single message. If the same key wereused to authenticate
two or more messages, then the respective message authentication system would
become insecure, meaning that an adversary would then able to construct MACs for
arbitrary messages of his or her choice. Luckily, there is construction based on the
universal hashing paradigm that can be used to turn an OTMAC into a MAC that
can be used to authenticate multiple messages. From the names of its inventors, the
resulting construction is known as aCarter-Wegman MAC. Carter-Wegman MACs
play an increasingly important role in the field, and hence they are further addressed
in Section 10.3.3.

The bottom line is that all information-theoretically secure MACs have the
disadvantage that they can only be used to authenticate a single message. This is
prohibitively expensive in terms of key management. So for all practical purposes,
we use MAC constructions that are “only” computationally secure (this includes
the case in which an OTMAC is turned into a Carter-Wegman MAC). These
constructions are overviewed, discussed, and put into perspective next.

3 The example was created by Dan Boneh.



Message Authentication 293

10.3 COMPUTATIONALLY SECURE MESSAGE AUTHENTICATION

There are basically three possibilities to design a messageauthentication system that
is computationally secure:

• One can start with a symmetric encryption system—typicallya block cipher—
and derive a message authentication system that uses a symmetric encryption
system.

• One can start with a cryptographic hash function and a key, and derive a
message authentication system that uses a keyed hash function.

• One can start with an OTMAC and use the universal hashing paradigm to
derive a Carter-Wegman MAC (as mentioned above).

All three possibilities are outlined in this section. The first two possibilities are
further addressed in the multipart standard ISO/IEC 9797. While ISO/IEC 9797-1
[1] elaborates on MAC constructions that use a block cipher,4 ISO/IEC 9797-2 [2]
addresses MAC constructions that use a dedicated (cryptographic) hash function.5

Furthermore, there are a few outdated proposals that are standardized but not
widely deployed. For example, the now withdrawnmessage authenticator algorithm
(MAA) was specified in ISO 8731-2 [3] (originally published in 1984). Until today,
no significant structural weakness has been found in this construction. Its major
problem is that it generates MACs that are only 32 bits long. This is unacceptably
short for most applications in use today, and hence this construction is not further
addressed here.

10.3.1 MACs Using A Symmetric Encryption System

If one has a symmetric encryption system—typically a block cipher, like DES or
AES—at hand, then there are several possibilities to use it to authenticate messages.
In the simplest case, one can employ a cryptographic hash functionh to compute a
hash value of messagem and encrypth(m) with the block cipher. The respective
MAC refers toEk(h(m)), wherek is the encryption key. The length of this MAC is a
multiple of the block length. If, for example,h generates hash values of 128 bits and
the block length is 64 bits, then two blocks need to be encrypted. If the block length
is 128 bits, then only one block is needed. In addition to a symmetric encryption
system, this construction requires a hash function. There are other constructions
that don’t have this requirement and that are more widely deployed in the field. In
particular, we take a closer look at CBC-MAC, CMAC, and PMAC.

4 ISO/IEC 9797-1 specifies six such constructions.
5 ISO/IEC 9797-2 specifies three such constructions.
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10.3.1.1 CBC-MAC

Remember from Section 9.7.2 that CBC is a mode of operation for a block cipher
that cryptographically chains all message blocks together, meaning that the last
ciphertext block depends on all previous blocks. This, in turn, means that the last
block may be used as a MAC for the entire message. This construction is known as
CBC residueor CBC-MAC. If CBC mode is used for encryption, then a fresh IV is
required for every message that is encrypted. But if CBC is used for authentication,
then it is possible to always use the same IV (e.g., the zero IV). Also, the length
of the CBC-MAC depends on the block cipher in use and its blocklength. It is
common to use a block cipher that has a block length of 128 bitsat least (e.g., AES).
This CBC-MAC construction is adopted by many standardization organizations and
bodies, such the ANSI accredited standards committee X9,6 NIST [4],7 and—maybe
most importantly—ISO/IEC [1].

If the CBC-MAC construction uses a secure block cipher and all messages are
equally long, then the construction is known to be secure [5]. The requirement that
all messages are equally long is hereby essential. If this isnot the case; that is, if
the messages have different lengths, then an adversary who knows two message-tag
pairs,(m, t) and (m′, t′), can generate a third messagem′′ whose CBC-MAC is
alsot′, meaning that(m′′, t′) is another valid message-tag pair and hence represents
an existential forgery. The messagem′′ is generated by adding modulo 2t to the
first block ofm′ and then concatenatingm with this modified8 messagem′. The
resulting messagem′′ thus looks as follows:

m′′ = m ‖ (m′1 ⊕ t) ‖ m′2 ‖ . . . ‖ m′l

See what happens if the CBC-MAC is computed form′′: First, t is computed as
usual form. Whenm′ is CBC encrypted, this valuet is added modulo 2 to the first
block (m′1 ⊕ t). So the encryption of this block refers toEk(m

′
1 ⊕ t ⊕ t), and this

means that the valuet cancels itself; that is,Ek(m
′
1 ⊕ t⊕ t) = Ek(m

′
1). The CBC

encryption ofm′′ is thus identical tom′, and this, in turn, means thatt′ is a valid tag
form′′, and hence that(m′′, t′) yields an existential forgery.

6 In 1986, X9 released X9.9 that provided a wholesale bankingstandard for authentication of financial
transactions. It addressed two issues: message formattingand the particular message authentication
algorithm (that was essentially DES in CBC or CFB mode). X9.9was adopted in ISO 8730 and ISO
8731, but these standards have been withdrawn—mainly due tothe insufficient security of DES.

7 Note that this standard was officially withdrawn on September 1, 2008. It used the termdata
authentication algorithm(DAA) to refer to CBC-MAC and the termdata authentication code
(DAC) to refer to a respective MAC value.

8 Note thatm′ is modified only in its first block. All otherl− 1 blocksm′
2, m

′
3, . . . , m

′
l remain the

same.
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Put the other way round, we know that the CBC-MAC construction is insecure
for messages that have different lengths (as is almost always the case). There are
three possibilities to deal with this situation:

• First, one can use a different key for every possible input message length. This
is not convenient, and hence this possibility is seldom usedin practice.

• Second, one can prepend the length of the message to the first block. This
is theoretically interesting because the respective construction can be proven
secure.9 But from a practical viewpoint, this construction has severe disadvan-
tages, mainly because the message length may not be known when message
processing begins.

• Third, one can encrypt the last block with a different key; that is, a (second)
key that is independent from the key used for CBC encryption.The resulting
construction is known asencrypt-last-blockor encrypted CBC-MAC(ECBC-
MAC).

The ECBC-MAC construction is the preferred choice used in the field. In
addition, there are a few other constructions that try to turn a CBC-MAC into
something that can be proven secure. TheeXtended CBC(XCBC) [6], for example,
is a construction that employs three different keys and has been used a lot in the
realm of IPsec [7]. But the use of three keys is disadvantageous in practice, and
hence this disadvantage has been eliminated in a pair of constructions known astwo-
key CBC MAC(TMAC10) and—more importantly—one-key CBC MAC(OMAC)
[8].11 Officially, there are two OMAC constructions (OMAC1 and OMAC2) that
are both essentially the same except for a small tweak. ECBC-MAC, XCBC,
TMAC, and OMAC are all variants of CBC-MAC that have distinctadvantages
and disadvantages. Research in this area finally culminatedin a block cipher mode
of operation for authentication known ascipher-based MAC(CMAC). CMAC is
equivalent to OMAC1 and was standardized by NIST in 2005 [9].It represents the
state of the art and is addressed next.

10.3.1.2 CMAC

Compared to ECBC-MAC, the CMAC construction has two advantages: It avoids
the need to pad a message that is already aligned with the block length of the
underlying block cipher, and it avoids the need to additionally encrypt the last

9 https://cs.uwaterloo.ca/∼sgorbuno/publications/securityOfCBC.pdf.
10 http://eprint.iacr.org/2002/092.
11 http://www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html.
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ciphertext block after CBC encryption with a different key.To achieve this, the
CMAC construction operates in two steps:

1. If k is the block cipher key in use, then two equally long subkeys,k1 andk2,
are derived fromk.

2. The two subkeysk1 andk2 are used to generate a CMAC tagt.

Algorithm 10.1 The CMAC subkey derivation algorithm.

(k)

k0 = Ek(0
b)

if (MSB(k0) = 0)
thenk1 = k0 ←֓ 1
elsek1 = (k0 ←֓ 1) ⊕Rb

if (MSB(k1) = 0)
thenk2 = k1 ←֓ 1
elsek2 = (k1 ←֓ 1) ⊕Rb

(k1, k2)

The CMAC subkey derivation algorithm is outlined in Algorithm 10.1. As
already mentioned above, it takes as input a keyk, and it generates as output
two equally long subkeysk1 and k2. First, a block ofb zero bits is encrypted
using the block cipher and keyk. The result is assigned tok0. Depending on the
most significant bit (MSB) ofk0, there are two cases that are distinguished when
generatingk1:

• If the MSB of k0 is equal to 0, thenk1 is simply assigned the bit string
that results fromk0 after a left shift for one position (denotedk0 ←֓ 1). If,
for example, the bit string 10101010 is subject to a left shift for 1, then the
leftmost bit is discarded, all other bits are shifted to the left, and the rightmost
bit is set to 0. The resulting bit string is 01010100.

• Otherwise (i.e., if the MSB ofk0 is not equal to 0), thenk1 is assigned
the value that results from addingk0 ←֓ 1 with a constantRb modulo 2.
The value ofRb depends on the block length of the cipher in use (that’s
why b is added as a subscript). For the block sizes that are relevant in
practice—64, 128, and 256—these values refer toR64 = 05911011 =0x87,
R128 = 012010000111 =0x87, andR256 =0x425.
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After k1, k2 is assigned a value in a very similar way: If the MSB ofk1 is
equal to 0, then it is assignedk1 ←֓ 1. Otherwise (i.e., if the MSB ofk1 is not equal
to 0), then it is assignedk(k1 ←֓ 1)⊕Rb.

Algorithm 10.2 The CMAC tag construction algorithm.

(m, k1, k2)

if ( |m′
n| = b)

thenmn = m′
n ⊕ k1

elsemn = (m′
n ‖ 10j)⊕ k2

c0 = 0b

for i = 1 to n do
ci = Ek(ci−1 ⊕mi)

t = truncate(cn)

(t)

Once the subkeysk1 and k2 have been derived fromk, the algorithm to
construct the CMAC tagt is simple and straightforward. It is illustrated in Algorithm
10.2. It takes as input a messagem and a subkey pair(k1, k2), and it generates as
outputt. The algorithm starts by dividingm into n = ⌈|m|/b⌉ consecutiveb-bit
blocks:12

m = m1 ‖ m2 ‖ . . . ‖ mn−1 ‖ m′n

The first n − 1 blocksm1,m2, . . . ,mn−1 are complete in the sense that they
compriseb bits, whereas the final blockm′n may be incomplete. Remember that
the CMAC construction tries to avoid the necessity to pad a message that is already
aligned it with the block lengthb of the underlying block cipher. This is achieved by
using a special encoding ofmn that uses either of the two subkeys:

• If m′n is complete (i.e.,|m′n| = b), thenm′n is encrypted withk1: mn =
m′n ⊕ k1. In this case, no padding is used, and the resulting blockmn is also
b bits long.

• Otherwise, ifm′n is not complete (i.e.,|m′n| < b), then the final block is
padded and encrypted withk2:mn = (m′n ‖ 10j)⊕k2 for j = b−|m|−1. In
this case, the padding consists of a one followed byj zeros, and the resulting
blockmn is b bits long.

Using this encoding, the messagem = m1 ‖ m2 ‖ . . . ‖ mn−1 ‖ mn is CBC
encrypted with keyk and IV c0 = 0b. The final ciphertext blockcn represents the

12 The empty message is treated as one incomplete block.
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CMAC tagt that my be optionally truncated to less thanb bits. Note, however, that
it is not recommended to truncatecn to less than 64 bits. In the usual case,t is sent
together with the messagem to the recipient, and it is up to the recipient to verify
the tag.

In theory, the CMAC construction can be used with any block cipher. In
practice, however, it is recommended to use the construction with a block cipher that
is in widespread use, such as the AES. The AES-CMAC construction is specified in
[10], whereas its use in the realm of IPsec/IKE is addressed in [11, 12].

10.3.1.3 PMAC

All MAC constructions mentioned so far employ a block cipherin CBC mode. This
means that they operate sequentially, and that one cannot process a block until all
previous blocks have been processed properly. This sequential nature may become
a bottleneck in high-speed networks and respective applications. In 1995, Mihir
Bellare, Roch Guérin, and Phillip Rogaway proposed an alternative design that uses
a family of PRFs (instead of a block cipher that represents a family of PRPs) [13].
In theory, this means that a block cipher is not needed. In practice, however, using
a block cipher is still a convenient way to build a family of PRFs, and hence a
block cipher may still be used. The original Bellare-Guérin-Rogaway constructions
are collectively referred to asXOR MACsbecause they make use of parallel XOR
operations. From a bird’s-eye perspective, an XOR MAC is computed in three steps:

1. The messagem is block encoded, meaning that it is encoded as a collection of
n blocks of equal length (i.e.,m = m1 ‖ m2 ‖ . . . ‖ mn). Each block must
include a block index (mainly to defeat block swapping attacks).

2. A PRF (from the family of PRFs) is applied to each message block individu-
ally, creating a set of PRF images.

3. The PRF images are then added modulo 2 to form the XOR MAC.

Note that there are many different choices for the block encoding of step
1 and the PRF of step 2, and that each of these choices yields a distinct XOR
MAC construction. We don’t delve into the details here. Instead, we point out the
major advantage of any such construction, namely the possibility to execute alln
invocations of the PRF in parallel (even if the message blocks arrive out of order13).
Furthermore, an XOR MAC is incremental in the sense of [14]. Whether a particular
XOR MAC construction is efficient or not depends on the PRF family (or block

13 Out-of-order MAC verification is in fact a very useful property in contemporary networks, such as
the Internet, because of packet losses and retransmission delays.
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cipher) in use. In either case, it has been shown that the XOR MAC construction is
secure ifF is a secure family of PRFs.

Based on the work of Bellare, Guérin, and Rogaway in the 1990s [13], John
Black and Rogaway proposed a fully parallelizable MAC (PMAC) construction in
2002 [15].14 This construction has several advantages that make it a useful choice
in many practical settings. On the downside, however, the PMAC construction is
patented and this may be one of the reasons why it is not so widely deployed in the
field.

10.3.2 MACs Using Keyed Hash Functions

The idea of using cryptographic hash functions to protect the authenticity and in-
tegrity of data and program files dates back to the late 1980s [16]. In the early 1990s,
people started to think more seriously about the possibility of using cryptographic
hash functions (instead of symmetric encryption systems) to efficiently authenticate
messages. In fact, there are a couple of arguments in favor ofusing cryptographic
hash functions:

• There are a number of cryptographic hash functions in widespread use (refer
to Chapter 6 for an overview).

• Cryptographic hash functions can be implemented efficiently in hardware or
software.

• Many implementations of cryptographic hash functions are publicly and freely
available.

• Cryptographic hash functions are free to use (meaning, for example, that they
are not subject to patent claims and/or export controls).

• Cryptographic hash functions have well-defined security properties, such as
preimage resistance and (weak or strong) collision resistance.

Some of these arguments have become obsolete (e.g., export restrictions),
whereas others still apply (e.g., widespread availabilityand use) and will likely be
applicable in the foreseeable future (e.g., efficiency).

Against this background, Li Gong and Gene Tsudik independently proposed
an encryption-free message authentication based on keyed hash functions instead
of a symmetric encryption system [17, 18].15 More specifically, Tsudik proposed
and discussed the following three methods to authenticate amessagem using a
cryptographic hash functionh and a secret keyk:

14 http://www.cs.ucdavis.edu/∼rogaway/ocb/pmac.htm.
15 An earlier version of [18] was presented at IEEE INFOCOM ’92.
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• In thesecret prefixmethod,k is a prefix tom andh is applied to the composite
message; that is,MACk(m) = h(k ‖ m).

• In thesecret suffixmethod,k is a suffix tom andh is applied to the composite
message; that is,MACk(m) = h(m ‖ k).

• In the envelopemethod, there are two keysk1 and k2 that are a prefix
and a suffix tom. Again, h is applied to the composite message; that is,
MACk1,k2(m) = h(k1 ‖ m ‖ k2).

The three methods and a few variations thereof are overviewed and briefly
discussed next. There are also a few other methods one could think of. For example,
one could use the keyk as a replacement for the otherwise fixed IV in an iterated
hash function, like MD5 or SHA-1. If the IV (and hence the keyk) is l bits long
(according to the notation introduced in Section 6.2), thenthis method is essentially
the same as the secret prefix method itemized above. Consequently, we don’t address
it separately here.

10.3.2.1 Secret Prefix Method

As mentioned above, the secret prefix method consists of prepending a secret key
k ∈ K to the messagem ∈ M before it is hashed withh. This construction can be
formally expressed as follows:

MACk(m) = h(k ‖ m)

If m is an i-block messagem = m1 ‖ m2 ‖ . . . ‖ mi andh is an iterated hash
function, then the construction can also be expressed as follows:

MACk(m) = h(k ‖ m1 ‖ m2 ‖ . . . ‖ mi)

In this case, the secret prefix method is insecure. Anybody who knows a single
message-MAC pair (m,MACk(m)) can selectively forge a MAC for a message
m′ that has the known messagem as a prefix (i.e.,m′ = m ‖ mi+1). If one
considers Figure 4.2 and the way an iterated hash functionh is constructed (using a
compression functionf ), then one easily notices thatMACk(m

′) can be computed
fromMACk(m) as follows:

MACk(m
′) = f(MACk(m) ‖ mi+1)

Consequently, an adversary who knowsMACk(m) andmi+1 can easily compute
MACk(m

′) without knowingk. This procedure can be repeated for an arbitrary
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sequence of message blocksmi+2,mi+3, . . . Consequently, the messages for which
a MAC can be selectively forged are restricted to those having a message with a
known MAC as a prefix. This restriction is not particularly strong.

Tsudik was aware of this type ofmessage extensionor padding attack, and he
suggested three possibilities to defeat it:

• Only part of the hash value is taken as output (e.g., only 64 bits).

• The messages are always of fixed length.

• An explicit length field is included at the beginning of a message.

The first two possibilities are not very practical, and hencethe third possibility
is the one that can be used in practice. Unfortunately, almost all iterated hash
functions that are used in the field follow the Merkle-Damgård construction (see
Section 6.2) and encode the length of the message at the end ofthe message (instead
of the beginning of the message). If this format were changeda little bit, then the
secret prefix method could be securely used in practice. In its current form, however,
the secret prefix method is too dangerous to be used in any nontrivial setting.

10.3.2.2 Secret Suffix Method

Due to the message extension attack mentioned above, the secret suffix method
seems to be preferable at first glance. As mentioned above, the secret suffix method
consists of appending the keyk to the messagem before it is hashed with the
cryptographic hash functionh. The construction looks as follows:

MACk(m) = h(m ‖ k)

If h is an iterated hash function, then the secret suffix method has a structural weak-
ness.16 Whether this weakness can be exploited mainly depends on thecryptographic
hash functionh (or rather its compression functionf ). To understand the weakness,
it is important to see that

MACk(m) = h(m ‖ k)
= h(m1 ‖ m2 ‖ . . . ‖ mi ‖ k)
= f(f(f(. . . f(f(m1) ‖ m2) ‖ . . .) ‖ mi

︸ ︷︷ ︸

h∗(m)

) ‖ k)

16 If the message is very short (i.e., there is only one iteration of the compression function), then the
secret prefix method exhibits the same weakness.
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In this notation,h∗(m) refers to the hashed messagem without initialization and
padding (to simplify the exposure). The point to note is thath∗(m) does not depend
on k, and hence anybody can determine this value for a messagem of his or her
choice. This possibility can be turned into a (partly) known-message attack, in which
the adversary tries to reveal the keyk or some partial information about it. While it
is unlikely that the compression functions of currently deployed cryptographic hash
functions are susceptible to this attack, other hash functions may not fare as well.
Consequently, there is incentive to go for a more secure method in the first place.
This is where the envelope method comes into play.

10.3.2.3 Envelope Method

The envelope method combines the prefix and suffix methods. Asmentioned earlier,
the envelope method consists of prepending a keyk1 and appending another key
k2 to the messagem before it is hashed withh. The construction can be formally
expressed as follows:

MACk1,k2(m) = h(k1 ‖ m ‖ k2)

Until the mid-1990s, people thought that this method is secure and that breaking
it requires a simultaneous exhaustive key search fork1 andk2 (see, for example,
[18] for a corresponding line of argumentation). In 1995, however, it was shown by
Bart Preneel and Paul van Oorschot that this is not the case and that there are more
efficient attacks against the envelope method than to do a simultaneous exhaustive
key search fork1 and k2 [19]. Since then, the envelope method is slowly being
replaced by some alternative methods.

10.3.2.4 Alternative Methods

After Tsudik published his results, many cryptographers turned their interest to
the problem of using keyed one-way hash functions for message authentication
and finding security proofs (e.g., [20, 21]). Most importantly, Mihir Bellare, Ran
Canetti, and Hugo Krawczyk developed a pair of message authentication schemes—
thenested MAC(NMAC) and thehashed MAC(HMAC)—that can be proven to be
secure as long as the underlying hash function is strong (in acryptographic sense)
[22]. From a practical point of view, the HMAC construction has become particularly
important. It is specified in informational RFC 2104 [23] andhas been adopted by
many standardization bodies for Internet applications.

The HMAC construction uses the following pair of 64-byte strings:
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• The stringipad (standing for “inner pad”) consists of the byte0x36 (i.e.,
00110110) repeated 64 times.

• The stringopad (standing for “outer pad”) consists of the byte0x5C (i.e.,
01011100) repeated 64 times.

The stringsipad and opad are both64 · 8 = 512 bits long. If h is a
cryptographic hash function,k a secret key,17 andm a message to be authenticated,
then the HMAC construction can be formally expressed as follows:

HMACk(m) = h(k ⊕ opad ‖ h(k ⊕ ipad ‖ m))

This construction looks more involved than it actually is. It begins by appending
zero bytes (i.e.,0x00) to the end ofk to create a 64-byte or 512-bit string.18 If,
for example,k is 128 bits long, then 48 zero bytes are appended. The resulting
48 · 8 = 384 bits and the 128 key bits sum up to a total of 512 bits. This key is then
added modulo 2 toipad, and the messagem is appended to this value. At this point
in time, the cryptographic hash functionh is applied a first time to the entire data
stream generated so far. The key (again, appended with zero bytes) is next added
modulo 2 toopad, and the result of the first application ofh is appended to this
value. To compute the final hash value,h is applied a second time (note that this
time the argument for the hash function is comparably short). Last but not least, the
output of the HMAC construction may be truncated to a value that is shorter thanl
(e.g., 80 or 96 bits). In fact, it has been shown that some analytical advantages result
from truncating the output. In either case,k ⊕ ipad andk ⊕ opad are intermediate
results of the HMAC construction that can be precomputed at the time of generation
of k, or before its first use. This precomputation allows the HMACconstruction to
be implemented very efficiently. It is the state-of-the-artconstruction when it comes
to message authentication based on cryptographic hash functions.

More recently, and in particular after the standardizationof SHA-3 and KEC-
CAK (Section 6.4.5), it has been realized that MACs using keyed hash functions are
much simpler to construct if the hash function in use does notfollow the Merkle-
Damgård construction. In this case, the secret prefix method basically works and can
be easily protected against message extension attacks. Theresulting construction is
known as KECCAK MAC (KMAC), and it is specified in NIST SP 800-185.19 As of
this writing, the KMAC construction is not yet used in the field, but this is subject to
change.

17 The recommended minimal length of the key isl bits.
18 If the key is longer than 64 bytes, then it must be truncatedto the appropriate length.
19 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
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10.3.3 Carter-Wegman MACs

At the end of Chapter 6, we mentioned that universal hashing as introduced in [24–
26] provides an alternative design paradigm for cryptographic hash functions and
message authentication systems [27, 28]. More specifically, universal hashing can
be used to provide a one-time MAC, and—as mentioned earlier—a construction
known as Carter-Wegman MAC can then be used to turn this one-time MAC into
a MAC that can be used to authenticate multiple messages. So let us delve more
deeply into the Carter-Wegman MAC construction.

A Carter-Wegman MAC has two ingredients: a one-time MACOTMACk(m)
that maps an arbitrarily long messagem to an n-bit MAC (using a particular
one-time keyk) and a familyF of PRFs that mapn-bit input strings ton-bit
output strings. Each keyk can select a particular PRFFk from F . Furthermore,
a Carter-Wegman MAC is always probabilistic, meaning that—in addition to some
keying material—the authentication of a messagem always requires an additional
n-bit random stringr that represents anonce.20 This suggests that different Carter-
Wegman MACs may be generated for a particular message if the construction is
invoked multiple times.

If k1 andk2 are two keys andr is a nonce, then a Carter-Wegman MAC can
be defined as follows:

CWMACk1,k2(m) = Fk1(r) ⊕OTMACk2(m)

The first keyk1 is used to select a PRF fromF and to map the noncer to a pseudo-
randomn-bit string, whereas the second keyk2 is used to one-time authenticate the
messagem. The results are added modulo 2 to form the Carter-Wegman MAC. The
construction is efficient because the efficient one-time MACis applied to the long
message, whereas the less-efficient PRF is applied to the nonce that is relatively
short (i.e., it is onlyn bits long). One can formally prove that such a Carter-Wegman
MAC is secure, if the two ingredients—the family of PRFs and the one-time MAC—
are secure (even if the same key is used to authenticate multiple messages). In many
Carter-Wegman MAC constructions, it is even possible to somehow quantify the
level of security that can be achieved.

Note that then-bit noncer must change with every CWMAC tag that is
generated, and that the recipient needs to know which nonce was used by the sender
in the first place. So some method of synchronization is required here. This can be
done, for example, by explicitly sending the nonce with the message and the tag, or
by agreeing upon the use of some other nonrepeating value, such as a sequence or

20 This artificial term stands for “number used only once.” Itneed not be truly randomly generated, but
it needs to be unique for the authentication of a particular message under a given key.
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message number. Because the nonce need not be secret, the useof such a sequence
number works perfectly fine in practice.

There are several Carter-Wegman MAC constructions that have been proposed
in the past, and some of them are even being used today. The most prominent
examples are UMAC, Poly1305, and GMAC.

10.3.3.1 UMAC

The universal MAC(UMAC21) is a Carter-Wegman MAC construction that was
proposed in 1999 [29] and is now being used in some Internet applications (e.g.,
[30]). Following the original design of a Carter-Wegman MAC, UMAC uses a family
F of PRFs and a familyH of universal hash functions (to serve as a OTMAC). In
either case, a key is used to select a particular function from the respective families:
k1 to select a pseudorandom functionFk1 from F andk2 to select a universal hash
functionHk2 fromH . For each message, a fresh and unique noncer must be used
in addition tok1 andk2. A UMAC tag is then constructed as follows:

UMACk1,k2(m) = Fk1(r) ⊕Hk2(m)

The default implementation of UMAC is based on the AES (as a family F of
PRFs) and a specifically crafted familyH of universal hash functions that is not
repeated here (you may refer to the references given above).Depending on the
desired security level, it can generate tags that are 32, 64,96, or 128 bits long. In
either case, the design of UMAC is optimized for 32-bit architectures, and VMAC
is a closely related variant of UMAC that is optimized for 64-bit architectures.22

10.3.3.2 Poly1305

Poly1305 is a Carter-Wegman MAC construction that was originally proposed by
Daniel J. Bernstein in 2005 [31]. The construction uses a (block or stream) cipher to
serve as a PRF family and polynomial evaluation to yield a OTMAC. The security
properties are inherited from the cipher. In the original proposal, the AES was used
as a block cipher, but more recently, the use of a stream cipher, such as Salsa20 or
ChaCha20 [32], has also been suggested.

In the case of Poly1305-AES (and the 128-bit version of AES),the construc-
tion takes as input an arbitrarily long messagem, a 128-bit noncer, a 128-bit AES
key k1, and an additional 128-bit keyk2, whose possible values are restricted for

21 http://www.fastcrypto.org/umac and http://www.cs.ucdavis.edu/∼rogaway/umac/.
22 http://www.fastcrypto.org/vmac.
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performance reasons.23 The output is a 128-bit authentication tag that is computed
as follows:

Poly1305-AESk1,k2
(r,m) = AESk1(r) + Pm(k2) (mod 2128) (10.1)

In this notation, AESk1(r) refers to the encryption ofr with keyk1, whereasPm(k2)
refers to a polynomial defined by messagem (meaning that the coefficients of the
polynomial are determined bym) and evaluated atk2 in GF(2130−5).24 To compute
the 128-bit authentication tag, the two values are added modulo 2128. The details of
the construction ofPm fromm can be found in [31].

10.3.3.3 GMAC

As mentioned and fully explained in Section 11.2.2, the Galois/counter mode
(GCM) is specified in [33] (or [34] for the realm of IPsec/IKE)and yields a
standardized mode of operation for block ciphers that provides AEAD. If operated
in authentication-only mode (i.e., without encryption), GCM is also calledGalois
message authentication code(GMAC). While GCM/GMAC can be used with any
block cipher that has a block length of 128 bits, it is most typically used with AES.

10.4 FINAL REMARKS

In this chapter, we elaborated on the possibilities to authenticate messages and to
compute and verify MACs. We also focused on the notion of security (in the con-
text of message authentication), and we overviewed and discussed several message
authentication systems that are information-theoretically or computationally secure.
From a practical viewpoint, computationally secure message authentication systems
and respective MACs dominate the field. Most applications and standards that re-
quire message authentication in one way or another employ MACs that use keyed
hash functions (this is mainly due to their efficiency). Mostimportantly, the HMAC
construction is part of most Internet security protocols inuse today, including, for
example, the IPsec and SSL/TLS protocols (e.g., [35, 36]). In a typical implemen-
tation, the HMAC construction is based on an iterated cryptographic hash function,

23 The restrictions cause the actual key length ofk2 to be only 106 bits (instead of 128 bits).
If k2 consists of the 16 bytesk2[0], k2[1], . . . , k2[15], then k2[3], k2[7], k2[11], and k2[15]
are required to have their top four bits set to zero, andk2[4], k2[8], and k2[12] are required
to have their two bottom bits set to zero. Using little-endian encoding,k2 refers to the value
k2 = k2[0] + 28k2[1 + . . .+ 2120k2[15].

24 The name of the construction comes from the size of the Galois field,2130 − 5, that is also a prime
number.
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such as SHA-1 or a representative of the SHA-2 family. As already mentioned in
Section 6.5, all of these functions have the problem that they operate strongly se-
quentially, meaning that they cannot be parallelized. Thismay lead to performance
problems, especially in the realm of high-speed networks. Against this background,
there is a strong incentive to go for message authenticationsystems and MAC con-
structions that can be parallelized. The XOR MAC constructions were historically
the first proposals that went into this direction, but the PMAC construction is most
promising today. Furthermore, when it comes to high-speed networks and provable
security, then the Carter-Wegman MACs, such as UMAC, Poly1305, and GMAC,
are good choices. It is probable and very likely that Carter-Wegman MACs will be
more widely deployed in the future, and that some other constructions are going to
be developed and proposed as well. Message authentication remains an active area
of research in applied cryptography, and this is not likely going to change in the
foreseeable future.
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Chapter 11

Authenticated Encryption

In this chapter, we put symmetric encryption and message authentication together
in what is now being called authenticated encryption (AE). We introduce the topic
in Section 11.1, give some constructions in Section 11.2, and conclude with final
remarks in Section 11.3. After two extensive chapters, thischapter is again a
relatively short one, but this does not reduce the relevanceof the topic.

11.1 INTRODUCTION

As mentioned in Section 2.2.5, people had used three approaches (or generic
composition methods), EtM, E&M, and MtE, to combine symmetric encryption and
message authentication in a particular order, before it wasshown that EtM provides
the best level of security [1]. Since then, cryptographic security protocols follow this
method consistently and always apply message encryption prior to authentication.
More specifically, people combine message encryption and authentication in AE or
AE with associated data (AEAD) [2] when needed.

AE and AEAD systems are typically constructed by combining symmetric
encryption that provides IND-CPA with a secure message authentication system
that protects the authenticity and integrity of the message. More specifically, peo-
ple sometimes distinguish whether message authenticationprotects the integrity of
plaintext messages, abbreviated INT-PTXT, or the integrity of ciphertexts, abbre-
viated INT-CTXT. While INT-PTXT requires that it is computationally infeasible
to generate a ciphertext that decrypts to a message that has not been encrypted
before, INT-CTXT requires that it is even computationally infeasible to generate
a ciphertext that has not previously been generated, independent of whether or not
the underlying plaintext message is new in the sense that it has not been encrypted
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before. Consequently, INT-CTXT is a stronger requirement,but the difference is
subtle and INT-PTXT is sometimes more intuitive.

Figure 11.1 The relations among the various notions of security for encryption (in simplified form).

A→ B suggests that an encryption system meeting security notionA also meets notionB.

In Section 9.3, we already mentioned the termmalleability, and in Chapter
13, we further delve intononmalleability(NM) [3], in particular nonmalleability
under CPA (NM-CPA) or under CCA (NM-CCA). As shown in [1] and illustrated in
Figure 11.1 in simplified form, there are several relations among the various notions
of security for (symmetric or asymmetric) encryption. First and foremost, a system
that provides IND-CPA and INT-CTXT not only provides INT-PTXT (because INT-
PTXT is a weaker requirement than INT-CTXT) but—more importantly—also IND-
CCA. This is an important result, because IND-CCA is the preferred notion of
security for every encryption system, and hence we can achieve it by requiring a
system to provide IND-CPA and INT-CTXT simultaneously. Theother relations are
less important here, and we will revisit most of them when we address the notions
of security for asymmetric encryption. In particular, we will use the result that IND-
CCA and NM-CCA are equivalent a lot in the rest of the book.

11.2 AEAD CONSTRUCTIONS

As mentioned in Section 9.7, NIST has standardized the AEAD modes CCM [4,
5] and GCM [6]. These modes are important in the field and used in many Internet
security protocols, such as TLS. With regard to encryption,CCM and GCM both use
a block cipher with a block length of 128 bits (e.g., AES) operated in CTR mode.
This mode is advantageous because it only requires the encryption function of the
block cipher to be implemented and because respective implementations may be
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pipelined and parallelized. With regard to authentication, however, CCM and GCM
use different MAC constructions.

In general, an AE operation has four inputs—a secret keyk, a noncer,1 a
plaintext messagem, and some additional dataa that need to be authenticated (but
not encrypted), and two outputs—a ciphertextc and an authentication tagt. These
two items can either represent two separate outputs or a single one that stands for
both. In either case, the respective (authenticated) decryption operation takesk, r, a,
c, andt (or only c, if it also stands fort) as inputs and has as its single output either
m or a special symbolFAIL that states that the provided inputs are not authentic.
In this case, the cryptographic operation must abort without providing any further
information. Let’s now have closer look at CCM and GCM.

11.2.1 CCM

As already mentioned, CCM uses a 128-bit block cipher (e.g.,AES) operated in
CTR mode for encryption and a CBC-MAC (Section 10.3.1.1) forauthentication.
The two operations are applied in an MtE manner, meaning thata CBC-MAC is
first computed on the message and the additional data to obtain an authentication
tag, and that the message and the tag are then encrypted usingthe block cipher in
CTR mode. The resulting ciphertext stands for both the encrypted message and the
authentication tag. CCM has distinct advantages and disadvantages:

• The biggest advantages are that it uses standard cryptographic primitives
that are well understood, and that it can be used with a singlekey for both
applications of the block cipher.

• Its biggest disadvantage is that it requires two applications of the block cipher
for every message block. This is suboptimal to say the least.

The CCM authenticated encryption and decryption algorithms are summarized
in Algorithms 11.1 and 11.2. The (authenticated) encryption algorithm takes as input
a keyk for the block cipher, a 128-bit noncer, a block of dataa that needs to be
authenticated (but not encrypted), and a block of datam that represents the plaintext
message that needs to be encrypted and authenticated. The algorithm first generates
a sequenceb of 128-bit blocks fromr, a, andm, by formatting them according
to a special formatting function named format (this function is not specified here).
The resulting sequence consists of|r|l + |a|l + |m|l = 1 + |a|l + |m|l blocks
b0, b1, . . . , b|a|l+|m|l (note that|x| refers to the bitlength ofx, whereas|x|l refers
its block length, i.e., the number ofl-bit blocks needed to representx). From these

1 Note that this nonce is sometimes also represented as initialization vector (IV). For the purpose of
this explanation, it doesn’t matter whether we use a noncer or an initialization vectorIV .
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Algorithm 11.1 CCM authenticated encryption.

(k, r, a,m)

b = format(r, a,m)
x0 = Ek(b0)
for i = 1 to (|a|l + |m|l) doxi = Ek(bi ⊕ xi−1)
t = MSB|t|(x|a|l+|m|l

)

generate|m|l + 1 counter blocksy0, y1, . . . , y|m|l
for i = 0 to |m|l dosi = Ek(yi)
s = s1 ‖ s2 ‖ . . . ‖ s|m|l
c = (m⊕MSB|m|(s)) ‖ (t ⊕MSB|t|(s0))

(c)

blocks, an equally long sequence of CBC encrypted blocksx0, x1, . . . , x|a|l+|m|l
is computed with the block cipher and keyk (wherex0 = Ek(b0) represents the
IV). The final block isx|a|l+|m|l and the authentication tagt is taken from the|t|
most significant bits of it. In a typical setting,|t| is equal to 128 bits. After having
generatedt, the algorithm begins with the encryption part. It generates |m|l + 1
counter blocksy0, y1, . . . , y|m|l that are ECB-encrypted to form a key stream
s0, s1, . . . , s|m|l . The first blocks0 is reserved to later maskt. All other blocks
s1, . . . , s|m|l are concatenated to forms. Finally, the ciphertextc is generated by
bitwise addingm modulo 2 to the most significant|m| bits ofs, concatenated to the
bitwise addition modulo 2 oft and the most significant|t| bits of s0. Consequently,
the ciphertextc not only comprises the messagem, but also the authentication tagt
form anda in masked form. This actually turns CCM into an AEAD cipher.

The CCM (authenticated) decryption algorithm takes as input k, r, c, anda,
and generates as output eitherm or FAIL . The algorithm starts by verifying whether
the length of the ciphertext is larger than the length of the tag (that is given in
the specification). If this is not the case, then something has gone wrong and the
algorithm aborts and returnsFAIL . Otherwise (i.e., if|c| > |t|), then the algorithm
generates the same key streams as generated by the encryption algorithm. This key
stream is then used to reconstructm and t: m is the result of a bitwise addition
modulo 2 of the|c| − |t| most significant bits ofc and the|c| − |t| most significant
bits of s, whereast is the result of a bitwise addition modulo 2 of the|t| least
significant bits ofc and the|t|most significant bits ofs0. If at this point in timer, a,
or m is invalid (meaning that they are not properly formatted), then the algorithm
aborts and returnsFAIL . Otherwise, it starts verifyingt. To do so, it constructs
b in the same way as the encryption algorithm has done before. The sequence of
blocks fromb (i.e., b0, b1, . . . , b|a|l+|m|l) is CBC-encrypted to form a sequence of
blocksx0, x1, . . . , x|a|l+|m|l . If the most significant|t| bits of the resulting final
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Algorithm 11.2 CCM authenticated decryption.

(k, r, c, a)

if |c| ≤ |t| then abort and returnFAIL
generate|m|l + 1 counter blocksy0, y1, . . . , y|m|l
for i = 0 to |m|l dosi = Ek(yi)
s = s1 ‖ s2 ‖ . . . ‖ s|m|l
m = MSB|c|−|t|(c) ⊕MSB|c|−|t|(s)

t = LSB|t|(c)⊕MSB|t|(s0)

if r, a, orm is invalid
then abort and returnFAIL
elseb = format(r, a,m)

x0 = Ek(b0)
for i = 1 to (|a|l + |m|l) doxi = Ek(bi ⊕ xi−1)
if t 6= MSB|t|(x|a|l+|m|l

)

then returnFAIL
else returnm

(m or FAIL )

blockx|a|l+|m|l is equal tot, then everything is fine andm is returned. Otherwise
(i.e., if equality does not hold), then authentication is not guaranteed, and hence the
algorithm must abort and returnFAIL instead ofm.

11.2.2 GCM

Like CCM, GCM is designed to use a 128-bit block cipher (e.g.,AES) in CTR mode.
But unlike CCM, the CTR mode of GCM uses a unique counter incrementation
function and a message authentication construction that employs a universal hash
function based on polynomial evaluation inGF (2128). According to Section 10.3.3,
this construction yields a Carter-Wegman MAC. The NIST document that specifies
the GCM mode [6] also refers to an authentication-only variant of GCM called Ga-
lois message authentication code (GMAC). In short, GMAC uses GCM encryption
but requires no data to be encrypted, meaning that all data are only authenticated.

GF (2128) is an extension field ofGF (2). Its elements are strings of 128 bits,
and its operations are addition (⊕) and multiplication (·). If x = x0x1 . . . x127 and
y = y0y1 . . . y127 are two elements ofGF (2128) with xi andyi representing bits
for i = 0, 1, . . . , 127, thenx ⊕ y can be implemented as bitwise addition modulo
2 andx · y can be implemented as polynomial multiplication modulo thedistinct
irreducible polynomialf(x) = 1 + x+ x2 + x7 + x128.
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GCM employs two complementary functions: A hash function called GHASH
and an encryption function called GCTR that is a variant of “normal” CTR mode
encryption.

• The GHASH function is specified in Algorithm 11.3 and illustrated in Figure
11.2.2 It takes as input a 128-bit hash subkeyh andx = x1 ‖ x2 ‖ . . . ‖ xn
that is a sequence ofn 128-bit blocksx1, x2, . . . , xn, and it generates as output
a 128-bit hash valuey(n). The function is simple and straightforward: It starts
with a 128-bit blocky(0) that is initialized with 128 zeros (written as0128),
and it then iteratively adds the next block ofx and multiplies the result with
h. This is iteratedn times, untily(n) is returned as output.

Algorithm 11.3 GHASH function used in GCM mode.

(h, x)

y(0) = 0128

for i = 1 to n doy(i) = (y(i−1) ⊕ xi) · h

(y(n))

Figure 11.2 The GHASH function.

• The GCTR encryption function is specified in Algorithm 11.4.It takes as input
a keyk, an initial counter block (ICB), and an arbitrarily long bitstringx, and
it generates as output another bit stringy that represents the encrypted version
of x usingk and the ICB. More specifically,x = x1 ‖ x2 ‖ . . . ‖ xn is
a sequence ofn blocks, wherex1, x2, . . . , xn−1 are complete 128-bit blocks

2 While GHASH is a hash function, it is not a cryptographic one.
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Algorithm 11.4 GCTR encryption function.

(k,ICB, x)

if x is empty then return empty bit stringy
n = ⌈|x|/128⌉
b1 = ICB
for i = 2 to n do bi = inc32(bi−1)
for i = 1 to n− 1 doyi = xi ⊕ Ek(bi)
yn = xn⊕ MSB|xn|(Ek(bn))

y = y1 ‖ y2 ‖ . . . ‖ yn−1 ‖ yn
(y)

but xn does not need to be complete (i.e.,|xn| ≤ 128). The algorithm uses
a sequence ofn 128-bit counter blocksb1, b2, . . . , bn that are encrypted and
then added modulo 2 to the respective blocks ofx. If xn is incomplete, then
the respective number ofbn’s most significant bits are used and the remaining
bits ofbn are simply discarded. In the end,y is compiled as the concatenation
of all n ciphertext blocksy1, y2, . . . , yn, whereyn can again be incomplete.
The auxiliary function incs(·) increments the least significants bits of a block
and leaves the remainingl−s bits unchanged. This can be formally expressed
as follows:

incs(x) = MSBl−s(x) ‖ [int(LSBs(x)) + 1 (mod 2s)]s

In GCTR and GCM,s is 32 bits. This means that the first 96 bits ofx remain
unchanged and only the last 32 bits are incremented in each step.

Algorithm 11.5 GCM authenticated encryption.

(k, r,m, a)

h = Ek(0
128)

if |r| = 96 theny0 = r ‖ 0311
elses = 128 · ⌈|r|/128⌉ − |r|

y0 = GHASH(h, (r ‖ 0s+64 ‖ [|r|]64))
c = GCTR(k, inc32(y0), m)
pada = 128 · ⌈|a|/128⌉ − |a|
padc = 128 · ⌈|c|/128⌉ − |c|
b = GHASH(h, (a ‖ 0pada ‖ c ‖ 0padc ‖ [|a|]64 ‖ [|c|]64))
t = MSB|t|(GCTR(k, y0, b)

(c, t)
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Figure 11.3 GCM authenticated encryption.

Having prepared all the ingredients, we are now ready to delve more deeply
into GCM. GCM authenticated encryption is specified in Algorithm 11.5 and partly
illustrated in Figure 11.3. As is usually the case in AEAD, the algorithm takes as
input a keyk for the block cipher in use, a variable-length noncer,3 a messagem that
is going to be encrypted and authenticated, and some additional dataa that is only
going to be authenticated. The messagem comprises|m| bits that formn 128-bit
blocks, whereasa is |a| bits long and formsl = ⌈|a|/128⌉ 128-bit blocks. The output
of the algorithm consists of two parts: The ciphertextc that is equally long asm and

3 Again, the distinction between a nonce and an IV is somehow vague. While the GCM specification
uses the notion of an IV, we use the notion of a nonce. It is particularly important that the value does
not repeat, and this is best characterized with the notion ofa nonce.
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the authentication tagt that can have a variable length|t|. The official specification
suggests|t| to be 128, 120, 112, 104, or 96 bits, and for some applicationseven only
64 or 32 bits.

The GCM encryption algorithm first generates a subkeyh for the GHASH
function. This value is generated by encrypting a block thatconsists of 128 zero bits
(i.e.,0128) with the block cipher and the keyk. It then derives a 128-bit precounter
block y0 from the variable-length noncer. This derivation is shown in Algorithm
11.5 but is not illustrated in Figure 11.3. In the most likelycase thatr is 96 bits long,
y0 is just the concatenation ofr, 31 zero bits, and a one bit. This yields 128 bits in
total. If, however,r is not 96 bits long, then the construction ofy0 is slightly more
involved. In this case,r is padded some with some zero bits so that the concatenation
of r, the zero bits, and the 64-bit length encoding ofr yields a string that is a multiple
of 128 bits long. This string is then subject to the GHASH function with subkey
h, so that the resulting precounter blocky0 is again 128 bits long. This is what
Figure 11.3 starts with. The algorithm generates a sequenceof counter values from
y0 by recursively applying the 32-bit incrementing function inc32(·). All y values
excepty0 are then used to GCTR-encrypt the messagem with keyk. This yields the
ciphertextc = c1 ‖ c2 ‖ . . . ‖ cn. The precounter blocky0 is later used to encrypt
the authentication tag.

To generate the authentication tagt, the algorithm computes the minimum
numbers of zero bits, possibly none, to pada andc so that the bit lengths of the
respective strings are both multiples of 128 bits. The resulting values arepada for
a andpadc for c. The algorithm then padsa andc with the appropriate number of
zeros, so that the concatenation ofa, 0pada , c, and0padc , as well as the 64-bit length
representations ofa andc is a multiple of 128 bits long. Again, this string is subject
to the GHASH function with subkeyh. The result isb and this string is input to the
GCTR function—together with the keyk and the formerly generated precounter
block y0. If the tag length is|t|, then t refers to the|t| most significant bits of
the output of the GCTR function. The output of the GCM authenticated encryption
function is the pair that consists ofc andt.

GCM authenticated decryption works similarly, but the operations are per-
formed in more or less reverse order. It is specified in Algorithm 11.6 and partly
illustrated in Figure 11.4. The algorithm takes as inputk andr that are the same
as used for encryption, as well asc, a, andt, and it generates as output eitherm
or FAIL . First, the algorithm verifies the lengths ofr, c, a, andt. If at least one
of these lengths is invalid, then the algorithm aborts and returnsFAIL (this is not
explicitly mentioned in Algorithm 11.6). Next, the algorithm generates the subkey
h (i.e., it therefore encrypts the zero block with the block cipher and the keyk) and
the precounter blocky0 in the same way as before. In the next step, the messagem
is decrypted. This step is essentially the same as in the encryption algorithm, except
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Figure 11.4 GCM authenticated decryption.

that them andc are interchanged. The computations ofpada andpadc as well asb
are identical. On the basis ofb, the authentication tagt′ can be recomputed. Decryp-
tion is successful if and only ift′ equals the originally received valuet. Otherwise,
decryption fails and the algorithm signals this fact by returningFAIL .

It is commonly believed that the GCM mode is secure as long as anew nonce
is used for every single message. If a nonce is reused, then itmay become feasible
to learn the authentication key (i.e., the hash subkeyh) and to use it to forge au-
thentication tags. Unfortunately, some Internet protocolspecifications do not clearly
specify how to generate nonces in a secure way. For example, the specification of the
TLS protocol does not say anything about the generation of nonces for AES-GCM.
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Algorithm 11.6 GCM authenticated decryption.

(k, r, c, a, t)

verify lengths ofr, c, a, andt
h = Ek(0

128)
if |r| = 96 theny0 = r ‖ 0311

elses = 128 · ⌈|r|/128⌉ − |r|
y0 = GHASH(h, (r ‖ 0s+64 ‖ [|r|]64))

m = GCTR(k, inc32(y0), c)
padc = 128 · ⌈|c|/128⌉ − |c|
pada = 128 · ⌈|a|/128⌉ − |a|
b = GHASH(h, (a ‖ 0pada ‖ c ‖ 0padc ‖ [|a|]64 ‖ [|c|]64))
t′ = MSB|t|(GCTR(k, y0, b)
if t = t′ then returnm else returnFAIL

(m or FAIL )

Consequently, there are a few insecure implementations that reuse nonces.4 Needless
to say, these implementations are susceptible to cryptanalysis and do not provide the
level of security that is otherwise anticipated with AES-GCM. To mitigate the risks
of nonce reuse, people have developed and are promoting fullnonce-misuse resistant
AE and AEAD modes for block ciphers, such as AES-GCM-SIV5 [7], where the
acronym SIV stands for synthetic IV.6

11.3 FINAL REMARKS

In addition to CCM and GCM, there are a few other AE or AEAD modes for
block ciphers, such as EAX [8] and OCB. While CCM combines CTRmode
encryption with a CBC-MAC (as mentioned above), EAX combines CTR mode
encryption with OMAC (Section 10.3.1.1). The result is believed to have better
security properties and be less involved than CCM. But EAX isstill a two-pass
algorithm. So researchers have tried to develop AEAD ciphers that are less expensive
and operate in a single pass. OCB is an exemplary outcome of this line of research.
There are three versions of OCB in use today, ranging from OCBv1 [9] that only
provides AE to OCB v3 [10] that provides full AEAD. Mainly dueto some patent
claims, OCB has not yet found the distribution it deserves.

4 https://eprint.iacr.org/2016/475.
5 http://eprint.iacr.org/2017/168.pdf.
6 http://cyber.biu.ac.il/aes-gcm-siv.
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In spite of their importance and wide applicability in many Internet security
protocols, working on AEAD ciphers and respective modes of operation for block
ciphers seems to be less glamorous than working on the block ciphers themselves.
This is unfortunate, because this work is key for the secure operation and use of
encryption systems and block ciphers. At least some standardization bodies have
initiatives in this area, such as NIST supporting AES-GCM-SIV, EAX, GCM, and
OCB,7 and ISO/IEC 19772:2009 [11] supporting OCB v2, CCM, EAX, GCM, and
two additional modes for key wrapping and MtE. Outside standardization, there are
a few competing proposals, such as Helix [12] and CWC [13]. These AEAD ciphers,
however, are seldom used in the field, mainly because practitioners prefer standards.

More recently, people have pointed out a subtle problem thatis also relevant
for authenticated encryption and AE(AD) ciphers [14]: There are file formats that
are not mutually exclusive in the sense that the content of a given file may be
valid according to different file formats. In the case of two formats, for example,
a respective file refers to a binary polyglot—it is valid for (at least) two different file
formats. Two different ciphertexts may be packed into a binary polyglot. Depending
on the decryption key, two different but valid plaintext messages can be recovered
from the encrypted file. This works independently from the AE(AD) cipher that may
otherwise be secure. It goes without saying that this may pose a serious problem and
security risk in some situations. There are basically two possibilities to mitigate the
risk: Either the file formats can be sharpened in a way that polyglots cannot exist,
or—maybe more realistically—the AE(AD) cipher may be extended to additionally
provide support for key commitment, meaning that the encryption process must also
commit to the key that is being used. This should make it impossible to decrypt
a given ciphertext with another key than originally anticipated. There are multiple
ways to achieve this, such as adding an additional zero blockprior to encryption and
verifying that this block is recovered after decryption. This is conceptually similar
to the quick check used in some OpenPGP implementations [15]. Anyway, it is
reasonable to expect that key commitment will become relevant in authenticated
encryption in the future.
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Chapter 12

Key Establishment

In this chapter, we get to work in Part III and elaborate on cryptographic protocols to
establish a secret key between two or more entities. More specifically, we introduce
the topic in Section 12.1, outline key distribution and key agreement and respective
protocols in Sections 12.2 and 12.3, address quantum cryptography in Section 12.4,
and conclude with some final remarks in Section 12.5. Note that this chapter is not
complete in the sense that there are many other key establishment protocols that
are not addressed (see, for example, [1] for a more comprehensive overview). Also
note that the problem of key establishment can also be considered for more than
two entities. In this case, however, the resulting cryptographic key establishment
protocols are even more involved [2], and we only briefly explore the tip of the
iceberg here.

12.1 INTRODUCTION

In Section 2.3.1, we argued that the establishment of secretkeys is a major problem
and represents the Achilles’ heel for the large-scale deployment of secret key
cryptography, and that there are basically two approaches to resolve it:

1. The use of a KDC, such as Kerberos [3];

2. The use of a key establishment protocol.

We further made a distinction between a key distribution anda key agreement
protocol—both representing key establishment protocols.

• A key distribution protocolcan be used to securely transmit a secret key (that
is generated locally or otherwise obtained) from one entityto one or several
other entities.
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• A key agreement protocolcan be used by two or more entities to establish and
mutually agree on a secret key. Alternatively speaking, thekey is derived from
information provided by all entities involved.

A B

A B
Key agreement

Key distribution

Figure 12.1 Key distribution versus key agreement.

Figure 12.1 illustrates the notion of a key distribution as compared to a key
agreement for the case of two entities. In the first case, a secret key is distributed
from entity A to entity B, whereas in the second case, A and B establish and mutually
agree on a secret key. So in the first case, the relationship between A and B is
unidirectional, whereas the relationship is bidirectional in the second case (this is
indicated by the arrows in Figure 12.1). As already mentioned in Section 2.3.1, key
agreement protocols are advantageous from a security viewpoint, and hence they
should be the preferred choice. The most important protocols are overviewed and
briefly discussed next.

12.2 KEY DISTRIBUTION

With the use of asymmetric encryption, key distribution is simple and straightfor-
ward. Before we outline the respective asymmetric encryption-basedkey distribution
protocol, we elaborate on Merkle’s puzzles and Shamir’s three-pass protocol. Both
proposals are predecessors of what has become known as public key cryptography.
As such, they are also important from a historical perspective.

12.2.1 Merkle’s Puzzles

In 1975, Ralph C. Merkle developed and proposed an idea that is conceptually
similar and closely related to public key cryptography and asymmetric encryption
as it stands today [4].1 The idea is known asMerkle’s puzzles.

1 Note that Merkle’s article appeared in theCommunications of the ACMin 1978. It is electronically
available at http://www.merkle.com/1974/PuzzlesAsPublished.pdf.
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Let A and B be two entities that can communicate with each other over a public
but authentic channel. A and B can then use the protocol summarized in Table 12.1
to establish a shared secret keyKi. The protocol takes a security parametern on
either side and comprises the following three steps:

1. A generatesn puzzlesP1, . . . , Pn (i = 1, . . . , n), randomly permutes the
puzzles (using permutationπ), and sendsPπ(1), . . . , Pπ(n) to B. Each puzzle
Pi consists of an indexi (or a short message saying “This is puzzlei,”
respectively) and a randomly chosen secret keyki, Pi = (i, ki). Solving
a puzzle is feasible but requires a considerable computational effort (as
explained later).

2. B randomly selects a puzzlePi from Pπ(1), . . . , Pπ(n) and solves it. The
solution is(i, ki), and B sends the indexi back to A. This transmission can be
done in the clear.

3. A usesi to extract the secret keyki from Pi = (i, ki), and this key can then
be used to serve as a shared secret between A and B.

Table 12.1
Merkle’s Puzzles

A B

(n) (n)

GeneratePi = (i, Ki)
for i = 1, . . . , n

PermuteP1, . . . , Pn
Pπ(1),...,Pπ(n)−−−−−−−−−−−→

Randomly selectPi

SolvePi
i←−

(ki) (ki)

Having a closer look at the protocol, one realizes that B getsto knowki after
having solved a single puzzle (i.e.,Pi), whereas an adversary gets to knowki only
after having solved alln puzzles and having found the puzzle with the appropriate
indexi. On average, the adversary has to solve half of the puzzles. For sufficiently
largen, this is computationally expensive for the adversary, and hence Merkle’s
puzzles can be used in theory to have two entities establish asecret key.
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One possibility to generate a puzzlePi is to symmetrically encrypt(i, ki) with
a key that has a fixed part and a variable part. If, for example,the variable part is
30 bits, then solving a puzzle requires230 tries in the worst case (or229 tries on
average). This is the computational effort of B. If an adversary wants to compromise
the key, then the computational effort isn·230 in the worst case (orn/2·229 = n·228
on the average). The computational security of Merkle’s puzzles is based on the
difference between230 (for B) andn·230 (for an adversary). Again, for a sufficiently
largen, this difference may be significant.

As mentioned earlier, Merkle’s puzzles are theoretically (or historically) rel-
evant. From a more practical point of view, however, Merkle’s puzzles have the
problem that the amount of data that need to be transmitted from A to B is propor-
tional to the security parametern (note thatn puzzlesPπ(1), . . . , Pπ(n) need to be
transmitted to B). This is prohibitively expensive for any reasonably sizedn. One
can play around withn and the size of the variable part of the keys that are used
to symmetrically encrypt the tuples(i, ki) for i = 1, . . . , n, but the amount of data
that need to be transmitted from A to B remains significant andprohibitively large.
Furthermore, Merkle’s puzzles require B to solve at least one puzzle. This is not
impossible, but it may still be inconvenient for B in many situations.

12.2.2 Shamir’s Three-Pass Protocol

Another theoretically and historically relevant key distribution protocol was pro-
posed by Shamir in 1980. Let A and B be two entities that share no secret key
initially but may have a way to encrypt and decrypt messages.EkA andEkB refer
to A and B’s encryption functions, whereasDkA andDkB refer to the decryption
functions (the encryption function and decryption function may also be the same). In
order for the encryption function and decryption function to be suitable for Shamir’s
three-pass protocol, they must have the property that for any plaintext messagem,
any encryption functionEk1 with corresponding decryption functionDk1 , and any
independent encryption functionEk2 ,

Dk1(Ek2(Ek1(m))) = Ek2(m)

In other words, it must be possible to remove the first encryption functionEk1

even though a second encryption functionEk2 has been performed. This is always
possible with a commutative encryption as introduced in Section 9.1. A simple three-
pass protocol to secretly send a secret message, such as a session keyk, from A to B
is shown in Protocol 12.2. In this protocol, A has a secret keykA and B has another
secret keykB.
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Table 12.2
Shamir’s Three-Pass Protocol

A B

(n) (n)

GeneratePi = (i, Ki)
for i = 1, . . . , n

PermuteP1, . . . , Pn
Pπ(1),...,Pπ(n)−−−−−−−−−−−→

Randomly selectPi

SolvePi
i←−

(Ki) (Ki)

A first randomly selects a keyk from the key spaceK and encrypts this key
with his or her encryption functionEkA . The resulting value

k1 = EkA(k)

is transmitted to B. B, in turn, uses his or her encryption functionEkB to compute

k2 = EkB (k1) = EkB (EkA(k))

This double encrypted value is returned to A. A then uses his or her decryption
functionDkA to decryptk2, and compute

k3 = DkA(k2)

= DkA(EkB (EkA(k)))

= DkA(EkA(EkB (k)))

= EkB (k)

accordingly. This value is sent to B, and B uses his or her decryption functionDkB

to decryptk3:

k = DkB (k3) = DkB (EkB (k))

Both entities can now output the keyk and use it for symmetric encryption. But
by using only symmetric encryption systems, it is not clear how to instantiate the
three-pass protocol efficiently. A possibility one may think of is using additive
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stream ciphers, such as the one-time pad (Section 9.3). In this case, however, all
encryptions cancel themselves out and the protocol gets totally insecure: LetrA be
the bit sequence that A uses to computek1 andk3, andrB the bit sequence that B
uses to computek2.K1, k2, andk3 can then be expressed as follows:

k1 = rA ⊕ k
k2 = rB ⊕ k1 = rB ⊕ rA ⊕ k
k3 = rA ⊕ k2 = rA ⊕ rB ⊕ rA ⊕ k = rB ⊕ k

These are the values an adversary can observe in a passive (wiretapping) attack. In
this case, the adversary can addk1 andk2 modulo 2 to retrieverB :

k1 ⊕ k2 = rA ⊕ k ⊕ rB ⊕ rA ⊕ k = rB

This value can then be added modulo 2 tok3 to determinek:

rB ⊕ k3 = rB ⊕ rB ⊕ k = k

Note that this is the value that is assumed to be securely distributed. The bottom line
is that a perfectly secure symmetric encryption system (i.e., one-time pad) is used,
and yet the resulting key distribution protocol is totally insecure. This suggests that
the use of an additive stream cipher is not reasonable to instantiate the three-pass
protocol.

In his original proposal, Shamir suggested the use of modular exponentiation
in Z∗p instead of an additive stream cipher. The resulting three-pass protocol is known
asShamir’s three-pass protocol—sometimes also calledShamir’s no key protocol.
It uses the mechanics of the RSA public key cryptosystem. LetA have a public
key pair that consists of a public (encryption) keyeA and a respective private
(decryption) keydA (the capital “A” suggests that the key is long-term; i.e., not
ephemeral). Both keys must be multiplicatively inverse modulo φ(p) = p − 1; that
is, eA · dA ≡ 1 (mod p − 1). Let (eB, dB) be B’s public key pair that fulfills the
same requirements. Shamir’s three-pass protocol can then be instantiated with the
following values fork1, k2, andk3:

k1 ≡ keA (mod p)

k2 ≡ (keA)eB ≡ keAeB (mod p)

k3 ≡ ((keA)eB )dA

≡ ((keA)dA)eB

≡ (keAdA)eB

≡ keB (mod p)
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At the end of the protocol, B can usedB to retrievek:

k ≡ (keB )dB ≡ keBdB ≡ k (mod p)

In 1982, James L. Massey and Jim Omura developed and patented2 a simple
variation of Shamir’s three-pass protocol that is sometimes known as theMassey-
Omura protocol. Instead ofZ∗p, the protocol uses modular exponentiation in an
extension fieldF2n for somen ∈ N+. This allows implementations to be more
efficient.

However, it is important to note that all currently known instantiations of
Shamir’s three-pass protocol employ modular exponentiation in one way or another.
This suggests that there is no immediate advantage comparedto using an asymmetric
encryption system in the first place.

12.2.3 Asymmetric Encryption-Based Key Distribution Protocol

Asymmetric encryption-based key distribution and corresponding protocols are sim-
ple and straightforward. As illustrated in Protocol 12.3, such a protocol can be used
by two entities—A and B—that share no secret key initially. Bis assumed to have
a public key pair of an asymmetric encryption system (EB refers to the encryption
function that is keyed withpkB, andDB refers to the corresponding decryption
function that is keyed withskB). A randomly selects a secret keyk from an appro-
priate key spaceK, encrypts it withEB, and transmitsEncrypt(pkB, k) to B. B, in
turn, usesskB andDB to decryptk; that is,k = Decrypt(skB ,Encrypt(pkB, k)).
A and B now both share the secret keyk that can be used for session encryption.

Table 12.3
An Asymmetric Encryption-based Key Distribution Protocol

A B

(pkB) (skB)

k
r←− K

Encrypt(pkB ,k)−−−−−−−−−−→
k = Decrypt(skB,Encrypt(pkB , k))

(k) (k)

2 U.S. patent 4,567,600 entitled “Method and Apparatus for Maintaining the Privacy of Digital
Messages Conveyed by Public Transmission” was issued in January 1986. It expired in 2003.
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Many cryptographic security protocols for the Internet make use of asymmet-
ric encryption-based key distribution in one way or another. Examples include for-
mer versions of the SSL/TLS protocols [5] and some keying option in the Internet
key exchange (IKE) protocol used in the IPsec protocol suite[6]. More recently,
however, these protocols have been extended to take advantage of key agreement
mechanisms.

12.3 KEY AGREEMENT

As mentioned in Section 1.3, Diffie and Hellman published their landmark paper
entitled “New Directions in Cryptography” in 1976 [7]. The paper introduced the
notion of public key cryptography and provided some evidence for its feasibility
by proposing a key agreement protocol. In fact, theDiffie-Hellman key exchange
protocol—sometimes also termedexponential key exchange protocol—can be used
by two entities that have no prior relationship to agree on a secret key by commu-
nicating over a public but authentic channel. As such, the mere existence of the
Diffie-Hellman key exchange protocol may seem paradoxical at first sight.

Table 12.4
Diffie-Hellman Key Exchange Protocol

A B

(G, g) (G, g)

xa
r←− Z∗

q xb
r←− Z∗

q

ya = gxa yb = gxb

ya−−→
yb←−−

kab = yxa
b kba = y

xb
a

(kab) (kba)

The Diffie-Hellman key exchange protocol can be implementedin a cyclic
groupG in which the DLP (Definition 5.5) is assumed to be intractable, such as the
multiplicative group of a finite field. IfG is such a group (of orderq) with generator
g, then the Diffie-Hellman key exchange protocol can be formally expressed as
shown in Protocol 12.4. A and B both knowG andg, and they want to agree on
a shared secret keyk. A therefore randomly selects an (ephemeral) secret exponent
xa fromZ∗q = Zq \ {0} = {1, . . . , q − 1}, computes the public exponentya = gxa,
and sendsya to B. B does the same: It randomly selects a secret exponentxb from
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Z∗q , computesyb = gxb , and sendsyb to A. A now computes

kab ≡ yxa

b ≡ gxbxa

and B computes

kba ≡ yxb
a ≡ gxaxb

According to the laws of exponentiation, the order of the exponents do not matter,
and hencekab is equal tokba. It is the output of the Diffie-Hellman key exchange
protocol and can be used as a secret keyk.

Let us consider a toy example to illustrate the working principles of the Diffie-
Hellman key exchange protocol: From Section 5.2.1 we know that p = 23 is a safe
prime, because11 = (23 − 1)/2 is prime also. This basically means thatq is a
Sophie Germain prime andZ∗23 = {1, . . . , 22} has a subgroupG that consists of the
11 elements 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, and 18. There are several elements that
generate this group, and we takeg = 3 here (it can be easily verified that3i mod 23
for i = 0, 1, . . . , 10 generates all elements ofG). A randomly selectsxa = 6,
computesya = 36 mod 23 = 16, and sends this value to B. B, in turn, randomly
selectsxb = 9, computesyb = 39 mod 23 = 18, and sends this value to A. A now
computesyxa

b = 186 mod 23 = 8, and B computesyxb
a = 169 mod 23 = 8.

Consequently,k = 8 is the shared secret that may serve as a session key.
Note that an adversary eavesdropping on the communication channel between

A and B knowsp, g, ya, andyb, but does neither knowxa nor xb. The problem
of determiningk ≡ gxaxb (mod p) from ya andyb (without knowingxa or xb) is
known as the DHP (Definition 5.6). Also note that the Diffie-Hellman key exchange
protocol can be transformed into a (probabilistic) asymmetric encryption system.
For a plaintext messagem (that represents an element of the cyclic group in use), A
randomly selectsxa, computes the common keykAB (using B’s public keyyb and
following the Diffie-Hellman key exchange protocol), and combinesm with kab to
obtain the ciphertextc. The special case wherec = m · kab refers to the Elgamal
asymmetric encryption system that is addressed in Section 13.3.3.

If the Diffie-Hellman key exchange protocol is used natively(as outlined in
Protocol 12.4), then there is a problem that is rooted in the fact that the values
exchanged (i.e.,ya andyb) are not authenticated, meaning that the values may be
modified or replaced with some other values. Assume an adversary C who is located
between A and B, and who is able to actively modify messages asthey are sent back
and forth. Such an adversary is conventionally called aman-in-the-middle(MITM),
and the respective attack is called aMITM attack. As sketched in Protocol 12.5, the
Diffie-Hellman key exchange protocol is susceptible to sucha MITM attack: While
observing the communication between A and B, C replacesya by yc andyb by yc
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(it would even be possible to use two different keysyc andyc′ on either side of the
communication channel, but this makes the attack more complex). When A receives
yc (instead ofyb), it computeskac = yxa

c . On the other side, when B receivesyc
(instead ofya), it computeskbc = yxb

c . Contrary to a normal Diffie-Hellman key
exchange, the two keyskac andkbc are not the same, but A and B consider them to
be the same. C is able to compute all keys, and to decrypt all encrypted messages
accordingly. The bottom line is that A shares a key with C (i.e., kac) but assumes to
share it with B, whereas—on the other side of the communication channel—B shares
a key with C (i.e.,kbc) but assumes to share it with A. This allows C to decrypt all
messages with one key and reencrypt them with the other key, making the fact that
it is able to read messages that are invisible and unrecognizable to both A and B.

Table 12.5
A MITM Attack Against the Diffie-Hellman Key Exchange Protocol

A C B

(G, g) (G, g)

xa
r←− Z∗

q xb
r←− Z∗

q

ya = gxa yb = gxb

ya−−→ yc−−→
yc←−− yb←−−

kac = yxa
c kbc = y

xb
c

(kac) (kbc)

Remember that the problem that the Diffie-Hellman key exchange is suscepti-
ble to a MITM attack is rooted in the fact that the values exchanged (i.e.,ya andyb)
are not authenticated. This means that the most obvious way to mitigate the attack
is to authenticate these values. In practice, people therefore use anauthenticated
Diffie-Hellman key exchange protocolinstead on an unauthenticated (native) one.
In the literature, there are many proposals to authenticatethe Diffie-Hellman key
exchange protocol using some complementary cryptographictechniques, such as
passwords, secret keys, and digital signatures with publickey certificates. Many
authenticated Diffie-Hellman key exchange protocols support multiple ways to pro-
vide authentication. The first proposal was thestation-to-station(STS) protocol [8]
that was proposed in the early 1990s, and that strongly influenced the IKE protocol
mentioned earlier. Almost all cryptographic protocols used on the Internet today
support an authenticated Diffie-Hellman key exchange in oneway or another.3

3 One exception are the SSL/TLS protocols up to version 1.2 that also support an anonymous Diffie-
Hellman key exchange (e.g., [5]).
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The susceptibility of the Diffie-Hellman key exchange protocol to MITM
attacks has been known since the original publication [7], and many researchers have
proposed other mitigation techniques (other than to complement the Diffie-Hellman
key exchange with some form of authentication). In 1984, forexample, Rivest and
Shamir proposed a simple technique and a respective protocol—namedinterlock
protocol—that defeats some MITM attacks against a public key cryptosystem used
for encryption [9]. It is outlined in Protocol 12.6. Let(pka, ska) and(pkb, skb) be
A’s and B’s (ephemeral) public key pairs with key lengthl. After their generation,
A and B exchange the public keys and encrypt their messages with the respective
public key (i.e., A encryptsma with pkb and B encryptsmb with pka). The resulting
ciphertextsca andcb are split into two halves, and the two halves are sent in two
distinct messages. This results in four messages, in which Afirst sends the left half
of ca to B, B sends the left half ofcb to A, A sends the right half ofca to B, and B
sends the right half ofcb to A in this order. A and B can then concatenate the two
halves and decrypt the respective ciphertexts using their private keys: A decryptsmb

with ska and B decryptsma with skb. If the two messages look reasonable, then it
is unlikely that an MITM has tampered with them.

Table 12.6
The Interlock Protocol Used for Encryption

A B

(l) (l)

(pka, ska) = Generate(1l) (pkb, skb) = Generate(1l)
pka−−−→
pkb←−−−

ca = Encrypt(pkb,ma) cb = Encrypt(pka,mb)
left half of ca−−−−−−−−→
left half of cb←−−−−−−−

right half ofca−−−−−−−−→
right half ofcb←−−−−−−−−

mb = Decrypt(ska, cb) ma = Decrypt(skb, ca)

(mb) (ma)

Note what happens if a MITM wants to defeat the interlock protocol. In this
case, the MITM provides A withpkc (instead ofpkb). This means thatma gets
encrypted withpkc, and hence that C is, at least in principle, able to decryptca.
But C only gets the first half ofca and has to forward something meaningful; that is,
something that refers to the first half ofma encrypted withpkb. But C does not know
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ma at this point in time, and hence it is not able to forward something meaningful.
Instead, it has to forward something different that likely reveals its existence. The
bottom line is that the interlock protocol does not really defeat the MITM attack; the
attack can still be mounted, but it can be detected in the aftermath.

The interlock protocol as described above can be used to mitigate a MITM
attack when a public key cryptosystem is used for encryption. If it is used for au-
thentication, as suggested in [10], then some subtle attacks are feasible (e.g., [11])
and more sophisticated techniques are required. Examples include theforced-latency
protocol,4 Chaum’s protocol,5 and—maybe most importantly—theencrypted key
exchange(EKE) protocol [12]. In the EKE protocol, a shared secret, such as a pass-
word, is not encrypted but used as a key to encrypt the values of a Diffie-Hellman key
exchange. The original EKE protocol was later improved (e.g., [13]) and gave birth
to an entire family ofauthenticated key exchange(AKE) andpassword authenticated
key exchange(PAKE) methods and respective protocols.6 Many of these protocols
have been widely used and some have even been standardized.

The Diffie-Hellman key exchange and related protocols can beused in any
cyclic group (other thanZ∗p), in which the DLP is intractable, and there are basically
two reasons for doing so: Either there may be groups in which the Diffie-Hellman
key exchange protocol (or the modular exponentiation function) can be implemented
more efficiently in hardware or software, or there may be groups in which the DLP
is more difficult to solve. The two reasons are not independent from each other:
If, for example, one has a group in which the DLP is more difficult to solve, then
one can work with smaller key sizes (for a similar level of security). This is the
major advantage of ECC introduced in Section 5.5. The ECDLP is more difficult to
solve (than the DLP inZ∗p), and hence one can work with smaller key sizes. There
are elliptic curve variants of many key agreement protocolsbased on the ECDLP.
Examples include the elliptic curve Diffie-Hellman (ECDH) and the elliptic curve
Menezes-Qu-Vanstone (ECMQV)—both of them initially became part of NSA’s
set of cryptographic algorithms and protocols known as Suite B (Section 18.2).
ECMQV was later dropped from Suite B due to some security weaknesses.

4 The forced-latency protocol was originally proposed by Zooko Wilcox-O’Hearn in a 2003 blog
entry.

5 In 2006, David Chaum filed a U.S. patent application for the protocol. In 2008, however, the U.S.
Patent Office rejected most of the claims and Chaum finally abandoned the application.

6 The original EKE protocol and the augmented EKE protocol (by the same inventors) were patented
in the United States (patents 5,241,599 and 5,440,635) and expired in 2011 and 2013, respectively.
The expiration of these patents has simplified the situationand legal use of PAKE protocols
considerably.
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Table 12.7
ECDH Protocol

A B

(Curve, G, n) (G, g)

da
r←− Zn \ {0} db

r←− Zn \ {0}
Qa = daG Qb = dbG

Qa−−→
Qb←−−

kab = daQb kba = dbQa

(kab) (kba)

Table 12.7 illustrates the ECDH protocol that is sometimes also acronymed
ECDHE.7 On either side of the protocol,Curve specifies an elliptic curveE(Fq)
over a finite fieldFq (Section 5.5),G a generator, andn the order of the elliptic curve.
A randomly selects a private keyda fromZn \ {0} = {1, . . . , n− 1} and computes
the public keyQa = daG. B does the same: It randomly selects a private keydb and
computes the public keyQb = dbG. A and B then exchange their public keys, so that
A can computekab = daQb = dadbG and B can computekba = dbQa = dbdaG.
Again, the two values refer to the same point on the curve, anda session key can be
derived from the two coordinates of this point. Breaking theECDH protocol requires
an adversary to solve the ECDLP. Again, this is assumed to be computationally
intractable.

12.4 QUANTUM CRYPTOGRAPHY

Most key distribution and key agreement protocols in use today employ public
key cryptographic techniques, and are based on some computational intractability
assumption, such as the IFA (in the case of RSA) or the DLA (in the case of the
Diffie-Hellman key exchange). The questions that arise are:

• What happens if the assumptions turn out to be wrong?

• What happens if somebody finds an efficient algorithm to solvethe IFP and/or
the DLP?

• What happens if somebody succeeds in building a quantum computer?

7 In this case, the final letter E stands for the fact that the Diffie-Hellman key exchange is ephemeral
and short-lived.
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In all of these cases, the use of public key cryptographic techniques would have
to be suspended and people would have to start looking for alternatives. This is
where PQC comes into play (Section 18.3). Another alternative that may become
useful under these circumstances isquantum cryptography. This basically refers to
a key establishment technology that is not based on a computational intractability
assumption. Instead, it is based on the laws of quantum physics, and hence it is
assumed to be secure as long as these laws apply. Consequently, any progress in
solving the DLP or IFP or even the successful construction ofa quantum computer
is not expected to affect the security of quantum cryptography. To some extent, this
is calming news, but there are also some caveats that must be considered with care
and taken into account accordingly.

In this section, we provide a brief overview about quantum cryptography.
More specifically, we introduce the basic principles, elaborate on a quantum key
exchange protocol, and outline some historical and recent developments in the
field. Note that quantum cryptography does not provide a complete replacement for
public key cryptography. For example, it can neither be usedto implement digital
signatures nor to provide nonrepudiation services. Consequently, it is at most a
fallback technology for some parts of public key cryptography.

12.4.1 Basic Principles

As mentioned above, quantum cryptography refers to a key establishment tech-
nology that is based on the laws of quantum physics instead ofcomputational in-
tractability assumptions. More specifically, it makes use of the uncertainty princi-
ple8 of quantum physics to provide a securequantum channel. Roughly speaking,
the uncertainty principle states that certain pairs of physical quantities of an object,
such as its position and velocity, cannot both be measured exactly at the same time.
This theoretical result has practical implications for theexceedingly small masses of
atoms and subatomic particles such as photons. In particular, it affects the way we
can measure the polarization of photons.

Assume the following experiment: We send a photon to two polarization
filters. The first filter is vertical, meaning that it only letsvertically polarized photons
pass through, whereas the second filter is placed with some angle t > 0 degree. It is
then reasonable to expect a photon not to pass through both filters. However, due to
quantum physical effects in the world of photons, there is still a certain probability
that the photon passes through both filters, and this probability depends ont. As t
increases, the probability of a vertically polarized photon passing through the second

8 The uncertainty principle was discovered by the German physicist Werner Heisenberg, and is
therefore also known as the Heisenberg uncertainty principle.
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filter decreases. Fort = 45◦, the probability is1/2, and fort = 90◦, the probability
reaches zero.

To measure the polarization of a photon, we can either use arectilinear basis
that is able to reliably distinguish between photons that are polarized with0◦ and
90◦, or a diagonal basisthat is able to reliably distinguish between photons that
are polarized with45◦ and 135◦. The two bases areconjugatein the sense that
the measurement of the polarization in the first basis completely randomizes the
measurement in the second basis (as in the previous experiment for t = 45◦).
The bottom line is that if somebody gives a photon an initial polarization (either
horizontal or vertical, but you don’t know which) and you usea filter in the45/135◦

basis to measure the photon, then you cannot determine any information about the
initial polarization of the photon.

These principles can be exploited to establish a quantum channel that cannot
be attacked passively without detection, meaning that the fact that someone tries to
eavesdrop on the channel can be detected by the communicating parties. In fact, the
adversary cannot gain even partial information about the data being transmitted with-
out altering it in a random and uncontrollable fashion that can be detected afterward.
As such, the quantum channel is not secure in the sense that itcannot be attacked.
But if it is attacked, then this fact can at least be detected by the communicating
parties. A quantum channel can therefore be used to securelytransmit information
(e.g., a secret key) from one side to the other. Any attempt totamper with the channel
can be recognized by the communicating parties. Again, thisfact does not depend
on a computational intractability assumption; it only depends on the validity of the
laws of quantum physics. Consequently, the quantum channelis provably secure in
a physical sense, i.e., it is secure even against an adversary with superior technology
and unlimited computational power (and even ifP = NP).

12.4.2 Quantum Key Exchange Protocol

Based on the basic principles outlined above, Charles H. Bennett and Gilles Brassard
proposed a quantum cryptography-based key exchange protocol known asquantum
key exchangein 1984 [14]. Let A be the sender and B the receiver on a quantum
channel. A may send out photons in one of four polarizations:0◦, 45◦, 90◦, or 135◦

(we use the symbols−→,ր, ↑, andտ to refer to these polarizations). On the other
side of the quantum channel, B measures the polarizations ofthe photons it receives.
According to the laws of quantum physics, B can distinguish between rectilinear
polarizations (i.e.,0◦ or 90◦) and diagonal polarizations (i.e.,45◦ or 135◦), but it
cannot distinguish between both types of polarization simultaneously (because the
rectilinear and diagonal bases are conjugate).
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Table 12.8
An Exemplary Execution of the Quantum Key Exchange Protocol

1) 0 0 1 0 1 1 0 1 1 0
2) + x x + x + + x x +
3) −→ ր տ −→ տ ↑ −→ տ տ −→
4) + + x + + x + + x x
5) 0 1 0 0 0 0 1 1 0
6) + x + + x + + x x
7) OK OK OK OK OK
8) 0 1 0 0 1
9) 1 0
10) OK OK
11) 0 0 1

In this situation, A and B can use Bennett and Brassard’s quantum key
exchange protocol to agree on a secret key. Table 12.8 summarizes an exemplary
transcript of the protocol. First, A chooses a random bitstring (from which the secret
key is going to be distilled) and a random sequence of polarization bases, where
each basis can be either rectilinear or diagonal. In Table 12.8, this is illustrated in
lines 1 and 2 (+ refers to a rectilinear basis and x refers to a diagonal basis). Each
bit is then encoded with the respective polarization basis.For example, a horizontal
or 45◦ photon can be used to represent a 0, whereas a vertical or135◦ photon can
be used to represent a 1. Line 3 illustrates the polarizationof the photons that are
actually sent from A to B. Again, the polarization can be0◦ (i.e.,→), 45◦ (i.e.,ր),
90◦ (i.e.,↑), or135◦ (i.e.,տ). If A has chosen a rectilinear basis for a particular bit,
then a zero is encoded as→ and a one is encoded as↑. If, however, A has chosen a
diagonal basis, then a zero is encoded asր and a one is encoded asտ.

If an adversary wants to measure the polarization of a photontransmitted from
A to B, then he or she must decide what basis to use.

• If the measurement is made with the correct basis, then the measurement also
yields the correct result.

• If, however, the measurement is made with the wrong basis, then the mea-
surement yields the correct result with a probability of only 1/2, and—maybe
more worrisome—the measurement randomizes the polarization of the pho-
ton.

Consequently, without knowing the polarization bases originally chosen by A,
an adversary has only a negligible chance of guessing them and correctly measuring
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the polarization of all photons. More likely, he or she is going to cause errors that
can be detected afterward.

As B receives the photons, it must decide what basis to use to measure a
photon’s polarization (note that B does not know either which bases to use for the
measurements, so from the quantum channel’s perspective, there is no difference
between B and an adversary). So B can only randomly choose thepolarization bases.
In Table 12.8, the polarization bases chosen by B are illustrated in line 4. At some
positions, B’s choices are equal to A’s choices, but at some other positions, they are
not. According to line 5, B decodes each result as a either 0 or1—depending on
the outcome of the measurement. Note that not all of values need to be correct. In
fact, only the ones that are measured with the correct polarization basis yield correct
results. In line 5, the values that are not necessarily correct are written in italics.
Also, B may miss the reception of specific photons. In line 5, for example, B has
missed measuring the polarization of the second photon.

Anyway, the bit string received by B in this example is 010000110. It repre-
sents theraw key. A and B’s task is now to find out which bits they can use (because
they have used the same basis for encoding and decoding). On average, half of the
raw key’s bits can be used, but A and B must find out which ones. This operation
is known assifting: it can take place over a public channel, as long as the channel
is authentic. The authenticity of the channel can be ensuredphysically or logically.
In the second case, A and B must share a secret key that can be used to authenticate
message origin with a secure MAC (Section 10.2). Needless tosay, the quantum key
exchange protocol then works as a method of “key expansion” rather than a method
of “key generation.”

A and B can use the public channel to sift the key. B therefore sends to A over
the public channel the type of polarization measurements (but not the results), and
A sends to B which measurements were actually of the correct type. In Table 12.8,
these steps are illustrated in lines 6 and 7. The respective zeros and ones then form
thesifted keythat is typically half as long as the raw key. In the example, the sifted
key is 01001.

In practice, all communication channels have a nonzero error probability. This
is particularly true for quantum channels that use photons,which represent a very
small amount of energy, to carry bit values. These photons may be absorbed or
modified in transit. In practical implementations, the intrinsic error rate is of the
order of a few percent. Consequently, akey distillationphase is required. It typically
consists of two steps:

1. In anerror correctionstep, A and B run an error correction protocol to remove
all errors from the sifted key. The result is an errorless keyknown as the
reconciled key. A and B can estimate from the error rate of the sifted key
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and the number of parity bits revealed during error correction the amount of
information an adversary could have obtained about the reconciled key.

2. In aprivacy amplificationstep, A and B can reduce the amount of information
to an arbitrary low level. This is achieved by compressing the reconciled key
by an appropriate factor. The result is thedistilled key.

So key distillation allows A and B to generate a secure key from the sifted
one, even in the case of an imperfect quantum channel. This isnot illustrated in
Table 12.8.

Last but not least, it remains to be seen how A and B can decide whether the
sifted, reconciled, and possibly distilled key is the same or different on either side.

• If it is the same, then A and B can be sure with a high probability that no
eavesdropping has taken place on the quantum channel;

• If it is different, then the quantum channel is likely to be subject to eavesdrop-
ping.

A simple and straightforward solution is for A and B to publicly compare some
of the bits on which they think they should agree. The position of these bits must be
chosen randomly after the quantum transmission has been completed. Obviously,
this process sacrifices the secrecy of these bits. Because the bit positions used in this
comparison are only a random subset of the correctly received bits, eavesdropping
on more than a few photons is likely to be detected. If all comparisons agree, A and
B can conclude that the quantum channel has been free of significant eavesdropping.
Therefore, most of the remaining bits can safely be used as a one-time pad for
subsequent communication over the public channel. When this one-time pad is used
up, the protocol can be repeated arbitrarily many times.

In line 9 of Table 12.8, B reveals2 out of 5 bits chosen at random; that
is, 1 and 0, and in line 10, A confirms these bits (if they are correct). Line 11
shows the remaining bits 0, 0, and 1; they may now serve as the shared secret
key. The eavesdropping-detection subprotocol as described in lines 9 to 11 is rather
wasteful because a significant proportion of the bits (2/5 in the example given
here) is sacrificed to obtain a good probability that eavesdropping is detected even
if attempted on only a few photons. There are more efficient possibilities and
eavesdropping-detection subprotocols not addressed here.

12.4.3 Historical and Recent Developments

The field of quantum cryptography was pioneered by Stephen Wiesner in the late
1960s and early 1970s [15]. Wiesner had two applications in mind:
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• Making money that is impossible to counterfeit;

• Multiplexing two or three messages in such a way that readingone destroys
the other(s).

He introduced the concept of quantum conjugate coding. In the early 1980s,
Bennett and Brassard took Wiesner’s ideas and applied them to cryptography [14,
16]. Their most important contribution was the quantum key exchange overviewed
above.

Since the early work of Bennett and Brassard, many researchers have con-
tributed to quantum cryptography in many ways. In 1991, for example, Artur Ekert
proposed an alternative quantum key exchange protocol thatuses a source to send
entangled photons to A and B (note that in Bennett and Brassard’s quantum key
exchange protocol there are photons sent from A to B, or vice versa, but there is
neither a source nor entangled photons). If an adversary measures the quantum state
of some photons, then he or she automatically disturbs the respective entanglements,
and this, in turn, leads to the fact that a well-known inequality in quantum physics—
known as Bell inequality—is no longer violated. Similar to Bennett and Brassard’s
quantum key exchange protocol, this reveals an eavesdropper. In addition to quantum
key distribution protocols (using polarized or entangled photons), many other quan-
tum cryptographic protocols have been developed and proposed, such as quantum
protocols for oblivious transfer or bit commitment. As well, a few companies sell
quantum cryptographic devices and products, such as ID Quantique9 and MagiQ
Technologies.10

From a practical viewpoint, the major challenge in quantum cryptography is to
overcome long distances, given the fact that quantum transmissions are necessarily
weak and cannot be amplified in transit (an amplifier cannot measure and retransmit
the signals; otherwise it would look like an adversary from the quantum system’s
perspective). The first prototype implementation of the quantum key exchange of
Bennett and Brassard overcame a distance of approximately 30 cm. This distance
was successfully stretched. In 2002, for example, a team of researchers presented a
fiber-optical quantum key distribution system and performed a key exchange over
67 km between Geneva and Lausanne [18].

In order to increase the reach and key creation rate of a quantum cryptosystem,
people have tried several approaches. First of all, it is important to note that it does
not appear to be realistic to improve the physical properties (e.g., transparency or
attenuation) of the optical fibers. The fibers currently in use have been improved
over the last decades and their quality is close to the physical limit. A more
realistic possibility to increase the reach and key creation rate is to use better photon

9 https://www.idquantique.com.
10 https://www.magiqtech.com.
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detectors. For example, devices based on superconducting elements that feature an
essentially noise-free operation have been built and demonstrated [19]. Another
approach is to replace attenuated laser pulses by single photons. There are many
research and development groups working on this approach, but it is not yet ready
for prime time.

Given the current situation, one can argue that experimental quantum cryp-
tosystems will be able to generate raw keying material at rates of 10 megabit per
second over a distance of 50 kilometers or 1 megabits per second over 100 kilometers
within the next couple of years. This suffices for experimental use cases, but it does
not suffice for commercial applications.

12.5 FINAL REMARKS

In this chapter, we elaborated on cryptographic protocols that two entities can
use to establish a secret key. Among these protocols, key agreement protocols are
particularly useful, mainly because they allow both entities to participate in the key
generation process. If this is not the case (such as in the case of a key distribution
protocol), then the cryptographic strength of the secret key is bounded by the quality
of the entity that actually generates the key. If this entityemploys a cryptographically
weak PRG, then the resulting secret key is also weak. Contrary to that, all PRGs of
all entities involved in a key agreement must be cryptographically weak, so that the
resulting secret key is also weak.

The Diffie-Hellman key exchange protocol is omnipresent in security applica-
tions today. Whenever two entities want to establish a secret key, the Diffie-Hellman
key exchange protocol can be used and provides an elegant solution. In the future,
it is hoped that alternative key agreement protocols are developed and deployed. In
the meantime, however, the Diffie-Hellman key exchange protocol still defines the
state of the art.

In the second part of this chapter, we introduced the basic principles of
quantum cryptography and elaborated on the quantum key exchange protocol. This
protocol is interesting because it is unconditionally secure and does not depend on a
computational intractability assumption. Instead, it depends on the laws of quantum
physics. As such, the security of the quantum key exchange protocol is independent
from any progress that is made in solving mathematical problems, such as the IFP
or the DLP. As of this writing, quantum cryptography is not yet practical for real-
world applications, but it may become useful in the future. This is particularly true
if quantum computers can be built (Section D.5).
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Chapter 13

Asymmetric Encryption

In this chapter, we elaborate on asymmetric encryption. More specifically, we in-
troduce the topic in Section 13.1, address probabilistic encryption in Section 13.2,
overview and discuss some asymmetric encryption systems inSections 13.3, intro-
duce the notions of identity-based encryption and fully homomorphic encryption in
Sections 13.4 and 13.5, and conclude with some final remarks in Section 13.6.

13.1 INTRODUCTION

In Section 2.3.2, we introduced the idea of using a trapdoor function to come up
with an encryption system that is asymmetric in nature. It isasymmetric because the
encryption and decryption algorithms employ different keys (i.e., a public keypk
and a respective private keysk). We also defined an asymmetric encryption system to
consist of three efficiently computable algorithms,Generate, Encrypt, andDecrypt,
with two of them—Encrypt andDecrypt—being inverse to each other (Definition
2.12).

The working principle of an asymmetric encryption system isillustrated in
Figure 2.9. The sender (on the left side) encrypts a plaintext messagem and sends
the respective ciphertextc to the recipient (on the right side). This is simple and
straightforward, ifm is short, meaning that the message length is smaller than a
maximum valuemax (e.g., 2,048 bits). Otherwise,m must be split into a sequence
of message blocks

m1,m2, . . . ,mn

each of which is shorter thanmax. Each message blockmi (i = 1, . . . , n) must then
be encrypted individually or sequentially in a specific modeof operation.

349
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If a message (block)m is to be encrypted for recipient B, then it must be
encrypted with the public keypkB of B. Hence, the encryption ofm can be formally
expressed as follows:

c = Encrypt(pkB,m)

B knows its private keyskB and can use it to properly decrypt the original message
block:

m = Decrypt(skB, c)

For most parts of this chapter, we only consider the case in which a single message
m is encrypted, but keep in mind that this message can be part ofa possibly much
longer message. In this case,m is just a message blockmi in a sequence of such
blocks, but the working principles are essentially the same.

Similar to a symmetric encryption system, one may wonder whether a given
asymmetric encryption system is secure. First of all, we note that information-
theoretic (or perfect) security does not exist in the realm of asymmetric encryption.
This is because theEncrypt algorithm works with a public key (i.e., a key that is
publicly known), and hence an adversary who is given a ciphertext can always use
this key and mount a brute-force attack to find the appropriate plaintext message (i.e.,
the one that encrypts to the given ciphertext). Such an attack may take a huge amount
of time, but with regard to unconditional security, this does not matter, and the fact
that the attack is theoretically feasible is sufficient here. Consequently, the best
one can achieve is (some possibly strong notion of) conditional or computational
security.

According to Section 1.2.2, we must specify the adversary’scapabilities and
the task he or she is required to solve to meaningfully discuss and argue about the
security of a cryptosystem. This also applies to asymmetricencryption.

• With regard to the first point (i.e., the adversary’s capabilities), we introduced
the notions of ciphertext-only, known-plaintext, CPA, CCA,1 and CCA2 in
Section 9.1. We reuse these terms here. Ciphertext-only andknown-plaintext
attacks are important and certainly attacks one always has to mitigate. Because
the encryption key is public in an asymmetric encryption system, (adaptive)
CPAs are also trivial to mount. This is not necessarily true for CCAs and
CCA2s. Because the private key is secret, it may not be possible for an
adversary to have a ciphertext of his or her choice be decrypted (unless he
or she has access to a decryption device that serves as an oracle). But in 1998,

1 In the realm of asymmetric encryption, the termchosen-ciphertext attackwas introduced in [1].
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it was shown that some forms of CCAs can be mounted against cryptographic
protocols like SSL [2]. This has changed the way we think about CCA(2), and
how feasible it is to mount such attacks in the field. Since then, the design of
asymmetric encryption systems that are secure against CCA(2) has become
an important field of study.

• With regard to the second point (i.e., the task he or she is required to solve),
there are again several possibilities, and these possibilities lead to different
notions of security (as discussed next).

The simplest and most straightforward notion isone-way security, meaning
that it is computationally infeasible to determine a plaintext message from a given
ciphertext and public key (and hence to invert the one-way function on which the
asymmetric encryption system is based). At first glance, theadversary can only
mount a ciphertext-only attack in this setting, but given the fact that he or she has
access to the public key, he or she can also mount a CPA—even anadaptive one.
In either case, the task he or she is required to solve is to determine the plaintext
message from a given ciphertext.

One-way security sounds like a reasonable requirement for asymmetric en-
cryption, but things are more involved in practice. If, for example, an asymmetric
encryption system is only one-way secure, then it may still be feasible to determine
the plaintext message from a given ciphertext (e.g., if the plaintext message is of a
special form or is chosen according to a special distribution). Similarly, even if the
plaintext message cannot be computed efficiently, some partial information may still
leak. Hence, one-way security seems to be a lower bound for the notion of security
that is required, and there are other—possibly stronger—notions of security. Some
of them were mentioned in Sections 9.4 and 11.1 (and illustrated in Figure 11.1).

Most importantly, the notions of semantic security and indistinguishability of
ciphertext (or ciphertext indistinguishability) were formally introduced and defined
by Shafi Goldwasser and Silvio Micali in the early 1980s [3] inthe realm of
probabilistic encryption (Section 13.2). We already introduced these notions of
security for symmetric encryption systems, but they can also be used to argue about
the security of asymmetric encryption systems.

The notion of semantic security is appropriate to argue informally about the
security of an encryption system. But when it comes to security proofs, the notion
of ciphertext indistinguishability is more adequate. In the realm of asymmetric
encryption, we have to modify the IND-CPA game from Section 9.4 a little bit.
Here, the challenger has a public key pair(pk, sk) and the adversary is given the
public key pk. He or she can use this key to encrypt arbitrarily many messages
of his or her choice. At some point in time, the adversary has to generate two
equally long plaintext messagesm0 andm1 and send them to the challenger in
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random order. The challenger selectsb ∈R {0, 1} and encryptsmb with pk; that
is, c = Encrypt(pk,mb). This ciphertextc is sent to the adversary, whose task is
to decide whetherc is the encryption ofm0 or m1. If the best he or she can do is
guessing, then the encryption provides IND-CPA, and this, in turn, means that it is
also semantically secure. If, in addition to mounting a CPA,the adversary has access
to a decryption oracle that he or she can feed with some arbitrary ciphertexts (except,
of course, the ciphertextc the adversary is challenged with), then the underlying
asymmetric encryption system provides IND-CCA (or IND-CCA2, if the adversary
can proceed adaptively).

In spite of the fact that the notions of semantic security andciphertext indistin-
guishability are similar, it is not clear that they are in fact equivalent. Intuitively, this
can be seen as follows: Semantic security requires that basically nothing about the
plaintext message can be computed from a ciphertext, but then, one should not be
able to distinguish ciphertexts of two different plaintextmessages, which is cipher-
text indistinguishability. If, on the other hand, one is notable to distinguish the ci-
phertexts of two plaintext messages, then one cannot learn anything about a plaintext
message given a ciphertext, which is semantic security. Formally, Goldwasser and
Micali showed that ciphertext indistinguishability implies semantic security [3], and
Micali, Charles Rackoff, and Bob Sloan later showed that semantic security implies
ciphertext indistinguishability [4]. Both results are under CPA. The equivalence of
semantic security and IND-CPA allows many practically relevant cryptosystems to
be proven secure. But there are two remarks to make at this point:

• The encryption algorithm of an encryption system that provides IND-CPA
(and hence is semantically secure) must be probabilistic. Otherwise, the
adversary could simply encryptm0 andm1 (with the public keypk that
is known to him or her), and decide which of the two ciphertexts matches
c. Consequently, many practically relevant asymmetric encryption systems
(that are deterministic in nature) cannot be semantically secure. Examples
include the RSA and Rabin asymmetric encryption systems. These systems,
however, can be made semantically secure by applying an appropriate padding
scheme prior to encryption. We revisit this topic when we elaborate onoptimal
asymmetric encryption padding(OAEP) later in this chapter.

• Having an encryption system that provides IND-CPA (and hence is semanti-
cally secure) is particularly useful if the message space issparse (i.e., it in-
cludes only a few messages, such as “yes” and “no” or “buy” and“sell”). This
situation is typical in many practical applications and application settings.

Ciphertext indistinguishability and semantic security are the commonly ac-
cepted notions of security for (asymmetric) encryption systems. There are, however,
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also other notions of security. For example, a more intricate notion of security is
nonmalleability(NM) [5]. In essence, an asymmetric encryption system isnonmal-
leableif it is computationally infeasible to modify a ciphertext in a way that it has
a predictable effect on the underlying plaintext message. Alternatively speaking, an
asymmetric encryption system is nonmalleable if there is noefficient algorithm that
given a ciphertextc can generate a different ciphertextc′ such that the respective
plaintext messagesm andm′ are related in some known (and predictable) way. For
example, when given the ciphertext of a bid in an auction, it should be computation-
ally infeasible for an adversary to come up with a ciphertextof a smaller bid—at least
not with a success probability that is greater than without being given the ciphertext.

As shown in Figure 11.1, nonmalleability under CCA (NM-CCA)is equiv-
alent to IND-CCA, and hence the two notions of security are often used synony-
mously and interchangeably. Note, however, that this equivalence only holds for
CCA and not for CPA. In fact, NM-CPA implies IND-CPA, but the converse in
not known to be true. There are many other relationships thathave been shown in
theory (e.g., [6]), but we don’t have to be comprehensive here. There are even other
notions of security proposed in the literature, such asplaintext awarenessbriefly
mentioned in Section 13.3.1.4. These notions of security are not relevant and not
further addressed in this book.

Let us now address probabilistic encryption that is important in theory before
we delve into symmetric encryption systems that are relevant in practice.

13.2 PROBABILISTIC ENCRYPTION

To argue scientifically about the security of an (asymmetric) encryption system,
Goldwasser and Micali developed and proposedprobabilistic encryptionin the early
1980s [3]. The implementation they suggested was based on the QRP (Definition
A.31) that is believed (but not known) to be computationallyequivalent to the IFP.

To understand probabilistic encryption, it is required to understand the mathe-
matics summarized in Appendix A.3.7. In particular, it is known that

x ∈ QRp ⇔
(
x

p

)

= 1

for every prime numberp. So if we work with a prime numberp, then the Legendre
symbol ofx modulop is one if and only ifx is a quadratic residue modulop. The
Legendre symbol ofx modulop can be efficiently computed using, for example,
Euler’s criterion (Theorem A.11).
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Things get more involved if one works with composite numbers(instead of
prime numbers). Ifn is a composite number, then

x ∈ QRn ⇒
(x

n

)

= 1

but

x ∈ QRn :
(x

n

)

= 1

This means that ifx is a quadratic residue modulon, then the Jacobi symbol ofx
modulonmust be 1, but the converse need not be true (i.e., even if the Jacobi symbol
of x modulon is 1,x need not be a quadratic residue modulon). If, however, the
Jacobi symbol ofx modulon is−1, then we know thatx is a quadratic nonresidue
modulon:

x ∈ QNRn ⇐
(x

n

)

= −1

Again referring to Appendix A.3.7,Jn stands for the set of all elementsx of Zn for
which the Jacobi symbol ofx modulon is 1, andQ̃Rn = Jn \QRn stands for the
set of all pseudosquares modulon. If n = pq, then

|QRn| = |Q̃Rn| = (p− 1)(q − 1)/4

This means that half of the elements inJn are quadratic residues and the other
half are pseudosquares modulon. So if an arbitrary element ofJn is given, it is
computationally intractable to decide whether it is a quadratic residue (square) or
a pseudosquare modulon—unless, of course, one knows the prime factorization of
n. Probabilistic encryption exploits this computational difficulty. Its algorithms and
assessment are briefly outlined next.

13.2.1 Algorithms

The key generation, encryption, and decryption algorithmsof probabilistic encryp-
tion are summarized in Table 13.1.

13.2.1.1 Key Generation Algorithm

Similar to the RSA public key cryptosystem (Section 13.3.1), the key generation
algorithmGenerate employed by probabilistic encryption takes as input a security
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parameterl in unary notation, and it generates as output twol/2-bit primesp andq
and a modulusn = pq of respective sizel. Furthermore, the algorithm also selects
a pseudosquarey ∈ Q̃Rn. The pair(n, y) then represents the public key, whereas
(p, q) represents the private key.

Table 13.1
Probabilistic Encryption System

System parameters: —

Generate

(1l)

p, q
r← Pl/2

n = p · q
y

r← Q̃Rn

((n, y), (p, q))

Encrypt

((n, y), m)

for i = 1, . . . , w

xi
r← Z∗

n

if mi = 1
thenci ≡ yx2

i (mod n)
elseci ≡ x2

i (mod n)
c = c1, . . . , cw

(c)

Decrypt

((p, q), c)

for i = 1, . . . , w

ei =
(

ci
p

)

if ei = 1
thenmi = 1
elsemi = 0

m = m1, . . . ,mw

(m)

13.2.1.2 Encryption Algorithm

The encryption algorithmEncrypt employed by probabilistic encryption must spec-
ify how aw-bit plaintext messagem = m1m2 . . .mw is encrypted so that only the
recipient (or somebody holding the recipient’s private key) is able to decrypt it. As
its name suggests, theEncrypt algorithm is probabilistic. It takes as input a public
key(n, y) and anw-bit plaintext messagem, and it generates as output the ciphertext
c.

For every plaintext message bitmi (i = 1, . . . , w), theEncrypt algorithm
choosesxi ∈R Z∗n and computesci as follows:

ci ≡
{
x2i (mod n) if mi = 0
yx2i (mod n) if mi = 1

If mi = 0, thenci ≡ x2i (mod n) yields a quadratic residue modulon. Otherwise,
ci ≡ yx2i (mod n) yields a pseudosquare modulon. In either case, each plaintext
message bitmi (i = 1, . . . , w) is encrypted with an element ofZ∗n, and hence the
resulting ciphertextc is aw-tuple of such elements (i.e.,c = c1, . . . , cw).
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13.2.1.3 Decryption Algorithm

The decryption algorithmDecrypt employed by probabilistic encryption takes as
input a private key(p, q), and aw-tuple of elements ofZ∗n that represents a
ciphertext, and it generates as output thew-bit plaintext messagem. Again, the
Decrypt algorithm proceeds sequentially on every ciphertext element ci (i =
1, . . . , w). Forci, the algorithm evaluates the Legendre symbol

ei =

(
ci
p

)

and computes

mi =

{
1 if ei = 1
0 otherwise

This means thatmi is set to1, if ci ∈ QRn, and otherwise it is set to 0. Remember
from theEncrypt algorithm thatci is an element ofQRn, if and only ifmi is equal
to one. This is in line with theDecrypt algorithm. Finally, the plaintext messagem
that yields the output of theDecrypt algorithm is just the bitwise concatenation of
thew bitsmi (for i = 1, . . . , w).

13.2.2 Assessment

Probabilistic encryption takes its security from the assumed intractability of the QRP
in Z∗n. Under the assumption that this problem is hard, probabilistic encryption can
be shown to be semantically secure [3]. In fact, probabilistic encryption was one of
the first asymmetric encryption systems that was proposed with some strong security
guarantee. As such, it has had a deep impact and is historically relevant, but it is not
particularly useful in the field. In its original form, probabilistic encryption has a
huge message expansion (because every plaintext message bit is encrypted with an
element ofZ∗n). As was first pointed out by Blum and Goldwasser [7], the message
expansion can be improved considerably, and the currently known best variants of
probabilistic encryption can reduce message expansion to only a constant number
of bits. These variants are comparable to RSA, both in terms of performance and
message expansion. But compared to RSA with appropriate padding (e.g., OAEP),
there is still no advantage, and hence probabilistic encryption is not used in the field.
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13.3 ASYMMETRIC ENCRYPTION SYSTEMS

We already mentioned in Section 1.3 that a number of public key cryptosystems were
developed and proposed after the discovery of public key cryptography by Diffie and
Hellman. This is particularly true for RSA, Rabin, and Elgamal, and we look at these
systems here. More specifically, we address their key generation, encryption, and
decryption algorithms, and we provide a security analysis and discuss improvements
where appropriate. For the sake of simplicity, we assume that public keys are always
published in some certified form, and we discuss the implications of this assumption
at the end of this chapter and in Section 16.4.

13.3.1 RSA

The RSA public key cryptosystem was jointly invented by Ron Rivest, Adi Shamir,
and Len Adleman at MIT in 1977. A U.S. patent application was filed on December
14, 1977, and a corresponding article was published in the February 1978 issue
of Communications of the ACM[8].2 On September 20, 1983, the U.S. patent
4,405,829 entitled “Cryptographic Communications Systemand Method” was as-
signed to MIT. It was one of the most important patents ever granted for an invention
related to cryptography.3 After 17 years, the patent would have expired on September
21, 2000. But on September 6, 2000 (two weeks earlier than thepatent expired), the
algorithm was finally released to the public domain. Recognizing the relevance of
their work, Rivest, Shamir, and Adleman were granted the prestigious ACM Turing
Award in 2002.

The RSA public key cryptosystem is based on the RSA family (oftrapdoor
permutations) introduced in Section 5.2.2. Contrary to many other public key
cryptosystems, RSA yields both an asymmetric encryption system and a DSS. This
basically means that the same set of algorithms can be used toencrypt and decrypt
messages, as well as to digitally sign messages and verify digital signatures. The
function provided only depends on the cryptographic key in use.

• If the recipient’s public key is used to encrypt a message, then the RSA public
key cryptosystem yields an asymmetric encryption system. In this case, the

2 The RSA public key cryptosystem was first described in Martin Gardner’s column in the August
1977 issue ofScientific American. In this article, a 129-digit (i.e., 426-bit) number was introduced
to illustrate the computational intractability of the IFP,and the security of the RSA public key
cryptosystem accordingly. This number was referred to as RSA-129. In 1991, RSA Security, Inc.,
used it to launch an RSA Factoring Challenge. RSA-129 was successfully factored in March 1994
(see Section 5.3).

3 Note that the RSA patent was a U.S. patent, and that the RSA public key cryptosystem was not
patented outside the United States.
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recipient’s private key must be used to decrypt the ciphertext. Ideally, this can
only be done by the recipient of the message.

• If the sender’s private key is used to encrypt a plaintext message (or hash
value thereof), then the RSA key cryptosystem yields a DSS. In this case, the
sender’s public key must be used to verify the digital signature. It goes without
saying that this can be done by anybody.

In this chapter, we only look at the RSA asymmetric encryption system (the
RSA DSS is addressed in Section 14.2.1). The system consistsof a key generation
algorithmGenerate, an encryption algorithmEncrypt, and a decryption algorithm
Decrypt that are specified in Table 13.2.

Table 13.2
RSA Asymmetric Encryption System

System parameters: —

Generate

(1l)

p, q
r← Pl/2

n = p · q
select1 < e < φ(n)

with gcd(e, φ(n)) = 1
compute1 < d < φ(n)

with de ≡ 1 (mod φ(n))

((n, e), d)

Encrypt

((n, e),m)

c ≡ me (mod n)

(c)

Decrypt

(d, c)

m ≡ cd (mod n)

(m)

13.3.1.1 Key Generation Algorithm

Before the RSA asymmetric encryption system can be invoked,the key generation
algorithmGenerate must be used to generate a public key pair. The algorithm is
probabilistic in nature. It takes as input a security parameter 1l (that represents the
bitlengthl of the RSA modulus in unary notation), and it generates as output a public
key pair, where(n, e) refers to the public key andd refers to the private key. More
specifically, the algorithm consists of two steps:
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• First, it randomly selects4 two prime numbersp andq of roughly the same size
l/2 and computes the RSA modulusn = p · q. Given the current state of the
art in integer factorization (Section 5.3), a modulus size of at least 2,048 bits
is usually recommended. This means that each prime must be atleast 1,024
bits long.

• Second, it selects an integer1 < e < φ(n) with gcd(e, φ(n)) = 1,5 and
computes another integer1 < d < φ(n) with

de ≡ 1 (mod φ(n))

using the extended Euclid algorithm (Algorithm A.2).6 Note thatd then
represents the multiplicative inverse ofe moduloφ(n).

The output of theGenerate algorithm is a public key pair that consists of a
public keypk = (n, e) and a corresponding private keysk = d. The public key is
mainly used for encryption, whereas the private key is mainly used for decryption.
Consequently,e is also referred to as thepublic or encryption exponent, andd is
referred to as theprivateor decryption exponent.

People are sometimes confused about the fact that one can work with fixed-
size primesp andq. They intuitively believe that the fact that both primes are, for
example, 1,024 bits long can be exploited in some way to more efficiently factorize
n. It is, however, important to note that there are21024 1,024-bit numbers, and
that—according to Theorem A.6—primes are dense. This makesit computationally
infeasible to try all primes of that particular size to factorizen.

Let us consider a toy example to illustrate what is going on inthe RSA
Generate algorithm (and the other algorithms of the RSA system). In the first step,
the algorithm selectsp = 11 andq = 23, and computesn = 11 · 23 = 253 and
φ(253) = 10 · 22 = 220. In the second step, the RSAGenerate algorithm selects
e = 3 and uses the extended Euclid algorithm to computed = 147modulo 220. Note
that3 · 147 = 441 ≡ 1 (mod 220), and henced = 147 is in fact the multiplicative
inverse element ofe = 3 modulo 220. Consequently,(253, 3) yields the public key,
and 147 yields the private key.

4 It is not possible to randomly select large primes (from theset of all prime numbersP). Instead,
large integers are randomly chosen and probabilistic primality testing algorithms are then used to
decide whether these integers are prime. The respective primality testing algorithms are overviewed
in Appendix A.2.4.3.

5 Note thate must be odd and greater than 2 (it is not possible to sete = 2, becauseφ(n) =
(p − 1)(q − 1) is even andgcd(e, φ(n)) = 1 must hold) and that the smallest possible value for
e is 3. The use ofe = 3 should be considered with care, because a corresponding implementation
may be subject to a low exponent attack (Section 13.3.1.4).

6 Note thatgcd(e, φ(n)) = 1 suggests that an integerd with de ≡ 1 (modφ(n)) must exist.
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13.3.1.2 Encryption Algorithm

In its basic form, the RSAEncrypt algorithm is deterministic. It takes as input a
public key(n, e) and a plaintext messagem ∈ Zn, and it generates as output the
ciphertext

c = RSAn,e(m) ≡ me (mod n)

To computec, the RSAEncrypt algorithm must employ a modular exponentiation
algorithm, such as, for example, the square-and-multiply algorithm (Algorithm A.3)
that is efficient.

If we want to encrypt the plaintext messagem = 26 in our toy example, then
we compute

c ≡ me (mod n)

≡ 263 (mod 253)

≡ 17, 576 (mod 253)

≡ 119

This means that 119 is the ciphertext for the plaintext message 26, and this value is
thus transmitted to the recipient(s).

At this point it is important to note that the public key(n, e) is publicly known,
and hence anybody can use it to computeRSAn,e(m) and encrypt an arbitrary
plaintext messagem. Consequently, RSA encryption provides neither data origin
authentication nor data integrity, and hence complementary mechanisms must be
employed and put in place to provide these security services.

13.3.1.3 Decryption Algorithm

The RSADecrypt algorithm is deterministic. It takes as input a private keyd and a
ciphertextc, and it generates as output the corresponding plaintext message

m = RSAn,d(c) ≡ cd (mod n)

Again, a modular exponentiation algorithm must be used to computem, and this
computation can be done efficiently. Because the private exponent must be much
larger than the public exponent (as explained below), theDecrypt algorithm typi-
cally runs slower than theEncrypt algorithm.

Before we can analyze the security of the RSA asymmetric encryption system,
we must first verify its correctness. We note that

cd ≡ (me)d ≡ med (mod n)
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Becausee andd are chosen in a way that

ed ≡ 1 (mod φ(n))

andφ(n) = (p− 1)(q − 1) hold, the following two equivalences must also be true:

ed ≡ 1 (mod p− 1)

ed ≡ 1 (mod q − 1)

They can be written as

ed ≡ kp(p− 1) + 1

ed ≡ kq(q − 1) + 1

for somekp, kq ∈ Z. If m is a multiple ofp, thenmed ≡ 0ed = 0 ≡ m (mod p).
Otherwise,m andp are coprime (i.e.,gcd(m, p) = 1), and hence Fermat’s little
theorem (Theorem A.9) applies:

mp−1 ≡ 1 (mod p)

This, in turn, means that

med ≡ mkp(p−1)+1 ≡ (mp−1)kpm ≡ 1kpm = m (mod p)

In either case,med ≡ m (mod p). Using the same line of argumentation one can
show thatmed ≡ m (mod q) must also hold. This means thatp andq both divide
med−m, and hence their productpq = nmust also dividemed−m. Consequently,

med ≡ m (mod pq)

and hence

cd ≡ m (mod n)

This shows that RSA decryption works and is correct.
In our toy example, the ciphertextc = 119 is decrypted as follows:

m ≡ cd (mod n)

≡ 119147 (mod 253) = 26
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If, in addition tod, the RSADecrypt algorithm has access to the prime factors
p and q, then the CRT can be used to speed up decryption. Instead of directly
computingm ≡ cd (mod n), one can compute

mp ≡ cd (mod p)

and

mq ≡ cd (mod q)

and then use the CRT to computem ∈ Zn with m ≡ mp (mod p) andm ≡
mq (mod q). In our toy example, we have

mp ≡ cd (mod p) ≡ 119147 (mod 11) ≡ 4

and

mq ≡ cd (mod q) ≡ 119147 (mod 23) ≡ 3

Using the CRT, one can computem ∈ Z253 with m ≡ 4 (mod 11) andm ≡
3 (mod 23). The resulting plaintext message is againm = 26.

In addition to the CRT, there are several other possibilities and techniques to
speed up RSA decryption (or signature generation, respectively). Examples include
batch RSA, multifactor RSA, and rebalanced RSA as overviewed, for example, in
[9]. These techniques are particularly important to implement RSA on devices with
limited computational power.

13.3.1.4 Security Analysis

Since its discovery and publication in 1977, the security ofthe RSA public key cryp-
tosystem has been subject to a lot of public scrutiny. Many people have challenged
and analyzed the security of RSA (e.g., [10]). While no devastating vulnerability or
weakness has been found, more than four decades of cryptanalytical research have
still given us a broad insight into its security properties and have provided us with
valuable guidelines for the proper implementation and use of RSA. Let us start with
some observations before we turn to more specific attacks, elaborate on OAEP, and
conclude with some recommendations for the proper use of RSA.

Observations

The first observation is that the RSA asymmetric encryption system is based on
the RSA family of trapdoor permutations, and hence that its security is based on
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the RSAP (Definition 5.9). If the modulusn is sufficiently large and the plaintext
messagem is an integer between 0 andn − 1, then the RSAP is believed to be
computationally intractable. Note, however, that there are two caveats:

• If n is small, then an adversary can try all elements ofZn until the correctm
is found.7

• Similarly, if the plaintext messagem is known to be from a small subset of
Zn = {0, . . . , n− 1}, then an adversary can try all elements from this subset
until the correctm is found.

If n is sufficiently large andm is widespread between 0 andn − 1, then the
adversary can still try to find the correctm by a brute-force attack. However, such an
attack has an exponential running and is therefore prohibitively expensive in terms
of computational power.

The second observation goes back to Section 5.2.2, where we said that the
RSAP polytime reduces to the IFP (i.e., RSAP≤P IFP), and hence that one can
invert the RSA function if one can solve the IFP, but the converse is not known to
be true, meaning that it is not known whether an algorithm to solve the IFP can be
constructed from an algorithm to solve the RSAP. There is some evidence that such
a construction may not exist if the public exponent is very small, such ase = 3
or e = 17 [11], but for larger exponents, the question remains unanswered. This
suggests that the RSAP and the IFP may not be computationallyequivalent, or at
least that one cannot prove such a relationship. But one can at least prove that the
following problems or tasks are computationally equivalent:

• Factorizen;

• Computeφ(n) fromn;

• Determined from (n, e).

This means that an adversary who knowsφ(n) ord can also factorizen. It also
means that there is no point in hiding the factorization ofn (i.e., the prime factors
p andq) from an entity that already knowsd. If an efficient algorithm to factorize
n, computeφ(n) or deviated from e existed, then the RSA asymmetric encryption
system would be totally insecure.

Even if the RSA asymmetric encryption system were secure in the sense
discussed above, it could still be true that a ciphertext leaks some partial information
about the underlying plaintext message. For example, it maybe the case that certain

7 This basically means that he or she can computem′e (mod n) for every possible plaintext
messagem′ ∈ Zn. If the resulting value matchesc, then he or she has found the correct plaintext
message.
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plaintext message bits are easy to predict from a given ciphertext. Consequently,
one may ask whether the RSA asymmetric encryption system provides security
to every individual bit of a plaintext message. This question can be answered in
the affirmative. We already know from Section 5.1 that the LSByields a hard-core
predicate for the RSA function. In an attempt to generalize this result, it has been
shown that all plaintext message bits are equally protectedby the RSA function in
the sense that having a nonnegligible advantage for predicting a single bit enables
an adversary to invert the RSA function [12]. This property is known as thebit
securityof RSA, and it can be proven by reduction. In particular, one can show that
an efficient algorithm for solving the RSAP can be constructed from an algorithm
for predicting one (or more) plaintext message bit(s). Note, however, that the bit
security proof of the RSA encryption system is a double-edged sword, because the
security reduction used in the proof also provides a possibility to attack a leaky
implementation: If an implementation of the RSADecrypt algorithm leaks some
bit(s) of a plaintext message, then this leakage can be (mis)used to solve the RSAP
and decrypt a ciphertext without knowing the private key. Asshown later on, this
fact has been exploited in a real-world attack and has led to the development and
standardization of OAEP.

Finally, the third observation is that the encryption function of the RSA
asymmetric encryption system is deterministic, and hence it can neither provide
IND-CPA nor can it be semantically secure. This fact has already been mentioned
several times.

Specific Attacks

Several attacks are known and must be considered with care when it comes to an
implementation of the RSA asymmetric encryption system. Inaddition to these
attacks, an RSA implementation may always be susceptible toside-channel attacks.

Common modulus attacks:To avoid generating a different modulusn = pq for
every entity, it is tempting to work with a common modulusn for multiple entities.
In this case, a trusted authority (that holds the prime factors of n) must handle the
generation and distribution of the public key pairs; that is, it must provide entityi
with a public key(n, ei) and a respective private keydi. At first glance, this seems
to work, because a ciphertextc ≡ mei (mod n) encrypted for entityi cannot
be decrypted by entityj, as long as entityj does not know the private keydi.
Unfortunately, this argument is flawed, and the use of a common modulus is totally
insecure. More specifically, there are common modulus attacks that can be mounted
from either an insider or an outsider.
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• Remember from the previous discussion that knowing the private keydj
is computationally equivalent to knowing the prime factorsof n or φ(n).
Consequently, an insiderj can usedj to factorizen, and the prime factors
of n can then be used to efficiently computedi from ei.

• Maybe more worrisome, even an outsider can mount a common modulus
attack against a messagem that is encrypted with the public keys of two
entities having the same modulusn. Let (n, e1) be the public key of the first
entity and(n, e2) be the public key of the second entity. The messagem is
then encrypted as

c1 ≡ me1 (mod n)

for the first entity and

c2 ≡ me2 (mod n)

for the second entity. Anybody who knows the public keyse1 and e2 can
compute the following pair of values:

t1 ≡ e−11 (mod e2)

t2 = (t1e1 − 1)/e2

From the second equation, it follows thatt1e1 − 1 = e2t2, and hence
t1e1 = e2t2 + 1. If an outsider sees the same messagem encrypted with
the two public keys mentioned above (i.e.,c1 andc2), then he or she can use
t1 andt2 to recoverm:

ct11 c
−t2
2 ≡ me1t1m−e2t2(mod n)

≡ m1+e2t2m−e2t2(mod n)

≡ m1+e2t2−e2t2(mod n)

≡ m1(mod n)

≡ m

In the first transformation, we exploit the fact thate1t1 = t1e1 = e2t2 + 1,
and the remaining transformations are simple and straightforward.

Due to the common modulus attacks, it is important that a modulusn is never reused
(i.e., used by more than one entity), and this also means thatthe prime numbers used
to generaten must be unique for a particular entity.
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Attacks that exploit the multiplicative structure of the RSA function: There are a
few attacks against the RSA public key cryptosystem that exploit the multiplicative
structure (or homomorphic property) of the RSA function. If, for example, two
plaintext messagesm1 andm2 are encrypted with the same public key(n, e), then

c1 ≡ me
1 (mod n)

and

c2 ≡ me
2 (mod n)

and hence the ciphertextc for the plaintext messagem ≡ m1m2 (mod n) can be
constructed by multiplyingc1 andc2:

c ≡ c1c2 (mod n)

This is becausec1c2 ≡ me
1m

e
2 ≡ (m1m2)

e (mod n). So c can be computed
without knowingm1,m2, orm.

Maybe more interestingly, an adversary who can mount a CCA can exploit the
multiplicative structure of RSA to decryptc ≡ me (mod n): He or she randomly
selectsr ∈ Zn, computesc′ ≡ cre (mod n), hasc′ (which is different fromc) be
decrypted, and derivesm from rm (mod n) by using a modular division withr.

The multiplicative structure of the RSA function is the source of many security
problems. One possibility to remedy the situation is to randomly pad the plaintext
message prior to encryption. This randomizes the ciphertext and eliminates the
homomorphic property. Again. we revisit this possibility when we elaborate on
OAEP. The multiplicative structure of the RSA function is particularly worrisome
when it is used in a DSS (Chapter 14).

Low exponent attacks: To improve the performance of the RSA asymmetric
encryption system, one may consider the use of small (publicor private) exponents.
In fact, a common line of argumentation goes as follows: If one employs a small
public exponente, then the encryption (or signature verification) process isfast,
and if one employs a small private exponentd, then the decryption (or signature
generation) is fast. Consequently, one can make one of the two operations fast at
the cost of the other. Unfortunately, this line of argumentation is oversimplistic, and
there are several low-exponent attacks that must be taken into account:

• On the one hand, Michael Wiener showed in 1990 that the choiceof a small
private exponentd can lead to a total break of the RSA asymmetric encryption
system [13], and this result was later improved considerably. Given the current
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state of the art, the private exponentd should be at least 300 bits long for a
typical 1,024-bit modulusn [14]. In practice, people frequently use a public
exponente that is 3, 17, or216 + 1 = 65,537. In these cases, it is guaranteed
that the corresponding private exponentd is nearly as long asn, and hence
that the attacks that exploit small private exponents do notwork.

• On the other hand, it has been mentioned earlier that using a small public
exponent may lead to the situation that the RSAP is simpler tosolve than the
IFP. Consequently, one may want to work with public exponents that are not
too small. Otherwise, some well-known problems may pop up and become
relevant:

– If one uses a public exponente to encrypt a small messagem (i.e.,
m < e

√
n), thenc = me, and hencem can be decrypted asm = e

√
c.

Note that there is no modular arithmetic involved here.

– Maybe more interestingly, if a plaintext messagem is encrypted forr ≥
2 recipients that use a common public exponente (but different moduli
ni for i = 1, . . . , r), then an adversary who knows the ciphertexts
ci ≡ me (mod ni) for i = 1, . . . , r can use the CRT to computec
with c ≡ ci (mod ni) for i = 1, . . . , r and0 ≤ c <

∏r
i=1 ni. In this

case,c equalsme, andm can be efficiently computed as the e-th root
of c. This attack is relevant only for small values ofe. If, for example,
r = 3, e = 3, n1 = 143, n2 = 391, n3 = 899, andm = 135, then the
adversary can solve the following system of three equivalences:

c1 ≡ me (mod n1) ≡ 1353 (mod 143) = 60

c2 ≡ me (mod n2) ≡ 1353 (mod 391) = 203

c3 ≡ me (mod n3) ≡ 1353 (mod 899) = 711

Using the CRT, the adversary can computec = 2,460,375, and hence
m = e

√
c = 3
√
2, 460, 375 = 135. There are many generalizations of this

attack that can be found in the relevant literature; they arenot further
addressed here.

The bottom line is that public exponents should not be too small, and
thate = 216 + 1 = 65,537 seems to be an appropriate choice.

RSA-OAEP

As mentioned above, the multiplicative structure (or homomorphic property) of the
RSA function leads to a vulnerability of the RSA encryption system that can be
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exploited by a CCA(2). One possibility to mitigate this vulnerability is to randomly
pad the plaintext message prior to encryption. This was the motivation behind the
padding scheme standardized in PKCS #1 version 1.5 that was used, for example, in
the SSL protocol. In 1998, this protocol was shown to be susceptible to CCA2 [2],
and since then people know that CCA and CCA2 are relevant and that asymmetric
encryption systems and respective padding schemes need to protect against these
types of attacks.

Shortly before the attack against the SSL protocol was published in 1998,
Mihir Bellare and Philip Rogaway had introduced a notion of security that they
calledplaintext awareness. They also proposed a message encoding scheme called
OAEP and proved that if a (deterministic) asymmetric encryption function, such
as RSA, is hard to invert without the private key, then the corresponding OAEP-
based encryption system isplaintext-awarein the random oracle model, meaning
that an adversary cannot produce a valid ciphertext withoutknowing the underlying
plaintext [15]. RSA combined with OAEP is referred to as RSA-OAEP.

s t

g

h

r

m

+

+

00...0

k0

k1k-k0-k1

k-k0

Figure 13.1 OAEP padding as originally proposed by Bellare and Rogaway.

OAEP padding is illustrated in Figure 13.1. It has a structure that looks like
a Feistel network. More specifically, it employs two cryptographic hash functionsg
andh that are used to encode a plaintext messagem prior to encryption. Referring
to Figure 13.1,k is the bitlength of the RSA modulusn, k0 andk1 are fixed integers
between 0 andk, andr is a randomly chosenk0-bit string used to maskm. The
messagem is k − k0 − k1 bits long and it is concatenated withk1 zero bits. The
resulting string isk − k0 bits long. This string is added modulo 2 tog(r), whereg
hashes (or rather expands) thek0 bits of r to k − k0 bits. The result representss,
and thisk − k0-bit string is subject toh that reduces it tok0 bits. This bit string
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is then added modulo 2 tor, and the result representst. Hence, the output of the
OAEP padding scheme comprises two bit strings—s andt—that are concatenated
to form thek-bit output. In summary, the OAEP padding scheme can be expressed
as follows:

OAEP(m) = (s, t) = m⊕ g(r)
︸ ︷︷ ︸

s

‖ r ⊕ h(m⊕ g(r))
︸ ︷︷ ︸

t

This value represents the encoded message. It is taken as input for an asymmetric
encryption system, such as RSA in the case of RSA-OAEP.

In order to decrypt a ciphertextc that is encrypted with RSA-OAEP, the
recipient must first decryptc with the RSADecrypt algorithm. The result represents
OAEP(m) = (s, t), and hence the recipient must extractm andr from s andt. He
or she therefore computes

r = t⊕ h(s) = r ⊕ h(m⊕ g(r)) ⊕ h(m⊕ g(r))

and

m = s⊕ g(r) = m⊕ g(r)⊕ g(r)

to retrieve the plaintext messagem. Note that this string still comprises thek1 zero
bits that are appended tom. Hence, these bits need to be silently discarded.

In their 1994 paper [15], Bellare and Rogaway argued that RSAcombined with
OAEP yields a plaintext-aware asymmetric encryption system (i.e., an encryption
system that is semantically secure against CCA2). Hence, quite naturally, OAEP
was adopted in PKCS #1 version 2.0 specified in informationalRFC 2437 [16].
However, it was not until 2001 that Victor Shoup showed that the security arguments
provided in [15] were not formally correct, and that OAEP actually provides only
semantic security against CCA [17]. Shoup also proposed an improved scheme
(called OAEP+).8 A formally correct proof of the semantic security of RSA-OAEP
against CCA2 was provided in [18]. Because this security proof does not guarantee
security for the key lengths typically used in practice (dueto the inefficiency of the
security reduction), a few alternative padding schemes have been proposed in the
literature (e.g., [19]).

As of this writing, the valid version of PKCS #1 is 2.1 and it isspecified
in the informational RFC 3447 [20].9 In Section 7 of this RFC, two RSA encryp-
tion schemes (RSAES)—RSAES-OAEP and RSAES-PKCS1-v15—are specified,

8 Instead of appendingk1 zero bytes to the messagem, OAEP+ uses a third hash functionw (in
addition tog andh) and replaces thek1 zero bytes with a hash value ofm andr usingw.

9 There is an updated version 2.2, but this version is not different from a security perspective.
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where RSAES-OAEP refers to the OAEP-based version of RSA encryption and
RSAES-PKCS1-v15 refers to its non-OAEP-based predecessor (due to its suscep-
tibility to the Bleichenbacher and related CCA2, RSAES-PKCS1-v15 is included
only for compatibility with existing applications). Contrary to the original OAEP
proposal, the RSAES are specified in byte notation, meaning that the units processed
are bytes (instead of bits).

RSAES-OAEP is so important in practice that we delve more deeply into the
details than we usually do in this book (if you feel uncomfortable about this, then you
can easily skip the rest of the paragraph and continue reading with the conclusions
and recommendations regarding RSA). Letm be the plaintext message to encrypt,k
the bytelength of the RSA modulusn, h a cryptographic hash function with output
length |h|, andL the value of a label that may serve as an additional input (L is
an empty string by default). The hash functionh is also used in a mask generation
function (MGF) that takes as input a seed and a length, and that generates as output
a pseudorandomly generated bitstring of this length. Thereare several possibilities
to instantiate such a MGF. By default, SHA-1 is used.

If m is less or equal thank− 2|h|− 2 bytes long, then RSAES-OAEP consists
of the following eight steps:

1. If m is less thank − 2|h| − 2 bytes long, then a padding stringPS of
k − |m| − 2|h| − 2 zero bytes is generated. Otherwise, the length ofPS
is zero.

2. A data blockDB is generated as the concatenation ofh(L); that is, the hash
value of the labelL, PS, a byte 0x01, and the messagem:

DB = h(L) ‖ PS ‖ 0x01 ‖ m

The length ofDB is |h|+ k− |m| − 2|h| − 2+ 1+ |m| = k− |h| − 1 bytes.

3. A random|h|-byte stringseed is generated.

4. The MGF is used to compute ak − |h| − 1-byte stringdbMask; that is,
dbMask = MGF(seed, k − |h| − 1).

5. As its name suggests,dbMask is used to mask the data blockDB; that is,
maskedDB = DB ⊕ dbMask

6. The MGF is again used to generate an|h|-byte string seedMask from
maskedDB; that is,seedMask = MGF(maskedDB, |h|)

7. seedMask is used to mask the seed; that is,maskedSeed = seed ⊕
seedMask
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8. Finally, a zero byte 0x00, themaskedSeed string, and themaskedDB string
are concatenated to form an encoded messageEM that isk bytes long:

EM = 0x00 ‖ maskedSeed ‖ maskedDB

seed DB = h(L) || PS || 01 || m

00

seedMask

+ +

dbMask

1 |h| k-|h|-1

Figure 13.2 The structure of an encoded messageEM according to PKCS #1 version 2.1.

Figure 13.3 RSAES-OAEP encoding scheme according to PKCS #1 version 2.1.

The structure of an encoded messageEM is illustrated in Figure 13.2. The fact
that the RSAES-OAEP encoding scheme conforms to the OAEP padding scheme
as illustrated in Figure 13.1 is not obvious. We therefore illustrate the RSAES-
OAEP encoding scheme according to PKCS #1 version 2.1 as a variant of the
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originally proposed OAEP padding scheme in Figure 13.3. In this figure, MGF
corresponds to the cryptographic hash functionsg andh, DB corresponds to the
messagem (padded with zeros),seed corresponds tor,maskedDB corresponds to
s, andmaskedSeed corresponds tot in Figure 13.1 (the compilation ofEM is not
illustrated in Figure 13.1).

On the receiver side, the encoded messageEM must be separated into a single
byteY , an|h|-byte stringmaskedSeed, and ank−|h|−1-byte stringmaskedDB.
Theseed can then be computed from

seedMask = MGF(maskedDB, |h|)

and

seed = maskedSeed⊕ seedMask

Similarly,DB can be computed from

dbMask = MGF(seed, k − |h| − 1)

and

DB = maskedDB ⊕ dbMask

The resulting stringDB can be separated into an|h|-byte stringh(L)′, a (possibly
empty) padding stringPS, a single byte with hexadecimal value0x01, and a
messagem. If any of the following conditions are not fulfilled, then the decryption
algorithm must stop and output an error message:

• Y is not equal to zero.

• There is no byte with hexadecimal value0x01 to separatePS fromm.

• h(L)′ does not equalh(L).

If one (or several) of the conditions is not fulfilled, then itis important that the
implementation does not leak any information about it (them). If the implementation
leaks, for example, whetherY is equal to zero, then it is possible to exploit this side-
channel information in an attack that is able to decrypt a ciphertext. The bottom
line is that side-channel attacks remain dangerous in practice, even though RSAES-
OAEP mitigates CCA(2) in theory.

Conclusions and Recommendations

The question that is most frequently asked when it comes to animplementation or
use of the RSA asymmetric encryption system is related to thesize of the modulus
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n. Obviously,n should be at least as large as to make it computationally infeasible
to factorizen. The respective algorithms are summarized in Section 5.3. As of this
writing,n should be at least 2,048 bits long to achieve a reasonable level of security,
and people sometimes even recommend 4,096 bits for the encryption of valuable
data. If one has fixed the size of the modulus, then one has implicitly also fixed
the size of the prime factorsp andq (because they should be equally long). If, for
example, one wants to work with a 2,048-bit modulusn, thenp andq must be about
1,024 bits long each. Unless one uses short moduli (where Pollard’s P−1 algorithm
can be applied), there is no need to work only with strong primes.

The most important thing to keep in mind is that—due to its deterministic
encryption function—RSA is at most one-way secure (i.e., itcannot provide IND-
CPA and is not semantically secure). As such, it is not on a parwith the current
state of the art in asymmetric encryption, and RSA-OAEP should be used instead
whenever possible and appropriate.

13.3.2 Rabin

As mentioned earlier, the RSAP is not known to be computationally equivalent to
the IFP. This means that it is theoretically possible to break the security of the RSA
public key cryptosystem without solving the IFP. This possibility is worrisome,
and—since the beginning of public key cryptography—peoplehave been looking
for public key cryptosystems that can be shown to be computationally equivalent
to a hard problem, such as the IFP. As mentioned in Section 1.2.2, Rabin was the
first researcher who proposed such a system in 1979 [21].10 TheRabin asymmetric
encryption systemis based on the Square family of trapdoor permutations (Section
5.2.3). Its security is computationally equivalent to the IFP, meaning that there is
provably no easier way to break the Rabin system than to solvethe IFP and factorize
a large integern accordingly.

In this section, we overview and discuss the Rabin asymmetric encryption
system. The Rabin DSS is addressed in Section 14.2.3. In either case, the exposure
does not follow the original publication of Rabin [21]. Instead of using the function
En,b(x) ≡ x(x + b) (mod n) for some fixedn and 0 ≤ b < n, we use the
Square family of trapdoor permutations. This is simpler andbetter reflects the basic
principles of the Rabin public key cryptosystem. The Rabin asymmetric encryption
system consists of the three efficient algorithmsGenerate,Encrypt, andDecrypt that
are summarized in Table 13.3 and briefly outlined next.

10 At this time, Rabin was also working at MIT (like Rivest, Shamir, and Adleman). More specifically,
he was a professor of mathematics at the Hebrew University inJerusalem, Israel, but in 1979 he
served as a visiting professor of applied mathematics at MIT.
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13.3.2.1 Key Generation Algorithm

The key generation algorithmGenerate takes as input a security parameter1l, and it
generates as output a Blum integer of bitlengthl. It first randomly selects twol/2-bit
primesp andq that are both equivalent to 3 modulo 4 (P′ refers to the set of all such
primes), and it then computes the Blum integern = pq.11 In the end,n represents
the public keypk, whereas the pair(p, q) represents the private keysk.

Let us consider a toy example to illustrate what is going on: For p = 11 and
q = 23 (that are both equivalent to 3 modulo 4), the resulting Blum integern is
11 · 23 = 253. This value represents the public key; that is,pk = 253, whereas
(11, 23) represents the private key; that is,sk = (11, 23).

Table 13.3
Rabin Asymmetric Encryption System

System parameters: —

Generate

(1l)

p, q
r← P′

l/2

n = p · q
(n, (p, q))

Encrypt

(n,m)

c ≡ m2 (mod n)

(c)

Decrypt

((p, q), c)

m1,m2, m3,m4 ≡ c1/2 (mod n)
Determine correct valuemi

(mi)

13.3.2.2 Encryption Algorithm

Similar to the RSA asymmetric encryption system, the Rabin system can be used
to deterministically encrypt and decrypt plaintext messages that represent elements
of Zn (i.e.,0 ≤ m < n). The encryption algorithmEncrypt takes as input a public
key n and such a plaintext messagem, and it generates as output the ciphertext
c = Squaren(m) ≡ m2 (mod n). This can be done in just one modular squaring,12

and hence theEncrypt algorithm is highly efficient.

11 The requirement thatp andq are both equivalent to 3 modulo 4 (and hencen is a Blum integer) is
not mathematically required, but it simplifies the computation of the square roots (Appendix A.3.7).

12 By comparison, the RSAEncrypt algorithm withe = 3 takes one modular multiplication and one
modular squaring, and for largere many more modular operations (i.e., multiplication or squaring)
must be performed.
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If, in our toy example, the plaintext message ism = 158, then theEncrypt
algorithm computesc ≡ 1582 (mod 253) = 170, and the resulting ciphertext
c = 170 is sent to the recipient.

13.3.2.3 Decryption Algorithm

As is usually the case for decryption, the Rabin decryption algorithm Decrypt is
deterministic. It takes as input a private key(p, q) and a ciphertextc, and it generates
as output the square root ofc modulon that represents the plaintext messagem.
Note that the recipient can find a square root ofc modulon if and only if he or
she knows the prime factorsp andq of n. Also note that there is no single square
root of c modulon, but that there are usually four of them. Letm1, m2, m3, and
m4 be the four square roots ofc modulon. The recipient must then decide which
mi (1 ≤ i ≤ 4) to go with (i.e., which square root represents the original plaintext
message). This ambiguity is a major practical disadvantageof the Rabin asymmetric
encryption system when used in the field.

Computing square roots modulon is simple if the prime factorization ofn is
known andn is a Blum integer (this is why we have required thatn is a Blum integer
in the first place). In this case, one can first compute the square roots ofc modulop
and moduloq. Letmp be the square roots ofc modulop andmq be the square roots
of c moduloq. This means that the following two equivalences hold:

m2
p ≡ c (mod p)

m2
q ≡ c (mod q)

According to (A.5),mp andmq can be computed as follows:

mp ≡ c
p+1
4 (mod p)

mq ≡ c
q+1
4 (mod q)

It can be verified that

m2
p ≡ (c

p+1
4 )2 ≡ c(p+1)/2 ≡ (m2)

(p+1)
2 ≡ m 2(p+1)

2 ≡ mp+1 ≡ mp−1m2 ≡ 1m2

≡ m2 ≡ c (mod p)

andm2
q ≡ c (mod q) following the same line of argumentation. Consequently,

±mp are the two square roots ofc in Zp, and±mq are the two square roots ofc
in Zq. There is a total of four possibilities to combine±mp and±mq, and these
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possibilities result in four systems with two congruence relations each:

1) m1 ≡ +mp (mod p)

m1 ≡ +mq (mod q)

2) m2 ≡ −mp (mod p)

m2 ≡ −mq (mod q)

3) m3 ≡ +mp (mod p)

m3 ≡ −mq (mod q)

4) m4 ≡ −mp (mod p)

m4 ≡ +mq (mod q)

Each system yields a possible square root ofc modulon, and we usem1,m2,m3,
andm4 to refer to them. Note that only one solution represents the original plaintext
messagem, and that this ambiguity needs to be resolved during decryption.

The simplest way to find the four solutionsm1,m2,m3, andm4 is to use the
CRT to solve the system of two congruences

m ≡ mp (mod p)

m ≡ mq (mod q)

form ∈ Zn. To apply (A.4), one has to computem1 = n/p = q andm2 = n/q = p,
as well asyp ≡ m−11 ≡ q−1 (mod p) and yq ≡ m−12 ≡ p−1 (mod q) using,
for example, the extended Euclid algorithm. Note that thesecomputations depend
only onp andq (i.e, the prime factors ofn) and are independent from the plaintext
message or the ciphertext, and this, in turn, means that theycan be precomputed
during the key generation process. Using all of these values, one can now compute
±r and±s that refer to the four square roots ofc in Zn:

r = (yppmq + yqqmp) mod n

−r = n− r
s = (yppmq − yqqmp) mod n

−s = n− s

These four values represent the four possible solutionsm1, m2, m3, andm4. It
is now up to the recipient to decide which solution is the correct one (i.e., which
solution represents the correct plaintext message).
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In our toy example, the recipient gets the ciphertextc = 170 and wants to
decrypt it with the public key(p, q) = (11, 23). He or she therefore computes
yp = −2 andyq = 1, and computes the square rootsmp andmq as follows:

mp ≡ c(p+1)/4 (mod p) ≡ c3 (mod 11) = 4

mq ≡ c(q+1)/4 (mod q) ≡ c6 (mod 23) = 3

Using these values, the recipient can determine±r and±s:

r = (−2 · 11 · 3 + 1 · 23 · 4) mod 253 = 26

−r = 253− 26 = 227

s = (−2 · 11 · 3− 1 · 23 · 4) mod 253 = 95

−s = 253− 95 = 158

Consequently, the square roots ofc = 170 modulo 253 are 26, 227, 95, and 158, and
it is up to the recipient to decide that 158 yields the correctplaintext message.

An obvious drawback of the Rabin asymmetric encryption system is that the
recipient must determine the correct plaintext messagem from the four possible
values. This ambiguity in decryption can be overcome by adding redundancy to the
original plaintext message prior to encryption. Then, withhigh probability, exactly
one of the four square roots ofc modulon possesses the redundancy, and hence the
recipient can easily determine this value. This point is further addressed below.

13.3.2.4 Security Analysis

As mentioned above, the security of the Rabin asymmetric encryption system is
based on the fact that breaking Rabin (in terms of computing square roots in
Z∗n without knowing the prime factorization ofn) and factorizingn are equally
difficult—or computationally equivalent. This fact was already mentioned in Section
5.2.3 and it basically means that the Rabin asymmetric encryption system can be
shown to be one-way secure.

Theorem 13.1 Breaking the one-way security of the Rabin asymmetric encryption
system is computationally equivalent to solving the IFP.

Proof. To prove the theorem, one must show (a) that somebody who can solve the
IFP can also break the one-way security of the Rabin asymmetric encryption system
(by inverting a trapdoor permutation), and (b) that somebody who can break the
one-way security of the Rabin asymmetric encryption systemcan solve the IFP.
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Direction (a) is obvious: Somebody who can solve the IFP forn can break the
one-way security of the Rabin asymmetric encryption systemby first factorizingn
and then (mis)using the private key(p, q) to decrypt any ciphertextc at will.

Direction (b) is less obvious. Here, we must show that somebody who can
break the one-way security of the Rabin asymmetric encryption system by decrypt-
ing a given ciphertextc (without knowing the prime factorization ofn) can factorize
n. More specifically, an adversary who has access to a decryption oracle can find
a nontrivial prime factor ofn. Remember from Section 5.3.2 thatn can usually be
factorized, ifx andy with

x2 ≡ y2 (mod n)

are found. So the adversary can randomly select an elementx ∈R Zn (with
gcd(x, n) = 1), pass the squarey ≡ x2 (mod n) to the oracle, and get back one of
the four square roots ofy modulon. If x = ±y (mod n), then the adversary has
had bad luck and must restart from scratch. Otherwise; that is, if x 6= ±y (mod n),
then he or she can determine a prime factor ofn asgcd(x + y, n). This completes
the proof.

�

The proof may be better understood if one looks at a simple example. Let
n = 253, and hence the decryption oracle returns square roots of elements of
Z253. The adversary randomly selectsx = 17 (with gcd(17, 253) = 1), passes
its squarex2 ≡ 172 ≡ 289 (mod 253) = 36 to the oracle, and gets back one
of the four square roots of 36 modulo 253 (i.e., 6, 17, 236, or 247). If he or she
gets back 6, then he or she can recover the prime factor 23 (of 253) by computing
gcd(17+6, 253) = gcd(23, 253) = 23. Similarly, if he or she gets back 247, then he
or she can recover the other prime factor 11 (note that23 · 11 = 253) by computing
gcd(17+247, 253) = gcd(264, 253) = 11. In the other two cases (i.e., 17 and 236),
he or she cannot recover anything useful, meaning that the success probability is
1/2.

We mentioned earlier that one can add redundancy to the original plaintext
message prior to encryption for easy identification among the four possible square
roots and to simplify (or automate) the decryption process accordingly. If the Rabin
asymmetric encryption system is modified this way, then its usefulness is improved
significantly, but Theorem 13.1 no longer applies (because the decryption oracle
always returns the square root that really represents the original plaintext message).
The bottom line is that one has to make a choice: Either one goes for an encryption
system that has provable security but is difficult to use in practice, or one goes for
a system that is useful but cannot be proven secure—at least not in a way that is
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as simple as shown above. Rabin is not an (asymmetric) encryption system that can
satisfy all requirements.

Last but not least, we stress another implication of the proof of Theorem 13.1:
If an adversary has access to a decryption oracle (to break the one-way security of the
Rabin encryption system), then he or she can also factorizen and totally break the
system accordingly. This makes the system susceptible to all kinds of CCAs. Again,
one can employ redundancy to mitigate the attacks, and againone can then no longer
prove that breaking the one-way security of the Rabin systemis computationally
equivalent to solving the IFP. The choice mentioned above isrelevant again, and
people working in the field usually prefer the more useful variants of the Rabin
encryption system that use redundancy (to simplify decryption and mitigate CCAs).
Unfortunately, the system as a whole is then no longer advantageous compared to
RSA or Elgamal, and hence the system is hardly used in the field. This includes
constructions like Rabin-OAEP.

13.3.3 Elgamal

As already mentioned in Section 1.3, public key cryptography started in the 1970s
with the publication of [22], in which Diffie and Hellman introduced the basic idea
and a key exchange protocol (Section 12.3). As its name suggests, this protocol can
be used to exchange a key, but it can neither be used to encryptand decrypt data nor
to digitally sign messages and verify digital signatures accordingly. It was not until
1984 that Taher Elgamal13 found a way to turn the Diffie-Hellman key exchange
protocol into a full-fledged public key cryptosystem (i.e.,a public key cryptosystem
that can be used for asymmetric encryption and digital signatures [23]14). In this
section, we overview and discuss the Elgamal asymmetric encryption system. The
respective DSS is addressed in Section 14.2.4.

Like the Diffie-Hellman key exchange protocol, the Elgamal public key cryp-
tosystem (including the asymmetric encryption system) canbe defined in any cyclic
groupG in which the DLP is assumed to be intractable, such as a subgroup ofZ∗p
(wherep is a safe prime) that is generated byg ∈ Z∗p of orderq (Section 5.2.1)
or a group of points on an elliptic curve over a finite field (Section 5.5). The El-
gamal asymmetric encryption system then consists of the three efficient algorithms
Generate, Encrypt, andDecrypt that are summarized in Table 13.4 and outlined
next.

13 Taher Elgamal was a Ph.D. student of Hellman at Stanford University.
14 A preliminary version of [23] was presented at the CRYPTO ’84 Conference.
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13.3.3.1 Key Generation Algorithm

The Elgamal key generation algorithmGenerate has no further input other thanG
andg (that are system parameters). The algorithm randomly selects a private key
x from Zq and generates a respective public keyy asgx. In contrast tox that is
an integer between 0 andq − 1, y is an element ofG and need not be an integer
(depending on the nature ofG). Anyway,(x, y) yields the public key pair that is the
output of theGenerate algorithm.

Table 13.4
Elgamal Asymmetric Encryption System

System parameters:G, g

Generate

(−)

x
r← Zq

y = gx

(x, y)

Encrypt

(m, y)

r
r← Zq

K = yr

c1 = gr

c2 = Km

(c1, c2)

Decrypt

((c1, c2), x)

K = cx1
m = c2/K

(m)

Let us consider a toy example to illustrate the working principles of the
Elgamal asymmetric encryption system. Forp = 17, the multiplicative groupZ∗17
is cyclic andg = 7 may serve as a generator; that is,7 generates all| Z∗17 |
= 16 elements ofZ∗17 = {1, . . . , 16}. In this setting, theGenerate algorithm
may randomly select a private keyx = 6 and compute the respective public key
y ≡ 76 (mod 17) ≡ 117, 649 (mod 17) = 9. Consequently, the public key pair
(6, 9) is the output of the algorithm.

13.3.3.2 Encryption Algorithm

Contrary to RSA, the Elgamal encryption algorithmEncryt is probabilistic, meaning
that is uses a random number to encrypt a plaintext message. More specifically, it
randomly selects an integerr from Zq ,15 usesr and the recipient’s public keyy to
computeK = yr,16 and uses this value to mask the message. More specifically,r

15 This value plays the role of the sender’s private exponentin the Diffie-Hellman key exchange
protocol.

16 This value plays the role of the outcome of the Diffie-Hellman key exchange protocol.
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andK are used to compute the following two elements ofG:

c1 = gr

c2 = Km

The pair(c1, c2) then represents the ciphertext of plaintext messagem. This, in turn,
means that the ciphertext is twice as long as the plaintext message, and hence that
the encryption expands the plaintext message with a factor of two. This is a practical
disadvantage of the Elgamal encryption system that severely limits its usefulness in
the field.

It is important (and cannot be overestimated) thatr is used only once and is
never reused. Ifr is used more than once, then knowledge of a plaintext message
m1 enables an adversary to decrypt another plaintext messagem2 (for which the
ciphertext is observed). Let

(c
(1)
1 , c

(1)
2 ) = (gr,Km1)

and

(c
(2)
1 , c

(2)
2 ) = (gr,Km2)

be the ciphertexts ofm1 andm2 (where both messages are encrypted with the same
valuer). If r is the same, thenK ≡ yr is also the same. This, in turn, means that

c
(1)
2

c
(2)
2

=
Km1

Km2
=
m1

m2

and hencem2 can be computed fromm1, c(1)2 , andc(2)2 :

m2 = m1
c
(2)
2

c
(1)
2

This is devastating, and hence a fresh and unique valuer is needed to encrypt a
plaintext message (this requirement also applies to the Elgamal DSS).

The ElgamalEncryt algorithm requires only two modular exponentiations to
encrypt a plaintext message, and hence it is efficient. The efficiency can even be
improved by using precomputation. Note thatr andK are independent from the
plaintext message that is encrypted and that they can be precomputed and securely
stored before they are used. This is also true forc1. If r,K, andc1 are precomputed,
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then it takes only one modular multiplication to encrypt a plaintext message. This is
even more efficient than the modular exponentiation it takesto encrypt a plaintext
message using the RSA asymmetric encryption system.

If, in our toy example, the plaintext message ism = 7, then the Elgamal
Encryt algorithm may randomly selectr = 3, computeK ≡ 93 (mod 17) = 15,
and conclude withc1 ≡ 73 (mod 17) = 3 andc2 ≡ 15 · 7 (mod 17) = 3. Hence,
the ciphertext transmitted to the recipient consists of thepair (3, 3).

13.3.3.3 Decryption Algorithm

The recipient of(c1, c2) can use the Elgamal decryption algorithmDecryt to recover
the original plaintext messagem. It first recoversK = cx1 = (gr)x = (gx)r = yr,
and then usesK to unmaskm = c2/K.

In our toy example, the recipient receives(3, 3) and wants to recover the
plaintext messagem. TheDecrypt algorithm therefore computesK ≡ 36 (mod
17) ≡ 729 (mod 17) = 15 and solves15m ≡ 3 (mod 17) for m. The result is 7,
because15 · 7 ≡ 105 (mod 17) = 3.

Alternatively, it is also possible to decrypt(c1, c2) by computingm = c−x1 ·c2.
In Zp∗, this means first retrieving

x′ = p− 1− x

and then computing

cx
′

1 c2 = grx
′

Km

= gr(p−1−x)Km

= gr(p−1−x)yrm

= (gp−1)r(g−x)ryrm

= (gp−1)r(gx)−ryrm

= 1r · y−ryrm
= m

In the toy example, the recipient can decrypt the ciphertextby first retrievingx′ =
17− 1− 6 = 10 and then computingm ≡ 310 · 3 (mod 17) ≡ 311 (mod 17) = 7.

Like RSA, the Elgamal asymmetric encryption system requires a modular
exponentiation to decrypt a ciphertext. But unlike RSA, there is no possibility to
use the CRT to speed up the decryption algorithm.
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13.3.3.4 Security Analysis

The security of the Elgamal asymmetric encryption system isbased on the DLA and
the computational intractability of the DLP. If somebody isable to solve the DLP,
then he or she can determine the private key from the public key. This totally breaks
the Elgamal asymmetric encryption system.

With regard to the one-way security, Theorem 13.2 suggests that the one-way
security of the Elgamal asymmetric encryption system is computationally equivalent
to solving the (computational) DHP, meaning that an adversary is not able to decrypt
a given ciphertext unless he or she is able to solve the DHP. Since we don’t think
that the adversary is able to solve the DHP, we strongly believe that the Elgamal
asymmetric encryption system is (one-way) secure.

Theorem 13.2 Breaking the one-way security of the Elgamal asymmetric encryp-
tion system is computationally equivalent to solving the DHP.

Proof. To prove the theorem, one must show (a) that somebody who can solve the
DHP can break the one-way security of the Elgamal asymmetricencryption system,
and (b) that somebody who can break the one-way security of the Elgamal system
can solve the DHP. LetG be a cyclic group with prime orderq and generatorg.

For direction (a) we assume an adversary who has access to a DHP oracle
ODHP . This oracle takes as inputga andgb for a, b ∈ Zq, and returns as outputgab:

ODHP (ga, gb) = gab

An adversary can use such an oracle to decrypt a given ciphertext (c1, c2) and
retrieve the respective plaintext messagem accordingly: The adversary therefore
invokes the oracle with the public keyy (representinggx) andc1 (representinggr).
The oracle responds withODHP (y, c1) = ODHP (gx, gr) = gxr, and this value
representsK in the Elgamal encryption algorithm. The adversary can now retrieve
m by dividingc2 byK (i.e.,m = c2/K). Hence, the adversary can decrypt(c1, c2),
if he or she has access to a DHP oracle.

For direction (b) we assume an adversary who has access to an Elgamal
decryption oracleOElgamal. This oracle takes as input a public keyy (representing
gx) and a ciphertext(c1, c2)—with c1 = gr andc2 = Km = gxrm—and it returns
as output the respective plaintext messagem:

OElgamal(y, (c1, c2)) = m

An adversary can use such an oracle to solve the DHP; that is, computegxr from
gx and gr: The adversary is challenged withgx and gr. To computegxr, he or
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she randomly selectss ∈R Zq and invokes the oracle with the public keyy and the
ciphertext(c1, c2), wherec1 = gr andc2 = gs. The oracle decrypts(c1, c2) with the
private keyx and sends the resulting plaintext messagem = c−x1 c2 = (gr)−x · gs =
gs/g−xr to the adversary. The adversary computesgs/m = gs · gxr/gs = gxr and
sends this value back to the challenger. Since this yields a solution for the DHP the
adversary has been challenged with, this finishes the proof.

�

More interestingly, the Elgamal encryption algorithm is probabilistic (i.e.,
nondeterministic) and the respective asymmetric encryption system can be shown to
provide IND-CPA and be semantically secure under the assumption that the DDHP
(Definition 5.7) is hard. This is captured in Theorem 13.3 (without a proof). Because
the assumption is weaker and IND-CPA (or semantic security)is a stronger notion
of security than one-way security, this result is more relevant in practice.

Theorem 13.3 If the DDHP is hard, then the Elgamal asymmetric encryption
system provides IND-CPA and is semantically secure.

IND-CPA (and hence semantic security) is the highest notionof security the
Elgamal asymmetric encryption system can provide. The system is highly malleable
and cannot provide IND-CCA. If, for example, one is given a ciphertext(c1, c2)
of some (possibly unknown) plaintext messagem, then one can easily construct
(c1, 2c2) that represents a ciphertext for the plaintext message2m. The underlying
reason for this malleability is the fact that the Elgamal asymmetric encryption system
is multiplicatively homomorphic, meaning that the productof two ciphertextsc1 and
c2 equals the encryption of the product of the underlying plaintext messagesm1 and
m2. Let

(c
(1)
1 , c

(1)
2 ) = (gr1 , yr1m1)

and

(c
(2)
1 , c

(2)
2 ) = (gr2 , yr2m2)

be the ciphertexts ofm1 andm2. If these ciphertexts are multiplied, then the result
is (c1, c2) with

c1 = c
(1)
1 · c

(2)
1 = gr1 · gr2 = gr1+r2

and

c2 = c
(1)
2 · c

(2)
2 = yr1m1 · yr2m2 = yr1+r2m1m2 = gx(r1+r2)m1m2
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Note that the Elgamal asymmetric encryption system is multiplicatively but not
additively homomorphic. There is a variant [24, 25] that is additively homomorphic
and used in applications like e-voting, but there is no variant that is multiplicatively
and additively homomorphic. If there were, then we would have a solution for fully
homomorphic encryption (Section 13.5).

Whether malleability and IND-CCA security are advantageous or disadvanta-
geous depends on the application one has in mind. There are atleast several possi-
bilities and techniques that can be used to turn the Elgamal asymmetric encryption
system into a variant that is nonmalleable and provides IND-CCA. One such variant,
Cramer-Shoup, is described next. It is secure in the standard model. There are other
variants that employ hybrid encryption, such as DHIES [26] and its ECC-counterpart
ECIES.17 They combine a Diffie-Hellman key exchange with some symmetric en-
cryption, and it can be shown that they are secure and provideIND-CCA in the
random oracle model.

13.3.4 Cramer-Shoup

In 1998, Ronald Cramer and Victor Shoup proposed a variant ofthe Elgamal
asymmetric encryption system that is nonmalleable and provides IND-CCA in
the standard model [27]. Like Elgamal, the Cramer-Shoup asymmetric encryption
system requires a cyclic groupG of orderq in which the DDHP is computationally
intractable. But unlike Elgamal, it uses two generators ofG, g1 andg2, and makes
use of a hash functionh that outputs values that can be interpreted as numbers in
Zq.18 Note that the Cramer-Shoup system employs a hash function, but its security
proof does not depend on the assumption that this hash function is a random function
(and hence the proof is not in the random oracle model).

13.3.4.1 Key Generation Algorithm

G, g1, andg2 are system parameters that are known to everybody. This is why the
key Cramer-Shoup generation algorithmGenerate does not take an input parameter.
Instead, it only randomly selects the five elementsx1, x2, y1, y2, andz fromZq that
collectively form the private keysk, and it then computes the three group elements
c, d, ande that collectively form the public keypk.

17 Provably secure elliptic curve (PSEC) encryption is another hybrid encryption technique
that is similar to ECIES. Because it is mainly used to securely transmit a key, it
yields a key encapsulation mechanism (KEM), and it is therefore acronymed PSEC-KEM
(https://info.isl.ntt.co.jp/crypt/eng/psec/intro.html).

18 The Cramer-Shoup cryptosystem can be modified to get rid ofthe hash function.
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13.3.4.2 Encryption Algorithm

Similar to Elgamal, the Cramer-Shoup encryption algorithmEncrypt is probabilistic.
In addition to the system parameters, it takes as input a plaintext messagem (that
represents an element ofG) and the recipient’s public key(c, d, e). It then randomly
selects an elementr fromZq, computesu1 = gr1 , u2 = gr2, andv = erm, computes
α as the hash value ofu1, u2, andv, and finally generatesw = crdrα. The 4-tuple
(u1, u2, v, w) that consists of four elements ofG yields the ciphertext.

Note that the pair(u1, v) is essentially an Elgamal encryption, whereas the pair
(u2, w) represents some form of an error detection code. It ensures that illegitimately
constructed ciphertexts are detected and can be rejected accordingly. The element
w therefore acts as a “proof of legitimacy” that can afterwardbe verified during
decryption.

Table 13.5
Cramer-Shoup Asymmetric Encryption System

System parameters:G, g1, g2

Generate

(−)

x1, x2, y1, y2, z
r← Z5

q

c = gx1
1 gx2

2
d = gy11 gy22
e = gz1

(x1, x2, y1, y2, z)
(c, d, e)

Encrypt

(m, (c, d, e))

r
r← Zq

u1 = gr1
u2 = gr2
v = erm
α = h(u1, u2, v)
w = crdrα

(u1, u2, v, w)

Decrypt

((u1, u2, v, w),
(x1, x2, y1, y2, z))

α = h(u1, u2, v)

If w = ux1+αy1
1 ux2+αy2

2
then returnm = w/uz

1

else return “reject”

(m or “reject”)

13.3.4.3 Decryption Algorithm

The decryption algorithmDecrypt takes as input a ciphertext(u1, u2, e, v) and
the recipient’s private key(x1, x2, y1, y2, z), and it either generates as output the
original plaintext messagem or rejects the ciphertext as being invalid. To achieve
this, the algorithm first computesα by subjecting the first three components of the
ciphertext to the hash functionh. Using this value, the algorithm then computes
ux1+αy1

1 ux2+αy2

2 and verifies whether the resulting value matchesw (i.e., the fourth
component of the ciphertext). To see whether this verification makes sense, we can
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algebraically transformw to ux1+αy1

1 ux2+αy2

2 :

w = crdrα

= (gx1
1 gx2

2 )r(gy1

1 g
y2

2 )rα

= grx1
1 grx2

2 grαy1

1 grαy2

2

= grx1
1 grαy1

1 grx2
2 grαy2

2

= ux1
1 u

αy1

1 ux2
2 u

αy2

2

= ux1+αy1

1 ux2+αy2

2

If the equation holds, thenm can be computed fromv. We solve the equation
v = erm for m (i.e.,m = v/hr). Substitutingh with gz1 , we getm = v/g1

zr, and
again substitutinggr1 with u1, we getm = v/u1

z . Using this formula, the recipient
can actually recover the original plaintext message and hence decrypt the ciphertext.
If the above-mentioned verification fails, then the algorithm returns “reject.”

When the Cramer-Shoup asymmetric encryption system was proposed in the
late 1990s, it was considered a major breakthrough because it was one of the first
encryption systems that provided IND-CCA and is reasonablyefficient (in fact, it is
approximately twice as expensive as Elgamal, both in terms of computing time and
the size of the ciphertexts). Unfortunately, its success intheory was not followed
by a success in practice, and the Cramer-Shoup asymmetric encryption system has
not been widely deployed in the field. However, it initiated alot of research and
development in CCA-secure encryption systems, and many variants of the Cramer-
Shoup asymmetric encryption system have been proposed in the literature.

13.4 IDENTITY-BASED ENCRYPTION

In an asymmetric encryption system, every user has a public key pair, and the keys
look somewhat arbitrary and random. Consequently, one faces the problem that one
cannot easily attribute a given public key to a particular entity (e.g., user) and that
one has to work with public key certificates. A public key certificate, in turn, is a
data structure that is issued by a trusted (or trustworthy) certification authority (CA).
It is digitally signed by the issuing CA, and it states that a public key really belongs
to a particular entity. If there are multiple CAs in place, then one usually talks about
public key infrastructures (PKIs). In general, public key certificates, CAs, and PKIs
are complex topics, and their implementation has turned outto be more difficult than
originally anticipated [28].

In the early 1980s, Shamir came up with an alternative idea. If one chooses
a public key to uniquely identify its holder, then one no longer has to care about
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public key certification in the first place. Instead, a publickey is then self-evident in
the sense that it automatically becomes clear to whom it belongs (or at least to whom
it was issued in the first place). Shamir coined the termidentity-based cryptography
to refer to this cryptographic technique. Like any other technique, identity-based
cryptography has advantages and disadvantages:

• The advantages are obvious and related to the avoidance of public key certifi-
cates and respective key directory services.

• The disadvantages are less obvious. The most important onesare related to
the necessity of having a unique naming scheme and the fact that a trusted
authority is needed to generate public key pairs and distribute them. Hence,
all entities must trust this authority not to hold illegitimate copies and misuse
their private keys.

Note that in a conventional asymmetric encryption system, all entities can
generate their own public key pairs. In identity-based cryptography, this cannot
be the case, because the public keys must have specific valuesand it must not be
possible for anybody (except the trusted authority) to determine the private key
that belongs to a specific public key (otherwise, this personcould determine all
private keys in use). Consequently, in identity-based cryptography, all entities must
provide their identities to the trusted authority, and the trusted authority must equip
them with their respective public key pairs, using, for example, smart cards or USB
tokens. Another disadvantage that may occur in practice is related to key revocation.
What happens, for example, if a key pair needs to be revoked? Since the public key
represents the key pair holder’s identity, it is not obvioushow this key pair can be
replaced in a meaningful way.

In [29] Shamir introduced the notion of identity-based cryptography and
proposed an identity-based digital signature system (Section 14.3). Shamir also
pointed out that the development of an identity-based encryption system is more
involved. Note, for example, that the RSA asymmetric encryption system cannot
be easily turned into an identity-based encryption system.On the one hand, ifn is
universal and the same for all users, then anyone who knows anencryption exponent
e and a respective decryption exponentd can compute the factorization ofn and
compute all private keys. On the other hand, ifn depends on the user’s identity, then
the trusted authority cannot factorizen and compute the decryption exponentd that
belongs to an encryption exponente.

It was not until 2001 that Dan Boneh and Matthew K. Franklin proposed
an identity-based encryption(IBE) system based on bilinear maps calledpairings
on elliptic curves [30, 31]. They suggested using the IBE system as an alternative
to commonly used secure messaging technologies and solutions that are based on
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public key certificates. In the same year, Cocks19 proposed an IBE system based on
the QRP [32]. The Cocks IBE system has a high degree of ciphertext expansion and
is fairly inefficient. It is impractical for sending all but the shortest messages, such
as a session key for use with a symmetric encryption system, and it is therefore not
used in the field.

A comprehensive overview of IBE systems is provided in [33].Researchers
have also tried to combine conventional asymmetric encryption and IBE to over-
come some disadvantages of IBE. Examples includecertificateless encryption[34]
andcertificate-based encryption[35]. The definitions and security notions of cer-
tificateless encryption and certificate-based encryption are further addressed in
[36]. In particular, there is an equivalence theorem, saying that—from a security
perspective—IBE, certificateless encryption, and certificate-based encryption are
equivalent, meaning that a secure certificateless or certificate-based encryption sys-
tem exists if and only if a secure IBE system exists. The bottom line is that IBE
(together with certificateless encryption and certificate-based encryption) is a nice
idea, but it has not been able to move from theory to practice.

13.5 FULLY HOMOMORPHIC ENCRYPTION

In 1978, Rivest, Adleman, and Michael Leonidas Dertouzos published a paper in
which they introduced the notion ofhomomorphic encryption[37]. In essence,
homomorphic encryption is about encrypting data in a way that allows computations
to be done only on the ciphertexts (i.e., without decryption). If, for example,⊚
represents a computation that is applied to two plaintext messagesm1 andm2, and
E refers to a homomorphic encryption function, then there is another computation
⊛ (that can also be the same) for which

E(m1 ⊚m2) = E(m1)⊛ E(m2)

holds. This means that we can computeE(m1 ⊚m2) even if we only knowE(m1)
andE(m2); that is, without knowingm1 andm2. It is obvious and goes without
saying that a homomorphic encryption system has many applications in the realm of
outsourcing and cloud computing.

Many asymmetric encryption systems in use today are partially homomor-
phic. We already mentioned that (unpadded) RSA and Elgamal are multiplicatively
homomorphic. In the case of RSA, for example,E(m1) · E(m2) ≡ me

1 · me
2 =

(m1m2)
e (mod n) = E(m1 · m2), and hence⊚ and⊛ both refer to integer mul-

tiplication modulon. The same line of argumentation applies to Elgamal. Also,

19 Clifford Cocks was already mentioned in the Introduction. He was one of the GCHQ employees
who discovered public key cryptography under the name NSE inthe early 1970s.
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we mentioned that the Paillier system is additively homomorphic. In the case of
probabilistic encryption (Section 13.2), each bitb is encrypted individually, and it
can be shown thatE(b1) · E(b2) = E(b1 ⊕ b2). Each of these examples allows
homomorphic computation of only one operation (either addition or multiplication).
For three decades, it was not clear whetherfully homomorphic encryption(FHE),
in which both addition and multiplication are supported, isfeasible at all. The best
result supported the evaluation of an unlimited number of addition operations and at
most one multiplication operation [38].

In 2009, Craig Gentry was the first who solved the problem and proposed a
FHE system using lattice-based cryptography [39].20 In spite of the fact that Gen-
try’s proposal represents a major theoretical breakthrough, the system as originally
proposed is impractical for real-world applications, mainly because the size of the
ciphertext and the computation time increase sharply as oneincreases the security
level. Hence, several researchers have tried (and are stilltrying) to improve the sys-
tem and come up with proposals that are more practical. This is ongoing work and a
lot of research and development efforts go into this area. Itis sometimes argued that
FHE represents the holy grail for secure cloud computing.

13.6 FINAL REMARKS

In this chapter, we elaborated on asymmetric encryption andwhat is meant by saying
that an asymmetric encryption system is secure. We certainly require that such a
system is one-way secure, meaning that it is not feasible to retrieve a plaintext
message from a given ciphertext. All basic asymmetric encryption systems—RSA,
Rabin, and Elgamal—fulfill this requirement. If a system is to provide IND-CPA and
be semantically secure, then its encryption algorithm needs to be probabilistic. This
is not true for basic RSA and Rabin, so we have to invoke some complementary
technology, such as OAEP. RSA-OAEP and Rabin-OAEP can indeed be shown
to provide IND-CPA in the random oracle model. The same is true for Elgamal
that natively provides IND-CPA. The Elgamal asymmetric encryption system can
even be modified to be nonmalleable and provide IND-CCA in thestandard model,
meaning that the security proof does not require the random oracle model. A
respective construction is known as Cramer-Shoup, but it isnot as widely used in
the field as originally anticipated.

In addition to the asymmetric encryption systems addressedin this chapter,
there are other systems that have been developed and proposed in the literature.
Some of these systems have been broken and become obsolete. For example, the

20 Gentry’s proposal is also addressed in his Ph.D. thesis that is electronically available at
https://crypto.stanford.edu/craig/.
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NP-complete subset sum problem has served as a basis for many public key
cryptosystems. All knapsack-based public key cryptosystems proposed in the past
have been broken. This also includes the Chor-Rivest knapsack cryptosystem [40,
41]. In fact, knapsack-based cryptosystems are good examples to illustrate the
point that it is necessary but usually not sufficient that a public key cryptosystem
is based on a mathematically hard problem. Breaking a knapsack-based public
key cryptosystem is generally possible without solving theunderlying subset sum
problem.

There are also a few asymmetric encryption systems that haveturned out to
be resistant against all types of cryptanalytical attacks.For example, in 1978, Robert
McEliece proposed an asymmetric encryption system back that has remained secure
until today [42]. The respective McEliece asymmetric encryption system was the
first to use randomization in the encryption process. Due to its inefficiency and use
of prohibitively large keys, the system has never gained much acceptance in the
cryptographic community. This is about to change, mainly because the McEliece
asymmetric encryption system—or rather a variant proposedby Harald Niederreiter
in 1986 [43]—is currently a candidate in the PQC competition(Section 18.3.1).

In Section 13.3, we said that we assume public keys to be published in
some certified form. This simple and innocent assumption hashuge implications
in practice. How does one make sure that all entities have public keys? How does
one publish them, and how does one certify them? Finally, howdoes one make
sure that public keys can be revoked and that status information about a public key
is publicly available in a timely fashion? All of these questions related to digital
certificates are typically addressed (and solved) by a PKI. We already mentioned
that the establishment and operation of a PKI is more involved than it looked at first
glance, and we have to revisit this topic in Section 16.4.
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Chapter 14

Digital Signatures

In this chapter, we elaborate on digital signatures and respective DSSs. More
specifically, we introduce the topic in Section 14.1, outline and discuss the DSSs
used in the field in Section 14.2, elaborate on identity-based signatures, one-time
signatures, and a few other variants in Sections 14.3–14.5,and conclude with some
final remarks in Section 14.6. Note that all books on cryptography (including the
ones itemized in the Preface) address the topic, and that there even are a few books
that focus entirely on digital signatures [1–4].

14.1 INTRODUCTION

In Section 2.3.3, we introduced, briefly discussed, and put into perspective digital
signatures, and we distinguished between a DSS with appendix (Definition 2.13 and
Figure 2.10) and a DSS giving message recovery (Definition 2.14 and Figure 2.11).
In short, a DSS consists of three efficiently computable algorithms:Generate, Sign,
andVerify in the case of a DSS with appendix orRecover in the case of a DSS
giving message recovery. TheGenerate algorithm is to generate public key pairs
(that consist of an appropriately sized signing key and a corresponding verification
key), theSign algorithm is to generate digital signatures, and theVerify or Recover
algorithm is to verify the digital signatures or recover thedigitally signed message
respectively.

In either case, a DSS must be correct and secure:

• A DSS iscorrectif every valid signature is accepted. For DSSs with appendix,
this means thatVerify(pk,m, Sign(sk,m)) must returnvalid for every public
key pair(pk, sk) and messagem. Similarly, for DSSs with message recovery,

395
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this means thatRecover(pk, Sign(sk,m)) must yieldm for every public key
pair (pk, sk) and messagem.

• A DSS issecureif it is impossible—or rather computationally infeasible—for
an adversary to forge a valid signature; that is, to generate, without knowledge
of a private signing keysk, a signature that is considered to be valid for
a public verification keypk and a respective messagem (that may not be
meaningful).

The correctness requirement is simple and straightforward, and it does not lend
itself to multiple interpretations. This need not be true for the security requirement,
and there are different ways to read and interpret this requirement. For example,
it is possible to say that a DSS is secure if it is computationally infeasible for an
adversary to generate, without knowledge of the private signing keysk, a digital
signature for a specific messagem. This is certainly something one would demand
from a DSS. In fact, all systems overviewed and discussed in this chapter are secure
in this sense. Another way to read and interpret the securityrequirement is that it
must be computationally infeasible for an adversary to generate a valid signature
for an arbitrary, randomly looking and not even meaningful messagem. This is
arguably more difficult to achieve, and not all systems overviewed and discussed in
this chapter are secure in this sense. There are even more ways to read and interpret
the security requirement.

To be more precise, we refer to Section 1.2.2 where we required that every
security definition must specify both the adversary’s capabilities and the task the
adversary is required to solve in order to be successful (i.e., to break the security
of the system). The terminology most frequently used in the realm of secure digital
signatures was coined by Goldwasser, Micali, and Rivest in the late 1980s [5]. It has
withstood the test of time and still serves as a reference today.

With regard to the adversary’s capabilities, it is important to note that we
are in the realm of public key cryptography, where unconditional security does not
exist. Consequently, we have to make assumptions about the computational power
of the adversary. The assumption most frequently made is that the adversary has
computational power that is polynomially bounded (with respect to the input length
of the underlying mathematical problem). Furthermore, we have to specify what type
of attacks the adversary is able to mount. There are three major classes of attacks
that can be distinguished here:

• In a key-only attack, the adversary only knows the signatory’s public verifi-
cation keypk. In particular, he or she does not know and has no access to
previously signed messages and their respective signatures.
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• In a known-message attack(KMA), the adversary knows the signatory’s
public verification keypk and t ≥ 1 messagesm1,m2, . . . ,mt with their
respective signaturess1, s2, . . . , st. The message-signature pairs(mi, si) for
i = 1, 2, . . . , t are known to the adversary, but they are not chosen by him or
her.

• In a chosen-message attack(CMA), the adversary knows the signatory’s
public verification keypk and is able to obtain digital signaturess1, s2, . . . , st
for a chosen list oft ≥ 1 messagesm1,m2, . . . ,mt. In contrast to a KMA, the
adversary can choose the message-signature pairs(mi, si) for i = 1, 2, . . . , t.
There are at least three subclasses of CMAs:

– In a generic CMA, the message-signature pairs chosen by the adversary
are preselected (i.e., selected before the attack begins) and independent
from the signatory and its public verification keypk (this independence
makes the attack generic).

– In adirected CMA, the message-signature pairs chosen by the adversary
are still preselected, but they now depend on the signatory and its public
verification keypk (this dependence makes the attack directed).

– Finally, in anadaptive CMA, the message-signature pairs are still se-
lected while the attack is going on, and they depend on the signatory
and its public verification keypk. Alternatively speaking, one can say
that the adversary has access to a signature generation oracle. For every
messagem he or she provides, the oracle immediately returns a valid
signatures.

The attacks are itemized in order of increasing severity, meaning that the
adaptive CMA is the most powerful attack an adversary may be able to mount.
It goes without saying that key-only attacks are always possible (because the
verification keys are public). However, for all practical purposes, it is reasonable to
assume that the adversary one has in mind can also mount KMAs or CMAs. While
adaptive CMAs may be difficult to mount in practice, a well-designed DSS should
nonetheless resist them (to maintain a security margin).

With regard to the task the adversary is required to solve, there is the possi-
bility to compromise the signatory’s private signing keysk in a total break, or the
possibility to somehow forge a valid digital signature. In fact, there are three types
of forgeries that are typically distinguished:

• In a universal forgery, the adversary is able to forge a digital signature for
every possible message. This type of forgery is very similarto a total break,
but it may not be necessary to compromisesk.
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• In a selective forgery, the adversary is able to forge a digital signature for a
particular message (that is preselected in one way or another).

• In anexistential forgery, the adversary is able to forge a digital signature for
at least one message (that may be random-looking and meaningless).

The types of forgeries are itemized in order of decreasing difficulty and
severity, meaning that the existential forgery is the leastdifficult to mount type
of forgery, but also the least severe one. Many DSSs used natively do not protect
against this type of forgery. For example, if RSA or Rabin areused natively, then
each element ofZ∗n stands for a digital signature of a particular message (that
may be random-looking and meaningless). To ensure that sucha signature cannot
be exploited in a particular way, one usually modifies the DSSto protect against
existential forgeries.

The adversary’s capabilities and the task he or she is required to solve can be
combined to come up with a distinct notion of security. As usual, we combine the
most powerful adversary (i.e., an adversary who can mount adaptive CMAs) with the
simplest task (i.e., existentially forge a digital signature) to come up with a strong
security definition: We say that a DSS is secure, if an adversary who can mount an
adaptive CMA is not even able to existentially forge a signature, and we say that it
is provably secure if we can prove this claim (be it in the standard model or in the
random oracle model). This definition goes back to [5], and Goldwasser, Micali, and
Rivest also proposed a DSS (i.e., the GMR DSS1) that adheres to this definition.

The GMR DSS assumes the existence of claw-free pairs of trapdoor permuta-
tions. In today’s parlance, we would call a claw-free pair oftrapdoor permutation
collision-resistant, meaning that a pair of trapdoor permutationsf0 and f1 over
a common domain (and range)D is said to beclaw-free if it is computationally
infeasible (without knowing the trapdoor information2) to findx, y, z ∈ D such that

f0(x) = f1(y) = z

Using such a claw-free pair(f0, f1) of trapdoor permutations, it is simple and
straightforward to digitally sign ann-bit messagem = m1 . . .mn (where each
mi represents 0 or 1): The signatory randomly selects a fresh reference valuer ∈ D
and publishes this value in some authentic form. Using this value, the signatory can
generate a digital signatures for m as follows:

s = f−1m1
(f−1m2

(. . . f−1mn
(r) . . .))

1 The acronym GMR refers to the first letters of the respectiveauthors’ names.
2 It goes without saying that finding such a triplex, y, z is trivial with the trapdoor information. In

this case, one can randomly selectz ∈R D and computex = f−1
0 (z) andy = f−1

1 (z). The
resulting triplex, y, z then fulfills f0(x) = f1(y) = z.
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For each message bitmi (i = 1, 2, . . . , n), it basically inverts eitherf0 or f1. The
signatory can do this because it knows the trapdoor information, but everybody else
cannot. In the end, the signatures is sent along with the messagem to the verifier.

The verifier, in turn, usess andm to compute

r′ = fm1(fm2(. . . fmn(s) . . .))

Finally, the signatures is considered to be valid for messagem, if r′ equalsr. The
difficulty with this DSS is that every message requires a fresh and unique reference
valuer, and that this value must be published in some authentic form. To achieve
this, some efficient authentication mechanisms, such as Merkle trees [6, 7], may
be used and this where the GMR DSS distinguishes itself from some follow-up
proposals (e.g, [8, 9]). Another disadvantage of the GMR DSSand most of its
successors is that they are stateful in the sense that the signatory has to keep state
and store information about previously signed messages.

In spite of these disadvantages, the GMR DSS and most of its successors can
be proven secure in the standard model (i.e., without assuming a random oracle).
This may not be true for the DSSs that follow the conventionalhash-and-sign
paradigm, where a message is hashed (using a cryptographic hash function) and
the result is signed using a basic DSS, such as RSA, Rabin, or Elgamal. Although
hash-and-sign DSSs are usually very efficient, it was not immediately clear how to
make them provably secure.

This research question was first addressed by Bellare and Rogaway in the early
1990s using the random oracle model [10]. They realized thata hash-and-sign DSS
that uses, for example, MD5, PKCS #1, and RSA, has the structural problem (or
deficiency) that the set of encoded messages that are subjectto the RSA function
represents a sparse and highly structured subset of the domain (that isZ∗n in the
case of RSA). This is disadvantageous and may be exploited incryptanalysis. In
a first attempt to overcome this problem, they suggested hashing a messagem
onto the full domainZ∗n of the RSA function before signing it. Following this
line of argumentation, they proposed afull-domain-hash(FDH) functionhFDH :
{0, 1}∗ → Z∗n that hashes arbitrarily sized strings uniformly intoZ∗n. The FDH
signature ofm then refers to the signature ofhFDH(m). Assuming thathFDH is
ideal (i.e., it behaves like a random oracle) and RSA is a trapdoor permutation, they
were able to prove the security of the FDH DSS in the random oracle model. The
construction was later modified to become theprobabilistic signature scheme(PSS)
and theprobabilistic signature scheme with message recovery(PSS-R) [11]. These
are addressed in Section 14.2.2.

The PSS and PSS-R are usually used in conjunction with the RSADSS,
but similar constructions are known for Rabin and Elgamal [11, 12]. After the
publication of [13], researchers started to look for hash-and-sign DSSs that can
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be proven secure without random oracles (such as the GMR DSS). In 1999, for
example, Cramer and Shoup [14],3 and independently also Rosario Gennaro, Shai
Halevi, and Tal Rabin [15] came up with respective proposalsand DSSs that can
be proven secure under the strong RSA assumption (Section 5.2.2). We have a brief
look at the Cramer-Shoup DSS in Section 14.2.8. Since then, several variants have
been proposed that are also provably secure in the standard model (e.g., [16, 17]).
Note, however, that all security proofs known so far only apply in the single-user
setting, where the adversary tries to existentially forge asignature for a particular
user, and that it is completely unknown how to prove securityin a multiuser setting,
where the adversary targets any user of his or her choice. As of this writing, we don’t
have the tools to scientifically argue about the security of aDSS in this setting.

14.2 DIGITAL SIGNATURE SYSTEMS

There are several DSSs in use today, such as RSA, PSS and PSS-R, Rabin, Elgamal,
Schnorr, DSA, ECDSA, and Cramer-Shoup. The security of RSA and Rabin (with
or without PSS or PSS-R) is based on the IFP, whereas the security of all other DSSs
is based on the (EC)DLP. For each DSS, we specify the key generation, signature
generation, and signature verification algorithms, and we provide a brief security
analysis. Again, we assume that all verification keys are published in certified
form. We already made this assumption in Section 13.3, and wefurther discuss its
implications in Section 16.4.

14.2.1 RSA

As pointed out by Diffie and Hellman in their seminal paper [18], a family of
trapdoor functions can be turned into a DSS. The RSA family represents such a
family, and hence the RSA public key cryptosystem [19] can also be turned into a
DSS. We first look at the case in which RSA yields a DSS with appendix. This is by
far the most widely used case. The case in which RSA yields a DSS giving message
recovery is discussed afterward—mainly for the sake of completeness. It is rarely
used in the field.

The RSA key generation, signature generation, and signature verification are
summarized in Table 14.1 and explained below.

3 Although the DSS was first proposed at the 6th ACM Conferenceon Computer and Communications
Security in 1999, [14] was published in 2000. Also, a preliminary version of the conference paper
was published as an IBM Research Report in December 1998 (notcited here).
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14.2.1.1 Key Generation Algorithm

The RSA key generation algorithmGenerate introduced in Section 13.3.1.1 also
applies for the RSA DSS. Again, it takes as input a security parameterl (in unary
notation), and it generates as output an appropriately sized public key pair (i.e.,
a public key(n, e) that represents the verification key and a private keyd that
represents the signing key).

Table 14.1
RSA DSS with Appendix

Domain parameters: —

Generate

(1l)

p, q
r← Pl/2

n = p · q
select1 < e < φ(n)

with gcd(e, φ(n)) = 1
compute1 < d < φ(n)

with de ≡ 1 (mod φ(n))

((n, e), d)

Sign

(d,m)

s ≡ h(m)d (mod n)

(s)

Verify

((n, e),m, s)

t = h(m)
t′ ≡ se (mod n)
b = (t = t′)

(b)

Let us reconsider the toy example from Section 13.3.1.1 to illustrate the
Generate algorithm. Forp = 11, q = 23, n = 253, andφ(n) = (p − 1)(q − 1) =
10·22 = 220, the (public) verification key may be(n, e) = (253, 3) and the (private)
signing key is thend = 147. Note that3 · 147 = 441 ≡ 1 (mod 220).

14.2.1.2 Signature Generation Algorithm

The RSA signature generation algorithmSign is deterministic. It takes as input a
private signing keyd and a messagem with hash valueh(m) that represents an
element ofZn for some hash functionh, and it generates as output the digital
signature

s = RSAn,d(h(m)) ≡ h(m)d (mod n)

The algorithm is simple and efficient. It requires only one modular exponentiation
that can be done, for example, using the square-and-multiply algorithm (Algorithm
A.3). In the end,m ands are usually transmitted together to the recipient.
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Since h(m) is typically much shorter than the modulusn, it is usually
necessary to expandh(m) to the bitlength ofn. This can be done, for example,
by prepending zeros, but it can also be done by using a more sophisticated message
expansion function. From a security perspective, this is the preferred case and there
are many such functions to choose from. For example, PKCS #1 specifies a couple
of message expansion functions for RSA. Since PKCS #1 version 1.5, the following
function is used:

hPKCS#1(m) = 0x 00 01 FF FF . . .FF FF 00 ‖ hash

In this notation,hash refers to an appropriately encoded identifierhID for the hash
function in use concatenated with the hash valueh(m); that is,hash = hID ‖ h(m).
This value is padded (from left to right) with a zero byte, a one byte (representing
block type 1), a series of 0xFF bytes (representing 255 in decimal notation),
and another zero byte. There are so many 0xFF bytes that the total bitlength of
hPKCS#1(m) is equal to the bitlength ofn.

In an attempt to design and come up with a message expansion function that
allows the security of a DSS to be proven in the random oracle model, Bellare and
Rogaway proposed PSS and PSS-R [11]. Both schemes invoke random padding,
meaning that they use random values to expandh(m) to the length ofn. The
resulting message expansion functions are now part of PKCS #1 version 2.1 [20]
and other security standards. They are further addressed inSection 14.2.2.

Let us assume that the signatory wants to digitally sign a messagem with
h(m) = 26 in our toy example. TheSign algorithm then computes

s ≡ md (mod n) ≡ 26147 (mod 253) = 104

and sends 104 together withm to the recipient.

14.2.1.3 Signature Verification Algorithm

The signature verification algorithmVerify is simple and straightforward. It takes as
input a public verification key(n, e), a messagem, and a respective signatures, and
it generates as output one bitb of information, namely whethers is a valid signature
with regard to(n, e) andm. Hence,b can be viewed as either 1 or 0, orvalid and
invalid.

TheVerify algorithm computes a hash valuet from m; that is, t = h(m),
determines

t′ = RSAn,e(s) ≡ se (mod n)
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and verifies whethert is equal tot′. If it is, then the digital signature is valid,
otherwise it is not. The rationale why signature verification works and is correct
is the same as the one we saw in the case of RSA decryption.

In our toy example, theVerify algorithm computes

t′ = RSA253,3(104) ≡ 1043 (mod 253) = 26

and returnsvalid, because26 is equal to the hash valueh(m) = 26 we started with.

14.2.1.4 DSS Giving Message Recovery

If RSA is used as a DSS giving message recovery, then almost everything remains
the same, except that the messagem is not sent together with the signatures, and
aRecover algorithm is used to replace theVerify algorithm mentioned above. This
new algorithm only takes a public verification key(n, e) and a digital signatures as
input, and it generates as output either the messagem or a notification indicating that
s is an invalid signature form with respect to(n, e). The algorithm first computes

m = RSAn,e(s) ≡ se (mod n)

and then decides whetherm is a valid message. Only in the positive case does it
returnm to the verifier. The second step is more important than it looks at first
glance. If every message represented a valid message, then an adversary could
existentially forge an RSA signature by randomly selectingan elements ∈ Zn

and claiming that it is a valid signature for messagem ≡ se (mod n). Note that
somebody who wanted to verify this signature would have to compute exactly this
value; that is,m ≡ se (mod n), and hences is indeed a valid RSA signature
for m. If m represents a meaningful message, then the signatory may be held
accountable for it and cannot repudiate having signed it. There are situations in
which existential forgeability represents a problem. To overcome it, one must ensure
that random messages are unlikely to be meaningful, or—alternatively speaking—
that the probability that a randomly chosen message is meaningful is negligible.
There are basically two ways to achieve this.

• One can use a natural language to construct messages to be signed. Natural
languages contain enough redundancy so that randomly chosen strings (over
the alphabet in use) are likely to be meaningless.

• One can use a specific (redundancy) structure for messages tobe signed. If,
for example, one digitally signsm ‖ m instead ofm, then one can easily
verify the structure of a message after recovery (i.e., it must then consist of
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two equal halves). On the other side, it is very difficult for an adversary to find
a signature that recovers a message that is structured this way. It goes without
saying that more efficient redundancy structures are used inpractice.

In our toy example, the RSARecover algorithm computes

m = RSA253,3(104) ≡ 1043 (mod 253) ≡ 1, 124, 864 (mod 253) = 26

and decides whetherm is a valid message. If, for example, valid messages are
required to be congruent to 6 modulo 20, thenm = 26 is indeed a valid message
that is returned as a result of theRecover algorithm.

14.2.1.5 Security Analysis

In Section 13.3.1.4, we analyzed the security of the RSA asymmetric encryption
system. Most things we said there also apply to the RSA DSS. This is particularly
true for the properties of the RSA family of trapdoor permutations. If, for example,
somebody is able to factorize the modulusn, then he or she is also able to determine
the private signing keysk and (universally) forge signatures at will. Consequently,
the modulusn must be so large that its factorization is computationally infeasible
for the adversary one has in mind.

More related to the RSA DSS, the multiplicative property of the RSA function
yields a severe vulnerability. If, for example,m1 andm2 are two messages with
signaturess1 ands2, then

s = s1s2 ≡ (m1m2)
d (mod n)

is a valid signature form ≡ m1m2 (mod n). In other words, if an adversary knows
two valid signaturess1 ands2, then he or she can generate another valid signature
simply by computing the product of the two signatures modulon. Consequently,
we reemphasize the fact that good practice in security engineering must take care
of the multiplicative structure of the RSA function and mitigate respective attacks.
Remember from our previous discussion that one can either require a message
to have a certain (nonmultiplicative) structure or apply a well-chosen message
expansion function prior to the generation of the signature.

In many applications, RSA is used as an asymmetric encryption system and a
DSS. Consequently, it may be necessary to apply both the RSAEncrypt algorithm
and the RSASign algorithm to a messagem. The question that arises immediately
is whether the order of applying the two algorithms matters.More specifically, does
one have to encryptm before it is digitally signed, or does one have to digitally sign
it prior to encryption? In the general case, the answer is notclear, and it matters what
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the purpose of the cryptographic protection really is. In many practically relevant
situations, however, the second possibility is the preferred choice—mainly because
people are required to see the messages they sign in the clear. Consequently, it is
often recommended to use the RSA DSS to digitally sign a plaintext message and
then use the RSA asymmetric encryption system to encrypt theresult. In this case,
one must be concerned about the relative sizes of the moduli (that can be different if
the keys are different).

Assume that A wants to digitally sign and then encrypt a message m for
B. Also assume that(nA, dA) is A’s private signing key and(nB , eB) is B’s
public encryption key. IfnA ≤ nB, then the application of the two algorithms is
straightforward (i.e., the output of the RSASign algorithm is smaller than or equal
to the modulusnB, and hence this value can be used as input for the RSAEncrypt

algorithm). If, however,nA > nB, then the output of the RSASign algorithm may
be larger than what is allowed as input for the RSAEncrypt algorithm. Obviously,
one can then split the output of the RSASign algorithm into two input blocks for the
RSAEncrypt algorithm and encrypt each block individually, but there are situations
in which this type of reblocking is not feasible. In these situations, one may consider
one of the following three possibilities to avoid the reblocking problem:

• One can prescribe the form of the moduli to make sure that the reblocking
problem never occurs.

• One can enforce that the operation using the smaller modulusis applied first.
In this case, however, it may happen that a message is first encrypted and then
digitally signed.

• One can equip each user with two public key pairs. One pair hasa small
modulus and is used by the RSASign algorithm, and the other pair has a
large modulus and is used by the RSAEncrypt algorithm.

The first possibility is not recommended because it is difficult to prescribe the
form of the moduli in some binding way. The second possibility is not recommended
either, because conditional reordering can change the meaning of the cryptographic
protection one implements. So the third possibility is often the preferred choice. But
the signing key is then smaller than the encryption key, and this is unusual (to say
the least). The bottom line is that one has to study the requirements of an application
before one can come up with a reasonable recommendation.

Instead of applying the RSAEncrypt andSign algorithms separately in one
way or another, one can consider the use of a cryptographic technique known
as signcryption [21]. The basic idea is to digitally sign and encrypt a message
simultaneously (instead of doing the two operations separately). This is conceptually
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similar to AE addressed in Chapter 11, but signcryption is not as technically mature
as AE.

In summary, the RSA DSS is considered to be reasonably secure. This is
particularly true if the modulusn is sufficiently large. In fact,n must be at least
large enough to make it computationally infeasible to factorize it. As said before
(in the context of the RSA asymmetric encryption system), this means thatn
should be at least 2,048 bits long. Because digital signatures are often valuable,
it is often recommended to use longer moduli, such as 4,096 bits. But then the
reblocking problem occurs and needs to be solved. Also, for all practical purposes,
it is recommended to use RSA as a DSS with appendix. It is obvious that one then
has to select an appropriate cryptographic hash function, such as a representative
of the SHA-2 family. It is less obvious that one also has to select an appropriate
message expansion function, such as the one specified in PKCS#1. The choice of
an appropriate message expansion function is particularlyimportant if one wants to
prove the security of the resulting DSS. This is further addressed next.

14.2.2 PSS and PSS-R

As mentioned earlier, Bellare and Rogaway proposed the PSS and PSS-R, and they
also proved the security of the two DSS in the random oracle model. While PSS
yields a DSS with appendix, PSS-R yields a DSS giving messagerecovery.

14.2.2.1 PSS

Similar to OAEP in asymmetric encryption (Section 13.3.1.4), PSS is a padding
scheme that can be combined with a basic DSS, such as RSA. In this case, the
resulting DSS is acronymed RSA-PSS, but the PSS can also be combined with any
other DSSs, such as Rabin or Elgamal. Quite naturally, the resulting DSS are then
acronymed Rabin-PSS or Elgamal-PSS, but they are not addressed here.

The RSA-PSS signature generation and verification algorithms are summa-
rized in Table 14.2. Note that RSA-PSS uses RSA, and hence theRSA key genera-
tion algorithmGenerate outlined in Table 14.1 is reused (and not repeated in Table
14.2). Also note that PSS (and hence also RSA-PSS) uses some new parameters and
two hash functions (instead of only one).

• In addition tol that refers to the bitlength of the RSA modulusn, PSS uses
two additional parametersl0 andl1 that are numbers between 1 andl. Typical
values arel = 1, 024 arel0 = l1 = 128.
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• PSS uses two hash functionsh andg. While h is a normal hash function that
compresses bit bit sequences,g rather expands bit sequences. According to
the terminology introduced in Section 6.4.5,g refers to an XOF.

Table 14.2
RSA-PSS

Domain parameters: —

Sign

(d,m)

r
r←− {0, 1}l0

w = h(m ‖ r)
r∗ = g1(w)⊕ r
y = 0 ‖ w ‖ r∗ ‖ g2(w)
s ≡ yd (mod n)

(s)

Verify

((n, e),m, s)

y ≡ se (mod n)

break upy asb ‖ w ‖ r∗ ‖ γ
r = r∗ ⊕ g1(w)
b = (b = 0 ∧ h(m ‖ r) = w ∧ g2(w) = γ)

(b)

– The hash functionh : {0, 1}∗ → {0, 1}l1 is calledcompressor. It hashes
arbitrarily long bit sequences to sequences ofl1 bits.

– The hash function (or XOF)g : {0, 1}l1 → {0, 1}l−l1−1 is called
generator. It hashes (or rather expands) sequences ofl1 bits to sequences
of l − l1 − 1 bits.

w

g (w)g (w)

g

1 2

l1

l0 l - l  - l  - 10 1

Figure 14.1 The functionsg1 andg2.

For the security analysis in the random oracle model,h and g are
assumed to be ideal (i.e., they behave like random functions). For all practical
purposes, however,h andg are implemented as cryptographic hash functions.
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As illustrated in Figure 14.1, the output of the functiong can be subdivided
into two parts, and these parts define two auxiliary functions:

– g1 is the function that on inputw ∈ {0, 1}l1 returns the firstl0 bits of
g(w).

– g2 is the function that on inputw ∈ {0, 1}l1 returns the remaining
l − l0 − l1 − 1 bits ofg(w).

The RSA-PSSSign algorithm takes as input a private signing keyd and a
messagem, and it generates as output a signatures for m. As its name suggests,
the PSS is probabilistic, meaning that the signature generation algorithm employs
anl0-bit stringr that is randomly selected from{0, 1}l0. This bit string is appended
to the messagem, and the expressionm ‖ r is subject to the compressorh. The
resulting hash valueh(m ‖ r) is assigned tow. This value, in turn, is subject to the
generatorg. The firstl0 bits of g(w); that is,g1(w), are added modulo 2 tor and
the resulting bitstring is referred tor∗. Finally, for message preparation, a stringy is
compiled that consists of a leading zero,w, r∗, and the rightl − l0 − l1 − 1 bits of
g(w); that is,g2(w), in this order. This is illustrated in Figure 14.2. Note thateach
of the components has a fixed length, and hencey can be decomposited quite easily.
Last but not least, the signatures is generated by puttingy to the power ofd modulo
n. It goes without saying that this refers to a normal RSA signature. The messagem
and the signatures are both sent to the verifier.

m r

0 w r* g (w)2

g (w)1

+

g
2

g1h

Figure 14.2 The preparation of messagem for the RSA-PSSSign algorithm.

The RSA-PSSVerify algorithm takes as input a public verification key(n, e),
a messagem, and a signatures, and it generates as output one bitb saying whethers
is a valid signature or not. First of all, the algorithm putss to the power ofe modulo
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n. This refers to a normal RSA signature verification. The algorithm then breaks up
y into its four componentsb, w, r∗, andγ according to their respective lengths (i.e.,
b is one bit long,w is l1 bits long,r∗ is l0 bits long, andγ is l− l0− l1−1 bits long).
The componentr∗ is then added modulo 2 tog1(w), and the result is assigned tor.
Finally, the algorithm verifies whetherb = 0, h(m ‖ r) = w, andg2(w) = γ. The
output bitb is set to true if and only if all tests are successful.

The PSS is very efficient. TheSign andVerify algorithms both take only one
application ofh, one application ofg, and one application of the RSA function.
In the case of RSA-PSS, this is only slightly more expensive than the basic RSA
DSS. RSA-PSS was therefore added in version 2.1 of PKCS #1. The corresponding
encoding method is referred to as EMSA-PSS, where the acronym EMSA stands
for encoding method for signature with appendix. The use of PKCS #1 version 2.1
in general, and EMSA-PSS in particular, is highly recommended and quite widely
used in the field (as an alternative to ECDSA).

Table 14.3
RSA-PSS-R

Domain parameters: —

Sign

(d,m)

r
r←− {0, 1}l0

w = h(m ‖ r)
r∗ = g1(w)⊕ r
m∗ = g2(w)⊕m
y = 0 ‖ w ‖ r∗ ‖ m∗

s ≡ yd (mod n)

(s)

Recover

((n, e), s)

y ≡ se (mod n)
break upy asb ‖ w ‖ r∗ ‖ m∗

r = r∗ ⊕ g1(w)
m = m∗ ⊕ g2(w)
if (b = 0 and h(m ‖ r) = w)

then outputm
else outputinvalid

(m | invalid)

14.2.2.2 PSS-R

While PSS yields a DSS with appendix, PSS-R yields a DSS giving message
recovery. This means that the PSS-RSign algorithm must fold the messagem into
the signatures in such a way that it can be recovered by theRecover algorithm
afterward. When the length ofm is sufficiently small, then one can fold the entire
message into the signature. Otherwise, the message must be cut into pieces and
signed block-wise. Again, PSS-R is essentially a message padding scheme that must
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be combined with a basic DSS such as RSA. The resulting DSS is then acronymed
RSA-PSS-R.

The RSA-PSS-R signature generation and message recovery algorithms are
summarized in Table 14.3. They use the same parametersl, l0, andl1, and the same
hash functionsh andg (with the same auxiliary functionsg1 andg2) as RSA-PSS.
We assume that the messages to be signed have a maximum lengthk = l−l0−l1−1.
Suggested choices arel = 1, 024, l0 = l1 = 128, andk = 767. This means that
a 767-bit message can be folded into a single signature, and that the verifier can
recover it and simultaneously check its authenticity.

m r

0 w r*

g (w)2

g (w)1

+

g
2

g1

m*

+

h

Figure 14.3 The preparation of messagem for the RSA-PSS-RSign algorithm.

The PSS-RSign algorithm is very similar to the PSSSign algorithm. In the
RSA-PSS-RSign algorithm, however, the last part ofy is g2(w) ⊕ m (instead of
only g2(w)). This is illustrated in Figure 14.3. It means thatg2(w) is used to mask
the messagem, and that in the endm can be recovered from this part.

The RSA-PSS-R algorithm is also similar to the RSA-PSSVerify algorithm.
The major difference is that in the RSA-PSS-RRecover algorithm the messagem
must be recovered fromm∗. As mentioned above, this can be achieved by adding
modulo 2g2(w) tom∗. Also, the output of the algorithm depends on a condition: if
b = 0 andh(m ‖ r) = w, then the algorithm outputsm. Otherwise, it signals that
the signatures is invalid and the message is not recovered.

The bottom line is that RSA-PSS and RSA-PSS-R are clearly advantageous,
and that they should always be used instead of native RSA. Theconstructions are
highly efficient and yield a DSS that is provably secure in therandom oracle model.
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14.2.3 Rabin

In Section 13.3.2, we introduced the Rabin asymmetric encryption system and
mentioned that it also yields a DSS [22]. Here, we briefly sketch both the DSS
originally proposed by Rabin and a simplified version thereof. The key generation,
signature generation, and signature verification of a simplified version of the Rabin
DSS with appendix are summarized in Table 14.4 and addressedbelow.

14.2.3.1 Key Generation Algorithm

The Rabin key generation algorithmGenerate is basically the same as the one
employed by the Rabin encryption system (Section 13.3.2.1). It first generates two
primesp andq, and then computesn = pq. In the original version of the Rabin DSS,
the algorithm also selects a random value1 < b < n. The pair(n, b) then represents
the public verification key, whereas the pair(p, q) represents the private signing key.
In the simplified version of the Rabin DSS,b is omitted and the public verification
key only consists ofn.

Table 14.4
Rabin DSS with Appendix (Simplified Version)

Domain parameters: —

Generate

(1l)

p, q
r← P′

l/2

n = p · q

(n, (p, q))

Sign

((p, q), m)

find U such thath(m ‖ U)
is a square modulon

find x that satisfies
x2 ≡ h(m ‖ U) (mod n)

(U, x)

Verify

(n,m, (U, x))

b = (x2 ≡ h(m ‖ U) (mod n))

(b)

14.2.3.2 Signature Generation Algorithm

The Rabin signature generation algorithmSign is probabilistic and requires a cryp-
tographic hash functionh. It takes as input a private signing key(p, q) and a mes-
sagem ∈ Zn to be signed, and it generates as output a respective signature. The
algorithm—as originally proposed by Rabin—picks a random padding valueU ,
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computesh(m ‖ U), and uses(p, q) to computex such that

x(x + b) ≡ h(m ‖ U) (mod n)

Note thatb is part of the public key (together withn). If there is no solution forx,
then a new value forU must be picked. This is repeated until a solution is found (the
expected number of tries is 4). The pair(U, x) then represents the Rabin signature
for m. This also means that such a signature can be twice as long as the message
that is signed.

In the simplified version of the Rabin DSS with appendix, theSign algorithm
picks a random padding valueU and computesh(m ‖ U) until h(m ‖ U) turns out
to be a square modulon. In this case, a square rootx satisfying

x2 ≡ h(m ‖ U) (mod n)

is guaranteed to exist and the private signing key(p, q) can be used to efficiently find
it. Again, the pair(U, x) represents the Rabin signature form.

14.2.3.3 Signature Verification Algorithm

Like all signature verification algorithms, the Rabin signature verification algorithm
Verify is deterministic. For messagem and signature(U, x), it first computesx(x+b)
andh(m ‖ U), and it then verifies whether the two values are equivalent modulo
n. In the simplified version, the algorithm computesx2 instead ofx(x+ b), and the
rest of the algorithm remains the same.

14.2.3.4 Security Analysis

Recall from Section 13.3.2 that computing a square root modulo n is computation-
ally equivalent to factoringn. Since an adversary who can compute a square root
can also forge a signature, we know that selectively forginga signature is computa-
tionally infeasible for the adversary we have in mind.

To protect against existential forgery, one has to ensure thath(m ‖ U ′) looks
random for any valueU ′ the adversary may come up with, and hence thath(m ‖ U ′)
has no structure that may be exploited in some meaningful way. This is likely to be
the case ifh is a cryptographic hash function (that supposedly implements a random
oracle). Consequently, the Rabin DSS can be shown to be secure against existential
forgery in the random oracle model. But similar to the Rabin asymmetric encryption
system, the Rabin DSS is not widely used in the field.
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14.2.4 Elgamal

In Section 13.3.3, we introduced the Elgamal asymmetric encryption system and
announced that the Elgamal public key cryptosystem [23] also yields a DSS. Unlike
the authors of the RSA system, however, Elgamal did not file a patent application
for his public key cryptosystem. Also, it uses different algorithms to encrypt and
decrypt messages on the one hand, and to sign messages and verify signatures on
the other hand. This is disadvantageous from an implementation viewpoint because
more than one algorithm needs to be implemented. Furthermore (and similar to
Rabin signatures), Elgamal signatures are twice as long as RSA signatures. Mainly
for these reasons, the Elgamal DSS is not widely used in the field.

In its basic form, the Elgamal DSS is with appendix. This is also true for most
variants that have been proposed in the literature (e.g., [24, 25]). But there is a variant
of the Elgamal DSS created by Kaisa Nyberg and Rainer R. Rueppel that yields a
DSS giving message recovery [26]. The Nyberg-Rueppel DSS isinteresting and fills
a niche, but it is not used in the field and therefore not addressed in this book.

Similar to the Diffie-Hellman key exchange protocol and the Elgamal asym-
metric encryption system, the security of the Elgamal DSS isbased on the DLA.
Consequently, one needs a cyclic group in which the DLP is computationally in-
tractable. This can beZ∗p as originally proposed by Elgamal and used here, but it can
also be aq-element subgroup ofZ∗p as employed in the Schnorr DSS and DSA or
E(Fq) as employed in ECC.

Table 14.5
Elgamal DSS with Appendix

Domain parameters:p, g

Generate

(−)

x
r← {2, . . . , p− 2}

y ≡ gx (mod p)

(x, y)

Sign

(x,m)

r
r← {1, . . . , p − 2}
with gcd(r, p− 1) = 1

s1 ≡ gr (mod p)
s2 ≡ r−1(h(m) − xs1)

(mod p− 1)

(s1, s2)

Verify

(y,m, (s1, s2))

verify 0 < s1 < p
verify 0 < s2 < p− 1

b = (gh(m) ≡ ys1ss21 (mod p))

(b)

The key generation, signature generation, and signature verification algorithms
of the Elgamal DSS with appendix are summarized in Table 14.5. There are two
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domain parameters,p andg. The prime numberp determines the cyclic groupZ∗p
with orderp − 1, whereasg refers to a generator of this group. Domain parameters
may be common for a group of entities (e.g., users). As such, they may be public
and remain fixed for an extended period of time.

14.2.4.1 Key Generation Algorithm

The Elgamal key generation algorithmGenerate is essentially the same as the one
employed by the Elgamal asymmetric encryption system (Section 13.3.3). While we
used a generic cyclic groupG in Section 13.3.3, we useZ∗p here. For every entity,
the algorithm randomly selects a private signing keyx from {2, . . . , p − 2} and
computes the respective public verification keyy asy ≡ gx (mod p). To illustrate
the Elgamal DSS, we reuse the toy example from Section 13.3.3, wherep = 17,
g = 7, x = 6, andy = 9.

14.2.4.2 Signature Generation Algorithm

Contrary to RSA, the Elgamal signature generation algorithm Sign is probabilistic
and employs a cryptographic hash functionh. More specifically, the algorithm takes
as input a private signing keyx and a messagem, and it generates as output a
digital signatures that consists of two valuess1 ands2 (both elements ofZ∗p). The
algorithm comprises three steps:

• First, the algorithm randomly selects a freshr fromZp−1 \{0} = {1, . . . , p−
2} with gcd(r, p − 1) = 1.4 The requirementgcd(r, p − 1) = 1 suggests
thatr has a multiplicatively inverse elementr−1 in Z∗p, meaning thatrr−1 ≡
1 (mod p − 1). The inverse element can be determined with the extended
Euclid algorithm (Algorithm A.2).

• Second,r is used to computes1 ≡ gr (mod p) that yields the first compo-
nent of the signature.

• Third,m is hashed withh, and the resulth(m) is used together withr−1, x,
ands1 to computes2 ≡ r−1(h(m)−xs1) (mod p−1). If the resulting value
s2 is equal to zero, then the algorithm must restart with another r in step one.

Note that theSign algorithm can be made more efficient by using precompu-
tation. In fact, it is possible to randomly selectr and precomputes1 ≡ gr (mod p)
andr−1 modulop − 1. Both values do not depend on a messagem. If one hasr,

4 As already mentioned in Section 13.3.3.4 and further explained in Section 14.2.4.4, a valuer must
never be used more than once. Otherwise, the system is totally insecure.
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s1, andr−1, then one can digitally signm by hashing it and directly computing
s2 ≡ r−1(h(m)− xs1) (mod p− 1).

In either case, the Elgamal signature form is s = (s1, s2). Becausem, s1,
and s2 are all elements ofZ∗p, the signature is at most twice as long asp. Also,
as mentioned earlier, the basic Elgamal DSS is with appendix, meaning that the
signatures must be sent along with the messagem.

Let us revisit our toy example. If the signatory wants to signa message
m with h(m) = 6, then theSign algorithm may randomly selectr = 3 (with
r−1 ≡ 3−1 (mod 16) = 11) and compute

s1 ≡ 73 (mod 17) = 343 mod 17 = 3

s2 ≡ 11(6− 6 · 3) (mod 16) = −132 mod 16 = 12

Consequently, the Elgamal signature forh(m) = 6 is s = (3, 12), and hence the
numbers6, 3, and12 must all be transmitted to the verifier.

14.2.4.3 Signature Verification Algorithm

Like all signature verification algorithms, the ElgamalVerify algorithm is determin-
istic. It takes as input a public verification keyy, a messagem, and an Elgamal
signature(s1, s2), and it generates as output one bitb saying whether(s1, s2) is a
valid Elgamal signature form with respect toy. TheVerify algorithm must verify
0 < s1 < p, 0 < s2 < p− 1, and

gh(m) ≡ ys1ss21 (mod p) (14.1)

The signature is valid if and only if all verification checks succeed. Otherwise, the
signature must be rejected and considered to be invalid. Note that (14.1) is correct,
because

ys1ss21 ≡ gxs1grr
−1(h(m)−xs1) (mod p)

≡ gxs1gh(m)−xs1 (mod p)

≡ gxs1g−xs1gh(m) (mod p)

≡ gh(m) (mod p)

Let us emphasize two facts that are important for the security of the Elgamal
DSS: First, it is important to verify that0 < s1 < p. Otherwise, it is possible to
construct a new signature from a known signature [27]. Second, it is also necessary
to use a cryptographic hash functionh and signh(m) instead ofm (even for short
messages). Otherwise, one can existentially forge signatures.
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In our toy example, theVerify algorithm must verify0 < 3 < 17, 0 < 12 <
15, and76 ≡ 93 · 312 (mod 17), which is 9 in either case. This means that(3, 12) is
in fact a valid Elgamal signature form with h(m) = 6.

14.2.4.4 Security Analysis

We know from Section 13.3.3.4 that the security of the Elgamal public key cryp-
tosystem is based on the assumed intractability of the DLP ina cyclic group. This
also applies to the Elgamal DSS. IfZ∗p is used, thenp must be at least 2,048 bits
long, and longer values are preferred. Furthermore, one must selectp so that efficient
algorithms to compute discrete logarithms do not work. For example, it is necessary
to selectp so thatp−1 does not have only small prime factors. Otherwise, the Pohlig-
Hellman algorithm [28] may be used to solve the DLP and break the Elgamal DSS
accordingly. Furthermore, we assume that the functionh is a cryptographic hash
function, and hence that it is one-way and collision-resistant.

There are other constraints that should be considered when implementing the
Elgamal DSS. First, the random valuer that is selected at the beginning of theSign

algorithm must be kept secret. If an adversary were able to learn this value, then he
or she could determine the private signing keyx from a messagem and signatures.
To see why this is the case, we use the following sequence of equivalences:

s2 ≡ r−1(h(m)− xs1) (mod p)

rs2 ≡ rr−1(h(m)− xs1) (mod p)

rs2 ≡ h(m)− xs1 (mod p)

xs1 ≡ h(m)− rs2 (mod p)

x ≡ (h(m)− rs2)s−11 (mod p)

Even if the adversary is not able to uniquely determiner but is able to narrow down
the set of possible values, he or she may still be able to mountan exhaustive search
for r.

Second, it is necessary to use a fresh and unique valuer for every signature
that is generated (this requirement is analog to the Elgamalasymmetric encryption
system). Otherwise (i.e., ifr is reused), it is possible to determine the private signing
key from two valid signatures: Lets = (s1, s2) ands′ = (s′1, s

′
2) be such signatures

for two distinct messagesm andm′. If r is the same in either case, thengr (mod p)
is also the same, and hences1 = s′1. With regard tos2 ands′2, the following two
equations hold:

s2 ≡ r−1(h(m)− xs1) (mod p− 1)

s′2 ≡ r−1(h(m′)− xs1) (mod p− 1)
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If we subtracts′2 from s2, we get:

s2 − s′2 ≡ r−1(h(m)− xs1)− r−1(h(m′)− xs1) (mod p− 1)

≡ r−1h(m)− r−1xs1 − r−1h(m′) + r−1xs1 (mod p− 1)

≡ r−1h(m)− r−1h(m′) (mod p− 1)

≡ r−1(h(m)− h(m′)) (mod p− 1)

If gcd(s2 − s′2, p− 1) = 1, thens2 − s′2 is invertible modulop− 1, and this means
that one can computer as follows:

s2 − s′2 ≡ r−1(h(m)− h(m′)) (mod p− 1)

r(s2 − s′2) ≡ (h(m)− h(m′)) (mod p− 1)

r ≡ (h(m)− h(m′))(s2 − s′2)−1 (mod p− 1)

Given r, s2, s1 = s′1, andh(m), one can then compute the private keyx (as
shown above). This is unfortunate, and it basically means that a fresh and unique
r must be chosen from the full set of all possible values for every Elgamal signature
that is generated. This is a severe weakness that regularly causes problems in the
field. When we address the DSA in Section 14.2.6, we also mention a possibility to
deterministically select anr that is fresh and unique. It goes without saying that this
turns a probabilistic signature generation algorithm intoa deterministic one.

14.2.5 Schnorr

In the late 1980s,5 Claus-Peter Schnorr developed and patented6 a variant of the
Elgamal DSS that uses aq-order subgroupG of Z∗p with q | p − 1 [29].7 This
is advantageous because the computations can be done more efficiently and the
resulting signatures are shorter than the ones generated with the original Elgamal

5 While the journal version of the paper was published in 1991[29], some preliminary versions of
the paper already appeared in 1989. In fact, Schnorr gave a presentation at the rump session of
EUROCRYPT ’89 and officially presented the full paper at CRYPTO ’89.

6 The relevant patent U.S. 4,995,082 entitled “Method for Identifying Subscribers and for Generating
and Verifying Electronic Signatures in a Data Exchange System” was granted to Schnorr in 1991.

7 Remember from group theory that there is a subgroup ofZ∗
p with q elements for every prime divisor

q of p − 1. Becausep is a large prime,p − 1 is an even number, and hence there are at least two
divisors ofp−1: 2 and(p−1)/2. Consequently, there exist at least two subgroups ofZ∗

p: one with
2 elements and another one with(p− 1)/2 elements. Whether more subgroups exist depends onp
and the prime factorization ofp− 1. If q is a prime divisor ofp− 1, then there exists a subgroup of
orderq (in addition to the two subgroups mentioned above). This is the group in which the modular
arithmetic is done in Schnorr’s DSS. In some literature, such a large prime-order subgroup ofZ∗

p is
called aSchnorr group.
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DSS. Again, the Schnorr DSS is with appendix, but it can be turned into a DSS
giving message recovery. Also, we will see that it can easilybe translated in a form
that is suitable for ECC.

Table 14.6
Schnorr DSS

Domain parameters:p, q, g

Generate

(−)

x
r←− Z∗

q

y ≡ gx (mod p)

(x, y)

Sign

(x,m)

r
r←− Z∗

q

r′ ≡ gr (mod p)
s1 = h(r′ ‖ m)
s2 = (r + xs1) mod q

(s1, s2)

Verify

(y,m, (s1, s2))

u = (gs2y−s1 ) mod p
v = h(u ‖ m)
b = (v = s1)

(b)

The key generation, signature generation, and signature verification algorithms
of the Schnorr DSS are summarized in Table 14.6, wherep refers to a large prime
number,q to a smaller prime number that dividesp − 1 (i.e., q|p − 1), andg to a
generator of theq-order subgroupG of Z∗p. In a typical setting,p was anticipated to
be 1,024 bits long, whereasq was anticipated to be 160 bits long. In this setting, one
may wonder how a generatorg ofG can actually be found. To answer this question,
one may combine the following two facts:

• First,q|p− 1 means thatqr = p− 1 for some positive integerr;

• Second,hp−1 ≡ 1 (mod p) according to Fermat’s little theorem.

Replacingp−1 with qr in Fermat’s little theorem, it follows thathrq ≡ 1 (mod p).
On the other side, we know that for everyh ∈ Z∗p eitherhr ≡ 1 (mod p) or
hr 6≡ 1 (mod p) must hold. In the second case, it follows that(hr)q ≡ hrq ≡
hp−1 ≡ 1 (mod p), and this means thathr is a generator ofG. The bottom line is
that everyh for whichhr is a not equivalent to 1 modulop− 1 yields a generator of
G, and hence it is simple and straightforward to find one. Like Elgamal, the Schnorr
DSS employs a cryptographic hash functionh that generatesq-bit values. Again, in
a typical setting this is SHA-1.
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14.2.5.1 Key Generation Algorithm

The Schnorr key generation algorithmGenerate takes no input other than the
domain parameters, and it generates as output a public key pair. More specifically, it
randomly selects an elementx fromZ∗q = Zq \ {0} and computesy ≡ gx (mod p).
Similar to Elgamal,x yields a private signing key, whereasy yields a public
verification key. Whilex is at most as large asq (or q − 1 to be precise),y is yet an
element ofG but can be as large asp (or p− 1 to be precise).

Let us consider a toy example to illustrate the Schnorr DSS. For the two primes
p = 23 andq = 11 (note thatq = 11 dividesp − 1 = 22), the elementg = 2
generates a Schnorr group of order11. TheGenerate algorithm may randomly select
a private signing key fromZ∗11 = {1, . . . , 10}, such asx = 5, and compute the
respective public verification keyy ≡ 25 ≡ 32 (mod 23) = 9.

14.2.5.2 Signature Generation Algorithm

The Schnorr signature generation algorithmSign is probabilistic. It takes as input a
private signing keyx and a messagem, and it generates as output a digital signature
s = (s1, s2) for m, wheres1 and s2 are at most as large asq. The algorithm
is very similar to Elgamal: It randomly selects anr from Z∗q , and then computes
r′ ≡ gr (mod p), s1 = h(r′ ‖ m), ands2 = (r + xs1) mod q. The pair(s1, s2)
yields the Schnorr signature form. Alternatively, it is also possible to use the pair
(r′, s2) as a signature.

To digitally sign a messagem in our toy example, theSign algorithm may
randomly selectr = 7 and computer′ ≡ 27 (mod 23) = 13. If h(r′ ‖ m) yields
4, thens1 = 4 ands2 = (7 + 5 · 4) mod 11 = 5. This, in turn, suggests that the
Schnorr signature for the message is(4, 5), and the alternative signature is(13, 5).

14.2.5.3 Signature Verification Algorithm

As usual, the Schnorr signature verification algorithmVerify is deterministic. It takes
as input a public verification keyy, a messagem, and a signature(s1, s2), and
it generates as output one bitb saying whether the signature is valid or not. The
algorithm computesu = (gs2y−s1) mod p andv = h(u ‖ m), and it yieldsvalid if
and only ifv is equal tos1. This verification is correct becausev = s1 suggests that
h(u ‖ m) = h(r′ ‖ m) and henceu = r′. This equation can easily be shown to be
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true, because

u = (gs2y−s1) mod p

= (gr+xs1g−xs1) mod p

= (grgxs1g−xs1) mod p

= gr mod p

= r′

In our toy example, theVerify algorithm computesu = (25 · 9−4) mod p =
(25 · 97) mod 23 = 32 · 4, 782, 969 mod 23 = 13 andv = h(u ‖ m) = 4. The
signature is valid becausev = 4 equalss1 = 4.

Alternatively, if the pair(r′, s2) is used to represent the signature, then the
signature is valid if and only ifgs2 andgryh(r

′‖m) refer to the same element inG.
This follows fromgryh(r

′‖m) = grgxh(r
′‖m) = gr+xs1 ands2 = (r + xs1) mod q.

If the exponents are the same, then the resulting elements inG are also the same.

14.2.5.4 Security Analysis

Since the Schnorr DSS is a modified version of the Elgamal DSS,most things
we said in Section 14.2.4.4 also apply. Like Elgamal, the security of the Schnorr
DSS relies on the DLA and the computational intractability of the DLP in a cyclic
group. Unlike Elgamal, however, the Schnorr DSS relies on the DLP in a cyclic
subgroupG ⊂ Z∗p with orderq < p − 1. This problem can only be solved with a
generic algorithm. As mentioned in Section 5.4, the best we can expect from such
an algorithm is a running time that is of the order of the square root of the order of
the subgroup. If, for example, the subgroup has order2160 (as is the case here), then
the best possible algorithm has a running time of order

√
2160 = 2160/2 = 280

This is beyond the computational power of an adversary we have in mind. Conse-
quently, it is computationally intractable to solve the DLPin a subgroup ofZ∗p with
prime orderq (for sufficiently large values ofq). From a practical perspective, the
Schnorr DSS has the advantage that the signatures it generates are much shorter than
the ones generated by the Elgamal DSS. Note that each component of a signature is
of the order ofq. If q is 160 bits long, then a Schnorr signature is at most 320 bits
long. Compare this to the2 · 1024 = 2048 bits required for an Elgamal signature.
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14.2.6 DSA

Based on the DSSs of Elgamal and Schnorr, NIST developed thedigital signature
algorithm (DSA) and specified a correspondingdigital signature standardin FIPS
PUB 186 [30]. Since its publication in 1994, FIPS PUB 186 has been subject to four
major revisions in 1998, 2000, 2009, and 2013.8 Note that the latest versions of FIPS
PUB 186 also specify RSA and ECDSA in addition to DSA. So the digital signature
standard has in fact become open in terms of supported algorithms. Also note that
the original DSA was originally covered by U.S. Patent 5,231,668 entitled “Digital
Signature Algorithm” assigned to David W. Kravitz, a formerNSA employee, in
July 1993. The patent was given to “The United States of America as represented
by the Secretary of Commerce, Washington, D.C.” and NIST hasmade the patent
available worldwide without having to pay any royalty. During the second half of the
1990s, it was heavily disputed whether the DSA infringed theSchnorr patent. This
dispute, however, was never brought to court, and the question has become obsolete
because both patents expired a decade ago (the Schnorr patent in 2008 and the DSA
patent in 2010). In what follows, we mainly focus on the DSA asit was originally
specified in FIPS 186. We revisit the parameter lengths and the respective security
levels as they are specified in FIPS 186-4 at the end of the section.

Table 14.7
DSA

Domain parameters:p, q, g

Generate

(−)

x
r←− Z∗

q

y ≡ gx (mod p)

(x, y)

Sign

(x,m)

r
r←− Z∗

q

s1 = (gr mod p) mod q
s2 = r−1(h(m) + xs1) mod q

(s1, s2)

Verify

(y,m, (s1, s2))

verify 0 < s1, s2 < q

w = s−1
2 mod q

u1 = (h(m)w) mod q
u2 = (s1w) mod q
v = (gu1yu2 mod p) mod q
b = (v = s1)

(b)

The key generation, signature generation, and signature verification algorithms
are summarized in Table 14.7. Similar to the Schnorr DSS, theDSA takesp, q, and

8 The fourth revision was made in July 2013 and led to the publication of FIPS PUB 186-4. It is
electronically available at https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.
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g as domain parameters. Keep in mind that they can also be chosen individually
for each entity, but this possibility is not considered here. While p has a variable
bitlength, the bitlength ofq is fixed.

• The prime numberp is 512 + 64t bits long (fort ∈ {0, . . . , 8});
• The prime numberq dividesp−1 and is 160 bits long (i.e.,2159 < q < 2160).

In practice, it may be simpler to first select a 160-bit primeq and then select an
appropriately sized primep with the property thatq | p − 1. Anyway,p determines
the key strength, and it can be a multiple of 64 in the range between 512 and 1,024
bits.

As with the Schnorr DSS, the requirement thatq dividesp − 1 implies that
Z∗p has a subgroup of orderq (i.e., the subgroup has roughly2160 elements). The
value 160 is derived from the fact that the DSA (in its original form) was based on
SHA-1 that generates hash values of this length. This has changed in FIPS 186-4,
and the DSA now supports longer hash values and largerq (as explained later). The
last domain parameter is a generatorg that generates aq-order subgroupG of Z∗p.
Its construction is similar to the one employed by the Schnorr DSS.

Let us consider a toy example to illustrate the working principles of the
DSA: Let p = 23 and q = 11 be again the two prime numbers that fulfill the
requirement thatq = 11 dividesp− 1 = 22. Forh = 2, h(p−1)/q (mod p) refers to
222/11 ≡ 22 ≡ 4 (mod 23) = 4 and this number is greater than 1. That means that
it can be used as a generator for the subgroupG = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}
of Z∗23 that has 11 elements.9 We use this example to illustrate what is going on in
the key generation, signature generation, and signature verification algorithms of the
DSA.

14.2.6.1 Key Generation Algorithm

The DSA key generation algorithmGenerate is identical to the one employed by the
Schnorr DSS. It randomly selects a private signing keyx fromZ∗q and computes the
public verification keyy ≡ gx (mod p). Again,x is at most as large asq, whereas
y is at most as large asp.

In our toy example, the DSAGenerate algorithm may randomly selectx = 3
(that is an element ofZ∗11 = {1, 2, . . . , 10}) and computey ≡ 43 (mod23) = 18
(that is an element ofG and at most as large as 23). Consequently, the private signing
key isx = 3, whereas the public verification key isy = 18.

9 Note that the 11 elements can be generated by computing4i (mod 23) for i = 1, 2, . . . , 11.
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14.2.6.2 Signature Generation Algorithm

The DSA signature generation algorithmSign is probabilistic. It takes as input a
private signing keyx and a messagem, and it generates as output a DSA signature
s that consists of two components,s = (s1, s2). The algorithm also requires a
cryptographic hash functionh that generates hash values that have the same bitlength
asq, such as SHA-1. The algorithm randomly selects a freshr from Z∗q , and uses
this value to computes1 = (gr mod p) mod q ands2 = r−1(h(m) + xs1) mod q,
wherer−1 is the multiplicative inverse ofr moduloq. Neithers1 nor s2 must be
zero. If such a case occurs, then the algorithm must restart with anotherr. Since
each component ofs is at most 160 bits long, the total length of a DSA signature is
at most 320 bits.

In our toy example, we assume a messagem that hashes to the value 6
(i.e., h(m) = 6). The DSASign algorithm may randomly selectr = 7, compute
s1 = (47 mod 23) mod 11 = 8, determiner−1 = 7−1 mod 11 = 8, and compute
s2 = 8(6 + 8 · 3) mod 11 = 9. Consequently, the DSA signature for the message is
(8, 9).

14.2.6.3 Signature Verification Algorithm

The DSA signature verification algorithmVerify takes as input a public verification
key y, a messagem, and a signature(s1, s2), and it generates as output one bitb
saying whether the signature is valid or not. The algorithm first verifies whether
the components ofs are legitimate, meaning that they are both greater than zero
and smaller thanq (i.e., 0 < s1, s2 < q). It then computesw = s−12 mod q,
u1 = (h(m)w) mod q, u2 = (s1w) mod q, and v = (gu1yu2 mod p) mod q.
Finally, the signature is valid ifv equalss1.

The DSA is correct in the sense that the verifier always accepts valid signa-
tures. We know that the signatory has computeds2 = r−1(h(m)+xs1) mod q, and
this means that

r ≡ h(m)s−12 + xs1s
−1
2 (mod q)

≡ h(m)w + xs1w (mod q)

Becauseg has orderq, we can write

gr ≡ (gh(m)w+xs1w mod p) mod q

≡ (gh(m)wgxs1w mod p) mod q

≡ (gh(m)wys1w mod p) mod q

≡ (gu1yu2 mod p) mod q
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The correctness then follows froms1 = (gr mod p) mod q = (gu1yu2 mod
p) mod q = v.

In our toy example, the DSAVerify algorithm verifies that0 < 8, 9 < 11 and
then computes

w = 9−1 mod 11 = 5

u1 = (6 · 5) mod 11 = 30 mod 11 = 8

u2 = (8 · 5) mod 11 = 40 mod 11 = 7

v = (48187 mod 23) mod 11

= (65, 536 · 612, 220, 032) mod 23) mod 11 = 9

This value ofv equalss1 = 9, and hence the signature isvalid.

14.2.6.4 Security Analysis

The security analyses of the Elgamal and Schnorr DSSs also apply to the DSA. It is
therefore widely believed that the DSA is secure, and that one can even increasep
andq to further improve the security level. In Special Publication 800-57 [31], for
example, NIST recommends bitlengths forp that are 2,048 and 3,072, and bitlengths
for q that are 224 and 256 (instead of 160) to achieve a security level of 112 and 128
(instead of 80) bits. To achieve these security levels, one must replace SHA-1 with
SHA-224 or SHA-256. These recommended bitlengths have alsobeen adopted for
DSA in FIPS 186-4. As mentioned above, this standard also provides support for
RSA and ECDSA.

In the context of the Elgamal signature system, we already mentioned that a
probabilistic signature generation algorithm can be turned into a deterministic one,
by making the random valuer depend on the message that is signed (this mitigates
the risk of reusingr). A respective construction for DSA and ECDSA is provided in
[32]. This construction is important in environments whereaccess to a high-quality
entropy source is not available.

14.2.7 ECDSA

As already mentioned in Section 5.5, the acronym ECDSA refers to the elliptic curve
variant of DSA. That is, instead of working in aq-order subgroup ofZ∗p, one works
in a group of points on an elliptic curve over a finite fieldFq, denotedE(Fq), where
q is either an odd prime or a power of 2. The history of ECDSA is also outlined in
Section 5.5. Today, ECDSA is by far the most widely deployed DSS, and it has been
adopted in many standards, including ANS X9.62, NIST FIPS 186 (since version
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2),10 ISO/IEC 1488811 (and ISO/IEC 15946-1:2016 that provides the mathematical
background and general techniques necessary to implement ECC and the ECDSA),
IEEE 1363-2000, as well as the standards for efficient cryptography (SEC) 1 and
2. The details are subtle and beyond the scope of this book, sowe only scratch the
surface here.

In general, there are many possibilities to nail down a particular group that can
be used for ECC in general and ECDSA in particular. The only requirement is that
it is computationally intractable to solve the ECDLP (Definition 5.10) in this group.
To some extent, the fact that there are so many possibilitiesis part of the reason why
there are so many standards to choose from.

Roughly speaking, a standard for ECDSA must nail down an elliptic curve
field and equation, calledCurve, as well as a base pointG (on the curve) that
generates a subgroup of a large prime ordern; that is,nG = O (whereO is the
identity element of the group). For the sake of simplicity, we considerCurve, G,
andn to be domain parameters. In practice, more parameters are used,12 but we like
to keep things simple here.

Table 14.8
ECDSA

Domain parameters:Curve, G, n

Generate

(−)

d
r←− Z∗

n

Q = dG

(d,Q)

Sign

(d,m)

z = h(m) |len(n)

r
r←− Z∗

n

(x1, y1) = rG
s1 = x1 mod n
s2 = r−1(z + s1d) mod n

(s1, s2)

Verify

(Q,m, (s1, s2))

verify legitimacy ofQ
verify 0 < s1, s2 < n
z = h(m) |len(n)

w = s−1
2 mod n

u1 = (zw) mod n
u2 = (s1w) mod n
(x1, y1) = u1G+ u2Q
b = ((x1, y1) 6= O) ∧ (s1 = x1)

(b)

10 Some of the elliptic curves recommended by NIST in FIPS 186-4 are mentioned in Section 5.5.
11 The latest version of this standard is ISO/IEC 14888-3 released in 2018.
12 More specifically, domain parameters for ECDSA are of the form (q, FR, a, b, {seed, }G, n, h),

whereq is the order (size) of the field,FR an indication for the field representation (not addressed
here),a andb are the two elements that define the curve equation,seed is an optional bit string that
is present only if the curve was randomly generated in a verifiable fashion,G is a base point,n is
the order ofG, andh is the cofactor that is equal to the order of the elliptic curve divided byn.
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The ECDSA key generation, signature generation, and signature verification
algorithms are summarized in Table 14.8 and briefly outlinedbelow. To illustrate the
working principles of ECDSA, we reuse our exemplary elliptic curveE(Z23) with
its n = 28 elements (includingO) from Section 5.5, and we use(3, 10) as a base
point that generatesG. Note that this curve is not perfectly valid because its order
n = 28 is not prime. This means that some values may not have a multiplicatively
inverse element. We circumvent this problem here by deliberately using values that
have an inverse element.

14.2.7.1 Key Generation Algorithm

The ECDSA key generation algorithmGenerate takes no other input than the
domain parameters, but it generates as output a public key pair (d,Q). The private
signing keyd is randomly selected fromZ∗n, whereas the public verification key is
computed asQ = dG.

In our toy example, theGenerate algorithm may randomly select the private
signing keyd = 3 and compute the public verification keyQ = 3G = (19, 5).

14.2.7.2 Signature Generation Algorithm

Like all variants of Elgamal, the ECDSA signature generation algorithmSign is
probabilistic. It takes as input a private signing keyd and a messagem, and it
generates as output an ECDSA signature(s1, s2). The algorithm first computes
h(m), takes thelen(n) leftmost bits, and assigns this bitstring toz. The algorithm
then randomly selectsr from Z∗n = {1, . . . , n − 1}, and addsG so many times
to itself. The resulting point on the curve has the coordinates(x1, y1). From these
coordinates, onlyx1 is used to signm or z, respectively. In fact,s1 is set to
x1 mod n, ands2 is set tor−1(z + s1d) mod n. In either of the last two steps,
the resulting values1 or s2 must not be equal to zero (this requirement is not
indicated in Table 14.8). Otherwise, the algorithm must go back to the step in which
the algorithm randomly selectsr, and retry it with another value. In the end, the
algorithm terminates with two nonzero valuess1 ands2—they yield the ECDSA
signature form.

In our toy example, we want to digitally sign a messagem, whose leftmost
len(n) bits ofh(m) is assumed to returnz = 5. TheSign algorithm then randomly
selectsr = 11 (that has an inverse 23 modulo 28), and then computes(18, 20) =
11 ·G, s1 = 18, ands2 = 23(5+18 ·3) mod 28 = 13. Hence, the ECDSA signature
for this message is(18, 13).



Digital Signatures 427

14.2.7.3 Signature Verification Algorithm

The ECDSA signature verification algorithmVerify takes as input a public verifica-
tion keyQ, a messagem, and a signature(s1, s2), and it generates as output one
bit b saying whether the signature is valid or not. The algorithm must first verify the
legitimacy ofQ, meaning that it must verify thatQ is not equal toO, Q lies on the
curve, andnQ = O. Furthermore, it must verify that0 < s1, s2 < n. If everything
is fine, then the algorithm reconstructsz (similar to theSign algorithm), computes
w = s−12 mod n, u1 = (zw) mod n, andu2 = (s1w) mod n, and generates the
point u1G + u2Q with coordinatesx1 andy1. The signature is valid if this point
(x1, y1) is not equal toO ands1 = x1.

To show that the signature verification is correct, we start from the point
u1G + u2Q and combine it withs2 ≡ r−1(z + s1d) mod n or its inverses−12 ≡
r(z + s1d)

−1 mod n, respectively:

u1G+ u2Q = zwG+ s1wQ

= zs−12 G+ s1s
−1
2 Q

= zs−12 G+ s1s
−1
2 dG

= s−12 G(z + s1d)

= r(z + s1d)
−1G(z + s1d)

= rG

The result is the point(x1, y1), ands1 must in fact equalx1 (because it is constructed
this way in theSign algorithm).

In our toy example, we know thatQ is legitimate and we can easily verify
that 0 < 18, 13 < 28. Under the assumption thatz = 5, theVerify algorithm
computesw = 13 (13 is self-inverse modulo 28),u1 = 5 · 13 mod 28 = 9,
u2 = 18 · 13 mod 28 = 10, and(18, 20) = 9G+ 10Q. Since this point is different
fromO and itsx-coordinate is equal tos1 = 18, the signature is considered to be
valid.

14.2.7.4 Security Analysis

From a theoretical perspective, the ECDSA seems to fulfill the strongest security
definition: It protects against existential forgery under an adaptive CMA if some
well-defined conditions are met.13 Because not all conditions are satisfied by the
DSA, the security proof is not applicable, and hence the security of the ECDSA
is assumed to be superior. Also, it has been shown that a variant of the ECDSA,

13 https://eprint.iacr.org/2002/026.
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acronymed BLS,14 is provably secure in the random oracle model assuming that the
DHP (but not the DDHP) is hard. BLS signatures are very short (about 160 bits) and
can easily be aggregated. This makes them very suitable for blockchain applications.

From a practical perspective, the ECDSA seems to have the same vulnerabil-
ities as all Elgamal-like DSSs. In particular, it must be ensured that all signatures
are generated with a fresh and uniquer, and that anr is never reused. In 2010, for
example, it was shown that Sony used the samer to sign software for the PlayStation
3 game console, and this reuse allowed adversaries to recover the private signing
key. This attack was equally as devastating as it was embarrassing for Sony and its
software developers.

Table 14.9
Cramer-Shoup DSS

Domain parameters:l, l′

Generate

(−)

p, q
r←− P∗

l′

n = pq

f, x
r←− QRn

e′
r←− Pl+1

pk = (n, f, x, e′)
sk = (p, q)

(pk, sk)

Sign

(sk,m)

e
r←− Pl+1 with e 6= e′

y′
r←− QRn

solve(y′)e
′
= x′fh(m)

for x′

solveye = xfh(x′)

for y
s = (e, y, y′)

(s)

Verify

(pk,m, s)

verify e 6= e′

verify e is odd
verify len(e) = l+ 1

computex′ = (y′)e
′
f−h(m)

b = (x = yef−h(x′))

(b)

14.2.8 Cramer-Shoup

All practical DSSs addressed so far have either no rigorous security proof or only a
security proof in the random oracle model. This is differentwith the Cramer-Shoup
DSS [14]: It is practical and can be proven secure in the standard model under the
strong RSA assumption. There is also a variant that is securein the random oracle
model under the standard RSA assumption, but we leave this variant aside here. The
Cramer-Shoup DSS is based on [9], but it has the big advantagethat it is stateless;
this makes it usable in practice.

14 The acronym BLS is taken from the names of the researchers who proposed the DSS—Dan Boneh,
Ben Lynn, and Hovav Shacham.
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The key generation, signature generation, and signature verification algorithms
of the Cramer-Shoup DSS are summarized in Table 14.9. There are two domain
parameters:l andl′ > l + 1. Reasonable choices arel = 160 andl′ = 512. Also, it
makes use of a collision-resistant hash functionh whose output values arel bits long
and can be interpreted as integers between 0 and2l − 1. If, for example,l = 160,
then a reasonable choice forh is SHA-1. As usual,QRn denotes the subgroup of
Z∗n that comprises all squares (or quadratic residues) modulon.

14.2.8.1 Key Generation Algorithm

The Cramer-Shoup key generation algorithmGenerate takes no input other than the
system parameters, but generates as output a public verification keypk and a private
signing keysk. More specifically, it randomly selects twol′-bit safe primesp and
q (whereP∗l′ refers to the set of all safe primes with bitlengthl′). Remember from
Appendix A.2.4.4 thatp andq are safe primes if they are of the formp = 2p′ + 1
andq = 2q′ + 1 for some Sophie Germain primesp′ andq′. The productn = pq
yields an RSA modulus. The algorithm randomly selects two quadratic residuesf
andx modulon (i.e.,f, x ∈ QRn), as well as a primee′ from Pl+1 (i.e., the set of
all (l + 1)-bit primes). The public keypk is the 4-tuple(n, f, x, e′),15 whereas the
private keysk comprises the prime factors ofn (i.e.,p andq).

14.2.8.2 Signature Generation Algorithm

The Cramer-Shoup signature generation algorithmSign is probabilistic and requires
a collision-resistant hash functionh (as mentioned above). It takes as input a private
signing keysk and a messagem, and it generates as output a signatures. The
algorithm randomly selects an(l + 1)-bit prime e that is different frome′ and an
elementy′ fromQRn. It first solves the equation

(y′)e
′

= x′fh(m)

for x′ (i.e.,x′ = (y′)e
′

f−h(m)), and then usesx′ to solve the equation

ye = xfh(x′)

for y (i.e.,y = (xfh(x′))1/e). This can be done because the prime factorization ofn
(i.e.,p andq) is part of the private signing keysk, and hence known to the signatory.
We know from before that knowing the prime factorization ofn is computationally
equivalent to be able to compute e-th roots. In the end, the signatures consists of the
triple (e, y, y′) that is sent to the verifier together with the messagem.

15 To speed up signature generation and verification,pk may comprisef−1 instead off .
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14.2.8.3 Signature Verification Algorithm

The Cramer-Shoup signature verification algorithmVerify takes as input a public
verification keypk, a messagem, and a signatures, and it generates as output one
bit b saying whethers is a valid signature form with respect topk. The algorithm
first verifies thate is not equal toe′, e is odd, and the length ofe is equal tol + 1,
and it then computesx′ = (y′)e

′

f−h(m). Finally, it verifies whetherx = yef−h(x
′).

If this is the case, thens is indeed a valid signature form with respect topk.

14.2.8.4 Security Analysis

The security analysis can be kept very short, because we already know from the in-
troductory remarks that the Cramer-Shoup DSS can be proven secure in the standard
model under the strong RSA assumption. As usual, this is a theoretical result, and
any implementation of the Cramer-Shoup DSS may still have vulnerabilities and
security problems of its own.

14.3 IDENTITY-BASED SIGNATURES

In Section 13.4, we said that Shamir came up with the idea of identity-based
cryptography in the early 1980s, and that he also proposed anidentity-based DSS
[33]. This DSS is relatively simple and straightforward: Let a trusted authority (that
is always needed in identity-based cryptography) choose anRSA modulusn (that
is the product of two primesp andq), a large numbere with gcd(e, φ(n)), and a
one-way functionf , and publish them as domain parameters. For every user, the
trusted authority then derives a public verification keypk from the user’s identity,
and computes the private signing keysk as the e-th root ofpk modulon; that is,
ske ≡ pk (mod n). This key is used to digitally sign messages, whereaspk—
together withn, e, andf—is used to verify digital signatures. Since the trusted
authority knows the prime factorization ofn, it can always computesk from pk, but
for anybody else (not knowing the prime factorization ofn) this is computationally
intractable.

To digitally sign a messagem ∈ Zn, the user randomly selects a value
r ∈R Zn and computes

t = re mod n

and

s = (sk · rf(t,m) mod n
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The pair(s, t) yields the identity-based signature form. Note that the signatory
needssk to generate the signature. To verify it, the following equivalence must hold:

se ≡ pk · tf(t,m) (mod n)

This is correct, because

se ≡ (sk · rf(t,m))e (mod n)

≡ skeref(t,m) (mod n)

≡ pk · tf(t,m) (mod n)

Shamir’s identity-based DSS has fueled a lot of research anddevelopment in
identity-based cryptography. In particular, many other identity-based DSS have been
proposed, and for the last two decades we also know a few IBE systems. However,
the disadvantages mentioned in Section 13.4 still apply, meaning that we don’t have
a unique naming scheme, that it is difficult to set up trusted authorities (to issue
public key pairs), and that the key revocation problem remains unsolved. None of
these problems is likely to go away anytime soon, so the potential of identity-based
cryptography remains questionable (to say the least). Thisis also true for identity-
based DSS.

14.4 ONE-TIME SIGNATURES

A one-time signature systemis a DSS with the specific property that a public key pair
can be used to digitally sign a single message. If the pair is reused, then it becomes
feasible to forge signatures. There are advantages and disadvantages related to one-
time signature systems:

• The advantages are simplicity and efficiency, meaning that one-time signature
systems are particularly applicable in situations that require low computa-
tional complexity.

• The disadvantages are related to the size of the verificationkey(s) and the
corresponding key management overhead.

To overcome the disadvantages of one-time signature systems, one-time sig-
natures are often combined with techniques to efficiently authenticate public verifi-
cation keys such as Merkle trees [6, 7].

Historically, the first one-time signature system was proposed by Michael O.
Rabin in 1978. The system employed a symmetric encryption system and was too
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inefficient to be used in practice. In 1979, however, Leslie Lamport16 proposed a
one-time signature system that is efficient because it employs a one-way function
instead of a symmetric encryption [34]. If combined with techniques to efficiently
authenticate public verification keys (e.g., Merkle trees), the resulting one-time
signature systems are practical.
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Figure 14.4 Lamport’s one-time DSS.

Let f be a one-way function andm the message to be signed. The bitlength
of m is assumed to be at mostn (len(m) ≤ n), wheren may be 128 or 160 bits. If
a message is longer thann bits, it must first be shortened with a cryptographic hash
function. To digitally signm with the Lamport one-time DSS, the signatory must

16 In 2013, Leslie Lamport received the ACM Turing Award for fundamental contributions to the
theory and practice of distributed and concurrent systems,notably the invention of concepts such
as causality and logical clocks, safety and liveness, replicated state machines, and sequential
consistency.
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have a private key that consists ofn pairs of randomly chosen preimages forf :

[u10, u11], [u20, u21], . . . , [un0, un1]

Each preimageuij (i = 1, . . . , n andj = 0, 1) may, for example, be a string of
typically n bits. In an efficient implementation, the2n n-bit arguments may be
generated with a properly seeded PRG. The public key then consists of the2n images
f(uij):

[f(u10), f(u11)], [f(u20), f(u21)], . . . , [f(un0), f(un1)]

Furthermore, in an efficient implementation, the2n imagesf(uij) are hashed to a
single valuep that represents the public key required to verify the one-time signature:

p = h(f(u10), f(u11), f(u20), f(u21), . . . , f(un0), f(un1))

Remember that complementary techniques to efficiently authenticate verification
keys are required if multiple signatures must be verified.

To digitally sign messagem, each message bitmi (i = 1, . . . , n) is individu-
ally signed using the pair[ui0, ui1]. If mi = 0, then the signature bit isui0, and if
mi = 1, then the signature bit signature bit isui1. The Lamport one-time signature
s for messagem finally comprises alln signature bits:

s = [u1m1 , u2m2 , . . . , unmn ]

The signatures can be verified by computing all imagesf(uij), hashing all of
these values top′, and comparingp′ with the public keyp. The signature is valid if
and only ifp′ = p.

The Lamport one-time DSS is illustrated in Figure 14.4. As mentioned earlier,
a PRG and a seed are typically used to generate the2n valuesu10, u11, u20, u21, . . . ,
un0, un1, and a cryptographic hash functionh is typically used to compute the public
keyp. Figure 14.5 illustrates an exemplary one-time signature for the binary message
0110. The message bitm1 is digitally signed withu10, m2 with u21, m3 with u31,
andm4 with u40.

There are several possibilities to generalize and improve the efficiency of the
Lamport one-time DSS. Some of these improvements are due to Merkle. Other
improvements have been proposed recently to make one-time signature systems—
or hash-based digital signature systems as they are sometimes called—a viable
alternative for PQC (Section 18.3.2). Last but not least, wenote that the Lamport
one-time DSS and some variations thereof are also used in several cryptographic
applications. For example, they can be used to protect against the double-spending
problem in anonymous offline digital cash systems (e.g., [35]). This use is not further
addressed here.
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Figure 14.5 Exemplary one-time signature.

14.5 VARIANTS

In practice, different use cases require different types ofdigital signatures, and
several variants of normal digital signatures exist. In this section, we briefly overview
and put into perspective blind signatures, undeniable signatures, fail-stop signatures,
and group signatures. More variants are outlined and discussed in the relevant
literature (e.g., [1–4]).

14.5.1 Blind Signatures

The idea of blind signatures was developed and originally proposed by David Chaum
in the early 1980s [36, 37]. Informally speaking, a signature isblind if the signatory
does not obtain any information about the message that is signed or the signature
that is generated. Instead, the message is blinded in a way that can only be reversed
by the recipient of the blind signature.

For example, the RSA DSS as introduced in Section 14.2.1 can be turned into
a blind RSA DSS. Let A be a signatory with public RSA verification key(n, e) and
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Table 14.10
Protocol to Issue Blind RSA Signatures

B A

((n, e),m) (d)

r
r←− Z∗

n

t ≡ mre (bmod n)
t−−→

u ≡ td ≡ t1/e ≡ mdr (mod n)
u←−−

s ≡ u/r ≡ mdr/r ≡ md (mod n)

(s)

B a recipient of a blind signature from A. The protocol summarized in Table 14.10
can then be used to have A issue a blind RSA signatures for a messagem chosen
by B. On B’s side, the protocol takes as input A’s public verification key(n, e) and a
messagem, and it generates as output the RSA digital signatures form. On A’s side,
the protocol only takes A’s private signing keyd as input. B randomly selects anr
fromZ∗n and uses this random value to blind the messagem. Blinding is performed
by multiplyingm with r to the power ofe modulon. The resulting blinded message
t is transmitted to A and digitally signed there. This is done by putting t to the
power ofd modulon. The resulting messageu is sent back to B, and B is now able
to unblind the message. Unblinding is performed by dividingu by r, or multiplying
u with the multiplicative inverse ofr modulon, respectively. The inverse can be
computed becauser is a unit (and hence invertible) inZn.

At first glance, one would argue that blind signatures are notparticularly useful
because a signatory may want to know what it signs. Surprisingly, this is not always
the case, and there are many applications for blind signatures and corresponding
DSSs. Examples include anonymous digital cash and electronic voting. After Chaum
published his results in the early 1980s, almost all DSS havebeen extended in one
way or another to provide the possibility to issue blind signatures.

14.5.2 Undeniable Signatures

The notion of anundeniable signaturewas proposed in the late 1980s [38]. In
short, an undeniable signature is a digital signature that cannot be verified with
only a public verification key. Instead, it must be verified interactively, meaning
that an undeniable signature can only be verified with the aidof the signatory. The
signature verification algorithm is therefore replaced with a protocol that is executed
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between the verifier and the signatory. Because a dishonest signatory can always
refuse participation in a signature verification protocol,an undeniable DSS must
also comprise a disavowal protocol that can be used to prove that a given signature
is a forgery.

14.5.3 Fail-Stop Signatures

The notion of afail-stop signaturewas proposed in the early 1990s [39, 40]. In
short, a fail-stop signature is a signature that allows the signatory to prove that a
signature purportedly (but not actually) generated by itself is a forgery. This is done
by showing that the underlying assumption on which the DSS isbased has been
compromised. After such a compromise has been shown, the DSSstops (this is
why such signatures are called fail-stop in the first place).Fail-stop signatures are
theoretically interesting, but practically not very relevant. Note that it is much more
likely that a private signing key is compromised than the underlying assumption is
compromised.

14.5.4 Group Signatures

The notion of a group signature was developed in the early 1990s [41]. It refers to a
signature that can be generated anonymously by a member of a group on behalf of
the group. For example, a group signature system can be used by an employee of a
large company where it is sufficient for a verifier to know thata message was signed
by an employee, but not the particular employee who signed it.

Essential to a group signature system is a group manager, whois in charge
of adding group members and has the ability to reveal the original signer in the
case of a dispute. In some systems the responsibilities of adding members and
revoking signature anonymity are separated and given to a membership manager
and revocation manager, respectively. In some other systems, the requirement of a
group manager is excluded. Such a DSS is sometimes called a ring signature system.
It then provides true anonymity for potential signatories.

14.6 FINAL REMARKS

In this chapter, we elaborated on digital signatures and DSSs, and we overviewed
and discussed many examples. Note that many other DSSs—withor without specific
properties—are described and discussed in the literature.There are even some DSSs
that can be constructed from zero-knowledge protocols (Section 15.2), and DSSs
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that are qualified for PQC (Section 18.3.2 for hash-based systems and Section 18.3.3
for lattice-based systems).

It is argued (or rather hoped) that digital signatures provide the digital ana-
log of handwritten signatures, and that they can be used to provide nonrepudiation
services (i.e., services that make it impossible or uselessfor communicating peers
to repudiate participation). Against this background, many countries and commu-
nities have put forth new legislation regarding the use of digital signatures. Exam-
ples include the European Electronic Identification and Trust Services Regulation
(910/2014/EC), commonly referred to as eIDAS,17 and the U.S. Electronic Signa-
tures in Global and National Commerce Act, commonly referred to as E-SIGN.
However, although many countries have digital signature laws in place, it is im-
portant to note that these laws have not been seriously disputed in court and that it
is not clear what the legal status of digital signatures really is. The fact that digi-
tal signatures are based on mathematical formulas intuitively makes us believe that
the evidence they provide is strong. This belief is seductive and often illusive (e.g.,
[42–44]). Contrary to handwritten signatures, digital signatures are based on many
layers of hardware and software, and on each of these layers many things can go
wrong. This also applies to the user of the software who may bethe target of social
engineering attacks.
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Chapter 15

Zero-Knowledge Proofs of Knowledge

In this chapter, we explore the notion of an interactive proof system that may have
the zero-knowledge property, and discuss its application in proofs of knowledge
for entity authentication. More specifically, we introducethe topic in Section 15.1,
outline some zero-knowledge authentication protocols in Section 15.2, explore non-
interactive zero-knowledge in Section 15.3, and conclude with some final remarks
in Section 15.4. Note that the notion of zero-knowledge is hyped today, and many
things are going on. So in this chapter, we only scratch the surface and want to be
sure that the latest research results can be put into proper perspective.

15.1 INTRODUCTION

Before we start with the main topic of this chapter—zero-knowledge proofs of
knowledge—we want to elaborate a little bit on the notion of aproof. What is a
proof? This simple question turns out to be difficult to answer. On a very high level
of abstraction, a proof is just a method to establish truth. If we want to prove a claim
(that may be any proposition one may think of), we basically mean that we want to
convince somebody or even everybody that the claim is true. The details of such a
proof depend on the situation, and whether one has a philosophical, legal, scientific,
or mathematical perspective, but in all cases, the goal is toestablish a conviction of
truth.

Cryptography is about applied mathematics. so we are mainlyinterested in
mathematical proofs here. The ultimate goal of such a proof is to derive a claimed
proposition from a set of axioms, using well-defined (syntactical and semantical)
derivation rules. We don’t care much about who provides the proof and how it
is generated in the first place, but we care a lot about its correctness and the
completeness of the derivation chain. In fact, each derivation step in this chain must

441
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be comprehensible and logical. If there is a missing piece inthe chain, then the
entire proof must be rejected as being invalid. So the point to remember and keep in
mind is that a “normal” proof in mathematics is verifier-centric, meaning that only
the verifier is needed and whoever generates the proof with what computational
power is more or less pointless and doesn’t really matter. Asa consequence of this
independence from the prover, such a proof is usually transferable by default.

In the sequel, we focus entirely on decision problems that—according to
Section D.2—can be expressed as a language membership problem (i.e., given a
languageL ⊆ {0, 1}∗, decide whether a given inputx ∈ {0, 1}∗ is a member ofL,
possible answers are YES and NO). If we have a verifierV that is able to check a
proofπ for x being a member ofL, then we can define

L = {x | ∃π : V (x, π) = YES}

Put in other words, the languageL consists of allx ∈ {0, 1}∗, for which there is
a proofπ that can be verified byV . Following this line of argumentation, we can
define a proof system for membership inL as captured in Definition 15.1.

Definition 15.1 (Proof System)A proof systemfor membership inL is an algo-
rithm V , such that for allx ∈ {0, 1}∗ the following two requirements are fulfilled:

1. If x ∈ L, then there exists a proofπ with V (x, π) = YES.

2. If x /∈ L, then for all proofsπ it must be the case thatV (x, π) = NO.

While the first requirement refers to thecompletenessof the proof system, the second
requirement refers to itssoundness. A proof system iscompleteif all x ∈ L can be
proven to be so, whereas it issoundif no x /∈ L can be proven to be inL. Both
properties are important for a proof system to be useful in practice.

So far, we have put no restriction on the efficiency of the verification algorithm
V . This is not very realistic, and in practice we are interested in verification
algorithms that are efficient, meaning that they run in polynomial time. Hence,
we say that a proof system isefficientor is anNP proof system, if in addition to
the requirements of Definition 15.1 (i.e., completeness andsoundness),V is also
efficient, meaning thatV (x, π) halts after at most a polynomial number of steps
(where the polynomial is taken over the length ofx) for everyx andπ.

At this point, it is important to note that a proof system allows us to prove lan-
guage membership, but it does not allow us to prove nonmembership, meaning that
x /∈ L cannot be proven directly. Obviously, one can verify language membership
for everyx ∈ {0, 1}∗ individually and take a negative result that nox is in L as
a naı̈ve proof, but such a proof is exponentially large and outside the scope of an
efficient or NP proof system.
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This is where the work of Goldwasser and Micali—together with Charles
Rackoff—comes into play [1, 2]. After the discovery of public key cryptography
in the 1970s, this was the next major breakthrough in modern cryptography.1 In fact,
they added two ingredients to efficient or NP proof systems:

• Randomness and the possibility of make errors;

• Interaction.

The first point means that a proof may be erroneous, and hence that one must
tolerate errors, whereas the second point means that there needs to be another entity
for the verifier to interact with. This entity is called theprover, denoted asP , and
there is a protocol to be executed betweenP andV . The aim of this protocol is to
convinceV about the truth of what is claimed byP .

Contrary to the proofs discussed so far, the work of Goldwasser, Micali,
and Rackoff suggests that one can prove language membershipor nonmembership
simultaneously. To illustrate this point, we consider the QRP (Definition A.31) in
Z∗n, and assume a proverP that is able to solve this problem (because it knows the
prime factorization ofn or can otherwise “magically” solve it). For anyx ∈ Z∗n, P
can prove membership inQRn by computing a square rootw ∈ Z∗n with w2 ≡
x (mod n) and providingw as a witness. More interestingly,P can also prove
nonmembership ofx in QRn using a protocol (executed withV ) that operates in
rounds. In each round,V randomly selects a bitb ∈r {0, 1} andy ∈R Z∗n, computes
z ≡ xby2 (mod n), and challengesP with z. If b = 0, then z = y2 mod n
and hencez ∈ QRn. Otherwise (i.e., ifb = 1), thenz = xy2 mod n and hence
z ∈ QRn if and only ifx ∈ QRn. This means thatx /∈ QRn implies thatz /∈ QRn.
Against this background,P responds to the challengez with a bit b′ that is defined
as follows:

b′ =

{
0 if z ∈ QRn

1 if z /∈ QRn

V can verifyb′ by comparing it withb. If the two bits are equal (i.e.,b′ = b), then
P ’s response is correct.

• If b = 0, thenz ≡ y2 (mod n) impliesz ∈ QRn (see above). This suggests
thatb′ = 0, and henceb = b′.

1 In 1993, Goldwasser, Micali, and Rackoff—together with L´aszló Babai and Shlomo Moran—
won the prestigious Gödel Prize for this work and the respective development of interactive proof
systems.
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• If b = 1, then z ≡ xy2 (mod n) implies z ∈ QRn if and only if
x ∈ QRn. This, in turn, means that non-membership ofx in QRn suggests
nonmembership ofz in QRn (and henceb = b′).

In responding correctly in multiple rounds,P can convinceV about the
nonmembership ofx in QRn. If the confidence level is sufficiently large, then the
result can be taken as a proof.

The point to notice and keep in mind is that this type of proof is probabilistic
and interactive in nature. It is conceptually similar to a factual proof we may use in
daily life. Consider, for example, the situation in which somebody (acting as prover)
claims that he or she is able to distinguish two balls that look the same. Another
person (acting as verifier) may take the balls in the left and right hand and hide them
behind his or her back, where they are either swapped or left as they are. Again
showing the balls to the prover, he or she must tell whether the balls are swapped or
not. If the prover is right, then the test is repeated multiple times, until the verifier is
convinced that the prover is able to tell the balls apart. This is exactly the protocol
sketched above in a mathematical setting. In each round, theprover can guess with
a success probability of1/2. After two rounds, the success probability of correctly
guessing is1/4, after three rounds it is1/8, and so on and so forth. Afterk rounds,
it is 1/2k, and hence the success probability of correctly guessing (or cheating) can
be made arbitrarily small by increasingk.

Formally speaking, aninteractive proof systemis a pair(P, V ), whereP is
an arbitrary function that refers to a prover, andV is a PPT algorithm that refers
to a verifier. Note that proof verification must be efficient here, whereas this is
not required forP . If P is also a PPT algorithm, then an interactive proof is
called aninteractive argument. So the distinction between an interactive proof and
an interactive argument is that an argument can be generatedefficiently, whereas
this need not be the case for an interactive proof. In this chapter, we use the
term interactive proof to sometimes also include interactive arguments. Using this
terminology, we can define aninteractive proof systemas suggested in Definition
15.2.

Definition 15.2 (Interactive Proof System)An interactive proof systemfor mem-
bership inL is a pair (P, V ) that consists of a functionP (representing a prover)
and a PPT algorithmV (representing a verifier), such that for allx ∈ {0, 1}∗ the
following two requirements are fulfilled:

1. If x ∈ L, thenPr[(P, V )(x) = YES] ≥ 2/3.

2. If x /∈ L, then for allP ′ it must hold thatPr[(P ′, V )(x) = YES] ≤ 1/3.

Again, the first requirement refers to the completeness of the interactive proof
system, whereas the second requirement refers to its soundness. The values2/3 and
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1/3 used in the definition are somehow arbitrary and can technically be replaced
with 1/2 + 1/p(|x|) (instead of2/3) and1/2 − 1/p(|x|) (instead of1/3) for any
polynomialp(·).

We now know what a proof system is and what an interactive proof system is,
but we still have to explain the termzero-knowledge. Let us consider the situation
in which there is a proofπ for x ∈ QRn. As mentioned above, such a proofπ may
providew with w2 ≡ x (mod n) as a witness. If the prime factorization ofn is
unknown, then such a witness can be generated with a subexponential running time.
This is not efficient, but so far we have not required the prover P to be efficient (in
fact we have only required the verifierV to be efficient). Anyway, the witness can
be verified efficiently byV . Having a closer look at this setting reveals the fact that
V learns something fromπ, namely a witnessw that stands forx ∈ QRn. Prior to
seeingπ, V did not knoww and was not able to find it (because it is limited to a
PPT algorithm). This makes it obvious thatπ must have leaked some information,
and thatV was able to increase its knowledge accordingly. So this typeof proof is
clearly not zero-knowledge.

What we are looking for is a type of (interactive) proof that leaks no infor-
mation or knowledge. Unfortunately, this property is difficult to define. One may,
for example, be tempted to define it as “V doesn’t learnw,” “ V doesn’t learn any
symbol ofw,” or “V doesn’t learn any information aboutw.” All of these definitions
have defects, and what we actually want to have is thatV doesn’t learn anything at
all beyond the fact thatx ∈ QRn. It goes without saying that this is a much stronger
requirement.

Against this background, Goldwasser, Micali, and Rackoff proposed thezero-
knowledgeproperty for an interactive proof system. Informally speaking, an inter-
active proof system has this property, if whateverV can compute when interacting
with P it can also compute without interaction. More formally, onecan denoteV ’s
view of a protocol execution withP asV (view). It basically includesx, all random
values chosen byV , and all messages that are exchanged betweenP andV . Having
this notion ofV (view) in mind, we can say that a protocol leaks no information
or knowledge, if for all possible input valuesx, V (view) can be efficiently simu-
lated without interacting withP . This means that there is an efficient algorithmS
(standing for asimulator) that can generate an outputS(x) that is indistinguishable
from V (view); that is,S(x) ∼= V (view). We can writeV (view) as(P, V )(x) to
get Definition 15.3.

Definition 15.3 (Zero-Knowledge) An interactive proof system(P, V ) for L is
zero-knowledgeif there exists a PPT algorithmS, such that for allx ∈ L the relation
S(x) ∼= (P, V )(x) holds.
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This simulation property or paradigm is key to zero-knowledge. Note that it allows
us to define zero-knowledge without even defining what knowledge is. This is
somewhat astonishing.

Depending on the notion of the∼=, there are various flavors of zero-knowledge.
Most importantly, ifS(x) ∼= (P, V )(x) means thatS(x) and(P, V )(x) are computa-
tionally indistinguishable, meaning that no efficient algorithm can tell them apart. In
this case, the resulting interactive proof system iscomputationally zero-knowledge,
but for the purpose of this book, we often leave the word “computationally” aside.
To be complete, we note that an interactive proof system hasperfect zero-knowledge
if S(x) and(P, V )(x) are the same, and it hasstatistical zero-knowledgeif S(x)
and(P, V )(x) are not the same, but they are statistically close, meaning that their
statistical difference is negligible. We leave these subtleties aside here.

15.2 ZERO-KNOWLEDGE AUTHENTICATION PROTOCOLS

Because an interactive proof system yields some form of challenge-response mech-
anism, it can also be used for entity authentication. In thiscase, the zero-knowledge
property of a protocol is particularly useful because it ensures that the protocol leaks
no information about the (secret) authentication information in use no matter how
often it is executed. In the sequel, we outline three exemplary zero-knowledge au-
thentication protocols (that are conceptually similar andcan be seen as instantia-
tions of a single unifying protocol [3]). In all examples, weassume a mechanism
that allows the verifierV to learn the proverP ’s public key in some certified and
authenticated form (Section 16.4).

15.2.1 Fiat-Shamir

Soon after Goldwasser, Micali, and Rackoff had introduced the notion of a zero-
knowledge proof, Amos Fiat and Shamir found a way to implement a zero-
knowledge protocol for authentication [4]. They also founda way to use the protocol
in a noninteractive setting, and the result yields a DSS (Section 15.3). Similar to
the Rabin public key cryptosystem (Sections 13.3.2 and 14.2.3), the Fiat-Shamir
protocol takes its security from the fact that computing square roots and factoring
a modulus are computationally equivalent—that is, a squareroot modulon can be
efficiently computed if and only if the prime factorization of n is known.

Let p andq be two primes, andn their product (i.e.,n = pq). As usual, the
proverP has a private keyx ∈ Z∗n and a respective public keyy = x2 mod n. It
keeps its private key(n, x) secret and providesV with the public key(n, y). The
Fiat-Shamir authentication protocol operates in rounds, where each round looks as
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Table 15.1
A Round in the Fiat-Shamir Authentication Protocol

P V

(n, x) (n, y)

r
r←− Z∗

n

t ≡ r2 (mod n)
t−→
c←− c

r←− {0, 1}
s ≡ rxc (mod n)

s−→
s2

?≡ tyc (mod n)

(accept or reject)

illustrated in Table 15.1.P randomly selectsr ∈R Z∗n, computest ≡ r2 (mod n),
and sends this value toV . V , in turn, randomly selects a bitc ∈R {0, 1} and uses it
to challengeP .

• If c = 0, thenP must respond withs = r andV must verifys2 ≡ ty0 ≡
t (mod n).

• If c = 1, thenP must respond withs = (rx) mod n andV must verify
s2 ≡ ty (mod n).

Depending on the outcome of the verification step, the authentication is
accepted or rejected. The protocol is complete, because

s2 ≡ r2(xc)2 ≡ t(x2)c ≡ tyc (mod n)

In order to show that the system is sound, one must look at the adversary and ask
what he or she can do in each round. Obviously, the adversary can randomly select
a t ∈R Z∗n, wait forV to provide a challengec ∈R {0, 1}, and then simply guess a
value fors. The success probability of such an attack is negligible (for a reasonably
sizedn). There are, however, more subtle attacks to consider. If, for example, the
adversary was able to predict the challengec, then he or she could prepare himself
or herself to provide the correct response.

• If c = 0, then the protocol can be executed as normal; that is, the adversary
can randomly selectr and sendt ≡ r2 (mod n) ands = r to V .

• If c = 1, then the adversary can randomly selects ∈R Z∗n, compute
t ≡ s2/y (mod n), and send these values toV in the appropriate protocol
steps.
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In either case, it is not possible for the adversary to prepare himself or herself
for both cases (otherwise, he or she could also extract the private keyx). If, for
example, the adversary was able to prepares0 for c = 0 (i.e., s0 = r), ands1
for c = 1 (i.e., s1 ≡ rx (mod n)), then he or she could extractP ’s private key
x = s1/s0.

Because the adversary can predict the challengecwith a probability of1/2 and
prepare himself or herself accordingly, the cheating probability is also1/2 in each
round. This suggests that the protocol must be executed in multiple rounds (until an
acceptably small cheating probability is achieved). If, for example, the protocol is
repeatedk times (wherek is a security parameter), then the cheating probability is
1/2k. This value decreases exponentially and can be made arbitrarily small.

The Fiat-Shamir authentication protocol has the zero-knowledge property, be-
cause a dishonest verifierV ′ can use an efficient programS to simulate the protocol
and compute transcripts and respective triples(t, c, s) that are indistinguishable from
real triples. Let us consider a toy example to illustrate this point: If p = 3, q = 5,
n = pq = 15, x = 7, y ≡ 72 (mod 15) = 4 andy−1 mod 15 = 4 (note that
4 · 4 = 16 ≡ 1 (mod 15)), thenS can assumec = 0, randomly selectr = 2,
and computet ≡ 22 (mod 15) = 4 ands = 2. This yields a first triple(4, 0, 2)
that is computationally indistinguishable from a real protocol transcript. It is valid,
because22 ≡ 4 (mod 15). Next,S can assumec = 1, randomly selects = 3, and
computet ≡ 32 · 4 (mod 15) = 6 to generate a second triple(6, 1, 3). Again, it
is valid because32 ≡ 6 · 4 (mod 15). Next,S can assumec = 1, randomly select
s = 7, and computet ≡ 72 · 4 (mod 15) = 1. The result is a third triple(1, 1, 7)
that is valid, because72 ≡ 1 · 4 (mod 15). Finally,S can assumec = 0, randomly
selectr = 8, and computet ≡ 82(mod 15) = 4 ands = 8. This yields a fourth
triple (4, 0, 8) that is valid because82 ≡ 4 (mod 15). Needless to say, we can have
S generate as many triples as we like, and there is no need forS to interact withP
in the first place. In fact, the property that valid triples can be generated without any
interaction withP makes the protocol zero-knowledge.

The Fiat-Shamir protocol is conceptually simple, but it is not very efficient
(because the success probability for an adversary is divided only by two in each
round). Consequently, there are several variants of the Fiat-Shamir protocol that
speed things up using some form of parallelization.

• As already suggested in [4], one can executek rounds in parallel by replacing
t, c, and s with respective vectors ofk values each. This variant is very
efficient, but it has the disadvantage that it is not known howto construct
an efficient simulator, and hence it cannot be shown to be zero-knowledge in
a strict sense.
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• Another variant that supports some form of parallelizationwas proposed in
[5]. The idea is thatP hasz public key pairs(x1, y1), . . . , (xz , yz) instead of
only one. As before, the first message ist = r2 mod n, but the second mes-
sage now consists ofz challenge bitsc1, . . . , cz. This also means thatP must
respond withs ≡ r

∑z
i=1 x

ci
i (mod n). In some sense, allz challenges are

mixed into one single response value. Instead of1/2, the cheating probability
in this variant is1/2z, and this means that the protocol can be executed with
fewer rounds.

Other variants are described in the literature. The authentication protocol
addressed next can also be seen as a generalization of the Fiat-Shamir protocol.

15.2.2 Guillou-Quisquater

Only two years after the publication of Fiat and Shamir, Louis C. Guillou and Jean-
Jacques Quisquater proposed another variant that is more efficient [6]. Instead of
working with squares and binary challenges, this protocol works with e-th powers
(wheree is prime) and challenges between 0 ande − 1 (instead of 0 or 1). The
security of the resulting protocol is based on the RSA problem; that is, computing
e-th roots modulon without knowing the prime factorization ofn or φ(n).

Table 15.2
A Round in the Guillou-Quisquater Authentication Protocol

P V

(n, x) (n, y)

r
r←− Z∗

n

t ≡ re (mod n)
t−→
c←− c

r←− {0, . . . , e− 1}
s ≡ rxc (mod n)

s−→
se

?≡ tyc (mod n)

(accept or reject)

Again, the Guillou-Quisquater authentication protocol operates in rounds,
where each round looks as illustrated in Table 15.2. In each round,P proves that
it knows the private keyx that refers to the public keyy ≡ xe (mod n).P therefore
randomly selects anr ∈R Z∗n, computest ≡ re (mod n), and sends this value as
a commitment toV . V , in turn, randomly selects a number between0 ande − 1
and challengesP with this value.P computess ≡ rxc (mod n) and sends this
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response toV . Finally, V must verifyse ≡ tyc (mod n), and the result indicates
whether the round is accepted or rejected.

The protocol is complete, because

se ≡ (rxc)e ≡ re(xe)c ≡ tyc (mod n)

It is sound because an attacker can either guesss or prepare himself or herself for
one challengec before committing tot. In the first case, the success probability
(i.e., the probability to correctly guesss) is negligible for any reasonably sized
n. In the second case, the adversary guessesc, randomly selectss, computes
t ≡ sey−c (mod n), and uses this value as a commitment. IfV really usedc
as a challenge, then the adversary could respond withs. V , in turn, would verify
tyc ≡ sey−cyc ≡ se (mod n) and accept the proof as valid. Of course, if the guess
was wrong andV provided another challenge, then the adversary could only try to
correctly guesss. Again, this can done with only a negligible success probability.

One may wonder whether an adversary can prepare himself or herself for
different challenges to improve his or her success probability. Let us assume that
an adversary can prepare himself or herself for two challengesc1 andc2 and sends a
respective commitmentt to V . In this case, the following pair of equivalences must
hold:

se1 ≡ tyc1 (mod n)

se2 ≡ tyc2 (mod n)

Dividing the two equivalences yields(s1/s2)e ≡ yc1−c2 ≡ (xc1−c2)e (mod n),
and hences1/s2 ≡ xc1−c2 (mod n). Becausegcd(e, c1 − c2) = 1 (note thate is
prime), the adversary can use the Euclid extended algorithmto computeu andv
with u(c1− c2)+ ve = 1. He or she can then computeP ’s private keyx as follows:

(s1/s2)
uyv ≡ xu(c1−c2)xve ≡ x (mod n)

Consequently, if an adversary was able to prepare himself orherself for at least
two challenges, then he or she could extract e-th roots without knowing the group
orderφ(n). Against this background, it is reasonable to assume that the adversary
can prepare himself or herself for one challenge at most, andhence the success
probability for cheating is1/e per round. Ife is sufficiently large, then success
probability for cheating ink rounds is1/ek. Again, this probability can be made
arbitrarily small by increasingk.

The Fiat-Shamir and Guillou-Quisquater protocols are based on the difficulty
of computing square or e-th roots inZ∗n with unknown prime factorization and order.
There are also protocols that are based on the DLP. In such a protocol,P is to prove
that it knows the discrete logarithm of a public key.
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15.2.3 Schnorr

In Section 14.2.5, we introduced a DLP-based DSS that is due to Schnorr. In [7,
8], Schnorr also proposed a DLP-based authentication protocol that is in line with
the Fiat-Shamir and Guillou-Quisquater protocols. It is assumed that a large prime
p and a generatorg of Z∗p are known (they can be either system parameters or part
of the public key pairs), and thatP has a private keyx and a respective public key
y ≡ gx (mod p).

Table 15.3
A Round in the Schnorr Authentication Protocol

P V

(p, g, x) (p, g, y)

r
r←− Z∗

p

t ≡ gr (mod p)
t−→
c←− c

r←− {0, . . . , 2k − 1}
s = r + cx (mod p − 1)

s−→
gs

?≡ tyc (mod p)

(accept or reject)

As usual, the Schnorr authentication protocol operates in multiple rounds,
where a round is illustrated in Table 15.3.P randomly selectsr ∈R Z∗p, computes
t ≡ gr (mod p), and sends this value toV . V , in turn, randomly selects ak-
bit value c (wherek is again a security parameter) and challengesP with this
value. Finally,P must respond withs ≡ r + cx (mod p − 1), andV must verify
gs ≡ tyc (mod p).

The protocol is complete, because

gs ≡ grgcx ≡ tyc (mod p)

It is sound because the adversary can either guess or preparehimself or herself
for one challenge. If the adversary was able to prepare himself or herself for two
challengesc1 and c2, then he or she could determineP ’s private keyx. From
gs1 ≡ tyc1 (mod p) andgs2 ≡ tyc2 (mod p), it follows thatgs1−s2 ≡ yc1−c2 ≡
gx·(c1−c2) (mod p), and hencex ≡ (s1 − s2) · (c1 − c2)−1 (mod p− 1).
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15.3 NONINTERACTIVE ZERO-KNOWLEDGE

The major advantage of a zero-knowledge proof or protocol isdue to the fact that one
can mathematically show that the verifier learns nothing more than the correctness of
the statement that is proven. This is particularly useful inthe realm of authentication
protocols. The major disadvantage, however, is that a zero-knowledge proof or
protocol is interactive by default, meaning that messages need to be sent back and
forth (between the prover and the verifier). There are many application settings in
which this level of interaction is neither possible nor welcome. Consequently, people
have been looking for possibilities to prove statements in zero-knowledge without
requiring any form of interaction. This leads to the notion of a noninteractive zero-
knowledge proof, in which a single message is sent from the prover to the verifier.
In some sense, the resulting proofs can be seen as the probabilistic analog of a
conventional (noninteractive) proof.

After having introduced the notion of zero-knowledge in general, and the
Fiat-Shamir authentication protocol in particular, it became clear that the latter can
be turned into a DSS (that is also noninteractive by default). The trick [4] is to
replace the challengec that is randomly selected by the verifier with a hash value
c = h(m, t) that takes into account the messagem and the commitmentt. The
pair (t, s) then yields a digital signature form. The resulting Fiat-Shamir DSS is
summarized in Table 15.4. It speaks for itself.

Table 15.4
Fiat-Shamir DSS

System parameters: —

Generate

(1l)

p, q
r←− Pl/2

n = p · q
x

r←− Z∗
n

y ≡ x2 (mod n)

((n, x), (n, y))

Sign

((n, x), m)

r
r←− Z∗

n

t ≡ r2 (mod n)
c = h(m, t)
s ≡ rxc (mod n)

(t, s)

Verify

((n, y), m, (t, s))

b = (s2 ≡ tyc (mod n))

(b)

The Fiat-Shamir DSS is secure against CMA as long ash is a random oracle
(meaning that the proof is in the random oracle model). Obviously, the construc-
tion does not require interaction and is noninteractive. Because the zero-knowledge
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property still applies, it provides a possibility to implement noninteractive zero-
knowledge. The construction is known as theFiat-Shamir heuristic—it is generally
applicable and can be used to turn an interactive proof of knowledge into a DSS.
Consequently, similar DSS can be constructed from the Guillou-Quisquater proto-
col, and—as outlined in Section 14.2.5 and Table 14.6—from the Schnorr protocol.

More generally, noninteractive zero-knowledge proofs arezero-knowledge
proofs in which no interaction is necessary between the prover and the verifier. This
means that a single message is sent from the prover to the verifier, and this structure
matches the needs of many cryptographic protocols and has therefore many use cases
and applications. In 1988, Blum, Paul Feldman, and Micali showed that a common
reference string generated by a trusted party and accessible to both the prover and the
verifier is sufficient to achieve computational zero-knowledge without interaction
[9].2 Their model is commonly called thecommon reference stringmodel, and it is
used in many noninteractive zero-knowledge proofs.

In the early 1990s, Oded Goldreich and Yair Oren proved that noninteractive
zero-knowledge is impossible to achieve in the standard model; that is, without
any further assumption, like the common reference string model or the random
oracle model [11], and in the early 2000s, Goldwasser and Yael Tauman Kalai
even published an instance of the Fiat-Shamir protocol for which any concrete hash
function yields an insecure DSS [12]. At first glance, these results seem to contradict
[9, 10] and [4], but this is not the case. Note that the impossibility results neither hold
in the common reference string model (used in [9, 10]) nor in the random oracle
model (used in [4]). But noninteractive zero-knowledge seems to draw a clear line
between what can be achieved in the standard model and what can be achieved
in more powerful models, like the common reference string orrandom oracle
model. Without such a model, noninteractive zero-knowledge remains impossible to
achieve. Needless to say, people have been exploring other models for noninteractive
zero-knowledge. This is actually an ongoing research effort.

15.4 FINAL REMARKS

The notion of zero-knowledge was invented in the 1980s. For the first three decades,
it was a theoretically stimulating research topic but was not used in the field. Even
the zero-knowledge authentication protocols that looked very promising in the be-
ginning (especially for smartcard implementations) were not widely deployed. This
is unfortunate, because the zero-knowledge property of a proof or protocol is ad-
vantageous from a security viewpoint. It means, for example, that an authentication

2 There is also a journal version of the paper that appeared in1991 [10].
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protocol can be executed arbitrarily many times without having to change the un-
derlying authentication information (since the protocol execution does not leak any
information or knowledge about it). The biggest problem onefaces with these types
of protocols is the high degree of interaction, which means that many messages
must be sent back and forth between the prover and the verifier. This limits the
performance one can achieve in practice.

Against this background, zero-knowledge has experienced astrong revival in
its noninteractive form in the past decade. As a matter of fact, people have been
using the Fiat-Shamir heuristic to come up with the notion ofa SNARK, an acronym
standing for a succinct noninteractive argument of knowledge, or even a zk-SNARK,
standing for a zero-knowledge SNARK [13]. Zk-SNARKs are currently used, for
example, in a blockchain-based crypto currency called Zcash.3 They have initiated
an entirely new line of research that seeks to make noninteractive zero-knowledge
proofs or arguments as efficient as possible (since they needto be stored and
processed in blockchains). Examples of such techniques include Bulletproofs4 and
zk-STARKs.5 Whenever one needs to be assured that some parties behave honestly
in a cryptographic protocols, noninteractive zero-knowledge proofs or arguments
may provide a viable solution.
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Chapter 16

Key Management

In this chapter, we discuss some aspects related to key management. More specifi-
cally, we introduce the topic and elaborate on the life cycleof a cryptographic key
in Section 16.1, address secret sharing, key recovery, and certificate management
(also known as PKI) in Sections 16.2–16.4, and conclude withsome final remarks
in Section 16.5. This chapter briefly addresses all relevanttopics related to key man-
agement, but it does not delve into the details (a more thorough and comprehensive
treatment of these topics is beyond the scope of this book).

16.1 INTRODUCTION

According to [1], the termkey managementrefers to “the process of handling and
controlling cryptographic keys and related material (suchas initialization values)
during their life cycle in a cryptographic system, including ordering, generating,
distributing, storing, loading, escrowing, archiving, auditing, and destroying the
material.” This process is so complex that it represents theAchilles’ heel of almost
all systems that employs cryptography and cryptographic techniques in one way
or another (we already made this point in Section 2.3.1). There are (at least) two
conclusions to draw:

• First, if one is in charge of designing a security system, then one has to get
the key management process right. Otherwise, there is no usein employing
cryptography and cryptographic techniques in the first place.

• Second, if one is in charge of breaking a security system, then one should
also start with the key management process. Most successfulattacks against
cryptographic systems are exploits of vulnerabilities or weaknesses related to
key management.

459
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Consequently, the key management process is by far the most important part of
a security system that employs cryptography and cryptographic techniques. This is
equally true for the cryptographer who designs the system and the cryptanalyst who
may want to break it. Because the key management process is socomprehensive
and complex, there is usually no single standard to refer to.Instead, there are many
standards that address specific questions and problems related to key management.
Some of these standards are overviewed, discussed, and put into perspective in [2].

According the definition given above, the life cycle of a cryptographic key
includes many tasks, including “ordering, generating, distributing, storing, loading,
escrowing, archiving, auditing, and destroying” keying material. The more impor-
tant tasks, namely key generation, distribution, storage,and destruction are briefly
addressed next, whereas key escrow is discussed in Section 16.3.

16.1.1 Key Generation

Unless one is in the realm of unkeyed cryptosystems, the use of a cryptographic
system always requires the generation of cryptographic keys and related material
(e.g., IVs) in one way or another. The generation of this material, in turn, requires the
use of a random generator as addressed in Chapter 3. Either the random generator is
used directly to generate the cryptographic keys or—more preferably—the random
bit generator is used to seed a PRG (Chapter 7). In either case, it is important to know
and properly understand the possible realizations and implementations of random
generators and PRGs.

16.1.2 Key Distribution

Ideally, the cryptographic keys are used where they are generated, and hence the
distribution of the cryptographic keys does not represent aproblem. In all other
cases, however, the distribution of the keys is a problem andmust be considered
with care. In fact, it must be ensured that the keys cannot be attacked passively or
actively during their distribution. This is an important and challenging engineering
task. Some key establishment techniques have been discussed in Chapter 12. Many
other key distribution protocols and systems have been developed, proposed, imple-
mented, and partly deployed in the field (e.g., [3]). Again, there are many subtle
details that must be considered and addressed with care.

16.1.3 Key Storage

Unless a cryptographic key is ephemeral (short-lived), it is typically used for a
long period of time (i.e., between its generation and destruction). In this entire
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period, the key must be securely stored, meaning that it mustbe stored in a
way that cannot be attacked passively or actively. Again, this is an important and
challenging engineering task where many things can go wrong. Compared to the key
distribution problem, the key storage problem is theoretically and practically even
more challenging. One reason is that the storage of a key can only be considered in
the context of a specific operating system. So the key storageand operating system
security problems are not independent from each other, and the first problem depends
on the second. Unfortunately, we know that the security of currently deployed
operating systems is not particularly good, and hence thereare many low-level
details that must be considered when one wants to provide a (secure) solution for
key storage.

If there is no single place to store a key, then one may consider using a
secret sharing scheme as addressed in the following sectionto store the key in a
decentralized and distributed way. As of this writing, however, these schemes are
not as widely deployed as one would expect considering theirtheoretical importance
and usefulness.

16.1.4 Key Destruction

At the end of its life cycle, a cryptographic key may be archived and must be
destructed. Due to its electronic nature, the destruction of a key is not as simple
as it might seem at first glance. There are two reasons:

• First, it is technically difficult to destroy data that is stored electronically. In
practice, one usually requires to wipe the memory location by overwriting it
multiple times with random bit patterns.

• Second, there may be (many) temporary copies of the key held in memory.
This means that a memory dump with a subsequent analysis may reveal all
keys that have been used recently.

Note that the feasibility of recovering electronically stored data was, for
example, demonstrated by the cold boot attack mentioned in Section 1.2.2.2. Also
note that the question whether and to what extent keys can be securely destroyed
mainly depends on the operating system in use.

16.2 SECRET SHARING

As already mentioned, there are situations in which it may beuseful to split a secret
value (e.g., a cryptographic key) into multiple parts and have different parties hold
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and manage these parts. If, for example, one wants to haven parties share a secret
values, then one can randomly choosen− 1 valuess1, . . . , sn−1, compute

sn = s⊕ s1 ⊕ . . .⊕ sn−1

and distributes1, . . . , sn to the n parties. The secret values can then only be
recovered if alln parties contribute their parts. Consequently, such asecret splitting
systemrequires that all parties are available and reliable, and that they all behave
honestly in one way or another. If only one party is not available, loses its part, or
refuses to contribute it, then the secret values can no longer be recovered. Needless
to say, this is a major drawback of a secret splitting system that severely limits its
usefulness in the field.

In 1979, Shamir [4] and George Blakley [5] independently came up with the
notion ofsecret sharingas a viable alternative to secret splitting. In asecret sharing
system, it is generally not required that all parties are availableand reliable, and that
they all behave honestly. Instead, the reconstruction of the secret values requires
only the parts of a well-defined subset of all parts (in this case, the parts are called
shares). More specifically, a secret sharing system allows an entity, called the dealer,
to share a secret values among a setP of n players; that is,P = {P1, . . . , Pn}, such
that only a qualified subset ofP can reconstructs from their shares. It is usually
required that all nonqualified subsets of the players get absolutely no information
abouts (as mentioned later, the secret sharing system is then called perfect). The
secret and the shares are usually elements of the same domain, most often a finite
field.

Formally, the set of qualified subsets is a subset of the powerset 2P and
is called theaccess structureΓ of the secret sharing system. If, for example,
Γ = {{P1, . . . , Pn}} (i.e., only all players are qualified), then the secret sharing
system is a secret splitting system as described earlier. More generally, ak-out-of-n
secret sharing schemecan be defined as suggested in Definition 16.1.

Definition 16.1 (K-out-of-n secret sharing system)Ak-out-of-n secret sharing sys-
tem is a secret sharing system in which the access structure is

Γ = {M ⊆ 2P : |M | ≥ k}

A k-out-of-n secret sharing system isperfectif k − 1 players who collaborate
(and pool their shares) are not able to recovers or retrieve any information abouts.
As mentioned above, there are two proposals of systems that fulfill this requirement.
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16.2.1 Shamir’s System

Shamir’s k-out-of-n secret sharing system [4] is based on polynomial interpolation.
More specifically, the system employs the fact that that a polynomialf(x) of degree
k − 1 (over a field) can be uniquely interpolated fromk points. This means that a
polynomial of degree 1 can be interpolated from 2 points, a polynomial of degree
2 can be interpolated from 3 points, and so on. The corresponding interpolation
algorithm has been around for a long time. It is usually attributed to Lagrange. Let

f(x) = r0 + r1x+ . . .+ rk−1x
k−1 =

k−1∑

i=0

rix
i (16.1)

be a polynomial of degreek − 1 that passes through thek points

(x1, f(x1) = y1)

(x2, f(x2) = y2)

. . .

(xk, f(xk) = yk)

The Lagrange interpolating polynomialP (x) is then given by

P (x) =

k∑

i=1

Pi(x)

where

Pi(x) = yi

k∏

j=1;j 6=i

x− xj
xi − xj

Written explicitly,

P (x) = P1(x) + P2(x) + . . .+ Pk(x)

= y1
(x− x2)(x− x3) · · · (x− xk)

(x1 − x2)(x1 − x3) · · · (x1 − xk)

+y2
(x − x1)(x − x3) · · · (x− xk)

(x2 − x1)(x2 − x3) · · · (x2 − xk)
+ . . .

+yk
(x − x1)(x − x2) · · · (x − xk−1)

(xk − x1)(xk − x2) · · · (xk − xk−1)
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In Shamir’s k-out-of-n secret sharing system, the secret (to be shared) represents the
coefficientr0. The dealer randomly selectsk − 1 coefficientsr1, . . . , rk−1 to define
a polynomial according to (16.1). For every playerPi, the dealer then assigns a fixed
nonzero field elementxi and computesyi = f(xi). The pair (xi, f(xi)) then yields
Pi’s share.

Anybody who is givenk shares can compute the secretr0 by evaluating the
Lagrange interpolating polynomial at point zero; that is,s = r0 = P (0). Anybody
who is given fewer thank shares cannot compute the secret. More precisely, anybody
who is given fewer thank shares does not obtain any (partial) information about the
secret. This means that Shamir’s k-out-of-n secret sharingsystem is perfect.

16.2.2 Blakley’s System

Independent from Shamir’s work, Blakley proposed a secret sharing system that is
geometric in nature [5]. In Blakley’s system, the secret is apoint in ak-dimensional
space. Then shares are constructed with each share defining an affine hyperplane in
this space; an affine hyperplane, in turn, is the set of solutionsx = (x1, . . . , xk) to
an equation of the form

a1x1 + . . .+ akxk = b

By finding the intersection of anyk of these planes, the secret (i.e., the point of
intersection) can be obtained. Note that this system is not perfect, as a person with a
share of the secret knows the secret is a point on his or her hyperplane (this is more
than a person without a share). Nevertheless, it is fair to say that the system can be
modified to also achieve perfect security (e.g., [6]).

16.2.3 Verifiable Secret Sharing

K-out-of-n secret sharing systems are interesting from a theoretical viewpoint. This
is particularly true if the systems are perfect. From a more practical viewpoint,
however, there are at least two problems that must be addressed and considered
with care:

• If a malicious player is not honest and provides a wrong share, then the secret
that is reconstructed is also wrong.

• If the dealer is malicious or untrusted, then the players maywant to have a
guarantee that they can in fact put together the correct secret.

A verifiable secret sharing systemcan be used to overcome these problems.
For example, Shamir’s k-out-of-n secret sharing system canbe made verifiable by
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having the dealer make commitments to the coefficients of thepolynomialf(x) and
providing the players with help-shares they can use to verify shares. We don’t delve
deeper into verifiable secret sharing in this book. Note, however, that verifiable secret
sharing systems play a central role in many cryptographic systems and applications,
such as electronic cash or electronic voting.

16.2.4 Visual Cryptography

In 1994, Shamir and Moni Naor developed and proposed a visualvariant of secret
sharing that is commonly referred to as visual cryptography[7]. In short, visual
cryptography can be used to share a secret picture amongn participants. The picture
is divided inton transparencies (that play the role of the shares) such that if any k
transparencies are placed together, the picture becomes visible, but if fewer than
k transparencies are placed together, nothing can be seen at all. Such a visual
cryptosystem can be constructed by viewing the secret picture as a set of black
and white pixels and handling each pixel individually. Mostvisual cryptosystems
proposed in the literature are perfectly secure and can be implemented easily without
any cryptographic computation. A further improvement allows each transparency
to represent an innocent-looking picture, such as a pictureof a landscape or a
picture of a flower), thus concealing the fact that secret sharing is taking place.
Consequently, steganographic techniques are sometimes used in combination with
visual cryptography.

16.3 KEY RECOVERY

If one uses cryptographic techniques for data encryption, then one may also be
concerned about the fact that (encryption and decryption) keys get lost. What
happens, for example, if all data of a company are securely encrypted and the
decryption key is lost? How can the company recover its data?The same questions
occur if only the data of a specific employee are encrypted. What happens if the
corresponding decryption key gets lost? What happens if theemployee himself
or herself gets lost? It is obvious that a professional use ofcryptography and
cryptographic techniques for data encryption must take into account a way to recover
cryptographic keys.

According to [1], the termkey recoveryrefers to “a process for learning the
value of a cryptographic key that was previously used to perform some cryptographic
operation” [1]. Alternatively, one may also use the term to refer to “techniques
that provide an intentional, alternate (i.e., secondary) means to access the key used
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for data confidentiality service.” There are basically two classes of key recovery
techniques:

• Key escrowis “a key recovery technique for storing knowledge of a crypto-
graphic key or parts thereof in the custody of one or more third parties called
escrow agents, so that the key can be recovered and used in specified circum-
stances” [1]. In this context, escrow agents are sometimes also called trusted
third parties (TTPs).

• Key encapsulationis “a key recovery technique for storing knowledge of
a cryptographic key by encrypting it with another key and ensuring that
only certain third parties calledrecovery agentscan perform the decryption
operation to retrieve the stored key. Key encapsulation typically allows direct
retrieval of the secret key used to provide data confidentiality” [1]. Key
encapsulation has sometimes been used in security protocols that don’t have
key recovery as their primary goal (e.g., [8–10]).

The basic principles of key escrow and key encapsulation areillustrated in
Figure 16.1. In key escrow, the cryptographically protected data is sent from A to B,
whereas the key recovery data is sent to a TTP. In key encapsulation, either data is
sent directly from A to B. Another way to look at things is to say that key escrow
refers to out-band key recovery, whereas key encapsulationrefers to in-band key
recovery. These terms, however, are less frequently used inthe literature.

Key recovery in general, and key escrow in particular, became hotly debated
research topics in the mid-1990s [11], and the discussion was even more intensified
when the U.S. government published theEscrowed Encryption Standard(EES) [12]
and released an implementation of it in the so-called Clipper chip. The EES was basi-
cally a secret splitting system with two governmental bodies acting as escrow agents.
This was the major problem of the EES. People were concerned about the possibility
of having the government illegitimately decrypting their communications—notably
without any restriction in time. Also, it was argued that keyescrow on transmitted
data is neither necessary nor particularly useful (becauseeither end of the commu-
nication can provide the data in unencrypted form). The controversy about the EES
and the Clipper chip suddenly came to an end when it was shown that the original
design of the EES was flawed [13].1 The flaw was an authentication field that was
too short to provide protection against a brute-force attack.

In 1997, a group of recognized cryptographers wrote a highlyinfluential paper
about the risks related to key recovery, key escrow, and TTP encryption [15]. Today,
the U.S. export controls are relaxed, but state-controlledcryptography remains an
issue. Most of the same group of cryptographers therefore wrote a follow-up paper

1 You may also refer to [14] for the entire story about the EES,the Clipper chip, and the crypto debate.
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Figure 16.1 Key escrow and key encapsulation.

in 2015 [16]. Both papers can be used as starting point to discuss the crypto wars
that have been going on for decades.

16.4 CERTIFICATE MANAGEMENT

Most cryptographic technologies and protocols in use todayemploy public key
cryptography and public key certificates. The management ofthese certificates is
an involved topic that is briefly addressed here. We introduce the topic in Section
16.4.1, elaborate on X.509 certificates and OpenPGP certificates in Sections 16.4.2
and 16.4.3, and briefly address the state of the art in Section16.4.4.

16.4.1 Introduction

According to [1], the termcertificaterefers to “a document that attests to the truth of
something or the ownership of something.” This definition isfairly broad and applies
to many subject areas, not necessarily related to cryptography or even public key
cryptography. In this particular area, the term certificatewas coined and first used
by Loren M. Kohnfelder [17] to refer to a digitally signed record holding a name and
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a public key. As such, it was positioned as a replacement for apublic file2 that had
been used before. A respective certificate is to attest to thelegitimate ownership of a
public key and to attribute the key to a particular entity, such as a person, a hardware
device, or anything else. Quite naturally, such a certificate is called apublic key
certificate. Such certificates are used by many cryptographic security technologies
and protocols in use today in one way or another. Again referring to [1], a public key
certificate is a special case of a certificate, namely one “that binds a system entity’s
identity to a public key value, and possibly to additional data items.” As such, it is a
digitally signed data structure that attests to the true ownership of a particular public
key.

More generally (but still in accordance with [1]), a certificate can not only
be used to attest to the legitimate ownership of a public key (as in the case of a
public key certificate), but also to attest to the truth of some arbitrary property that
could be attributed to the certificate owner. This more general class of certificates
is commonly referred to asattribute certificates. The major difference between a
public key and an attribute certificate is that the former includes a public key (i.e.,
the public key that is certified) whereas the latter includesa list of attributes (i.e., the
attributes that are certified). In either case, the certificates are issued (and possibly
revoked) by authorities that are recognized and trusted by acommunity of users.

• In the case of public key certificates, the authorities in charge are calledcerti-
fication authorities(CAs3) or—more related to digital signature legislation—
certification service providers(CSPs);

• In the case of attribute certificates, the authorities in charge are calledattribute
authorities(AAs).

It goes without saying that a CA and an AA may be the same organization.
As soon as attribute certificates start to take off, it is possible and very likely that
CAs will also try to establish themselves as AAs. It also goeswithout saying that a
CA can have one or severalregistration authorities(RAs)—sometimes also called
local registration authoritiesor local registration agents(LRAs). The functions an
RA carries out vary from case to case, but they typically include the registration and
authentication of the entities (typically human users) that want to become certificate
owners. In addition, the RA may also be involved in tasks liketoken distribution,
certificate revocation reporting, key generation, and key archival. In fact, a CA can
delegate some of its tasks (apart from certificate signing) to an RA. Consequently,

2 A public file was just a flat file that included the public keys and names of the key owners in any
particular order (e.g., sorted alphabetically with regardto the names of the key owners). The entire
file could be digitally signed if needed.

3 In the past, CAs were often called trusted third parties (TTPs). This is particularly true for CAs that
are operated by government bodies.
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RAs are optional components that are transparent to the users. Also, the certificates
that are generated by the CAs may be made available in online directories and
certificate repositories.

While the notion of a CA is well defined and sufficiently precise, the notion of
apublic key infrastructure(PKI) is more vague. According to [1], a PKI is “a system
of CAs that perform some set of certificate management, archive management, key
management, and token management functions for a communityof users,” that
employ public key cryptography (as one may be tempted to add here). Another way
to look at a PKI is as an infrastructure that can be used to issue, validate, and revoke
public keys and public key certificates. Hence, a PKI comprises a set of agreed-upon
standards, CAs, structures among multiple CAs, methods to discover and validate
certification paths, operational and management protocols, interoperable tools, and
supporting legislation.

In the past, PKIs have experienced a great deal of hype, and many companies
and organizations have started to provide certification services on a commercial
basis. Unfortunately (and for the reasons discussed in [18]), most of these service
providers have failed to become commercially successful. In fact, the PKI business
has turned out to be particularly difficult to make a living from, and there are only
a few CAs that are self-feeding. Most CAs that are still in business also have other
sources of revenue.

Many standardization bodies are working in the field of public key certificates
and the management thereof. Most importantly, the Telecommunication Standard-
ization Sector of the International Telecommunication Union (ITU-T) has released
and is periodically updating a recommendation that is commonly referred to as ITU-
T X.509 [19], or X.509 in short. The respective certificates are addressed in Section
16.4.2. Meanwhile, ITU-T X.509 has also been adopted by manyother standard-
ization bodies, including the International Organizationfor Standardization (ISO)
and the International Electrotechnical Committee (IEC) Joint Technical Committee
1 (JTC1) [20]. Furthermore, a few other standardization bodies also work in the
field of profiling ITU-T X.509 for specific application environments.4 In 1995, for
example, the IETF recognized the importance of public key certificates for Internet
security, and chartered an IETF Public-Key InfrastructureX.509 (PKIX5) WG to
develop Internet standards for an X.509-based PKI. The PKIXWG initiated and
stimulated a lot of standardization and profiling activities within the IETF, and was
closely aligned with the activities of the ITU-T. In spite ofthe practical importance
of the specifications of the IETF PKIX WG, we do not delve deeper into the details

4 To profile ITU-T X.509—or any general standard or recommendation—basically means to fix the
details with regard to a specific application environment. The result is a profile that elaborates on
how to use and deploy ITU-T X.509 in the environment.

5 http://www.ietf.org/html.charters/pkix-charter.html.
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in this book (as this is a topic for a book on its own). The IETF PKIX WG was
concluded in 2013, almost 20 years after it was chartered.6

As mentioned before, a public key certificate comprises at least the following
three main pieces of information:

• A public key;

• Some naming information;

• One or more digital signatures.

Thepublic keyis the raison d’être for the public key certificate, meaningthat
the certificate only exists to certify the public key in the first place. The public
key, in turn, can be from any public key cryptosystem, like RSA, Elgamal, Diffie-
Hellman, DSA, or anything else. The format (and hence also the size) of the public
key depends on the system in use.

The naming informationis used to identify the owner of the public key and
public key certificate. If the owner is a user, then the naminginformation typically
consists of at least the user’s first name and surname—also known as the family
name. In the past, there has been some discussions about the namespace that can
be used here. For example, the ITU-T recommendation X.500 introduced the notion
of a distinguished name(DN) that can be used to identify entities, such as public
key certificate owners, in a globally unique namespace. However, since then, X.500
DNs have not really taken off, at least not in the realm of naming persons. In this
realm, the availability and appropriateness of globally unique namespaces have been
challenged in the research community (e.g., [21]). In fact,the Simple Distributed
Security Infrastructure (SDSI) initiative and architecture [22] has started from the
argument that a globally unique namespace is not appropriate for the global Internet,
and that logically linked local namespaces are simpler and therefore more likely to
be deployed (this point is further explored in [23]). As such, work on SDSI inspired
the establishment of a Simple Public Key Infrastructure (SPKI) WG within the IETF
Security Area. The WG was chartered in 1997 to produce a certificate infrastructure
and operating procedure to meet the needs of the Internet community for trust
management in a way that was as easy, simple, and extensible as possible. This was
partly in contrast (and in competition) to the IETF PKIX WG. The IETF SPKI WG
published a pair of experimental RFCs [24, 25] before its activities were abandoned
in 2001.7 Consequently, the SDSI and SPKI initiatives have turned outto be dead
ends for the Internet as a whole. They barely play a role in today’s discussions about

6 To be precise, the IETF PKIX WG was chartered on October 26, 1995, and it was concluded on
October 31, 2013. It was therefore active for slightly more than 18 years.

7 The WG was formally concluded in February 2001, only four years after it was chartered.
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the management of public key certificates. But the underlying argument that globally
unique namespaces are not easily available remains valid.

Last but not least, thedigital signature(s)is (are) used to attest to the fact that
the other two pieces of information (i.e., the public key andthe naming information)
belong together. The digital signature(s) turn(s) the public key certificate into a data
structure that is useful in practice, mainly because it can be verified by anybody who
knows the signatory’s (i.e., CA’s) public key. These keys are normally distributed
with particular software, be it at the operating system or application software level.

As of this writing, there are two types of public key certificates that are
practically relevant and in use:X.509andOpenPGP certificates. While their aims
and scope are somewhat similar, they use different certificate formats and trust
models. Atrust model, in turn, refers to the set of rules that a system or application
uses to decide whether a certificate is valid. In the direct trust model, for example, a
user trusts a public key certificate only because he or she knows where it came from
and considers this entity to be trustworthy. In addition to the direct trust model,
there is a hierarchical trust model, as employed, for example, by ITU-T X.509,
and a cumulative trust model, as employed, for example, by OpenPGP. These trust
models can also be calledcentralizedand distributed. It then becomes clear that
there is hardly anything in between. Hence, coming up with alternatives to the direct,
hierarchical, and cumulative trust models is somewhat challenging.

16.4.2 X.509 Certificates

As mentioned before (and as their name suggests), X.509 certificates conform to
the ITU-T recommendation X.509 [19] first published in 1988 as part of the X.500
directory series of recommendations. It specifies both a certificate format and a
certificate distribution scheme (while the specification language used was ASN.1).
The original X.509 certificate format has gone through two major revisions:

• In 1993, the X.509 version 1 (X.509 v1) format was extended toincorporate
two new fields, resulting in the X.509 version 2 (X.509 v2) format.

• In 1996, the X.509 v2 format was revised to allow for additional extension
fields. This was in response to the attempt to deploy certificates on the global
Internet. The resulting X.509 version 3 (X.509 v3) specification has since then
been reaffirmed every couple of years.

When people today refer to X.509 certificates, they essentially refer to X.509
v3 certificates (and the version denominator is often left aside in the acronym). Let
us now have a closer look at the X.509 certificate format and the hierarchical trust
model it is based on.
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16.4.2.1 Certificate Format

With regard to the use of X.509 certificates, the profiling activities within the IETF
PKIX WG are particularly important. Among the many RFC documents produced
by this WG, RFC 5280 [26] is the most relevant one (with some RFC documents
that yield some updates on particular topics. Without delving into the details of
the respective ASN.1 specification for X.509 certificates, we note that an X.509
certificate is a data structure that basically consists of the following fields (remember
that any additional extension fields are possible):8

• Version:This field is used to specify the X.509 version in use (i.e., version 1,
2, or 3).

• Serial number:This field is used to specify a serial number for the certificate.
The serial number is a unique integer value assigned by the (certificate) issuer.
The pair consisting of the issuer and the serial number must be unique—
otherwise, it would not be possible to uniquely identify an X.509 certificate.

• Algorithm ID: This field is used to specify the object identifier (OID) of the
algorithm that is used to digitally sign the certificate. Forexample, the OID
1.2.840.113549.1.1.5 refers tosha1RSA, which stands for the combined use
of SHA-1 with RSA encryption. Many other OIDs are specified inrespective
standards.

• Issuer:This field is used to name the issuer. As such, it comprises theDN of
the CA that issues (and digitally signs) the certificate.

• Validity: This field is used to specify a validity period for the certificate. The
period, in turn, is defined by two dates, namely a start date (i.e., Not Before)
and an expiration date (i.e., Not After).

• Subject:This field is used to name the subject (i.e., the owner of the certificate,
typically using a DN).

• Subject Public Key Info:This field is used to specify the public key (together
with the algorithm) that is certified.

8 From an educational viewpoint, it is best to compare the field descriptions with the contents of
real certificates. If you run a Windows operating system, then you may look at some certificates by
running the certificate snap-in for the management console (just enter certmgr on a command line
interpreter). The window that pops up summarizes all certificates that are available at the operating
system level.
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• Issuer Unique Identifier:This field can be used to specify some optional
information related to the issuer of the certificate (only inX.509 versions 2
and 3).

• Subject Unique Identifier:This field can be used to specify some optional
information related to the subject (only in X.509 versions 2and 3). This field
typically comprises some alternative naming information,such as an e-mail
address or a DNS entry.

• Extensions:This field can be used to specify some optional extensions that
may be critical or not (only in X.509 version 3). While critical extensions need
to be considered by all applications that employ the certificate, noncritical
extensions are truly optional and can be considered at will.With regard to
secure messaging on the Internet, the most important extensions are “Key
Usage” and “Basic Constraints.”

– Thekey usage extensionuses a bit mask to define the purpose of the cer-
tificate (i.e., whether it is used for normal digital signatures (0), legally
binding signatures providing nonrepudiation (1), key encryption (2),
data encryption (3), key agreement (4), digital signaturesfor certificates
(5) or certificate revocation lists (CRLs) addressed below (6), encryption
only (7), or decryption only (8)). The numbers in parentheses refer to the
respective bit positions in the mask.

– The basic constraints extensionidentifies whether the subject of the
certificate is a CA and the maximum depth of valid certification paths
that include this certificate. This extension should not appear in a leaf
(or end entity) certificate.

Furthermore, there is anExtended Key Usageextension that can be used
to indicate one or more purposes for which the certified public key may be
used, in addition to or in place of the basic purposes indicated in the key
usage extension field.

The last three fields make X.509v3 certificates very flexible,but also very
difficult to deploy in an interoperable manner. Anyway, the certificate must come
along with a digital signature that conforms to the digital signature algorithm
specified in the Algorithm ID field.

A distinguishing feature of an X.509 certificate is that there is one single piece
of naming information, namely the content of the subject field, that is bound to a
public key, and that there is one single signature that vouches for this binding. This
is different in the case of an OpenPGP certificate. In such a certificate, there can be
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multiple pieces of naming information bound to a particularpublic key, and there
can even be multiple signatures that vouch for this binding.

16.4.2.2 Hierarchical Trust Model

X.509 certificates are based on the hierarchical trust modelthat is built on a hierarchy
of (commonly) trusted CAs. As illustrated in Figure 16.2, such a hierarchy consists
of a set ofroot CAsthat form up the top level and that must be trusted by default.
The respective certificates are self-signed, meaning that the issuer and subject fields
refer to the same entity (typically an organization). Note that from a theoretical
point of view, a self-signed certificate is not particularlyuseful. Anybody can
claim something and issue a certificate for this claim. Consequently, a self-signed
certificate basically says: “Here is my public key, trust me.” There is no argument
that speaks in favor of this claim. However, to bootstrap hierarchical trust, one or
several root CAs with self-signed certificates are unavoidable (because the hierarchy
is finite and must have a top level).

Figure 16.2 A hierarchy of trusted root and intermediate CAs that issue leaf certificates.
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In Figure 16.2, the set of root CAs consists of only three CAs (the three
shadowed CAs at the top of the figure). In reality, we are talking about several
dozens of root CAs that come preconfigured in a client software—be it an operating
system or application software. Each root CA may issue certificates for other CAs
that are calledintermediate CAs. The intermediate CAs may form up multiple layers
in the hierarchy. At the bottom of the hierarchy, the intermediate CAs may issue
certificates for end users or other entities, such as Web servers. These certificates
are calledleaf certificatesand they cannot be used to issue other certificates. This,
by the way, is controlled by the basic constraints extensionmentioned earlier. In a
typical setting, a commercial CSP operates a CA that represents a trusted root CA
and several subordinate CAs that may represent intermediate CAs. Note, however,
that it is up to the client software to make a distinction between these types of CAs—
either type is considered to be trustworthy.

Equipped with one or several root CAs and respective root certificates, a user
may try to find acertification path—or certification chain—from one of the root
certificates to a leaf certificate. Formally speaking, a certification path or chain is
defined in a tree or wood of CAs (root CAs and intermediate CAs), and refers to a
sequence of one or more certificates that leads from a trustedroot certificate to a leaf
certificate. Each certificate certifies the public key of its successor. Finally, the leaf
certificate is typically issued for a person or end system. Let us assume thatCAroot

is a root certificate andB is an entity for which a certificate must be verified. In
this case, a certification path or chain withn intermediate CAs (i.e.,CA1,CA2, . . . ,
CAn) may look as follows:

CAroot ≪ CA1 ≫
CA1 ≪ CA2 ≫
CA2 ≪ CA3 ≫
. . .

CAn−1 ≪ CAn ≫
CAn ≪ B ≫

In Figure 16.2, a certification path with 2 intermediate CAs is illustrated. The path
consists ofCAroot ≪ CA1 ≫, CA1 ≪ CA2 ≫, andCA2 ≪ B ≫. If a client
supports intermediate CAs, then it may be sufficient to find a sequence of certificates
that lead from a trusted intermediate CA’s certificate to theleaf certificate. This
may shorten certification chains considerably. In our example, it may be the case
thatCA2 represents a (trusted) intermediate CA. In this case, the leaf certificate
CA2 ≪ B ≫ would be sufficient to verify the legitimacy of B’s public key.

The simplest model one may think of is a certification hierarchy representing a
tree with a single root CA. In practice, however, more general structures are possible,
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using multiple root CAs, intermediate CAs, and CAs that issue cross certificates.
In such a general structure, a certification path may not be unique and multiple
certification paths may exist. In such a situation, it is required to have authentication
metrics in place that allow one to handle multiple certification paths. The design
and analysis of such metrics is an interesting and challenging research topic not
further addressed in this book (you may refer to [27] for a respective introduction
and overview).

As mentioned above, each X.509 certificate has a validity period, meaning
that it is well-defined when the certificate is supposedly valid. However, in spite
of this information, it may still be possible that a certificate needs to be revoked
ahead of time. For example, it may be the case that a user’s private key gets
compromised or a CA goes out of business. For situations likethese, it is necessary
to address certificate revocation in one way or another. The simplest way is to have
the CA periodically issue acertificate revocation list(CRL). A CRL is basically
a blacklist that enumerates all certificates (by their serial numbers) that have been
revoked so far or since the issuance of the last CRL in the caseof a delta CRL.
In either case, CRLs can be tremendously large and impractical to handle. Due
to the CRLs’ practical disadvantages, the trend goes to retrieving online status
information about the validity of a certificate. The protocol of choice to retrieve
this information is the Online Certificate Status Protocol (OCSP) [28] that has
problems of its own. There are a few alternative or complementary technologies,
such as Google’sCertificate Transparency9 or technologies that employ DNS, such
as DNS Certification Authority Authorization (CAA) or DNS-based Authentication
of Named Entities (DANE). The bottom line is that certificaterevocation remains
a challenging issue (e.g., [29]), and that many applicationclients that employ
public key certificates either do not care about it or handle it incompletely or even
improperly.

In spite of the fact that we characterize the trust model employed by ITU-
T X.509 as being hierarchical, it is not so in a strict sense. The possibility to
define cross-certificates, as well as forward and reverse certificates, enables the
construction of a mesh (rather than a hierarchy). This meansthat something similar
to PGP’s web of trust can also be established using X.509. Themisunderstanding
partly occurs because the X.509 trust model is mapped to the directory information
tree (DIT), which is hierarchical in nature (each DN represents a leaf in the DIT).
Hence, the hierarchical structure is a result of the naming scheme rather than the
certificate format. This should be kept in mind when arguing about trust models.

9 https://www.certificate-transparency.org.
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16.4.3 OpenPGP Certificates

We already mentioned that an OpenPGP certificate is similar to an X.509 certificate,
but that it uses a different format. The most important difference is that an OpenPGP
certificate may have multiple pieces of naming information (user IDs) and multiple
signatures that vouch for them. Hence, an OpenPGP certificate is inherently more
general and flexible than an X.509 certificate. Also, OpenPGPemploys e-mail
addresses (instead of DNs) as primary naming information.

Let us first look at the OpenPGP certificate format before we more thoroughly
address the cumulative trust model that is used in the realm of OpenPGP and
OpenPGP certificates.

16.4.3.1 Certificate Format

Like an X.509 certificate, an OpenPGP certificate is a data structure that binds some
naming information to a public key.

• The naming information consists of one or several user IDs, where each user
ID includes a user name and an e-mail address put in angle brackets (< and>).
The e-mail address basically makes the user ID unique. An exemplary user ID
is Rolf Oppliger <rolf.oppliger@esecurity.ch>.

• The public key is the key that is certified by the certificate. It is a binary
string that is complemented by a fingerprint, a key identifier(key ID), an
algorithm name (i.e., RSA, Diffie-Hellman, or DSA), and a respective key
length. A fingerprint represents an SHA-1 hash value of the public key (and
some auxiliary data), whereas the key ID refers to the least significant 64 (or
32) bits of the fingerprint.

In addition to the naming information and public key, an OpenPGP certificate
may also comprise many other fields (depending on the implementation). The
following fields are commonly used:

• Version number:This field is used to identify the version of OpenPGP. The
current version is 4. Version 3 is deprecated.

• Creation and expiration dates:These fields determine the validity period (or
lifetime) of the public key and certificate. In fact, it is valid from the creation
date to the expiration date. In many cases, the expiration date is not specified,
meaning that the respective certificate does not expire by default. Again,
this is a difference between X.509 and OpenPGP certificates.While X.509
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certificates typically expire after a few years, OpenPGP certificates typically
don’t expire at all (unless an expiration date is specified).

• Self-signature:This field is used to hold a self-signature for the certificate.
As its name suggests, a self-signature is generated by the certificate owner
using the private key that corresponds to the public key associated with
the certificate. Note that X.509 certificates normally do notinclude self-
signatures—except for root CA certificates.

• Preferred encryption algorithm:This field is used to identify the encryption
algorithm of choice for the certificate owner.

One may think of an OpenPGP certificate as a public key with oneor more
labels attached to it. For example, several user IDs may be attached to it. Also,
one or several photographs may be attached to an OpenPGP certificate to simplify
visual authentication. Note that this is a feature that is not known to exist in the
realm of X.509 certificates. Also note that the use of photographs in certificates
is controversially discussed within the security community. While some people
argue that it simplifies user authentication, others argue that it is dangerous because
certificates that come along with a photograph only look trustworthy (whereas in
fact they may not be trustworthy at all, or at least not more trustworthy than any
certificate without a photograph). Hence, there are implementations that support the
attachment of photographs, and there are implementations that don’t. In either case,
it is possible to bring in arguments that speak in favor of therespective choice.
Therefore, it is a matter of taste whether one wants to use photographs or not.

16.4.3.2 Cumulative Trust Model

The hierarchical trust model of X.509 starts from central CAs that are assumed to be
commonly trusted. Contrary to that, the cumulative trust model negates the existence
of such CAs, and starts from the assumption that there is no central CA that is trusted
by everybody. Instead, every user must decide for himself orherself who he or she
is willing to trust. If a user trusts another user, then this other user may act as an
introducerto him or her, meaning that any PGP certificate signed by him orher will
be accepted by the user. It goes without saying that different users may have different
introducers they trust and start from.

In practice, things are more involved, mainly because thereis no unique
notion of trust and trust can come in different flavors (or degrees, respectively).
PGP, for example, originally distinguished betweenmarginal and full trust, and
this distinction has been adapted by most OpenPGP implementations. The resulting
trust model is cumulative in the sense that more than one introducer can vouch for
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the validity and trustworthiness of a particular certificate. The respective signatures
are accumulated in the certificate, and the more people sign acertificate, the more
likely it is going to be trusted (and hence accepted) by a third party. The resulting
certification and trust infrastructure is distributed and called aweb of trust.

In practice, the implementation and deployment of a web of trust is more
involved than it may look at first sight. For example, certificate revocation is
particularly challenging in a web of trust, mainly because there is no central
authority that can be contacted in this matter. The cumulative trust model and the
web of trust are seldom used in the field and have turned out be dead ends to some
extent.

16.4.4 State of the Art

Since public key certificates represent the Achilles’ heel of public key cryptography,
the management of these certificates represents an important and practically relevant
topic. A user who wants to send a confidential and cryptographically protected
message to a recipient must have access to this recipient’s public key. A valid
certificate is one way to achieve this. Similarly, the recipient must have access to a
valid certificate for the sender’s public key if he or she wants to verify the signature
of that message. If certificates can be faked, then any form ofactive attack becomes
feasible and difficult to mitigate.

While the PKI industry has been partly successful in deploying server-side
certificates, the client-side deployment of certificates has remained poor. This is
equally true for hardware and software certificates.

• Hardware certificates refer to hardware devices or tokens that comprise public
key pairs. Examples include smartcards or USB tokens. The relevant standards
are PKCS #11 and PKCS #15. The question of whether the public key
pairs should be generated inside or outside the hardware device or token is
controversially discussed within the community.

– In the first case, it can be ensured that no private key can leakthe device
or token, but the quality of the random number generator may be poor;

– In the second case, the quality of the random number generator can be
controlled, but it may be possible to export the keying material from
the device or token (because the respective import functionmust be
supported by default).

• Software certificates do not require hardware. Instead, thepublic key pairs
are entirely stored in memory—hopefully in some encrypted form (while not
being used).
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It goes without saying that software certificates are generally more vulnerable
and simpler to attack than hardware certificates. Using hardware certificates, one
can reasonably argue that extracting private keying material is technically difficult.
This is not true for software certificates. Here, the respective commands (to extract
private keys) can be disabled by default, but it is very difficult to technically avoid an
adversary who may find a way to extract a private key anyway. The bottom line is that
for high-secure environments, hardware certificates are advantageous and should be
the preferred choice (this applies to X.509 and OpenPGP certificates). However, the
deployment of hardware certificates is more involved and expensive, and we hardly
see such certificates deployed and used in the field.

Another problem that appears is that there are not many publicly available
directories that can be used to retrieve user certificates. The main reason for this
lack of directories is that organizations hesitate to make their information publicly
available, mainly because they are afraid of people misusing it for spam and targeted
headhunting. Hence, they keep this information internal, and this severely restricts
its usefulness. Inside an organization, the situation is simpler, because there are
usually possibilities to roll out user certificates at moderate costs.

16.5 FINAL REMARKS

In this chapter, we elaborated on key management (i.e., the process of handling
and controlling cryptographic keys and related material during their life cycle in
a cryptographic system). Key management is a very complex process, and it does
not come as a surprise that it is the Achilles’ heel of almost every system that
employs cryptography and cryptographic techniques. The key life cycle includes
many important phases, and we had a closer look at key generation, distribution,
storage, and destruction.

If there are keys that are so valuable that there is no single entity that is
trustworthy enough to serve as a key repository, then one maylook into secret
splitting schemes or—more importantly—secret sharing systems. In fact, secret
sharing systems are likely to be more widely deployed in future systems. The
same is true for key recovery. If data encryption techniquesare implemented and
widely used, then mechanisms and services for key recovery are valuable and in
many situations unavoidable (especially in the business world). Following this line
of argumentation, the first products that implement and makeuse of key recovery
features already appeared on the marketplace a few years ago. For example, the
commercial versions of PGP have support key recovery on a voluntary basis. This
trend is likely to continue in the future. Last but not least,we briefly elaborated on
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digital certificates and PKIs. This is a very difficult topic,both from a theoretical
and practical point of view.
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Chapter 17

Summary

In this book, we overviewed, discussed, and put into perspective many cryptographic
systems in use today. In doing so, we made a distinction between unkeyed, secret
key, and public key cryptosystems. We also noted that this distinction is somewhat
arbitrary and that other classification schemes may work equally well. Because
we think that the scheme is still useful and appropriate—especially for didactic
purposes—we reuse it in this chapter to summarize the situation.

17.1 UNKEYED CRYPTOSYSTEMS

Unkeyed cryptosystems play a fundamental role in cryptography, and they are heav-
ily used as building blocks in more advanced cryptographic systems and applica-
tions. In Part I of the book, we had a closer look at the representatives of unkeyed
cryptosystems in terms of random generators, random functions, one-way functions,
and cryptographic hash functions.

• Randomness is deeply intertwined with cryptography, and most cryptographic
systems and applications employ random bits (or random numbers, respec-
tively) in one way or another. Consequently, random generators play a fun-
damental and enabling role in cryptography. We saw that there are various
types of hardware-based and software-based random generators, and that it is
important to test the statistical randomness properties ofthe output of such a
generator before it is used in the field. Many random generators have statistical
deficiencies that are surprisingly simple to find and exploit, and the use of such
generators has thus led to many cryptographic systems and applications that
have failed to provide security in the past. In fact, the history of cryptography
is full of such examples.
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• In contrast to a random generator, a random function is not characterized by
its output. Instead, it is a function that is randomly chosenfrom a huge set of
possibilities. Many cryptographic systems try to simulatethe characteristics
of a random function, making it necessary for an adversary togo through
all possibilities to break the security. It is therefore important to properly
understand the notion of a random function and to be able to apply it in
security proofs. Unlike many other cryptographic systems,a random function
is a purely theoretical construct that is not meant to be implemented in
practice. So we are not going to see entirely new and ingenious random
functions be proposed in the literature or promoted on the market. This is
inherently different from all other types of cryptosystemsaddressed in this
book.

• One-way functions (and trapdoor functions) are at the core of modern cryp-
tography. This may come as a surprise, especially if one considers the fact that
no function has been shown to be one way in a mathematically strong sense,
and that even the existence of one-way functions has not beenproven so far.
In fact, there are only a few candidate one-way functions (i.e., functions that
are conjectured to be one way) in use today. Examples includethe discrete
exponentiation function, the RSA function, and the modularsquare function.
The fact that it is currently not known how to efficiently invert these func-
tions gives us a good feeling when we use these functions in public key cryp-
tography and respective systems and applications. Unfortunately, we don’t
know how justified the feeling really is. If somebody found analgorithm to
efficiently invert a candidate one-way function, then many deployed systems
and applications would become totally insecure and useless. This is also what
PQC is all about: If somebody were able to build a sufficientlylarge quantum
computer1 and use it to solve the RSAP or DLP efficiently, then again many
deployed systems and applications would become insecure and useless, and
we would need alternatives that remain secure.

• In many cryptographic systems and applications, cryptographic hash functions
(i.e., hash functions that are one way and collision resistant) are used and
play a fundamental role. This is particularly true for digital signatures with
appendix and corresponding DSSs. If one can make the idealized assumption
that a cryptographic hash function behaves like a random function, then one
is often able to prove security properties for cryptographic systems that one is
not able to prove without making this assumption (the corresponding proofs
are then valid in the random oracle model). In spite of their fundamental role
in cryptography, there are not many practically relevant cryptographic hash

1 Refer to Section D.5 to learn more about quantum computers.
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functions to choose from. In fact, most cryptographic hash functions in use
today follow the Merkle-Damgård construction (i.e., theyiteratively apply a
compression function to subsequent blocks of a message), and—maybe also
surprisingly—there are only a few alternative designs.

For each of these representatives, it is important to define and properly under-
stand the notion of security (i.e., what is meant by saying that such a cryptosystem is
secure). In short, a random generator is considered to be secure if its output fulfills
a well-defined set of statistical randomness tests; a randomfunction is considered
to be secure if it is randomly chosen from a really huge set of functions; a one-way
function is considered to be secure if it is not known how to invert it efficiently; and
finally a cryptographic hash function is considered to be secure if it is one way and
collision-resistant. These security properties have beenmore precisely defined in the
respective chapters of Part I of the book.

17.2 SECRET KEY CRYPTOSYSTEMS

Secret key cryptosystems, and in particular symmetric encryption systems, are the
cryptographic systems one usually thinks about when peopletalk about cryptogra-
phy. Some of these systems have a long tradition and have beenused for a long
period of time (e.g., to protect the secrecy of messages). InPart II of this book,
we had a closer look at the representatives of secret key cryptosystems in terms of
PRGs, PRFs, symmetric encryption, message authenticated,and AE.

• As the prefix “pseudo” suggests, a PRG tries to simulate a random generator
in the sense that it its output is very similar and hence indistinguishable from
the output of a random generator. In contrast to a random generator, a PRG has
a relatively short input, called a seed, that is stretched into a potentially very
long sequence of (pseudorandom) bits. Whenever random bitsare needed, it
is usually efficient to use a random generator to generate a seed, and then use
a PRG to stretch this value into a sequence of pseudorandom bits that is as
long as needed. As such, there are many applications and use cases for PRGs
in the field.

• Contrary to PRGs, PRFs do not generate an output that meets specific (ran-
domness) requirements. Instead, a PRF tries to model the input-output behav-
ior of a random function. From a theoretical perspective, many other crypto-
graphic systems can be seen as a PRF (or a PRP, respectively).Most impor-
tantly, a cryptographic hash function can be seen as PRF, anda block cipher
can be seen as a PRP. Also, PRGs and PRFs are closely related toeach other
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in the sense that a PRF can be used to construct a PRG, and—viceversa—a
PRG can be used to construct a PRF.

• Symmetric encryption has a long and thrilling history, and there are many
attempts to design and come up with symmetric encryption systems that are
secure. From a high level of abstraction, one usually distinguishes between
block and stream ciphers that have distinct properties thatmake them appro-
priate for distinct applications and use cases. However, ifone has a block
cipher, then one can use a particular mode of operation to turn it into a stream
cipher. The opposite direction is not possible, meaning that there is no mode of
operation that can turn a stream cipher into a block cipher (and stream ciphers
do not have modes of operation in the first place). In practice, there are many
symmetric encryption systems that have been proposed and standardized by
different key players and organizations.

• While symmetric encryption is to protect the confidentiality of messages,
message authentication is to protect their authenticity and integrity—using a
secret key (this distinguishes a MAC from a digital signature that is generated
and verified with a public key pair). Message authenticationis usually very
efficient (compared to digital signatures), but it cannot beused to provide
nonrepudiation. This is because both the sender and the recipient share a
secret key that is needed to generate and verify a MAC. Note, however, that
nonrepudiation is not always needed, and that in some application settings it
is not even a desired property. The example that immediatelycomes to mind
is off-the-record messaging.

• Finally, symmetric encryption and message authenticationis currently typi-
cally combined in what is known as AE(AD). This type of encryption is resis-
tant to many attacks and clearly represents the state of the art in cryptography,
meaning that whenever data needs to be protected cryptographically, people
should consider its use. In fact, there is hardly any reason not to use and take
advantage of AE with or without additional data.

Again, for each of these representatives, it is important todefine and prop-
erly understand the notion of security (i.e., what is meant by saying that such a
cryptosystem is secure). In short, a PRG is considered to be secure if its output
is (computationally) indistinguishable from the output ofa true random generator,
whereas a PRF is considered to be secure if it (computationally) indistinguishable
from a random function. The security discussion of symmetric encryption and mes-
sage authentication is more subtle because it has to distinguish between uncondi-
tional and conditional security. It was shown by Shannon in the late 1940s that a
symmetric encryption system can only be unconditionally secure (and hence provide
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perfect secrecy), if the key is at least as long as the plaintext message. The one-time
pad is the reference example here. Unfortunately, the key length requirement of an
unconditionally secure symmetric encryption system is almost always prohibitively
expensive in practice, so that most symmetric encryption systems in use today are
“only” conditionally secure. As such, they can be broken theoretically by mounting
an exhaustive key search. Consequently, it is important to make the key space so
large that an exhaustive key search is not feasible. This is certainly the case if the
key has a size of 100 bits or more. The same line of argumentation and distinction
between unconditional and conditional security also applyto message authentication
and respective MACs. All such constructions used in the fieldare “only” condition-
ally secure. Anyway, combining conditionally secure symmetric encryption with
conditionally secure message authentication leads to AE(AD). Again, the notions
of security for all of these representatives of secret key cryptosystems were more
precisely defined in the respective chapters of Part II of thebook.

17.3 PUBLIC KEY CRYPTOSYSTEMS

Public key cryptosystems have been developed since the late1970s and are typically
associated with modern cryptography. In fact, digital signatures and key establish-
ment were the two major driving forces behind the invention and development of
public key cryptography in general, and public key cryptosystems in particular. In
Part III of this book, we had a closer look at the representatives of public key cryp-
tosystems in terms of key establishment, asymmetric encryption, digital signatures,
and zero-knowledge proofs of knowledge.

• Whenever a secret key cryptosystem is used, a respective keyshared between
the participating entities needs to be established in one way or another. This
is where key establishment comes into play. There are many protocols for key
establishment, but the Diffie-Hellman key exchange protocol is by far the most
important one. This is astonishing because the protocol wasthe first public key
cryptosystem ever published in the open literature, and in spite of its age, it is
still in widespread use on the Internet.

• Asymmetric encryption serves the same purpose as symmetricencryption,
but—due to its inefficiency compared to symmetric encryption—it is mostly
used to protect the confidentiality of small messages that are transmitted, such
as authentication information or secret keys (i.e., keys from a symmetric en-
cryption system). Mathematically speaking, an asymmetricencryption system
is based on one or several one-way functions, and its security therefore de-
pends on the assumed intractability of these functions. Unless one employs
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IBE, the use of an asymmetric encryption system requires theavailability of
digital certificates and a respective PKI. This is a topic of its own that is only
very briefly addressed in this book.

• Many public key cryptosystems can be used as an asymmetric encryption
system or a DSS. In fact, the possibility to digitally sign electronic documents
and verify digital signatures is very powerful, and it is often argued that it is a
prerequisite for the successful deployment of electronic commerce. This line
of argumentation may be a little bit exaggerated, but digital signatures and
DSSs clearly play a pivotal role in the provision of nonrepudiation services.

• Finally, zero-knowledge proofs of knowledge allow one to proof knowledge of
something without leaking information about it. Although the idea may seem
paradoxical at first glance, there are still many applications of such protocols.
In the realm of entity authentication, for example, it allows one to proof
knowledge of a secret (e.g., password) without leaking information about it.
Normally, zero-knowledge proofs are highly interactive, but there are also
variants that are noninteractive. These variants have interesting applications
in the field, such as in the realm of blockchain and DLT.

Once again, for each of these representatives, it is important to define and
properly understand the notion of security (i.e., what is meant by saying that such
a cryptosystem is secure). In short, a key establishment protocol is considered to
be secure if somebody knowing the transcript of a protocol execution is not able to
determine the key that is established. Similar to symmetricencryption, asymmetric
encryption may be attacked in many different ways. Most importantly, CPAs are
trivial to mount because the public keys are publicly available by definition. Con-
sequently, an asymmetric encryption system must protect against different attacks,
including CPAs and CCAs, and there are many notions of security that can be dis-
tinguished. A similar line of argumentation and subtle security discussion applies
to digital signatures and respective DSSs. Finally, a proofof knowledge—or more
generally—a protocol is zero-knowledge, if a valid-looking transcript can be gen-
erated (or simulated) without interaction. Again, the notions of security for all of
these representatives of public key cryptosystems were more precisely defined in
the respective chapters of Part III of the book.

17.4 FINAL REMARKS

In practice, unkeyed, secret key, and public key cryptosystems are often combined to
complement each other. For example, we saw that a random generator can be used to
seed a PRG and that symmetric and asymmetric encryption are usually combined in
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hybrid encryption. In fact, public key cryptosystems are often used for authentication
and key distribution, whereas secret key cryptosystems areoften used for bulk data
encryption and message authentication (if performance is an issue). Consequently,
real applications typically combine all types of cryptosystems (including unkeyed
cryptosystems) to come up with a design that can be implemented in an efficient and
secure way.

It is sometimes argued that public key cryptography is inherently more secure
than secret key cryptography. This argument is flawed; thereare secure and insecure
public key and secret key cryptosystems. If one has to decidewhat cryptosystem
to use, then one has to look at the requirements from an application’s point of
view. If, for example, it is required that data can be authenticated efficiently, then
a MAC is usually a good choice. If, however, it is required that the sender cannot
later repudiate having sent a particular message, then a DSSis the more preferred
choice. Consequently, there is no single best cryptosystemto be used for all purposes
and applications. Instead, it is important to understand the working principles,
advantages, and disadvantages, as well as the shortcomingsand limitations of all
practically relevant and deployed cryptosystems, and to design and implement a
security architecture that is appropriate for the particular purpose and application
one has in mind. This is not a simple task and should be dealt with professionally.
There is usually much more to say than “data must be encryptedwith a 128-bit key.”
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Outlook

It would appear that we have reached the limits of what is possible to
achieve with computer technology, although one should be careful with
such statements, as they tend to sound pretty silly in five years.

— John von Neumann

After having overviewed, discussed, and put into perspective the state of the art in
cryptography, it may be worthwhile to elaborate on possibleor likely trends and
developments in the future. In spite of John von Neumann’s epigraph, we try to
provide an outlook that goes beyond the next five years. Note,however, that the
outlook is highly subjective and based on the author’s own assessment, and that
other people working in the field may think differently and come up with different
conclusions and predications.

Before we begin, we want to stress the fact that cryptographyhas become
mature and established itself as a self-standing field of study and area of scientific
research (we relativize this point toward the end of the chapter, but at the moment
we start from here). As such, an increasingly large number ofuniversities provide
courses and degrees on cryptography and information security, and we experience
a significant level of diversification and specialization incryptographic research. In
the past, we have seen cryptographers who were able to talk about all aspects related
to cryptography. Today, this is no longer the case, and thereare cryptographers who
are specialized in integer factorization algorithms and algorithms to solve the DLP,
cryptographers who are specialized in stream ciphers, cryptographers who are spe-
cialized in block ciphers, cryptographers who are specialized in modes of operation
for block ciphers, cryptographers who are specialized in RSA, cryptographers who
are specialized in ECC, and so on. There are plenty of cryptographic fields of study
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that are each populated with a distinct research community of its own. This devel-
opment (and trend toward specialization) goes hand in hand with the maturity level
of a particular science, and it sometimes makes it difficult to still see the forest for
the trees. In this book, we have tried to act as a counterbalance.

In the rest of this chapter, we provide an overview from a theoretical and
practical viewpoint in Sections 18.1 and 18.2, outline the state of the art in PQC
in Section 18.3, and complete the book with some closing remarks in Section 18.4.

18.1 THEORETICAL VIEWPOINT

From a theoretical viewpoint, the central theme in cryptography is provability:
How can one define security, and how can one prove that a given cryptographic
system meets this definition? Starting from Shannon’s notion of perfect secrecy
that is applicable to symmetric encryption only, many researchers have defined and
come up with different notions of security that are not only applicable to symmetric
encryption, but to many other types of cryptographic systems as well. Most of these
notions are introduced, discussed, and put into perspective in this book—at least at
an informal level. For some of these notions we know that theyare equivalent or
relate to each other in a specific way, whereas for other notions the cryptographic
research community is still trying to figure out the details.Being able to scientifically
argue about different notions of security related to different types of cryptographic
systems is an important skill in today’s cryptographic research community.

In security discussions, people often prefer cryptosystems that are provably
secure. We introduced the notion of provable security in Chapter 1, and we discussed
its applicability to different types of cryptosystems in many subsequent chapters.
One usually assumes that a particular (mathematical) problem is intractable, and one
then shows that a cryptographic system is secure (accordingto a particular notion
of security) as long as this intractability assumption holds. Put in other words: If
somebody is able to break the system, then he or she is also able to solve the
problem, and this is not likely to be the case. Also, it is sometimes assumed that
a cryptographic hash function behaves like a random function (in addition to the
intractability assumption of the underlying mathematicalproblem), and one is then
able to show that a cryptographic system is provably secure in the random oracle
model.

The bottom line (and fact to keep in mind) is that it has not been possible
to provide an absolute proof for the security of a cryptographic system. We are
only able to prove the security (properties) of a cryptographic system if we make
assumptions. Some of these assumptions are implicit (and appear too trivial to be
mentioned in the first place). For example, when we talk aboutencryption systems,
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we often make the implicit assumption that telepathy does not exist or does not work
(otherwise, encrypting data does not make a lot of sense). Similarly, we assume that
randomness exists (otherwise, secret keys cannot exist in principle). Other assump-
tions are less obvious. As mentioned above, we often work with intractability as-
sumptions when we prove the security of a cryptographic system. These intractabil-
ity assumptions are often related to a specific adversary andassumptions about his
or her capabilities and computational power. For example, if we assume that an
adversary is an illiterate (i.e., he or she cannot read and write), then it is fairly trivial
to come up with a secure encryption system.1 More realistic assumptions are related
to the computing power, available time, and available memory. Last but not least,
we often make assumptions about the correct behavior of system entities and human
users. These assumptions are particularly difficult to make, and many cryptographic
security protocols can be broken if an adversary does not play by the rules (we revisit
this theme in Section 18.4).

According to [1], all assumptions that are made implicitly and explicitly must
be taken into account and considered with care when one considers cryptography
and security proofs. It is particularly important to note:

• That every security proof for a cryptographic system is onlyrelative to certain
assumptions;

• That assumptions should be made explicit;

• That assumptions should always be as weak as possible.

A major goal in cryptographic research remains to reduce thenecessary
assumptions to a set of realistic assumptions while preserving the practicality of
the systems. This is particularly true for computational intractability assumptions.

The more one enters the field of cryptographic protocols (as opposed to
cryptographic algorithms), the more formal methods are used to scientifically argue
about the security of these protocols. In this area, the question how to properly model
the real world and come up with a appropriate notion of security is less clear than it
is with cryptographic algorithms. Hence, the use of formal methods in the design of
cryptographic protocols is an important and timely research topic.

18.2 PRACTICAL VIEWPOINT

From a practical viewpoint, the use of cryptography boils down to standards and
profiles. There are simply too many and too complex cryptographic systems (i.e.,

1 This is why the Caesar cipher was secure. It was used in a timewhen most people were illiterate.
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cryptographic algorithms and protocols) and modes of operation to choose from.
Anybody not actively working in the field is likely to be overtaxed. The DES is
a success story mainly because its promoters (i.e., NIST) realized the need for a
standardized symmetric encryption system in the 1970s. In the late 1990s, NIST
repeated (and improved) the success story with the AES, and more recently with
SHA-3 and PQC (Section 18.3).

On February 16, 2005, the NSA announced Suite B—a set of cryptographic
algorithms as an interoperable cryptographic base for bothunclassified information
and most classified information. Initially, Suite B comprised the following crypto-
graphic algorithms and protocols:

• Symmetric encryption systems: AES-128 and AES-256

• Cryptographic hash functions: SHA-256 and SHA-384

• Key agreement protocols: ECDH and ECMQV

• Digital signature system: ECDSA

As briefly mentioned in Section 12.3, MQV is an authenticatedversion of
the Diffie-Hellman key agreement protocol, and ECMQV is the elliptic curve ver-
sion thereof. Prior to its incorporation in Suite B, the NSA had licensed Certicom’s
patents on ECMQV. However, the security of ECMQV had been discussed con-
troversially, so the protocol was finally dropped from SuiteB. Hence, ECDH is
currently the only key agreement protocol that is still partof Suite B.

The key agreement protocol (i.e., ECDH) and the digital signature system (i.e.,
ECDSA) employ elliptic curves with 256- and 384-bit prime moduli. Elliptic curves
over 256-bit prime moduli, SHA-256, and AES-128 are sufficient for protecting
classified information up to the secret level. Elliptic curves over 384-bit prime
moduli, SHA-384, and AES-256 are sufficient for the protection of top secret
information. In this case, however, the implementation of the algorithms must also be
evaluated and certified. This requirement takes into account that the implementation
of an algorithm is at least as important as the algorithm itself—at least from a
security perspective.

In addition to Suite B, the NSA has specified another set of cryptographic al-
gorithms known as Suite A. This suite comprises algorithms named ACCORDION,
BATON, MEDLEY, SHILLELAGH, and WALBURN. These algorithms are unpub-
lished and intended for highly sensitive communication andcritical authentication
systems. Without knowing the details, it is very difficult ifnot impossible to make
meaningful statements about the security of these algorithms.

Outside the United States, several other (national and international) standard-
ization bodies, forces, and groups are working on cryptography. Examples include
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ANSI, the IEEE, the IETF, and the W3C. Unfortunately, many ofthese bodies have
problems of their own, and hence the current state of international standardization
is not particularly good. This is worrisome but must be addressed elsewhere. In the
meantime, industry-sponsored standardization activities, like the PKCS, are impor-
tant to fill the gap. These activities have come up with complementary standards
for cryptographic systems and their use, such as HMAC for message authentication
(Section 10.3.2), OAEP for asymmetric encryption (Section13.3.1.4), PSS and PSS-
R for digital signatures (Section 14.2.2), and many more. Again, a comprehensive
overview about the standards that are relevant in practice is provided in [2].

The more we can prove about the security properties of standardized crypto-
graphic systems, the better the odds that they are successful and get widely deployed.
The best we can hope is that the complexity of cryptographic systems is hidden in a
reference implementation and library, such as cryptlib, Bouncy Castle,2 OpenSSL3

or its fork LibreSSL,4 NaCl (pronounced “salt”),5 and many more. Ideally, a cryp-
tographic library provides a standardized application programming interface (API),
such as Microsoft’s CryptoAPI. This makes it possible to easily replace one crypto-
graphic library with another, and hence to provide cryptographic agility.

18.3 PQC

Throughout the book, we have mentioned several times that there are new cryp-
tographic techniques being explored in PQC (i.e., under thesecurity assumption
that the adversary has a quantum computer). The aim of this section is to provide a
respective overview, and to round up and complete the book inthis regard. In par-
ticular, we briefly address code-based, hash-based, lattice-based, isogeny-based, and
multivariate-based cryptography and respective cryptosystems (in this order). Note
that PQC is a moving target, and that there are many things going on concurrently.
Consequently, we can only overview the tip of the iceberg, and this section is not
meant to be comprehensive at all.

As already mentioned in Section 1.3 and touched upon above, there is a
NIST competition going on to evaluate, and standardize one or more post-quantum
public key cryptographic algorithms or systems. The competition started in 2017
with 69 valid submissions. The first round lasted until January 2019, during which
NIST selected 26 algorithms to move forward to the second round.6 The second

2 https://www.bouncycastle.org.
3 https://www.openssl.org.
4 https://www.libressl.org.
5 https://nacl.cr.yp.to.
6 https://csrc.nist.gov/publications/detail/nistir/8240/final.
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Table 18.1
The NIST Competition Round 3 Finalists

Algorithm Type Category

Classic McEliece Encryption Code-based
CRYSTALS-KYBER Encryption Lattice-based
NTRU Encryption Lattice-based
SABER Encryption Lattice-based
CRYSTALS-DILITHIUM Signature Lattice-based
FALCON Signature Lattice-based
Rainbow Signature Multivariate-based

round lasted until July 2020, during which NIST selected 7 algorithms to move
forward to the third round.7 As summarized in Table 18.1, the third-round finalist
public-key encryption and key-establishment algorithms are classic McEliece (code-
based), CRYSTALS-KYBER, NTRU, and SABER (lattice-based),whereas the fi-
nalists for digital signatures are CRYSTALS-DILITHIUM andFALCON (lattice-
based), as well as Rainbow (multivariate-based). In addition, 8 alternate candidate
algorithms also advanced to the third round: The 5 algorithms for encryption and
key establishment are FrodoKEM and NTRU Prime (lattice-based), BIKE and HQC
(code-based), and SIKE (isogeny-based), whereas the 3 algorithms for signatures are
SPHINCS+ (hash-based), GeMSS (multivariate-based), and Picnic (a new construc-
tion based on zero-knowledge proofs). The alternate candidates are summarized in
Table 18.2; they are also considered for standardization, although this is unlikely to
occur in reality.

Table 18.2
The NIST Competition Round 3 Alternate Candidates

Algorithm Type Category

FrodoKEM Encryption Lattice-based
NTRU Prime Encryption Lattice-based
BIKE Encryption Code-based
HQC Encryption Code-based
SIKE Encryption Isogeny-based
SPHINCS+ Signature Hash-based
GeMSS Signature Multivariate-based
Picnic Signature —

7 https://csrc.nist.gov/publications/detail/nistir/8309/final.
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All NIST competition round 3 finalists and alternate candidates are outlined
and compared in an ENISA report.8 Given the fact that the NIST competition
is still ongoing (at least as of this writing), it is not obvious what post-quantum
cryptosystems are going to succeed and prevail in the long term. This also means that
it may be an appropriate strategy to go for hybrid implementations that use a mixture
of different systems—either pre-quantum or post-quantum ones, or preferably both.
Again, the keyword is agility, meaning that it should be possible to invoke and play
around with different cryptographic algorithms in a given implementation. Except
for the fact that this increases the complexity and the amount of code, there is nothing
wrong with this strategy. Its advantages outweigh its disadvantages by far.

18.3.1 Code-based Cryptosystems

As already mentioned in Section 13.6, McEliece proposed an asymmetric encryption
system based on error-correcting codes and theNP-hardness of decoding general
linear codes in 1978 [3]. More specifically, the private key is an error-correcting
code for which an efficient decoding algorithm is known (typically a binary Goppa
code), whereas the public key is derived from the private keyby disguising it as
a general linear code. Each of these codes needs to be represented by a large
matrix, making the public and private keys relatively large(this is still the major
practical disadvantage of code-based cryptosystems). There are many variants of the
McEliece encryption system using different types of codes.Most have been broken
or proven to be less secure than the originally proposed system. Strictly speaking,
classic McEliece refers to a variant that was proposed by Harald Niederreiter in
1986 [4]. This variant also yields a DSS, but classic McEliece is only used for
encryption in the realm of the NIST competition. As mentioned above, it is a third-
round finalist public-key encryption and key-establishment algorithm. Furthermore,
two other code-based encryption and key establishment systems, BIKE and HQC,
have been nominated as alternate candidates. They both use special codes in order
to reduce the size of the public key.

18.3.2 Hash-based Cryptosystems

As introduced in Section 14.4, one-time signature systems—or hash-based signature
systems as they are called in the context of PQC—yield a good starting point to
develop signature systems that are resistant to quantum computers (mainly because
they only use cryptographic hash functions). In fact, thereare several such systems
that have been proposed to sign long messages or multiple messages. They fall into

8 https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-
mitigation.
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two categories: Stateless and stateful signature systems.While the former work as
normal signatures, the latter are more involved to use, mainly because the signatory
needs to keep track of some state information, such as the number of signatures
generated using a particular key. This severely limits the usefulness and applicability
of such signatures. Examples of such signature systems thathave been standardized
(outside the NIST competition) include the eXtended MerkleSignature Scheme
(XMSS) [5] and the Leighton-Micali signature (LMS) system [6]. Furthermore,
SPHINCS+, an updated version of SPHINCS,9 is a stateless hash-based signature
system that has made it into the third round of the NIST competition as an alternate
candidate. Due to the nature of hash-based cryptosystems, they cannot be used for
encryption and key establishment.

18.3.3 Lattice-based Cryptosystems

In mathematics, the termlattice is ambiguous and used for many different mean-
ings. For the purpose of this, however, we are mainly interested in point lattices
that refer to discrete subgroups ofRn under addition. More specifically, letRn be
then-dimensional real Euclidean space and{b1, b2, . . . , bn} a set of linearly inde-
pendent vectors ofRn. A latticeL in Rn then refers to the set of all integer linear
combinations of these vectors; that is,

L(b1, b2, . . . , bn) =
{

n∑

i=1

xibi : xi ∈ Z

}

Such a lattice is closed under addition and inverses, and every point has a neighbor-
hood in which it is the only lattice point. It can be visualized as a regularly spaced
array of points. This is particularly simple in a plane, but gets more involved in
a higher-dimensional space. Mathematical descriptions oflattices look similar to
codes, but the entries in the vectors are large numbers instead of zeros and ones. In
either case, there may be error vectors added to these elements. There are several
problems that can be specified in a point lattice, such as the shortest vector problem
(SVP), the closest vector problem (CVP), learning with errors (LWE), and many
more. Every lattice-based cryptosystem is typically basedon such a problem.

The first lattice-based cryptosystems were developed in the1990s and pub-
lished in 1998 [7, 8]. The latter is known as the NTRU public key encryption
system, where NTRU stands for “Nth degree Truncated polynomial Ring Units,”
and it has made its way into the third round of the NIST competition. In addition
to NTRU, CRYSTALS-KYBER and SABER are also lattice-based finalists for en-
cryption and key establishment, whereas CRYSTALS-DILITHIUM and FALCON

9 https://sphincs.org.
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are lattice-based finalists for signatures. Furthermore, NTRU Prime (a variant of
NTRU) and FrodoKEM are lattice-based alternate candidatesfor encryption and key
establishment, whereas there are no lattice-based alternate candidates for signatures.
A key establishment algorithm that has seen some usage in thefield (mainly by
Google and a few other software companies) but is not considered as a candidate for
the NIST competition is called A New Hope.10 In the past few years, lattice-based
cryptography has become a hot topic in cryptographic research.

18.3.4 Isogeny-based Cryptosystems

An isogeny is a nonconstant map between elliptic curves thatcan be written as a
fraction of polynomials and is compatible with the point addition on both curves,
meaning that the sum of two points on the first curve is equal tothe sum of the
point images, when computed on the second curve. The isogenyproblem is to find
such an isogeny between two elliptic curves over finite fields. It was originally
proposed to design new hash functions [9], but it has also been used as a basis
for isogeny-based cryptosystems. One such system called supersingular isogeny
key encapsulation (SIKE11) was submitted to the NIST competition and is in the
third round as an alternate candidate. In addition to SIKE, however, there has been
some recent interest in isogeny-based cryptography and respective cryptosystems.
Examples include supersingular isogeny DiffieHellman key exchange (SIDH) and
commutative SIDH (CSIDH12 pronounced “seaside”) that look promising but were
developed after the launch of the NIST competition.

18.3.5 Multivariate-based Cryptosystems

As its name suggests, multivariate-based cryptosystems are based on the computa-
tional hardness of finding a solution for a system of multivariate quadratic equations
over a finite field. It is possible to come up with cryptosystems from such systems
using uniformly random coefficients. The resulting systemsare assumed to be very
secure, but not so efficient. The more efficient systems use coefficients that appear
to be random, but are constructed deterministically, such as using a trapdoor (such
systems are sometimes called oil-and-vinegar systems). Thanks to the structure of
such a system, is possible to find solutions more efficiently (than in the case of using
random coefficients).

As of this writing, the best currently available multivariate-based cryptosys-
tems are still not very efficient and come along with very large public keys and

10 https://eprint.iacr.org/2015/1092.
11 https://sike.org.
12 https://csidh.isogeny.org.
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long decryption times. In the case of DSSs, the situation is better, and there are
at least two multivariate-based DSSs that have made it into the third round of the
NIST competition: Rainbow as a finalist and GeMSS as an alternate candidate. The
signatures they generate are very short (66 bytes in the caseof Rainbow and 258 bits
in the case of GeMSS), but the public keys are relatively large (158 kilobytes in the
case of Rainbow and more than double in the case of GeMSS).

18.4 CLOSING REMARKS

In theory, we have many statements and proofs related to cryptography, and this
might suggest that cryptography is a mature science. We already made this point in
Section 18.1. In practice, however, this is only partly true, and the maturity level of
cryptography as a science to protect information (or data that encodes information,
respectively) is not particularly high, meaning that it is not so clear whether and to
what extent cryptography can really help protecting data. If we want to authenticate
and/or encrypt data, then we usually have many cryptographic algorithms to choose
from. But all of these algorithms require some keying material that needs to be
protected adequately. What this basically means is that we have reduced the data
protection problem to a key management problem, and this line of reasoning applies
to almost everything that can be done cryptographically. Italways boils down to
some keying material that needs to be protected, and this protection almost always
represents the Achilles’ heel of the system under consideration.

Against this background, you may remember the serious discussion from the
Preface regarding the relationship between science and magic. We quoted Clarke
saying that “any sufficiently advanced technology is indistinguishable from magic,”
and we mentioned a talk given by Massey in which he provocatively asked whether
cryptography is science or magic. Massey was referring to public key cryptography,
but we may open the scope of the question here, and ask—more broadly—whether
the protection cryptography can provide is real or only illusive.

If a cryptography-savvy person encrypts data in a particular way, is that data
really protected or does it only seem to be so? This question may sound unreal
and absurd, but it may become more clear if one considers the line of action of an
illusionist. Such a person usually has many tricks at his or her disposal, so that the
observers believe what they see is real, whereas in fact it isunreal and results from
illusion. Every piece of legerdemain performed by the illusionist is well-prepared,
combines several tricks (in sometimes ingenious ways), anduses distraction to
confuse the observers. The better the illusionist, the morehe or she is able to lull
the observers into believing something that is not real. To improve the performance,
he or she may even have some observers be part of the show and let them scrutinize
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something, for example, check whether a box doesn’t have double floor or whether
some chain is made of solid metal.

The point I want to make at the end of the book is that tellingcryptography
apart fromcryptographic illusion—let’s call it cryptollusion—is sometimes difficult
if not impossible. Like an illusionist who can use many tricks and distractions to
confuse the observers, somebody implementing and making use of cryptography
does not have to play by the rules and may cheat at will. No trick is impossible,
and it is perfectly fine to invoke any trick at any step of the hardware and software
development processes—including the entire supply chain.In the most extreme case
this may even include standardization—some may remember the backdoor built into
the DualEC DRBG standard (Section 5.5). There are less obvious tricks (to build
in a backdoor) that look like “normal” software bugs, and arethus indistinguishable
from them. Examples include Heartbleed and Apple’s goto fail bug. In most of these
cases, it is impossible to tell whether a particular software bug is the result of a
programming error or has been built in on purpose. In some sense, it may act as a
double floor in a software product.

A similar situation refers to the question of whether it is possible to construct
an AE-ciphertext (e.g., AES-GCM) that can be decrypted to two distinct plaintext
messages. Naı̈vely speaking, this should not be possible, because an AE cipher
ideally behaves like a PRP, for which is is impossible to find acollision. But in
Section 11.3, we already answered the question in the affirmative way, at least for
some file formats and if the AE cipher is without key commitment. The trick is to
use some file formats’ features to hide multiple ciphertextsin a particular file (that
then decrypt to different plaintext messages if triggered with the respective keys). In
the illusionist’s world, this is like performing magic and taking a pigeon out of the
top hat, whereas in reality the pigeon was already hidden in the top hat in the first
place.

Consequently, a key question is as follows: If I am given an implementation
of a fancy cryptographic product, how can I be sure that it really works as expected
and is secure as claimed? Or alternatively speaking: Is the claimed security real or
only illusive? The person promoting the product is certainly going to provide all
kinds of arguments to convince me. This may also include mathematical proofs, as
well as security evaluation reports and respective certificates of all kinds. But I may
still have my doubts—for very legitimate reasons. The devilis in the details, and
it is generally simple to obfuscate them. Hence, human skepticism is a valuable
characteristic in most situations in daily life; clearly, it is also valuable or even
inevitable in cryptography. Take every security argument or proof you see with the
grain of salt it deserves.
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Appendix A

Discrete Mathematics

In this appendix, we summarize some aspects of discrete mathematics that are
relevant for the topic of this book. More specifically, we introduce algebraic basics
in Section A.1, and we elaborate on integer and modular arithmetic in Sections A.2
and A.3. Note that this appendix is kept relatively compact,and that many facts are
stated without a proof. There are many books on discrete mathematics or algebra
that contain the missing proofs, put the facts into perspective, and provide more
background information (e.g., [1–6]).1

A.1 ALGEBRAIC BASICS

The termalgebrarefers to the mathematical field of study that deals with setsof ele-
ments (e.g., sets of numbers) and operations on these elements.2 The operations must
satisfy some rules that are stated asaxioms. These axioms are defined abstractly, but
most of them are motivated by existing mathematical structures, such as the set of
integers with the addition and multiplication operations.

A.1.1 Preliminary Remarks

Let S be a nonempty set and∗ a binary operation on the elements of this set.3 For
example,S may be one of the following sets of numbers that are frequently used in
mathematics.

1 [6] is electronically available at http://www.shoup.net/ntb.
2 For the purpose of this book, we assume familiarity with settheory at a basic level.
3 The choice of the symbol∗ is arbitrary. The operations most frequently used in algebra are addition

(denoted as+) and multiplication (denoted as·).
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• The setN := {0, 1, 2, . . .} of natural numbers(also known asnonnegative
integers). In some literature, the termN+ is used to refer toN without zero;
that is,N+ = N \ {0}.

• The setZ := {. . . ,−2,−1, 0, 1, 2, . . .} of integer numbers, or integersin
short. In addition to the natural numbers, this set also comprises the negative
numbers.

• The setQ of rational numbers. Roughly speaking, a rational number is a
number that can be written as a ratio of two integers. More specifically, a
number is rational if it can be written as a fraction where thenumerator and
denominator are integers and the denominator is not equal tozero. This can
be formally expressed as follows:

Q :=
{a

b
| a, b ∈ Z and b 6= 0

}

• The setR of real numbers. Each real number can be represented by a converg-
ing infinite sequence of rational numbers (i.e., the limit ofthe sequence refers
to the real number). There are two subsets within the set of real numbers: The
algebraic numbers and the transcendental numbers. Roughlyspeaking, anal-
gebraic numberis a real number that is the root of a polynomial equation with
integer coefficients, whereas atranscendental numberis a real number that is
not the root of a polynomial equation with integer coefficients. Examples of
transcendental numbers areπ ande. Real numbers are the most general and
most frequently used mathematical objects to model real-world phenomena.
A real number that is not rational is calledirrational, and hence the set of
irrational numbers isR \Q. In some literature, the termR+ is used to refer to
the set of real numbers that are nonnegative.

• The setC of complex numbers. Each complex number can be specified by a
pair (a, b) of real numbers, and henceC can be defined as follows:

C := {a+ bi | a, b ∈ R and i =
√
−1}

In this notation,a refers to thereal part andb refers to theimaginary partof
the complex number(a, b) or a + bi. Note that the second part can also be
written as a multiple ofi =

√
−1, meaning that the imaginary part ofa + bi

is written asb (instead ofbi). Complex numbers are not used in this book.

To formally define a binary operation, we have to introduce the notion of a
function. As illustrated in Figure A.1, afunctionf : X → Y is a mapping from a
domainX to acodomainY that assigns to everyx ∈ X a uniquef(x) ∈ Y . The
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X Y

x y

f(X)

f

Figure A.1 A function f : X → Y .

rangeof f is the subset of values fromY that are reached by the function in one way
or another. This may be the entire codomain or only a subset ofit (i.e., f(X) ⊆ Y ).
In Figure A.1, the rangef(X) is the subset ofY that is drawn with a dotted line.

A functionf : X → Y may be injective and/or surjective:

• It is injective(or one to one) if for all x1, x2 ∈ X it holds thatx1 6= x2 ⇒
f(x1) 6= f(x2); that is, if two preimages are different, then the corresponding
images must also be different. Equivalently,f(x1) = f(x2)⇒ x1 = x2; that
is, if two images are equal, then the corresponding preimages must also be
equal.

• It is surjective(or onto) if for all y ∈ Y there is anx ∈ X with y = f(x),
meaning thatf(X) = Y ; that is, the codomain and the range are equal.

A function that is injective and surjective is calledbijective. If f : X → Y is a
bijective function, then it has an inverse functionf−1 : Y → X with f−1 ◦ f = id.
In this notation,f−1 ◦f refers to the composite mappingf−1◦f = f−1f : X → X
with (f−1 ◦ f)(x) = f−1f(x) = x, andid refers to the identity map.

Let F be a set of functionsfk : X → Y that take a keyk from a key space
K as an additional input parameter, then we callF a function familyor family of
functions. It is defined as

F := {fk : X → Y | k ∈ K}

whereX andY are the domain and codomain of each functionfk. For everyk ∈ K,
the functionfk : X → Y is defined asfk(x) = f(k, x) and yields an instance of
F . In this book, we prefer the term family when referring to a family of functions,
whereas other authors use the terms collection or ensemble to mean the same thing.
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If one has a function familyF and requires a particular functionfk from F ,
then one must sample ak ∈ K according to some probability distribution. If the
distribution is uniform (.e., each element occurs with the same probability), then we
say thatk is sampleduniformly, and we even say that it is sampleduniformly at
randomif k is randomly selected from all uniformly distributed possibilities. We
write

k
r←− K

to denote thatk is sampled uniformly at random fromK, and

f
r←− F

to denote thatf is sampled uniformly at random fromF . This can be translated into
the sequence

k
r←− K; f ←− fk

In other words,f refers to the functionfk, wherek is a key that is sampled uniformly
at random fromK. This terminology is frequently used in cryptography.

Funcs[X,Y ] refers to the set or family of all functions that map elements
of the domainX to elements of the codomainY , whereasPerms[X ] refers to
Funcs[X,Y ], whereX = Y and all functions yield permutations. Permutations
and families of permutations are further addressed in Section A.1.4.

The fact that∗ is a binary operation onS means that it defines a function from
S × S into S. Fora, b ∈ S, the use of∗ can be expressed as follows:

∗ : S×S −→ S

(a, b) 7−→ a ∗ b

This expression suggests that two arbitrary elementsa, b ∈ S are mapped to a new
elementa ∗ b ∈ S. In this setting, the operation∗ may have specific properties.
In algebra, we are mainly interested in commutative and associative operations as
captured in Definitions A.1 and A.2. In what follows, the symbol ∀ stands for the
quantifier “for all” and the symbol∃ stands for the quantifier “there exists.”

Definition A.1 (Commutative operation) A binary operation∗ is commutativeif
∀ a, b ∈ S it holds thata ∗ b = b ∗ a.

Definition A.2 (Associative operation) A binary operation∗ is associativeif ∀ a,
b, c ∈ S it holds thata ∗ (b ∗ c) = (a ∗ b) ∗ c.
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Let S be a set and∗ a binary operation onS. The operation∗ may have (left
and right) identity elements according to Definitions A.3 toA.5.

Definition A.3 (Left identity element) An elemente ∈ S is a left identity element
if ∀ a ∈ S it holds thate ∗ a = a.

Definition A.4 (Right identity element) An elemente ∈ S is a right identity
elementif ∀ a ∈ S it holds thata ∗ e = a.

Definition A.5 (Identity element) An elemente ∈ S is a identity element(or a
neutral element) if it is both a left identity element and a right identity element (i.e.,
∀ a ∈ S it holds thate ∗ a = a ∗ e = a).

Note that the operation∗ does not need to be commutative in these definitions.
For example, the identity matrix is the identity element of the matrix multiplication,
but this operation is not commutative. Also note that an identity element does not
need to exist in all cases, but if it exists, it must be unique.This can easily be
shown by assuming thate1 ande2 are both identity elements. It then follows that
e1 = e1 ∗ e2 = e2, and hence thate1 = e2.

If an identity elemente ∈ S for the binary operation∗ exists, then some
elements ofS may be invertible and have inverse elements. Again, one has to
distinguish whether an element is left invertible or right invertible, or whether it is
both left and right invertible. We then call this element two-sided invertible, and the
respective inverse element two-sided inverse or inverse inshort. We only consider
this case in Definition A.6.

Definition A.6 (Inverse element) LetS be a set,∗ a binary operation with identity
elemente, and a an element fromS. If there exists an elementb ∈ S with
a ∗ b = b ∗ a = e, thena is invertibleandb is theinverse (element)of a.

Note that not all elements in a given set must be invertible and have an inverse
element with respect to the operation under consideration.As we will see later,
the question whether all elements in a given set are invertible is the distinguishing
fact between a group and a monoid, as well as between a field anda ring. Groups,
monoids, fields, and rings are algebraic structures that areintroduced next.

A.1.2 Algebraic Structures

An algebraic structure4 consists of a nonempty setS with one or more binary
operations. For the sake of simplicity, we sometimes omit the operation(s) and use

4 In some literature, an algebraic structure is also called an algebraic system.
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S to denote the entire structure. This is not precise, but convenient. Let us now
overview and briefly discuss the algebraic structures that are most frequently used
in algebra. Among these structures, groups, rings, and finite fields are particularly
important in cryptography.

A.1.2.1 Semigroups

The simplest algebraic structure is a semigroup as capturedin Definition A.7.

Definition A.7 (Semigroup) A semigroupis an algebraic structure〈S, ∗〉 that con-
sists of a nonempty setS and an associative binary operation∗. The semigroup must
be closed; that is, for alla, b ∈ S, a ∗ b must yield an element inS.

Note that this definition does not require a semigroup to havean identity
element. For example, the set of even integers (i.e.,{. . . ,−4,−2, 0, 2, 4, . . .}) with
the multiplication operation is a semigroup without an identity element.5

A.1.2.2 Monoids

According to Definition A.8, a monoid is a semigroup with the additional property
(or requirement) that it must have an identity element.

Definition A.8 (Monoid) A monoid is a semigroup〈S, ∗〉 that has an identity
elemente ∈ S with respect to∗.

Examples are〈N, ·〉, 〈Z, ·〉, 〈Q, ·〉, and〈R, ·〉 with the identity element 1. Also,
the set of even integers with the addition operation and the identity element 0, as
well as the set of all binary sequences of nonnegative and finite length with the string
concatenation operation and the empty string representingthe identity element, are
all monoids.

A.1.2.3 Groups

According to Definition A.9, a group is a monoid in which everyelement is invertible
and has an inverse.

Definition A.9 (Group) A groupis a monoid〈S, ∗〉 in which every elementa ∈ S
has an inverse element inS; that is, every elementa ∈ S is invertible.

5 The identity element with respect to multiplication wouldbe1 (which is not even).
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Because〈S, ∗〉 is a group and the operation∗ is associative, one can easily
show that the inverse element of an element must be unique (see above).

Formally speaking, a group can be defined as an algebraic structure〈S, ∗〉 that
satisfies the following four axioms:

1. Closure axiom:∀ a, b ∈ S : a ∗ b ∈ S
2. Associativity axiom:∀ a, b, c ∈ S : a ∗ (b ∗ c) = (a ∗ b) ∗ c
3. Identity axiom:∃ a unique identity elemente ∈ S such that∀ a ∈ S : a ∗ e =

e ∗ a = a

4. Inverse axiom:∀ a ∈ S ∃ a unique inverse elementa−1 ∈ S such that
a ∗ a−1 = a−1 ∗ a = e

The operations most frequently used in groups are addition (+) and multi-
plication (·), and the respective groups are calledadditiveandmultiplicative. For
multiplicative groups, the symbol· is often omitted, anda · b is written asab. For
additive and multiplicative groups, the identity elementsare usually denoted as 0
and 1, whereas the inverse elements of elementa are usually denoted as−a and
a−1. Consequently, a multiplicative group is assumed in the fourth axiom itemized
above.

Commutative operations are relevant in practice, and the notion of a commu-
tative group is captured in Definition A.10.

Definition A.10 (Commutative group) A group〈S, ∗〉 is commutativeif the oper-
ation∗ is commutative; that is,a ∗ b = b ∗ a, ∀ a, b ∈ S.

Commutative groups are also calledAbelian. Otherwise, if the group is not
commutative or Abelian, then it is callednoncommutativeor non-Abelian. For
example,〈Z,+〉, 〈Q,+〉, and 〈R,+〉 are commutative groups with the identity
element 0. The inverse element ofa is−a. Similarly,〈Q\{0}, ·〉 and〈R\{0}, ·〉 are
commutative groups with the identity element 1. Furthermore, the set of real-valued
n × n matrices is a commutative group with respect to matrix addition, whereas
the subset of nonsingular (i.e., invertible) matrices is a noncommutative group with
respect to matrix multiplication.

Finite Groups

Depending on the number of elements, a group can be finite or infinite. The notion
of a finite group is captured in Definition A.11. Such groups play a pivotal role in
(public key) cryptography.
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Definition A.11 (Finite group) A group 〈S, ∗〉 is finite if it contains only finitely
many elements.

The order of a finite group〈S, ∗〉 is the number of elements and refers to the
cardinality ofS, denoted|S|. Hence, another way to define a finite group is to say
that〈S, ∗〉 is finite if |S| < ∞. For example, the set of permutations ofn elements
is very large, but still finite (it hasn! elements). It is a noncommutative group
with respect to the composition of permutations (as furtheraddressed in Section
A.1.4). Also, 〈Zn,+〉 and 〈Z∗n, ·〉 are finite groups that have many cryptographic
applications. As explained later in this chapter,Zn consists of then integers between
0 andn− 1, whereasZ∗n consists of theφ(n) integers between 1 andn− 1 that have
no common divisor withn that is greater than 1.6 In this context,φ refers to Euler’s
totient function that is relevant in cryptography and introduced in Section A.2.6.

If 〈S, ∗〉 is a group, then for every elementa ∈ S and every positive integer
i ∈ N, ai ∈ S refers to the element

a ∗ a ∗ . . . ∗ a
︸ ︷︷ ︸

i times

Due to the closure axiom, this element must again be an element in S. Note that
we useai only as a shorthand representation for this element, and that the operation
between the group elementa and the integeri is not the group operation (instead
ai stands for applying the group operationi times toa). For additive groups,ai is
written asi ·a, or ia in short. Again,i ·a only represents the resulting group element
and· is not the group operation. This subtlety is important to keep in mind.

Cyclic Groups

If 〈S, ∗〉 is a finite group with identity elemente, then the order of an element
a ∈ S, denotedord(a), is the least positive integern such thatan equals the identity
elemente:7

a ∗ a ∗ . . . ∗ a
︸ ︷︷ ︸

n times

= e

6 Note that the star inZ∗
n does not represent a binary operation here.

7 Note that such an integern always exists in a finite group: Consider the list of elements
a0, a1, a2, a3, . . . , am , wherem is the number of elements of the group. Since this list contains
m + 1 elements, due to the pigeonhole principle, there must be 2 elements that are equal. In other
words, there exist integersi andj with i 6= i andi > j such thatai = aj . Since we are in a group,
every element has an inverse. This also applies toaj , and we can definea−j = (aj)−1. Using this
notation, we haveaia−j = aj(aj)−1, and henceai−j = e. This, in turn, means thati − j is a
possible candidate forn.
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Alternatively speaking, the order of an elementa ∈ S in a multiplicatively written
group is defined asord(a) := min{n ≥ 1 | an = e}. If there exists an element
a ∈ S such that the elements

a

a ∗ a
a ∗ a ∗ a
. . .

a ∗ a ∗ . . . ∗ a
︸ ︷︷ ︸

n times

are all different and represent the elements ofS, then the group〈S, ∗〉 is called
cyclic anda is called ageneratorof the group or aprimitive root of the group. If
a generates the group (in the sense thata is a generator of it), then one sometimes
writesS = 〈a〉.

If a finite group is cyclic andn is the order of that group, then there are
typically several generators. In fact, there areφ(n) generators8 that are similar and
can be used interchangeably. For example,〈Zn,+〉 is a cyclic group withφ(n)
generators. The most obvious generator is 1. This basicallymeans that every element
of Zn = {0, 1, 2, 3, . . . , n − 1} can be generated by adding 1 modulon a certain
number of times:

0 =

n times
︷ ︸︸ ︷

1 + 1 + . . .+ 1

1 = 1

2 = 1 + 1

3 = 1 + 1 + 1

. . .

n− 1 = 1 + 1 + . . .+ 1
︸ ︷︷ ︸

n−1 times

As illustrated in Figure A.2,〈Z∗7, ·〉 is another cyclic group with generator 3,
i.e., 〈Z∗7, ·〉 = 〈3〉.9 This means that every element ofZ∗7 = {1, 2, . . . , 6} can be

8 φ is Euler’s totient function that is introduced and further addressed in Section A.2.6.
9 Becauseφ(6) = 2, there are 2 generators (the other generator would be 5, i.e., 〈Z∗

7 , ·〉 = 〈5〉).
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1=3
6

3=3
1

2=3
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6=3
3

4=3
4

5=3
5

Figure A.2 The cyclic group〈Z∗
7 , ·〉.

represented by 3 to the power of an integer modulo 7:

31 (mod 7) = 3

32 (mod 7) = 2

33 (mod 7) = 6

34 (mod 7) = 4

35 (mod 7) = 5

36 (mod 7) = 1

The same is true forZ∗17 with the generator7.10 It generates all| Z∗17 | = 16
elements ofZ∗17):

71 (mod 17) = 7 79 (mod 17) = 10

72 (mod 17) = 15 710 (mod 17) = 2

73 (mod 17) = 3 711 (mod 17) = 14

74 (mod 17) = 4 712 (mod 17) = 13

75 (mod 17) = 11 713 (mod 17) = 6

10 Becauseφ(16) = 8, there are 8 generators (the other generators would be 3, 5, 6, 10, 11, 12, and
14).
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76 (mod 17) = 9 714 (mod 17) = 8

77 (mod 17) = 12 715 (mod 17) = 5

78 (mod 17) = 16 716 (mod 17) = 1

Note that a cyclic group must be finite, but the converse need not be true. In fact,
there are finite groups that are not cyclic, and hence do not have a generator. Also
note that all cyclic groups must be Abelian. Again, the converse need not be true,
and there are Abelian groups that are not cyclic.

Subgroups

When we elaborate on groups and their basic properties, it issometimes useful to
consider subgroups. The notion of a subgroup is captured in Definition A.12.

Definition A.12 (Subgroup) A subsetH of a groupG is a subgroupofG, denoted
H ⊆ G, if it is closed under the operation ofG and forms a group on its own.

For example, the integers are a subgroup of both the rationaland the real num-
bers (with respect to the addition operation). Furthermore, {0, 2, 4} is a subgroup of
〈Z6,+〉 with regard to addition modulo 6, and{0} and{1} are (trivial) subgroups
of every additive and multiplicative group (if the group contains numbers). We note
that{e} is a trivial subgroup of every group (with the neutral element e).

An important class of subgroups of a finite group are those that are generated
by an elementa, denoted as〈a〉 := {aj | 0 ≤ j ∈ N}. The subgroup〈a〉 hasord(a)
elements and can be used to build cosets according to Definitions A.13–A.15.

Definition A.13 (Left coset) LetG be a group andH ⊆ G a subset ofG. ∀ a ∈ G,
the setsa ∗H := {a ∗ h | h ∈ H} are calledleft cosetsofH .

Definition A.14 (Right coset) LetG be a group andH ⊆ G a subset ofG. ∀ a ∈ G,
the setsH ∗ a := {h ∗ a | h ∈ H} are calledright cosetsofH .

Definition A.15 (Coset) LetG be a (commutative) group andH ⊆ G a subset of
G. ∀ a ∈ G, the setsa ∗H = H ∗ a are calledcosetsofH .

In either case, the|G| elements ofG are partitioned into|G|/|H | distinct
subsets that represent the cosets. If, for example,G = 〈Z6,+〉 andH = {0, 2, 4},
then the elements ofG = {0, 1, 2, 3, 4, 5} can be partitioned into the following two
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left cosets ofH :

1 +H = 3 +H = 5 +H = {1, 3, 5}
0 +H = 2 +H = 4 +H = {0, 2, 4}

The notion of a coset is important to prove the following Theorem A.1 that is due to
Lagrange.11

Theorem A.1 (Lagrange’s Theorem) If H is a subgroup ofG, then|H | | |G| (i.e.,
the order ofH divides the order ofG).

Proof. If H = G, then|H | | |G| holds trivially. Consequently, we only consider the
case in whichH ⊂ G. For anya ∈ G\H , the coseta ∗ H is a subset ofG. The
following can be shown:

i) For anya 6= a′, if a /∈ a′ ∗H then(a ∗H) ∩ (a′ ∗H) = ∅.
ii) |a ∗H | = |H |.
For (i), suppose there exists ab ∈ (a ∗ H) ∩ (a′ ∗ H). Then there exist

c, c′ ∈ H such thata ∗ c = b = a′ ∗ c′. Applying various group axioms, we have
a = a ∗ e = a ∗ (c ∗ c−1) = b ∗ c−1 = (a′ ∗ c′) ∗ c−1 = a′ ∗ (c′ ∗ c−1) ∈ a′ ∗H .
This contradicts our assumption (thata /∈ a′ ∗H).

For (ii), |a ∗H | ≤ |H | holds trivially (by the definition of a coset). Suppose
that the inequality is rigorous. This is only possible if there areb, c ∈ H with b 6= c
anda ∗ b = a ∗ c. Applying the inverse element ofa on either side of the equation,
we getb = c, contradicting tob 6= c.

In summary,G is partitioned byH and the family of its mutually disjoint
cosets, each has the size|H |, and hence|H | | |G|. This proves the theorem.

�

Quotient Groups

Let 〈G, ∗〉 be a (commutative) group with the identity elemente, andH ⊆ G a
subgroup ofG. The quotient groupof G moduloH , denotedG/H , then refers
to the group that consists of the cosets ofH (i.e., the setsa ∗ H with a ∈ G)
that represent the “normal” group elements ande ∗ H that represents the identity
element. If, for example,G refers to the integers (i.e.,G = Z) andH refers to
the subgroup ofZ that consists of all multiples of a positive integern ∈ N+ (i.e.,
H = nZ = {0,±n,±2n, . . .}), then the quotient group ofZ modulonZ is written
as

Z/nZ = {x+ nZ | x ∈ Z}
11 Joseph Louis Lagrange was a French mathematician who lived from 1736 to 1813.
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orZn in short. It has the followingn elements:

0 + nZ

1 + nZ

2 + nZ

. . .

n− 1 + nZ

This quotient group is frequently used in cryptography (forlarge values ofn).
So far, we have only looked into algebraic structures that have a single

operation. There are at least two algebraic structures thatcomprise two operations,
rings and fields. They are addressed next.

A.1.2.4 Rings

The simpler algebraic structure that comprises two operations is the ring that is
formally introduced in Definition A.16.

Definition A.16 (Ring) A ring is an algebraic structure〈S, ∗1, ∗2〉 with a setS and
two associative binary operations∗1 and∗2 that fulfill the following requirements:

1. 〈S, ∗1〉 is a commutative group with identity elemente1.

2. 〈S, ∗2〉 is a monoid with identity elemente2.

3. The operation∗2 is distributive over the operation∗1. This means that the
following two distributive laws must hold∀ a, b, c ∈ S:

a ∗2 (b ∗1 c) = (a ∗2 b) ∗1 (a ∗2 c)
(b ∗1 c) ∗2 a = (b ∗2 a) ∗1 (c ∗2 a)

According to the first requirement, the operation∗1 must be commutative.
This is not the case for the operation∗2, and hence the ring is calledcommutative
(noncommutative) if ∗2 is (not) commutative.

For example,〈Z,+, ·〉, 〈Zn,+, ·〉,12 〈Q,+, ·〉, and〈R,+, ·〉 are commutative
rings. Also, the set of real-valuedn × n matrices form a ring with the zero matrix
as neutral element of the addition and the identity matrix asthe neutral element
of the multiplication. Contrary to the previous examples, however, this ring is
noncommutative.

12 If n is a prime, then〈Zn,+, ·〉 is a field.
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A.1.2.5 Fields

If we have a ring〈S, ∗1, ∗2〉 and require〈S \ {e1}, ∗2〉 to be a group (instead
of a monoid), then the resulting algebraic structure is afield. This is captured in
Definition A.17.

Definition A.17 (Field) A ring 〈S, ∗1, ∗2〉 in which 〈S \ {e1}, ∗2〉 is a group is a
field.

Another way of saying that〈S \ {e1}, ∗2〉 is a group is that every nonidentity
element (with respect to∗1) has an inverse element (with respect to∗2).

A field 〈S, ∗1, ∗2〉 is finite if it contains a finite number of elements (i.e.,
|S| <∞). All finite fields withn elements can be shown to be structurally equivalent
or isomorphic. Consequently, it suffices to consider and examine only one finite field
with n elements to basically understand all of them. This field is called a Galois
field,13 and it is denoted asFn or GF (n). For every prime numberp, there is a
prime fieldwith p elements,Fp or GF (p), and anextension field, Fpn or GF (pn)
for 1 < n ∈ N.

• The elements of the prime fieldFp can be represented by thep integers ranging
from 0 up top − 1. The addition and multiplication are defined as usual, but
all results are always reduced modulop. The simplest prime field isF2 that
comprises only the two elements 0 and 1. It is frequently usedin computer
science.

• The elements of the extension fieldFpn can be represented by polynomials of
degreen − 1 with coefficients fromFp. The addition and multiplication are
defined over polynomials, where the resulting polynomial isalways reduced
modulo an irreducible polynomial (that needs to be fixed). Hence, in an
extension field, the fixed and irreducible polynomial plays asimilar role as
the prime in a prime field; that is, it ensures that the result of adding and
multiplying two elements is again an element of the field. In cryptography, a
widely used extension field is the AES fieldF28 (Section 9.6.2).

When we discussed the notion of a group, we said that every group can have
subgroups. Similarly, every field can have subfields, where the notion of a subfield
is captured in Definition A.18.

Definition A.18 (Subfield) If F is a field, then a subsetH ofF is asubfieldofF if
it closed under the (same) operations and also forms a field.

13 The term was chosen in honor of Evariste Galois, a French mathematician who lived from 1811 to
1832.
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Using the notion of a subfield, one can also say that a prime field is a field
that contains no proper subfield. For example,Q is a prime field that is infinite (i.e.,
it has infinitely many elements). SinceQ is a proper subfield ofR, R cannot be a
prime field either.

A.1.3 Homomorphisms

Let 〈A, ◦〉 and〈B, •〉 be two algebraic structures of the same type, such as a group.14

According to Definition A.19, a homomorphism is a structure-preserving mapping
of A intoB.

Definition A.19 (Homomorphism) A mappingf : A→ B is a homomorphismof
A intoB, if for every pairx, y ∈ A it holds thatf(x ◦ y) = f(x) • f(y).

This means that combiningx andy with the operator◦ in A and subjecting
the result tof must yield the same result as subjectingx andy to f individually and
then combining the result with• in B. It goes without saying that equality does not
hold in the general case (only iff is homomorphic). In the realm of cryptography,
for example, we say that an encryption system is additively homomorphic if the
encryption of the sum of two plaintext messages is the same asthe sum of the
respective ciphertexts. Similarly, we say that it is multiplicatively homomorphic if
the encryption of the product of two plaintext messages is the same as the product of
the respective ciphertexts. There are many asymmetric encryption systems that are
either additively or multiplicatively homomorphic, but there is no practical system
that satisfies both requirements. Finding such a system is the big challenge of fully
homomorphic encryption (Section 13.5).

If the algebraic structure is a group, then the homomorphismis a group
homomorphism. If it is a ring, then it is aring homomorphism. In this case,
however, the mapping must preserve the ring addition, the ring multiplication, and
the multiplicative identity.

There are two special cases of homomorphisms: Isomorphismsand automor-
phisms (as captured in Definitions A.20 and A.21).

Definition A.20 (Isomorphism) A homomorphismf : A → B is an isomorphism
if and only if it is bijective (injective and surjective). Inthis case,A andB are
structurally identical. We say thatA andB are isomorphicand we writeA ∼= B.

Definition A.21 (Automorphism) An isomorphismf : A → A is an automor-
phism.

14 For the sake of simplicity, we assume algebraic structures with only one operation each.
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Another way of saying that two algebraic structures are isomorphic is to say
that they are structurally equivalent. It is known that all cyclic groups with ordern
are isomorphic to〈Zn,+〉, that〈Z∗p, ·〉 is a cyclic group for every prime numberp,
and that this group is isomorphic to〈Zp−1,+〉. This, in turn, means that the function
f(x) = gx mod p, whereg is a generator ofZ∗p, defines an isomorphism between
〈Zp−1,+〉 and〈Z∗p, ·〉, and hence thatgx+y ≡ gx · gy (mod p).

A.1.4 Permutations

Permutations are important building blocks for symmetric encryption systems in
general, and block ciphers in particular. The notion of a permutation is captured in
Definition A.22.

Definition A.22 (Permutation) LetS be a set. A mapf : S → S is a permutation
if it is bijective (i.e., injective and surjective). Theset of all permutationsof S is
denotedPerms[S].

If S = {1, 2, 3, 4, 5}, then an example of a permutation can be expressed as
follows:

(
1 2 3 4 5
5 3 4 2 1

)

This permutation maps every element in the first row to the respective element
in the second row; that is, 1 is mapped to 5, 2 is mapped to 3, 3 ismapped to
4, 4 is mapped to 2, and 5 is mapped to 1. Using this notation, itis possible to
specify any permutation of a finite setS. If S hasn elements, thenPerms[S]
comprisesn! = 1 · 2 · . . . · n elements and〈Perms[S], ◦〉 yields a noncommutative
group forn ≥ 3 (where◦ represents the composition operator, meaning that for
A,B ∈ Perms[S],A ◦B refers to the permutation that results by applyingB andA
in this order).

LetS = {0, 1}n be the set of all binary strings of lengthn. A bit permutation
is defined as a permutation of the bit positions ofS. To specify a bit permutationf ,
one selectsπ ∈ Perms[S] and sets

f : {0, 1}n −→ {0, 1}n
b0 . . . bn−1 7−→ bπ(0) . . . bπ(n−1)

Every bit permutation can be described in this way, and hencethere aren! possible
bit permutations for binary strings of lengthn. If the length of a binary string is
fixed, then the respective string is also called aword. A word is typically 32 or 64
bits long.
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There are some bit permutations on words that are frequentlyused in cryp-
tography, especially when it comes to hash functions and stream ciphers. Examples
include left and right rotation that stand for circular shifts in the respective direction.
If w is a word andc ∈ N is a positive integer, typically in the range between 1 and
|w| − 1, thenw

y←֓ c refers to thec-bit left rotation (circular shift) ofw, andw
x→֒ c

to thec-bit right rotation ofw. In this notationw ←֓ c (w →֒ c) refers to thec-bit
left (right) shift ofw.

A.2 INTEGER ARITHMETIC

According to Carl Friedrich Gauss,15 “mathematics is the queen of sciences and
number theory is the queen of mathematics.” Number theory isalso called integer
arithmetic. As such, it elaborates on the ring〈Z,+, ·〉 and its basic properties. It is an
important and fundamental mathematical topic that has had (and continues to have)
a deep impact on all natural sciences. One fascinating aspect of number theory is
that many of its problems, such as the integer factorizationproblem (Section 5.2.2),
can be easily understood even by nonmathematicians, but still remain hard to solve.
This is in sharp contrast to many other areas of mathematics,where problems cannot
easily be understood by nonexperts.

In this section, we look at the aspects of integer arithmeticor number theory
that are relevant for the topic of this book. More specifically, we address integer
division, common divisors and multiples, Euclidean algorithms, prime numbers,
factorization, and Euler’s totient function in this order.

A.2.1 Integer Division

In an algebraic structure with the multiplication operation, one usually divides two
elementsa andb by multiplying the first with the multiplicatively inverse element
of the second:

a

b
= ab−1

This construction requiresb to have an inverse element. This is always the case in a
group (or a field). If, however, the algebraic structure is only a monoid (or a ring),
then there are elements that have no inverse, and hence it maynot be possible to
divide one element by another. This is a major difference between a group and a
monoid, or between a field and a ring.

15 Carl Friedrich Gauss was a German mathematician who livedfrom 1777 to 1855.
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In 〈Z, ·〉 (group) or〈Z,+, ·〉 (field) we say that elementa divideselementb,
denoteda|b, if there exists another elementc in Z such thatb = ac. Alternatively
speaking,a is a divisor of b and b is a multiple of a. For example,2|6 because
6 = 2 · 3, but 3 does not divide 2. Also,1 divides every integer and the largest
divisor of a is |a|. Furthermore, every integera ∈ Z divides0 (becausec = 0
satisfies0 = a · 0), and hence0 has no largest divisor. Theorem A.2 enumerates
some basic laws that are used to compute with divisors.

Theorem A.2 For all a, b, c, d, e ∈ Z, the following rules apply:

1. If a|b andb|c, thena|c.
2. If a|b, thenac|bc for all c.

3. If c|a andc|b, thenc|da+ eb for all d ande.

4. If a|b andb 6= 0, then|a| ≤ |b|.
5. If a|b andb|a, then|a| = |b|.

Proofs.

1. If a|b andb|c, then there existf, g ∈ Z with b = af andc = bg. Consequently,
we can writec = bg = (af)g = a(fg) to expressc as a multiple ofa. The
claim (i.e.,a|c) follows directly from this equation.

2. If a|b, then there existsf ∈ Z with b = af . Consequently, we can write
bc = (af)c = f(ac) to expressbc as a multiple ofac. The claim (i.e.,ac|bc)
follows directly from this equation.

3. If c|a andc|b, then there existf, g ∈ Z with a = fc andb = gc. Consequently,
we can writeda + eb = dfc + egc = (df + eg)c to expressda + eb as
a multiple ofc. The claim (i.e.,c|da+ eb) follows directly from this equation.

4. If a|b andb 6= 0, then there exists0 6= f ∈ Z with b = af . Consequently,
|b| = |af | ≥ |a| and the claim (i.e.,|a| ≤ |b|) follows immediately.

5. Let us assume thata|b andb|a. If a = 0 thenb = 0, and vice versa. Ifa, b 6= 0,
then it follows from Proof 4 that|a| ≤ |b| and|b| ≤ |a|, and hence|b| = |a|.

�

Theorem A.3 is called the division theorem and it is attributed to Euclid.16)
The theorem states that it is always possible to divide an integer with another integer.

16 Euclid, also known as Euclid of Alexandria, was a Greek mathematician who was born around 300
B.C. He is best known for his bookElements, which is the most influential textbook in the history
of mathematics.
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Theorem A.3 (Division theorem) For all a, d ∈ Z with d 6= 0, there exist unique
q, r ∈ Z such thata = qd+ r and0 ≤ r < |d|.

In this setting,a is called thedividend, d is called thedivisor, q is called the
quotient, andr is called theremainder. In some literature, the remainderr is written
asRd(n) and we sometimes use this notation in this book as well.

For example,R7(16) = 2 (because16 = 2 · 7 + 2), R7(−16) = 5 (because
−16 = −3 · 7 + 5), andR25(104) = 4 (because104 = 4 · 25 + 4). In all three
examples, the remainder is underlined. Obviously,Rd(n) = 0 means thatd divides
n with remainder zero, and henced is a divisor ofn. Furthermore,Rd(n+ i · d) is
equal toRd(n) for all i ∈ Z, and this suggests thatR7(1) = R7(8) = R7(15) =
R7(22) = R7(29) = . . . = 1.

A.2.2 Common Divisors and Multiples

Two integers can have many common divisors, but only one of them can be the
largest one. Quite naturally, this divisor is called thegreatest common divisor(gcd).
It is formally introduced in Definition A.23.

Definition A.23 (Common divisors and greatest common divisor) For a, b ∈ Z,
c ∈ Z is a common divisorof a andb if c|a andc|b. Furthermore,c is thegreatest
common divisor, denotedgcd(a, b), if it is the largest integer that dividesa andb.

Another possibility to define the greatest common divisor ofa andb is to say
that c = gcd(a, b) if any common divisor ofa andb also dividesc. It holds that
gcd(0, 0) = 0, andgcd(a, 0) = |a| for all a ∈ Z \ {0}. If a, b ∈ Z \ {0}, then
1 ≤ gcd(a, b) ≤ min{|a|, |b|} andgcd(a, b) = gcd(±|a|,±|b|). Consequently, the
greatest common divisor of two integers can never be negative—even if one or both
arguments are negative. Furthermore, two integersa, b ∈ Z arerelatively primeor
coprimeif their greatest common divisor is one (i.e.,gcd(a, b) = 1).

Similar to the (greatest) common divisor, it is possible to define the (least)
common multiple of two integers. This is captured in Definition A.24.

Definition A.24 (Common multiples and least common multiple) For a, b ∈ Z,
c ∈ Z is a common multipleof a and b if a|c and b|c. Furthermore,c is the least
common multiple, denoted aslcm(a, b), if it is the smallest integer that is divided
bya andb.

Another possibility to define the least common multiple ofa andb is to say
thatc = lcm(a, b), if c divides all common multiples ofa andb.

The gcd and lcm operators can be generalized to more than two arguments in
a simple and straightforward way:gcd(a1, . . . , ak) is the largest integer that divides
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all ai (i = 1, . . . , k) andlcm(a1, . . . , ak) is the smallest integer that is divided by
all ai (i = 1, . . . , k).

A.2.3 Euclidean Algorithms

If the prime factorization of two integersa andb is known, then it is easy to compute
the greatest common divisor (Appendix A.2.5). Otherwise, one can still use the
Euclidean algorithm(or Euclid’s algorithm) to compute it.17 According to Theorem
A.3, a, b ∈ Z with a ≥ b andb 6= 0 can be written as

a = bq + r

for some quotientq ∈ Z and remainderr ∈ Z (standing fora mod b) with
0 ≤ r < b. Sincegcd(a, b) divides botha andb, gcd(a, b) must also divider. This
follows from the equation stated above. Consequently,gcd(a, b) equalsgcd(b, r),
and hence

gcd(a, b) = gcd(b, r) = gcd(b, a mod b) = gcd(b, Rb(a))

This equation can be recursively applied to computegcd(a, b). For example, for
a = 100 andb = 35, gcd(100, 35) can be computed as follows:

gcd(100, 35) = gcd(35, R35(100)) = gcd(35, 30)

= gcd(30, R30(35)) = gcd(30, 5)

= gcd(5, R5(30)) = gcd(5, 0)

= 5

The gcd of 100 and 35 thus equals 5.
This way of computinggcd(a, b) is at the core of the Euclidean algorithm. Let

us consider the following series ofk equations:

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3

. . .

rk−3 = rk−2qk−1 + rk−1

rk−2 = rk−1qk + rk

17 The Euclidean algorithm is one of the oldest algorithms known; it appeared in Euclid’sElements
around 300 B.C.
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All quotientsq1, . . . , qk and remaindersr1, . . . , rk are integers. Onlyrk is equal to
zero; all other valuesq1, q2, . . . , qk, r1, r2, . . . , rk−1 are nonzero. Ifrk reaches zero,
then the last equation implies thatrk−1 dividesrk−2 (i.e.,rk−1 | rk−2). The second-
to-last equation implies that it also dividesrk−3. This line of argumentation can be
continued until the first equation, and hencerk−1 also dividesa andb. None of the
other remaindersrk−2, rk−3, . . . , r1 has this property.18 The bottom line is thatrk−1
is a common divisor ofa andb, and one can show that it is the greatest one; that is,
rk−1 = gcd(a, b).

Algorithm A.1 The Euclidean algorithm.

(a, b)

a = |a|
b = |b|
while b 6= 0 do

t = a
a = b
b = t mod b

(a)

The resulting Euclidean algorithm is illustrated in Algorithm A.1. It takes
as input two integersa, b ∈ Z with |a| ≥ |b| and b 6= 0,19 and it computes as
outputa that yields the greatest common divisor ofa and b. First, the algorithm
replacesa and b with their absolute values (note that this does not change the
value of the greatest common divisor). Then the previously mentioned rule that
gcd(a, b) = gcd(b, a mod b) is applied recursively untilb reaches the value of zero.
At this point,a yields the greatest common divisor and is returned as outputof the
algorithm. In the example given above,a = 100 andb = 35. This means that the
while-loop is iterated three times: In the first iteration,t ← 100, a ← 35, and
b ← 30; in the second iteration,t ← 35, a ← 30, andb ← 5, and in the third
iteration,t ← 30, a ← 5, andb ← 0. Now b has reached the value of zero and
the while-loop terminates. The algorithm returns the valuea = 5 that stands for the
greatest common divisor of 100 and 35.

The Euclidean algorithm explained so far can be used to compute the greatest
common divisor of two integersa and b. During its execution, all intermediate
results (i.e., all quotientsq1, . . . , qk and remaindersr1, . . . , rk) are discarded. This
makes the algorithm simple to implement. If, however, one does not throw away

18 That’s why they are called remainders in the first place (not divisors). Onlyrk−1 is a divisor in the
last equation.

19 Strictly speaking, the condition|a| ≥ |b| is not necessary. Ifb > a > 0, thena andb can be
swapped after the first step.
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all intermediate results but accumulates them during the execution of the algorithm,
then one obtains more information than only the greatest common divisor. In this
case, theextended Euclidean algorithmcan be used to compute two integersx and
y that satisfyBézout’s identity(also known asBézout’s lemma) captured in Theorem
A.4 (without proof).

Theorem A.4 (Bézout’s identity) For every pair of integersa, b ∈ Z, there exists
another pair of integersx, y ∈ Z such thatxa+ yb = gcd(a, b). More generally, all
integers of the formxa+ yb are multiples ofgcd(a, b).

The first equation of the previously mentioned series ofk equations (i.e.,
a = bq1 + r1) can be resolved forr1:

r1 = a− bq1
= a+ b(−q1)

If one multiplies either side of the equation withq2, then one gets

aq2 + b(−q1q2) = r1q2

Using this expression in the second equation of the series, one gets

b = r1q2 + r2

= aq2 + b(−q1q2) + r2

and hence

b− aq2 − b(−q1q2) =

a(−q2) + b(1 + q1q2) = r2

A similar construction can be used to express eachri for i = 3, 4, . . . , k as a linear
combination ofa andb:

axi + byi = ri

wherexi andyi represent integers. So far,x1 = 1, y1 = −q1, x2 = −q2, and
y2 = 1 + q1q2. The sequence ofri (i = 1, . . . , k) terminates withrk = 0, andrk−1
yieldsgcd(a, b). As we can write

gcd(a, b) = rk−1

= axk−1 + byk−1
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we must determinexk−1 andyk−1 to computegcd(a, b). The extended Euclidean
algorithm provides a way to accumulate the intermediate quotients to determine
xk−1 andyk−1. As specified in Algorithm A.2, it takes as input two integersa, b ∈ Z
with |a| ≥ |b| andb 6= 0, and it computes as output the two integersx = xk−1 and
y = yk−1 that are in line with Bézout’s identityxa+ yb = gcd(a, b).

Algorithm A.2 The extended Euclidean algorithm.

(a, b)

i = 0
r−1 = a
r0 = b
x−1 = 1
y−1 = 0
x0 = 0
y0 = 1
while (ri = axi + byi 6= 0) do

q = ri−1 div ri
xi+1 = xi−1 − qxi

yi+1 = yi−1 − qyi
i = i+ 1

x = xi−1

y = yi−1

(x, y)

In our example, the extended Euclidean algorithm can be usedto determine
x andy that satisfygcd(a, b) = gcd(100, 35) = 5 = x · 100 + y · 35. After the
initialization phase of the algorithm, we come to the first incarnation of the while-
loop with i = 0. We compute

r0 = ax0 + by0 = 100 · 0 + 35 · 1 = 35

Because this value is not equal to 0, we enter the loop. The variableq is set tor−1
div r0. In our example, this integer division yields 100 div 35 = 2. Usingq = 2, we
compute the following pair of values:

x1 = x−1 − qx0 = 1− 2 · 0 = 1

y1 = y−1 − qy0 = 0− 2 · 1 = −2

After having incrementedi with 1, we havei = 1 and come back to the second
incarnation of the while-loop. We compute

r1 = ax1 + by1 = 100 · 1 + 35 · (−2) = 100− 70 = 30
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Because this value is again not equal to 0, we enter the loop. This time, the variable
q is set tor0 div r1 = 35 div 30 = 1. Usingq = 1, we then compute the following
pair of values:

x2 = x0 − qx1 = 0− 1 = −1
y2 = y0 − qy1 = 1− (1 · (−2)) = 1 + 2 = 3

After having incrementedi with 1, we havei = 2 and come back to the third
incarnation of the while-loop. We compute

r2 = ax2 + by2 = 100 · (−1) + 35 · 3 = −100 + 105 = 5

Because this value is not equal to 0, we enter the loop. This time, the variableq is set
to r1 div r2 = 30 div 5 = 6. Usingq = 6, we compute the following pair of values:

x3 = x1 − qx2 = 1 + 6 = 7

y3 = y1 − qy2 = −2− 6 · 3 = −20

Finally, we incrementi and come back to the fourth incarnation of the while-loop
with i = 3. We now compute

r3 = ax3 + by3 = 100 · 7 + (−20) · 35

and realize that this value equals 0. Consequently, we don’treenter the while-loop,
but return(x, y) = (x2, y2) = (−1, 3) as the result of the algorithm. It can easily be
verified that this result is correct, because

gcd(100, 35) = 5 = −1 · 100 + 3 · 35

A.2.4 Prime Numbers

Prime numbers (or primes) as formally introduced in Definition A.25 are frequently
used in mathematics and even more so in public key cryptography.20

Definition A.25 (Prime number) A natural number1 < n ∈ N is called aprime
number(or prime) if it is divisible only by1 and itself.

20 The first recorded definition of a prime was again given by Euclid. There is even some evidence that
the concept of primality was known earlier to Aristotle and Pythagoras.
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Contrary to that, a natural number1 < n ∈ N that is not prime is called
composite(note that1 is neither prime nor composite). In this book, the set of all
prime numbers is denoted asP. This set is infinitely large (i.e.,|P| = ∞), and the
first 8 elements are2, 3, 5, 7, 11, 13, 17, and19.

Suppose you want to find the set of all primes that are less or equal than a
certain thresholdn (e.g.,n = 20). In the third century B.C., Eratosthenes proposed
an algorithm to systematically find these primes, and this algorithm introduced the
notion of asieve. The sieve starts by writing down the set of all natural numbers
between 2 andn. In our example, this looks as follows:

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

Next, all numbers bigger than 2 (i.e., the smallest prime) which are multiples
of 2 are removed from the set (this means that all even numbersare removed). The
following set remains:

{2, 3, 5, 7, 9, 11, 13, 15, 17, 19}

This step is repeated for every prime number that is less or equal than
√
n. In

our example,
√
20 ≈ 4.472, and this means that the step must be repeated only for

the prime number 3. The following set remains:

{2, 3, 5, 7, 11, 13, 17, 19}

What is left is the set of prime numbers less than 20. In this example, the
cardinality of the prime number set is 8. In general, it is measured by the prime
counting functionπ(n) that is introduced next.

A.2.4.1 Prime Counting Function

Theprime counting functionπ(n) counts the number of primes that are less or equal
to n ∈ N:

π(n) := |{p ∈ P | p ≤ n}|

The following table illustrates the first couple of values ofthe prime counting
functionπ(n). Note that the function grows monotonically.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .

π(n) 1 2 2 3 3 4 4 4 4 5 5 6 6 . . .
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In public key cryptography, one often uses very large prime numbers. Conse-
quently, one may ask whether there are arbitrarily sized prime numbers. As stated in
Theorem A.5, this question can be answered in the affirmative.

Theorem A.5 There are infinitely many primes.

Proof.Assume that there are finitely many primesp1, . . . , pn. Consider the number
m = p1 · · · pn + 1. Becausem is bigger than any prime, it must be composite, and
hence it must be divisible by some prime. We note, however, thatm is not divisible
by p1, as when we dividem by p1 we get the quotientp2 · · · pn and a remainder of
1. Similarly,m is not divisible by anypi for i = 2, . . . , n. Consequently, we get a
contradiction and hence the assumption (i.e., there are finitely many primes) must
be wrong. This proves the theorem.

�

Although there are infinitely many primes, it may still be thecase that they
are sparse and that finding a large prime is prohibitively difficult. Consequently, a
somewhat related question asks for the density of the prime numbers: How likely
does an interval of a given size comprise a prime number? We can use the prime
density theorem addressed next to answer this and similar questions.

A.2.4.2 Prime Density Theorem

Theorem A.6 is called theprime density theorem. It states that arbitrarily sized prime
numbers do in fact exist, and that finding them is not difficult—even for very large
numbers. We give the theorem without a proof.

Theorem A.6 (Prime density theorem)

lim
n→∞

π(n) ln(n)

n
= 1

More precisely, it is known that

π(n) ≥ n

ln(n)

for 2 < n ∈ N and that

π(n) ≤ 1.25506
n

ln(n)

for 17 ≤ n ∈ N. This means thatπ(n) ≈ n/ln(n) is indeed a very good
approximation for almost alln ∈ N.
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The prime density theorem suggests that for sufficiently largen the valueπ(n)
is aboutn/ ln(n). This implies that roughly everyln(n)th number of the size ofn is
prime, and hence that the probability ofn being prime is approximately1/ ln(n)—
or 2/ ln(n) if we only consider odd numbersn. In the case of RSA with a 2,048-bit
modulusn, for example, the respective prime numbersp andq have a length of about
1,024 bits. The probability that a random odd number is a prime is roughly

2

ln(21024)
=

2

1024 · ln(2) ≈
2

710
=

1

355

There are several open conjectures on prime numbers. For example, it is conjectured
that there exist infinitely many twin primes; that is, primesp for whichp+ 2 is also
prime, or that every even number is the sum of two primes.

A.2.4.3 Generating Large Primes

In cryptography, one often needs large primes, and there arebasically two ap-
proaches to generate them:

• One can construct provable primes (e.g., [7]).

• One can randomly choose large odd integers and test them for primality (or
compositeness, respectively).

In practice, one usually prefers the second approach, meaning that one ran-
domly chooses large odd integers and subjects them to primality (or compositeness)
testing. If a number turns out to be composite, then it is discarded and the next
odd integer is taken into consideration.21 This is repeated until sufficiently many
primes are found. The prime density theorem suggests that this happens within a
reasonable amount of time. To follow this approach, however, an algorithm to solve
the primality decision problem captured in Definition A.26 is needed.

Definition A.26 (Primality decision problem) Given a positive integern ∈ N,
decide whethern is prime (i.e.,n ∈ P) or composite (i.e.,n /∈ P).

The simplest algorithm to solve the primality decision problem is trial divi-
sion: Test all primes between 2 and

√
n to see if any of them dividesn. If such a

prime exists, thenn is not prime; otherwise, it is. Note that it is sufficient to find
only one prime that dividesn. If such a prime is found, then the algorithm can abort
and need not go through all other primes.

21 This simple approach is often used in libraries, but one can also throw a new random number that is
not divided by a given list of small primes. Also, there are more sophisticated methods to construct
the next odd integer (not addressed here).
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Trial division is simple and straightforward, but it is alsohighly inefficient.
It requires a list of all prime numbers between 2 and

√
n, and it must test them all

in the worst case (i.e., ifn happens to be prime). According to Theorem A.6, this
means that the algorithm must perform

√
n

ln
√
n

trial divisions to verify thatn is prime. If, for example,n is larger than1075, this
means

√
1075

ln
√
1075

> 3.66 · 1035

trial divisions, and this is clearly beyond the computational capabilities of every-
body. The bottom line is that trial division has a running time that is exponential
in the input length, and such algorithms are computationally intractable to execute
even for moderately sized numbers.

It is obvious that the primality decision problem can be solved if the IFP
(Definition 5.8) can be solved. For a long time, however, it was not known whether
the primality decision problem is simpler to solve than the IFP. Since the publication
of [8], however, we know that the primality decision problemis in the complexity
classP, meaning that there are deterministic algorithms to solve the primality
decision problem in polynomial time. This is not known to be true for the IFP (i.e.,
it is unknown whether the IFP is inP or NP). A polynomial-time algorithm is
theoretically better than an exponential-time one, but thedegree of the polynomial
matters and may still be too large to be used in the field. This applies to the algorithm
proposed in [8] and some of its successors.

In practice, one prefers nondeterministic or probabilistic algorithms22 that also
solve the primality decision problem in polynomial time, but for which the degree
of the polynomial is significantly smaller than the one proposed in [8]. In such an
algorithm, one usually applies several primality tests to reveal the fact that the integer
in question is composite. If this is the case, then one can be absolutely sure that the
integer is composite. Otherwise, one assumes that the integer is prime, and one can
increase the level of assurance by running more tests. Integers that are not known
to be prime, but have passed several tests in the affirmative,are sometimes called
probable primes.

In the sequel, we outline some primality tests that are used in the field (i.e.,
the Fermat, Solovay-Strassen, and Rabin-Miller test). Each test makes use of one or

22 Some of these algorithms could be converted into deterministic ones if one knew that the extended
Riemann hypothesis is true. Most mathematicians believe that this is the case.



Discrete Mathematics 531

several randomly chosen auxiliary numbers1 < a < n. If such a numbera provides
evidence forn to be prime (composite), then it is called awitnessfor the primality
(compositeness) ofn. A problem is that somea may befalse witnesses(or liars),
meaning that they provide evidence thatn is prime (composite), whereas in reality
it is not. The respectiven is then sometimes calledpseudoprimewith respect to the
test in use. It goes without saying that a primality test is good if it has not too many
liars and pseudoprimes.

Fermat Test

As its name suggests, the Fermat test goes back to Pierre de Fermat23 and Fermat’s
little theorem (Theorem A.9). In short, the theorem states that for every primep
and numbera not divisible byp, the equivalenceap−1 ≡ 1 (mod p) must hold.
Consequently, one can test the primality—or rather the compositeness—ofn by
randomly choosing ana (not divisible byn) and computingan−1 (mod n). If this
value is not equal to 1, thenn is definitively not a prime (and we have found a witness
for the compositeness ofn). Unfortunately, the converse is not true; that is, finding
ana for which an−1 ≡ 1 (mod n) does not imply thatn is prime.24 In fact, there
is an entire class of integersn that are composite but for whichan−1 ≡ 1 (mod n)
is true for everya < n with gcd(a, n) = 1, meaning that all sucha are liars.
These numbers are calledCarmichael numbers,25 and one can show that there exist
infinitely of them. Every Carmichael number yields a pseudoprime for the Fermat
test, and the existence of (infinitely many) Carmichael numbers is certainly one of
the main reasons why the Fermat test is not so widely used in the field.

Solovay-Strassen Test

The Solovay-Strassen test is another probabilistic compositeness testing algorithm
developed and proposed by Robert M. Solovay and Volker Strassen in 1977 [9].
Similar to the Fermat test, it proves the compositeness ofn with certainty, but not its
primality. The test is based on quadratic residuosity ( Appendix A.3.7) in general,
and Euler’s criterion (Theorem A.11) in particular. This criterion suggests that for
every prime numbern and1 ≤ a ≤ n − 1 with gcd(a, n) = 1, the Jacobi symbol
(a|n) and the valuea(n−1)/2 ( mod n) must be the same; that is,1 for a ∈ QRn and
−1 for a ∈ QNRn. If these two values are not the same, thenn must be composite.

23 Pierre de Fermat was a French mathematician who lived from1607 to 1665.
24 For this reason, the Fermat test is sometimes also referred to a compositeness test.
25 It can be shown that a Carmichael number must be odd, squarefree, and divisible by at least three

prime numbers. The first three Carmichael numbers are561 = 3 · 11 · 17, 1105 = 5 · 13 · 17, and
1729 = 7 · 13 · 19.
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As further explained in Appendix A.3.7, the Jacobi symbol(a|n) can be computed
if the prime factorization ofn is known, but it can also be computed if the prime
factorization ofn is unknown (as is the case here).

The Solovay-Strassen test thus follows the following rationale: If for a given
n one can find ana between1 andn − 1 with gcd(a, n) = 1 for which (a|n) 6=
a(n−1)/2 ( mod n), then one can conclude thatn is composite (anda then represents
a witness for this fact). The algorithm randomly chooses several values fora and
verifies whether(a|n) andan−1/2 (mod n) are the same. If they are, then the level
of assurance thatn is prime increases. If they are not, then anEuler witnessfor the
compositeness ofn is found and the algorithm terminates.

If, for example, one wants to apply the Solovay-Strassen test to n = 13 · 17 =
221 (that is composite and not prime), then one can randomly select a = 47 (note
thatgcd(47, 221) = 1) and compute(47|221) = −1 and47(221−1)/2 (mod 221) =
−1. This suggests that 221 is either prime, or 47 is an Euler liarfor 221. The
algorithm continues witha = 2 (again, note thatgcd(2, 221) = 1) and computes
(2|221) = −1 and2(221−1)/2 (mod 221) = 30. This suggests that 2 is an Euler
witness for the compositeness of 221, and hence that 221 is definitively composite
and not prime.

It can be shown that for alln, half of the numbersa between1 andn − 1
with gcd(a, n) = 1 are Euler witnesses, meaning that they can truly test the
compositeness ofn. This means that in every round (and for everya), there is a
probability of 1/2 that the two values match and1/2 that they don’t match. So if
the test is executedk times and the two values are the same in every execution,
thenn is assumed to be prime with a probability of1 − 2−k. By increasingk, this
probability can be made as close to 1 as needed. Most importantly, there are no
classes of numbers (like the Carmichael numbers in the case of the Fermat test) that
can pass the Solovay-Strassen test for more than the half possible values a without
being prime. It goes without saying that this is a big advantage when used in the
field.

Miller-Rabin Test

The Miller-Rabin test is yet another probabilistic compositeness testing algorithm
that was developed and proposed by Gary L. Miller and MichaelO. Rabin in the
1970s.26 Its original version, created by Miller [10], is deterministic and relies on
the unproven generalized Riemann hypothesis. Rabin later turned the deterministic
algorithm into a probabilistic one [11]. This version is usually meant when people
refer to the Miller-Rabin test.

26 It is rumored that the test was coinvented and also used by the U.S. mathematician John L.Selfridge,
who lived from 1927 to 2010.
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Like the Fermat test, the Miller-Rabin test is also based on Fermat’s little
theorem (Theorem A.9), but it is more stringent in the sense that it is able to detect
liars the Fermat test is not able to detect. The Miller-Rabintest employs the fact that
the unity 1 has only trivial square roots; that is,1 and−1, in Z∗n if n is prime,27

and that this is not the case ifn is composite, meaning that 1 may then also have
nontrivial square roots. So if a nontrivial square root of 1 is found inZ∗n, thenn
must be composite; otherwise,n can still be prime.

Before we start explaining the Miller-Rabin test, we observe that for every
odd integern > 2, n − 1 must be even and can be written as2sr, wheres ≥ 1
andr are integers andr must be odd (i.e., 2 does not divider). More specifically,
the remainderr results from repeatedly factoring out 2 fromn− 1. If, for example,
n = 89 (which is prime), thenn− 1 = 88 and this number can be written as23 · 11;
that is,s = 3 andr = 11. If n = 105 (which is not prime because105 = 3 · 5 · 7),
thenn−1 = 104 and this number can be written as23 ·13; that is,s = 3 andr = 13.
All computations are done modulon.

The following computations are done modulon. One can computean−1 for
any 1 ≤ a ≤ n − 1 by first computingar and then squaring the results times.
In our first example withn = 89, this suggests that one can computea88 by first
computingar = a11 and then squaring the results = 3 times (this yieldsa11, a22,
a44, anda88). This can be done for arbitrary values ofa. Fora = 3, a = 5, a = 11,
anda = 2, for example, this may look as follows (all values are modulo89):

a a11 a22 a44 a88

3 37 34 -1 1
5 55 -1 1 1
11 -1 1 1 1
2 1 1 1 1

Note that -1 actually refers to the element88 ∈ Z89. It is used in this tabular
representation only to emphasize the fact that the square root (and hence the entry to
the left) of every 1 must either be 1 or -1. This requirement isfulfilled here because
89 is prime. As a side remark we note that the Fermat test only verifies whether the
entry in the last column is 1 for every value ofa. It goes without saying that this is
fulfilled here, and hence the Fermat test would also come to the conclusion that 89
is probably prime. But the Miller-Rabin test does more in verifying that in each row
a 1 cannot be preceded by something other than -1 or 1.

27 To show that there are no other (i.e., nontrivial) square roots of 1, one supposes thatx is a square
root of 1 (mod p). This means thatx2 ≡ 1 (mod p), and hencex2 − 1 = (x + 1)(x − 1) ≡
0 ( mod p). Thereforep | (x+1)(x−1). Sincep is prime, we must havep | (x+1) orp | (x−1).
It means thatx = −1 or+1 (mod p).
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To see what this may look like, we revisit the second example given above,
namelyn = 105 (that is not prime). In this case,n− 1 = 104 = 23 · 13, and hence
s = 3 andr = 13. To computea104, one first computesar = a13 and then squares
the results = 3 times (to yielda26, a52, anda104). Fora = 2 anda = 8, the tabular
representation may look as follows (all values are modulo 105):

a a13 a26 a52 a104

2 2 4 16 46
8 8 64 1 1

The point to stress is that the square root of852 = 1 (underlined above) is 64
and neither 1 nor -1. This means that we have found a square root of 852 = 1 (i.e.,
826) that is not 1 or -1, and hence 105 cannot be prime. This fact isnot found by
the Fermat test (since8104 = 1 holds). The bottom line is thata = 8 is a witness
for the compositeness ofn = 105 in the Miller-Rabin test but a liar in the Fermat
test. Needless to say, the Fermat test would still find the fact that 105 is not prime by
verifying 2104 6= 1.

Informally speaking, the Miller-Rabin test starts with a tabular representation
as given above and adds rows for different values ofa. In each row, the test verifies
whether the row consists of only ones (like the row fora = 2 in the first example) or
each 1 is preceded by either -1 or 1. If any other value is foundto precede a 1 (like
in the row fora = 8 in the second example), then the test terminates with the firm
statement thatn is composite.

More formally, the Miller-Rabin test tries to find an2 ≤ a ≤ n− 2 with

ar 6≡ 1 (mod n)

and

a2
jr 6≡ −1 (mod n)

for all 0 ≤ j ≤ s − 1. If such ana is found, then it yields a witness for the
compositeness ofn. Otherwise, it is probable (but not absolutely sure) thatn is
prime. More specifically, it can be shown that a composite number passes the
Miller-Rabin test for at most1/4 of the possible values ofa. If, for example,
n = 221 = 13·17,n−1 = 220 = 22 ·55 (i.e.,s = 2 andr = 55, anda = 174), then
a55 = 47, a110 = −1, anda220 = 1. It then looks as if 174 speaks in favor of the
primality of 221. But this is a fallacy, and 174 is actually a Miller-Rabin liar (and 221
is a composite number).28 Fortunately, Miller-Rabin liars are relatively rare, and one

28 The other liars are 21, 47, and 200 in this example.
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can show that the probability that the Miller-Rabin test passesk tests for a composite
numbern is at most1/4k. This means that the error probability of the Miller-Rabin
test decreases exponentially fast—even faster than the Solovay-Strassen test.

In spite of the fact that the Miller-Rabin test looks involved, its execution is
actually very simple, and hence the Miller-Rabin test is theprimality (or composite-
ness) testing algorithm of choice by almost all practitioners working in the field.

A.2.4.4 Safe and Strong Primes

In cryptography,one often uses primes with specific properties. For example, a prime
numberp is calledsafe, if it is equal to2p′+1 for some other prime numberp′ (i.e.,
p = 2p′ + 1 with p, p′ ∈ P).29 This other prime numberp′ is then called aSophie
Germain prime. This means that a prime numberp′ is a Sophie Germain prime if
p = 2p′ + 1 is also prime (and it is then called safe). For example,23 is a Sophie
Germain prime because it is prime and2 · 23+1 = 47 is also prime. The first 8 safe
primes are

5 = 2 · 2 + 1

7 = 2 · 3 + 1

11 = 2 · 5 + 1

23 = 2 · 11 + 1

47 = 2 · 23 + 1

59 = 2 · 29 + 1

83 = 2 · 41 + 1

107 = 2 · 53 + 1

They are generated with the 8 Sophie Germain primes 2, 3, 5, 11, 23, 29, 41, and 53.
The set of all Sophie Germain primes is indeed a distinct subset ofP, and there are
prime numbersp′ ∈ P for which p = 2p′ + 1 is not prime, such as15 = 2 · 7 + 1
for p′ = 7 or 27 = 2 · 13 + 1 for p′ = 13. In fact, we know that for everyp′ ∈ P,
p = 2p′ + 1 is either a safe prime or it is not prime.

Another distinct property of some primes is their strength.In cryptography,30

a large primep is said to bestrongif the following conditions are satisfied:

• p− 1 has large prime factors (i.e.,p = a1q1 +1 for some integera1 and large
primeq1).

29 Following a similar line of argumentation,p is calledquasi-safe, if it is equal to2p′ + 1 for some
prime powerp′ (instead of a prime). The notion of a quasi-safe prime is not further used in this
book.

30 Note that the notion of a strong prime is defined in a different way in number theory.
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• q1 − 1 has large prime factors (i.e.,q1 = a2q2 + 1 for some integera2 and
large primeq2).

• p+1 has large prime factors (i.e.,p = a3q3− 1 for some integera3 and large
primeq3).

Strong primes are popular in public key cryptography mainlybecause it is
assumed that they better resist algorithms to factorize large integers and compute
discrete logarithms. In the case of RSA, for example, it is sometimes recommended
that the modulusn should be chosen as the product of two strong primes. This
defeats Pollard’sp−1 algorithm (Section 5.3.1.2), but it does not defeat other integer
factorization algorithms that may even be more powerful. Similarly, in the case of
cryptosystems based on the DLP, it is sometimes required that p is strong because
this requirement ensures thatp−1 has at least one large prime factor, and this, in turn,
defeats the Pohlig-Hellman algorithm [12]. But this requirement it already ensured
if p is safe. The bottom line is that the importance of strong primes is discussed
controversially in the community (e.g., [13]).

A.2.5 Factorization

It is well known that a primep that divides the productab of two natural numbers
a, b ∈ N divides at least one of the two factors (i.e.,a or b). To prove this fact, one
assumes thatp dividesab but nota and one then shows thatpmust divideb. The fact
thatp is prime implies thatgcd(a, p) = 1, and this, in turn, means that—according
to Bézout’s identity (Theorem A.4)—there existx, y ∈ N with 1 = ax + py. This
equation can be multiplied withb to getb = abx + pby. Becausep divides(ab)x
andpby on the right side of the equation,p must also divideb on the left side of
the equation. This result can be generalized to more than twofactors: Ifp divides a
product

k∏

i=1

qi

of k prime factorsqi, thenp must be equal to one of the prime factorsq1, . . . , qk.
This brings us to one of the fundamental theorems of integer arithmetic, namely that
every natural number has a unique prime factorization. Thistheorem was proven by
Gauss in 1801, and it is captured in Theorem A.7 (without a proof).



Discrete Mathematics 537

Theorem A.7 (Unique factorization) Every natural numbern ∈ N can be fac-
tored uniquely (up to a permutation of the prime factors):

n =
∏

p∈P
pep(n)

In this formula,ep(n) refers to the exponent of primep in the factorization of
n. For almost allp ∈ P this value is zero, meaning that it is greater than zero only for
finitely many primesp. Using this notation, the greatest common divisor and least
common multiple are defined as follows:

gcd(a, b) =
∏

p∈P
pmin(ep(a),ep(b))

lcm(a, b) =
∏

p∈P
pmax(ep(a),ep(b))

The algorithms we learn in school to compute greatest commondivisors and least
common multiples are directly derived from these equations. Note, however, that
these algorithms can only be used if the prime factorizations ofa andb are known.

In the realm of integer factorization algorithms, the notion of a smooth integer
is sometimes used. Informally speaking, an integer issmoothif it is the product
of only small prime factors. More specifically, we must say what a “small prime
factor” is, and hence one has to define smoothness with respect to a boundB. This
is captured in Definition A.27.

Definition A.27 (B-smooth integer) LetB be an integer. An integern is B-smooth
if every prime factor ofn is less thanB.

For example, the integern = 43 · 52345 · 172 is 18-smooth (because 17 is
the largest prime factor ofn and is less than 18). If we know that an integer is B-
smooth, then we know something about the internal structureof the integer, and this
knowledge may be exploited in an integer factorization algorithm.

A.2.6 Euler’s Totient Function

As its name suggests, Euler’s totient function was proposedby Leonhard Euler31 as
a function that counts the numbers that are smaller thann ∈ N and have no other
common divisor withn other than 1 (i.e., they are coprime withn). More formally,
φ : N → N is defined byφ(1) = 1 andφ(n) = |Z∗n| for n ≥ 2. Note that the

31 Leonhard Euler was a Swiss mathematician who lived from 1707 to 1783.



538 Cryptography 101: From Theory to Practice

notation is not fixed, and that Euler’s totient function is sometimes also denoted as
ϕ (instead ofφ). Also note that an equivalent definition of the function is as follows:

φ(n) = |{a ∈ {0, . . . , n− 1} | gcd(a, n) = 1}|

In either case, Euler’s totient function has the following properties:

• If p is prime, then every number smaller thanp is coprime withp. Conse-
quently,φ(p) = p− 1 for every prime numberp.

• If p is prime and1 ≤ k ∈ Z, thenφ(pk) = pk − pk/p. This is because every
p-th number between 1 andpk is not coprime withpk (becausep is a common
divisor ofpi for i = 1, . . . , k − 1 andpk) and we have to subtractpk/p from
pk accordingly. Note thatpk − pk/p = pk − pk−1 = pk−1(p− 1), and hence
φ(pk) = (p− 1)pk−1. This is the equation that is usually found in textbooks.

• If n is the product of two distinct primesp andq; that is,n = pq, thenφ(n) =
φ(p)φ(q) = (p − 1)(q − 1). This is because the numbers0, p, 2p, . . . , (q −
1)p, q, 2q, . . . , (p − 1)q are not coprime withn, and there are1 + (q − 1) +
(p− 1) = p+ q− 1 of these numbers (they are all different from each other if
p 6= q). Consequently,φ(n) = pq−(p+q−1) = pq−p−q+1 = (p−1)(q−1).

The bottom line is that for any integern with prime factorization

n =
∏

i

qki

i

φ(n) can be computed as follows:

φ(n) =
∏

i

(qi − 1)qki−1
i

Using this formula, for example, one can easily deriveφ(45) from the prime
factorization of45 = 32 · 5: φ(45) = (3− 1) · 32−1 · (5− 1) · 51−1 = 2 · 31 · 4 · 50 =
2 · 3 · 4 · 1 = 24.

But if the prime factorization ofn is unknown, then it is difficult to compute
φ(n). In fact, one can show that forn being a product of two primesp andq; that
is, n = pq, computingφ(n) is as hard as finding the prime factorization ofn. This
means that if one can computeφ(n), then one can also factorizen. To prove this
fact, one starts withφ(pq) = (p− 1)(q− 1) = pq− (p+ q) + 1 = n− (p+ q) + 1,
and derives equation (A.1) from it:

p+ q = n− φ(pq) + 1 (A.1)
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On the other hand, one knows that(p−q)2 = p2−2pq+q2 = p2+2pq+q2−4pq =
(p + q)2 − 4pq = (p + q)2 − 4n. Computing the square root on either side of this
equation, one getsp − q =

√

(p+ q)2 − 4n. In this equation, one can substitute
p+ q with the right side of equation (A.1). The result is equation(A.2):

p− q =
√

(n− φ(pq) + 1)2 − 4n (A.2)

By adding (A.1) and (A.2), one gets the following formula to compute(p + q) +
(p− q) = p+ q + p− q = 2p:

2p = n− φ(pq) + 1 +
√

(n− φ(pq) + 1)2 − 4n

The fact that onlyn andφ(pq) = φ(n) appear on the right side of the equation
implies that one can compute2p (and hencep) if one knowsn andφ(pq), and this,
in turn, means that one can factorizen.

A.3 MODULAR ARITHMETIC

Modular arithmetic elaborates on the ring32 〈Zn,+, ·〉 that consists of a complete
residue system modulon (denoted asZn) and two operations (+ and ·). In this
setting,+ refers to the addition modulon, and· refers to the multiplication modulo
n. In this section, we only look at the aspects of modular arithmetic that are relevant
for cryptography.

A.3.1 Modular Congruence

Two integers are said to becongruentmodulo a natural number if they represent the
same value when computed modulo this number. This notion of modular congruence
is formally expressed in Definition A.28.

Definition A.28 Let a, b ∈ Z andn ∈ N. The elementa is congruent tob modulo
n, denoteda ≡ b (mod n) if n dividesa− b; that is,n | (a− b).

For example,7 ≡ 12 (mod 5), 4 ≡ −1 (mod 5), 12 ≡ 0 (mod 2), and
−2 ≡ 19 (mod 21).

It can be shown that congruence modulon defines anequivalence relation
overZ (i.e., a relation that is reflexive, symmetric, and transitive).

• Reflexivity: For alln ∈ N anda ∈ Z: a ≡ a (mod n);

32 If n is prime, then〈Zn,+, ·〉 is actually a field.
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• Symmetry: For all n ∈ N and a, b ∈ Z: If a ≡ b (mod n), then b ≡
a (mod n);

• Transitivity: For all n ∈ N anda, b, c ∈ Z: If a ≡ b (mod n) and b ≡
c (mod n), thena ≡ c (mod n).

An equivalence relation over a set partitions the set intoequivalence classes.
In Z, the equivalence classes are calledresidue classes. Everya ∈ Z is congruent
modulon to someb ∈ {0, . . . , n−1}, and henceRn(a) refers to a particular residue
class that consists of allx ∈ Z that are congruent toamodulon. This can be formally
expressed as follows:

Rn(a) := {x ∈ Z | a ≡ x (mod n)}

In some literature,a ora+nZ are used to refer toRn(a). Furthermore, one employs
the term residue to actually refer to a residue class. For example, the residue (class)
of 0 modulo 2 refers to the set of all even integers, whereas the residue (class) of 1
modulo 2 refers to the set of all odd integers. Similarly, theresidue classes modulo
4 are defined as follows:

0 = 0 + 4Z = R4(0) = {0, 0± 4, 0± 2 · 4, . . .} = {0,−4, 4,−8, 8, . . .}
1 = 1 + 4Z = R4(1) = {1, 1± 4, 1± 2 · 4, . . .} = {1,−3, 5,−7, 9, . . .}
2 = 2 + 4Z = R4(2) = {2, 2± 4, 2± 2 · 4, . . .} = {2,−2, 6,−6, 10, . . .}
3 = 3 + 4Z = R4(3) = {3, 3± 4, 3± 2 · 4, . . .} = {3,−1, 7,−5, 11, . . .}

As mentioned in Section A.1.2.3,Zn is sometimes used in short to refer toZ/nZ,
andZ/nZ stands for the quotient group ofZ modulonZ. It consists of all residue
classes modulon (there aren such classes, because all residues0, 1, . . . , n− 1 can
occur in the division withn). In fact, the set{0, . . . , n − 1} is called acomplete
residue system modulon. Other elements could also be used to get a complete
residue system modulon, but the ones mentioned above are the smallest ones.

The modulon operator defines a mappingf : Z −→ Zn, and this mapping
represents a homomorphism fromZ ontoZn. This means that we can add and multi-
ply residues (or residue classes, respectively) similar tointegers. The corresponding
rules are as follows:

Rn(a+ b) = Rn(Rn(a) +Rn(b))

Rn(a · b) = Rn(Rn(a) ·Rn(b))
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Consequently, intermediate results of a modular computation can be reduced (i.e.,
computed modulon) at any time without changing the result. The following exam-
ples illustrate this point:

R7(12 + 18) = R7(R7(12) +R7(18)) = R7(5 + 4) = R7(9) = 2

R7(12 · 18) = R7(R7(12) · R7(18)) = R7(5 · 4) = R7(20) = 6

R7(8
37 + 94) = R7(1

37 + 24) = R7(1 + 16) = R7(17) = 3

The fact that〈Zn,+, ·〉 is (only) a ring implies that not all elements have inverse
elements with regard to multiplication. For example, the multiplicative inverse
element of 3 modulo 10 is 7 (because3 · 7 = 21 ≡ 1 (mod 10)), but the inverse
of 4 modulo 10 does not exist.33 One can show thata has a multiplicative inverse
modulon if and only if gcd(a, n) = 1, meaning thata andn must be coprime. In
this case, the multiplicative inverse modulon can be computed using the extended
Euclidean algorithm (Algorithm 3.2). If one replacesb with n in Bézout’s identity
(Theorem A.4), then one gets

xa+ yn = gcd(a, n) = 1 (A.3)

This is equivalent toxa = 1 − yn. Because all multiples ofn are equivalent to 0
modulon, it follows that the right side of the equation is 1. This, in turn, suggests that
x is the multiplicative inverse ofamodulon. Contrary to that, ifgcd(a, n) = k > 1,
then one can show thata doesn’t have a multiplicative inverse modulon.

In the literature,Z∗n is used to refer to the subset ofZn that comprises all
elements that are coprime withn, meaning all elements ofZn that are invertible.
More formally,

Z∗n := {x ∈ Zn | gcd(x, n) = 1}

Using this notation,〈Z∗n, ·〉 is a commutative group that is sometimes abbreviated
with Z∗n. If n is prime, thenZ∗n = Zn \ {0} and|Z∗n| = n− 1.

A.3.2 Modular Exponentiation

In cryptography, a frequently used computation is modular exponentiation. If, for
example, we want to computeab (mod n) for somea ∈ Z∗n andb ∈ N, then the
simplest algorithm is to iteratively multiply (amodulon) b times. Ifb = 23, then the

33 Note that 4 and 10 have a common factor 2, and that4 · a always contains a factor 2 and therefore
cannot be 1 (for alla ∈ Zn).
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following sequence of equations yields the result with22 modular multiplications:

Rn(a
2) = Rn(a · a)

Rn(a
3) = Rn(a · Rn(a

2))

Rn(a
4) = Rn(a · Rn(a

3))

. . .

Rn(a
23) = Rn(a · Rn(a

22))

This can be simplified considerably, and the following sequence of equations also
yields the correct result but requires only seven modular multiplications:

Rn(a
2) = Rn(a · a)

Rn(a
4) = Rn(Rn(a

2) ·Rn(a
2))

Rn(a
5) = Rn(a ·Rn(a

4))

Rn(a
10) = Rn(Rn(a

5) ·Rn(a
5))

Rn(a
11) = Rn(a ·Rn(a

10))

Rn(a
22) = Rn(Rn(a

11) ·Rn(a
11))

Rn(a
23) = Rn(a ·Rn(a

22))

This method can be generalized and the resultingsquare-and-multiply algorithmas
captured in Algorithm A.3 works for modular exponentiationin any (multiplicative)
group. Let〈G, ·〉 be such a group,a an element of this group, andb a natural number
(i.e.,b ∈ N). If we want to compute the elementab ofG, then we must have a binary
representation of the exponentb (i.e., b = bk−1 . . . b1b0) and process this bitstring
from one end to the other. More specifically, we process the exponent from the most
significant bit (i.e.,bk−1) to the least significant bit (i.e.,b0). The other direction
is also possible and works similarly. In Algorithm A.3, the variables is used to
accumulate the result. It is initially set to 1, and the exponent is processed frombk−1
to b0. For each exponent bit, the values is squared. If the bit is equal to one, then the
result is multiplied witha. Otherwise, nothing is done. After iterating this step for
every bit of the exponent, the algorithm returnss that yields the elementab of G.

If we consider the groupZ∗41 and want to compute722 in this group (note
that 7 is a generator ofZ∗41), then we write the exponent in binary notation; that
is, b = (22)10 = (10110)2, and sets to one. According to Algorithm 3.3, the
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Algorithm A.3 The square-and-multiply algorithm.

(a ∈ G, b ∈ N)

s = 1
for i = k − 1 down to0 do

s = s · s
if bi = 1 thens = s · a

(s)

computation works as follows:

7(1)2 = 12 · 7 ≡ 7 (mod 41)

7(10)2 = 72 ≡ 8 (mod 41)

7(101)2 = 82 · 7 ≡ 38 (mod 41)

7(1011)2 = 382 · 7 ≡ 22 (mod 41)

7(10110)2 = 222 ≡ 33 (mod 41)

In the first iteration,s is squared and multiplied with 7 modulo 41. The result is 7.
In the second iteration, this value is squared modulo 41. Theresult is 8. In the third
iteration, this value is squared and multiplied with 7 modulo 41. The result is 38.
In the fourth iteration, this value is squared and multiplied with 7 modulo 41. The
result is 22. Finally, in the fifth and last iteration, this value is squared modulo 41.
The result is 33. Consequently,722 (mod 41) yields 33.

A.3.3 Chinese Remainder Theorem

The Chinese remainder theorem(CRT) captured in Theorem A.8 suggests that—
under certain conditions—a system ofk congruencesx ≡ ai (mod ni) for i =
1, . . . k has a unique solution that fulfills all congruences simultaneously. The
theorem is given without a proof here.

Theorem A.8 (Chinese remainder theorem)Let

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

. . .

x ≡ ak (mod nk)

be a system ofk congruences with pairwise coprime modulin1, . . . , nk. The system
has a unique and efficiently computable solutionx in Zn with n =

∏k
i=1 ni.
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The fact that the solution isuniquein Zn means that all other solutions are not
elements ofZn, meaning that they are outside of{0, 1, . . . , n− 1}. Formally, the set
of all solutions is equal to the set of integersy that are equivalent tox modulon;
that is,y ≡ x (mod n).

To solve the system ofk congruences, one setsmi = n/ni and yi =
m−1i (mod ni) for i = 1, . . . , k, meaning thatyi is the multiplicative inverse of
mi moduloni. Because all moduli are assumed to be pairwise coprime,yi is well
defined for alli = 1, . . . , k. The solutionx can then be computed as follows:

x ≡
k∑

i=1

aimiyi (mod n) (A.4)

For example, consider the following system ofk = 3 congruences:

x ≡ 5 (mod 7)

x ≡ 3 (mod 11)

x ≡ 11 (mod 13)

In this example,n1 = 7, n2 = 11, n3 = 13 (note that these integers are pairwise
coprime), andn = 7 · 11 · 13 = 1001. Furthermore,a1 = 5, a2 = 3, anda3 = 11.
To determine the solutionx in Z1001, one must first compute

m1 = 1001/7 = 143

m2 = 1001/11 = 91

m3 = 1001/13 = 77

and then

y1 ≡ 143−1 (mod 7) = 5

y2 ≡ 91−1 (mod 11) = 4

y3 ≡ 77−1 (mod 13) = 12
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Afterward, the solutionx can be computed as follows:

x ≡
k∑

i=1

aimiyi (mod n)

≡ a1m1y1 + a2m2y2 + a3m3y3 (mod n)

≡ 5 · 143 · 5 + 3 · 91 · 4 + 11 · 77 · 12 (mod 1001)

≡ 3575 + 1092 + 10164 (mod 1001)

≡ 14, 831 (mod 1001)

= 817

Consequently,x = 817 is the solution inZ1001, and{i ∈ Z | 817 + i · 1001} is the
set of all solutions inZ.

A.3.4 Fermat’s Little Theorem

For every prime numberp ∈ P, 〈Zp,+, ·〉 is a field and〈Z∗p, ·〉 is its multiplicative
group with every element being invertible. As suggested by its name, Theorem A.9
was created by Pierre de Fermat.34

Theorem A.9 (Fermat’s little theorem) If p is a prime number anda an element
ofZ∗p, thenap−1 must be congruent to 1 modulop; that is,ap−1 ≡ 1 (mod p).

Becauseφ(p) = p − 1 for every prime numberp, Fermat’s little theorem
directly follows from Euler’s theorem (see below). It has many applications in
cryptography. It can, for example, be used to find the multiplicative inverse ofa
modulop. If we divide the equivalenceap−1 ≡ 1 (mod p) by a on either side, we
get

a(p−1)−1 ≡ ap−2 ≡ a−1 (mod p)

This means that one can find the multiplicative inverse element of a modulop by
computingap−2 (mod p).35 For example, ifp = 7, then the multiplicative inverse
of 2 modulo 7 can be computed as follows:2−1 ≡ 27−2 ≡ 25 ≡ 32 (mod 7) = 4.
This is obviously correct, because2 · 4 = 8 and 8 modulo 7 is equal to 1. Another
application of Fermat’s little theorem was already mentioned in Section A.2.4.3 in
the realm of primality testing.

34 We already came across Pierre de Fermat in Section A.2.4.3.
35 This method is generally slower than the extended Euclidean algorithm, but is sometimes used when

an implementation for modular exponentiation is already available. In addition, it does not work for
computation modulo a large integern, since it requires knowing the value ofφ(n).
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A.3.5 Euler’s Theorem

Fermat’s little theorem goes back to the 17th century. In the18th century, Leon-
hard Euler36 generalized it to the case wherep—or rathern—is not prime. This
means that〈Zn,+, ·〉 is a ring with the additive group〈Zn,+〉 (with the neutral
element 0) and the monoid〈Zn, ·〉 (with the neutral element 1). If one restricts
the set of numbers toZ∗n = {a ∈ Zn | gcd(a, n) = 1} (i.e., the set of el-
ements ofZn that have inverse elements), then〈Z∗n, ·〉 is a multiplicative group
and inverse elements exist for all elements of this group. Its order can be com-
puted with Euler’s totient function (Appendix A.2.6); thatis, |Z∗n| = φ(n). For
example,φ(45) = 3 · (3 − 1)2−1 · (5 − 1) = 24, and this value equals|Z∗45| =
|{1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44}|
= 24.

In essence, Euler’s theorem captured in Theorem A.10 says that any element
a in Z∗n is equivalent to 1 modulon if it is multiplied φ(n) times.

Theorem A.10 (Euler’s theorem) For all a, n ∈ N with gcd(a, n) = 1 it must hold
thataφ(n) ≡ 1 (mod n).

Proof. Let G be a finite multiplicative group with|G| elements. As a corollary of
Lagrange’s theorem (Theorem A.1), any elementa ∈ G raised to the|G|-th power
yields 1 (the identity element of the multiplication). Here, G is Z∗n and|G| is φ(n).
Euler’s theoremaφ(n) ≡ 1 (mod n) thus follows directly from the corollary.

�

Becauseφ(n) = n− 1 if n is a prime, Fermat’s little theorem directly follows
from Euler’s theorem.

A.3.6 Finite Fields Modulo Irreducible Polynomials

As mentioned several times so far, finite fields play a pivotalrole in cryptography
today. In Section A.1.2.5, we mentioned that there is a primefield Fp (or GF (p))
for everyp ∈ P, and that there are also extension fieldsFpn (orGF (pn)) for every
positive integern ∈ N+. Each element of such an extension fieldFpn can be seen as
a polynomial of degreen− 1 with coefficients fromFp. The notion of a polynomial
is introduced in Definition A.29.

Definition A.29 (Polynomial) Let A be an algebraic structure with addition and
multiplication (e.g., a ring or a field). A functionp(x) is apolynomialin x overA if

36 We already came across Leonhard Euler in Section A.2.6.
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it has the form

p(x) =

n∑

i=0

aix
i = a0 + a1x+ a2x

2 + . . .+ anx
n

wheren is a positive integer; that is, the degree ofp(x), denoteddeg(p), the
coefficientsai (0 ≤ i ≤ n) are elements inA, andx is a variable not necessarily
belonging to A.

The set of all polynomials overA is denoted asA[x]. Together with the
addition and multiplication of polynomials,A[x] forms a ring, and this means that
one can add and multiply polynomials as if they were integers. Euclid’s division
theorem (Theorem A.3) applies; that is, iff, g ∈ A[x] with g 6= 0, thenf = gq + r
for q, r ∈ A[x] anddeg(r) < deg(g), and hence one can also apply the Euclidean
algorithms inA[x]. In this case,r is the remainder off divided by g, denoted
r ≡ f (mod g). The set of all remainders of all polynomials inA[x] modulo
polynomialg is denoted byA[x]g.

To distinguish whetherA[x]g is a ring or field, one needs to know whether
g is reducible or not. Roughly speaking, a nonconstant polynomial f ∈ A[x]
with deg(f) > 1 is reducibleover A if it can be factored into the product of
two nonconstant polynomialsg, h ∈ A[x] with deg(g) > 1 and deg(h) > 1.
Otherwise (i.e., if it cannot be factored into the product oftwo such polynomials),
it is irreducibleoverA. Note that the reducibility of a polynomial depends on the
algebraic structureA over which the polynomial is defined (i.e., a polynomial can
be reducible over one algebraic structure and irreducible over another).

If F is a field withp elements andf is a polynomial overF with degreen > 0,
thenF[x]f is known to be a ring. Iff is irreducible overF, thenF[x]f is even a field.
Consequently, there is a field—or rather an extension field—Fpn (or GF (pn)) for
every primep and positive integern (as already mentioned in Section A.1.2.5). All
such fields are isomorphic, and we can use any polynomialf with degreen that is
irreducible overF; that is,F[x]f , to refer toFpn orGF (pn).

In a simple example, we may considerGF (23) and the irreducible polynomial
x3+x+1 (another irreducible polynomial would bex3+x2+1).GF (23)(x3+x+1)

(orGF (23)(x3+x2+1)) yields an extension field in which one can add and multiply.
The elements are 3-bit strings that represent polynomial (e.g., 101 forx2 + 1).
Addition is equivalent to the XOR of like terms, such as(x + 1) + x = 1.
Multiplication can be implemented using polynomials. The respective multiplication
table is shown in Table A.1. If, for example, we consider the underlined entry
x2, then this elements results from multiplying the polynomial x2 + 1 (referring
to 101) and the polynomialx + 1 (referring to 011). The resulting polynomial is
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Table A.1
Multiplication Table inGF (23)(x3+x+1)

000 001 010 011

000 0 0 0 0
001 0 1 x x+ 1
010 0 x x2 x2 + x
011 0 x+ 1 x2 + x x2 + 1
100 0 x2 x+ 1 x2 + x+ 1
101 0 x2 + 1 1 x2

110 0 x2 + x x2 + x+ 1 1
111 0 x2 + x+ 1 x2 + 1 x

100 101 110 111

000 0 0 0 0
001 x2 x2 + 1 x2 + x x2 + x+ 1
010 x+ 1 1 x2 + x+ 1 x2 + 1
011 x2 + x+ 1 x2 1 x
100 x2 + x x x2 + 1 1
101 x x2 + x+ 1 x+ 1 x2 + x
110 x2 + 1 x+ 1 x x2

111 1 x2 + x x2 x+ 1

(x3+x2+x+1), and this isx2 if taken modulo(x3+x+1). Instead of polynomials,
the table could also be filled with the respective 3-bit strings, sox2 could also be
written as 100.

In a more realistic setting (at least for cryptographic applications), we may
considerGF (28) and the irreducible polynomialx8 + x4 + x3 + x+ 1. This yields
the fieldGF (28)(x8+x4+x3+x+1) in which every element of can be written as

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0

with binary coefficientsbi ∈ Z2 (for 0 ≤ i ≤ 7). Again, every element of this
field an be viewed as a sequence of 8 bits (i.e., one byte) or as apolynomial in
GF (28)(x8+x4+x3+x+1). For example, the byte 11010111 stands for the polynomial
x7 + x6 + x4 + x2 + x + 1. This field is used, for example, for the AES (Section
9.6.2).

A.3.7 Quadratic Residuosity

In integer arithmetic, anx ∈ Z is a squareif there is ay ∈ Z such thatx = y2.
If such ay exists, then it is called asquare rootof x. For example, 25 is a square
with square root 5, whereas 20 is not a square. Similarly, allnegative numbers are
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not squares inZ (because there is no integer whose square can be negative). If an
integerx is a square, then it has precisely two square roots inZ (i.e.,y and−y), and
these values can be computed efficiently fromx—even ifx is very large.

In modular arithmetic, things are similar but more involved. Instead ofZ, we
are now working inZn and squares are calledquadratic residueswhile everything
else remains the same. The notions of quadratic residues andsquare roots are
introduced in Definition A.30.

Definition A.30 (Quadratic residue and square root) An elementx ∈ Zn is a
quadratic residuemodulon if there exists an elementy ∈ Zn such thatx =
y2 (mod n). If such ay exists, then it is asquare rootof x modulon.

The set of quadratic residues inZ∗n, denotedQRn, is formally defined as
follows:

QRn := {x ∈ Z∗n | ∃y ∈ Z∗n : y2 ≡ x (mod n)}

QRn is a multiplicative subgroup ofZ∗n: If x1, x2 ∈ QRn with square roots
y1 and y2, then the square root ofx1x2 is y1y2 (because(y1y2)2 ≡ y21y

2
2 ≡

x1x2 (mod n)) and the square root ofx−11 is y−11 (because(y−11 )2 ≡ (y21)
−1 ≡

x−11 (mod n)).
It is obvious that every element inZ∗n is either a quadratic residue or not.

In the second case, it is called aquadratic nonresidue. Consequently, the set of all
quadratic nonresidues inZ∗n is the complement ofQRn with respect toZ∗n (i.e.,
QNRn = Z∗n \ QRn). To further discuss the properties of quadratic residues and
nonresidues, it is useful to distinguish whethern is prime or composite. We explore
these cases in separate sections next.

A.3.7.1 QRn Whenn Is Prime

If n is prime, then we usep to refer to it. In this case,〈Zp,+, ·〉 is a field and〈Z∗p, ·〉
with Z∗p = Zp \ {0} its multiplicative group. In this group, quadratic residuosity is
relatively simple and not too different from integer arithmetic. For example, it can
be shown that everyx ∈ QRp has exactly two square roots modulop; that is,y
and−y = p − y.37 But some things are still fundamentally different from integer
arithmetic. For example, in integer arithmetic squares aresparse, and they get sparser
and sparser for largern (i.e., there are only about

√
n perfect squares in the interval

[1, n]). Contrary to that, half of the elements ofZ∗p are quadratic residues and hence

37 Note thaty andp− y are always distinct ifp is a prime greater than 2.
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elements ofQRp. In fact, the following equation holds for every primep > 2:

|QRp| =
p− 1

2

For example, inZ∗7 the elements{1, 2, 3, 4, 5, 6} can be set to the power of 2 to
figure out the quadratic residues:

x 1 2 3 4 5 6

x2 1 4 2 2 4 1

Note that 1 and7 − 1 = 6 are mapped to 1, 2 and7 − 2 = 5 are mapped to 4, and
3 and7 − 3 = 4 are mapped to 2, so 1, 2, and 4 are the quadratic residues modulo
7; that is,QR7 = {1, 2, 4} andQNR7 = Z∗7 \QR7 = {3, 5, 6}.38 Using the same
line of argumentation, one can easily show that

QR19 = {1, 4, 5, 6, 7, 9, 11, 16, 17}

and

QNR19 = Z∗19 \QR19 = {2, 3, 8, 10, 12, 13, 14, 15, 18}

for p = 19. Consequently, for every primep > 2, Z∗p is partitioned into two equally
sized subsetsQRp andQNRp; either subset comprises(p− 1)/2 elements.

We know from Fermat’s little theorem thatxp−1 ≡ 1 (mod p) for every
primep andx ∈ Z∗p. We also know that every elementx ∈ Z∗p has only two square
roots, and that this also applies to 1 (with the two square roots1 and−1). Combining
these two facts suggests that the square root ofxp−1 (i.e.,x(p−1)/2) can either be 1
or -1. These two possibilities lead to Euler’s criterion (Theorem A.11) that can be
used to efficiently decide whether anx ∈ Z∗p is a quadratic residue modulop (i.e.,
x ∈ QRp) or a quadratic nonresidue modulop (i.e.,x ∈ QNRp).

Theorem A.11 (Euler’s criterion) Let p ∈ P be a prime number. Forx ∈ Z∗p,
x ∈ QRp if and only if

x
p−1
2 ≡ 1 (mod p)

38 Even though it is known that half of the elements inZ∗
p are quadratic nonresidues modulop, there

is no deterministic polynomial-time algorithm known for finding one. A randomized algorithm for
finding a quadratic nonresidue is to simply select random integersa ∈ Z∗

p until one is found (using,
for example, Euler’s criterion). The expected number of iterations before a nonresidue is found is 2,
and hence the algorithm is highly efficient and runs in polynomial time.
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If Euler’s criterion is not met, then

x
p−1
2 ≡ −1 (mod p)

and hencex is a quadratic nonresidue modulop (i.e., x ∈ QNRp). The result of
Euler’s criterion is captured by theLegendre symbol39 of x modulop that is defined
as follows:

(
x

p

)

=







0 if x ≡ 0 (mod p)
1 if x ∈ QRp

−1 if x ∈ QNRp

In some literature, the Legendre symbol is also written asL(x, p) or (x|p). For
p > 2, it can be computed using Euler’s criterion:

(
x

p

)

≡ x
p−1
2 (mod p)

The following facts follow directly from the definition of the Legendre symbol:

(
1

p

)

≡ 1
p−1
2 (mod p) = 1

(−1
p

)

≡ (−1) p−1
2 for every primep

(
x2

p

)

= 1 for everyx ∈ Z∗p
(
x

p

)

=

(
y

p

)

for x ≡ y (mod p)

Furthermore, the Legendre symbol is multiplicative, meaning that

(
xy

p

)

=

(
x

p

)

·
(
y

p

)

39 The Legendre symbol is named after Adrien-Marie Legendre, a French mathematician who lived
from 1752 to 1833.
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This fact directly results from Euler’s criterion:
(
xy

p

)

≡ (xy)
p−1
2 (mod p)

≡ x
p−1
2 y

p−1
2 (mod p)

≡ x
p−1
2 (mod p) y

p−1
2 (mod p)

=

(
x

p

)

·
(
y

p

)

For example,

(
6

7

)

=

(
2

7

)

·
(
3

7

)

= 1 · (−1) = −1

This result suggests that 6 is a quadratic nonresidue modulo7 (i.e.,6 ∈ QNR7).
Note that Euler’s criterion is not constructive in the sensethat it provides an

algorithm to compute the square roots ofx ∈ QRp. Only if p ≡ 3 (mod 4) is there
a simple formula to compute the square rooty of x ∈ QRp:

y = x
p+1
4 (mod p) (A.5)

If p ≡ 3 (mod 4), thenp+ 1 is a multiple of 4, and hencep+1
4 is an integer. In this

case, it can be easily verified thaty2 ≡ x (mod p):

y2 ≡ (x
p+1
4 )2 (mod p)

≡ x
p+1
2 (mod p)

≡ x
p−1
2 · x 2

2 (mod p)

≡ x
p−1
2 · x (mod p)

≡ 1 · x
≡ x (mod p)

If p 6≡ 3 (mod 4), then the situation is more involved. Nevertheless, there is still
an efficient probabilistic algorithm to compute the square roots ofx ∈ QRp. This
algorithm is not addressed here.

A.3.7.2 QRn Whenn Is Composite

If n is prime, then we have just seen that the question whetherx ∈ Z∗n is a quadratic
residue can be answered easily (using Euler’s criterion). The same question cannot
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be answered easily ifn is composite. The respective question leads to thequadratic
residuosity problem(QRP) captured in Definition A.31.40 The QRP is assumed to
be hard, and it is the mathematical basis for quite a few cryptographic systems, such
as probabilistic encryption (Section 13.2).

Definition A.31 (QRP) Letn ∈ N be a composite positive integer andx ∈ Z∗n. The
QRP is to decide whetherx is a quadratic residue modulon (i.e.,x ∈ QRn) or not
(i.e.,x ∈ QNRn).

We already know that computing square roots inZ∗n and factoringn are
computationally equivalent. So if we can factorizen, then we can also compute
square roots inZ∗n and solve the QRP accordingly. But if we cannot factorizen,
then it is not known how to solve the QRP in an efficient way. From Section A.3.3
we know that there are functions modulon that are simpler to compute modulo the
prime factors ofn. For example, one can show that ifn = pq, thenx ∈ QRn if
and only ifx ∈ QRp andx ∈ QRq, and that everyx ∈ QRn has four square roots
in Z∗n. This can be generalized with the Jacobi symbol modulon.41 If n ≥ 3 is an
odd integer with prime factorizationn = pe11 p

e2
2 . . . pekk andx ∈ N, then the Jacobi

symbol
(
x
n

)
is defined as follows:

J(x, n) =
(x

n

)

=

(
x

p1

)e1( x

p2

)e2

. . .

(
x

pk

)ek

=
k∏

i=1

(
x

pi

)ei

In the above-mentioned special case wheren is the product of two primesp andq,
J(x, n) can be computed as follows:

J(x, n) =
(x

n

)

=

(
x

p

)(
x

q

)

Like the Legendre symbol, the value ofJ(x, n) is 0, 1, or−1. But unlike the
Legendre symbol, the statementsJ(x, n) = 1 andx ∈ QRn are not equivalent.
Fromx ∈ QRn it follows thatJ(x, n) = 1, but fromJ(x, n) = 1 it does not follow
that x ∈ QRn. To see why this is the case, consider the case in whichn is the
product of two primesp andq. There are two cases that lead toJ(x, n) = 1: Either
x ∈ QRp andx ∈ QRq or x /∈ QRp andx /∈ QRq (meaning thatx ∈ QNRp and
x ∈ QNRq). Among these two cases,x ∈ QRn applies only in the first case. In

40 The QRP is a well-known problem in number theory and is one of the four main algorithmic
problems discussed by Gauss in hisDisquisitiones Arithmeticae.

41 The Jacobi symbol is named after Carl Gustav Jacob Jacobi,a German mathematician who lived
from 1804 to 1851.
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the more general caseJ(x, n) = 1 only suggests that all factorsL(x, pi) multiplied
together result in 1. It does not suggest thatx is a quadratic residue modulon. This
point is further addressed below.

If the prime factorization ofn is known, then it is simple and straightforward to
computeJ(x, n) using the formula given above. But even if the prime factorization
of n is not known, is it still possible to computeJ(x, n) using an efficient algorithm
that exploits some computational laws that apply to the Jacobi symbol.42 For
example, fromgcd(x, n) 6= 1 it follows that J(x, n) = 0 (because the Legendre
symbol of x modulo this divisor ofn is zero and this value is multiplied into
J(x, n)). For x ≡ y (mod n), it also follows thatJ(x, n) = J(y, n). Next, the
Jacobi symbol is multiplicative in both the numerator and the denominator:

(xy

n

)

=
(x

n

)

·
( y

n

)

( x

mn

)

=
( x

m

)

·
(x

n

)

Consequently, for everyx the Jacobi symbolJ(x2, n) must be equal to one (because
J(x2, n) = J(x, n) · J(x, n) = 1 if gcd(x, n) = 1).

Furthermore, Gauss’ law of quadratic reciprocity is heavily used to compute
the Jacobi symbol. Ifm,n ≥ 3 are two odd integers, then

(m

n

)( n

m

)

= (−1) (n−1)
2 · (m−1)

2

There are two extension laws:
(−1
n

)

= (−1) (n−1)
2 =

{
1 if n ≡ 1 (mod 4)
−1 if n ≡ 3 (mod 4)

(
2

n

)

= (−1) (n2−1)
8 =

{
1 if n ≡ ±1 (mod 8)
−1 if n ≡ ±3 (mod 8)

It follows that J(m,n) = J(n,m) for n ≡ 1 (mod 4) or m ≡ 1 (mod 4), and
J(m,n) = −J(n,m) for n ≡ m ≡ 3 (mod 4).

Putting everything together, the (efficient) algorithm to computeJ(x, n) for
x, n ∈ Z and oddn ≥ 3 works as follows:

42 The algorithm has a running time complexity ofO((lnn)3).
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• Determinex′ with 0 ≤ x′ < n andx ≡ x′ (mod n). This means thatx is
reduced modulon. It follows thatJ(x, n) = J(x′, n). If x′ = 0 or x′ = 1,
then the algorithm is done and can return the result.

• Otherwise,x′ is written asx′ = 2vy with y being odd. Ifx′ is already odd,
theny = x′ andv = 0. It then follows that

(
x′

n

)

=

(
2

n

)v ( y

n

)

andJ(2, n) = ±1 can be computed with the second extension law. Ify = 1,
then the algorithm can abort and return the result.

• Otherwise, Gauss’ law of quadratic reciprocity can be applied:

( y

n

)

= (−1) (y−1)
2 · (n−1)

2

(
n

y

)

This equation even holds ifgcd(y, n) 6= 1, because either side is then equal to
zero. To computeJ(n, y), one can recursively apply the same algorithm and
start with step one.

Because the moduli in the Jacobi symbol decrease in each iteration, the algorithm
terminates within a finite number of steps.

If, for example, one has to computeJ(740, 211), then one can apply the
algorithm to compute the result 1:

(
740

211

)

=

(
107

211

)

= −
(
211

107

)

= −
(
104

107

)

= −
(

2

107

)3 (
13

107

)

=

(
13

107

)

=

(
107

13

)

=

(
3

13

)

=

(
13

3

)

=

(
1

3

)

=

(
3

1

)

= 1

As mentioned earlier, the fact that the Jacobi symbol ofx modulon is equal
to 1 does not imply thatx is a quadratic residue modulon (i.e.,x ∈ QRn). Let Jn
be the set of all elements ofZ∗n with Jacobi symbol 1:

Jn = {x ∈ Z∗n |
(x

n

)

= 1}

We know that all elements fromQRn have a Jacobi symbol 1, and henceQRn ⊂ Jn.
But there are elementsx ∈ Z∗n that also have a Jacobi symbol 1 but are quadratic
nonresidues; they are calledpseudosquaresmodulon. The set of all pseudosquares
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modulon is denoted as̃QRn. It comprises the elements ofJn minus the elements
of QRn: Q̃Rn = Jn \QRn.

Letn = pq be the product of two primes. ThenZ∗n hasφ(n) = (p− 1)(q− 1)
elements, and these elements can be partitioned into two equally large sets. One half
of the elements (i.e.,Jn) has Jacobi symbol1, and the other half of the elements
has Jacobi symbol−1. Jn can be further partitioned into two equally large sets (i.e.,
QRn andQ̃Rn) with |QRn| = |Q̃Rn| = (p − 1)(q − 1)/4. For example, ifp = 3
andq = 7, thenn = 3 · 7 = 21, Z∗21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}, and
φ(21) = 2 · 6 = 12. If we compute the squares of all elementsx of Z∗21, then we get
the following table:

x 1 2 4 5 8 10 11 13 16 17 19 20

x2 1 4 16 4 1 16 16 1 4 16 4 1

Note that the only elements that appear in the second row are 1, 4, and 16.
These elements formQR21 (i.e., the set of all quadratic residues modulo 21). But

J21 has six elements and these elements can be partitioned intoQR21 andQ̃R21:

J21 = {1, 4, 5, 16, 17, 20}
QR21 = {1, 4, 16}
Q̃R21 = {5, 17, 20}

This means that 5, 17, and 20 are pseudosquares modulo 21. This example is
illustrated in Figure A.3. All elements ofZ∗21 appear in the circle. Each quar-
ter of the square comprises three elements. The upper right quarter represents

QR21 and the lower left quarter represents̃QR21. QNR21 comprises all ele-
ments ofZ∗21 that are not elements ofQR21; that is,QNR21 = Z∗21 \ QR21 =
{2, 5, 8, 10, 11, 13, 17, 19, 20}.

Consequently, in this example the QRP is to decide whether a particular

element ofJ21 is an element ofQR21 or Q̃R21. It goes without saying that the
problem can be solved if the prime factorization of 21 is known. It is not known how
to solve it efficiently without knowing the prime factorization of 21 though.

A.3.8 Blum Integers

Some public key cryptosystems require Blum integers as formally introduced in
Definition A.32.

Definition A.32 (Blum integer) A composite numbern ∈ Z is a Blum integerif
n = pq with p, q ∈ P, p 6= q, andp ≡ q ≡ 3 (mod 4).
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Figure A.3 The elements ofZ∗
21, QR21, andQ̃R21.

This means that a Blum integer is the product of two distinct primes that are both
equivalent to 3 modulo 4. In some literature, such primes (that are equivalent to 3
modulo 4) are calledBlum primes, but this term is not commonly used.

For every positive integern ∈ N+,QRn comprises the elements ofZ∗n that are
quadratic residues (and hence have square roots modulon). If n is a Blum integer,
then everyx ∈ QRn has four square roots modulon, of which one is again an
element ofQRn. This unique square root ofx is called theprincipal square rootof
x modulon.

If we revisit the example given above, then it is easy to see thatn = 21 = 3 ·7
is a Blum integer (because3 ≡ 7 ≡ 3 (mod 4)). This means that everyx ∈ QRn

has 4 four square roots. This follows immediately from the table given above. 1 has
the square roots1, 8, 13, and 20; 4 has the square roots 2, 5,16, and 19; 16 has the
square roots4, 10, 11, and 17. In all three cases, the respective principalsquare root
is underlined.

The functionf : Z∗n → Z∗n with f(x) = x2 (mod n) is conjectured to be
one way or—more precisely—a trapdoor function (with the prime factorization ofn
representing the trapdoor). If we restrict the domain and range toQRn (i.e., the set
of quadratic residues modulon), thenf yields a trapdoor permutationQRn → QRn

with f(x) = x2 (mod n). Without knowing the prime factors ofn (i.e.,p andq), it
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is not known how to compute the inverse functionf−1. But knowing them, one can
efficiently compute it as follows:

f−1(x) = x((p−1)(q−1)+4)/8 (mod n)

In the example given above, one can use this formula to verifyf−1(1) = 1,
f−1(4) = 16, andf−1(16) = 4. The restriction toQRn is often used in cryptogra-
phy, especially if one wants to use the modular square function as a permutation.
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Appendix B

Probability Theory

Probability theory plays a central role in information theory and cryptography. In
fact, the ultimate goal of a cryptographer is to make the probability that an attack
against the security of a cryptographic system succeeds equal to zero. In reality, this
goal is too ambitious (because security is not absolute), and it is usually sufficient to
require the probability to be negligible. Probability theory provides the formalism
required for this kind of reasoning. In this appendix, we summarize the basic
principles of (discrete) probability theory. More specifically, we introduce some
basic terms and concepts in Section B.1, and elaborate on random variables and
their use in Section B.2. The entire appendix is intentionally kept short; further
information can be found in any textbook on probability theory (e.g., [1–7] in
chronological order).

B.1 BASIC TERMS AND CONCEPTS

The notion of a discrete probability space as formally introduced in Definition B.1
is key for probability theory and its applications.

Definition B.1 (Discrete probability space) A discrete probability spaceconsists
of a finite or countably infinite setΩ of elementary elements,1 called thesam-
ple space, and a probability measure or distributionPr : Ω −→ R+ with
∑

ω∈Ω Pr[ω] = 1.2

If we run a (discrete) random experiment in such a probability space, then
every elementary event of the sample space yields a possibleoutcome of the

1 In some literature, elementary events are also calledsimple eventsor indecomposable events, but
these terms are not used in this book.

2 Alternative notations for the probability measure Pr[·] are P(·), P[·], and Prob[·].
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experiment. The probability measure or distribution Pr[·] assigns a nonnegative real
value to every elementary eventω ∈ Ω, such that all (probability) values sum up to
one (this already suggests that all probability values mustbe larger or equal than zero
and smaller or equal to one). There is no general and universally valid requirement
on how to assign probability values. In fact, it is often the case that many elementary
events ofΩ occur with probability zero. If all|Ω| possible values occur with the same
probability (i.e., Pr[ω] = 1/|Ω| for all ω ∈ Ω), then the probability distribution is
calleduniform. Uniform probability distributions are frequently used inprobability
theory and its applications.

As mentioned in Definition B.1, sample spaces are assumed to be finite
or countably infinite for the purpose of this book (things getmore involved if
this assumption is not made). The termdiscrete probability theoryis sometimes
used to refer to the restriction of probability theory to finite or countably infinite
sample spaces. In this book, however, we only focus on discrete probability theory,
and hence the terms probability theory and discrete probability theory are used
synonymously and interchangeably. Furthermore, we say a “finite” sample space
when we actually refer to a “finite or countably infinite” sample space.

For example, flipping a coin can be understood as a random experiment taking
place in a discrete probability space. The sample space consists ofhead andtail (or
0 and 1 if these binary values are used to encodeheadandtail) and the probability
measure assigns1/2 to eitherhead or tail (i.e., Pr[head] = Pr[tail] = 1/2). The
resulting probability distribution is uniform. If the coinis flipped five times, then the
sample space is{head, tail}5 (or {0, 1}5, respectively) and the probability measure
assigns1/25 = 1/32 to every possible outcome of the experiment. Similarly,
rolling a dice can be understood as a random experiment taking place in a discrete
probability space. In this case, the sample space is{1, . . . , 6} and the probability
measure assigns1/6 to every possible outcome of the experiment (i.e., Pr[1] = . . . =
Pr[6] = 1/6). If the dice is rolledn times (orn dice are rolled simultaneously), then
the sample space is{1, . . . , 6}n and the probability measure assigns1/6n to every
possible outcome of the experiment. In either case, the probability distribution is
uniform if the coins are unbiased and fair.

Instead of looking at elementary events of a sample space, one may also look at
sets of such elements. In fact, aneventrefers to a subsetA ⊆ Ω, and its probability
equals the sum of the probabilities of its elementary events. This can be formally
expressed in the following way:

Pr[A] =
∑

ω∈A
Pr[ω]

Pr[Ω] is conventionally set to 1, and Pr[∅] is set to 0. Furthermore, one frequently
needs the complement of an eventA, denoted asA. It consists of all elements ofΩ
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that are not elements ofA, and its probability can be computed as

Pr[A] =
∑

ω∈Ω\A
Pr[ω]

If we knowPr[A], then we can easily computePr[A] = 1 − Pr[A], becausePr[A]
andPr[A] must sum up to 1.
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Figure B.1 A discrete probability space.

A discrete probability space is illustrated in Figure B.1. There is a sample
spaceΩ and a probability measure Pr[·] that assign a value between 0 and 1 to every
elementary eventω ∈ Ω or eventA ⊆ Ω.

If, for example, we want to compute the probability of the event that, when
flipping five coins, we get three heads, then the sample space isΩ = {1, 0}5 and the
probability distribution is uniform. This basically meansthat every elementω ∈ Ω
occurs with the same probability (i.e., Pr[ω] = 1/25 = 1/32). LetA be the subset
of Ω = {1, 0}5 that contains bitstrings with exactly three ones and let us ask for
the probability Pr[A]. It can easily be shown thatA consists of the following 10
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elements:

00111 10110

01011 10101

01101 11001

01110 11010

10011 11100

Consequently, Pr[A] = 10/32 = 5/16. The example can be generalized ton flips
with a biased coin. If the coin flips are independent and the probability that each coin
turns out heads is0 ≤ p ≤ 1, then the sample space is{1, 0}n and the probability
for a specific eventω in this space is

Pr[ω] = pk(1 − p)n−k

wherek is the number of ones inω. In the example given earlier, we hadp =
1− p = 1/2, and the corresponding distribution over{1, 0}n was uniform. Ifp = 1
(p = 0), then0n (1n) has probability 1 and all other elements have probability 0.
Consequently, the interesting cases occur whenp is greater than 0 but smaller than
1; that is,p ∈ (0, 1). This brings up the notion of abinominal distribution. If we
have such a distribution with parameterp and ask for the probability of the eventAk

that we get a string withk ones, then this probability can be computed as follows:

Pr[Ak] =

(
n
k

)

pk(1− p)n−k

In this formula,

(
n
k

)

is read “n choosek” and can be computed as follows:

(
n
k

)

=
n!

k!(n− k)!

Here,n! refers to the factorial of integern. It is recursively defined with0! = 1 and
n! = (n− 1)!n.

More generally, if we have two eventsA, B ⊆ Ω, then the probability of the
union eventA ∪ B is computed as follows:

Pr[A ∪ B] = Pr[A] + Pr[B]− Pr[A ∩ B]

Consequently,Pr[A ∪ B] ≤ Pr[A] + Pr[B] andPr[A ∪ B] = Pr[A] + Pr[B] if and
only if A∩ B = ∅. The former inequality is known as theunion bound.
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Similarly, we may be interested in thejoint eventA ∩ B. Its probability is
computed as follows:

Pr[A ∩ B] = Pr[A] + Pr[B]− Pr[A ∪ B]

A B

Figure B.2 A Venn diagram with two events.

Venn diagrams can be used to illustrate the relationship of events. A Venn
diagram is made up of two or more overlapping circles (each circle representing an
event). For example, Figure B.2 shows a Venn diagram for two eventsA andB. The
intersection of the two circles representsA∩B, whereas the union representsA∪B.

The two eventsA andB areindependentif Pr[A∩B] = Pr[A]·Pr[B], meaning
that the probability of one event does not influence the probability of the other.

This notion of independence can be generalized to more than two events.
In this case, it must be distinguished whether the events arepairwise or mutually
independent. LetA1, . . . ,An ⊆ Ω ben events in a sample spaceΩ:

• A1, . . . ,An arepairwise independentif for everyi, j ∈ {1, . . . , n}with i 6= j
it holds thatPr[Ai ∩Aj ] = Pr[Ai] · Pr[Aj ].

• A1, . . . ,An are mutually independentif for every subset of indicesI ⊆
{1, 2, . . . , n} with I 6= ∅ it holds that

Pr[
⋂

i∈I
Ai] =

∏

i∈I
Pr[Ai]

Sometimes it is necessary to compute the probability of an elementary eventω
given that an eventA with Pr[A] > 0 holds. The resultingconditional probability,
denoted Pr[ω|A], can be computed as follows:

Pr[ω|A] =
{

Pr[ω]
Pr[A] if ω ∈ A
0 otherwise
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If ω ∈ A, then Pr[ω|A] must have a value that is proportional to Pr[ω], and the factor
of proportionality is1/Pr[A] (so that all probabilities sum up to 1). Otherwise (i.e.,
if ω /∈ A), it is impossible thatω holds, and hence Pr[ω|A] must be equal to 0—
independent from the probability ofA.

The definition of Pr[ω|A] can be generalized to arbitrary events. In fact, ifA
andB are two events, then the probability of eventB given that eventA holds is the
sum of the probabilities of all elementary eventsω ∈ B given thatA holds. This can
be formally expressed as follows:

Pr[B|A] =
∑

ω∈B
Pr[ω|A]

In the literature, Pr[B|A] is sometimes also defined as follows:

Pr[B|A] = Pr[A ∩ B]
Pr[A]

Consequently, if two eventsA and B are independent andPr[A] > 0, then
Pr[B|A] = Pr[A ∩ B]/Pr[A] = Pr[A] · Pr[B]/Pr[A] = Pr[B] . This means
that whetherB holds or not is not influenced by the knowledge thatA holds.
This also applies in the other direction; that is, ifPr[B] > 0, thenPr[A|B] =
Pr[B ∩ A]/Pr[B] = Pr[B] · Pr[A]/Pr[B] = Pr[A]. In summary, if two events
are independent, then whether one holds or not is not influenced by the knowledge
that the other holds or not, and vice versa.

BecausePr[A∩B] = Pr[B∩A] one can solve either equation for this term and
equalize the results. This yieldsBayes’ theoremthat is frequently used in probability
theory:

Pr[A|B] = Pr[B ∩ A]
Pr[B] (B.1)

and putPr[B|A] andPr[A|B] into perspective. In this case, the formula

Pr[A|B] = Pr[A]Pr[B|A]
Pr[B]

Furthermore, one can also formally express alaw of total probabilityas captured in
Theorem B.1.
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Theorem B.1 (Law of total probability) If the eventsB1, . . . ,Bn form a partition
of the sample space (i.e.,∪ni=1Bi = Ω andBi ∩ Bj = ∅ for all i 6= i), then

Pr[A] =
n∑

i=1

Pr[A|Bi] · Pr[Bi]

must hold for every eventA ⊆ Ω.

Proof.The eventA can be written as

A = A ∩Ω =
n⋃

i=1

(A ∩ Bi)

where(A∩Bi) and(A∩Bj) are disjoint (and hence mutually exclusive) fori 6= j.
If one computes the probability on either side of the equation, then one getsPr[A]
on the left side and—according to (B.1)—

∑n
i=1 Pr[A|Bi] ·Pr[Bi] on the right side.

This finishes the proof.

�

The law of total probability is useful and frequently employed to compute the
probability of an eventA, which is conditional given some other mutually exclusive
events, such as an eventB and its complementB.

B.2 RANDOM VARIABLES

If we have a discrete probability space and run a random experiment, then we might
be interested in some values that depend on the outcome of theexperiment (rather
than the outcome itself). If, for example, we roll two dice, then we may be interested
in their sum. Similarly, if we run a randomized algorithm, then we may be interested
in its output or running time. This is where the notion of a random variable as
formally introduced in Definition B.2 comes into play.

Definition B.2 (Random variable) Let(Ω,Pr) be a discrete probability space with
sample spaceΩ and probability measurePr[·]. Any functionX : Ω → X from the
sample space to a measurable setX is a random variable, whereX is therangeof
the random variableX .

Consequently, a random variable is a function that on input an arbitrary
element of the sample space of a discrete probability space outputs an element of
the range. In a typical setting,X is either a subset of the real numbers (i.e.,X ⊆ R)
or a subset of the binary strings of a specific lengthn (i.e.,X ⊆ {0, 1}n).3

3 In some literature, a random variable is defined as a function X : Ω→ R.
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If x is in the range ofX (i.e., x ∈ X ), then the expression(X = x) refers
to the event{ω ∈ Ω | X(ω) = x}, and hence Pr[X = x] is defined and something
potentially interesting to compute. If only one random variableX is considered, then
Pr[X = x] is sometimes also written as Pr[x].

If, for example, we roll two fair dice, then the sample space is Ω =
{1, 2, . . . , 6}2 and the probability distribution is uniform (i.e., Pr[ω1, ω2] = 1/62 =
1/36 for every (ω1, ω2) ∈ Ω). Let X be the random variable that associates
ω1 + ω2 to every (ω1, ω2) ∈ Ω. Then the range of the random variableX is
X = {2, 3, . . . , 12}. For every element of the range, we can compute the probability
thatX takes this value. In fact, by counting the number of elementsin every possible
event, we can easily determine the following probabilities:

Pr[X = 2] = 1/36

Pr[X = 3] = 2/36

Pr[X = 4] = 3/36

Pr[X = 5] = 4/36

Pr[X = 6] = 5/36

Pr[X = 7] = 6/36

The remaining probabilities (i.e.,Pr[X = 8], . . . ,Pr[X = 12]) can be computed by
observing thatPr[X = x] = Pr[X = 14− x]. Consequently, we have

Pr[X = 8] = Pr[X = 14− 8] = Pr[X = 6] = 5/36

Pr[X = 9] = Pr[X = 14− 9] = Pr[X = 5] = 4/36

Pr[X = 10] = Pr[X = 14− 10] = Pr[X = 4] = 3/36

Pr[X = 11] = Pr[X = 14− 11] = Pr[X = 3] = 2/36

Pr[X = 12] = Pr[X = 14− 12] = Pr[X = 2] = 1/36

It can easily be verified that all probabilities sum up to one:
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We next look at some probability distributions of random variables.

B.2.1 Probability Distributions

If X : Ω → X is a random variable with sample spaceΩ and rangeX , then the
probability distributionofX , denotedPX , is a mapping fromX toR+. It is formally
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defined as follows:

PX : X −→ R+

x 7−→ PX(x) = P (X = x) =
∑

ω∈Ω:X(ω)=x

Pr[ω]

0 1

W

P(X=x) = P
X
(x)

X

.x

R
+

Figure B.3 The probability distribution of a random variableX.

The probability distribution of a random variableX is illustrated in Figure B.3.
Some events from the sample spaceΩ (on the left side) may be mapped tox ∈ X (on
the right side), and the probability thatx occurs as a map isP (X = x) = PX(x).

It is possible to define more than one random variable for a discrete random
experiment. If, for example,X andY are two random variables with rangesX and
Y, thenP (X = x, Y = y) refers to the probability thatX takes on the valuex ∈ X
andY takes on the valuey ∈ Y. Consequently, thejoint probability distributionof
X andY , denotedPXY , is a mapping fromX × Y to R+. It is formally defined as
follows:

PXY : X × Y −→ R+

(x, y) 7−→ PXY (x, y) =

P (X = x, Y = y) =
∑

ω∈Ω:X(ω)=x;Y (ω)=y

Pr[ω]
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Figure B.4 The joint probability distribution of two random variablesX andY .

The joint probability distribution of two random variablesX andY is illus-
trated in Figure B.4. Some events from the sample spaceΩ (on the left side) may be
mapped tox ∈ X andy ∈ Y (on the right side), and the probability thatx andy
occur as maps isP (X = x, Y = y) = PXY (x, y).

Similarly, forn random variablesX1, . . . , Xn (with rangesX1, . . . ,Xn), one
can compute the probability thatXi takes on the valuexi ∈ Xi for i = 1, . . . , n.
In fact, the joint probability distributionof X1, . . . , Xn, denotedPX1...Xn , is a
mapping fromX1 × . . .×Xn toR+ that is formally defined as follows:

PX1...Xn : X1 × . . .×Xn −→ R+

(x1, . . . , xn) 7−→ PX1...Xn(x1, . . . , xn) =

P (X1 = x1, . . . , Xn = xn) =
∑

ω∈Ω:X1(ω)=x1;...;Xn(ω)=xn

Pr[ω]

The joint probability distribution ofn random variablesX1, . . . , Xn is illus-
trated in Figure B.5. Some events from the sample spaceΩ (on the left side) may
be mapped tox1 ∈ X1, . . . , xn ∈ Xn (on the right side), and the probability that
x1, . . . , xn occur as maps isP (X1 = x1, . . . , Xn = xn) = PX1...Xn(x1, . . . , xn).
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Figure B.5 The joint probability distribution ofn random variablesX1, . . . , Xn.

B.2.2 Marginal Distributions

If X andY are two random variables with joint probability distributionPXY , then
the twomarginal distributionsPX andPY are defined as follows:

PX(x) =
∑

y∈Y
PXY (x, y)

PY (y) =
∑

x∈X
PXY (x, y)

Again, the notion of a marginal distribution can be generalized to more than two
random variables. IfX1, . . . , Xn aren random variables with rangesX1, . . . ,Xn

and joint probability distributionPX1...Xn , then for anym < n the marginal
distributionPX1...Xm is defined as follows:

PX1...Xm(x1, . . . , xm) =
∑

(xm+1,...,xn)∈Xm+1...Xn

PX1...Xn(x1, . . . , xn)
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B.2.3 Conditional Probability Distributions

Let (Ω,Pr) be a discrete probability space andA an event with Pr[A] > 0. If X is a
random variable in that space, then theconditional probability distributionPX|A of
X given that eventA holds is defined as follows:

PX|A(x) = Pr[X = x|A]

Note thatPX|A is a regular probability distribution and hence that the probabilities
PX|A(x) must sum up to one:

∑

x∈X
PX|A(x) = 1

If the conditioning event involves another random variableY defined on the same
sample spaceΩ, then theconditional probability distributionofX given thatY takes
on a valuey is defined as

PX|Y=y(x) =
PXY (x, y)

PY (y)

wheneverPY (y) > 0. More specifically, the conditional probability distribution
PX|Y of X givenY is a two-argument function that is defined as follows:

PX|Y : X × Y −→ R+

(x, y) 7−→ PX|Y (x, y) = P (X = x|Y = y) =

P (X = x, Y = y)

P (Y = y)
=
PXY (x, y)

PY (y)

Note that the two-argument functionPX|Y (·, ·) is not a probability distribution
on X × Y, but that for everyy ∈ Y, the one-argument functionPX|Y (·, y) is
a probability distribution, meaning that

∑

x∈X PX|Y (x, y) must sum up to 1 for
every y with PY (y) > 0. In fact, PX|Y (x, y) is defined only for values with
P (Y = y) = PY (y) 6= 0.

B.2.4 Expectation

The expectation of a random variable gives some informationabout its order of
magnitude, meaning that if the expectation is small (large), then large (small) values
are unlikely to occur. More formally, letX : Ω → X be a random variable andX
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be a finite subset of the real numbers (i.e.,X ⊂ R). Then theexpectationor meanof
X , denotedE[X ], is defined as

E[X ] =
∑

x∈X
Pr[X = x] · x =

∑

x∈X
PX(x) · x (B.2)

The expectation of a random variable is best understood in terms of betting. Consider
the situation in which a player can win one USD with a probability of 2/3, lose
two USD with a probability of1/6, or end in a draw with a probability of1/6.
This can be modeled with a discrete probability space that consists of a sample
spaceΩ = {W,L,D} (whereW stands for “win,” L stands for “lose,” and
D stands for “draw”) and a probability measure that assigns Pr[W ] = 2/3 and
Pr[L] = Pr[D] = 1/6. Furthermore, the random variableX is used to specify wins
and losses; that is,X(W ) = 1, X(L) = 2, andX(D) = 0, and one may be
interested in the expectation ofX . Referring to (B.2), this value can be computed as
follows:

E[X ] =
1

6
· (−2) + 1

6
· 0 + 2

3
· 1 =

1

3

Consequently, if one plays the game, then one can expect to win one third of a dollar
on the average (i.e., the game is advantageous for the player).

Another typical application of a random variable’s expectation refers to the
running time of a randomized algorithm. Remember from Section 1.2 that a ran-
domized algorithm depends on internal random values and that a complete analysis
of the algorithm would be a specification of the running time of the algorithm for
every possible sequence of random values. This is clearly impractical, and one may
analyze the expected running time of the algorithm instead.This refers to a single
value that still provides some useful information about thetypical and likely tempo-
ral behavior of the algorithm.

The expectation of a random variableX is linear, meaning thatE[aX ] =
aE[X ] for all a ∈ R, and for multiple random variablesX1, X2, . . . , Xn over the
same sampleE[X1+X2+. . .+Xn] = E[X1]+E[X2]+. . .+E[Xn]. If, for example,
we wanted to compute the expected number of heads when flipping a coinn times,
then this computation would be involved without making use of the linearity of
expectations. Making use of the linearity, however, this computation becomes simple
and straightforward: LetX be the sum ofn random variablesX1, X2, . . . , Xn,
whereXi is 1 if the i-th coin flip is 1 (Xi is 0 otherwise). ThenE[Xi] =

1
2 ·0+ 1

2 ·1 =
1
2 andE[X ] = E[X1+X2+. . .+Xn] = E[X1]+E[X2]+. . .+E[Xn] = n· 12 = n

2 .
This result is intuitive and meets our expectations.

More generally, iff is a real-valued function whose domain includesX , then
f(X) is a real-valued random variable with an expected value thatcan be computed
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as follows:

E[f(X)] =
∑

x∈X
f(x)PX(x)

More specifically, iff is a convex function, thenJensen’s inequalityholds:

E[f(X)] ≥ f(E[X ])

Many inequalities used in information theory can be derivedfrom Jensen’s inequal-
ity.

Last but not least, theconditional expected valueE[X |A] of a random variable
X given eventA is defined as

E[X |A] =
∑

x∈X
PX|A(x) · x

and can be computed accordingly.

B.2.5 Independence of Random Variables

LetX andY be two random variables over the same sample spaceΩ. X andY are
independentif for all x ∈ X andy ∈ Y, the events(X = x) and(Y = y) are
independent. This is formally expressed in Definition B.3.

Definition B.3 (Independent random variables) Two random variablesX andY
are statistically independent(or independentin short) if and only ifPXY (x, y) =
PX(x) · PY (y) for all x ∈ X andy ∈ Y.

This definition suggests that the joint probability distribution of two indepen-
dent random variablesX andY is equal to the product of their marginal distribu-
tions.

If two random variablesX and Y are independent, then the conditional
probability distributionPX|Y of X givenY is

PX|Y (x, y) =
PXY (x, y)

PY (y)
=
PX(x)PY (y)

PY (y)
= PX(x)

for all x ∈ X andy ∈ Y with PY (y) 6= 0. This basically means that knowing
the value of one random variable does not tell anything aboutthe distribution of the
other (and vice versa).
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If X and Y are independent random variables, thenE[XY ] = E[X ] ·
E[Y ]. For more than two random variables, there are two notions ofindependence:
Pairwise independence that requires two arbitrarily chosen random variables to be
independent (Definition B.4), and mutual independence thatrequires all random
variables to be independent (Definition B.5). In either case, let X1, . . . , Xn be n
random variables over the same sample spaceΩ.

Definition B.4 (Pairwise independent random variables) X1, . . . , Xn are pair-
wise independent if for everyi, j ∈ {1, 2, . . . , n} with i 6= j, it holds that
the two random variablesXi andXj are independent; that is,PXiXj (xi, xj) =
PXi(xi) · PXj (xj).

Definition B.5 (Mutually independent random variables) X1, . . . , Xn are mutu-
ally independent if for every subset of indicesI ⊆ {1, 2, . . . , n} with I 6= ∅, it holds
that

PXI1 ...XIm
(xI1 , . . . , xIm) = PXI1

(xI1 ) · . . . · PXIm
(xIm ) =

m∏

i=1

PXIi
(xIi)

Note that the notion of mutual independence is stronger thanthe notion of
pairwise independence. In fact, a collection of random variables that is mutually
independent is also pairwise independent, whereas the converse need not always
be true (i.e., a collection of random variables can be pairwise independent without
being mutually independent). For example, consider the situation in which two coins
are tossed. The random variableX refers to the result of the first coin, the random
variableY refers to the result of the second coin, and the random variableZ refers to
the addition modulo 2 of the results of the two coins. Obviously, all random variables
have values of either 0 or 1. ThenX , Y , andZ are pairwise independent, but they
are not mutually independent (because the value ofZ is entirely determined by the
values ofX andY ).

Similar to the case with two random variables, one can show that if n random
variablesX1, X2, . . . , Xn are mutually independent, then

E[X1 ·X2 · . . . ·Xn] = E[X1] · E[X2] · . . . · E[Xn]

B.2.6 Markov’s Inequality

Markov’s inequality provided in Theorem B.2 (without a proof) puts into perspective
the expectation of a random variableX and the probability that its value is larger
than a real-valued thresholdk.
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Theorem B.2 (Markov’s inequality) If X is a nonnegative random variable, then

Pr[X ≥ k] ≤ E[X ]

k

holds for everyk ∈ R.

For example, ifE[X ] = 10, then

Pr[X ≥ 1, 000, 000] ≤ 10

1, 000, 000
=

1

100, 000

This means that it is very unlikely that the value ofX is greater than or equal to
1,000,000 if its expectation is 10. This result is strongly supported by intuition.

Sometimes the order of magnitude given by Markov’s inequality is extremely
bad, but the bound is as strong as possible if the only information available about
X is its expectation. For example, suppose thatX counts the number of heads in a
sequence ofn coin flips, i.e.,Ω = {0, 1}n with uniformly distributed elements. If
X is the number of ones in the string, thenE[X ] = n/2. In this example, Markov’s
inequality provides the following upper bound for Pr[X ≥ n]:

Pr[X ≥ n] ≤ E[X ]

n
=
n/2

n
=

1

2

Obviously, the correct value is2−n, and the result provided by Markov’s inequality
is totally off (it does not even depend onn). On the other hand, ifn coins are
flipped and the flips are glued together (so that the only possible outcomes aren
heads orn tails, both with probability1/2), thenX counts the number of heads and
E[X ] = n/2. In this case, the inequality is tight, and Pr[X ≥ n] is in fact1/2.

The bottom line is that Markov’s inequality is useful because it applies to every
nonnegative random variable with known expectation. According to the examples
given above, the inequality is accurate when applied to a random variable that
typically deviates a lot from its expectation, and it is bad when applied to a random
variable that is concentrated around its expectation. In the latter case, more powerful
methods are required to achieve more accurate estimations.Most of these methods
make use of the variance and standard deviation introduced next.

B.2.7 Variance and Standard Deviation

For a random variableX , one may consider the complementary random variable

X ′ = |X − E[X ]|
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to provide some information about the likelihood ofX deviating from its expecta-
tion. More specifically, ifX ′ is expected to be small, thenX is not likely to deviate
a lot from its expectation. Unfortunately,X ′ is not easier to analyze thanX , and
henceX ′ is not particularly useful to consider as a random variable.

As a more viable alternative, one may consider the complementary random
variable

X ′′ = (X − E[X ])2

Again, if the expectation ofX ′′ is small, thenX is typically close to its expectation.
In fact, the expectation of the random variableX ′′ turns out to be a useful measure.
It is called thevarianceofX , denotedV ar[X ], and it is formally defined as follows:

V ar[X ] = E[X ′′] = E[(X − E[X ])2] =
∑

x∈X
PX(x) · (x− E[X ])2

Alternatively, the variance ofX can also be expressed as follows:

V ar[X ] = E[(X − E[X ])2]

= E[X2 − 2XE[X ] + (E[X ])2]

= E[X2]− 2E[XE[X ]] + (E[X ])2

= E[X2]− 2E[X ]E[X ] + (E[X ])2

= E[X2]− 2(E[X ])2 + (E[X ])2

= E[X2]− (E[X ])2

For example, letX be a random variable that is equal to zero with probability1/2
and 1 with probability1/2. ThenE[X ] = 1

2 · 0 + 1
2 · 1 = 1

2 , X = X2 (because
0 = 02 and1 = 12), and

V ar[X ] = E[X2]− (E[X ])2 =
1

2
− 1

4
=

1

4

The variance of a random variable is useful because it is often easy to compute, but
it still gives rise to sometimes strong estimations on the probability that a random
variable deviates a lot from its expectation.

The valueσ[X ] =
√

V ar[X ] is called thestandard deviationofX . In general,
one may expect the value of a random variableX to be in the intervalE[X ]±σ[X ].

If X is a random variable, then

V ar[aX + b] = a2V ar[X ]
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for everya, b ∈ R. Similarly, if X1, . . . , Xn are pairwise statistically independent
random variables over the same sample space, then

V ar[X1 + . . .+Xn] = V ar[X1] + . . .+ V ar[Xn]

For example, letX be again the random variable that counts the number of heads
in a sequence ofn independent coin flips (i.e.,E[X ] = n/2). Computing the
variance according to the definition given above seems difficult. If, however, we
view the random variableX as the sumX1 + . . .+Xn (where allXi are mutually
independent random variables such that for eachi, Xi takes the value 1 with
probability1/2 and the value zero with probability1/2), thenV ar[Xi] =

1
4 , and

henceV ar[X ] = n · 14 = n
4 .

B.2.8 Chebyshev’s Inequality

Chebyshev’s inequality specified in Theorem B.3 can be used to provide an upper
bound for the probability that a random variableX deviates from its expectation
more than a real-valued thresholdk ∈ R. To make use of Chebyshev’s inequality,
the variance ofX must be known.

Theorem B.3 (Chebyshev’s inequality)If X is a random variable, then

Pr[|X − E[X ]| ≥ k] ≤ V ar[X ]

k2

holds for everyk ∈ R.

Proof.

Pr[|X − E[X ]| ≥ k] = Pr[(X − E[X ])2 ≥ k2]

≤ E[(X − E[X ])2]

k2

=
V ar[X ]

k2

In the first step, the argument of the probability function issquared on either side of
the relation (this does not change the probability value). In the second step, Markov’s
inequality is applied (forX − E[X ]).

�
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Let us test Chebyshev’s inequality on the example given above.X is a random
variable defined over the sample spaceΩ = {0, 1}n, Pr is the uniform distribution,
andX counts the number of ones in the elementary event. If we want to compute
Pr[X ≥ n] usingV ar[X ] = n/4, then we get

Pr[X ≥ n] ≤ Pr[|X − E[X ]| ≥ n/2] ≤ 1

n

Obviously, this result is much better than the one we get fromMarkov’s inequality.
It linearly decreases withn, but it is still far apart from the correct value2−n.

Using the standard deviation (instead of the variance) and settingk = c ·σ[X ],
Chebyshev’s inequality can also be expressed as follows:

Pr[|X − E[X ]| ≥ c · σ[X ]] ≤ V ar[X ]

c2(σ[X ])2
=

(σ[X ])2

c2(σ[X ])2
=

1

c2
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Appendix C

Information Theory

As mentioned in Section 1.3, Claude E. Shannon developed a mathematical theory
of communication [1] and a related communication theory of secrecy systems [2]
that started a branch of research commonly referred to asinformation theory. In-
formation theory has had—and continues to have—a deep impact on cryptography,
especially when it comes to unconditionally or perfectly secure encryption systems.

In this appendix, we summarize the basic principles and results from infor-
mation theory as far as they are relevant for cryptography. More specifically, we
introduce the topic in Section C.1, elaborate on the entropyto measure the uncer-
tainty of information in Section C.2, address the redundancy of languages in Section
C.3, and focus on the key equivocation and unicity distance in Section C.4. Again,
this appendix is intentionally kept short, and further information can be found in any
textbook on information theory (e.g., [3–5]).

C.1 INTRODUCTION

Information theory is concerned with the analysis of acommunication systemthat
has traditionally been represented by a block diagram as illustrated in Figure C.1.
The aim of the communication system is to communicate or transfer information
(i.e., messages) from a source (on the left side) to a destination (on the right side).
The following entities are involved in one way or another:

• Thesourceis a person or machine that generates the messages to be commu-
nicated or transferred.

• Theencoderassociates with each message an object that is suitable for trans-
mission over the channel. In digital communications, the object is typically

579
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Source Encoder Channel

Noise

Decoder Destination

Figure C.1 A communication system.

a sequence of bits. In analog communication, however, the object can be a
signal represented by a continuous waveform.

• The channelis the medium over which the objects prepared by the encoder
are actually communicated or transferred.

• The channel may be subject tonoise. This noise, in turn, may cause some
objects to be modified or disturbed.

• Thedecoderoperates on the output of the channel and attempts to associate a
message with each object it receives from the channel.

• Similar to the source, thedestinationcan be a person or machine. In either
case, it receives the messages that are communicated or transferred.

Table C.1
The Entities of a Communication System with Their Input and Output Parameters

Entity Input Output

Source Message
Encoder Message (Input) object
Channel (Input) object (Output) object
Decoder (Output) object Message
Destination Message

The entities of a communication system with their input and output parameters
are summarized in Table C.1. Note that the objects mentionedearlier are divided into
(input) objects that are input to the channel and (output) objects that are output to
the channel.

The ultimate goal of information theory is to provide mathematically precise
answers to practically relevant questions in information processing, such as how
one can optimally (i.e., most efficiently) compress and transmit information or
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information-encoding data. Against this background, information theory can only
be applied if the question can be modeled by stochastic phenomena.

One of the major results is thefundamental theorem of information theory.
It basically says that it is possible to transmit information through a noisy channel
at any rate less than channel capacity with an arbitrarily small error probability.
There are many terms (e.g., “information,” “noisy channel,” “transmission rate,” and
“channel capacity”) that need to be clarified before the theorem can be applied in
some meaningful way. Nevertheless, an initial example may provide some prelimi-
nary ideas about the theorem.

Imagine a source of information that generates a sequence ofbits at the
rate of 1 bit per second. The bits 0 and 1 occur equally likely and are generated
independently from each other. Suppose that the bits are communicated over a noisy
channel. The nature of the noisy channel is unimportant, except that the probability
that a particular bit is received in error is1/4 and that the channel acts on successive
inputs independently. The statistical properties of the channel are illustrated in
Figure C.2. We further assume that bits can be transmitted over the channel at a
rate not to exceed 1 bit per second.

0 0

1 1

1/4

1/4

3/4

3/4

Figure C.2 The statistical properties of a noisy channel.

If an error probability of1/4 is too high for a specific application, then one
must find ways of improving the reliability of the channel. One way that immediately
comes to mind is transmitting each source bit over the noisy channel more than once
(typically an odd number of times). For example, if the source generated a zero, then
one could transmit a sequence of three zeros, and if the source generated a one, then
one could send a sequence of three ones. At the destination, one receives a sequence
of 3 bits for each source bit. Consequently, one faces the problem of how to properly
decode each sequence (i.e., make a decision, for each sequence received, as to the
identity of the source bit). A reasonable way to decide is by means of a majority
selector, meaning that there is a rule that if more ones than zeros are received, then
the sequence is decoded as a one, and if more zeros than ones are received, then the
sequence is decoded as a zero. For example, if the source generated a one, then a
sequence of three ones would be transmitted over the noisy channel. If the first and
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third bits were received incorrectly, then the received sequence would be 010 and
the decoder would incorrectly decide that a zero was transmitted.

In this example, one may calculate the probability that a given source bit is
received in error. It is the probability that at least 2 of a sequence of 3 bits are
received incorrectly, where the probability of a given bit being incorrect is1/4 and
the bits are transmitted independently. The correspondingerror probability Pr[error]
(i.e., the probability of incorrectly receiving≥ 2 bits) may be computed as follows:

Pr[error] =

(
3
2

)(
1

4

)2
3

4
+

(
1

4

)3

=
10

64

Obviously,10/64 < 1/4, and the error probability is reduced considerably. There
is, however, a price to pay for this reduction: the sequence to be transmitted is three
times as long as the original one. This means that if one wantsto synchronize the
source with the channel, then one must slow down the rate of the source to1/3 bit
per second (while keeping the channel rate fixed at 1 bit per second).

This procedure can be generalized. Letβ < 1/2 be the error probability for
each bit and each bit be represented by a sequence of2n + 1 bits.1 Hence, the
effective transmission rate of the source is reduced to1/(2n+1) bits per second. In
either case, a majority selector is used at the receiving end. The probability Pr[error]
of incorrectly decoding a given sequence of2n+1 bits is equal to the probability of
havingn+ 1 or more bits in error. This probability can be computed as follows:

Pr[error] =

2n+1∑

k=n+1

(
2n+ 1
k

)

βk(1− β)2n+1−k

It can be shown thatlimn→∞ Pr[error] = 0, meaning that the probability of
incorrectly decoding a given sequence of2n+ 1 bits can be made arbitrarily small
for sufficiently largen. In other words, one can reduce the error probability to an
arbitrarily small value at the expense of decreasing the effective transmission rate
toward zero.

The essence of the fundamental theorem of information theory is that in order
to achieve arbitrarily high reliability, it is not necessary to reduce the transmission
rate to zero, but only to a number called thechannel capacity. The means by which
this is achieved is calledcoding, and the process of coding involves anencoder, as
illustrated in Figure C.1. The encoder assigns to each of a specified group of source
signals (e.g., bits) a sequence of symbols called acode wordsuitable for transmission
over the noisy channel. In the example given above, we have seen a very primitive

1 This basically means that each source bit is represented bya bit sequence of odd length.
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form of coding (i.e., the source bit 0 is assigned a sequence of zeros, whereas
the source bit 1 is assigned a sequence of ones). In either case, the code words
are transmitted over the noisy channel and received by a decoder, which attempts
to determine the original source signals. In general, to achieve reliability without
sacrificing speed of transmission in digital communications, code words must not
be assigned to single bits or bytes but instead to longer bit blocks. In other words,
the encoder waits for the source to generate a block of bits ofa specified length
and then assigns a code word to the entire block. The decoder,in turn, examines
the received sequence and makes a decision as to the identityof the original source
bits. In practice, encoding and decoding are much more involved than this simple
example may suggest.

In order to make these ideas more concrete, we need a mathematical measure
for the information conveyed by a message, or—more generally—a measure of
information. This is where the notion of entropy as addressed next comes into play.

C.2 ENTROPY

Let (Ω,Pr) be a discrete probability space andX : Ω → X a random variable
with rangeX = {1, 2, . . . , 5} and uniformly distributed elements. If we have no
prior knowledge aboutX and try to guess the correct value ofX , then we have
a probability of1/|X | = 1/5 of being correct. If, however, we have some prior
knowledge and know, for example, that1 ≤ X ≤ 2, then we have a higher
probability of correctly guessingX (i.e., 1/2 in this case). In other words, there
is less uncertainty about the second situation, and knowingthat1 ≤ X ≤ 2 has in
fact reduced the uncertainty about the value ofX . It thus appears that if we could
pin down the notion of uncertainty, we would also be able to measure precisely the
transfer of information.

Suppose that a random experiment involves the observation of a random
variableX , and letX take on a finite number of possible valuesx1, . . . xn. The
probability thatX takes onxi (i = 1, . . . , n) is Pr[X = xi] = PX(xi) and is
abbreviated aspi (note that allpi ≥ 0 and

∑n
i=1 pi = 1). Our goal is to come

up with a measure for the uncertainty associated withX . To achieve this goal, we
construct the following two functions:

1. We define the functionh on the interval[0, 1]. The valueh(p) can be inter-
preted as the uncertainty associated with an event that occurs with probability
p. If the event(X = xi) has probabilitypi, then we say thath(pi) is the
uncertainty associated with the event(X = xi) or the uncertainty removed
(or information conveyed) by revealing thatX has taken on valuexi.
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2. We define the functionHn for n ∈ N probability valuesp1, . . . , pn. The value
Hn([p1, . . . , pn]) represents the average uncertainty associated with the events
(X = xi) for i = 1, . . . , n (or the average uncertainty removed by revealing
X , respectively). More specifically, we require that

Hn([p1, . . . , pn]) =
n∑

i=1

pih(pi)

In this book, we writeH([p1, . . . , pn]) instead ofHn([p1, . . . , pn]) most of
the time.

The functionh is only used to introduce the functionH . The functionH
is then used to measure the uncertainty of a probability distribution or a random
variable. In fact,H(X) is called theentropy of the random variableX , and it
measures the average uncertainty of an observer about the value taken on byX .
The entropy plays a pivotal role in data compression. In fact, it can be shown that
an optimal data compression technique can compress the output of an information
source arbitrarily close to its entropy, but that error-free compression below this
value is not possible.

In the literature, the functionH is usually introduced by first setting up
requirements (or axioms), and then showing that the only function satisfying these
requirements is

H([p1, . . . , pn]) = −C
∑

i:1≤i≤n;pi>0

pi log pi

whereC is an arbitrary positive number, and the logarithm base is any number
greater than one. In this case, we have

h(pi) = log
1

pi
= − log pi

andh(pi) measures the unexpectedness of an event with probabilitypi. The units
of H are usually called bits; thus the units are chosen so that there is one bit of
uncertainty associated with the toss of an unbiased coin. Unless otherwise specified,
we assumeC = 1 and take logarithms to the base 2.

At this point it is important to note that the average uncertainty of a random
variableX ; that is,H(X), does not depend on the values the random variable
assumes, or on anything else related toX except the probabilities associated with all
values. That is why we said earlier that the entropy is definedfor a random variable
or a probability distribution. If we want to express the entropy of a random variable
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X , then we can use the following formula:

H(X) = −
∑

x∈X :PX(x) 6=0

PX(x) log2 PX(x) (C.1)

Alternatively speaking,H(X) = E[− log2 PX(X)] = E[g(X)] with g(·) =
− log2 PX(·).

There are some intuitive properties of the entropy (as a measure of uncer-
tainty). For example, if we add some values to a random variable that are impossible
(i.e., their probability is zero), then the entropy does notchange. This property can
be formally expressed as follows:

H([p1, . . . , pn]) = H([p1, . . . , pn, 0])

Furthermore, a situation involving a number of alternatives is most uncertain if all
possibilities are equally likely. This basically means that

0 ≤ H([p1, . . . , pn]) ≤ log2 n

with equality on the left side if and only if one value occurs with probability one
(and all other values occur with probability zero), and withequality on the right side
if and only if all values are equally likely (i.e.,pi = 1/n). Similarly, we have

0 ≤ H(X) ≤ log2 |X |
with the same conditions for equality on either side as mentioned earlier. In particu-
lar, if X is uniformly distributed, then we haveH(X) = log2 |X |.

If we increase the number of alternatives, then we also increase the entropy of
the corresponding probability distribution. This property can be formally expressed
as follows:

H

([
1

n
, . . . ,

1

n

])

< H

([
1

n+ 1
, . . . ,

1

n+ 1

])

If p =
∑k

i=1 pi andq =
∑l

i=1 qi, then the following equation holds and can be
used:

H([p1, . . . , pk, q1, . . . , ql]) = H([p, q]) + pH

([
p1
p
, . . . ,

pk
p

])

+ qH

([
q1
q
, . . . ,

ql
q

])

We now turn to the problem of characterizing the uncertaintyassociated with more
than one random variable (associated with the same discreteprobability space or
random experiment). This is where the notion of a joint entropy comes into play.
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C.2.1 Joint Entropy

First of all, it is important to note that a vector of random variables (associated
with the same discrete probability space or random experiment) can always be
viewed as a single random variable. If, for example, we have two random variables
X andY with n andm possible outcomes, thenX andY have joint probability
PXY (xi, yj) = Pr[X = xi, Y = yj] = p(xi, yj) = pij for i = 1, . . . , n and
j = 1, . . . ,m. The resulting experiment has a total ofnm possible outcomes, and
the outcome(X = xi, Y = yj) has probabilitypij = p(xi, yj).

Against this background, thejoint entropy(or joint uncertainty) ofX andY ,
denoted asH(XY ), is defined as follows:

H(XY ) = −
n∑

i=1

m∑

j=1

p(xi, yj) log2 p(xi, yj)

More formally,H(XY ) can be expressed as follows:

H(XY ) = −
∑

(x,y)

PXY (x, y) log2 PXY (x, y) (C.2)

On the right side of (C.2), the index of the sum goes through all possible pairs
(x, y) with x ∈ X and y ∈ Y, or—equivalently—all(xi, yj) for i = 1, . . . , n
andj = 1, . . . ,m.

Equation (C.2) can be generalized to the joint entropy of more than two
random variables. In fact, the joint entropy ofn random variablesX1, X2, . . . , Xn

can be expressed as follows:

H(X1 · · ·Xn) = −
∑

(x1,...,xn)

PX1···Xn(x1, . . . , xn) log2 PX1···Xn(x1, . . . , xn)

In this equation,PX1···Xn refers to the joint probability distribution ofX1, . . . , Xn.
Consequently, the joint entropy ofX1, . . . , Xn equals the entropy of the joint
probability distributionPX1···Xn :

H(X1 · · ·Xn) = H(PX1···Xn)

There is a relation regarding the joint entropy ofn random variablesX1, . . . , Xn

and their individual entropies. In fact, it can be shown that

H(X1 · · ·Xn) ≤ H(X1) + . . .+H(Xn)

with equality if and only ifX1, . . . , Xn are mutually independent.
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C.2.2 Conditional Entropy

Equation (C.1) also covers the case where the probability distribution is conditioned
on an eventA with Pr[A] > 0. Consequently,

H(X |A) = H(PX|A)

= −
∑

x∈X :PX|A(x) 6=0

PX|A(x) log2 PX|A(x)

Remember from Section B.2.3 thatPX|A is a regular probability distribution.
LetX andY be two random variables. If we know the eventY = y, then we

can replaceA with Y = y and rewrite the formula given above:

H(X |Y = y) = H(PX|Y =y)

= −
∑

x∈X :PX|Y=y(x) 6=0

PX|Y =y(x) log2 PX|Y=y(x)

Using the conditional entropyH(X |Y = y), we can define the conditional entropy
of the random variableX when given the random variableY as the weighted average
of the conditional uncertainties ofX given thatY = y:

H(X |Y ) =
∑

y

PY (y)H(X |Y = y)

= −
∑

y

PY (y)
∑

x

PX|Y=y(x) log2 PX|Y=y(x)

= −
∑

y

∑

x

PY (y)
PXY (x, y)

PY (y)
log2 PX|Y (x, y)

= −
∑

(x,y)

PXY (x, y) log2 PX|Y (x, y)

In this series of equations, the indices of the sums are written in a simplified way.
In fact,x stands forx ∈ X : PX|Y =y(x) 6= 0, y stands fory ∈ Y : PY (y) 6= 0,
and—similar to (C.2)—(x, y) stands for all possible pairs(x, y) with x ∈ X and
y ∈ Y or all (xi, yj) for i = 1, . . . , n andj = 1, . . . ,m.

Note that in contrast to the previously introduced entropies, such asH(X) =
H(PX), H(XY ) = H(PXY ), or H(X |Y = y) = H(PX|Y=y), the entropy
H(X |Y ) is not the entropy of a specific probability distribution, but rather the
expectation of the entropiesH(X |Y = y). It can be shown that

0 ≤ H(X |Y ) ≤ H(X)
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with equality on the left if and only ifX is uniquely determined byY and with
equality on the right if and only ifX andY are (statistically) independent. More
precisely, it can be shown that

H(XY ) = H(X) +H(Y |X) = H(Y ) +H(X |Y )

(i.e., the joint entropy ofX andY is equal to the entropy ofX plus the entropy of
Y givenX , or the entropy ofY plus the entropy ofX given Y ). This equation
is sometimes referred to aschain rule and can be used repeatedly to expand
H(X1 · · ·Xn) as

H(X1 · · ·Xn) = H(X1) +H(X2|X1) + . . .+H(Xn|X1 · · ·Xn−1)

=

n∑

i=1

H(Xi|X1 · · ·Xi−1)

Note that the order in which variables are extracted is arbitrary. For example, if we
have three random variablesX , Y , andZ, we can compute their joint entropy as
follows:

H(XY Z) = H(X) +H(Y |X) +H(Z|XY )

= H(X) +H(Z|X) +H(Y |XZ)
= H(Y ) +H(X |Y ) +H(Z|XY )
= H(Y ) +H(Z|Y ) +H(X |Y Z)
= H(Z) +H(X |Z) +H(Y |XZ)
= H(Z) +H(Y |Z) +H(X |Y Z)

Similarly, we can compute the joint entropy ofX1 · · ·Xn givenY as follows:

H(X1 · · ·Xn|Y ) = H(X1|Y ) +H(X2|X1Y ) + . . .+H(Xn|X1 · · ·Xn−1Y )

=

n∑

i=1

H(Xi|X1 · · ·Xi−1Y )

C.2.3 Mutual Information

Themutual informationI(X ;Y ) between two random variablesX andY is defined
as the amount of information by which the entropy (uncertainty) of X is reduced by
learningY . This can be formally expressed as follows:

I(X ;Y ) = H(X)−H(X |Y )
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The mutual information is symmetric in the sense thatI(X ;Y ) = H(X) −
H(X |Y ) = H(Y )−H(Y |X) = I(Y ;X).

The conditional mutual information betweenX and Y , given the random
variableZ, is defined as follows:

I(X ;Y |Z) = H(X |Z)−H(X |Y Z)

We haveI(X ;Y |Z) = 0 if and only ifX andY are statistically independent when
givenZ. Furthermore, the conditional mutual information betweenX andY is also
symmetric, meaning thatI(X ;Y |Z) = I(Y ;X |Z).

H(X) H(Y)

H(XY)

H(X|Y) H(Y|X)I(X;Y)

Figure C.3 A Venn diagram graphically representing information-theoretic quantities related to two

random variables.

LetX andY be two random variables. Then the information-theoretic quan-
titiesH(X), H(Y ), H(XY ), H(X |Y ), H(Y |X), andI(X ;Y ) can be graphically
represented by a Venn diagram, as shown in Figure C.3.

C.3 REDUNDANCY

If L is a natural language with alphabetΣ, then one may be interested in the entropy
per letter, denoted byHL. In the case of the English language,Σ = {A,B, . . . , Z}
and|Σ| = 26. If every letter occurred with the same probability and was independent
from the other letters, then the entropy per letter would be

log2 26 ≈ 4.70
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This value represents theabsolute rateof the languageL and is an upper bound
for HL (i.e.,HL ≤ 4.70). The actual value ofHL, however, is smaller, because
one must consider the fact that letters are typically not uniformly distributed, that
they occur with frequencies (that depend on the language), and that they are also
not independent from each other. IfX is a random variable that refers to the letters
of the English language (with their specific probabilities), thenH(X) is an upper
bound forHL:

HL ≤ H(X) ≈ 4.14

Hence, instead of 4.7 bits of information per letter, we havearound 4.14 bits of
information per letter if we take into account the (statistical) letter frequencies of
the English language. However, this is still an overestimate, because the letters are
not independent. For example, in the English language a Q is always followed by
a U, and the bigram TH is likely to occur frequently. So one would suspect that a
better statistic for the amount of entropy per letter could be obtained by looking at
the distribution of bigrams (instead of letters). IfX2 denotes the random variable of
bigrams in the English language, then we can refine the upper bound forHL:

HL ≤
H(X2)

2
≈ 3.56

This can be continued with trigrams and—more generally—n-grams. In the most
general case, the entropy of the languageL is defined as follows:

HL = lim
n→∞

H(Xn)

n

The exact value ofHL is hard to determine. All statistical investigations show that

1.0 ≤ HL ≤ 1.5

for the English language. So each letter in an English text gives at most 1.5 bits
of information. This implies that the English language (like all natural languages)
contains a high degree of redundancy. Theredundancyof languageL, denoted by
RL, is defined as follows:

RL = 1− HL

|Σ|

In the case of the English language, we haveHL ≈ 1.25 and|Σ| = log2 26 ≈ 4.7.
So the redundancy of the English language is

RL ≈ 1− 1.25

4.7
≈ 0.75
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This suggests that we are theoretically able to losslessly compress an English text
to one-fourth its size. This means that a 10-MB file can be compressed to 2.5 MB.
Note that redundancy in a natural language occurs because there are known and
frequently appearing letter sequences and that these letter sequences are the major
starting point for cryptanalysis.

C.4 KEY EQUIVOCATION AND UNICITY DISTANCE

In addition to the notion of redundancy, Shannon introducedand formalized a
couple of other concepts that can be used to analyze the security of deterministic
(symmetric) encryption systems. LetMn andCn be random variables that denote
the firstn plaintext message and ciphertext bits, andK be a random variable that
denotes the key that is in use. An interesting question one may ask is how much
information aboutK is leaked asn increases. This brings us to the notion of the key
equivocation formally introduced in Definition C.1.

Definition C.1 (Key equivocation) Thekey equivocationis the functionH(K|Cn)
(i.e., the entropy of the key as a function of the number of observed ciphertext bits).

We generally assume that the plaintext and the key are statistically indepen-
dent, meaning thatH(M |K) = H(M). We can show that

H(K|Cn) = H(K) +H(Mn)−H(Cn)

for a deterministic cipher. This is because

H(K) +H(Mn) = H(KMn)

= H(KMnCn)

= H(KCn)

= H(Cn) +H(K|Cn)

In the first line, we exploit the fact thatK andMn are statistically independent.
In the second and third line, we exploit the fact thatH(Cn|KMn) = 0 and
H(Mn|KCn) = 0.

We make the realistic assumption that the entropy of the plaintext grows
approximately proportional to its length. That is,

H(Mn) ≈ (1 −RL)n

whereRL is the redundancy of the plaintext language.
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Against this background, it is interesting to analyze the key equivocation when
n grows. For everyn, there are possible keys (and it is hoped that the size of the set
of possible keys decreases asn increases). More specifically, there is one correct
key and a set of spurious keys (a spurious key is defined as a possible but not correct
key). The most interesting question is how largenmust be in order to be theoretically
able to uniquely determine the key. This is where the notion of the unicity distance
as introduced in Definition C.2 comes into play.

Definition C.2 (Unicity distance) Theunicity distancenu is the approximate value
ofn for which the key is uniquely determined by the ciphertext (i.e.,H(K|Cn) ≈ 0).

In other words, the unicity distancenu is the minimum value forn so that
the expected number of spurious keys equals zero. This is theaverage amount of
ciphertext that is needed before an adversary can determinethe correct key (again,
assuming the adversary has infinite computing power). The unicity distance can be
approximately determined as follows:

nu ≈
H(K)

RL

If n ≥ nu ciphertext bits are given, it is theoretically possible to uniquely determine
the key. For many practically relevant ciphers,nu is surprisingly small.
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Appendix D

Complexity Theory

As its name suggests, complexity theory is the mathematicaltheory that allows us to
scientifically argue about the complexity of computationaltasks. In cryptography, it
is used to argue about the computational security of cryptosystems. In this appendix,
we summarize the fundamentals of complexity theory as far asthey are relevant
for cryptography. More specifically, we start with some preliminary remarks in
Section D.1, introduce the topic in Section D.2, overview anasymptotic order
notation in Section D.3, elaborate on efficient computations in Section D.4, address
computational models in Section D.5, focus on complexity classes in Section D.6,
and conclude with some final remarks in Section D.7. More information is available
in textbooks about complexity theory (e.g., [1–3]).

D.1 PRELIMINARY REMARKS

In theoretical computer science, one often uses a nonempty set of charactersor
symbolsthat is referred to as analphabetand denoted asΣ. For example, the
following alphabet comprises all capital letters used in the English language:

Σ = {A,B,C, . . . , Z}

The length of the alphabetΣ corresponds to the number of elements (i.e.,|Σ|). Here,
the length of the alphabet is|{A,B,C, . . . , Z}| = 26.

Another alphabet frequently used in computer science is theAmerican Stan-
dard Code for Information Interchange (ASCII) character set. As illustrated in Table
D.1, the ASCII character set assigns a value between 0 and 0xFF (in hexadecimal
notation) or 127 (in decimal notation) to each character or symbol. This means that
only 7 bits of each byte are used for this purpose (27 = 128 possible values). There

593
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is also an extended ASCII character set with28 = 256 characters or symbols that
uses all 8 bits of each byte.

Table D.1
7-Bit ASCII Character Set with Hexadecimal Values

0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70

+0 NUL DLE 0 @ P ‘ p
+1 SOH DC1 ! 1 A Q a q
+2 STX DC2 " 2 B R b r
+3 ETX DC3 # 3 C S c s
+4 EOT DC4 $ 4 D T d t
+5 ENQ NAK % 5 E U e u
+6 ACK SYN & 6 F V f v
+7 BEL ETB ’ 7 G W g w
+8 BS CAN ( 8 H X h x
+9 HT EM ) 9 I Y i y
+A LF SUB * : J Z j z
+B VT ESC + ; K [ k {
+C FF FS , < L \ l |
+D CR GS - = M ] m }
+E SO RS . > N ˆ n ˜
+F SI US / ? O _ o DEL

Instead of using letters or ASCII characters, computer systems usually operate
on strings ofbinary digits(bits). Consequently, the alphabet most frequently used in
computer science isΣ = {0, 1} and its length is|{0, 1}| = 2.

If an alphabetΣ is finite (which is almost always the case), then its length is
less than infinity (i.e.,|Σ| = n < ∞). In this case, then elements ofΣ can also
be associated with then elements (residue classes) ofZn = {0, 1, . . . , n − 1}.
Consequently, it is possible to work inZn instead of any character set withn
elements. This simplifies things considerably, because we can work in mathematical
structures that we know and are familiar with.

Let Σ be an alphabet. The termword (or string) over Σ refers to a finite
sequence of characters or symbols fromΣ, including, for example, the empty wordε.
The length of a wordw overΣ, denoted|w|, corresponds to the number of characters.
The empty word has length zero (i.e.,|ε| = 0). The set of all words overΣ (again,
including the empty word) is referred to asΣ∗. For everyn ∈ N, Σn refers to the
set of all words of lengthn overΣ. For example,{0, 1}n denotes the set of alln-bit
sequences, whereas{0, 1}∗ denotes the set of all binary words of arbitrary length.
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This can be formally expressed as follows:

{0, 1}∗ =
⋃

n∈N
{0, 1}n

Using the binary alphabet, a positive integern ∈ N can always be encoded as a
binary wordbl−1 . . . b1b0 ∈ {0, 1}l of some lengthl:

n =
l−1∑

i=0

bi2
i

In complexity theory, a positive integern ∈ N is sometimes also encoded using the
unary representation. This encoding looks as follows:

n = 1n = 11 · · ·1
︸ ︷︷ ︸

n times

The relevant operation for words is (string) concatenation, denoted‖. If v, w ∈ Σ∗,
thenv ‖ w results from concatenatingv andw. The empty wordε is the neutral
element of the concatenation operation, hencev ‖ ε = ε ‖ v = v for everyv ∈ Σ∗.
It can be shown that〈Σ∗, ‖〉 yields a monoid (Section A.1.2.2), but this fact is not
used in this book.

D.2 INTRODUCTION

Complexity theoryis a central field of study in theoretical computer science. Ac-
cording to [4], the

main goal of complexity theory is to provide mechanisms for classify-
ing computational problems according to the resources needed to solve
them. The classification should not depend on a particular computa-
tional model, but rather should measure the intrinsic difficulty of the
problem. The computational may include time, storage space, random
bits, number of processors, etc., but typically the main focus is time,
and sometimes space.

The important points are: (1) that the computational problems should be classi-
fied according to the resources needed to solve them, and (2) that this classification
should be independent from a particular computational model. Hence, complexity
theory is different from benchmark testing as used in the trade press to compare
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the computational power of different computer systems, products, and models. In-
stead, complexity theory is used to determine the computational resources (e.g.,
time, space, and randomness) needed to compute a particularfunction or solve a
particular problem. The computational resources, in turn,can be determined exactly
or at approximately specifying lower and upper bounds.1 Alternatively, one can also
consider the effects of limiting computational resources on the class of functions
(problems) that can be computed (solved) in the first place.

In complexity theory, there are many functions and problemsto consider. For
example, for a positive integern ∈ N, one may look at the problem of deciding
whethern is prime (or composite). This problem is a decision problem and it is
solved by providing a binary answer; that is, YES or NO.2 An instance of this
problem would be whethern = 81 is prime (which is arguably wrong, because
81 = 9 · 9). Consequently, a problem refers to a well-defined and compactly
described (possibly very large) class of instances characterized by some input and
output parameters. Examples include deciding primality (as mentioned above),
factoring integers, or deciding graph isomorphisms. Against this background, it
does not make a lot of sense to define the computational difficulty or complexity
of a problem instance. There is always a trivial algorithm tosolve the instance,
namely the algorithm that simply outputs the correct solution. Consequently, the
computational difficulty or complexity of a problem must always refer to a class of
instances. This is important to properly understand complexity theory and its results.

We mentioned above that results from complexity theory should be largely
independent from a particular computational model (refer to Section D.5 for an
overview about the various computational models in use today). Nevertheless, one
must still have a model in mind when one works in theoretical computer science
and complexity theory. The computational model of choice isthe Turing machine
(Section D.5).3 Looking at Turing machines is sufficient, because there is a famous
thesis in theoretical computer science—calledChurch’s thesis4—that most results
from complexity theory hold regardless of the computational model in use (as long
as it is “reasonable” in one way or another). More specifically, the thesis says that

1 Proving an upper bound is comparably simple. It suffices to give an algorithm together with an
analysis of its computational complexity. Proving a lower bound is much more involved, because
one must prove the nonexistence of an algorithm that is more efficient than the one one has in mind.
Consequently, it does not come as a big surprise that no significant lower bound has been proven for
the computational complexity of any practically relevant problem.

2 Today, we know that there is a deterministic polynomial-time algorithm to solve this problem (see
Section A.2.4.3). Consequently, this problem is known to bein P (the notion of the complexity
classP is introduced later in this appendix).

3 Turing machines are named after Alan M. Turing, who lived from 1912 to 1954.
4 The thesis is named after Alonzo Church, who lived from 1903to 1995.
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any physical computing device can be simulated by a Turing machine (in a number
of steps that is polynomial in the resources used by the computing device).

For the rest of this chapter, we associate Turing machineM with the function
fM it computes, and we sometimes writeM(x) instead offM (x) for an inputx. As
mentioned earlier, there are several things a Turing machineM can do, including,
for example, computing a function, solving a search problem, or making a decision.

• A Turing machineM may compute a functionf : {0, 1}∗ → {0, 1}∗.
In this case,M is given an inputx ∈ {0, 1}∗, and it computes as output
M(x) = fM (x) = y ∈ {0, 1}∗.

• A Turing machineM may solve a search problem that is defined as a binary
relationS (i.e., S ⊆ {0, 1}∗ × {0, 1}∗). The relation specifies input and
output pairs(x, y) that belong toS (i.e.,(x, y) ∈ S). In this case,M is given
input x ∈ {0, 1}∗, and it computes as output a solutionM(x) = fM (x) =
y′ ∈ {0, 1}∗ with (x, y′) ∈ S. If there is more than one solution for the search
problem, then anyy′ is fine.

• Finally, a Turing machineM may solve a decision problem (i.e., a problem
that can be posed as a YES-NO question for some input value). Formally,
one can define a languageL ⊆ {0, 1}∗ (over the binary alphabet) and have
M decide whether an inputx ∈ {0, 1}∗ is a member ofL. If it is, then
M outputs YES (i.e.,M(x) = fM (x) = 1); otherwise it outputs NO (i.e.,
M(x) = fM (x) = 0). Note thatL can be anything, such as all binary encoded
prime numbers. In this case, the decision problem whether a number is prime
can be seen as a membership problem for that particular language.

Due to their expressive power, complexity theory mainly focuses on decision
problems. This is not too restrictive, because all computational problems can be
phrased as decision problems in such a way that an efficient algorithm for the
decision problem yields an efficient algorithm for the computational problem, and
vice versa. This also applies to search problems.

D.3 ASYMPTOTIC ORDER NOTATION

In complexity theory, one is mainly interested in the asymptotic behavior of the
complexity of a computation as a function of its input size5 or some other parame-
ter(s). This is where asymptotic analysis and order notation come into play. In the
following, we only consider functions that are defined for positive integers and take

5 The input size is the length of the (binary) word that is needed to represent the input (for a well-
defined representation method).
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on real values that are positive for somen ≥ n0. Let f : N→ R+ andg : N→ R+

be such functions. The following asymptotic bounds are usedin complexity theory.

Upper bound: If there exist a positive constantc and a positive integern0 such
that0 ≤ f(n) ≤ cg(n) for all n ≥ n0, then we write

f(n) = O(g(n))

If g(n) is constant (and hence independent fromn), then we writef(n) =
O(1). Note that this applies even if the constant is very large, such as2128.
Furthermore, if0 ≤ f(n) < cg(n) for all n ≥ n0, then we write

f(n) = o(g(n))

In this case,f(n) is strictly smaller thancg(n), whereas in the previous case,
f(n) can also be equal tocg(n). In either case, the functiong yields an
asymptotic upper boundfor f .

Lower bound: If there exist a positive constantc and a positive integern0 such
that0 ≤ cg(n) ≤ f(n) for all n ≥ n0, then we write

f(n) = Ω(g(n))

In this case, the functiong yields anasymptotic lower boundfor f .

Tight bound: If there exist positive constantsc1 andc2, and a positive integern0

such thatc1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0, then we write

f(n) = Θ(g(n))

In this case, the functiong yields both an asymptotic lower bound and an
asymptotic upper bound forf . This means thatg yields anasymptotic tight
boundfor f .

Intuitively, f(n) = O(g(n)) means thatf(n) doesn’t grow asymptotically
faster thang(n) within a constant multiple, whereasf(n) = Ω(g(n)) means that
f(n) grows asymptotically at least as fast asg(n) within a constant multiple. For
example, iff(n) = 2n2 + n + 1, then2n2 + n + 1 ≤ 4n2 for all n ≥ 1, and
hencef(n) = O(n2). Similarly, 2n2 + n + 1 ≥ 2n2 for all n ≥ 1, and hence
f(n) = Ω(n2). Consequently,f(n) = Θ(n2). In practice, the asymptotic upper
bound (i.e., the big-O-notation) is most frequently used.
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In complexity-theoretic discussions and considerations,one often uses func-
tions that are polynomials according to Definition A.29. Polynomials are useful be-
cause they have the property that they are closed under addition, multiplication, and
composition. This basically means that one can add, multiply, and compose two (or
even more) polynomials, and that the result again yields a polynomial.

To characterize functions that result in very small values,one uses the notion
of a negligible function as captured in Definition D.1.

Definition D.1 (Negligible function) A functionf : N → R is negligible if and
only if for everyc ∈ N there exists an integern0 ∈ N such that for all integers
n ≥ n0 the relation|f(n)| < n−c holds.

This basically means thatf(n) diminishes to zero faster than the reciprocal of any
polynomial. The canonical example of a negligible functionis f(n) = x−n for
any x ≥ 2. Other examples includef(x) = c−

√
n, f(n) = n− logn, and even

f(n) = (logn)− log n. Note that negligible functions are closed under addition and
multiplication with a polynomial; that is, iff(·) andg(·) are negligible functions and
p(·) is a polynomial, then the functionsf(·) + g(·) andp(·)f(·) are also negligible.
Using the asymptotic order notation, we can say thatf(n) = o(n−c) for every
constantc ∈ N.

If f(n) is not negligible, then it can be callednonnegligible. A function that
is nonnegligible does not satisfy Definition D.1, and hence there exists an integer
c ∈ N such that for alln0 ∈ N there exists at least one integern ≥ n0 that
satisfies|f(n)| ≥ n−c. If, for example,f(n) = n−1000, then this function is
clearly nonnegligible: Ifc = 1001, then for all n0 ∈ N all n ≥ n0 satisfy
|n−1000| ≥ n−1001.

The notion of negligibility divides the set of all functionsinto two distinct sub-
sets: Functions that are negligible and functions that are nonnegligible. Furthermore,
the termnoticeableas captured in Definition D.2 refers to some functions that are
nonnegligible.

Definition D.2 (Noticeable function) A functionf : N → R is noticeableif and
only if there exist integersc ∈ N andn0 ∈ N such that for alln ≥ n0 the relation
|f(n)| ≥ n−c holds.

While the definitions of noticeable and nonnegligible functions look very similar,
it is important to note that a nonnegligible function is not necessarily a noticeable
function. A nonnegligible function only needs to have one particular integern ≥ n0

for whichf(n) ≥ n−c, whereas a noticeable function must satisfy this property for
every integern ≥ n0. This difference is subtle and makes it difficult to correctly use
the terms.
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Lat but not least, we note that there are functions that are neither negligible nor
noticeable. For example, if we take a negligible function and a noticeable function
and interleave them (for odd and even integer arguments), then the resulting function
is nonnegligible and nonnoticeable. As an example we consider the function

f(n) =

{
2−n if x is even
n−3 if x is odd

This function cannot be negligible, because for every odd integer it yields a result
that is only polynomially small, but it cannot be noticeableeither, because for every
even integer it yields a result that is exponentially small.

D.4 EFFICIENT COMPUTATIONS

In practice, one is often interested in finding the most efficient (i.e., fastest running)
algorithm to compute a function or solve a problem. Hence, the notion of efficiency
is closely related to therunning timeof an algorithm (i.e., the number of primitive
operations or “steps” it takes to process an input of a particular size). Often a step
is just a bit operation, but it can also be something more comprehensive, such as a
comparison, a machine instruction, a machine clock cycle, amodular multiplication,
or anything else. If the input is a string, then the size of theinput is its length. If it is
an integern, then its size is the logarithm ofn. Since the logarithms ofn for different
bases only differ by a constant factor, it does not really matter what basis one takes;
that is, one can either takelogn (base 10),lnn (basee), or any other basis—the
asymptotic order notation remains unaffected by that.

The running time of an algorithm (expressed as a function of the input size)
can either be measured in theworst caseor average case. In the worst case, the
running time represents an upper bound, meaning that the algorithm is guaranteed
to terminate in this amount of time. In the average case, one can only expect the
algorithm to terminate in this time. In complexity theory, one is mainly interested
in the worst-case running time of an algorithm. As captured in Definition D.3,
this is used to distinguish between polynomial-time and super-polynomial-time
algorithms.

Definition D.3 (Polynomial-time algorithm) An algorithm is calledpolynomial-
time if its worst-case running time is polynomial in the input size. Otherwise (i.e.,
if the running time cannot be bounded by such a polynomial) itis called super-
polynomial-time.

Hence, the worst-case running time of a polynomial-time algorithm is of
the formO((ln n)c), wherelnn is the input size andc is some fixed (typically
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small) integer. The most important examples of super-polynomial-time algorithms
are exponential-time algorithms (i.e., algorithms that run in time exponential in the
input size). The worst-case running time of such an algorithm is of the formO(elnn),
but the basee can also be replaced by any other real number greater than one.

Complexity theory considers polynomial-time algorithms (be they determinis-
tic or probabilistic) as being efficient and super-polynomial-time algorithms as being
inefficient. This is particularly true if the polynomials are of small degrees (e.g.,
c ≤ 10).6 In practice, however, the distinction between efficient andinefficient may
be fuzzy, because a super-polynomial-time algorithm may bepractical for the input
size of interest, whereas a polynomial-time algorithm may be completely impractical
(if, for example, the degree of the polynomial is very large).

Interestingly, there are functions that are exponential innature, but whose
exponent grows very slowly. Take an algorithm with a worst-case running time of
the formO(cln lnn) as an example. Instead of the input sizelnn, the exponent refers
to the logarithm of this value. Needless to say, this exponent grows very slowly
compared to the exponent of a “normal” exponential function. Such functions are
sometimes calledsubexponentialbecause their worst-case running time is less than
exponential. It goes without saying that there exist infinitely many such functions. To
classify and characterize them, people often use theL-notationthat was introduced
in [5]. It yields another asymptotic notation (somewhat similar in spirit to the big-O
notation).

According to its name, the L-notation employs a functionLn to characterize
the asymptotic behavior of an algorithm’s worst-case running time for inputs of size
n. It is defined as follows:

Ln[u, v] = ev(ln(n))
u(ln(ln(n)))1−u

The function looks involved, so let’s dissect it here. The function takes two real-
valued parametersu andv between zero and one (i.e.,u, v ∈ R andu, v ∈ [0, 1]).
Roughly speaking,u andv stand for the efficiency of an algorithm: The smaller
the values, the more efficient the respective algorithms are. The parameteru is the
important one, because it controls whether the running timeis polynomial (ifu = 0)
or exponential (ifu = 1) in lnn :

• If u = 0, thenLn[0, v] = ev(ln(n))
0(ln(ln(n)))1 = ev(ln(ln(n))) = (ln(n))v

(becauseeln(ln(n)) = ln(n) follows from the definition of the logarithm

6 Consider a polynomial-time algorithm with a complexity equal toO((log2(n))c). If you double the
input size (fromn to 2n), then the algorithm will have a complexity that is equal toO((log2(n) +
1)c) = O((log2(n))c+c((log2(n))c−1+. . . If log2(n) is much larger thanc, then the algorithm
must essentially performc((log2(n))c−1 additional steps. For example, ifc = 1, then one has to
perform only one additional step. Ifc = 2, then this is only2(log2(n)) additional steps.
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function). The result(ln(n))v is polynomial inlnn, wherev represents the
degree of the polynomial.

• If u = 1, thenLn[1, v] = ev(ln(n))
1(ln(ln(n)))0 = ev(ln(n)) = e(ln(n))v. The

resulteln(n)·v is exponential inlnn, wherev represents a multiplicative factor.

In either case, the parameterv is less important thanu. To be formally even
more precise,v is sometimes written asv + o(1), whereo(1) is a function that
asymptotically approaches zero. This formalism is not usedhere.

The bottom line is thatLn is polynomial (in the length of the input) for
u = 0 and exponential foru = 1, and that the interesting cases occur between
these two extreme values. If0 < u < 1, thenLn[u, v] is neither polynomial nor
exponential; it is then calledsubexponential. A subexponential-time algorithm runs
asymptotically slower than a polynomial-time algorithm, but it runs asymptotically
faster than an exponential-time algorithm. There are subexponential-time algorithms
to solve many computational problems that are relevant in cryptography, including
the IFP and the DLP. In the running-time analyses of integer factoring algorithms
and algorithms to compute discrete logarithms, for example, u is typically either
1/2 or 1/3:

Ln[1/2, v] = ev(lnn)1/2(ln lnn)1/2 = ev
√
lnn
√
ln lnn = ev

√
lnn ln lnn

Ln[1/3, v] = ev(lnn)1/3(ln lnn)2/3

The second case occurs with the most efficient algorithm to factorize integers
and compute discrete logarithms (see Chapter 5), although there are some recent
improvements in computing discrete logarithms in some particular groups.

D.5 COMPUTATIONAL MODELS

In theoretical computer science, one usually considers thefollowing models to do a
computation:

• Boolean circuits;

• Turing machines;

• Random access machines.7

7 A random access machine is similar to a Turing machine. The major distinguishing feature is that
it provides access to arbitrary (i.e., randomly chosen) memory cells. As such, the random access
machine even more closely represents computer systems as they exist today.
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As mentioned earlier, Church’s thesis claims that all threecomputational
models are equivalent, meaning that if a function (problem)is computable (solvable)
in one model, then it is also computable (solvable) in the other models. It also
means that the computational complexities are equal—maybeup to a polynomial
transformation. For example, simulating a random access machine using a Turing
machine generally squares the number of steps. Consequently, from a theoretical
point of view, it doesn’t matter which model is used. As mentioned earlier, the most
frequently used model is the Turing machine, which is a primitive but sufficiently
general computational model.

In spite of the fact that it carries the word “machine” in its name, a Turing
machine can be thought of as a computer program (software) rather than an actual
computer or machine (hardware). As such, it is computer-independent and can be
implemented on different computing devices. In short, a Turing machine consists
of a (finite-state) control unit and one (or several) tape(s), each equipped with a
tapehead (i.e., a read/write head). Each tape is marked off into (memory) cells that
can be filled with at most one symbol from a given alphabet. Thetapehead is able
to read and/or write exactly one cell, namely the one that is located directly below
it. Hence, the operations of the Turing machine are limited to reading and writing
symbols on the tapes and moving along the tapes to the left or to the right. As such,
it represents afinite state machine(FSM). This basically means that the machine has
a finite number of states and is in exactly one of these states at any given point in
time.

The Turing machine solves a problem (instance) by having a tapehead scan-
ning a finite input string that is placed sequentially in the leftmost cells of one tape
(i.e., the input tape). Each symbol occupies one cell and theremaining cells to the
right on that tape are blank. The scanning starts from the leftmost cell while the
machine is in a designatedinitial state. At any time, only one tapehead of the Turing
machine is accessing its tape. A step of access made by a tapehead on its tape is
called amove. If the machine starts from an initial state, makes one move after
another, completes scanning the input string, eventually causes a satisfaction of a
terminating condition and thereby terminates, then the machine is said to recognize
the input. Otherwise, the machine has no move to make at some point, and hence the
machine halts without recognizing the input. An input that is recognized by a Turing
machine is called aninstancein a recognizable language.

Upon termination, the number of moves that a Turing machineM has taken
to recognize the input is said to be therunning timeor time complexityof M . It
is denoted asTM . It goes without saying thatTM can be expressed as a function
TM (n) : N → N wheren is the length or size of the input (i.e., the number of
symbols that represent the input string whenM is in the initial state). It is always
the case thatTM (n) ≥ n, because the machine must at least read the input (typically
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encoded using the unary representation). In addition to thetime requirement,M may
also have a space requirementSM that refers to the number of tape cells that the
tapeheads ofM have visited. The quantitySM can also be expressed as a function
SM (n) : N→ N and is said to be thespace complexityof M .

A Turing machine is called polynomial-time if its worst-case running time
is polynomial in the input size. For all practical purposes,polynomial-time Turing
machines can perform computations that can also be carried out on today’s computer
systems within reasonable amounts of time. Such machines work in a deterministic
way, meaning that they repeatedly execute one (or several) deterministic step(s). This
need not be the case, and there are at least two alternative types of Turing machines:

• Nondeterministic Turing machine:This is a polynomial-time Turing machine
that works in a nondeterministic way.

• Probabilistic Turing machine:This is a polynomial-time Turing machine that
works in a probabilistic way.

A nondeterministic Turing machine is a purely theoretical construct, meaning
that it is generally not possible to build such a machine. As its name suggests, it
works in a nondeterministic way and is able to solve a computational problem if
such a solution exists.

In contrast to a nondeterministic Turing machine, a probabilistic Turing ma-
chine can be built. It works in a probabilistic (and nondeterministic) way. Similar
to a deterministic Turing machine, a probabilistic Turing machine may have a plu-
rality of tapes. One of these tapes is called arandom tapeand contains uniformly
distributed random symbols. During the scanning of an inputinstance, the machine
interacts with the random tape, picks up a random string, andthen proceeds like a
deterministic Turing machine. The random string is called the random inputto the
probabilistic Turing machine. With the involvement of the random input, the recog-
nition of an instance by a probabilistic Turing machine is nolonger a deterministic
function of the instance, but is associated with a random variable (i.e., a function
of the Turing machine’s random input). This random variabletypically assigns er-
ror probabilities to the event of recognizing the problem instance (this is explored
further later). Remarkably, there are many problems for which probabilistic Turing
machines can be constructed that are more efficient, both in terms of time and space,
than the best-known deterministic counterparts. Consequently, probabilistic Turing
machines are an important field of study in complexity theoryand also have many
applications in cryptography.

Last but not least, it is important to note that there are computational models
that are not equivalent to the models itemized above. Examples include quantum
computers and DNA computers.
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• A quantum computeris a computational device that makes use of quantum
mechanical principles to solve a computational problem. A conventional
computer operates on bits that represent either 0 or 1. In contrast, a quantum
computer operates onquantum bits(qubits) that represent vectors in the two-
dimensional Hilbert space. More specifically, a qubit is a linear combination
or superposition of|0〉 and|1〉—with |0〉 and|1〉 representing an orthonormal
basis. A qubit can be written in terms of functionψ = α|0〉 + β|1〉 with
α, β ∈ C and|α|2 + |β|2 = 1. It is a fundamental law of quantum mechanics
that once one measures the state of a qubitψ, one either gets|0〉 or |1〉 as
a result. More precisely, one measures|0〉 with probability |α|2 and|1〉 with
probability |β|2. The fundamental difference between bits and qubits is that
qubits may be in states between|0〉 and |1〉. Only by measuring the state
of a qubit, one can get one of the states|0〉 or |1〉. A quantum register of
lengthn is built of n qubits|qk〉 with k = 1, . . . , n. Each|qk〉 is of the form
αk|0〉 + βk|1〉. Due to superposition, a quantum register may be in all of the
2n possible states at the same time. A quantum computer may exploit this fact
and make use of such a quantum register to solve particular problem instances.
In 1994, Peter W. Shor proposed randomized polynomial-timealgorithms for
factoring integers and computing discrete logarithms on a quantum computer
[6, 7]. Also, as mentioned in Section 9.6.1.4, Grover’s algorithm can be used
on a quantum computer to reduce the steps required to performan exhaustive
key search for ann-bit cipher from2n to 2n/2 [8, 9]. In spite of the fact
that the reduction is significant, the resulting algorithm is still not running in
polynomial time.8 In 2001, Shor’s algorithm was used to factor the integer
15 [10], but it is still unknown whether a quantum computer ofuseful size
will ever be built. To factorize an integern, a quantum register of length
lnn is required. For the typical length of an RSA modulus, this translated
to a few thousand qubits. As of this writing, people are able to build quantum
computers with registers of 50–70 qubits. So there is still along way to go until
quantum computers are ready to implement Shor’s algorithm against RSA
moduli with 2048 bits or even more. Also, no polynomial-timealgorithm for
solving anyNP-complete problem9 on a quantum computer has been found
so far.

8 To make things worse, the operations needed in Grover’s algorithm are inherently sequential,
meaning that they cannot be parallelized.

9 Refer to Section D.6 and Definition D.10 for the notion of anNP-complete problem.
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• A DNA computeris a computational device that makes use of molecular bi-
ology to solve computational problems. More specifically, molecules of de-
oxyribonucleic acid (DNA) are used to encode problem instances, and stan-
dard protocols and enzymes are used to perform the steps of the corresponding
computations. In 1994, Leonard M. Adleman10 demonstrated the feasibility
of using a small DNA computer to solve an (arguably small) instance of the
directed Hamiltonian path problem, which is known to beNP-complete [11].
Further information about the DNA computing can be found in [12, 13] or any
newer book on the topic (if there are any).

It is neither presently known how to build a quantum or DNA computer of
a sufficiently large size, nor is it even known to be possible at all. Nevertheless,
should either quantum computers or DNA computers ever become feasible and
practical, they would have a tremendous impact on theoretical computer science
in general and cryptography in particular. In fact, many cryptographic systems that
are computationally secure today would become totally insecure and worthless. This
is particularly true for many public key cryptosystems, andthis is why people are
looking into PQC (Section 18.3).

D.6 COMPLEXITY CLASSES

In the previous section, we introduced deterministic, nondeterministic, and prob-
abilistic polynomial-time Turing machines. These machines can be used to define
complexity classes. In short, deterministic polynomial-time Turing machines can
be used to define the complexity classP, nondeterministic polynomial-time Turing
machines can be used to define the complexity classNP (or coNP, respectively),
and probabilistic polynomial-time Turing machines can be used to define the com-
plexity classPP and some subclasses thereof. All of these classes are overviewed,
discussed, and put into perspective next. For the sake of simplicity, we only focus
on Turing machines and decision problems. Note, however, that it is also possible to
formally define the previously mentioned complexity classes on the basis of algo-
rithms (instead of Turing machines) and for problems other than decision problems.

If we want to make precise statements about the computational difficulty
of a problem, then we use reductions. In short, areduction is an algorithm for
transforming one problem into another problem (to show thatthe second problem
is at least as difficult to solve as the first problem). More specifically, problem 1
is reducible to problem 2 if an algorithm for solving problem2 can be used as a
subroutine (in this context sometimes also called an oracle) to solve problem 1. If this

10 Leonard M. Adleman is a coinventor of the RSA public key cryptosystem.



Complexity Theory 607

is true, then solving problem 1 cannot be substantially harder than solving problem
2 (where “harder” means having a higher computational difficulty). Following
this line of argumentation, Definition D.4 captures the notion of a polynomial (or
polynomial-time) reduction for two decision problems.

Definition D.4 (Polynomial-time reduction) Let D1, D2 ⊆ {0, 1}∗ be two deci-
sion problems.D1 polytime reducestoD2, denotedD1 ≤P D2 if there is an algo-
rithm that can solveD1 in polynomial time when using an algorithm for solvingD2

as a subroutine (oracle).

If D1 ≤P D2, thenD1 is not harder to solve thanD2, or—alternatively
speaking—D2 is at least as difficult to solve thanD1. Polynomial-time reductions
are transitive, meaning that ifD1 ≤P D2 andD2 ≤P D3, thenD1 ≤P D3. If
bothD1 ≤P D2 andD2 ≤P D1, thenD1 andD2 arecomputationally equivalent,
denotedD1 ≡P D2.

D.6.1 Complexity ClassP

Informally speaking, the complexity classP (polynomial-time) refers to the class
of decision problems that can be solved by a deterministic Turing machine in
polynomial time. This is formally expressed in Definition D.5.

Definition D.5 (Complexity classP) The complexity classP refers to the class
of decision problemsD ⊆ {0, 1}∗ that are solvable in polynomial time by a
deterministic Turing machine; that is, there exists a deterministic polynomial-time
Turing machineM withM(x) = 1 if and only ifx ∈ D.

In practice,P is by far the most widely used complexity class. It comprisesall
problems that can currently be solved efficiently, using standard computing facilities.

D.6.2 Complexity ClassesNP and coNP

Similar toP, one can define the complexity classNP (nondeterministic polynomial-
time) to refer to the class of decision problems that can be solved by a nondetermin-
istic Turing machine in polynomial time. This is formally expressed in Definition
D.6.

Definition D.6 (Complexity classNP) The complexity classNP refers to the
class of decision problemsD ⊆ {0, 1}∗ that are solvable in polynomial time
by a nondeterministic Turing machine; that is, there existsa nondeterministic
polynomial-time Turing machineM withM(x) = 1 if and only ifx ∈ D.
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As mentioned earlier, nondeterministic Turing machines are purely theoretical
constructs, and it is not currently known how to build one. Ifa solution exists, then
a nondeterministic Turing machine somehow finds it and its validity can be verified
efficiently. This idea is captured in Definition D.7 that yields another possibility to
defineNP.

Definition D.7 (Complexity classNP) The complexity classNP refers to the
class of decision problemsD ⊆ {0, 1}∗ for which a YES answer can be verified
in polynomial time given some extra information, called acertificateor witness.

It must be emphasized that if a decision problem is inNP, then it may not be
the case that a certificate for a YES answer can be obtained easily. What is asserted
is only that such a certificate exists, and, if known, can be used to efficiently verify
a YES answer. For example, the problem of deciding whether a positive integern
is composite (i.e., whether there exist integers1 < p1, p2, . . . , pk ∈ N such that
n = p1p2 . . . pk) belongs toNP. This is because ifn is composite, then this fact
can be verified in polynomial time if one is given a divisora of n. In this case, the
certificate is a divisorpi for 1 ≤ i ≤ k.

It is not clear whether the existence of an efficient verification algorithm
for YES answers also implies the existence of an efficient verification algorithm
for NO answers. As an example, remember the work of Goldwasser, Micali, and
Rackoff (Section 15.1 on how to prove language membership and nonmembership
simultaneously. In general, this need not be the case and there is room for a
complementary complexity classcoNP as captured in Definition D.8 (that follows
the line of argumentation from Definition D.7).

Definition D.8 (Complexity classcoNP) The complexity classcoNP refers to
the class of decision problemsD ⊆ {0, 1}∗ for which a NO answer can be verified
in polynomial time given some extra information, called acertificateor witness.

It is conjectured thatcoNP 6= NP. Note, however, that this is only a conjec-
ture, and that nobody has been able to prove it (or the converse) so far.

NP (coNP) refers to the class of decision problems for which a YES (NO)
answer can be verified in polynomial time given an appropriate certificate or witness.
Contrary to that,P consists of the class of decision problems for which an answer
can be found in polynomial time. It is obvious thatP ⊆ NP andP ⊆ coNP.
But we don’t know whether the existence of an efficient verification algorithm
for decision problems (be it for YES or NO answers) also implies the ability to
efficiently provide an answer for such a problem. This question can be phrased in the
single most important open question in theoretical computer science and complexity
theory, namely whether

NP = P orNP 6= P



Complexity Theory 609

If this question were answered in the affirmative (i.e.,NP = P), then every problem
(function) inNP would theoretically solvable (computable) in polynomial time. It
is, however, widely believed that the opposite (i.e.,P 6= NP) is true, meaning that
P ⊂ NP. This belief is also supported by our intuition that solvinga problem
is usually more involved than verifying a solution. Empirical evidence toward the
conjectured inequality is given by the fact that literally thousands of problems in
NP, coming from a wide variety of mathematical and scientific disciplines, are not
known to be solvable in polynomial time (in spite of extensive research attempts
aimed at providing efficient algorithms to solve them).

If P = NP were true, then there would be no computationally secure cryp-
tosystem in a mathematically strong sense. Nevertheless, there would still be crypto-
graphic systems that are computationally secure for all practical purposes, provided
that the complexity ratio between using the system and breaking it is a polynomial
of sufficiently high degree. Also, all unconditionally (i.e., information-theoretically)
secure cryptographic systems would remain unaffected byP = NP.

In the literature, problems are often calledNP-hard orNP-complete, so let
us briefly explain what these terms means. According to Definition D.9, a decision
problemD isNP-hard, if every decision problem inNP polytime reduces to it.

Definition D.9 (NP-hard problem) A decision problemD ⊆ {0, 1}∗ is NP-hard
if D1 ≤P D for every decision problemD1 ∈ NP.

If, in addition to beNP-hard,D itself is also inNP, thenD isNP-complete.
This is captured in Definition D.10.

Definition D.10 (NP-complete problem) A decision problemD ⊆ {0, 1}∗ is
NP-complete ifD ∈ NP andD1 ≤P D for every decision problemD1 ∈ NP.

Note that this definition can’t be used to show that a decisionproblemD is
NP-complete. This is because it is difficult to show the second condition for every
D1 ∈ NP. If, however, we already know that a specific decision problem D1 is
NP-complete, then we can prove theNP-completeness ofD by showing that it is
in NP and that it polytime reduces toD1. More specifically, the following three
steps can be used to prove that a decision problemD isNP-complete:

1. Prove thatD ∈ NP.

2. Select a decision problemD1 that is known to beNP-complete.

3. Prove thatD1 ≤P D.

Consequently,NP-complete (decision) problems are universal in the sense
that providing a polynomial-time algorithm for solving oneof them immediately
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implies polynomial-time algorithms for solving all of them. More specifically, if
there exists a singleNP-complete decision problem that can be shown to be in
P, thenP = NP follows immediately. Similarly, if there exists a singleNP-
complete decision problem that can be shown incoNP, thencoNP = NP follows
immediately. Such a result would be extremely surprising, and a proof that a
problem isNP-complete generally provides strong evidence for its computational
intractability.

At first glance, it may be surprising thatNP-complete problems exist in the
first place. But there are literally thousands of problems known to beNP-complete
(e.g., [1]), coming from a wide range of mathematical and scientific disciplines and
fields of study. For example, deciding whether a Boolean formula is satisfiable and
deciding whether a directed graph has a Hamiltonian cycle are bothNP-complete
decision problems. Furthermore, the subset sum problem isNP-complete and has
been used as a basis for many public key cryptosystems in the past (i.e., knapsack-
based cryptosystems). The subset sum problem is that given aset of positive integers
{a1, a2, . . . , an} and a positive integers, determine whether or not there is a subset
of theai that sum tos.

coNP

NP
P

NPC

Figure D.1 The conjectured relationship betweenP, NP, coNP, andNPC.

The class of allNP-complete (decision) problems is sometimes also denoted
byNPC. Figure D.1 illustrates the conjectured relationship between the complexity
classesP, NP, coNP, andNPC. Again, we know thatP⊆NP andP⊆ coNP,
as well asNPC⊆NP. We do not know, however, whetherP =NP,P = coNP, or
P = NP ∩ coNP. Most experts believe that the answers to the last three questions
is NO (but keep in mind that these are conjectures that have not been proven so far).

Referring to Definitions D.9 and D.10, it is easy to see that anNP-complete
problem must always beNP-hard, but that the converse need not be true (i.e., an



Complexity Theory 611

NP-hard problem need not beNP-complete). In fact, there are (decision) problems
that areNP-hard but notNP-complete. For example, thehalting problem(i.e.,
the problem to decide whether a given program with a given input will halt or
run forever) isNP-hard but notNP-complete. On one hand, one can show that
there exists anNP-complete problem (e.g., the satisfiability problem) that polytime
reduces to the halting problem. On the other hand, one can show that the halting
problem is not inNP (because all problems inNP must be decidable but the
halting problem is not). Also, finding a satisfying assignment for a Boolean formula
or finding a Hamiltonian cycle in a directed graph areNP-hard problems. We
can also revisit the subset sum problem mentioned above. Given positive integers
{a1, a2, . . . , an} and a positive integers, a computational version of the subset sum
problem would ask for a subset of theai that sum up tos, provided that such a subset
exists. This problem can also be shown to beNP-hard.

The complexity classesP, NP, coNP, andNPC are defined with deter-
ministic and nondeterministic Turing machines that run in polynomial time. If one
considers probabilistic Turing machines, then new complexity classes pop up.

D.6.3 Complexity ClassPP and Its Subclasses

If one replaces the deterministic Turing machine from Definition D.5 with a proba-
bilistic one, then one enters the realms of some new complexity classes. The most
general class isPP (probabilistic polynomial-time) as captured in DefinitionD.11.

Definition D.11 (Complexity classPP) The complexity classPP refers to the
class of decision problemsD ⊆ {0, 1}∗ that are solvable in polynomial time by
a probabilistic Turing machine.

If a decision problem is inPP, then there must be an algorithm that is allowed
to flip coins and make random decisions and that is guaranteedto run in polynomial
time. If the answer is YES, then the algorithm answers YES with a probability
greater than1/2. If the answer is NO, then the algorithm answers YES with a
probability less or equal than1/2. These requirements lead the machine to be better
than guessing. In more practical terms,PP is the class of problems that can be
solved to any fixed degree of accuracy by running a randomized, polynomial-time
algorithm a sufficient (but bounded) number of times.

PP containsNP and many subclasses with distinct error probabilities. For
example, the suclass ofPP that comprises all decision problemsD ⊆ {0, 1}∗ for
which a probabilistic polynomial-time Turing machineM exists that always outputs
correct results is called zero-sided-error probabilisticpolynomial time and is denoted
asZPP. It is captured in Definition D.12.
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Definition D.12 (Complexity classZPP) ZPP is the subclass ofPP that com-
prises all decision problemsD ⊆ {0, 1}∗ for which there exists a probabilistic
polynomial-time Turing machineM such that for every inputx ∈ {0, 1}∗

Pr[M outputs YES | x ∈ D] = 1

and

Pr[M outputs YES | x /∈ D] = 0

The fact thatM is always correct means that the errors arezero-sided. In the more
general case, one has to considerone-sidedandtwo-sidederrors, and this brings in
the complexity classesRP andBPP as captured in Definitions D.13 and D.14.

Definition D.13 (Complexity classRP) RP is the subclass ofPP that comprises
all decision problemsD ⊆ {0, 1}∗ for which there exists a probabilistic polynomial-
time Turing machineM such that for every inputx ∈ {0, 1}∗

Pr[M outputs YES | x ∈ D] > 1/2

and

Pr[M outputs YES | x /∈ D] = 0

This definition says that a YES answer is always correct, whereas a NO answer
may be wrong (i.e., it may be the case thatx ∈ D and yetM outputs NO). Note
that the fraction1/2 in the definition is somehow arbitrary, and thatRP contains
exactly the same problems if1/2 is replaced by any other valueǫ between1/2 and 1
(i.e.,ǫ ∈ (1/2, 1)). Also note that the classcoRP is defined in an analog way with
YES replaced with NO. This means thatcoRP comprises all decision problems for
which there exists a probabilistic polynomial-time TuringmachineM whose NO
answers are always correct.

Next, we take a look at Turing machines that have the YES and NOanswers
wrong. This leads to the complexity classBPP, which stands for bounded-error
probabilistic polynomial time.

Definition D.14 (Complexity classBPP) BPP is the subclass ofPP that com-
prises all decision problemsD ⊆ {0, 1}∗ for which a probabilistic polynomial-time
Turing machineM exists such that for every inputx ∈ {0, 1}∗

Pr[M outputs YES | x ∈ D] ≥ ǫ
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and

Pr[M outputs YES | x /∈ D] ≤ δ

with ǫ ∈ (1/2, 1) andδ ∈ (0, 1/2).

Note that we must require thatǫ 6= 1 andδ 6= 0. Otherwise, the subclassBPP

degenerates to eitherZPP orRP.
The complexity classP and the various subclasses ofPP can be ordered as

follows:

P ⊆ ZPP ⊆ coRP ⊆ BPP ⊆ PP

The challenging question is whether the inclusions are strict or not. In either case, al-
gorithms that can solve problems from any of these complexity classes (not onlyP)
are calledefficient, and the problems themselves are calledtractable(in this class).
Problems that are not tractable in this sense are calledintractable. However, keep
in mind that polynomials can have vastly different degrees,and hence algorithms
that solve tractable problems can still have very differentcomplexities (regarding
time and/or space). Therefore, an efficient algorithm for solving a tractable problem
need not be efficient in practice, and people sometimes use the termpractically ef-
ficientto refer to polynomial-time algorithms with polynomials ofsufficiently small
degrees. These algorithms can be realistically executed oncontemporary computing
machinery.

D.7 FINAL REMARKS

Complexity theory is a useful tool to argue about the computational complexity of a
particular problem. From a bird’s eye perspective, it allows us to distinguish efficient
algorithms (to solve the problem) and inefficient ones. In short, they are efficient if
they run in polynomial time, and they are inefficient otherwise. This distinction is
rather coarse, and there may be efficient algorithms that areyet efficient, but whose
polynomials have such a large degree that they are not practically efficient. So one
has to be cautious whenever one applies complexity-theoretic arguments. There are
two additional subtleties to keep in mind and consider with care:

• First, complexity theory deals with the worst-case complexity of problems,
meaning that there may still be instances (of a particular problem) that are
easy to solve. Worst-case complexity-theoretic reasoningdoes not exclude this
possibility.
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• Second, it may be that finding the exact solution for a problemis difficult (in
the sense of complexity theory), but finding an approximation of it is relatively
simple. If such an approximation is sufficient, then the complexity-theoretic
difficulty of finding the exact solution is not particularly meaningful. Again,
complexity-theoretic reasoning does not exclude this possibility.

In light of these subtleties, one may add that complexity theory is not only
a useful tool, but also an imperfect one. The discussion about its adequateness for
cryptography was intensified with the launch of quantum and DNA computers (at
least at a conceptual level) and the question whether the Turing machine is still
the right computational model. The entire field is a moving target, and it will be
interesting to see how it will evolve in the future.
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List of Symbols

∀ quantifier “for all”
∃ quantifier “there exists”
� end of proof
= equality

assignment (operator)
≡ congruence relation
id identity map
∑

sum
∏

product
∞ infinity
O point at infinity (in ECC)
S set
|S| cardinality ofS (i.e., the number of elements inS)
2S power set ofS (i.e., the set of all subsets ofS)
∅ empty set
x ∈ S x is an element ofS
x /∈ S x is not an element ofS
x ∈R S x is a random (i.e., randomly chosen) element ofS
x ∈ (a, b) x is an element from the open interval(a, b) (i.e.,a < x < b)
x ∈ [a, b] x is an element from the closed interval[a, b] (i.e.,a ≤ x ≤ b)
A ∪B union of setsA andB
A ∩B intersection of setsA andB
A \B difference of setsA andB
A ⊆ B setA is a subset of setB (orB is a superset ofA)
N natural numbers
N+ positive natural numbers (i.e.,N+ = N \ {0})
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Z integer numbers (i.e., integers)
Z+ positive integers
Z− negative integers
Zn integers modulon
Z∗n multiplicative group of integers modulon
L(x, p) or (x|p) Legendre symbol ofx modulop (wherep is prime)
J(x, n) or (x|n) Jacobi symbol ofx modulon (wheren is a composite number)
Jn elements ofZ∗n with Jacobi symbol 1
QRn set of quadratic residues modulon
QNRn set of quadratic nonresidues modulon

Q̃Rn set of pseudosquares modulon
Q rational numbers
R real numbers
R+ positive real numbers
R− negative real numbers
π transcendental number that represents the ratio of the circumference

of a perfect circle to its diameter (π = 3.14159 . . .)
e transcendental number that represents the base of the natural

logarithm (e = 2.71828 . . .)
C complex numbers
i

√
−1

Fq orGF (q) finite field or Galois field withq elements (i.e.,|Fq| = q)
E(Fq) elliptic curve overFq

P set of all primes
Pl set of alll-bit primes
P∗ set of all safe primes
∗ binary operation
+ addition
− subtraction
· multiplication
/ division

x
PX←− X x is sampled fromX according to probability distributionPX

(sometimes only written asx← X)
x

r←− X x is sampled uniformly at random fromX (i.e.,x ∈R X)
¬X bitwise negation of the Boolean variableX (NOT)
X ∧ Y bitwise and of the Boolean variablesX andY (AND)
X ∨ Y bitwise or of the Boolean variablesX andY (OR)
X ⊕ Y bitwise exclusive of the Boolean variablesX andY (XOR)
a = b a is equal tob
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a < b a is smaller thanb
a≪ b a is much smaller thanb
a > b a is greater thanb
a≫ b a is much greater thanb
|x| absolute (nonngeative) value ofx
len(x) bitlength ofx (i.e.,⌈log2 x⌉)
⌊x⌋ greatest integer less than or equal tox (i.e., floor ofx)
⌈x⌉ smallest integer greater than or equal tox (i.e., ceiling ofx)
div integer division
mod modulo operator
logb logarithm to the basis ofb
log logarithm to the basis of 10 (b = 10)
ln logarithm to the basis ofe (logarithm naturalis)
a | b integera divides integerb
a ∤ b integera does not divide integerb
gcd(a1, . . . , ak) greatest common divisor of integersa1, . . . , ak
lcm(a1, . . . , ak) least common multiple of integersa1, . . . , ak
n! factorial of integern (0! = 1)
π(n) prime counting function of integern
φ(n) orϕ(n) Euler’s totient function of integern
L formal language
Σ alphabet
Σin input alphabet
Σout output alphabet
{0, 1} binary alphabet
w word (i.e., a string over an alphabet)
|w| length of wordw
w|c c leftmost bits ofw
w|c c rightmost bits ofw
ε empty word
Σn set of all words of lengthn over alphabetΣ
Σ∗ set of all words over alphabetΣ
‖ or ◦ string concatenation

w
y←֓ c c-bit left rotation (circular left shift) of wordw

w ←֓ c c-bit left shift of wordw

w
x→֒ c c-bit right rotation (circular right shift) of wordw

w →֒ c c-bit right shift of wordw
f function
X → Y mapping from domainX to codomainY
f(X) ⊆ Y range off
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f−1 inverse function
F function family
fk instance of function familyF
Funcs[X,Y ] family of all functions ofX to Y
Perms[X ] family of all permutations onX
h hash function
H hash function family
p(x) polynomial inx
deg(p) degree of polynomialp
A[x] set of all polynomials overA
A[x]g set of all polynomials inA[x] modulo polynomialg
Ln[a, c] running time function
ord(x) order of group elementx
ordn(x) order ofx modulon
Ω finite or countably infinite set representing a sample space
ω elementary event
A event
A complement of eventA
Pr probability measure
Pr[A] probability of eventA
Pr[ω|A] conditional probability ofω given thatA holds
Pr[A|B] conditional probability ofA given thatB holds
X random variable
PX probability distribution ofX
PXY joint probability distribution ofX andY
PX1...Xn joint probability distribution ofX1, . . . , Xn

PX|A conditional probability distribution ofX given thatA holds
PX|Y conditional probability distribution ofX given thatY holds
E[X ] expectation (or mean) ofX
E[X |A] conditional expected value ofX given thatA holds
V ar[X ] variance ofX
σ[X ] standard deviation ofX
H(X) entropy ofX
H(XY ) joint entropy ofX andY
H(X |Y = y) conditional entropy ofX whenY = y
H(X |Y ) conditional entropy ofX when givenY
I(X ;Y ) mutual information betweenX andY
HL entropy of languageL
RL redundancy of languageL
nu unicity distance
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M Turing machine
SM space complexity of Turing machineM
TM time complexity of Turing machineM
P polynomial-time” complexity class
NP, coNP nondeterministic polynomial-time complexity classes
PP probabilistic polynomial-time complexity class
ZPP zero-sided error probabilistic polynomial-time complexity class
RP one-sided error probabilistic polynomial-time complexity class
BPP bounded-error probabilistic polynomial-time complexityclass
M (plaintext) message space
C ciphertext space
K key space
k secret key (i.e.,k ∈ K)
E family {Ek : k ∈ K} of encryption functionsEk :M→ C
D family {Dk : K ∈ K} of decryption functionsDk : C →M
T authentication tag space
t authentication tag (i.e.,t ∈ T )
A family {Ak : k ∈ K} of authentication functionsAk :M→ T
V family {Vk : K ∈ K} of verification functionsVk :M×T

→ {valid, invalid}
(pk, sk) public key pair
s digital signature
Γ access structure (employed by a secret sharing scheme)





Abbreviations and Acronyms

2FA two-factor authentication

AA attribute authority
ACM Association for Computing Machinery
AE authenticated encryption
AEAD authenticated encryption with associated data
AES advanced encryption standard
AKE authenticated key exchange
AI artificial intelligence
ANS American National Standard
ANSI American National Standards Institute
API application programming interface
APT advanced persistent threat
ASCII American Standard Code for Information Interchange
ASN.1 abstract syntax notation one
ATM automatic teller machine

BBS Blum, Blum, Shub
BCP best current practice
BEAST browser exploit against SSL/TLS
BER basic encoding rules
BIS Bureau of Industry and Security
bit binary digit
BLS Boneh, Lynn, Shacham
BXA Bureau of Export Administration

623



624 Cryptography 101: From Theory to Practice

CA certification authority
CBC cipherblock chaining
CCA chosen-ciphertext attack
CCA2 adaptive CCA
CCM counter with CBC-MAC
CFB cipher feedback
CLUSIS Association for the Security of Information Services
CMA chosen-message attack
CMAC cipher-based MAC
COCOM Coordinating Committee for Multilateral Export Controls
COTS commercial off-the-shelf
CPA chosen-plaintext attack
CRA Chinese remainder algorithm
CRL certificate revocation list
CRT Chinese remainder theorem, cathode-ray tube
CSIDH commutative SIDH
cSHAKE customizable SHAKE
CSP certification service provider
CSS Central Security Service

content scrambling system
CTR counter
CTS ciphertext stealing
CVP closest vector problem

DAA data authentication algorithm
DAC data authentication code
DBPA differential branch prediction analysis
DDHP Decisional Diffie-Hellman problem
DEA data encryption algorithm
DER distinguished encoding rules
DES data encryption standard
DESCHALL DES challenge
DESL DES lightweight
DH Diffie-Hellman
DHIES Diffie-Hellman integrated encryption scheme
DHP Diffie-Hellman problem
DIT directory information tree
DLA discrete logarithm assumption
DLP discrete logarithm problem
DLT distributed ledger technology
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DN distinguished name
DNA deoxyribonucleic acid
DNS domain name system
DoC Department of Commerce
DRAM dynamic random access memory
DSA digital signature algorithm
DSS digital signature system
DVD digital versatile disc

E2EE end-to-end encrypted
EAR Export Administration Regulations
ECB electronic code book
ECBC-MAC encrypt-last-block or encrypted CBC-MAC
ECC elliptic curve cryptography
ECDH elliptic curve DH
ECDLP elliptic curve DLP
ECDSA elliptic curve digital signature algorithm
ECIES elliptic curve integrated encryption scheme
ECM elliptic curve method
ECMQV elliptic curve MQV
ECRYPT European Network of Excellence for Cryptology
ECSTR Efficient and Compact Subgroup Trace Representation
EES escrowed encryption standard
EFF Electronic Frontier Foundation
EFS encrypted file system
EKE encrypted key exchange
EMSA encoding method for signature with appendix
EMSEC emanations security, emission security
ENISA European Union Agency for Cybersecurity
EtM Encrypt-then-MAC
E&M Encrypt-and-MAC

FDH full-domain-hash
FEAL fast data encipherment algorithm
FIPS Federal Information Processing Standards
FSM finite state machine
FSR feedback shift register

gcd greatest common divisor
GCHQ Government Communications Headquarters
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GCM Galois/counter mode
GDH gap Diffie-Hellman
GMAC Galois message authentication code
GMR Goldwasser, Micali, Rivest
GNFS general NFS
GPS global positioning system
GSM Groupe Speciale Mobile

HFE hidden field equations
HKDF HMAC-based extract-and-expand key derivation function
HMAC hashed MAC

IACR International Association for Cryptologic Research
IBE identity-based encryption
IBM International Business Machines
ICB initial counter block
ICM integer counter mode

index calculus method
ICSI International Computer Science Institute
IDEA international data encryption algorithm
IEC International Electrotechnical Committee
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IFA integer factoring assumption
IFIP International Federation for Information Processing
IFP integer factoring problem
IGE infinite garble extension
IKE Internet key exchange
IKM input keying material
IND indistinguishability
IND-CCA indistinguishability under CCA
IND-CCA2 indistinguishability under adaptive CCA
IND-CPA indistinguishability under CPA
IP Internet Protocol, initial permutation
IPsec IP security
ISO International Organization for Standardization
ISOC Internet Society
ISP Internet service provider
IST Information Societies Technology
IT information technology
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ITU International Telecommunication Union
ITU-T ITU Telecommunication Standardization Sector
IV initialization vector

JTC1 Joint Technical Committee 1

KDC key distribution center
KDF key derivation function
KEM key encapsulation mechanism
KMA known-message attack
KMAC K ECCAK MAC
KMOV Koyama, Maurer, Okamoto, Vanstone
KW Key wrap (using AES)
KWP Key wrap with padding (using AES)

LCG linear congruential generator
LFSR linear feedback shift register
LMS Leighton-Micali signature
LNCS Lecture Notes in Computer Science
LRA local registration agent
LSB least significant bit
LWE learning with errors

MAA message authenticator algorithm
MAC message authentication code
MD message digest
MFA multifactor authentication
MGF mask generation function
MIC message integrity code
MIME multipurpose Internet mail extensions
MIT Massachusetts Institute of Technology
MQV Menezes, Qu, Vanstone
MPAA Motion Picture Association of America
MPC multiparty computation
MSB most significant bit
MtE MAC-then-Encrypt

NATO North Atlantic Treaty Organization
NBS National Bureau of Standards
NCSC National Cyber Security Centre
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NESSIE New European Schemes for Signatures, Integrity and Encryption
NFS number field sieve
NIST National Institute of Standards and Technology
NM nonmalleability
NM-CCA nonmalleability under CCA
NM-CPA nonmalleability under CPA
NMAC nested MAC
NSA National Security Agency
NSE nonsecret encryption
NTRU Nth degree Truncated polynomial Ring Units

OAEP optimal asymmetric encryption padding
OCB offset codebook
OCSP online certificate status protocol
OFB output feedback
OID object identifier
OKM output keying material
OMAC one-key CBC MAC
OPIE one-time passwords in everything
OTMAC one-time MAC

PAKE password-authenticated key exchange
PBKDF password-based key derivation function
PC permuted choice

personal computer
PCBC propagating CBC
PER packet encoding rules
PGP Pretty Good Privacy
PHC Password Hashing Competition
PIN personal identification number
PKCS public key cryptography standard
PKI public key infrastructure
PKIX PKI X.509
PMAC parallelizable MAC
PPT probabilistic polynomial-time
PQC post-quantum cryptography
PRBG pseudorandom bit generator
PRF pseudorandom function
PRG pseudorandom generator
PRP pseudorandom permutation
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PSEC provably secure elliptic curve
PSS probabilistic signature scheme
PSS-R probabilistic signature scheme with message recovery

QCG quadratic congruential generator
QRP quadratic residuosity problem
QS quadratic sieve
qubit quantum bit

RA registration authority
RC Ron’s Code
RFC request for comments
RFID radio frequency identification
RSA Rivest, Shamir, Adleman
RSAES RSA encryption scheme
RSAP RSA problem

SDSI simple distributed security infrastructure
SEC standards for efficient cryptography
SECG Standards for Efficient Cryptography Group
SHA secure hash algorithm
SHAKE secure hash algorithm with KECCAK

SHS secure hash standard
SIC segmented integer counter
SIDH supersingular isogeny DiffieHellman key exchange
SIKE supersingular isogeny key encapsulation
SIV synthetic IV
SNARK succinct non-interactive argument of knowledge
SNFS special NFS
SoK systematization of knowledge
SP special publication
SPKI simple PKI
SSH secure shell
SSL secure sockets layer
STS station-to-station
SUF strongly unforgeable
SVP shortest vector problem

TAN transaction authentication number
TCBC triple data encryption algorithm cipherblock chaining
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TCBC-I triple data encryption algorithm cipherblock chaining interleaved
TCFB triple data encryption algorithm cipher feedback
TCFB-P triple data encryption algorithm cipher feedback pipelined
TDEA triple data encryption algorithm
TECB triple data encryption algorithm electronic code book
TKW Key wrap (using TDEA)
TLS transport layer security
TMAC two-key CBC MAC
TOFB triple data encryption algorithm output feedback
TOFB-I triple data encryption algorithm output feedback interleaved
TTP trusted third party
TWINKLE The Weizmann Institute Key-Locating Engine
TWIRL The Weizmann Institute Relation Locator

UC University of California
UMAC universal MAC
URL uniform resource locator
US United States
USB universal serial bus
USD US dollar

W3C World Wide Web Consortium
WEP wired equivalent privacy
WG working group
WPA Wi-Fi protected access
WUF weakly unforgeable
WWW World Wide Web

X3DH eXtended Triple Diffie-Hellman
XCBC eXtended CBC
XMSS eXtended Merkle Signature Scheme
XOF extendable-output function
XTR (ECSTR) Efficient and Compact Subgroup Trace Representation

YASD Yet Another Sieving Device

zk-SNARK zero-knowledge SNARK
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B-smooth, 86
p+ 1, 88
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r-collision, 115
Exp family, 78
Log family, 78
KECCAK, 128
3DES, 174

A New Hope, 499
a posteriori, 205
a priori, 204
A5/1, 173, 216
A5/2, 173
Abelian, 509
absolute rate, 590
absorbing phase, 151
access structure, 462, 621
ACCORDION, 494
accumulator, 181
Achilles’ heel, 46, 459
Achilles’ heels, 42
ACM Turing Award, 357
adaptive, 198
adaptive CMA, 289, 397
adaptive CPA, 198
additive, 509
additive cipher, 199
additive stream ciphers, 196
additively homomorphic, 517
Adi Shamir, 2
Advanced Encryption Standard, 41

AE, 485
AES, 41
AES field, 252, 516
AES-GCM-SIV, 321
affine cipher, 200
algebra, 503
algebraic number, 504
algebraic structure, 507
algebraic system, 507
algorithm, 4
all-or-nothing encryption, 244
Alleged-RC4, 217
alphabet, 593, 619
American Standard Code for Information Inter-

change, 593
anomalous binary curves, 107
ANS X9.62, 424
application programming interface, 495
ARC4, 217
ARCFOUR, 217
Argon2, 183
art, 19
artificial intelligence, 176
ASN.1, 471
associative, 506
associativity axiom, 509
asymmetric encryption, 487
asymmetric encryption system, 47, 349
asymptotic lower bound, 598
asymptotic tight bound, 598
asymptotic upper bound, 598
attribute authorities, 468
attribute certificates, 468
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authenticated Diffie-Hellman key exchange pro-
tocol, 336

authenticated encryption, 23, 35, 44, 311
authenticated encryption with associated data,

44
authenticated key exchange, 338
authentication and key distribution system, 46
authentication functions, 42, 288
authentication tag, 41
authenticity, 41
automorphism, 517
average case, 600
axioms, 503

B-smooth, 537
baby-step, 97
baby-step giant-step, 97
Balloon, 183
basic constraints extension, 473
batch RSA, 362
BATON, 494
Bayes’ theorem, 564
BBS PRG, 175, 180
Bell inequality, 345
Berlekamp-Massey algorithm, 58
biclique cryptanalysis, 267
big-endian architecture, 129
big-O notation, 601
bijective, 505
BIKE, 496
binary digits, 594
binary extension fields, 101
binary Goppa code, 497
binary polyglot, 322
binomial formula, 92
binominal distribution, 562
birthday attack, 115
birthday paradox, 91, 115
bit, 150
bit permutation, 518
bit rate, 152
bit security, 364
Bitcoin, 21, 107
BitLocker, 15
bits, 594
BLAKE, 128
blind, 434
block, 228

block cipher, 40, 196
block length, 228
blockchain, 21, 488
BLS, 428
BLS DSS, 81
Blum integer, 84, 556
Blum primes, 557
Blum-Micali PRG, 179
Bouncy Castle, 495
Brainpool curves, 107
branch prediction analysis, 16
broken, 267
browser exploit against SSL/TLS, 273
brute-force attack, 198, 363
brute-force search, 96
Bulletproofs, 454
Bureau of Industry and Security, xxii
Bézout’s identity, 524, 541
Bézout’s lemma, 524

cache timing attacks, 16
Caesar cipher, 19, 493
Camellia, 232, 281
candidate one-way functions, 484
capacity, 152
cardinality, 510, 617
Carmichael numbers, 531
Carter-Wegman MAC, 164, 292, 304, 315
Catena, 183
CBC mode, 271
CBC residue, 294
CBC-CS1, 273
CBC-CS2, 274
CBC-CS3, 274
CBC-MAC, 294, 313
CCA, 350
CCA2, 350
ceiling, 97, 619
cells, 603
certificate, 467, 608
certificate distribution scheme, 471
certificate repositories, 469
certificate revocation list, 473, 476
Certificate Transparency, 476
certificate-based encryption, 389
certificateless encryption, 389
certification authority, 387, 468
certification chain, 475
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certification path, 475
certification service providers, 468
ChaCha20, 41, 216, 226
chain rule, 588
chaining value, 121
channel, 580
channel capacity, 582
characters, 593
Chebyshev’s inequality, 576
chi-square test, 63
Chinese remainder theorem, 96, 543
Chor-Rivest knapsack cryptosystem, 391
chosen protocol, 6
chosen-ciphertext attack, 40, 198, 350
chosen-message attack, 288, 397
chosen-plaintext attack, 40, 197
chosen-prefix, 139
Church’s thesis, 596
cipher, 38, 193, 254
cipher feedback, 268
cipher-based MAC, 295
cipherblock chaining, 268
ciphertext, 38
ciphertext indistinguishability, 351
ciphertext indistinguishability under CPA, 211
ciphertext space, 38, 193
ciphertext stealing, 273
ciphertext-only, 350
ciphertext-only attack, 40, 197
circular left shift, 619
circular right shift, 619
Clarke’s third law, xix
classic McEliece, 496
claw-free, 398
Clipper, 466
clocking tap, 216
closest vector problem, 498
Closure axiom:, 509
CMAC, 268
code word, 582
code-based, 21, 495
coding, 582
codomain, 72, 504
cold boot attack, 15, 461
collection, 505
collision free, 114
collision resistance, 34
collision-resistant, 114

column, 150
columnround function, 222
commercial off-the-shelf, 281
common divisor, 521
common multiple, 521
common reference string, 453
communication system, 579
commutative, 194, 506, 509, 515
commutative SIDH, 499
complementation property, 242
complete, 442
complete residue system modulon, 540
completeness, 442
complex numbers, 504, 618
complexity theory, 30, 593, 595
composite, 527
compositeness test, 531
compressor, 407
compromising emanations, 15
computational complexity theory, 12
computational indistinguishability, 176
computational security, 12, 593
computationally equivalent, 607
computationally indistinguishable, 176
computationally secure, 210
computationally zero-knowledge, 446
computer networks, xix
computer program, 5
conditional, 12
conditional entropy, 620
conditional expected value, 572
conditional probability, 563
conditional probability distribution, 570
Conditional security, 12
confidentiality protection, 38
confusion, 230
congruence relation, 617
congruent, 539
conjugate, 341
connection polynomial, 214
constant-time programming, 17
constructive cryptography, 53
constructive step, 19
content scrambling system, 216
continued fraction, 93
control unit, 603
COPACOBANA, 243
coprime, 521
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cosets, 513
Cost-Optimized Parallel Code Breaker, 243
counter, 268
counter with CBC-MAC, 268
CPA, 350
Cramer-Shoup, 385, 429
cryptanalysis, 2
cryptlib, 495
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crypto wars, 467
CryptoAPI, 495
cryptocurrencies, 21
cryptographic, 34, 113
cryptographic algorithm, 6
cryptographic challenges, 94
cryptographic hash functions, 27, 483
cryptographic protocol, 6
cryptographic scheme, 4
cryptographic system, 4
cryptographic systems, xxi
cryptographically secure, 75, 175, 177
cryptography, 1
cryptollusion, xx, 501
cryptology, 1
CrypTool, xxii, 23
cryptosystem, xxi, 4
CRYSTALS-DILITHIUM, 496, 498
CRYSTALS-KYBER, 496, 498
cSHAKE, 148
CSIDH, 499
CSS, 173
CTR mode, 280
CTS mode, 268
cumulative trust model, 471
Curve25519, 108
CWC, 322
cycle, 90
cyclic, 511

Dan Bernstein, 220
data authentication algorithm, 294
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