
Building
Telegram Bots

Develop Bots in 12 Programming
Languages using the Telegram
Bot API
—
Nicolas Modrzyk

Building Telegram
Bots

Develop Bots in
12 Programming Languages
using the Telegram Bot API

Nicolas Modrzyk

Building Telegram Bots: Develop Bots in 12 Programming Languages using

the Telegram Bot API

ISBN-13 (pbk): 978-1-4842-4196-7 ISBN-13 (electronic): 978-1-4842-4197-4
https://doi.org/10.1007/978-1-4842-4197-4

Library of Congress Control Number: 2018965498

Copyright © 2019 by Nicolas Modrzyk

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4196-7.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Nicolas Modrzyk
Tokyo, Tokyo, Japan

https://doi.org/10.1007/978-1-4842-4197-4

iii

About the Author ���ix

About the Technical Reviewers ���xi

Acknowledgments ���xiii

Introduction ��xv

Table of Contents

Chapter 1: Week 1: Ruby ��1

Chatting with the BotFather ��1

Setting Up Ruby ��7

Your First Telegram Bot ���8

Understanding Received Messages Fields ���14

First Reply ���15

Chapter 2: Week 2: Nim ��17

Installing Nim ��17

Nim Plug-in for Visual Studio Code ���18

Hello, Nim ��20

Second Nim Program (Still Not Bot) ��23

Creating Visual Studio Code Build Tasks ���25

Installing Nim Packages with Nimble ���29

First Nim Bot ���31

Replying to Nim Bot ��33

Cats and Dogs Nim Bot ���34

iv

Chapter 3: Week 3: Crystal ���37

Setting Up Crystal ���38

Short Walk in the Playground ��39

Going Visual Studio Code Again ��41

Creating a Crystal Project ���46

Echo Bot ��50

Command Bot ���52

Chapter 4: Week 4: Rust ���57

Rust Installation and First Steps ���58

Installation ���58

First Rust or Two ���62

Hello Rust ��62

Fibonacci ���64

Ride the cargo ���66

We Have Time ��66

Multiple Cargo Targets ��70

Rust Bot Number 1: Reply to Me ���74

Rust Bot Number 2: Where Is Tokyo? ��77

Rust Bot Number 3: Chained Reaction ��82

Compiling for Release ���84

Chapter 5: Week 5: D ��85

Installation and First D Steps ��86

Some Bits of D on Concurrency ��91

Simple Threading ���91

Thread with a State ���92

Shared State ��94

Table of ConTenTsTable of ConTenTs

v

A Few More Examples of D ���95

Sort Me Tender, Sort Me True ���95

My Love for Fibonacci ���98

Telegram Bots in D ��100

Meet dub ���100

First D Bot ��105

More Bot API Usage ���107

Chapter 6: Week 6: C++ ��111

Requirements, Installation, and First Bot ��111

Install tgbot-cpp ��112

Install OpenCV ���113

File Download Program ���113

Echo Bot ��119

C++ Bots ���123

Bot with Inline Keyboard ���123

Photo Bot ���126

OpenCV in action ���128

OpenCV Sample Program ��128

OpenCV Bot ���131

Chapter 7: Week 7: Clojure ���135

Initial Setup and First Clojure Bot ���136

Visual Studio Code ���141

The Project Metadata in project�clj ��142

The Clojure Code in core�clj ���143

The Token! ���146

Debugging Telegram Messages ���146

Table of ConTenTsTable of ConTenTs

vi

Creating a Reverse Bot ��148

Inline Handler ��149

A Simple Weather Bot ���150

OpenCV and Telegram: Origami Bot ��154

Chapter 8: Week 8: Java ���159

Installation ��159

The Project Structure���161

The build�gradle file ���161

Visual Studio Code Setup ��164

First Java Bot ��165

Send Some Text ���167

Send a Photo ���169

Bot with Invoice Capabilities ���170

Asking Permission ���170

Sending an Invoice Message ��173

Chapter 9: Week 9: Go ��181

Installation of Go ���182

Let’s Go ���184

Let’s Fib���190

First Bot in Go ���193

Just Sending Pictures ���197

Chapter 10: Week 10: Elixir ��201

Installation ��202

Using iex ��203

Using mix ���204

Running iex with mix ���205

Table of ConTenTsTable of ConTenTs

vii

Project Structure of a mix Project ���206

config�exs ��207

mix�exs ��208

Dependencies ��209

telegrambox�ex ��212

(Back to) Dependencies ���213

Get Something ��216

GetMe ��216

GetChat ��217

GetFile ���218

Using Elixir’s System ���219

SendPhoto ���220

Telegram Bot ���221

Bot1: Anything Goes���221

Bot2: Fibonacci ��222

Chapter 11: Week 11: Node�js ���225

Meet RunKit ��226

Creating an Account ��226

First Code on RunKit ��229

A Certain Je Ne Sais Koa ���230

Publishing Some Koa ���232

Telegram Bot with Webhooks ��234

More on the Telegraf Library ���239

Image-to-Chat Example ���239

RegExp, Inline Keyboards, and Embedded Emojis ���������������������������������������240

Table of ConTenTsTable of ConTenTs

viii

Running Node�js Locally ��242

Setting Up Node�js ���243

Using Local Tunnel ���244

Chapter 12: Week 12: Python ���247

Installation ��248

A Few Python Programs ��250

Fibonacci 1 ��250

Fibonacci 2 ��252

Fibonacci 3 ��253

Fibonacci 4 ��254

Fibonacci 5 ��255

First Telegram with Python ���256

First Bot: Send a Random Photo ���258

First OpenCV Bot: Changing the Color Space of a Picture ���������������������������������260

Second OpenCV Bot: Count Faces ���262

TensorFlow to Close the Show ��265

 Index ���271

Table of ConTenTsTable of ConTenTs

ix

About the Author

Nicolas Modrzyk has more than 15 years of

IT experience in Asia, Europe, and the United

States and is currently CTO of an international

consulting company in Tokyo, Japan. He is

the author of four other published books,

mostly focused on the Clojure language and

expressive code. When not bringing new

ideas to customers, he spends time with his

two fantastic daughters, Mei and Manon, and

playing live music internationally.

xi

About the Technical Reviewers

Dushyant Rathore is currently working as

a firmware engineer with Western Digital.

His experience includes full-stack web

development, machine learning, decentralized

applications, and others. Dushyant has worked

on several kinds of projects related to IoT,

chatbots, web sites, scrapers, command-

line tools, and machine learning projects,

among others, at various startups. He has participated in national and

international hackathons and has won a few of them. He is a big cloud

computing enthusiast.

Sham Satyaprasad has been a full-stack

software developer for more than four years,

having completed a master’s degree in

embedded systems from Manipal University.

He prides himself on writing highly efficient,

readable, and maintainable code and strongly

believes that coding is an art as much as it is

science. Sham has recently developed a keen

interest in NLP, ML, and data science and has been busy wrapping his

head around these topics.

xiii

Acknowledgments

It’s been yet another typing race to get this book out on time and beat the

odds. Divya and Nikhil, thank you so much for teaming up again. I’m really

looking forward to our next collaboration!

I received support from so many people that it would take another

book just to write the list of names. Nevertheless…

Thank you to my sister, Emily, my brother, Gregor, Mum and Dad,

family, cousins, uncles, aunts, friends, Abe-san, Sawada-san, Gucci,

Marshall, Momo, my soulmate Sachiko, soccer friends (I would break a

knee for you), the Irish crew still enjoying Guinness (one more for me!),

the awesome people in America (who always find the LPs I’m missing),

Chris and the Biners, the French team that’s always there to support

me, even without being asked, and the people deep in my heart, for

your never- ending support. I could not have finished this without you.

I appreciate you all so much.

And, of course, thank you to my two wonderful daughters, Mei and

Manon, for keeping up and always doing your best, even during hard

times. You rock! I love you.

xv

Introduction

With a hundred ways to do a dozen things, why not try it all?

—Julian Casablancas

Have you ever wondered how you could accomplish more by doing less,

how you could have a sort of double who does all the work while you enjoy

some cool beachside or spend more outdoor time with your beautiful

children? I always have.

I am a big fan of the Telegram chat platform. Let’s call it a platform,

because it is more than a simple chat service with which you can stay in

touch with people who matter to you most. It also enables you to think in

ways you haven’t before.

For example, living in Tokyo, you always care about what time the last

train home is going to depart. I guess most people in big cities around the

globe probably have that same concern. Checking the clock only every so

often can result in a terrible and/or expensive taxi ride, so I started wanting

something that automatically offered me a bunch of options to get home.

The first bot I wrote was to tell me the schedule of the last few trains

home and some different options, from the easiest to reach before the last

few departures to the very latest, which I would have to dash to catch. That

saved me quite a bit of money.

The second bot I wrote was slightly more IoT-oriented. It used a

webcam to send me via Telegram pictures of people who rang my doorbell.

The third one, I also remember, was kind of stupid. It was to use a mini

projector to display the most recent message coming through a Telegram

chat room. (It’s very entertaining to view random messages during a small

party at home.)

https://www.goodreads.com/author/show/16643925.Napz_Cherub_Pellazo

xvi

But there are so many things for which to try to build a bot—search

for a plane ticket, check your fridge, etc. Having a bot is a simple way

to facilitate all the things you do daily, using the same kind of simple

Telegram chat rooms to get answers to questions related to daily life or to

issue commands and conquer the world.

This relatively short book is about learning how to write Telegram

bots in several different programming languages. Why not use one

and stick to it? you might ask. Well, because there’s not one answer to

all questions, and what’s right for others might not be suitable for you.

Exploring different programming languages is also a fun way to examine

the strengths of each language while performing the same tasks. Each of

the Telegram concepts can be introduced one after the other, in a simple

fashion.

Or, you could just jump in and choose the language you want to try and

get started in no time. Some people want it to happen; some wish it would

happen; others make it happen. So, enjoy reading this book, and make it

happen.

InTroduCTIonInTroduCTIon

1© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4_1

CHAPTER 1

Week 1: Ruby

Mindful Monday Humans, may your coffee kick in before
reality does.

—Napz Cherub Pellazo

Ruby took the world by storm a while ago, owing to the ease and concision

of the code you can write with it. Most programmers have a sweet spot for

Ruby, and when their shell scripts and day-to-day lives get too messy, they

are usually very quick to switch to Ruby.

This first chapter is a bit special, because on top of creating a client

for our bot, I must also introduce you to how to create the bot itself.

Throughout the book, this first bot will be reused at will, although, of

course, the same steps used to make it could be used to create a bot army

and conquer the world!

 Chatting with the BotFather
To register your own Telegram bot, you must talk to the father of all bots.

This bot father has a name, BotFather; Brad or Vladimir just doesn’t cut it.

He can be reached via Telegram as @BotFather.

BotFather does not sleep and can be reached at any time of day.

BotFather does take showers and always looks fresh. Here is the last profile

picture we have of this handsome bot (Figure 1-1).

https://www.goodreads.com/author/show/16643925.Napz_Cherub_Pellazo

2

Finding BotFather is not so difficult; you just have to type his name,

“@BotFather,” in the Telegram list of people in the search box of your

Telegram client (Figure 1-2).

Figure 1-1. BotFather’s latest profile picture

Figure 1-2. Looking for BotFather

Chapter 1 Week 1: ruby

3

In the preceding list, the name is the one at the bottom. Next, start a

new chat with BotFather by clicking it.

Once the chat is started, you will also be welcomed by our handsome

bot, with a cordial message about APIs, free help, and an invitation to start

the chat (Figure 1-3).

Once the chat has begun (by pressing the Start button that you can see

at the bottom), you are welcomed by BotFather with a bunch of options on

how to create or edit your list of bots (Figure 1-4).

Figure 1-3. Ready?

Chapter 1 Week 1: ruby

4

Figure 1-4. Say hello to BotFather

Chapter 1 Week 1: ruby

5

Great! I won’t review the full list of options now but will start just by

creating our new bot. This is done here by typing in the /newbot command

and then following a simple conversation, such as the one in Figure 1-5.

Your bot is now ready to use. Can you see in red something like a

secret code? This is the bot token, which is a chain of characters that

will be used to uniquely identify and authenticate your bot against

the Telegram platform. Do not give away this token. Don’t write it in

a book or allow it to hang somewhere on GitHub, especially now that

Microsoft owns it.

Figure 1-5. Ask BotFather, please, please, for a new bot

Chapter 1 Week 1: ruby

6

In our case, in the preceding chat, the token that was generated and

given to use is the one following:

624028896:AAFGfIXp3FEPtX1_S2zmHodHRNpu_wD1acA

If your token, like this one, ever becomes compromised, you can use

the /token command with the bot father, to generate a new token, as

shown in the conversation in Figure 1-6.

Alright, the registration of our Telegram bot is all done. So, let’s switch

to a little bit of coding in Ruby.

Figure 1-6. Chat to generate a new token

Chapter 1 Week 1: ruby

7

 Setting Up Ruby
Ruby, on most Unix-like platforms, including OS X, is already installed,

or it can be installed using a package manager. For those running lesser

operating systems, like Windows, you can download and install the Ruby

installer (Figure 1-7) from the Ruby download page at www.ruby-lang.

org/en/downloads/. Download the most recent version.

After the installation is complete, if you open a terminal (on macOS),

or a command prompt on Windows (Figure 1-8), and can type in the

following commands without getting an error, you are all set:

ruby -v

gem -v

Figure 1-7. Looking for the Windows Ruby installer

Chapter 1 Week 1: ruby

http://www.ruby-lang.org/en/downloads/
http://www.ruby-lang.org/en/downloads/

8

If you have never used Ruby before, you may be wondering what the

gem executable is? It’s simply a Ruby-specific installer for libraries (just like

npm is for Node and pip is for Python), so when you require some open

source library that has been written by someone else, you would use gem to

get it on your machine and the ruby executable to run it.

Apart from Ruby, to have some coding fun outside Notepad, you also

need a text editor, so I propose to use Microsoft’s Visual Studio Code

(https://code.visualstudio.com/), but, of course, any of your favorite

text editors will do.

Alright, let’s get started and code our first bot.

 Your First Telegram Bot
To get to talk to our first bot, we will use the Ruby library named

telegram_bot. There are a few other famous libraries that you can find

on RubyGems (https://rubygems.org/), but I find this library to be an

easy one to start and get going with, and I hope you come to agree with

me about this in time.

Actually, you can check for yourself and find your favorite Telegram

library, by querying the RubyGems web site (Figure 1-9).

Figure 1-8. Checking ruby and gem versions

Chapter 1 Week 1: ruby

https://code.visualstudio.com/
https://rubygems.org/

9

To use a library in Ruby, you install it on your machine first, to make it

available to your computer, by using the gem install command, and then

in your Ruby code, you use the *require* function, to make that library

available to your Ruby program.

Let’s create a new folder for this first bot. Change the directory and

then install the Telegram library with gem, as shown following:

mkdir chapter-01

cd chapter-01

gem install telegram_bot

Figure 1-9. Looking for gems

Chapter 1 Week 1: ruby

10

At the terminal, the output should be something similar to this:

SuperPinkicious:chapter-01 niko$ gem install telegram_bot

Successfully installed telegram_bot-0.0.8

Parsing documentation for telegram_bot-0.0.8

Done installing documentation for telegram_bot after 0 seconds

1 gem installed

The gem is now installed and ready to be used in your code.

Now, you are going to write some code to wake up your bot and make

it come alive. In a new file in that folder, which you can name step0.rb, for

example, let’s write the following lines of Ruby code:

require 'telegram_bot'

bot = TelegramBot.new(token: ENV['BOT_TOKEN'])

bot.get_updates() do |message|

 puts message.to_s

end

What that code does is

• Make the telegram_bot library, installed via gem,

available to your program

• Create a new Ruby bot object, using the Telegram

token exposed via an external variable. This is usually

the recommended way to share your bot code without

giving your bot token to everyone.

• Get the bot instance instantiated, to listen for incoming

messages, using the bot object get_updates() method

• Ensure that, now, whenever a message is sent to the

bot, the bot will print it on the console

Chapter 1 Week 1: ruby

11

To run the preceding written program on your machine, you pass the

name of the program file, step0.rb, to the ruby executable. Let’s do it.

At the terminal, execute the following command:

ruby step0.rb

Observe the output (Figure 1-10).

Oops! That did not go so well. We forgot to pass the Telegram token to

our program.

This can be done on Linux or OS X with the following:

export BOT_TOKEN='585672177:AAHswpmdA2zP52ZWoJMdteGa0xQ8KeynWvE'

And on Windows with

set BOT_TOKEN=585672177:AAHswpmdA2zP52ZWoJMdteGa0xQ8KeynWvE

Let’s run the program again. This time, it looks like the command

is not finishing… This is expected, as the bot is now actually waiting for

messages.

Let’s be the one to start the conversation, so let’s send a greeting

message.

In the Telegram window, search for the bot and start chatting

(Figure 1- 11).

Figure 1-10. Sometimes, it just does not work

Chapter 1 Week 1: ruby

12

By pressing that Start button, the bot is already receiving a message

(Figure 1-12)!

Hmmm, that was not very readable. With Ruby, you can display a more

legible version of any object, by using the to_yaml function. Let’s update

the code and see what happens.

We call require 'yaml', to import it into the Ruby namespace, and

now we can call the to_yaml on the message the bot has received.

require 'telegram_bot'

require 'yaml'

bot = TelegramBot.new(token: ENV['BOT_TOKEN'])

Figure 1-11. First message to our bot

Figure 1-12. First message from our bot!

Chapter 1 Week 1: ruby

13

bot.get_updates() do |message|

 # puts message.to_s

 puts message.to_yaml

end

You would have to type Ctrl-C to terminate the running version of the

bot first and then start the new bot, by executing the ruby command again.

Figure 1-13 shows the outcome.

In the console, or in the terminal where the bot was started, you now

can see a more detailed version of the received message.

endSuperPinkicious:chapter-01 niko$ ruby step0.rb

--- !ruby/object:TelegramBot::Message

message_id: 191

from: !ruby/object:TelegramBot::User

 id: 121843071

 first_name: Nico

 last_name: Nico

 username: hellonico

chat: !ruby/object:TelegramBot::Channel

 id: 121843071

 username: hellonico

 title:

date: !ruby/object:DateTime 2018-08-31 07:42:26.000000000 Z

text: how are you?

reply_to_message:

Figure 1-13. How are you?

Chapter 1 Week 1: ruby

14

Actually, whatever the programming language used, this message

format is going to be quite consistent, so it’s a good idea to have a look at

the message fields.

 Understanding Received Messages Fields
Table 1-1 briefly explains the fields we have just received via the

Telegram bot.

Table 1-1. Fields Received from the Telegram Bot

Field Sample Value Explanation

message_id 191 the unique identifier

of the bot message

from !ruby/object:TelegramBot::User the user who sent

the message

chat !ruby/object:TelegramBot::Channel the chat/channel

information

date !ruby/object:DateTime 2018-08- 31

07:42:26.000000000 Z

When the message

was sent

text how are you? the text of the

message

reply_to_

message

<empty> the message that

this message was a

reply to

For standard messages, there is not much beyond what you would

expect from a chat message object. You will probably use the date, text,

and from fields most of the time.

Chapter 1 Week 1: ruby

15

 First Reply
Again, Ruby’s concision makes it quite easy to create strings from objects.

With the following, you can use blocks of executable code directly within a

string: #{}.

This makes it very powerful for templated messages, and in our case,

for bot programming. Within the get_updates() call block, let’s now write

and send a reply.

 message.reply do |reply|

 reply.text = "Hello, #{message.from.first_name}!"

 reply.send_with(bot)

end

After restarting the bot (Ctrl-C, ruby step0.rb), we can start a more

talkative version of this Ruby bot (Figure 1-14).

That worked pretty smoothly, and I am happy to announce that you

have moved to level 2 of this bot master course.

Figure 1-14. Hello, Nico!

Chapter 1 Week 1: ruby

16

You have seen many things in this first chapter, the following among them:

• How to register a bot to the bot father

• How to put the bot token to use in our program

• Starting a bot and listening to messages

• Reviewing the fields of incoming messages

• Replying to an incoming message

Next week, we will build on those same concepts in the following

chapter using a different programming language.

Chapter 1 Week 1: ruby

17© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4_2

CHAPTER 2

Week 2: Nim
Jenner: I learned this much: take what you can, when you can.

Justin: Then you have learned nothing.

—The Secret of Nimh

Nim has been on my list of adopted languages for the last two years.

Visually, it looks and feels very similar to Python, but it can also be

compiled to a binary, via C, C++, Objective-C, and even JavaScript. I have

seen compiled binary Nim programs running very fast, and I really wished

Nim would reach the next level of adoption.

Today, we’re going to focus on building bots, runnable as a binary,

built with Nim. We will, of course, start by setting up a Nim environment

on your local machine.

 Installing Nim
Nim can be downloaded manually from the following location: https://

nim-lang.org/docs/re.html. It is also available through your platform

package manager.

Make sure you install both Nim (the compiler) and Nimble (the

package manager). At the time of writing, these are the latest available

versions for both executables.

SuperPinkicious:APRESS niko$ nim -v

Nim Compiler Version 0.18.0 [MacOSX: amd64]

Copyright (c) 2006-2018 by Andreas Rumpf

https://www.imdb.com/name/nm0791502/?ref_=tt_trv_qu
https://www.imdb.com/name/nm0005471/?ref_=tt_trv_qu
https://nim-lang.org/docs/re.html
https://nim-lang.org/docs/re.html

18

active boot switches: -d:release -d:useLinenoise

SuperPinkicious:APRESS niko$ nimble -v

nimble v0.8.10 compiled at 2018-03-11 16:16:29

git hash: couldn't determine git hash

The setup used throughout this book, and thus for Nim programming

too, is based on Visual Studio Code, and you will be shown the basics to get

running with Nim from within Visual Studio Code.

 Nim Plug-in for Visual Studio Code
Before writing a full-blown Telegram bot, you are going to be introduced to

Nim, by writing some Hello World code. Let’s start by creating a file named

goodmorning.nim from within Visual Studio Code, to write our first few

lines of code (Figure 2-1).

Figure 2-1. goodmorning.nim file

Chapter 2 Week 2: Nim

19

As you can see at the bottom right of Figure 2-1, Visual Studio Code

recognizes the extension of the new file and proposes that you have a look

at the Marketplace, to find an extension that supports Nim files editing.

This is the same for every other language, so you may have to repeat these

steps for other languages afterward.

The plug-in to install is the one written by Konstantin Zaitsev, shown in

Figure 2-2.

Once Visual Studio Code has installed the plug-in, you must click the

Reload button, to activate the plug-in (Figure 2-3).

Figure 2-2. Nim plug-in

Chapter 2 Week 2: Nim

20

Now, let’s write some code!

 Hello, Nim
If the install was successful, you now have a Nim-enabled editor, meaning

syntax highlighting and compilation from within the editor. echo is the

simplest Nim function to print to the standard output, and we’ll use that to

print some formal greetings (Figure 2-4).

Figure 2-3. Activating the Nim plug-in

Figure 2-4. hello nim world greeting

Chapter 2 Week 2: Nim

21

Once you have the code written in the file, you are now ready to

execute it.

Unlike Ruby, in which you can pass in code to be executed to the ruby

executable, Nim is a compiled language, so it is turned into a binary file

first. This is a form that the computer understands and can execute by

itself, including third-party libraries, then that file is executed.

To active the command that performs these two steps in Visual Studio

Code, you use either one of the following:

 1. Command+Shift+P or

 2. Ctrl+Shift+P

This will pop up a menu with all the available Visual Studio Code

commands. The one you want to use to compile and run Nim code located

in the opened file is named Nim: Run Selected file, and it will be the

first option, once you start typing “nim” in the search-like text box that

popped up (Figure 2-5).

Figure 2-5. Run selected file from the pop-up menu

Chapter 2 Week 2: Nim

22

Executing the command will print out a few lines of compilation

in the terminal or command prompt that has just been opened when

triggering the command. At the bottom, you can see the greeting

message. The code has been compiled and executed from within the text

editor (Figure 2-6).

Note that the actual command that was executed by the plug-in is

something like

nim c -r goodmorning.nim

This is a shortcut for

• C: compile

• -r: run

• goodmorning.nim: the file to compile and run

Figure 2-6. hello nim world

Chapter 2 Week 2: Nim

23

In the folder in which the goodmorning.nim file was located, you will

see that a new file has been created, named goodmorning, without a file

extension.

You can re-execute the compiled file by itself, of course, without

recompiling directly from the command line again.

SuperPinkicious:02-nim niko$./goodmorning

hello nim world

Try changing the code a bit and recompile a few times, to master this

compile step from Visual Studio Code. Next let’s move beyond greetings, to

more meaningful code.

 Second Nim Program (Still Not Bot)
In this second example, we will send an HTTP request to a remote site and

print the result on the command line. This new program requires some

code from a different Nim module, httpclient, which contains the object

that can send HTTP requests and reads the return value. You will use the

keyword import to make this happen.

The rest of the code, matching closely a Python-like syntax, is quite

easy to read.

import httpclient

const URL = "https://api.github.com/search/repositories" &

 "?q=cat" &

 "&sort=stars" &

 "&order=desc"

let

 client = newHttpClient()

echo client.getContent(URL)

Chapter 2 Week 2: Nim

24

We see first the creation of a constant String, URL, which will be the

target of the HTTP request. let defines a scoped variable, the HTTP client.

Finally, we retrieve the body coming from the HTTP get request, with

getContent called on the HTTP client.

Let’s run this now, by calling the Nim: Run selected file command

from the palette (Figure 2-7).

Unfortunately, things did not seem to fare too well, and a message with

red text is showing, as in Figure 2-8.

Fortunately, it tells you explicitly what’s wrong, which is quite unusual

for a programming language. Go ahead and ask Java developers.

Figure 2-7. Running the HTTP client

Figure 2-8. Failed execution

Chapter 2 Week 2: Nim

25

What happened is that the HTTP connection requires SSL, as we

are connecting over HTTPS. SSL is not included by default during the

compilation step of Nim source files.

To include SSL support, we must define a symbol, using the -d:ssl

flag, for the nim command, so that it will include the required code to

execute the HTTPS request.

If you want to try this on the command line or in a terminal, you can

use the following full command:

nim c -d:ssl -r getsome.nim

The preceding command will compile and run the code, as expected,

finally outputting many lines of JSON returned from the get request.

But…I know how you feel. You would like to run this command from Visual

Studio Code itself. This is done using Visual Studio Code Custom tasks.

 Creating Visual Studio Code Build Tasks
To create your own task in Visual Studio Code, follow a few steps from

the command palette, which will create a JSON file from a template

(Figures 2- 9, 2-10, 2-11).

Figure 2-9. Creating the tasks.json file from the template

Figure 2-10. Configuring the default build task

Chapter 2 Week 2: Nim

26

At this end of the sequence, you will have a new file, .vscode/tasks.

json, with something similar to the following content:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "echo",

 "type": "shell",

 "command": "echo Hello",

 "problemMatcher": []

 }

]

}

Basically, this task executes a shell command that displays “hello” on

the terminal or command prompt. Not a very useful command by itself, in

general, but, hey, who knows.

Now, we want to use that to the default build command, so let’s trigger

the palette again with Command+Shift+B, Ctrl+Shift+B.

This will ask you a few more questions along the lines of those shown

in Figures 2-12 and 2-13.

Figure 2-11. Running an arbitrary external command

Chapter 2 Week 2: Nim

27

The custom build task hello is now configured within Visual Studio

Code. The next time you type “Command+Shift+B,” a terminal will show

up with the output of the echo command (Figure 2-14).

“Hello” is usually good enough for a first time, but, yes, now it’s

probably the time to get back to compiling and executing Nim files.

Figure 2-12. Configuring the build task

Figure 2-13. echo

Figure 2-14. Hello

Chapter 2 Week 2: Nim

28

So, let’s replace the content of the .vscode/tasks.json file with the

following:

{

 "version": "2.0.0",

 "tasks":

 [

 {

 "label": "nim",

 "command": "nim",

 "args": [

 "c",

 "-d:ssl",

 "-r",

 "${file}"

],

 "options": {

 "cwd": "${workspaceRoot}"

 },

 "group": {

 "kind": "build",

 "isDefault": true

 }

 }

]

 }

Note that you have just created a task labeled nim, for which the

command is the one you saw just a few pages ago.

nim c -d:ssl -r ${file}

Chapter 2 Week 2: Nim

29

${file} in Visual Studio Code is a parameter that contains the

currently opened file. Now, we can execute the getsome.nim directly from

the editor (Figure 2-15).

Great! This custom task was actually required to compile and run code

that includes the third-party Telegram library we are going to use. But how

do we install external packages again?

This is done via Nimble. Let’s see how that works.

 Installing Nim Packages with Nimble
Remember that you installed Nimble at the beginning of this chapter. You

are going to use it now to install a wrapper for the Telegram API.

You can use Nimble to find packages, using the search subcommand,

as shown following:

nimble search telegram

Figure 2-15. Executing getsome directly from Visual Studio Code

Chapter 2 Week 2: Nim

30

This returns a list of libraries matching the search keywords, plus some

information related to each library.

SuperPinkicious:02-nim niko$ nimble search telegram

telebot:

 url: https://github.com/ba0f3/telebot.nim (git)

 tags: telebot, telegram, bot, api, client, async

 description: Async Telegram Bot API Client

 license: MIT

 website: https://github.com/ba0f3/telebot.nim

nim_telegram_bot:

 url: https://github.com/juancarlospaco/nim-

telegram- bot (git)

 tags: telegram, bot, telebot, async, multipurpose, chat

 description: Generic Configurable Telegram Bot for Nim, with

builtin basic functionality and Plugins

 license: MIT

 website: https://github.com/juancarlospaco/nim-telegram- bot

To build our bot, we will use the first, most widely used library,

telebot, and this is done using the Nimble install command.

nimble install telebot

This results in the following output:

SuperPinkicious:02-nim niko$ nimble install telebot

Downloading https://github.com/ba0f3/telebot.nim using git

 Verifying dependencies for telebot@0.4.2

 Installing telebot@0.4.2

 Success: telebot installed successfully.

You can, of course, check that the package is installed on your

machine, with

nimble list -i

Chapter 2 Week 2: Nim

31

or remove the package with uninstall:

nimble uninstall telebot

Now that everything you require is on your machine, let’s finally start

writing our bot in Nim!

 First Nim Bot
In Nim, you define a function or procedure using proc. proc takes a

function name, here, updateHandler; some parameters, here, b of type

telebot and u of type Update (both from the telebot module); and

sometimes some metadata (or pragma), here, {.async.}.

You can find the documentation for any module on nim-lang.org. For

example, the asyncdispatch module is here:

https://nim-lang.org/docs/asyncdispatch.html

The reason we use the async module here is to write our Telegram bot.

Note asynchronous procedures remove the pain of working with
callbacks. they do this by allowing you to write asynchronous code
the same way as you would synchronous code.

The slurp function takes the content of a file and turns it into a

string—here, the bot API_KEY that you receive from BotFather in the

previous chapter. And, yes, you should paste your key in a new secret.key

file. That gives the following few lines of code for a simple bot that returns

“hello” to whatever you sent to him.

import telebot, asyncdispatch, options

const API_KEY = slurp("secret.key")

proc updateHandler(b: Telebot, u: Update) {.async.} =

Chapter 2 Week 2: Nim

https://nim-lang.org/docs/asyncdispatch.html

32

 let

 response = u.message.get

 message = newMessage(response.chat.id, "hello")

 discard await b.send(message)

let bot = newTeleBot(API_KEY)

bot.onUpdate(updateHandler)

bot.poll(300)

Starting a new chat with your existing bot, or a new bot registered

with the bot father, would result in a conversation such as that shown in

Figure 2-16.

Figure 2-16. hello

Chapter 2 Week 2: Nim

33

 Replying to Nim Bot
Now that you have the whole setup at hand, creating the second Nim bot is

going to be fairly simple. This new bot will inline the reply, as when you are

replying directly to a message sent by another user. This is done by setting

the replyToMessageId property on the created message object.

Note that if you keep the message object declared in the let block,

the compiler will “compilain” (pun intended) that the message cannot be

updated, because it is immutable (Figure 2-17).

This is because it was created with let, which makes the object

immutable. To work around this problem, you simply declare the message

object with var instead.

Figure 2-17. Compilation error that results when using let instead
of var

Chapter 2 Week 2: Nim

34

import telebot, asyncdispatch, options

const API_KEY = slurp("secret.key")

proc updateHandler(b: Telebot, u: Update) {.async.} =

 var response = u.message.get

 if response.text.isSome:

 let

 text = response.text.get

 var message = newMessage(response.chat.id, text)

 message.replyToMessageId = response.messageId

 discard await b.send(message)

let bot = newTeleBot(API_KEY)

bot.onUpdate(updateHandler)

bot.poll(300)

The bot now tells you which message it is replying to (Figure 2-18).

 Cats and Dogs Nim Bot
This next bot is only a slight update from the previous bot. Instead of

creating a message with newMessage, we will use newPhoto, which allows

us to embed a picture in the message sent to the user.

For this to work, you must have pictures of animals located along the

Nim file (cat.jpg and dog.jpg, for example).

Figure 2-18. hello, hello

Chapter 2 Week 2: Nim

35

In the Nim code, the path to the file is prefixed with file://, and we

also add a caption to the picture, by setting the caption field of the photo

message.

This gives

import telebot, asyncdispatch, options

const API_KEY = slurp("secret.key")

proc updateHandler(bot: TeleBot, update: Update) {.async.} =

 var response = update.message.get

 if response.text.isSome:

 let

 animal = response.text.get

 file = "file://" & animal & ".jpg"

 var message = newPhoto(response.chat.id, file)

 message.caption = animal

 discard await bot.send(message)

let

 bot = newTeleBot(API_KEY)

bot.onUpdate(updateHandler)

bot.poll(300)

After starting this bot, when you send keywords to it, it will reply with

a loaded picture of the given keyword, along with a caption of the animal

(Figure 2-19).

Chapter 2 Week 2: Nim

36

Of course, if you enter an animal that does not have a corresponding

file, the bot won’t be able to answer.

So, a small exercise would be to send a response to the user, such as

“The file could not be found.”

There was a lot of time spent on setting up Visual Studio Code in this Nim

chapter, but now you are more ready than ever to tackle bots in other languages.

Figure 2-19. Cat and dog

Chapter 2 Week 2: Nim

37© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4_3

CHAPTER 3

Week 3: Crystal
Comets, importing change of times and states,

Brandish your crystal tresses in the sky,…

—William Shakespeare

Henry VI, Part 1, Act 1, Scene 1

Crystal is a new programming language with a syntax heavily

influenced by Ruby, to the point that it feels just like writing Ruby. The

main difference with Ruby is that Crystal is compiled to C and is, therefore,

quite blazingly fast.

Crystal comes with many advantages, such as full support for easy

concurrency models, macros, heavy type checks, and one of my favorites:

full support for dependencies, via direct Git access, without the need for

packaging, and the always-breaking central repository.

In this chapter, in addition to playing with Crystal to develop bots,

you will also be introduced to writing your first bot commands. You will

remember what commands are. We used them when talking to the bot

father, to create our bots. Yes, those are the same! (See Figure 3-1.)

http://www.quotesoup.com/quotes/author/shakespeare

38

 Setting Up Crystal
There are already a bunch of installation steps on the Crystal web site, so

we will keep those to a minimum here.

https://crystal-lang.org/docs/installation/index.html

Note, however, that for Windows users, Crystal can only be used with

the Windows Subsystem for Linux (WSL), which requires a recent version

of Windows 10. On macOS, Crystal is easily installed via the homebrew, as

follows:

brew install crystal

Figure 3-1. BotFather commands

Chapter 3 Week 3: Crystal

https://crystal-lang.org/docs/installation/index.html

39

When you install Crystal with the homebrew, you can see that the

Crystal compiler is itself written in Crystal, .cr being the common

extension for Crystal files.

bin/crystal build -D without_openssl -D without_zlib -o .build/

crystal src/compiler/crystal.cr --release --no-debug

On my favorite Arch Linux–based Manjaro Linux, Pacman has it

straight out of the box as well.

pacman -S crystal shards

On other distributions, you must install a new repository, before

running yum, apt-get, and the likes.

Once Crystal is installed, you should check that crystal, but also

shards, the Crystal package manager, is installed.

SuperPinkicious:withcrystal niko$ crystal --version

Crystal 0.26.1 (2018-09-06)

LLVM: 6.0.1

Default target: x86_64-apple-macosx

SuperPinkicious:withcrystal niko$ shards --version

Shards 0.8.1 (2018-09-06)

 Short Walk in the Playground
Once installed, Crystal can actually be enjoyed as a stand-alone, in what

is called a playground. You can start up a training environment as a web

server, using the play command.

crystal play

This will start a web server on the default port 8080. You can also start

the playground on a different port, using the -p flag.

crystal play -p 8090

Chapter 3 Week 3: Crystal

40

You can type code inside the left panel and directly see the results of

the line-by-line execution on the right-hand side (Figure 3-2).

The sheer speed of Crystal can be appreciated quite quickly by running

some CPU-intensive function, for example, good old Fibonacci (Figure 3- 3).

Figure 3-2. Crystal embedded development environment

Figure 3-3. Fibonacci

Chapter 3 Week 3: Crystal

41

The listing with the benchmark code included gives the following:

require "benchmark"

def fib(n : UInt64)

 raise "fib not defined for negative numbers" if n < 0

 new, old = 1_u64, 0_u64

 n.times {new, old = new + old, new}

 old

end

def time(&block)

 puts Benchmark.measure(&block).real

end

time { fib(1000000000_u64) }

When executed, as here, on a simple MacBook, it took way fewer

than five seconds. So, here we are, Crystal is a language of simplicity and

speed.

But let’s go back and appreciate it while working and typing code in

with Visual Studio Code.

 Going Visual Studio Code Again
You are going to write a small program fetching URLs of GitHub projects,

based on a GitHub search query. The data returned from an HTTP request

to GitHub would be in JSON format, so we will have to decode that too,

using some JSON parsing.

In a new file, requesting.cr, let’s write the code that will send the

request and display it in the console.

require "http/client"

require "json"

Chapter 3 Week 3: Crystal

42

def search_github(q : String)

 url = "https://api.github.com/search/repositories?q=#{q}"

 HTTP::Client.get(url) do |response|

 res = response.body_io.gets.to_s

 json = JSON.parse(res)

 json["items"][0]["url"]

 end

end

puts search_github("dog")

As you can appreciate, the syntax is really, really close to Ruby. Also,

note the optional typing of the parameter(s), q : String.

The HTTP client and the JSON parser are part of the core language,

and thus, no third-party library is required to run the snippet.

Once you have typed the code in the file, Visual Studio Code will, as

usual, propose that you find a plug-in in the Marketplace (Figure 3-4).

Figure 3-4. Looking for crystals in the Marketplace

Chapter 3 Week 3: Crystal

43

I have been having a great experience with the Crystal plug-in of

Gerardo Ortega (Figure 3-5), but, of course, feel free to try others.

You may remember from Chapter 2 that you also need a tasks.json

file, very similar to the one that was used for Nim, to run and execute code,

but this time for Crystal. The command to execute/run a file from the

command line uses the crystal command directly.

crystal run <file_name>

So, let’s write the equivalent command in Visual Studio Code’s task file.

{

 "version": "2.0.0",

 "tasks":

 [

 {

 "label": "cr",

 "command": "crystal",

 "args": [

 "run",

 "${file}"

],

Figure 3-5. Crystal plug-in

Chapter 3 Week 3: Crystal

44

 "options": {

 "cwd": "${workspaceRoot}"

 },

 "group": {

 "kind": "build",

 "isDefault": true

 }

 }

]

 }

Note actually, on macOs, you must modify the LIBRARY_PATH
variable, so that Crystal can compile the C code properly.

This is done by adding the following line to the Visual Studio Code user

settings.

 "terminal.integrated.env.osx": {

 "LIBRARY_PATH": "/Users/niko/projects/homebrew/lib"

}

The settings can be edited, as shown in Figure 3-6, Figure 3-7, and

Figure 3-8.

Chapter 3 Week 3: Crystal

45

Note that when you execute from the command line, you will also have

to set the same variable somewhere in your shell environment, using the

following:

export LIBRARY_PATH=/Users/niko/projects/homebrew/lib

Figure 3-6. Access the settings

Figure 3-7. Edit the json file

Figure 3-8. Add the line

Chapter 3 Week 3: Crystal

46

This is a unique workaround for macOS and can be safely ignored on

other environments.

You are all set now, so a familiar Command+Shift+B (Ctrl+Shift+B) will

execute the Crystal code.

The integrated console/terminal of Visual Studio Code will execute the

command and display the result of the GitHub query (Figure 3-9).

Now, to write the Telegram bot, we are going to require a third-party

library. For this to work, we will create a Crystal project, using the built-in

command.

 Creating a Crystal Project
To create a layout of files for a new Crystal project, you can use the init

subcommand.

SuperPinkicious:crystal niko$ crystal init app mybot

 create mybot/.gitignore

 create mybot/.editorconfig

 create mybot/LICENSE

 create mybot/README.md

 create mybot/.travis.yml

 create mybot/shard.yml

 create mybot/src/mybot.cr

 create mybot/spec/spec_helper.cr

 create mybot/spec/mybot_spec.cr

Initialized empty Git repository in /Users/niko/APRESS/crystal/

mybot/.git/

Figure 3-9. First Crystal command

Chapter 3 Week 3: Crystal

47

Now, if you open the folder in Visual Studio Code and re-create the

tasks.json to run Crystal code, you should be able to open and execute

the (almost empty) mybot.cr file (Figure 3-10).

That is probably not the most exciting program you’ve ever seen. Let’s

update the code of mybot.cr just a little bit, by adding a print statement at

the bottom of the file.

puts Mybot::VERSION

You can execute this directly from Visual Studio Code, of course

(Figure 3-11).

Figure 3-10. Empty—really, really empty—bot

Figure 3-11. Printing the version

Chapter 3 Week 3: Crystal

48

You can also execute from the command line, using the run

subcommand.

SuperPinkicious:mybot niko$ crystal run src/mybot.cr

0.1.0

The interesting part is that you can also compile the same code to a

binary file, using the build command.

crystal build src/mybot.cr

Then, directly invoking the compiled file will execute the same print

statement, but this time, as a binary file, without dependencies on the

Crystal build system.

./mybot

>0.1.0

Any code you compile with the build command gives you an

executable you can reuse at will. This includes the soon-to-arrive Telegram

bot.Sweet.

Now, the reason we really wanted to create a Crystal project in the

first place was to be able to add the bot API dependency to write Crystal

code. In the project folder, there was a file named shard.yml. This is the

metadata file responsible for handling the project, similar to pom.xml or

build.gradle in Java or the package.json file in JavaScript.

The content of the file shard.yml is shown following, with the added

telegram_bot dependency toward the end.

name: mybot

version: 0.1.0

authors:

 - Nicolas Modrzyk <hellonico at gmail.com>

targets:

 mybot:

 main: src/mybot.cr

Chapter 3 Week 3: Crystal

49

crystal: 0.26.1

license: MIT

dependencies:

 telegram_bot:

 github: hangyas/telegram_bot

The dependency being defined in the shard.yml file of the project, you

can now retrieve that dependency, using the package manager for Crystal,

the shards command.

SuperPinkicious:mybot niko$ shards

Fetching https://github.com/hangyas/telegram_bot.git

Installing telegram_bot (0.1.0 at HEAD)

You will notice a lock file has been created, containing the

dependency, and the hash of the commit that was referenced for each

dependency.

version: 1.0

shards:

 telegram_bot:

 github: hangyas/telegram_bot

 commit: 722bab24876d13a661f513b09c4569916f7a81c1

That’s pretty much all you require to write your Crystal-based

Telegram bot, so let’s see all this in action, with a simple echo bot.

Chapter 3 Week 3: Crystal

50

 Echo Bot
With all that you have seen so far in this chapter and the previous one, the

upcoming code should not be too complicated to read. We start by setting

up the name and secret Telegram API key of the bot in the constructor,

the initialize function. We then move on to implement the handle

(message) function, which gets a message as a parameter and replies using

the text that was read in the incoming message. Last, we create a new bot,

and define its connection as polling.

require "telegram_bot"

class EchoBot < TelegramBot::Bot

 def initialize

 super("MyBot", File.read("secret.key"))

 end

 def handle(message : TelegramBot::Message)

 if text = message.text

 reply message, text

 end

 end

end

EchoBot.new.polling

Then we execute the bot, by using the Command(Ctrl)+Shift+B key

shortcut again (Figure 3-12).

Chapter 3 Week 3: Crystal

51

Back to chatting to this new bot. You can confirm that a nice parrot has

been found, and whatever you say will be repeated (Figure 3-13).

Figure 3-12. Starting the bot

Chapter 3 Week 3: Crystal

52

That was an easy bot. Let’s move on to something more exciting, with

the command bot.

 Command Bot
Telegram understands the notion of commands. To put it simply, a

command is a message to a bot. We know, however, that this accepts a

bunch of parameters, and this helps us to write code that is easier to read,

without the need for complex parsing of the message.

When it’s an incoming message, the bot will try to find an

implemented command for it first. If none is found, it will use the standard

handle function.

Figure 3-13. echo, echo, hello, hello

Chapter 3 Week 3: Crystal

53

Our first bot will implement a hello command, which takes no

parameter, and just reply to the message, as the handle function would

have done.

The code is the following:

require "telegram_bot"

class CommandOneBot < TelegramBot::Bot

 include TelegramBot::CmdHandler

 def initialize

 super("MyBot", File.read("secret.key"))

 cmd "hello" do |msg|

 send_message msg.chat.id, "world"

 end

 end

end

my_bot = CommandOneBot.new

my_bot.polling

The only difference with the code you have seen up to now is the cmd

block. The block takes a string for identifier, and its simplest form, the

message, as parameter of the block. Sending a command from the chat

simply requires a prefix and the name of the command sent to the bot

(Figure 3-14).

Chapter 3 Week 3: Crystal

54

Now, on to our second bot. The second bot is going to use the

parameters passed to the command to send an image as a reply.

This time, instead of using send_message, we’ll use send_photo, to

send an image back to the chat, depending on the parameter.

require "telegram_bot"

class CommandOneBot < TelegramBot::Bot

 include TelegramBot::CmdHandler

 def initialize

 super("MyBot", File.read("secret.key"))

 cmd "animals" do |msg, params|

 send_photo msg.chat.id, File.new("#{params[0]}.jpg")

 end

 end

end

my_bot = CommandOneBot.new

my_bot.polling

Now, provided you have a few images in the project folder to match the

animals’ names, the /animals command will fetch the image as a file and

send it back to the chat room (Figure 3-15).

Figure 3-14. hello command

Chapter 3 Week 3: Crystal

55

Now, you can try a few different commands, using other bot API

functionalities.

Most of the Telegram bot APIs are implemented in Crystal’s telegram_

bot, and following is a list of the different functions that can be used to

send types of messages and media to the chat.

• send_message

• send_photo

Figure 3-15. /animals are cute!

Chapter 3 Week 3: Crystal

56

• send_audio

• send_document

• send_sticker

• send_video

• send_voice

• send_video_note

• send_media_group

• send_location

• send_venue

• send_contact

• send_chat_action

• send_game

• send_invoice

But now you’ll have to wait until next week, before you can see inline

messages in action.

Chapter 3 Week 3: Crystal

57© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4_4

CHAPTER 4

Week 4: Rust

No great movement designed to change the world can bear to
be laughed at or belittled. Mockery is a rust that corrodes all it
touches.

—Milan Kundera

If you have not heard about the Rust programming language yet, I think

you should. Rust won first place for “most-loved programming language”

in the Stack Overflow Developer Survey in 2016, 2017, and 2018.

As noted on the Rust web site (www.rust-lang.org), the language has

a long list of advantages, such as the following:

• Zero-cost abstractions

• Move semantics

• Guaranteed memory safety

• Threads without data races

• Trait-based generics

• Pattern matching

• Type inference

• Minimal runtime

• Efficient C bindings

https://en.wikipedia.org/wiki/Stack_Overflow
http://www.rust-lang.org

58

Rust is sponsored by Mozilla, but more than just being backed

by a single company, it is also coded by a very supportive and active

community. Rust is very much concerned with robust threaded

environments and related memory safety concerns. These are especially

suited to solving problems related to developing a concurrent end point for

bots, as this chapter will explore.

 Rust Installation and First Steps
Rust is maintained and managed on your local machine using rustup.

Yes, this is an environment manager specific to Rust. It is similar to Ruby

Version Manager (RVM) but fully part of the Rust tool chain and not a

third-party team, so it feels very integrated.

 Installation
The following two links are the entry points to get rustup and, thus, Rust

installed on your machine:

www.rust-lang.org/en-US/install.html

www.rust-lang.org/en-US/other-installers.html

Depending on whether you are on macOS/Linux (Figure 4-1) or

Windows (Figure 4-2), you will get a different page, but the installation

process is quite similar.

Chapter 4 Week 4: rust

59

On Windows, you also require some extra tooling, such as the

Microsoft C++ build tools (Figure 4-3).

Figure 4-1. Installation box on OSX/Linux

Figure 4-2. Installation box on Windows

Chapter 4 Week 4: rust

60

As indicated in the console output, the Microsoft build tools can

be found on the following web site: https://aka.ms/buildtools. You

can download and install (Figure 4-4 and Figure 4-5) by following the

download link.

Figure 4-3. C++ tooling required on Windows

Figure 4-4. Build tools for Visual Studio

Chapter 4 Week 4: rust

https://aka.ms/buildtools

61

Rust has a fast-paced six-week update cycle, so by the time you read

this, the version will be different, but at the time of writing, this is the Rust

current version, obtained with the rustupshow command:

SuperPinkicious:rust-01 niko$ rustup show

Default host: x86_64-apple-darwin

stable-x86_64-apple-darwin (default)

rustc 1.28.0 (9634041f0 2018-07-30)

Now let’s see how to compile your first Rust program.

Figure 4-5. Installing the build tools

Chapter 4 Week 4: rust

62

 First Rust or Two
The first Rust program will print a simple Hello World message. This isn’t

complicated, but it will help you get used to the Rust compilation and

execution tool chain.

 Hello Rust
This, our first Rust program,

• Declares a main function, using fn

• Prints to the standard output with the println!

function (note the exclamation point)

• Ends statements with a semicolon (;)

This gives you the following simple and short code snippet:

fn main() {

 println!("Hello World!");

}

You can save the snippet in a file named first.rs, for example.

As a side note, if you type the preceding snippet in Visual Studio Code,

the editor will recognize the rs file extension and will ask you to install a

related plug-in, to handle rs files (Figure 4-6).

Chapter 4 Week 4: rust

63

Rust being a compiled language, you must first handle a compilation

step before execution of the code. This is done using the rustc command,

which is installed when you install rustup. The command is as follows:

rustc first.rs

In the same folder in which you run the command, you will notice that

you now have a new binary file, without the .rs file extension. Executing

the binary is just a matter of typing the command name.

$./first

Hello World!

This works both for Windows and macOS/Linux, but, of course, you

cannot bring one and make it run onto the other as is. You’ll have to

compile things again. While rustup can help you cross-compile for other

platforms, that is beyond the scope of this book.

Figure 4-6. Visual Studio Code Rust plug-in

Chapter 4 Week 4: rust

64

For other ramp-up examples, make sure to review the excellent Rust

by Example web site (https://doc.rust-lang.org/rust-by-example/

hello.html), which has all you need to get started with the language’s

constructs.

Going forward, let’s review how good old Fibonacci numbers can be

expressively generated with Rust.

 Fibonacci
Rust has very convenient pattern-matching branching, which can be

written with the appropriately named match. We will use the construct to

write the Fibonacci generators.

In a new file, fibo.rs, we declare the fibonacci function, including

the parameter types for input and output—here, 64-bit integers for both

inputs and outputs—to avoid overflows.

Also, note, in the following code snippet, how you use _ to match any

other value for n.

fn fibonacci(n: u64) -> u64 {

 match n {

 0 => 0,

 1 => 1,

 _ => fibonacci(n - 1) + fibonacci(n - 2)

 }

}

Let’s put this code with a main function, so that we can call the

program with an input from the command line.

use std::env;

fn main() {

 if let Some(arg1) = env::args().nth(1) {

 let myint = arg1.parse().unwrap();

Chapter 4 Week 4: rust

https://doc.rust-lang.org/rust-by-example/hello.html
https://doc.rust-lang.org/rust-by-example/hello.html

65

 println!("{}", fibonacci(myint));

 } else {

 println!("missing input")

 }

}

In the preceding code snippet, note how explicit null checks are

avoided by using Some and how the string parameter is turned into an

integer, myint, using parse and unwrap.

unwrap is used to turn the Some(something_inside) to something_

inside. Here, we have the aif/else block to confirm whether we have a

value as an argument.

If you are not sure whether you have a value after Sum, you can also use

unwrap_or, to give a default value.

Compiling gives you an executable, as in the previous Hello World

example.

rustc fibo.rs

Running shows that the Fibonacci generator program works as

expected.

$./fibo 10

55

$./fibo 15

610

$./fibo 30

832040

While Rust can be enjoyed on its own, you usually resort to cargo,

the Rust build tool, to create a project structure and manage project

dependencies.

Chapter 4 Week 4: rust

66

 Ride the cargo
cargo is a command-line tool that is also installed and set up by rustup.

cargo is responsible for creating new projects, managing the project

structure, adding dependencies, generating binaries, running code, testing

code, etc.

A list of the most important cargo subcommands is shown following:

Some common cargo commands are (see all commands with --list):

 build Compile the current project

 clean Remove the target directory

 doc Build this project's and its dependencies'

documentation

 new Create a new cargo project

 init Create a new cargo project in an existing

directory

 run Build and execute src/main.rs

 test Run the tests

 bench Run the benchmarks

 update Update dependencies listed in Cargo.lock

 search Search registry for crates

 publish Package and upload this project to the registry

 install Install a Rust binary

 uninstall Uninstall a Rust binary

As a first cargo test, let’s write a program that displays Coordinated

Universal Time (UTC) and local times, using a third-party library named

chrono.

 We Have Time
Obviously, before we add a library to a project, we first require a project.

This is done via the new subcommand of cargo.

Chapter 4 Week 4: rust

67

$ cargo new we-have-time

Created binary (application) `we-have-time` project

The type of project generated by cargo is a binary application by

default, but you can also prepare a library without a runnable entry point.

Once you have the project generated, you can see a very basic project

structure and a few files and folders.

$ tree -L 2

.

├── Cargo.toml
└── src
 └── main.rs

In the preceding, Cargo.toml is the project metadata, and main.rs is

the same kind of Rust source file we have seen up to now. Cargo.toml is

the location to add the dependencies.

$ cat Cargo.toml

[package]

name = "we-have-time"

version = "0.1.0"

authors = ["Nicolas Modrzyk <myemail@gmail.com>"]

[dependencies]

Now as we would like to play with dates and time zones, let’s use cargo

again, to search for a time library.

$ cargo search time

 Updating registry `https://github.com/rust-lang/crates.

io- index`

time = "0.1.40" # Utilities for working with time-

related functions in Rust.

Chapter 4 Week 4: rust

68

exonum-time = "0.9.2" # The time oracle service for

Exonum.

chrono = "0.4.6" # Date and time library for Rust

faster_path = "0.0.2" # Alternative to Pathname

specs_time = "0.5.1" # time resource for specs

... and 1738 crates more (use --limit N to see more)

chrono makes it easy to display dates in different time zones, so we’ll

just use that library. To make chrono available to your project, you add its

name and version to the Cargo.toml file, in the dependencies section.

This gives

[dependencies]

chrono = "0.4.6"

After adding a library, or to validate the code written in your project,

you can usually make use of cargo check. This also comes in handy after

adding a dependency, to make sure it has been downloaded and installed

properly on your local machine.

$ cargo check

 Compiling num-traits v0.2.5

 Compiling num-integer v0.1.39

 Checking libc v0.2.43

 Checking time v0.1.40

 Checking chrono v0.4.6

 Checking we-have-time v0.1.0 (file:///Users/niko/Dropbox/

BOOKS2/APRESS/04-rust/we-have-time)

 Finished dev [unoptimized + debuginfo] target(s) in 7.69s

Now let’s move on to coding and update the Rust code, located in

main.rs, to make use of the chrono library.

Chapter 4 Week 4: rust

69

 1. First, we must tell the program that we are using an

external library, which Rust calls crate. This is done

using the extern crate chrono notation. This is

done only once in the lifetime of a program.

 2. Next, we must import the Rust symbols in the

current file/namespace, and this is done via use.

 3. let defines immutable variables, each with its own

type.

 4. And, as before, println! prints this on the standard

output.

This gives the following code snippet (again in the main.rs file):

extern crate chrono;

use chrono::prelude::*;

fn main() {

 let utc: DateTime<Utc> = Utc::now();

 println!("{}", utc);

 let local: DateTime<Local> = Local::now();

 println!("{}", local);

}

Because we are using cargo to manage our project, there are now a few

shortcuts we can take advantage of to play with the run, such as running

code directly, by using cargorun.

$ cargo run

 Compiling num-traits v0.2.5

 Compiling num-integer v0.1.39

 Compiling libc v0.2.43

 Compiling time v0.1.40

 Compiling chrono v0.4.6

Chapter 4 Week 4: rust

70

 Compiling we-have-time v0.1.0 (file://we-have-time)

 Finished dev [unoptimized + debuginfo] target(s) in 9.11s

 Running `target/debug/we-have-time`

2018-09-12 05:41:56.872180 UTC

2018-09-12 14:41:56.872309 +09:00

See the two dates displayed at the end of the compilation steps? These

are the standard output of the program.

run is the de facto subcommand for writing and running Rust

programs quickly. To create the final version, cargo has the built-in

subtask build. build is responsible for creating a stand-alone binary file.

$ cargo build

Finished dev [unoptimized + debuginfo] target(s) in 0.16s

Note, too, that cargo supports incremental compilation and will only

recompile code that was changed since the last execution.

Running the binary gives the same output—everything is working so

well. This is actually refreshing.

$./target/debug/we-have-time

2018-09-12 06:01:54.100082 UTC

2018-09-12 15:01:54.100176 +09:00

You will also see later how to generate a release version of your

program, using the same cargo build command, but with extra flags.

For now, let’s sidestep and see how we can declare multiple targets

within the same cargo project, meaning different entry points for execution.

 Multiple Cargo Targets
You may have noticed that each of the commands run is taking the main.rs

file as the default input. For some time, I have been looking for a way to

run different files, and you actually cannot pass a file directly to cargo. In

Chapter 4 Week 4: rust

71

the Cargo.toml file, you must define what is known as a binary target. This

is done by defining a block in the .toml file, using [[bin]].

At a minimum, the block takes a name and a path, so let’s define two

binary targets, one with the existing main.rs file and another with a new

Rust source code file: main2.rs.

[[bin]]

name = "main1"

path = "src/main.rs"

[[bin]]

name = "main2"

path = "src/main2.rs"

For the purpose of multiple targets, we will keep the main2.rs source

code ultra-minimal here, only outputting the current date in the UTC time

zone, but, of course, it could be as complicated as you can code it.

extern crate chrono;

use chrono::prelude::*;

fn main() {

 let utc: DateTime<Utc> = Utc::now();

 println!("{}", utc);

}

Now, when running cargo commands, you can specify which binary

target to run by specifying the --bin flag to cargo, as shown twice in the

following code, once with target binary main1

$ cargo run --bin main1

 Finished dev [unoptimized + debuginfo] target(s) in 0.16s

 Running `target/debug/main1`

Chapter 4 Week 4: rust

72

2018-09-12 06:26:11.634208 UTC

2018-09-12 15:26:11.634336 +09:00

and a second time with target binary main2

$ cargo run --bin main2

 Finished dev [unoptimized + debuginfo] target(s) in 0.05s

 Running `target/debug/main2`

2018-09-12 06:26:13.387135 UTC

As a bonus, here is the tasks.json you can use within Virtual Studio

Code to run any of the two binary targets from visual code.

{

 "version": "2.0.0",

 "tasks":

 [

 {

 "label": "main1",

 "command": "cargo",

 "args": [

 "run",

 "--bin",

 "main1"

],

 "options": {

 "cwd": "${workspaceRoot}"

 },

 "group": {

 "kind": "build",

 "isDefault": true

 }

 },

Chapter 4 Week 4: rust

73

 {

 "label": "main2",

 "command": "cargo",

 "args": [

 "run",

 "--bin",

 "main2"

],

 "options": {

 "cwd": "${workspaceRoot}"

 },

 "group": {

 "kind": "build",

 "isDefault": true

 }

 }

]

 }

In addition, by using Command(Ctrl)+Shift+B, you can now select

which cargo binary target to run (Figure 4-7).

Now you have all you need to start enjoying writing bots in Rust. So,

let’s bot.

Figure 4-7. Binary target from Visual Studio Code

Chapter 4 Week 4: rust

74

 Rust Bot Number 1: Reply to Me
To create bots, we’ll again make use of a Telegram wrapper. To find one,

remember how you used cargo to search for a dependency: the cargo

search command.

$ cargo search telegram

 Updating registry `https://github.com/rust-lang/crates.

io- index`

telegram = "0.2.0" # Unofficial Telegram API

Library

telegram-bot = "0.6.1" # A library for creating

Telegram bots

telegram-bot-raw = "0.6.1" # Telegram Bot API types

teleborg = "0.1.32" # A Telegram bot API.

... and 35 crates more (use --limit N to see more)

We’ll go for the telegram-bot version "0.6.1". So, having created a

new project with cargo, we will update Cargo.toml accordingly.

[dependencies]

telegram-bot = "0.6"

tokio-core = "0.1.17"

futures = "0.1.23"

Ah, yes, you’ll also have to spawn threads (futures) and have a cool

messaging system (tokio-core), so we add those two in the dependencies

section too.

In the same Cargo.toml file, we will also define a first binary target.

[[bin]]

name = "bot1"

path = "src/bot1.rs"

Chapter 4 Week 4: rust

75

I will let you define more binary targets (and update the tasks.json),

as you delve further into this chapter.

The core purpose of the bot is, as usual, to get an update from the

Telegram servers, by polling, and handle the message associated with

the update. Here, we retrieve the text of a pure text message, as well as

references to the first name of the person who wrote the message. match,

which you have seen with Fibonacci, is again used to match on the

message type—here, MessageKind::Text.

Finally, once we have all the elements, we must send a reply (first_

name, test data), then call text_reply inside a newly spawned thread—

here, in fire-and-forget mode.

if let UpdateKind::Message(message) = update.kind {

 match message.kind {

 MessageKind::Text {ref data, ..} => {

 api.spawn(message.text_reply(

 format!("Hi, {}! You just wrote

'{}'",

&message.from.first_name, data)

));

 },

 _ => {println!("which message?")}

 }

}

In case the type of the message is not a text message, we just ignore

it altogether, with the default section _ of the match block. The rest of

the code involves some gymnastics, to get the bot to be in a threaded

environment with message passing, as described in more detail on the

telegram_botgithub page.

Chapter 4 Week 4: rust

76

This is not that important to write the bot, so we’ll just assume we have

to write it. Finally, the full listing of bot1.rs is shown following:

extern crate futures;

extern crate telegram_bot;

extern crate tokio_core;

use std::env;

use futures::Stream;

use tokio_core::reactor::Core;

use telegram_bot::*;

fn main() {

 let mut core = Core::new().unwrap();

 let token = env::var("TELEGRAM_BOT_TOKEN").unwrap();

 let api = Api::configure(token).build(core.handle()).unwrap();

 let future = api.stream().for_each(|update| {

 if let UpdateKind::Message(message) = update.kind {

 if let MessageKind::Text {ref data, ..} = message.

kind {

 println!("<{}>: {}", &message.from.first_name,

data);

 api.spawn(message.text_reply(

 format!("Hi, {}! You just wrote '{}'",

 &message.from.first_name, data)

));

 }

 }

Chapter 4 Week 4: rust

77

 Ok(())

 });

 core.run(future).unwrap();

}

Now you can start this bot from the command line or from Visual

Studio Code (Figure 4-8).

And confirm the usual output from a Telegram chat, as shown in

Figure 4-9.

 Rust Bot Number 2: Where Is Tokyo?
It’s always nice to have a bot that tells you where something is or where to

head. The next bot will send you a live location, with a time-out directly in

the chat.

Figure 4-9. Your first Rust bot

Figure 4-8. Starting the Rust bot from Visual Studio Code

Chapter 4 Week 4: rust

78

While the main function is almost identical to that in the previous

example, in terms of preparing the bot and setting up the channeling, the

meat of the following exercise, is actually to send the live location.

This is done using the location_reply function on the Rust object

message. We can also specify directly here how long the location live

stream will run.

In the following code, we stream the location of Tokyo (lat 35.652832°

N, long 139.839478° E) for 60 seconds.

Again, most of this Rust Telegram API is based on preparing futures,

an object from the futures library ready to be executed in a separate

thread and spawned using tokio handles.

The core bot handle and message answers are done this way.

Following is the code snippet for the location bot.

extern crate futures;

extern crate telegram_bot;

extern crate tokio_core;

use std::env;

use futures::{Future, Stream};

use tokio_core::reactor::{Handle, Core};

use telegram_bot::*;

fn where_is_tokyo(api: Api, message: Message, handle: Handle) {

 let api_future = || Ok(api.clone());

 let future = api.send(message.location_reply(35.652832,

139.839478).live_period(60)).join(api_future());

 handle.spawn(future.then(|_| Ok(())))

}

fn main() {

 let token = env::var("TELEGRAM_BOT_TOKEN").unwrap();

 let mut core = Core::new().unwrap();

Chapter 4 Week 4: rust

79

 let handle = core.handle();

 let api = Api::configure(token).build(core.handle()).unwrap();

 let future = api.stream().for_each(|update| {

 if let UpdateKind::Message(message) = update.kind {

where_is_tokyo(api.clone(), message.clone(), handle.clone())

 }

 Ok(())

 });

 core.run(future).unwrap();

}

With the bot started from Visual Studio Code again (task setup is left to

the reader), we can see the compilation steps succeeding and running the

compiled target directly (Figure 4-10).

I did not specify any filtering or specific message handling, so sending

any message to the bot will do. Here, a brief “hello” message notifies the

bot that we want to know where it is (Figure 4-11).

Figure 4-10. Starting location bot

Chapter 4 Week 4: rust

80

Notice, too, in the figure how the clock-looking timer is slowly

decreasing, depending on the amount of time we told the live location to

run for. A fun exercise using the first version of this bot is actually to edit

the location along the way.

Now, let’s say we want to send a location in central Tokyo first, and then

slowly move east across Japan. We’ll use a bunch of the same patterns to run

a call asynchronously, join on the newly spawn thread with a time- out, make

sure the call is finished, join again, and move on to the next location update.

This is handled as follows:

let future = api.send(message.location_reply(35.652832,

139.839478).live_period(60))

 .join(api_future()).join(timeout(10))

 .and_then(|((message, api), _)| api.send(message.edit_

live_location(35.652832, 138.839478)))

 .join(api_future()).join(timeout(10))

 .and_then(|((message, api), _)| api.send(message.edit_

live_location(35.652832, 137.839478)))

 .join(api_future()).join(timeout(10))

 .and_then(|((message, api), _)| api.send(message.edit_

live_location(35.652832, 136.839478)));

Figure 4-11. Live from Tokyo

Chapter 4 Week 4: rust

81

Figure 4-13. East of Tokyo

Figure 4-12. Tokyo

On the Telegram desktop client, it appeared that the Telegram map

was not updating in real time very well, but on the native Android and iOS

apps, location was updated in real time. The updates on an Android-based

handset are shown in Figures 4-12 and 4-13.

Chapter 4 Week 4: rust

82

 Rust Bot Number 3: Chained Reaction
In the same vein, you could also chain messages for your chat flow, as

needed. This new multiple_messages function presents multiple ways to

send messages and chain them to the chat, one after the other.

Here, we’ll employ similar constructs, with some changes to how the

text is parsed, or not, before sending the message. text_reply can be

substituted with message.from.text, to avoid this reply-looking message

sent in many examples.

fn multiple_messages(api: Api, message: Message, handle:

&Handle) {

 let simple =

 api.send(message.text_reply("Simple message"));

 let markdown =

 api.send(message.text_reply("- Markdown message \n-

line 2\n- line 3").parse_mode(ParseMode::Markdown));

 let html =

 api.send(message.text_reply("Bold HTML message

").parse_mode(ParseMode::Html));

 let private =

 api.send(message.from.text("Private text"));

 let private_html =

 api.send(message.from.text(format!("Private text

")).parse_mode(ParseMode::Html));

 let preview =

 api.send(message.text_reply("Message with preview

https://telegram.org"));

 handle.spawn({

 let future = simple

 .and_then(|_| markdown)

Chapter 4 Week 4: rust

83

 .and_then(|_| private)

 .and_then(|_| private_html)

 .and_then(|_| preview)

 .and_then(|_| html);

 future.map_err(|_| ()).map(|_| ())

 })

}

Now, finally, when chatting with this new Telegram bot, you can

observe all the messages popping up, queued one by one in Figure 4-14.

Figure 4-14. All different types of send requests from Rust

Chapter 4 Week 4: rust

84

Once you have fully finished developing your Rust bot, do not forget to

generate a binary for it.

 Compiling for Release
Compiling for release with cargo is easier than it seems. It is done simply

by passing the --release flag to the cargo build command. This will have

the side effect of rebuilding all the dependencies in release mode as well.

$ cargo build --bin bot2 --release

In the following, you can see how this build command in release mode

is followed by a bunch of compiling lines:

Compiling nodrop v0.1.12

 Compiling cfg-if v0.1.4

 Compiling libc v0.2.42

 Compiling byteorder v1.2.3

 Compiling scopeguard v0.3.3

 Compiling memoffset v0.2.1

 Compiling lazy_static v1.0.2

 Compiling lazycell v0.6.0

 Compiling slab v0.4.0

 Compiling futures v0.1.23

 ...

The optimized compiled code can be run in the same way as its debug

counterpart.

$./target/release/bot2

You should also appreciate the difference in size between the debug

and release versions of the program. The release version is at least one-

third the size of the debug one.

Chapter 4 Week 4: rust

85© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4_5

CHAPTER 5

Week 5: D

“As for difficulties,” replied Ferguson, in a serious tone, “they
were made to be overcome.”

—Jules Verne

Five Weeks in a Balloon

To be honest, I haven’t yet used the D language for heavyweight

projects, but after a few small coding challenges, I have been very

impressed by D’s sheer speed of execution.

D is a statically typed language, which very much resembles C++ and

Java, with some additional conveniences. The learning curve would not be

that steep for those experienced in either of those two languages.

On the list quoted on the D language web site (https://tour.

dlang.org/), the following features are highlighted:

• High-level constructs for great modeling power

• High-performance, compiled language

• Static typing

• Direct interface to the operating system APIs and

hardware

• Blazingly fast compile times

• Memory-safe subset (SafeD)

https://www.goodreads.com/work/quotes/2308685
https://tour.dlang.org/
https://tour.dlang.org/

86

• Maintainable, easy-to-understand code

• Gradual learning curve (C-like syntax, similar to Java

and others)

• Compatible with the C application binary interface

• Limited compatibility with the C++ application binary

interface

• Multi-paradigm (imperative, structured, object-

oriented, generic, functional programming purity, and

even assembly)

• Built-in error detection (contracts, unittests)

D also comes with a highly multi-threaded web framework named

vibe.d, which I won’t cover in detail here, but you should have a look at

the simplicity of the servers built with it.

Before I move on to bot programming, we’ll look over some basic D

constructs and code examples, including, of course, some Fibonaccis.

In addition, once you have mastered some D coding and project

dependencies management, we will be moving to the core of every chapter

of this book, Telegram bot coding.

 Installation and First D Steps
The D language comes with all sorts of packages and installers, which are

available from its web site at https://dlang.org.html (Figure 5-1).

Chapter 5 Week 5: D

https://dlang.org.html

87

Once you have finished downloading and installing, you should have

two main binaries available to you, namely:

• dmd: The reference D compiler

• dub: The build tool that goes along with dmd

Our first D program is going to exhibit some courtesy, by saying hello,

as every first program should.

Import statements are quite intuitively done, using import, and the

main entry point of the program is defined via the main() function. Note

that there is no need to define an array of string parameters to this main

function. The return value of the main function is also optional.

Printing to the standard output is done with writeln, which is located

in the std.stdio package, which we will import beforehand.

You can save the following sample code in a hello.d file, with .d being

the default extension for D source code.

import std.stdio;

void main() {

 writeln("hello D!");

}

Figure 5-1. D language download page, with samples

Chapter 5 Week 5: D

88

D source code is compiled with the dmd command. In its two simplest

forms, the command can be run as either one of the following:

dmd <source_file>

dmd -run <source_file>

The first form will generate a binary file of the same name as the

entry source file. You can then execute the binary file directly on the host

machine.

The second form does not generate intermediate files and does a

compilation, followed by an execution cycle, in one go.

You would usually use the first form to prepare your code for a release.

The second form is the one that is preferred when compiling and running

code from the command line or Visual Studio Code.

For now, let’s get the code to compile and run at the same time, using

the second form, with the -run flag.

$ dmd -run hello.d

hello D!

The hello message is displayed on the standard output, and our

program is now courteous.

While we are it, let’s set up Visual Studio Code as well, by installing the

D language plug-in, shown in Figure 5-2.

Chapter 5 Week 5: D

89

Along with the plug-in, you need a tasks.json file, to run the build

command from inside the editor. As in the preceding code, we will be

calling the dmd compiler with the -run flag, so that the code is executed

directly.

{

 "version": "2.0.0",

 "tasks":

 [

 {

 "label": "dmd",

 "command": "dmd",

 "args": [

 "-run",

 "${file}"

],

Figure 5-2. Plug-in for D language

Chapter 5 Week 5: D

90

 "options": {

 "cwd": "${workspaceRoot}"

 },

 "group": {

 "kind": "build",

 "isDefault": true

 }

 }

]

 }

Everything is in place for some happy coding. One more

Command(Ctrl)+Shift+B to test our build setup from the editor (Figure 5- 3),

and we’re good to go.

Figure 5-3. Running D source files directly from Visual Studio Code

Chapter 5 Week 5: D

91

 Some Bits of D on Concurrency
Coming from the annoyance of Java with threading, you’ll be thrilled by

the concurrency features of D. Threads in D can be created and spawned,
just as with regular D functions.

 Simple Threading
The namespace responsible for concurrency is appropriately named

std.concurrency, and we will use it for this first threaded test.

To spawn a thread from a function, we will simply use spawn, which

takes a reference to a function as a parameter. This is done using an

ampersand (&) in front of any standard D function. The rest of the code

snippet is quite easy to follow, so here is the program with threads:

import std.concurrency : spawn, thisTid;

import std.stdio : writeln;

void worker()

{

 writeln("Thread ", thisTid);

}

void main()

{

 int TOTAL_WORKERS=5;

 for (int i = 0; i < TOTAL_WORKERS; ++i) {

 spawn(&worker);

 }

}

Chapter 5 Week 5: D

92

Executing from Visual Studio Code gives an output similar to the one

following, in which each thread simply prints its own id.

> Executing task: dmd -run APRESS/05-d/firststeps/threads1.d <

Thread Tid(109655000)

Thread Tid(109655200)

Thread Tid(109655300)

Thread Tid(109655400)

Thread Tid(109655500)

From this short example, there are a few things worth noting.

• Every thread has a separate and uniquely assigned id,

labeled thisTid.

• The function passed to spawn is actually a reference to

the function, using &worker.

Next, let’s see how to keep an internal state in each thread.

 Thread with a State
In this second example, we define a static field inside the function that

will be spawned for the thread. The defined threadState integer is

stored locally to the thread as ThreadLocal. Also note that the integer

threadState is created only once. Every subsequent time that the thread is

calling itself via worker(), the thread state is not reinitialized.

Here is the code snippet with a local state for a thread:

import std.concurrency : spawn, thisTid;

import std.stdio : writeln;

void worker()

{

 static int threadState = 0;

Chapter 5 Week 5: D

93

 writeln("Thread ", thisTid,": My state = ", threadState++);

 if (threadState < 5) worker();

}

void main()

{

 for (int i = 0; i < 5; ++i) {

 spawn(&worker);

 }

}

And here is the slightly shortened output:

> Executing task: dmd -run APRESS/05-d/firststeps/threads1.d <

Thread Tid(109a2d000): My state = 0

Thread Tid(109a2d000): My state = 1

...

Thread Tid(109a2d300): My state = 3

Thread Tid(109a2d500): My state = 2

Thread Tid(109a2d400): My state = 3

Thread Tid(109a2d300): My state = 4

Thread Tid(109a2d500): My state = 3

Thread Tid(109a2d400): My state = 4

Thread Tid(109a2d500): My state = 4

You can see that each thread has a separate state, and that state is

incremented each time the thread is looping, by calling workers again.

Now, let’s see how we can share a state between all those threads and

perform some safe multi-threaded sharing of data.

Chapter 5 Week 5: D

94

 Shared State
The last example in our thread subsection for the D language closes in

shared state, with a common counter that is increased by each thread

separately. To create such a shared piece of data, the D language requires

that you specifically mark the data as shared.

Once this is done, you can use operations from the core.atomic

namespace, to safely update the value of that shared piece of data. The

atomic operation we will use is a combination of atomicOp and +=, written

as follows:

atomicOp!"+="

This creates a thread-safe version of the function +=.

Let’s see how this is actually used, in the following snippet.

import std.concurrency : spawn, thisTid;

import std.stdio : writeln;

import core.atomic : atomicOp;

shared int flag = 0;

void worker()

{

 atomicOp!"+="(flag, 1);

 writeln("Thread ", thisTid,":global>",flag);

}

void main()

{

 for (int i = 0; i < 20; ++i) {

 spawn(&worker);

 }

}

Chapter 5 Week 5: D

95

atomicOp!"+=" receives two parameters, the shared data variable to

update and the parameter to the atomic function += just created.

When you run the preceding program, the output should be something

like the following. Note the safeness of the threaded code.

> Executing task: dmd -run APRESS/05-d/firststeps/threads3.d <

Thread Tid(10e05c000):global>1

Thread Tid(10e05c200):global>2

Thread Tid(10e05c300):global>3

Thread Tid(10e05c400):global>4

Thread Tid(10e05c500):global>5

Obviously, the D language has full-featured threading capabilities not

exposed in the simple examples in this chapter, but they should be easy

enough, so that you can perform multi-threaded tasks with them.

Now let’s sidestep threaded code and return to some simpler single-

threaded examples.

 A Few More Examples of D
First, let’s go back to school for the basics, with examples of sorting.

 Sort Me Tender, Sort Me True
Sorting arrays in D is just a matter of using the sort function from the std.

algorithm namespace. Also, in the following snippet, note that the first use

of writefln, which stands for “write format,” allows you to turn various

data structures and types into strings for printing out.

import std.stdio;

import std.algorithm;

Chapter 5 Week 5: D

96

void main()

{

 int[] arr1 = [4, 9, 7];

 writefln("%s\n", sort(arr1));

}

Executing the sorting preceding code surprisingly (!) gives you a sorted

array.

> Executing task: dmd -run APRESS/05-d/firststeps/simplesort0.d

<

[4, 7, 9]

Sorting in reverse order can be done by passing the sorting function

directly as a parameter to sort.

import std.stdio;

import std.algorithm;

void main()

{

 int[] arr1 = [4, 9, 7];

 writefln("%s\n", arr1.sort!("a > b"));

}

After execution, the reversed array is displayed in the output.

> Executing task: dmd -run APRESS/05-d/firststeps/simplesort0.d

<

[9, 7, 4]

I also stumbled on this great example, which must definitely be shared

when presenting D to a crowd. The following code uses something named

the chain function from the std.range namespace to sort a series of three

different arrays, each time reusing the memory allocated for sorting.

Chapter 5 Week 5: D

97

import std.stdio;

import std.algorithm;

import std.range;

void main()

{

 int[] arr1 = [4, 9, 7];

 int[] arr2 = [5, 2, 1, 10];

 int[] arr3 = [6, 8, 3];

 sort(chain(arr1, arr2, arr3));

 writefln("%s\n%s\n%s\n", arr1, arr2, arr3);

}

After execution, while the output is as expected, the memory

consumption should be quite considerably less when sorting big arrays.

> Executing task: dmd -run APRESS/05-d/firststeps/simplesort1.d

<

[1, 2, 3]

[4, 5, 6, 7]

[8, 9, 10]

When sorting arr1, arr2, and arr3, a program can sort in place, which

takes less memory, but is slower, or use a temporary memory space. Using

chain, you can tell the compiler to reuse that temporary memory to sort

subsequent arrays, thus offering the advantage of both memory usage and

CPU speed.

Last, before moving on to bot programming, let’s see examples of

implementing Fibonacci in D.

Chapter 5 Week 5: D

98

 My Love for Fibonacci
In the never-ending search for the most effective Fibonacci code snippet,

we may have something of a showstopper with the D language. This first

snippet is the usual iterative implementation, in which the algorithm loops

through the different value and iteratively computes the elements of the

Fibonacci sequence.

auto fib(const int n)

{

 import std.bigint;

 if (n == 0)

 return BigInt(0);

 if (n == 1)

 return BigInt(1);

 BigInt next;

 for (BigInt i = 0, j = 1, count = 1; count < n; ++count)

 {

 next = i + j;

 i = j;

 j = next;

 }

 return next;

}

void main()

{

 import std.stdio;

 writeln(fib(100_000));

}

Chapter 5 Week 5: D

99

When you execute the preceding, you’ll find that it’s very fast. But the

next implementation (found in the forums, implemented by Biotronic) is

just blazingly fast.

auto fib(ulong n) {

 import std.bigint : BigInt;

 import std.meta : AliasSeq;

 import std.typecons : tuple;

 BigInt a = 0;

 BigInt b = 1;

 auto bit = 63;

 while (bit > 0) {

 AliasSeq!(a, b) = tuple(

 a * (2*b - a),

 a*a + b*b);

 if (n & (BigInt(1) << bit)) {

 AliasSeq!(a, b) = tuple(b, a+b);

 }

 --bit;

 }

 return a;

}

This version of generating the Fibonacci numbers uses the following:

• A different base algorithm to generate the Fibonacci

numbers, named the Fast squaring algorithm

• AliasSeq, from the std.meta namespace, working

with templates, which allows for compile-time

improvement, with the help of the compiler.

Chapter 5 Week 5: D

100

Without going into all the details of the algorithm, this version clocks

incredibly fast, even on a standard MacBook. You will appreciate the

following times for fib(1_000_000):

2 secs, 415 ms, 140 μs, and 4 hnsecs

And 10 million clocks in at less than 50 seconds on the same machine!

But enough with displays of speed performance. Let’s get a project

template ready for some Telegram bot fun with D.

 Telegram Bots in D
To write a telegram bot in D, we will require the usual build tool that can

handle dependencies. In D, this tool is named dub, and I am sure you love

the tool name as much as I do.

dub was installed (or should have been installed) along with D, earlier

in the chapter.

dub is responsible for

• Handling your project metadata needs

• Managing dependencies

• Compiling and running code

 Meet dub
dub init <projectname> will almost act as a bot and ask you a few

questions, in order to generate files for your new project.

Note here that we are going to announce directly during project

creation that we need telega as a dependency. telega is a wrapper for the

Telegram bot API in D.

Chapter 5 Week 5: D

101

$ dub init hellobot

Package recipe format (sdl/json) [json]: json

Name [hellobot]:

Description [A minimal D application.]:

Author name [niko]:

License [proprietary]:

Copyright string [Copyright © 2018, niko]:

Add dependency (leave empty to skip) []: telega

Added dependency telega ~>0.0.3

Add dependency (leave empty to skip) []:

Successfully created an empty project in 'hellobot'.

Package successfully created in hellobot

dub will then have created your basic project structure, which at this

stage contains only the project metadata in dub.json and the main source

file in app.d, as shown following:

$ tree

.

├── dub.json
└── source
 └── app.d

1 directory, 2 files

Inspecting the dub.json file, you can see that it contains the required

project metadata and the specified telega dependency, as well as the

most recent version found.

{

 "name": "hellobot",

 "authors": [

 "niko"

],

Chapter 5 Week 5: D

102

 "dependencies": {

 "telega": "~>0.0.3"

 },

 "description": "A minimal D application.",

 "copyright": "Copyright © 2018, niko",

 "license": "proprietary"

}

Caution that would almost work—except in those instances in which
it doesn’t—and at the time of writing, it did not. You may have to refer to
a specific build of telega (or any other dependency, for that matter).

Installing a custom version of a dependency is done in two steps.

 1. Checking out the package you want, in this case,

telega

git clone https://github.com/nexor/telega.git

 2. Telling dub, with the following snippet, that you have

a new version of that package:

[niko@niko-pc hellobot]$ dub add-local ../../RESEARCH/

telega

Registered package: telega (version:

0.0.3+commit.6.g87f37af)

The project should then be good to go. You can validate that the

dependencies are installed properly, using dub list.

Chapter 5 Week 5: D

103

$ dub list | grep telega

 telega 0.0.3+commit.6.g87f37af: APRESS/RESEARCH/

telega/

 telega 0.0.3: /Users/niko/.dub/packages/telega-0.0.3/

telega/

Of course, if you do not receive an error message, there’s no need

for all of this. The default subcommand of dub is dub run, and this tells

your project to run the code located in the source/app.d file, with the

dependency resolved from dub.json.

Right after creating your project, the default D source file should look

like this:

import std.stdio;

void main()

{

 writeln("Edit source/app.d to start your project.");

}

Then you can execute the preceding default D file within the project

with

dub run

That will pick up the file source/app.d inside your project folder.

Finally, your output for your project is ready!

hellobot ~master: building configuration "application"...

Linking...

To force a rebuild of up-to-date targets, run again with

--force.

Running ./hellobot

Edit source/app.d to start your project.

Chapter 5 Week 5: D

104

As usual, you can run all this from Visual Studio Code, with a simple

tasks.json file. The file needed to run the bot project with dub from Visual

Studio Code is shown following:

{

 "version": "2.0.0",

 "tasks":

 [

 {

 "label": "dub",

 "command": "dub",

 "args": [

 "run"

],

 "options": {

 "cwd": "${workspaceRoot}"

 },

 "group": {

 "kind": "build",

 "isDefault": true

 }

 }

]

 }

Note that finding other packages using dub is as easy as running

dubsearch. So, for Telegram, we simply looked for packages using the

following command:

$ dub search telegram

==== registry at https://code.dlang.org/ (fallback ["registry

at http://code.dlang.org/", "registry at https://code-mirror.

Chapter 5 Week 5: D

105

dlang.io/", "registry at https://code-mirror2.dlang.io/",

"registry at https://dub-registry.herokuapp.com/"]) ====

paper_plane_bot (0.0.5) Telegram Dlang news notify bot

telega (0.0.3) Telegram Bot API implementation

tg-d (0.0.2) Telegram Bot API client library for the

D programming language

delegram (0.1.3) dlang Telegram bot api

dtd (0.0.1) A D wrapper to TDLib (Telegram Database

library)

In this case, telega, was the most updated package, with a wide range

of the full Telegram bot API already implemented. You also can try to find

packages for logging, for example.

$ dub search log | grep color

colored-logger (0.1.0) Colored logger for TTY

Now on to our first D bot!

 First D Bot
This first bot will perform the usual echo of a chat message.

A few things to note here:

• The main import that you haven’t seen before is the

one from the telega library, the botapi. We create a bot

client with the key contained in the secret.key text file.

• Updates come in batches of messages, so in the

listenUpdates function, we create a loop to handle

those messages one by one.

• To tell the bot API we finished handling the update,

we call updateProcessed, with the original update as

parameter.

Chapter 5 Week 5: D

106

Cutting out the extra code from the telega example gives the following

snippet:

import std.typecons;

import std.file;

import std.stdio;

import telega.botapi;

int main()

{

 auto botToken = readText("secret.key");

 listenUpdates(botToken);

 return 0;

}

void handleUpdate(BotApi api, Update msg) {

 if (!msg.message.isNull) {

 writefln("Update %s:%s", msg.message.chat.id, msg.

message.text);

 api.sendMessage(update.message.chat.id, msg.message.text);

 }

 api.updateProcessed(update);

}

void listenUpdates(string token)

{

 auto api = new BotApi(token);

 while(true) {

 auto updates = api.getUpdates();

 writefln("Got %d updates", updates.length);

 foreach (update; updates) {

 handleUpdate(api, update);

 }

 }

}

Chapter 5 Week 5: D

107

Running the bot with the usual Visual Studio Code setup and dub run

will obviously leave you breathless (see Figure 5-4).

 More Bot API Usage
For something more fun, you can now replace the insides of the

handleUpdate function.

The rewritten function following gives you some examples of

• Sending a message

• Sending a photo

• Sending a document

• Sending a location

Note, too, that while we are replying to the same chat room, using the

update.message.chat.id, we could also reply to a different chat room,

keeping records of the id we have seen so far.

Also note that most of the implementation of telega uses public URLs

to retrieve objects and does not yet allow you to send in local files.

void handleUpdate(BotApi api, Update update) {

 if (!update.message.isNull) {

 api.sendMessage(update.message.chat.id, update.message.text);

 api.sendPhoto(update.message.chat.id, "https://pbs.twimg.

com/tweet_video_thumb/Dm_YlIgXgAAbxZu.jpg");

Figure 5-4. Echo text messages bot in D

Chapter 5 Week 5: D

108

 api.sendDocument(update.message.chat.id, "https://ibiblio.

org/ebooks/Poe/Black_Cat.pdf");

 api.sendLocation(update.message.chat.id, 45.8992, 6.1294);

 }

 api.updateProcessed(update);

 }

Rerunning the bot with the new handleUpdate function gives you a

series of message, image, document, and location, as shown in Figure 5-5.

Figure 5-5. Message, image, document, and location from your
D bot

Chapter 5 Week 5: D

109

For reference, the current set of methods implemented by telega is

listed on the project site, but you may want to quickly put into action the

functions presented following.

• sendMessage

• forwardMessage

• sendPhoto

• sendAudio

• sendDocument

• sendVideo

• sendVoice

• sendVideoNote

• sendMediaGroup

• sendLocation

• editMessageLiveLocation

• stopMessageLiveLocation

• sendVenue

• sendContact

• setChatPhoto

As for this book, it’s now time to forge ahead to next week.

Chapter 5 Week 5: D

111© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4_6

CHAPTER 6

Week 6: C++

Writing in C or C++ is like running a chainsaw with all the
safety guards removed.

—Bob Gray

It was inevitable to have a chapter on C++, especially after dealing with D.

What is surprising, however, is that there is a working Telegram bot

API—wrapper—on the market, and what’s even more surprising is that

it works very well.

C++ is the language often thought of as a reference to what not to code,

but I think it’s always a plus to have it in your toolbox.

This chapter will focus on sending pictures from the usual echo bot to

finally applying basic OpenCV calls on received images. OpenCV, if you are

not familiar with this framework, is a universally known imaging library

that can do everything from change colors and sizes to find objects in

pictures and videos.

 Requirements, Installation, and First Bot
Working with C++ usually requires a fair bit of work to set up. To work with

Telegram, we will be using tgbot-cpp, and to work with opencv, you’ll also

be installing the imaging framework on your local machine.

112

cmake is a low-level tool used to organize your project metadata and

third-party libraries, as well as generating a file that makes the build tool

itself.

boost is a set of well-maintained and clean libraries for C++.

 Install tgbot-cpp
Cloning the tgbot-cpp repository is going to be the first step in this

chapter. The code of the C++ wrapper for Telegram can be found on

GitHub and following.

git clone https://github.com/reo7sp/tgbot-cpp.git

To compile and install the library, you need a few tools, such as make,

cmake, ssl development libraries, and boost.

On Debian/Ubuntu, this would be

apt-get install g++ make binutilscmakelibssl-dev libboost-

system- dev

Then, once in the tgbot-cpp cloned directory, the bot library can be

easily installed with this set of three commands:

cmake .

make

sudo make install

The install defaults to /usr/lib/, and you can check that the Telegram

library is properly installed, by looking up the presence of the following

file:

 /usr/local/lib/libTgBot.a

Chapter 6 Week 6: C++

113

 Install OpenCV
The imaging library OpenCV is a lot easier to install these days, and

while options are still a bit hard to figure out, we will leave them out

for this week and keep the default settings to compile and install the

library. It’s really just a matter of following the installation instructions

from the OpenCV web site. For reference, here are the steps for Linux

and macOS:

clone the opencv repository

git clone https://github.com/opencv/opencv.git

create build folder

mkdir build && cd build

generate make file from CMake directives

cmake .

compile code ... takes ~15min the first time.

make -j8

install as library

sudo make install

Remember where you have installed opencv and its build folder, as

you will need it later, when compiling C++ programs.

To verify our setup and get excited a bit, let’s start by writing a simple

program that downloads a file, using the system command curl.

 File Download Program
We will be reusing this piece of code later in the OpenCV bot, so make sure

you understand how things work. To write a project using cmake, we first

create a simple folder structure, with the CmakeLists.txt file, and a source

folder, with the C++ code in that source folder.

Chapter 6 Week 6: C++

114

[niko@niko-pcsamplecmake]$ tree

.

├── CMakeLists.txt
└── src
 └── main.cpp

1 directory, 2 files

The CMakeLists.txt contains your project metadata, and main.cpp,

the C++ code. The following CMakeLists.txt file is a simplified version of

the one we will use to run tgbot-cpp later on. Let’s have a look.

cmake_minimum_required(VERSION 2.8.4)

project(samplecmake)

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -Wall")

set(Boost_USE_MULTITHREADED ON)

find_package(Threads REQUIRED)

find_package(OpenSSL REQUIRED)

find_package(Boost COMPONENTS system REQUIRED)

find_package(CURL)

include_directories(/usr/local/include ${OPENSSL_INCLUDE_DIR}

${Boost_INCLUDE_DIR})

if (CURL_FOUND)

include_directories(${CURL_INCLUDE_DIRS})

add_definitions(-DHAVE_CURL)

endif()

add_executable(samplecmakesrc/main.cpp)

target_link_libraries(samplecmake ${CMAKE_THREAD_LIBS_INIT}

${OPENSSL_LIBRARIES} ${Boost_LIBRARIES} ${CURL_LIBRARIES})

Chapter 6 Week 6: C++

115

In Table 6-1, I list the commands used in the cmake definition files, in

addition to why they are used.

With this CMakeLists.txt, you can run the cmake command and

prepare the project for compilation. Here is the shortened output of the

command execution:

$ cmake .

-- The C compiler identification is GNU 8.2.1

-- The CXX compiler identification is GNU 8.2.1

-- Check for working C compiler: /usr/bin/cc

-- Check for working C compiler: /usr/bin/cc -- works

...

-- Looking for pthread_create in pthreads

-- Looking for pthread_create in pthreads - not found

-- Looking for pthread_create in pthread

Table 6-1. Understanding cmake file

Command Use

cmake_minimum_

required

Defines which version of cmake to use

project Defines the project name

set Sets variables used during the build

find_package Finds external libraries, i.e., finds cmake files in

search paths and retrieves symbols

include_directories More folders to retrieve header files and packages

add_executable Creates an executable, here, samplecmake, from a

given source file

target_link_

libraries

Identifies libraries to link to the given executable,

here again, samplecmake

Chapter 6 Week 6: C++

116

-- Looking for pthread_create in pthread - found

-- Found Threads: TRUE

-- Found OpenSSL: /usr/lib/libcrypto.so (found version

"1.1.0i")

-- Boost version: 1.67.0

-- Found the following Boost libraries:

-- system

-- Found CURL: /usr/lib/libcurl.so (found version "7.61.1")

-- Configuring done

-- Generating done

-- Build files have been written to: /home/niko/Dropbox/BOOKS2/

APRESS/06-cplusplus/samplecmake

If you are writing code from Visual Studio Code again, there is a

specific and dedicated plug-in, created by Microsoft, that you can install

(Figure 6-1).

Figure 6-1. C/C++ plug-in for Visual Studio Code

Chapter 6 Week 6: C++

117

With the plug-in installed, you can start typing C++ code and your first

C++ program of the day.

Here is a list of reminders before proceeding to look at the code:

• #include is used to include namespaces

• Using namespace will prevent you from having to

insert the namespace in front of each symbol of given

namespaces, thus, std::string will become string,

for example.

• intmain(intargc, char* argv[]) is the main entry

point, and you can retrieve the number of args, as well

as an array of parameters. Note that the first parameter

is at index 0 and is the command name itself. Here, it

will be samplecmake, as it was defined in the project

metadata file, CMakeLists.txt.

• auto url means that we do not specify the type of the

variable ourselves; the compiler does it. Here, it will

actually be a char*, which is a pointer to an array of

characters.

• We will actually download the file using a system

command, curl (which should be installed on your

machine).

• The shell command curl is called using the system

function, with url as the parameter to the curl

command.

This now gives the slightly readable code snippet following, which

should be saved in a file named main.cpp.

#include <string>

using namespace std;

Chapter 6 Week 6: C++

118

intmain(intargc, char* argv[])

{

 auto url = argv[1];

printf("Downloading: %s\n", url);

 string command = string("curl --silent -O ");

const char* cmd = command.append(url).c_str();

 system(cmd);

 return 0;

}

To create the executable, cmake has generated a Makefile, a file that the

make command understands. Running make will create an executable.

make

To test our program, we can pass a URL with an image (or any file, for

that matter) for our newly compiled and linked program.

 ./samplecmakehttp://stuffpoint.com/cats/image/245258-cats-cute-

white-cat.jpg

This will download the cat shown in Figure 6-2.

Figure 6-2. Lovely cat

Chapter 6 Week 6: C++

119

Go ahead and try it with a few other URLs and see the files being

downloaded in the project folder, as expected.

Now on to our first bot!

 Echo Bot
The echo bot will, of course, echo whatever we send it. We will build on the

download file project, so you can either reuse it or create a new folder with

the same file and structure.

In the new CMakeLists.txt, you’ll immediately notice three things:

• The project name has been changed.

• The name of the executable has been changed to

echobot.

• The target_link_libraries section contains a

reference to our installed tgbot-cpp library, which is

packaged inside /usr/local/lib/libTgBot.a.

The rest is identical and should hold few surprises.

cmake_minimum_required(VERSION 2.8.4)

project(echobot)

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -Wall")

set(Boost_USE_MULTITHREADED ON)

find_package(Threads REQUIRED)

find_package(OpenSSL REQUIRED)

find_package(Boost COMPONENTS system REQUIRED)

find_package(CURL)

include_directories(/usr/local/include ${OPENSSL_INCLUDE_DIR}

 ${Boost_INCLUDE_DIR})

if (CURL_FOUND)

Chapter 6 Week 6: C++

120

include_directories(${CURL_INCLUDE_DIRS})

add_definitions(-DHAVE_CURL)

endif()

add_executable(echobotsrc/main.cpp)

target_link_libraries(echobot /usr/local/lib/libTgBot.a

 ${CMAKE_THREAD_LIBS_INIT} ${OPENSSL_LIBRARIES}

 ${Boost_LIBRARIES} ${CURL_LIBRARIES})

Here again, let’s run the cmake command

cmake .

to generate the necessary project files.

Now, on to the code. The forthcoming code is mostly taken from the

tgbot-cpp project samples, but there are a few things to notice.

• The bot token is read from an environment variable.

• You can register as many callbacks as you want, using

.getEvents.onCommand or .getEvents.onAnyMessage.

Here, the bot is defined to respond to a command

named start and on any message sent.

• On each callback, you must specify a vector of pointers

that will be used in the callback, hence, [&bot]. We will

add some more later.

• On each callback, you get a pointer to the message,

which has the same structure as you have seen

previously.

• Finally, the bot is set up to do polling, as usual, but it

has to be made explicit with this C++ library.

• And the snippet for the echo bot is now shown

following:

Chapter 6 Week 6: C++

121

#include <tgbot/tgbot.h>

using namespace std;

using namespace TgBot;

intmain() {

 string token(getenv("TOKEN"));

printf("Token: %s\n", token.c_str());

 Bot bot(token);

bot.getEvents().onCommand("start", [&bot](Message::Ptr message)

{

bot.getApi().sendMessage(message->chat->id, "Hi!");

 });

bot.getEvents().onAnyMessage([&bot](Message::Ptr message) {

printf("User wrote %s\n", message->text.c_str());

 if (StringTools::startsWith(message->text, "/start")) {

 return;

 }

bot.getApi().sendMessage(message->chat->id, "Your message is: "

+ message->text);

 });

signal(SIGINT, [](int s) {

printf("SIGINT got\n");

exit(0);

 });

 try {

printf("Bot username: %s\n", bot.getApi().getMe()->username.

c_str());

bot.getApi().deleteWebhook();

Chapter 6 Week 6: C++

122

TgLongPolllongPoll(bot);

 while (true) {

printf("Long poll started\n");

longPoll.start();

 }

 } catch (exception& e) {

printf("error: %s\n", e.what());

 }

 return 0;

}

The same steps are used to compile and run. Before running the newly

created executable, you must expose the bot token as TOKEN in the current

shell.

export TOKEN=...

./echobot

On start, the bot, will yield a short output, to say it has started polling

normally.

Token: ...

Bot username: chapter01bot

Long poll started

A sample chat session with this new bot is shown in Figure 6-3.

Chapter 6 Week 6: C++

123

 C++ Bots
Now on our mission to deploy as many Telegram bots as possible, we’ll

create two bots.

• One bot with a Telegram inline keyboard

• Another bot that sends pictures to the chat

 Bot with Inline Keyboard
This second bot is also taken from the samples of the project and is

added here for reference. Inline keyboards are pretty much buttons sent

to the chat room that are assigned callbacks when pressed by the user,

Figure 6-3. C++echobot

Chapter 6 Week 6: C++

124

just like a bot father. If you have started a project from scratch, there is no

need to add anything new to CMakeLists.txt, apart from changing the

project’s name.

What is interesting in the bot here is the way the keyboard is registered.

The rest of the code is identical to that for the echo bot and is left out for

clarity.

The keyboard is created using InlineKeyboardMarkup, and then

rows of buttons are created with the InlineKeyboardButton constructor.

Each button has a callback, here, check, that must be registered in a

onCallbackQuery block, just like commands and messages.

Finally, you send the keyboard to the chat, using the longer version of

sendMessage, which accepts the created keyboard as parameter.

 bot.getApi().sendMessage(chatid,response,false,0,keyboard,"Mark

down");

This gives the following snippet, which should be located inside the

main method of your program:

 // Thanks Pietro Falessi for code

InlineKeyboardMarkup::Ptr keyboard(new InlineKeyboardMarkup);

 vector<InlineKeyboardButton::Ptr> row0;

InlineKeyboardButton::PtrcheckButton(new InlineKeyboardButton);

checkButton->text = "check";

checkButton->callbackData = "check";

 row0.push_back(checkButton);

 keyboard->inlineKeyboard.push_back(row0);

bot.getEvents().onCommand("check", [&bot, &keyboard]

(Message::Ptr message) {

 string response = "ok";

Chapter 6 Week 6: C++

125

bot.getApi().sendMessage(message->chat->id, response, false, 0,

keyboard, "Markdown");

 });

bot.getEvents().onCallbackQuery([&bot, &keyboard]

(CallbackQuery::Ptr query) {

 if (StringTools::startsWith(query->data, "check")) {

 string response = "ok";

bot.getApi().sendMessage(query->message->chat->id, response,

false, 0, keyboard, "Markdown");

 }

 });

Now let’s compile and see this new bot in action (Figure 6-4).

Figure 6-4. Bot with inline keyboard

Chapter 6 Week 6: C++

126

 Photo Bot
The photo bot is here to present how to send pictures to the chat, using the

C++ API. The Telegram API being the same for any language, you’ll notice

how the method name is similar to ones used in other languages.

Here, we send an example.jpg image, located at the root of the project

folder.

const string photoFilePath = "example.jpg";

const string photoMimeType = "image/jpeg";

 bot

.getEvents()

.onCommand("photo", [&bot, &photoFilePath, &photoMimeType]

(Message::Ptr message) {

bot.getApi().sendPhoto(message->chat->id, InputFile::fromFile(p

hotoFilePath, photoMimeType));

 });

No extra change in the libraries is required, so just make and run will do

here too. You can see the photo bot in action in Figure 6-5.

Chapter 6 Week 6: C++

127

Now let’s repeat this technique of sending pictures from the photo bot,

combined with the OpenCV example, to perform transformations on the

pictures sent to the chat and resend them directly to the cat.

Figure 6-5. Send me a cat, c++ bot

Chapter 6 Week 6: C++

128

 OpenCV in action
Before creating a bot, let’s first try to perform a simple OpenCV

transformation.

 OpenCV Sample Program
This time, you will have to update the CMakeLists.txt a bit. Notably, you

will have to include the place where the OpenCV header and library files

are located and also specify to include them when linking the final binary.

So, building on the previous CMakeLists.txt, the following will occur:

• Change the project name! Although not required, it is

always useful for us humans.

• Add the opencv/build/include folder to the include_

directories.

• Add a find_package directive targeting OpenCV (be

careful of the upper-/lowercase).

• In the target_link_libraries, add the different

required .so files from the installed version of OpenCV.

(The libraries could also be pulled from the opencv/

build/lib folder, of course.) Here, three library files are

used for OpenCV: core, imgcodecs, and highgui. In the

future, you may need others, if you do some video, so

you should adjust this accordingly.

Before running cmake on this new project, let’s review the

CMakeLists.txt file.

cmake_minimum_required(VERSION 2.8.4)

project(opencvdemo)

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -Wall")

set(Boost_USE_MULTITHREADED ON)

Chapter 6 Week 6: C++

129

include_directories($HOME/projects/opencv/build/include)

include_directories(/usr/local/include ${OPENSSL_INCLUDE_DIR}

${Boost_INCLUDE_DIR})

if (CURL_FOUND)

include_directories(${CURL_INCLUDE_DIRS})

add_definitions(-DHAVE_CURL)

endif()

find_package(Threads REQUIRED)

find_package(OpenSSL REQUIRED)

find_package(Boost COMPONENTS system REQUIRED)

find_package(CURL)

find_package(OpenCV)

add_executable(opencvdemosrc/main.cpp)

target_link_libraries(opencvdemo /usr/local/lib64/libopencv_

core.so /usr/local/lib64/libopencv_imgcodecs.so /usr/local/

lib64/libopencv_highgui.so /usr/local/lib/libTgBot.a ${CMAKE_

THREAD_LIBS_INIT} ${OPENSSL_LIBRARIES} ${Boost_LIBRARIES}

${CURL_LIBRARIES})

Once cmake is run, we can focus on writing just a small piece of

OpenCV programming code that will process a picture specified as input

and transform it into its gray version. In OpenCV, this is done through an

intermediate Mat object, which is a matrix object used to represent the

image in-memory.

You’ll need a new include statement, with opencv2/highgui, and,

yes, we all love the fact that even though its opencv4, the namespace is still

versioned as 2.

Chapter 6 Week 6: C++

130

imread and imwrite are the two opencv methods to read and write

pictures, and the second parameter of the imread tells it how many colors

to use when decoding the picture. It gives the very short snippet following:

#include "opencv2/highgui.hpp"

using namespace cv;

intmain(intargc, char* argv[])

{

 auto bw = imread(argv[1],0);

imwrite("saved.jpg", bw);

 return 0;

}

Now to compile and run this short program using make.

make

./opencvdemo cat.jpg

The input picture, cat.jpg, is shown in Figure 6-6.

Figure 6-6. Colored input cat

Chapter 6 Week 6: C++

131

After applying the OpenCV change of color, the gray version of the cat

is shown in Figure 6-7.

Now that we know how to use opencv from our program, let’s integrate

all the pieces, to create a bot that transforms the picture sent to the chat.

 OpenCV Bot
The cmake setup for the full OpenCV bot is the same as the previous one,

so there’s no need to change the CMakeLists.txt, apart from the project

name. The thing to know ahead of programming this bot is that when the

chat receives a message with a picture, the message contains a fileId

corresponding to the file that was saved.

On the Telegram architecture, those files are hosted on different servers,

thus a different API. The new location is api.telegramorg/file/bot.

The URL to retrieve files is then constructed from this base URL,

appended with the bot token and, finally, the fileId.

Figure 6-7. If you can see a difference, you are reading this book in
colors

Chapter 6 Week 6: C++

132

To read a file and process the picture or file, we must perform a

different request to retrieve that file. So, in this example, you will reuse

the trick of running the curl command from the C++ code to perform this

request.

The following function, applyOpenCV, downloads a static file from the

Telegram server applies the opencv process of turning the picture to shades

of gray, and, finally, saves it to a file named saved.jpg.

const string telegram_url = "https://api.telegram.org/file/bot";

const string tmp_file = "download.jpg";

const string saved_file = "saved.jpg";

string applyOpenCV(string token, string path) {

 string command = string("curl --silent ");

 command

.append(telegram_url)

.append(token)

.append("/")

.append(path)

.append(" -o ")

.append(tmp_file);

const char* cmd = command.c_str();

 system(cmd);

 Mat bw = imread(tmp_file,0);

imwrite(saved_file, bw);

 return saved_file;

}

Now, we just need an entry point to call this function. This will be

called when a photo is detected in the chat.

Chapter 6 Week 6: C++

133

So, in the bot callback handling the chat message, to detect whether a

picture is present, we can a check the number of photo sizes included in

the message. Once we know there is a picture (or pictures), we can retrieve

its (their) fileId and then call the applyOpenCV function we have just

defined with the filePath and the token.

Also, note, as I previously touched on, the vector of the reference

is being added a new pointer on token. If you forget to do this,

the callback does not have access to the token variable, and the

compilation fails.

bot.getEvents().onAnyMessage([&bot, &token](Message::Ptr

message) {

 if(message->photo.size() != 0) {

PhotoSize::Ptr s = message->photo[2];

 if(s!=NULL) {

 string fileId = message->photo[2]->fileId;

File::Ptr file = bot.getApi().getFile(fileId);

 string filepath = applyOpenCV(token.c_str(), file-

>filePath.c_str());

bot.getApi().sendPhoto(

 message->chat->id,

InputFile::fromFile(filepath, "image/jpeg"));

 }

 }

}

The rest of the bot code is identical to that for the other bots. After

executing, make and starting the bot, you can see the picture being sent to

the chat change to black and white, as shown in Figure 6-8.

Chapter 6 Week 6: C++

134

Obviously, the next step is to try a few more OpenCV transformations

and feed them into your bot. Creating a bot to identify specific objects in

each picture is now within your reach.

Figure 6-8. Colored and gray cats

Chapter 6 Week 6: C++

135© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4_7

CHAPTER 7

Week 7: Clojure
Sometimes a thing needed opening before closure was found.

—Hugh Howey

Shift

Clojure is the only LISP-based language presented in this book, but

it’s a language I use on an everyday basis. Clojure, with its share of left

and right parentheses, can repel a few, but it surely never gets lost in

translation.

Clojure development almost always uses a read-eval-print-loop (REPL)

or, in simple terms, a shell that understands Clojure code line by line. Of

course, in an editor, you can just execute block of lines of code, and I will

show you how to do that in Visual Studio Code again.

Clojure makes it easy to understand the data structure passing via

the Telegram server, so we will look at a few of the JSON updates coming

from Telegram. To write Telegram bots in the Clojure language, we will

be using another Telegram wrapper named Morse, which makes it dead

easy to set up your own custom bot, by having a template project ready

for you.

136

 Initial Setup and First Clojure Bot
Clojure is running on top of Java Virtual Machine, so if you do not have

it installed already, head to http://jdk.java.net, and install a version

of openjdk suitable for your machine. On Linux machines, almost every

single package manager has a version of openjdk. For example, on

Manjaro/Arch Linux, you can go with yaourt -S java-openjdk-ea-bin.

As far as setups tested for this book, JDK versions 8 to 11-ea made the cut.

Now that you have the Java Compiler, you don’t need much more than

Leiningen, the de facto build tool for Clojure. Installation instructions are

short and available from the web site at https://leiningen.org/.

The main task is to install a package or a shell script that downloads

and bootstraps Leiningen for you. On Manjaro/Arch, here it is:

yaourt -S leiningen

If the setup is good to go, you should now have Leiningen responding

to you on the command line (Figure 7-1).

Chapter 7 Week 7: Clojure

http://jdk.java.net
https://leiningen.org/

137

Leiningen has all you need to start coding with Clojure, notably the

possibility of offering you an REPL, the shell to execute Clojure code. You

start this REPL by using Leiningen with the repl subcommand.

lein repl

Once the REPL is ready, you can start typing code directly at the prompt.

[niko@niko-pc ~]$ lein repl

nREPL server started on port 46749 on host 127.0.0.1 -

nrepl://127.0.0.1:46749

REPL-y 0.3.7, nREPL 0.2.12

Clojure 1.8.0

Figure 7-1. Hello Leiningen

Chapter 7 Week 7: Clojure

138

OpenJDK 64-Bit Server VM 11+28

 Docs: (doc function-name-here)

 (find-doc "part-of-name-here")

 Source: (source function-name-here)

 Javadoc: (javadoc java-object-or-class-here)

 Exit: Control+D or (exit) or (quit)

 Results: Stored in vars *1, *2, *3, an exception in *e

user=> (+ 1 1)

2

user=> (println "hello world")

hello world

nil

user=>

Apart from writing Clojure code directly, Leiningen can also generate

a full project layout, by using Leiningen templates. The third-party library

we want to use for communicating with Telegram, Morse, has a template

ready to prepare a new bot. This is done using the following subcommand

of Leiningen:

lein new morse mytelegrambot

This will have the effect of downloading all the Clojure dependencies

and creates the project structure for the bot.

$ lein new morse mytelegrambot

Retrieving morse/lein-template/0.1.1/lein-template-0.1.1.pom

from clojars

Retrieving morse/lein-template/0.1.1/lein-template-0.1.1.jar

from clojars

Generating fresh 'lein new' morse project.

Chapter 7 Week 7: Clojure

139

Once the project has been created, you can check the existence of the

project files, namely:

• project.clj: The usual main project metadata.

It contains the project name, compilation details,

dependencies, etc.

• core.clj: The main source file for the project (unless

specified otherwise in project.clj)

• core_test.clj: Where you can write your Clojure tests

The generated project tree structure follows:

$ tree

.

├── CHANGELOG.md
├── LICENSE
├── project.clj
├── README.md
├── resources
├── src
│ └── mytelegrambot
│ └── core.clj
└── test
 └── mytelegrambot
 └── core_test.clj

5 directories, 6 files

Your Clojure bot is ready to be started, this time, using the run

subcommand of Leiningen.

This will execute the main function defined in the core.clj file,

providing you with your Telegram token, which should make things work

out of the box.

Chapter 7 Week 7: Clojure

140

$ export TELEGRAM_TOKEN="585672177:..."

$ lein run

Starting the mytelegrambot

With the basic setup in place, you can start chatting with your Clojure

Telegram bot at once (Figure 7-2).

In the console where you started the bot, you can also see the following

debugging messages being printed on the standard output:

Bot joined new chat: {:id 121843071, :first_name Nico, :last_

name Nico, :username hellonico, :type private}

Figure 7-2. It’s been a long time

Chapter 7 Week 7: Clojure

141

Intercepted message: {:message_id 675, :from {:id 121843071,

:is_bot false, :first_name Nico, :last_name Nico, :username

hellonico, :language_code en-JP}, :chat {:id 121843071,

:first_name Nico, :last_name Nico, :username hellonico, :type

private}, :date 1537519211, :text hello}

 Visual Studio Code
As a quick workflow to develop your bot, you can either start an REPL with

lein repl, as we have seen, or use the Visual Studio Code plug-in shown

in Figure 7-3.

The next three things to do are

• Look at project.clj, the metadata file of the project.

• Look at the Clojure code to handle Telegram requests.

• Look at the messages coming from Telegram.

Figure 7-3. Clojure plug-in for Visual Studio Code

Chapter 7 Week 7: Clojure

142

Look deep into nature, and then you will understand every-
thing better.

—Albert Einstein

We are now going to look at all these, and in order mentioned.

 The Project Metadata in project.clj
A good point with Leiningen and Clojure is that the project metadata is in

the same language as the code itself, meaning the project configuration

is in Clojure. It’s actually more or less a big hash map. Consistency is a

key (pun intended), and it’s reassuring to find the file with that constant

structure.

In project.clj, you start by defining a Clojure project with

defproject, passing a project name (here, mytelegrambot), a version

number, and a map of different things, in which each key is prefixed with :.

Among the different things used to define a project, we can find

• Dependencies: A list of third-party libraries to import

and use in your project

• Plug-ins: A list of plug-ins for Leiningen

• main: The main file, actually namespace, to compile

and or run

Just as with project names, dependencies come with a project name

and a version number, and this is actually the same format used. The full

project.clj file that has been generated is copied here.

(defproject mytelegrambot "0.1.0-SNAPSHOT"

 :description "FIXME: write description"

 :url "http://example.com/FIXME"

Chapter 7 Week 7: Clojure

143

 :license {:name "Eclipse Public License"

 :url "http://www.eclipse.org/legal/epl-v10.html"}

 :dependencies [[org.clojure/clojure "1.8.0"]

 [environ "1.1.0"]

 [morse "0.2.4"]]

 :plugins [[lein-environ "1.1.0"]]

 :main ^:skip-aot mytelegrambot.core

 :target-path "target/%s"

 :profiles {:uberjar {:aot :all}})

Now, let’s have a look at the code itself, located in core.clj.

 The Clojure Code in core.clj
Let’s break this source file in smaller parts. First, Clojure project source

files start with a namespace definition, namedasns, and then a list of other

namespaces to use in the current context.

(ns mytelegrambot.core

 (:require [clojure.core.async :refer [<!!]]

 [clojure.string :as str]

 [environ.core :refer [env]]

 [morse.handlers :as h]

 [morse.polling :as p]

 [morse.api :as t])

 (:gen-class))

You will notice namespace for async code, string manipulation, easy

retrieval of environment variables, and different namespaces from Morse,

the third-party library responsible for doing low-level communication with

the Telegram API. Note, too, how each namespace also defines a prefix,

Chapter 7 Week 7: Clojure

144

such as p, t, or h, which you can use as shortcuts, instead of using the full

namespace name. Finally, gen-class is used to tell Clojure code that it

has to turn itself into something the Java runtime understands natively,

namely, a Java class.

Without knowing too much, you can feel that the following is going

to retrieve the token from a Clojure environment variable that we will set

in a later section. The library environ “keywordizes,” or makes Clojure-

friendly, variables from the external shell environment. Here, TELEGRAM_

TOKEN will be turned into :telegram-token.

; TODO: fill correct token

(def token (env :telegram-token))

I will hold off on the handle definition for a bit, but for now, know that

this is where you will write the meat of your bot code.

(h/defhandler handler

...

)

Finally, main, as its name implies, is the main function for the program.

It checks for the existence of a Telegram token, then starts to poll for

updates, using the function p/start, with parameters telegram token and

the telegram handler.

(defn -main

 [& args]

 (when (str/blank? token)

 (println "Please provde token in TELEGRAM_TOKEN environment

variable!")

 (System/exit 1))

 (println "Starting the mytelegrambot")

 (<!! (p/start token handler)))

Chapter 7 Week 7: Clojure

145

I said that we were going to look at the handler code in a bit more

detail later, and later is the new now. Reminder: Each command is handled

via a command-fn directive, and all these are defined within the defhandler

section of the file.

(h/defhandler handler

 ; your handlers here.

)

First, we define a simple "start" command for our bot. A command

takes a Clojure function as callback, and the parameter from that function

is (de-)constructed from the incoming message.

 (h/command-fn "start"

 (fn [{{id :id :as chat} :chat}]

 (println "Bot joined new chat: " chat)

 (t/send-text token id "Welcome to mytelegrambot!")))

Once the start command kicks in the chat, we simply send a

message back to the chat with the send-text function from the morse.

api namespace prefixed by t (as defined in the require section of the

namespace).

The generated code also defines a help command, which is defined

exactly in the same way and actually does almost exactly the same thing as

the start command, sending back a text message.

 (h/command-fn "help"

 (fn [{{id :id :as chat} :chat}]

 (println "Help was requested in " chat)

 (t/send-text token id "Help is on the way")))

Chapter 7 Week 7: Clojure

146

Last, we define a generic message handler, and we also get a shortcut

directly on the message data structure in the callback function using the

keyword :as.

 (h/message-fn

 (fn [{{id :id} :chat :as message}]

 (println "Intercepted message: " message)

 (t/send-text token id "I don't do a whole lot ...

yet.")))

 The Token!
You may remember that there was a lein-environ plug-in defined in the

project.clj file. This plug-in reads environment variables from different

places, for example, project.clj, and then populates a file named .lein-

env with all the necessary environment variables.

So, you can add in your project.clj (for one project), as follows:

 (defproject mytelegrambot "0.1.0-SNAPSHOT"

 ...

:env

 {:telegram-token "585672177:..."})

or in $HOME/.lein/profiles (for multiple projects)

{:user {:env{:telegram-token "585672177:..."}}}

 Debugging Telegram Messages
To have a look at messages as they are coming from Telegram, we

will format and output them in a log file. To do this, we will create an

appending write to the file. In the core.clj file, let’s declare a write, right

below the token definition.

Chapter 7 Week 7: Clojure

147

(def writer (clojure.java.io/writer "message.log " :append

true))

And in the callback function receiving the message, let’s output the

received message.

Clojure does the format for you, using the pprint function from

namespace clojure.pprint, and you can tell it where to write messages.

(clojure.pprint/pprint message writer)

On the next message sent to the bot, the message.log file is being filled

with the incoming messages, as shown in Figure 7-4.

Figure 7-4. Formatted incoming messages

Chapter 7 Week 7: Clojure

148

 Creating a Reverse Bot
Let’s create a text-reversing bot now. You will remember that you have

access to the Clojure string namespace, with the str/ prefix. This

namespace has many functions, one of them being reverse (Figure 7-5).

To create a handler for reversing text, you can call this reverse

function on the received text. The received text itself, if you look at the map

from Figure 7-4 again, can be taken from the message with the key :text.

Here is the new message handler that reverses text sent to the chat:

(h/message-fn

 (fn [{{id :id} :chat :as message}]

 (clojure.pprint/pprint message writer)

 (t/send-text token id (str/reverse (:text message)))))

And now, this works nicely in the Telegram chat, in which you can try

sending any kind of text (Figure 7-6).

Figure 7-5. reverse function, shown alongside all the str/
functions

Chapter 7 Week 7: Clojure

149

 Inline Handler
You’ll probably also remember how to define inline handlers from

previous chapters. Following is a way to do it in Clojure with Morse.

This inline handler just logs the message, at first.

 (h/inline-fn

 (fn [inline]

 (clojure.pprint/pprint inline writer)

 inline))

The content of the inline message itself is shown in Figure 7-7.

Figure 7-7. Inline message content

Figure 7-6. Reversed text

Chapter 7 Week 7: Clojure

150

Note that to answer inline, the Morse library documentation is a bit

lax. Looking at the Telegram documentation on inline results makes this

slightly more explicit.

https://core.telegram.org/bots/api#inlinequeryresultgif

From the official documentation, you will notice that

• You cannot specify any other type than gif.

• thumb_url and gif_url are both required.

And so, to send inline answers, you can write code similar to the

following snippet. Here, we always send the same gif.

(t/answer-inline

 token

 (:id inline)

 [{:type "gif"

 :id "gif1"

 :thumb_url "https://bit.ly/2DtXcIi"

 :gif_url "https://bit.ly/2DtXcIi"}])

Run the handler to find out which one!

 A Simple Weather Bot
Next, we will have a bot to receive messages containing a location, and we

will retrieve weather information for that location, by sending a request to

OpenWeather (https://openweathermap.org/).

Obviously, you must register to receive an API token from the

OpenWeather web site, as shown in Figure 7-8.

Chapter 7 Week 7: Clojure

https://core.telegram.org/bots/api#inlinequeryresultgif
https://openweathermap.org/

151

Registration is free, and obtaining a token should only take a few

minutes.

Once you have a token for OpenWeather, it is just a matter of sending

an HTTP query similar to the one following:

http://api.openweathermap.org/data/2.5/weather?q=<city>&units=

metric&APPID=openweather-api-token

If you try this on Tokyo with curl or httpie, you will get a JSON

response similar to the one shown following:

{

 "base": "stations",

 "clouds": {

 "all": 75

 },

 "cod": 200,

 "coord": {

 "lat": 35.68,

 "lon": 139.76

 },

 "dt": 1537583700,

 "id": 1850147,

Figure 7-8. OpenWeather API token

Chapter 7 Week 7: Clojure

http://api.openweathermap.org/data/2.5/weather?q=<city>&units=metric&APPID=openweather-api-token
http://api.openweathermap.org/data/2.5/weather?q=<city>&units=metric&APPID=openweather-api-token

152

 "main": {

 "humidity": 88,

 "pressure": 1009,

 "temp": 22.18,

 "temp_max": 24,

 "temp_min": 21

 },

 "name": "Tokyo",

 "sys": {

 "country": "JP",

 "id": 7619,

 "message": 0.0056,

 "sunrise": 1537561714,

 "sunset": 1537605508,

 "type": 1

 },

 "visibility": 10000,

 "weather": [

 {

 "description": "light intensity shower rain",

 "icon": "09d",

 "id": 520,

 "main": "Rain"

 }

],

 "wind": {

 "deg": 340,

 "speed": 4.1

 }

}

Chapter 7 Week 7: Clojure

153

To do that in Clojure, we are going to

• Execute an HTTP request simply by using Clojure

slurp, which retrieves the whole content of either a file

or a URL

• Parse the slurped message using Clojure’s JSON

Cheshire library and its function parse-text, to

generate a Clojure data structure

• Convert all this to a string to send back the message to

the chat

The function to retrieve the weather is

(defn weather[city]

 (let [request

 (str

 "http://api.openweathermap.org/data/2.5/weather?q="

 city

 "&units=metric&APPID="

 openweather-api-token)]

 (:main

 (parse-string (slurp request)

 (fn [k] (keyword k))))))

And the Morse/Telegram handler that can call it, retrieves the name of

city from a chat message, and send the request using the weather function

defined above.

(defhandler handler

 (message-fn

 (fn [{{id :id} :chat :as message}]

 (let [place (:text message)]

 (try

 (api/send-text token id

Chapter 7 Week 7: Clojure

154

 {:parse_mode "Markdown"}

 (str "*" place "*" "\n" (weather place)))

 (catch Exception e))))))

The result is shown in Figure 7-9.

Sweet! Finally, let’s move to an origami bot.

 OpenCV and Telegram: Origami Bot
Origami is a Clojure wrapper around the OpenCV library. To set up

anything on your machine, it usually helps just to download a wrapped

opencv delivered through Clojure dependencies.

To do this, we will update slightly the project.clj, to retrieve the

Origami library and to bootstrap the opencv environment.

(defproject origamibot "0.1.0-SNAPSHOT"

 :injections [

 (clojure.lang.RT/loadLibrary org.opencv.core.Core/NATIVE_

LIBRARY_NAME)

]

Figure 7-9. Send the name of the city, and receive the temperature

Chapter 7 Week 7: Clojure

155

 :repositories [["vendredi" "https://repository.hellonico.

info/repository/hellonico/"]]

 :main origamibot.core

 :license {:name "Eclipse Public License"

 :url "http://www.eclipse.org/legal/epl-v10.html"}

 :plugins [[lein-environ "1.1.0"]]

 :dependencies [

 [environ "1.1.0"]

 [cheshire "5.6.1"]

 [origami "0.1.11"]

 [hellonico/morse "0.2.4"]

 [org.clojure/clojure "1.8.0"]])

Now, to retrieve a picture, remember how to access the Telegram static

files: from the file id retrieved in the chat message by a full message, when

a picture is sent to the chat, as shown below.

{:message_id 851,

 :from

 {:id 121843071,

 :is_bot false,

 :first_name "Nico",

 :last_name "Nico",

 :username "hellonico",

 :language_code "en-JP"},

 :chat

 {:id 121843071,

 :first_name "Nico",

 :last_name "Nico",

 :username "hellonico",

 :type "private"},

 :date 1537587499,

Chapter 7 Week 7: Clojure

156

 :photo

 [{:file_id "AgADBQADTqgxGxauIVWm22ogiY88fiZL1TIABM-

as8GGX14indYDAAEC",

 :file_size 1022,

 :width 90,

 :height 57}

 ; other files

]}

To download a file from Telegram, remember the official

documentation: https://core.telegram.org/bots/api#file.

Also, remember the request to retrieve the file from the file path,

https://api.telegram.org/file/bot<token>/<file_path>, where this

file path is retrieved after calling getFile with the file_id contained from

a message on a chat.

This is achieved by using the api/download-file of Morse (the custom

version of the library, actually: hellonico/morse), which has been added

to the project.clj. The custom version diff can be found online, and the

reason to use it is to download a file to the local file system. This is just for

convenience, and you could, of course, code it yourself, after a few days of

practice with Clojure.

All this being in place, let’s add the origami package to the namespace

section as origami, the core wrapper for opencv.

(ns origamibot.core

 (:require

 [opencv3.core :as origami]

 ;….

 [clojure.string :as str])

 (:gen-class))

Chapter 7 Week 7: Clojure

https://core.telegram.org/bots/api#file
https://api.telegram.org/file/bot<token>/<file_path>

157

You can then apply any opencv transformation you want. Let’s define a

function named apply-cv that applies a canny effect to the picture, loaded

from a file. Note that the transformation is done in place in the file.

(defn apply-cv [filename]

 (-> filename

 (origami/imread)

 (origami/cvt-color! origami/COLOR_RGB2GRAY)

 (origami/canny! 300.0 100.0 3 true)

 (origami/bitwise-not!)

 (origami/imwrite filename)))

Finally, you call the OpenCV transformation on the file retrieved from

the chat, by calling the previously defined apply-cv function and the

downloaded file.

(defhandler handler

 (message-fn

 (fn [{{id :id} :chat :as message}]

 (let [fid (-> message :photo last :file_id)

filename (str fid ".png")]

 (api/download-file token fid)

 (apply-cv filename)

 (api/send-photo token id (clojure.java.io/as-file

filename))))))

Chapter 7 Week 7: Clojure

158

The rest of the story is one more picture being uploaded in the chat.

You can see it in action in Figure 7-10.

Figure 7-10. Applying the OpenCV transformation directly from the
bot handler

Chapter 7 Week 7: Clojure

159© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4_8

CHAPTER 8

Week 8: Java
Coffee is a language in itself.

—Jackie Chan

In this chapter, we are going to tackle a Telegram bot in Java. The API in

Java is not as bad as it looks, and debugging Java code in Visual Studio

Code also works slightly better than expected.

The project will use the Java de facto build tool, Gradle. The library will

be the java-telegram-bot-api.

Telegram is now proposing a payment API, so you can start selling stuff

directly through Telegram. This is especially effective for selling services.

While the first part of this chapter will revisit the basics, we will then

implement a bot that responds to the challenges of using the Telegram

Payment API and create an example of the full payment life cycle.

 Installation
Apart from Apache Maven, Gradle is the de facto build tool in Java land. It’s

actually the main build tool for building Android applications.

You can manually download and install Gradle on your machine, by

downloading binaries available through the different package managers.

The Gradle web site (https://gradle.org/install/) has an extensive

section on how to install the software.

https://gradle.org/install/

160

sdkman is nice to use these days:

sdk install gradle 4.10.2

Homebrew is the standard on macOS.

brew install gradle

Chocolatey is the standard on Windows.

choco install gradle

Once installed, you can check whether you have the most recent version

available, which, for Gradle, at the time of writing, was version 4.10.2

$ gradle -v

Welcome to Gradle 4.10.2!

Here are the highlights of this release:

 - Incremental Java compilation by default

 - Periodic Gradle caches cleanup

 - Gradle Kotlin DSL 1.0-RC6

 - Nested included builds

 - SNAPSHOT plugin versions in the `plugins {}` block

For more details see https://docs.gradle.org/4.10.2/release-

notes.html

--

Gradle 4.10.2

--

Build time: 2018-09-19 18:10:15 UTC

Revision: b4d8d5d170bb4ba516e88d7fe5647e2323d791dd

Kotlin DSL: 1.0-rc-6

Kotlin: 1.2.61

Chapter 8 Week 8: Java

161

Groovy: 2.4.15

Ant: Apache Ant(TM) version 1.9.11 compiled on

March 23 2018

JVM: 1.8.0_171 (Oracle Corporation 25.171-b11)

OS: Mac OS X 10.13.6 x86_64

 The Project Structure
A Java project using Gradle is mostly made of the build.gradle file, which

contains metadata and build information that Gradle can understand and

source files located in src/main/java (by default).

.

├── build.gradle
├── resources
│ ├── cat.jpg
│ └── token
└── src
 └── main
 └── java
 └── com
 └── hellonico
 ├── Invoice.java
 └── MyMain.java

6 directories, 5 files

 The build.gradle file
Gradle is quite versatile, and you can build pretty much anything with it.

In our case, we are going to build a Java project, so we will use the Gradle

plug-in for Java, with a few standard settings used for compilation, such as

the file encoding and compilation compatibilities.

Chapter 8 Week 8: Java

162

Dependencies are defined in the dependencies section, each of them

identified by the following format:

<group>:<name>:<version>.

If you do not remember the dependency format, you can search and

find any Java dependency on mvnrepository.com, as shown in Figure 8-1.

Here is the content of the build.gradle file:

apply plugin: 'java'

sourceCompatibility = 1.8

targetCompatibility = 1.8

Figure 8-1. Details for java-telegram-bot-api from
MvnRepository

Chapter 8 Week 8: Java

163

compileJava {

 options.encoding = "UTF-8"

}

repositories {

 jcenter()

}

dependencies {

 compile 'com.github.pengrad:java-telegram-bot-api:4.1.0'

 compile 'com.sparkjava:spark-core:2.2'

 compile 'org.jsoup:jsoup:1.8.3'

 compile 'io.reactivex:rxjava:1.0.16'

}

apply plugin: 'application'

mainClassName = "com.hellonico.Simple"

The last two lines of the application plug-in and the mainClassName

are not required, but they help, if you want to start your program simply by

using

gradle run

For example, given the following simple Java class and program:

package com.hellonico;

public class Simple {

 public static void main(String[] args) {

 System.out.println("hello nico");

 }

}

Chapter 8 Week 8: Java

164

if you execute the run command, the program will execute, and the

following output will be shown in the terminal or command prompt:

$ gradle run

> Task :run

hello nico

BUILD SUCCESSFUL in 1s

2 actionable tasks: 2 executed

This will execute the main method of the com.hellonico.Simple

class. More on the application plug-in can be found on the Gradle web site

 (https://docs.gradle.org/current/userguide/application_plugin.

html).

 Visual Studio Code Setup
Because I have suggested using Gradle as the build tool for the chapter on

Java, Visual Studio Code can recognize the build tool and set up the project

with a close-to-perfect integration, using Java tooling.

The main plug-in for Java is shown in Figure 8-2 and can be installed

through the usual Visual Studio Code marketplace.

Figure 8-2. Visual Studio Code Java plug-in

Chapter 8 Week 8: Java

https://docs.gradle.org/current/userguide/application_plugin.html
https://docs.gradle.org/current/userguide/application_plugin.html

165

The same simple Java class that was written above yields the result

shown in Figure 8-3.

You now see two icons with which to run and debug your code. They

will be useful when you write the Telegram bot.

To try it now, click Run, which executes the program and shows the

proper output on the Visual Studio Code console (Figure 8-4).

 First Java Bot
Our first Java bot will send some text and a photo, just to make sure the full

Java setup is working. The bot will be initialized with the token loaded from

a resources/token file, in which you should paste the token of your bot.

Along the way, you will probably find that the Java imports are a bit

hard to find, but they can be auto-imported using Visual Studio Code

Organize Imports, as shown in Figure 8-5.

Figure 8-3. hello nico Java program

Figure 8-4. Running Java from Visual Studio Code

Chapter 8 Week 8: Java

166

Probably the most difficult part of the code for this first bot is the

following line:

bot.setUpdatesListener(new UpdatesListener() {..}

This is where you tell the bot to poll and listen for updates. In its

simplest form, the bot code is as follows:

package com.hellonico;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.util.List;

import java.util.stream.Collectors;

import com.pengrad.telegrambot.TelegramBot;

import com.pengrad.telegrambot.UpdatesListener;

import com.pengrad.telegrambot.model.Update;

public class Main {

 public static String streamFile_Buffer(String file) throws

Exception{

 BufferedReader reader =

new BufferedReader(new FileReader(file));

 return reader

.lines()

.collect(Collectors.joining(System.lineSeparator()));

 }

Figure 8-5. Organize Imports

Chapter 8 Week 8: Java

167

 public static void main(String[] args) throws Exception {

 TelegramBot bot =

new TelegramBot(streamFile_Buffer("resources/token"));

bot.setUpdatesListener(new UpdatesListener() {

@Override

 public int process(List<Update> updates) {

 System.out.println(updates.toString());

 // DO SOMETHING HERE.

 return UpdatesListener.CONFIRMED_UPDATES_ALL;

 }

 });

 }

}

 Send Some Text
Our first interaction will be to send some text to the chat. You can navigate

through update messages from Telegram just as with other languages.

You’ll find the usual messages with the same structure seen to now.

[Update{update_id=573518674, message=Message{message_id=956,

from=User{id=121843071, is_bot=false, first_name='Nico', last_

name='Nico', username='hellonico', language_code='en-JP'} ,

date=1537602748, chat=Chat{id=121843071,..

From there, we can obtain the chat id

int id = updates.get(0).message().chat().id().intValue();

and send a message back to the chat room. Note that we are using bot.

execute with a request and a callback, so the result is asynchronous.

Chapter 8 Week 8: Java

168

SendMessage requestText =

new SendMessage(id, "*hello from java*").parseMode(ParseMode.

Markdown);

bot.execute(requestText, new Callback<SendMessage,

SendResponse>() {

@Override

public void onResponse(SendMessage request, SendResponse

response) {}

@Override

 public void onFailure(SendMessage request, IOException e) {}

});

Before starting the bot, you must organize the imports or complete the

list manually. The full list is shown following and should be located at the

top of the source file.

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.util.List;

import java.util.stream.Collectors;

import com.pengrad.telegrambot.Callback;

import com.pengrad.telegrambot.TelegramBot;

import com.pengrad.telegrambot.UpdatesListener;

import com.pengrad.telegrambot.model.Update;

import com.pengrad.telegrambot.model.request.ParseMode;

import com.pengrad.telegrambot.request.SendMessage;

import com.pengrad.telegrambot.response.SendResponse;

Start the bot by clicking Run or Debug, which give some markdown

formatted text in the chat (Figure 8-6).

Chapter 8 Week 8: Java

169

 Send a Photo
Sending a photo is as easy as sending text, and this time, we will use the

synchronous version of sending the request to Telegram. Because the code

is not asynchronous anymore, failures are not handled in the onFailure

callback that was available in the asynchronous version. So, it’s a good idea

to surround the request by a try/catch block.

SendPhoto requestPhoto = new SendPhoto(id, new File("resources/

cat.jpg"));

try {

SendResponse response = bot.execute(requestPhoto);

} catch (Exception e) {

e.printStackTrace();

}

And the cat picture is sent to the chat, as shown in Figure 8-7.

Figure 8-6. Your Java bot is running!

Chapter 8 Week 8: Java

170

Now let’s try to generate an invoice and do some payment with a

Java bot.

 Bot with Invoice Capabilities
Telegram has added a Payment API to accept payment directly from a chat

room. This is a truly wonderful setup for sending money, and transactions

in the services field will greatly benefit from its expansion.

 Asking Permission
Before using these capabilities, you must obtain permission, again from

the almighty BotFather, by changing the Payments settings of your bot (see

Figure 8-8).

Figure 8-7. The cat is back!

Chapter 8 Week 8: Java

171

After payment settings for the bot have been updated, BotFather will

give you a payment token, as shown in Figure 8-9.

Note here that another token is given to you. This is the token you will

have to use when sending invoice messages.

Figure 8-8. Payment section in the bot settings of BotFather

Figure 8-9. Payment details have been updated

Chapter 8 Week 8: Java

172

Along the way, you will have to set up a payment account with your

favorite provider. Here, we are using Stripe and testing its capabilities, as

shown in Figures 8-10 and 8-11.

Figure 8-10. Stripe setup

Figure 8-11. Stripe dashboard

Chapter 8 Week 8: Java

173

If the setup has completed properly, you well get the confirmation

from the Stripe Test Bot, as shown in Figure 8-12.

Now your bot can send invoice messages and attempt to get money

from people talking to it.

 Sending an Invoice Message
In the same vein as sending a photo or text, you can send invoices to the

chat, using a SendInvoice message.

SendInvoice sendInvoice

= new SendInvoice(id, "Lemon", "desc", "hello","2846850

63:TEST:NDBlMjliMGM2YmQ0", "my_start_param", "JPY", new

LabeledPrice("label", 2000))

.needPhoneNumber(false)

.needShippingAddress(false)

Figure 8-12. Stripe Test Bot connected

Chapter 8 Week 8: Java

174

.isFlexible(true)

.replyMarkup(new InlineKeyboardMarkup(new InlineKeyboardButton[]

{ new InlineKeyboardButton("just pay").pay(),

new InlineKeyboardButton("google it").url("www.google.com") }));

Again, you can execute the query synchronously or asynchronously. It

is recommended that you avoid blocking the execution on the main thread.

// sync version

SendResponse response = bot.execute(sendInvoice);

// async version

bot.execute(sendInvoice, new Callback<SendInvoice, SendResponse>() {

@Override

public void onResponse(SendInvoice request, SendResponse

response) {}

 @Override

 public void onFailure(SendInvoice request, IOException e) {}});

The payment can only be made using the mobile version of the

Telegram app, to which users will also have to provide their shipping

details (Figure 8-13).

Figure 8-13. Invoice me lemons

In this step, clicking just pay will get the payment bot to send a request

for shipping query. (Actually, only if .isFlexible (true) has been set.)

At this stage, we can send a few options for the shipment and send

them back to the chat.

Chapter 8 Week 8: Java

175

ShippingQuery shipping= updates.get(0).shippingQuery();

if (shipping!= null) {

 ShippingOption option =

new ShippingOption("fedex", "FedEx", new LabeledPrice("JOY", 2000));

 AnswerShippingQuery query =

new AnswerShippingQuery(shipping.id(), option);

 bot.execute(query);

 return UpdatesListener.CONFIRMED_UPDATES_ALL;

}

The shipment options will then show up in the chat, as shown in Figure 8-14.

Figure 8-14. Shipping options

Chapter 8 Week 8: Java

176

Figures 8-15 and 8-16 show the process for filling in the remaining info

of the payment process.

Figure 8-15. Full checkout screen

Chapter 8 Week 8: Java

177

Finally, the payment bot will send a request to your bot for pre-

checkout, with all the payment details. You have to answer this request

from the bot as fast as you can, and actually ten seconds is the max time

limit, or the payment will be canceled.

Completion of the transaction is done by sending a PreCheckoutQuery

with the query id, when a preCheckoutQuery element is received.

Figure 8-16. Transaction validation

Chapter 8 Week 8: Java

178

PreCheckoutQuery query = updates.get(0).preCheckoutQuery();

if (query != null) {

 AnswerPreCheckoutQuery apcq = new AnswerPreCheckoutQuery

(query.id());

 bot.execute(apcq);

 return UpdatesListener.CONFIRMED_UPDATES_ALL;

}

Figure 8-17 shows the chat after the payment has been completed.

Figure 8-17. Payment complete

Chapter 8 Week 8: Java

179

On the Stripe dashboard, in the payment section, after enabling

test data, you can see the different orders coming through, as shown in

Figure 8-18.

That was quite smooth. That’s it for the full payment process life cycle

in Java. Now it’s your turn to start selling lemons…and become rich!

Figure 8-18. Stripe test logs

Chapter 8 Week 8: Java

181© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4_9

CHAPTER 9

Week 9: Go
I have nine armchairs from which I can be critical.

—Rick Moranis

Go was originally created by people who were not too fond of the C++

programming language. Go is a strongly typed and compiled language,

which aims mostly at being both easy to learn and fast to execute. Go is

also one of the few languages to have a fantastic logo!

The logo, shown in Figure 9-1, was designed by Renée French, and

I understand that I can use it here, as she is credited.

Figure 9-1. Gopher, Renée French’s logo for the Go language

http://reneefrench.blogspot.com

182

In this chapter, I will review how to install the Go binary, followed by

first steps and basic Go samples, before moving on to writing a Telegram

bot and, finally, writing a command-line binary to send different Telegram

objects via the API.

 Installation of Go
To download Go, you can use the prepackaged version from the Go web

site, located at https://golang.org/dl/. Most platforms have an option

available for download, as shown in Figure 9-2.

Your favorite package manager should also have the Go package

available.

On Linux/Manjaro

-S go

on macOS

brew install go

on Windows

choco install golang

Once installed, you should check with the version subcommand

whether you have a relatively current version.

Figure 9-2. Go packages for your preferred platform

Chapter 9 Week 9: Go

https://golang.org/dl/

183

Current version

$ go version

go version go1.11 linux/amd64

It is usually recommended that you create a GOPATH variable, which is

used so that your Go packages can be downloaded and stored in a known

place.

export GOPATH=$HOME/go

Visual Studio Code has a plug-in for Go, and to install it, it is

recommended that you follow this recipe. There are multiple plug-ins for

Go, but the one from Microsoft is very solid and is shown in Figure 9-3.

The Go-related tasks.json for the Visual Studio Code build tasks,

and its Command+Shift+B shortcut, required to execute code from within

Visual Studio Code, is written following, for convenience.

{

 "version": "2.0.0",

 "tasks":

Figure 9-3. The Go plug-in for Visual Studio Code

Chapter 9 Week 9: Go

184

 [

 {

 "label": "letsgo",

 "command": "go",

 "args": [

 "run",

 "${file}"

],

 "options": {

 "cwd": "${workspaceRoot}"

 },

 "group": {

 "kind": "build",

 "isDefault": true

 }

 }

]

 }

From the tasks.json file, you’ll notice that the command to build a Go

program is go run<filename>.

Now, let’s move on to the first Go program.

 Let’s Go
The basic structure of a program in Go is separated into three main blocks.

• The package definition, done with package

• The imports, all defined in one block

• The main function that gets executed when running the

go run command

Chapter 9 Week 9: Go

185

We’ll start our Go adventures with a program that will read text from a

file. This technique will be reused for reading a token for our bot, later in

this chapter.

The project structure for a Go project relies on a folder with only one

main function and a selection of Go source files, each ending with the .go

extension. Our first setup will have a reading.go file to write the go source

code and a text file, file.txt, to read sample text from.

$ tree

.

├── file.txt
└── reading.go

0 directories, 2 files

Now on to the Go code itself. As presented in the preceding bulleted

list, the source file has three sections, starting with the package definition.

You’ll also notice that if you forget to write the package definition, the

Visual Studio Code plug-in will automatically add it for you on saving.

There are two imports we are going to use:

• io/ioutil, to read the file content

• fmt, which is quite classic, to print on the standard

output

With the help of auto-completion, it’s easy to browse your way through

the different packages in Go, as shown in Figure 9-4.

Chapter 9 Week 9: Go

186

Before going on and explaining the main function, let’s copy and paste

the following code in the reading.go file and execute the code first.

package main

import (

 "fmt"

 "io/ioutil"

)

func main() {

 b, err := ioutil.ReadFile("file.txt")

 if err != nil {

 fmt.Print(err)

 }

Figure 9-4. Importing packages through completion in Visual Studio
Code

Chapter 9 Week 9: Go

187

 str := string(b)

 fmt.Println(str)

}

Now open the folder containing the reading.go and file.txt files and

use the Visual Studio Code build command defined during the installation

process, as shown in Figure 9-5.

So, the file does not contain a token yet, but it does contain some

text that was read by the program from the main function. What was the

function doing, by the way?

First, we used ReadFile from the ioutilgo package, to open and read

the full contents of file to an array of bytes.

b, err := ioutil.ReadFile("file.txt")

Figure 9-5. Our first Go program reads content from a file

Chapter 9 Week 9: Go

188

ReadFile actually returns two values, one for the content of the file

in bytes, and one in case an error has occurred while reading those bytes

from the file. As you can see, Go makes it easy to assign the returned results

to multiple variables.

Now, let’s see if an error occurred, by checking whether err is nil. If

it’s not, let’s use fmt and its Print function, to display the content of the

err variable itself in the standard output.

if err != nil {

fmt.Print(err)

}

If the code has executed till this if statement, we’re in pretty good

shape. Let’s convert the byte content returned by ReadFile to a string and

display the content of the string, again using fmt’s Println.

str := string(b)

fmt.Println(str)

Great. We’re all set up, and our first Go program executed properly.

Note here that you can generate a binary file from all the source files

contained in this folder, using the build subcommand of Go.

Gobuild comes in two forms, one for which you specify the file name

and one for which you don’t. It is usually better to separate projects into

different folders and use the version of the build command without the

parameter.

go build

After you execute the command, a new file, called go1, will be

generated in the project’s folder, as shown in Figure 9-6.

Chapter 9 Week 9: Go

189

Also note that the file name of the generated binary is by default the

name of the folder containing the code, not the Go source file containing

the main function.

Let’s quickly confirm that the binary works as expected.

$./go1

I contain a token

If you move one folder up, in the folder in which the file.txt is not

present, you can also confirm that the program crashes and displays an

error message, the one from the if block checking for err.

$./go1/go1

open file.txt: no such file or directory

Sweet! Let’s move to Fib now!

Figure 9-6. The executable binary go1 generated by the build
command

Chapter 9 Week 9: Go

190

 Let’s Fib
For this Fibonacci Go program, we will be using the recursive route. This

implementation brings four new procedures, compared to the first simple

program we just executed.

First, we’ll define a new function separated from main, named Fibonacci,

which will simply call itself recursively with different parameters, n-1 and

n-2. Then, we will implement the main function that will retrieve the first

parameter that is being sent to the program. We’ll then convert its value from

a string to an integer, using a function named Atoi from the strconv package.

Last, we’ll call the Fibonacci function with the integer parameter and print

the result of the call to the Fibonacci function in the standard output.

The Go code snippet is as follows:

package main

import (

 "fmt"

 "os"

 "strconv"

)

// Fibonacci computes fibonacci by recursion

func Fibonacci(n int) int {

 if n <= 1 {

 return n

 }

 return Fibonacci(n-1) + Fibonacci(n-2)

}

func main() {

 i, _ := strconv.Atoi(os.Args[1])

 fmt.Println(Fibonacci(i))

}

Chapter 9 Week 9: Go

191

The code is relatively easy to follow at this stage, the main point being

the conversion of the parameter to an integer. os.Args retrieves the array

of parameters, which starts at 0 with the command path itself. Note that if

you try to print the parameter at index 0 with

fmt.Println(os.Args[0])

you’ll get the automatically generated path from Visual Studio Code.

/var/folders/8g/42979vpd0ml_ly722rgl3x780000gp/T/go-

build290797788/b001/exe/fib

Looking a bit more closely at the main function, you’ll see that the

conversion done with Atoi also returns two parameters and that you can

also ignore the case in which there is an error, with the symbol _. If you try

to type in a variable name but do not use it, the Go compiler will complain,

as shown in Figure 9-7.

In Visual Studio Code, if you want to build and avoid hard-coding the

parameters in the code itself, you can update the tasks.json a little, as

shown in Figure 9-8.

Figure 9-7. In Go, you cannot declare a variable and not use it

Chapter 9 Week 9: Go

192

You can, of course, use go build to compile and run from the

command line as well.

$ go build

$ ls

fib.go go2

$./go2 10

55

$./go2 100

... wait for ever

Recursive Fibonacci does not seem to be so performant. But I’ll let you

implement a faster version on your own and move on to the Telegram bot.

Figure 9-8. Add 10 as a parameter to the program, to execute from
within the Visual Studio Code

Chapter 9 Week 9: Go

193

 First Bot in Go
The Go language has one of the best libraries to interact with the Telegram

Bot API. Its name is telebot, and you can find it on GitHub at https://

github.com/tucnak/telebot#overview.

You don’t really have to download it, because the Go command line

can do that for you with the get subcommand. To install telebot on your

local machine, use the following command:

go get -u gopkg.in/tucnak/telebot.v2

-u tells the go get command to connect to the network and look for

updates if needed.

The code to follow is building on the two first examples of this chapter.

In this first bot, we’ll

• Require the telebot library

• Read the token from a file

• Use this token to initialize a polling bot

• Add a basic handler for the bot command

Note how you can give a prefix to the packages imported. The

command below shows both the package name to be imported and the

prefix used for all the functions, here, telegram.

telegram "gopkg.in/tucnak/telebot.v2"

You’ll also note that the auto-completion from Visual Studio Code

gives you a clean and convenient visual access to the functions exposed by

the telebot library, as shown in Figure 9-9.

Chapter 9 Week 9: Go

https://github.com/tucnak/telebot#overview
https://github.com/tucnak/telebot#overview

194

In the upcoming code listing, there are mainly two new constructs

that you have not really seen before. First is the fact that you can assign a

reference to a custom data type, or struct, instead of referencing the struct

itself, using the & sign (ampersand).

Poller: &telegram.LongPoller{Timeout: 10 * time.Second}

You use a pointer instead of a struct literal in mostly two situations:

• When the struct is big and you pass it around

• When the struct is meant to be shared, that is, all

modifications affect the struct, instead of affecting

the copy

The second new piece of code relates to the definition of a callback

using an anonymous function. In this case, you get a pointer to a Telegram

message object, instead of passing a copy of the message.

Figure 9-9. Familiar APIs and constructs

Chapter 9 Week 9: Go

195

 bot.Handle("/hello", func(m *telegram.Message) {

 // implement logic here

 })

Now that the hard parts are over, there it is: our first bot in Go. It will

answer “hello go” whenever a /hello command is sent to the chat.

package main

import (

 "io/ioutil"

 "log"

 "time"

 telegram "gopkg.in/tucnak/telebot.v2"

)

func main() {

 token, _ := ioutil.ReadFile("token")

 bot, err := telegram.NewBot(telegram.Settings{

 Token: string(token),

 Poller: &telegram.LongPoller{Timeout: 10 * time.Second},

 })

 if err != nil {

 log.Fatal(err)

 return

 }

 log.Println("Starting GO bot")

 bot.Handle("/hello", func(m *telegram.Message) {

 bot.Send(m.Sender, "hello go")

 })

 bot.Start()

}

Chapter 9 Week 9: Go

196

If you execute from Visual Studio Code (Command+Shift+B) or from

the command line (after gobuild), you will get a message that the bot is

starting, as shown in Figure 9-10, and the bot answers properly, as shown

in Figure 9-11.

The rest of the telebot documentation is well-organized, and you can

refer to it for more details. For convenience, the main handlers that can be

used to capture different types of messages are shown following:

b.Handle(tb.OnText, func(m *tb.Message) {

 // all the text messages that weren't

 // captured by existing handlers

})

b.Handle(tb.OnPhoto, func(m *tb.Message) {

 // photos only

})

b.Handle(tb.OnChannelPost, func (m *tb.Message) {

 // channel posts only

})

Figure 9-11. hello go

Figure 9-10. Starting the Go bot

Chapter 9 Week 9: Go

197

b.Handle(tb.Query, func (q *tb.Query) {

 // incoming inline queries

})

 Just Sending Pictures
The second example will not create a polling bot but actually send a

picture to a given user, using parameters passed from the command line.

As you remember, in downloading files from the Telegram API, there is a

bit of magic between filepath and fileid, etc. telebot has a very clean

implementation to handle these files and media files properly, without

doing the job twice.

Within the telebot documentation, examples show how to read from

disk, or read document from a URL, filling in photo or video Go structs, as

required.

p := &tb.Photo{File: tb.FromDisk("chicken.jpg")}

v := &tb.Video{File: tb.FromURL("http://video.mp4")}

Once the media object is created, you can send it through the

SendAlbum function. Following is an example of sending a group a photo

and a video via the chat.

msgs, err := b.SendAlbum(user, tb.Album{p, v})

We’ll make use of these functions to create an object and send it to

the chat.

When calling our program, we’ll require two parameters.The id of the

user will be the first parameter for which we’ll use the already seen os.

Args and convert the id to an integer, per the User struct.

idd, _ := strconv.Atoi(os.Args[1])

Chapter 9 Week 9: Go

198

We then create a user using the User struct and only fill the ID field of

the user.

user := telegram.User{ID: idd}

Then, to load the photo, we’ll use the telegram.Photo struct, with the

second parameter of the program, again retrieved via os.

p := &telegram.Photo{File: telegram.FromDisk(os.Args[2])}

Finally, as was shown in the documentation, the SendAlbum function

makes use of both the user and the photo prepared structs to send the

media object to the Telegram bot.

Here is the full listing for the picture-sending program.

package main

import (

 "io/ioutil"

 "os"

 "strconv"

 telegram "gopkg.in/tucnak/telebot.v2"

)

func main() {

 token, _ := ioutil.ReadFile("token")

 bot, _ := telegram.NewBot(telegram.Settings{Token:

string(token)})

 idd, _ := strconv.Atoi(os.Args[1])

 user := telegram.User{ID: idd}

p := &telegram.Photo{File: telegram.FromDisk(os.Args[2])}

 bot.SendAlbum(&user, telegram.Album{p})

}

Chapter 9 Week 9: Go

199

After pre-compiling the code within Visual Studio Code, you can build

the program using the go binary on the command line.

go build

Finally, execute the newly created binary to send arbitrary photos to

the chat rooms.

./thirdbot <user_id><picture_filename>

And see in Figure 9-12 how the picture appears, without the user

having sent a message previously.

Figure 9-12. Picture sent from the bot

Chapter 9 Week 9: Go

201© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4_10

CHAPTER 10

Week 10: Elixir
Clarity in my cup. Transparency of my soul. Lucidity of myself.

Elixir of the ages. Tea makes us all sages.

—Dharlene Marie Fahl

Elixir (https://elixir-lang.org/) is a programming language that has a

syntax very similar to Ruby but runs on the highly distributed Erlang VM.

The Erlang VM was developed by Ericsson and has been around for

ages, since 1986 to be exact, and over time has proven its resilience across

heterogeneous and highly concurrent environments. Usually, Erlang is

used for programs that require the following:

• Distribution

• Fault-tolerance

• (Soft) real-time capabilities

• Highly available nonstop applications

• Hot swapping

Two main features fall under Erlang:

• The Erlang runtime, or the virtual machine (VM)

• The Erlang programming language

https://elixir-lang.org/

202

Because I do not want this chapter to be only a series of bullet points,

I’m going to focus on the Erlang runtime—the virtual machine, not

the language. To code on the Erlang VM, we will use prefaced Elixir, a

language that has a lower learning curve but exposes strong functional

programming concepts as well (see Figure 10-1 for a nice logo).

Just as with Clojure, Elixir comes with an environment that is well

prepared to being edited as a read-eval-print-loop (REPL) or line by line,

so you will encounter a bit of both in this chapter. And, as written in the

forum,

There’s no time like the present to jump into Elixir—the func-
tional language that’s taking the programming world by
storm.

Let’s move on to installing Elixir.

 Installation
The Elixir installation page can be found at https://elixir-lang.org/

install.html. The link describes every possible way of installing the tools

for Elixir, from macOS, Linux, and Windows all the way to Raspberry Pi and

Docker.

#macOS with homebrew

brew install elixir

Figure 10-1. Elixir logo

Chapter 10 Week 10: elixir

https://elixir-lang.org/install.html
https://elixir-lang.org/install.html

203

manjaro with pacman

pacman -S elixir

chocolatey

cinst elixir

...

Once you are set up, you should have two main commands ready for

you: iex and mix.

$ mix --version

Erlang/OTP 21 [erts-10.0.7] [source] [64-bit] [smp:4:4]

[ds:4:4:10] [async-threads:1] [hipe] [dtrace]

Mix 1.7.3 (compiled with Erlang/OTP 21)

$ iex --version

Erlang/OTP 21 [erts-10.0.7] [source] [64-bit] [smp:4:4]

[ds:4:4:10] [async-threads:1] [hipe] [dtrace]

IEx 1.7.3 (compiled with Erlang/OTP 21)

iex is the interpreter, or REPL, for Elixir, with which you can test and

write your code directly at a prompt. mix is the Elixir project management

and build tool.

 Using iex
Most of iex usage is for executing commands, one by one. Here are a few

examples of Elixir generating output text on the standard output, using the

IO module and reading data from file using the File module.

iex(1)> IO.puts "hello"

hello

:ok

Chapter 10 Week 10: elixir

204

iex(2)> File.read! "secret.key"

** (File.Error) could not read file "secret.key": no such file

or directory

 (elixir) lib/file.ex:319: File.read!/1

iex(2)> File.read! "mybot/secret.key"

"585672177:.."

Once you have finished your iex session, you can end it with Ctrl+C,

followed by abort, to terminate the VM.

iex(7)>

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded

 (v)ersion (k)ill (D)b-tables (d)istribution

 Using mix
mix is the Elixir project management tool. You can create a new project

with it using the new subcommand.

For example, for the following Telegram project, you can generate your

new project with:

$ mix new telegrambot

* creating README.md

* creating .formatter.exs

* creating .gitignore

* creating mix.exs

* creating config

* creating config/config.exs

* creating lib

* creating lib/telegrambot.ex

* creating test

* creating test/test_helper.exs

* creating test/telegrambot_test.exs

Chapter 10 Week 10: elixir

205

Your Mix project was created successfully.

You can use "mix" to compile it, test it, and more:

 cd telegrambot

 mix test

While you’re at it, you may have heard that Elixir has a very good web

framework named Phoenix.

https://phoenixframework.org/

You can generate a ready-to-code project template for Phoenix, using

the phoenix.new subcommand for mix.

For example:

mix phoenix.new hellophoenix

This will generate the project structure for a Phoenix application. This

is beyond the scope of this chapter, but you should definitely have a look if

you are curious to see a modern web framework.

 Running iex with mix
Why would you want to run iex with mix? Because you can have all the

project management done by mix within the REPL, presented by iex,

which means that all your dependencies, configuration, and project code

will be recognized, loaded, and available. The way to do that is by running

the following command on the command line:

iex -S mix

The -S flag here tells iex to load mix, and mix will load itself and the

project defined by the files of the generated mix-based project.

Chapter 10 Week 10: elixir

https://phoenixframework.org/

206

So, in the telegrambot folder that was created a few minutes ago...

$ iex -S mix

Erlang/OTP 21 [erts-10.0.7] [source] [64-bit] [smp:4:4]

[ds:4:4:10] [async-threads:1] [hipe] [dtrace]

Interactive Elixir (1.7.3) - press Ctrl+C to exit (type h()

ENTER for help)

And then you can try to execute code from the files in your project.

iex(1)> Telegrambot.hello

:world

But, by the way, what are all those project files made of?

 Project Structure of a mix Project
mix generated a bunch of files for you, and the directory structure of the

telegrambot folder is shown following.

.

├── README.md
├── config
│ └── config.exs
├── lib
│ └── telegrambot.ex
├── mix.exs
└── test
 ├── telegrambot_test.exs
 └── test_helper.exs

Chapter 10 Week 10: elixir

207

For our purposes, I will focus on describing the following Elixir files:

• config.exs: Your project config, defining keys, and values

• telegrambot.ex: Your own custom code and the entry

point

• mix.exs: The mix project configuration

Note how telegram.ex is the only file to have the .ex extension, to

recognize it as an entry point of the program.

 config.exs
This is one of the places in which you can place the bot token.

use Mix.Config

You can configure your application as:

#

config :telegrambot, key: :value

s#

and access this configuration in your application as:

#

Application.get_env(:telegrambot, :key)

So, in the coming recipes, you can define your token like this:

config :telegrambot, token: "secret_token"

And in an iex session (start with iex -S mix), you can retrieve the

token directly with

iex(1)> Application.get_env(:telegrambot, :token)

"secret_token"

There’s not much else to see in the config file, so on to the project

metadata.

Chapter 10 Week 10: elixir

208

 mix.exs
A shorter version of the file is shown here for convenience.

defmodule Telegrambot.MixProject do

 use Mix.Project

 def project do

 [

 app: :telegrambot,

 version: "0.1.0",

 elixir: "~> 1.7",

 start_permanent: Mix.env() == :prod,

 deps: deps()

]

 end

 ...

 # Run "mix help deps" to learn about dependencies.

 defp deps do

 [

 # {:dep_from_hexpm, "~> 0.3.0"},

 # {:dep_from_git, git: "https://github.com/elixir-lang/

my_dep.git", tag: "0.1.0"},

]

 end

end

Each def in this mix.exs file is an Elixir function. The project function

returns a map of metadata, including app, project version, and the

required minimal Elixir version.

defp is used to define a private Elixir function, and dep() is called only

from the project function, so as to separate dependencies in a section on

its own. We will see dependencies in a few lines.

Chapter 10 Week 10: elixir

209

:app is the name of the file to load from the lib folder. Although

not used in this chapter, you could switch entry points, depending on

environment variables.

You’ll notice here again the way that the Elixir project uses Elixir as the

configuration language. It’s always nice to have consistency all around.

 Dependencies
As you have seen just now, dependencies are defined and listed in the

deps block of the mix.exs file. You will usually find your dependencies on

hexdocs.

https://hexdocs.pm/timex/getting-started.html

Say, for example, that you want to add the timex library to your project,

this is the way to import and use it in your project.

Why timex? Because if you search for a time library on hexdocs.

pm, you’ll find that timex is the first one to pop up. It also has the most

downloads, as shown in Figure 10-2.

Figure 10-2. Never-ending search for time

Chapter 10 Week 10: elixir

https://hexdocs.pm/timex/getting-started.html

210

Navigating to the timex page, you can see the way to add this to your

mix.exs file on the right-hand side (Figure 10-3).

You can now copy the config for mix into mix.exs, where the dep

section of the mix.exs file should now look like the following:

 defp deps do

 [

 {:timex, "~> 3.0"}

]

 end

Once you have done this, you can ask mix to retrieve, download, and

prepare the third-party libraries for you, using mixdeps.get.

Oh, by the way, here’s quick reminder of the mix list of commands

involved in dependencies.

$ mix help | grep deps

mix deps # Lists dependencies and their status

mix deps.clean # Deletes the given dependencies' files

mix deps.compile # Compiles dependencies

mix deps.get # Gets all out of date dependencies

mix deps.tree # Prints the dependency tree

mix deps.unlock # Unlocks the given dependencies

Figure 10-3. timex coordinates

Chapter 10 Week 10: elixir

211

mix deps.update # Updates the given dependencies

mix hex.audit # Shows retired Hex deps for the current

project

mix hex.outdated # Shows outdated Hex deps for the current

project

And so, once you have run deps.get, you can get to know whether

the dependency is properly recognized by your project. See timex in the

dependency tree following.

$ mix deps.tree

telegrambot

└── timex ~> 3.0 (Hex package)
 ├── combine ~> 0.10 (Hex package)
 ├── gettext ~> 0.10 (Hex package)
 └── tzdata ~> 0.1.8 or ~> 0.5 (Hex package)
 └── hackney ~> 1.0 (Hex package)
 ├── certifi 2.4.2 (Hex package)
 │ └── parse_trans ~>3.3 (Hex package)
 ├── idna 6.0.0 (Hex package)
 │ └── unicode_util_compat 0.4.1 (Hex package)
 ├── metrics 1.0.1 (Hex package)
 ├── mimerl 1.0.2 (Hex package)
 └── ssl_verify_fun 1.1.4 (Hex package)

You haven’t been writing code for so long, you must be getting a bit

excited by now. Let’s start an elixir REPL

iex -S mix

Chapter 10 Week 10: elixir

212

and see if timex is properly loaded. now is the timex function to retrieve the

current time in the current time zone, but before using a separate module,

you must use it, as shown following:

$ iex -S mix

iex(1)> use Timex

Timex.Timezone

iex(2)> Timex.now

#DateTime<2018-09-24 02:31:42.450412Z>

Now, let’s have a look at where the coding goes.

 telegrambox.ex
Finally, in the list of files for the project, you have telegrambot.ex, in

which you put all your custom code. As in Ruby, and as in the mix.exs

file, a lot is done with the def module and def. Each def block defines a

function. The default file generated by mixnew is shown as follows, where

Telegrambot has one function.

defmodule Telegrambot do

 def hello do

 :world

 end

end

In an iex session, you would call that function as follows:

iex(1)> Telegrambot.hello

:world

Chapter 10 Week 10: elixir

213

Adding to what we have learned looking at the Timex dependency, we

can use Timex and a new def block to give the time.

defmodule Telegrambot do

 use Timex

 def hello do

 :world

 end

 def timexnow do

 IO.puts Timex.now

 end

end

And at a new iex session,

iex(2)> Telegrambot.timexnow

2018-09-24 02:38:15.954175Z

:ok

 (Back to) Dependencies
Yes, we’re back! You quickly saw how to add dependencies to your project,

but Elixir/mix has this wonderful way of adding dependencies directly from

Git projects as well (and other source control repositories, by the way).

Searching for a library on hex.pm is easy enough (Figure 10-4).

Chapter 10 Week 10: elixir

214

And, yes, the library we want to use for the Telegram bot is the one that

was found, so go to

https://github.com/visciang/telegram

As recommended on the library web site, you can add the library

directly to the mix.exs file, using the Git repository address and a tag, as

follows:

{:telegram, git: "https://github.com/visciang/telegram.git",

tag: "0.5.0"}

By now, your deps block should look like this:

defp deps do

 [

 {:timex, "~> 3.0"},

 {:telegram, git: "https://github.com/visciang/telegram.

git", tag: "0.5.0"}

]

 end

Figure 10-4. Finding a library with Hex

Chapter 10 Week 10: elixir

https://github.com/visciang/telegram

215

Retrieving the dep is again done with mixdeps.get, which will

transparently check out the Telegram project locally for you. The following

mixdeps.tree command confirms that the library is present, and you can

also see the Git repository of Telegram showing up in the output of the

command.

$ mix deps.tree

telegrambot

├── timex ~> 3.0 (Hex package)
│ ├── combine ~> 0.10 (Hex package)
│ ├── gettext ~> 0.10 (Hex package)
│ └── tzdata ~> 0.1.8 or ~> 0.5 (Hex package)
│ └── hackney ~> 1.0 (Hex package)
│ ├── certifi 2.4.2 (Hex package)
│ │ └── parse_trans ~>3.3 (Hex package)
│ ├── idna 6.0.0 (Hex package)
│ │ └── unicode_util_compat 0.4.1 (Hex package)
│ ├── metrics 1.0.1 (Hex package)
│ ├── mimerl 1.0.2 (Hex package)
│ └── ssl_verify_fun 1.1.4 (Hex package)
└── telegram (https://github.com/visciang/telegram.git)
 ├── tesla ~> 1.0 (Hex package)
 │ ├── hackney ~> 1.6 (Hex package)
 │ ├── jason >= 1.0.0 (Hex package)
 │ └── mime ~> 1.0 (Hex package)
 ├── hackney ~> 1.9 (Hex package)
 └── jason ~> 1.0 (Hex package)

Telegram also seems to sometimes require that the dependencies be

recompiled beforehand, and this is done with mix deps.compile (and, if

required, domix deps.clean, also beforehand).

Chapter 10 Week 10: elixir

216

$ mix deps.compile

===> Compiling parse_trans

===> Compiling mimerl

===> Compiling metrics

===> Compiling unicode_util_compat

===> Compiling idna

===> Compiling ssl_verify_fun

===> Compiling certifi

===> Compiling hackney

Now, finally, on to some more fun with mix and Telegram.

 Get Something
In this section, we’ll have a look at sending a few requests to the Telegram

API directly. For authentication, all those calls will be using the bot token.

 GetMe
Let’s try to simply send a request to the Telegram API with our local bot.

You’ll remember the following GetMe method:

https://core.telegram.org/bots/api#getme.

We will send the request from an iex/mix session.

$ iex -S mix

First, we load the token from the configuration file, so make sure you

have your token inserted properly in config/confix.exs at this stage.

iex(1)> token = Application.get_env(:telegrambot, :token)

"585672177:.."

Chapter 10 Week 10: elixir

https://core.telegram.org/bots/api#getme

217

Then we can call the Telegram API, with the token, and the getMe

request.

iex(2)> Telegram.Api.request(token, "getMe")

{:ok,

 %{

 "first_name" => "chapter01",

 "id" => 585672177,

 "is_bot" => true,

 "username" => "chapter01bot"

 }}

Request has gone through, and we can use the usual Telegram User

object, with the bot name and the bot id.

 GetChat
The getChat Telegram function documentation is located at https://

core.telegram.org/bots/api#getchat. Unlike the function getMe,

which can be called without a parameter, getChat requires a chat_id.

Parameters to be sent along the request with the Telegram library are just

appended to the request call.

Let’s see that in action in the same iex session.

iex(8)> Telegram.Api.request(token, "getChat", chat_id: 121843071)

{:ok,

 %{

 "first_name" => "Nico",

 "id" =>1218430..,

 "last_name" => "Nico",

 "photo" => %{

 "big_file_id" =>

"AQADBQADQakxG38tQwcACAox1TIABLM4sAnsmf3pPM4AAgI",

Chapter 10 Week 10: elixir

https://core.telegram.org/bots/api#getchat
https://core.telegram.org/bots/api#getchat

218

 "small_file_id" =>

"AQADBQADQakxG38tQwcACAox1TIABCSohuBN4Zh1Os4AAgI"

 },

 "type" => "private",

 "username" => "hellonico"

 }}

As usual, the response status and the structure are printed in the

output of the session.

 GetFile
You may have noticed a file id in the user profile while calling getChat in

the preceding snippet. Let’s try to retrieve that file, with getfile.

The getfile function details are located in the bot API at

https://core.telegram.org/bots/api#getfile

And so, in the same iex session again, we use the following:

Telegram.Api.request(token, "getFile", file_id:

"AQADBQADQakxG38tQwcACAox1TIABLM4sAnsmf3pPM4AAgI")

{:ok,

 %{

 "file_id" =>

"AQADBQADQakxG38tQwcACAox1TIABLM4sAnsmf3pPM4AAgI",

 "file_path" => "profile_photos/file_10.jpg",

 "file_size" => 35814

 }}

Ah, right…the Telegram API always returns a file path for download

from its web site.

Chapter 10 Week 10: elixir

https://core.telegram.org/bots/api#getfile

219

 Using Elixir’s System
To download the preceding file path, remember the trick used before,

avoiding the need for an additional third-party library. We’ll just use curl,

that should already be installed on the local machine, at this stage.

In Elixir, calling a system command is done with System.cmd. The

HTTP URL to download a file from a file_path is made using the

following rule:

https://api.telegram.org/file/bot<token>/<file_path>

with the file_path of the form: profile_photos/file_10.jpg. That

gives the full listing.

{:ok, res} = Telegram.Api.request(token, "getChat", chat_id:

121843071)

fileId = res["photo"]["big_file_id"]

{:ok, res2} = Telegram.Api.request(token, "getFile", file_id:

"#{fileId}")

System.cmd("curl",

["-O", "https://api.telegram.org/file/bot#{token}/#{res2["file_

path"]}"])

And the author’s profile picture is shown (Figure 10-5).

Figure 10-5. Beach ball, not the OS X one

Chapter 10 Week 10: elixir

https://api.telegram.org/file/bot

220

 SendPhoto
Sometimes it’s not what you can get but what you can give that matters.

Following the same pattern, you can send a picture, using sendPhoto with

the exact same construct.

token = Application.get_env(:telegrambot, :token)

chat_id = 121843071

photo = "cat.jpg"

Telegram.Api.request(token, "sendPhoto", chat_id: chat_id,

photo: {:file, photo})

And provided you have copied the cat.jpg in your project folder, the

usual cat photo is showing in the Telegram chat (Figure 10-6).

You’ve probably realized that all this can run directly from Visual

Studio Code, using the task defined for running .exs file at the beginning of

this chapter. Try it out (Figure 10-7).

Figure 10-6. This is not Marcel, but it is a cat

Chapter 10 Week 10: elixir

221

 Telegram Bot
I’ve exceeded the optimum number of pages for this chapter, so I’ll just

offer a quick look at how to create and run a bot and how to implement a

few commands for this new bot.

 Bot1: Anything Goes
This first bot will send the full data structure of the received update to

the chat. See how the token is passed to the Telegram.Bot library, after

calling use?

defmodule Bot1 do

 use Telegram.Bot,

 token: Application.get_env(:telegrambot, :token),

 username: "chapter01bot",

 purge: true

Figure 10-7. Straight from your editor…

Chapter 10 Week 10: elixir

222

 message do

 request(

 "sendMessage",

 chat_id: update["chat"]["id"],

 text: "Hey! You sent me a message: #{inspect(update)}"

)

 end

end

{:ok, _} = Bot1.start_link()

Process.sleep(:infinity)

The last two lines start the bot in a separate thread and tell the main

thread to sleep forever. See, too, how the request to sendMessage is a repeat

of what was done in the previous section.

 Bot2: Fibonacci
Our second bot will implement a command that can compute Fibonacci

for you and send the result back to the chat. Commands with the Telegram

library are simply defined using command. The command name is the first

parameter of command, followed by possible arguments.

The command block itself has access to the update object coming from

Telegram. Even though you don’t see it so much, Elixir has this functional

program gene under the hood, and most of the calls are done using apply.

This shows particularly where you have to use Enum.at to get the index

of a specific element of a list, here, the first one, so 0.

 command "fib", args do

 {intVal, ""} = Integer.parse(Enum.at(args,0))

 request("sendMessage", chat_id: update["chat"]["id"],

 text: "Fib[#{intVal}] = #{Fib.fib(intVal)}")

 end

Chapter 10 Week 10: elixir

223

Here, Fib is defined in a separate Fib module, as shown in the full listing,

to which a simple recursive Fibonacci implementation has been added.

defmodule Fib do

 def fib(0) do 0 end

 def fib(1) do 1 end

 def fib(n) do fib(n-1) + fib(n-2) end

end

defmodule Bot2 do

 use Telegram.Bot,

 token: Application.get_env(:telegrambot, :token),

 username: "chapter01bot",

 purge: true

 command "fib", args do

 {intVal, ""} = Integer.parse(Enum.at(args,0))

 request("sendMessage", chat_id: update["chat"]["id"],

 text: "Fib[#{intVal}] = #{Fib.fib(intVal)}")

 end

 any do

 IO.puts "not found"

 end

end

{:ok, _} = Bot2.start_link()

Process.sleep(:infinity)

Also, avoid the use of any function at the bottom of this second bot, for

a catch-them-all message.

At last, you can define all other supported messages of the Telegram

API in your new bots, and the list of possible blocks that can go in your bot

are relisted here for convenience, straight from the Telegram library.

Chapter 10 Week 10: elixir

224

 edited_message do

 # handler code

 end

 channel_post do

 # handler code

 end

 edited_channel_post do

 # handler code

 end

 inline_query _query do

 # handler code

 end

 chosen_inline_result _query do

 # handler code

 end

 callback_query do

 # handler code

 end

 shipping_query do

 # handler code

 end

 pre_checkout_query do

 # handler code

 end

In addition, code in the api.ex file has a few more code construct

samples related to keyboard and inline queries.

https://github.com/visciang/telegram/blob/master/lib/api.ex

Chapter 10 Week 10: elixir

https://github.com/visciang/telegram/blob/master/lib/api.ex

225© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4_11

CHAPTER 11

Week 11: Node.js
“The strength of JavaScript is that you can do anything. The
weakness is that you will.”

—Reg Braithwaite

For the sake of completion, this book is also presenting Node.js and

Telegraf, the library to deal with Telegram from Node.js. With Telegraf,

Node.js may have the privilege of being one of the easiest libraries with

which to interact with Telegram.

In this chapter, I will focus mostly on running Telegram Bot on runkit.

com, a cloud service that allows you to have an instance of Node.js running

in the cloud, without installing anything locally, thus reducing the time

required to write and deploy Telegram bots to a matter of minutes.

Running in the cloud also allows us to have the necessary setup

webhook for Telegrams. Basically, webhooks are a replacement for the

Telegram bot polling method you have seen so far with a URL that the

Telegram API will call on a new message, thus avoiding unnecessary

polling traffic. To present a minimal running server that can answer the

POST request from Telegram, we will use the Koa library, a replacement for

ExpressJS, to set up the integration with Telegraf.

Excited? Let’s hit the Node.js road.

226

 Meet RunKit
In this section, you will see how to create a RunKit account, run a first

Node.js program, and then write and publish a simple Koa-based service.

RunKit starts by being a Node.js playground in your browser. You can

access the RunKit the home page at https://runkit.com (Figure 11-1).

RunKit is used to write test code, fetch and display data, share code,

and run server code directly in the cloud.

 Creating an Account
To create an account, you can sign up on runkit.com, using your GitHub

account, or a standard username password combination (Figure 11-2).

Figure 11-1. RunKit home page

Chapter 11 Week 11: Node.js

https://runkit.com

227

Once you are logged in, you can see a simple interface, with a menu

on the left-hand side, mostly to create new playgrounds, and the list of

playgrounds you have (will) created in the center of the page (Figure 11-3).

Figure 11-2. Creating your RunKit account

Chapter 11 Week 11: Node.js

228

If you press the + button on the left-hand side, you are directed to an

empty playground page (Figure 11-4).

Figure 11-3. RunKit personal page

Figure 11-4. RunKit empty playground page

Chapter 11 Week 11: Node.js

229

 First Code on RunKit
From there, it won’t be a surprise that you can just type in whatever

JavaScript code you want to write. So, let’s start by saying hello, as shown in

Figure 11-5.

Executing is done either by clicking the run button or, as indicated,

with shift+return. Each resulting line of the execution is shown following.

Say you want to compute quickly some Fibonacci numbers...You could

either implement this yourself, with a possible implementation shown

following.

function myfibonacci(num) {

 if (num <= 1) return 1;

 return myfibonacci(num - 1) + myfibonacci(num - 2);

}

console.log(myfibonacci(39));

Or you could also require a Node.js library, available through RunKit

(and which you can check at https://npm.runkit.com/).

So, for example, you could simply require a library, for example,

fibonacci-fast, to compute those numbers directly from the playground.

Figure 11-5. Say “hello” with RunKit

Chapter 11 Week 11: Node.js

https://npm.runkit.com

230

var fibonacci = require('fibonacci-fast');

var result = fibonacci.get(39).number.toString();

console.log(result);

The playground will make that library available to your notebook,

without you having to install or download anything. And with or without a

library, it works all the same, as shown in Figure 11-6.

Note how the version that was imported in the notebook is displayed

right next to the require statement.

 A Certain Je Ne Sais Koa
Koa is the next-generation web framework for Node.js. It is built with

what was learned during the Express JS years and is a step easier to

learn and maintain. Koa’s home page can be found at https://koajs.

com/#application.

Figure 11-6. Write it or require it

Chapter 11 Week 11: Node.js

https://koajs.com/#application
https://koajs.com/#application

231

With what you’ve seen of the RunKit playground, you may already feel

that you can require Koa libraries and start a server.

Following is a short snippet taken from the Koa samples:

const Koa = require('koa');

const app = new Koa();

app.use(async ctx => {

 ctx.body = 'Hello World';

});

app.listen(3000);

There are four main steps to creating a simple Koa application.

• Require koa

• Create a new Koa app

• Create an asynchronous handler

• Get the app to listen (on a port)

If you execute the code from the preceding snippet in a new notebook,

you can instantiate a server directly from the browser (Figure 11-7).

Figure 11-7. Running a server on RunKit

Chapter 11 Week 11: Node.js

232

And, yes, this server is already listening to requests. So, if you click

the end point click available in the notebook, you will open a page, with a

temporary URL assigned to your Koa application, with the expected Hello

World message showing up here again (Figure 11-8).

 Publishing Some Koa
Publishing to a temporary URL is fine, but to work with Telegram Bot,

you must have a somewhat permanent and public URL to work with. This

can be achieved in RunKit by using the Publish link. Clicking the link will

show a pop-up dialog asking you for some semantic (!) version of your

application (Figure 11-9).

Figure 11-8. Koa running in the cloud

Chapter 11 Week 11: Node.js

233

And now the Koa application is available at an easy-to-remember

location, in the following form:

https://runkit.io/hellonico/simple-koa/branches/master

You can access it reliably from your browser. Note that you will actually

get redirected to a URL mapped internally by RunKit (see Figure 11-10).

Figure 11-9. Ready to publish, Koa?

Figure 11-10. Published!

Chapter 11 Week 11: Node.js

https://runkit.io/hellonico/simple-koa/branches/master

234

Also, note that the URL is via the HTTPS protocol, which is quite

important, because Telegram does not accept pure HTTP end points.

From here, you should practice some more with Koa and RunKit, and

once you are ready, let’s see how to write a first Telegram bot using RunKit,

Koa, and that mysterious Telegram webhook.

 Telegram Bot with Webhooks
So, first, webhooks...What are they? Webhooks work in the opposite

direction as polling. Where polling is your client bot periodically asking

the Telegram server if any new message has arrived, with webhooks, you

ask the Telegram server to send you an update message whenever a new

message that your bot should know about has been sent to a chat room.

The flow is summarized in Figure 11-11.

Figure 11-11. Polling vs. webhooks

Chapter 11 Week 11: Node.js

235

Knowing this, we just need to know if there is a Telegram Bot API

method to tell about your application end point—and there is one here:

https://core.telegram.org/bots/api#setwebhook

In the following snippet, you can see how the setWebhook function is

used to publicize the URL to the bot API.

const Telegraf = require('telegraf')

const Koa = require('koa')

const koaBody = require('koa-body')

const bot = new Telegraf(process.env.BOT_TOKEN)

bot.on('text', ({ reply }) => reply('The time here is ::'+ new

Date()))

bot.telegram.setWebhook('https://runkit.io/hellonico/koa-bot/

branches/master')

const app = new Koa()

app.use(koaBody())

app.use((ctx, next) => ctx.method === 'POST' || ctx.url === '/

secret-path'

 ? bot.handleUpdate(ctx.request.body, ctx.response)

 : next()

)

app.listen(3000)

Chapter 11 Week 11: Node.js

https://core.telegram.org/bots/api#setwebhook

236

It will show in Koa as in Figure 11-12.

Now, I can explain the two missing pieces of the code. The first

is where we glue the HTTP POST request to the Telegraf bot, using

handleUpdate, which does two things:

• Maps ctx.request.body to the input request for the bot

• Maps ctx.response to the output response from the bot

app.use(koaBody())

app.use((ctx, next) => ctx.method === 'POST' || ctx.url

=== '/secret-path'

 ? bot.handleUpdate(ctx.request.body, ctx.response)

 : next()

)

Figure 11-12. First bot on RunKit

Chapter 11 Week 11: Node.js

237

The second missing piece is similar to other APIs presented in this book.

bot.on('text', ({ reply }) => reply('The time here is ::'+ new

Date()))

Whenever some text arrives to the bot, we have a callback, with a

destructured reply object (prepared by Telegraf), which we can use to send

messages back to the chat. Before running this bot, you will have noticed

that the code requires a token retrieved from the environment that started

the Node.js process.

const bot = new Telegraf(process.env.BOT_TOKEN)

RunKit allows you to do that, by setting environment variables to your

notebooks(yes!).

To access the settings page, navigate to your own RunKit settings page

(Figure 11-13).

Figure 11-13. Settings page

Chapter 11 Week 11: Node.js

238

On that page, there is a section with environment variables, with which

you can set the needed BOT_TOKEN variable to instantiate the Telegraf bot

(Figure 11-14).

Now, you can start the RunKit/Koa/Telegram bot together and start

chatting with your bot as usual (Figure 11-15).

Figure 11-14. Setting the BOT_TOKEN variable with your own token

Chapter 11 Week 11: Node.js

239

 More on the Telegraf Library
I have not yet reviewed the Telegraf library in great detail. As a reminder, its

GitHub URL is the one following:

https://github.com/telegraf/telegraf/

And you will find extensive examples on games and inline keyboards

in its examples folder.

https://github.com/telegraf/telegraf/tree/develop/docs/examples

 Image-to-Chat Example
The image command example is an instant self-gratification win. You can

try this directly in the RunKit bot you have just defined.

const bot = new Telegraf(process.env.BOT_TOKEN)

bot.command('image',

Figure 11-15. Telegraf, with Koa on RunKit bot

Chapter 11 Week 11: Node.js

https://github.com/telegraf/telegraf/
https://github.com/telegraf/telegraf/tree/develop/docs/examples

240

(ctx) =>

ctx.replyWithPhoto({ url: 'https://picsum.

photos/200/300/?random' }))

Once the command is deployed, you can send the /image command to

the bot and get a random picure from the Picsum web site. Note, too, how

replyWithPhoto is used with the URL parameter, to send a picture to the

chat (Figure 11-16).

 RegExp, Inline Keyboards, and Embedded Emojis
Telegraf has this cool embedded feature that allows you to match messages

on RegExp and perform actions depending on those matches. This is

done using a regexp within either a .hears (for messages coming to a chat

group) or .on (message directly sent to the bot) callback.

Figure 11-16. Random photo

Chapter 11 Week 11: Node.js

241

In the following, “like” is searched in group chat messages, and an

inline keyboard shows up.

const { Markup } = Telegraf

const inlineMessageRatingKeyboard = Markup.inlineKeyboard([

 Markup.callbackButton('<', 'like'),

 Markup.callbackButton('=', 'dislike')

]).extra()

bot.hears(/like (.+)/, (ctx) => ctx.telegram.sendMessage(

 ctx.from.id,

 'Like?',

 inlineMessageRatingKeyboard)

)

Actions for callbacks themselves can be defined after. Here, we are

editing the last message, the one with the inline keyboard in place, using

the API function editMessageText.

bot.action('like', (ctx) => ctx.editMessageText('•• Awesome! ••'))
bot.action('dislike', (ctx) => ctx.editMessageText('okey'))

When the code is run, the bot will notify you whenever it finds a

message starting with “like,” as seen in Figure 11-17.

Chapter 11 Week 11: Node.js

242

Note that you can also use the matched pattern, by using match in the

callback.

bot.hears(/reverse (.+)/,

({ match, reply }) => reply(match[1].split(").reverse().

join(")))

Finally, let’s have a look on how to run this bot locally or our own

server.

 Running Node.js Locally
After running all the examples from within RunKit, you may indeed want

to host this somewhere other than RunKit, for example, on your own

machine. For this, we will have to install Node.js.

Figure 11-17. Like me or not?

Chapter 11 Week 11: Node.js

243

 Setting Up Node.js
Installing Node.js is a no-brainer—from either the home page, which has

the necessary packages,

https://nodejs.org/en/

or from your usual package manager.

Also, whereas working with NPM is good enough, these days, the

yarn build tool for Node.js is all the rage, and you can find/install it from

https://yarnpkg.com/en/docs/install#mac-stable.

Once you have it installed, you can start with a few version checks.

$ node -v

v10.4.0

$ yarn -v

1.7.0

$ npm -v

6.2.0

When the tooling is set up, you can download the notebook you

were working on in RunKit, using the download this notebook button

(Figure 11-18).

Figure 11-18. Downloading the RunKit notebook to your machine

Chapter 11 Week 11: Node.js

https://nodejs.org/en/
https://yarnpkg.com/en/docs/install#mac-stable

244

Once you extract the content of the archive, you will see something

similar to Figure 11-19.

 Using Local Tunnel
To run this bot, you could use polling, but let’s try something a bit more

challenging. Whenever you start your Koa application, your application

will begin to bind the listening host to localhost and (usually, by default)

on port 3000.

Wouldn’t it be great if something made this wonderful Koa site

immediately available to the world? That’s where LocalTunnel comes in.

LocalTunnel creates a URL for you, and redirects all requests sent to it to

your locally listening listener.

The installation with NPM is as follows:

npm install -g localtunnel

Then start it with

lt --port 3000

Figure 11-19. Content of mykoa-bot zip file from RunKit

Chapter 11 Week 11: Node.js

245

It will give you a temporary à la Heroku URL, such as the one following:

https://short-cougar-89.localtunnel.me

Then you can tell the Koa app to register this as a webhook.

const Telegraf = require('telegraf')

const Koa = require('koa')

const koaBody = require('koa-body')

const bot = new Telegraf(process.env.BOT_TOKEN)

bot.command('image', (ctx) => ctx.replyWithPhoto({ url:

'https://picsum.photos/200/300/?random' }))

bot.telegram.setWebhook('https://short-cougar-89.localtunnel.me')

const app = new Koa()

app.use(koaBody())

app.use((ctx, next) => ctx.method === 'POST' || ctx.url === '/

secret-path'

 ? bot.handleUpdate(ctx.request.body, ctx.response)

 : next()

)

app.listen(3000)

Chapter 11 Week 11: Node.js

https://short-cougar-89.localtunnel.me

246

In Figure 11-20, we’re back to random images again!

Figure 11-20. Random images from the Telegram bot with the
webhook setup, running via localtunnel

Chapter 11 Week 11: Node.js

247© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4_12

CHAPTER 12

Week 12: Python
Always look on the bright side of life.

—Monty Python

Python is en route to becoming the most widely used programming

language of the 21st century. Hobbyists love it, analysts love it, and even

kids starting to code use Python these days.

With its simple syntax and zillions of available libraries, you can’t go

wrong with Python. Recently, many of these libraries have refocused on

machine learning, AI, data science…so much so that Python, the language,

does not require much of an introduction. That said, here’s one (Figure 12- 1).

Figure 12-1. Hello, Python

248

While I also like Python, a lot of the code is easy to write but harder to

maintain. So, I usually switch to another language, but it’s hard to match

the number of libraries available with Python—OpenCV, TensorFlow…all

come with a first-class Python wrapper.

 Installation
3.6. What is it? 3.6 is the version of Python you want to install. Yes, the

latest version is 3.7, but the TensorFlow library did not support version 3.7

at the time of writing, so you are better off using 3.6. If you really do not

care about the TensorFlow samples, but I hope you do, you can stick to 3.7.

Python itself sometimes comes preinstalled and is already available. If

not, or if the version does not match, or if you’re a Windows lover, you can

download the installer from the following Python download page:

https://www.python.org/downloads/windows/

The Python package manager, pip, will have to be installed as well. You

can perform the installation for that by following the steps here.

https://pip.pypa.io/en/stable/installing/

Or, in short,

download the get-pip.py file(manually if you don't have curl)

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

execute it with the python executable

python get-pip.py

An alternative but recommended method is to install mode for Python

and use a tool named pyenv. pyenv is a small tool that allows you to switch

from one Python tree to another, meaning you can switch from one version

of Python and its libraries to another.

https://github.com/pyenv/pyenv#installation

Chapter 12 Week 12: python

https://www.python.org/downloads/windows/
https://github.com/pyenv/pyenv#installation

249

With pyenv installed, you can now switch from one version of Python

to another in a convenient manner. To check the versions installed, use

pyenv versions.

$ pyenv versions

 system

* 3.6.0 (set by /Users/niko/.pyenv/version)

 3.7.0

 anaconda3-5.0.1

As shown in the preceding and following code snippets, we’re

supporting Python version 3.6 and pip version 18.0. Yes, 3.6, because,

again, the TensorFlow packages were not available for Python 3.7 at the

time of writing.

$ pip --version

pip 18.0 from /Users/niko/.pyenv/versions/3.7.0/lib/python3.7/

site-packages/pip (python 3.7)

But python2 is also perfectly usable, but not much tested in the scope

of this book.

In a new folder for the forthcoming Python script, we can set up the

tasks.json usable by Visual Studio Code.

{

 "version": "2.0.0",

 "tasks": [

 {

 "label": "echo",

 "type": "shell",

 "command": "python",

 "args": [

 "${file}"

],

Chapter 12 Week 12: python

250

 "group": {

 "kind": "build",

 "isDefault": true

 }

 }

]

}

The plug-in to work with Python in Visual Studio Code is shown in

Figure 12-2.

Figure 12-2. Python plug-in for Visual Studio Code

That’s it for the setup. Let’s move on to our first Python program.

 A Few Python Programs
You’ve probably guessed it already, so there’s no need to resist too much.

Let’s work on Fibonacci numbers in Python. What’s great is that we can

go through the examples one by one and learn (new) things about the

language.

 Fibonacci 1
This first implementation goes the recursive way. We define a function fib,

with def, that calls itself.

Chapter 12 Week 12: python

251

Note that the indentation of any Python program is important. So, the

if, elif, and else are all one tab in from the previous indentation, and

the return statements are an additional one tab in from these. If you don’t

respect the indentation, the linter or the syntax checker of Visual Studio

Code will show an error (Figure 12-3).

Figure 12-3. Python is very strict with indentation

With this in mind, here comes the first listing. The function is defined

first, then the print statement, exactly two lines (!), after the function

definition.

def fib(n):

 if n == 0:

 return 0

 elif n == 1:

 return 1

 else:

 return fib(n-1)+fib(n-2)

print(fib(10))

If you run this file with the usual Command/Ctrl+Shift+B build task of

Visual Studio Code, you will see the output of the program in the console

again (Figure 12-4).

Chapter 12 Week 12: python

252

Let’s move on to the second implementation.

 Fibonacci 2
This second implementation works with an internal, and simple, cache to

compute the numbers. This time, we start by adding some documentation

on the fastFib function, right after the def line.

Then we add a new parameter, memo, which will act as a cache. We

add a default value to memo, the start of the Fibonacci sequence, in which

fib[0]=1 and fib[1]=1.

Next, we just past the memo around when calling fastFib recursively.

def fastFib(n, memo={0:1, 1:1}):

 memoized recursive function, returns a Fibonacci number"'

 print('>', n, memo)

Figure 12-4. Executing the Python code in Visual Studio Code

Chapter 12 Week 12: python

253

 if not n in memo:

 memo[n] = fastFib(n-1, memo) + fastFib(n-2, memo)

 return memo[n]

print(fastFib(5))

Because we have the print statements, when you execute the program,

you can see the cache being filled along the way.

> 5 {0: 1, 1: 1}

> 4 {0: 1, 1: 1}

> 3 {0: 1, 1: 1}

> 2 {0: 1, 1: 1}

> 1 {0: 1, 1: 1}

> 0 {0: 1, 1: 1}

> 1 {0: 1, 1: 1, 2: 2}

> 2 {0: 1, 1: 1, 2: 2, 3: 3}

> 3 {0: 1, 1: 1, 2: 2, 3: 3, 4: 5}

8

 Fibonacci 3
This next implementation is fun enough to write in here. We also use a

cache—this time, global—to avoid passing it around, and we just append

element to the ever-growing array. This also shows how to use a for loop

with a range and, finally, how to join all the values of the array using join.

x = [1, 1] # this is an array

for i in range(2, 40):

 x.append(x[-1] + x[-2])

print(', '.join(str(y) for y in x))

Chapter 12 Week 12: python

254

 Fibonacci 4
This new implementation presents tuples, with the zip function. The zip

function returns a list of tuples zip(fn1(), fn2()) that finishes whenever

one of fn1s or fn2s stops returning values. range returns a list of numbers

from 0 to 9, included. This is not so important, but the print statement in

the loop formats the variables to keep the indentation with padding.

The difficult part yields, pun intended, the usage of the keyword yields.

While fib() looks like a function, it is actually a generator.

What is a generator? range(n) is a generator. It returns values from 0 to n.

A generator works like looping over a list.

To implement a never-ending list, a generator of constant values, you

could use the following definition, in which you can picture constant as

(1,1,1,1 …).

def constant():

 a = 1

 while True:

 yield a

range() itself could be simply reimplemented, as in the following

snippet, in which we start with the value 0 and return to a list of n

elements, the list of incremented a’s.

def myrange(n):

 a = 0

 while a < n:

 a=a+1

 yield a

Thus, yield is like returning a list of elements.

So, here comes the implementation of fib using yield. Note that the

list is never-ending, so the loop is never-ending.

Chapter 12 Week 12: python

255

def fib():

 a, b = 0, 1

 while True:

 a, b = b, a + b

 yield a

for index, fibonacci_number in zip(range(20), fib()):

 print('{i:3}: {f:3}'.format(i=index, f=fibonacci_number))

The result of the execution is as follows:

 0: 1

 1: 1

 2: 2

 ...

16: 1597

 17: 2584

 18: 4181

 19: 6765

 Fibonacci 5
The last Fibonacci example in this chapter uses an implementation based

on squared roots. sqrt is the function used to compute square roots, and it

is located in the Math package. So, we’re using import to make it available

to our program.

from math import sqrt

def F(n):

 return ((1+sqrt(5))**n-(1-sqrt(5))**n)/(2**n*sqrt(5))

print(F(100))

Alright, enough Fibonaccis. We’re done with the basics, so let’s write

some Telegram code with Python.

Chapter 12 Week 12: python

256

 First Telegram with Python
To start playing with Telegram, we will use telepot, a Python wrapper for the

Telegram API, which is located at https://github.com/nickoala/telepot.

To install a library for Python, we use pip, the Python package installer.

To install any package, you use

pip install <packagename>

So, to install telepot, we will run the pipinstall with the telepot

package name.

$ pip install telepot

Collecting telepot

...

Installing collected packages: telepot

You’ve now successfully installed telepot-12.7. You have seen it

before, in Visual Studio Code, to pass a token to the process started by the

build task. You can define the environment variable for the token in the

integrated terminal of Visual Studio Code.

This can be done by setting up the terminal.integrated.env.

[youros] key and adding the following into your user settings:

 "terminal.integrated.env.osx": {

 "BOT_TOKEN":

"682216086:AAGeNyQ4jf9sAKuOvWJzKs45i4ui1VgWulk"

}

More on this and the integrated terminal settings can be found in the

following Visual Studio Code documentation:

https://code.visualstudio.com/docs/editor/integrated- terminal

Chapter 12 Week 12: python

https://github.com/nickoala/telepot
https://code.visualstudio.com/docs/editor/integrated-terminal

257

The first example will use telepot to retrieve information on the bot,

using the getMe method call of Telegram. Again, we will run everything

from the Visual Studio Code, as shown in Figure 12-5.

Figure 12-5. Python bot from Visual Studio Code

Alright, so to call the Telegram API, we need to

• Retrieve the token to use for the bot authentication

from an environment variable

• Create an instance of the Telegram wrapper telebot,

using that token

• Call getMe, to use the newly instantiated bot using the

library

Note that we actually do not need to set up pooling or webhooks for

this first program. Environment variables in Python can be retrieved using

the os module. In the os module, there is a global array named environ

that has all the variables passed to the process. We just saw how to define

the BOT_TOKEN variable, so no surprise here.

Chapter 12 Week 12: python

258

A bot object can then be instantiated using telepot.Bot and the token.

Finally, we can call any method of the API we want here, and because we

are retrieving a Python data structure as return value, we use pprint from

the pprint module, to display that as formatted data on the output of the

console. This gives the first snippet, as follows:

import telepot

import os

import pprint

TOKEN = os.environ['BOT_TOKEN']

bot = telepot.Bot(TOKEN)

pprint.pprint(bot.getMe())

empty line

And as you have seen in the screenshot, after executing the program,

you’ll get the info data related to the bot queried.

{u'first_name': u'apress',

 u'id': 682216086,

 u'is_bot': True,

 u'username': u'myapressBot'}

We’re getting there, aren’t we?

 First Bot: Send a Random Photo
Taking on the image example from Chapter 11, we are now going to write

some code to send a picture back to the chat, using the sendPhoto function

from Python’s telepot.

The bot object is instantiated in the same way, but now we will set it to

listen to the messages using the handle callback function. At this point in the

book, the handle function has few secrets. We retrieve the chat_id from the

update and msg, going through a map object or, in Python terms, a dictionary.

Chapter 12 Week 12: python

259

import os

import random

import telepot

from telepot.loop import MessageLoop

def handle(msg):

 chat_id = msg['chat']['id']

 command = msg['text']

 if command == '/image':

 bot.sendPhoto(chat_id, 'https://picsum.

photos/200/300/?random')

bot = telepot.Bot(os.environ["BOT_TOKEN"])

MessageLoop(bot, handle).run_forever()

Start the bot by calling execute, and now we can send the /image

message to retrieve a random image, as was done with Node.js (Figure 12- 6).

Figure 12-6. Sending a message and getting a photo from the Python
bot. check.

Chapter 12 Week 12: python

260

 First OpenCV Bot: Changing the Color Space
of a Picture
OpenCV is one of the treats of coding with Python. Everything is ready for

instant consumption, and in the 21st century, what could be better than

instant consumption?

So, now, we will convert a picture from standard color to a black-and-

white version. This is quite easy to do with opencv.

We’ll start by installing the ready-to-use opencv and then move on to

the code. The recommended means to install the library with Python is, of

course, pip.

pip install opencv-python

The code itself will

• Create a temporary file, using the function

NamedTemporaryFile from the tempfile module

• Read the file_id from the photo object contained in the

Telegram update

• Download the file to a temporary file

• Open the file using opencv’s imread function

• Convert the color of the file using the cvtColor

function

• Write the file to disk again, using opencv’s imwrite

function

• Send the photo, using telepot’s sendPhoto function

again, but this time on a file

Chapter 12 Week 12: python

261

Note, along the way, how we rename the default module from cv2 to cv,

to make it easier to understand that we are using version 3.

import os

import telepot

from telepot.loop import MessageLoop

import pprint

import cv2 as cv

import tempfile

def handle(msg):

 if msg["photo"]:

 chat_id = msg['chat']['id']

 f = tempfile.NamedTemporaryFile(delete=True).name+".png"

 photo = msg['photo'][-1]["file_id"]

 path = bot.getFile(photo)["file_path"]

 bot.sendMessage(chat_id, "Retrieving %s" % path)

 bot.download_file(photo, f)

 p = cv.imread(f)

gray = cv.cvtColor(p, cv.COLOR_BGR2GRAY)

 cv.imwrite(f, gray)

 bot.sendPhoto(chat_id, open(f, 'rb'))

 else:

 print("no photo")

bot = telepot.Bot(os.environ["BOT_TOKEN"])

MessageLoop(bot, handle).run_forever()

The looping part is the same as in the previous example, and so now,

if you start the bot and send a picture, you’ll get something similar to

Figure 12-7.

Chapter 12 Week 12: python

262

Figure 12-7. Colored cat turned gray

 Second OpenCV Bot: Count Faces
Because we have opencv installed and ready to use, we can’t really get away

with not doing an example that picks up and counts the number of faces in

a picture, the most recognizable of all opencv examples. The flow is quite

similar to that in the previous example of changing colors with opencv. This

Chapter 12 Week 12: python

263

time, we will use what opencv calls a classifier, and use it on a grayscale

version of the sent picture. Then we will draw rectangles inside the picture,

by looping over the faces found, using the opencv’s rectangle function.

The detect function will do most of the opencv work, by detecting,

counting, and drawing the faces. Note how the function returns two values

simultaneously again, and how we are assigning them to two values in the

main handle function.

import os

import telepot

from telepot.loop import MessageLoop

import pprint

import cv2 as cv

import tempfile

classifier = cv.CascadeClassifier(cv.data.haarcascades +

"haarcascade_frontalface_default.xml")

def detect(image):

 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

 faces = classifier.detectMultiScale(gray, 1.3, 5)

 count = 0

 for (x, y, w, h) in faces:

 count = count+1

 cv.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 5)

 return image, count

def handle(msg):

 if msg["photo"]:

 chat_id = msg['chat']['id']

 f = tempfile.NamedTemporaryFile(delete=True).name+".png"

 photo = msg['photo'][-1]["file_id"]

 path = bot.getFile(photo)["file_path"]

 bot.download_file(photo, f)

Chapter 12 Week 12: python

264

 p = cv.imread(f)

 hsv, l = detect(p)

 cv.imwrite(f, hsv)

 bot.sendMessage(chat_id, "found %i faces" % l)

 bot.sendPhoto(chat_id, open(f, 'rb'))

 else:

 print("no photo")

bot = telepot.Bot(os.environ["BOT_TOKEN"])

MessageLoop(bot, handle).run_forever()

I’ve tried this bot twice, and while not perfect, it can find quite a few

party people in pictures, as shown in Figures 12-8 and 12-9.

Figure 12-8. Eight party faces!

Chapter 12 Week 12: python

265

Figure 12-9. Seven party faces!

 TensorFlow to Close the Show
You have probably heard about TensorFlow, one of the most famous

machine learning frameworks. Creating your own models and

understanding all the mathematics behind the library is completely

beyond the scope of this book. But because TensorFlow comes as a Python

first, we are going to see a short example of a Telegram bot that uses

TensorFlow to identify the content of pictures.

With TensorFlow, you can train models, using a list of layers (steps),

for something that looks like a memory, a network. You tell this memory to

recognize that this X in input gives this Y in output, or X,Y in input gives Z

in output, and, eventually, that a list of pixels is a cat or a dog.

Chapter 12 Week 12: python

266

You train this memory with a large data set of inputs and outputs, in

this case, images, and then you can reuse this network in the wild. There

are already pretrained models for us, so the following bot will use an

existing set of pictures to train a model and reuse that TensorFlow model.

TensorFlow itself is again installed using pip.

pip install tensorflow

The model and the image classification code is located at

https://github.com/tensorflow/models

And, more specifically,

https://github.com/tensorflow/models/tree/master/tutorials/

image/imagenet

To use this, we are going to first copy the classify_image code and

apply a few modifications to the code, mostly to

• Call it as a library instead of the command line

• Return the prediction—actually, the top best prediction

The diff is provided in the example and as follows:

48c48,54

< FLAGS = None

> class ObjectDict(dict):

> def __init__(self, *args, **kws):

> super(ObjectDict, self).__init__(*args, **kws)

> self.__dict__ = self

>

> FLAGS = ObjectDict({'model_dir':"/tmp/imagenet", 'num_top_

predictions': 1})

>

Chapter 12 Week 12: python

https://github.com/tensorflow/models
https://github.com/tensorflow/models/tree/master/tutorials/image/imagenet
https://github.com/tensorflow/models/tree/master/tutorials/image/imagenet

267

164,167c171

< for node_id in top_k:

< human_string = node_lookup.id_to_string(node_id)

< score = predictions[node_id]

< print('%s (score = %.5f)' % (human_string, score))

> return node_lookup.id_to_string(top_k[0])

The bot is following the opencv examples, in which we get a photo

file and call the TensorFlow model on it, via the classify_image.run_

inference_on_image function on the picture.

import os

import telepot

from telepot.loop import MessageLoop

import tempfile

import classify_image

def handle(msg):

 if msg["photo"]:

 chat_id = msg['chat']['id']

 f = tempfile.NamedTemporaryFile(delete=True).name+".png"

 photo = msg['photo'][-1]["file_id"]

 bot.download_file(photo, f)

 prediction = classify_image.run_inference_on_image(f)

 bot.sendMessage(chat_id, "I think this image is a %s" %

prediction)

 else:

 print("no photo")

classify_image.maybe_download_and_extract()

bot = telepot.Bot(os.environ["BOT_TOKEN"])

MessageLoop(bot, handle).run_forever()

Chapter 12 Week 12: python

268

On running this bot, we can again send pictures and see what it is

guessing. A cat is recognized (Figure 12-10).

Figure 12-10. The classification is even more detailed than “cat”; it’s
“Persian cat”!

Figures 12-11, 12-12, and 12-13 show pretty good image classification,

which you could put to use!

Chapter 12 Week 12: python

269

Figure 12-11. Rabbit?

Figure 12-12. A beagle! How did it guess that right?

Chapter 12 Week 12: python

270

Now it’s time to hit the road with that Tesla and lead the new bot army

that you have created. The fun is all yours from now on.

Figure 12-13. Tesla!

Chapter 12 Week 12: python

271© Nicolas Modrzyk 2019
N. Modrzyk, Building Telegram Bots, https://doi.org/10.1007/978-1-4842-4197-4

Index

A, B
BotFather

edit bots, 3–4
finding, 2
new bot, 5
profile picture, 1–2
search box, 2
start charting, 3
token, 5–6

C
C++

cmake file
commands, 115
compilation, 115–116
download cat

image, 118
folder structure, 113
main.cpp, 114, 117–118
plug-in, Visual Studio

Code, 116–117
running, 118
tgbot-cpp, 114
URL with image, 118

description, 111
echo bot, 119–123
inline keyboard, 123–125
OpenCV bot (see OpenCV bot)

photo bot, 126–127
tgbot-cpp, 111–112

Clojure
core.clj, 139, 143–146
debugging messages,

140, 146–147
development, 135
Hello Leiningen, 136–137
inline handler, 149–150
installation instructions, 136
openjdk, 136
OpenWeather, 150–151, 153–154
Origami bot, 154–158
project.clj, 142–143
project files, 139
project structure, 138–139
REPL, 135, 137
reverse bot, 148–149
Telegram bot, 140
third-party library, 138
token, 146
Visual Studio Code, 141

Crystal
advantages, 37
benchmark code, 41
BotFather commands, 37–38
command bot

/animals command, 54–55
hello command, 53–54

https://doi.org/10.1007/978-1-4842-4197-4

272

send types of messages, 55
telegram_bot, 55

definition, 37
EchoBot, 50–52
embedded development

environment, 40
Fibonacci, 40
installation, 38–39
play command, 39
project creation

build command, 48
init subcommand, 46
mybot.cr file, 47
printing version, 47
shard.yml file, 48–49

Visual Studio Code
access settings, 45
edit, json file, 45
Gerardo Ortega, 43
GitHub query, 46
HTTP client and JSON

parser, 42
Market place, 42
requesting.cr, 41
tasks.json file, 43–44

D
D language

concurrency
shared state, 94–95
std.concurrency, 91–92
threadState, 92–93

dmd command, 87–88
download page, 86–87
dub

dub.json file, 101
dub list, 102
dub run, 103
dubsearch, 104
installing, custom version, 102
logging, 105
source/app.d, 103
tasks.json file, 104
telega, 100

echo text messages, 105–107
features, 85–86
Fibonacci, 98–100
functions, 109
handleUpdate function, 107–108
hello.d file, 87–88
import statements, 87
message, image, document, and

location, 108
plug-in, 88–89
sorting arrays, 95–97
source files, 88, 90
tasks.json file, 89–90
Telegram bots, 100
vibe.d, 86

E
Elixir

Erlang, 201
Fibonacci, 222–224
file_path, 219

Crystal (cont.)

Index

273

getChat, 217–218
getfile, 218
getMe, 216–217
installation

iex, 203–204
mix, 204–205
running iex with

mix, 205–206
tools, 202

logo, 202
mix project

config.exs, 207
dependencies, 209–213,

215–216
hex.pm, 213–214
mix.exs, 208–209
telegrambox.ex, 212–213

sendPhoto, 220–221
system command, 219
Telegram.Bot library, 221–222

F
Fibonacci

Elixir, 222–224
D language, 98–100
Go program, 190–192
Python

def, 250
fastFib, 252–253
for loop, 253
indentation, 251
print statement, 251
range(), 254

sqrt, 255
Visual Studio Code, 251–252
yield, 254
zip, 254

Rust, 64–65

G, H, I
Go

build command, 187–189
description, 181
download, 182
Fibonacci, 190–192
file.txt, 185
first bot

custom data type/struct, 194
familiar APIs and

constructs, 193–194
/hello command, 195
hello go, 196
main handlers, 196
starting, 196
telebot, 193
telegram, 193

go1, 188–189
if statement, 188
logo, 181
packages, 182–183
platforms, 182
plug-in, Visual Studio

Code, 183–184
program structure, 184–185
ReadFile, 187, 188
reading.go file, 185–186

Index

274

sending pictures, 197–199
Visual Studio Code plug-in,

185–186

J
Java bot

code, 166–167
installation

build.gradle file, 161–164
Gradle web site, 159
project structure, 161
version 4.10.2, 160
Visual Studio Code, 164–165

Organize Imports, 165–166
permissions

payment settings, 170–171
Stripe dashboard, 172
Stripe setup, 172
Stripe Test Bot, 173

resources/token file, 165
sending messages, 167–169
sending photo, 169–170
SendInvoice message, 173

payment complete, 178
payment process, 176
query synchronously/

asynchronously, 174
shipment options, 175
shipping details, 174
shipping query, 174
Stripe test logs, 179
transaction validation, 177

K, L, M
Koa application

creating, 231
home page, 230
publishing, 232–234
running, 231–232
samples, 231

N
Nim

asyncdispatch module, 31
cats and dogs, 34–36
first chatbot, “hello”, 31–32
goodmorning.nim file, 23
hello nim world, 20–22
HTTP client

failed execution, 24
Python-like syntax, 23
running, 24
SSL support, 25

installation, 17
packages with Nimble, 29–31
plug-in, Visual Studio Code,

18–19
replying message, 33–34
.vscode/tasks.json file

arbitrary external
command, 26

build task, 27
content of, 28
creating, 25
default build task, 25
echo, 27

Go (cont.)

Index

275

getsome, 29
Hello, 26–27

Node.js, RunKit, 225
creating account, 226–228
Fibonacci notebook, 229–230
home page, 226
Koa (see Koa application)
localtunnel, 244–246
saying hello, 229
setting up, 243–244
Telegraf library

GitHub URL, 239
image-to-chat, 239–240
RegExp, inline keyboards,

and embedded
emojis, 240–242

webhooks, 225
BOT_TOKEN variable, 238
first bot, 236
HTTP POST request, 236
settings page, 237
setWebhook function, 235
start chatting, 238
Telegraf, 237
vs. polling, 234

O
OpenCV bot

api.telegramorg/file/bot, 131
applyOpenCV, 132–133
cat.jpg, 130–131
CMakeLists.txt file, 128–129, 131
colored and gray cats, 133–134

compilation, 133
handling, chat message, 133
imread and imwrite, 130
installation, 113
Mat object, 129
Telegram architecture, 131

OpenWeather
API token, 150–151
HTTP query, 151
morse/telegram handler, 153
registration, 151
result, 154
retrieve function, 153
Tokyo with curl/httpie, 151–152

Origami bot
api/download-file, 156
apply-cv function, 157
file path, 156
OpenCV transformation,

157–158
project.clj, 154
Telegram static files, 155

P, Q
Photo bot, 126–127
Python

Fibonacci (see Fibonacci)
installation

download page, 248
package manager, pip, 248
pyenv, 249
tasks.json, 249
visual studio code plug-in, 250

Index

276

libraries, 248
OpenCV

changing colors,
picture, 260–262

count faces, 262–265
sendPhoto, 258–259
telepot

environment variables, 257
executing program, 258
getMe method, 257
pipinstall, 256
pprint module, 258
user settings, 256
Visual Studio Code, 256–257

TensorFlow model
beagle, 269
classify_image code, 266
diff, 266
image classification code, 266
installation, 266
Persian cat, 268
photo file, 267
rabbit, 269
Tesla, 270

R, S
Read-eval-print-loop (REPL), 135,

137, 202, 205, 211
Ruby

BotFather (see BotFather)
download and install, 7

ruby and gem versions, 7–8
Telegram bot

conversation, 11
execution, 11
fields, 14
first message, 12
first reply, 15
gems, 8–10
libraries, 8
Linux/OS X, 11
message format, 14
received message, 13
ruby command, 13
to_yaml, 12
writing code, 10

text editor, 8
Ruby Version Manager

(RVM), 58
Rust

advantages, 57
cargo

binary application, 67
binary targets, 72–73
--bin flag, 71
Cargo.toml, 67
chrono, 68
dates and time zones, 67
main.rs file, 70–71
project structure, 67
running code, 69–70
subcommands, 66

chain messages, 82–83
compilation, 84

Python (cont.)

Index

277

Fibonacci, 64–65
Hello Rust, 62–64
installation

build tools, Visual
Studio, 60–61

C++ tooling, 59–60
links, 58
macOS/Linux, 58–59
rustupshow command, 61
Windows, 58–59

text_reply, 74–77
Tokyo, live location, 77–81

T, U, V
tgbot-cpp, 111–112

W, X, Y, Z
Windows Subsystem for Linux

(WSL), 38

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Week 1: Ruby
	Chatting with the BotFather
	Setting Up Ruby
	Your First Telegram Bot
	Understanding Received Messages Fields
	First Reply

	Chapter 2: Week 2: Nim
	Installing Nim
	Nim Plug-in for Visual Studio Code
	Hello, Nim
	Second Nim Program (Still Not Bot)
	Creating Visual Studio Code Build Tasks
	Installing Nim Packages with Nimble
	First Nim Bot
	Replying to Nim Bot
	Cats and Dogs Nim Bot

	Chapter 3: Week 3: Crystal
	Setting Up Crystal
	Short Walk in the Playground
	Going Visual Studio Code Again
	Creating a Crystal Project
	Echo Bot
	Command Bot

	Chapter 4: Week 4: Rust
	Rust Installation and First Steps
	Installation

	First Rust or Two
	Hello Rust
	Fibonacci

	Ride the cargo
	We Have Time

	Multiple Cargo Targets
	Rust Bot Number 1: Reply to Me
	Rust Bot Number 2: Where Is Tokyo?
	Rust Bot Number 3: Chained Reaction
	Compiling for Release

	Chapter 5: Week 5: D
	Installation and First D Steps
	Some Bits of D on Concurrency
	Simple Threading
	Thread with a State
	Shared State

	A Few More Examples of D
	Sort Me Tender, Sort Me True
	My Love for Fibonacci

	Telegram Bots in D
	Meet dub
	First D Bot
	More Bot API Usage

	Chapter 6: Week 6: C++
	Requirements, Installation, and First Bot
	Install tgbot-cpp
	Install OpenCV
	File Download Program

	Echo Bot
	C++ Bots
	Bot with Inline Keyboard
	Photo Bot

	OpenCV in action
	OpenCV Sample Program

	OpenCV Bot

	Chapter 7: Week 7: Clojure
	Initial Setup and First Clojure Bot
	Visual Studio Code
	The Project Metadata in project.clj
	The Clojure Code in core.clj
	The Token!
	Debugging Telegram Messages
	Creating a Reverse Bot
	Inline Handler

	A Simple Weather Bot
	OpenCV and Telegram: Origami Bot

	Chapter 8: Week 8: Java
	Installation
	The Project Structure
	The build.gradle file
	Visual Studio Code Setup

	First Java Bot
	Send Some Text
	Send a Photo

	Bot with Invoice Capabilities
	Asking Permission

	Sending an Invoice Message

	Chapter 9: Week 9: Go
	Installation of Go
	Let’s Go
	Let’s Fib
	First Bot in Go
	Just Sending Pictures

	Chapter 10: Week 10: Elixir
	Installation
	Using iex
	Using mix
	Running iex with mix

	Project Structure of a mix Project
	config.exs
	mix.exs
	Dependencies
	telegrambox.ex
	(Back to) Dependencies

	Get Something
	GetMe
	GetChat
	GetFile
	Using Elixir’s System
	SendPhoto

	Telegram Bot
	Bot1: Anything Goes
	Bot2: Fibonacci

	Chapter 11: Week 11: Node.js
	Meet RunKit
	Creating an Account
	First Code on RunKit
	A Certain Je Ne Sais Koa
	Publishing Some Koa

	Telegram Bot with Webhooks
	More on the Telegraf Library
	Image-to-Chat Example
	RegExp, Inline Keyboards, and Embedded Emojis

	Running Node.js Locally
	Setting Up Node.js
	Using Local Tunnel

	Chapter 12: Week 12: Python
	Installation
	A Few Python Programs
	Fibonacci 1
	Fibonacci 2
	Fibonacci 3
	Fibonacci 4
	Fibonacci 5

	First Telegram with Python
	First Bot: Send a Random Photo
	First OpenCV Bot: Changing the Color Space of a Picture
	Second OpenCV Bot: Count Faces
	TensorFlow to Close the Show

	Index

