

Blockchain Development for
Finance Projects

Building next-generation financial applications using
Ethereum, Hyperledger Fabric, and Stellar

Ishan Roy

BIRMINGHAM - MUMBAI

Blockchain Development for Finance
Projects
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Aniruddha Patil
Content Development Editor: Nazia Shaikh
Senior Editors: Jack Cummings and Sofi Rogers
Technical Editor: Utkarsha S. Kadam
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Alishon Mendonsa

First published: January 2020

Production reference: 1310120

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83882-909-4

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

About the author
Ishan Roy leads the blockchain initiative at the Centre of Excellence for Emerging
Technologies (CEET) at the Tamil Nadu e-Governance Agency (TNeGA). He is currently
working on the Tamil Nadu Blockchain Backbone project. His work with blockchain began
in 2016, with the blockchain team at ICICI Bank. This team carried out the first blockchain
remittance in India. Since then, he has worked as the head of products at HashCash
Consultants, where he built blockchain-enabled financial solutions for global clients. He has
also mentored students and industry veterans as a blockchain trainer with Edureka. He is
extremely passionate about technology and loves to keep himself abreast of new
developments in the field through the community.

About the reviewers
Narendranath Reddy is an experienced full-stack blockchain engineer and Hyperledger
Fabric expert with a track record of helping enterprises to build production-ready,
blockchain-backed applications. He is an experienced innovator and creative thinker. He
has won four hackathons on blockchain and is a keynote speaker, regularly speaking about
blockchain and distributed ledgers. He is currently working as a blockchain software
engineer at Consensys, Dubai, and previously worked as a blockchain developer at
Blockgemini, Dubai, and as a software developer at UST Global, Trivandrum, and Madrid,
Spain.

Samanyu Chopra is a developer, entrepreneur, and blockchain supporter with broad
experience in conceptualizing, developing, and producing computer and mobile software.
He has been programming since the age of 11. He is proficient in programming languages
such as JavaScript, Scala, C#, C++, and Swift. He has a wide range of experience in
developing computers and mobiles. He has been a supporter of Bitcoin and blockchain
since its early days and has been part of wide-ranging decentralized projects for a long
time. You can connect with him via Linkedin.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Blockchain Payments and Remittances
Chapter 1: Blockchain in Financial Services 9

Present-day banking and finance systems 10
Understanding blockchain technology 11
Blockchains for financial services 13
How to approach implementing a blockchain solution 15
Implementation strategies 16
Popular distributed ledger platforms for financial applications 17

Ethereum 17
Hyperledger Fabric 18
Stellar 19

Summary 19

Chapter 2: Building a Blockchain Wallet for Fungible and Non-Fungible
Assets 21

Technical requirements 22
Understanding ERC20 and ERC721 smart contract standards 23
Writing the smart contract code 24

Creating the ERC20 Token contract 25
Creating the ERC721 Token contract 28

Migrating the smart contract code using Truffle 32
Creating the token wallet frontend using ReactJS 35

Setting up the React app 36
Adding token interfaces to our app 37
App components 38
Container.js 39
App.js 40

Running our app 47
Connecting to the main Ethereum network 56
Summary 58

Chapter 3: Designing a Payment Gateway for Online Merchants 59
Technical requirements 59
Defining our blockchain payment ecosystem 61
Generating dynamic merchant addresses using HD wallets 64
Creating an e-commerce website and payment gateway 67

Shoes.js 69

Table of Contents

[ii]

Container.js 70
Writing the App.js file and declaring the methods 72

newPayment() 73
PaymentWait() 74
MMaskTransfer() 75
startTimer() 76
tick() 77
bCheck() – running a persistent balance check 78
Using the componentDidMount() method to map the Shoes array 79
render() 80

Running the gateway app 80
Creating an API for generating dynamic payment addresses 81
Building the merchant HD wallet 86

App.js 87
Constructor() 88
componentDidMount() 88
render() 91
getAccountTransactions() 91

Running the payment ecosystem 94
Summary 113

Chapter 4: Corporate Remittances and Settlement 115
Technical requirements 116
Understanding the blockchain corporate remittance application and
network layout 117
Setting up the Hyperledger Fabric Bankchain network 119

Creating the crypto-config file 120
Creating the configtx file 121
Creating the docker-compose files 122
Launching the network 122

Creating blockchain identities for the banks 124
Creating the admin user 125

Creating a utility to enroll the admin user 125
Changes for Bank B 127
Running the utility 127

Creating the bank users 128
Creating a utility to register users 128
Changes for the Bank B utility 130
Running the utilities 131

Building the corporate remittance contract 132
Writing the corporate remittance contract 132
Deploying the corprem smart contract 135

Setting up the IPFS network 140
Downloading the binary and installing IPFS 140
Initializing the IPFS nodes 141
Generating a key file for the network 142
Configuring the nodes 143

Table of Contents

[iii]

Bootstrapping the nodes 143
Starting the nodes and testing the network 144

Setting up the bank databases 145
Installing postgresql 145
Creating the bank databases 145
Creating the database relations 147
Inserting test customer data into the customers table 148

Building the bank backend servers 148
Creating the app environment 149
Writing the backend server code 150

Creating an endpoint to fetch customer data 152
Creating an endpoint to post payment requests 153
Creating a service to get transaction details 156
Writing a method to publish documents to the IPFS network 157
Writing a method to submit transactions to the blockchain network 158
Writing a method to update the customer's balance 160
Writing a method to add transactions to the database 161

Changes for backend server for Bank B 162
Building the transaction listeners for the banks 163

Creating the app environment 164
Writing the transaction listener code 164

Writing the transaction listener method 165
Writing a method to fetch compliance documents from IPFS 168

Changes for transaction listener for Bank B 169
Creating the corporate remittance app frontend in React 171

Creating the React project environment 172
Building the container component 173
Building the AppLogin component 173
Building the Transfer component 174
Building the ViewTransactions component 175
Writing the methods in the App.js file 177

Writing the constructor 177
Writing a method for setting the user account 178
Writing methods to toggle between app components 179
Writing methods to handle input fields 181
Writing a method to submit payment requests 182
Writing a method to fetch customer transactions 183
Writing a method to set the current user balance 184

Running the corporate remittance app 185
Summary 190

Chapter 5: Enabling Cross-Border Remittances with Real-Time
KYC/AML Verification 192

Technical requirements 193
Designing a workflow for blockchain cross-border remittance 194

Understanding how a payment request works 194
Setting up a test network 197

Table of Contents

[iv]

Creating user accounts 199
Writing the createAccount utility 200
Running the createAccount utility 204
Creating the USD asset 205

Creating a new asset object 206
Extending trustlines to receive accounts 206
Writing the utility 206
Running the utility 210

Funding the user accounts with USD 210
Writing the utilities 211
Running the utities 213

Setting up the bank domains 213
Updating the hosts file 214
Issuing the self-signed certificates for the domains 214
Setting up the http server and stellar.toml file 215
Setting up the bank's internal databases 218

Setting up the federation servers 221
Setting up the compliance server 223
Setting up the bridge server 226
Setting up the callbacks server 229
Building the bank portal 237

Building the bank portal backend 237
Building the bank portal frontend 244

Creating the React project environment 244
Mapping the USD asset 245
Writing the App.js file 245

Running the remittance platform 251
Summary 256

Section 2: Blockchain Workflows Using Smart
Contracts
Chapter 6: Building a Letter of Credit Workflow Module Using Smart
Contracts 258

Technical requirements 259
Understanding smart contracts and blockchain-based workflows 260

Scope of an LC workflow project 261
Setting up the LC workflow 262

Creating a USD token for accounting 262
Deploying a USD token for accounting 265
Creating an LC Master smart contract 266

Writing the contract 267
Creating an LC smart contract 273
Deploying the LC Master smart contract 283
Creating the LC module React app 288

Table of Contents

[v]

Creating the React project environment 289
Setting up the contract interfaces 290
Building the React components 293

Creating the BankLogin.js component 293
Creating the BankTabCreate.js component 294
Creating the SellerTabSettle.js component 295
Creating the SellerTabView.js component 296
Creating the Container.js component 296

Writing the app methods and creating the App.js file 298
Writing the constructor() method 299
Using the componentDidMount method 300
Building the session setters 301
Writing the createLC method 301
Writing the viewLC method 303
Writing the viewSingleLC method 305
Writing the settleLC method 306

Running the LC module 307
Summary 327

Section 3: Securing Digital Documents and Files
Using Blockchain
Chapter 7: Building a Tamper-Proof Document Storage System 330

Technical requirements 331
Tamper-proof document storage using blockchain 331
Setting up the Hyperledger Fabric network 333

Bringing the first network sample online 334
Creating the admin and user identities 334

Writing and deploying the DocsApp chaincode 335
Writing the DocsApp smart contract 336
Deploying the DocsApp smart contract 338

Building the backend services 343
Writing the backend server 344

Building a method for listing files in a directory 346
Building a method to write a file hash to the blockchain 349
Building a method to write the MTH and the FTH to the blockchain 350
Building a method to read MTH and FTH from the blockchain 352
Building a function to compare the current hash signature of a file with the hash
recorded in the blockchain 354
Writing a backend service for securing a directory by recording hashes in the
blockchain 356
Writing a service to verify the last modified time and the file tree structure 359
Writing a service to inspect and identify tampered files 361

Creating a React frontend for the app 363
Creating the React project environment 364
Building the container component 365
Building the PathMapper component 366

Table of Contents

[vi]

Building the FolderBlock component 367
Building the FolderBlockChkStatus component 368
Writing the app methods 372

Creating a method to set the timer interval 373
Creating a method to write the hashes to the blockchain 374
Creating a method to check for a mismatch between the last modified time and
the file tree structure 376
Writing a method to check whether any files have been added or removed from
the directory 378
Writing a method for identifying tampered files from the list of files 378

Running the tamper-proof application 380
Summary 384

Section 4: Decentralized Trading Exchanges Using
Blockchain
Chapter 8: Building a Decentralized Trading Exchange 386

Technical requirements 387
Decentralized trading exchanges 388

Basic components of a trading exchange 389
Scope of the decentralized exchange project 389

Issuing the trading assets 390
Writing the contracts 390
Compiling the contracts 393

Orderbook smart contract 394
Writing the contract 395
Migrating all the contracts to the blockchain 403

Building the exchange app 406
Building the app 407
Creating the React project environment 408
Setting up the contract interfaces 409
Writing the App.js file 410

Displaying the orderbook 413
Watching orderbook events 417
Initiating a buy order 418
Initiating a sell order 423
Setting the user asset balances 424

Running the exchange app 425
Summary 436

Chapter 9: Developing a Currency Trading Exchange for Market
Making 437

Technical requirements 438
Introducing the distributed currency trading exchange 438
Building the private test Stellar network 440
Creating the user accounts 441

Table of Contents

[vii]

Writing the CreateAccount utility 442
Running the CreateAccount utility 446

Creating trading currency assets 447
Creating a new asset object 447
Extending trustlines to receiving accounts 448

Writing the utility 448
Running the utility 452

Transferring the assets from the issuing account 453
Writing the utilities 454
Running the utilities 456

Building the currency trading exchange 457
Creating the React project environment 459
Setting up the asset interfaces 460
Writing the App.js file 461

Setting the default user account 464
Setting the account balance 465
Displaying the orderbook 466
Displaying successful trades to the user 469
Buying and selling assets 470
Setting the active trading asset pair 473

Running the currency exchange 474
Summary 478

Chapter 10: Looking into the Future 480
Summarizing our journey 480
Extending concepts to other applications 484
The road ahead – some additional blockchain concepts 486
Conclusion 488

Chapter 11: Appendix: Application Checklist 489
Application checklist 489

Design checklist 489
Development checklist 490
Testing checklist 491
Deployment checklist 491

Other Books You May Enjoy 492

Index 495

Preface
Blockchain technology will play a disruptive role in banking, finance services, and
insurance (BFSI) in the coming years. Experts estimate annual savings of up to 20 billion
dollars from this technology. This book will help you build fully fledged financial
applications using blockchain, enabling you and your enterprise to build transparent and
secure business processes.

This book will walk you through reimagining some of the most popular products and
services of BFSI. The book starts with common blockchain concepts and the impact of
blockchain technology in the BFSI sector. Next, we look at re-designing existing banking
processes and building new financial applications using blockchain. This will be
accomplished through eight detailed blockchain projects. You'll be guided through the
entire process, from environment setup to building the frontend portals/dashboards along
with the system integration and testing aspects for the applications. You will gain hands-on
experience with Ethereum, Hyperledger Fabric, and Stellar. You will learn how to use
ancillary platforms such as IPFS, the Truffle Suite, QpenZeppelin, and MetaMask to build
applications as well.

By the end of the book, you will have an in-depth understanding of how to leverage
distributed ledgers and smart contracts for financial use cases.

Who this book is for
This book is for blockchain/DApp developers and start-ups who are looking for a one-stop
guide to building innovative and highly secure solutions in the FinTech domain using real-
world use cases. It is also suitable for developers working in financial enterprises and banks
and for solution architects looking to build brand-new process flows using blockchain
technology. Working experience with Solidity and prior knowledge of finance/trade is
required to get the most out of the book.

Preface

[2]

What this book covers
Chapter 1, Blockchain in Financial Services, introduces you to enterprise blockchain solutions
for the BFSI sector. It briefly discusses the opportunities for implementing blockchain in the
domain and the challenges that you might face when introducing the concept of blockchain
in your organization. There is a discussion of the various most common implementation
strategies, including coverage of the architecture models that are relevant for each strategy.
Brief walk-throughs are given of Ethereum, Stellar, and Hyperledger Fabric and their
relevant use cases for the domain.

Chapter 2, Building a Blockchain Wallet for Fungible and Non-Fungible Assets, looks at the
blockchain wallet, which is the most integral part of any enterprise blockchain application.
It can take many shapes and forms, such as a payment wallet, a digital identity card, a land
title portfolio, or a stock portfolio. This chapter focuses on creating a blockchain wallet
suited for multiple enterprise applications. You will learn how to create and deploy a smart
contract wallet for fungible (ERC20), and non-fungible assets (ERC721). You will also learn
how to implement the Web3js library as part of your blockchain application. The end goal
is to create a fully functional peer-to-peer wallet using HTML, Node.js, and Solidity that is
suitable for use cases beyond payment.

Chapter 3, Designing a Payment Gateway for Online Merchants, focuses on creating a
merchant solution for online retailers. The solution will enable users to accept payments on
a blockchain network akin to the leading fiat payment networks today. Special focus is
given to push/pull payments, reconciliation, payment confirmation, and settlement on a
blockchain platform. The technologies used are HTML, Node.js, and Solidity.

Chapter 4, Corporate Remittances and Settlement, focuses on the Hyperledger Fabric platform
and its application in financial systems. You are given a walk-through on configuring the
plug-and-play modules that make up the Hyperledger Fabric ecosystem. You will then be
taught how to leverage them to create a permissioned blockchain network that can be used
for B2B payments.

Chapter 5, Enabling Cross-Border Remittances with Real-Time KYC/AML Verification, focuses
on creating a multi-currency cross-border remittance network using Stellar. Special focus is
given to real-time document exchange, KYC/AML verification, Nostro account visibility,
and integration with legacy banking systems.

Preface

[3]

Chapter 6, Building a Letter of Credit Workflow Module Using Smart Contracts, looks at smart
contracts, which provide us with a foundation to build faster and efficient enterprise
workflows. This is possible through automation and an immutable ledger accessible to all
the stakeholders. This chapter looks at using Solidity smart contracts to build a more
efficient letter of credit workflow. This knowledge can then be leveraged to design similar
financial products, such as bank guarantees and smart contract-based insurance products

Chapter 7, Building a Tamper-Proof Record-Keeping and Document Management
System, introduces you to the Hyperledger Fabric framework. You will be deploying your
own chaincode and using it to build an immutable record management system. This system
employs the power of the SHA256 algorithm and blockchain consensus to ensure that all
records are tamperproof and can be reverted to their original state in the case of a cyber
attack.

Chapter 8, Building a Decentralized Trading Exchange on Blockchain, explores decentralized
exchanges, which aim to bring more transparency to the trading of assets and commodities.
They eliminate the middleman and can thus ensure faster settlements. They also help
control fraudulent practices such as price manipulation. This project looks at creating a
price-time priority matching engine using Solidity smart contracts. This matching engine
can then operate on a decentralized orderbook that can accept orders from all the
participants on the network.

Chapter 9, Developing a Currency Trading Exchange for Market Making, looks at leveraging
the market maker module of the Stellar platform to create a currency swap exchange. This
currency swap exchange operates in real time and can be used either as an asset trading
platform or to provide liquidity for cross-currency cross-border remittances.

Chapter 10, Looking into the Future, provides a short summary of the skills you will have
acquired in your journey through the book. It also talks briefly about how we see
blockchain technology evolving and the new concepts on the horizon that you might want
to look at.

Chapter 11, Appendix: Application Checklist, This chapter provides step-by-step instructions
for setting up an Ethereum, Stellar, and Hyperledger Fabric development and production
environment. This is a pre-requisite for the aforementioned projects. This chapter also
focuses on enterprise security and scalability essentials for implementing a blockchain
application in a live production scenario. A basic checklist is provided with respect to
design, development, testing, and deployment.

Preface

[4]

To get the most out of this book
The following is what you will need to get the most out of this book:

Elementary to moderate knowledge of Ethereum and Solidity
Elementary knowledge of Hyperledger Fabric and Stellar
Moderate knowledge of JavaScript and Node.js
Elementary knowledge of ReactJS

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-

Projects. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781838829094_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Now, let's create a simple wallet app in react.js to manage tokens."

A block of code is set as follows:

import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Detailed.sol";
import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Capped.sol";
import "openzeppelin-solidity/contracts/ownership/Ownable.sol";

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

const HDWalletProvider = require('truffle-hdwallet-provider');
module.exports = {
networks: {
development: {
host: "127.0.0.1",
port: 8545,
network_id: "*",
}
prod: {
host: "<Live geth host IP>",
port: 8545,
network_id: "1",
}
},
compilers: {
solc: {
version: "0.5.2",
settings: {
optimizer" {
enabled: false,
runs: 1000,

https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838829094_ColorImages.pdf

Preface

[6]

},
}}}}}

Any command-line input or output is written as follows:

truffle console

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on the GreenGables Bank button to log in as a bank user."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/

Preface

[7]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
Section 1: Blockchain

Payments and Remittances
Blockchain was first used for transferring and establishing the provenance of assets
between individuals and organizations without depending on a middleman. This makes
payments and remittances the oldest and most mature application of blockchain
technology. Today, the technology has evolved to support a number of enterprise use cases
revolving around payments and remittances, including retail payments, cross-border
remittances, and corporate remittances. Several banks and financial enterprises around the
world have recognized the disruptive nature of this technology in payments and are
actively experimenting with workflows and applications that will form a core component of
their IT infrastructure in the near future.

In the next five chapters, we will look at four such applications. We'll start by introducing
blockchain in financial services and will then proceed toward building a wallet for
transferring and storing assets. Next, we'll build a blockchain-enabled payment gateway for
an e-commerce website. Lastly, we'll look at how we can leverage blockchain to cut out the
inefficiencies and delays in corporate remittances and retail cross-border remittances.

This section comprises the following chapters:

Chapter 1, Blockchain in Financial Services
Chapter 2, Building a Blockchain Wallet for Fungible and Non-Fungible Assets
Chapter 3, Designing a Payment Gateway for Online Merchants
Chapter 4, Corporate Remittances and Settlement
Chapter 5, Enabling Cross-Border Remittances with Real-Time KYC/AML Verification

1
Blockchain in Financial

Services
Blockchain technology is expected to revolutionalize how our industries and enterprises
operate. Experts estimate that it will business process flows and enable organizations to
build products and services that are more secure, transparent, fraud-resistant, and cost-
efficient. Banking and financial enterprises and start-ups have been the first to experiment
with and adopt this disruptive technology. Reports and surveys suggest that, within the
next decade, these organizations will go through rapid stages of innovation to establish
blockchain as the Backbone for their day-to-day operations and the services they offer to
their customers. In this book, we'll be looking at some prominent applications of this
technology for the banking and finance industry through projects. Each project is
implemented using a popular distributed ledger platform.

By the end of the book, you will have a better understanding of how to leverage blockchain
technology to build applications for financial use cases. You will also have sufficient
knowledge of building blockchain solutions using the Ethereum, Hyperledger Fabric, and
Stellar distributed ledger platforms.

In this chapter, we'll be looking at the current state of financial systems and how blockchain
can make a difference. We'll also try to understand how to approach implementing such a
solution and some of the popular blockchain platforms we can consider for developing a
financial application. The topics covered are as follows:

Present-day banking and finance systems
Understanding the blockchain technology
Blockchain for financial services
How to approach implementing a blockchain solution
The popular distributed ledger platforms for financial applications

Blockchain in Financial Services Chapter 1

[10]

Present-day banking and finance systems
The global banking and financial system plays a huge role in the life of the modern human
being. It moves more than a trillion dollars around the world in a day, and more than a
billion people are directly or indirectly served by it every day. It is the backbone of global
trade finance and it enables enterprises, from start-ups to conglomerates, to run their
businesses smoothly in any part of the world. The technology that makes this ecosystem
tick has evolved in leaps and bounds in the last two decades, especially with the advent of
the internet.

However, owing to compliance restrictions, reliance on legacy systems, and a conservative
outlook on technology, most banking IT systems today are yet to adapt to advancements in
technology and are unable to keep up with the nefarious means employed by malicious
individuals. As a results close to half of banking customers have been expose to frauds and
cyber crimes while dealing with payment gateways, stock exchanges, money transfer
agencies, and so on.

Add to this the fact that the system has added layer after layer of middlemen and
intermediaries owing to the limitations of conventional IT systems. This, in turn, has
resulted in high fees and delays for the customers, not to mention a massive amount of
paperwork arising from complex workflows. It also exposes the customer to the possibility
of financial fraud and corruption. Lastly, the system in many cases is highly exclusive and
denies basic access to financial products and services to a number of people around the
world.

Generally, bankers have resisted sweeping changes to the current way the underlying
technology works as they do not want to upset the apple cart and want to ensure that
businesses that rely on them are able to continue working smoothly without any change in
their user experience. However, the inefficiencies and faults in the system mean that such
changes are the need of the hour. Disruptive innovation that can make the customer's
experience even better is required to ensure that the system keeps chugging along and
customers are able to operate their businesses without being slowed down or stopped by
the technology on which their businesses are built. Enter blockchain.

Blockchain technology has numerous features and advantages that enable us to re think
and re-engineer how modern financial services operate and serve the end customer. It
enables us to design modern workflows minimizing middlemen, maximizing security,
enabling transparency, and promoting high levels of interoperability between different
players of the financial ecosystem.

Blockchain in Financial Services Chapter 1

[11]

Understanding blockchain technology
Blockchain technology was invented to be the backbone for Bitcoin, the popular
cryptocurrency. It is a distributed ledger spread across a permissioned or permissionless
network. The participants of this network are referred to as nodes. Each node contains a
copy of the ledger. To update the ledger, the participants in the network will propose a
transaction or a set of transactions that should be added next to the ledger. Once the
participants in the network come to an agreement on the next set of transactions, they will
add the transactions to their local copy of the ledger. This way, the sanctity and uniformity
of the ledger across the nodes are maintained.

Data is added in "blocks" of transactions. Each block contains the hash value of the header
of the previous block. (A hash function generates a unique output of fixed length for an
input data of any length.) This ensures that the sequential order of the blocks is maintained
in the ledger. Each block header has a set of parameters, including a Merkle root hash of the
transactions in the block. If any transaction data is tampered, it results in the Merkle root of
the block being altered. This causes a mismatch in the hash of the header of the block and
the hash of the header of the block stored in the following block, effectively 'breaking the
chain'. This will result in the local copy of the ledger being broken and the node being
thrown out of sync with the other copies of the distributed ledger disabling it from adding
any further transactions to the ledger.

Transactions submitted to the network are signed using a private key or a secret key that is
held by the network participant and the public key is included in the transaction as part of
the transaction. This means that the other participants on the network can validate the
identity of the transaction submitter.

The multiple copies of the ledger and the hash-chain ensure that any data written to the
ledger is immutable. If there is a mismatch between the local copy of the ledger held by a
node and the copy of the ledger held by the other network participants (nodes), the node is
disengaged from the network and cannot broadcast new transactions. This ensures that the
sanctity of the ledger is maintained. To further maintain the uniformity of the ledger,
blockchain allows network participants only to append new data to the ledger and does not
allow participants to remove or modify existing data in the ledger. As such, any transaction
data written to the blockchain is preserved and cannot be modified.

Since the ledger is universal, there needs to exist a mechanism to ensure that transactions
are added in the same order across all copies of the ledger. This is typically achieved
through a consensus mechanism. A consensus mechanism is basically a set of steps that
ensures that transactions are written in the same order across the nodes. Additionally, it
ensures that the transactions in all the copies of the ledger are the same.

Blockchain in Financial Services Chapter 1

[12]

Consensus can be achieved through various means. Traditional public permissionless
blockchains, such as those running cryptocurrencies such as Bitcoin or Ethereum 1.0, rely
on the solving of a cryptographic puzzle to pick the network participant who gets to write
the next set of transactions to the ledger. This network participant is called a miner. After
successfully solving the cryptographic puzzle, the miner will create a "block" of what they
believe the next transactions in the ledger should be. They then add this block with the
transactions and their solution to the puzzle to their local copy of the ledger and broadcast
this block to all the other nodes in the network. The other nodes will validate the
authenticity of this block before updating it to their local ledger. The difficulty of the
cryptographic puzzle is set such that only one network participant can solve the puzzle in a
fixed window of time. After the puzzle is solved, a new cryptographic puzzle is generated
and the next miner needs to solve this puzzle.

Permissioned blockchains follow a slightly different approach. Permissioned blockchains
are blockchains where we know all the network participants and the participants cannot
connect to the network without prior permission of the participants. Since the identity of all
the network participants is known, these blockchains follow a slightly more relaxed
approach to consensus. They might use a simple queuing mechanism to order the
transactions. Some may also follow a round-robin approach. A round-robin approach is one
where each network participant is allowed to submit and write its own block to the ledger.
This continues until every participant has had a chance to submit a block, and then the
process is repeated.

In recent times, the term Distributed Ledger Technology (DLT) has been interchangeably
used with the term blockchain. All Blockchains are DLTs but not all DLTs are Blockchains.
In common parlance, the term DLT is generally used to refer to a platform that does not
use 'blocks' or 'chains'. Instead they add data in singular transactions. These platforms are
being actively used to build financial applications. Most of these platforms use a variation
of the Practical Byzantine Fault Tolerance (PBFT) mechanism to achieve a transactional-
level consensus between the various copies of the ledger. As they are PBFT-based, several
of them suffer from the same limitations as PBFT. They are able to solve this problem using
intelligent network design or by making modifications to the traditional PBFT algorithm. A
good example is the Stellar platform, which follows the Federated Byzantine Agreement
(FBA) consensus model and restricts the Validation Nodes on its public network. DLT
platforms are preferred over blockchains in certain use cases because they often permit
higher transactions per second. This makes them suitable for payment networks, trading
exchanges, and so on.

Lastly, let's look at the concept of smart contracts. Smart contracts are computer protocols
that enable the execution of condition-based business flows. The authenticity of conditions
and the execution of the terms of the contract can be satisfactorily verified by all the parties
who are affected by the execution of the contract without trusting a third party.

Blockchain in Financial Services Chapter 1

[13]

This is possible by writing and deploying such business flows to a distributed ledger and
by leveraging blockchain technology. Let's say Alice wants to sell a car and Bob wants to
buy it. But Alice wants to ensure that Bob gets possession of the car only when she gets
paid. In such a case, Alice and Bob can write a smart contract. Bob can transfer the funds he
needs to pay Alice to the smart contract's account. Alice can transfer a secret password that
will unlock a digital copy of the documents of the car to the smart contract. The smart
contract will ensure that Bob gets access to the password and Alice gets her payment
without them depending on a third-party middleman. If the deal does not go through, the
contract can also return the assets to the original owners.

This is better than traditional means because a human intermediary can be influenced by
Alice or Bob. They might also have to pay some fees to the intermediary. Additionally,
there might be a delay in executing the deal owing to a backlog of requests or an inefficient
intermediator. If the third-party turns out to be fraudulent, they could even run away with
the money and possession of the car! Since in a distributed system the smart contract code
is deployed on a blockchain network, it cannot be altered by Alice or Bob or a malicious
individual due to the immutable nature of the blockchain. This ensures that the deal will
always go through with a limited risk of fraud.

Blockchains for financial services
There are many advantages offered by blockchain technology that make it suitable for
application in financial services. The technology can help us overcome numerous
shortcomings and inefficiencies of present day Banking and Financial systems. The
following are some of these areas:

Reconciliation: Reconciliation is an expensive and time-consuming affair across
almost all financial products and services. The delayed visibility of transactions
or information across organizations leads to delayed settlement for the end
customer. Cross-border and domestic payments, trade settlement, trade finance,
and letter-of-credit settlement are examples of some workflows that are more
time-consuming and expensive due to the effort spent on reconciling data
between organizations. Blockchains can help eliminate or reduce reconciliation
costs and time. Transactions and information can be posted to a shared ledger.
All parties that are participants of the shared ledger get instant visibility of the
transaction or information. Since the ledger is immutable, data once added
cannot be removed. Additionally, the immutability of the ledger also provides us
with an audit trail for all asset transfers and transactions that have been
successfully executed.

Blockchain in Financial Services Chapter 1

[14]

Information sharing: Currently, banks carry out the KYC(Know Your Customer)
process for all new customers. This is a laborious and time-consuming affair for
the customer. Additionally, if the customer has accounts across different banks,
their KYC information could be different at each bank. Add to this the fact that
many banks and financial institutions today use extremely inefficient and
insecure workflows for sharing KYC and AML(Anti-Money Laundering) data
between them. Given this, it becomes imperative to design a system that can
securely share customer KYC and AML data between transacting parties. This
concept can be extended to sharing other confidential information as well. It can
also enable us to create a unique KYC identity for the customer that can be
updated annually or quarterly.
Automated workflows: Owing to the distributed nature of blockchain networks,
it is easier to script workflows that span organizations. Traditionally, such
workflows would involve human operators at each organization analyzing and
validating data and information before initiating the next steps. Smart contracts
can allow us to automate or semi-automate such workflows. This reduces
dependency on manual intervention. Additionally, we could use an "oracle" for
off-chain information or inputs required to automate a blockchain workflow. An
oracle is a third-party service that provides external data/off-chain data to the
blockchain.
Secure document sharing: Blockchain can enable secure document sharing
between organizations. A hash signature of the document can be stored on the
shared ledger. This signature will allow us to verify the integrity of the document
after successfully receiving the document and in the future. Additionally, we can
tag these hash signatures to transactions so they can be referred for audit
purposes in the future. A good application of this concept could be storing hash
signatures of the Purchase Order and Invoice for Corporate Remittances and
tagging them to the settlement transaction.
Decentralized systems: Blockchains can be used to build decentralized trading
exchanges or marketplaces. This can help bring down the intermediary cost,
bring in more transparent workflows, and reduce reliance on a central authority.
It also reduces the settlement time for the end customers.
Inclusive finance: Owing to public-private key encryption and a distributed
ledger at its heart, it is extremely easy, cost-efficient, and secure to maintain
customer accounts and transactions using blockchains. This can help us to
design, build, and extend cost-effective financial services to the unbanked,
refugees, and the less privileged at a fraction of the expense.

Blockchain in Financial Services Chapter 1

[15]

The following is a list of potential banking and finance use cases where blockchain can have
a sizeable impact:

Cross-border remittance
Domestic payments
Back office reconciliation
Inter- and intra-organizational information sharing
Trade finance
KYC/AML
Secure IPOs(Initial Public Offer)
Asset tracking

How to approach implementing a blockchain
solution
The following is a list of discussion points and activities that IT practitioners should
consider and carry out before implementing blockchain technology within their
organization:

Identify business requirements that require provenance, audit ability, or
distributed workflows.
Recognize whether potential use cases can be executed with centralized
databases or digital signatures without relying on a blockchain. (One example of
a use case that requires blockchain could be an inter-organizational use case
where no central organization or regulator exists to take ownership of the
database.)
Envisage the end benefits of implementing blockchain technology.
Identify legacy workflows and modules that will need to be replaced or
augmented.
Analyze whether the end benefits from replacing the legacy workflow outweigh
the costs.
Identify new workflows and modules that will need to be built for use cases.
Analyze whether the end benefits from implementing the solution outweigh the
total cost of executing and implementing the project.
Identify stakeholders and participants of the blockchain system.
Agree on a governance framework for operating the network and build in
accountability from the participants.

Blockchain in Financial Services Chapter 1

[16]

Agree on an implementation strategy and identify integration with legacy
systems, if any.
Choose a blockchain platform based on your requirements.
Identify essential enterprise tools that need to be built to successfully operate the
blockchain solution. These include modules such as an identity service, security
and access control policies, network directory, and so on.

Organizations should only proceed once they have successfully considered all the
preceding points and have the answers to all of them.

Implementation strategies
There are different implementation strategies that organizations can look at to implement a
blockchain network. These are as follows:

All stakeholders own and maintain a node on the blockchain network. This node
can be on-premises or on a cloud platform.
A cloud-hosted blockchain network is operated by a trusted service provider.
Organizations can view data and information and submit transactions based on
access control. This is known as Blockchain as a Service (BaaS).
Accessing a public permissionless blockchain to record data so that it cannot be
tampered with. A good example is storing the hash signature of a document to
the public Bitcoin or Ethereum network. The transaction ID and the document is
then shared with other stakeholders who need to validate the authenticity of the
document in the future.

Organizations can choose to put either complete data and information on the blockchain or
can just the hash of the data, document, or information on the blockchain.

The first case is applicable when the stakeholders need to share data in real-time between
different stakeholders and ensure that the information shared is immutable and cannot be
modified once it has been published to the shared ledger.

The second case is applicable when the stakeholders only need a blockchain to establish the
provenance of documents, data, files, or any other assets. The actual data or asset is not
shared through a blockchain. In such a case, we only publish a unique attribute of the asset
to the blockchain. For documents, files, and information, this can be a hash of the file or
document content. For assets such as gold, it could be the carat value.

Blockchain in Financial Services Chapter 1

[17]

Popular distributed ledger platforms for
financial applications
The blockchain industry today is inundated with distributed ledger frameworks and
platforms that can be used to implement solutions. For this book, I've selected three
popular platforms that are being used by developers and architects to implement financial
solutions. These platforms are as follows:

Ethereum
Hyperledger Fabric
Stellar

These platforms have been used extensively for implementing blockchain projects globally.
As with any framework, there are trade-offs when you settle on one for designing your
solution. Let's look at these platforms.

Ethereum
Ethereum is probably the second most popular blockchain platform in the world. It was
conceptualized by Vitalik Buterin. The technology stack is open source and is maintained
by the Ethereum Foundation. Its native asset is ether. Users can also issue their own assets
on the network. These assets are popularly known as tokens.

Ethereum was the first blockchain platform to implement smart contracts. Smart contracts
are written using the Solidity language. Contracts are compiled and deployed to the
blockchain in bytecode format. This bytecode is then broadcast to all the nodes in the
network. Each node implements the Ethereum Virtual Machine (EVM), which is a runtime
environment for Ethereum smart contracts. The popularity of Solidity has led other
blockchain platforms to include it as an optional framework for writing and deploying
smart contracts.

Ethereum implements a world state that keeps track of all user accounts and smart contract
accounts. It uses the EthHash Proof-of-Work consensus mechanism to maintain ledger
integrity. Owing to its popularity, its open source nature, the flexibility of the Solidity
language, and how old the platform is, Ethereum has developed a huge online community
that constantly contributes to the project and the ecosystem. This has helped the platform
mature and add new features over time. One of the best examples is probably the Ethereum
Request for Comment (ERC) initiative, which proposes standards for contract
development. Two of the most popular ERC standards are ERC20 and ERC721, which
propose standards for creating fungible and non-fungible tokens respectively.

Blockchain in Financial Services Chapter 1

[18]

There is also an entire ecosystem of applications, tools, and utilities that can be used with
the Ethereum platform. These are called DApps, short for Distributed Apps. One of the
most popular DApps is Metamask. Metamask is an Ethereum wallet that can be used to
submit and receive transactions to and from an Ethereum blockchain network. We'll be
using it extensively in our projects.

Hyperledger Fabric
Hyperledger Fabric is a project incubated by the Linux Foundation under the Hyperledger
umbrella of projects. Hyperledger is used to refer to a collection of open source enterprise
blockchain projects, tools, and utilities. The Hyperledger initiative's main purpose is to
enable the collaborative development of enterprise blockchain. It has seen major
contributions from IBM, Intel, SAP Ariba, and other global enterprises.

Fabric is one of the oldest and most mature projects under Hyperledger. It is intended to be
a platform for developing blockchain solutions with a modular architecture. It allows
different platform features such as consensus mechanisms, certificate authorities, and
identity services to be available as plug-and-play features. To achieve this, it implements
containerization, making it suitable for modern enterprise IT systems. Unlike other
blockchain platforms, it does not implement native assets, accounts, or an unspent
transaction model, making it suitable for a plethora of applications.

Hyperledger Fabric implements chaincodes, which are similar to smart contracts. One of
the most important features it implements is a concept called channels, which are
essentially private ledgers with a fixed number of participant nodes. Only authorized nodes
and organizations can access a channel. Nodes can be members of multiple channels, and
chaincodes, policies, and certificate authorities can be used across multiple channels.

Hyperledger Fabric takes a unique approach to consensus. It runs a stand-alone orderer
peer. The orderer peer gathers transactions and transmits new blocks of transactions to the
network peers. The orderer leverages an ordering mechanism based on Kafka or Raft to
order transactions and create blocks.

To submit transactions, peers first send a proposed transaction to a select few peers in the
network, known as endorsement peers. These peers are determined during channel
creation. If the transaction does not violate the endorsement peer's internal state, it
"endorses" the transaction and sends it back to the node that sent the proposal. The
initiating node then gathers these responses and broadcasts these with the endorsements to
the orderer. It also sends a read and write set that has the initial and final values of the state
after the transaction has been executed.

Blockchain in Financial Services Chapter 1

[19]

The orderer will collect these transactions and generate a new block. Fabric allows users to
modify block size and block generation time. The newly created blocks are then sent back
to the peer nodes by the orderer. The peer nodes will first add the block to their private
copy of the ledger. Next, they will check the transactions inside the block to ensure that the
read and write set is in line with the value in their local state database. After this check,
they will update their local state database with the new values resulting from the
transaction.

Stellar
The Stellar platform is a decentralized protocol that was primarily designed for enabling
fast, low-cost, cross-border payments. It is an open source project developed and
maintained by the Stellar Foundation. The platform was conceived by Jed McCaleb, who is
also the co-founder of Ripple.

Stellar implements transaction-level consensus using FBA, the modified version of PBFT,
mentioned earlier. Its native asset is called the lumen (XLM). Owing to its focus on
payments, the Stellar platform provides additional modules that work in conjunction with
the core software to enable users to build customer-friendly apps that meet compliance and
regulatory norms for payments.

Stellar's most interesting feature is probably that it implements a decentralized orderbook
as part of its core technology stack. This feature allows you to carry out cross-asset
transactions. This way, a customer can initiate a transaction in USD and terminate it in
GBP. Since Stellar allows you to issue your own assets, the possible use cases where this
feature can be used are endless. You can also use the orderbook to build a trading exchange
by submitting buy and sell offers using the Stellar SDK. You can virtually build an entire
application around this feature. Many decentralized exchanges have actually done this.

Globally, Stellar has been used by IBM to build the World Wire network to enable cross-
border payments. It has also been used by a number of remittance providers across the
world who have found the technology stack suitable for building payment applications.

Summary
I hope this chapter gave you insight into how blockchains will impact the financial services
sector, how enterprises are adopting this technology, and what to consider when trying to
implement a blockchain solution. It should also have helped you understand how to
implement blockchain projects within an enterprise.

Blockchain in Financial Services Chapter 1

[20]

We started the chapter by looking at the present-day banking and finance industry and by
understanding blockchain technology. Next, we went through the areas where we believe
blockchain can make a difference in this industry. We also looked at how organizations
need to approach implementing blockchain technology and what the different
implementation models they can consider are. Lastly, we looked at some of the popular
blockchain platforms of the day. We'll be using these to implement the projects that will
follow in the coming chapters.

In the following chapters, we'll be developing blockchain projects suited for various
financial applications. Each of these projects looks at leveraging blockchain technology to
deliver a financial solution that is more secure, efficient, and transparent than the
traditional alternative. In the next chapter, we'll be looking at leveraging a blockchain
platform to design a wallet that can store fungible as well as non-fungible tokens.

2
Building a Blockchain Wallet for

Fungible and Non-Fungible
Assets

The blockchain wallet forms the most integral part of any enterprise blockchain application.
It is the customer interface of the blockchain application. It can take many shapes and
forms, depending on the use case being implemented. It could be a payment wallet, a
digital identity card, a land title portfolio, or an assets portfolio.

This chapter focuses on creating blockchain wallets suited for financial applications. Our
wallet will be managing assets that are issued on the blockchain. These assets will be issued
using pre-defined smart contract standards. For this, we will look at the ERC20 and ERC721
smart contract standards. We will learn to write, migrate, and deploy our own smart
contract codes using Truffle. We will also learn to create a token wallet frontend using
ReactJS, and finally, we will run the app. We will also look at how to connect the wallet to
the main Ethereum network.

The following topics will be covered in this chapter:

Technical requirements
Understanding ERC20 and ERC721 smart contract standards
Writing the smart contract code
Migrating the smart contract code using Truffle
Creating the token wallet frontend using ReactJS

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[22]

Running our app
Connecting to the main Ethereum network

Technical requirements
The code files of this chapter are available at the following link:

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/
tree/master/Chapter%202/Chapter%202

We'll be using the following to develop our project:

Ganache Private Blockchain Server—https://trufflesuite.com/ganache/

Trufflesuite—https://github.com/trufflesuite/truffle

MetaMask plugin for Chrome/Firefox/Safari—https://metamask.io/

For installing Ganache on Ubuntu, you might need to change some
settings. Click on the drop-down menu next to the Ganache directory
name on the title bar. Select Preferences. Navigate to the Behavior tab.
Under Executable Text Files, set the option to Ask what to do. Navigate
back to the file downloaded from the Ganache download link. Right-click
on the file and click on PROPERTIES. Select the Permissions tab. Select
the option Allow executing files as program. Now, double-click on the
file. The Ganache blockchain should start smoothly. It's probably best to
do a global installation of Truffle to avoid any conflicts. For example,
create a directory workspace called truffle and install Truffle using sudo
npm install truffle -g.

I'm using Ubuntu 18.04.2 LTS for running the preceding applications and deploying my
blockchain. This project assumes that you are working on a Unix operating system.
Additionally, this project assumes you have Node.js and npm installed. I'm using Node
version 13.0.1 and npm version 6.12.0.

Lastly, we'll be using the OpenZeppelin library of smart contracts to write our contracts.
To use this library, create a project folder in your Truffle workspace. Let's call it
tokenwallet. Create a package.json file in the project folder and update it with the following
values:

{
 "dependencies": {
 "babel-register": "^6.23.0",
 "babel-polyfill": "^6.26.0",

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[23]

 "babel-preset-es2015": "^6.18.0"
 },
 "devDependencies": {
 "openzeppelin-solidity": "^2.2.0"
 }
}

Run npm install to install the OpenZeppelin library and Babel for your Truffle
workspace.

Understanding ERC20 and ERC721 smart
contract standards
To understand ERC20 and ERC721 contract standards, first, let's look at the concept of
fungibility. Fungibility is used to describe the property of an asset where individual units
do not hold a special value and can be replaced with another unit of the asset. A good
example of this a 10 dollar bill. If you have a 10 dollar bill and I have a 10 dollar bill, they
both hold the same value, which is 10 dollars. The bill would not have a higher or lower
value depending on who is the owner of the bill. The bills can replace each other very
easily. Hence, a 10 dollar bill is a fungible asset. All currency is essentially fungible in
nature.

Now, take the case of a different kind of asset. If both of us owned a 400-square foot
apartment and yours was in New York City and mine in New Delhi, the monetary value of
both the apartments would be different because of the average price of a property per
square foot being much higher in New York. In this case, the apartment is an example of a
non-fungible asset—essentially, an asset that cannot be replaced by a random asset from
the same group. The asset has some additional properties attached to it that make it
"special."

In the world of finance, we use both fungible and non-fungible assets and goods
extensively. Currency, loyalty tokens, food coupons, gift cards, commodities, and so on are
fungible in nature, wherein one can replace the other. Real estate, people, pre-owned
automobiles, artworks, and so on are non-fungible in nature, where each unit has some
distinguishing features that make it irreplaceable.

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[24]

The Ethereum community has devised numerous smart contract standards suited for
different use cases. These are meant to be starting points for developers and introduce
uniformity among developers coding for the public Ethereum blockchain. For fungible
tokens, the most popular contract standard is ERC20. ERC20 tokens have been
implemented in multiple use cases such as payment tokens, loyalty coins, gift cards, and so
on but their most popular implementation by far is as Initial Crypto Offering (ICO)
tokens. ERC20 contracts are easy to understand, build, and deploy and, owing to this, it is
often this first contract standard that developers work with.

ERC 721 is the token standard used to build smart contracts that issue Non-Fungible
Tokens (NFTs). Popular implementations include government documents, land titles,
digital identities, and real estate. In its native implementation, it does not define a protocol
for capturing metadata of the token. However, OpenZeppelin provides us with a sample
URI framework for implementing NFTs as part of its ERC721 contract templates.

Writing the smart contract code
For our project, we'll be creating one fungible and one non-fungible token. Our fungible
token will be a payment token called MoolahCoin. Our non-fungible token will be an
apartment ownership token called Condos. We'll also be creating a wallet that can hold
both fungible and non-fungible tokens.

We will be using Truffle Suite and the Ganache blockchain for building and deploying our
smart contracts. For writing our smart contract, we'll be using the OpenZeppelin Solidity
library version 2.2. OpenZeppelin is a nifty resource that provides smart contract templates
for developing DApps. It is a suite of tested and community-approved smart contracts that
can be used as building blocks for production-grade blockchain applications.

The OpenZeppelin framework consists of reusable contract code for Ethereum and other
Ethereum Virtual Machine (EVM)-based blockchains (for example, Quorum). It
significantly cuts down the development time for building secure and safe blockchain
applications and the time for writing smart contracts. It also helps to promote
standardization.

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[25]

Creating the ERC20 Token contract
We will start by creating a .sol file in your contracts directory. Let's name this file
MoolahCoin.sol:

We'll begin writing our contract by first declaring the Solidity compiler version1.
with the help of the following command:

pragma solidity ^0.5.2;

Next, we will import the dependent sample contract templates from the2.
openzeppelin library, as shown in the following code block:

import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Detailed.sol";
import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Capped.sol";
import "openzeppelin-solidity/contracts/ownership/Ownable.sol";

The imported contracts implement the following functionalities:

ERC20Detailed and ERC20Capped are sample contracts that allow us to
encapsulate the inner workings of the ERC20 token. They are also used to
initialize the parameters used to describe the ERC20 token during contract
deployment.
ERC20Detailed allows us to define the token name, symbol, and the number of
decimals the token is divisible up to.
ERC20Capped allows us to define the total supply, the total number of tokens
that will be issued in the contract's lifetime. It also implements a mint method.
The mint method permits us to issue new tokens and transfer them to any
Ethereum address on the network.
Ownable is a sample contract that allows us to implement access controls on the
smart contract.

The contract name is the same as our token name. The contract inherits the3.
ERC20Detailed, ERC20Capped, and Ownable smart contracts from the
openzeppelin library:

contract MoolahCoin is ERC20Detailed, ERC20Capped, Ownable {

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[26]

Next, as shown in the following code block, we will create a constructor for our4.
token contract. During contract deployment, it initializes the descriptive
parameters of our payment token:

constructor()
ERC20Detailed("Moolah Coin", "MC", 4)
ERC20Capped(10000000000)
payable public {}
}

Our constructor inherits the constructor methods for the contracts
ERC20Detailed and ERC20Capped from the Open Zeppelin library. The
following code demonstrates the ERC20Detailed constructor:

//ERC20Detailed Constructor
constructor (string memory name, string memory symbol, uint8
decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}

The ERC20Detailed constructor sets the name of the token as Moolah Coin, the
token symbol as MC, and the number of decimals the token is divisible up to (7
decimal places after zero).

The following code demonstrates the ERC20Capped constructor:

//ERC20Capped constructor
constructor (uint256 cap) public {
 require(cap > 0, "ERC20Capped: cap is 0");
 _cap = cap;
 }

The ERC20Capped constructor initializes the total supply of Moolah Coin
(10,000,000,000 MC tokens in the token's lifetime) when the contract is deployed.

Putting it all together, MoolahCoin.sol will look something like this:

pragma solidity ^0.5.2;

import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Detailed.sol";
import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Capped.sol";
import "openzeppelin-solidity/contracts/ownership/Ownable.sol";

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[27]

contract MoolahCoin is ERC20Detailed, ERC20Capped, Ownable {

constructor()
ERC20Detailed("Moolah Coin", "MC", 4)
ERC20Capped(10000000000)
payable public {}

}

We will compile our contract using Truffle. Copy and paste the contract file5.
(MoolahCoin.sol) to the directory /contracts in your truffle workspace.
Before bringing the Truffle console online, check whether your Ganache
blockchain is running and the Solidity compiler version is set to 0.5.2 in the
Truffle configuration file.

To change the Solidity compiler version, open the truffle-config.js file.
Under module.exports, add the compiler version and settings as shown in the
following code block. Make sure the tags are uncommented and enabled. Also,
make sure the development network tags are uncommented and enabled and the
port tag is set to 8545. Refer to the following code block:

module.exports = {
networks: {
development: {
host: "127.0.0.1",
port: 8545,
network_id: "*",
}},
compilers: {
solc: {
version: "0.5.2",
settings: {
optimizer: {
enabled: false,
runs: 1000,
},
}}}}

Now, let's run the Truffle console with the help of the following command:6.

truffle console

Next, in the command line, we will enter compile to compile the contract as7.
shown in the following code:

truffle(development)>> compile

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[28]

You can check out the original ERC20 smart contract standard approved
by the Ethereum Improvement Program here (https://theethereum.
wiki/w/index.php/ERC20_Token_Standard). OpenZeppelin implements
an encapsulated and safer version of the same contract. It's always
recommended that you read the inherited template contracts in the
openzeppelin contracts directory. You can locate the contract by
following the folder path given in the import statement.

Creating the ERC721 Token contract
We will start by creating a .sol file in our contracts directory and will name this file
Condos.sol:

We will begin writing our contract by first declaring the Solidity compiler1.
version as shown here:

pragma solidity ^0.5.2;

Next, as shown in the following code, we will import the dependent sample2.
contract templates from the openzeppelin library:

import "openzeppelin-
solidity/contracts/token/ERC721/ERC721Metadata.sol";

ERC721Metadata.sol is an extremely useful resource for creating non-fungible
tokens. It implements the hashmap TokenURI for storing token metadata. This
helps as the native ERC721 standard does not implement a standard for capturing
token metadata. It can be used to quickly create an ERC721 token with metadata
as shown in the following:

contract Condos is ERC721Metadata {

You can choose to avoid using the internal hashmap implemented by
ERC721Metadata.sol while creating an NFT. Simply import and inherit
the openzeppelin contract, ERC721.sol, and define the metadata
structure using a struct as per your requirement.

https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[29]

Our contract inherits the ERC721Metadata contract from3.
ERC721Metadata.sol. Now, we define the Id parameter. The Id parameter
holds the ID value of the last/latest token issued by our contract. The MDTrack
hashmap maps each token ID to the Ethereum address that holds that token:

uint32 public Id;
mapping(address => uint32) public MDTrack;

In the preceding code, Id is a public variable used to hold the token ID
and MDTrack is a public hashmap that maps addresses to token IDs, which are of
the integer type.

Next, as shown in the following, let's create the constructor method that executes4.
on contract deployment:

constructor()
ERC721Metadata("Condos Token", "CONDO")
payable public {
Id = 0;
}

Following is the constructor for the ERC721Metadata contract from its .sol file:

//ERC721Metadata Constructor Method

constructor (string memory name, string memory symbol) public {
 _name = name;
 _symbol = symbol;
 _registerInterface(_INTERFACE_ID_ERC721_METADATA);
 }

From the preceding code, we can make the following observations:

The constructor initialized the name (Condos Token) and symbol (CONDO) for
our token.
It also registers a new ERC165 interface type for our non-fungible token. We also
assign an initial value of 0 to our ID parameter.

Next, we will define a method for creating NFTs and a method for transferring5.
NFTs, as shown in the following code:

//createNFT method
function createNFT(address receiver, string calldata metadata)
external returns (uint32)
{
Id++;

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[30]

_mint(receiver,Id);
_setTokenURI(Id,metadata);
MDTrack[receiver] = Id;
return Id;
}

From the preceding code, we can make the following observations:

The method mints new non-fungible tokens to the receiver's address. It also
allows the owner to set initial metadata using the input parameters.
The metadata is set using the setter for TokenURI from ERC721Metadata.sol.
Every time a new token is issued, the MDTrack hashmap is updated to map the
holding address to the token ID. Next, let's write a method for transferring the
NFTs:

//transferNFT method
function transferNFT(address sender,address receiver, uint32
transId, string calldata metadata) external
{
_transferFrom(sender, receiver, transId);
_setTokenURI(transId,metadata);
delete MDTrack[sender];
MDTrack[receiver] = Id;
}
}

From the preceding code, we make the following observations:

The method transfers non-fungible tokens between the sender and the receiver
address. It also allows the owner to update the metadata of the token using the
input parameters.
The metadata is updated using the setter for TokenURI from
ERC721Metadata.sol.
For every transfer, the MDTrack hashmap is updated to map the receiver's
address to the token ID and the sender's address is removed from the hashmap
using delete.

Putting it all together, this is what Condos.sol looks like:

pragma solidity ^0.5.2;

import "openzeppelin-
solidity/contracts/token/ERC721/ERC721Metadata.sol";

contract Condos is ERC721Metadata {

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[31]

uint32 public Id;
mapping(address => uint32) public MDTrack;
constructor()
ERC721Metadata("Condos Token", "CONDO")
payable public {
Id = 0;
}

function createNFT(address receiver, string calldata metadata)
external returns (uint32)
{
Id++;
_mint(receiver,Id);
_setTokenURI(Id,metadata);
MDTrack[receiver] = Id;
return Id;
}

function transferNFT(address sender,address receiver, uint32
transId, string calldata metadata) external
{
_transferFrom(sender, receiver, transId);
_setTokenURI(transId,metadata);
delete MDTrack[sender];
MDTrack[receiver] = Id;
}

}

Next, let's compile our contract now. Copy and paste the contract file6.
Condos.sol to the directory /contracts in your truffle workspace. Now, we
will run the Truffle console with the help of the following command:

truffle console

Finally, in the command line, enter compile to compile the contract, as shown7.
here:

truffle(development)> compile

In this section, we created one fungible and one non-fungible token for our project. Now,
let's move ahead toward migrating and deploying the smart contract code in the next
section.

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[32]

Migrating the smart contract code using
Truffle
To work with our contracts, we first need to migrate these contracts to our test blockchain.
Migrations carry out the following tasks:

They deploy the compiled contract code to the blockchain.
They establish interlinking between dependent contracts.
They initialize the initial values through the constructor.
Lastly, and most importantly, they manage the different versions of the contracts
deployed. In the traditional model, every time a contract is deployed, a new
Ethereum address is generated that then needs to be updated to the code of the
blockchain application. Truffle allows us to abstract this concept and invoke the
contract directly through a contract object instead of the address.

To deploy the smart contracts, first bring your Ganache blockchain online. Make sure your
Ganache test server is running on localhost:8545. To do so, select the New Workspace
option from the Ganache launch screen. Click on the SERVER tab on the Workspace
screen. Set the port number to 8545:

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[33]

Click on Save Workspace in the upper-right corner. A blockchain network will be started
as follows:

Now let's migrate the contracts we wrote earlier to our Ganache blockchain network:

 We start with creating migrations for the two token contracts using the Truffle1.
command line, as shown here:

truffle console
truffle(development)> create migration condos_migration
truffle(development)> create migration moolahcoin_migration

Two migration files will be created with the following nomenclature:

*{timestamp}_moolahcoin_migration.js

*{timestamp}_condos_migration.js

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[34]

Replace the content of the *{timestamp}_moolahcoin_migration.js file2.
with the following code:

let MoolahCoin = artifacts.require("MoolahCoin.sol");
module.exports = function(deployer) {
deployer.deploy(MoolahCoin);
};

Replace the content of the *{timestamp}_condos_migration.js file with the3.
following code:

let Condos = artifacts.require("Condos.sol");
module.exports = function(deployer) {
deployer.deploy(Condos);
};

In the Truffle console, enter migrate to migrate the contracts to the blockchain,4.
as shown in the following code:

truffle(development)> migrate

Now, check the Ganache UI. It will show that some blocks have been mined and5.
the transactions have been created:

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[35]

Note down the contract addresses from the console. We'll need this later. Now, let's create a
token wallet frontend using ReactJS in the next section.

Creating the token wallet frontend using
ReactJS
Now, let's create a simple wallet app in react.js to manage tokens. The wallet will have
the following functionalities:

It will allow the user to send ERC20 and ERC721 tokens.
It can mint new tokens if the address owner is the contract owner for the token.
Minting issues new ERC20 or ERC721 tokens and credits them to any Ethereum
account on the network.
It will approve an Ethereum account to spend the tokens on the user's behalf.
Certain use cases and workflows might require the user account to approve or
authorize an external party to debit their account and transfer tokens. The
approve functionality allows us to achieve the same.

I am assuming that you will have a basic understanding of the React framework for this
project. I'll be focusing on the sections where our app interacts with the token contracts.
You can download the source code for the entire app from our GitHub repository at this
link: https://github.com/PacktPublishing/Blockchain-Development-for-Finance-
Projects/tree/master/Chapter%202/Chapter%202/tokenwallet.

We need to set up a MetaMask account before we can create our wallet frontend. To do so,
follow these steps:

Start by installing MetaMask into your browser. It's available as a plugin for1.
Chrome and Firefox. Create or import your wallet using the seed words.
Open the MetaMask wallet by clicking on the icon on the right-hand side. On the2.
top right hand side of your Chrome or Firefox browser for test account. From the
drop-down menu for the network tab in MetaMask, select the network as
Localhost 8545.
Open the Ganache blockchain interface. Copy the secret key for an account. To3.
do so, click the key icon next to the first Ethereum test account available in
Ganache. Copy the secret key from the popup that appears.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[36]

Navigate back to your MetaMask wallet. Import the Ethereum account into4.
MetaMask as an account. To do so, click on the account icon on the top right-
hand side in your MetaMask wallet. Click on Import Account. Select and paste
the private key and click on Import. Your Ganache address should now be
available as an account on MetaMask.

We are now good to start working on the wallet.

Setting up the React app
Let's start building our React app:

We'll first create a new React app called token wallet using npx, as shown in the1.
following:

npx create-react-app tokenwallet

Next, we will update package.json with the following values:2.

{
 "name": "tokenwallet",
 "version": "1.0.0",
 "dependencies": {
 "bulma-start": "0.0.2",
 "react": "^16.4.2",
 "react-dom": "^16.4.2",
 "react-scripts": "1.1.4",
 "web3": "^1.2.0"
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test --env=jsdom",
 "eject": "react-scripts eject"
 }
}

Run the following command to install the dependencies:3.

npm install

Next within the src folder, create a Components folder for the app components.4.
Also, create a Token folder within src. We'll be using this to map the tokens
supported by our wallet.

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[37]

Finally, create a folder called Contracts in the src directory. From your build5.
repository in the Truffle workplace, copy the json file for our tokens and the
inherited contracts to this folder. You can also set symlink instead, to point to
the build repository of your Truffle Suite.

Adding token interfaces to our app
We need to map the contract ABI and provide a suitable contract interface that our app can
use for invoking the token smart contracts and calling the contract methods. Let's see how
we can accomplish this:

Within the token folder, we will create two components for mapping ERC20 and1.
ERC721 tokens. Let's call these all20.js and all721.js, as shown in the
following code:

//all20.js

import MoolahCoin from './MoolahCoin';
const Tokens20 = [
 MoolahCoin
];
export default Tokens20;

//all721.js

import Condos from './Condos';
const Tokens721 = [
 Condos
];
export default Tokens721;

Currently, these files map our MoolahCoin token (ERC20) and Condos token
(ERC721). As you add more tokens to the wallet, you need to add them to these
files.

Next, we'll create two component files for our tokens. We'll label these2.
MoolahCoin.js and Condos.js. Map the following parameters to each token
js:

Address—Address of the contract
Decimal—Number of decimals after zero
Name—Name of the token
Symbol—Symbol of the token

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[38]

Icon—Pictorial icon to be shown on the wallet
ABI—Contract ABI

This is how Condos.js looks:

export default {
 address: "0xB1a54A6dB263374120C5B3A00184542812B6D25D",
 decimal: 0,
 name: "Condos",
 symbol: "CONDO",
 icon: "Condos.jpg",
 abi: [
 {
 "constant": true,
 "inputs": [
 {
 "name": "interfaceId",
........
........
........
 "payable": false,
 "stateMutability": "nonpayable",
 "type": "function"
 }
]
}

Every time you add a new token, you need to add a similar component and update all the
relevant code files. Let's create the rest of our app components.

App components
Following are the main components of our app:

 TokenBlock20.js: This component renders the list of ERC20 tokens along with
the option to send, approve, and mint tokens. It renders the token image, symbol,
and wallet balance.
TokenBlock721.js: This component renders the list of ERC721 tokens along
with the option to send, approve, and mint tokens. It renders the token image
and symbol as well as token ID and metadata. Since this is an ERC721 token, the
last two are of special importance here.
ApproveHeader.js: This component renders the wallet header for the Approve
screen. It loads when the user clicks the approve button.

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[39]

ApproveToken.js: This component renders the wallet screen for the Approve
screen. It loads when the user clicks the approve button. For ERC20 tokens, it
asks for the address to approve and the balance to approve for that address. For
ERC721, it asks for the address to approve and the token ID to approve.
MintHeader.js: This component renders the wallet header for the Mint screen.
It loads when the user clicks the mint button.
MintToken.js: This component renders the wallet screen for the Mint screen. It
loads when the user clicks the mint button. For ERC20 tokens, it asks for the
address it needs to send the new tokens to and the number of tokens to mint. For
ERC721, it asks for the address to which the new NFT will be tagged and the
metadata for the new token.
TransferHeader.js: This component renders the wallet header for the Transfer
screen. It loads when the user clicks the send button.
TransferToken.js: This component renders the wallet screen for the Transfer
screen. It loads when the user clicks the send button. For ERC20 tokens, it asks
for the address to send to and the number of tokens to send. For ERC721, it asks
for the address to send to, the ID of the token to be sent, and the new metadata
for the transfer.
InstallMetamask.js: This component notifies the user to install MetaMask
when it cannot detect injected web3.

You can view and download the source code for all of the components at
the GitHub link of this chapter.

Container.js
The Container component holds several other components, toggles components display
as per state changes, and passes down their props to the components after it receives them
from app.js:

We start by importing React and all of the dependent components.1.

You can look at the Container component code file at the following
GitHub repository for reference: https://github.com/PacktPublishing/
Blockchain-Development-for-Finance-Projects/blob/master/
Chapter%202/Chapter%202/tokenwallet/src/Components/Container.
js.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/Components/Container.js

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[40]

The container checks the current state selected by the user. Accordingly, the user2.
is navigated to the correct screen components. The state is checked using the
transferDetail20, transferDetail721, mintDetail20, mintDetail721,
approveDetail20, and approveDetail721 state variables. The container then
redirects the props it receives from app.js to the relevant component and
renders it.
If the state variable is not set for an operation (approve, mint, or transfer), the3.
container then renders the default token block.
The container also renders a separate panel for ERC721 tokens. 4.

Next, let's look at our App.js file.

App.js
App.js has the following functions:

Use the injected web3 objected to connect to the Ganache blockchain and set the
network in the navigation bar.
Asynchronously access MetaMask for account authorization.
Define the Transfer, Approve, and Mint methods for interacting with the token
contracts.
Set the state and pass the relevant props to the container component before each
operation (Approve, Mint, and Transfer) is carried out.

Let's look at the code:

We will start writing App.js by first importing React, Web3, and the app1.
components, as shown here:

import React, { Component } from 'react';
import Web3 from 'web3'
import Tokens20 from './Tokens/all20';
import Tokens721 from './Tokens/all721';
import Nav from './Components/Nav';
import Description from './Components/Description';
import Container from './Components/Container';
import InstallMetamask from './Components/InstallMetamask';

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[41]

Next, we will define the constructor and set the initial values for the state2.
variables. Check the constructor method in the App.js code available at the
following link for reference: https://github.com/PacktPublishing/
Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/
Chapter%202/tokenwallet/src/App.js.

In the constructor method, we do the following:

We import the token interfaces we created earlier and set the app name.
We define the state variables for each operation being carried out,
namely, approveDetail20, approveDetail721, mintDetail20,
mintDetail721, transferDetail20, and transferDetail721.
We also set the default and initial values for the form fields. We use bind to
enable the child components to change the state.
The account parameter stores the account of the Ethereum wallet being used for
submitting transactions to the blockchain.

Next, we will define the ComponentDidMount() section to indicate the tasks to3.
carry out after App is rendered, as shown in the following:

componentDidMount(){

 var account;

 if (window.Ethereum) {
 const Ethereum = window.Ethereum;
 window.web3 = new Web3(Ethereum);
 this.web3 = new Web3(Ethereum);

 Ethereum.enable().then((accounts) => {
 account = accounts[0];
 this.web3.eth.defaultAccount = account ;

Post November 2018, MetaMask does not inject the Ethereum provider with user
accounts by default. Also, while the legacy window.web3 option is still available
(after disabling privacy mode in settings), it is not recommended to use it as it
will be phased out in the long run. The Ethereum provider is now available at
window.Ethereum in the new version. To access the user accounts, the
DApp must asynchronously call the Ethereum.enable() method. This method
requests access from the MetaMask app and the user must explicitly grant access
to the DApp for using his or her MetaMask wallet. After granting permission, the
method returns an array of the user's account with the active/current account at
the 0th location.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[42]

Hence, for our app, we first check whether the window.Ethereum object is
available. To provide compatibility with legacy code, we map the
window.Ethereum object to window.web3. We also map the current app's
Ethereum provider to window.Ethereum. Next, we asynchronously call
MetaMask to ask for permission to the injected Ethereum provider with the user's
accounts.

As shown in the following, we will set the local account parameter to the first4.
account in the array of accounts returned by the Ethereum.enable method. We
also set the default account for window.web3:

let app = this;

this.setState({
 account
 });

this.setNetwork();
this.setGasPrice();

From the preceding code, we can make the following observations:

We initialized the this object for our app. We also set the account state variable
to the default account.
We also called the setNetwork (to set the Navbar to our local Ganache
blockchain) and setGasPrice methods (to get the default gas price from the
network) once we have access to the injected web3.

Next, we will use the Tokens20 parameter to loop through all of the tokens5.
listed in all20.js. For each ERC20 token, we set the contract parameter using
its ABI and address. We call the balanceOf method to get the balance for each
token for our primary account. We will fetch all of the other parameters from the
token's component file. Finally, each token's details are pushed into the token20
state array. Let's have a look at the following code:

Tokens20.forEach((token) => {
 let erc20Token = new
this.web3.eth.Contract(token.abi,token.address);

erc20Token.methods.balanceOf(account).call().then(function(response
){

 if(response) {
 let decimal = token.decimal;

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[43]

 let precision = '1e' + decimal;
 let balance = response / precision;
 let name = token.name;
 let symbol = token.symbol;
 let icon = token.icon;
 let abi = token.abi;
 let address = token.address;

 balance = balance >= 0 ? balance : 0;

 let tokens20 = app.state.tokens20;

if(balance > 0) tokens20.push({
 decimal,
 balance,
 name,
 symbol,
 icon,
 abi,
 address,
 });

 app.setState({
 tokens20
 })
 }
 });
 });

We will similarly loop through all of the ERC721 tokens available in all721.js.6.
The only difference being that, for ERC721, we fetch tokenId and the mapped
metadata for each token. We do this by accessing the getter method for
MDTrack (the public hashmap for tracking token ID for an address) and
the tokenURI method available in the base ERC721 contract:

Tokens721.forEach((token721) => {
 let erc721Token = new
this.web3.eth.Contract(token721.abi,token721.address);

 erc721Token.methods.MDTrack(account).call().then(function
(response) {
 if(response) {
 let name = token721.name;
 let symbol = token721.symbol;
 let icon = token721.icon;
 let abi = token721.abi;
 let address = token721.address;

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[44]

 let tokenid = response;

 tokenid = tokenid >= 0 ? tokenid : 0;
 if(tokenid!==0)
 {
 erc721Token.methods.tokenURI(tokenid).call().then(function
(response) {
 if(response) {
 let metadata = response;
 let tokens721 = app.state.tokens721;

 tokens721.push({

 name,
 symbol,
 tokenid,
 icon,
 abi,
 address,
 metadata,
 });

 app.setState({
 tokens721
 })
 }
 });
 }
 }
 })
 })

Next, we define the individual methods for each operation. The Transfer7.
method is used to transfer token between Ethereum addresses. You can find the
code for the Transfer method at the App.js code at the link here: https://
github.com/PacktPublishing/Blockchain-Development-for-Finance-
Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[45]

From the code, we can make the following observations:

The Transfer method starts by setting the inProgress state variable to true so
child components can recognize that the current state is a transfer in progress.
After establishing defaultAccount, we initialize our contract object depending
on whether the token is ERC20 or ERC721. We do this by checking whether the
transferDetail721 state variable is storing any metadata.
Next, we assign the values of the state variables to our local variables and then
call our token contract for the transfer.
For our ERC20 tokens, this is the transferFrom method. For ERC721, this is the
transferNFT method.
On successful response, we reset the app using the resetApp method, which
resets the state variables and sets inProgress to false.

Now, we will write the mint method. The mint method is similar to the8.
Transfer method. It is invoked when the user clicks the mint button on the mint
token screen:

You can find the code for the mint method in the App.js file code at the
following link: https://github.com/PacktPublishing/Blockchain-
Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/
tokenwallet/src/App.js.

The code checks whether the user is minting an ERC20 or an ERC721 token and
searches the respective state variable for the token's details.
If the token is an ERC20 token, it calls the mint method defined in the base
ERC20 contract.
For non-fungible tokens, it calls the createNFT method defined in our Condos
contract for creating non-fungible tokens and allocating token metadata.
It also toggles the inProgress state parameter on and off when minting is in
process.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[46]

Next, we will write the Approve method:9.

Please check the App.js file at the following link for the code for
the Approve method: https://github.com/PacktPublishing/Blockchain-
Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/
tokenwallet/src/App.js.

The approve method checks whether the user is approving an ERC20 token or
an ERC721 token.
This it does by checking the approveDetail20 state variable. Accordingly, it
calls the approve function from the ERC20 base class or the approve function
from the ERC721 base class.
In the case of the ERC20 contract, it needs to send the account to approve and
balance. In the case of ERC721, it needs to send tokenid and the account to
approve.

Lastly, we will build the render function:10.

You can find the render method at this link for the App.js file: https://github.
com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/
master/Chapter%202/Chapter%202/tokenwallet/src/App.js.

If the app can detect a web3 instance, the app renders and sends the state
parameters to the Container component, which then redistributes it between
the child components.
If the app is unable to detect a web3 instance, it shows a notification to the user
asking him or her to install MetaMask. It does this by rendering the
InstallMetamask.js component. The entire app.js source code can be found
at the GitHub repository: https://github.com/PacktPublishing/Blockchain-
Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/
tokenwallet.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%202/Chapter%202/tokenwallet/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%202/Chapter%202/tokenwallet

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[47]

Running our app
Let's bring our wallet online and run the application to see how it works. Make sure your
Ganache blockchain is running and the contracts are deployed. Let's run our React
development server:

Run the following command in the project directory:1.

npm start

 By default, the app should run on port 3000.

To access the app, enter localhost:3000 in your browser. The app should open2.
up in the browser, as shown in the following screenshot:

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[48]

You need to sign in with your MetaMask credentials so the app can access your3.
primary account. After signing in, you should get another popup, as shown in
the following screenshot. You need to permit the app access to MetaMask:

On granting access, MetaMask returns an array of accounts to the app including
your primary account in the 0th location. Hence, the app should now be rendered
with your primary Ethereum account visible.

Next, we will add the Condos and MoolahCoin tokens to your MetaMask wallet.4.
To do so, select the hamburger menu icon in the top left-hand corner in
MetaMask. From the sliding panel that appears, click on Add Token, as shown in
the following screenshot:

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[49]

As shown in the following screenshot, select the Custom Token tab. Paste the5.
contract address in the screen that appears. MetaMask should automatically
recognize the details of your token contract on pasting the address:

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[50]

Then, click on Next and then on Add Tokens, as shown in the following6.
screenshot:

The following screenshot displays the details of Account 2. Now, we will repeat7.
the process for both the MoolahCoin and Condos tokens:

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[51]

We need to mint an initial amount of tokens to ourselves before we start using8.
the app. To do so, navigate back to the Truffle console and run the following
code:

//Mint 10 MoolahCoins
MoolahCoin.deployed().then(function(instance) { return
instance.mint("<Your primary eth address>",100000);
}).then(function(responseb) {console.log("response",
responseb.toString(10));});

//Mint 1 Condo Token with metadata 'New Delhi'
Condos.deployed().then(function(instance) { return
instance.createNFT("<Your primary eth address>","New Delhi");
}).then(function(responseb) {console.log("response",
responseb.toString(10));});

Our token wallet app will now look like the following screenshot:

You will now see the MoolahCoin and Condo tokens in your wallet dashboard.

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[52]

Let's try to send some tokens now. Click on the Send button for MC. The send9.
MC screen will open as shown in the following screenshot:

Copy an address from the list of auto-generated addresses from Ganache, as10.
shown in the following screenshot:

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[53]

Copy the receiver's address field, enter an amount to transfer, and click on Send.11.

MetaMask will pop up with a notification and ask the user's permission to
transfer tokens:

Click on Confirm and the transaction will go through. MetaMask will give you a12.
pop-up notification to let you know the transaction has gone through
successfully. The balance change is reflected in the app interface:

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[54]

Let's try to approve now. Click on the Approve button for MoolahCoin. Enter an13.
address to approve and the token balance permitted to move. Click on
Confirm after entering the details, as shown in the following screenshot:

MetaMask asks for the user's permission. It also shows a notification indicating
that the user is approving another address to spend tokens on their behalf. Click
on Confirm for approval to go through.

Lastly, let's try out the Mint operation for the Condos token. As shown in the14.
following screenshot, Mint allows you to create and assign new tokens to an
Ethereum address. Click on the Mint button for Condos to get the MINT token
screen. Enter an address to mint the new tokens to. Minting for Condos also
allows you to allocate an initial metadata value to the token:

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[55]

Click on Mint after entering the address and metadata as shown in the following15.
screenshot. MetaMask pops up with a notification asking for the user's
permission:

Click on Confirm to generate a new NFT mapped to the receiving address with16.
the metadata mentioned on the screen.

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[56]

Connecting to the main Ethereum network
In this section, we'll see how our wallet can be connected to the main Ethereum network
and used for storing, transferring, and managing fungible and non-fungible assets on the
Ethereum network:

To deploy the wallet and contracts in production, you need to have a geth1.
instance running on the main Ethereum network. Geth is a popular Ethereum
client used to run an Ethereum node and connect to the main network. Update
the truffle-config.js file to point to the production geth instance as shown
in the following. The network ID is set to 1 for the main network:

const HDWalletProvider = require('truffle-hdwallet-provider');
module.exports = {
networks: {
development: {
host: "127.0.0.1",
port: 8545,
network_id: "*",
}
prod: {
host: "<Live geth host IP>",
port: 8545,
network_id: "1",
}
},
compilers: {
solc: {
version: "0.5.2",
settings: {
optimizer" {
enabled: false,
runs: 1000,
},
}}}}}

Run the following command to launch an instance of the Truffle console pointed2.
to your production geth instance:

truffle prod

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[57]

Make sure your coinbase is set and your account is unlocked before executing3.
migrate. Since you are deploying on the main Ethereum network, there will be
associated gas that you need to pay to the network. Make sure your account has
sufficient ethers to pay for gas. Run the following command to unlock your
account:

personal.unlockAccount(eth.accounts[0],'passphrase',1000)

Run migrate on the console to deploy your contracts to the production geth:4.

migrate

Let's come to the app now. Point the MetaMask instance to the main Ethereum5.
network by selecting it from the drop-down list as shown in the following
screenshot:

Building a Blockchain Wallet for Fungible and Non-Fungible Assets Chapter 2

[58]

Your wallet app should now be connected to the main Ethereum network. This is indicated
on the network status tab, as shown in the following screenshot:

You can now start using your wallet app on the main Ethereum network.

Summary
So, we come to the end of our second chapter. If this is your first time building a blockchain
application, this chapter should have helped you to identify the different components of a
blockchain application. If you are new to creating and issuing tokens on blockchains, this
should have helped you to grasp the concept and give you some ideas on how you can
implement them as part of your projects.

We started this chapter by looking at the concept of fungible and non-fungible tokens and
the business cases you can implement using these tokens. We also looked at the smart
contract standards for these tokens and how they can be implemented using Solidity and
OpenZeppelin. We created a mintable fungible token called MoolahCoin and a non-
fungible token called Condos using these resources. Finally, we built a wallet app to
manage the tokens we issued on the blockchain using ReactJS. The wallet allowed us to
send tokens, approve requests from secondary addresses, and mint new tokens. Lastly, we
looked at running our application and connecting our application to the main Ethereum
network.

The main takeaway from this chapter is understanding the concept of tokens and how you
can implement them as part of your business use cases. I also hope you were able to
understand how to leverage openzeppelin to quickly write smart contracts. I hope you
now have a clear understanding of creating a React app that can interact with your local
Ganache blockchain or the main Ethereum network by leveraging MetaMask.

In the next chapter, we will learn to create a merchant solution for online retailers. The
solution would enable users to accept payments on a blockchain network akin to the
leading fiat payment networks of the day.

3
Designing a Payment Gateway

for Online Merchants

A payment gateway is an integral tool in the kitty of any web developer designing an e-
commerce solution. Payment gateways allow retailers to set up and scale businesses online.
This chapter will guide you in building a payment gateway system and a payment
ecosystem. The solution would enable users to accept payments on a blockchain network
akin to the leading fiat payment networks of the day. This specific solution is built on the
Ethereum platform and allows the merchant to accept ether as payment. It can easily be
leveraged to accept an ERC20 token as payment as well for enterprise applications not
implementing cryptocurrencies.

This chapter will cover the following topics:

Defining our blockchain payment ecosystem
Generating dynamic merchant addresses using HD wallets
Creating an e-commerce website and payment gateway
Creating an API for generating dynamic payment addresses
Building the merchant HD wallet
Running the payment ecosystem

Technical requirements
The code files of this chapter are available on the following link :

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/
tree/master/Chapter%203

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203

Designing a Payment Gateway for Online Merchants Chapter 3

[60]

We'll be using the following to develop our project:

Ganache Private Blockchain Server: https://trufflesuite.com/ganache/

MetaMask plugin for Chrome/Firefox/Safari: https://metamask.io/

For installing Ganache on Ubuntu, you might need to change some
settings. Click on the drop-down menu next to the Ganache directory
name. Select Preferences. Navigate to the Behavior tab. Under Executable
Text Files, set the option to Ask what to do. Navigate back to the file
downloaded from the Ganache download link. Right-click on the file and
click on Properties. Select the Permissions tab. Select the Allow executing
files as program option. Now, double-click on the file. The Ganache
blockchain should start smoothly.

Make sure your Ganache test server is running on localhost:8545. To do so, select the
New Workspace option from the Ganache launch screen. Click on the SERVER tab on the
workspace screen. Set the port number to 8545:

https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/

Designing a Payment Gateway for Online Merchants Chapter 3

[61]

Click on Save Workspace on the upper-right corner. A blockchain network will be started,
as follows:

I'm using Ubuntu 18.04.2 LTS for running the preceding applications and deploying my
blockchain. This project assumes that you are working on a Unix operating system.
Additionally, this project assumes you have Node.js and npm installed. I'm using Node.js
version 13.0.1 and npm version 6.12.0.

Defining our blockchain payment ecosystem
Payment flows on a blockchain network have numerous characteristics similar to
conventional fiat payments. However, owing to the unique architecture of blockchain
systems, several features make them distinct from conventional payment networks.
Additionally, owing to their decentralized nature, blockchains permit you to design
payment systems that eliminate middlemen and directly credit the merchant's blockchain
wallet.

Designing a Payment Gateway for Online Merchants Chapter 3

[62]

For our project, we'll be building a payment ecosystem that illustrates the preceding
benefits. The payment ecosystem will consist of three major components:

A faux e-commerce web page with an ether payment gateway, which allows
payment from MetaMask or other Ethereum wallets
A merchant HD wallet generator, which dynamically generates a new address
for each payment request
A merchant wallet interface that tracks payments from customers and confirms
payments on the blockchain network

Let's first look at the e-commerce web page. Our e-commerce web page will have a list of
products that the customer can procure. The price will be listed in USD. A payment process
will typically follow this workflow:

On clicking the Buy Now button, the customer is redirected to a landing page1.
where they can choose whether to pay using the MetaMask wallet or any other
ether wallet. The customer is shown the amount that they need to pay to the
merchant in ether. This page is similar to the payment option selection page in
fiat payments. Instead of choosing between credit cards, PayPal, bank transfer, or
prepaid wallets, here, the customer can choose which Ethereum wallet they will
use for payments. Our e-commerce website provides the customer the option to
use either a MetaMask wallet or any other Ethereum wallet. Examples of other
Ethereum wallets could be third-party wallet providers such as Coinbase and
Kraken, hardware wallets such as Trezor, or true wallets such as the Ethereum
wallet in the Mist browser, Jaxx, My Ether Wallet (MEW), and TrustWallet. You
could also use paper wallets or transfer directly from the command line of an
Ethereum client such as go-ethereum (geth).
If the customer selects MetaMask Wallet, the application will use the browser-2.
injected web3 object for making the payment transaction. To do so, the
application will first generate a dynamic Ethereum address from the merchant's
wallet for receiving payments. This address will change for every payment
request to the merchant's wallet. Next, the app will fetch the user's account from
the injected web3 object and submit a transfer request from the user's account to
the dynamically generated merchant address. At this point, MetaMask will notify
the user of an outgoing payment and ask them whether they want to permit the
transaction. If the user permits the transaction, the transaction amount is debited
in ethers from this account and the amount is credited to the merchant's address.

Designing a Payment Gateway for Online Merchants Chapter 3

[63]

The advantage of this workflow is that the user has to go through a very simple
process to make a payment. Their experience is not very different from a
conventional fiat wallet payment. Given the checks and balances implemented by
MetaMask including notifying the user and seeking permission for each request,
it also makes for a very secure workflow.

Optionally, if the customer selects Other wallets, the gateway will generate a3.
dynamic address for accepting payments from the merchant's wallet and then
track this address for 15 minutes for any incoming transactions. The Ethereum
address to which the customer has to send the payment is displayed on the
screen. They are also shown the 15-minute timer for the payment. The customer
is expected to copy the merchant's address and then send a payment from their
wallet to the address within the 15-minute window. Every 10 seconds, the
gateway application checks the balance of the dynamic address. The timer will
stop and payment will be confirmed only when the ether balance of the merchant
address is equal to or greater than the payment expected by the merchant. The
customer can also send the payment in multiple transactions, provided these
transactions are within the 15-minute window and the total ether sent is greater
than or equal to the payment amount. When the application confirms that the full
payment has been received, it shows a confirmation message to the customer on
the screen. Alternatively, if the full payment is not received in the 15-minute
window, it shows a Payment failed message to the user. As you might realize,
this a very cumbersome process for making payments, something that users new
to crypto or blockchain might not be comfortable with. At the same time, the
customer could make a mistake while copying the address or send the incorrect
amount. Many applications try to avoid these complications by using a QR code
that the customer can scan to populate the merchant's address. But it's not a
secure process and the customer and the merchant could end up losing funds.

We'll also be designing a merchant wallet and a merchant wallet interface. A merchant
wallet is significantly different from a traditional customer wallet on Ethereum. Privacy is
of utmost importance for merchants. If the merchant uses a single Ethereum account for
accepting payment every time, it will be easy for an external party to track their business
transaction volumes and other relevant details from the peer-to-peer ledger. Hence, we
need to generate dynamic addresses for each transaction. This will ensure the anonymity of
transactions yet a transparent system for payments.

Designing a Payment Gateway for Online Merchants Chapter 3

[64]

We also need to verify that each payment received by the merchant's wallet is confirmed.
Blockchain transactions have the risk of being removed from the peer-to-peer ledger if they
end up on a competing chain à la a fork. There is also no middleman in this scenario to
cover the merchant's risk. Hence, it is important to create a foolproof system that will notify
the merchant once the payment is secure and cannot be reversed or removed. The merchant
will ship the product only after receiving the notification.

The industry standard is to wait for 6 blocks after your bitcoin transaction and 40 blocks
after your Ethereum transaction before confirming the transaction and carrying out any
dependent steps. Hence, we need to build a workflow that'll notify the merchant when the
payment comes in and when it is 40 blocks old in the Ethereum blockchain. This process is
referred to as block confirmation. Block confirmation will form an integral part of our
merchant wallet interface.

Hence, we'll be building the following:

An e-commerce payment gateway that generates a landing page for payments:
this landing page will show a dynamically generated merchant account for
receiving payments.
An API service that the e-commerce payment gateway can call: this API will
dynamically generate an address key linked to a merchant wallet and share that
new address with the payment gateway.
A merchant wallet interface that tracks all dynamically generated addresses
linked to a common root node and seed kept safe by the merchant: the wallet
interface tracks all of the payments to these dynamic addresses and notifies the
merchant once the transaction is confirmed by the network (40 blocks old).

Generating dynamic merchant addresses
using HD wallets
To generate dynamic addresses, we'll be creating a Hierarchical Deterministic (HD) wallet
system for the merchant. HD wallets create a hierarchical tree of public and private keys
from a single master node. This allows the user to generate and control a suite of public and
private keys from the same seed phrase. The HD wallet owner can easily port their suite of
keys to another hardware by porting the seed phrase used to derive the public-private key
tree.

Designing a Payment Gateway for Online Merchants Chapter 3

[65]

All addresses are generated from a master seed. Each time a new key pair is generated, the
seed is extended at the end by a counter value. This means that, theoretically, you can
generate 2512 key pairs from the same seed phrase. To back up their wallet, the user needs to
back up just the master seed phrase. They can also move their key pairs easily between
hardware by importing this key pair to a different infrastructure. This makes them
extremely portable. This also means that the user needs to back up the seed phrase and
keep it safe anytime they generate a new HD wallet as they might end up losing their funds
otherwise.

As the name suggests, HD wallets use a hierarchical structure for deriving Ethereum
addresses. To generate the addresses, we first create 12- or 24-word BIP39 mnemonic
phrase or seed phrase. The BIP39 standard defines an implementation standard for
generating deterministic wallets from a seed phrase. It has a predetermined 2,048-word list,
which it uses to create a seed phrase with 12 or 24 words aligned in a selected order. The
order of the words in the seed phrase is important. Random seed phrases can be used but
they are not recommended due to the possibility of checksum errors.

From the seed phrase, we derive the binary seed, which is actually used to generate the key
pairs. For a 128-bit seed, we use 12 words and for a 256-bit seed, we use 24 words in the
seed phrase. The 256-bit implementation is considered more secure.

From this seed, we derive a master node and the corresponding master public and private
key pair. We derive the child address nodes from this master node and subsequently the
child public-private key pair and Ethereum address. The BIP32 standard defines the
functions that are used to derive the child key pairs from this master public and private
key. It also defines a hierarchical wallet structure and a nomenclature that would be used to
refer to the child key pairs generated out of this mechanism.

The following nomenclature is a symbolic representation used to refer to a BIP32 HD wallet
key pair:

m/iH/0/k

Here, m indicates the master node, i indicates the account number derived from the master
node, 0 indicates that the address is generated for the external keychain (used for
generating public address), and k indicates the kth key pair generated. Additionally, you can
set the third parameter to 1 instead of 0 for an internal keychain for addresses for other
operations such as change addresses (addresses that store transaction change amounts) and
generating addresses.

Designing a Payment Gateway for Online Merchants Chapter 3

[66]

You can find the network diagram representing a BIP32 hierarchical public-private
key structure in the following diagram:

Figure 1: BIP32 HD wallets

The BIP44 standard builds on top of BIP32 and defines a derivation path with the following
5-level hierarchy:

m / purpose' / coin_type' / account' / change / address_index

This enables the HD wallet system to handle multiple accounts and asset types (such as
Bitcoin and Ethereum).

In this representation, we have the following:

m: This indicates the master node.
purpose: This is a constant set to 44 to indicate that the derivation path is of
BIP44 type.
coin type: This is constant for each cryptocurrency. For Bitcoin, this is 0 and for
Ethereum, this is 60. Additional coin types can be registered with the community.

Designing a Payment Gateway for Online Merchants Chapter 3

[67]

account: This is the account type; users can use multiple types of accounts. They
can be split into various categories such as donations, savings, and expenses.
change: This is set to 0 for public addresses and 1 for internal addresses such as
those holding transaction change.
index: This is used as a child index in BIP32 key derivation. It starts at 0 and
increases sequentially whenever a new address is generated.

A typical derivation path may look as follows:

m/44'/0'/0'/0/0

For our purpose, we'll be using a BIP39 mnemonic and BIP44 derivation path to build our
HD wallet. We'll be varying the address index starting from 0 to generate a key structure
each linked to the same root node. The coin type will be set to 60 for Ethereum. All of the
dynamically generated addresses can then be easily monitored and managed. Each address
will be valid only for one payment request. The mnemonic generated for the merchant
wallet will be constant throughout and the merchant needs to preserve it to be able to view
their total balance and access their funds.

Let's move on to building our ecosystem, starting with the payment gateway.

Creating an e-commerce website and
payment gateway
Let's start by creating a React app that'll act as our e-commerce portal and payment
gateway:

Create a new React app called gateway with the help of the following command:1.

npx create-react-app gateway

Open package.json within the app, and add the following dependencies:2.

{
 "name": "gateway",
 "version": "1.0.0",
 "private": false,
 "dependencies": {
 "bulma-start": "0.0.2",
 "react": "^16.8.6",
 "react-dom": "^16.8.6",
 "react-scripts": "3.0.1",

Designing a Payment Gateway for Online Merchants Chapter 3

[68]

 "typescript": "^3.4.0",
 "web3": "^1.2.0"
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject"
 }
}

Run the npm install command to install the dependencies.3.

We'll be building an e-commerce page for selling shoes online called Sindbad Commerce.
On running the app, the user lands on a default page where they can choose to buy from a
selection of five products. On clicking on the Buy Now button, they are redirected to a
payments page where they can pay using the MetaMask wallet or any other wallet.

Next, we'll be focusing on the components of the gateway. Our app will contain the
following components:

Container.js: The Container component holds several other components,
toggles components, display as per state changes, and passes down their props to
the components after it receives them from app.js.
Nav.js: This renders a navigation bar for the e-commerce page.
Description.js: This renders a single-line description for the page.
Shoerack.js: The Shoerack.js app component lists all of the shoes. It renders
the e-commerce page for viewing and buying the shoes. On clicking the Buy
Now button, the customer is redirected to the payment page.
Payment.js: Payment.js renders a payment page. It dynamically fetches a new
Ethereum address for payment using an API from the merchant wallet. It also
sets the number of ether to be transferred for a successful payment. The user can
pay using the MetaMask wallet or any other wallet.
PVerification.js: This component is rendered when the user selects Other
Wallets. It renders a tracking page that gives the user a 15-minute window to
transfer to the merchant's address.
Timer.js: The Timer component renders a 15 minutes timer and checks
whether the complete amount has been transferred to the merchant's wallet at an
interval of 10 seconds.

Designing a Payment Gateway for Online Merchants Chapter 3

[69]

Additionally, we'll define an array constant called Shoes.js, which will dynamically list
details about all of the items on sale.

We'll be looking at the important components in this section. Some understanding of how
to build React apps is assumed for the next few steps. If you want to focus on just the
blockchain part, you can download the entire app at the GitHub repository location,
at https://github.com/PacktPublishing/Blockchain-Development-for-Finance-
Projects/tree/master/Chapter%203/gateway and directly move on to the next steps.

Shoes.js
The Shoes.js object will have metadata about the products our website is selling. Let's
start creating this interface:

Under the src directory, create a folder called Items, and within the Items1.
folder, create a .js file called all.js. List out all of the shoes you want to
display on the site within this file. This is how my all.js file looks:

import Shoes1 from './Shoes1';
import Shoes2 from './Shoes2';
import Shoes3 from './Shoes3';
import Shoes4 from './Shoes4';
import Shoes5 from './Shoes5';

const Shoes = [
 Shoes1,
 Shoes2,
 Shoes3,
 Shoes4,
 Shoes5,
];

export default Shoes;

The Shoes constant contains the details of all of the items listed and can be used
to access their information.

Now, define the parameters of each individual shoe component. This is how my2.
Shoes1.js file looks:

export default {
 price: 200,
 name: "Badidas",
 logo: "Badidas.png",

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%203/gateway

Designing a Payment Gateway for Online Merchants Chapter 3

[70]

 image: "Shoe1.jpg"
 }

Do this for all of the shoe components from Shoes2 through to Shoes5.

Container.js
The Container.js file serves two main purposes:

It renders components based on the current state of the app.
It accepts the props from app.js and transfers them to the lower-level
components.

Let's see how we will build the Container.js component:

Start by importing the three components for the app, Shoerack, Payment, and1.
PVerification, as follows:

import React, { Component } from 'react';
import Shoerack from './Shoerack'
import Payment from './Payment'
import PVerification from './PVerification'

The render statement renders the Shoerack, Payment, and2.
PVerification components based on the current state variables, as follows:

this.props.paymentf ?
 <div>
 <PVerification mAddress={this.props.mAddress}
 PaymentDetail={this.props.PaymentDetail}
 amount={this.props.amount}
 diff={this.props.diff}
 closePayment={this.props.closePayment}
 minutes={this.props.minutes}
 seconds={this.props.seconds}
 />
 </div>:

When the paymentf flag is set, it indicates the customer is using a wallet other3.
than MetaMask to make the payment. Setting this flag to true, it renders the
PVerification page. The container component forwards the Payment Details
parameter, the payment amount, and the minutes and seconds parameters for
the timer.

Designing a Payment Gateway for Online Merchants Chapter 3

[71]

If paymentf is set to false, the container component next checks whether4.
the PaymentDetail props has name as a local property, as shown here:

this.props.PaymentDetail.hasOwnProperty('name') ?
 <div>
 <Payment PaymentDetail={this.props.PaymentDetail}
 Conv={this.props.Conv}
 mAddress={this.props.mAddress}
 closePayment={this.props.closePayment}
 MMaskTransfer={this.props.MMaskTransfer}
 PaymentWait={this.props.PaymentWait}
 startTimer={this.props.startTimer}
 minutes={this.props.minutes}
 seconds={this.props.seconds}
 />
 </div>:

If the name property exists and paymentf is false, the Container component5.
renders the Payment component. It also forwards the following state variables as
props:

The Conv state variable: Live conversion rate from USD into Ether
The mAddress variable: Dynamically generated merchant wallet address
MMaskTransfer: The method for initiating a transfer from the MetaMask wallet
PaymentWait: The method for accepting a transfer when a customer pays using
a wallet other than MetaMask
startTimer: The method to start a timer interval
minutes and seconds: Dynamic parameters for the timer

If none of the state variables are set, the container then renders the Shoerack6.
component, which displays all of the shoes:

<div>
 <Shoerack shoes={this.props.shoes}
 newPayment={this.props.newPayment}
 />
 </div>

That ends Container.js. Now, let's bring it all together by declaring the methods that will
define and modify our state in the App.js file.

Designing a Payment Gateway for Online Merchants Chapter 3

[72]

Writing the App.js file and declaring the methods
Let's create our main App.js file. The App.js file will define all the methods invoked by
the components and set the initial state of the App:

We start writing our App.js file by importing the dependencies and the app1.
components, as shown here:

import React, { Component } from 'react';
import Web3 from 'web3'
import Nav from './Components/Nav'
import Description from './Components/Description'
import Container from './Components/Container'
import Shoes from './Items/all'

Within the constructor, we initialize the global parameters of the requisite state2.
variables. We also bind the methods that will be accessed by the child
components for changing the state, as shown here:

class App extends Component {
 constructor(){
 super();
 this.appName = 'Sindbad Commerce';
 this.shoes = Shoes;
 this.newPayment = this.newPayment.bind(this);
 this.closePayment = this.closePayment.bind(this);
 this.PaymentWait = this.PaymentWait.bind(this);
 this.tick = this.tick.bind(this);
 this.bCheck = this.bCheck.bind(this);
 this.startTimer = this.startTimer.bind(this);

 this.state = {
 shoes: [],
 PaymentDetail: {},
 Conv: 250,
 defaultGasPrice: null,
 defaultGasLimit: 200000,
 paymentf: false,
 mAddress: '0x',
 amount: 0,
 diff: 0,
 seconds: '00', // responsible for the seconds
 minutes: '15', // responsible for the minutes
 tflag: true
 };

Designing a Payment Gateway for Online Merchants Chapter 3

[73]

Let's start writing the methods. We'll be looking at the following methods in detail:

newPayment()

PaymentWait()

MMaskTransfer()

startTimer()

tick()

bCheck()

Using the componentDidMount() function
Using render() to invoke components

newPayment()
The newPayment() method is called every time a user clicks the Buy Now button next to
an item. As the name suggests, it initiates a new payment:

We start by defining the method. The method takes index as a parameter, which1.
basically refers to the shoe model, as shown here:

 newPayment = (index) => {
 var mAddress;
 let app = this;

Next, we define two asynchronous calls:2.

The first asynchronous call is to our local API, getMAddress, which dynamically
generates a new Merchant address for receiving payments for each payment
request. We'll talk more on this API later. This newly generated address is then
updated to the state along with the details of the item for which the payment is
being processed, as shown here:

(async function main(){
 await fetch('http://localhost:5000/api/getMAddress')
 .then(response => response.json())
 .then(data => {
 mAddress = data.MAddress;

 app.setState({
 PaymentDetail: app.state.shoes[index],
 mAddress
 })
 });

Designing a Payment Gateway for Online Merchants Chapter 3

[74]

The next asynchronous call is to fetch the live conversion details rate from USD
to ETH (ether):

 var Conv;
 await
fetch('https://min-api.cryptocompare.com/data/price?fsym=ETH&ts
yms=USD')
 .then(response => response.json())
 .then(data => {
 Conv=data.USD;

 app.setState({
 Conv
 })
 });
 })();
 };

CryptoCompare (min-api.cryptocompare.com/data) is a free service that returns the live
conversion rate from USD to ETH. We store this conversion rate in the state variable, Conv.
Since the e-commerce website displays all prices in USD, the Payment app component first
converts the price of the product into ether and then notifies the customer of the number of
ether they need to send to the merchant's wallet address.

PaymentWait()
This method is called to set the state variable every time the customer selects Other
Wallet for payment, as shown here. It indicates the container component that a payment
page needs to be rendered with a 15-minute window for accepting payments to the
merchant's address. This is done through the PVerification component:

PaymentWait = (mAddress,amount) => {

 this.setState({
 paymentf: true,
 amount,
 mAddress
 })

 };

It sets the paymentf flag to true, indicating that a payment is being made by a wallet other
than MetaMask and sets the state variable for the amount to be paid in ETH and the
merchant address (mAddress) to which the transfer has to be made.

http://min-api.cryptocompare.com/data

Designing a Payment Gateway for Online Merchants Chapter 3

[75]

MMaskTransfer()
This method is called for initiating transfers through the MetaMask wallet of the customer
directly to the merchant address, as shown here:

MMaskTransfer = (MRAddress,amount) => {

 let app = this;
 if (window.ethereum) {
 const ethereum = window.ethereum;
 this.web3 = new Web3(ethereum);

The following list shows exactly what this method does:

The method takes the merchant address and amount to be paid as input1.
parameters.
On being called, it first checks whether the window.ethereum object is present,2.
essentially checking whether the browser has injected web3 through MetaMask.
If an injected web3 is present, it maps the app's web3 object to the injected web3.3.
Next, it makes an asynchronous call to request permission to access the array of4.
accounts available on the user's MetaMask wallet. This is done through
Ethereum.enable, as shown here:

 Ethereum.enable().then((accounts) => {
 let account = accounts[0];
 this.web3.eth.defaultAccount = account ;
 this.setGasPrice();
 let tAmount = amount * 1000000000000000000;

On successful approval, it populates the primary account into the account parameter and
sets it as the default account for the web3 object, as shown next. It also converts the amount
to be transferred into gwei.

Next, we set the transObj (transfer object) parameter and set the receiving address as the
merchant's wallet address, the value as the amount to be sent, the default gas limit, and the
default gas price. Then, we initiate a send transaction request using our web3 object:

let transObj = {to: MRAddress, gas: this.state.defaultGasLimit,gasPrice:
this.state.defaultGasPrice, value: tAmount}
 this.web3.eth.sendTransaction(transObj,function (error, result){
 if(!error){
 console.log(result);
 app.resetApp();
 } else{
 console.log(error);

Designing a Payment Gateway for Online Merchants Chapter 3

[76]

 }
 });
});
}
}

startTimer()
The startTimer() method is used to set a timer for 15 minutes in the payment window as
shown here. The customer has 15 minutes to make the payment from their wallet to the
merchant's wallet address before the request expires:

startTimer = () =>{
if(this.state.tflag == true)
{
this.intervalHandle = setInterval(this.tick,1000);
this.intervalBalance = setInterval(this.bCheck,10000);

 let time = this.state.minutes;
 this.secondsRemaining = time * 60;
 this.setState({
 tflag: false
 });
}
}

Let's understand the various components of the startTimer method:

tflag is set to false if the app has an ongoing 15-minute window. This
prevents React from creating multiple timer intervals when a state variable is
updated.
If tflag is set to true, meaning no interval exists, the method sets up two
intervals. The first interval calls the method tick at an interval of 15 minutes.
The tick() method is the brains behind our timer. The second interval calls the
bCheck() method at an interval of 10 seconds.
The bCheck() method checks the balance of the merchant's wallet address
within the 15-minute window.
If the address receives an amount equal to or greater than the amount owed by
the customer, it stops the timer and notifies the customer of the successful
payment.

Designing a Payment Gateway for Online Merchants Chapter 3

[77]

This method also initializes the secondsRemaining parameter to 600 seconds or 15
minutes. This will be used by the tick() method.

tick()
The tick() method, as shown in the following, sets a timer that runs for 15 minutes:

tick(){
var min = Math.floor(this.secondsRemaining / 60);
var sec = this.secondsRemaining - (min * 60);
this.setState({
 minutes: min,
 seconds: sec
})

if (sec < 10) {
 this.setState({
 seconds: "0" + this.state.seconds,
 })
}

if (min < 10) {
this.setState({
 minutes: "0" + this.state.minutes,
 })
}

if (min === 0 & sec === 0) {
clearInterval(this.intervalHandle);
clearInterval(this.intervalBalance);
}
this.secondsRemaining--;
}

Every interval, the tick() method sets the minutes and seconds state variable. It also fixes
the formatting as per the 00:00 format when the seconds or minutes are single digits.
When both minutes and seconds are equal to zero, it clears the timer interval and the
balance check interval. This happens when the payment request expires. At the end of each
interval, it decreases the secondsRemaining parameter by 1.

Designing a Payment Gateway for Online Merchants Chapter 3

[78]

bCheck() – running a persistent balance check
The bCheck() method runs a balance check on the merchant's address 10-second intervals:

We start by setting the web3 object, which we'll use to interact with the Ethereum1.
blockchain as shown here. Since we do not have access to MetaMask's injected
web3 in this scenario, we would need to configure our web3 provider to a local or
third-party Ethereum node. I have a Ganache blockchain running at localhost
on the 8545 port, which is why my provider is set to http://localhost:8545.
You should update the provider to any node you have access to:

bCheck(){
let app = this;
let amount = this.state.amount;
let intervalHandle = this.intervalHandle;
let intervalBalance = this.intervalBalance;
this.web3 = new Web3(new
Web3.providers.HttpProvider("http://localhost:8545"));

Now that the web3 object is set, we will check the balance of the merchant's2.
address with the help of the following code:

 this.web3.eth.getBalance(this.state.mAddress,function (error,
result){
 if(!error){
 let diff = result / 1000000000000000000;
 if(diff >= amount)
 {
 clearInterval(intervalHandle);
 clearInterval(intervalBalance);

 }

 app.setState ({
 diff
 })
 }

 else
 {
 console.log(error);
 }

 });
 }

Designing a Payment Gateway for Online Merchants Chapter 3

[79]

Let's understand the various components of this code block:

The web3.getBalance() method checks the balance of mAddress, the merchant
address, every 10 seconds. This balance is mapped to the diff variable.
If the diff variable is greater than or equal to amount, bCheck() immediately
clears the timer and balance check intervals and stops the timer.
The diXff variable is also updated to the state. It is used by the PVerification
component in the payment window to display to the customer how much of the
payment has been received by the merchant's wallet address.

Using the componentDidMount() method to map the
Shoes array
Within the componentDidMount method, we map the Shoes constant to our state
variables, as shown here. We fetch the individual shoe details from the Shoes.js file that
we declared earlier:

Shoes.forEach((shoe) => {
 let logo = shoe.logo;
 let price = shoe.price;
 let image = shoe.image;
 let name = shoe.name;

Each individual shoe is mapped in the shoes array and pushed to the state as shown in the
following. From here, we will retrieve it within the Shoerack component:

shoes.push({
 logo,
 price,
 name,
 image,
 });

 app.setState({
 shoes

 })
 });

After each push, we set the app state to show a new product on the e-commerce website.
Let's take a look at our App.js render method next.

Designing a Payment Gateway for Online Merchants Chapter 3

[80]

render()
The render() method for App.js renders the Nav, Description, and Container
components. It also passes all of the state and methods to the Container component for
use by the child components:

render() {
return (
 <div>
 <Nav appName={this.appName} />
 <div> </div>
 <Description />
 <Container
 shoes={this.state.shoes}
 newPayment={this.newPayment}
 closePayment={this.closePayment}
 PaymentDetail={this.state.PaymentDetail}
 mAddress={this.state.mAddress}
 amount={this.state.amount}
 diff={this.state.diff}
 paymentf={this.state.paymentf}
 Conv={this.state.Conv}
 MMaskTransfer={this.MMaskTransfer}
 PaymentWait={this.PaymentWait}
 startTimer={this.startTimer}
 tick={this.tick}
 defaultGasPrice={this.state.defaultGasPrice}
 defaultGasLimit={this.state.defaultGasLimit}
 minutes={this.state.minutes}
 seconds={this.state.seconds}/>
 </div>
)
 }

When the Container component is rendered, it will accept all props and forward them to
the child components as and when they are rendered.

Running the gateway app
Let's run our gateway app to see how it works:

Navigate to the gateway app directory using the Terminal window.1.
Enter npm start to start the app. You should see the app as follows:2.

Designing a Payment Gateway for Online Merchants Chapter 3

[81]

Let's now set up the other components of our payment ecosystem so we can run the app in
its entirety.

Creating an API for generating dynamic
payment addresses
For creating dynamic wallet addresses on the fly for each payment request, we will be
setting up an HD wallet for the merchant who is accepting payment for their products from
the e-commerce gateway.

HD wallets allow us to create a set of hierarchical wallet addresses derived from the same
mnemonic. If the merchant can safely preserve one mnemonic phrase, they can manage all
of the addresses using the same string of words.

For providing dynamically generated, hierarchically linked addresses to our payment
gateway, we'll be setting up a Node.js app with a get API service. The payment gateway
can use this service to fetch a new address from the merchant's HD wallet:

Create a new Node.js project directory as shown in the following. Let's call this1.
hdwallet.
Run the mkdir hdwallet command.2.

Designing a Payment Gateway for Online Merchants Chapter 3

[82]

Run npm init to create your package.json file.3.
Start by updating package.json to the following values:4.

{
 "name": "hdwallet",
 "version": "1.0.0",
 "description": "hdwallet",
 "main": "app.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "bip39": "^3.0.2",
 "body-parser": "^1.19.0",
 "ethereumjs-tx": "^2.0.0",
 "ethereumjs-util": "^6.1.0",
 "express": "^4.17.1",
 "hdkey": "^1.1.1"
 }

Run npm install to install the dependencies.5.
Let's start writing out app.js. Start by declaring all of the dependencies for our6.
app, as shown here:

const bip39 = require('bip39')
const hdkey = require('hdkey')
const ethUtil = require('ethereumjs-util')
const ethTx = require('ethereumjs-tx')
const express = require("express");

In the preceding code, bip39, hdkey, Ethereumjs-util, and Ethereumjs-tx
will be used for generating a new mnemonic and the subsequent hierarchical
addresses. We'll talk more about these later.

We'll be using the express framework to create our API.

Next, as shown in the following, we will declare our middleware layer. The7.
middleware layer here allows CORS or Cross-Origin Resource Sharing. This is
required so our gateway app can request a new merchant address from our API:

app.use(function (req, res, next) {

// Website to connect to. * indicates 'all'
 res.setHeader('Access-Control-Allow-Origin', '*');

Designing a Payment Gateway for Online Merchants Chapter 3

[83]

// Methods to allow access
 res.setHeader('Access-Control-Allow-Methods', 'GET, POST, OPTIONS,
PUT, PATCH, DELETE');

// Request headers to allow access
 res.setHeader('Access-Control-Allow-Headers', 'X-Requested-
With,content-type');

// Send cookies
 res.setHeader('Access-Control-Allow-Credentials', true);

// Move on to the next layer
 next();
});

Now, we will define our server settings. I am running mine on port 5000, as8.
shown here. You can configure it as per your requirements:

var server = app.listen(process.env.PORT || 5000, function () {
 var port = server.address().port;
 console.log("App now running on port", port);
 });

We will declare the pathid parameter. This parameter will keep a track of the9.
last address index used to derive a hierarchical address and increment after
generating a new address:

var pathid = 0;

We will now start writing our API service, as shown here. The API will be a get10.
service available at http://localhost:5000/api/getMAddress:

app.get("/api/getMAddress", function(req,res){

const mnemonic = bip39.generateMnemonic(); //generates string
console.log(mnemonic);

var sendResponseObject={};
var address;

Designing a Payment Gateway for Online Merchants Chapter 3

[84]

Let's understand this code block and how it generates the mnemonic:

The bip39 module is used to generate a random mnemonic string. This string
can be used to recover a wallet or import the wallet to a third-party wallet service
provider such as MetaMask.
A mnemonic in the bip39 format looks somewhat like feature concert truth
service energy egg able bind comfort candy harvest similar.
We also define our response object and address parameter.

Next, we derive our seed and root address node from the mnemonic, as shown11.
here. To do so, we make an asynchronous call to the bip39
method, mnemonictoSeed:

(async function main() {
 try {
 const seed = await bip39.mnemonicToSeed(mnemonic)
 console.log("Seed:",seed);

We derive the root node and the master public and private key for the root node,12.
as shown here:

const root = hdkey.fromMasterSeed(seed)
const masterPrivateKey = root.privateKey.toString('hex');
console.log("Master private Key:",masterPrivateKey);
const masterPubKey = root.publicKey.toString('hex');
console.log("Master Public Key: ",masterPubKey);

Next, we set the path for deriving the hierarchical addresses as shown in the13.
following. Notice the pathid parameter at the end. As we increment the pathid
parameter, the address index in the path changes. Hence, we have a new
hierarchical address:

 var path = "m/44'/60'/0'/0/"+pathid;
 console.log("root: ", root);
 const addrNode = root.derive(path)
 console.log("path: ", path);

We will use the privateToPublic method to service the public key for the14.
derived address node, as shown in the following. We also derive the hierarchical
address in hex format with checksum using the publicToAddress and
toCheckSumAddress methods under ethUtil:

const pubKey = ethUtil.privateToPublic(addrNode._privateKey)
console.log("Pubkey as hex:",pubKey.toString('hex'));

Designing a Payment Gateway for Online Merchants Chapter 3

[85]

const addr = ethUtil.publicToAddress(pubKey).toString('hex');
console.log("pubkey to Addr:",addr);

address = ethUtil.toChecksumAddress(addr);
console.log("Address with Check sum:",address)

We now have our derived address in the address variable. We'll now return this
in the request.

We will add the MAddress key, which will hold the newly generated address15.
and add this key and its value to the response body as shown in the following.
We also increment the pathid parameter at the end of the asynchronous call so
we get a new path and a new address next time.

The app checks whether pathid is less than 100 before incrementing because the
app is designed so that it loops between 100 hierarchical addresses. This is done
so that the app only generates 100 new hierarchical addresses and then reuses the
existing addresses. Our merchant wallet will track these 100 addresses for
payments. If pathid is equal to or greater than 100, it resets it to zero instead of
incrementing it again:

sendResponseObject['MAddress']= address;
let jsonString= JSON.stringify(sendResponseObject)
res.send(jsonString);

if (pathid < 100)
{
 pathid++;
}
else
{
pathid = 0;
}
}catch(error) {
 console.log(error);
 };
})();

Now, we have our merchant wallet address generator ready.

Start the application using node App.js. The app will print the mnemonic in the16.
console on its first run. This mnemonic is generated only once and all addresses
generated will be mapped to it. So, we need to copy and keep the mnemonic safe
for future purposes.

In the next section, we will build the merchant wallet interface.

Designing a Payment Gateway for Online Merchants Chapter 3

[86]

Building the merchant HD wallet
The merchant wallet interface is a simple React app that tracks all of the addresses
generated from the merchant's wallet mnemonic and checks whether any payment has
been made to them from a customer. It also does block confirmation, that is, for each
transaction, it checks whether 40 blocks have been transacted since the transaction was
recorded in the blockchain.

The wallet interface app consists of the following components:

Container.js: The Container component shown here holds the other
components, toggles components display as per state changes, and passes down
their props to the components after it receives them from app.js. It checks
whether an account has been set in the state for retrieving transactions. If the
account has been set, it renders the WalletTrans.js component; otherwise, it
renders the WalletMain.js component:

render(){

 return (
 <section className="container">
 <div className="columns">
 <div className="is-half is-offset-one-quarter column">
 <div className="panel">
 {
 this.props.acc?

 <div>
 <WalletTrans transactions={this.props.transactions}
 acc = {this.props.acc}
 />
 </div>:

 <div>
 <WalletMain accounts={this.props.accounts}
 getAccountTransactions={this.props.getAccountTransactions}/>
 </div>

 }
 </div>
 </div>
 </div>
 </section>

Designing a Payment Gateway for Online Merchants Chapter 3

[87]

WalletMain.js: Walletmain.js maps the array of account addresses in the
merchant wallet and displays the current balance. It fetches the account
addresses and their balance from the accounts state parameters. On clicking the
view transactions button, the user is redirected to the WalletTrans.js child
component, which displays the transactions for the account.
WalletTrans.js: WalletTrans.js maps the transaction's array and displays
all transactions to the account since the genesis block (the first block in our
blockchain). The following properties are mapped for each transaction:

Transaction index
Transaction hash
From account address
To account address
Block confirmations (the number of blocks since the transaction
was added to the blockchain)
Transaction confirmed/unconfirmed

Mnemonic.js: This component exports the mnemonic of the merchant HD
wallet generated in the previous step.

Let's take a look at our App.js file that has all of the methods.

App.js
Start by importing the dependent modules and components, as shown here:

import React, { Component } from 'react';
 import Web3 from 'web3';
 import Container from './Components/Container';
 import Mnemonic from './Components/Menmonic.js';
 import ethTx from 'ethereumjs-tx';
 const bip39 = require('bip39');
 const hdkey = require('hdkey');
 const ethUtil = require('ethereumjs-util')

We will be importing the HD wallet mnemonic from Mnemonic.js and deriving the
individual addresses. The web3 object enables us to interact with the Ethereum blockchain.

Designing a Payment Gateway for Online Merchants Chapter 3

[88]

Constructor()
Within the constructor, we set the app name and define the following state parameters:

mnemonic: The mnemonic used to generate the root node address of the HD
wallet
accounts: A list of merchant's HD wallet addresses
acc: The merchant account address for which the app is displaying transactions
in the WalletTrans component
transactions: All transactions to date for the merchant address mapped to acc

We also bind the getAccountTransactions method so the child components can change
the state, as shown here:

class App extends Component {
 constructor(){
 super();
 this.appName = 'Merchant Wallet';
 this.getAccountTransactions = this.getAccountTransactions.bind(this);
 this.state = {
 acc: null,
 accounts: [],
 transactions: [],
 mnemonic: Mnemonic
};
}

Let's have a look at the methods that load after the main component mounts next.

componentDidMount()
Within the componentDidMount() method shown here, we will create and populate our
accounts array. This will be used further by the WalletMain component to display all of
the derived address from the merchant's HD wallet:

We start by declaring the app variable to store the state of the app. We also store1.
the accounts state array in the local account parameter. Lastly, we declare a
variable called pathid:

componentDidMount(){
 let app = this;
 let accounts = this.state.accounts;
 let pathid = 100;

Designing a Payment Gateway for Online Merchants Chapter 3

[89]

The pathid variable indicates the number of address indices we'll be deriving,
essentially, the number of hierarchical addresses we'll be generating in the
merchant's HD wallet. Hence, in the m/44'/60'/0'/0/<address
index> expression, pathid indicates the range of values the address index can
take starting from 0. For our case, we are assuming the merchant wallet only
generates 100 addresses.

Next, we will set up a web3 provider, which our application will interact with to2.
get transaction data, as shown here:

this.web3 = new Web3(new
Web3.providers.HttpProvider("http://localhost:8545"));

In my case, I have a Ganache blockchain running at localhost:8545 and hence
my provider is pointed to the same. You can configure the provider as per the
location of your Ethereum blockchain.

Next, we will derive our list of hierarchical address from the mnemonic, as3.
shown here:

(async function main() {

 const seed = await bip39.mnemonicToSeed(app.state.mnemonic)
 const root = hdkey.fromMasterSeed(seed);

As per the preceding code, we will generate the wallet seed from the mnemonic
using the mnemonicToSeed member of the bip39 module. We also derive the
root node from the seed using hdkey.

Next, as shown here, we will introduce a loop to generate the addresses from the4.
mnemonic and check the current balance of each address. We loop our counter
until it is within our range (pathid):

var i = 0;
 for (i = 0 ; i <=pathid; i++)
 {

Designing a Payment Gateway for Online Merchants Chapter 3

[90]

For each loop, we generate the hierarchical checksum address for each counter5.
value, as shown here:

 var path = "m/44'/60'/0'/0/"+i;
 const addrNode = root.derive(path);

 const pubKey = ethUtil.privateToPublic(addrNode._privateKey)
 const addr = ethUtil.publicToAddress(pubKey).toString('hex');
 const address = ethUtil.toChecksumAddress(addr);

For each hierarchical address, we then check the current balance using the6.
web3.getBalance() method, as shown here. After fetching the balance, we
convert it from gwei into ether by dividing by 1,000,000,000,000,000,000:

app.web3.eth.getBalance(address,function (error, result){
 if(!error)
 {
 let balance = result / 1000000000000000000;

For each account address, we push the checksum address and the balance to the7.
accounts array, as shown here:

 if (balance >0)
{
 accounts.push({
 address,
 balance,
 });
}

After each push, we set the app state, as shown here:8.

app.setState({
 accounts
 })

Hence, our state now has all of the derived addresses with their current balance. If any of
these accounts received a payment from the customer, its balance will be populated and
displayed in the WalletMain screen.

Designing a Payment Gateway for Online Merchants Chapter 3

[91]

render()
The render() component shown here simply transfers the state and methods to the
Container component, where it will be distributed to the various child components:

render() {

 return (
 <div>
 <Container
 acc={this.state.acc}
 accounts={this.state.accounts}
 transactions={this.state.transactions}
 getAccountTransactions={this.getAccountTransactions}/>
 </div>
)
}

Let's look at the method used to fetch the account transactions.

getAccountTransactions()
The getAccountTransactions() method shown here accepts a derived address as an
argument and fetches all transactions to that account, from the genesis block to the current
block. Hence, it fetches all payment transactions by customers to an address in the wallet. It
then updates this transaction data to the state.

This array is then mapped by the WalletTrans component, which displays all of the
transactions for a selected wallet address:

Let's look at this method:1.

getAccountTransactions = (accAddress) => {
 const startBlockNumber = 0;
 let app = this;
 let transactions = this.state.transactions;

The code block can be understood as follows:

getAccountTransactions accepts the accAddress argument,
which is the merchant wallet address for which it needs to fetch
transactions from the blockchain.
We also define the constants and local variables and capture the
current app state.

Designing a Payment Gateway for Online Merchants Chapter 3

[92]

The startBlockNumber constant is set to 0 to indicate that we'll
be searching from the initial block in the blockchain, otherwise
known as the genesis block.

With an asynchronous call, we fetch the latest block using the web32.
method, getBlockNumber, as shown here. This will be our endBlockNumber,
that is, the last block we search up to for transaction data:

(async function main () {
 const endBlockNumber = await app.web3.eth.getBlockNumber()

console.log("Searching for transactions to/from account \"" +
accAddress + "\" within blocks " + startBlockNumber + " and " +
endBlockNumber);

Now, we write a loop as shown here. Our counter loops from the3.
startBlockNumber (0) to endBlockNumber (the current block):

for (var i = endBlockNumber; i > 0 ; i--) {
var block = await app.web3.eth.getBlock(i, true);

For each loop, we fetch the block with block number equal to our current counter
value. To do so, we use the web3 method, eth.getBlock.

For each non-null block (blocks with transactions), we will check whether any of4.
the transactions are to the merchant's address (the accAddress argument
parameter), as shown here:

if (block != null && block.transactions != null) {
 block.transactions.forEach(function(e) {
 if (accAddress == "*" || accAddress == e.to) {

If a transaction is to the merchant's account, we fetch the details and update the5.
current state. To do so, we will first capture the transaction properties in our local
variables. The value of the transaction is divided by 1,000,000,000,000,000,000 to
convert it from gwei into ether:

 let hash = e.hash;
 let blockNumber = e.blockNumber;
 let transactionIndex = e.transactionIndex;
 let from = e.from;
 let value = e.value/1000000000000000000;

Designing a Payment Gateway for Online Merchants Chapter 3

[93]

We also check how many blocks have been added to the blockchain after our6.
transaction, as shown in the following. The confirmation parameter captures the
difference between the latest block and the block number of the transaction.
cflag captures whether this difference is greater than or less than 40. If the
difference is greater than 40, the block is confirmed and the value of cflag is set
to true; otherwise, cflag is set to false to indicate that the transaction is still
awaiting 40 block confirmations:

var confirmations;
 var cflag;
if(i >= e.blockNumber)
 {
 confirmations = endBlockNumber - e.blockNumber
 }

 if(confirmations > 40)
 {
 cflag= "Confirmed";
 }
 else
 {
 cflag = "Unconfirmed";
 }

After setting our local parameters, we push a new element to the transactions7.
array, as shown here:

transactions.push({
 transactionIndex,
 hash,
 blockNumber,
 from,
 value,
 confirmations,
 cflag
});

After each one, we use setState to set the new transactions state, as shown8.
here:

app.setState({
 transactions
 })

Designing a Payment Gateway for Online Merchants Chapter 3

[94]

With that, we come to an end for our App.js file and all of the related components. Let's
now put all of the components together and see how the entire payment ecosystem
operates.

You can find the source code of this chapter on the GitHub repository of this book.

Running the payment ecosystem
Let's run our entire payment ecosystem:

We'll start by initializing a local Ganache instance, as shown here. This will serve1.
as the test blockchain for the payment ecosystem:

Now, let's bring our components online. First, start the e-commerce portal and 2.
payment gateway app, navigate to the app directory, and enter npm start, as
shown here:

Designing a Payment Gateway for Online Merchants Chapter 3

[95]

By default, my React app runs on port 3000:

Now, open the browser and open the app home page on localhost:3000, as3.
shown here:

You should be able to see the app running and the landing page.

Designing a Payment Gateway for Online Merchants Chapter 3

[96]

Next, we run our Node.js server that extends the MAddress API service for4.
address generation. Navigate to the app directory and run node MAddress.

You'll notice in the following screenshot that the app generates a mnemonic on
the first run. Keep this handy. We'll need it for our merchant wallet:

In my MAddressrun, the mnemonic generated is right at the bottom of the
console window in the screenshot. It's share confirm story grocery check soon
cool priority doctor cruise subway provide. On calling the MAddress API, a new
hierarchical address will be generated that is derived from this mnemonic. The
mnemonic generated by BIP39 will be different for you but the steps to be
followed are the same.

We now need to map our mnemonic to the merchant wallet. The merchant wallet5.
will use the mnemonic to identify the merchant-owned addresses. To map the
mnemonic, locate your mnemonic.js file. In my merchant wallet app directory,
mnemonic.js is available under the src/Items directory. Update mnemonic.js
with the mnemonic as follows:

Designing a Payment Gateway for Online Merchants Chapter 3

[97]

Before we can bring our wallet online, we also need to change the port it runs
on. React apps, by default, run on port 3000 but we already have our gateway
app running on that port.

So, we need to change the port on which our merchant wallet app runs. To6.
change the port, open the package.json file for the merchant wallet app and
update the port for the start script, as follows:

"start" : "PORT=8000 react-scripts start"

You can find the preceding line of code in the following screenshot of the
package.json file:

Designing a Payment Gateway for Online Merchants Chapter 3

[98]

Now, let's bring our merchant wallet online. Navigate to the app directory and7.
run npm start, as shown here:

After the app is online, navigate to your browser and enter localhost:8000.8.
You should be able to see the app as shown here:

Since we haven't carried out any transactions, the wallet is currently empty. As
we carry out payments, you'll slowly see the wallet getting populated.

Designing a Payment Gateway for Online Merchants Chapter 3

[99]

There's one last thing before we try out a payment. Connect your MetaMask9.
wallet to your local Ganache blockchain (localhost 8545) and import an account
from Ganache. To import an account, open the Ganache UI. Click the key icon
next to any account. The secret key is revealed in a popup shown in the following
screenshot. Select and copy the secret key:

Go to MetaMask and select Import Wallet from the settings menu as shown in10.
the following. From the screen that appears, select the private key option. Paste
the key:

Designing a Payment Gateway for Online Merchants Chapter 3

[100]

After pasting the secret key, click on Import. You should now be able to see this11.
account in MetaMask, as shown in the following. By default, it has 100 ether at
the start:

OK. We are now good to try a payment.

Navigate back to the landing page of the gateway app, as shown here:12.

Designing a Payment Gateway for Online Merchants Chapter 3

[101]

Let's try to buy a Bulma shoe! Click on the Buy Now button. You'll notice the app13.
directs you to a payment page like the one here:

The Eth address here is fetched from the MAddress API. In fact, if you open the
Terminal window for the MAddress app, you should be able to see this address:

Designing a Payment Gateway for Online Merchants Chapter 3

[102]

Did you notice the highlighted address? Compare it with the one on the payment
page. You'll see that they match.

The amount on the payment page is the amount to be paid in ether. This amount
is calculated after fetching the USD to ETH conversion ratio in real time from the
cryptocompare.com API and using it to convert the price of the shoes from USD
into ETH.

You'll also notice a timer for 15 minutes on the screen. The timer indicates that the
conversion rate from USD to ETH used is valid for 15 minutes. Since the price of
ether is highly volatile and can change during the payment, we need to fix a
window for which our conversion rate will be constant. If the price of ether
increases or decreases during this 15-minute window, the risk is borne by the
merchant or the customer but since it will be low, it is bearable. After 15 minutes,
the payment will expire.

Let's go back to our payment page, shown here:

Designing a Payment Gateway for Online Merchants Chapter 3

[103]

You'll notice there are two payment options. MetaMask and Other Wallets. If the
user has a MetaMask wallet with funds, the app uses MetaMask's injected web3 to
make the payment. Alternatively, if the user has another wallet or does not want
to give access to MetaMask's injected web3 to the app, they click on the Other
Wallets option. For the Other Wallet option, the app then connects to a local
web3 provider and checks whether a payment has been made by the customer.

Let's first try a MetaMask payment. Click on the MetaMask Pay button. A14.
popup, as shown here, will open. You might have to log in to MetaMask if you
are logged out:

Designing a Payment Gateway for Online Merchants Chapter 3

[104]

After login, as shown in the following, MetaMask will pop another window15.
asking whether you trust the app and want to permit access to your accounts on
MetaMask:

As shown in the previous screenshot, click on Connect to continue. When you16.
click on Connect, the app gets access to the inject web3 provider and the string of
accounts on MetaMask.

Now, you'll see a popup asking you whether you want to permit the send
transaction to the merchant's account:

Designing a Payment Gateway for Online Merchants Chapter 3

[105]

Click on Confirm to send the transaction from MetaMask to the merchant's17.
wallet. The transaction should now go through and you'll get a confirmation
notification, as here:

Designing a Payment Gateway for Online Merchants Chapter 3

[106]

If you navigate to MetaMask, you should also be able to view the transaction
there:

Next, let's try a payment without using MetaMask's injected web3. This feature is18.
built into the app for use on the mainnet. The customer might choose to use a
different Ethereum wallet such as a Coinbase or Jaxx Wallet. Here, we'll use the
truffle console command for Other Wallets. To do so, first bring the Truffle
console online. Go to your Truffle environment and run truffle console, as
shown here:

Designing a Payment Gateway for Online Merchants Chapter 3

[107]

Now, in the command line, set your web3 default account to the first account in19.
your Ganache HD wallet using the following command:

web3.eth.defaultAccount =
'0x60f569790e9b87f93aB6bF9bBb3118f6E1C1598b'

Once the preceding command is executed, this is what your Ganache HD wallet
will look like:

This is how your command looks in the command line:

Designing a Payment Gateway for Online Merchants Chapter 3

[108]

Now, let's try the second type of payment. Go back to the main page and click on20.
a shoe, as shown here:

You will again be redirected to the payment page like before:

Designing a Payment Gateway for Online Merchants Chapter 3

[109]

Click on the Other Wallets option this time, as shown here. The app will redirect21.
you to a page that looks like this:

This page essentially tracks the generated MAddress to see whether any payment
request is made in the 15-minute window. When the balance for the MAddress
gets equal to or higher than the amount owed by the customer, it notifies the
customer of the successful payment and stops the timer. It allows for part
payment as well as long as the transactions happen in the 15-minute window.

Now, let's send some ether to the address and see how it works. Go back to your22.
Truffle console and send 0.4 ether to the address and see how the app works.
Run the following command in the console:

await web3.eth.sendTransaction({from: web3.eth.defaultAccount, to:
'0x315074C434eca2B79878f4a1A2323d12eE413fdb', value:
web3.utils.toWei('0.4', "ether")})

 This command sends 0.4 ether to MAddress
0x315074C434eca2B79878f4a1A2323d12eE413fdb. You might remember we
set defaultAccount earlier. It uses web3.utils.toWei to convert our value
from ether into wei as web3 uses wei as the unit for sending transactions.

Designing a Payment Gateway for Online Merchants Chapter 3

[110]

The blockchain should return you the transaction hash and other transaction
details after execution. this is demonstrated in the following screenshot:

Let's go back and check the payment page again:

You'll notice it tells you that it has received 0.4 ether. There might be a slight
delay after you send the payment as the timer checks the balance every 10
seconds.

Designing a Payment Gateway for Online Merchants Chapter 3

[111]

Now, let's send the rest of the amount, as shown here:23.

await web3.eth.sendTransaction({from: web3.eth.defaultAccount, to:
'0x315074C434eca2B79878f4a1A2323d12eE413fdb', value:
web3.utils.toWei('0.2683', "ether")})

On submission, you should be able to see the transaction submitted and the
network's response on the Terminal window, as follows:

The payment page as shown here will reflect the following status once it can
detect the balance in MAddress:

Designing a Payment Gateway for Online Merchants Chapter 3

[112]

Now, let's go to the merchant's wallet interface to see whether the two24.
transactions are recorded in their wallet. As shown here, navigate to the
merchant's wallet interface. You might need to refresh the app to see the
transactions:

In the following screenshot, you'll notice both the transactions we carried out are25.
listed. Click on View Transactions for any one transaction:

You'll get a screen like the one shown previously. It shows the following details:

Transaction Index
Hash
Block No. in which the transaction is recorded
The account from which the transaction was sent
Ether value of the transaction
The number of blocks in the blockchain after the transaction came through
Confirmed/unconfirmed

Designing a Payment Gateway for Online Merchants Chapter 3

[113]

The last two points are especially significant. Generally, in the Ethereum mainnet, most
people wait for 40 blocks to be added after the block in which your transaction was fired to
confirm a transaction. This is to protect the merchant from losing out on their payment due
to any forks in the network. If there is a fork, the transaction might be removed. Ideally, a
merchant should wait for transaction confirmation before shipping the goods.

In Bitcoin, confirmation is after 6 blocks. In most Ethereum applications and in ours, it is set
to 40 blocks though this number can vary. The app will automatically change the status to
confirmed once the transaction has 40 blocks added. Once the status changes to confirmed,
the merchant can ship their goods.

In the Ganache blockchain scope, confirmations don't have much value and don't work
because Ganache doesn't generate blocks at regular intervals like the Ethereum mainnet or
test net. However, if you connect this app to Ropsten or a bigger test net, you can see this
feature in action.

With that, we come to the end of our payment ecosystem project.

Summary
So, we finally finished building our payment gateway and ecosystem. I really hope this
project gives you insight into how blockchain apps work on the Ethereum mainnet with
each other leveraging the shared ledger, especially in a financial scenario.

This ecosystem can easily be used in an enterprise environment as well. Replace ether with
any ERC20-based asset token you need to work with, such as fiat currency, land, or
commodities. You might also consider running this on Ropsten or a larger Ethereum test
network after you build it on Ganache and compare it with how exchanges such as
Coinbase or Binance or payment gateway services such as Bitpay or Coingate work.

We started this chapter by looking at what a payment ecosystem in a blockchain looks like
and its components. We discussed HD wallets and block confirmations in blockchain
payments. Then, we leveraged our knowledge to build an e-commerce portal with a
payment gateway, a merchant HD wallet service with an API to generate dynamic
addresses, and a merchant wallet interface for tracking transactions to this wallet. Then, we
ran our entire ecosystem end-to-end using both MetaMask and the Truffle console
command line as our wallets for making a payment and tracked it on the merchant's wallet

Designing a Payment Gateway for Online Merchants Chapter 3

[114]

The main takeaway from this chapter is understanding how an ecosystem like this is built
and how the components interact with each other, leveraging the blockchain. It also gives
you insight into how payment systems are changing. With this particular system, the
merchant directly receives payment to a wallet owned and maintained by themself minus a
middleman. Hence, the merchant can avoid paying payment or operation fees to a third
party.

In the next chapters, we'll see how we can use Hyperledger Fabric to build complex
payment and remittance workflows for corporates and enterprises.

4
Corporate Remittances and

Settlement
This chapter looks at leveraging blockchain to enable domestic and international
remittances for corporate payments. Corporate payments require the exchange of
documents and information about the transacting parties for compliance purposes. They
are also prone to more cases of fraud and illegal activities when compared to retail
remittances (payments between individuals or from a business to an individual). As such,
blockchain technology is perfect for enabling such payments. It can enable banks and
financial organizations to exchange compliance and Anti-Money Laundering (AML)
information about the remittance request and the transacting parties in real time. It
maintains an immutable and auditable log of all transactions that have been carried out in
the payment network, along with a digital forensic record of compliance information
shared with the transaction. Lastly, and probably most importantly, owing to distributed
ledger technology, the time and costs associated with reconciliation in traditional payment
systems are eliminated. Transactions posted to the distributed ledger are replicated in real
time, across all the nodes that are part of the payment network.

In this chapter, we'll be building a four peers, two-participant organizations remittance
network, using Hyperledger Fabric. Each participant will be a bank in our remittance
channel. Each bank will have a corporate customer, who will be sending and receiving
payments on this network. Lastly, we'll set up an InterPlanetary File System (IPFS)
network between the two banks, for sharing documents and other artifacts that need to be
shared with the remittance request as part of compliance requirements.

The following topics will be covered in this chapter:

Technical requirements
Understanding the blockchain corporate remittance application and network
layout
Setting up the Hyperledger Fabric bankchain network
Creating blockchain identities for the banks

Corporate Remittances and Settlement Chapter 4

[116]

Building the corporate remittance contract
Setting up the IPFS network
Setting up the bank databases
Building the bank backend servers
Building the transaction listeners for the banks
Creating the corporate remittance app frontend in React
Running the corporate remittance app

Technical requirements
You can access the code files for this chapter at the following GitHub link: https://github.
com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/
Chapter%204.

For this project, we'll be working with the Hyperledgic Fabric 1.4 binaries, and Docker
images provided in the Hyperledger Fabric GitHub repository.

You can find the step-by-step installation process at this link: https://hyperledger-
fabric.readthedocs.io/en/release-1.4/prereqs.html.

Hyperledger Fabric assumes that you have the following dependencies installed:

The latest version of the cURL tool
The latest version of Docker and Docker Compose
Go version 1.12.x
Node.js version 10.15.3 and higher
npm version 5.6.0 and above
Python 2.7

After downloading and installing the dependencies, we need to download and install the
binaries, samples, and Docker images for Hyperledger Fabric. To do this, we'll be using
cURL to download the images from the Fabric repository, as follows:

curl -sSL http://bit.ly/2ysbOFE | bash -s 1.4.0

This will take up to 15 minutes to complete, depending on your net connectivity.

Additionally, we'll need to install IPFS and set up a private IPFS network. We'll look at this
in the section on setting up the IPFS network.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html

Corporate Remittances and Settlement Chapter 4

[117]

Understanding the blockchain corporate
remittance application and network layout
In this chapter, we'll be building a blockchain network using Hyperledger Fabric that we'll
be using to carry out corporate remittances. We'll call this network Bankchain. The
bankchain network will contain a private ledger called bkchannel. This channel will
consist of two participants, Bank A and Bank B. Both Bank A and Bank B will have two
nodes on the channel, labeled peer0 and peer1. Hence, in total, the channel has four
nodes. All transaction requests will be posted to these nodes. Additionally, the banks will
monitor these nodes for any incoming transactions.

Apart from the Hyperledger Fabric network, both banks will also each host an IPFS node.
IPFS is a distributed file-sharing system. It consists of a distributed network and nodes.
Documents published by any IPFS node can be retrieved from any other node connected to
the network. In our project, we'll be running a private IPFS network with two nodes. Each
bank will own a node on the network. IPFS allows the banks to securely share compliance
and AML documents for the remittance transactions.

The following screenshot shows a high-level architecture diagram of our project:

The postgresql database will consist of a customer table that stores customer details, and a
transaction table that stores transaction details.

Corporate Remittances and Settlement Chapter 4

[118]

The bank portal has the following three components:

A React frontend
A Node.js backend server
A Node.js transaction listener

The React frontend accepts remittance requests from the customers. In our project, Acme
Inc is a customer with Bank A, and Apex Corp is a customer with Bank B. The React
frontend also displays the details and documents of all the incoming and outgoing
remittance transactions for the customer.

The Node.js backend is essentially a bridge between the frontend, the postgresql database,
the blockchain network, and the IPFS network. It retrieves the customer information from
the database for populating the frontend, accepts payment requests from the frontend,
posts transactions to the Hyperledger Fabric network, and publishes the compliance and
AML documents to the IPFS network. It also updates the customer's balance, after a
transaction goes through successfully.

Lastly, we have a Node.js transaction listener. The transaction listener listens for all
transactions posted to the channel. It does so by listening to an event that is broadcasted by
our remittance smart contract whenever a new transaction is added. If the transaction
pertains to the node participant, it fetches the details of the transaction from the blockchain.
Thus, if the transaction listener for Node B detects a transaction where the receiving bank is
Bank B, it will fetch the details of the transaction from the blockchain, for further
processing.

After fetching the details of the incoming transaction, the transaction listener updates the
balance of the customer receiving the transaction, adds the transaction to the transactions
table in our postgresql database, and fetches the AML and compliance documents relevant
to the transaction from the IPFS network to the local storage. The transaction, its relevant
details, and attached compliance documents can now be viewed from the frontend by the
customer.

We'll be carrying out the following steps in our project:

Setting up the Hyperledger Fabric network Bankchain with1.
the bkchannel private channel and the node participants Bank A and Bank B.
Writing a corporate remittance chaincode (smart contract) that will allow us to2.
submit remittance transactions and retrieve transaction details from the
blockchain.

Corporate Remittances and Settlement Chapter 4

[119]

Setting up a postgresql database for each bank. The database will have a3.
customer database that has the customer details and a transaction database that
has details of all the transactions initiated and received by the bank.
Setting up a private IPFS network with two nodes between Bank A and Bank B,4.
to privately and securely share remittance documents between Bank A and Bank
B.
Setting up a node backend server that interacts with the blockchain network, the5.
IPFS network, the postgresql database, and the React frontend. It fetches
customer details to populate the frontend, fetches transaction details from the
database, submits payment requests to the blockchain network, publishes
compliance documents to IPFS, and updates the customer's balance after the
transaction goes through successfully.
Setting up a Node.js transaction listener that will listen for incoming transactions6.
to a customer of the bank, fetch transaction details and update these to the
transactions database, update the customer's balance, and fetch the compliance
documents pertaining to an incoming remittance request from the IPFS network.
Creating a React frontend that allows customers to submit remittance requests7.
and view transactions on their accounts.

Let's start creating our project. We'll start by setting up the Hyperledger Fabric Bankchain
network in the next section.

Setting up the Hyperledger Fabric
Bankchain network
For this project, we'll be working with the Hyperledger Fabric binaries and Docker images
provided in the Hyperledger Fabric GitHub repository that we downloaded earlier.

Next, let's set up the environment for our project. Download the Bankchain directory from
the GitHub repository, at this link: https://github.com/PacktPublishing/Blockchain-
Development-for-Finance-Projects/tree/master/Chapter%204/bankchain.

Save the directory to the fabric-samples repository that you would have downloaded
while installing Hyperledger Fabric. In the next sections, we'll walk through the different
artifacts in the repository that we have to create or modify, to build our network.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/bankchain

Corporate Remittances and Settlement Chapter 4

[120]

Creating the crypto-config file
Refer to the crypto-config.yaml file in the repository. The crypto-config.yaml file
defines the components and participants of our network and passes them to the cryptogen
utility to generate the network artifacts, including the identity certificates and private keys
for each network participant.

Open the crypto-config.yaml file. Inside the file, the following two organization-type
tags are defined:

OrdererOrgs

PeerOrgs

OrdererOrgs defines organizations that maintain and manage the orderer nodes for our
blockchain network. The orderer is a node in the Hyperledger Fabric ecosystem that orders
transactions and generates the blocks for our channel. The crypto-config.yaml file
defines the attributes of such an organization, under the OrdererOrgs tag.

In our network, we'll bring the orderer.example.com node online, to order our
transactions. The Orderer organization will have ownership of this node.

PeerOrgs defines organizations that own and manage peer nodes on the blockchain
network. In our case, these are the bankA and bankB organizations. The peer node can read
and write transactions to the blockchain ledger and execute chaincodes (smart contracts).
The crypto-config.yaml file defines the attributes of such an organization, under
the PeerOrgs tag.

In our network, we'll be setting up two peer organizations, banka.example.com and
bankb.example.com. Each organization will have two peers, indicated by the tag Count.
The nomenclature followed for the nodes will be peer0.banka.example.com,
peer1.banka.example.com, peer0.bankb.example.com, and
peer1.bankb.example.com. Lastly, we set the Users tag, to indicate that there will be
one user (apart from the admin user) who will access the blockchain through these nodes.

As you can see, the crypto-config file defines a base network structure. Now, let's move
on to the configtx file that will be used to generate the channel artifacts, including the
genesis block (first block in the blockchain).

Corporate Remittances and Settlement Chapter 4

[121]

Creating the configtx file
Refer to the configtx.yaml file in the repository. The configtx file defines the elements
that will be used by the network to create the channel artifacts, including the genesis block
(first block). The configtx file is the input to the configtxgen utility, which uses the file
to generate the artifacts.

Open the configtx.yaml file. You'll notice it is divided into five sections, as follows:

Organizations define the organizations that are defined as part of the network. It
is used to define the Membership Service Provider (MSP) that implements
access controls on our blockchain ledger. Each organization has the following
attributes:

Name of the organization.
Identity of the organization.
Policies that define which identities can read and write, and the
admin identity.
The local directory (MSPDir), where the inputs for creating the
MSP are available.
The anchor peers for the organization (that is, the node that
broadcasts the block to all other peers of the organization).

Orderer is used to defining the ordering mechanism, the block parameters, and
the block-creation parameters for our network. Additionally, you can use it to
configure a broker network if you are using a Kafka ordering mechanism.
Capabilities define the versions of Hyperledger Fabric binaries that are
supported by our channel. They allow you to configure individual compatible
versions for channels, orderers, and applications that will interact with, or be a
part of, our network.
Applications define the values that must be encoded into a config transaction or
genesis block for application parameters.
Channels define the values that must be encoded into a config transaction or
genesis block for channel parameters.
The Profile section is used to define a set of network profiles that can be used to
launch a network. We will be using the TwoOrgsOrdererGenesis network
profile to launch our network. This profile creates a two-organization, solo-
ordering service network.

That wraps up the configtx file. Next, let's look at the docker-compose files that define the
containers that will host each component of the network.

Corporate Remittances and Settlement Chapter 4

[122]

Creating the docker-compose files
In addition to the artifacts defined earlier, we'll also need to define the docker-compose
files that will be used to bring the network online. Each section of the docker-compose files
defines a network component. When we invoke the docker-compose statement, it will
launch a set of containers. Each container will house a network component.

For our network, we have three docker-compose files. These are as follows:

docker-compose-bankchain.yaml: Defines the parameters used to bring the
orderer and the peer containers online. The containers are
orderer.example.com, peer0.banka.example.com,
peer1.banka.example.com, peer0.bankb.example.com, and
peer1.bankb.example.com. Additionally, it also creates the cli container,
which hosts command-line tools, used to interact with
the peer0.banka.example.com container.
docker-compose-ca.yaml: Defines the parameters used to bring the certificate
authorities (CA) online. We'll be running two CAs, ca0 and ca1, one for each
organization, Bank A and Bank B. The containers are named ca_peerbanka and
ca_peerbankb.
docker-compose-couch.yaml: Defines the parameters used to bring the
CouchDB database online. The couch database stores the transaction data and the
state database for a peer node. We'll be running four databases, one for each
peer—couchdb0, couchdb1, couchdb2, and couchdb3.

You can check out these files in the repository, to see how they have been configured for
running the network.

Launching the network
We need to carry out the following steps in the following order, to bring the network
online:

Generate certificates for all channel participants, using the cryptogen utility.1.
Generate the network artifacts (including the genesis block), using2.
the configtxgen utility.

Corporate Remittances and Settlement Chapter 4

[123]

Run the docker-compose statement with all the relevant yaml files as input, to3.
launch the containers housing the network components.
Run the scripts to build the channel, using the fabric tools available in the cli4.
container, and carry out end-to-end tests, to ensure the network and peers are up
and running.

The repository contains a script that can be used to execute these actions back-to-back. Run
the startBankchain.sh script in the repository, to build the Bankchain network and
bring it online, as follows:

./startBankchain.sh

The script should bring all the containers online. You should get a confirmation message,
like the one in the following screenshot:

Corporate Remittances and Settlement Chapter 4

[124]

Run the docker ps command to view the launched containers. There should be 11
containers running, as shown in the following screenshot:

That takes care of our blockchain network. Now, let's move on to creating identities on the
network for the banka and bankb organizations.

Creating blockchain identities for the banks
Before we can use our blockchain network for submitting and querying transactions, we
need to create an admin user and a bank user for both banks.

The admin user will be authorized to create users, remove users, add user groups, and so
on.

The bank user will be authorized to submit transactions to the network, and read
transactions that have been submitted previously.

We'll be building two utilities—one for creating the admin user, and one for creating the
bank user.

Corporate Remittances and Settlement Chapter 4

[125]

Creating the admin user
The enrollAdmin-BankA.js and enrollAdmin-BankB.js utilities will be used to create
a new admin identity for Bank A and Bank B, respectively.

Creating a utility to enroll the admin user
We will need to create a Node.js utility that can be run to register a new admin user for
Bank A and a new admin user BankB. This admin user will then be used to register the
other users. Let's look at the steps to create this utility:

Create a new file, enrollAdmin-BankA.js, in the fabric-1.
samples/bankchain directory.
Open the file in a code editor, and start writing the code. We start by importing2.
all the required dependencies, as follows:

/*
 * SPDX-License-Identifier: Apache-2.0
 */

'use strict';

const FabricCAServices = require('fabric-ca-client');
const { FileSystemWallet, X509WalletMixin } = require('fabric-
network');
const fs = require('fs');
const path = require('path');

The fabric-ca-client software development kit (SDK) is used to configure
identities and user groups in CAs for Bank A and Bank B.
We parse the connection-banka.json file for the network connection profile
for banka.
The file is generated as an artifact when we bring the Bankchain network online.
The connection profile values are stored in the ccp object after parsing, as shown
in the following code block:

const ccpPath = path.resolve(__dirname, 'connection-banka.json');
const ccpJSON = fs.readFileSync(ccpPath, 'utf8');
const ccp = JSON.parse(ccpJSON);

Corporate Remittances and Settlement Chapter 4

[126]

Next, we create a new ca object that points to the CA for Bank A, as follows:3.

main();
async function main() {
 try {
 const caInfo = ccp.certificateAuthorities['ca.banka.example.com'];
 const caTLSCACerts = caInfo.tlsCACerts.pem;
 const ca = new FabricCAServices(caInfo.url, { trustedRoots:
caTLSCACerts, verify: false }, caInfo.caName);

Next, we configure the walletPath object. The walletPath object points to the location of
the wallet, where the keys for the admin and the user will be stored. If there is no existing
wallet at the location, a new wallet is created.

The name of the wallet for Bank A is wallet-BankA, as shown in the following code block:

 const walletPath = path.join(process.cwd(), 'wallet-BankA');
 const wallet = new FileSystemWallet(walletPath);
 console.log(`Wallet path: ${walletPath}`);

An if statement checks if the admin user is already registered and the identity exists in the
wallet, as follows:

const adminExists = await wallet.exists('admin');
 if (adminExists) {
 console.log('An identity for the admin user "admin" already exists in the
wallet');
 return;
 }

Next, we call ca.enroll, to register the admin user with the password adminpw.

A new key pair is generated for the identity and added to the MSP for Bank A (bankaMSP).

Lastly, we import the certificate file and private key for the admin user, and store it in our
wallet, by running the following code:

const enrollment = await ca.enroll({ enrollmentID: 'admin',
enrollmentSecret: 'adminpw' });
 const identity = X509WalletMixin.createIdentity('bankaMSP',
enrollment.certificate, enrollment.key.toBytes());
 await wallet.import('admin', identity);
 console.log('Successfully enrolled admin user "admin" and imported it into
the wallet');

Corporate Remittances and Settlement Chapter 4

[127]

A catch block catches any errors during execution, as follows:

catch (error) {
 console.error(`Failed to enroll admin user "admin": ${error}`);
 process.exit(1);
 }
}

That brings us to the end of the utility.

Changes for Bank B
For Bank B, create a new file, called enrollAdmin-BankB.js.

Replicate the preceding code. Only change the following parameters to the corresponding
value for Bank B:

Change the connection profile file to connection-bankb.json, like this:1.

const ccpPath = path.resolve(__dirname, 'connection-bankb.json');

Update the wallet path by running the following line of code (we'll be using a2.
different wallet for the identities of Bank B):

const walletPath = path.join(process.cwd(), 'wallet-BankB');

Update the MSP to the MSP and CA for Bank B, as follows:3.

const caInfo = ccp.certificateAuthorities['ca.bankb.example.com'];

Update the CA for Bank B, as follows:4.

const identity = X509WalletMixin.createIdentity('bankbMSP',
enrollment.certificate, enrollment.key.toBytes());

Let's run our utilities.

Running the utility
Navigate to the Bankchain repository. Run the following command to enroll an admin user
for Bank A:

node enrollAdmin-BankA.js

Corporate Remittances and Settlement Chapter 4

[128]

You should get a message on the console, informing you that a new admin has been
registered and imported to the wallet. Repeat the same for Bank B, as follows:

node enrollAdmin-BankB.js

The admin identities for the banka and bankb organizations should be added to
the wallet for Bank A and Bank B.
You can actually verify this. Navigate to the wallet-BankA and wallet-
BankB directories. You'll be able to see a folder labeled admin. Inside, you'll find
the private key file and certificate for the admin user.

Let's create the bank users next.

Creating the bank users
Next, we'll register a user for both Bank A and Bank B. To do so, we'll be building the
registerUser-BankA.js and registerUser-BankB.js utilities for each bank.

Creating a utility to register users
We will create a new registerUser-BankA.js file in the fabric-
sample/bankchain directory, as follows:

Open the file in a code editor, and let's start writing the code. We start by1.
importing all the required dependencies, like this:

/*
 * SPDX-License-Identifier: Apache-2.0
 */

'use strict';

const { FileSystemWallet, Gateway, X509WalletMixin } =
require('fabric-network');
const path = require('path');

Next, we set the ccpPath object to the location of the network connection profile2.
for Bank A, like this:

const ccpPath = path.resolve(__dirname, 'connection-banka.json');

Corporate Remittances and Settlement Chapter 4

[129]

We set the walletPath object to the wallet we created in the previous section,3.
like this:

main();
async function main() {
 try {

 const walletPath = path.join(process.cwd(), 'wallet-BankA');
 const wallet = new FileSystemWallet(walletPath);
 console.log(`Wallet path: ${walletPath}`);

Next, we check to see if the user is already enrolled in the wallet, by running the4.
following code:

const userExists = await wallet.exists('user1');
 if (userExists) {
 console.log('An identity for the user "user1" already exists in
the wallet');
 return;
 }

Next, we check if the admin identity exists in the wallet, by running the5.
following code:

const adminExists = await wallet.exists('admin');
 if (!adminExists) {
 console.log('An identity for the admin user "admin" does not exist
in the wallet');
 console.log('Run the enrollAdmin-BankA.js application before
retrying');
 return;
 }

We create a new gateway to connect to the peer node. We connect using the6.
admin user we created earlier, like this:

const gateway = new Gateway();
 await gateway.connect(ccpPath, { wallet, identity: 'admin',
discovery: { enabled: true, asLocalhost: true } });

We also create the ca client object for interacting with the CA for the Bank A7.
organization, as follows:

const ca = gateway.getClient().getCertificateAuthority();
 const adminIdentity = gateway.getCurrentIdentity();

Corporate Remittances and Settlement Chapter 4

[130]

Next, we register a new affiliation with the CA. An affiliation is like an8.
intermediate certificate. Typically, it is a department or group, or sub-
organization within the organization. In our case, we use department1.
We create a new affiliation, department1, for our banka organization, and9.
register it with the CA. We use the admin identity to submit the request, like this:

let affiliationService = ca.newAffiliationService();
 let affiliation = 'banka.department1'

 await affiliationService.create({
 name: affiliation,
 force: true}, adminIdentity);

Next, we register a new user, user1, for the department1 affiliation in10.
the banka organization.

The user1 user is registered with the CA, and their certificate and private key are imported
to the wallet. A success message is printed on the console, as shown in the following code
block:

const secret = await ca.register({ affiliation: 'banka.department1',
enrollmentID: 'user1', role: 'client' }, adminIdentity);
 const enrollment = await ca.enroll({ enrollmentID: 'user1',
enrollmentSecret: secret });
 const userIdentity = X509WalletMixin.createIdentity('bankaMSP',
enrollment.certificate, enrollment.key.toBytes());
 await wallet.import('user1', userIdentity);
 console.log('Successfully registered and enrolled user "user1" and
imported it into the wallet');

A catch block catches any errors during execution, like this:

catch (error) {
 console.error(`Failed to register user "user1": ${error}`);
 process.exit(1);
 }

Changes for the Bank B utility
Replicate the code for registerUser-BankA.js to registerUser-BankB.js. Save the
code file in the Bankchain repository.

Corporate Remittances and Settlement Chapter 4

[131]

Make the following changes to the code so that it works for the Bank B organization:

Change the ccpPath object to the connection profile for Bank B, like this:1.

const ccpPath = path.resolve(__dirname, 'connection-bankb.json');

Change the walletPath object to the wallet for Bank B, like this:2.

const walletPath = path.join(process.cwd(), 'wallet-BankB');

Change the affiliation to bankb.department1 at both places, like this:3.

let affiliation = 'bankb.department1'

const secret = await ca.register({ affiliation:
'banka.department1', enrollmentID: 'user1', role: 'client' },
adminIdentity);

Change the MSP to bankbMSP, like this:4.

const userIdentity = X509WalletMixin.createIdentity('bankbMSP',
enrollment.certificate, enrollment.key.toBytes());

After you've made the changes, save the files. Let's register both of the users.

Running the utilities
Let's register the users that will submit and read transactions to the blockchain for Bank A
and Bank B

Navigate to the Bankchain repository. Run the following command to register a1.
user for Bank A:

node registerUser-BankA.js

You should get a message on the console informing you that a new user, user 1,2.
has been added to the wallet. Repeat the same for Bank B, as follows:

node registerUser-BankB.js

Corporate Remittances and Settlement Chapter 4

[132]

The user1 identities for the banka and bankb organizations should be added to
the wallet for Bank A and Bank B.
You can actually verify this. Navigate to the wallet-BankA and wallet-
BankB directory. You'll be able to see a folder labeled user1. Inside, you'll find
the private key file and certificate for the admin user.

Now, our network is ready to use. We can submit transactions to the network,
and query transactions that have been added to the blockchain ledger. Next, let's
write and deploy our corporate remittance smart contract.

Building the corporate remittance contract
To successfully carry out remittances on our blockchain network, we need to write and
deploy a smart contract. The smart contract will define the transaction object, including the
transaction parameters that will be captured in the channel ledger. The smart contract will
allow authorized users to write transactions to the ledger and read transactions that have
been written to the ledger.

We'll be creating a chaincode (smart contract) called corprem.js. It will have the
following methods:

createTx: This will submit a new corporate remittance transaction.
queryTx: This will allow authorized users to fetch transactions already written to
the blockchain.

OK. Let's start writing our contract.

Writing the corporate remittance contract
Let's write our corprem contract, with the help of the following steps:

Create a new file called CorpRem.js. We start writing the contract, by declaring1.
the dependent fabric-contract-api library, which is used to define our
contract object, like this:

/*
 * SPDX-License-Identifier: Apache-2.0
 */
'use strict';

Corporate Remittances and Settlement Chapter 4

[133]

const { Contract } = require('fabric-contract-api');
class corprem extends Contract {

Next, we will add the createTx method. The createTx method will create a2.
new transaction in the ledger, as follows:

async createTx(ctx, txid,
 Sname,
 Saccount,
 Sbank,
 Saddr,
 Rname,
 Raccount,
 Rbank,
 Raddress,
 curr,
 amt,
 InvHash,
 BOEHash,
 DocHash) {

console.info('============= START : Create Transaction
===========');

The method takes the following parameters as input:

ctx: The transaction context.
txid: The transaction ID generated by the bank's internal system.
Sname: The transaction sender's name.
Saccount: The transaction sender's bank account number.
Sbank: The transaction sender's bank.
Saddr: The transaction sender's registered office address.
Rname: The transaction receiver's name.
Raccount: The transaction receiver's bank account number.
Rbank: The transaction receiver's bank.
Raddr: The transaction receiver's registered office address.
 curr: The currency of the transaction amount.
amount: The transaction amount.
InvHash: The hash of the invoice document, relevant to the corporate remittance
being sent.

Corporate Remittances and Settlement Chapter 4

[134]

BOEHash: The hash of the Bill of Entry/Bill of Lading (BOE/BOL) document,
relevant to the corporate remittance being sent.
DocHash: The hash of any other documents, relevant to the corporate remittance
being sent.

A statement is printed to the console, to indicate the start of the method.

We create the transaction object, using the input parameters. We'll write this
object to the ledger, like this:

const transaction = {
 txid,
 Sname,
 Saccount,
 Sbank,
 Saddr,
 Rname,
 Raccount,
 Rbank,
 Raddress,
 curr,
 amt,
 InvHash,
 BOEHash,
 DocHash,
 DocType: 'transaction'
 };

We use putState, to write the transaction object to the ledger. The transaction
object will be referred by the transaction ID (txid) in the ledger, as follows:

await ctx.stub.putState(txid,
Buffer.from(JSON.stringify(transaction)));

Lastly, we fire a txCreated event, to indicate to all transaction listeners that a
new transaction has been added, as follows:

ctx.stub.setEvent('txCreated',
Buffer.from(JSON.stringify(transaction)));
console.info('============= END : Create Transaction ===========');
}

We also print a message on the console, to indicate the end of the createTx
method.

Corporate Remittances and Settlement Chapter 4

[135]

Next, we will write a queryTx method, to retrieve transactions written to the3.
blockchain ledger, like this:

async queryTx (ctx, txid) {

The queryTx method takes the transaction ID (txid) as an input parameter.

const transaction = await ctx.stub.getState(txid); // get the
transaction from chaincode state
 if (!transaction || transaction.length === 0) {
 throw new Error(`Transaction does not exist`);
 }
 console.log(transaction.toString());
 return transaction.toString();
 }

module.exports = corprem;

It uses getState() to fetch the transaction details, using txid (the transaction ID). If the
fetched transaction object is not empty, indicating the transaction exists, the transaction
object is converted into a string object from the buffer and returned back to the requestor.

Lastly, we export the corprem contract as a module. That wraps up our chaincode contract.
Now, let's deploy it to the blockchain.

Deploying the corprem smart contract
We need to set up a new chaincode directory for our contract. In your Hyperledger Fabric
fabric-samples directory, navigate to the chaincode directory. By default, it will be at
the following location:

/fabric-samples/chaincode/

Let's look at how to setup the contract project environment:

In the chaincode folder, create a new folder, with the name corprem.1.
In the corprem folder, create an index.js file, with the following values:2.

/*
 * SPDX-License-Identifier: Apache-2.0
 */

'use strict';

const corprem = require('./lib/corprem');

Corporate Remittances and Settlement Chapter 4

[136]

module.exports.corprem = corprem;
module.exports.contracts = [corprem];

This will declare the corprem object, which will be used by our peer chaincode to
install and instantiate tools for deploying our chaincode within the blockchain.

Next, create a lib folder in the corprem directory. By default, your lib folder's3.
filepath should be this:

/fabric-samples/chaincode/corprem/lib

Copy and paste the corprem.js file with the corprem smart contract code that4.
we wrote in the previous section. We need to install this smart contract to all four
peers,
peer0.banka.example.com, peer1.banka.example.com, peer0.bankb.exa
mple.com,and peer1.bankb.example.com of our Hyperledger Fabric network.
To do so, we'll be using the peer chaincode install command.

The utility peer chaincode is a tool available in the cli (command-line
interface) Docker container, which is available by default as a Docker image in the
Hyperledger Fabric repository. It allows us to interact with and carry out
operations on chaincodes (a chaincode is the Hyperledger Fabric equivalent of a
smart contract).

Let's look at the peer chaincode install statement that we will be using to
deploy our chaincode for the peer0.banka.example.com peer, as follows:

docker exec
-e CORE_PEER_LOCALMSPID=bankaMSP
-e CORE_PEER_ADDRESS=peer0.banka.example.com:7051
-e
CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabr
ic/peer/crypto/peerOrganizations/banka.example.com/users/Admin@bank
a.example.com/msp
-e
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/
fabric/peer/crypto/peerOrganizations/banka.example.com/peers/peer0.
banka.example.com/tls/ca.crt
cli peer chaincode install -n corprem -v 1.0
-p /opt/gopath/src/github.com/chaincode/corprem -l node

Corporate Remittances and Settlement Chapter 4

[137]

Let's go through the different parts of the command, one by one, as follows:

The docker exec command is used to execute a command within the Docker
container.
The -e tag is used to set environment variables inside the Docker container
before executing a command.
The CORE_PEER_LOCALMSPID environment variable indicates the membership
service provider for the node. The membership service provider is used to define
the Root Certificate Authorities and Intermediate Certificate Authorities which
will be used to issue identities for a trusted domain/organization on the
blockchain network. Here, we set it to bankaMSP, which is the MSP service for
Bank A.
The CORE_PEER_ADDRESS environment variable indicates the external client port
for peer0 (Node 1 in our Hyperledger Fabric network), to which requests need
to be submitted. We set it here to peer0.org1.example.com:7051, which is
our node's client port.
The CORE_PEER_MSPCONFIGPATH environment variable indicates the
configuration file path for the Membership Service Provider, for peer0 within
peer0's Docker container.
The CORE_PEER_TLS_ROOTCERT_FILE environment variable indicates the
location of the root certificate (CA certificate), for the digital signature used by
peer0.
cli indicates the container name where we are executing the peer chaincode
command. This, as we discussed earlier, is the command-line interface Docker
container.
Lastly, we use the -n tag to indicate the chaincode name, -v to indicate the
version of the chaincode, -p to indicate the path where the smart contract code is
available, and -l to indicate the scripting language of the smart contract, which
is node in our case.

Run the command as a Linux user with Docker privileges on the Terminal line.5.
On successful execution, it should print a message similar to the one in the
following code block. The message is from the command-line container:

2019-10-29 05:56:55.357 UTC [chaincodeCmd] install -> INFO 003
Installed remotely response:<status:200 payload:"OK" >

Corporate Remittances and Settlement Chapter 4

[138]

Now, craft a peer chaincode install statement for all the other nodes in our6.
network, as follows:

//chaincode install statement for peer1 banka

docker exec -e CORE_PEER_LOCALMSPID=bankaMSP -e
CORE_PEER_ADDRESS=peer1.banka.example.com:8051 -e
CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabr
ic/peer/crypto/peerOrganizations/banka.example.com/users/Admin@bank
a.example.com/msp -e
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/
fabric/peer/crypto/peerOrganizations/banka.example.com/peers/peer0.
banka.example.com/tls/ca.crt cli peer chaincode install -n corprem
-v 1.0 -p /opt/gopath/src/github.com/chaincode/corprem -l node

//chaincode install statement for peer0 bankb

docker exec -e CORE_PEER_LOCALMSPID=bankbMSP -e
CORE_PEER_ADDRESS=peer0.bankb.example.com:9051 -e
CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabr
ic/peer/crypto/peerOrganizations/bankb.example.com/users/Admin@bank
b.example.com/msp -e
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/
fabric/peer/crypto/peerOrganizations/bankb.example.com/peers/peer0.
bankb.example.com/tls/ca.crt cli peer chaincode install -n corprem
-v 1.0 -p /opt/gopath/src/github.com/chaincode/corprem -l node

//chaincode install statement for peer1 bankb

docker exec -e CORE_PEER_LOCALMSPID=bankbMSP -e
CORE_PEER_ADDRESS=peer1.bankb.example.com:10051 -e
CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabr
ic/peer/crypto/peerOrganizations/bankb.example.com/users/Admin@bank
b.example.com/msp -e
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/
fabric/peer/crypto/peerOrganizations/bankb.example.com/peers/peer0.
bankb.example.com/tls/ca.crt cli peer chaincode install -n corprem
-v 1.0 -p /opt/gopath/src/github.com/chaincode/corprem -l node

Run them on the Terminal window. You should get a successful peer installation7.
message, like the one in the following code snippet, after each peer install
command:

INFO 003 Installed remotely response:<status:200 payload:"OK" >

Corporate Remittances and Settlement Chapter 4

[139]

Next, we need to instantiate the chaincode across the nodes. To instantiate the8.
chaincode, we'll use the following command:

docker exec
-e CORE_PEER_LOCALMSPID=bankaMSP
-e
CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabr
ic/peer/crypto/peerOrganizations/banka.example.com/users/Admin@bank
a.example.com/msp cli peer chaincode instantiate
-o orderer.example.com:7050
-C bkchannel
-n corprem
-l node
-v 1.0
-c '{"Args":[]}'
-P 'AND('\''bankaMSP.member'\'','\''bankbMSP.member'\'')'
--tls
--cafile
/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOr
ganizations/example.com/orderers/orderer.example.com/msp/tlscacerts
/tlsca.example.com-cert.pem --peerAddresses
peer0.banka.example.com:7051
--tlsRootCertFiles
/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrgan
izations/banka.example.com/peers/peer0.banka.example.com/tls/ca.crt

Let's look at the environment variables, which are denoted by the -e tag.

The CORE_PEER_LOCALMSPID environment variable indicates the membership service
provider for the node. The membership service provider is used to define the Root
Certificate Authorities and Intermediate Certificate Authorities which will be used to issue
identities for a trusted domain/organization on the blockchain network. Here, we set it to
bankaMSP, which is the MSP service for Bank A.

The CORE_PEER_MSPCONFIGPATH environment variable indicates the configuration file
path for the Membership Service Provider for peer0 within peer0's Docker container."

The -C tag indicates the Hyperledger Fabric network channel to which this
chaincode will be instantiated. In Hyperledger Fabric, channels are private
blockchain ledgers, which can be read or written to only by the approved
participants of the channel. We set it to the bkchannel channel we created
earlier.
The -n tag indicates the name of the chaincode being instantiated. Here, we set it
to corprem.
The -l tag indicates the scripting language, which in our case is node.

Corporate Remittances and Settlement Chapter 4

[140]

The -v tag is the version number of the chaincode.
The -c tag indicates the constructor arguments for the contract, if any.
The -P tag indicates the member participants of the network.
The --tls tag indicates that messages will be ssl-encrypted. The following tags,
--cafile and --tlsRootCerFiles, indicate the certificate file for the orderer
and peer0.banka.

Run the command in the Terminal window. If instantiation is successful, you will not get
any message on the Terminal window.

That completes writing and deploying our corprem chaincode (smart contract). Let's move
on to creating the IPFS network.

Setting up the IPFS network
In this section, we'll set up the IPFS network. The IPFS network will allow the banks to
share important compliance and AML documents that are required to process corporate
remittance transactions. Our IPFS network will consist of two nodes. Each node will be
controlled by a bank.

The banks will publish the documents to the IPFS network. Only authorized participants
will be able to retrieve the documents from the network, using the document's hash
signature.

Downloading the binary and installing IPFS
We will be using IPFS for storing and sharing documents between the two banks. Let's look
at the steps to setup the private IPFS network:

To install IPFS, you'll need to ensure that Go is installed in your system and the1.
GOPATH object is set. You can check if Go is installed on your system, with the
following command:

go version

If Go is installed, it'll let you know the current version. You can find steps to
download and install it at this link: https://golang.org/doc/install.

https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install

Corporate Remittances and Settlement Chapter 4

[141]

Make sure the GOPATH variable is set. Otherwise, add the following lines to your
.bashrc file in your home directory:

export GOROOT=/usr/local/go
export GOPATH=$HOME/gopath
export PATH=$PATH:$GOROOT/bin:$GOPATH/bin

Enter the source ~/.bashrc command in the Terminal, to add the preceding2.
environment variables to your Linux profile.
Now, run the go version command. It should show you the current Go3.
version.
Now, let's install IPFS. Run the following commands on the Terminal, to4.
download the latest version of the IPFS binary, and move it to the Go executable
path. At the time of writing, the latest version was 4.22.

My Go executable path is /usr/local/bin/, as shown in the following code
block:

$wget
https://dist.ipfs.io/go-ipfs/v0.4.22/go-ipfs_v0.4.22_Linux-amd64.ta
r.gz
$tar xvfz go-ipfs_v0.4.22_Linux-amd64.tar.gz
$sudo mv go ipfs/ipfs /usr/local/bin/ipfs

Initializing the IPFS nodes
Next, we need to initialize the IPFS nodes for our system. Since we are setting up two
nodes, we'll repeat the necessary steps twice, once for Node 1 and once for Node 2. Node 1
will be owned by Bank A, and Node 2 by Bank B.

First, initialize Node 1, using the following command on the Terminal. Make sure1.
you are in the IPFS executable path, which in my case is /usr/local/bin/ipfs.

The IPFS_PATH parameter points to the location of the local node folder for the
IPFS Node 1. By default, it is available at /home/<user name>/.ipfs.

Update this location to the IPFS_PATH parameter, by running the2.
following command:

IPFS_PATH=~/.ipfs ./ipfs init

Corporate Remittances and Settlement Chapter 4

[142]

A new peer ID will be generated. It will look something like this:
QmQVvZEmvjhYgsyEC7NvMn8EWf131EcgTXFFJQYGSz4Y83.
Keep it safe. We'll need it later for bootstrapping the nodes.

Next, repeat the same for Node 2 by executing the next few commands on the3.
Terminal window.

We first need to point the IPFS_PATH parameter to the location of the local node
folder for the IPFS Node 2. I've set it to /home/<user name>/.ipfs2 for Node 2.

Run the following command on the terminal to initialize IPFS Node 2:4.

IPFS_PATH=~/.ipfs2 ./ipfs init

A new peer ID will be generated similar to before. Make sure you copy and store the peer
ID for this node as well.

This will create two nodes and two-node configuration paths for IPFS in the same local
machine.

Generating a key file for the network
Let's generate a secret key for the network. Only nodes with this secret key will be able to
connect and share documents to our private IPFS network.

Run the following command to download the Swarm key generator utility:

go get -u github.com/Kubuxu/go-ipfs-swarm-key-gen/ipfs-swarm-key-
gen

Run the following command to generate a new Swarm key for Node1:

ipfs-swarm-key-gen & > ~/.ipfs/swarm.key

Node2 will refer to this key for connecting to the private IPFS network. Copy the key file
(swarm.key) to the folder for Node 2, ~/.ipfs2. The key will be available under the path
for the first node. This in my case is /home/ishan/.ipfs/swarm.key.

In my case, this is /home/ishan/.ipfs2/.

Corporate Remittances and Settlement Chapter 4

[143]

Configuring the nodes
Next, we'll configure the nodes to run them on one local machine. IPFS uses the following
ports for communication and operation:

Gateway port: The default value is 8080.

Client port: The default value is 5001.

Swarm ipv4 and ipv6 ports. The default value is 4001.

To avoid conflict, we need to change the values of this port for Node 2. To do so, open the
config file in your ~/.ipfs2 directory, and locate the Addresses: tag.

Change the values of these ports to those shown in the following code block to avoid a
conflict with IPFS Node 1, which is running on the same machine:

"Addresses": {
 "API": "/ip4/127.0.0.1/tcp/5002",
 "Announce": [],
 "Gateway": "/ip4/127.0.0.1/tcp/8081",
 "NoAnnounce": [],
 "Swarm": [
 "/ip4/0.0.0.0/tcp/4002",
 "/ip6/::/tcp/4002"
]
 }

This should allow us to run both the nodes on the same local machine.

Bootstrapping the nodes
Next, we need to bootstrap the two nodes so that they can discover each other on the
network.

Navigate to the ipfs executable folder. In my case, it is in1.
/usr/local/bin/ipfs.
Run the following commands in the Terminal window for Node 1. Substitute the2.
Peer ID we generated when initializing Node 1:

$ IPFS_PATH=~/.ipfs ./ipfs bootstrap rm –all
$ IPFS_PATH=~/.ipfs ./ipfs bootstrap add
/ip4/192.168.10.1/tcp/4001/ipfs/<Peer ID for Node 1>

Corporate Remittances and Settlement Chapter 4

[144]

Repeat the same for Node 2, changing the IPFS directory and the client port.3.
Also, substitute the Peer ID for Node 1 that we got when initializing the node, as
follows:

$ IPFS_PATH=~/.ipfs2 ./ipfs bootstrap rm –all
$ IPFS_PATH=~/.ipfs2 ./ipfs bootstrap add
/ip4/192.168.10.1/tcp/4001/ipfs/<Peer ID for Node 1>

Now, we are ready to run our IPFS network.

Starting the nodes and testing the network
Now, let's start the network. To interact with IPFS, we need to bring the daemon for both
the nodes online. Follow these steps:

Run the following command on a Terminal window to bring Node 1 online.1.
Make sure you are in the directory with the IPFS executable, as shown in the
following code block:

$ IPFS_PATH=~/.ipfs ./ipfs daemon

The daemon for Node1 should now come online.

Open a new Terminal window and navigate back to the directory with the IPFS2.
executable, Now bring the daemon for the second node online with the below
command:

$ IPFS_PATH=~/.ipfs2 ./ipfs daemon

The daemon for Node 2 should come online. Let's try publishing a file, and see if
it is indeed shared between the nodes.

Create a sample file by entering the following code:3.

$ echo hello IPFS & > file.txt

Add it to IPFS Node1 by entering the following code:4.

$ IPFS_PATH=~/.ipfs ./ipfs add file.txt

Note down the hash for the file generated by IPFS. It'll look something like
this: QmZULkCELmmk5XNfCgTnCyFgAVxBRBXyDHGGMVoLFLiXEN.

Corporate Remittances and Settlement Chapter 4

[145]

Now, let's connect to Node 2 and try to read this file. Enter the following5.
command to read the file from Node 2:

$ IPFS_PATH=~/.ipfs2 ./ipfs cat
QmZULkCELmmk5XNfCgTnCyFgAVxBRBXyDHGGMVoLFLiXEN

It should print the content of the file—that is, "hello IPFS"—on the Terminal.

With that, we have successfully set up our IPFS network. Next, let's set up the bank
databases that will store customer data and transaction data.

Setting up the bank databases
We need to set up databases for both Bank A and Bank B, which will hold the customer
data and transaction data. I'm using a postgresql database for the same. Feel free to use
MySQL or any other database that you see fit for your purpose.

If you are not using postgresql , jump to the sub-section on creating the bank databases.

Installing postgresql
To install postgresql on Ubuntu, use apt install, as shown in the following code
snippet:

$sudo apt install postgresql postgresql-contrib

For CentOS or Red Hat Enterprise Linux (RHEL), use the following commands:

$sudo yum install postgresql-server postgresql-contrib
$sudo postgresql-setup initdb
$sudo systemctl start postgresql

Let's create the databases and relations for Bank A and Bank B.

Creating the bank databases
Next, we'll create two databases, banka and bankb, each corresponding to Bank A and
Bank B. Additionally, we'll create two database users, banka and bankb, each
corresponding to the banka and bankb databases. Each database will contain
the customers table, which will hold customer data, and transactions table, which will
hold transaction data.

Corporate Remittances and Settlement Chapter 4

[146]

Follow these steps:

Switch to the postgres user, like this:

$su - postgres

Create two new users for each database, like this:

$ createuser banka --pwprompt

Enter the password as banka, or anything else. We'll need this password later for
connecting to the banka postgres database. Repeat the same for the bankb user, as follows:

$ createuser bankb --pwprompt

Enter the password as bankb, or anything else. We'll need this password later for
connecting to bankb. Log in to the postgres command line, like this:

psql

Create a database each for Bank A and Bank B in the postgres command line. The owner
will be banka and bankb respectively, as shown in the following code block:

postgres=# CREATE DATABASE banka OWNER banka;
postgres=# CREATE DATABASE bankb OWNER bankb;

Next, create two Unix users for each database. Log in to your root user and create a
banka user and a bankb user. For Ubuntu, enter the following code:

$sudo adduser banka
$sudo adduser bankb

Change the passwords for each user. I've set it to banka and bankb for the banka and
bankb users respectively, as follows:

$sudo passwd banka
$sudo passwd bankb

Let's create the relations we'll use.

Corporate Remittances and Settlement Chapter 4

[147]

Creating the database relations
Let's create the databases our application will use for storing and processing customer and
transactions data.

Log in to the banka user with the password you created earlier, and connect to the postgres
command line, like this:

$su - banka
$psql banka

Create a customers table for handling customer data. To do so, run the following query on
the postgres command line:

CREATE TABLE customers(
 user_id serial PRIMARY KEY,
 name VARCHAR NOT NULL,
 address VARCHAR NOT NULL,
 account VARCHAR NOT NULL,
 balance INTEGER NOT NULL
);

The relation will store the user_id that is automatically generated, the
customer's name, the customer's address, their account number, and their current
balance.

Create a transactions table for handling customer data. To do so, run the following
query on the postgres command line:

CREATE TABLE transactions(
 transactions_id VARCHAR PRIMARY KEY,
 sname VARCHAR NOT NULL,
 saddress VARCHAR NOT NULL,
 saccount VARCHAR NOT NULL,
 sbank VARCHAR NOT NULL,
 rname VARCHAR NOT NULL,
 raddress VARCHAR NOT NULL,
 raccount VARCHAR NOT NULL,
 rbank VARCHAR NOT NULL,
 currency VARCHAR(4) NOT NULL,
 amount INTEGER NOT NULL,
 invhash VARCHAR NOT NULL,
 boehash VARCHAR NOT NULL,
 dochash VARCHAR NOT NULL,
 transtype VARCHAR NOT NULL
);

Corporate Remittances and Settlement Chapter 4

[148]

Repeat the preceding steps for the bankb user. Log in to the Unix bankb user and connect
to the postgres command line. Run the queries for creating the customers table and
transactions table in the bankb database.

Inserting test customer data into the customers
table
We need to insert some test customer data that we can run our application with. To do so
follow the below steps -

Log in to the banka user account and connect to the postgres command line. Run the
following query to insert test customer data into the customers relation in the postgres
command line:

INSERT INTO customers (name, account, address, balance)
VALUES('Acme','ACMEAC8829','New Delhi',1000);

Next, log in to the bankb user account and connect to the postgres command line. Run the
following query to insert test customer data into the customers relation in the postgres
command line:

INSERT INTO customers (name, account, address, balance)
VALUES('Apex','APXAC09002','Dubai',1000);

Now, we have both bank databases set up with test data for the corporate customers Acme
Inc and Apex Corp. Let's start building our backend server and transaction listeners for
both of the banks.

Building the bank backend servers
The backend server is a bridge between the blockchain network, the IPFS network, the
postgresql database, and the bank portal frontend. It takes a request from the frontend,
processes it, and forwards it to the next component in the workflow.

Corporate Remittances and Settlement Chapter 4

[149]

The backend server extends a set of API endpoints, where the frontend can post requests.
The API endpoints are listed as follows:

/customerinfo: Fetches the customer's info, including name, address, account, and
balance from the banka or bankb database, and passes it to the bank portal frontend.

/payment: The bank portal frontend posts payment requests to this endpoint. It uploads
the transaction documents, including invoices, BOL/BOE, and any other document to the
bank server, posts the document to the IPFS network, and then fires the remittance
transaction on the blockchain network. On a successful response from the blockchain
network, it adds the transaction to the transactions table in the bank database and
updates the customer's balance. It then returns the response Transaction successfully
submitted to the bank frontend.

 /gettrans: It fetches the customer's transaction details from the bank database and
returns a transactions array to the bank portal frontend.

The backend server application contains the following methods:

iwrite: It takes the file path of the uploaded files as an input and adds the files to the IPFS
network.

submitTrans: It takes the transaction ID, the transaction details, and the hash of the
transaction documents as input parameters, and submits the transaction to the
bankchain network.

updateBal: Updates the customer's balance in the database after the transaction has been
successfully submitted to the network.

insertTrans: Inserts the transaction into the database after it has been successfully
submitted to the blockchain and added to the channel ledger.

Let's start writing the code for the backend server. We'll write it for Bank A. Repeat the
following steps for Bank B.

Creating the app environment
In your Node.js environment, run npm init to initialize the app.

Open the package.json file, and update the dependencies tag to the following:

{

Corporate Remittances and Settlement Chapter 4

[150]

"dependencies": {
 "body-parser": "^1.19.0",
 "express": "^4.17.1",
 "multer": "^1.4.2",
 "fabric-ca-client": "~1.4.0",
 "fabric-network": "^1.4.4",
 "fs": "0.0.1-security",
 "ipfs-http-client": "^40.0.0",
 "pg": "^7.14.0",
 }
........
}

Run npm install to install the dependencies.

Create two files: backend-BankA.js, and backend-BankB.js.

Let's start writing the code for backend-BankA.js.

Writing the backend server code
Open the backend-BankA.js file in a code editor, and follow these next steps:

We start by importing the dependent node modules, as follows:

var express = require('express');
var app = express();
var multer = require('multer')
var bodyParser = require("body-parser");
const { FileSystemWallet, Gateway } = require('fabric-network');
const ipfsClient = require('ipfs-http-client')
const ipfs = ipfsClient('http://localhost:5001')
const pg = require('pg');

We are using the express framework for our app.

We are using multer to upload the transaction documents to the system.

body-parser allows us to parse the app request body.

The fabric-network module is used to connect to the blockchain network and submit
transactions to our smart contract.

The IPFS client allows us to publish to and fetch files from the IPFS network. It is set to the
client port of Bank A, which is 5001.

Corporate Remittances and Settlement Chapter 4

[151]

The pg module is used to connect to the postgres database.

Next, we define the parameters for connecting to the banka postgres database.

The conString object is passed to the pg postgres client, to connect to the
database. We add the postgres client port, the username, and password for the
banka Unix user and the database to connect to the conString object, as follows:

const conString = "postgres://banka:banka@localhost:5432/banka";
const client = new pg.Client(conString);
client.connect();

client.connect() will connect the postgres client to our banka database.

Next, we define the bodyParser object to parse the json request body, as follows:

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));

The CurrTxID counter holds a numeric value that is used to generate the
transaction ID, like this:

var CurrTxID = 1;

We set up a middleware to allow cross-origin requests. This will allow our frontend to post
requests to our backend server's endpoints. The middleware passes the request to the next
layer, after adding the required parameters to the headers, as follows:

app.use(function (req, res, next) {
res.setHeader('Access-Control-Allow-Origin', '*');
res.setHeader('Access-Control-Allow-Methods', 'GET, POST, OPTIONS,
PUT, PATCH, DELETE');
res.setHeader('Access-Control-Allow-Headers', 'X-Requested-
With,content-type');
res.setHeader('Access-Control-Allow-Credentials', true);
next();
});

Next, we set up the server object and bring the server online at the port 8000, like this:

var server = app.listen(process.env.PORT || 8000, function () {
 var port = server.address().port;
 console.log("App now running on port", port);
 });

Corporate Remittances and Settlement Chapter 4

[152]

The ccpPath object stores the location of the connection profile used to connect
and submit transactions to the blockchain channel, as a member of the Bank A
organization. The connection profile is generated after the blockchain network is
set up and online, It should be located in the Bankchain directory path, as shown
in the following code snippet:

const ccpPath = '~/fabric-samples/bankchain/connection-banka.json';

Let's start writing the services.

Creating an endpoint to fetch customer data
The /customerinfo endpoint takes the userID as the request parameter and returns a
response object, with the customer details matching the user ID, after fetching them from
the bank database.

The service fetches the user ID from the request body. It then uses the pg client object to run
a SELECT query on the customers table in the banka database, as follows:

var userId=request.body.userId;

client.query('SELECT name,address,account,balance from customers where
user_id = $1', [userId], (error, results)=> {

On the response from the pg client, we check for error responses. In the case of no errors,
the customer's name, address, account, and current balance are added to the json response
object and sent back to the requestor, like this:

if (error) {
 throw error
 }

 if(results)
 {
 response.json({
 name: results.rows[0].name,
 address: results.rows[0].address,
 account: results.rows[0].account,
 balance: results.rows[0].balance
 });

 response.end();

 }});
});

Corporate Remittances and Settlement Chapter 4

[153]

Next, let's look at the payment endpoint used to post transaction requests.

Creating an endpoint to post payment requests
The /payment endpoint will accept the payment requests from the bank portal frontend. It
uses multer to accept the transaction object with the transaction details and upload the
compliance and AML documents.

Before we write the code for the service, we define the cpUpload object that will be used to
configure multer, to upload the documents.

The cpUpload object provides multer the configuration for the files to be uploaded. The
files at the invfile (invoice file), boefile (BOE/BOL file), and docfile (other document)
fields will be uploaded, as follows:

var cpUpload = upload.fields([{ name: 'invfile', maxCount: 1 }, {
name: 'boefile', maxCount: 1 }, { name: 'docfile', maxCount: 1 }])

The upload object is also configured with the location to which the files will be uploaded
and with the naming format of the files, as follows:

var upload = multer({ storage: storage })

var storage = multer.diskStorage({
 destination: function (req, file, cb) {
 cb(null, '/home/ishan/CorpRemApp/CorpRemApp/public/uploads/')
 },
 filename: function (req, file, cb) {
 cb(null, 'BankA' + CurrTxID+'-'+file.fieldname+'.txt')
 }
})

In my case, the files are uploaded to the public/uploads folder of the bank portal
frontend React app. The naming convention for the uploaded file is BankA <CurrTxID
value> - <Fieldname(invfile/boefile/docfile)>.txt.

Let's start writing our service, by running the following code:

app.post('/payment', cpUpload, function (request, response, next) {

When a request is posted to the /payment endpoint, the request body is first sent to
multer for parsing.

Corporate Remittances and Settlement Chapter 4

[154]

The multer module will upload the files whose information is available under
the invfile, boefile, and docfile request body fields, and stores them to the local
storage at the location defined by us, with the nomenclature defined by us.

It then passes the details of the files and the other input parameters in the request body to
the next layer, which is the business logic written in the /payment endpoint.

We store the location of the documents in the local storage to the invpath, boepath, and
docpath variables, as follows:

var invpath = request.files.invfile[0].destination +
request.files.invfile[0].filename;
var boepath = request.files.boefile[0].destination +
request.files.boefile[0].filename;
var docpath = request.files.docfile[0].destination +
request.files.docfile[0].filename;

Next, we call the iwrite() method to publish the uploaded files to the IPFS network. The
iwrite() method adds a file to the IPFS network between the bank and returns to us the
hash value of the uploaded file. We add the hash value of the three files to the array object,
hasharray, like this:

var hasharray = [];
iwrite(invpath).then(function(res,err){

if(res) {
hasharray[0] = res[0].hash ;
iwrite(boepath).then(function(res,err){

 if(res)
 {
hasharray[1] = res[0].hash ;
iwrite(docpath).then(function(res,err){

if(res)
 {
hasharray[2] = res[0].hash ;

Next, we generate the transaction ID for the outgoing transaction, like this:

var txID = 'BankA' + CurrTxID;
 console.log("Transaction ID",txID);

Corporate Remittances and Settlement Chapter 4

[155]

The transaction ID follows the format BankA<CurrTxID>. Thus, when the value
of CurrTxID is 1, the transaction ID is BankA1. After every successful transaction
submitted to the blockchain, the CurrTxID value is incremented by one, to get the
next transaction ID.

Next, we call the submitTrans() method to submit the transaction to the blockchain
network. The txID (transaction ID), request.body (request body with details of the
transaction to be submitted), and hasharray (array object with the hash signatures of the
three files) variables are sent as input parameters to the method, as follows:

submitTrans(txID, request.body, hasharray).then(function(err,res){

On the response from the submitTrans() method, we check for error responses.
In the case of no responses, we call the updateBal() method to update the
balance of the customer in the Bank A database.

We set the parameter object with the transaction amount and the sending customer's
account number, and call updateBal(), as follows:

var paramsBal = {amount : request.body.amount,
 account : request.body.saccount};

 updateBal(paramsBal,function(res){
 console.log("Updated result",res);

On a successful response from the updateBal() method, we call the
insertTrans() method to insert the transaction into the transactions table of
the Bank A database.

We send the transaction ID (txID), the transaction details in the request body, and
hasharray as input parameters to the insertTrans method, like this:

if(res)
 {

 var paramsTx = {txID : txID,
 det : request.body,
 hasharray: hasharray};

 insertTrans(paramsTx,function(res){

Corporate Remittances and Settlement Chapter 4

[156]

On a successful response from the insertTrans() method, we send the response object
back to the requestor from the frontend with the success message, as shown in the
following code block:

if(res)
 {
 response.json({
 result: res,
 });

 CurrTxID++;
 console.log(CurrTxID);
 response.end();

 }

We also increment the CurrTxID variable by 1 to get the next transaction ID. That wraps
up our payment endpoint.

Creating a service to get transaction details
The endpoint /gettrans returns the incoming and outgoing transactions against an
account when called from the bank portal frontend. It fetches the transactions from the
transactions relation in the bank database, by running a SELECT query against it.

We start by fetching the customer's account from the request body, as follows:

app.post('/gettrans', function (request, response) {
const account = request.body.account;

Next, we fetch all the transactions from the transactions relation for the account in the
request body, as follows:

client.query('SELECT * FROM transactions WHERE saccount = $1 OR
raccount = $1', [account], (error, results)=> {

On the response from the pg client, we check for an error response. In the case of no errors,
we add the query result rows to the response object and send it back to the bank portal
frontend, like this:

if (error) {
 throw error
 }

 if(results)

Corporate Remittances and Settlement Chapter 4

[157]

 {
 console.log(results);
 response.json({
 tx: results.rows
 });
 response.end();
 }
 })
})

That brings us to the end of our /gettrans endpoint.

Let's look at the methods defined in our backend server next.

Writing a method to publish documents to the IPFS
network
The iwrite() method accepts the location of a file in the local server storage as an input
parameter. It then adds this file to the IPFS network and returns the hash of the document
to the function invoker.

The method receives the path of the file in the filepath input parameter, as shown in the
following code snippet:

async function iwrite (filepath) {

Next, it adds the file to IPFS by calling the ipfs client object. The client object submits the
file to the IPFS client port 5001, as follows:

try
{
const results = await ipfs.addFromFs(filepath, { });

The IPFS client returns the hash of the file content. The iwrite() method returns this file
hash to the invoker, like this:

return results;
}catch (error) {
 console.error(`Failed to write: ${error}`);
 }
}

A catch statement catches any errors while adding the file to the IPFS network.

Corporate Remittances and Settlement Chapter 4

[158]

That brings us to the end of the iwrite() method. Next, let's look at the method that
submits the transaction to the blockchain network.

Writing a method to submit transactions to the
blockchain network
The submitTrans() method accepts the transaction details from the /payment endpoint
and adds a new remittance transaction to the blockchain ledger. Let's see how the method
works:

The input parameters to the method are the transaction ID (txID), the trans1.
object with the transaction details, and the hasharray object with the hash of the
invoice document, the BOE/BOL document, and any other document shared for
compliance purposes with the transaction request, as follows:

async function submitTrans (txID, trans, hasharray) {

We first check whether a valid user exists for Bank A for submitting transactions.2.
We use the user1 user we created for Bank A earlier. We set the wallet object to
the location of the admin and user keys we created earlier. We check whether a
private key and certificate exist for the user1 user in the wallet, by running the
following code:

try {
 const wallet = new FileSystemWallet('~/fabric-
samples/bankchain/wallet-BankA');
 const userExists = await wallet.exists('user1');
 if (!userExists) {
 console.log('An identity for the user "user1" does not exist in
the wallet');
 console.log('Run the registerUser.js application before
retrying');
 return;
 }

Corporate Remittances and Settlement Chapter 4

[159]

Next, we set the Gateway object and connect to the gateway with the user1 user.3.
The channel is set as bkchannel, our remittance channel in the Hyperledger
Fabric network. The contract object is set to corprem, which is our corporate
remittance chain code, as follows:

const gateway = new Gateway();
 await gateway.connect(ccpPath, { wallet, identity: 'user1',
discovery: { enabled: true, asLocalhost: true } });
 const network = await gateway.getNetwork('bkchannel');
 const contract = network.getContract('corprem');

We call the submitTransaction method in the contract object to submit a new4.
transaction to the corprem chaincode, like this:

 await
contract.submitTransaction('createTx',txID,trans.sname,trans.saccou
nt,trans.sbank,trans.saddress,trans.rname,trans.raccount,trans.rban
k,trans.raddress, trans.currency,
trans.amount,hasharray[0],hasharray[1],hasharray[2]);

The following are the input parameters to the transaction:

createTx: Name of the method being invoked
txID: Transaction ID
trans.sname: Transaction sender's name
trans.saccount: Transaction sender's account
trans.sbank: Transaction sender's bank
trans.saddress: Registered address of the transaction sender
trans.rname: Transaction receiver's name
trans.raccount: Transaction receiver's account
trans.rbank: Transaction receiver's bank
trans.raddress: Registered address of the transaction receiver
trans.currency: Currency symbol of the transaction
trans.amount: Transaction amount
hasharray[0]: Hash of the invoice document
hasharray[1]: Hash of the BOE/BOL
hasharray[2]: Hash of other compliance documents

Corporate Remittances and Settlement Chapter 4

[160]

We print a message on the console after successful transaction submission and5.
disconnect the gateway, like this:

console.log('Transaction has been submitted');
 await gateway.disconnect();
 return;
 }
catch (error) {
 console.error(`Failed to submit transaction: ${error}`);
 return 'Failed to submit transaction: ${error}';
 process.exit(1);
 }
};

A catch block catches any errors while submitting the transaction to the blockchain
network. That brings us to the end of the submitTrans() method.

Writing a method to update the customer's balance
After the transaction is successfully submitted to the blockchain network, the customer's
balance is updated in the customers table. The updation process is carried out by the
updateBal() method.

The method accepts the transaction details through the trans object as an input parameter,
as shown in the following code snippet:

var updateBal = function(trans,res) {

We fetch the customer balance from the customers table, like this:

client.query('SELECT balance from customers where account = $1',
[trans.account], (error, results)=> {

On the response from the pg client, we check for any error responses. In the case of no
errors, we deduct the transaction amount from the customer's balance, and run an update
query to update the balance, as follows:

if (error) {
 throw error
 }
 if(results)
 {
 var oldbal = results.rows[0].balance;
 var newbal = oldbal - trans.amount;
client.query('UPDATE customers set balance = $1 where account = $2',
[newbal, trans.account], (error, results) => {

Corporate Remittances and Settlement Chapter 4

[161]

We check for error responses from the pg client. If there are no errors, we return the control
back to the function invoker, like this:

if (error) {
 throw error
 }
return res(newbal);
 })
 }
})
}

That wraps up the updateBal() method. Next, let's look at the insertTrans() method.

Writing a method to add transactions to the database
The insertTrans() method will insert a new transaction to the transactions relation
by using the pg client. It is invoked after the customer's balance is updated by the
/payment endpoint.

The method runs an INSERT query to insert the transaction into the transactions database.
Apart from the transaction details, an additional flag, transtype, is inserted with the data
to indicate that the transaction is an Outgoing transaction, as shown in the following code
block:

var insertTrans = function(trans,res) {

client.query('INSERT INTO transactions(transaction_id,sname,
saccount,sbank, saddress, rname, raccount, rbank, raddress, amount,
currency, invhash, boehash, dochash, transtype) values ($1, $2, $3, $4, $5,
$6, $7, $8, $9, $10, $11, $12, $13, $14, $15)',
[trans.txID,trans.det.sname,trans.det.saccount,trans.det.sbank,trans.det.sa
ddress,trans.det.rname,trans.det.raccount,trans.det.rbank,trans.det.raddres
s,
trans.det.amount,trans.det.currency,trans.hasharray[0],trans.hasharray[1],t
rans.hasharray[2], 'Outgoing'], (error, results) => {

We check the pg client for any error responses. In the case of no errors, we return control to
the function invoked with the Transaction successfully submitted message. This
message will then returned back to the bank portal frontend by the payment endpoint, as
follows:

if (error)
 {
 throw error;

Corporate Remittances and Settlement Chapter 4

[162]

 }

 var msg = "Transaction successfully submitted";
 console.log("Reached here",msg);
 return res(msg);

 })
 }

That wraps up the insertTrans() method for our backend server.

Changes for backend server for Bank B
To create the backend server for Bank B, duplicate the backend server code for Bank A, and
change the following details:

 The ipfs object to the client port for Bank B, as follows:1.

const ipfs = ipfsClient('http://localhost:5002')

postgres client values to the following code:2.

const conString = "postgres://bankb:bankb@localhost:5432/bankb";

The server port to the following, to avoid conflict:3.

var server = app.listen(process.env.PORT || 8001, function () {
 var port = server.address().port;
 console.log("App now running on port", port);
 });

 The ccpPath object to the connection profile for bankb, as follows:4.

const ccpPath = '~/fabric-samples/bankchain/connection-bankb.json';

The wallet path for BankB, as follows:5.

const wallet = new FileSystemWallet('~/fabric-
samples/bankchain/wallet-BankB');

Bring both the servers online by running the following commands on separate6.
Terminals:

$node backend-BankA.js
$node backend-BankB.js

Corporate Remittances and Settlement Chapter 4

[163]

You should now have the backend servers online at the 8000 and 8001 ports, for Bank A
and Bank B respectively.

Building the transaction listeners for the
banks
We need to build a transaction listener, to detect incoming transactions to the bank's
customers. We need one for Bank A and one for Bank B.

The transaction listener will carry out the following tasks:

Monitor the blockchain for the txCreated event. The txCreated event is
triggered by the corprem whenever a new transaction is created using the
method createTx.
In the case of an event being triggered, the listener checks the transaction
payload to see if the receiving bank (trans.Rbank) is the bank hosting the
transaction listener. Thus, the transaction listener for Bank A checks for
transactions where the receiving bank is banka. Similarly, the transaction listener
for Bank B checks if the receiving bank is bankb.
If the transaction is intended for the bank, the transaction listener fetches the
customer's current balance from the customers table. It fetches the transaction
amount and the receiver's account from the transaction payload, and increments
the receiving account's balance in the customers table with the transaction
amount.
Next, it inserts the incoming transaction details into the transactions table.
The transtype flag is set to Incoming.
Lastly, it calls the iread() method. The iread() method takes the hash of the
compliance documents accompanying the transaction as an input parameter. It
uses the hash value to fetch the documents from the IPFS node of the receiving
bank and saves it to the local storage of the bank infrastructure.
A catch block catches any errors while executing the preceding tasks.

The transaction listener has the following two methods:

Transactionlisten(): The listener method checks for any incoming
transactions and processes the tasks listed previously.
iread(): This uses the IPFS client to fetch the compliance documents from the
IPFS network and saves them to the local storage.

Corporate Remittances and Settlement Chapter 4

[164]

Let's start building the transaction listener. The following steps are for the transaction
listener for Bank A. Repeat the steps for Bank B.

Creating the app environment
In your Node.js environment, run npm init to initialize the app.

Open the package.json file, and update the dependencies tag to the following:

{

"dependencies": {
 "body-parser": "^1.19.0",
 "express": "^4.17.1",
 "fabric-ca-client": "~1.4.0",
 "fabric-network": "^1.4.4",
 "fs": "0.0.1-security",
 "ipfs-http-client": "^40.0.0",
 "pg": "^7.14.0",
 }
........
}

Run npm install to install the dependencies.

Create two files: TransListener-BankA.js and TransListener-BankB.js.

Let's start writing the code for TransListener-BankA.js.

Writing the transaction listener code
Open the TransListener-BankA.js file in a code editor, and proceed as follows:

We start by importing the dependencies for building our transaction listener, like this:

const { FileSystemWallet, Gateway } = require('fabric-network');
const ipfsClient = require('ipfs-http-client')
const ipfs = ipfsClient('http://localhost:5001')
const fs = require("fs");
const pg = require('pg');

The fabric-network module is used to connect to the blockchain network and listen to
events triggered by our corprem smart contract.

Corporate Remittances and Settlement Chapter 4

[165]

The IPFS client allows us to publish to and fetch files from the IPFS network. It is set to the
client port of Bank A, which is 5001.

The fs module allows interaction with the local filesystem.

The pg module is used to connect to the postgres database.

Next, we define the parameters for connecting to the banka postgres database.

The conString object is passed to the pg postgres client to connect to the
database. We add the postgres client port, the username, and the password for the
banka Unix user and the database, to connect to the conString object, as
follows:

const conString = "postgres://banka:banka@localhost:5432/banka";
const client = new pg.Client(conString);
client.connect();

The ccpPath object stores the location of the connection profile for connecting
and submitting transactions to the Bank A node. We'll use it to connect our
transaction listener to the blockchain gateway. Lastly, we call the
Transactionlistener, as follows:

const ccpPath = '~/fabric-samples/bankchain/connection-banka.json';
Transactionlistener();

Let's start writing the methods for our listener.

Writing the transaction listener method
The transaction listener will connect to the gateway and monitor it for any events created
by our corprem contract by doing the following:

The transaction listener will first check our wallet to see whether an identity1.
exists for connecting to the blockchain gateway. This is the user1 identity that
we created for Bank A earlier. If the user exists, we move on to the next steps,
shown in the following code block:

async function Transactionlistener (){

try{
 const wallet = new FileSystemWallet('~/fabric-
samples/bankchain/wallet-BankA');
 const userExists = await wallet.exists('user1');

Corporate Remittances and Settlement Chapter 4

[166]

 if (!userExists) {
 console.log('An identity for the user "user1" does not exist in
the wallet');
 console.log('Run the registerUser-BankA.js application before
retrying');
 return;
 }

Next, we connect to the Hyperledger Fabric gateway with the user1 user, like2.
this:

const gateway = new Gateway();
await gateway.connect(ccpPath, { wallet, identity: 'user1',
discovery: { enabled: true, asLocalhost: true } });
console.log("Gateway Connected");
const network = await gateway.getNetwork('bkchannel')
const contract = network.getContract('corprem');

The network is set to our Bankchain channel, bkchannel.
The contract object is set to corprem, which is our corporate remittance
smart contract.
The addContractListener method adds a new listener. This listener
will listen to the txCreated event triggered by the corprem chaincode
on the bkchannel chaincode, as follows:

const listener = await contract.addContractListener('contract-
listener', 'txCreated', (err, event, blockNumber, transactionId,
status) => {
if (err) {
 console.error(err);
 return;
 }

On the response from the listener, we check for errors.

In the case of no errors, the transaction payload is captured in the trans object,
and the transaction block number and transaction ID are printed on the console,
as shown in the following code block:

console.log(`Block Number: ${blockNumber} Transaction ID:
${transactionId} Status: ${status}`);

 var trans=JSON.parse(event.payload.toString());
 console.log(trans);

Corporate Remittances and Settlement Chapter 4

[167]

If the receiving bank in the transaction payload (trans.Rbank) is Bank A, we3.
fetch the balance of the receiving customer in the customers table. To do so, we
use the pg client and run a SELECT query on the table filtered by the customer's
account, as follows:

if(trans.Rbank == 'Bank A')
 {

 client.query('SELECT balance from customers where account = $1',
[trans.Raccount], (error, results)=> {

if (error) {
 throw error
 }

On a successful response, we add the transaction amount to the current balance4.
of the customer and update the customer's new balance in the customers table,
like this:

if(results)
 {
 var oldbal = results.rows[0].balance;
 var newbal = Number(oldbal) + Number(trans.amt);

 client.query('UPDATE customers set balance = $1 where account =
$2', [newbal, trans.Raccount], (error, results) => {

After successfully updating the customer's balance, we insert the transaction into5.
the transactions table. Notice in the following code block that we set
the transtype flag to Incoming:

if (error) {
 throw error
 }

 client.query('INSERT INTO transactions(transaction_id,saddress,
saccount,sname, sbank, raddress, raccount, rname, rbank, amount,
currency, invhash, boehash, dochash, transtype) values ($1, $2, $3,
$4, $5, $6, $7, $8, $9, $10, $11, $12, $13, $14, $15)',
[trans.txid,trans.Saddr, trans.Saccount, trans.Sname, trans.Sbank,
trans.Raddress, trans.Raccount, trans.Rname,
trans.Rbank,trans.amt,trans.curr,trans.InvHash,trans.BOEHash,trans.
DocHash, 'Incoming'], (error, results) => {

Corporate Remittances and Settlement Chapter 4

[168]

After successfully updating the transaction to the transactions table, we call6.
the iread() method to save the compliance files to the bank infrastructure's
local storage. The iread() method takes the hash of the three compliance
documents as input parameters, and fetches the documents from the IPFS
network, as follows:

if (error) {
 throw error
 }

 iread(trans.InvHash,trans.BOEHash,trans.DocHash);
 })

That wraps up the transaction listener. Let's look at the iread() method.

Writing a method to fetch compliance documents from
IPFS
The iread() method takes the invoice document hash (invhash), the BOE/BOL hash
(boehash), and any other document hash (dochash) as input parameters, as shown in the
following code block:

async function iread (invhash,boehash,dochash) {
try
{

Let's look at the logic for our code:

We fetch the invoice file from the IPFS network by using the invoice document1.
hash (invhash). The file is saved to the local storage. In my case, I've stored the
file in the public folder of my bank portal React app. We use the fs module to
create a new file, and write the file contents to the file. The filename in the local
storage follows the nomenclature <File hash>.txt.

Let's look at how the file is fetched from IPFS using the hash value:

const invfile = await ipfs.get(invhash)

invfile.forEach((file) => {

var url =
'/home/ishan/CorpRemApp/CorpRemApp/public/uploads/'+invhash+'.txt';
var writeStream = fs.createWriteStream(url);
writeStream.write(file.content.toString('utf8'));

Corporate Remittances and Settlement Chapter 4

[169]

writeStream.end();
})

We follow the same flow for the other compliance documents, as shown in the2.
following code block:

const boefile = await ipfs.get(boehash)
boefile.forEach((file) => {
var url =
'/home/ishan/CorpRemApp/CorpRemApp/public/uploads/'+boehash+'.txt';
var writeStream = fs.createWriteStream(url);
writeStream.write(file.content.toString('utf8'));
writeStream.end();
})

 const docfile = await ipfs.get(dochash)
docfile.forEach((file) => {
var url =
'/home/ishan/CorpRemApp/CorpRemApp/public/uploads/'+dochash+'.txt';
var writeStream = fs.createWriteStream(url);
writeStream.write(file.content.toString('utf8'));
writeStream.end();
})

A catch block catches any errors during execution, as shown in the following
code block:

catch (error) {
 console.error(`Failed to write: ${error}`);
 }
}

That wraps up our transaction listener. The transaction listener for Bank B will follow the
same steps. The changes that need to be made are mentioned in the next section.

Changes for transaction listener for Bank B
Duplicate the TransListener-BankA.js file for the transaction listener for Bank B, and
rename it TransListener-BankB.js. Make the following changes to the code:

Change the ipfs client object to the client port for the Bank B IPFS node, as1.
follows:

 const ipfs = ipfsClient('http://localhost:5002')

Corporate Remittances and Settlement Chapter 4

[170]

Change the conString object, used to connect to postgres, to the following2.
values for the bankb database:

 const conString = "postgres://bankb:bankb@localhost:5432/bankb";

Set the ccpPath object to the location of the connection profile for Bank B, like3.
this:

 const ccpPath = '~/fabric-samples/bankchain/connection-bankb.json';

Substitute the location of the wallet with the user's identity for Bank B, like this:4.

 const wallet = new FileSystemWallet('~/fabric-samples/bankchain/wallet-
BankB');

Change the if clause for the listener to Bank B, to check for transactions where5.
Bank B is the receiving bank, as follows:

 if(trans.Rbank == 'Bank B')

Change the wallet path for Bank B, like this:6.

const wallet = new FileSystemWallet('~/fabric-
samples/bankchain/wallet-BankB');

That wraps up both the transaction listeners.

Bring both the listeners online. Run the following command in separate Terminal windows:

$node TransListener-BankA.js
$node TransListener-BankB.js

TransListeners should both come online. The listeners will print the Gateway
Connected message on the console to indicate that the listener is connected to the
blockchain network and is listening for events.

That completes our backend infrastructure for both the banks. Next, we'll build a corporate
remittance app frontend that will interact with the backend and allow users to submit
transactions and view submitted transactions.

Corporate Remittances and Settlement Chapter 4

[171]

Creating the corporate remittance app
frontend in React
We need to create a frontend that will interact with the backend server and allow users to
submit transactions and view submitted transactions.

The app should render three screens:

The Bank login screen

The Transfer screen

The View Transactions screen

The user logs in using the Bank login screen. They can either log in as Acme Inc or Apex
Corp, by clicking on the Acme Inc. button or the Apex Corp button.

After logging in, they land on the Transfer screen. Here, they can initiate a new transfer
request by filling in the details of the remittance, including the receiver's name, account
number, bank and address, and the transaction amount and currency. They also need to
upload the compliance documents, which include the invoice document, BOE/BOL, and
any other document they want.

On clicking on Submit, a new remittance transfer request is initiated and sent to the
backend server for processing. After the backend confirms the success of the transaction,
the user is notified of the Tx Status on the screen.

On clicking on View Transactions, the app fetches all of the user's transactions from the
database and renders it on the screen. The user can view all incoming or outgoing
transactions. By default, all incoming transactions are shown. The user can view all
transaction details, including the compliance documents. The screen renders a separate link
to view each document. On clicking on the link, the document is downloaded from the
server's local storage.

The following are the main members of our app:

There's main App.js file.
There's following React components:

AppLogin.js

Transfer.js

ViewTransactions.js

Corporate Remittances and Settlement Chapter 4

[172]

Let's start building the app.

You can download the entire app code at the GitHub repository, at this link: https://
github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/
master/Chapter%204/CorpRemApp/src.

Creating the React project environment
Before we can create our React app, we need to set the project directory and install the
dependencies for our app, as follows:

Create a new React app called CorpRemApp, using npx, like this: 1.

npx create-react-app CorpRemApp

Update your package.json file to the following values:2.

{
 "name": "CorpRemApp",
 "version": "1.0.0",
 "private": false,
 "dependencies": {
 "bulma-start": "0.0.2",
 "react": "^16.4.1",
 "react-dom": "^16.4.1",
 "react-scripts": "1.1.4"
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test --env=jsdom",
 "eject": "react-scripts eject"
 }
}

Run npm install on the Terminal window to install the dependencies.3.
Next, within the src folder, create a Components folder for the app4.
components.

Let's go through the components, one by one.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%204/CorpRemApp/src

Corporate Remittances and Settlement Chapter 4

[173]

Building the container component
The container component has a fairly straightforward logic. It accepts the current state of
the app from the app.js file. It checks the current value of the account state variable to
see whether its value is not null, indicating the customer has successfully logged in to the
app. If the value is null, the container renders the AppLogin.js component so that the user
can log in.

If the account variable is not null, the container component next checks the ViewFlag
state variable. If ViewFlag is set to 1, it indicates that the Transfer.js component needs
to be rendered. If ViewFlag is set to 2, it indicates that the ViewTransactions.js
component needs to be rendered.

Depending on the value of the ViewFlag state variable, the container component renders
the Transfer.js or the ViewTransactions.js component and passes the required state
and methods to the component.

The container component also renders the AddressBar component that shows the user's
account number on the screen.

You can view the code for the container component at the GitHub repository, at this
link: https://github.com/PacktPublishing/Blockchain-Development-for-Finance-
Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js.

Building the AppLogin component
The AppLogin component renders a login screen with two buttons—Log in as Acme Inc.
and Log in as Apex Corp. On clicking a button, the user is logged in to the app with the
customer they select.

At the code level, the component calls the setAccount() method to set the bank customer
account as Acme Inc or Apex Corp. The component passes the value 1 as an input
parameter to the setAccount() method if the customer selected is Acme Inc. For Apex
Corp, it sends the value 2, as shown in the following code block:

return (
 <div className="panel-block is-paddingless is-12" >
 <div className="column is-12" id="token-lists">

 <div className="column has-text-centered">

props.setAccount(1)}>

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Container.js

Corporate Remittances and Settlement Chapter 4

[174]

 Login as Acme Inc.

 </div>
 <div className="column has-text-centered">

props.setAccount(2)}>
 Login as Apex Corp

 </div>
 </div>
 </div>
)

Next, let's look at the Transfer component.

Building the Transfer component
The Transfer component allows the user to enter the remittance detail and initiate a new
transaction. It submits the transaction request to the backend. On the response from the
backend, it informs the user whether the transaction was successful or whether it failed.

Let's look at the code.

The Transfer component renders a screen with five text input fields and three file input
fields. The fields include the following:

Receiver's Name (Text)
Receiver's Account (Text)
Receiver's Bank (Text)
Receiver's Address (Text)
Proforma Invoice/Invoice (File)
BOE/BOL (File)
Any Other Document (File)
Amount (In USD) (Text)

After clicking on the Submit button, the request is submitted to the backend server.

Corporate Remittances and Settlement Chapter 4

[175]

After successful transaction processing, the Tx Status tag informs the user whether the
transaction went through or if it failed.

Lastly, the component renders a menu bar on the top. Users can cycle between the Transfer
screen and the ViewTransactions screen by clicking on the Transfer button or the View
Transactions button. The component calls the TabView() method, with the value 1 for the
Transfer screen, and 2 for the ViewTransactions component. This value is then updated
to the ViewFlag state variable.

You can view the code for the Transfer component at this GitHub repository
link: https://github.com/PacktPublishing/Blockchain-Development-for-Finance-
Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js.

Building the ViewTransactions component
The ViewTransactions component renders the customer's transaction details on the
screen. It allows the customers to choose whether if they want to see their incoming or
outgoing transactions by rendering a menu bar with the Incoming and Outcoming buttons.

On clicking the Incoming button, the TransFlag state variable is set to 1, and all incoming
transactions are displayed on the screen. On clicking the Outgoing
button, the TransFlag state variable is set to 2, and all outgoing transactions are displayed
on the screen.

At the code level, the ViewTransactions component first renders a menu bar with the
Incoming Tx and Outgoing Tx buttons. On clicking the buttons, the TransSet() method
is called with the input parameter as 1 for incoming transactions, and 2 for outgoing
transactions. The TransSet() method sets the value of the TransFlag state variable.

Next, the component renders the transactions on the screen. To do so, it maps
the trans state variable on the screen. The trans state variable is an array that contains all
of the transactions of the customer.

If TransFlag is set to 1, it indicates the user has requested to view only incoming
transactions. The render function hides all transactions where the transtype value is
Outgoing—that is, the transaction is an outgoing transaction.

If TransFlag is set to 2, it indicates the user has requested to view only outgoing
transactions. The render function hides all transactions where the transtype value is
Incoming— that is, the transaction is an incoming transaction.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/Transfer.js

Corporate Remittances and Settlement Chapter 4

[176]

Based on the preceding conditions, the render method prints all of the transaction details
on the screen, including the following:

Transaction ID

Sender's Name
Sender's Account
Sender's Address
Sender's Bank
Receiver's Name
Receiver's Account
Receiver's Address
Receiver's Bank
Transaction Currency
Transaction Amount
Link to Invoice Document
Link to BOE/BOL Document
Link to Other Document

To generate the links to the compliance documents, we use the hash value of the
documents. If you remember, when we built the transaction listener for Bank A and Bank B,
we fetched the compliance documents from the IPFS network, after receiving a new
transaction.

The documents were stored in the following location:

~/CorpRemApp/public/uploads/

Basically, this is the public folder of our app. The files were saved in the following format:

<Hash of the document>.txt

Hence, to retrieve the files from the frontend, we simply provide a link to this location. For
example, to fetch the invoice document, we render the following link on the screen:

This will basically generate a download link to the invoice document. The customer can
click on the link to download and view the document.

Corporate Remittances and Settlement Chapter 4

[177]

You can view the code for the ViewTransactions component at the following
GitHub repository link: https://github.com/PacktPublishing/Blockchain-Development-
for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/
ViewTransactions.js.

Let's look at the methods in our main App.js file.

Writing the methods in the App.js file
The App.js file defines the methods that are called by the components and passes them to
the container component. It also sets the app initial state and passes it on to the container
component.

You can view the App.js at the GitHub repository, at this link: https://github.com/
PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/
Chapter%204/CorpRemApp/src/App.js.

Let's look at the methods defined by the App.js file.

Writing the constructor
The constructor is called when the app first loads, and it sets the app's initial state and
defines the app's name, which is displayed by the Description container.

It sets the following state variables:

userID: It sets the customer's userID to 1, which is the userID for both Acme
Inc and Apex Corp in the Bank A and Bank B databases, respectively.
network: It sets the network variable to Private Testnet.
server: This is the default value of the listening port of the backend server of
Bank A. This value is changed to 8001 when the Bank B customer (Apex Corp)
logs in.
account: This initializes the account variable as null.
balance: This initializes the customer's balance to 0 before we fetch the actual
balance from the backend.
name: This initializes the customer name.
trans: This initializes the trans object that stores the transactions after fetching
it from the backend server.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/Components/ViewTransactions.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%204/CorpRemApp/src/App.js

Corporate Remittances and Settlement Chapter 4

[178]

ViewFlag: This initializes the flag with the value 1.
TransFlag: This initializes the flag with the value 1.
Fields: This initializes the rname (Receiver's Name), rbank (Receiver's Bank),
raddress(Receiver's Address), raccount(Receiver's Account), and
amount (Transaction Amount) fields.

Next, let's look at how we set the user account.

Writing a method for setting the user account
The setAccount() method is called by the AppLogin component. Depending on whether
the user clicks on Acme Inc or Apex Corp, the input parameter, 1 or 2, is sent to the
method.

If the value of the input parameter is 2, indicating the customer is Apex Corp (a Bank B
customer), the server state variable is set to localhost:8001, which is the listening port of
the backend server of Bank B, as shown in the following code block:

if (flag == 2)
 {
 server = 'localhost:8001'
 };

Next, we fetch the customer's details from the backend server. We make a fetch call to
the /customerinfo API endpoint, like this:

var url = 'http://'+ server +'/customerinfo';
 fetch(url, {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 },
 body: JSON.stringify({
 userId : app.state.userId
 })
 }).then(function(response,error){

Corporate Remittances and Settlement Chapter 4

[179]

On the response from the backend server, we parse the response object for the
customer's name, account, address, and current balance. We set these values to
the app state.
Additionally, a bank variable is also added to the app state. The bank variable is
to Bank A or Bank B, depending on whether the input parameter to the
setAccount() method was 1 or 2. We also add the server variable with the
listening port of the bank backend server, as follows:

then(function(data){

 var bank;

if(flag == 1)
 {
 bank = 'Bank A';
 }
 else
 {
 bank = 'Bank B';
 }

 app.setState({
 name: data.name,
 account: data.account,
 balance: data.balance,
 address: data.address,
 bank: bank,
 server: server
 });

Next, let's look at the view setters for the app.

Writing methods to toggle between app components
The TabView() and TransSet() methods allow us to toggle between the various screens
available in the app, as follows:

The TabView method is called when the user toggles between the Transfer
screen and the ViewTransactions screen through the navigation.
It expects an input parameter with the value 1 for rendering the Transfer
screen and 2 for rendering the ViewTransactions screen. It sets the value of the
ViewFlag state variable.

Corporate Remittances and Settlement Chapter 4

[180]

If the value of the input parameter is 2, indicating the ViewTransactions
screen, it calls the TransSet method to set the screen, to show the customer's
outgoing transactions by default.
It also calls setTransactions(), to populate the trans array object with the
customer's transactions.

The trans object will be mapped and printed on the screen by the ViewTransactions
component, as follows:

TabView = (flag) => {

 if(flag == 2)
 {
 this.TransSet(2);
 this.setTransactions();
 }

 this.setState({
 ViewFlag: flag
 });
}

The TransSet method is called when the user toggles between incoming and outgoing
transactions on the ViewTransactions screen.

It simply accepts the value of the input parameter and sets the TransFlag state variable,
and calls the setTransactions() method to update the trans array object with the user's
transactions, as follows:

TransSet = (flag) => {

 this.setState({
 TransFlag: flag

 });
 this.setTransactions();
}

Next, let's look at the input change handlers.

Corporate Remittances and Settlement Chapter 4

[181]

Writing methods to handle input fields
We are handling two kinds of inputs in our app: text-based and file-based inputs.

The text-based inputs are handled by the onInputChangeUpdateField method. It tracks
any changes in the text input fields and updates the values to the state fields array, where it
can be accessed by the other methods of the app, as follows:

onInputChangeUpdateField = (name,value) => {
 let fields = this.state.fields;

 fields[name] = value;

this.setState({
 fields
 });
 };

The file-based inputs are handled by three change handlers, one for each type of file
(invoice, BOE/BOL, and other document).

It listens to any file selection events. If a file is selected, it fetches the details of the file and
adds it to the app state. It also updates the filename in the app state so that it can be
displayed to the user.

The following is the change handler for the invoice document:

onChangeHandlerInv = event =>{

 console.log(event.target.files[0]);

 this.setState({
 InvFile: event.target.files[0],
 InvFname: event.target.files[0].name
 })

 }

The change handler for the BOE/BOL document and other documents follows a mechanism
similar to this one.

Corporate Remittances and Settlement Chapter 4

[182]

Writing a method to submit payment requests
The payment() method will submit a new payment request to the backend infrastructure.
It is called when the Submit button is clicked on the Transfer screen. Let's look at the
payment() method:

We start the method by declaring a FormData object. The details for the1.
transaction are added to the FormData object. These include the sender's details,
the receiver's details, the transaction amount and currency, and the details of the
compliance documents to be uploaded. We fetch the sender's details from the
state and the receiver's details from the input fields. The currency is set to USD by
default, as shown in the following code block:

payment = () => {
 const data = new FormData();

 data.append('sname',this.state.name);
 data.append('saccount',this.state.account);
 data.append('sbank',this.state.bank);
 data.append('saddress',this.state.address);
 data.append('rname',this.state.fields.rname);
 data.append('raccount',this.state.fields.raccount);
 data.append('rbank',this.state.fields.rbank);
 data.append('raddress',this.state.fields.raddress);
 data.append('amount',this.state.fields.amount);
 data.append('currency','USD');
 data.append('invfile',this.state.InvFile);
 data.append('boefile',this.state.BOEFile);
 data.append('docfile',this.state.DocFile);

Next, we add this FormData object to the request body, and submit the request to2.
the /payment endpoint of our backend server, like this:

let app = this;
 var url = 'http://'+ this.state.server +'/payment';
 fetch(url, {
 method: 'POST',
 body: data}).
 then(function(response,error) {

On receiving a response from the backend, we reset the fields and then set the3.
user balance again, by calling the resetApp() and setBalance() methods
respectively. The response data with the Transaction successfully
submitted or Transaction failed message is updated to the txstatus state
variable.

Corporate Remittances and Settlement Chapter 4

[183]

The Transfer component will display this message to the user, as follows:

 if(response)
 {
 app.setBalance();
 app.resetApp();
 return response.json();
 }
 else
 {
 console.log(error);
 }
 }).then(function(data){
 console.log(data);
 app.setState({
 txstatus: data
 });
 })

Next, let's look at the method that fetches the customer's transactions from the backend.

Writing a method to fetch customer transactions
The setTransactions() method fetches the customer's transactions by calling the
/gettrans endpoint in the backend server.

It sends the customer's account in the request body, and all transactions to or from the
customer account are returned in the response object, as follows:

We first call the /gettrans endpoint with the customer's account. We fetch the1.
account from the app state, like this:

setTransactions()
{
let app = this;
 var url = 'http://'+ this.state.server +'/gettrans';
 fetch(url, {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 },body: JSON.stringify({
 account : app.state.account
 })
 })

Corporate Remittances and Settlement Chapter 4

[184]

On receiving a response from the endpoint, we check for any errors. If there are2.
no errors, we parse the JSON body to get the transaction data. The transaction
data is then stored in the trans array in the app state, as follows:

.then(function(response,error){
 if(response)
 {
 return response.json();
 }
 else
 {
 console.log(error);
 }
 }).then(function(data){
 app.setState({
 trans: data.tx
 });
})
}

Let's look at the method used to set the user balance.

Writing a method to set the current user balance
The setBalance() method is called to set the current user balance. It is always invoked
after a new transaction is submitted to the server. It calls the /customerinfo endpoint and
updates the new balance to the app state, as follows:

We call the /customerinfo endpoint with the customer's userID from the app1.
state, like this:

setBalance = () => {
 let app = this;
 var url = 'http://'+ this.state.server +'/customerinfo';
 fetch(url, {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 },body: JSON.stringify({
 userId : app.state.userId
 })
 }).then(function(response,error){

Corporate Remittances and Settlement Chapter 4

[185]

On receiving a response from the /customerinfo endpoint, we fetch the2.
balance variable and update it to the app state, like this:

if(response)
 {
 return response.json();
 }
 else
 {
 console.log(error);
 }
 }).then(function(data){

 app.setState({
 balance: data.balance
 });
})
}

That brings us to the end of our frontend and all of the components we need to develop for
our project. In the next section, let's try out an end-to-end remittance transaction and see
how the project works.

Running the corporate remittance app
Let's bring our blockchain network and application online. Make sure your Fabric network
is up and running and the corprem chaincode is deployed. Also, ensure that identities have
been created for writing to and reading transactions from the blockchain network for both
the banks.

Also, ensure that the databases are set up with the test data. Do a quick check to see both
the IPFS nodes are running. Bring the backend servers for both Bank A and Bank B online.

Corporate Remittances and Settlement Chapter 4

[186]

Let's start our React app, as follows:

Navigate to your React project environment. Start the React app with the1.
following command:

npm start

Open your browser and navigate to the home page for the app. The app should2.
look like this:

Let's log in to the app with the Acme Inc user. Click on the button that says3.
Login as Acme Inc. A transfer screen like the following one should open:

Corporate Remittances and Settlement Chapter 4

[187]

Let's try out a transaction. Enter the transaction details for an Apex Corp4.
customer in Bank B. Enter the following details for the transaction:

Receiver Customer: Apex
Receiver Account: APXAC09002
Receiver's Address: Dubai
Receiver's Bank: Bank B

Corporate Remittances and Settlement Chapter 4

[188]

Upload a sample invoice file, BOE/BOL file, and other documents.5.
Enter the transaction amount. I am transferring 800 USD.6.
Click on Submit to submit the transaction, as shown in the following screenshot:7.

The transaction is now submitted to the backend, where it will be processed and
forwarded to the blockchain network. The transaction documents will be
uploaded and added to IPFS. After the successful processing of the transaction,
the user's balance will be updated, the transaction will be added to the
transactions table, and the control will return to the frontend.

Corporate Remittances and Settlement Chapter 4

[189]

At this point, the frontend Tx Status tag will show you a Transaction
successfully submitted message, as follows:

Click on the View Transactions button and then the Outgoing Tx button to view8.
this transaction's details, as shown in the following screenshot:

Corporate Remittances and Settlement Chapter 4

[190]

Next, log out of the Acme Inc user and log in to the Apex Corp user. Click on9.
the View Transactions button, and then the Incoming Tx button to view this
transaction in the Bank B user's portal, as shown in the following screenshot:

With this, we come to the end of the demonstration of our app.

Summary
That brings us to the end of the corporate remittance blockchain app project. This chapter
gives you a good insight into using multiple tools to accomplish your end goal when
building a blockchain app. In this specific case, we used Hyperledger Fabric for sharing
transaction details on a shared ledger between participants, and we used IPFS to share
transaction documents between the remittance participants. We were able to leverage both
the platforms to build a real-time corporate remittance solution to circumvent a lot of the
challenges faced by current remittance solutions, including reconciliation, visibility of
transactions, exchange of compliance documents, creating a transparent and real-time
workflow, and so on. Corporate remittance is probably one of the most important
Blockchain use cases (if not the most important), and I hope this chapter will enable you to
design complex products and workflows, adhering to the requirements of different
corporate remittance use cases.

Corporate Remittances and Settlement Chapter 4

[191]

We started the chapter by understanding corporate remittances and how blockchain
technology can help to make them better and more efficient. Next, we looked at an outline
for our project and the different steps we would execute. Next, we set up a customer
Hyperledger Fabric network called Bankchain between the Bank A and Bank B banks,
created identities for the users of Bank A and Bank B on the network, and wrote and
deployed our corporate remittance chaincode. We also set up a two-node IPFS network to
share documents between the banks, and a backend database for storing customer and
transaction details.

We built backend servers for Bank A and Bank B to provide an interface between the bank
portal frontend and the blockchain network, the databases, and the IPFS network. Two
transaction listeners were created, one for Bank A and one for Bank B, to listen for incoming
transactions to the banks on the blockchain network, fetch the transaction details and
documents, and save these to the bank's local infrastructure. Lastly, we built a bank portal
in the frontend to allow the Acme Inc customer of Bank A and the Apex Corp customer of
Bank B to log in, submit transactions, and view transaction details.

The main takeaway from this chapter is understanding how powerful the Hyperledger
Fabric platform is and how it can be used to build complex banking and financial
ecosystems and products that are more efficient and transparent than current processes. At
the same time, I hope you were able to understand how to leverage IPFS for your
blockchain projects. Another major takeaway is understanding how blockchain and
distributed ledger technologies can be used to redesign and re-engineer current process
flows, to build banking and financial systems of the future.

In the next chapter, we'll be looking at how the Stellar network can be used for retail
remittances while enabling real-time Know Your Customer (KYC) and AML checks on a
transaction.

5
Enabling Cross-Border

Remittances with Real-Time
KYC/AML Verification

In this chapter, we will be building a prototype cross-border blockchain retail remittance
platform for banks. Cross-border remittances are a complex affair from a compliance and
settlement point of view. Banks need to devise complex workflows to carry out compliance
checks of the remitter and the beneficiary. The sending bank, receiving bank, and other
partner banks need to agree on the compliance requirements of the sender and the receiver
before remittance transactions can be executed or credited to the beneficiary. For carrying
out a settlement, the sending and the receiving banks need to have an elaborate workflow
where they have the visibility of incoming funds. Often, they might have to rely on partner
banks—known as correspondence banks—to carry out the remittance process, which
results in it taking a much longer time for funds to be paid out to the end beneficiary.

The following topics will be covered in this chapter:

Technical requirements
Designing a workflow for blockchain cross-border remittance
Setting up a test network
Creating user accounts
Setting up bank domains
Setting up the federation servers

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[193]

Setting up the compliance servers
Setting up the bridge servers
Setting up the callbacks server
Building the bank portal
Running the remittance platform

Technical requirements
You can access the code files of this chapter on the following GitHub link:

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/
tree/master/Chapter%205/Cross%20Border

For this project, we'll be working with the Stellar/quickstart Docker container provided by
the Stellar Foundation for trying out the Stellar platform. The details of the Docker image
can be found at the following link: https://hub.docker.com/r/stellar/quickstart/.

I'm using Ubuntu 18.04.2 LTS for running the applications and deploying my blockchain.
This project assumes that you are working on a UNIX operating system. Additionally, this
project assumes you have node.js and npm installed. I'm using node version 13.0.1
and npm version 6.12.0. You would also need the latest version of Docker and Docker
Compose.

We'll be launching a Docker container with a single node, single client-server private
instance of the Stellar platform.

To download the Docker image and launch the container, run the following command in a
Terminal window:

docker run --rm -it -p "8000:8000" --name stellar stellar/quickstart --
standalone

This runs a standalone instance of the Stellar network with a single client and single node
that will act as our development environment. It also runs a Postgres instance that stores
transaction data that can be retrieved using the Horizon client.

We'll be configuring this network instance further in the Setting up a Test Network section.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%205/Cross%20Border
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[194]

Designing a workflow for blockchain cross-
border remittance
For this project, you will attempt to build a prototype that seeks to eliminate inefficiencies
in cross-border remittance. For the current project, we will be using the Stellar protocol,
which comes with inbuilt modules that can be leveraged for KYC/AML workflows. For our
project, we'll be building a remittance network with two banks, Bank A and Bank B. Each
bank will have an in-house IT infrastructure with the following components:

A user/customer database.
A transactions database, which keeps a log of all incoming/received transactions
and related metadata.
A sanctions database, which holds sanction approvals for financial institutions
and remitters.
A compliance module, which will be used to carry out AML/KYC checks for
payments.
A federation module that allocates user-friendly payment addresses for
customers to send and receive payments. These are similar to email IDs for
payments.
A bridge module, which will allow the bank to send payments on our blockchain
network and listen for incoming payments to our account on the blockchain
network.
A bank portal, where users can log in and submit payment requests and the bank
administration can view KYC/AML details of the received transactions.

The bank's IT infrastructure will connect to a private test Stellar network that we'll set up
for our development activity. We'll be creating Stellar accounts for Bank A and Bank B on
this network for sending and receiving payments. Finally, we'll be issuing the USD asset on
the network, which will be the currency that's remitted between the banks.

Understanding how a payment request works
Before we start building our project, let's understand the journey of a payment request as it
moves across our remittance platform. We'll also do a deep dive into the various
components and modules. This will give you a good understanding of the functionality of
each module when we are building our platform. For this example, consider Bank A to be
the sending bank, that is, the bank that is sending the remittance and Bank B to be the bank
that is receiving the payment.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[195]

The payment request begins with the customer logging into a banking portal. Typically,
they'll enter the beneficiary's name, their account name, a beneficiary bank identifier code,
such as a SWIFT BAN number, the amount to send, and the currency in which the payment
will be credited to the beneficiary. In our blockchain remittance app, the customer's account
number and SWIFT BAN number are replaced by a user-friendly ID that looks like an email
ID. Thus, to send the payment to a customer called Stephen at Bank A, I only need to
provide his friendly ID, which will look something like Stephen*banka.com. The first part
of the ID is a unique identifier, while the second part after the asterisk indicates the domain,
typically a domain controlled by the Bank A. When a payment request is to be sent, our
remittance app automatically communicates with the banka.com domain and fetches
Stephen's bank account number, customer number, and any other details that may be
required for the payment to be processed.

After the remitter enters the beneficiary details, they need to enter the amount to be
transferred and the destination currency, that is, the currency in which the beneficiary will
be credited. Typically, banks and other FIs provide internal conversion rates for converting
the source currency, that is, the currency in which the sender initiates a transaction to the
destination currency. Sometimes, you can get a rate from an external market maker who
does the conversion for the banks. In the Stellar network, you can actually set up a market
maker of your own. (We'll be looking at this in Chapter 9, Developing a Currency Trading
Exchange for Market Making on Currency Exchanges). In our project, to keep things simple,
we'll assume the source and the destination currency are both US dollars, but you can easily
integrate an API for conversion rates.

Lastly, they may need to provide identification details such as the name, address, date of
birth, and so on for AML/KYC purposes. In our platform, we'll automatically fetch these
details from the User Database. This means that the sender does not need to fill in these
details explicitly. The customer clicks on submit to submit the payment request.

On clicking submit, the payment request is posted to the Bank A bridge server module. The
Bank A bridge server carries out a series of steps:

First, it checks with Bank B and confirms whether a user exists with the1.
beneficiary friendly ID that was entered in the payment request. If a user exists,
Bank B returns the beneficiary's payment routing details (internal account
number, internal customer number, Stellar account ID, and so on) to the bridge
server. These details will be used to build the payment transaction that we will
submit to the blockchain network. This metadata will help the receiving bank
identify the customer that the payment is intended for.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[196]

Next, the bridge server of Bank A forwards the payment request to the2.
compliance module of Bank A. The compliance module of Bank A checks the
details of the sender and confirms if they are sanctioned to send a cross-border
remittance – that is, the customer is not blacklisted – and fetches the KYC details
of the sender from the internal user database. The compliance module of Bank A
then communicates with the compliance module of Bank B, which is the
receiving bank, and forwards the KYC details of the remitter/ sender.
The compliance module of Bank B receives the sender's details and carries out3.
internal sanctions checks. Sanction checks are carried out to check whether the
sender or the financial institution sending the transaction is blacklisted. It also
verifies whether the beneficiary can receive the payment, that is, that the
beneficiary is not blacklisted. If everything is in order, the compliance module of
Bank B gives the go-ahead to Bank A to initiate the remittance transaction. If
required, the compliance module of Bank A will also share the KYC details of the
receiver/beneficiary with Bank A if required. These KYC details are typically the
name, address, and date of birth of the beneficiary.
After the compliance module of Bank A gets the go-ahead from the compliance4.
module of Bank B, it relays the go-ahead message to the bridge server of Bank A.
The bridge server submits the payment request to the Stellar blockchain network.
Typically, the request contains the sender's Stellar account ID, the receiver's
Stellar account ID, the metadata to identify the customer (customer ID, account
number, and so on), the currency being transferred, and the amount being
transferred. Stellar account IDs are similar to Ethereum accounts or Bitcoin
addresses. They are public keys and have a linked secret key that is used to sign
the transactions that are being submitted to the network. In our remittance
model, only the financial institution has a Stellar account ID, on the blockchain
network. All the customers of a financial institution are mapped to this account
ID. This is why we need to provide the metadata to identify the customer the
payment is intended for. This model allows us to cut down on the cost of
managing multiple public-private keys and tracking multiple accounts.
Once the payment has been submitted to the network, it is broadcasted to all the5.
nodes in the network, including the node to which Bank B, the receiving bank, is
connected. The bridge server of the receiving bank, Bank B, is constantly listening
for payments to the bank's Stellar account. Upon receiving a payment, it carries
out a series of steps. First, it checks whether the compliance handshake was
carried out for the payment request. Next, it checks the beneficiary that the
payment is intended for and if the beneficiary is sanctioned to receive the
payment. If all the checks are passed, the amount is credited to the beneficiary's
account. The beneficiary can now log into the bank portal and view the payment.
The bank user can log into the portal and see the KYC/AML details of the
received payment. That ends our payment flow.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[197]

This should give you an idea of how the end-to-end remittance flow works and how our
app will function. Now, let's start working on the project. We'll be carrying out the
following steps to set up and build the entire project:

Set up a private test Stellar network for development.1.
Create the USD asset, representing the US dollar asset that will be transferred.2.
Create the Stellar account IDs for Bank A and Bank B on the network and add a3.
USD balance to them to try out remittances.
Set up local domain redirection for the banka.com and bankb.com domains so4.
that we can try out the friendly ID resolution (federation) service for customers.
Set up the apache2 server that will host a TOML file. This TOML file will guide5.
incoming requests to the bridge, compliance, and federation servers being run by
the bank.
Set up the federation service or friendly ID resolution service for Bank A and6.
Bank B.
Set up the compliance module for Bank A and Bank B that will handle all7.
incoming and outgoing compliance requests.
Set up the bridge server for Bank A and Bank B that will be the bank portal's8.
interface with the Stellar network.
Set up a callback server. As the name suggests, this will implement webhooks9.
that can be invoked when a payment is received or when compliance data needs
to be verified with the internal bank database.
Build a bank portal and backend service in React that will allow the customers10.
and the bank to interact with the Stellar network and submit and receive
payments. The bank user can also view the KYC details of received transactions.

We have a long road ahead of us! Let's get started with the network setup.

Setting up a test network
To build our project, we'll launch a simple Stellar network that contains a single blockchain
node and a single client-server. The blockchain node in Stellar is called Stellar Core while
the client-server is called Horizon. Horizon is a client-API server that extends a suite of
handy endpoints that allow application developers to view transaction data and statistics
and submit transactions to the core blockchain node. Similar to web3-js, Stellar has a
Stellar Javascript SDK, which allows us to build requests that we can use to interact with
Horizon.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[198]

Stellar provides a handy Docker image that can be used to quickly launch an ephemeral
(temporary) or persistent (permanent) container so that we can implement the Stellar
network. This docker container contains an instance of Stellar Core, an instance of Horizon,
and the necessary installed dependencies, such as PostgreSQL and a Go environment:

To launch this docker image, simply run the following command in a Terminal1.
window:

docker run --rm -it -p "8000:8000" --name stellar
stellar/quickstart --standalone

The preceding command downloads the Stellar/quickstart image from from
Docker Hub and runs a container with Stellar Core and Horizon. Notice the
docker proxy port at 8000. The docker proxy port extends the Horizon port inside
the container. This means that any requests to Horizon can be submitted to the
8000 port of the host machine.

Wait for the container to come online. It will initiate a postgresql database,2.
Stellar Core, and Horizon. After the container comes online successfully, you
should be able to see the docker-proxy on port 8000 on your machine. Open a
browser window and go http://localhost:8000.

You should be able to see the Horizon client-server, with the following client
endpoints:

{
 "_links": {
 "account": {
 "href": "http://localhost:8000/accounts/{account_id}",
 "templated": true
 },
 "account_transactions": {
 "href":
"http://localhost:8000/accounts/{account_id}/transactions{?cursor,l
imit,order}",
 "templated": true
 },
 "assets": {
 "href":
"http://localhost:8000/assets{?asset_code,asset_issuer,cursor,limit
,order}",
 "templated": true
 },
 "metrics": {
 "href": "http://localhost:8000/metrics"
 },

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[199]

 "order_book": {
 "href":
"http://localhost:8000/order_book{?selling_asset_type,selling_asset
_code,selling_asset_issuer,buying_asset_type,buying_asset_code,buyi
ng_asset_issuer,limit}",
 "templated": true
 },
 "self": {
 "href": "http://localhost:8000/"
 },
 "transaction": {
 "href": "http://localhost:8000/transactions/{hash}",
 "templated": true
 },
 "transactions": {
 "href":
"http://localhost:8000/transactions{?cursor,limit,order}",
 "templated": true
 }
 },
 "horizon_version": "v0.20.1",
 "core_version": "v11.4.0",
 "history_latest_ledger": 4,
 "history_elder_ledger": 2,
 "core_latest_ledger": 4,
 "network_passphrase": "Standalone Network ; February 2017",
 "current_protocol_version": 11,
 "core_supported_protocol_version": 11
}

Note the list of endpoints. Now, let's move on to account creation.

Creating user accounts
Before we can create the US dollar asset, we need to create our user accounts. Stellar
accounts are similar to Ethereum accounts and they allow users to interact with the Stellar
network through transactions. They contain a public key, which is referred to as an account
ID, and a secret key or private key, which is used to sign transactions that are submitted to
the ledger.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[200]

The stellar-sdk provides a utility called Keypair.random which generates a
random ed25519 public-private key pair. This can be used as a Stellar account. For a
public-private key pair to be a valid account on the Stellar network, it needs a minimum
balance of 20 lumens. Lumens is the native currency of the Stellar network. Thus, to create
an account on our private network, we'll need to generate a new public-private key pair
and fund it with a balance of more than 20 lumens.

To do so, we'll write a small Node.js application that will generate new key pairs and fund
them.

Writing the createAccount utility
Now, let's create a new nodejs project directory:

Install the stellar-sdk JavaScript module by executing the following command1.
in the directory:

npm install --save stellar-sdk

Create a new project file called CreateAccount.js and import the stellar-2.
sdk, as follows:

const StellarSdk = require('stellar-sdk');

Next, we'll define a new instance of the stellar-sdk that points to our local3.
Horizon instance:

const server = new StellarSdk.Server('http://127.0.0.1:8000',
{allowHttp: true});

 const passphrase = 'Standalone Network ; February 2017'

The passphrase only allows selected users to connect to our network. You can4.
find the network passphrase by navigating to the Horizon landing page at
localhost:8000. Locate the network-passphrase tag, as shown in the
following code:

"network_passphrase": "Standalone Network ; February 2017"

For the quickstart docker image, this passphrase is set to "Standalone
Network ; February 2017" by default.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[201]

Next, we will identify our MasterKey. The master key is the root account that all5.
the lumens are credited to when a new Stellar network is created. By default, the
root account is issued 100 billion lumens at initialization. To fund new accounts,
we'll need to transfer lumens from this account to the newly created accounts. As
shown in the following code, the master key pair is fetched using the
Keypair.master utility from the network passphrase:

 const MasterKey = StellarSdk.Keypair.master(passphrase)
 const MasterSecret = MasterKey.secret();
 const MasterPublicKey = MasterKey.publicKey();

 console.log ('Master Account',MasterSecret, MasterPublicKey);

From the preceding code, we can make the following observations:

The .secret() and .publicKey() methods for a key pair give us its secret
key and public key, respectively.
In a production implementation of Stellar, you are expected to use a custom
network phrase and transfer all the lumens or native currency from the
master currency to another Stellar account that you control on the network.

Next, we will generate three random ed25519 key pairs (public key and private6.
key pairs) that will act as our accounts. We'll use the first account to issue the
USD asset; the other two accounts will be for Bank A and Bank B. As shown in
the following code, we will use the Keypair.random method in the StellarSdk
to generate the public-private key pair:

 const pair1 = StellarSdk.Keypair.random(passphrase);
 const pair2 = StellarSdk.Keypair.random(passphrase);
 const pair3 = StellarSdk.Keypair.random(passphrase);

For each of the three newly generated random keypairs, we will retrieve the7.
public key and the private or secret key, as follows:

 var SecretKey1 = pair1.secret();
 var PublicKey1 = pair1.publicKey();
 console.log ('Account1',SecretKey1, PublicKey1);

 var SecretKey2 = pair2.secret();
 var PublicKey2 = pair2.publicKey();
 console.log ('Account2',SecretKey2, PublicKey2);

 var SecretKey3 = pair3.secret();
 var PublicKey3 = pair3.publicKey();
 console.log ('Account3',SecretKey3, PublicKey3);

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[202]

Make sure you log the newly generated keys and the master key to the console.
We'll need these later.

Before we can use the newly generated keys, we need to fund them with lumens,
which is the native currency of Stellar. Stellar does not allow users to send or
receive transactions to any key pair with less than 20 lumens. This is done to
avoid spamming the network. You can only send the createAccount transaction
to newly generated key pairs to fund the account. The Stellar network also
requires accounts to submit a "fee" to the network for every transaction, which is
paid in lumens. So, to allow our accounts to create assets and trade, we'll transfer
100,000 lumens to each of the newly generated accounts.

Now, let's start building our createAccount transaction. We need to make8.
asynchronous calls to fetch the transaction sequence number and fee, so we will
start by declaring an asynchronous method, as follows:

(async function main() {

 const account = await server.loadAccount(MasterPublicKey);
 const fee = await server.fetchBaseFee();

From the preceding code, we can make the following observations:

The server.loadAccount method fetches the current sequence number of
the Stellar account.
It is essential that transactions are submitted to the network in sequence to
dictate the order in which they'll be processed and verified.
Before submitting a transaction from an account, we fetch the current
transaction sequence number for the account.
The server.fetchBaseFee method fetches the minimum fee that's
required for the transaction to go through on the network. You can think of
it as being similar to fetching the current gas price in an Ethereum network.

Next, we will use the TransactionBuilder class to build a new9.
createAccount transaction. Let's go through each part of the code, bit by
bit. We'll start by creating a new transaction constant, as follows:

const transaction = new StellarSdk.TransactionBuilder(account, {
fee, networkPassphrase: passphrase})

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[203]

This is returned by the TransactionBuilder class. First, we pass the source
account (master key account), the network fee, and passphrase as input
parameters. Now, we need to send the operations to be carried out by the
transaction as input parameters:

.addOperation(StellarSdk.Operation.createAccount({
 source: MasterPublicKey,
 destination: PublicKey1,
 startingBalance: "100000"
 }))

The first operation is createAccount. This will fund our newly created random
key pair with a starting balance of 100,000 lumens. The source account is our
master account public key, while the destination is the public key of the first
random account we generated. In the following code, the same operation is
repeated for the other two random key pairs we generated:

.addOperation(StellarSdk.Operation.createAccount({
 source: MasterPublicKey,
 destination: PublicKey2,
 startingBalance: "100000"
 }))
 .addOperation(StellarSdk.Operation.createAccount({
 source: MasterPublicKey,
 destination: PublicKey3,
 startingBalance: "100000"
 }))

Notice how the stellar-sdk allows you to chain and link multiple operations in
a single transaction? Lastly, we add the transaction timeout and call build() to
build the transaction:

.setTimeout(30)
 .build();

The transaction timeout indicates that the transaction won't be valid for more
than 30 seconds after the transaction object is created. build() instructs the
TransactionBuilder class to create a new transaction object using the
parameters we submitted. This object is stored in the transaction constant.

The transaction object is then signed using the master key pair, as shown in the10.
following code:

transaction.sign(MasterKey);

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[204]

Lastly, as shown in the following code, the transaction is posted to the11.
transaction endpoint of the Horizon server:

try {
 const transactionResult = await
server.submitTransaction(transaction);
 console.log(transactionResult);
 } catch (err) {
 console.error(err);
 }
 })()

This is done using server.submitTransaction. The result is logged to the console. This
brings us to the end of the CreateAccount utility.

Running the createAccount utility
Now, let's run the createAccount utility, as follows:

Navigate back to the nodejs project in the Terminal window. Run the following1.
command to run the utility:

node CreateAccount.js

First, the utility will log the master key to the console before logging the three
newly created accounts. The string starting with S is the account's secret key. The
following string, starting with G, is the public key, or account ID:

Master Account
SC5O7VZUXDJ6JBDSZ74DSERXL7W3Y5LTOAMRF7RQRL3TAGAPS7LUVG3L
GBZXN7PIRZGNMHGA7MUUUF4GWPY5AYPV6LY4UV2GL6VJGIQRXFDNMADI

Account1 SAEEE4UUP3DRYTEFHNFKCVB4ZCQT2W2KPFW7FLE6VLE7QABAAZATFZFD
GAIHBCB57M2SDFQYUMANDBHW4YYMD3FJVK2OGHRKKCNF2HBZIRBKRX6E

Account2 SDSQ5MJALF7VWDFEFETPGGWJK2UEQ5HU6HJBKMT5M5YDJ3WYKMC5RC3O
GDW3IXTH3UFCU2KD6REURTLK7XVSUC4P4WDATMFPTW6YZFEAV7RWATAD

Account3 SB6HTLWBKVY6KOGKFZE2EKH3ZFSIYHYXJOORGKIOHSMPHBCX4SS4PU6G
GBETQAVAWJJIQ7CZPXWLXKZO6BELLACNR3E7BRD4WTYEANAGGR62VP6Q

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[205]

Copy these accounts and store them safely for reference. We'll need these later2.
when we set up our remittance app. Account 1 will be used to issue the USD
asset. Accounts 2 and 3 will be used to map Bank A and Bank B to our remittance
platform.
Wait for the utility to fire the createAccount transaction and print a response to3.
the console. A successful response indicates that the three accounts have been
created and funded as well. You can verify this by yourself. Open a new browser
window. Paste the following link to view the newly created accounts: http://
localhost:8000/accounts/<Account ID>.

Here is an example:
http://localhost:8000/accounts/GAIHBCB57M2SDFQYUMANDBHW4YYMD3FJVK2OGHRK

KCNF2HBZIRBKRX6E.

You should be able to view the account. Scroll down and check out the balance for the
native asset.

Keep the secret key and public key for these three accounts safe. Now, we will write a
Node.js utility that will create the assets and extending trustlines.

Creating the USD asset
Now, we have to create the USD asset that we'll be remitting between the accounts. To
create new assets on a network, we need to carry out the following steps:

Create a new asset object.1.
Extend trustlines to the receiving accounts.2.
Transfer the assets from the issuing account.3.

Let's look at these one by one.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[206]

Creating a new asset object
Creating an asset object on the Stellar network is an easy affair. All you need to do is use
the Asset method of the Stellar SDK, as shown in the following code. The Asset method
has two input parameters—Asset Code and Issuer Account. Asset Code is an alphanumeric
code that's used to refer to the asset. The Issuer Account is the account that is used to create
the asset:

Asset = new StellarSdk.Asset(<Code>,<Issuing Account>).
var USD = new StellarSdk.Asset('USD',
'GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE');

The preceding code shows how we'll do this for the USD asset.

Extending trustlines to receive accounts
Trustlines are a concept unique to Stellar assets. They determine how much of a user-issued
asset an account is willing to hold. Since assets on the Stellar network are supposed to be
digital representations of fiat currency or other real-world assets, it is essential that the
issuer issuing assets should be liquid.

Due to this, you should only hold 100 USD worth of assets that are issued by an issuer
account if you know that they can exchange the Stellar USD tokens for 100 dollar bills.
Trustlines are indicative of how many liquid assets you believe the asset issuer has and in
turn is used to determine how much of the asset you would want your account to hold.

Now, we'll write a Node.js utility so that we can create new assets and extend trustlines to
the receiving accounts.

Writing the utility
Follow these steps to write the Node.js utility:

Create a new nodejs app called CreateTrustline.js. Start by importing the1.
stellar-sdk from node-modules and creating a new server object pointed at
localhost:8000 (the Horizon instance), as shown in the following code:

const StellarSdk = require('stellar-sdk');
 const server = new StellarSdk.Server('http://127.0.0.1:8000',
{allowHttp: true});

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[207]

Next, we'll use the accounts we generated in the previous section. Here, the first2.
account will be our issuing account, which issues assets. The second and third
accounts will map to Bank A and Bank B, respectively. Use the secret key of the
three accounts to extract their key pairs:

var issuingKeys =
StellarSdk.Keypair.fromSecret('SAEEE4UUP3DRYTEFHNFKCVB4ZCQT2W2KPFW7
FLE6VLE7QABAAZATFZFD');

 var receivingKeys1 =
StellarSdk.Keypair.fromSecret('SDSQ5MJALF7VWDFEFETPGGWJK2UEQ5HU6HJB
KMT5M5YDJ3WYKMC5RC3O');

 var receivingKeys2 =
StellarSdk.Keypair.fromSecret('SB6HTLWBKVY6KOGKFZE2EKH3ZFSIYHYXJOOR
GKIOHSMPHBCX4SS4PU6G');

The issuingKeys variable is the key pair for the issuing account.
receivingKeys1 and receivingKeys2 are for the two receiving accounts,
which represent Bank A and Bank B. These accounts will be holding the USD
asset.

Now, we will create a new asset object for US dollar:3.

var USD = new StellarSdk.Asset('USD',
'GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE');

Remember the public key for your issuing account that we saved when we
created it? Paste it here and add a symbol that we'll use to refer to the asset. We
use StellarSdk.Asset to create a new asset with these details.

Before we can transfer the USD asset, the receiving accounts need to extend a
trustline for these assets. This is a transaction that's fired by the receiving account
to itself. It indicates to the asset that the trustline needs to be extended for and the
trustline limit.

Let's build our transaction. We will start by fetching the base network fee and the4.
sequence number for the account. This is done using the server object we created
earlier:

server.fetchBaseFee()
 .then(function(fee){
 console.log("Fee is",fee);

 server.loadAccount(receivingKeys1.publicKey())
 .then(function(account){

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[208]

Since the transaction is to be fired from receivingKeys1, we will fetch the5.
current sequence for this account. Let's take a look at our transaction:

var transaction = new StellarSdk.TransactionBuilder(account, { fee,
networkPassphrase:'Standalone Network ; February 2017'}
 .addOperation(StellarSdk.Operation.changeTrust({
 asset: USD,
 limit: '1000000',
 source: receivingKeys1.publicKey()
 })).setTimeout(100)
 .build();

Now, we will pass the account sequence number, fee, and the network6.
passphrase, as follows:

var transaction = new StellarSdk.TransactionBuilder(account, { fee,
networkPassphrase:'Standalone Network ; February 2017'}

Next, we will add the ChangeTrust operation, as follows:7.

.addOperation(StellarSdk.Operation.changeTrust({
 asset: USD,
 limit: '1000000',
 source: receivingKeys1.publicKey()
 }))

The preceding operation indicates that we need to extend a trustline for the USD
asset with a limit of $1,000,000. Since the transaction is to self, the source of the
transactions is the public key of receivingKeys1.

Lastly, we add a transaction timeout after 100 seconds and invoke build() to8.
build the transaction object:

.setTimeout(100)
 .build();

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[209]

After building the transaction, we sign it using the public key for9.
receivingKeys1 and submit it to the Stellar network for processing. Add a
catch block for catching any errors, as follows:

transaction.sign(receivingKeys1);

 return server.submitTransaction(transaction);

 })}).catch(function(error) {
 console.error('Error!', error);
 });

Next, we will repeat the same for receivingKeys2. This is the second trading10.
account that we created:

server.fetchBaseFee()
 .then(function(fee){
 console.log("Fee is",fee);

 server.loadAccount(receivingKeys2.publicKey())
 .then(function(account){
 var transaction = new StellarSdk.TransactionBuilder(account, {
fee, networkPassphrase:'Standalone Network ; February 2017'})
 .addOperation(StellarSdk.Operation.changeTrust({
 asset: USD,
 limit: '1000000',
 source: receivingKeys2.publicKey()
 }))
 .setTimeout(100)
 .build();

 transaction.sign(receivingKeys2);

 return server.submitTransaction(transaction);

 })}).catch(function(error) {
 console.error('Error!', error);
 });

That brings us to the end of our CreateTrustline utility. Now, let's run this utility.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[210]

Running the utility
Follow these steps to run the utility:

Navigate to your nodejs project repository in your Terminal window. Run the1.
CreateTrustline utility by running the following command:

node CreateTrustline.js

A successful response from the Stellar network after the transaction has been
submitted indicates that the trustlines have been created. Let's verify this.

Open a new tab in your internet browser. View any account on Horizon by going2.
to the accounts link. You can do so by going to the following link:

http://localhost:8000/accounts/<Account ID>

For example, for
receivingKeys1(GDW3IXTH3UFCU2KD6REURTLK7XVSUC4P4WDATMFPTW6YZFEA

V7RWATAD) the link will be
http://localhost:8000/accounts/GDW3IXTH3UFCU2KD6REURTLK7XVSUC4P
4WDA
TMFPTW6YZFEAV7RWATAD

Scroll down and check the balances again. Notice how it shows balances for the USD asset
and the native asset now?

Next, we'll write a Transfer utility to transfer these assets from the issuer account to the
receiving account.

Funding the user accounts with USD
Now, we can transfer the USD assets from our issuing account to the receiving account. To
do so, we'll write a small utility called Transfer and send the assets. We'll create two
versions of this utility: one for receiving assests in account 1 and one for receiving assets in
account 2.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[211]

Writing the utilities
We'll have to create two nodejs apps called Transfer1.js and Transfer2.js:

First, we'll write Transfer1. To do this, we need to import the Stellar SDK from1.
the node modules, create the server object, and extract the public and private
keys for the issuing account, as well as the two receiving accounts from their
respective secret keys, as shown in the following code:

const StellarSdk = require('stellar-sdk');

 const server = new StellarSdk.Server('http://127.0.0.1:8000',
{allowHttp: true});

 var issuingKeys = StellarSdk.Keypair
.fromSecret('SAEEE4UUP3DRYTEFHNFKCVB4ZCQT2W2KPFW7FLE6VLE7QABAAZATFZ
FD');

 var receivingKeys1 = StellarSdk.Keypair
.fromSecret('SDSQ5MJALF7VWDFEFETPGGWJK2UEQ5HU6HJBKMT5M5YDJ3WYKMC5RC
3O');

 var receivingKeys2 = StellarSdk.Keypair
.fromSecret('SB6HTLWBKVY6KOGKFZE2EKH3ZFSIYHYXJOORGKIOHSMPHBCX4SS4PU
6G');

 var USD = new StellarSdk.Asset('USD',
'GAIHBCB57M2SDFQYUMANDBHW4YYMD3FJVK2OGHRKKCNF2HBZIRBKRX6E');

Let's look at our transaction. We fetch the base fee and the account sequence2.
number for the issuing account using the following code:

server.fetchBaseFee()
 .then(function(fee){
 console.log("Fee is",fee);
 server.loadAccount(issuingKeys.publicKey())
 .then(function(account){

Our transaction source account will be the issuing account that distributes the3.
newly created asset:

var transaction = new StellarSdk.TransactionBuilder(account,{
fee,networkPassphrase:'Standalone Network ; February 2017'})
 .addOperation(StellarSdk.Operation.payment({
 destination: receivingKeys1.publicKey(),
 asset: USD,

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[212]

 amount: '1000'
 })).setTimeout(100)
 .build();

Asset transfer is a payment operation in Stellar. We need to provide the
destination Stellar account (public key of receivingKeys1), the asset to be
transferred (USD), and the amount to be transferred (1,000).

The transaction time is set to 100 seconds. We call build() to build and return
the transaction object.

After the transaction object has been returned, we sign and submit the4.
transaction. As shown in the following code, the transaction is signed using the
issuing account's key pair since the source is the issuing account:

transaction.sign(issuingKeys);
return server.submitTransaction(transaction);

As shown in the following code, add a response block to log any errors and5.
notify transaction success to the requestor by printing a message on the console:

.then(function(response,error){
 if (response)
 {
 console.log("Response",response);
 }
 else
 {
 console.log("Error",error);
 }})
 });

That brings us to the end of Transfer1. Repeat the same steps for Transfer2, but replace
the receiving account with receivingKeys2. Now, Transfer1.js will transfer the assets
to the first receiving account, while Transfer2 will transfer the assets to the second.

Now, let's run these utilities.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[213]

Running the utities
Follow these steps:

Navigate to your nodejs project directory. First, run Transfer1 using the1.
following command:

node Transfer1.js

Wait for a successful transaction response. Then, run Transfer2 using the2.
following command:

node Transfer2.js

After you get a successful transaction response, open a new browser window3.
and check the balance of the two accounts. For example, for receiving account 1,
use the following URL:

http://localhost:8000/accounts/GDW3IXTH3UFCU2KD6REURTLK7XVSUC4P4WDA
TMFPTW6YZFEAV7RWATAD

The balance should now be updated to 1,000 for the USD asset.

That brings us to the end of creating and issuing the USD asset. Now, we have two
remitting accounts with USD assets ready. Let's set up the other components.

Setting up the bank domains
Before we can set up the individual components of the remittance platform, we need to
have a developing and testing environment in place. As per Stellar's architecture, the
components need to be linked to a public domain owned by the financial institution/bank.
For our current project, we'll link the bank infrastructure to banka.com and bankb.com for
Bank A and Bank B, respectively. To do so, we'll update the hosts file so that it routes
requests to banka.com and bankb.com to our localhost. We'll also issue self-signed SSL
certificates for these two domains. Stellar requires that the compliance information
exchange between the two bank domains is signed and encrypted using an SSL certificate.
Lastly, we'll host a Toml file in these two domains that will be used to route incoming
requests to the bank infrastructure. Let's begin.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[214]

Updating the hosts file
Switch to the root user and navigate to your hosts file. By default, it should be at the
/etc/hosts location.

Open the file with a text editor such as nano or vim. Add the two banka.com and
bankb.com domain to the hosts file, as follows:

127.0.0.1 localhost
127.0.1.1 ishan-Inspiron-3537
127.0.1.1 banka.com banka
127.0.1.1 bankb.com bankb
The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

This will route all outgoing requests to the banka.com and bankb.com domains to our
localhost.

Issuing the self-signed certificates for the
domains
Follow these steps:

Now, we'll issue the self-signed certificates for the banka.com and1.
bankb.com domains. To do so, we'll be using the certutil and mkcert utilities.

To install certutil, run the following command:

$ sudo apt-get install -y libnss3-tools

To install mkcert, run the following commands:

mkdir mkcert
cd mkcert
wget
https://github.com/FiloSottile/mkcert/releases/download/v1.1.2/mkce
rt-v1.1.2-linux-amd64
mv mkcert-v1.1.2-linux-amd64 mkcert
chmod +x mkcert

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[215]

The preceding commands will create a directory called mkcert, download the
binary from GitHub, and create an executable called mkcert for issuing self-
signed certificates. Make sure you download the binary version for your OS. Since
I'm using Ubuntu, I downloaded the Ubuntu version.

Run the following command to set up a local certificate store:2.

 mkcert –install

Now, let's issue self-signed certificates for banka.com and bankb.com.

Run the following command to issue a certificate for banka.com:3.

./mkcert banka.com

Check the directory to see if the certificate files are generated. The
banka.com.pem and banka.com-key.pem files should have been generated in
your mkcert directory.

Repeat this for the bankb.com domain:4.

./mkcert bankb.com

We now have the self-signed SSL certificates for the banka.com and
bankb.com domains. Now, let's set up the http server, which will accept and
route all the incoming requests to the banka.com and bankb.com domains.

Setting up the http server and stellar.toml file
We'll start by configuring the http server for banka.com and bankb.com. I'm using
apache2, but you can feel free to install and use any http server you find easy to use. Let's
get started:

Configure the apache2.conf file, which is available under /etc/apache2/ by1.
default. Update the virtual host section in the conf file, as follows:

<VirtualHost *:80>
ServerAdmin admin@banka.com
DocumentRoot /var/www/banka
ServerName banka.com
ErrorLog logs/bankb.com-error_log
</VirtualHost>

<VirtualHost *:80>

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[216]

ServerAdmin admin@bankb.com
DocumentRoot /var/www/bankb
ServerName bankb.com
ErrorLog logs/bankb.com-error_log
</VirtualHost>

<VirtualHost *:443>
DocumentRoot /var/www/banka
ServerName banka.com
ServerAdmin admin@banka.com
SSLEngine on
SSLCertificateKeyFile /etc/apache2/ssl/banka/banka.com-key.pem
SSLCertificateFile /etc/apache2/ssl/banka/banka.com.pem
ErrorLog logs/banka.com-error_log
</VirtualHost>

<VirtualHost *:443>
DocumentRoot /var/www/bankb
ServerName bankb.com
ServerAdmin admin@bankb.com
SSLEngine on
SSLCertificateKeyFile /etc/apache2/ssl/bankb/bankb.com-key.pem
SSLCertificateFile /etc/apache2/ssl/bankb/bankb.com.pem
ErrorLog logs/bankb.com-error_log
</VirtualHost>

This redirects incoming requests to ports 9080 and 443 to the relevant document
root based on the domain that's requested, either banka.com or bankb.com.

Copy the self-signed certificate (banka.com.pem) and certificate key2.
(banka.com-key.pem) we generated for banka.com
to /etc/apache2/ssl/banka/. You need to create the directory and
subdirectory before you copy these files.
Repeat this for bankb.com as well. Copy the bankb.com.pem and bankb.com-3.
key.pem files to /etc/apache2/ssl/bankb/.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[217]

Next, we'll set up the toml file to redirect incoming requests. Stellar expects you4.
to set up the stellar.toml file, which contains public information that your
peers need to interact with and send payments to your account. By default,
Stellar nodes look for the stellar.toml file in the following location:

http://<your domain name>/.well-known/stellar.toml

Now, we need to configure our toml file and put it in this location for both5.
domains. Start by downloading a sample stellar.toml file. You can get it from
Stellar's website here (https://www.stellar.org/developers/guides/
concepts/stellar-toml.html). Update the file and replace its contents, as
follows:

FEDERATION_SERVER=https://banka.com:8001/federation
AUTH_SERVER=https://banka.com:8003
SIGNING_KEY="GDW3IXTH3UFCU2KD6REURTLK7XVSUC4P4WDATMFPTW6YZFEAV7RWAT
AD"
ACCOUNTS=[
"GDW3IXTH3UFCU2KD6REURTLK7XVSUC4P4WDATMFPTW6YZFEAV7RWATAD"
]
DESIRED_BASE_FEE=100
DESIRED_MAX_TX_PER_LEDGER=400
[[CURRENCIES]]
code="USD"
issuer="GAIHBCB57M2SDFQYUMANDBHW4YYMD3FJVK2OGHRKKCNF2HBZIRBKRX6E"
display_decimals=2

This toml file indicates that we'll set up our federation service at port 8001,
where it can be accessed by other parties trying to send transactions to our
domain. The Auth server indicates the compliance module service port. For
compliance checks, requests need to be sent to port 8003. We'll use these ports to
set up our federation and compliance server later.

The toml file also provided information about the accounts controlled by our
domain, which is the Bank A receiving account. It also provides a public key for
inbound messages, which is basically the public key of our account. Lastly, the
toml file specifies the currency assets that our account can receive and send, as
well as the issuer account for the asset.

Similarly, create a toml file for the bankb.com domain as well:6.

FEDERATION_SERVER=https://bankb.com:8002/federation
AUTH_SERVER=https://bankb.com:8005
SIGNING_KEY="
GBETQAVAWJJIQ7CZPXWLXKZO6BELLACNR3E7BRD4WTYEANAGGR62VP6Q "

https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://www.stellar.org/developers/guides/concepts/stellar-toml.html
https://bankb.com:8002/federation

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[218]

ACCOUNTS=[
" GBETQAVAWJJIQ7CZPXWLXKZO6BELLACNR3E7BRD4WTYEANAGGR62VP6Q "
]
DESIRED_BASE_FEE=100
DESIRED_MAX_TX_PER_LEDGER=400
[[CURRENCIES]]
code="USD"
issuer="GAIHBCB57M2SDFQYUMANDBHW4YYMD3FJVK2OGHRKKCNF2HBZIRBKRX6E"
display_decimals=2

Update access ports for the federation and compliance server for the bankb.com7.
domain and the receiving account for Bank B.
Copy the stellar.toml file for the banka.com domain to8.
/var/www/banka/.well-known/stellar.toml.
Copy the stellar.toml file for the bankb.com domain to9.
/var/www/bankb/.well-known/stellar.toml.
In the web browser, navigate to www.banka.com/.well-known/stellar.toml.10.
You should be able to view the toml file for banka.com.
Repeat the same for www.bankb.com/.well-known/stellar.toml. You should be11.
able to view the toml file for bankb.com in the web browser as well.

Great! Now, we have everything set up for banka.com and bankb.com. We'll set up our
internal infrastructure next.

Setting up the bank's internal databases
We need to set up the internal databases for both banks. These will be used to store user
data and other requisite details. I will be using postgresql, but you can use any database
you are comfortable with. Let's get started:

Create two users pertaining to Bank A and Bank B on the database. On my1.
Ubuntu system, I am creating the bankauser and bankbuser users. Run the
following commands:

useradd bankauser
useradd bankbuser

Next, set the password for the users with the following commands:2.

passwd bankauser
passwd bankbuser

At the new password prompt, set the new password.

http://www.banka.com/.well-known/stellar.toml
http://www.bankb.com/.well-known/stellar.toml

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[219]

Log into the postgres user and open the PostgreSQL command line, as follows:3.

su – postgres
psql

Create a database for banka and bankb by running the following command on4.
the postgresql command line:

CREATE DATABASE banka OWNER bankauser;
CREATE DATABASE bankb OWNER bankbuser;

Next, we need to create the requisite tables in the database and add some test5.
data. Log out from the postgres command line and log in using the bankauser
Unix login. Log into the postgresql command line for banka from bankauser,
as follows:

su - bankauser
psql banka

First, we'll create the users table with test customer data:

CREATE TABLE users (
name VARCHAR,
address VARCHAR,
dob INTEGER,
friendlyid VARCHAR PRIMARY KEY,
sanction BOOLEAN,
balance INTEGER,
domain VARCHAR,
}

Next, we'll insert the following test data into the table:

INSERT INTO users(name, address, dob, friendlyid, sanction,
balance, domain)
VALUES
('John Doe', 'cityA', '01011988', 'johndoe', true, 1000,
'banka.com');

We add the customer's name, their address, date of birth, friendly ID for the
account, sanction (true: allowed, false: not allowed), account balance, and the ID
domain (banka.com).

Next, create the following sanctions table:6.

CREATE TABLE sanction (
domain VARCHAR,

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[220]

bankname VARCHAR,
sanction BOOLEAN
}

Create the following entry for bankb.com in Bank A's sanction database:7.

INSERT INTO sanction(domain, bankname, sanction)
VALUES('bankb.com', 'Bank B', true);

Lastly, create a transactions database where received transactions will be logged8.
by the bridge server for the banka and bankb databases:

CREATE TABLE transactions (
txid VARCHAR,
sender VARCHAR,
receiver VARCHAR,
amount INTEGER,
currency VARCHAR,
kyc_info VARCHAR,
}

Create the table users, sanctions, and transactions for the bankb database as well.9.
Log out and log in using bankbuser and connect to the bankb database like so:

su - bankbuser
psql bankb

Repeat the preceding steps and create the users, sanctions, and transactions10.
database for bankb as well. Insert test values into the users table for bankb like
so:

INSERT INTO users(name, address, dob, friendlyid, sanction,
balance, domain)
VALUES
('Jane Smith', 'cityB', '31031991', 'janesmith', true, 2000,
'bankb.com');

Also, insert these details into the sanction table, as follows:11.

INSERT INTO sanction(domain, bankname, sanction)
VALUES('banka.com', 'Bank A', true);

We also need to create a database so that we can log our compliance requests and
a database for all the transactions being handled by the bridge server.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[221]

Log out from bankbuser and log into postgres with the following command:

su – postgres
psql

Create the following databases:

CREATE DATABASE bridgea OWNER bankauser;
CREATE DATABASE bridgeb OWNER bankbuser;
CREATE DATABASE compliancea OWNER bankauser;
CREATE DATABASE complianceb OWNER bankbuser;

As its name suggests, bridgea corresponds to the bridge module of Bank A, bridgeb
corresponds to the bridge module of Bank B, compliancea corresponds to the compliance
module of Bank A, and complianceb corresponds to the compliance module of Bank
B. We'll set up the individual databases later when we install the bridge and compliance
module.

This should take care of the bank's internal database infrastructure. Let's move on to the
other components.

Setting up the federation servers
The federation server will be used by the banks to resolve the customer's friendly IDs into
their receiving Stellar account ID and the peripheral information required to process the
received transaction. Follow these steps to set up the federation servers:

Download the federation server release from the Stellar website here (https://1.
github.com/stellar/go/releases/tag/federation-v0.2.1).
Select the binary corresponding to your OS version and extract the binary file.2.
Copy the extracted folder and paste and create two copies of the extracted folders3.
labeled federationA and federationB.
Open the federation.cfg file within the extracted folders in a text editor.4.
Configure it like so for the federation for Bank A:

port = 8001

[database]
type = "postgres"
dsn =
"postgres://bankauser:bankauser@localhost/banka?sslmode=disable"

[queries]

https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1
https://github.com/stellar/go/releases/tag/federation-v0.2.1

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[222]

federation = "SELECT '
GDW3IXTH3UFCU2KD6REURTLK7XVSUC4P4WDATMFPTW6YZFEAV7RWATAD ' as id,
friendlyid as memo, 'text' as memo_type FROM users WHERE friendlyid
= ? AND ? = 'banka.com'"

[tls]
certificate-file = "/home/…/mkcert/banka.com.pem"
private-key-file = "/home/…/mkcert/banka.com-key.pem"

As shown in the preceding code, we can make the following observations:

Set the port where the federation server will run and set the database connection
details. In my case, I'm connecting the banka database using the bankauser
user. My password is also bankauser.
Next, we set a query to fetch the user's details from the users table in the banka
database and select what we will return. Thus, if the request is for
johndoe*banka.com to the federation server, it will return the following
parameters in the response:

id: GDW3IXTH3UFCU2KD6REURTLK7XVSUC4P4WDATMFPTW6YZFEAV7RWATAD
memo : johndoe
memotype: text

Lastly, set the certificate and the private key file location for encryption. Provide5.
the location of the self-signed certificate for banka.com.
Repeat the steps for the Bank B federation server as well and configure the6.
federaton.cfg file like so:

port = 8002

[database]
type = "postgres"
dsn =
"postgres://bankbuser:bankbuser@localhost/bankb?sslmode=disable"

[queries]
federation = "SELECT '
GBETQAVAWJJIQ7CZPXWLXKZO6BELLACNR3E7BRD4WTYEANAGGR62VP6Q ' as id,
friendlyid as memo, 'text' as memo_type FROM users WHERE friendlyid
= ? AND ? = 'bankb.com'"

[tls]
certificate-file = "/home/…/mkcert/bankb.com.pem"
private-key-file = "/home/…/mkcert/bankb.com-key.pem"

Now, we have our federation server set up.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[223]

Start the federation server by running the following command:7.

./federation

Test whether the server works by submitting a request in the browser:8.

Request -- https://banka.com:8012/federation?q=johndoe*banka.com
type=name

You should see the following response:

Response –
id: GDW3IXTH3UFCU2KD6REURTLK7XVSUC4P4WDATMFPTW6YZFEAV7RWATAD
memo : johndoe
memotype: text

Now, we will set up the compliance server.

Setting up the compliance server
The compliance server will be used by the banks to exchange the customer's KYC
information before initiating a payment request. Follow these steps to set up the
compliance server:

Download the compliance server release from the Stellar website here (https://1.
github.com/stellar-deprecated/bridge-server/releases). Select the binary
corresponding to your OS version.
Extract the binary file and copy the extracted folder. Paste and create two copies2.
of the extracted folders labeled complianceA and complianceB.
Create a file called compliance.cfg inside the extracted folders and open it in a3.
text editor. Configure it like so for the compliance server for Bank A:

external_port = 8003
internal_port = 8004
needs_auth = true
network_passphrase = "Standalone Network ; February 2017"

[database]
type = "postgres"
url =
"postgres://bankauser:bankauser@localhost/compliancea?sslmode=disab
le"

[keys]

https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://banka.com:8012/federation?q=johndoe*banka.com&type=name
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[224]

This should be the secret seed for your base account (or another
account that
can authorize transactions from your base account).
signing_seed =
"SDSQ5MJALF7VWDFEFETPGGWJK2UEQ5HU6HJBKMT5M5YDJ3WYKMC5RC3O"
#encryption_key =
"SDSQ5MJALF7VWDFEFETPGGWJK2UEQ5HU6HJBKMT5M5YDJ3WYKMC5RC3O"

[callbacks]
sanctions = "http://localhost:5000/compliance/sanctions"
ask_user = "http://localhost:5000/compliance/ask_user"
fetch_info = "http://localhost:5000/compliance/fetch_info"

[tls]
certificate_file = "/home/ishan/mkcert/banka.com.pem"
private_key_file = "/home/ishan/mkcert/banka.com-key.pem"

From the preceding code, we can make the following observations:

The external port is the TCP port where other banks or financial institutions need
to submit requests for the exchange of compliance information.
The internal port will be used by the bank's internal infrastructure to run
compliance checks on its own customers while initiating a transaction.
When the needs_auth flag is set to true, it means that the compliance server
requires the KYC details of the beneficiary from the receiving bank when it is
sending a payment.
The Stellar network passphrase is the network's passphrase. The database will be
used to log compliance requests. Notice how we provide the user details and
compliance database details for banka that we set up earlier when we were
setting up the bank's internal databases.
The signing key that's used for the messages is the secret key of Bank A. We also
specify the callbacks server for the compliance server.
The compliance server will connect with these webhooks when it tries to fetch
and validate the information from the bank's internal databases. We'll look at this
in more detail when we set up the callback server.
Lastly, we provide the certificate and key file for Bank A that we generated
earlier to secure all the incoming and outgoing requests to the compliance server.

Set up the compliance.cfg file for Bank B:4.

external_port = 8008
internal_port = 8009
needs_auth = true
network_passphrase = "Standalone Network ; February 2017"

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[225]

[database]
type = "postgres"
url =
"postgres://bankbuser:bankbuser@localhost/complianceb?sslmode=disab
le"

[keys]
This should be the secret seed for your base account (or another
account that
can authorize transactions from your base account).
signing_seed =
"SB6HTLWBKVY6KOGKFZE2EKH3ZFSIYHYXJOORGKIOHSMPHBCX4SS4PU6G"
#encryption_key =
"SB6HTLWBKVY6KOGKFZE2EKH3ZFSIYHYXJOORGKIOHSMPHBCX4SS4PU6G"

[callbacks]
sanctions = "http://localhost:5100/compliance/sanctions"
ask_user = "http://localhost:5100/compliance/ask_user"
fetch_info = "http://localhost:5100/compliance/fetch_info"

[tls]
certificate_file = "/home/ishan/mkcert/bankb.com.pem"
private_key_file = "/home/ishan/mkcert/bankb.com-key.pem"

From the preceding code, we can make the following observations:

The external port is set to 8008, while the internal port is set to 8009.
The database is set to complianceb for Bank B. The signing seed is the secret key
for the Bank Stellar account.
The callbacks server for Bank B will be running on port 5100.
The certificate and key file are set to the relevant files for Bank B.

Next, let's bring our compliance server online. Navigate to the compliancea5.
directory. First, we need to migrate the compliance database. Do so with the
following command:

./compliance --migrate-db

Next, bring the server online with the help of the following command:6.

./compliance

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[226]

Repeat the preceding steps for Bank B by navigating to the complianceb directory and
executing the last two commands.

Now, we have set up the compliance server. Next, we'll set up the bridge server.

Setting up the bridge server
As the name suggests, the bridge server will 'bridge' the operations carried out by the
federation server, the compliance server, the Horizon client-server and the Stellar Core. The
requestor will submit payment requests to the bridge server and it will interface between
these four components to ensure compliance checks are carried out and the transaction is
submitted to the blockchain. Follow these steps to set up the bridge server:

Download the bridge server release from the Stellar website here (https://1.
github.com/stellar-deprecated/bridge-server/releases). Select the binary
corresponding to your OS version.
Extract the binary file and copy the extracted folder. Paste and create two copies2.
of the extracted folder labeled bridgeA and bridgeB.
Create a file called bridge.cfg inside the extracted folders and open it in a text3.
editor. Configure it like so for the bridge server for Bank A:

 port = 8006
 horizon = "http://localhost:8000"
 network_passphrase = 'Standalone Network ; February 2017'

 compliance = "http://banka.com:8004"

 [[assets]]
 code="USD"
 issuer="GAIHBCB57M2SDFQYUMANDBHW4YYMD3FJVK2OGHRKKCNF2HBZIRBKRX6E"

 [database]
 type = "postgres"
 url =
"postgres://bankauser:bankauser@localhost/bridgea?sslmode=disable"

[accounts]
base_seed =
"SDSQ5MJALF7VWDFEFETPGGWJK2UEQ5HU6HJBKMT5M5YDJ3WYKMC5RC3O"

receiving_account_id =
"GDW3IXTH3UFCU2KD6REURTLK7XVSUC4P4WDATMFPTW6YZFEAV7RWATAD"

https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases
https://github.com/stellar-deprecated/bridge-server/releases

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[227]

authorizing_seed =
"SAEEE4UUP3DRYTEFHNFKCVB4ZCQT2W2KPFW7FLE6VLE7QABAAZATFZFD"

issuing_account_id =
"GAIHBCB57M2SDFQYUMANDBHW4YYMD3FJVK2OGHRKKCNF2HBZIRBKRX6E"

[callbacks]

receive = "http://localhost:5000/receive"

From the preceding code, we can make the following observations:

port indicates the port that requests need to be submitted to on the bridge
server.
Horizon and network passphrases indicate the location of the Horizon client
server and the network passphrase for our Stellar network.
The compliance server is set to the internal port we set up while installing the
compliance server in the previous section.
asset indicates the assets we'll be listening for in our received payments. It is set
to the USD asset we issued earlier.
The database is set to the bridgeA database we set up when we were setting up
our internal databases.
The accounts tag specifies the default secret key that's used to sign transactions
that are submitted from the bridge server, the receiving account for payments
that the bridge server will listen to, the authorizing seed for the USD asset, and
the issuing account for the USD asset.
Lastly, we have set the callbacks server for receiving payments. This endpoint
will be called whenever the bridge server receives a payment. We will look at
this endpoint in more detail when we build our callbacks server.

Update the bridge.cfg file for Bank B's bridge server as well. Navigate to the4.
bridgeB directory and make the following changes:

port = 8007
 horizon = "http://localhost:8000"
 network_passphrase = 'Standalone Network ; February 2017'

 compliance = "http://bankb.com:8009"

 [[assets]]
 code="USD"
 issuer="GAIHBCB57M2SDFQYUMANDBHW4YYMD3FJVK2OGHRKKCNF2HBZIRBKRX6E"

 [database]

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[228]

 type = "postgres"
 url =
"postgres://bankbuser:bankbuser@localhost/bridgeb?sslmode=disable"

 [accounts]
 base_seed =
"SB6HTLWBKVY6KOGKFZE2EKH3ZFSIYHYXJOORGKIOHSMPHBCX4SS4PU6G"

 receiving_account_id =
"GBETQAVAWJJIQ7CZPXWLXKZO6BELLACNR3E7BRD4WTYEANAGGR62VP6Q"

 authorizing_seed =
"SAEEE4UUP3DRYTEFHNFKCVB4ZCQT2W2KPFW7FLE6VLE7QABAAZATFZFD"

 issuing_account_id =
"GAIHBCB57M2SDFQYUMANDBHW4YYMD3FJVK2OGHRKKCNF2HBZIRBKRX6E"

 [callbacks]

 receive = "http://localhost:5100/receive"

From the preceding code, we can make the following observations:

We update the client port to 8007 for our bridge server.
We also update the compliance server port and the bridge server's database URL.
Lastly, we update the signing key to the secret key for Bank B and the receiving
account to the Stellar account ID for Bank B.
Lastly, we set the callbacks server endpoint to 5100 where we will be hosting the
callbacks server for Bank B.

Before we can bring the bridge server online, we need to set up the database.5.
Navigate to the bridgeA directory and run the following command to set up the
bridge database for Bank A:

./bridge --migrate-db

Next, run the following command to bring the bridge server online:6.

./bridge

Repeat the preceding steps for the bridge server for Bank B as well. Navigate to the
bridgeB directory and run the last two commands. Now, we have set up the bridge servers
for our remittance platform. We'll set up the callbacks server next.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[229]

Setting up the callbacks server
The callbacks server implements a set of endpoints that can be called by the other
components of the bank infrastructure to fetch data from or update data to the bank's
internal databases.

It implements the following endpoints:

/compliance/fetch_info: Fetches the customer's name, address, and date of
birth when provided the friendlyID of the customer from the users table
/compliance/sanction: Validates whether the sender's financial institution is
sanctioned to send transactions from the sanctions table
/compliance/ask_user: Checks whether the receiving bank will send the
beneficiary's KYC details to the sending bank (fetch_info is then called to fetch
the details)
/receive: Captures details about received payments and updates the
beneficiary's balance

The first three are called by the compliance server for compliance checks. The last one is
called by the bridge server whenever a payment is received. Let's get started:

Let's start by writing our CallBack server. First, we will write the callbacks1.
server for Bank A. Create a nodejs app called CallbacksA and declare your
dependencies, as follows:

const express = require("express");
const bodyParser = require("body-parser");
const app = express();
const pg = require('pg');
const conString =
"postgres://bankauser:bankauser@localhost:5432/banka";
const client = new pg.Client(conString);

We'll be using the pg client to connect with postgres. Notice how conString is
set to the banka database URL. Make sure you install the dependencies in your
nodejs environment.

The following lines set up bodyParser so that it parses requests that are sent to2.
the app:

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[230]

Next, we will declare a middleware layer to allow Cross-Origin Resource3.
Sharing (CORS). This permits our other bank modules to interact with our
callbacks server:

app.use(function (req, res, next) {

// Website you wish to allow to connect
 res.setHeader('Access-Control-Allow-Origin', '*');

// Request methods you wish to allow
 res.setHeader('Access-Control-Allow-Methods', 'GET, POST, OPTIONS,
PUT, PATCH, DELETE');

// Request headers you wish to allow
 res.setHeader('Access-Control-Allow-Headers', 'X-Requested-
With,content-type');

// Set to true if you need the website to include cookies in the
requests sent

// to the API (e.g. in case you use sessions)
 res.setHeader('Access-Control-Allow-Credentials', true);

// Pass to next layer of middleware
 next();
});

Set up the server and the port as follows. I'm running the CallbacksA server on4.
port 5000:

 var server = app.listen(process.env.PORT || 5000, function () {
 var port = server.address().port;
 console.log("App now running on port", port);
 });

We need to connect to the pg client to allow our services to interact with the5.
database. To do so, use the following command:

client.connect();

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[231]

First, let's write the fetch_info endpoint. The fetch_info endpoint carries out6.
the following steps:

Extracts the address of the bank customer from the request body.1.
Splits the address into 'friendlyID' and 'domain', delimited by2.
'*'.
Uses the friendlyID to run a select query on the users table and3.
fetches the name, address, date of birth, and domain.
 Marshalls the results of the query into JSON and returns the response4.
to the requestor:

app.post('/compliance/fetch_info', function (request, response)
{
var addressParts = request.body.address.split('*');
 var friendlyId = addressParts[0];

 // You need to create `accountDatabase.findByFriendlyId()`. It
should look
 // up a customer by their Stellar account and return account
information.

client.query('SELECT name,address,dob,domain from users where
friendlyid = $1', [friendlyId], (error, results) => {
if (error) {
 throw error
 }

 if(results)
 {
 response.json({
 name: results.rows[0].name,
 address: results.rows[0].address,
 date_of_birth: (results.rows[0].dob).toString(),
 domain: results.rows[0].domain
 });

 response.end();

 }});
});

The JSON response is sent to the requestor and is attached to the transaction
when it is submitted to the blockchain network.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[232]

Next, let's look at the following sanctions endpoint. The sanctions endpoint7.
carries out the following steps:

Extracts the domain of the sender's address from the JSON request.1.
Checks the sanction database to ensure the domain and the financial2.
institution are allowed to send payments by running a select query
against the sender's domain.
If the domain owner, that is, the financial institution is sanctioned to3.
send payments, send a 200 (OK) status in the response. If the entry
does not exist, send an error 403 status with the message FI not
sanctioned:

app.post('/compliance/sanctions', function (request, response) {
var sender = JSON.parse(request.body.sender)
client.query('SELECT * from sanction where domain = $1',
[sender.domain], (error, results) => {
if (error) {
 response.status(403).end("FI not sanctioned");
 }
if (results)
 {
 response.status(200).end();
 }
})
});

Next, we have the following ask_user endpoint, which is the last compliance8.
endpoint. The ask_user endpoint is similar to the sanctions endpoint. It carries
out one additional step – it checks whether the receiving bank will share KYC
details of the beneficiary with the compliance server of the sending bank. If this
value is set to true, the fetch_info endpoint is called to fetch the details of the
beneficiary.

The ask_user endpoint carries out the following steps:

Fetches the sender's domain from the request.1.
Checks whether the domain is sanctioned to send payments in the sanctions2.
database.
If it is not sanctioned, an error message with a 403 status is sent to indicate that3.
the bank domain is not sanctioned. The message that's sent is FI not
sanctioned.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[233]

If the domain is sanctioned, the endpoint checks the 'kyc' column against4.
the entry of the domain in the sanctions database. If it is set to true, that
means that the receiving bank will share the kyc details of the beneficiary.
Thus, a response status of 200 (OK) is returned.
If kyc is set to false, a response status of 403 with the message KYC5.
request denied is returned to the requestor:

app.post('/compliance/ask_user', function (request, response) {
 var sender = JSON.parse(request.body.sender)

client.query('SELECT * from sanction where domain = $1',
[sender.domain], (error, results) => {
if (error) {
 response.status(403).end("FI not sanctioned");
 }
if (results)
 {

 if(results.rows[0].kyc == true)
 {
 response.status(200).end();
 }
 else
 {
 response.status(403).end("KYC request denied");
 }
 }
})
});

This brings us to the last endpoint of our callbacks server, which is /receive. This
endpoint is called every time a payment is received by the bridge server. It carries out a
series of steps:

Extracts the received amount and the identifier of the customer from the request.1.
In our case, this is the friendlyID, which is unique for every customer, but it
could be a bank account number or customer ID in the traditional banking
system. This is available in the request as request.body.route. We also extract
the transactionid and the sender's friendlyID, as well as the sender's KYC
details from the attachment field in the request.
These details are captured in the transactions table in the Bank A database, which2.
logs all received transactions.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[234]

After successfully logging the transaction to the transactions database, we need3.
to update the balance of the beneficiary. We fetch the current balance from the
users table in the Bank A database.
The user's current balance is then updated with the amount that was received in4.
the transaction. After successfully updating the balance, we send a success
(response 200 OK) message back to the user:

app.post('/receive', function (request, response) {
 var amount = parseInt(Number(request.body.amount).toFixed(2));
 var friendlyid = request.body.route;
 var SendObj = JSON.parse(request.body.data);
 var kycObj = JSON.parse(SendObj.attachment);
 client.query('INSERT INTO transactions(txid, sender, receiver,
amount, currency, kyc_info) VALUES ($1,$2,$3,$4,$5,$6)',
[request.body.transaction_id,SendObj.sender,request.body.route,amou
nt,request.body.asset_code,kycObj.transaction.sender_info], (error,
results) => {
 if (error) {
 console.log(error);
 response.status(500).end("Error inserting transaction");
 }
 if(results)
 {
 client.query('SELECT balance from users where friendlyid = $1',
[friendlyid], (error, results) => {
 if (error) {
 console.log(error);
 response.status(500).end("Not found");
 }
 if (results)
 {
 var balance = Number(results.rows[0].balance)
 balance = balance + + amount;

client.query('UPDATE users set balance = $1 where friendlyid = $2',
[balance, friendlyid], (error, results) => {

if (error) {
 console.log(error);
 response.status(500).end("Not found");
 }
 if (results)
 {
 response.status(200).end();
 }
 })
 }

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[235]

 })
 }
 })
 });

That brings us to the end of the callbacks server for Bank A. Create a copy of this Node.js
application for Bank B as well. Make sure that you change the port and the bank's internal
database URL. For my callbacksB application, my port is 5100 and the database URL
is postgres://bankbuser:bankbuser@localhost:5432/bankb.

That completes the backend infrastructure of our remittance platform. You can actually
submit payment requests to the bridge server payment endpoint
(http://banka.com:8006/payment) and follow the steps as payment is executed.

To try it out, simply submit a request with the following parameters:

id: <Random transaction ID>
amount: <Amount you want to send, such as 1000>
asset_code: USD
asset_issuer: <USD asset issuer account, such as
GAIHBCB57M2SDFQYUMANDBHW4YYMD3FJVK2OGHRKKCNF2HBZIRBKR
X6E>,
destination: <receiver, such as janesmith*bankb.com>
sender: <sender, such as johndoe*bankb.com>
use_compliance: true

The request should go through. If you check the console for the compliance, bridge, and
federation server, you should be able to observe that the following steps are carried out:

The bridge server for Bank A receives the payment request. It checks that the1.
transaction request is syntactically correct and that the transaction is not a
duplicate against the bridge database. Next, it checks the stellar.toml file
hosted at the domain of the receiver
(www.bankb.com/.wellknown/stellar.toml) to find the federation server for
the receiving bank.
The bridge server for Bank A submits a request to the federation server of Bank2.
B. The federation server of Bank B resolves the janesmith*bankb.com address
into the receiving Stellar account (Bank
B—GBETQAVAWJJIQ7CZPXWLXKZO6BELLACNR3E7BRD4WTYEANAGGR62VP6Q), the
contents of the memo in the transaction (janesmith), and the
memotype('text'), and returns to the bridge of Bank A.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[236]

Next, the bridge server of Bank A submits the payment request to the Bank A3.
compliance server. The compliance server calls the fetch_info endpoint of the
internal callbacks server for Bank A. Then, the fetch_info endpoint returns the
details of the sender.
The compliance server of Bank A calls the compliance server of Bank B for a4.
handshake. It checks the stellar.toml file of the receiving bank for the
external endpoint of the compliance server of Bank B.
The compliance server of Bank A forwards the details of the transaction,5.
including the sender's KYC, to the compliance server of Bank B.
The compliance server of Bank B calls the sanctions and the ask_user endpoints6.
of the internal callbacks server of Bank B. It verifies whether the banka.com
domain is sanctioned to send payments to Bank B and whether the KYC details
of the beneficiary will be shared. If the KYC details of the beneficiary will be
shared, it calls fetch_info to get the receiver's details.
The compliance server of Bank B sends its response to the compliance server of7.
Bank A.
The compliance server of Bank A checks that it has received a go-ahead from8.
Bank B and whether it has received the KYC details of the beneficiary. Then, it
submits its response to the bridge server of Bank A.
Once the bridge server of Bank A gets the go-ahead, it creates a new payment9.
transaction request with the requisite details, including the amount, currency,
receiver's details, and sender's details. This transaction request is then submitted
to the blockchain.
The bridge server of Bank B is constantly listening for incoming payments to10.
Bank B's stellar account. On receiving payment, it will simply pick up the
payment request and submit it to the /receive endpoint of the internal
callbacks server of Bank B.
The /receive endpoint of the callbacks server will add the payment to the11.
transactions table and update the beneficiary's balance.

That completes the end-to-end payment flow. Let's put a small bank portal on top that Bank
A and Bank B customers can use to submit a payment request and that the admin can use to
view the KYC details of the customer.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[237]

Building the bank portal
Next, we'll build a portal for Bank A and Bank B. Users can log in with their friendlyID
and submit payment requests. Then, the Bank can log in and view the KYC details of
transactions.

The portal will have two components:

A Node.js backend that will post payments to the bridge server and fetch user
details from the users table in the bank internal database.
A React frontend that's used to submit requests and view status.

Let's start with the Node.js backend.

Building the bank portal backend
The bank portal backend server will carry out the following operations:

Return the user's details (name and balance) based on the 'friendlyid' unique
identifier. These will be displayed to the user upon logging in.
The '/userdet' server will be used for this.
 Return the user's currency balance based on the 'friendlyid' unique
identifier. The '/userbal' server will be used for this.
Handle payment requests. It will submit a payment request that's forwarded by
the customer to the bridge server endpoint. Before submission, it will check
whether the user has a sufficient balance for the payment transaction. After the
bridge server communicates that the transaction has been executed successfully,
it will update the customer's account to reflect the new balance, minus the
remitted amount. This is done by the '/payment' service.
 Lastly, it returns a list of received transactions with the sender's KYC details for
the bank user to view. This is implemented by the '/bankuser' service.

Now, let's start building our backend server. I'm calling my backend server
apps DBServerA and DBServerB for Bank A and Bank B, respectively:

Create a Node.js app called DBServerA. Start by declaring the dependencies1.
shown in the following code. Make sure you have these installed in your nodejs
environment:

const express = require("express");
const bodyParser = require("body-parser");

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[238]

const app = express();
const pg = require('pg');
const conString =
"postgres://bankauser:bankauser@localhost:5432/banka";
const requestObj = require('request');
const client = new pg.Client(conString);
const USD = 'USD';
const issuer =
'GAIHBCB57M2SDFQYUMANDBHW4YYMD3FJVK2OGHRKKCNF2HBZIRBKRX6E';
var txid = 1001;

There are a few things you should observe here. Our pg client is pointed to the
banka database URL. Also, take note of the USD asset and its issuer being
mapped. We also set a counter variable to keep track of the current transaction ID.
We start with the transaction ID set to 1001 and increment it after every request.

Next, we set up bodyparser so that we can parse the incoming JSON requests,2.
set up the CORS middleware, and initialize the app server at port 3600, as
follows:

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));

app.use(function (req, res, next) {

// Website you wish to allow to connect
 res.setHeader('Access-Control-Allow-Origin', '*');

// Request methods you wish to allow
 res.setHeader('Access-Control-Allow-Methods', 'GET, POST, OPTIONS,
PUT, PATCH, DELETE');

// Request headers you wish to allow
 res.setHeader('Access-Control-Allow-Headers', 'X-Requested-
With,content-type');

// Set to true if you need the website to include cookies in the
requests sent
 // to the API (e.g. in case you use sessions)
 res.setHeader('Access-Control-Allow-Credentials', true);

// Pass to next layer of middleware
 next();
});

var server = app.listen(process.env.PORT || 3600, function () {
 var port = server.address().port;

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[239]

 console.log("App now running on port", port);

 });

Now, let's start writing the endpoints one by one.

Let's start with the '/userdet' service. This service fetches the customer's3.
details based on the friendlyId of the customer from the internal users table of
the banka database and returns the details in json format to the requestor:

app.post('/userdet', function (request, response) {

var idParts = request.body.friendlyid.split('*');
 var friendlyId = idParts[0];

client.query('SELECT name,balance from users where friendlyid =
$1', [friendlyId], (error, results) => {
if (error) {
 throw error
 }
 if(results)
 {
 response.json({
 name: results.rows[0].name,
 balance: results.rows[0].balance
 });
 response.end();
 }});
});

Next is the '/userbal' service, which is similar to '/userdet' except for the4.
fact that it returns the current balance of the user. It fetches the customer's
current balance based on the friendlyid of the customer from the internal users
table of the banka database and returns the details in JSON format to the
requestor:

app.post('/userbal', function (request, response) {
var idParts = request.body.friendlyid.split('*');
 var friendlyId = idParts[0];
 client.query('SELECT balance from users where friendlyid = $1',
[friendlyId], (error, results) => {
if (error) {
 throw error
 }

 if(results)
 {

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[240]

 response.json({
 balance: results.rows[0].balance
 });
 response.end();
 }});
});

Next, we have the '/payment' service, which posts incoming payment requests5.
to the bridge server. Let's go through the steps one by one. First, we fetch the
customer's friendlyId from the request body and split it into the customer ID
and domain name, as follows:

app.post('/payment', function (request, response) {
var idParts = request.body.account.split('*');
var friendlyId = idParts[0];

Next, we use the customer's friendlyId to fetch their current balance and check
whether the payment amount is greater than the customer's current balance. If the
payment request amount is greater, an "Insufficient balance!" message is sent to
the requestor:

client.query('SELECT balance from users where friendlyid = $1',
[friendlyId], (error, results) => {
 if (error) {
 response.json({
 msg: "ERROR!",
 error_msg: error
 });
 response.end();
 }

 if(results)
 {
 balance = results.rows[0].balance;

 if(balance < Number(request.body.amount))
 {
 response.json({
 msg: "ERROR!",
 error_msg: "Insufficient balance!"
 });
 response.end();
 }

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[241]

If the transfer amount is less than or equal to the balance, we post a new request to the
bridge server '/payment' endpoint at localhost:8006. The params posted are as
follows:

id: Current transaction ID. We fetch this from the txid variable we declared
earlier and it is sent in string format.
amount: Transaction amount. Received from the customer's request that's
submitted to the bank portal.
asset_code: Asset code (USD).
asset_issuer: Asset issuer account for USD.
destination: Friendly ID of the receiver. We get this from the customer's
request that's submitted to the bank portal (for example,
janesmith*bankb.com).
sender: Friendly ID of the sender. We get this from the customer when they log
into the bank portal (for example, johndoe*banka.com).
use_compliance: This needs to be set to true if we wish to use the compliance
server to exchange KYC information between remitting parties.

Let's take a look at the following code to understand how the code implements the request
and response to the bridge server:

requestObj.post({
 url: 'http://localhost:8006/payment',
 form: {
 id: txid.toString(),
 amount: request.body.amount,
 asset_code: USD,
 asset_issuer: issuer,
 destination: request.body.receiver,
 sender: request.body.account,
 use_compliance: true
 }
},
function(err, res, body) {
 if (err || res.statusCode !== 200) {
 console.error('ERROR!', err || body);
 response.json({
 result: body,
 msg: "ERROR!",
 error_msg: err
 });
 response.end();
 }

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[242]

If we receive an error status code from the bridge server, the user is notified and an error
message is printed to the console.

As shown in the following code, if the bridge server response is success, the following
steps are carried out:

The user's current balance is fetched and updated. The transaction amount is1.
deducted from the current balance.
The variable that stores the transaction ID, txid, is incremented by 1 to the next2.
transaction ID.
After the preceding two steps, a success response is sent back to the requestor:3.

else {
 console.log('SUCCESS!', body);
client.query('SELECT balance from users where friendlyid = $1',
[friendlyId], (error, results) => {
if (error) {
console.log(error);
response.status(500).end("User Not found");
}
if (results)
{
var balance = Number(results.rows[0].balance)
balance = balance + - request.body.amount;
client.query('UPDATE users set balance = $1 where friendlyid = $2',
[balance, friendlyId], (error, results) => {
if (error) {
console.log(error);
response.status(500).end("User Not found");
}
if (results)
{
response.json({
result: body,
msg: 'SUCCESS!'
});
txid++;
console.log("Next txid",txid);
response.status(200).end();
}
})
}
})
}
});
}

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[243]

})
});

We are left with one last service for our backend server: '/bankuser'. This service simply
queries the transactions table in the banka database and fetches all the information about
the received transactions, including the sender's KYC details. This is then sent back to the
requestor:

app.get('/bankuser', function (request, response) {
client.query('SELECT * from transactions', (error, results) => {
if (error) {
 throw error
 }

 if(results)
 {
 response.json({
 tx: results.rows
 });
 response.end();
 }
})
});

That brings us to the end of the backend server for our bank portal for Bank A. Replicate
and set up this server for Bank B as well. Make sure you change the database URL to
postgres://bankbuser:bankbuser@localhost:5432/bankb and the port to '3602'
or any other unused port. Also, make sure that you change the bridge server's internal port
for Bank B in the '/payment' endpoint. In my case, this port is 8007. This is highlighted in
the following code:

requestObj.post({
 url: 'http://localhost:8007/payment',
 form: {
 id: txid.toString(),
 amount: request.body.amount,
 asset_code: USD,
 asset_issuer: issuer,
 destination: request.body.receiver,
 sender: request.body.account,
 use_compliance: true
 }

That completes creating the backend servers for Bank A and Bank B.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[244]

Building the bank portal frontend
We also need to build a frontend that our users will interact with. To do so, we'll build a
simple interface in React. Our portal will have the following screens:

A login screen, which will ask for the user's friendlyId to log in to the app. The
user can also log in as a bank user to see the admin view.
A payment screen, which is where customers can submit payments.
A bank user screen, which will display received transactions and KYC details.

The major components for the React app are as follows:

Container.js: This receives the current app state parameters from the App.js
file and passes them to the child components. The child components are
rendered on the basis of the current state of the app.
Assets.js: This renders and initializes the USD asset.
AppLogin.js: This renders a login screen where the user needs to submit their
friendlyId mapped to the bank's domain. Alternatively, a bank admin user can
log in.
Transfer.js: A component that renders a form for accepting and submitting
payment requests. The user asks for the receiver's friendly ID and the amount to
be sent. The user is shown the Tx Status (Success/Failure) and Tx Hash after
submitting the request to the blockchain network.
BankUser.js: A component that renders a screen that maps all the received
transactions, along with the sender's KYC information.

Creating the React project environment
Let's start creating our app environment:

Create a new React app called cross-border using the following npx1.
command:

npx create-react-app cross-border

Update your package.json file so that it contains the following values:2.

{
 "name": "cross-border-app",
 "version": "1.0.0",
 "private": false,
 "dependencies": {

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[245]

 "bulma-start": "0.0.2",
 "concat-stream": "^2.0.0",
 "fs": "0.0.1-security",
 "react": "^16.4.1",
 "react-dom": "^16.4.1",
 "react-scripts": "1.1.4",
 "stellar-sdk": "^3.0.0",
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test --env=jsdom",
 "eject": "react-scripts eject"
 }
}

Run npm install in a Terminal window to install the dependencies.3.
Finally, within the src folder, create a Components folder for the app4.
components.

Let's take a look at our USD.js.

Mapping the USD asset
Create a file called USD.js to map the USD asset. Update it so that it contains the following
values:

export default {
 code: "USD",
 issuer: "GAIHBCB57M2SDFQYUMANDBHW4YYMD3FJVK2OGHRKKCNF2HBZIRBKRX6E",
 symbol: "$"
}

The component sets the symbol, asset code, and asset issuer for the USD asset.

Writing the App.js file
Let's look at how the App.js file is written:

First, let's look at the following dependencies, which have to be imported:1.

import React, { Component } from 'react';
import StellarSdk from 'stellar-sdk';
import Nav from './Components/Nav';
import Description from './Components/Description';

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[246]

import Container from './Components/Container';
import USD from './Components/USD';
var concat = require('concat-stream');
const requestObj = require('request');
const DBServer = 'localhost:3600';

From the preceding code, we can make the following observations:

We import the React object and the StellarSdk into our app.
The StellarAsk is used to create the USD asset interface for our app. Nav,
Description, and Container are the navigation bar, description, and container
component. These are rendered in the App.js itself. The USD asset is also
imported.
We set up the concat and requestObj objects so that we can send requests to
our backend database server. Lastly, we set up the DBServer object, which
specifies the DBServer the app is pointing to.
Initially, this is set to 'localhost:3600', which is the DBServer for Bank A. To
avoid multiple moving components, we'll use the same React app for Bank B as
well. Just swap the DBServer here to 'localhost:3602' and relaunch the app
to use it for Bank B.

The constructor in the following code sets the app name and initializes the USD2.
asset. It also initializes the state variables, including the network type, the
account (friendlyID), the default balance value, and the name of the customer.
It also initializes the fields so that it can capture the form values:

constructor(){
 super();
 this.appName = 'Remittance App';
 this.onInputChangeUpdateField =
this.onInputChangeUpdateField.bind(this);
 this.USDasset = USD;
 this.USD = new
StellarSdk.Asset(this.USDasset.code,this.USDasset.issuer);

 this.state = {
 network: 'Private Testnet',
 account: null,
 balance: 0,
 name: '',
 fields: {
 friendlyid: null,
 receiver: null,
 amount: null,

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[247]

 sellprice: null,
 sellamount: null,
 }
 }
 }

Next, we will check out the main App.js body. The methods that are3.
implemented by App.js are as follows:

setAccount

setBalance

setBank

payment

Let's take a look at how these methods are implemented.

The following setAccount method is called to set the state account variable to
the friendlyID the customer provides while logging into the app. It also calls
the '/userdet' service in our backend server to get the user's details, including
their name and current balance:

setAccount = () => {

 var account = this.state.fields.friendlyid;
 let app = this;
 var url = 'http://'+ DBServer +'/userdet';

 fetch(url,{
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type':'application/json',
 },
 body: JSON.stringify({
 friendlyid: account
 })
 }).then(function(response,error){
 if(response)
 {
 return response.json();
 }
 else
 {
 console.log(error);
 }
 }).then(function(data){

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[248]

 app.setState({
 account,
 name: data.name,
 balance: data.balance
 });
 })
 }

The response from the '/userdet' service is used to set the name and
balance state variables for our app.

The following setBalance method is called to update the state balance variable
for the customer account. This method is typically called once a transaction
credits or debits an amount to the user account:

setBalance = () => {
 let app=this;
 var account = this.state.account;
 var url = 'http://'+ DBServer +'/userbal';
 fetch(url,{
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type':'application/json',
 },
 body: JSON.stringify({
 friendlyid: account
 })
 }).then(function(response,error){
 if(response)
 {
 return response.json();
 }
 else
 {
 console.log(error);
 }
 }).then(function(data){

 app.setState({
 balance: data.balance
 });
 })
}

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[249]

This method calls the '/userbal' service in the backend server, which returns
the user's current balance. This balance is set in the current app state.

The following setBank method fetches the details of the received transaction
from the '/bankuser' service:

setBank = () => {

let app = this;
 var url = 'http://'+ DBServer +'/bankuser';
fetch(url).then(function(response,error){
 if(response)
 {
 return response.json();
 }
 else
 {
 console.log(error);
 }
 }).then(function(data){

 app.setState({
 receivedtx: data.tx
 });

 })
}

The receivedtx state variable stores the array of the received transactions. These
are mapped by the BankUser screen when the bank user logs in.

The following payment method is called whenever the submit button is clicked
by the user. First, it posts the transaction request to the callback server's payment
endpoint:

payment = () => {

 let app =this;
 var url = 'http://'+DBServer+'/payment';

 fetch(url,{
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type':'application/json',
 },
 body: JSON.stringify({

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[250]

 receiver: this.state.fields.receiver,
 amount: this.state.fields.amount,
 account: this.state.account
 })

The parameters that are sent for the request are fetched from the field variable4.
values and the account variable we set earlier. As shown in the following code,
upon receiving the request, the callbacks server forwards it to the bridge server
and the entire payment flow is carried out:

 }).then(function(response,error){
 if(response)
 {
 return response.json();
 }
 else
 {
 console.log(error);
 }
 }).then(function(data){

In the preceding code, we wait for the response from the callbacks server. The
response body is extracted and evaluated based on the response from the server.

In the following code, if the transaction response message is 'SUCCESS!', the5.
txstatus in the state is set to 'Transaction Successful' and the txid in the
state is set to the transaction hash. If the transaction creates an error, the
txstatus state variable is set to 'Transaction Failed':

 if(data.msg == "SUCCESS!")
 {
 var disObj = JSON.parse(data.result);
 app.setState({
 txstatus: 'Transaction Successful',
 txid: disObj.hash
 });
 app.setBalance();
 }
 else
 {
 console.log("Error",data);
 app.setState({
 txstatus: 'Transaction Failed',
 });
 }
 });
 }

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[251]

That completes creating our App.js file. You can find the entire code and interface for the
remittance app in this book's GitHub repository.

That wraps up all the components we need to build for our remittance app. Let's run the
platform and see how it works.

Running the remittance platform
Before we run our remittance application, make sure the following actions have been
carried out:

The Stellar private network has been set up and is online.
The USD asset has been issued and the Stellar accounts for the banks have been
created and funded.
The bank's internal databases have been created and test customer data has been
entered.
The federation servers have been set up.
The compliance servers have been set up.
The bridge servers have been set up.
The callbacks servers have been set up.
The app interface and backend server have been built.

If even one of these has not been completed, please ensure that you do so before going
through this section. First, let's bring all the backend components and servers online:

Navigate to the /federationA and /federationB directories and bring the1.
servers online using the ./federation command.
Navigate to the /complianceA and /complianceB directories and bring the2.
servers online using the ./compliance command.
Navigate to the /bridgeA and /bridgeB directories and bring the servers online3.
using the ./bridge command.
Navigate to your nodejs project directory, specifically the apps for CallbacksA4.
and CallbacksB, and bring the apps online with the node CallbacksA.js
and node CallbacksB.js commands.
Next, bring the bank portal backend server online with the node DBServerA.js5.
and node DBServerB.js commands.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[252]

Let's start our bank portal app. Navigate to the React app directory. Run the app with the
following command:

npm start

The app should launch in the browser as follows:

Enter the friendly ID of the customer to log in. As you may recall, we set the1.
customer ID to johndoe*banka.com in our users table while entering test data:

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[253]

Click on Submit to log in. You should see the customer transfer screen:2.

Enter the details of the payment and click on the Transfer button. I'm transfering3.
10 USD to janesmith*bankb.com:

Once the transaction goes through, a message stating Transaction Successful4.
and the Tx Hash from the blockchain will printed on the screen:

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[254]

Now, let's configure our bank portal for Bank B. Simply swap the DBServer5.
constant in App.js to the following value. You can find it at the top of the code
where we imported our dependencies:

const DBServer = 'localhost:3602';

Now, refresh the app in the browser. Log into the app, this time using the6.
friendly ID janesmith*bankb.com:

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[255]

Notice how the balance has changed from $2,000 (which we set manually while entering
the test data into our users table) to $2,010:

Now, refresh the app and log into the main page by clicking on the Bank User7.
button. You should be taken to the Bank User screen, where you will be able to
see the transactions details, including the sender's KYC details:

That brings us to the end of our demo for the remittance app.

Enabling Cross-Border Remittances with Real-Time KYC/AML Verification Chapter 5

[256]

If you rerun this demo, make sure you remove the logged transactions
from the bridgeA, bridgeB, complianceA, and complianceB databases.
Since transaction IDs need to be unique, the bridge and compliance server
will disallow a transaction if they find that a transaction with the same ID
already exists.

Summary
So, we finally finished building our remittance platform. This chapter gives you good
insight into how to build off-chain workflows that can augment blockchain platforms to
build new-age solutions for the banking and finance industry. An upgraded version of this
platform can be used for transparent, faster, and secure cross-border remittances by banks
and other financial institutions. You can also look at it to create global payment networks
that participants can connect to and remit very easily while ensuring existing KYC/AML
norms are met for such remittances.

We started this chapter by looking at what a blockchain cross-border remittance system
looks like and how blockchain can help eliminate many of the lacunas in the existing
system. Then, we built a platform to demonstrate these benefits by leveraging the Stellar
network. We looked at and set up the various components that we needed to build for this.
These included an ID resolution service (federation) for making remittances user-friendly
for customers, a compliance service for exchanging AML/KYC information prior to the
actual remittance, a callbacks server for allowing the bank components to interact with the
internal database, and a bridge server for orchestrating the workflow across the
components.

We also set up a private Stellar network with test accounts for Bank A and Bank B, a USD
asset for remitting, and the frontend and backend portals for the bank. The user can submit
payment requests and the admin can view KYC details of received transactions from this
portal.

The main takeaway from this chapter is understanding how an ecosystem like this is built
and how the components interact with each other while leveraging the blockchain. This
also gives you an insight into how payment systems are changing. This particular system
solves a huge problem in cross-border remittances where, even today, KYC/AML
information is exchanged in several remittance corridors through less efficient means.

In the next chapter, we'll be looking at more complex financial products that leverage the
blockchain to build transparent and efficient processes.

2
Section 2: Blockchain

Workflows Using Smart
Contracts

Inter-organizational and inter-departmental workflows are inefficient and time-consuming
owing to high dependency on the reconciliation process. These workflows depend on the
availability of data and information from a different organization or department for
decision making or executing a process. Additionally, this data needs to be verified for any
discrepancies before being processed. This further adds to the delay. Blockchain can help us
to make these processes more efficient using smart contracts. Once the stakeholders have
agreed to the conditions of a smart contract and deployed it to the blockchain, they cannot
be modified. This makes them very handy for preventing fraud and promoting
transparency.

We can build safe and secure workflows and business processes that span across
organizations and departments and execute based on pre-determined conditions using
smart contracts. In the next chapter, we'll be verifying this concept. To do so, we'll be
building a blockchain-enabled LC issuing and settlement module.

This section comprises the following chapter:

Chapter 6, Building a Letter of Credit Workflow Module Using Smart Contracts

6
Building a Letter of Credit

Workflow Module Using Smart
Contracts

Smart contracts are excellent tools for building automated and transparent workflows. In
addition to this, the advantage that blockchain provides in terms of immutability and
auditability gives architects the ability to design efficient smart contracts give architects and
developers the ability to design efficient. enterprise-grade workflows that can integrate
with legacy IT systems and business processes. An escrow is a great example of a use case
where smart contracts provide value. An escrow is a financial product whereby a third
party—such as a bank—will hold assets or money on behalf of two parties that are
executing an agreement or a transaction. The third party acts as a facilitator to ensure that
the parties in the agreement do not try to commit fraud or cheat each other. Financial
organizations could, hypothetically, move management and operation of escrows
completely to blockchains to save costs on backend processes, accounting, and
reconciliation.

This chapter focuses on creating one such financial product that relies on escrow. We'll
build a Letter of Credit (LC) module that can be used to create and issue smart contract-
backed escrows on the fly. These smart contracts can also be used for viewing the live
status of the escrows by all the participants, and for initiating settlement. By the end of this
chapter, you will be able to create an LC/escrow using smart contracts. You will also learn
to build and deploy enterprise workflows using DApps.

This chapter will cover the following topics:

Understanding smart contracts and blockchain-based workflows
Creating a US dollar (USD) token for accounting
Deploying a USD token for accounting

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[259]

Creating an LC Master smart contract
Creating an LC smart contract
Deploying the LC Master smart contract
Creating the LC module React app
Running the LC module

Technical requirements
The code files for this chapter are available at the following link: https://github.com/
PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/
Chapter%206.

To develop our project, we'll be using the following:

Ganache private blockchain server: https://trufflesuite.com/ganache/

Trufflesuite: https://github.com/trufflesuite/truffle

MetaMask plugin for Chrome/Firefox/Safari: https://metamask.io/

For installing Ganache on Ubuntu, you might need to change some
settings. Click on the drop-down menu next to the Ganache directory
name in the Title bar of the file explorer. Select Preferences. Navigate to
the Behavior tab. Under Executable Text Files, select the Ask what to do
option. Navigate back to the file you downloaded from the Ganache
download link. Right-click on the file, and click on Properties. Select the
Permissions tab. Select the Allow executing files as program option.
Now, double-click on the file. The Ganache blockchain should start
smoothly. It's probably best to do a global installation of Truffle to avoid
any conflicts. For example, create a directory workspace called
truffle and install truffle using sudo npm install truffle -g.

I'm using Ubuntu 18.04.2 LTS to run the preceding applications and deploy my blockchain.
This project assumes that you are working on a Unix operating system. Additionally, this
project assumes you have Node.js and npm installed. I'm using Node
version 13.0.1 and npm version 6.12.0.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[260]

Lastly, we'll be using the OpenZeppelin library of smart contracts to write our contracts. To
use this library, create a project folder in your Truffle workspace. Let's call it tokenwallet.
Create a package.json file in the project folder and update it with the following values:

{
 "dependencies": {
 "babel-register": "^6.23.0",
 "babel-polyfill": "^6.26.0",
 "babel-preset-es2015": "^6.18.0"
 },
 "devDependencies": {
 "openzeppelin-solidity": "^2.2.0"
 }
}

Run npm install to install the OpenZeppelin library, and babel for your truffle
workspace.

Understanding smart contracts and
blockchain-based workflows
Smart contracts are automated workflows written on top of the blockchain ledger that can
read and write to the blockchain ledger and update the state of the blockchain system.
What makes them special is that once they are deployed, they cannot be modified or
controlled by external accounts (human-controlled accounts). They will always behave in
accordance with the code written into them. This makes them perfect for creating time- or
condition-based escrows that can operate without the involvement of a middleman.

Let's take an example. Alice wants to buy a car from Bob, but she will pay Bob the money
and take possession of the car only if Bob gets a no objection certificate (NOC) issued for
harmful emissions. Bob, on the other hand, doesn't want to spend more money on repairing
his old car because he is worried that Alice might back out of the sale. To solve the
conundrum, Alice and Bob could enter into a smart contract-based escrow. Alice puts her
money on the blockchain into the escrow, and Bob puts an asset token that indicates
ownership of the vehicle. This escrow is essentially a blockchain smart contract that will
map the ownership of the vehicle to Alice and send the funds to Bob, only if he gets a copy
of the NOC certificate from the relevant authority. The entire escrow logic is written using a
smart contract platform (for example, Solidity). Since no one controls the escrow, neither
Alice nor Bob needs to trust a middleman.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[261]

Scope of an LC workflow project
In this chapter, we'll be using a slightly more restrained approach, suited for financial
application. We'll build an LC workflow. Our blockchain network will consist of three
participants—the Buyer, the Seller, and GreenGables bank, which is the banker to the
Buyer. The Buyer wants to purchase some goods (let's say, engine pistons) from the Seller.
However, they do not have enough cash at hand to do so, but they'll have the money after
they sell the final product with the pistons installed (let's say the final product is an engine).
They then go to their bank, GreenGables, to extend a line of credit, which can be used for
paying the Seller when the Seller delivers the pistons to them.

GreenGables bank does a credit analysis of the Buyer and comes to the conclusion that it is
safe to extend the line of credit to the Buyer. However, the Seller needs to submit validating
documents to show the pistons have been manufactured and shipped. These can include a
Bill of Lading (B/L), an invoice, a Carry and Forwarding Agent (CFA) document, and so
on. The Buyer agrees, and the bank issues a document (called an LC) to formalize the
process.

The Buyer can share this document with the Seller and ask them to start manufacturing
their product. After the Seller has manufactured and shipped the goods, they send the
supporting documents to the LC smart contract, to get paid. The bank settles with the Seller
after validating the documents and other details. Finally, the Buyer repays their loan to the
bank, ending the LC life cycle.

We'll be creating the following smart contracts:

USD (ERC20): The first contract will be a simple ERC20 standard token that will
represent the USD in our system, for accounting purposes.
LC Master: The second contract, called LC Master, will issue new LC agreements
between parties and manage these agreements/contracts on the blockchain. It
will be invoked by the bank entity each time it needs to issue a new LC. On being
invoked to issue a new LC, the LC Master contract will create and deploy a new
LC smart contract on the blockchain. The LC Master contract will also allocate
the funds to the new LC contract on the blockchain. The newly minted LC will
disburse these funds when the LC is settled. The LC Master also keeps track of all
the LCs issued and their current status.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[262]

LC: This contract will serve as an interface for issuing new LCs. Functionality-
wise, it is a template that the bank will use for issuing LC contracts. For each
contract, the bank will just need to change the contract parameters, and then use
this template to create and float the new contract. With respect to the actual
implementation, every time a new LC smart contract needs to be created, the LC
Master smart contract will use this contract interface to create and deploy the
new contract.

Setting up the LC workflow
To set up our LC module, we'll be following these steps:

Writing, compiling, and deploying our USD asset contract. Since we need a1.
fungible asset to represent the USD, we'll be using the ERC20 contract standard
to create this asset.
Capturing the address of the USD token and mapping it to our LC Master and2.
LC smart contracts. This address will be used to invoke the USD smart contract
when transferring funds.
Writing the LC Master and LC smart contracts. We'll deploy the LC Master3.
contract to the blockchain. The LC smart contract will be used only as an
interface by the LC Master. It will be imported as part of the LC Master code, and
will not be actually deployed using truffle. All new LCs deployed will be created
using this interface.
Deploying the LC Master smart contract.4.
Creating our React application for creating, viewing, and settling LCs.5.
Running and testing the application.6.

Creating a USD token for accounting
We need to create a USD currency token that will be used by us, simply for accounting
purposes. In an enterprise application, this token will act as a dummy asset, mapped one to
one to the actual funds owned by the bank. In our system, we'll use it to represent the funds
allocated by the bank to the LC escrow account and track the movement of funds across the
banking system.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[263]

Let's start writing our ERC20 smart contract, which will be used to issue and distribute this
token, by following these steps:

Start by creating the USD.sol file. We first declare the compiler version, as 1.
shown in the following code snippet:

pragma solidity ^0.5.2;

Next, import the contracts that we need to create our ERC20 token, as follows:2.

import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Detailed.sol";
import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Capped.sol";
import "openzeppelin-solidity/contracts/ownership/Ownable.sol";

We are using the OpenZeppelin contract suite for creating our ERC20 token. The
OpenZeppelin contract suite provides us with sample smart contracts that can be
quickly imported to create our own contracts. Here, we are using the following
contracts from OpenZeppelin:

ERC20Detailed contract: Defines the ERC20 contract and essential methods
such as transfer, balanceOf, approve, and so on.
ERC20Capped contract: Creates an ERC20 token with an upper cap on the
number of tokens. It can also be used to assign a minter role to an address. The
minter role is used to indicate an address that can mint tokens from this smart
contract.
Ownable.sol: The ownable contract is used to implement the ownership
modifier to public methods, extended by the ERC20 token.

Define the contract USD and inherit the aforementioned contracts, as shown in3.
the following code snippet:

contract USD is ERC20Detailed, ERC20Capped, Ownable {

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[264]

Lastly, define the constructor contract, like this:4.

constructor()
ERC20Detailed("US Dollar", "USD", 2)
ERC20Capped(10000000000)
MinterRole()
payable public {}
}

From the preceding code, we can make the following observations:

We called the constructor of the ERC20Detailed contract to set the name of the
token (US Dollar), the token symbol (USD), and the number of decimal places
after zero (2 decimal places).
We called the ERCC20Capped constructor, to define the upper cap of the number
of USD tokens that can be issued (10000000000 tokens in total).
Lastly, we called the MinterRole() contract constructor, which defines the
address of the contract owner as the default minter of the token.
The contract is payable, which allows it to receive and transfer assets.

Putting it all together, the following code block shows how USD.sol looks:

pragma solidity ^0.5.2;

import "openzeppelin-solidity/contracts/token/ERC20/ERC20Detailed.sol";
import "openzeppelin-solidity/contracts/token/ERC20/ERC20Capped.sol";
import "openzeppelin-solidity/contracts/ownership/Ownable.sol";

contract USD is ERC20Detailed, ERC20Capped, Ownable {

constructor()

ERC20Detailed("US Dollar", "USD", 2)
ERC20Capped(10000000000)
MinterRole()
payable public {}

}

In this section, we've successfully created a USD token for accounting. Now, let's proceed
further, towards deploying it.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[265]

Deploying a USD token for accounting
Let's deploy the contract token we wrote in the previous section to our Ganache
development blockchain, as follows:

Bring your Ganache blockchain online. 1.
Start your truffle console and connect it to the local blockchain by using the2.
following command:

>>truffle console

Move the USD.sol file to the contracts directory in your truffle path. Navigate3.
back to the truffle console and compile the contract from the truffle console, like
this:

(truffle development)>> compile

Next, create a migration file for USD.sol, like this:4.

create migration USD

Check under the migration directory in your truffle path. You'll observe a new5.
migration file for USD. Update it, as follows:

const USD = artifacts.require("USD");

module.exports = function(deployer) {
 deployer.deploy(USD);
};

 Navigate back to the console. Migrate the contract to the Ganache blockchain6.
with the help of the following command:

(truffle development)>> migrate

Capture the contract address from the console, after the contract has been
deployed. Keep this safe as we'll need it later. The contract address is highlighted
in the following screenshot:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[266]

Creating an LC Master smart contract
The LC Master is the singular most important component of our project. It creates new LC
smart contracts and keeps track of their current status.

Our smart contract will feature the following components:

Struct array
LCDoc[]: To keep track of all LCs issued

Methods
createLC: To create and deploy a new LC
lengthLC: To return the total number of LCs issued

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[267]

viewLC: To view an LC
modify LC: To modify the status and current amount of an LC

Events
CreateLCSuccessful: Event emitted on successful LC creation
ModifyLCSuccessful: Event emitted on successful LC
modification

Modifiers
onlyOwner: Allows only the owner access to the method

Writing the contract
Now, let's start writing our LC Master smart contract, which will contain the components
we discussed in the previous section, as follows:

Create a file called LCMaster.sol. 1.
Let's start writing the contract. We first need to define the version of the Solidity2.
compiler we'll be using, as shown in the following code snippet:

pragma solidity ^0.5.2;

Next, we import our dependent contracts, like this:3.

import "./LC.sol";
import "openzeppelin-solidity/contracts/token/ERC20/ERC20.sol";

Since our contract transfers the USD ERC20 token, we implement the4.
ERC20Interface by importing ERC20.sol from OpenZeppelin. This allows us
to access the methods of the USD token contract from the LC Master
contract. LC.sol is the interface used to define individual LCs deployed by
LCMaster. (More on this later, when we write the LC smart contract interface.)
Run the following code:

contract LCMaster {

struct LCData {
 uint LCNo;
 address BuyerAcc;
 address SellerAcc;
 uint Amount;
 bytes2 Status;
 uint DOIssue;
 uint DOExpiry;

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[268]

 address LCAddress;
 }

LCData[] LCDoc;

In the preceding code, we started by defining the LCMaster contract. Next, we
created the LCData structure and the LCDoc[] struct array. This structure and
array are used to map and keep track of all LC contracts issued by LCMaster.
They capture and store the following elements:

LC number
Buyer's Ethereum account address
Seller's Ethereum account address
Amount kept in escrow
Current status of the LC (I—Issued, P—Partially Settled, S—Settled)
Date of issue (DOI) of the LC
Date of expiration (DOE) of the LC
Ethereum address to where the LC smart contract is deployed

We define the parameters to capture the owner's address and the5.
ERC20Interface from ERC20.sol, as follows:

address owner;
 ERC20 public ERC20Interface;

Next, we define an event, CreateLCSuccessful, which is emitted whenever a6.
new LC is created successfully, by running the following code:

event CreateLCSuccessful(
 uint LCNum,
 address SAcc,
 address BAcc,
 uint Amt,
 bytes2 Stat,
 uint DOI,
 uint DOE,
 address LCAdd
);

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[269]

The event shown in the preceding screenshot prints the LC's details to the
console, including the following parameters:

LC number (LCNum)
Seller's Ethereum account address (SAcc)
Buyer's Ethereum account address (BAcc)
Amount kept in escrow (Amt)
Current status of the LC (I—Issued, P—Partially Settled, S—Settled)
DOI of the LC (DOI)
DOE of the LC (DOE)
Ethereum address to where the LC smart contract is deployed (LCAdd)

The following event, ModifyLCSuccessful, is called whenever the LC is7.
successfully modified externally. This is used mostly by the LC smart contracts to
update the current status and amount of the LC. Run the following code:

event ModifyLCSuccessful(
 uint LCNum,
 address SAcc,
 address BAcc,
 uint Amt,
 bytes2 Stat
);

We also implement the following modifier to ensure only the contract owner8.
(which is the bank, in this case) is able to access certain methods. This modifier is
called onlyOwner. This is done through the following code snippet:

modifier onlyOwner {
 if (msg.sender!=owner) revert();
 _;
 }

When the onlyOwner modifier is added to a method, it enforces that only the
contract owner can access it.

Our constructor in the following code block is a payable one to allow it to9.
transfer and receive assets:

constructor () public payable
 {
 owner=msg.sender;
 LCDoc.length = 1;
 }

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[270]

The constructor in the preceding code block sets the owner parameter to the
contract deployer and initializes the length of the LCDoc array to 1.

Now, we define our first method, the createLC() method, like this:10.

 function createLC(address BAcc, address SAcc,uint Amt, uint DOE)
public onlyOwner returns (uint)
{

The preceding function, createLC, accepts the Buyer's Ethereum address (BAcc),
the Seller's Ethereum address (SAcc), the escrow amount (Amt), and the Date of
Expiry (DOE), and creates the LC. It returns the LC number as a uint parameter. It
is defined with the onlyOwner modifier, which indicates only the bank can access
it.

The following code block shows the createLC function:11.

function createLC(address BAcc, address SAcc,uint Amt, uint DOE)
public onlyOwner returns (uint)
{
 LC newLC = new LC(LCDoc.length,BAcc,SAcc,Amt, now,DOE,owner);
 ERC20Interface =
ERC20(0x0357B7E560260945c62b99C002eFC4f5B149eC2a);
 ERC20Interface.transfer(address(newLC), Amt);
 LCDoc.push(LCData(LCDoc.length,BAcc,SAcc,Amt,'I', now
,DOE,address(newLC)));

 emit CreateLCSuccessful(LCDoc[LCDoc.length-1].LCNo,
 LCDoc[LCDoc.length-1].SellerAcc,
 LCDoc[LCDoc.length-1].BuyerAcc,
 LCDoc[LCDoc.length-1].Amount,
 LCDoc[LCDoc.length-1].Status,
 LCDoc[LCDoc.length-1].DOIssue,
 LCDoc[LCDoc.length-1].DOExpiry,
 LCDoc[LCDoc.length-1].LCAddress);

 return LCDoc[LCDoc.length-1].LCNo;
}

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[271]

Here is a step-by-step explanation of the preceding code. The method first issues12.
a new LC smart contract using the LC.sol contract interface that we imported
earlier:

LC newLC = new LC(LCDoc.length,BAcc,SAcc,Amt, now,DOE,owner);

This will essentially create a new LC smart contract.

The LCMaster contract then transfers funds in USD to the newly minted13.
contract. Remember the USD.sol smart contract address you copied earlier?
Substitute it here, instead
of 0x0357B7E560260945c62b99C002eFC4f5B149eC2a. This address tells the
interface where our USD token contract is deployed. After setting the interface,
we call the transfer function on the USD token to transfer tokens equivalent to
the escrow amount (Amt) from our LCMaster smart contract account to the new
LC address (address(newLC)), as shown in the following code block:

ERC20Interface = ERC20(0x0357B7E560260945c62b99C002eFC4f5B149eC2a);
 ERC20Interface.transfer(address(newLC), Amt);

Lastly, we push a new LC instance to our LCDoc struct array using the14.
following line of code:

LCDoc.push(LCData(LCDoc.length,BAcc,SAcc,Amt,'I', now
,DOE,address(newLC)));

The following event, CreateLCSuccessful, is emitted once the preceding steps15.
complete successfully:

emit CreateLCSuccessful(LCDoc[LCDoc.length-1].LCNo,
 LCDoc[LCDoc.length-1].SellerAcc,
 LCDoc[LCDoc.length-1].BuyerAcc,
 LCDoc[LCDoc.length-1].Amount,
 LCDoc[LCDoc.length-1].Status,
 LCDoc[LCDoc.length-1].DOIssue,
 LCDoc[LCDoc.length-1].DOExpiry,
 LCDoc[LCDoc.length-1].LCAddress);

Finally, the contract returns the LC number of the newly minted LC to the16.
requestor, as shown in the following line of code:

return LCDoc[LCDoc.length-1].LCNo;

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[272]

Next, we define the lengthLC() method, to get the number of LCs issued by the17.
LC Master for looping and counting, like this:

function lengthLC() public view returns (uint)
{
 return LCDoc.length;
}

The following method, viewLC(), is another important method. It returns the18.
details of an LC, including the current status and amount for a specific LCNo, like
this:

function viewLC(uint viewLCNo) public view returns (address,
address, uint, bytes2, uint, uint, address)
{

if(msg.sender == owner || msg.sender == LCDoc[viewLCNo].SellerAcc
|| msg.sender == LCDoc[viewLCNo].BuyerAcc)
{

return (
 LCDoc[viewLCNo].SellerAcc,
 LCDoc[viewLCNo].BuyerAcc,
 LCDoc[viewLCNo].Amount,
 LCDoc[viewLCNo].Status,
 LCDoc[viewLCNo].DOIssue,
 LCDoc[viewLCNo].DOExpiry,
 LCDoc[viewLCNo].LCAddress

);
}
}

On invocation, the preceding method first verifies if the requestor is the bank or
the Buyer or Seller for whom the contract is issued. Only then does it return the
details of the contract.

Lastly, we define the ModifyLC method, as follows:19.

function modifyLC(uint LCNum, uint SettleAmt, bytes2 Stat) public
 {
 LCData memory Temp;
 Temp = LCDoc[LCNum];
 Temp.Status = Stat;
 Temp.Amount = SettleAmt;
 delete LCDoc[LCNum];
 LCDoc[LCNum] = Temp;

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[273]

emit ModifyLCSuccessful(
 LCDoc[LCNum].LCNo,
 LCDoc[LCNum].SellerAcc,
 LCDoc[LCNum].BuyerAcc,
 LCDoc[LCNum].Amount,
 LCDoc[LCNum].Status);
}
}

The modifyLC method is invoked by the individual LC smart contracts to update
the status and amount of the LC after a successful settlement event. It accepts the
LC number, the settled amount, and current status as input, and updates the same
for the LCDoc array.

The method captures the initial value of the LC and stores it in a temporary
variable. It updates the Status and Amount from the input parameters and then
updates the new values to the LCDoc array.

After a successful modification, it fires the ModifyLCSuccessful event: 20.

emit ModifyLCSuccessful(
 LCDoc[LCNum].LCNo,
 LCDoc[LCNum].SellerAcc,
 LCDoc[LCNum].BuyerAcc,
 LCDoc[LCNum].Amount,
 LCDoc[LCNum].Status);
}
}

And that's it. We have our LCMaster contract. Let's write the LC smart contract and deploy
them both.

Creating an LC smart contract
The LC smart contract will serve as an interface for the LC Master contract so that we can
create and deploy a new contract. The smart contract will consist of the following
components:

Data structure
LCNew: To capture and store the LC details

Functions
viewLCDetails: To view the LC details
settleLC: To invoke a settlement request to the LC

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[274]

Modifiers
onlyAuth: Only permits buyer, seller, and the bank to access to the
method
onlySeller: Only permits the seller to access the method

Event
SettleLCSuccessful: Triggered after a successful settlement
request

Now, let's start creating the LC smart contract by following these steps:

Start by creating a file called LC.sol.1.
We will first declare the compiler version and import our dependent contracts, as2.
shown in the following code block:

pragma solidity ^0.5.2;

import "openzeppelin-solidity/contracts/token/ERC20/ERC20.sol";
import "./LCMaster.sol";

Our compiler version is 0.5.2. We import the ERC20.sol contract from
OpenZeppelin's suite. This interface will allow us to transfer tokens during
settlement. We also import the LCMaster contract as we need to access the
ModifyLC method in LCMaster during settlements.

Next, we will define the contract and the LC structure, as shown in the following3.
code block:

contract LC {

struct LoC {
 uint LCNo;
 address BuyerAcc;
 address SellerAcc;
 uint Amount;
 uint IniAmount;
 bytes2 Status;
 uint DOIssue;
 uint DOExpiry;
 bytes32 DocHash;
 }

LoC LCnew;

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[275]

The LoC struct in the preceding code is used to define the parameter of the LC
contract. It captures and stores the following details:

LC number (LCNo)
Buyer's Ethereum account address (BuyerAcc)
Seller's Ethereum account address (SellerAcc)
Amount available in escrow (Amount)
Initial amount stored to escrow (IniAmount)
Current status of the LC (I—Issued, P—Partially Settled, S—Settled)
DOI of the LC (DOIssue)
DOE of the LC (DOExpiry)
Hash of the document submitted by the Seller during settlement (DocHash)

The DocHash element is important. It is required to capture the hash of the
supporting documents for settlement. Since the hash is unique and the blockchain
is immutable, this makes the record tamperproof. In the case of suspicion of
fraud, the hash of the documents can be easily calculated again and verified with
the record stored in the blockchain for verification.

Next, we define instances for the ERC20 contract and the LC Master contract, and4.
also define a parameter to hold the bank's address for modifiers and access
controls, as follows:

LCMaster LCM;
 ERC20 public ERC20Interface;
address bank;

In the following code, we will define our constructor:5.

constructor (uint LCNum,address BAcc,address SAcc,uint Amt,uint
DOI,uint DOE,address bankadd) public
 {
 bank = bankadd;
 LCnew.LCNo = LCNum;
 LCnew.BuyerAcc = BAcc;
 LCnew.SellerAcc = SAcc;
 LCnew.Amount = Amt;
 LCnew.IniAmount = Amt;
 LCnew.Status = 'I' ; // I - Issued, S - Settled, P - Partially
Settled
 LCnew.DOIssue = DOI;
 LCnew.DOExpiry = DOE;
 LCnew.DocHash = 0x0;

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[276]

From the preceding code, we can make the following observations:

The constructor takes in the input parameters sent to it by the LCMaster contract
and maps it to the LC struct LCNew object.
These parameters now define our new contract. It also sets the default status as
'I' (Issued), the date of issue to now (current blockchain and system time), and
DocHash to 0x0 (Default Hash value—No Document submitted yet).
It also sets the bank Ethereum address as the address that initially calls the
createLC method in the LC Master contract (bankadd). This parameter is sent as
part of the input parameters from the LC Master.
Initial amount and amount are set to the same value initially. This value (Amt) is
the escrow amount.

We also need to define our imported contract dependencies. The LCMaster6.
instance is sent to the msg.sender address because the new contract is deployed
by the LC Master. This is held by the LCM object. The ERC20Interface instance
is set to the USD token contract address that we stored earlier.
Replace 0x0357B7E560260945c62b99C002eFC4f5B149eC2a with your USD
token contract address. The code is shown here:

LCM = LCMaster(msg.sender);
 ERC20Interface =
ERC20(0x0357B7E560260945c62b99C002eFC4f5B149eC2a);
 }

Next, in the following code block, we define the modifiers for our methods. The7.
onlyAuth modifier allows access only to the bank, Buyer, and Seller relevant to
the LC:

modifier onlyAuth {
 if (msg.sender!=bank && msg.sender!=LCnew.BuyerAcc &&
msg.sender!=LCnew.SellerAcc) revert();
 _;
 }

The following modifier, onlySeller, is for the settlement method. It allows8.
only the Seller's account address to invoke a settlement request on the LC:

modifier onlySeller {
 if (msg.sender!=LCnew.SellerAcc) revert();
 _;
 }

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[277]

The following event, SettleLCSuccessful, is triggered when a settlement9.
request is processed successfully and funds are transferred to the Seller's account:

event SettleLCSuccessful(
 uint LCNum,
 address SAcc,
 uint Amt,
 uint IAmt,
 bytes2 Stat,
 bytes32 DocH
);

The preceding event prints the LC number, the Seller's account from which the
settlement request was made, the amount asked for settlement, the initial amount,
the current status of the LC, and the document hash provided for verification
during settlement.

Now, let's start writing our functions. We start with the viewLCDetails10.
() function, shown in the following code block:

function viewLCdetails() public onlyAuth view returns (uint,
address, address, uint,uint, bytes2, uint, uint, bytes32)
{

The onlyAuth modifier in the preceding code block ensures only the bank, Buyer,
and Seller accounts can access it. The return parameter types are defined as per
the original declaration in our LCnew structure.

Next, we return the requisite data, as shown in the following code block:11.

return (LCnew.LCNo,
 LCnew.BuyerAcc,
 LCnew.SellerAcc,
 LCnew.Amount,
 LCnew.IniAmount,
 LCnew.Status,
 LCnew.DOIssue,
 LCnew.DOExpiry,
 LCnew.DocHash
);
}

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[278]

The method returns the LC details—specifically, the following parameters:

LC number (LCNo)
Buyer's Ethereum account address (BuyerAcc)
Seller's Ethereum account address (SellerAcc)
Amount available in escrow (Amount)
Initial amount stored to escrow (IniAmount)
Current status of the LC (I—Issued, P—Partially Settled, S—Settled)
DOI of the LC (DOIssue)
DOE of the LC (DOExpiry)
Hash of the document submitted by the Seller during settlement (DocHash)

The following method, settleLC, is invoked by the Seller during a settlement12.
request:

function settleLC(uint SettleAmt, bytes32 DocH) public onlySeller
{

It takes the settlement amount (SettleAmt) and document hash (DocH) as input.
The onlySeller modifier ensures only the Seller account can access it.

We start by putting two require statements in place to ensure that our LC13.
contract is valid, as shown in the following code block:

require(LCnew.DOExpiry >= now && now >= LCnew.DOIssue, "LC Expired
or Invalid Date ofIssue");
require(SettleAmt > 0 && SettleAmt <= LCnew.Amount , "Invalid
Settlement Amount");

From the preceding code, we can make the following observations:

The first require statement checks that the time at which the settlement request
was sent is after the date of issue, and before or on the date of expiry of the LC.
In the case of an invalid date of request or an expired LC, it presents the message
LC Expired or Invalid Date of Issue to the console.
The second require statement checks if the settlement amount sent by the seller
for processing is greater than zero and if it is below the total amount available in
the LC.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[279]

Next, we check if the settlement amount (SettleAmt) is less than or equal to the14.
total amount available in the escrow account. In the case of the settlement
amount being less, the Seller can still proceed with a partial settlement. They are
paid the settlement amount from the LC escrow, and the LC escrow amount
parameter is updated to reflect the currently available funds.

If the settlement amount is equal to the total funds allocated to the LC, the entire
amount is settled and transferred to the Seller's Ethereum account. The LC's status
should update to 'S', indicating settled, and the amount in escrow will be set to
zero.

We check the partial settlement case by verifying the settlement amount using an15.
if clause, as shown in the following code block:

if(SettleAmt == LCnew.Amount)
{
ERC20Interface.transfer(msg.sender, SettleAmt);
LCM.modifyLC(LCnew.LCNo,0,'S');

From the preceding code, we can make the following observations:

If the settlement amount (SettleAmt) is equal to the total amount available
under the escrow (LCNew.Amount), we send a transaction worth the escrow
amount to the Seller's address.
This is done by calling the ERC20 transfer method using the ERC20Interface
we defined earlier. The transfer method transfers the settlement amount from
the LC escrow account to the Seller's account.
The Seller's account is identified here, through the msg.sender variable, as it
holds the account of the Seller making the settlement request.

Next, we invoke the modifyLC method we created earlier in our LC Master16.
smart contract. This invocation is done using the LC Master LCM instance we
defined earlier.

The input parameters that are set are the LC number, 0 (current amount in LC
after settlement), and the 'S' flag, indicating a full settlement of the LC.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[280]

The following code shows the modifyLC method from LCMaster that we wrote17.
earlier:

function modifyLC(uint LCNum, uint SettleAmt, bytes2 Stat) public
 {
 LCData memory Temp;
 Temp = LCDoc[LCNum];
 Temp.Status = Stat;
 Temp.Amount = SettleAmt;
 delete LCDoc[LCNum];
 LCDoc[LCNum] = Temp;

The modifyLC method declares a temporary object called
Temp and stores the existing values of the LC.
It then updates the current amount (0 USD) and status (S) of the
LC, as sent by the child LC contract, and updates it to the LCDoc
struct array.
It does so by deleting the old component and replacing the new
one.

It then issues an event with the new LC details after successful modification, as18.
shown in the following code block:

emit ModifyLCSuccessful(
 LCDoc[LCNum].LCNo,
 LCDoc[LCNum].SellerAcc,
 LCDoc[LCNum].BuyerAcc,
 LCDoc[LCNum].Amount,
 LCDoc[LCNum].Status);
}

The preceding event prints the LCNo, the Seller's account, the Buyer's Account,
current amount, and current status.

Back to our settleLC() method in the LC smart contract. After the successful19.
execution of the transfer and update to the LC Master contract, we update the LC
details in the LC smart contract, as shown in the following code block:

LCnew.Amount = 0;
LCnew.Status = 'S';
LCnew.DocHash = DocH;
}

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[281]

In the preceding code, the current amount is set to 0, the status to 'S', and the
document hash sent as part of the request is stored. These details can be viewed
any time using the viewLCdetails() method.

Lastly, the SettleLCSuccessful event is triggered, as follows:20.

emit SettleLCSuccessful(LCnew.LCNo,
 LCnew.SellerAcc,
 LCnew.Amount,
 LCnew.IniAmount,
 LCnew.Status,
 LCnew.DocHash);

It prints the following details to the console:

The Seller's Ethereum account to which the funds were transferred (SellerAcc)
The current funds in the escrow (Amount)
The initial funds in the escrow (IniAmount)
The current status of the LC (Status)
The hash of the document submitted for settlement (DocHash)

If the settlement amount is less than the amount, the following else clause will be
triggered:

else
 {
uint currAmt = LCnew.Amount - SettleAmt
ERC20Interface.transfer(msg.sender, SettleAmt);
LCM.modifyLC(LCnew.LCNo,currAmt,'P');

From the preceding code, we can make the following observations:

We first calculate the current amount (currAmt), by deducting the settlement
amount from the escrow amount.
Next, we invoke the ERC20 transfer method, using the ERC20Interface to send
the settlement amount from our LC escrow account to the Seller's account. The
Seller's account is identified from the system-defined msg.sender parameter.
The LC Master instance (LCM) is used to invoke the modifyLC method within
the LC Master smart contract. The input parameters are the LC number
(LCnew.LCNo), the current amount in the LC escrow (currAmt), and the current
status ('P'), to denote partial settlement.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[282]

As in the total settlement case, the modifyLC method updates the current status and
current amount for the LC and triggers the ModifyLCSuccessful event. After a successful
settlement, we update the LC details for our child LC contract. The new amount, the new
status, and the hash of the document submitted for settlement is updated for our LCnew
object, which holds the LC details, as follows:

LCnew.Amount = currAmt;
LCnew.Status = 'P';
LCnew.DocHash = DocH;

These can be viewed for recording purposes using the viewLCdetails method. Lastly, the
SettleLCSuccessful event is triggered, as follows:

emit SettleLCSuccessful(LCnew.LCNo,
 LCnew.SellerAcc,
 LCnew.Amount,
 LCnew.IniAmount,
 LCnew.Status,
 LCnew.DocHash);
}
}
}

The preceding code prints the following details to the console:

The Seller's Ethereum account to which the funds were transferred (SellerAcc)
The current funds in the escrow (Amount)
The initial funds in the escrow (IniAmount)
The current status of the LC (Status)
The hash of the document submitted for settlement (DocHash)

With that, we come to the end of our settleLC method, and the LC smart contract.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[283]

Deploying the LC Master smart contract
To deploy the smart contract, first bring your Ganache blockchain online. Make sure your
Ganache test server is running on localhost:8545. To do so, select the New Workspace
option from the Ganache launch screen. Click on the Server tab on the Workspace screen.
Set the port number to 8545, as shown in the following screenshot:

Click on Save Workspace in the upper-right corner. A blockchain network will be started,
as follows:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[284]

Let's deploy the contracts we built earlier to our Ganache blockchain, as follows:

Open a Terminal window and navigate to your truffle project directory. Bring the1.
truffle console online by entering the following command:

truffle console

Copy and paste the LCMaster.sol and LC.sol contracts into the2.
contracts directory in your truffle project.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[285]

As shown in the following screenshot, navigate back to the truffle console and3.
compile both the contracts by entering the compile command:

After successful compilation, create a migration file for LCMaster.sol, like this:4.

(truffle development)>> create migration LCMaster

The preceding command will return the following output:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[286]

Within your File Explorer, navigate to your truffle directory. Open the5.
migration folder.
Open the newly created migration file in a text editor and update it with the6.
following code:

const LCMaster = artifacts.require("LCMaster");
module.exports = function(deployer) {
 deployer.deploy(LCMaster);
};

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[287]

Now, navigate back to the truffle console and enter migrate on the Terminal7.
window to migrate the LCMaster contract, as follows:

(truffle development)>> migrate

The console should deploy all the contracts again, as follows:

Note the address to which the LC Master contract is deployed. We'll need this later.

All right. So, now, we have all three of our contracts deployed. Let's create our React app,
which will interact with these three smart contracts.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[288]

Creating the LC module React app
Our React app will have the following users and features. It will allow end users to interact
with our smart contracts through a frontend layer, as follows:

Bank: The bank user who logs in to the app. The user can create and view LCs.
Buyer: The buying merchant who requests an LC from the bank. The Buyer can
view all the LCs issued in their name by the bank.
Seller: The selling merchant who will approach the bank for settlement, on the
successful delivery of their goods to the buying merchant. The Seller can view
the LCs that include them as a beneficiary and submit a settlement request.

Broadly, the app will have the following React components:

Address Bar: Displays the account used to access the app in real time.
Description: A component that provides a description of the app.
Nav: A component that implements a navigation bar, with the bank's name and
logo.
InputField: A component that implements the input fields, used for getting
inputs from the user.
Container: The link between the main App.js file and the rest of the child
components. It renders child components based on the current state. It receives
all state variables and methods and forwards them to the child components, as
and when required.
Bank Login: A login screen for our bank. It will allow the Buyer, the Seller, and
the bank to log in to the app and use it. It also redirects them to the lower
screens, for using the app.
BankTabCreate: The component that renders the Create LC screen for the bank
user.
BankTabView: The component that renders the View LC screen for the bank
user.
BuyerTabView: The component that renders the View LC screen for the Buyer.
SellerTabSettle: The component that renders the Settle LC screen for the
Seller.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[289]

SellerTabView: The component that renders the View LC screen for the Seller.
LCView: The component that renders a singular screen, with all the details of a
single LC. It can be accessed by the bank user, the Buyer, or the Seller.

Apart from these components, the two js files in the contract folder will hold the following
details:

LCMaster: Holds the contract address and the LCMaster contract application
binary interface (ABI)
LC: Holds the ABI for the LC contract

Lastly, we'll have our regular React files, including the following:

App.js

App.cs

index.js

package.json

Some knowledge of React is expected for this part of the tutorial. If you want to skip the
React part and directly get to executing the app, you can access the entire code base at the
following GitHub link.

We'll be taking a look at only the important components in this section, and thus not all the
components will be covered. However, you can access the entire code base at the following
GitHub link: https://github.com/PacktPublishing/Blockchain-Development-for-
Finance-Projects/tree/master/Chapter%206/LCApp.

Now, let's dive into creating our app.

Creating the React project environment
Let's set up our app environment, as follows:

Create a new React app called LCApp using npx, like this:1.

npx create-react-app LCApp

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%206/LCApp

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[290]

Update your package.json to the following values:2.

{
 "name": "lcapp",
 "version": "1.0.0",
 "dependencies": {
 "bulma-start": "0.0.2",
 "react": "^16.4.2",
 "react-dom": "^16.4.2",
 "react-scripts": "1.1.4",
 "web3": "^1.2"
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test --env=jsdom",
 "eject": "react-scripts eject"
 }
}

Run npm install on the Terminal window to install the dependencies.3.
Next, within the src folder, create a Components folder for the app components.4.
Also, create a contracts folder within src. We'll be using this to map the
contracts being used by the app.

Setting up the contract interfaces
Next, we will create the contract interface that will be used by our React app to invoke the
contracts. Follow these steps:

Within the contracts folder, create the LCMaster.js and LCabi.js files. 1.
Open the LCMaster.js file in a text editor.2.
With the file open, navigate to your truffle project environment, which you used3.
to deploy the LCMaster and LC smart contracts.
In the truffle environment, locate the builds directory. Under builds, you'll4.
find the LCMaster.json build file.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[291]

Open the file and locate the contract ABI. It should look like this:5.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[292]

Copy this entire ABI and paste it into the LCMaster.js file as a parameter, as
follows:

export default {

abi: ["constant": true,
 "inputs": [],
 "name": "ERC20Interface",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],...............]}

Similarly, copy and paste the contract address we got for LCMaster.js during6.
deployment. Add this as a parameter to LCMaster as well, like this:

export default {

address: "0x26518b6a8E4f8B20413C1Cf70DC05B58Cb5171A0",

abi: [...............]}

Save the file. We'll load this object in order to interact with the LCMaster7.
contract we deployed to the blockchain.
Now, open the LCabi.js file in a text editor. Add the ABI for the LC smart8.
contract as a parameter.
To do so, navigate back to the truffle build directory and open the LC.json build9.
file.
Open the file and locate the ABI.10.
Copy the ABI and paste it into the LCabi.js file as a parameter, as follows:11.

export default {
 "abi": [
 {
 "constant": true,
 "inputs": [],
 "name": "ERC20Interface",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],......]}

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[293]

So, now, we have our contract interfaces. Let's create our components.

Building the React components
We will build the following components in the proceeding subsections:

BankLogin.js

BankTabCreate.js

SellerTabSettle.js

SellerTabView.js

Container.js

Let's start working on our React app components. We'll start with the
BankLogin.js component.

Creating the BankLogin.js component
The BankLogin.js component is pretty standard. It renders a screen with three buttons
that indicate the three user roles defined earlier. These are the Buyer, the Seller, and the
Bank. On clicking on the button, the relevant user is logged in, as follows:

For the Bank user, the default screen is the Create LC screen.
For the Buyer, the default screen is the View LC screen.
For the Seller, the default screen is the Settle LC screen.

Let's look at how the Banklogin.js component renders the login screen:

<div className="column has-text-centered">
 Login as:
 </div>

 <div className="column has-text-centered">

props.BuyerSessionView()}>
 Buyer

 </div>

 <div className="column has-text-centered">

props.BankSessionCreate()}>
 GreenGables Bank

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[294]

 </div>

 <div className="column has-text-centered">

props.SellerSessionSettle()}>
 Seller

 </div>

More on
the BuyerSessionView, BankSessionCreate, and SellerSessionSettle methods late
r, when we write our App.js code.

Creating the BankTabCreate.js component
The BankTabCreate.js component renders a screen that can be used for capturing the
details for creating a new LC. On submitting the request, it calls the createLC method,
which generates a new LC contract on the blockchain. More on this method later, when we
write our App.js code. The code can be seen here:

</div>
 <InputField onInputChangeUpdateField={props.onInputChangeUpdateField}
 fields={props.fields} name="BuyerAccount" placeholder="Buyer Account"/>

 <InputField onInputChangeUpdateField={props.onInputChangeUpdateField}
 fields={props.fields} name="SellerAccount" placeholder="Seller Account"/>

 <InputField onInputChangeUpdateField={props.onInputChangeUpdateField}
 fields={props.fields} name="Amount" placeholder="Amount"addon="USD"/>

 <InputField onInputChangeUpdateField={props.onInputChangeUpdateField}
 fields={props.fields} name="DOExpiry" placeholder="Date of Expiry
(YYYYMMDD)"/>
</div>

</div>
 <div className="panel-block is-paddingless is-12 ">
 <div className="column has-text-centered ">

 <div className="button" onClick={() => props.createLC()}>
 Submit
 </div>

 <div className="button" onClick={() => props.closeTab()}>

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[295]

 Back
 </div>

The screen captures the Buyer's Ethereum account address, the Seller's Ethereum account
address, the amount of the LC escrow, and the DOE of the LC through the input fields. By
clicking on the Submit button, it calls the createLC method to invoke the LCMaster smart
contract.

Creating the SellerTabSettle.js component
The SellerTabSettle.js component renders a screen for capturing and settling a
settlement request from the Seller, as follows:

<InputField onInputChangeUpdateField={props.onInputChangeUpdateField}
 fields={props.fields} name="LCNo" placeholder="LC Number"/>

 <InputField onInputChangeUpdateField={props.onInputChangeUpdateField}
 fields={props.fields} name="Amount" placeholder="Amount" addon="USD"/>

 <InputField onInputChangeUpdateField={props.onInputChangeUpdateField}
 fields={props.fields} name="DocHash" placeholder="Document Hash"/>

</div>
 </div>
 <div className="panel-block is-paddingless is-12 ">
 <div className="column has-text-centered ">

 <div className="button" onClick={() => props.settleLC()}>
 Submit
 </div>

 <div className="button" onClick={() => props.SellerSessionView()} >
 Back
 </div>

It renders a screen with the input fields to capture the LC number the seller wants to settle,
the settlement amount, and the hash signature of the document submitted by the Seller for
the settlement. On clicking the Submit button, the settleLC method is called. More on this
method later, when we look at our App.js file.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[296]

Creating the SellerTabView.js component
The SellerTabView.js component maps an array, LCNew, containing the list of all LCs
issued with the Seller as the beneficiary, and displays it to the user in a serialized manner.
Additionally, it provides the View Details and Settle LC buttons next to each entry. On
clicking on the Settle LC button, the user is redirected to the Settle LC screen, where the
Seller can submit a settlement request. On clicking View Details, the Seller is redirected to
the LCView screen, which shows all the details of the LC.

The BankTabView.js and BuyerTabView.js components are similar to
the SellerTabView.js component in implementation, except they do not have the option
to settle the LC.

One interesting point to note here is the implementation of the DOI and DOE parameters.

Since the Ethereum blockchain stores dates in Universal Time Coordinated (UTC) format
(milliseconds from January 1, 1970), we first convert the date fetched from the blockchain
into a standard ISO format string. The ISO format string is then spliced so that we only
have the date of issue and expiry, and the time details are not shown to the user, as follows:

props.LCNew.map((LC,index) => {
 var DOI = (new Date(LC.DOI*1000)).toISOString();
 var DOE = (new Date(LC.DOE*1000)).toISOString();
 var DOIssue=DOI.split("T",1);
 var DOExpiry=DOE.split("T",1);

Creating the Container.js component
The Container.js component holds several other components, toggles a components'
display as per state changes, and passes down their props to the components after it
receives them from App.js.

The Container.js component mainly renders dependent on the state.role and
state.option state variables that are sent to it by App.js. state.role indicates the role
of the user (Bank, Buyer merchant, Seller merchant) currently logged in to the application.
state.option indicates the option selected by the user (View LC, Create LC, Settle LC).

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[297]

Based on the option selected, the container renders and toggles between the following
components:

BuyerTabView.js

BankTabCreate.js

BankTabView.js

SellerTabView.js

SettlerTabSettle.js

BankLogin.js

LCView.js

As their names suggest, the first five components indicate the role and the option selected.
So, for example, when the Bank selects Create LC, BankTabCreate.js is rendered.

The sixth component in the list, BankLogin.js, is the default component rendered when
no role or option is selected. Thus, it is the login page and the landing page for our app.

The LCView.js component is a common component that gives the details of a single LC,
and it gets rendered whenever the option selected is ViewSingleLC, whichever the role
might be.

A list of props is passed on while rendering the components. These include the following:

LCNew, an array that maps a list of all LCs that the user can view/settle.
LC, a struct variable that stores the details of the LC to be displayed in the
LCView component.
createLC() and settleLC() methods, which are called by their respective
components on clicking the Submit button.
A set of session setters, including BuyerSessionView, BankSessionView,
BankSessionCreate, SellerSessionSettle, and so on, which set the current
role and option when invoked. Thus, they are passed to the components while
rendering to enable navigation between the App components.

So, now, we have completed building our components. Let's bring it all together with our
main App.js file.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[298]

Writing the app methods and creating the App.js
file
The App.js file will have the following methods defined under it:

constructor (): Initializes the state variables.
componentDidMount: Checks if the MetaMask web3 provider is available and
fetches the user's Ethereum account.
A set of session setters that set the role and the option selected. These include
the following:

BuyerSessionView

BankSessionCreate

BankSessionView

SellerSessionView

SellerSessionSettle

SellerSessionVSettle
A set of utility methods for navigation and operation, which include the
following:

onInputChangeUpdateField: For capturing and storing the
input fields data to the state.
 closeTab: To close the current tab and go back to the landing
page.
closeViewTab: To close the view single LC tab.
resetApp: To reset the app, including the state variables and the
form fields, after a transaction.

The createLC method
The viewLC method
The viewSingleLC method
The settleLC method
render: Renders the Component.js file and passes it the props

Let's take a look at these.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[299]

Writing the constructor() method
Let's look at the constructor method of our App.js file and the preliminary state it
initializes, as follows:

The constructor starts by instantiating the LCMaster and LCabi components we1.
defined earlier, like this:

class App extends Component {

 constructor(){
 super();

 this.LCMaster = LCMaster;
 this.LCabi = LCabi;

Next, it sets the app name (GreenGables Bank) and binds our methods so that2.
they can be accessed from the child components, as follows:

this.appName = 'GreenGables Bank';
this.closeTab = this.closeTab.bind(this);
this.resetApp = this.resetApp.bind(this);
this.viewLC = this.viewLC.bind(this);
this.viewSingleLC = this.viewSingleLC.bind(this);
this.onInputChangeUpdateField =
this.onInputChangeUpdateField.bind(this);

Lastly, it declares and defines our default state when the app is loading for the3.
first time. Notice how the role and the option variables are set to null. It also
declares a set of fields, including BuyerAccount, SellerAccount, Amount,
DOExpiry, DocHash, and LCNo, which will be used by the child components to
take inputs from the user. It also declares the LCNew array, which will store the
dynamic list of LCs that will be used for further processing. The LC object will be
used to store information when the user wants to view the details of a single LC:

this.state = {
 role: null,
 option: null,
 LCNew: [],
 LC: [],
 fields: {
 BuyerAccount: null,
 SellerAccount: null,
 Amount: null,
 DOExpiry: null,
 DocHash: null,

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[300]

 LCNo: null
 },
 };

Using the componentDidMount method
We use our componentDidMount method to check if the MetaMask-injected
web3provider is currently available within the browser window. This is done by checking
if the window.ethereum object is available, as follows:

componentDidMount(){
 var account;

if (window.ethereum) {

If window.ethereum is available, we instantiate our current web3 instance so that it uses
the MetaMask-injected web3 instance, like this:

if (window.ethereum) {
 const ethereum = window.ethereum;
 window.web3 = new Web3(ethereum);
 this.web3 = new Web3(ethereum);

Next, we ask MetaMask for permission to access the user's accounts that are available in the
MetaMask wallet. This is done by requesting access through ethereum.enable(), as
follows:

ethereum.enable().then((accounts) => {

When we run our app, MetaMask will pop up a window to the user, asking if they want to
grant the app access to their MetaMask accounts. If the user clicks on Confirm, the app is
then able to access the MetaMask-injected web3 instance and the user's accounts.

On approval, MetaMask returns an array of the accounts available in the wallet. The
primary account is available at the zeroth position, account[0]. Our app captures this
account and stores it as the default account for our web3 instance, as follows:

ethereum.enable().then((accounts) => {
this.web3.eth.defaultAccount = accounts[0];

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[301]

Additionally, we capture and update this account to our state as well, like this:

account = accounts[0];
let app = this;
this.setState({
account
 });

This ends our componentDidMount method.

Building the session setters
The session setters have a standard format, as follows:

BuyerSessionView = () => {
 this.setState({
 role: 'Buyer',
 option: 'View'
 })
 this.viewLC();
 };

On invocation, they set the state role and option, based on their functionality. So, in the
preceding example, BuyerSessionView sets the role to Buyer and the option to View.

In the case of all the View setters, the session setter method also calls the viewLC() method
to populate the LCnew array before rendering the view LC screen. The viewLC() method
fetches the list of LCs relevant to the current session user from the LCMaster smart contract
and populates it in the LCnew[] array.

Writing the createLC method
Now, we come to the primary methods of our app. We start with the createLC method, as
follows:

We start the app by storing the current app state in the app variable, as shown in1.
the following code block. This will allow us to refer to the current app state
during asynchronous calls:

createLC = () => {
 let app = this;

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[302]

The contract variable is used to instantiate an LCMaster object, which points to2.
the LCMaster smart contract we deployed earlier to our blockchain. We do so by
using the web3.eth.contract method. The input parameter to this method is
the contract ABI, and the second parameter is the contract address. Since we had
mapped these earlier to the LCMaster object, we simply fetch these values and
pass them to the method, like this:

var contract = new this.web3.eth.Contract(this.LCMaster.abi,
this.LCMaster.address);

Next, we fetch the user inputs while creating the LC. The date input by the user3.
is spliced into year, month, and day, like this:

let dateExpiry = this.state.fields.DOExpiry;
 let year = dateExpiry.slice(0,4);
 let month = dateExpiry.slice(4,6)-1;
 let day = dateExpiry.slice(6,8);

This value is then converted into UTC format, which Ethereum understands and4.
interprets, like this:

 var DateTemp = new Date(year, month, day, 23, 59, 59, 0)
 var DOE = Math.floor(DateTemp.getTime()/1000.0)

We use our contract object to call the createLC method in LCMaster, as shown5.
in the following code block. The transaction is sent from the
web3.defaultAccount we set earlier:

contract.methods.createLC(this.state.fields.BuyerAccount,this.state
.fields.SellerAccount,
 this.state.fields.Amount,DOE).send({from:
app.web3.eth.defaultAccount}).then(function(response){

Lastly, we check the response from the smart contract method. The successful6.
response, which is the contract LC number, is printed to the console, as follows:

if(response) {
 console.log("LC No.");
 console.log(response);
 app.resetApp();
 }
 })

On to the next method, viewLC.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[303]

Writing the viewLC method
Next, let's look at the method that will fetch the details of the LCs issued by the bank on the
blockchain. To do so, we'll fetch the LC details from the LC Master smart contract by
invoking the smart contract viewLC method, as follows:

We start our viewLC method by defining the contract instance, similarly to the1.
last method, as follows:

let app = this;
 var lastLC;

 var contract = new
this.web3.eth.Contract(this.LCMaster.abi,this.LCMaster.address);

The first contract call is to the lengthLC method. This method returns the2.
number of LCs that have been created in the LCMaster contract. This number is
the length of the LCDoc array. The code can be seen here:

contract.methods.lengthLC().call().then(function(response){

On a successful response, we store the length of the LCDoc array in the lastLC3.
variable, like this:

if(response) {
 lastLC = response;

If lastLC is greater than 1 (that is, LCs have been issued by the LCMaster4.
contract), we perform the next set of steps, like this:

if (lastLC > 1)
 {
 app.setState({
 LCNew: [],
 })

 for (let i = 1; i < lastLC ; i++)
 {
 contract.methods.viewLC(i).call().then(function(response){

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[304]

We first reset the LCNew state variable and clean any previous data. Next, we run
a loop and iterate from 0 to lastLC, and call the viewLC method in the LCMaster
smart contract. For each function call to viewLC , we send the i loop counter as
the LCNo input parameter.

The resultant output response is captured by a set of local variables. Notice how
the value for Status is converted using a web3 utility from hex to ASCII. This is
because Ethereum stores bytes values in hex representation. The code can be seen
here:

if(response) {
 let LCNo = i;
 let SAcc = response[0];
 let BAcc = response[1];
 let Amount = response[2];
 let Status = app.web3.utils.hexToAscii(response[3]);
 let DOI = response[4];
 let DOE = response[5];
 let LCAdd = response[6];

LCNew is initialized as a local variable from the LCNew state variable. For each5.
iteration of the loop, we push the viewLC response to the LCNew local variable
and update the LCNew state variable, as follows:

let LCNew = app.state.LCNew;

 LCNew.push({
 LCNo,
 BAcc,
 SAcc,
 Amount,
 Status,
 DOI,
 DOE,
 LCAdd
 });
app.setState({
 LCNew
 })

That brings us to the end of the viewLC method in our App.js file.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[305]

Writing the viewSingleLC method
The viewSingleLC method is used to view the details of a single LC. Unlike viewLC, it
returns the details of the LC from the LC smart contract instead of the LC Master smart
contract. Let's look at the code for the method:

The method takes the LC address as the input parameter. It will fetch the details1.
of a single LC and allow the app to render these details on the screen. It does so
by invoking the viewLCDetails function on the LC.

It first resets the LC state variable to blank, like so:

viewSingleLC = (LCAdd) => {

 let app = this;
 app.setState({
 LC: [],
 });

Next, it instantiates the LC smart contract. To do so, it fetches the ABI from the2.
LCabi object we created earlier. It takes the address from the input parameters,
as follows:

var contract = new this.web3.eth.Contract(this.LCabi.abi,LCAdd);

Next, a call is made to the viewLCDetails method in the LC smart contract, as3.
follows:

contract.methods.viewLCdetails().call().then(function(response){

On a successful response, the response is mapped to a set of local variables, like4.
this:

if(response) {
 let LCNo = response[0];
 let BuyerAcc = response[1];
 let SellerAcc = response[2];
 let Amount = response[3];
 let IniAmount = response[4];
 let Status = app.web3.utils.hexToAscii(response[5]);
 let DOI = response[6];
 let DOE = response[7];
 let DocHash = response[8];

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[306]

The local variables are then pushed to the LC array, like this:5.

let LC = app.state.LC;

 LC.push({
 LCNo,
 BuyerAcc,
 SellerAcc,
 Amount,
 IniAmount,
 Status,
 DOI,
 DOE,
 DocHash
 });

Finally, we update the app state with a new LC array. We also set the current6.
option to ViewSingleLC so that the LCView component is rendered, as follows:

app.setState({
 LC,
 option: 'ViewSingleLC'
 })

With that, we come to the end of the viewSingleLC method.

Writing the settleLC method
The settleLC method is called when the Seller wants to initiate a settlement. The method
starts by instantiating the LCMaster contract.

Next, it calls the viewLC method in LCMaster with the LC number for which settlement is
requested. It gets the LC number from the fields defined in the state, as follows:

settleLC = () => {
 let app = this;
 var contractMaster = new
this.web3.eth.Contract(this.LCMaster.abi,this.LCMaster.address);
contractMaster.methods.viewLC(app.state.fields.LCNo).call().then(function(r
esponse){

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[307]

On a successful response, we capture the LC contract address for the LC number, from the
response in the LCAddress local variable, as follows:

if(response) {
 let LCAddress = response[6];

We instantiate a new contract instance for the LC smart contract. After instantiating, the
settleLC method is called in the LC smart contract. We pass the settlement amount and
the document hash as input parameters, as follows:

var contractLC = new app.web3.eth.Contract(app.LCabi.abi,LCAddress);
contractLC.methods.settleLC(app.state.fields.Amount,app.state.fields.DocHas
h)
.send({from: app.web3.eth.defaultAccount})
 .then(function(response){
 if(response) {
 console.log(response);
 app.resetApp;
 }

The successful response is logged to the console and resetApp is called to reset the app
state.

That brings us to the end of our App.js file. Let's run the app and see how it looks.

Running the LC module
Let's run the entire application and see how it works. If you have not already done so, start
your Ganache blockchain and run a Quickstart blockchain at localhost:8545, as shown
in the following screenshot:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[308]

Make sure the USD token contract and LC Master contract are deployed. If you haven't
already done so, you might want to revisit this again by looking at the previous steps.

Before we can deploy LCs, we need to provide funds to the LC Master smart contract. The
LC Master will distribute these funds whenever it creates a new escrow—that is, a new LC
smart contract.

To do so, we need to allocate some USD tokens to the LC Master smart contract. These
tokens will act as the USD balance for the LC issuer. Take the following steps:

Navigate to the truffle console. In the command line, set your web3 default1.
account to the first account in your Ganache HD wallet using the
following command:

web3.eth.defaultAccount =
'0x60f569790e9b87f93aB6bF9bBb3118f6E1C1598b'

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[309]

Next, enter the following command into the truffle console. It will mint2.
(generate) a 10000000 USD token to the LC Master contract address. Your LC
Master smart contract address is the one you get after deploying the contract
through truffle:

USD.deployed().then(function(instance) { return
instance.mint("<Your LC Master contract address>",10000000);
}).then(function(responseb) {console.log("response",
responseb.toString(10));});

Before we can start, we also need to set up the MetaMask wallet so that we can3.
use the application. We'll be using three Ethereum accounts for our demo. We
need to import all three into MetaMask. Navigate back to the Ganache interface,
as shown in the following screenshot:

We will be using the first account in the preceding list as the bank account, the
second account as the buying merchant's account, and the third as the selling
merchant's account.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[310]

To import an account, click on the key icon on the extreme right, next to the4.
Index column. A screen will pop up with the secret key, like the one in
the following screenshot:

Copy this key and open your MetaMask wallet. Make sure you are connected to5.
localhost:8545 as your Ethereum network source.

Click on the circular pie icon at the top-right corner. Select Import Account from6.
the menu that opens, as shown in the following screenshot:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[311]

Make sure the Import tab is selected and that Type is selected as Private Key, as7.
shown in the following screenshot:

Paste the secret key you copied earlier and click on Import. The account should8.
now appear in your wallet, as shown in the following screenshot:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[312]

Do this for the first three accounts in the Ganache blockchain list. The accounts9.
should appear in your Metamask wallet, as shown in the following screenshot:

Addresses can be mapped to users and stored in a database for this
screen. Then, the bank user only has to select the Buyer and the Seller
from a drop-down list, and the account will get populated automatically.

OK. Now, we are ready to start our LC module.

Navigate to your React project directory and into the LCApp folder. Start the application by
running the following command:

npm start

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[313]

After a while, the app will open in the browser, as follows:

In the MetaMask popup that appears, select Connect to allow our React app to use
MetaMask's injected web3 instance.

You might have to sign in to MetaMask if you have signed out. Sign in and repeat the
preceding steps. You will then see the following screen:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[314]

Now, we are ready to start with our demo, as follows:

First, we will go through the app as the bank user. Let's say a new LC has been1.
requested by a customer to the bank. The bank verifies their credit rating and
ascertains the customer is liquid. Then, they agree to issue an LC.

Make sure the bank's Ethereum account is selected in MetaMask. If it's not, go
back to MetaMask, and from the account dropdown, select the account. If you
have followed the steps correctly, this should be Account 2 in your MetaMask
wallet, as shown in the following screenshot:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[315]

After selecting the current account, the app should look like the one shown in the2.
following screenshot. Notice the Account: tab, with the bank's Ethereum account
displayed:

Click on the GreenGables Bank button to log in as a bank user. You'll be3.
navigated to a new screen containing the Create LC and View LC buttons, as
shown in the following screenshot:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[316]

Let's start by creating a new LC.

Enter the details in the form in the Create LC screen. The Buyer account and the4.
Seller account are the second and third accounts we imported from Ganache,
respectively. Under the MetaMask wallet, these will be available as Account 3
and Account 4. Paste these details into the MetaMask screen. Let's issue an LC
with a small amount, around $1,000, due to expire on September 1, 2019, as
follows:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[317]

Click on the Submit button at the bottom of the screen to continue. On clicking5.
on Submit, the createLC method is called. MetaMask will pop up with a
notification, asking if you want to send the transaction, as shown in the following
screenshot:

Click on Confirm. The transaction will be submitted and you'll get a notification6.
at the top of your browser screen, as shown in the following screenshot:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[318]

Log in again as the bank user (GreenGables Bank). Click on View LC. You7.
should be able to see the newly issued LC here, as follows:

Click on View Details. This is a call to the viewLCdetails method in the newly8.
deployed smart contract. It will show you the details of the LC, as shown in the
following screenshot:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[319]

Now, let's log back into the app as a buyer. Go back to the app home screen by9.
clicking the GreenGables Bank icon at the top left-hand side.
In your MetaMask wallet, switch to Account 3, which is the Buyer's account, and10.
reload the app. The Account tag should now reflect the Buyer's address. Click on
the Buyer button on the home page to log in. You should be able to see the View
LC screen, as follows:

Click on View Details; you should see the following screen:11.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[320]

OK. Now, let's log in as the Seller merchant and try to view and settle the LC.12.
Switch to the Seller's account in MetaMask (Account 4), as follows:

Navigate back to the app screen and reload the app. Log in as Seller and13.
navigate to the View LC screen by clicking on the View LC button, as follows:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[321]

Now, let's try to settle this LC. Let's create a mock invoice document whose hash14.
we'll be submitting for audit purposes, as follows:

Save the file. To calculate the hash, you can upload it to an online hash converter15.
and convert the file into a SHA256 or SHA3 hash. Alternatively, you can build a
hash connector Node.js utility to upload the file and return its hash.
Here, I am using an online hash converter to get the SHA256 hash. Now, you will16.
have to upload the file, as follows:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[322]

Browse and select the file, as follows:17.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[323]

Click on Convert to get the hex hash representation, as follows:18.

Now, go back to the Settle LC screen on our LC app. Click on the Settle LC19.
button next to the LC you want to settle, as follows:

The Settle LC screen should pop up with the LC number populated, as shown in
the following screenshot:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[324]

Let's try a partial settlement first. Let's raise a settlement claim for $500.

Put the amount as 500 USD and paste the SHA256 hash we generated. Make sure20.
you add 0x at the front of the hash as Ethereum supports checksum hex, as
follows:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[325]

Click on the Submit button to continue. MetaMask will open a window, asking if21.
you want to permit the transaction. Click on Confirm to continue, as follows:

After a successful transaction submission, you'll get a notification in the browser
at the top of the screen, as shown in the following screenshot:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[326]

Navigate to the View LC screen. You'll see that the LC status has changed from I22.
to P, indicating partial settlement. The amount available has gone down to 500
USD from 1000 USD, as shown in the following screenshot:

If you click on the View Details button, you should be able to see the initial
amount as 1000 USD and the current amount as 500 USD. You should also be
able to see the Document hash.

Now, transfer the rest of the amount. Create a new invoice and document hash.23.
Go to the Settle LC screen and submit a new Settle LC request for 500 USD, as
follows:

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[327]

Allow MetaMask to submit the transaction by clicking on Confirm. After a24.
successful transaction execution, you should see the LC status change to S and
Amount change to 0 USD, as shown in the following screenshot:

With that, we come to the end of our LC life cycle.

Summary
So, finally, we wrap up building our LC workflow. This chapter should help you design
more complex smart contracts and give you a good understanding of how to leverage
smart contracts as escrows and for designing workflows. While the use case we looked at is
a very basic LC, this implementation can be used to build any kind of time- or condition-
based escrow between two or more parties and can be used to build very efficient,
transparent, and automated business processes. You can try implementing this setup
within a private blockchain between organizations and see if you can tweak it to come up
with more interesting workflows and use cases.

We started this chapter by looking at how escrows can be devices in the blockchain world,
using smart contracts. We charted out a multi-smart contract design for building our
application and determined how the contracts would connect to each other. Then, we
leveraged our knowledge in order to build a React frontend and a Blockchain backend.
While the Blockchain backend issued the new LCs and maintained the LCs, the React app
allowed various user roles to access and interact with these contracts. Then, we ran our
entire app and tracked an LC through its life cycle, from issue to view
to—finally—settlement.

Building a Letter of Credit Workflow Module Using Smart Contracts Chapter 6

[328]

The main takeaway from this chapter is understanding how to build complex financial
applications, including escrows, using blockchains and smart contracts. It also gives you an
insight into how business processes can be automated using Blockchain. This particular
system carries out the settlement and captures and stores a document hash as proof of
settlement. Thus, it's a more robust system.

In the next chapter, we'll be looking at other financial applications of blockchain technology
for banking and financial services (BFSI) enterprises.

3
Section 3: Securing Digital

Documents and Files Using
Blockchain

Organizations today generate and handle a huge volume of digital documents and files in a
wide variety of formats. This makes it a difficult task for them to secure and protect these
documents from tampering or modifications from internal and external threats. Blockchain
can be useful in this regard. It can ensure the sanctity of digital documents and protect file
repositories from attacks and threats.

In the next chapter, we'll be leveraging blockchain technology to build a solution that
protects digital documents from tampering and prevents unauthorized modifications to
filesystems.

This section comprises the following chapter:

Chapter 7, Building a Tamper-Proof Document Storage System

7
Building a Tamper-Proof

Document Storage System
Blockchain's inherent property of immutability makes it an excellent tool for securing
information and records. Once stored in a blockchain, data cannot be modified or updated.
This is due to the distributed nature of the and its use of hash functions and cryptography.
In this chapter, we'll be leveraging this feature of blockchain to build a module that will
secure the contents of a document repository. To achieve this, we'll be using Hyperledger
Fabric 1.4. Our solution will record hash signatures for the documents within a repository
on a private Hyperledger Fabric network. It will then monitor all the recorded files and
check at fixed time intervals to see whether the files have been tampered with or modified.
Additionally, it'll check whether any new files have been added or modified. If any changes
have been made, it will throw a notification and inform the user.

In this chapter, we'll be covering the following topics:

Tamper-proof document storage using blockchain
Setting up a Hyperledger Fabric network
Writing and deploying the DocsApp chaincode
Building a node backend service
Creating a React frontend for the app
Running the tamper-proof application

Building a Tamper-Proof Document Storage System Chapter 7

[331]

Technical requirements
You can access the code files of this chapter at the following GitHub link:

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/
tree/master/Chapter%207.

For this project, we'll be working with the Hyperledgic Fabric 1.4 binaries and Docker
images provided in the Hyperledger Fabric GitHub repository.

You can find the step-by-step installation process at the following link:

https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html.

Hyperledger Fabric assumes that you have the following dependencies installed:

The latest version of the cURL tool
The latest versions of Docker and Docker Compose
Go version 1.12.x
Node.js version 10.15.3 or higher
Npm version 5.6.0 or higher
Python 2.7

After downloading and installing the dependencies, we need to download and install the
binaries, samples, and docker images for Hyperledger Fabric. For this, we'll be using Curl
to download the images from the Fabric repository:

curl -sSL http://bit.ly/2ysbOFE | bash -s 1.4.0

This will take up to 15 minutes to complete, depending on your network connectivity.

Tamper-proof document storage using
blockchain
The consensus algorithm of blockchains makes it virtually impossible to alter any data once
it is stored in the blockchain. The consensus algorithm of a blockchain is an elaborate
mechanism that ensures that the data captured on all the nodes in the blockchain network
(the participating computers or servers that store a copy of the blockchain ledger) is
uniform. This means that the data stored on each node, as well as the sequence in which the
data is organized, is the same throughout all the nodes in the network.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/prereqs.html

Building a Tamper-Proof Document Storage System Chapter 7

[332]

This also means that once data is written or captured in a blockchain, it is virtually
immutable—that is, it cannot be modified as long as the blockchain network remains
unchanged. If the recorded data on one of the nodes is altered, the consensus algorithm
prevents the altered data from being written to the other nodes in the network, thereby
maintaining the original data.

We will be using this property of blockchains to build a tamper-proof document
management system. We'll build a software utility that captures and stores the following
details in a private Hyperledger Fabric network:

The hash of each document in our document management system (document
hash)
The hash of the file tree diagram of the entire document management system
(file tree hash (FTH))
The hash of the last modified time (MTH) of all the documents we are
monitoring

The utility will calculate the FTH and the last modified time hash (MTH) for our document
storage system every 5 seconds. It'll then check whether the FTH and the last MTH match
the original entry that was stored in the blockchain. If there is a mismatch, it means that one
or more documents in our document storage have been modified, added, or removed. The
utility will then throw a notification to the user. It will also calculate and validate the hash
of each individual file in our document storage to identify the tampered files and display
these to the user.

To build our utility and integrate it with the blockchain, we'll go through the following
steps:

Bring the Hyperledger Fabric sample first network online to create a test1.
development network
Deploy the chaincode DocsApp with the methods to capture and retrieve2.
individual document hashes, the FTH, and the MTH, to and from the blockchain
network. A chaincode is essentially the Hyperledger Fabric equivalent of a smart
contract.
Create a backend server in Node.js that will use the Hyperledger Fabric SDK to3.
make requests to the DocsApp chaincode to write new hash signatures and
retrieve already written hash signatures.
Create a DocsApp frontend in React that will allow the user to submit the4.
directory path that is to be secured using the utility. This frontend will notify the
user of the current status of the documents (tampered/not tampered) that are
being captured using the utility.

Building a Tamper-Proof Document Storage System Chapter 7

[333]

Broadly, our project will contain the following components:

The Hyperledger Fabric private network: We'll be using the default fabric
first-network sample. It will contain the organizations, org1 and org2. Each
organization has two peers, peer0 and peer1. It also contains the orderer
organization, orderer. The network will be using the solo consensus mechanism.
The solo consensus mechanism runs a single orderer node that orders
transactions. In an enterprise setup, you would probably want to spread the
nodes across several departments and subdepartments in order to preserve their
data.
The backend utility: This is used to calculate hashes, submit hashes to the
blockchain ledger, and check hashes that have already been recorded to the
blockchain.
React frontend: This allows the user to select a directory that will be protected
and view the current status of the files that are being monitored by the
application.

Let's start by setting up our Hyperledger Fabric network.

Setting up the Hyperledger Fabric network
For this project, we'll be working with the Hyperledger Fabric samples provided in the
Hyperledger Fabric GitHub repository.

You need to have Docker and Docker Compose installed to carry out the setup. To install
all the dependencies, go to https://hyperledger-fabric.readthedocs.io/en/release-1.
4/install.html and follow the instructions.

After downloading and installing the dependencies, we need to download and install the
binaries, samples, and Docker images for Hyperledger Fabric. To do this, we'll be using
curl to download the images from the Fabric repository, as follows:

curl -sSL http://bit.ly/2ysbOFE | bash -s 1.4.0

This will take up to 15 minutes to complete, depending on your network connectivity. Once
this is complete, move on to the next step.

https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/install.html

Building a Tamper-Proof Document Storage System Chapter 7

[334]

Bringing the first network sample online
To keep things simple, we'll be using the first-network Hyperledger Fabric sample for
our project:

Navigate to the first-network directory under the fabric-samples1.
directory. The default location should be as follows:

/fabric-samples/first-network/

Start the network by running the following command in the first-network2.
directory. It executes the byfn.sh script that brings the Hyperledger network
online with two organizations (org1 and org2) and two nodes for each
organization (peer0 and peer1). It also starts an ordering service:

./byfn.sh up -a -n -s couchdb

In total, we will have five nodes:

peer0 - org1
peer1 - org1
peer0 - org2
peer1 - org2
The orderer node

The nodes are participants of a single channel called mychannel. We also use
couchdb as our backend state database, indicated by the -s flag in the command.

Wait for the network to come online. This might take a few minutes.3.

Next, we'll create identities for the org1 organization that can be used to submit
transactions to the network.

Creating the admin and user identities
 Before we can submit any transactions, we need to create an admin identity and a user
identity. To do so, we'll be running the node utilities in the GitHub repository at https://
github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/
master/Chapter%207.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%207

Building a Tamper-Proof Document Storage System Chapter 7

[335]

The enrollAdmin utility will be used to create a new admin identity and the
registerUser utility to register a new user:

Create a new folder in the fabric-samples directory called DocsApp. Within1.
the directory, create a subfolder called wallet. You can find these utilities in the
Github link mentioned above
Copy the enrollAdmin and registerUser utilities in to the DocsApp directory.2.
First, run the utility enrollAdmin to register the admin user:3.

node enrollAdmin

A new identity for the admin should have been added to the wallet directory

Next, run the utility registerUser: 4.

node registerUser

A new identity for user1 should have been added to the wallet directory.

Now, we should be ready to submit transactions to our blockchain network.

Writing and deploying the DocsApp
chaincode
Now that our network is online, the next step we need to do is write and deploy our
chaincode contract. The chaincode DocsApp consists of the following methods:

addDocHash: This method adds a new document hash to the blockchain.
Document hashes are indexed by the hash of the file path.
addParamHash: This method adds the FTH and the MTH to the blockchain
indexed by a timestamp. The timestamp indicates the time at which the FTH and
MTH were calculated and stored to the blockchain.
queryDocHash: This method retrieves the last updated hash for a document
using the hash of the file path.
queryParamHash: This method retrieves the FTH and the MTH stored in the
blockchain at a particular time using the timestamp indicating the time that it
was stored.

We'll also have to install the chaincode for all the nodes that are part of our network and
instantiate it. Let's start writing the contract.

Building a Tamper-Proof Document Storage System Chapter 7

[336]

Writing the DocsApp smart contract
Let's write our DocsApp chaincode:

Create a new file called DocsApp.js. We start writing the contract by declaring1.
the dependent fabric-contract-api library, which is used to define our
contract object:

const { Contract } = require('fabric-contract-api');
class docsapp extends Contract {

Next, we'll write the addDocHash method. The addDocHash method will add a2.
new document's hash signature to the Hyperledger Fabric network. It takes
PathHash (the hash of the file path of the document) and the DocHash (the hash
of the document). The ctx object is the context object that is used to index
information in the ledger. We also set a console.info statement to print a
checkpoint to the console indicating the start of the DocHash method:

async addDocHash(ctx, PathHash, DocHash) {
 console.info('============= START : Register Document Hash
===========');

The document object is defined next. It takes DocHash and PathHash as input
parameters. It also sets the docType parameter equal to the document flag:

const document = {
 DocHash,
 PathHash,
 docType: 'document'
 };

Lastly, we use putState to add our document object to the blockchain ledger as3.
a JSON object and print a message on the console to indicate the end of the
addDocHash method:

await
ctx.stub.putState(PathHash,Buffer.from(JSON.stringify(document)));
console.info('============= END : Register Document
Hash===========');
 }

Building a Tamper-Proof Document Storage System Chapter 7

[337]

The addParamHash method adds the MTH (the hash of the array of the last-4.
modified time of all the documents in a secured directory) and the FTH (the hash
of the file tree path of all the secured documents in the secured document). It
takes the context object, the MTH, the FTH, and the timestamp of when the hash
was calculated:

async addPathHash(ctx, Time, MTimeHash, TreeHash) {
 console.info('============= START : Register M Time Hash
===========');

const TH = {
 Time,
 MTimeHash,
 TreeHash,
 docType: 'TimeHash'
 };

The TH object captures the time, the MTH, and the FTH. The method then calls
putState to write the TH object in the blockchain ledger. The timestamp acts as
the context for the ledger entry; it'll be used to retrieve entries from the blockchain
ledger:

await ctx.stub.putState(Time,Buffer.from(JSON.stringify(TH)));
console.info('============= END : Register Time Hash ===========');
 }

The queryDocHash method queries and retrieves document hashes stored in the
blockchain and indexed by PathHash. It takes the file path hash as input and
returns the last recorded DocHash from the blockchain state database:

 async queryDocHash(ctx, PathHash) {
 const DocHashBytes = await ctx.stub.getState(PathHash); // get the
document hash from chaincode state

We use the getState API to get the document hash linked to PathHash from the
blockchain state database.

Building a Tamper-Proof Document Storage System Chapter 7

[338]

The method will return the marshaled JSON string received from the state
database as a string object if it finds a linked document object to the input
PathHash:

if (!DocHashBytes || DocHashBytes.length === 0) {
 throw new Error('Invalid ${PathHash}.Document not registered');
 }
 console.log(DocHashBytes.toString());
 return DocHashBytes.toString();
 }

Similarly, we write the queryParamHash method, which will retrieve the last5.
MTH and the FTH stored at the blockchain state database using the timestamp:

async queryPathHash(ctx, Time) {
 const TimeHashBytes = await ctx.stub.getState(Time); // get the
document hash from chaincode state

We use the getState API to get the MTH and FTH hash linked to a timestamp
from the blockchain state database.

The method will return the marshaled JSON string received from the state
database as a string object if it finds a linked document object to the input
timestamp:

if (!TimeHashBytes || TimeHashBytes.length === 0) {
 throw new Error('Invalid ${Time}. Time not registered');
 }
 console.log(TimeHashBytes.toString());
 return TimeHashBytes.toString();
 }
}

module.exports = docsapp;

This brings us to the end of our DocsApp chaincode contract. Now, let's install it in the
nodes and deploy it.

Deploying the DocsApp smart contract
We need to set up a new chaincode directory for our contract. In your Hyperledger Fabric
fabric-samples directory, navigate to the chaincode directory. It will be at the
following location by default:

/fabric-samples/chaincode/

Building a Tamper-Proof Document Storage System Chapter 7

[339]

We will use the following steps to deploy our DocsApp smart contract:

In the chaincode folder, create a new folder with the name docsapp.1.
In the docsapp folder, create an index.js file with the following values:2.

/*
 * SPDX-License-Identifier: Apache-2.0
 */

'use strict';

const docsapp = require('./lib/docsapp');

module.exports.docsapp = docsapp;
module.exports.contracts = [docsapp];

This will declare the docsapp object, which will be used by our peer chaincode
install and peer chaincode instantiate tools for deploying our chaincode
within the blockchain.

Next, create a lib folder in the docsapp directory. By default, your lib folders3.
filepath should look as follows:

/fabric-samples/chaincode/docsapp/lib

Copy and paste the docsapp.js file along with the DocsApp smart contract4.
code that we wrote in the previous section.
Now, we need to install this smart contract for all our peers,5.
peer0.org1.example.com, peer1.org1.example.com,
peer0.org2.example.com, and peer1.org2.example.com, which comprise
our Hyperledger Fabric network. To do this, we'll be using the peer chaincode
install command.

The peer chaincode utility is a tool that is available in the command-line
interface (CLI) Docker container, which is available by default as a Docker image
in the Hyperledger Fabric repository. It allows us to interact with and carry out
operations on chaincodes (a chaincode is the Hyperledger Fabric equivalent of a
smart contract).

Let's look at the peer chaincode install statement that we will be using to
deploy our chaincode for org1 on peer1:

docker exec
-e CORE_PEER_LOCALMSPID=Org1MSP

Building a Tamper-Proof Document Storage System Chapter 7

[340]

-e CORE_PEER_ADDRESS=peer0.org1.example.com:7051
-e
CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabr
ic/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.
example.com/msp
-e
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/
fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.o
rg1.example.com/tls/ca.crt
cli peer chaincode install -n docsapp -v 1.0
-p /opt/gopath/src/github.com/chaincode/docsapp -l node

Let's go through the different parts of the command one by one. The docker
exec command is used to execute a command within the Docker container. The -
e is used to set environment variables inside the Docker container before
executing a command.

The CORE_PEER_LOCALMSPID environment variable indicates the membership
service provider for the node. The membership service provider is used to define
the Root Certificate Authorities and Intermediate Certificate Authorities that will
be used to issue identities for a trusted domain/organization on the blockchain
network. Here, we set it to Org1MSP, which is the MSP service for Org1.

The CORE_PEER_ADDRESS environment variable indicates the external client port
for peer 1 (node 1 in our Hyperledger Fabric network) to which requests need to
be submitted. We set it here to peer0.org1.example.com:7051, which is our
node's client port.

The CORE_PEER_MSPCONFIGPATH environment variable indicates the
configuration path for the membership policy for peer 1 within peer 1's Docker
container.

The CORE_PEER_TLS_ROOTCERT_FILE environment variable indicates the
location of the root certificate (the certificate authority certificate) for the digital
signature used by peer 1.

The cli phrase indicates the container name in which we are executing peer
chaincode commands. This, as we discussed earlier, is the command-line interface
Docker container.

Lastly, we use the -n tag to indicate the chaincode name, -v, to indicate the
version of the chaincode, -p, to indicate the path where the smart contract code is
available, and -l to indicate the scripting language of the smart contract, which is
node (Node.js) in our case.

Building a Tamper-Proof Document Storage System Chapter 7

[341]

Run the command with a Linux user with Docker privileges in the Terminal. It6.
should print a message similar to the following one on successful execution. This
message is from the command-line container:

2019-10-29 05:56:55.357 UTC [chaincodeCmd] install -> INFO 003
Installed remotely response:<status:200 payload:"OK" >

Now, craft a peer chaincode install statement for all the other nodes in our7.
network:

//chaincode install statement for peer1 org1

docker exec -e CORE_PEER_LOCALMSPID=Org1MSP -e
CORE_PEER_ADDRESS=peer1.org1.example.com:8051 -e
CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabr
ic/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.
example.com/msp -e
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/
fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.o
rg1.example.com/tls/ca.crt cli peer chaincode install -n docsapp -v
1.0 -p /opt/gopath/src/github.com/chaincode/docsapp -l node

//chaincode install statement for peer0 org2

docker exec -e CORE_PEER_LOCALMSPID=Org2MSP -e
CORE_PEER_ADDRESS=peer0.org2.example.com:9051 -e
CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabr
ic/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.
example.com/msp -e
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/
fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.o
rg2.example.com/tls/ca.crt cli peer chaincode install -n docsapp -v
1.0 -p /opt/gopath/src/github.com/chaincode/docsapp -l node

//chaincode install statement for peer1 org2

docker exec -e CORE_PEER_LOCALMSPID=Org2MSP -e
CORE_PEER_ADDRESS=peer1.org2.example.com:10051 -e
CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabr
ic/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.
example.com/msp -e
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/
fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.o
rg2.example.com/tls/ca.crt cli peer chaincode install -n docsapp -v
1.0 -p /opt/gopath/src/github.com/chaincode/docsapp -l node

Building a Tamper-Proof Document Storage System Chapter 7

[342]

Run them in the Terminal. You should get a successful peer installation message8.
after each peer install command, as follows:

INFO 003 Installed remotely response:<status:200 payload:"OK" >

Next, we need to instantiate the chaincode across the nodes. We'll use the9.
following command for instantiating the chaincode:

docker exec
-e CORE_PEER_LOCALMSPID=Org1MSP
-e
CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabr
ic/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.
example.com/msp cli peer chaincode instantiate
-o orderer.example.com:7050
-C mychannel
-n docsapp
-l node
-v 1.0
-c '{"Args":[]}'
-P 'AND('\''Org1MSP.member'\'','\''Org2MSP.member'\'')'
--tls
--cafile
/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOr
ganizations/example.com/orderers/orderer.example.com/msp/tlscacerts
/tlsca.example.com-cert.pem --peerAddresses
peer0.org1.example.com:7051
--tlsRootCertFiles
/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrgan
izations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt

Let's look at the environment variables, which are denoted by the -e tag.

The CORE_PEER_LOCALMSPID environment variable indicates the membership service
provider for the node. The membership service provider is used to define the Root
Certificate Authorities and Intermediate Certificate Authorities, which will be used to issue
identities for a trusted domain/organization on the blockchain network. Here, we set it to
Org1MSP, which is the MSP service for Org1.

Building a Tamper-Proof Document Storage System Chapter 7

[343]

The CORE_PEER_MSPCONFIGPATH environment variable indicates the configuration file
path for the Membership Service Provider for peer 1 within peer 1's Docker container.

The -C tag indicates the Hyperledger Fabric network channel to which this
chaincode will be instantiated. In Hyperledger Fabric, channels are private
blockchain ledgers that can be read or written to only by the approved
participants of the channel. We set it to the default mychannel channel.
The -n tag indicates the name of the chaincode being instantiated. Here, we set it
to docsapp.
The -l tag indicates the scripting language, which in our case is a node.
The -v tag is the version number of the chaincode.
The -c tag indicates the constructor arguments for the contract, if there are any.
The -P tag indicates the member participants of the network.
The --tls tag indicates that messages will be SSL encrypted. The tags --cafile
and --tlsRootCerFiles tags indicate the certificate file for orderer and
peer0.org1.

Run the command in the Terminal window. If instantiation is successful, you will not get
any message on the Terminal window.

That completes writing and deploying of our docsapp chaincode (smart contract). Let's
move on to writing the backend node server.

Building the backend services
We need to build backend services that our frontend can access to write the hashes to the
Fabric blockchain and read the hashes from the Fabric blockchain.

We'll be creating the Node.js utility using and building the following services:

/api/hashwrite: This endpoint exposes a service that is used for calculating the
hash of all the artifacts in a directory root, the hash of the file path of all the
artifacts, and the hash of the modified timestamp of all the artifacts then
submitting them to the blockchain.

Building a Tamper-Proof Document Storage System Chapter 7

[344]

/api/hashread: This endpoint exposes a service that is used for re-calculating
the hash of all the artifacts in a directory root, the hash of the file path of all the
artifacts, and the hash of the modified timestamp of all the artifacts then
verifying whether they match the hash values recorded in the blockchain. If there
is a mismatch, then it indicates that one or more documents have been tampered
with.

Let's start writing our Node.js utility.

Writing the backend server
Create a new Node.js app called hashcheck.js in your project directory by going through
the following steps:

We first start by declaring the dependencies:1.

var fs = require('fs');
var path = require('path');
const { Keccak } = require('sha3');
const { FileSystemWallet, Gateway } = require('fabric-network');
var express = require("express");
var bodyParser = require("body-parser");

The following list describes the dependencies -

fs is the file stream node module, which will allow us to parse a file and
other metadata associated with a file
path is used to resolve and create Unix filepaths.
The sha3 node module can be used to generate SHA3 hashes from input
data
fabric-network is the Fabric SDK that is used to interact with services
exposed by the deployed chaincodes on the blockchain.
express is the Node.js web application framework that is used to define
our services.
body-parser is a middleware used to parse the body of a request
submitted to an endpoint.

Building a Tamper-Proof Document Storage System Chapter 7

[345]

Next, we start defining our app. We define a new app object using the express2.
framework:

bodyParser.json() ensures that the middleware parses requests of the
JSON type.
bodyParser.urlencoded() ensures that the middleware parses request
bodies of the form-data type into key–value pairs that can be easily read by
the app.

ccpPath stores the local storage path for the network configuration for org1:

var app = express();
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));
const ccpPath = '/home/ishan/fabric-samples/first-
network/connection-org1.json';

Next, we add some middleware to enable cross-origin requests between our3.
Node.js app and the React frontend.

The middleware adds a header to indicate that requests from all sources (*) and
methods are welcome (GET, POST, and so on). It allows all content types and
credentials. This is set for testing purposes:

app.use(function (req, res, next) {
 res.setHeader('Access-Control-Allow-Origin', '*');
 res.setHeader('Access-Control-Allow-Methods', 'GET, POST, OPTIONS,
PUT, PATCH, DELETE');
 res.setHeader('Access-Control-Allow-Headers', 'X-Requested-
With,content-type');
 res.setHeader('Access-Control-Allow-Credentials', true);
 next();
});

Next, we define a server object that we will use to bring our app online. The app4.
will listen on port 3600 for incoming requests:

var server = app.listen(process.env.PORT || 3600, function () {
 var port = server.address().port;
 console.log("App now running on port", port);
 });

Building a Tamper-Proof Document Storage System Chapter 7

[346]

Our backend server will have the following methods.5.

walkDir(): This takes a directory path as an input parameter and returns
an array with the list of files in the directory path.
bWrite(): This writes the hash of a file to the blockchain.
pWrite(): This writes the hash of the last modified time and the hash of the
directory file tree to the blockchain.

bRead(): This reads the recorded hash of a file from the blockchain. It takes the
hash of the directory path of the file as input and returns the document hash.

pRead(): This returns the last MTH and FTH that were stored at a
particular time. The time is written in UTC format.

Our backend server will have the following services:

/api/hashwrite: This takes a directory path as input and records the hash of all
the member files of the directory, the hash of the last modified time, and the hash
of the file tree path to the blockchain.
/api/hashread: This takes a directory path and the modified time as input and
fetches the hash of the last modified time and the hash of the file tree path from
the blockchain.
/api/hashreadfile: This takes a directory path and an array with a list of files
recorded in the blockchain as input parameters. It then fetches the hash of each
file from the blockchain and checks whether the hash has been modified or is the
same. If there is a mismatch between the hash of a document in the directory and
the hash of the same document that was recorded for the blockchain, it indicates
that the version in the directory has been tampered with.

Let's start writing the methods for our backend server.

Building a method for listing files in a directory
The walkDir() method is a recursive function. It takes a directory path, dir, as an input
parameter and returns a list of all the files in the director. It's written as follows:

var walkDir = function(dir, done) {
 var results = [];
 fs.readdir(dir, function(err, fList) {
 if (err) return done(err);
 var maxLength = fList.length;
 if (!maxLength) return done(null, results);
 fList.forEach(function(file) {

Building a Tamper-Proof Document Storage System Chapter 7

[347]

 file = path.resolve(dir, file);
 fs.stat(file, function(err, stat) {
 if (stat && stat.isDirectory()) {
 walkDir(file, function(err, res) {
 results = results.concat(res);
 if (!--maxLength) done(null, results);
 });
 } else {
 results.push(file);
 if (!--maxLength) done(null, results);
 }
 });
 });
 });
};

Let's take a look at each line of walkDir and understand how it works:

The method accepts the absolute path of a directory as an input parameter:1.

var walkDir = function(dir, done) {
 var results = [];

It then uses the readdir method in the fs module to read the directory contents2.
in the directory path, dir:

 fs.readdir(dir, function(err, fList) {

If it gets an error while reading, then that indicates either that the directory path3.
is invalid or that the directory is empty. In this case, walkDir() will return the
error message (err) to the requester and terminate the execution of the
walkDir() method:

if (err) return done(err);

If there is no error, it means that readdir has successfully read and returned the4.
directory's contents (the files and subfolders in the dir) in the fList array.
Next, we'll next iterate through each member of the fList array and check5.
whether it's a file or a directory:

var maxLength = fList.length;
 if (!maxLength) return done(null, results);

 fList.forEach(function(file) {
 file = path.resolve(dir, file);

Building a Tamper-Proof Document Storage System Chapter 7

[348]

For each file path stored in the fList array, we use fs.stat() to check whether6.
the member at the directory path is a file or a subdirectory.
Let's first look at what happens when the member is a file. This is covered in the7.
else clause:

fs.stat(file, function(err, stat) {
.........
else {
 results.push(file);
 if (!--maxLength) done(null, results);
 }
})

If the member is a file, then the file path is pushed into our results array,8.
which walkDir() will return. After each push, the method checks
whether maxLength (that is, the length of the fList array) has been reached.
This indicates that all the members of the fList array have been processed.
The walkDir() method returns the results array with the list of files and ends
the execution.
Next, we look at what happens when the member is a subdirectory. If on calling9.
fs.stat we realize that our member is a subdirectory, then walkDir() will
recursively call itself, sending the subdirectory's path as the input parameter. If
there is subdirectory within our subdirectory, then a new recursive call will be
made to walkDir() with the sub-subdirectory as the input parameter to fetch its
members. This process will continue until we reach is a subdirectory that has
only files as members. Each iteration of the walkDir() method call returns the
list of all the files, including the files in all the subdirectories to the requester in
the results array.
In our case, when we receive the list of files in our subdirectory, they are added10.
to the results array using results.concat(). After adding the new elements
to the results array, we check whether we have reached the maxLength of the
fList array (the end of the fList array). On reaching the end of the fList array,
the loop ends and we return control to the invoker with the results:

fs.stat(file, function(err, stat) {
 if (stat && stat.isDirectory())
 {
 walkDir(file, function(err, res) {
 results = results.concat(res);
 if (!--maxLength) done(null, results);
 });

Building a Tamper-Proof Document Storage System Chapter 7

[349]

This completes our walkthrough of the walkDir() method, which is used to list all the files
in a directory path. It returns the results array, which contains all the files, including the
files in the subdirectories listed.

Building a method to write a file hash to the blockchain
The asynchronous bwrite method writes a file hash to the blockchain. It takes the hash of
the directory path of the file (pHash) and the document hash (dHash) as input and writes to
the blockchain.

Before writing to the blockchain, we need access to a registered identity that has1.
permission to write to our blockchain. We'll use the user1 user that we
registered in our wallet earlier. Using the Hyperledger Fabric SDK
FileSystemWallet method, we'll create a new wallet object pointing to the
wallet we created for DocsApp. We check whether the user 1 user is registered
in the wallet. Execution of the method will proceed only if the user 1 user
exists:

async function bWrite (pHash,dHash) {

 try {
 const wallet = new FileSystemWallet('/home/ishan/docsapp/wallet');
 const userExists = await wallet.exists('user1');
 if (!userExists) {
 console.log('An identity for the user "user1" does not exist in
the wallet');
 console.log('Run the registerUser.js application before
retrying');
 return;
 }

Next, we define a new Gateway object to connect to our blockchain:2.

const gateway = new Gateway();
 await gateway.connect(ccpPath, { wallet, identity: 'user1',
discovery: { enabled: true, asLocalhost: true } });
 const network = await gateway.getNetwork('mychannel');
 const contract = network.getContract('docsapp');

Building a Tamper-Proof Document Storage System Chapter 7

[350]

The Gateway object is configured with the wallet (DocsApp wallet location),3.
user identity (user 1), blockchain channel (mychannel), and chaincode contract
(docsapp)) to point it to our chaincode in our blockchain. We use getNetwork to
set the channel and getContract to set the chaincode:

await contract.submitTransaction('addDocHash',pHash,dHash);
 console.log("Transaction Doc has been submitted");
 await gateway.disconnect();

Next, we invoke our contract and submit a new transaction. We submit a call to4.
the contract addDocHash method and submit the file path hash (pHash) and file
hash (dHash) as input parameters to the contract method. You will remember
from the previous section that this method creates a document object, which it
then writes to the blockchain state database indexed by the file path hash
(PathHash). After successful transaction submission, a message is printed to the
console and the gateway is disconnected:

} catch (error) {
 console.error(`Failed to submit transaction: ${error}`);
 process.exit(1);
 }
 };

A catch statement is added to catch any errors during transaction submission. 5.

This ends our analysis of the bWrite method. Next, we'll take a look at the pWrite method.

Building a method to write the MTH and the FTH to the
blockchain
The pWrite method takes the last MTH and FTH as input and writes them to the
blockchain. The hashes are indexed in the blockchain by the timestamp at which the hashes
where calculated. This is done so as to create a timestamped audit log of all the times that a
new entry was recorded for the secured directory in the blockchain.

The pWrite function is similar in structure to bWrite. It first defines a new1.
wallet object and a gateway to connect to our docsapp chaincode:

async function pWrite(FTH,MTH) {

 try {
 const wallet = new FileSystemWallet('/home/ishan/docsapp/wallet');
 const userExists = await wallet.exists('user1');

Building a Tamper-Proof Document Storage System Chapter 7

[351]

 if (!userExists) {
 console.log('An identity for the user "user1" does not exist in
the wallet');
 console.log('Run the registerUser.js application before
retrying');
 return;
 }

 const gateway = new Gateway();
 await gateway.connect(ccpPath, { wallet, identity: 'user1',
discovery: { enabled: true, asLocalhost: true } });
 const network = await gateway.getNetwork('mychannel');
 const contract = network.getContract('docsapp');

It uses the user 1 identity and connects to the mychannel channel. The wallet
object points to the wallet we created for DocsApp. The contract object is set to
docsapp.

As we've already discussed, the hashes, MTH and FTH, are indexed by the time2.
in which they were recorded. So, we need to fetch the current UTC timestamp.
This is done using the following steps. The UTC timestamp is captured to the
dateTime variable:

var today = new Date();

var dateTime = Date.UTC(today.getFullYear(), today.getMonth()+1,
today.getDate(),
today.getHours(),today.getMinutes(),today.getSeconds());

Now, we submit the transaction to our DocsApp chaincode contract:3.

await
contract.submitTransaction('addPathHash',dateTime.toString(),MTH,FT
H);
console.log("Transaction PathHash has been submitted");
await gateway.disconnect();
return dateTime.toString();

Note how this time, we call the chaincode addPathHash method to write the MTH and
FTH hashes. The input parameters are dataTime, MTH, and FTH.

A message is logged to the console upon successful submission and the gateway4.
is disconnected. The dateTime variable is returned to the requester and can be
used in the future for retrieving the MTH and FTH.

Building a Tamper-Proof Document Storage System Chapter 7

[352]

A catch statement is added to catch any errors during transaction submission:5.

catch (error) {
 console.error(`Failed to submit transaction: ${error}`);
 process.exit(1);
 }
 }

This ends our analysis of the pWrite method. Let's look at the methods we'll use to read
from the blockchain next.

Building a method to read MTH and FTH from the
blockchain
The pRead() method fetches the last MTH and FTH from the blockchain and compares
them with the current MTH (ModTH) and FTH (FileTH):

It takes the time at which the hash has recorded on the blockchain (dateTime),1.
the current MTH of the directory (ModTH), and the current FTH of the directory
(FileTH) as input parameters.
We start the pRead() method by first defining the wallet object and connecting2.
to the gateway in a similar way to the last two functions:

async function pRead (dateTime,ModTH,FileTH) {

 try {

 const wallet = new FileSystemWallet('/home/ishan/docsapp/wallet');
 const userExists = await wallet.exists('user1');
 if (!userExists) {
 console.log('An identity for the user "user1" does not exist in
the wallet');
 console.log('Run the registerUser.js application before
retrying');
 return;
 }

const gateway = new Gateway();
 await gateway.connect(ccpPath, { wallet, identity: 'user1',
discovery: { enabled: true, asLocalhost: true } });
 const network = await gateway.getNetwork('mychannel');
 const contract = network.getContract('docsapp');

Building a Tamper-Proof Document Storage System Chapter 7

[353]

The identity that's used for connecting is user 1. The wallet object is set to the wallet we
created for DocsApp. The gateway connects to the mychannel channel and the
docsapp chaincode.

Next, we use the evaluateTransaction method to call the read-only3.
queryPathHash method in our docsapp chaincode. You might remember from
the previous section that the queryPathHash method in the docsapp chaincode
fetches the MTH and the FTH, which are indexed by the timestamp at which
they were recorded:

const resultFT = await
contract.evaluateTransaction('queryPathHash',dateTime);

The MTH and FTH returned by the queryPathHash method are captured in the4.
resultFT variable:

var MTH = resultFT.toString('ascii',14,78);
 var FTH = resultFT.toString('ascii',115,179);
 console.log("Transaction has been evaluated");
 await gateway.disconnect();

The MTH and FTH are fetched from the blockchain and stored in the MTH and5.
FTH variables. Since the result is returned in marshaled JSON format, we need to
slice the result and separate the MTH and the FTH from the resultFT variable.
The gateway is disconnected and a message is printed to the console.
Next, we verify whether the hashes fetched from the blockchain match the hash6.
that is calculated and sent as an input parameter to the pRead() method:

var result;

 if(MTH != ModTH || FTH != FileTH)
 {
 result = 'Tampered'
 }
 else
 {
 result = 'Not Tampered'
 }

return result;

If the hashes match, then this indicates that the directory has not been tampered7.
with. If they do not match, then this indicates that the file directory has been
tampered with. The result (tampered/not tampered) is returned to the requester.

Building a Tamper-Proof Document Storage System Chapter 7

[354]

A catch statement is added to catch any errors during transaction evaluation:8.

} catch (error) {
 console.error(`Failed to submit transaction: ${error}`);
 return error;
 process.exit(1);
 }
 };

This brings us to the end of our walkthrough of the pRead() method. The pRead()
method is called when our application is verifying whether the directory under observation
has been tampered with. We'll look at the bRead() method next, which fetches individual
document hashes.

Building a function to compare the current hash
signature of a file with the hash recorded in the
blockchain
The bRead() function is called to compare the hash of a file in the monitored directory
with the hash signature recorded previously in the blockchain. It takes the hash of the
directory path of a file (p) and the current hash of the file (d) as input parameters:

Let's take a look at the function. Like the pRead methods, we start bRead by1.
defining our wallet object and gateway connection. We point the connection to
the docsapp smart contract and mychannel network channel. We'll be using the
 user1, to submit our evaluation transaction:

async function bRead (p,d) {

 try {
 const wallet = new FileSystemWallet('/home/ishan/docsapp/wallet');
 const userExists = await wallet.exists('user1');
 if (!userExists) {
 console.log('An identity for the user "user1" does not exist in
the wallet');
 console.log('Run the registerUser.js application before
retrying');
 return;
 }

const gateway = new Gateway();
 await gateway.connect(ccpPath, { wallet, identity: 'user1',
discovery: { enabled: true, asLocalhost: true } });

Building a Tamper-Proof Document Storage System Chapter 7

[355]

 const network = await gateway.getNetwork('mychannel');
 const contract = network.getContract('docsapp');

We'll be connecting and submitting an evaluateTransaction request to the2.
docsapp method, queryDocHash. The queryDocHash method returns the file
hash signature recorded in the blockchain. It takes the hash of the directory path
of the file as input and returns the hash of the file recorded in the blockchain:

const result = await
contract.evaluateTransaction('queryDocHash',p);

The response is returned in marshaled JSON format. We convert the response in3.
to a string and splice the string to get the file hash from the response:

const data = result.toString('ascii',12,76);
console.log(`Transaction has been evaluated, result is:
${result.toString('ascii',12,76)}`);

Next, the method checks whether the hash we receive in the response (data) is4.
the same as the current file hash (d) that is sent as an input parameter. If there is a
mismatch, it means that the file has been tampered with. If there is not a
mismatch, then this means that the file has not been tampered with:

var status;
 if (data == d)
 {
 console.log("File not tampered");
 status = 'Not Tampered';
 return status;
 }
 else
 {
 console.log("File tampered");
 status= 'Tampered';

 return status;
 }

The result (Tampered/Not Tampered) is returned to the requester in the output5.
parameter, status.
A catch statement catches any errors during transaction evaluation:6.

} catch (error) {
 console.error(`Failed to submit transaction: ${error}`);
 process.exit(1); }
 };

Building a Tamper-Proof Document Storage System Chapter 7

[356]

That ends our walkthrough of the bRead() method. The bRead() method is called when
we realize that our directory has been tampered with from the result of the pRead()
method. It is called for each file member in the directory to identify which files have been
tampered with.

Next, let's take a look at the services that our backend server will expose for our frontend
React interface to consume.

Writing a backend service for securing a directory by
recording hashes in the blockchain
The /api/hashwrite service performs the very important task of calculating the hash of
each individual file in a directory, the hash of the last modified time of all the files in the
directory, and the hash of the file tree of the directory, and then storing them in the
blockchain. It takes the directory path as an input parameter.

The following are the steps that are carried out by the service:

Extract the directory path to be secured from the request body.1.
Call the walkDir function to list all the files in the directory.2.
Iterate through all the files in the directory, calculate the hash for each file, and3.
call the bWrite method to write the hash to the blockchain, indexed by the hash
of the directory path of the file. For each iteration created, add the last modified
time of the file to an array object and the file path to an array object.
At the end of the iteration, call the pWrite function to write the hash of the4.
arrays with the last modified time and file path to the blockchain indexed by the
current timestamp.
Return the array of the list of files secured by the blockchain, the last MTH and5.
FTH, and the timestamp at which the hashes were recorded in the response
object to the requester.

Let's start writing the service:

The request body to the service has the directory path that is to be secured under1.
the DirPath key:

app.post("/api/hashwrite", function(request , response){
var directory = request.body.DirPath;
var timestamp = [];
var modtime;
var jsonString;

Building a Tamper-Proof Document Storage System Chapter 7

[357]

We store the directory path in the directory variable.2.
Next, we call the walkDir method. The directory variable is sent as an input3.
parameter:

walkDir(directory,function(err,res){
 if (res)
{
 var files = res;

The walkDir method returns the res array with the list of files in our directory4.
path. Upon a successful response from walkDir, we iterate through all the
members of the files array, this is basically all the directory paths for all the files
in our directory:

 var counter = 1;
files.forEach(function (file) {

For each file in our array, we calculate the hash of the file path and the file data.5.
First, we calculate the SHA3 hash digest of the file path and store it in the p6.
variable:

var hashPath = new Keccak(256);
hashPath.update(file);
var p = hashPath.digest('hex');

Next, we fetch the last modified time of the file using the fs statSync7.
method and store it in the timestamp array. The timestamp array will store the
last modified time for all the files:

var stats = fs.statSync(file);
timestamp.push(stats.mtime);

Lastly, we use the fs ReadStream method to read the file and calculate the8.
SHA3 hash digest of the file's contents. The hash of the file's contents is stored in
the d variable:

var hashFile = new Keccak(256);
var s = fs.ReadStream(file);
s.on('data', function(d) { hashFile.update(d);});
s.on('end', function() {
var d = hashFile.digest('hex');

console.log("File path hash",p);
console.log("File Hash",d);

bWrite(p,d);

Building a Tamper-Proof Document Storage System Chapter 7

[358]

At the end of the hash digest calculation the file, the hash of the file path and the9.
file's contents are printed to the console.

We call the bWrite method with the input parameters p and d to write the file's10.
hash to the blockchain, indexed by the file path hash.

When we reach the end of the file list in our directory, we calculate the FTH11.
(FTH) using the files array and the MTH (MTH) using the timestamp array. The
file list, MTH, and FTH are printed to the console for reference:

var CounterT = counter;
 if (CounterT == files.length)
 {
 console.log("Files",files);
 var FileTreeHash = new Keccak(256);
 FileTreeHash.update(files.toString());

 var FTH = FileTreeHash.digest('hex');
 console.log("FTH ");
 console.log(FTH);

 var MTimeHash = new Keccak(256);
 MTimeHash.update(timestamp.toString());
 var MTH = MTimeHash.digest('hex');
 console.log("MTH ");
 console.log(MTH);

The pWrite method is called to write the hashes, MTH and FTH, to the12.
blockchain. A JSON response is sent to the requester with the files array, MTH,
FTH, and the time at which the hash was recorded (modtime):

pWrite(FTH,MTH).then(function(modtime){
 jsonString = JSON.stringify({files: files,MTH: MTH,FTH: FTH,
modtime: modtime});
 response.send(jsonString);
 });
 }
 });

 counter++;
 });

The counter is incremented at the end of each iteration.13.

Building a Tamper-Proof Document Storage System Chapter 7

[359]

An else block catches any errors that occurred while fetching the list of files14.
using walkDir():

else
{
 console.log(err);
 jsonString = JSON.stringify({Error: err});
 response.send(jsonString);
}
});
})

That ends our walkthrough of the /api/hashwrite service. This service is called the first
time our app is launched. It asks the user for the directory to be secured and sends it to the
service as a request. Next, we'll write the services that are used to read the hashes that are
recorded in the blockchain and compare them with the real-time hash signatures of files,
the real-time hash of the modified time of the files and the real-time file tree structure hash.
In the case of a mismatch, it indicates that the files and the directory have been tampered
with.

Writing a service to verify the last modified time and the
file tree structure
Since it is impractical to inspect every file to verify whether it has been tampered with, we'll
only be verifying whether the file tree structure of the directory or the last modified time of
any of the files has changed. This will indicate whether a file has been added or removed
from our directory or any file has been tampered with since our app recorded the hashes.
The individual files will be checked and verified only when we find that the MTH (MTH) has
changed. We will check these files to locate the actual file(s) that were tampered with.

In this section, we'll write the /api/hashread service to check whether there is a mismatch
between the current MTH (MTH) and the FTH (FTH) of the directory and the MTH and FTH
captured in the blockchain by the /api/hashwrite service. In the next section, we'll write
the /api/hashreadfile service to inspect and compare the hashes of the individual files
in our directory.

Building a Tamper-Proof Document Storage System Chapter 7

[360]

Let's start writing the /api/hashread service:

The request body that's sent to the /api/hashread service from the frontend1.
contains the timestamp at which the MTH and FTH hashes were recorded in the
blockchain and the directory path. The timestamp is under the modtime key and
the directory path is under the key DirPath, in the request body:

app.post("/api/hashread", function(request , response){

var modtime = request.body.modtime;
var jsonString;
var directory = request.body.DirPath;
var timestamp = [];

Next, we call the walkDir method to get the current file tree structure of the2.
directory and the last modified time of the files in the directory:

walkDir(directory,function(err,res){
 if (res)
 {
 var files = res;
 var counter = 1;

Next, we iterate through the file list returned by the walkDir method:3.

files.forEach(function (file) {

For each iteration, we fetch the last modified time of the file using the4.
fs.statSync method and push it into the timestamp array:

var stats = fs.statSync(file);
timestamp.push(stats.mtime);

At the end of the iteration, we calculate the hash of the timestamp array with the5.
last modified time (MTH) and the hash of the files array with the file tree
structure (FTH):

var CounterT = counter;

 if (CounterT == files.length)
 {
 var FileTreeHash = new Keccak(256);
FileTreeHash.update(files.toString());
 var FTH = FileTreeHash.digest('hex');
 var MTimeHash = new Keccak(256);
 MTimeHash.update(timestamp.toString());
 var MTH = MTimeHash.digest('hex');

Building a Tamper-Proof Document Storage System Chapter 7

[361]

The newly calculated MTH and FTH are sent as input parameters to the pRead()6.
method, along with the modtime parameter. The pRead method will fetch the
prerecorded hashes from the blockchain and compare them to see whether there
is a mismatch. If there is a mismatch with the MTH, then it indicates that one or
more files in the directory have been tampered with. If there is a mismatch with
the FTH, then this indicates that a file has been added to or removed from the
directory:

pRead(modtime, MTH, FTH).then(function(err,res){
 if (res)
 {
 jsonString = JSON.stringify({result: res,files: files });
 response.send(jsonString);
 }
 else
 {
 jsonString = JSON.stringify({result: err, files: files});
 response.send(jsonString);
 }
})}
 counter++;
 })}})});

The response from the pRead method (tampered/not tampered) that's received from the
pRead function is sent to the response body in the result key and the files array is
returned in the files key. After each iteration, the counter is incremented.

Writing a service to inspect and identify tampered files
The /api/hashreadfile service will be called by the frontend if the response from the
/api/hashread service indicates that the MTH (MTH) or FTH (FTH) has changed,
indicating that our secure directory has been tampered with. The
/api/hashreadfile service will then help us identify which files have been tampered
with.

Let's start writing our service:

The request body to the hashreadfile service will contain the directory path1.
under the DirPath key and the list of files to be inspected under the
files array:

app.post("/api/hashreadfile", function(request , response){

 x`var directory = request.body.DirPath;

Building a Tamper-Proof Document Storage System Chapter 7

[362]

 var files = request.body.files;

 var responseObject = [];
 var timestamp = [];
 var jsonString;
 var counter = 1;2.

Next, we iterate through the list of files in the files array. For each file, we'll2.
calculate the SHA3 hash of the file path and the file's contents. The file path hash
is stored in the p variable and the file content hash is stored in the d variable. We
use the ReadStream method to calculate the hash of the file's contents. At the
end of the hash digest creation, we will call the bRead method. The hashes are
printed to the console for reference:

files.forEach(function (file) {

var hashPath = new Keccak(256);
hashPath.update(file);
var p = hashPath.digest('hex');

var hashFile = new Keccak(256);
var s = fs.ReadStream(file);
s.on('data', function(d) { hashFile.update(d);});
s.on('end', function() {
var d = hashFile.digest('hex');

console.log("File path hash",p);
console.log("File Hash",d);

The bRead method is called with the input parameters p (the file path hash) and3.
d (the file hash) for each iteration of the loop:

bRead(p,d).then(function(res){
 if(res)
 {
 responseObject.push({file: file, status: res});
 if(responseObject.length == files.length)
 {
 jsonString = JSON.stringify({res: responseObject});
 response.send(jsonString);
 }
 }
 });
 });

Building a Tamper-Proof Document Storage System Chapter 7

[363]

The responseObject object array captures the status of each file. For each4.
iteration of the loop, we call the bRead method for checking whether the file has
been tampered with. After getting the status of the file from the bRead method
(tampered or not tampered), we push the file name and the status of the file into
the responseObject array. At the end of the iteration, we send a response
object back to the requester with the file list and status of each object in JSON
format.

This brings us to the end of our walkthrough of the backend service. Next, we will create
our DocsApp frontend, which the user will use to interact with our backend server and
blockchain network.

Creating a React frontend for the app
Our frontend will be a React app with which the user can register a directory to secure our
blockchain. After registering the directory, the app will iterate every 5 seconds and call the
/api/hashread service to check whether the directory has been tampered with.

In the case the directory has been tampered with, the app will show the message
Tampered! in the header; otherwise, it will say Not Tampered. It will then call the
/api/hashreadfile service in the backend server to fetch a list of tampered files, added
files, and removed files. These are then listed in the app.

The following are the constituent parts of the app:

The main App.js file
The following React components:

Container.js

PathMapper.js

FolderBlock.js

FolderBlockChkStatus.js

GlowBar.js

The following is a brief description of these components:

App.js: The main App.js file implements the methods that interact with the
backend server, submit requests, and interpret responses. It invokes
Container.js for rendering the child components and forwards the current
state to Container.js.

Building a Tamper-Proof Document Storage System Chapter 7

[364]

React components: These components render the DocsApp frontend:
Container.js: This receives the current state from App.js and
passes it to the child components.
PathMapper.js: This is the landing screen for the app that asks
the user for the root of the directory they want to secure.
FolderBlock.js: This is the component that renders the list of
files in the directory and their current status (tampered/not
tampered).
FolderBlockChkStatus.js: This is the component that renders
the list of files in the directory and their current status
(tampered/not tampered). If the directory has been tampered with,
it shows the list of tampered files, added files, and removed files in
the directory.
GlowBar.js: This is the component that shows the message
Tampered with a red highlight if the directory is found to have
been tampered with or Not Tampered with a green highlight if
the directory has not been tampered with.

Let's start creating the frontend.

Creating the React project environment
Before we can create our React app, we need to set the project directory and install the
dependencies for our app:

Create a new React app called DocsApp using npx: 1.

npx create-react-app DocsApp

Update your package.json to the file so that it has following values:2.

{
 "name": "DocsApp",
 "version": "1.0.0",
 "private": false,
 "dependencies": {
 "bulma-start": "0.0.2",
 "react": "^16.4.1",
 "react-dom": "^16.4.1",
 "react-scripts": "1.1.4"
 },
 "scripts": {

Building a Tamper-Proof Document Storage System Chapter 7

[365]

 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test --env=jsdom",
 "eject": "react-scripts eject"
 }
}

Runnpm install on a Terminal window to install the dependencies.3.
Next, within the src folder, create a Components folder for the app components.4.

Let's go through the components one by one.

Building the container component
The container component has fairly simple logic. It renders the PathMapper component
on the first launch of the app, which prompts the user for a root directory path to be
secured.

After the directory have been registered and the hashes are captured in the blockchain, the
value of DirPath (the root of the directory that is to be secured) is set in the app state. At
this point, the container renders the FolderBlock component.

After this, the app checks whether there is a mismatch between the values of MTH and FTH
and the recorded hash values in the blockchain. Every 5 seconds, it reiterates and checks
whether there is a mismatch between the directory and the values in the blockchain. The
container component renders the FolderBlockChkStatus component. This component
renders the list of all the files in the directory under inspection and their current status
(Tampered/not Tampered). In the case that the directory has been tampered with, it lists all
the tampered, added, and removed files:

render(){

 return (

 {
 this.props.DirPath == null?
 <div>
 <PathMapper setDir={this.props.setDir}
 fields={this.props.fields}
 PathMap={this.props.PathMap}
 onInputChangeUpdateField={this.props.onInputChangeUpdateField}/>
 </div> :

 this.props.vstatus == true?

Building a Tamper-Proof Document Storage System Chapter 7

[366]

 <div>
 <PanelHeader DirPath={this.props.DirPath} />
 <GlowBar fstatus={this.props.fstatus} />
 <FolderBlocknew verfile={this.props.verfile}
 addFile={this.props.addFile}
 remFile={this.props.remFile}
 BView={this.props.BView}
 changeBView={this.props.changeBView}
 DirPath={this.props.DirPath} />
 </div>:

 <div>
 <PanelHeader DirPath={this.props.DirPath} />
 <GlowBar fstatus={this.props.fstatus} />
 <FolderBlock files={this.props.files}
 DirPath={this.props.DirPath}
 startTimer ={this.props.startTimer} /> />
 </div>
 }
................
................

The container is rendered by App.js, which passes the current state of the app and the
methods to the container, which then passes it to the child components as and when they
are rendered based on the conditional clause statement.

Building the PathMapper component
The PathMapper component renders a single panel with an input field for entering the
directory path to be secured and a Submit button. On clicking the Submit button, the
PathMap() method is called, which sets the DirPath state variable. This variable holds the
root directory path for the lifecycle of the app:

<div>
 Enter Root of directory path to be secured
 </div>
 <InputField onInputChangeUpdateField={props.onInputChangeUpdateField}
 fields={props.fields} name="DirPath" Placeholder="Directory Path"/>
 <p className="control">
 <a className="button is-success"
 onClick={() => props.PathMap()}>
 Submit

 </p>
 </div>

Building a Tamper-Proof Document Storage System Chapter 7

[367]

The PathMapper component is rendered the first time the app is launched. It captures and
sets the DirPath state variable.

Building the FolderBlock component
The FolderBlock component is rendered after we write the file hashes, the MTH, and the
FTH to the blockchain. It lists the files in the directory that are written to the blockchain and
the directory path for each file:

 {
 props.files.map((file,index) => {

 var splitString = file.split("/");
 var reverseArray = splitString.reverse();

 return (
 <div className="panel-block is-multiline">
 <div className="column">

 <div key={index} className="columns token">
 <div className="column">
 FileName
 : {reverseArray[0]}
 </div>
 <div className="column">
 Path
 : {file}
 </div>
 </div>
 </div>
 </div>
)
 })
 }

Since the file array contains just the directory location of each file, we iterate through each
member and split it from the end, delimited by "/" to get the file name. The file location
and file name are then rendered on the screen.

The FolderBlock component is rendered only for about the first 5 seconds after the app
writes all the hashes to the blockchain. When the app runs the first interval to compare and
look for mismatches between the current hash signatures of the directory and the hash
signatures written to the blockchain, the FolderBlock component is replaced by the
FolderBlockChkStatus component.

Building a Tamper-Proof Document Storage System Chapter 7

[368]

The FolderBlockChkStatus component also shows the current status of the file
(Tampered/Not Tampered) based on the result of the comparison returned by the backend
server. Let's look at the FolverBlockChkStatus component next.

Building the FolderBlockChkStatus component
The FolderBlockChkStatus component is probably the most complex component. It
carries out the following tasks:

Displays whether the current status of the directory is Directory is
Tampered/Not Tampered
Displays whether the current status of the file is Tampered or Not Tampered
In the case that the directory is tampered with, displays the list of tampered files,
added files, and removed files

Go through the following steps to build the FolderBlockChkStatus component:

We start by rendering a simple menu bar to allow the user to navigate between1.
the different categories of files:

<div className="panel-block">
 <div className="columns ">
 <p className="column control">
 <a className="button is-light"
 onClick={() => props.changeBView(1)}>
 All Files

 </p>
 <p className="column control">
 <a className="button is-light"
 onClick={() => props.changeBView(2)}>
 Added Files

 </p>
 <p className="column control">
 <a className="button is-light"
 onClick={() => props.changeBView(3)}>
 Removed Files

 </p>
 <p className="column control">
 <a className="button is-light"
 onClick={() => props.changeBView(4)}>
 Tampered Files

Building a Tamper-Proof Document Storage System Chapter 7

[369]

 </p>
 </div>

The props.changeBView method changes the BView state variable in to a value2.
between 1 and 4. Each value indicates a screen type, as follows:

1 - All Files Screen
2 - Added Files Screen
3 - Removed Files Screen
4 - Tampered Files Screen

A conditional statement iterates through the values of the state variable3.
BView and renders the screen accordingly. When BView is 1, the All Files screen
is rendered. It lists all the files with their directory location. If a file is tampered
with, the background is highlighted in red using the warning color tag for
the bulma framework. The verfile array contains a list of all files that are
currently located in the directory. Any files that have been removed are not
present in this array and by extension are not displayed on this screen:

props.BView == 1?

 <div className="panel-block">
 <div className="panel-block is-paddingless is-12" >
 <div>
 {
 props.verfile.map((f,index) => {

 var splitString = f.file.split("/");
 var reverseArray = splitString.reverse();

 return (
 <div className={f.status == 'Tampered' ? "has-background-danger" :
"has-background-white"}>
 <div className="panel-block is-multiline">
 <div className="column">

 <div key={index} className="columns token">
 <div className="column">
 FileName
 : {reverseArray[0]}
 </div>
 <div className="column">
 Path
 : {f.file}
 </div>
 <div className="column">

Building a Tamper-Proof Document Storage System Chapter 7

[370]

 Status
 : {f.status}
 </div>

When BView is 2, this indicates that the user has clicked on the Added4.
Files button. The app will render a screen with a list of all the files that have been
added since the hash was last captured in the blockchain. The addFile array
contains a list of all files that have been added since the hash of the directory was
recorded to the blockchain. When the BView state variable is set to 2, the app will
map the addFile array and display all the newly added files on the screen:

props.BView == 2?

 <div className="panel-block">
 <div className="panel-block is-paddingless is-12" >
 <div>
 {
 props.addFile.map((file,index) => {

 var splitString = file.split("/");
 var reverseArray = splitString.reverse();

 return (
 <div className="panel-block is-multiline">
 <div className="column">
 <div key={index} className="columns token">
 <div className="column">
 FileName
 : {reverseArray[0]}
 </div>
 <div className="column">
 Path
 : {file}
 </div>

When BView is 3, this indicates that the user has clicked on the Removed5.
Files button. The app will render a screen with a list of all the files that have been
added since the hash was last captured in the blockchain. The remFile
array contains a list of all the files that have been removed since the hash of the
directory was recorded to the blockchain. When the BView state variable is set to
3, the app will map the remFile array and display all of the removed files on the
screen:

props.BView == 3?

 <div className="panel-block">

Building a Tamper-Proof Document Storage System Chapter 7

[371]

 <div className="panel-block is-paddingless is-12" >
 <div>
 {
 props.remFile.map((file,index) => {

 var splitString = file.split("/");
 var reverseArray = splitString.reverse();

 return (
 <div className="panel-block is-multiline">
 <div className="column">
 <div key={index} className="columns token">
 <div className="column">
 FileName
 : {reverseArray[0]}
 </div>
 <div className="column">
 Path
 : {file}
 </div>

When the value of BView is not equal to 1, 2, or 3, the user has selected option6.
4. This indicates that the user has clicked on the Tampered Files button. The app
will render a screen with a list of all the files that have been tampered with since
the hash was last captured in the blockchain. The verFile array contains a list of
all the files with their current status (Tampered/Not Tampered). Only files with
the status of Tampered are displayed on the screen:

props.verfile.map((f,index) => {

 var splitString = f.file.split("/");
 var reverseArray = splitString.reverse();

 return (
 <div className={f.status == 'Not Tampered' ? "is-hidden" :
 "has-background-white" }>
 <div className="panel-block is-multiline">
 <div className="column">

 <div key={index} className="columns token">
 <div className="column">
 FileName
 : {reverseArray[0]}
 </div>
 <div className="column">
 Path
 : {f.file}

Building a Tamper-Proof Document Storage System Chapter 7

[372]

 </div>
 <div className="column">
 Status
 : {f.status}
 </div>

This brings us to the end of the components for the app. We'll look at the methods for our
app next.

Writing the app methods
Our App.js file will define the methods that will be called by the child components. It'll
also render the container component and pass it the state of the app, in which the container
component will then transfer to the child components when they are rendered.

The app will use the following methods:

startTimer: Sets an interval of 5 seconds and calls the pathcheck()
method every 5 seconds to see whether there is a mismatch in the last modified
time or file tree structure compared to the version recorded in the blockchain.
hashFile: The method that calls the backend /api/hashwrite service to write
hash signatures to the blockchain and updates the app state with the list of files
being monitored, the FTH, the MTH, and the time that the hash was captured.
pathCheck: The method that calls the backend /api/hashread service to check
whether there is a mismatch in the MTH and FTH that was recorded to the
blockchain and the current last MTH and FTH of the directory. In the case of a
mismatch, it stops the interval loop and sets fstatus state variable to Tampered
to indicate that the directory has been tampered with.
fileCheck: The method that calls the backend /api/hashreadfile service to
identify the tampered files in the directory. After a response from the service, it
updates the state variables with the current status of the files.
compFiles: The method that compares the list of files being monitored by the
app with the latest file list of the directory. It adds the list of removed files, added
files, and the files that still exist in the directory to the app state.
changeBView: Cycles between the various views of the app by modifying
the BView.

Let's start by looking at the constructor and the app state that is defined by it.

Building a Tamper-Proof Document Storage System Chapter 7

[373]

The app starts by declaring the appName app member and setting it to DocsApp, which is
the name of our application:

constructor(){
 super();
 this.appName = 'DocsApp';

The state of the app contains the following variables, which we'll be using in our methods.
We'll look at the purpose of these state variables when we write our methods:

 this.state = {
 DirPath: null,
 fstatus: null,
 vstatus: false,
 modtime: null,
 files : [],
 verfile: [],
 remFile: [],
 addFile: [],
 MTH : null,
 FTH: null,
 tflag: true,

fields: {
 DirPath: null,
},
 };

We also add the DirPath field variable, which will capture and store the root directory
path that is to be secured. This will be entered by the user on the screen. Let's start writing
the methods.

Creating a method to set the timer interval
The startTimer method sets the timer interval that calls the hashread method every 5
seconds to see whether there is a mismatch between the MTH and FTH hashes recorded in
the blockchain and the current MTH and FTH hashes:

The method checks whether the tflag state variable is set to true. You might1.
remember that this value is set to true in the constructor. This is to avoid
multiple firing when the app is rendered multiple times because of changes in
state:

startTimer = () =>{
 if(this.state.tflag == true)

Building a Tamper-Proof Document Storage System Chapter 7

[374]

 {
 console.log ("Started Timer");
 this.intervalHandle = setInterval(this.pathCheck,5000);

The interval set is intervalHandle. It calls the pathCheck method every 52.
seconds (5,000 milliseconds). Next, we set the app state variable tflag to false
to ensure that the interval is not set multiple times:

this.setState({
 tflag: false
 });
 }
 }

This wraps up the startTimer method. Let's move on to the next method.

Creating a method to write the hashes to the blockchain
Next, let's look at the hashFile method. The hashFile method is called after the user
submits the directory path to be secured for hashing and writing the directory components
and parameters to the blockchain:

We first capture the local state and methods of the app from the this object. We1.
also fetch the directory path submitted by the user and store it in the DirPath
variable:

hashFile = () => {

 let app = this;
 var DirPath = this.state.fields.DirPath;

Next, we call the hashwrite API in our backend server with the directory path2.
(DirPath) as the input parameter:

fetch('http://localhost:3600/api/hashwrite', {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 },
 body: JSON.stringify({
 DirPath: DirPath})
 }).then(function(response,error) {

Building a Tamper-Proof Document Storage System Chapter 7

[375]

Next, we check for a successful response from the hashwrite services:3.

 if(response)
 {
return response.json();
 }
 else
 {
 console.log(error);
 }
 }).then(function(data){

The data in the response JSON object is parsed to fetch the DirPath, the list of4.
monitored files, the MTH, the FTH, and the time when the hash was captured
(modtime):

app.setState({
 DirPath: DirPath,
 status: 'Idle',
 files : data.files,
 MTH : data.MTH,
 FTH: data.FTH,
 modtime: data.modtime
 });
 });
 }

The following app state variables are set:

DirPath: Directory root path
status: Current state of the app
files: Array with the list of files
MTH: MTH of the files in the directory path
FTH: FTH of the directory
modtime: Time when hashes were recorded in the blockchain

That wraps up our hashFile method. Let's move on to the next method, which we will use
to compare the current last modified time and the file tree structure of the
secured directory with the values stored in the blockchain.

Building a Tamper-Proof Document Storage System Chapter 7

[376]

Creating a method to check for a mismatch between the
last modified time and the file tree structure
Next, we will look at the pathCheck() method. After writing the hash signatures to the
blockchain, the app renders the FolderBlock component. This component triggers the 5-
second interval timer by calling the startTimer method. The startTimer method, in
turn, calls the pathCheck method, every 5 seconds to verify whether there is a mismatch
between the hash signature of the MTH (MTH) and FTH (FTH) written in the blockchain and
the actual hash value of the MTH and FTH when calculated from the directory under
observation. A mismatch indicates that some data in our directory has been tampered with.

Let's see how the pathCheck method achieves this:

We start by capturing the app state and the DirPath state variable(directory1.
path), modtime (the time when the hashes were captured in the blockchain), and
files locally (the files array with the list of files being observed):

pathCheck = () =>{

 let app = this;

 var DirPath = this.state.fields.DirPath;
 var modtime = this.state.modtime;
 var files = this.state.files;

this.setState({
 status: 'Verifying'
 });

We also change the status variable to Verifying.2.
Next, we call the hashread service on our backend server. Remember that the3.
hashread service takes DirPath and modtime as input parameters so that it can
fetch the MTH and FTH recorded in the blockchain, calculate the present values
of MTH and FTH from our directory, and see whether there is a mismatch between
the two. A mismatch indicates that one or more files have been tampered with or
have been added/removed.
We then use fetch to call the hashread service on port 3602 of our backend4.
server and provide the DirPath and modtime input parameters in the request
body:

fetch('http://localhost:3602/api/hashread', {
 method: 'POST',
 headers: {

Building a Tamper-Proof Document Storage System Chapter 7

[377]

 'Accept': 'application/json',
 'Content-Type': 'application/json',
 },

 body: JSON.stringify({
 DirPath: DirPath,
 modtime: modtime,
 })
 }).then(function(response,error) {

Upon a successful response from the backend, we parse the data in the5.
response.json:

if(response)
 {
 return response.json();
 }
 else
 {
 console.log(error);
 }
 }).then(function(data){

The result of the check (Tampered/Not Tampered) is stored in the fstatus state6.
variable, where it can be accessed by the other components of the app. The list of
files currently present in the directory is returned by the hashread service in the
response key files. We store these in the filesNew array:

then(function(data){
 app.setState({
 fstatus: data.result,
 });
 var filesNew = data.files;
 if(data.result == "Tampered")
 {
 clearInterval(app.intervalHandle);

 var params = {files,filesNew};
 app.compFiles(params);
 }
 });
}

Building a Tamper-Proof Document Storage System Chapter 7

[378]

Next, we check whether the status returned by the backend service is Tampered. If the
directory has been tampered with, we stop the iterating interval and call the
compFiles method with the parameters files and filesNew (the original list of files in
the directory and the list of files currently in the directory). The compFile method will
allow us to identify whether any files have been added or removed from the directory. This
wraps up our pathCheck method.

Writing a method to check whether any files have been
added or removed from the directory
The compFile method compares the old and new list of files to see whether there is a
mismatch between the two. It iterates through the old and new list of files of the directory
under observation to check whether any new files have been added or removed. The
addFile variable stores the added files and the remFile variable stores the removed files.
The files that were present both during the initial hashing and during the verification are
stored in the array,extFile . You can find the code for the compFile method in the
App.js file at https://github.com/PacktPublishing/Blockchain-Development-for-
Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js.

At the end of the execution, the method sets the arrays extFile, remFile, and addFile to
the app state. It then calls the fileCheck method to check which of the individual files
have been tampered.

Writing a method for identifying tampered files from the
list of files
The fileCheck method identifies the list of tampered files from the extFile file array. To
do this, it calls the backend hashreadfile service:

We start by locally capturing the list of files in the extFile variable. As you1.
might remember, this is the list of files present during the initial hashing and the
verification check. We want to identify which files among these may have been
tampered with:

filecheck = () =>{

 const files = this.state.extFile;
 const DirPath = this.state.fields.DirPath;
 let app = this;

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/blob/master/Chapter%207/Docs%20App/src/App.js

Building a Tamper-Proof Document Storage System Chapter 7

[379]

Next, we call the hashreadfile service in our backend node server. As you2.
might remember, the input parameters are DirPath (directory path) and files
(the list of files present in the directory):

 fetch('http://localhost:3602/api/hashreadfile', {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 },

 body: JSON.stringify({
 DirPath: DirPath,
 files: files
 })
 }).then(function(response,error) {

Upon a successful response, we parse the response.json object to fetch the3.
data returned by the backend:

if(response)
 {
 console.log(response);
 return response.json();
 }
 else
 {
 console.log(error);
 }
 }).then(function(data){

The backend hashreadfile service returns the file array to us with the status of4.
the files. This list is stored in the state variable verfile. At the same time, the
vstatus flag is set to true to notify the app to render the
FolberBlockChkStatus component with the list of tampered files:

app.setState({
 verfile : data.res,
 vstatus: true
 })
 });
 }

This ends the fileCheck method for our App.js file .This also concludes the development
of our app. Now let's run the components together to see how the app looks and functions.

Building a Tamper-Proof Document Storage System Chapter 7

[380]

Running the tamper-proof application
Let's run our application.

Make sure that the Hyperledger Fabric network is running:

Bring the backend server online:1.

node hashcheck

Next, bring the React app online. Navigate to the react directory and enter the2.
following command:

npm start

The app should now open up in your browser, as shown in the following3.
screenshot:

We need to provide a test directory that we'll be monitoring with our app.4.

Building a Tamper-Proof Document Storage System Chapter 7

[381]

I've created a mock test directory, as shown in the following screenshot. Feel free
to create your own directory or use a preexisting one:

Next, we will enter the absolute path of the directory in our app to secure it:5.

Building a Tamper-Proof Document Storage System Chapter 7

[382]

Click on Submit to proceed. The app will next hash the files in our directory and6.
capture them to the blockchain. The app will then monitor each of the files in the
directory:

The green banner and the Not Tampered status indicates that the directory has7.
not been tampered with. Let's try to remove a file from the directory and see how
the app works.

Building a Tamper-Proof Document Storage System Chapter 7

[383]

The app banner should become red with the message Tampered:

Click on Removed Files to see the removed file:8.

Building a Tamper-Proof Document Storage System Chapter 7

[384]

That ends our demo. You can try out the app to see how it works with cases where a file
has been modified or added to the directory.

Summary
That wraps up our tamper-proof Blockchain app. In an enterprise scenario, you can use this
app to detect any tampering and then replace the files from a backup, such as a disaster
recovery site, if required. This is a simple prototype, and I'm sure that you can figure out
multiple applications for this workflow in the different business processes of a financial
organization, such as managing digital copies of customers' private documents,
confidential files and business information, transaction data, and so on.

We started this chapter with the intention of leveraging the tamper-proof property, or
immutability, of blockchains to build an app that will notify us when a record-keeping or
document storage system has been tampered with. To that end, we set up a private
Hyperledger Fabric network with two nodes, two organizations, and one channel. On the
network, we deployed a chaincode smart contract that would be used to record hashes and
retrieve hashes from the blockchain for comparison. We also built an app with a node
backend that would interact with the chaincode contract and a React frontend that would
be used by a user to submit a directory that can be secured by the app. Lastly, we ran our
app and used it to see how the app works when the directory is tampered with.

The main take away from this chapter should be how the tamperproof property can be
used and extended to build complex applications that secure data and information. In the
next chapter, we'll be leveraging these features to build a trading exchange.

The next chapter will introduce you to the concept of decentralized exchanges. We'll be
implementing a trading exchange using the Ethereum platform.

4
Section 4: Decentralized

Trading Exchanges Using
Blockchain

Decentralized trading exchanges are probably one of the best financial applications of
blockchain technology. In recent years, commodity and asset trading exchanges around the
world have been susceptible to scams and frauds arising from orderbook manipulation and
inflated trading volumes. Additionally, reconciliation and settlement is an expensive and
time-consuming affair for most exchanges. Decentralized trading exchanges look to solve
both of these issues by replicating the orderbook across the network participants in real
time and using a blockchain ledger to settle trades between the traders. The distributed
nature of the orderbook means that it cannot be tampered with or modified by an
individual or a single party. All trades are posted instantly to the ledger and settled.
Exchange participants can validate these trades simply by checking the ledger.

In the next two chapters, we'll be building decentralized trading exchanges of our own.
We'll be building an asset exchange platform and a multi-currency exchange platform that
uses blockchain technology for securing the trading process.

This section comprises the following chapters:

Chapter 8, Building a Decentralized Trading Exchange on Blockchain
Chapter 9, Developing a Currency Trading Exchange for Market Making
Chapter 10, Looking into the Future

8
Building a Decentralized

Trading Exchange
This chapter deals with building a decentralized trading exchange using a private
Ethereum blockchain. Traditionally, trading exchanges require an authority who will
facilitate the trade between the buyers and the sellers. This authority will post the buy
offers and sell offers from all the traders in a single platform, where they are visible to all
the participants. This platform is referred to as the orderbook. Traders can trade against the
offers that are posted on the orderbook.

In this chapter, we attempt to decentralize or basically remove the authority that manages
the orderbook from the picture. The decentralized exchange will still have an orderbook,
except it will be managed by a smart contract and will be available for all the participants to
view and trade against in real time. We will be building an exchange on top of this
orderbook that allows traders to trade US dollars for gold.

In this chapter, we will cover following topics:

Technical requirements
Decentralized trading exchanges
Issuing the trading assets
The orderbook smart contract
Building the exchange app
Running the exchange app

Building a Decentralized Trading Exchange Chapter 8

[387]

Technical requirements
The code files of this chapter are available at https://github.com/PacktPublishing/
Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208.

We'll be using the following sources to develop our project:

Ganache private blockchain server—https://trufflesuite.com/ganache/

Trufflesuite—https://github.com/trufflesuite/truffle

Metamask plugin for Chrome/Firefox/Safari—https://metamask.io/

To install Ganache on Ubuntu, you might need to change some settings.
Click on the drop-down menu next to the directory name.
Select Preferences. Navigate to the Behavior tab. Under Executable Text
Files, set the option to Ask what to do. Navigate back to the file
downloaded from the Ganache download link. Right-click on the file and
click on properties. Select the Permissions tab. Select the Allow executing
files as program option. Now, double-click on the file. The Ganache
blockchain should start smoothly. It's probably best to do a global
installation of Truffle to avoid any conflicts. For example, create a
directory workspace called truffle and install Truffle using sudo npm
install truffle -g.

I'm using Ubuntu 18.04.2 LTS to run the preceding applications and to deploy my
blockchain. This project assumes that you are working on a Unix operating system.
Additionally, this project assumes that you have node.js and npm installed. I'm using node
version 13.0.1 and npm version 6.12.0.

Lastly, we'll be using the OpenZeppelin library of smart contracts to write our contracts.
To use this library, create a project folder in your Truffle workspace. Let's call
it tokenwallet. Create a package.json file in the project folder and update it with the
following values:

{
 "dependencies": {
 "babel-register": "^6.23.0",
 "babel-polyfill": "^6.26.0",
 "babel-preset-es2015": "^6.18.0"
 },
 "devDependencies": {
 "openzeppelin-solidity": "^2.2.0"
 }
}

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%208
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://trufflesuite.com/ganache
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://github.com/trufflesuite/truffle
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/
https://metamask.io/

Building a Decentralized Trading Exchange Chapter 8

[388]

Run npm install in order to install the OpenZeppelin library and Babel for your Truffle
workspace.

Decentralized trading exchanges
Blockchains can play an important role in the disintermediation of financial systems. Most
financial systems today include a number of middlemen and organizations that facilitate
the smooth working of the entire ecosystem. Obviously, this means placing your trust with
these intermediary players, and believing that they will not try to carry out any fraudulent
activity, or relay incorrect information to you. This chapter is an example of a system that
attempts to reduce the number of middlemen and authorities in the existing model, in
order to build a faster and more transparent system. A decentralized trading exchange is
one where the orderbook is not controlled by a central authority.

As the name suggests, the entire trading process is decentralized, meaning it is without a
central authority or organization to facilitate the trades. Removing a central authority
means that traders do not have to place their trust in an intermediary for trading. The
orderbook is not maintained by such an authority, thus, the scope for fraud or tampering
with the orderbook is reduced. You also do not have to pay transaction or trading fees,
since the middleman is absent. Additionally, since the system is built on top of a blockchain
platform, trades are reconciled and settled between traders that are almost instantaneous
when compared to a traditional trading exchange.

The exchange would consist of the following components:

 A decentralized orderbook that records all offers, and is managed by a smart
contract on the blockchain
 A US-dollar ERC20 token, and a gold ERC20 token to keep a track of our trading
assets
 A frontend app that displays the orderbook to users in real time, and matches a
trading request submitted by the user against the available offers on the
orderbook

Building a Decentralized Trading Exchange Chapter 8

[389]

Basic components of a trading exchange
Trading exchanges consist of the following important components:

Orderbook: A platform where a central authority posts buy and sell offers for
different assets from all the traders that are interacting with the exchange. These
assets can be anything ranging from shares of a company to currencies such as
US dollars and UK pounds, to commodities such as gold, silver, crude oil, and so
on. The orderbook is visible to all trade participants in real time, and it updates
as new offers are submitted, or trades are carried out. To buy or sell an asset, the
trader simply needs to look at the current price and then submit a new offer. If
there is a matching offer, a trade is carried out.
Matching engine: The matching engine matches incoming trade requests as
offers against the existing offers on the orderbook. So, let's say you submitted an
offer to buy a gram of gold for $50, the matching engine will scout the orderbook
to see if a trader is selling a gram of gold for $50. If an offer exists, it will debit
$50 from your account and credit a gram of gold. This $50 will be credited to the
trader who had posted the sell request that your offer matched against. If the
matching engine is unable to find a matching offer for you, it will simply forward
your offer to the orderbook, where it will wait until someone makes a matching
sell request against your offer.
Accounts: User accounts hold the base asset and the counter asset. The asset that
you use to buy or sell is called a base asset. Thus, if you buy or sell gold using US
dollars, then US dollars is the base asset. The commodity to be bought or sold is
called the counter asset. Thus, in the example, gold is a counter asset.

The term 'Price' in the orderbook reflects the amount of US dollars that you will have to pay
to buy a gram of gold, or the amount of US dollars that you will receive on selling a gram of
gold. Price is always per unit cost. The term 'Quantity' refers to the total grams of gold that
are available at that price.

Scope of the decentralized exchange project
In our project, we'll be building an exchange that allows the user to trade gold for US
dollars. Unlike the traditional model, where the central authority builds and maintains the
orderbook platform, in our model the orderbook is built and managed using a smart
contract. It will be available to all traders who connect to our private blockchain platform to
trade, and it will be stored in all the nodes that are hosted as part of our blockchain

Building a Decentralized Trading Exchange Chapter 8

[390]

We'll be building and deploying the following components:

Two ERC20 token smart contracts called Gold and USD. The ERC20 gold token
represents our gold asset (the counter asset), and the ERC20 USD token
represents the amount of US dollars (the base asset) that are used to buy or sell
gold.
A smart contract called Orderbook. This contract will allow users to trade gold
for USD. It will keep a track of all the incoming buy and sell offers, and will
allow traders to view and execute a trade against an existing offer that is stored
in the contract.
A frontend React app called Exchange. This app will serve two purposes. First, it
will display the orderbook in real time to the user. Second, it will show the user
their current base asset and counter asset balance. Lastly, and most importantly,
when the user submits a buy or sell request, it will run a matching algorithm to
verify if there are any matching trades against the user's offer. If yes, it will
execute a trade against that offer by invoking the orderbook smart contract. If no,
it will add the offer to the orderbook by invoking the smart contract.

Alright then, let's get started.

Issuing the trading assets
In our exchange, we'll allow the user to buy or sell the gold asset using US dollars. Thus,
gold will be our counter asset, that is, the asset that is being bought or sold. US dollars will
be our base asset, that is, the asset that is being used to buy or sell.

Before we can build a trading exchange around these assets, we need to create these assets
on our blockchain. To do so, we'll create an ERC20 token that represents gold, and an
ERC20 token that represents USD. The tokens are fungible and fixed in nature, and can go
up to two decimal places. One gold token represents one gram of gold, and one USD token
represents one dollar.

Writing the contracts
We'll be using the OpenZeppelin suite of smart contract templates for writing our
contracts. Let's start by writing the USD token contract:

We start writing the code by declaring the Solidity compiler version:1.

pragma solidity ^0.5.2;

Building a Decentralized Trading Exchange Chapter 8

[391]

Next, we import the requisite OpenZeppelin contract templates, which we will2.
use to build our token:

import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Detailed.sol";

import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Capped.sol";

import "openzeppelin-solidity/contracts/ownership/Ownable.sol";

The first contract template is ERC20Detailed. The ERC20Detailed contract
allows you to set the parameters of the ERC20 token using a constructor such as
the token name, token symbol, and the number of decimals after zero. It also
implements the ERC20 standard contract interface, which is extended by our
contract.

The second contract template is ERC20Capped. This contract allows us to create
an ERC20 token with a capped supply. Basically, we are fixing the upper limit for
the total number of tokens that can be issued.

Lastly, we have the ownable contract. This contract essentially sets the contract
owner parameter to the Ethereum address that deploys the contract.

Next, we define our contract name:3.

contract USD is ERC20Detailed, ERC20Capped, Ownable {

The USD contract inherits the ERC20Detailed, ERC20Capped, and Ownable
contracts that we imported before using the 'is' keyword. This allows us to define
and access the members of these contracts.

Lastly, we define the constructor for our token contract:4.

constructor()
ERC20Detailed("US Dollar", "USD", 2)
ERC20Capped(10000000000)
MinterRole()
payable public {}
}

Building a Decentralized Trading Exchange Chapter 8

[392]

Within our constructor, we call the constructors for our inherited contracts. The
ERC20Detailed contract constructor is called, and it sets the token name, token
symbol, and the number of decimal places after zero as US dollars, USD, and 2,
respectively. The ERc20Capped contract constructor is called to set the total
number of tokens in circulation as 10,000,000,000 USD tokens. Lastly, we call the
MinterRole contract constructor to set the Minter address, that is, the address that
will create and issue new tokens. This is set to the address that is deploying the
contract. MinterRole is a contract that is inherited by the ERC20Capped contract.
We can also open these contracts within OpenZeppelin and see how the
constructors are defined within them. You can observe these at the OpenZeppelin
GitHub repository, at https://github.com/OpenZeppelin.

This is how the constructor for ERC20Detailed is defined:

constructor (string memory name, string memory symbol, uint8
decimals) public {
 _name = name;
 _symbol = symbol;
 _decimals = decimals;
 }

This is how constructor for ERC20Capped is defined:

constructor (uint256 cap) public {
 require(cap > 0, "ERC20Capped: cap is 0");
 _cap = cap;
 }

This is how constructor for MinterRole is defined:

constructor () internal {
 _addMinter(_msgSender());
 }

Lastly, we define our contract as payable in order to receive ethers and define the5.
scope as public. Putting it all together, this how our USD token contract looks:

//USD.sol
pragma solidity ^0.5.2;

import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Detailed.sol";
import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Capped.sol";
import "openzeppelin-solidity/contracts/ownership/Ownable.sol";

https://github.com/OpenZeppelin
https://github.com/OpenZeppelin
https://github.com/OpenZeppelin
https://github.com/OpenZeppelin
https://github.com/OpenZeppelin
https://github.com/OpenZeppelin
https://github.com/OpenZeppelin
https://github.com/OpenZeppelin
https://github.com/OpenZeppelin

Building a Decentralized Trading Exchange Chapter 8

[393]

contract USD is ERC20Detailed, ERC20Capped, Ownable {

constructor()
ERC20Detailed("US Dollar", "USD", 2)
ERC20Capped(10000000000)
MinterRole()
payable public {}
}

The Gold token contract is similar to the USD token contract. The only difference
is in the token name and symbol. I am calling my token Gold, and the symbol that
I am using is Au. You can change the total number of tokens or decimal places if
you want. This is how my Gold token contract looks:

//Gold.sol
pragma solidity ^0.5.2;

import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Detailed.sol";
import "openzeppelin-
solidity/contracts/token/ERC20/ERC20Capped.sol";
import "openzeppelin-solidity/contracts/ownership/Ownable.sol";

contract Gold is ERC20Detailed, ERC20Capped, Ownable {

constructor()
ERC20Detailed("Gold", "Au", 2)
ERC20Capped(10000000000)
MinterRole()
payable public {}
}

Now that we have our two assets, let's compile them using the Truffle framework and the
Solidity compiler.

Compiling the contracts
We will be using the Truffle framework and the Ganache blockchain for this project:

Begin by creating a quickstart blockchain using Ganache.1.
Copy and paste the USD and Gold contract files to the contract folder in your2.
Truffle workspace.

Building a Decentralized Trading Exchange Chapter 8

[394]

Now, bring the Truffle console online. Navigate to the path containing your3.
truffle—config.js.

Enter truffle console on the Terminal window in order to access the Truffle4.
console.
Compile both the contracts by entering the compile command in the Truffle5.
command line.
Provided there are no errors, your contracts should now be compiled and ready6.
to migrate. Hold the compiled builds for now.
We'll be migrating and deploying these contracts, along with our orderbook7.
smart contract.

This completes the creation and issuing of the trading assets on our blockchain. Next, we'll
write our orderbook smart contract.

Orderbook smart contract
The orderbook smart contract is the core component of our entire project.

It carries out the following functions:

Records incoming buy/sell offer requests from the frontend and moves the base
or counter asset from the user's Ethereum account to the smart contract account.
Allows traders to view the recorded buy/sell offers on the smart contract.
Accepts trade requests against already recorded buy/sell offers and executes the
trade. As part of the trade, the orderbook updates the available amount in an
offer, and transfers the base or counter asset both from the trader's account
and to the trader's account.
Emits an event to indicate when a new buy or sell offer is updated, or a new
trade is carried out. This event will be subscribed to by our frontend app to
update and display the orderbook in real time.

Now, let's write our orderbook contract.

Building a Decentralized Trading Exchange Chapter 8

[395]

Writing the contract
Let's begin writing the orderbook smart contract with the functions that we discussed in the
previous section:

Start by creating a smart contract file called Orderbook.sol.1.
We begin by defining first the Solidity compiler version:2.

pragma solidity ^0.5.2;

Next, we import the open-zeppelin contract template (ERC20.sol):3.

import "openzeppelin-solidity/contracts/token/ERC20/ERC20.sol";

Importing the ERC20 contract allows our smart contract to transfer the Gold and
USD ERC20 tokens to and from the trader's Ethereum accounts, using the
Transfer method in the ERC20 contract.

Next, we define the contract name as Orderbook:4.

contract Orderbook {
using SafeMath for uint;

We also use the using keyword to declare that we'll be using the SafeMath
library for all integer arithmetic calculations.

Start by declaring a data structure for the orders or the offers that will be5.
managed by our orderbook. To do so we define the Order struct:

struct Order
{
 uint Amount;
 uint Price;
 uint TimeStamp;
 address Trader;
 bytes2 Status;
}

The Order struct has five members, namely Amount, Price, TimeStamp, Trader,
and Status. Amount indicates the amount of gold in grams that is being bought
or sold in the order.

Price indicates the price in US dollars per gram of gold that the buyer is willing
to pay, or that the seller is expecting as payment.

Building a Decentralized Trading Exchange Chapter 8

[396]

TimeStamp stores the time at which the order was placed in Universal Time
Coordinated (UTC).

Trader stores the Ethereum address of the trader who placed the order.

Status shows the current status of the order ('A'—Available, 'T'—Traded).

We define two struct arrays using our Order structs called Buys and Sells. As the6.
name suggests, the Buy[] array will capture buys and Sells[] will capture
sells:

Order[] Buys;
Order[] Sells;
ERC20 public ERC20Base;
ERC20 public ERC20Counter;
address owner;

We also define two contract instances using the ERC20 contract. The ERC20Base
instance will point to our USD token and the ERC20Counter instance will point to
our Gold token.

Lastly, we define an address variable to capture the contract owner's address:7.

modifier onlyOwner {
 if (msg.sender!=owner) revert();
 _;
 }

A modifier onlyOwner is also created. It checks if the contract invoker is the
contract owner.

When the contract is first loaded, our constructor is fired. The constructor takes8.
the address of the Base and Counter tokens as input parameters. For our
project, these will be the USD token address and the Gold token address,
respectively. We also set the owner address variable to the address that deploys
the contract (msg.sender):

constructor (address Base,address Counter) public
{
ERC20Base = ER20(Base);
ERC20Counter = ERC20(Counter);
owner = msg.sender;
}

Building a Decentralized Trading Exchange Chapter 8

[397]

There are three types of events that will be emitted by our contract. The events9.
are namely BuyAdded, SellAdded, and TradeAdd:

event BuyAdded(
 uint indexed Order_No,
 uint Amt,
 uint Price,
 address trader
);

event SellAdded(
 uint indexed Order_No,
 uint Amt,
 uint Price,
 address trader
);

event TradeAdd(
 uint indexed Order_No,
 uint Amt,
 uint Price,
 address maker,
 address taker
);

All three emit the order and trade details, including the OrderNo, Amount, Price,
and the address of the trader who placed the order. In the case of TradeAdd, the
maker is the trader who placed the order that is being traded, and the taker is the
trader who matches against the order.

Now, we come to the interesting part. The addBuy method accepts an order from10.
the user, and adds it to the buys[] array that we declared earlier:

function addBuy(uint Amt, uint BuyPrice) public returns (uint)
{
 ERC20Base.transferFrom(msg.sender,
address(this),Amt.mul(BuyPrice));
 Buys.push(Order(Amt,BuyPrice,now,msg.sender,'A'));
 emit BuyAdded(Buys.length,Amt,BuyPrice,msg.sender);
 return Buys.length;
}

Building a Decentralized Trading Exchange Chapter 8

[398]

The addBuy function takes the order amount (Amt) and price (BuyPrice) as
input parameters.
On invoking the addBuy method, it first transfers the equivalent USD tokens for
the order from the trader's Ethereum address to the smart contract's address. So,
let's say if you wanted to buy 10 grams of gold for $50 per gram, addBuy would
transfer -> 10 grams * $50 = $500 from your Ethereum account to the smart
contract's address.
The smart contract's address here is represented by address(this).
addBuy invokes the transferFrom method in the Base asset ERC20 interface to
transfer the USD tokens from the trader's account to the smart contract address.
This method will only work successfully if the trader has approved the contract
to move funds from its address.
After a successful transfer, it pushes a new buy order with the details to the buys
array (Buys[]). Lastly, it emits the BuyAdded event, and returns the new length
of the Buys array to the contract invoker.

 The addSell method also works similar to the addBuy method:11.

function addSell(uint Amt, uint SellPrice) public returns (uint)
{
 ERC20Counter.transferFrom(msg.sender, address(this),Amt);
 Sells.push(Order(Amt,SellPrice,now,msg.sender,'A'));
 emit SellAdded(Sells.length,Amt,SellPrice,msg.sender);
 return Sells.length;
}

It takes the order amount (Amt) and price (SellPrice) as input parameters. It
uses the ERC20Counter contract instance that points to the Gold token to
transfer gold tokens from the trader's address to the contract address.
After the successful transfer, a new sell order is added to the orderbook sell array
(Sells[]).
Lastly, it emits the SellAdded event with the order details. It then returns the
new length of the Sells array to the contract invoker.

The viewLengthBuy() and viewLengthSell() methods return the current12.
length of the Buys and Sells arrays, respectively, to the contract invoker:

function viewLengthBuy() public view returns (uint)
{
 return Buys.length;
}

Building a Decentralized Trading Exchange Chapter 8

[399]

function viewLengthSell() public view returns (uint)
{
 return Sells.length;
}

The viewBuy method returns an already recorded buy order to the contract13.
invoker:

function viewBuy(uint OrderNo) public view returns (uint,uint,uint,
address)
{
 return (
 Buys[OrderNo-1].Amount,
 Buys[OrderNo-1].Price,
 Buys[OrderNo-1].TimeStamp,
 Buys[OrderNo-1].Trader
);
}

It takes OrderNo as an input parameter. It returns the order Amount, Price,
Timestamp, and the address of the Trader.

The viewSell method is similar to the viewBuy method:14.

function viewSell(uint OrderNo) public view returns
(uint,uint,uint,address)
{
 return (
 Sells[OrderNo-1].Amount,
 Sells[OrderNo-1].Price,
 Sells[OrderNo-1].TimeStamp,
 Sells[OrderNo-1].Trader
);
}

It takes OrderNo as an input parameter and returns the sell order details.

Next, we come to the trade function. This method is invoked whenever you need15.
to trade against an existing order:

function trade(uint OrderNo, uint Amt, uint TradePrice, uint
trade_type) public returns (uint, uint , address)
{
 // 1 is Buy trade , 2 is Sell Trade

Building a Decentralized Trading Exchange Chapter 8

[400]

Let's look at this method in detail:

The trade function takes OrderNo to be traded against, and trading amount
(Amount), trading price (TradePrice), and trade_type as input parameters.
trade_type can have a value of 1 for buy trades, and 2 for sell trades.
When an order is sent to the trade method, it checks whether the order
consumes the matching order fully or partially. It also checks if the incoming
request is for a buy order or a sell order. Accordingly, it handles the trading
request.

Thus, if the incoming request is for a Buy trade and the trade amount is equal to16.
the order amount, the snippet of code does the following:

if (trade_type == 1 && Sells[OrderNo-1].Amount == Amt)
 {
 require(TradePrice >= Sells[OrderNo-1].Price, "Invalid Price");
 ERC20Base.transferFrom(msg.sender,
Sells[OrderNo-1].Trader,Amt.mul(Sells[OrderNo-1].Price));
 Sells[OrderNo-1].Amount = 0;
 Sells[OrderNo-1].Status = 'T';
 ERC20Counter.transfer(msg.sender, Amt);
 emit TradeAdd(OrderNo, Amt,
Sells[OrderNo-1].Price,Sells[OrderNo-1].Trader,msg.sender);
 return (
 OrderNo,
 Amt,
 msg.sender
); }

The method starts by first checking that the trading price (buy price) is greater17.
than or equal to the sell order that it is matching against. This is enforced using a
require statement, and in the case of a mismatch, a revert() statement is
thrown with the message "Invalid Price":

require(TradePrice >= Sells[OrderNo-1].Price, "Invalid Price");

Next, it uses the ERC20Base contract instance to transfer the equivalent US18.
dollars from the taker's Ethereum address to the maker's Ethereum address. The
taker here is the trader who submits the trading offer to the trade method. The
maker is the trader who had placed the order that the method is matching
against. The trade method assumes that the traders have already approved the
smart contract address to move USD tokens from their Ethereum address:

ERC20Base.transferFrom(msg.sender,
Sells[OrderNo-1].Trader,Amt.mul(Sells[OrderNo-1].Price));

Building a Decentralized Trading Exchange Chapter 8

[401]

Next, the trade method updates the Sell order. The amount is set to 0, and the19.
status to 'T' for traded:

Sells[OrderNo-1].Amount = 0;
Sells[OrderNo-1].Status = 'T';

After updating the matching order, the counter asset, which is gold in our case, is20.
transferred to the trader who invoked the trade method. This completes the
exchange of the gold and US dollar assets between the two buyers:

 ERC20Counter.transfer(msg.sender, Amt);
 emit TradeAdd(OrderNo, Amt,
Sells[OrderNo-1].Price,Sells[OrderNo-1].Trader,msg.sender);

Lastly, an event is emitted with the trade details.

Finally, the method returns the order number that is traded against (OrderNo),21.
the trading amount (Amt), and the trader's address to the contract invoker:

return (
 OrderNo,
 Amt,
 msg.sender
);

The alternative buy case when the trading amount is less than the order amount22.
is similar to this case. The difference is that the status of the order of the trade is
still kept as A for available, and the order amount is updated to show the amount
available in the order after a successful trade:

else if (trade_type == 1 && Sells[OrderNo-1].Amount > Amt)
 {
 ERC20Base.transferFrom(msg.sender,
Sells[OrderNo-1].Trader,Amt.mul(Sells[OrderNo-1].Price));
 require(TradePrice >= Sells[OrderNo-1].Price, "Invalid Price");
 Sells[OrderNo-1].Amount = Sells[OrderNo-1].Amount - Amt;
 Sells[OrderNo-1].Status = 'A';
 ERC20Counter.transfer(msg.sender, Amt);
 emit TradeAdd(OrderNo, Amt,
Sells[OrderNo-1].Price,Sells[OrderNo-1].Trader,msg.sender);
 return (
 OrderNo,
 Amt,
 msg.sender
);
 }

Building a Decentralized Trading Exchange Chapter 8

[402]

Both the sell cases are similar to buy. The only difference is that the trade_type
input parameter should be set to 2, and the trading price in the sell case should be
less than or equal to the buy order that it is matching against. Putting it all
together, this how the trading method looks.

In the case where none of the conditions are met, a revert statement is thrown by23.
the trade method with the message, "Invalid trade parameters".
One last method that we are left with in our orderbook contract is the24.
decommission method. The decommission method is invoked by the contract
owner to decommission the orderbook. It returns the assets held against the
orders that are waiting in the orderbook to the traders:

function decommission() public onlyOwner
{
 uint i = 0;
 while (i <= Buys.length || i <= Sells.length)
 {
 if(i <= Buys.length)
 {
 uint Amt = Buys[i].Amount;
 Amt = Amt.mul(Buys[i].Price);
 ERC20Base.transfer(Buys[i].Trader,Amt);
 delete Buys[i];
 }

 if(i <= Sells.length)
 {
 ERC20Counter.transfer(Sells[i].Trader,Sells[i].Amount);
 delete Sells[i];
 }
 i++;
 }

This method uses the onlyOwner modifier to ensure that only the contract owner can
invoke it. It iterates against the buys[] and sells[] arrays, and transfers the equivalent
base or counter amount back to the trader who placed the order. After a successful transfer,
it deletes the buy or sell request from the orderbook.

Great, so that was our Orderbook smart contract. Let's compile and deploy this contract,
along with the contracts that we compiled previously.

Building a Decentralized Trading Exchange Chapter 8

[403]

Migrating all the contracts to the blockchain
Now that we have written the contract, we need to migrate the contracts to our blockchain
where we can execute them:

Copy and paste the orderbook smart contract file to the contracts folder in1.
your Truffle workspace.
Navigate to the Truffle console Terminal that you had opened earlier for2.
compiling the USD and Gold token contracts. If you closed the console, you can
bring it online again by entering truffle console in your Truffle workspace:

Compile all the contracts by entering the compile command in the Truffle3.
command line.
Provided there are no errors, your contracts should now be compiled and ready4.
to migrate.
Now, create a migration file for the orderbook contract. Enter the following5.
command in the Truffle console:

create migration orderbook

Building a Decentralized Trading Exchange Chapter 8

[404]

Navigate to the migration folder in your Truffle workspace. A new migration file6.
should have been created for your Orderbook contract.
Open the file and replace the contents of the file with the following code:7.

const Orderbook = artifacts.require("Orderbook");
const Gold = artifacts.require("Gold");
const USD = artifacts.require("USD");

module.exports = function(deployer) {

 deployer.deploy(USD).then(function(){
 return deployer.deploy(Gold);}).then(function(){
 return deployer.deploy(Orderbook,USD.address,Gold.address);})
};

Let's understand the migration script:

The preceding migration script deploys three contracts back to back. It first
deploys the USD token contract, followed by the gold token contract.
It uses the blockchain addresses of the USD and Gold tokens as input parameters
to the constructor for the orderbook contract.

 This is required because our Orderbook contract constructor takes the address of8.
the Gold and the USD contract as input and uses it to instantiate the Gold and
USD contract:

//orderbook smart contract constructor.

constructor (address Base,address Counter) public
{
ERC20Base = ERC20(Base);
ERC20Counter = ERC20(Counter);
owner = msg.sender;
}

Now, navigate back to the Truffle console and enter migrate in order to migrate9.
all the contract to the blockchain.

Building a Decentralized Trading Exchange Chapter 8

[405]

Make sure you note down the contract address for the USD token, the Gold10.
token, and the Orderbook contract, because we'll require these again soon
enough:

 Copy the contract address for all the contracts:11.

Building a Decentralized Trading Exchange Chapter 8

[406]

That brings us to the end of our smart contracts. Now, let's build the browser app that the
user will interact with.

Building the exchange app
The exchange app that we're going to build needs to perform the following functions:

Keep a track of the Gold and USD token balance for the user.1.
Allow the user to view orders on the orderbook contract.2.

Building a Decentralized Trading Exchange Chapter 8

[407]

Update the orderbook in real time by listening to any buy/sell/trade events that3.
are triggered by the orderbook smart contract.
Allow the user to submit buy and sell requests.4.
Match the buy/sell requests against existing orders in the orderbook if matching5.
orders are available.
If no matching orders are available, submit a new buy/sell order to the6.
orderbook.

Alright, now let's start building our app. This section assumes basic-to-intermediate
knowledge of React.js from the user. The entire React interface can be downloaded from the
GitHub repository as follows:

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/
tree/master/Chapter%209/React

Building the app
Our exchange app will constitute the following:

The main App.js file
The following react components:

Container.js

AddressBar.js

Orderbook.js

TradePanel.js
The following contract interfaces:

Gold.js

USD.js

OrderbookABI.js

Here is a brief description of the components:

App.js: The main App.js file that implements the methods that interact with
our smart contract and sets the initial state. It invokes Container.js for
rendering the child components and forwards the current state to
Container.js.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209/React

Building a Decentralized Trading Exchange Chapter 8

[408]

React components: These components render our exchange app:
Container.js: It receives the current state from the App.js file,
and passes it to the child components.
AddressBar.js: It implements an address bar which shows the
user's Ethereum account and current Gold and USD balance.
OrderBook.js: This component renders the current orderbook in
the app. It maps the buys[] and sells[] state arrays, which
contain the current buy and sell requests and displays it to the
user. The buy[] and sell[] arrays are populated with orders
from our orderbook smart contract.
TradePanel.js: It renders a Buy and Sell panel that permits the
user to enter the Amount and Price and submit a Buy or Sell
request to the app.

Contract interfaces: These are used to instantiate our gold, USD, and orderbook
contracts within the app. They contain the contract Application Binary Interface
(ABI) and contract address. As the name suggests, Gold.js and USD.js are for
the Gold and USD contracts. OrderbookABI.js is for the orderbook smart
contract.

Creating the React project environment
Before we can start building our app, we need to set up the project directory and install
the dependencies:

Create a new React app called Exchange using npx:1.

npx create-react-app Exchange

Update your package.json to the following values:2.

{
 "name": "Exchange",
 "version": "1.0.0",
 "dependencies": {
 "bulma-start": "0.0.2",
 "react": "^16.4.2",
 "react-dom": "^16.4.2",
 "react-scripts": "1.1.4",
 "web3": "^1.2"
 },
 "scripts": {

Building a Decentralized Trading Exchange Chapter 8

[409]

 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test --env=jsdom",
 "eject": "react-scripts eject"
 }
}

Run npm install on the Terminal window in order to install the dependencies.3.

Next, within the src folder, create a Components folder for the app components.
Also, create a contracts folder within src. We'll be using this to map the
contracts that are being used by the app.

Setting up the contract interfaces
We need to set up interfaces that our app will use in order to interact with the smart
contracts that will be deployed to our blockchain:

Within the contracts folder, create the Gold.js, USD.js, and1.
OrderbookABI.js files.
Open the Gold.js file in a text editor.2.
With the file open, navigate to your Truffle project environment that you used to3.
deploy the smart contracts.
In the Truffle environment, locate the build directory. Under build, you'll have4.
the Gold.json build file.
Open the file, and locate the ABI contract . It should look like the code that5.
follows.
Copy this entire ABI, and paste it in OrderbookABI.js as a parameter, as6.
follows:

export default {

abi: [
 {
 "constant": true,
 "inputs": [],
 "name": "name",
 "outputs": [
 {
 "name": "",
 "type": "string"
 }
],

Building a Decentralized Trading Exchange Chapter 8

[410]

 "payable": false,
 "stateMutability": "view",
 "type": "function"
 },
],...............]}

Similarly, copy and paste the contract address that we got for the Gold token7.
contract during deployment. Add this as a parameter to the interface as well:

export default {

address: "0x662D0a4B006914016A2Cb5CD351DD170E81af252",

abi: [...............]}

Save the file. We'll load this object to interact with the Gold contract that is8.
deployed to the blockchain.
Repeat these steps for the OrderbookABI.js file and the USD.js file as well.9.

Now, we have our contract interfaces. Let's take a look at the important methods in our
App.js file.

Writing the App.js file
Let's go through the sections of our App.js file one by one:

We start by importing the requisite dependencies, components, and contract1.
interfaces:

import React, { Component } from 'react';
import Web3 from 'web3'
import Nav from './Components/Nav';
import Description from './Components/Description';
import Container from './Components/Container';
import OrderbookABI from './Contracts/OrderbookABI';
import Gold from './Contracts/Gold';
import USD from './Contracts/USD';

Within our constructor section, we initialize the state of the app:2.

constructor(){
 super();
 this.appName = 'Exchange';
 this.watchweb3 = new Web3(new
Web3.providers.WebsocketProvider('ws://localhost:8545'))

Building a Decentralized Trading Exchange Chapter 8

[411]

 this.OrderbookABI = OrderbookABI;
 this.Gold = Gold;
 this.USD = USD;
 this.onInputChangeUpdateField =
this.onInputChangeUpdateField.bind(this);
 this.setBalance = this.setBalance.bind(this);
 this.state = {

 network: 'Checking...',
 account: null,
 buys: [],
 sells: [],
 AuBalance: 0,
 USDBalance: 0,
 lastBlock: 0,
 fields: {
 buyprice: null,
 buyamount: null,
 sellprice: null,
 sellamount: null
 }
 };

Notice the watchweb3 parameter. We initialize a web3 provider that connects to
our blockchain through a web socket (ws://localhost:8545). This is required
in order to watch the events as they happen on our blockchain. We'll be
initializing a separate web3 object by accessing Metamask's injected web3. This
separate web3 object will give us access to the user's MetaMask account for
submitting transactions to the contracts.

Also, observe how the contracts are instantiated into the app state.

Next, let's take a look at the componentDidMount section.This section carries out3.
two important tasks.

Firstly, it requests access to MetaMask's injected web3 object. On submitting this
request, the user should see a pop-up notification, asking if he wants to grant
access to the app to access his MetaMask wallet. On granting permission,
MetaMask returns an array of accounts, where the primary account is at the
zeroth position of the array.

Building a Decentralized Trading Exchange Chapter 8

[412]

This account is captured by our componentDidMount section, and is then
updated to the state. It is also set as the default web3 account:

componentDidMount(){

 var account;

 if (window.Ethereum) {
 const Ethereum = window.Ethereum;

 this.web3 = new Web3(Ethereum);

 Ethereum.enable().then((accounts) => {

 account = accounts[0];
 this.web3.eth.defaultAccount = account ;

 let app = this;

 this.setState({
 account
 });

 this.setNetwork();
 this.setBalance();
 this.setOrderbook();
 this.watchOrderbook();
 })
 }
 }

The second task that is carried out by this section is setting the user balances and
the orderbook when the app loads. It does so by calling the setBalance and
setOrderbook methods.

The watchOrderbook method is called next. It initializes a listener that tracks4.
our orderbook smart contracts for any events.
Lastly, this app renders the container component and forwards the current state5.
to the container component. It also renders the title bar and description using
Nav.js and Description.js:

render() {

 return (
 <div>
 <Nav appName={this.appName} network={this.state.network} />

Building a Decentralized Trading Exchange Chapter 8

[413]

 <Description />
 <Container
onInputChangeUpdateField={this.onInputChangeUpdateField}
 account={this.state.account}
 buys={this.state.buys}
 sells={this.state.sells}
 setBalance={this.setBalance}
 AuBalance={this.state.AuBalance}
 USDBalance={this.state.USDBalance}
 Buy={this.Buy}
 Sell={this.Sell}
 fields={this.state.fields}/>
 </div>
)
 }

Now, we are good to look at the methods that make our app tick.

Let's start by looking at the setOrderbook method.

Displaying the orderbook
The setOrderbook method, as the name suggests, pulls and relays the information that is
required to display the orderbook to the user. It does so by invoking the viewBuy() and
viewSell() methods on our orderbook smart contract, and populating the buys[] and
sells[] arrays in the app state:

We start writing the method by initializing a new contract instance that points to1.
our Orderbook smart contract:

setOrderbook = () =>
 {
 let app = this;
 var lastBuy;
 var lastSell;
 var contract = new
this.watchweb3.eth.Contract(this.OrderbookABI.abi,this.OrderbookABI
.address);

We will first populate the buy orders in the buys[] array, and then the sell2.
orders in the sells[] array.

Building a Decentralized Trading Exchange Chapter 8

[414]

We first call our smart contract viewLengthBuy method to find the total number3.
of buy orders on our decentralized orderbook in the orderbook smart contract:

contract.methods.viewLengthBuy().call().then(function(response){
 if(response) {
 lastBuy = response;

If there are buy orders in the orderbook smart contract, then we proceed to4.
populate these buy orders to our app's buys[] array:

if (lastBuy >= 1)
 {
 app.setState({
 buys: [],
 })

 for (let i = 1; i <= lastBuy ; i++)
 {

We do so by iterating between all the order numbers, from 1 until lastBuy.5.
For each OrderNo, we call the viewBuy contract method. The input parameter is6.
the order number (i), and the output parameters are order amount (Amount),
order price (Price), and the timestamp when the order was placed:

contract.methods.viewBuy(i).call().then(function(response){
 if(response) {

 let OrderNo = i;
 let Amount = Number(response[0]);
 let Price = Number(response[1]);
 let TimeStamp = Number(response[2]);

The response from viewBuy is captured in our local variables. If the order is still7.
active, meaning it has trading units available, only then it is pushed to the
orderbook:

if (Amount > 0)
 {
 let buys = app.state.buys;
 buys.push({
 OrderNo,
 Amount,
 Price,
 TimeStamp
 });

 app.setState({

Building a Decentralized Trading Exchange Chapter 8

[415]

 buys
 })

The buys[] array is updated with the new buy order, and the app state is set8.
after each iteration.
When we reach the end of the buy records on the orderbook, we sort the buy9.
orders by price and timestamp:

if (i == lastBuy)
 {
 let buys = app.state.buys
 buys.sort(function (a, b) {
 if(a.Price == b.Price)
 {
 return (a.TimeStamp < b.TimeStamp) ? 1 : (a.TimeStamp <
b.TimeStamp) ? -1 : 0;
 }
 else
 {
 return (a.Price < b.Price) ? 1 : -1;
 }
 });
 app.setState({
 buys
 })
 }

The higher the buy price, the greater the preference it gets in the orderbook. Thus, it is
closer to the top of the orderbook. Buy orders are sorted in descending order, and then
displayed to the user. If two buy orders have the same price, the buy order with the older
timestamp gets preference.

After the sorting operation has been carried out, the buys array is again updated to the app
state. This brings us to the end of the orderbook buy side. The orderbook sell side flows in a
similar way to the buy side:

contract.methods.viewLengthSell().call().then(function(response){
 if(response) {
 lastSell = response;

 if (lastSell >= 1)
 {
 app.setState({
 sells: [],
 })

 for (let i = 1; i <= lastSell ; i++)

Building a Decentralized Trading Exchange Chapter 8

[416]

 {

 contract.methods.viewSell(i).call().then(function(response){
 if(response) {

 let OrderNo = i;
 let Amount = Number(response[0]);
 let Price = Number(response[1]);
 let TimeStamp = Number(response[2]);

 if (Amount > 0)
 {

 let sells = app.state.sells;
 sells.push({
 OrderNo,
 Amount,
 Price,
 TimeStamp
 });

app.setState({
 sells
 })

if (i == lastSell)
 {
 let sells = app.state.sells
 sells.sort(function (a, b) {
 if(a.Price == b.Price)
 {
 return (a.TimeStamp < b.TimeStamp) ? -1 : (a.TimeStamp < b.TimeStamp) ? 1
: 0;
 }
 else
 {
 return (a.Price < b.Price) ? -1 : 1;
 }
 });
 app.setState({
 sells
 })
}

Building a Decentralized Trading Exchange Chapter 8

[417]

The only difference is that the sell side of the orderbook sorts orders in descending order,
instead of ascending, so that the lowest sell price is at the top of the orderbook. This brings
us to the end of the setOrderbook method. Next, let's set our listener for orderbook
events.

Watching orderbook events
Next let's write a method which will track events as they happen on the orderbook:

The watchOrderbook method tracks the orderbook smart contract for any event.1.
When a new event is received, that is, a new offer is submitted to the orderbook,
it refreshes the orderbook to add the new event:

watchOrderbook() {
 let app = this;

var contractOB = new
app.watchweb3.eth.Contract(this.OrderbookABI.abi,this.OrderbookABI.
address);

We start by instantiating our orderbook contract through the watchweb3 web3
object.

Next, we get the latest block number from the blockchain. watchOrderbook2.
starts watching for events after the orderbook is initialized and set for the first
time. Thus, it starts watching from the block, after which the app is initialized:

app.watchweb3.eth.getBlockNumber(function(error,response){
 if(response)
 {
 let lastBlock = response;

Next, we use the web3 object to track all the events on our orderbook contract3.
instance:

contractOB.events.allEvents({
 fromBlock: lastBlock+1 },
function(error, event){
 console.log("Event",event);
 app.setOrderbook();
 }).on('error', console.error);

We track all events from the orderbook contract after the block where the listener is first
initialized. Any time there is a new event, the listener logs a new event to the console and
calls the setOrderbook method in order to set the orderbook again.

Building a Decentralized Trading Exchange Chapter 8

[418]

Initiating a buy order
The next method(s) will accept a buy request from the user. It will first check in the
orderbook to see if there is a matching order. If it is unable to find a matching order, it adds
the order to the orderbook. The Buy() method handles the buy request and the Sell()
method handles the sell request.

Let's look at the Buy() method:

Buy = () => {
let app = this;
 let amount = this.state.fields.buyamount;
 let price = this.state.fields.buyprice;
 var contractUSD = new this.web3.eth.Contract(app.USD.abi,app.USD.address);
 var contractOB = new
this.web3.eth.Contract(app.OrderbookABI.abi,app.OrderbookABI.address);
 var sells = app.state.sells;

We start by initializing and capturing the amount and the price of the order that1.
is submitted by the user. Next, we instantiate the USD token contract and the
orderbook contract by using the parameters in OrderbookABI.js and USD.js.
Next, we check if the sells array is empty, which means there are no sell orders.2.
If the sells array is empty, we skip the next steps. We do not need to look for
matching orders in the orderbook, as the sell side of the orderbook is empty. We
can simply submit our buy order to the orderbook:

if(sells.length == 0)
 {

contractUSD.methods.approve(app.OrderbookABI.address,amount*price*1
00)
 .send({from:
app.web3.eth.defaultAccount}).then(function(response){

 if(response) {

If the sell side is empty, we first use the USD contract interface's approve
method. The approve method will approve the orderbook contract to move USD
tokens that are worth the same as the order amount from the user's account.

The approval amount is amount*price*100. This is because the amount entered by
the user is the amount of gold to buy, and the price is per unit of gold. So, we
need to multiply them both to get the amount of USD tokens that a buyer needs to
submit for the order. This amount is multiplied by 100, because Ethereum and the
ERC20 contract standard consider the smallest unit during token operations.

Building a Decentralized Trading Exchange Chapter 8

[419]

Since the USD token has two decimal places, we need to multiply by 10^2 = 100 to
get the actual value that we want to approve. The same will apply for the Gold
token.

Following a successful response to our approve method, we call the orderbook3.
contract to add a new buy method:

if(response) {
 contractOB.methods.addBuy(amount,price)
 .send({from:
app.web3.eth.defaultAccount}).then(function(response){
 console.log(response);
 app.setBalance();
 app.resetApp();
 })
 }
 })
 }

Let's understand the preceding code:

We invoke the addBuy method and send the amount and the price as parameters.
Following a successful response, we call the setBalance method in order to
reflect the updated balance to the user on the screen and resetApp to clear the
fields.
Remember our watchOrderbook method? On successful response,
watchOrderbook will register an event from the contract. It will thus call the
setOrderbook method to refresh the buys[] array and display the new
orderbook including the new buy to the user.

Our else block is fired. The first thing that it checks is whether our price is less4.
than the first sell price in the orderbook. If our buy order price is less, it'll simply
add our buy order to the orderbook, because no matching orders will exist
against our order:

else
 {
 var i = 0;
 let OrderPrice = sells[i].Price;

 if (OrderPrice > price)
{
contractUSD.methods.approve(app.OrderbookABI.address,amount*price*1
00)
 .send({from:

Building a Decentralized Trading Exchange Chapter 8

[420]

app.web3.eth.defaultAccount}).then(function(response){
 if(response) {
 contractOB.methods.addBuy(amount,price)
 .send({from:
app.web3.eth.defaultAccount}).then(function(response){
 console.log(response);
 app.setBalance();
 app.resetApp();
 })
 }
 })
 }

Let's understand the preceding code:

It will approve the order amount for the orderbook contract address using the
USD token contract interface, and then call the orderbook contract to add a buy
trade.
If the sells array in the orderbook is not empty, then the Buy method needs to
check for matching sells request for our buy order.

Thus, the else block is fired:5.

else
 {
 contractUSD.methods.approve(app.OrderbookABI.address,
 amount*price*100)
 .send({from:
app.web3.eth.defaultAccount}).then(function(response){

The first thing that the else block does is approve our orderbook smart contract
to transfer USD tokens that are equivalent in size to our buy order. If our price is
not less than the first order in the orderbook, this indicates that there are
matching orders available for our order in the orderbook.

Following a successful response from the approve method, it iterates a loop for6.
the sell side of our orderbook, until our counter is equal to the total length of the
sells array:

contractUSD.methods.approve(app.OrderbookABI.address,
 amount*price*100)
 .send({from:
app.web3.eth.defaultAccount}).then(function(response){
 if(response) {
 while (i < sells.length)
 {

Building a Decentralized Trading Exchange Chapter 8

[421]

Each iteration does two things. First, it checks whether the matching order in the7.
orderbook can be consumed fully by our order, or whether some amount will be
left after our buy order matches. Next, it checks whether our buy order still
matches the next order in the loop. If it matches, the loop continues, otherwise
the loop is stopped by setting our counter equal to sells.length so that the
while loop exits:

while (i < sells.length)
 {
 var counter = i;
 OrderPrice = sells[i].Price;
 var OrderAmount = sells[i].Amount;

 if (amount >= OrderAmount)
 {
contractOB.methods.trade(sells[counter].OrderNo,OrderAmount
 ,OrderPrice, 1)
 .send({from:
app.web3.eth.defaultAccount}).then(function(response){
 console.log(response);
 app.setBalance();
 app.resetApp();
 })
amount = amount - OrderAmount;

}

If the amount of gold assets to be bought in our buy order is more than the
amount available in the matching order in the orderbook, it means that our order
will fully consume the matching order. Thus, we call the trade method in the
orderbook smart contracts, and accordingly send the trading parameters. The
orderbook price and the orderbook amount are sent, since we want to give the
best possible price to the trader, and the total amount that is available in the
order. The input parameter 1 represents a buy trade to the orderbook smart
contract.

Following a successful trade, the response is printed, and the balances and the
app are reset. The watchOrderbook method registers an event and resets the
orderbook.

Lastly, we update the buy order amount by removing the matching order8.
amount.

Building a Decentralized Trading Exchange Chapter 8

[422]

If the required amount in our buy order is less than or equal to the available
amount in the matching sell order, then our order's requirement is fully met and
we can stop iterating the orderbook:

else
 {
contractOB.methods.trade(sells[counter].OrderNo,amount
 ,OrderPrice, 1)
 .send({from:
app.web3.eth.defaultAccount}).then(function(response){
 console.log(response);
 app.setBalance();
 app.resetApp();
 })

 amount = 0;
 }

 i++;

Thus, if our order's amount is less than the amount available in the matching sell
order, the else clause is fired. It calls the Orderbook contract trade method. The
input parameters sent here contain the amount as the trading amount, since our
complete buy order will be met by this order. Following a successful response, we
print a console log, set the balances, and reset the app. Again, the watchOrder
listener tracks a new event and resets the orderbook. The amount parameter is set
to zero, in order to indicate that our buy order is fully traded and no amount is
left.

At the end of the matching, the loop counter is incremented by one.

Before the next iteration of the loop, we first check whether there is still an9.
amount available in the loop, which can be traded if our order's price is still
greater than the next buy order. If our order's price is less than the next sell price
in the orderbook, it means that no more matching orders exist. So, we simply add
our order to the buy side of the orderbook with the rest of the amount, and we
end the loop. We also end the loop if the amount that is available to be traded in
our amount parameter is zero:

if (i < sells.length)
 {
 OrderPrice = sells[i].Price;
 if (OrderPrice > price && amount > 0)
 {

Building a Decentralized Trading Exchange Chapter 8

[423]

contractOB.methods.addBuy(amount,price)
 .send({from:
app.web3.eth.defaultAccount}).then(function(response){
 console.log(response);
 app.setBalance();
 app.resetApp();
 })
 }

 if (amount == 0 || OrderPrice > price)
 {
 i = sells.length ;
 }
 }
 }
if (amount > 0)
 {
 contractOB.methods.addBuy(amount,price)
 .send({from:
app.web3.eth.defaultAccount}).then(function(response){
 console.log(response);
 app.setBalance();
 app.resetApp();
 })
 }

To end the loop, we simply set our counter to the last value in the orderbook sell side, so
that the loop terminates. That brings us to the end of the Buy() method.

Initiating a sell order
Sell requests that are submitted by the user are processed by the Sell() method. The
Sell() method works similarly to the Buy() method that we discussed earlier. The only
difference is that in the case of processing and executing a sell request, we check if the
current sell price is less than, or equal to, the buy orders in the buys[] array. If this
criterion is met, only then are there matching orders available.

The input parameter in the trade method for sell is 2. Thus, anytime the trade method is
called for a sell trade, we need to send the trade_type input parameter as 2 to the
orderbook smart contract:

contractOB.methods.trade(buys[counter].OrderNo,OrderAmount
 ,OrderPrice, 2)
 .send({from: app.web3.eth.defaultAccount}).then(function(response){

Building a Decentralized Trading Exchange Chapter 8

[424]

As with the buy side, every time an order is added or a successful buy trade is carried out,
the watchOrderbook listener captures the event and sets the orderbook.

Setting the user asset balances
Next, Let's look at the method we'll use to update the user's Gold and USD balance after
successful trades in the orderbook:

The setBalance method checks the Gold and USD tokens for the current asset1.
balance for the user, and updates them to the frontend. We instantiate the USD
token contract, and call the balanceOf method to get the user's USD token
balance. Following a successful response, this balance is updated to the state in
the USDBalance parameters, and is displayed in the address bar component:

setBalance = () => {

 let app = this;

 var contractUSD = new
this.web3.eth.Contract(app.USD.abi,app.USD.address);
contractUSD.methods.balanceOf(app.web3.eth.defaultAccount).call().t
hen(function(response){

 if(response)
 {
 let USDBalance = response;
 app.setState({
 USDBalance
 })
 }
 })

Next, let's look at how we fetch the balance for the Gold asset:2.

var contractGold = new
this.web3.eth.Contract(app.Gold.abi,app.Gold.address);

contractGold.methods.balanceOf(app.web3.eth.defaultAccount).call().
then(function(response){

 if(response)
 {
 let AuBalance = response;
 app.setState({
 AuBalance
 })

Building a Decentralized Trading Exchange Chapter 8

[425]

Similarly, the gold token contract is instantiated, and fetches the user balance for the gold
token. Following a successful response, this balance is captured to the app state as
AuBalance, and is displayed in the address bar component. That brings us to the end of
building our exchange app. Now, let's run our app, and see how it looks and works.

Running the exchange app
Alright, so now that our exchange is complete, let's try running the app and see how it
works:

Make sure that your Ganache blockchain and Truffle console are online. If not,1.
bring your Ganache blockchain online, and connect your Truffle console to the
blockchain.
Navigate to your Truffle project workspace, and enter truffle console in the2.
Terminal in order to bring the console online.
Enter the migrate command in order to migrate all your contracts to the3.
Ganache test blockchain:

truffle(development)> migrate

Once the contracts are deployed, note the contract address and keep them safe.4.
Make sure that the contract address for the Gold, USD, and orderbook contracts5.
are mapped correctly to the Gold.js, USD.js, and OrderbookABI.js contract
interfaces in the exchange app code.
Next, set up MetaMask to work with our project.6.
Navigate to the main Ganache blockchain page. Click on the key icon next to the7.
first account:

Building a Decentralized Trading Exchange Chapter 8

[426]

Copy the private key for the first account from the pop up that appears:8.

Building a Decentralized Trading Exchange Chapter 8

[427]

Now log into your MetaMask wallet. Click on the pie icon on the right-top side:9.

From the menu that appears, select Import account.10.
Select Private Key from the dropdown in the screen that appears:11.

Building a Decentralized Trading Exchange Chapter 8

[428]

Paste the private key and click on Import.12.
You should now be able to see this account in MetaMask:13.

OK, now let's bring our app online. Navigate to the Exchange app project14.
directory.
Run npm start in the Terminal window to bring the project online:15.

Building a Decentralized Trading Exchange Chapter 8

[429]

The app should open in the browser, as follows:16.

You'll also get a popup from MetaMask, asking if you want to permit the app to17.
access your account and the injected web3. Click on Connect to give the app
access to your account:

Building a Decentralized Trading Exchange Chapter 8

[430]

The app should now have access to your account, and the account address will18.
be displayed in the address bar:

Before we can trade, we need to flood our account with funds. Navigate back to19.
the Truffle console to transfer USD and Gold tokens to our account.
In the command line, set your web3 default account to the first account in your20.
Ganache HD wallet using this command:

web3.eth.defaultAccount =
'0x60f569790e9b87f93aB6bF9bBb3118f6E1C1598b'

Next, enter the following command in the Truffle console. It will mint (generate)21.
10,000,000 USD tokens to our address:

USD.deployed().then(function(instance) { return
instance.mint('0x60f569790e9b87f93aB6bF9bBb3118f6E1C1598b',10000000
); }).then(function(responseb) {console.log("response",
responseb.toString(10));});

Repeat the same for the Gold token. Enter the following command to the Truffle22.
console. It will mint (generate) 10,000 Gold token to our address:

Gold.deployed().then(function(instance) { return
instance.mint('0x60f569790e9b87f93aB6bF9bBb3118f6E1C1598b',10000);
}).then(function(responseb) {console.log("response",
responseb.toString(10));});

Building a Decentralized Trading Exchange Chapter 8

[431]

The app screen should now look like this:23.

Observe the token balance in the address bar for Gold and USD tokens. Now,24.
let's submit a buy trade. Let's submit a trade for 100 gold at $50 per unit:

Enter the amount and price values and click on Submit.25.
MetaMask will pop a notification, asking if you want to approve the movement26.
of 5,000 USD tokens from your account. Click on Confirm to proceed:

Building a Decentralized Trading Exchange Chapter 8

[432]

Next, MetaMask will pop a notification, asking if you want to send a transaction27.
to the orderbook contract. Click on Confirm to proceed:

Building a Decentralized Trading Exchange Chapter 8

[433]

The order should go through, and you should be able to view it in the orderbook.28.
Also, notice that your balance for USD tokens has decreased by 5,000:29.

Let's enter a second order in the buy side. This time, let's enter a buy order for30.
120 gold at a price of $40 per unit.
Confirm the requisite permissions for MetaMask. You'll notice that the new order31.
gets submitted to the orderbook, and the orderbook sorts itself to ensure that the
$50 order is at the top:

Building a Decentralized Trading Exchange Chapter 8

[434]

Now, let's submit two sell orders for 90 gold at $60 per unit, and 70 gold at $7032.
per unit.
You'll notice this time the confirmation request that MetaMask pops is for33.
transferring the Gold token from our account:

After the orders go through, the orderbook should look like this:34.

Building a Decentralized Trading Exchange Chapter 8

[435]

Now, let's try a trade. Let's try to match the buy order at $50. Submit a sell order35.
for 10 gold at $50. See what happens.
Confirm the request notifications from MetaMask. Notice that the orderbook36.
contract method that is invoked this time is trade.
Once the order goes through, the new Amount value for the buy order should be37.
90 gold. Also, notice that 10 gold has been added to your gold balance.
Let's try to match multiple orders. Submit a buy request for 160 gold at a price of38.
$70. The buy order should match against both the offers on the sell side:

Notice how MetaMask requests your permission for every trade, since every39.
trade is a new transaction to the contract.
The orderbook should have no more sell orders left after the successful trades,40.
and the USD balance should have increased:

That brings us to the end of our decentralized exchange project.

Building a Decentralized Trading Exchange Chapter 8

[436]

Summary
That brings us to the end of this chapter. This chapter should help you design decentralized
trading exchanges, or exchanges on a distributed blockchain network in general. It should
also help you to port concepts of trading, such as orderbooks and matching engines, to
blockchain very easily. The example case that we looked at uses only a single orderbook
pair, gold versus US dollars, but it can be very easily expanded to support multiple
orderbook pairs and assets, and can be scaled into a full-sized exchange with additional
components and security checks in place. You can run this on a private blockchain for an
enterprise, or deploy it on a public blockchain. Bear in mind that public blockchains will
require gas for each transaction, and you might want to club transactions together. Also,
your orderbook will be visible to everyone on the public blockchain.

We started the chapter by looking at decentralized exchanges and some basic trading
concepts. We deployed our trading assets, gold and USD, as ERC20 tokens. We charted out
an orderbook smart contract in order to manage buy and sell orders and execute trades.
Since anyone can access the contract and view the orderbook, it is a transparent orderbook.
Lastly, we created an exchange app to allow the user to access and view the orderbook ,
submit buy/sell trades, and view their token balance. The exchange app also matches
submitted buy and sell orders against existing orders in the orderbook, and adds new
orders to the orderbook. Lastly, we ran our app to see how it functions.

The main takeaway from this chapter is understanding how to build decentralized systems,
such as exchanges, using blockchain. Such systems remove the need to trust a third party
for executing trades.

In the next chapter, we'll be building a currency swap exchange that builds on this
decentralized trading concept, and allows trading of currency assets on the Stellar
blockchain network.

9
Developing a Currency Trading

Exchange for Market Making
This chapter extends the idea of a decentralized exchange from the previous chapter and
shows you how to build a market maker. Market makers are intermediaries that facilitate
cross-border and cross-currency transactions, by allowing remittors to convert the remitting
amount into a different currency. Let's say you are working in Europe and want to remit
money back to your family in India: a market maker will convert the remitting amount into
Indian Rupees (INR) from Euros (EUR). Market makers are interesting, in the context of
decentralized payment and remittance networks (such as Stellar and Ripple), because these
networks gather the exchange rates from all the market makers on the network and allow
the remittor to view them in a single platform. This platform is called the distributed
exchange. This promotes competitive conversion rates and transparency. In this chapter,
we'll be building a similar distributed exchange that trades US Dollars (USD), UK Pounds
(GBP), and EUR. It will record offers from multiple market makers and display them in a
single window.

We will cover the following topics:

Introducing the distributed currency trading exchange
Building the private test Stellar network
Creating the user accounts
Creating trading currency assets
Building the currency trading exchange
Running the currency exchange

Developing a Currency Trading Exchange for Market Making Chapter 9

[438]

Technical requirements
You can access the code files for this chapter through the following GitHub link: https://
github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/
master/Chapter%209.

For this project, we'll be working with the stellar/quickstart Docker container,
provided by the Stellar Development Foundation for trying out the Stellar platform. Details
of the Docker image can be found at the following link: https://hub.docker.com/r/
stellar/quickstart/.

I'm using Ubuntu 18.04.2 LTS for running the applications and deploying my blockchain.
This project assumes that you are working on a Unix operating system. Additionally, this
project assumes you have node.js and npm installed. I'm using node.js
version 13.0.1 and npm version 6.12.0. You will also need the latest versions of Docker and
Docker Compose.

We'll be launching a Docker container with a single node, single client-server private
instance of the Stellar platform.

To download the Docker image and launch the container, run the following command in a
Terminal window:

docker run --rm -it -p "8000:8000" --name stellar
stellar/quickstart --standalone

This runs a standalone instance of the Stellar network, with a single client and a single node
that will act as our development environment. It also runs a postgres instance that stores
transaction data that can be retrieved using the Horizon client server.

We'll be configuring this network instance further in the Building the private test Stellar
network section.

Introducing the distributed currency trading
exchange
Blockchains are facilitating much more transparent, faster, and efficient cross-border
remittance transactions. This is due to the much faster reconciliation that the technology
offers when compared to traditional payment systems. However, cross-border transactions
are incomplete without cross-currency transactions.

https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://github.com/PacktPublishing/Blockchain-Development-for-Finance-Projects/tree/master/Chapter%209
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/
https://hub.docker.com/r/stellar/quickstart/

Developing a Currency Trading Exchange for Market Making Chapter 9

[439]

Cross-currency transactions convert the starting or initiating currency of a cross-border
remittance into a different currency, suited to the beneficiary receiving the remittance
transaction. Thus, if an importer in India is paying an exporter in Germany, they may
initiate the transaction in INR but may want the exporter to be paid in EUR. In traditional
remittance transactions, the remittance enablers—that is, the remittance exchanges or banks
themselves—provide an exchange rate to the remittor. This rate is, typically, a bit higher
than the network. If I choose a specific remittance exchange or bank for my remittance
transaction, I'm married to the exchange rate provided by them.

Distributed payment networks go a bit further than the traditional remittance models. They
provide a transparent exchange, whereby any market maker can post their exchange rates.
The user can then choose the best rate suitable for their transaction. All the buy-and-sell
offers for a currency pair are recorded in a single platform, called an orderbook. Each
currency trading pair has a unique orderbook. While facilitating a transaction, the user can
choose their starting and destination assets, and the network will automatically choose the
best rates from these exchanges and facilitate the transaction for them. Alternatively, these
exchanges can also be used as trading exchanges, to buy and sell currency.

Each currency offer being submitted to the trading exchange has a base asset and a counter
asset. The price of buying or selling a single unit is represented using the base asset. The
amount to be bought or sold in a single offer is represented using the counter asset. Each
asset is issued by an issuer account. This is simply an account that creates an asset on the
network. To hold, send, and trade an asset, accounts need to extend a trustline. A trustline
indicates how much of the asset they are willing to hold. It allows a user of the asset to
declare how liquid they believe the issuer of the asset is, and then hold a proportional
amount of the asset in their Stellar accounts. In simple terms, if you want to hold 100 USD
in your account, the issuing account of the USD asset needs to extend a trustline of 100 USD
to your account. If someone tries to transfer 101 USD to your account, the network will
throw an error. Since assets on Stellar are a virtual representation of physical fiat currency,
the trustline concept is important.

To build our market maker, we need to complete the following steps:

Create a private test Stellar network with the Stellar Core blockchain node and1.
Horizon client/server that will allow us to interact with the blockchain node.
Create three test accounts. One is an issuing account, while the other two are2.
receiving accounts. The issuing account will issue our trading assets, while the
receiving account will trade them on the exchange.
Issue USD, GBP, and EUR assets on our private Stellar network using our issuing3.
account.

Developing a Currency Trading Exchange for Market Making Chapter 9

[440]

Extend trustlines and transfer a "testing" amount of the assets to our4.
receiving/trading accounts.
Build a frontend that will allow the trading user to log in with their account,5.
view the available offers, and submit buy/sell offers. These offers will be
recorded on the in-built distributed exchange that the Stellar network provides to
us. The frontend will also show us successful trades.

 The exchange would have the following components:

The assets USD, GBP, and EUR, which are issued on a private Stellar network.
Two user accounts that will act as market makers and hold the preceding
currency.
A trading exchange that connects to Stellar fetches offers for each trading
currency pair and displays them to the user, accepts offers from the user, and
displays the completed trades.

Let's start going through the steps, one by one.

Building the private test Stellar network
For building our project, we'll launch a simple Stellar network that contains a single
blockchain node and a single client/server. The blockchain node in Stellar is called Stellar
Core, while the client-server is called Horizon. Horizon is a client API server that extends a
suite of handful endpoints, allowing application developers to view transaction data and
statistics, and to submit transactions to the core blockchain node. Similar to web3-js,
Stellar has a JavaScript SDK that allows us to build requests in order to interact with
Horizon.

Stellar provides a handy Docker image that can be used to quickly launch an ephemeral
(temporary) or persistent (permanent) container for implementing the Stellar network. This
Docker container contains an instance of Stellar Core, an instance of Horizon, installed
dependencies such as PostgreSQL, and a Go environment.

To launch this Docker image, simply run the following command on a terminal window:

docker run --rm -it -p "8000:8000" --name stellar stellar/quickstart --
standalone

Developing a Currency Trading Exchange for Market Making Chapter 9

[441]

This command downloads the Stellar/QuickStart image from the Docker repository and
runs a container with Stellar Core and Horizon. Notice the Docker proxy port at 8000. The
Docker proxy port extends the Horizon port inside the container. Thus, any requests to
Horizon can be submitted to the 8000 port of the local machine.

Wait for the container to come online. It will initiate a PostgreSQL database, Stellar Core,
and Horizon. After the container comes online successfully, you should be able to see the
docker-proxy on port 8000 on your machine. Open a browser window and go
to http://localhost:8000.

You should be able to see Horizon and the API endpoints and application details. Notice
the list of endpoints for submitting requests to the client/server.

OK. Now, let's move on to account creation.

Creating the user accounts
Before we can create our assets and exchange, we need to create our user accounts. Stellar
accounts are similar to Ethereum accounts, and they allow users to interact with the Stellar
network through transactions. They contain a public key (which is referred to as an account
ID) and a secret key or private key, which is used to sign transactions submitted to the
ledger.

The stellar-sdk provides a utility called Keypair.random, which generates a
random ed25519 public-private key pair that can be used as a Stellar account. For a public-
private key pair to be a valid account on the Stellar network, it needs a minimum balance of
20 lumens.

To create an account on our private network, we'll generate a new public-private key pair
and fund it with a balance of more than 20 lumens.

To do so, we'll write a small node-js application that will generate a new key pair, and
fund it.

Lumens is the native currency of the Stellar network. By default, the
private instance issues 100 billion lumens and assigns it to a root account
on the network. It is referred to by the symbol XLM. The minimum Stellar
amount is referred to as stroop. It is one ten-millionth, 1/10000000, or
0.0000001. The term stroop is used as a convenient way to refer to these
small measurements of amounts. The plural form is stroops (for example,
100 stroops).

Developing a Currency Trading Exchange for Market Making Chapter 9

[442]

Writing the CreateAccount utility
Let's start writing our Node.js create account utility, as follows:

Create a new nodejs project directory. Install the stellar-sdk JavaScript1.
module by executing the following command in the directory:

npm install --save stellar-sdk

Create a new project file called CreateAccount.js.2.
Start by importing the stellar-sdk, as follows:3.

const StellarSdk = require('stellar-sdk');

Next, we'll define a new instance of the stellar-sdk, pointed to our local4.
Horizon instance:

const server = new StellarSdk.Server('http://127.0.0.1:8000',
{allowHttp: true});

const passphrase = 'Standalone Network ; February 2017'

The passphrase allows only selected users to connect to our network. You can5.
find the network passphrase by navigating to the Horizon landing page at
localhost:8000 in the browser. Locate the network-passphrase tag , as
follows:

"network_passphrase": "Standalone Network ; February 2017"

For the quickstart Docker image, this passphrase is set to "Standalone
Network ; February 2017", by default.

Next, we identify our MasterKey. The master key is the root account to which all6.
lumens are credited when a new Stellar network is created. By default, the root
account is issued 100 billion lumens at initiation.
To fund new accounts, we'll need to transfer lumens from this account to the7.
newly created accounts.
The master key pair is fetched using the Keypair.master utility from the8.
network passphrase, as follows:

const MasterKey = StellarSdk.Keypair.master(passphrase)
const MasterSecret = MasterKey.secret();
const MasterPublicKey = MasterKey.publicKey();

console.log ('Master Account',MasterSecret, MasterPublicKey);

Developing a Currency Trading Exchange for Market Making Chapter 9

[443]

The .secret() and .publicKey() methods for a key pair give us its secret key9.
and public key, respectively.

In a production implementation of Stellar, you are expected to use a
custom network phrase and transfer all the lumens or native currency
from the master currency to another Stellar account that you control on
the network.

Next, we generate three random ed25519 key pairs (public and private key10.
pairs) that will act as our accounts. To do so, we use the Keypair.random
method in the StellarSdk, as follows:

const pair1 = StellarSdk.Keypair.random(passphrase);
const pair2 = StellarSdk.Keypair.random(passphrase);
const pair3 = StellarSdk.Keypair.random(passphrase);

For each of the three newly generated random key pairs, we retrieve the public11.
key and the private, or secret, key, as follows:

var SecretKey1 = pair1.secret();
var PublicKey1 = pair1.publicKey();
console.log ('Account1',SecretKey1, PublicKey1);

var SecretKey2 = pair2.secret();
var PublicKey2 = pair2.publicKey();
console.log ('Account2',SecretKey2, PublicKey2);

var SecretKey3 = pair3.secret();
var PublicKey3 = pair3.publicKey();
console.log ('Account3',SecretKey3, PublicKey3);

Make sure you log the newly generated keys and the master key to the console. We'll
require these later.

Before we can use the newly generated keys, we need to fund them with lumens, which is
the native currency of Stellar. Stellar does not allow users to send or receive transactions to
any key pair with a lumens balance of less than 20. This is done to avoid spamming the
network. You can only send the "Create Account" transaction to newly generated key pairs,
to fund the account. The Stellar network also requires accounts to submit a "fee" to the
network for every transaction, which is paid in lumens. Thus, to enable our accounts to
create assets and trade, we'll transfer 100,000 lumens to each of the newly generated
accounts.

Developing a Currency Trading Exchange for Market Making Chapter 9

[444]

Now, let's start building our CreateAccount transaction by following these steps:

We need to make asynchronous calls to fetch the transaction sequence number1.
and fee, so we start by declaring an asynchronous method, like this:

(async function main() {

const account = await server.loadAccount(MasterPublicKey);
const fee = await server.fetchBaseFee();

The server.loadAccount method fetches the current sequence number of the
Stellar account. It is essential that transactions are submitted to the network in
sequence, to dictate the order in which they'll be processed and verified. Before
submitting a transaction from an account, we fetch the current transaction
sequence number for the account.
The server.fetchBaseFee method fetches the minimum fee required for the
transaction to go through on the network. You can think of it as being similar to
fetching the current gas price in an Ethereum network.

Next, we use the TransactionBuilder class to build a new create account2.
transaction, like this:

const transaction = new StellarSdk.TransactionBuilder(account, {
fee, networkPassphrase: passphrase})
 .addOperation(StellarSdk.Operation.createAccount({
 source: MasterPublicKey,
 destination: PublicKey1,
 startingBalance: "100000"
 }))
 .addOperation(StellarSdk.Operation.createAccount({
 source: MasterPublicKey,
 destination: PublicKey2,
 startingBalance: "100000"
 }))
 .addOperation(StellarSdk.Operation.createAccount({
 source: MasterPublicKey,
 destination: PublicKey3,
 startingBalance: "100000"
 }))
 .setTimeout(30)
 .build();

Let's go through each step, one by one:

const transaction = new StellarSdk.TransactionBuilder(account, {
fee, networkPassphrase: passphrase})

Developing a Currency Trading Exchange for Market Making Chapter 9

[445]

We start by creating a new transaction constant. This is returned by the3.
TransactionBuilder class. We first pass the source account (master key
account), the network fee, and passphrase as input parameters. Next, we send the
operations to be carried out by the transaction as input parameters, like this:

.addOperation(StellarSdk.Operation.createAccount({
 source: MasterPublicKey,
 destination: PublicKey1,
 startingBalance: "100000"
 }))

The first operation is createAccount. It'll fund our newly created random key4.
pair with a starting balance of 100,000 lumens. The source account is our master
account public key, and the destination is the public key of the first random
account we generated. The same operation is repeated for the other two random
key pairs we generated, as follows:

.addOperation(StellarSdk.Operation.createAccount({
 source: MasterPublicKey,
 destination: PublicKey2,
 startingBalance: "100000"
 }))
 .addOperation(StellarSdk.Operation.createAccount({
 source: MasterPublicKey,
 destination: PublicKey3,
 startingBalance: "100000"
 }))

Notice how stellar-sdk allows you to chain and link multiple operations in a
single transaction.

Lastly, we add the transaction timeout and call build() to build the transaction,5.
as follows:

.setTimeout(30)
 .build();

The transaction timeout indicates that the transaction won't be valid more than 30
seconds after the transaction object is created. build() instructs the
TransactionBuilder class to create a new transaction object using the
parameters we submitted. This object is stored in the transaction constant.

The transaction object is then signed using the master key pair, like this:

transaction.sign(MasterKey);

Developing a Currency Trading Exchange for Market Making Chapter 9

[446]

Lastly, the transaction is posted to the transaction endpoint of the Horizon server,
as follows:

try {
 const transactionResult = await
server.submitTransaction(transaction);
 console.log(transactionResult);
 } catch (err) {
 console.error(err);
 }
})()

This is done using server.submitTransaction. The result is logged to the console.

This brings us to an end of the CreateAccount utility.

Running the CreateAccount utility
Now, let's run this utility. Navigate back to the Node.js project on the terminal window.

Run the following command to run the utility:

node CreateAccount.js

The utility will first log the master key to the console, and then the three newly created
accounts. The string starting with S is the account's secret key. The string starting with G is
the public key or account ID, as shown in the following code block:

Master Account SC5O7VZUXDJ6JBDSZ74DSERXL7W3Y5LTOAMRF7RQRL3TAGAPS7LUVG3L
GBZXN7PIRZGNMHGA7MUUUF4GWPY5AYPV6LY4UV2GL6VJGIQRXFDNMADI

Account1 SDHH7CAELIMPNZPRFEBJHSFP24B7UEAAJVW2PMR5AZP5OESHH435DZFC
GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE

Account2 SCUN3DL3OCSU6SQ6K4BU3SIG7OHPKKUGFAR25CJG2JUSNIGGU3OCSVAS
GDM3ACVBVHZXPYHQYTMQFS42DSIU7AVIZS4ARWNQGUNGL55BPCBUJV6C

Account3 SDOE7ICIYRSH74VWUTO52T24BDZBYHRYSYAPS5V73Z37WLYQNA6B4PP4
GCCHNGQFPZOSCT2FKVZGMCK5OTVMJEKMUTDLHKV22J5XKF3ROUSECBXC

Copy these accounts and store them safely for reference. We'll need these later.

Wait for the utility to fire the createAccount transaction and print a response to the
console. A successful response indicates the three accounts have been created—and funded,
as well.

Developing a Currency Trading Exchange for Market Making Chapter 9

[447]

You can verify this by yourself. Open a new browser window. Paste the following link to
view the newly created accounts: http://localhost:8000/accounts/<Account ID>;
For example,

http://localhost:8000/accounts/GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKEL
S7T7DVCCLV3DODNE.

You should be able to view the account. Scroll down and check out the balance for the
native asset, as follows:

 "balances": [
 {
 "balance": "100000.0000000",
 "buying_liabilities": "0.0000000",
 "selling_liabilities": "0.0000000",
 "asset_type": "native"
 }

Keep the secret key and public key for these three accounts safe. Now, let's write a nodejs
utility in order to create the assets and extend the trustlines.

Creating trading currency assets
We have to create three currency assets on our private network for trading. These are USD,
GBP, and EUR. To create new assets on a network, we need to carry out the following three
steps in order:

Create a new asset object1.
Extend trustlines to the receiving accounts2.
Transfer the assets from the issuing account3.

Let's look at these, one by one.

Creating a new asset object
Creating an asset object on the Stellar network is an easy affair. You simply need to use the
Asset method of the Stellar SDK. The Asset method has two input parameters—asset
code and issuer account. The asset code is an alphanumeric code, used to refer to the asset.
The issuer account is the account used to create the asset. The code is shown in the
following code snippet:

Asset = new StellarSdk.Asset(<Code>,<Issuing Account>)

Developing a Currency Trading Exchange for Market Making Chapter 9

[448]

We'll use this to create all three of our assets, as part of our Nodejs utility, by running the
following code:

var USD = new StellarSdk.8520Asset('USD',
'GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE');
var GBP = new StellarSdk.Asset('GBP',
'GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE');
var EUR = new StellarSdk.Asset('EUR',
'GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE');

Extending trustlines to receiving accounts
Trustlines are a concept unique to Stellar assets. They determine how much of a user-issued
asset an account is willing to hold. Since assets on the Stellar network are supposed to be
digital representations of fiat currency or other real-world assets, it is essential that the
issuer issuing assets should be liquid. Thus, you should only hold 100 USD worth of assets
issued by an issuer account if you know that the issuer can exchange the stellar USD tokens
for a 100-dollar bill. Trustlines are indicative of how much liquid you believe the asset
issuer is and, in turn, are used to determine how much of the asset you would want your
account to hold.

Writing the utility
Let's write a Nodejs utility in order to create new assets and extend trustlines to the
receiving accounts, as follows:

Create a new nodejs app called CreateTrustline.js.1.
Start by importing the stellar-sdk from node-modules and creating a new2.
server object pointed at localhost:8000 (Horizon instance), as follows:

const StellarSdk = require('stellar-sdk');
const server = new StellarSdk.Server('http://127.0.0.1:8000',
{allowHttp: true});

Next, we'll use the accounts we generated in the previous section. Let the first2.
account be our issuing account, which issues assets. The second and third
accounts will be the receiving accounts, which trade the assets on the exchange.
Use the secret key of the three accounts to extract their key pair, as follows:

var issuingKeys =
StellarSdk.Keypair.fromSecret('SDHH7CAELIMPNZPRFEBJHSFP24B7UEAAJVW2
PMR5AZP5OESHH435DZFC');

Developing a Currency Trading Exchange for Market Making Chapter 9

[449]

var receivingKeys1 =
StellarSdk.Keypair.fromSecret('SCUN3DL3OCSU6SQ6K4BU3SIG7OHPKKUGFAR2
5CJG2JUSNIGGU3OCSVAS');

 var receivingKeys2 =
StellarSdk.Keypair.fromSecret('SDOE7ICIYRSH74VWUTO52T24BDZBYHRYSYAP
S5V73Z37WLYQNA6B4PP4');

The issuingKeys variable is the key pair for the issuing account.3.
receivingKeys1 and receivingKeys2 are for the two receiving accounts.
Next, we create the asset object. We create a new asset object for US Dollar and4.
UK Pound, as well as for Euro, like this:

var USD = new StellarSdk.Asset('USD',
'GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE');
var GBP = new StellarSdk.Asset('GBP',
'GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE');
var EUR = new StellarSdk.Asset('EUR',
'GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE');

Remember the public key for your issuing account that we saved when we
created it? Paste it here and add a symbol that we'll use to refer the asset.
Use StellarSdk.Asset to create a new asset with these details.

Before we can transfer the assets, the receiving accounts need to extend a5.
trustline for these assets. This is a transaction that's fired by the receiving account
to itself. It indicates the asset that will be held by the account and the maximum
volume that can be held.

Let's write the transaction that will extend the trustline limit. We start by fetching
the base network fee and the sequence number for the account. This is done using
the server object we created earlier, as follows:

server.fetchBaseFee()
 .then(function(fee){
 console.log("Fee is",fee);

server.loadAccount(receivingKeys1.publicKey())
 .then(function(account){

Since the transaction is to be fired from receivingKeys1, we fetch the current
sequence for this account.

Developing a Currency Trading Exchange for Market Making Chapter 9

[450]

Let's take a look at our extend trustline transaction, shown here:6.

var transaction = new StellarSdk.TransactionBuilder(account, { fee,
networkPassphrase:'Standalone Network ; February 2017'}
 .addOperation(StellarSdk.Operation.changeTrust({
 asset: USD,
 limit: '1000000',
 source: receivingKeys1.publicKey()
 }))
 .addOperation(StellarSdk.Operation.changeTrust({
 asset: GBP,
 limit: '1000000',
 source: receivingKeys1.publicKey()
 }))
 .addOperation(StellarSdk.Operation.changeTrust({
 asset: EUR,
 limit: '1000000',
 source: receivingKeys1.publicKey()
 })).setTimeout(100)
 .build();

Let's try to understand this transaction. We start by passing the account sequence
number, fee, and the network passphrase, like this:

var transaction = new StellarSdk.TransactionBuilder(account, { fee,
networkPassphrase:'Standalone Network ; February 2017'}

Next, we add the ChangeTrust operation, as follows:

.addOperation(StellarSdk.Operation.changeTrust({
 asset: USD,
 limit: '1000000',
 source: receivingKeys1.publicKey()
 }))

The operation indicates that we need to extend a trustline for the asset USD, with
a limit of 1 million USD. Since the transaction is to "self", the source of the
transactions is the public key of receivingKeys1.

We also add the same operation for GBP and EUR, as follows:

.addOperation(StellarSdk.Operation.changeTrust({
 asset: GBP,
 limit: '1000000',
 source: receivingKeys1.publicKey()
 }))
 .addOperation(StellarSdk.Operation.changeTrust({
 asset: EUR,

Developing a Currency Trading Exchange for Market Making Chapter 9

[451]

 limit: '1000000',
 source: receivingKeys1.publicKey()
 }))

Lastly, we add a transaction timeout after 100 seconds and invoke build() to
build the transaction object, like this:

.setTimeout(100)
 .build();

After building the transactions, we sign it using the public key for7.
receivingKeys1 and submit it to the Stellar network for processing. Add a
catch block for catching any errors, as follows:

transaction.sign(receivingKeys1);

return server.submitTransaction(transaction);

})}).catch(function(error) {
 console.error('Error!', error);
 });

Next, we repeat the same for receivingKeys2—that is, the second trading8.
account we created—as follows:

server.fetchBaseFee()
 .then(function(fee){
 console.log("Fee is",fee);

server.loadAccount(receivingKeys2.publicKey())
 .then(function(account){

var transaction = new StellarSdk.TransactionBuilder(account, { fee,
networkPassphrase:'Standalone Network ; February 2017'})
 .addOperation(StellarSdk.Operation.changeTrust({
 asset: USD,
 limit: '1000000',
 source: receivingKeys2.publicKey()
 }))
 .addOperation(StellarSdk.Operation.changeTrust({
 asset: GBP,
 limit: '1000000',
 source: receivingKeys2.publicKey()
 }))
 .addOperation(StellarSdk.Operation.changeTrust({
 asset: EUR,
 limit: '1000000',

Developing a Currency Trading Exchange for Market Making Chapter 9

[452]

 source: receivingKeys2.publicKey()
 })).setTimeout(100)
 .build();

transaction.sign(receivingKeys2);

return server.submitTransaction(transaction);

})}).catch(function(error) {
 console.error('Error!', error);
 });

That brings us to the end of our CreateTrustline utility. Now, let's run this utility.

Running the utility
Navigate back to the nodejs project repository on your terminal window. Run the
CreateTrustline utility by executing the following command:

node CreateTrustline.js

A successful response from the Stellar network after the transaction is submitted indicates
the trustlines have been created. You can verify this on your own.

Navigate to your internet browser and open a tab. View any account on Horizon by going
to the accounts link. You can do so by going to the following
link: http://localhost:8000/accounts/<Account ID>.

For example, for receivingKeys1, the public key we saved earlier
is GDM3ACVBVHZXPYHQYTMQFS42DSIU7AVIZS4ARWNQGUNGL55BPCBUJV6C.

So, open the following link:

http://localhost:8000/accounts/GDM3ACVBVHZXPYHQYTMQFS42DSIU7AVIZS4ARWNQ

GUNGL55BPCBUJV6C.

Now, scroll down and check the balances again. Notice how it shows balances for four
assets, including the native asset now. This can be seen in the following code block:

 "balances": [
 {
 "balance": "0.0000000",
 "limit": "1000000.0000000",
 "buying_liabilities": "0.0000000",
 "selling_liabilities": "0.0000000",
 "last_modified_ledger": 503,

Developing a Currency Trading Exchange for Market Making Chapter 9

[453]

 "is_authorized": true,
 "asset_type": "credit_alphanum4",
 "asset_code": "USD",
 "asset_issuer":
"GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE"
 },
 {
 "balance": "0.0000000",
 "limit": "1000000.0000000",
 "buying_liabilities": "0.0000000",
 "selling_liabilities": "0.0000000",
 "last_modified_ledger": 503,
 "is_authorized": true,
 "asset_type": "credit_alphanum4",
 "asset_code": "GBP",
 "asset_issuer":
"GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE"
 },
 {
 "balance": "0.0000000",
 "limit": "1000000.0000000",
 "buying_liabilities": "0.0000000",
 "selling_liabilities": "0.0000000",
 "last_modified_ledger": 503,
 "is_authorized": true,
 "asset_type": "credit_alphanum4",
 "asset_code": "EUR",
 "asset_issuer":
"GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE"
 },
 {
 "balance": "99999.9999700",
 "buying_liabilities": "0.0000000",
 "selling_liabilities": "0.0000000",
 "asset_type": "native"
 }

Next, we'll write a transfer utility, to transfer these assets from the issuer account to the
receiving account.

Transferring the assets from the issuing account
Now, we can transfer the USD, GBP, and EUR assets from our issuing account to the
receiving account. To do so, we'll write a small utility called Transfer and send the assets.
We'll create two versions of this utility for receiving account 1 and receiving account 2.

Developing a Currency Trading Exchange for Market Making Chapter 9

[454]

Writing the utilities
All right. Now, let's write the Node.js utilities, to transfer the assets from the issuing
account to the accounts we'll use for trading, as follows:

Create two nodejs apps called Transfer1.js and Transfer2.js. 1.
Let's write Transfer1. We import the StellarSDK from node_modules, create2.
the server object, and extract the public and private keys for the issuing account
and the two receiving accounts from their respective secret keys, as follows:

const StellarSdk = require('stellar-sdk');

const server = new StellarSdk.Server('http://127.0.0.1:8000',
{allowHttp: true});

var issuingKeys = StellarSdk.Keypair
.fromSecret('SDHH7CAELIMPNZPRFEBJHSFP24B7UEAAJVW2PMR5AZP5OESHH435DZ
FC');

var receivingKeys1 = StellarSdk.Keypair
.fromSecret('SCUN3DL3OCSU6SQ6K4BU3SIG7OHPKKUGFAR25CJG2JUSNIGGU3OCSV
AS');

var receivingKeys2 = StellarSdk.Keypair
.fromSecret('SDOE7ICIYRSH74VWUTO52T24BDZBYHRYSYAPS5V73Z37WLYQNA6B4P
P4');

var USD = new StellarSdk.Asset('USD',
'GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE');
var GBP = new StellarSdk.Asset('GBP',
'GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE');
var EUR = new StellarSdk.Asset('EUR',
'GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE');

Lastly, we create the three asset objects. Now, let's look at our transaction.3.
Fetch the base fee and the account sequence number for the issuing account, like4.
this:

server.fetchBaseFee()
 .then(function(fee){
 console.log("Fee is",fee);
server.loadAccount(issuingKeys.publicKey())
.then(function(account){

Developing a Currency Trading Exchange for Market Making Chapter 9

[455]

Our transaction source account this time will be the issuing account, which5.
distributes the newly created asset, as follows:

var transaction = new StellarSdk.TransactionBuilder(account,{
fee,networkPassphrase:'Standalone Network ; February 2017'})
 .addOperation(StellarSdk.Operation.payment({
 destination: receivingKeys1.publicKey(),
 asset: USD,
 amount: '1000'
 }))

Asset transfer is a payment operation in Stellar. We need to provide the
destination Stellar account (with a public key of receivingKeys1), the asset to
be transferred (USD), and the amount to be transferred (1,000).

We repeat the same for the other two assets as well, like this:6.

.addOperation(StellarSdk.Operation.payment({
 destination: receivingKeys1.publicKey(),
 asset: GBP,
 amount: '1000'
 }))
 .addOperation(StellarSdk.Operation.payment({
 destination: receivingKeys1.publicKey(),
 asset: EUR,
 amount: '1000'
 })).setTimeout(100)
 .build();

The transaction timeout is set at 100 seconds. We call build() to build and7.
return the transaction object.
After the transaction object is returned, we sign and submit the transaction. The8.
transaction is signed using the issuing account's key pair since the source is the
issuing account, as follows:

transaction.sign(issuingKeys);
 return server.submitTransaction(transaction);

Add a response block for logging any errors and notifying transaction success,9.
like this:

.then(function(response,error){
 if (response)
 {
 console.log("Response",response);
 }
 else

Developing a Currency Trading Exchange for Market Making Chapter 9

[456]

 {
 console.log("Error",error);
 }})
});

That brings us to the end of Transfer1. Repeat the same steps for Transfer2, except
replace the receiving account with receivingKeys2. Thus, Transfer1.js will transfer
the assets to the first receiving account, and Transfer2.js to the second.

Now, let's run these utilities.

Running the utilities
Navigate to your nodejs project directory. First, run Transfer1, like this:

node Transfer1.js

Wait for a successful transaction response. Then, run Transfer2, like this:

node Transfer2.js

After you get a successful transaction response, open a new browser window and check the
balance of the two accounts. For example, for receiving account 1, run the following code:

http://localhost:8000/accounts/GDM3ACVBVHZXPYHQYTMQFS42DSIU7AVIZS4ARWNQGUNG
L55BPCBUJV6C

The balance should now be updated, as follows:

 "balances": [
 {
 "balance": "1000.0000000",
 "limit": "1000000.0000000",
 "buying_liabilities": "0.0000000",
 "selling_liabilities": "0.0000000",
 "last_modified_ledger": 836,
 "is_authorized": true,
 "asset_type": "credit_alphanum4",
 "asset_code": "USD",
 "asset_issuer":
"GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE"
 },
 {
 "balance": "1000.0000000",
 "limit": "1000000.0000000",
 "buying_liabilities": "0.0000000",
 "selling_liabilities": "0.0000000",

Developing a Currency Trading Exchange for Market Making Chapter 9

[457]

 "last_modified_ledger": 836,
 "is_authorized": true,
 "asset_type": "credit_alphanum4",
 "asset_code": "GBP",
 "asset_issuer":
"GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE"
 },
 {
 "balance": "1000.0000000",
 "limit": "1000000.0000000",
 "buying_liabilities": "0.0000000",
 "selling_liabilities": "0.0000000",
 "last_modified_ledger": 836,
 "is_authorized": true,
 "asset_type": "credit_alphanum4",
 "asset_code": "EUR",
 "asset_issuer":
"GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE"
 },
 {
 "balance": "99999.9999700",
 "buying_liabilities": "0.0000000",
 "selling_liabilities": "0.0000000",
 "asset_type": "native"
 }
],

That brings us to the end of creating and issuing the assets.

Now, we have two trading accounts, with assets ready to trade. Let's start building our
exchange.

Building the currency trading exchange
Our currency exchange app will constitute of the following:

The main App.js file
The following React components:

Container.js

AppLogin.js

AddressBar.js

TradePanel.js

Developing a Currency Trading Exchange for Market Making Chapter 9

[458]

Orderbook.js

Trades.js
The following asset interfaces:

Assets.js

USD.js

GBP.js

EUR.js

The following is a brief description of the components:

App.js: The main App.js file that implements the methods that interact with
the Stellar network and submits transactions to the network. It invokes
Container.js for rendering the child components and forwards the current
state to Container.js.
React components: These components render our currency exchange app:

Container.js: It receives the current state from App.js and
passes it to the child components.
AppLogin.js: A login screen that asks for the user's secret key, to
set the default user account. All transactions are submitted from
this account. The secret key is held within the app, and not stored
permanently.
AddressBar.js: It implements an address bar that shows the
user's Stellar account ID and current USD, GBP, and EUR balance.
TradePanel.js: It renders a buy-and-sell panel that permits the
user to enter the amount and price, and submit a buy or sell
request to the app.
OrderBook.js: This component renders the orderbook in the
app for a selected trading pair. It maps the bids and asks arrays for
each asset pair, and displays it to the user. The bids[] and
asks[] arrays are populated with buy-and-sell orders from
Stellar's distributed exchange.
Trades.js: This component renders and displays the successful
trades in the exchange.

Asset interfaces: These are used to instantiate the asset object within the app.
They contain the asset code, issuer account, and symbol. There is one interface
for each asset. The master interface, Assets.js, exports all three assets as an
array within the app.

Developing a Currency Trading Exchange for Market Making Chapter 9

[459]

Creating the React project environment
Before we can create our React app, we need to set the project directory and install the
dependencies for our app, as follows:

Create a new React app called Currency-Exchange using npx, like this: 1.

npx create-react-app Currency-Exchange

Update your package.json to the following values:2.

{
 "name": "Currency-Exchange",
 "version": "1.0.0",
 "private": false,
 "dependencies": {
 "bulma-start": "0.0.2",
 "react": "^16.4.1",
 "react-dom": "^16.4.1",
 "react-scripts": "1.1.4",
 "stellar-sdk": "^3.0.0",
 },
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test --env=jsdom",
 "eject": "react-scripts eject"
 }
}

Run npm install on the terminal window to install the dependencies.3.

Next, within the src folder, create a Components folder for the app components. Also,
create an Assets folder within src. We'll be using this to map the assets being used by the
app.

Developing a Currency Trading Exchange for Market Making Chapter 9

[460]

Setting up the asset interfaces
We need to import the asset interfaces that our app will use to interact with the assets
deployed in the Stellar network, as follows:

Create a file called Assets.js in the Assets folder.1.
Update it with the following lines of code:2.

import USD from './USD';
import GBP from './GBP';
import EUR from './EUR';

const assets = [
 USD,
 GBP,
 EUR
];

export default assets;

The Assets.js file will create the assets array object with details of the three3.
assets—USD, GBP, and EUR. This object will be used to instantiate the individual
asset objects within the app.
Next, let's define the parameters for the individual assets, as follows:4.

//USD.js
export default {
 balance: 0,
 code: "USD",
 issuer:
"GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE",
 symbol: "$"
}

//GBP.js
export default {
 balance: 0,
 code: "GBP",
 issuer:
"GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE",
 symbol: "£"
}

//EUR.js
export default {
 balance: 0,

Developing a Currency Trading Exchange for Market Making Chapter 9

[461]

 code: "EUR",
 issuer:
"GBUM3XRJKUVEQA4UF63CUCS3P72C5AZTRYI2VKELS7T7DVCCLV3DODNE",
 symbol: "€"
}

Each asset has the following: a default balance set to zero, the asset code, the asset issuer
account, and the appropriate currency symbol.

The issuer account is the one we used to create our assets.

Writing the App.js file
Let's go through the sections of our App.js file one by one, as follows:

We start by importing the requisite dependencies, components, and asset1.
interfaces, like this:

import React, { Component } from 'react';
import StellarSdk from 'stellar-sdk';
import Nav from './Components/Nav';
import Description from './Components/Description';
import Container from './Components/Container';
import assets from './Assets/Assets';

Within our constructor section, we initialize the state of the app, as follows:2.

class App extends Component {

constructor(){
super();
this.appName = 'Currency Exchange';
this.onInputChangeUpdateField =
this.onInputChangeUpdateField.bind(this);
this.assets = assets;

We set the name of the app, bind the methods that change the app state, and map
the asset interfaces to the this object.

Developing a Currency Trading Exchange for Market Making Chapter 9

[462]

Next, we instantiate the asset objects using the asset interfaces. We use3.
StellarSdk.Asset to instantiate the asset objects. The input parameters (which
are the asset code and the issuer account) are fetched from the asset interfaces,
like this:

this.USD = new
StellarSdk.Asset(this.assets[0].code,this.assets[0].issuer);

this.GBP = new
StellarSdk.Asset(this.assets[1].code,this.assets[1].issuer);

this.EUR = new
StellarSdk.Asset(this.assets[2].code,this.assets[2].issuer);

Next, we set the initial state of our Currency-Exchange app by running the4.
following code:

this.state = {

 network: 'Private Testnet',
 account: null,

The network is set to Private Testnet, and the default user account is set to null.

Next, we define a set of bids and asks state arrays for each asset pair. Each array5.
will hold the orderbook bids (buys) and asks (sells), and will be updated
whenever a new offer is added to the orderbook. The code for this is as follows:

 bidsUSDGBP: [],
 asksUSDGBP: [],
 bidsGBPEUR: [],
 asksGBPEUR: [],
 bidsUSDEUR: [],
 asksUSDEUR: [],

The tradesList array stores the successful trades on the network. The initial6.
counter variable for the state is set to the USD asset, while the initial base
variable is set to the GBP asset, like this:

tradesList: [],
 counter: this.USD,
 base: this.GBP,

Developing a Currency Trading Exchange for Market Making Chapter 9

[463]

Lastly, we set the individual user balances for each asset to zero and initialize the7.
fields used to capture information from the user/trader, like this:

 GBPBalance: 0,
 USDBalance: 0,
 EURBalance: 0,
 fields: {
 secretkey: null,
 buyprice: null,
 buyamount: null,
 sellprice: null,
 sellamount: null,
 }
 }
 }

Next, let's take a look at the componentDidMount() section, as follows:8.

componentDidMount(){

this.server = new StellarSdk.Server('http://127.0.0.1:8000',
{allowHttp: true});
 this.passphrase = 'Standalone Network ; February 2017';

}

The componentDidMount() section points the server to the local Horizon
instance and instantiates the server object for interacting with the Stellar network.
We also set the network passphrase in the this object.

Lastly, this app renders the Container component and forwards the current9.
state to the Container component. It also renders the title bar and description
using Nav.js and Description.js, like this:

render() {

 return (
 <div>
 <Nav appName={this.appName} network={this.state.network} />
 <Description />
 <Container
onInputChangeUpdateField={this.onInputChangeUpdateField}
 account={this.state.account}
 base={this.state.base}
 counter={this.state.counter}
 setBalance={this.setBalance}
 assets={this.assets}

Developing a Currency Trading Exchange for Market Making Chapter 9

[464]

 tradesList={this.state.tradesList}
 GBPBalance={this.state.GBPBalance}
 USDBalance={this.state.USDBalance}
 EURBalance={this.state.EURBalance}
 bidsUSDGBP={this.state.bidsUSDGBP}
 asksUSDGBP={this.state.asksUSDGBP}
 bidsUSDEUR={this.state.bidsUSDEUR}
 asksUSDEUR={this.state.asksUSDEUR}
 bidsGBPEUR={this.state.bidsGBPEUR}
 asksGBPEUR={this.state.asksGBPEUR}
 setOrderbookPair = {this.setOrderbookPair}
 Buy={this.Buy}
 Sell={this.Sell}
 fields={this.state.fields}
 setAccount={this.setAccount}/>

 </div>
)
 }
}
export default App;

OK. Now, we are ready to look at the methods that make our app tick.

Let's start by looking at the setAccount method.

Setting the default user account
Before our trader can submit orders to the network, they need to have a valid Stellar
account, funded with the trading assets. We created the trader's accounts using the nodejs
utility in the previous section.

To load the user's account and balances and submit orders from their account, we need to
map the user's secret key to the app. This secret key is kept on the client side in the
ephemeral storage, and is not sent to the server side.

The AppLogin.js component renders a single field called secret key, to capture the user's
secret key.

The setAccount() method is called to map this secret key and the public key to the app
state, like this:

setAccount = () => {

 var account =
 StellarSdk.Keypair.fromSecret(this.state.fields.secretkey).publicKey()

Developing a Currency Trading Exchange for Market Making Chapter 9

[465]

 this.setState({
 account
 });
 this.setBalance(account);
 this.setOrderbook();
 this.setTrades();
};

The public key is derived using the Keypair class in the StellarSdk. We set the account
to the app state.

Within this method, we also call the setBalance method to set the account balance, the
setOrderbook method to set event streams for each asset pair orderbook, and
the setTrades method to set up an event stream in order to receive trades whenever a new
trade takes place. Let's take a look at these methods.

Setting the account balance
The setBalance method is invoked any time we need to update the user balance in the
app. The setBalance method fetches the user balance for each asset from the Stellar
network and updates the app's state variables, as follows:

setBalance = (account) => {
 let app=this;

var d = new URL(account,'http://127.0.0.1:8000/accounts/');

The setBalance method takes the user public key (account ID) as an input parameter. It
captures the this object in the app parameter.

We also set the URL for fetching the account information for Horizon
to http://127.0.0.1:8000/accounts/<account public key>.

Next, we call the account URL asynchronously. The response is captured and parsed into
JSON as follows:

(async function main(){
 await fetch(d)
 .then(response => response.json())
 .then(data => {
 var balance = data.balances

The asset balances are returned in an array.

Developing a Currency Trading Exchange for Market Making Chapter 9

[466]

We map the balances array and update the balance variables for each asset in the current
app state, like this:

balance.forEach((balance) => {
 if(balance.asset_code == 'GBP')
 {

 let GBPBalance = Number(balance.balance).toFixed(2);
 app.setState({
 GBPBalance
 });
 }
 else if(balance.asset_code == 'EUR')
 {
 let EURBalance = Number(balance.balance).toFixed(2);
 app.setState({
 EURBalance
 });
 }
 else if(balance.asset_code == 'USD')
 {
 let USDBalance = Number(balance.balance).toFixed(2);
 app.setState({
 USDBalance
 });
 }
 else
 console.log("Native Asset");
 })

 });
 })();
 }

Each asset balance is terminated to two decimal places. That brings us to the end of the
setBalance method. The AddressBar component renders and displays the balance for all
three assets.

Displaying the orderbook
The setOrderbook method is invoked to set event streams, one for each trading asset pair.
The event streams are triggered every time a new order is submitted to the orderbook.

Developing a Currency Trading Exchange for Market Making Chapter 9

[467]

Start writing the setOrderbook method by capturing the this instance in the local app
parameter, like this:

setOrderbook = () => {
let app = this;

The orderbookHandler method is an internal method invoked any time there is a new
message on the orderbook event streams. The method checks the asset code of the base
asset and counter asset of the new offer to determine which orderbook needs to be
updated. The state variables holding the bids and asks are updated accordingly, as follows:

var orderbookHandler = function (orderbookResponse) {

 if (orderbookResponse.base.asset_code == 'USD' &&
orderbookResponse.counter.asset_code == 'GBP')
 {
 var bidsUSDGBP = orderbookResponse.bids;
 var asksUSDGBP = orderbookResponse.asks;
 app.setState
 ({
 bidsUSDGBP,
 asksUSDGBP
 });
 }

else if (orderbookResponse.base.asset_code == 'USD' &&
orderbookResponse.counter.asset_code == 'EUR')
 {
 var bidsUSDEUR = orderbookResponse.bids;
 var asksUSDEUR = orderbookResponse.asks;
 app.setState
 ({
 bidsUSDEUR,
 asksUSDEUR
 });
 }

else if (orderbookResponse.base.asset_code == 'GBP' &&
orderbookResponse.counter.asset_code == 'EUR')
 {
 var bidsGBPEUR = orderbookResponse.bids;
 var asksGBPEUR = orderbookResponse.asks;
 app.setState
 ({
 bidsGBPEUR,
 asksGBPEUR
 });

Developing a Currency Trading Exchange for Market Making Chapter 9

[468]

 }

else
 {
 console.log("Invalid orderbook pair");
 }
 };

Next, we set the three event streams, that is, es1, es2, and es3. Each event stream checks
the current status of the orderbook member within the server object. On a new message,
the internal orderbookHandler method is called, as follows:

var es1 = this.server.orderbook(app.USD,app.GBP)
 .cursor('now')
 .stream({
 onmessage: orderbookHandler
 })

var es2 = this.server.orderbook(app.GBP,app.EUR)
 .cursor('now')
 .stream({
 onmessage: orderbookHandler
 })

var es3 = this.server.orderbook(app.USD,app.EUR)
 .cursor('now')
 .stream({
 onmessage: orderbookHandler
 })

 };

Individual event streams exist for the three orderbook pairs—USD-GBP, GBP-EUR, and
USD-EUR. To set the orderbook object, we send the selling asset and the buying asset as
the input parameter.

That brings us to the end of the setOrderbook method.

The bids and asks arrays for the currency pairs—namely, bidsUSDGBP, asksUSDGBP,
bidsUSDEUR, asksUSDEUR, bidsGBPEUR, and asksGBPEUR—are stored in the app state.
The Orderbook.js app component checks the current base and counter for trading and
renders the relevant orderbook, as follows:

//Orderbook.js

if(props.counter.code == 'USD' && props.base.code == 'GBP')
 {

Developing a Currency Trading Exchange for Market Making Chapter 9

[469]

 bids = props.bidsUSDGBP;
 asks = props.asksUSDGBP;
 Asymbol = props.assets[0].symbol;
 Psymbol = props.assets[1].symbol;

 }
 else if(props.counter.code == 'USD' && props.base.code == 'EUR')
 {
 bids = props.bidsUSDEUR;
 asks = props.asksUSDEUR;
 Asymbol = props.assets[0].symbol;
 Psymbol = props.assets[2].symbol;
 }
 else if(props.counter.code == 'GBP' && props.base.code == 'EUR')
 {
 bids = props.bidsGBPEUR;
 asks = props.asksGBPEUR;
 Asymbol = props.assets[1].symbol;
 Psymbol = props.assets[2].symbol;
 }
 else
 {
 console.log ("Invalid Pair");
 }

Depending on the currently selected counter and base asset, the bids and asks arrays are set
for mapping. The asset symbols are also fetched from the asset interfaces. With that, we
come to the end of the orderbook section.

Displaying successful trades to the user
Similar to the orderbook, we need to set an event stream for the successful trades in the
network.

To do so, we use the following setTrades method:

setTrades = () => {

let app = this;

 var tradeHandler = function (traderesponse) {
 var tradesList = app.state.tradesList;
 tradesList.push(traderesponse);

 app.setState

Developing a Currency Trading Exchange for Market Making Chapter 9

[470]

 ({
 tradesList
 });

 };

var es = this.server.trades()
 .cursor('now')
 .stream({
 onmessage: tradeHandler
 })
};

The internal tradeHandler method is called any time a new message is published to the
trades event stream. The tradeHandler function updates the list of trades stored in the
state variable, tradesList.

The tradesList array is mapped and rendered by the Trades.js component and
displayed to the user in real time.

Buying and selling assets
Let's write the Buy() and Sell() methods for submitting buy-and-sell offers to the
blockchain network:

Let's take a look at the Buy method, shown in the following code block:1.

Buy = () => {

 let app = this;
 let amount = this.state.fields.buyamount;
 let price = this.state.fields.buyprice;

We start by capturing the current app state in the local app variable. We also
capture the buy amount and price from the buyamount and buyprice fields
submitted by the user.

Let's start writing the transaction for submitting the buy offer to the blockchain
network.

Developing a Currency Trading Exchange for Market Making Chapter 9

[471]

Start by fetching the network base fee and the sequence number for the user's2.
account. We fetch the user's account from the app state, as follows:

app.server.fetchBaseFee()
 .then(function(fee){

app.server.loadAccount(app.state.account)
.then(function(account){

Stellar uses the manageBuyOffer operation type to submit buy offers. To create a3.
new buy offer, we need to pass the selling currency asset, the buying currency
asset, the buying amount, price, and offerId. offerId is set to 0 for new offers.
The buy offer price and amount for the offer are fetched from the fields
submitted by the user, as follows:

var transaction = new StellarSdk.TransactionBuilder(account,{ fee,
networkPassphrase: app.passphrase})
 .addOperation(StellarSdk.Operation.manageBuyOffer({
 selling: app.state.base,
 buying: app.state.counter,
 buyAmount: amount,
 price: price,
 offerId : 0
 }))
 .setTimeout(100)
 .build();

The transaction is set to time out 100 seconds after it is built. We call the build()
method to build the transaction using TransactionCallBuilder.

After building the transaction, we sign it using the key pair for the user's account,4.
like this:

 let keypair = StellarSdk.Keypair.fromSecret(app.state.fields.secretkey);

 transaction.sign(keypair);

return app.server.submitTransaction(transaction)}).

The transaction is then submitted to the private network using
server.submitTransaction.

As a response from the server, the successful response or the error response is
logged to the console, and the displayed balance is updated, like this:

then(function(response,error)
 {

Developing a Currency Trading Exchange for Market Making Chapter 9

[472]

 if(response)
 {
 console.log("Transaction response", response);
 app.setBalance(app.state.account);
}
 else
 {
 console.log("Error",error);
 }
 })});

This brings us to the end of the Buy method.

The Sell method is similar to the Buy method. The only difference is that the
operation type is manageSellOffer, as can be seen in the following code block:

Sell = () => {
 let app = this;
 let amount = this.state.fields.sellamount;
 let price = this.state.fields.sellprice;
app.server.fetchBaseFee()
 .then(function(fee){

 app.server.loadAccount(app.state.account)
.then(function(account){
 console.log(app.state.base);
 console.log(app.state.counter);
 console.log(app.passphrase);
 var transaction = new StellarSdk.TransactionBuilder(account,{
fee, networkPassphrase: app.passphrase})
 .addOperation(StellarSdk.Operation.manageSellOffer({
 selling: app.state.counter,
 buying: app.state.base,
 amount: amount,
 price: price,
 offerId : 0
 }))
 .setTimeout(100)
 .build();
 let keypair =
StellarSdk.Keypair.fromSecret(app.state.fields.secretkey);
 console.log(transaction);
 transaction.sign(keypair);
 return app.server.submitTransaction(transaction)}).
 then(function(response,error)
 {
 if(response)
 {

Developing a Currency Trading Exchange for Market Making Chapter 9

[473]

 console.log("Transaction response", response);
 app.setBalance(app.state.account);
 }
 else
 {
 console.log("Error",error);
 }
 })});

}

That wraps up the Buy and Sell methods. Let's look at the last method in app.js.

Setting the active trading asset pair
Our exchange has three orderbook asset pairs upon which traders can trade.

The user can switch between the orderbook pairs by clicking the buttons for the respective
currency pair on top of the orderbook.

The setOrderbookPair method is invoked every time the orderbook pair is changed.

 The method accepts the pair number as an input parameter. The pair number is mapped to
the asset pair, as follows:

USD-GBP
GBP-EUR
USD-EUR

So, if pair is set to 1, it indicates the trading pair of USD-GBP.

The method checks the value of the pair input parameter and updates the base and counter
asset in the app state accordingly, as follows:

setOrderbookPair = (pair) => {

if(pair == 1)
 {

 this.setState
 ({
 counter: this.USD,
 base: this.GBP
 });
 }

Developing a Currency Trading Exchange for Market Making Chapter 9

[474]

 else if (pair == 2)
 {

 this.setState
 ({
 counter: this.GBP,
 base: this.EUR
 });
 }
 else if (pair == 3)
 {

 this.setState
 ({
 counter: this.USD,
 base: this.EUR
 });
 }

 else
 {
 console.log("Invalid Orderbook Pair");
 }
this.setOrderbook();
}

After setting the Orderbook pair, we call the setOrderbook method to create the event
stream for the Orderbook.

That brings us to the end of building our currency exchange app.

Now, let's run our app and see how it works.

Running the currency exchange
Make sure you have completed the following steps before you complete this section:

Bring the private Stellar network online.1.
Create user accounts and fund them with native currency.2.
Create the currency assets USD, GBP, and EUR and fund the trading accounts.3.
Extend the trustlines.4.

Developing a Currency Trading Exchange for Market Making Chapter 9

[475]

If you haven't completed the preceding steps, you can go back and finish those, come to
this section, and proceed as follows:

To start the currency exchange, navigate to the React project direct and run the1.
following command:

npm start

The app should open in the browser and should look like the following2.
screenshot:

Copy the secret key for one of the trading accounts. Paste it in the box and click3.
on Submit:

Developing a Currency Trading Exchange for Market Making Chapter 9

[476]

Notice the Stellar account and the asset balances. Now, let's submit a new buy4.
order. Let's submit a buy order for $1 at £0.8.
Click on Submit. After the order is updated to the orderbook, it should be5.
displayed on your screen as well, like this:

Let's try a few more buy-and-sell orders for the USD-GBP asset pair, as follows:6.

Developing a Currency Trading Exchange for Market Making Chapter 9

[477]

Now, let's try to match these orders using a different trader. Log in using the7.
secret key for the other trading account, as follows:

Let's try to match the Buy orders. Submit a sell request for $3 at £0.78, as follows:8.

Developing a Currency Trading Exchange for Market Making Chapter 9

[478]

It should consume the first and second buy order fully, and the second buy offer9.
partially. Also, try matching a sell offer. The completed trades should appear
under the Trades tab, as shown in the following screenshot:

Click on the GBP-EUR button to change the trading asset pair. Try submitting10.
buy-and-sell orders from both the trading accounts to see how the currency
exchange works.

That brings us to the end of our demo and to the topic of currency exchange.

Summary
That brings us to the end of this chapter. This chapter should help you design complex
currency asset exchanges and market makers on the Stellar payments network. You can run
this on a private blockchain network or on a public instance of the Stellar network. It's a
great tool to inboard traditional market makers to blockchain payment networks.

Developing a Currency Trading Exchange for Market Making Chapter 9

[479]

We started this chapter by looking at Stellar's distributed exchange and the concept of
market makers. We set up a private Stellar network instance with Horizon and Stellar Core.
We then created user accounts for trading and issuing assets. We created three trading
assets—namely, US Dollar (USD), Pound (GBP), and Euro (EUR)—and funded our trading
account with these assets. Lastly, we created our currency exchange on top of the private
Stellar network and ran the entire currency exchange end to end.

The main takeaway from this chapter is understanding how we could onboard market
makers to blockchain payment networks and build currency trading exchanges using
blockchain. Such systems remove the need to trust a third party for executing cross-
currency remittances and provide faster, more efficient payments.

In the next chapter, we'll see what is on the horizon for fintech applications for blockchain,
and how we see the technology evolving to serve the domain better.

10
Looking into the Future

That brings us to the end of our journey of learning to implement financial services using
blockchain technology. I hope it's been an interesting and informative journey for you. The
projects covered in this book are meant to give you a fleshed-out idea of how different
distributed ledger technology platforms can be leveraged when you are trying to build a
financial product using blockchain. You could obviously build these projects and deploy
them as is within the development environment setup of your organization, but ideally, I
would recommend you modify the projects to meet your organizations' specific
requirements and use cases. Building the projects as they are described in this book should
get you 70% of the way.

In this chapter, we'll briefly summarize the projects we covered in this book. We'll look at
the major takeaways and how you can apply them for building applications beyond those
covered in this book. Lastly, we will discuss some blockchain concepts that you might want
to look at. It will help to supplement the knowledge you get from this book. The topics
covered in this chapter are as follows:

Summarizing our journey
Extending concepts to other applications
The road ahead – some additional blockchain concepts

Summarizing our journey
We started this book by understanding how the banking and financial services industry
operates today. We looked at blockchain technology and how it can make a difference in
the financial sector. We looked at how to approach building financial applications using
blockchain. We wrapped up our first chapter by taking a look at some of the popular
blockchain platforms being used for financial applications. These include Ethereum,
Hyperledger Fabric, and Stellar.

Looking into the Future Chapter 10

[481]

In Chapter 2, Building a blockchain Wallet for Fungible and Non-Fungible Assets, we worked on
a blockchain wallet for holding both fungible and non-fungible tokens. This chapter looks
at the concept of fungibility and how Ethereum smart contracts can be used to issue
fungible and non-fungible tokens. Next, we built a wallet app that allows us to send and
receive tokens. Additionally, you can approve other Ethereum accounts to mint new tokens
from your address using the wallet.

The wallet is one of the most common blockchain application components. It is almost
impossible to build a blockchain application without one. They serve as a tool for managing
the user's private and public key pairs. Typically, they have a frontend that shows the
number of tokens or assets the user is currently holding.

In Chapter 3, Designing a Payment Gateway for Online Merchants, we built a payment
gateway that could be used by merchants to receive payments in ethers. To do so, we built
a mock e-commerce website and a merchant Ethereum wallet for receiving payments.
Customers could pay using their MetaMask Ethereum wallet or any other wallet to send a
payment. The merchant's wallet was implemented using the BIP44 HD (Hierarchical
Deterministic) wallet. This is a hierarchical system of deriving public-private key pairs from
a single set of seed words. The BIP44 system allows us to generate a new receiving address
for the merchant while receiving payments.

This ensures that the merchant's privacy on a public blockchain network is maintained. Our
merchant wallet is built to track all of the receiving addresses generated by the BIP44
system for the merchant. Since Ethereum has a probabilistic consensus protocol, the
merchant's wallet tracks the number of blocks added to the ledger after each transaction.
After around 40 blocks, we can confirm the transaction.

This payment gateway model can be used across blockchain platforms for payments with
slight modifications. For example, you could use this model for receiving payments on the
bitcoin network or for ERC20 Ethereum tokens. The block confirmation feature would only
be useful for blockchain platforms with probabilistic consensus protocols.

Chapter 4, Corporate Remittances and Settlement, focuses on corporate remittance. We build a
permissioned Hyperledger Fabric network between the banks, Bank A and Bank B, for
facilitating corporate remittances. We also set up a private IPFS network with a node for
Bank A and a node for Bank B for sharing compliance documents between the banks.
Lastly, we set up a bank portal where our corporate customer can log in and submit
transactions and view transactions that have been submitted.

Looking into the Future Chapter 10

[482]

Corporate remittances are probably one of the most popular financial services offered by
the banking and finance industry. They are also more susceptible to fraud compared to
other financial services owing to the large ticket size of the transactions and the fact that the
remitting customer is an organization instead of an individual. Hence, compliance checks
and provenance for secure, efficient, faster, and fraud-resilient workflows are extremely
important. This can be easily achieved using blockchain as seen in this chapter.

Chapter 5, Enabling Cross-Border Remittances with Real-Time KYC/AML Verification, uses the
stellar distributed ledger platform to build a cross border remittance solution between retail
customers aka individuals. The project uses the built-in Federation and Compliance
modules of Stellar for exchanging KYC and AML information about the remittance
participants as part of the transaction request. We set up a two-bank network with Bank A
and Bank B. Each bank had its own infrastructure, including a database server, a backend
server, a stellar node, and a frontend.

Customers could log in to the frontend and submit a payment request. Before submitting
the request to the blockchain, the infrastructure first does a compliance handshake between
Bank A and Bank B. The transaction is submitted to the blockchain only after the system
gets a signoff from the remitting organization and the receiving organization.

Retail remittances have spiked in volumes significantly, especially remittances from the
west to South Asian countries such as India and Bangladesh. A customer receiving
payments in these countries from abroad still pays a hefty transaction processing cost for
receiving money owing to a large number of intermediaries. Additionally, the payment
might get delayed due to bureaucratic workflows. A cross-organization application similar
to the one we described earlier will help to solve these problems and improve the customer
experience

In Chapter 6, Building a Letter of Credit Workflow Module Using Smart Contracts, we looked at
building automated workflows using smart contracts. Specifically, we looked at automating
Letter of Credit (LC) workflows. We built an LC portal where Bank A and a buyer and
seller can log in to issue, view, and settle an LC document. On the blockchain side of things,
we used Ethereum smart contracts to attain our objective. We built a contract for issuing
and managing new Letter of Credit contracts and we built a contract interface that would
serve as a template for issuing new LCs. Users could interact with the smart contracts using
the various options in the frontend.

This chapter is meant to give you a comprehensive look at the power of smart contracts,
specifically Ethereum contracts. They can be leveraged to quickly and effectively build
cross-department or cross-organizational workflows. This can help organizations
immensely when trying to build a solution with business logic that spans across multiple
organizations. Additionally, it saves costs on reconciling data across organizations.

Looking into the Future Chapter 10

[483]

Chapter 7, Building a Tamper-Proof Record Keeping and Document Management System, uses
Hyperledger Fabric to build a tamper-proof document and file storage system. We built a
React application that asks the user to choose a directory path to be secured. It then
calculates and stores the hash value of each file in the directory path, the hash value of the
file tree structure of the directory path, and the hash value of the last modified time of all of
the files in the directory path to the blockchain. The application then periodically checks to
see whether there is a mismatch in the hash values of the file tree hash and the modified
time of the files in the secured directory path. A mismatch indicates that one or more files
have been tampered with. Next, it compares each individual file with their corresponding
hash values in the blockchain and lets the user know which files have been tampered with.
It also informs the user whether any new files have been added or old files have been
removed.

Banks manage huge volumes of customer documents and other confidential private files. It
is imperative to have a system that will let us know in case any tampering happens so it can
instantly be rectified by replacing the information from a backup. This application allows
us to do so. It can be used effectively to prevent modifications by unauthorized individuals.

In Chapter 8, Building a Decentralized Trading Exchange on blockchain, we built a
decentralized exchange using Ethereum smart contracts to trade gold for USD. The engine
for matching trades was implemented outside of the blockchain, but the executed trades
and pending trades were captured to the blockchain using a smart contract. Traders can log
in to their system, point their application to the trading smart contract, and view available
trades in the market. They can then submit requests to the platform to buy or sell gold.

In light of several trading exchanges defaulting globally, it probably makes sense to set up a
trading exchange that is not solely under the control of a centralized authority. This is
where decentralized exchanges come in. In our project, whilst the trading engine is still
built and maintained by a centralized authority, the actual trade offers are submitted and
recorded on the blockchain. Once offers are submitted, they cannot be modified. They can
only be traded against. Hence, our order book cannot be tampered with by the exchange
operator.

Users can also view matching trades and detect any cases of fraudulent transactions or
offers being submitted. These features make decentralized exchanges probably one of the
most important blockchain use cases. They have been explored heavily by the open source
permissionless community and now the permissioned enterprise blockchain community is
also showing interest.

Looking into the Future Chapter 10

[484]

In Chapter 9, Developing a Currency Trading Exchange for Market Making, we use the stellar
platform's order book module to build a currency trading exchange. The trading exchange
allows you to exchange USD, EUR, and GBP. This chapter is meant to demonstrate the
stellar platform's ability to facilitate cross-asset trades. It also shows how you can very
quickly build a decentralized exchange using this powerful network. Several exchanges
such as StellarTerm are actually using the order book module of the public stellar network
to build exchange applications.

That covers all of the projects in our book. Let's now take a look at how you can leverage
and extend the knowledge you gained in this book for building applications not covered as
part of this book and what other areas you probably want to look at.

Extending concepts to other applications
You can easily extend the concepts covered in the projects in this book to other
applications. Following are a few examples of modules that can be modified and extended
to other applications:

Wallets: As we discussed earlier, wallets are the most common module across
blockchain applications. It's almost impossible to build a blockchain application
without it. Wallets that hold fungible and non-fungible tokens can be used as
payment wallets, digital identity cards, smart cards, ownership documents, and
custodians of other transferable and non-transferable assets.
Tokens: Tokens form the building blocks of many blockchain applications.
Tokens can be used to represent a myriad of fungible and non-fungible assets for
accounting purposes in blockchains. In cases where you need to track
provenance and auditability of a real-world asset, it is typically issued or
represented as a token on a blockchain system for accounting purposes. At the
same time, you can use tokens to represent virtual assets as well.
Hierarchical Deterministic (HD) Wallets: HD wallets are fairly common across
most Ethereum and Bitcoin wallets as they are easy to maintain, operate, and
transfer. This includes MetaMask. You can extend this concept to run a
Custodian Wallet system for customers, where you receive payments or other
assets on a public blockchain network on their behalf. The private keys in such a
scenario should ideally be stored in an HSM infrastructure and the service
provider should be accountable for the safety of the assets.

Looking into the Future Chapter 10

[485]

Payment gateways: In permissionless systems, you can use the payment gateway
module for receiving and tracking any kind of assets, not necessarily financial
ones. Since most permissioned systems follow a deterministic consensus
protocol, the block confirmation feature of our payment gateway would probably
not be very useful. However, if your permissioned network uses a probabilistic
block-based consensus protocol, you could easily configure the payment gateway
module to receive and confirm receipt of any transferable asset.
Document share using IPFS: The document share feature used in the Corporate
Remittance project can be implemented across different financial services. By
establishing an IPFS network between the nodes, you can easily share documents
securely between network participants. By default, IPFS does not replicate
documents between network participants. It only establishes a protocol by means
of which you can fetch the file from other IPFS nodes on the network that have a
copy of the file. You could also set up an IPFS cluster network that automatically
replicates IPFS published files across all of the IPFS cluster nodes.
Building a Hyperledger Fabric network from scratch: The corporate remittance
chapter also walks you through setting up a custom Hyperledger Fabric network.
You can modify the scripts and the Docker Compose yaml files for custom
applications and use cases.
Chaincodes: Chaincodes are Hyperledger Fabric's version of a smart contract.
You can use them for different use cases owing to their flexibility.
Building a local Stellar network: You can follow the steps used for setting up
the Stellar network between the banks with minor modifications for setting up a
development environment for various blockchain use cases implemented using
Stellar.
Issuing and transferring assets on Stellar: You can issue and transfer different
types of assets on the Stellar network. These could be financial or non-financial.
Automatic blockchain workflows: The chapter on Letters of Credit only gives a
small taste of the power of Ethereum smart contracts. You can use smart
contracts to re-engineer existing legacy workflows to be faster, more efficient,
and transparent.
Tamperproof files, directories, and documents: The tamperproof application
has multiple applications as is. Additionally, you can probably connect the
application to a virtual or physical backup to allow any resources that have been
tampered with to be restored.

Looking into the Future Chapter 10

[486]

Decentralized trading exchanges: Decentralized trading exchanges can be used
for trading a wide variety of assets. They can include any kind of securities,
financial or non-financial assets, tokens, bills, and so on.
Cross-asset payments: For carrying out cross-asset remittances, you can integrate
an external API to fetch conversion rates for various base and counter currencies.
Optionally, you can use Stellar's order book, provided there are offers posted to
it. You can look at the concept of Path Payments in Stellar, which carry out
transactions in hops, each hop indicating the conversion of one asset into
another.

Next, let's look at some additional blockchain concepts that you might want to find out
more about.

The road ahead – some additional
blockchain concepts
This section includes some additional concepts that the reader might want to look at to
supplement their knowledge:

Zero-knowledge proof (ZKP): ZKP is a mechanism that gives the user the ability
to prove that they possess some specific knowledge or information without
sharing the knowledge or information with the verifier or validator. ZKP
workflows have been in the spotlight after a string of cybersecurity hacks in
which large volumes of customer data were lost. Cybersecurity experts have
been looking at ZKP workflows to counter such attacks. The solution that this
technology offers is to avoid storing any data with service providers, where it can
be leaked. Instead, customers can enable a ZKP workflow to verify details about
themselves. Hence, if a customer is required to prove that they are above the age
of 18 at a restaurant that serves alcohol, a ZKP workflow would allow them to do
so without revealing their date of birth and sharing a copy of the document for
proof. From a financial services point of view, it makes sense because banks and
financial institutions have, at times, a lot of customer data, which might get
leaked. A ZKP workflow would permit these institutions to meet compliance
norms without actually storing the data. Additionally, customers would be in
control of their data. Blockchains are perfect for implementing such workflows
owing to their decentralized nature.

Looking into the Future Chapter 10

[487]

Sharding: Sharding is a database architecture that focuses on horizontal
partitioning. A single table's rows are separated into multiple rows. Each
partition has the same table schema but entirely different rows. This enables the
developers to write to the database at high speeds. Several blockchain platforms
have been playing with the idea of enabling sharding for their platform to
achieve higher transaction sizing suitable for use cases such as trading or cross-
border payments. The Elastico platform has successfully managed to make
sharding work for blockchains. Other popular platforms, such as R3's Corda, are
exploring integrating sharding with their core set of features. Given the high
frequency of transactions required by many financial products, we might be
seeing sharding in blockchain become more common soon.
Blockchain oracles: A blockchain oracle is a third party that provides off-chain
information to a smart contract to enable it to process workflows. For example, if
a smart contract is supposed to transfer electricity tokens to a customer when the
temperature reaches below 40 °F, you can create an application that uses a sensor
to detect the temperature and then calls the smart contract to transfer the tokens.
In this case, the application and the sensor is an oracle. Oracles are not a new
concept in blockchain. However, with organizations integrating more and more
IoT devices with blockchains, it will be especially interesting to see their role in
the next age of blockchain applications.
Multisignature wallets: Multisignature (Multisig) wallets are the blockchain
equivalent of a secure deposit box with two locks and two keys. Transactions
from the wallet need to be signed by two or more stakeholders. To enable this
feature, we use the Multsig concept, which is a digital signature mechanism that
makes it possible for two or more users to sign a transaction. Each user has access
to a private key that they need to sign with when a transaction is to be submitted
from the multisig wallet. Wallets can be 2 out of 2, 2 out of 3, 3 out of 5, and so
on. The first number in this representation indicates the minimum number of key
holders who need to sign to initiate successful transactions. The second number
indicates the total number of keys issued for the address. These have been
popular with cryptocurrency exchanges for quite some time now. With
blockchains now issuing digital assets mapped to real-world assets,
organizations might want to remove a single point of failure while storing assets
by using Multisig wallets.

Looking into the Future Chapter 10

[488]

Stablecoins: Stablecoins are crypto assets issued on blockchains that are pegged
to a single currency or a basket of currency. This reduces volatility in their prices
and makes them suitable for financial applications such as cross-border
remittances. Several reputed organizations such as JP Morgan have been
experimenting with building their own stablecoins for settlement instead of fiat.
Sidechains: Sidechain is an approach by means of which tokens and assets in one
blockchain can be moved across multiple blockchains or ledgers. Probably the
best way to think about sidechains is like a ledger on top of our blockchain
ledger. They have multiple uses in the real world. Consider the bitcoin network.
Currently, transactions are processed at a very slow rate. We could run a ledger
parallel to the bitcoin network that works on a different consensus mechanism
and processes transactions much faster than Bitcoin. To do so, we can invite
individuals interested in faster payments to sign up for our application and ask
them to load bitcoins in their wallets on the alternate ledger. To load bitcoins into
their wallet, they would transfer bitcoins to a designated address on the bitcoin
network. After receiving the bitcoins in the designated address, the customer is
credited with the balance on the parallel ledger. On the parallel ledger, they can
transfer funds much faster than the bitcoin network. If they want to withdraw,
we'll simply debit the designated address and credit the customer's address on
the bitcoin network. This concept is called a sidechain, and the parallel ledger is
referred to as a sidechain ledger. It is used for increasing transaction speeds,
hopping between different DLT networks, lowering transaction costs,
interoperability between networks, and so on.

Conclusion
That brings us to the end. In this chapter, we briefly summarized the various projects we
worked on and our takeaways from each project. We also looked at how we can extend the
concepts we learned to other financial projects. We closed this chapter with a description of
a few additional blockchain concepts that you might want to look at to further supplement
your knowledge.

So, here we are at the end of this book. I hope this book helped you with your blockchain
journey and sets you on a path to create new financial services and products using
blockchain or to re-engineer existing processes using this revolutionary technology.

11
Appendix: Application Checklist

Application checklist
The following checklist will aid you in building your blockchain applications.

Design checklist
The following list indicates design considerations that you should take into account:

What is the As-Is business workflow?
What is the To-Be workflow?
Who are the stakeholders?
Do identities/public-private key pairs need to be created for all the stakeholders?
What will the high-level architecture be?
What technical components will our architecture be comprised of?
What is the blockchain platform to be used?
What legacy applications need to be integrated into the blockchain application?
How many nodes need to be set up in the blockchain network?
What is the transaction throughput?
What data is private and public to the blockchain network participants?
What data can be published to the network?
How can we keep data private from other network participants?
What security controls need to be implemented (client ports to be opened, key
management, and so on)?

Appendix: Application Checklist Chapter 11

[490]

Development checklist
The following is an indicative list of development activities that you will carry out during
the development cycle. This checklist has been divided into four categories for ease of
understanding:

Environment setup:1.
Setting up and installing dependencies – Node.js, React, Go,
PostgreSQL, Docker, Docker Compose, and so on
Core Blockchain Software Installation – Ganache, Hyperledger Fabric
binaries and images, Stellar images and binaries, and so on
Installing software modules and utilities, opening ports and setting up
domains, node creation, and setup
Creating blockchain identities/users
Creating and issuing fungible/non-fungible assets

Blockchain app development:2.
Secure Smart Contract design and development
Deploying Smart Contracts and recording smart contract accounts
Creating contract interfaces that might be required to invoke the smart
contract and interact with it
Creating asset interfaces for transferring assets

Backend development:3.
Installing and setting up a backend server for handling requests
Integrating with the blockchain platform and smart contracts
Integrating with databases
Exposing services that can be integrated with the frontend for
transaction submission, fetching data from databases, fetching ledger
data, and so on
Building event listeners that listen to transactions and contract events

Frontend development:4.
Building interfaces for all the roles
Integrating with backend services
Secure authentication

Appendix: Application Checklist Chapter 11

[491]

Testing checklist
The following is an indicative list of test cases and user stories that you can test your
application with. You can use Chai for writing and creating test cases:

Asset creation
Asset transfer
Contract methods execution
Security protocols – access controls, fallback functions, self-destructing smart
contracts, and so on

Deployment checklist
The following is an indicative list of tasks that you will have to carry out when deploying
the application:

Deploying all smart contracts to the blockchain and mapping account addresses
in the contract interfaces.
Deploying all assets to the blockchain and mapping account addresses in the
asset interfaces.
Maintain contract versions and account addresses. Ensure updated account
addresses are mapped to the interfaces.
For Ethereum smart contracts, ensure fallback methods are implemented and
contracts are self-destructing for maintenance purposes.
For Fabric, create Docker images and issue certificates to bring the network
components online.
For Fabric, create organizations and affiliations and issue identities for all the
requisite network participants.
For Fabric, install the chaincode (smart contract) on all the relevant peers and
instantiate the chaincode on the required channels.
For Stellar, ensure all the assets are issued and that trustlines have been extended
with the required values to accounts that need to hold the assets.
For Stellar, ensure the TOML files and configuration files have been updated
with the local environment variables.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Ethereum
Merunas Grincalaitis

ISBN: 978-1-78953-137-4 9

Apply scalability solutions on dApps with Plasma and state channels
Understand the important metrics of blockchain for analyzing and determining
its state
Develop a decentralized web application using React.js and Node.js
Create oracles with Node.js to provide external data to smart contracts
Get to grips with using Etherscan and block explorers for various transactions
Explore web3.js, Solidity, and Vyper for dApps communication
Deploy apps with multiple Ethereum instances including TestRPC, private chain,
test chain, and mainnet

https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-ethereum

Other Books You May Enjoy

[493]

Hyperledger Cookbook
Xun (Brian) Wu, ChuanFeng Zhang, Et al

ISBN: 978-1-78953-488-7

Create the most popular permissioned blockchain network with Fabric and
Composer
Build permissioned and permission-less blockchains using Sawtooth
Utilize built-in Iroha asset/account management with role-based permissions
Implement and run Ethereum smart contracts with Burrow
Get to grips with security and scalability in Hyperledger
Explore and view blockchain data using Hyperledger Explorer
Produce reports containing performance indicators and benchmarks using
Caliper

https://www.packtpub.com/in/big-data-and-business-intelligence/hyperledger-cookbook

Other Books You May Enjoy

[494]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
accounting
 USD token, creating for 262, 263, 264
 USD token, deploying for 265
accounts 389
API
 creating, for generating dynamic payment

addresses 81, 82, 84, 85
App.js file, corporate remittance app frontend
 constructor, writing 177
 method, writing to set current user balance 184,

185

 methods, writing for setting user account 178,
179

 methods, writing to fetch customer transactions
183, 184

 methods, writing to handle input fields 181
 methods, writing to submit payment requests

182, 183
 methods, writing to toggle between app

components 179
App.js, merchant HD wallet
 componentDidMount() 88, 89, 90
 constructor() 88
 getAccountTransactions() 91, 92, 93
 render() 91
App.js
 functions 40
Application Binary Interface (ABI) 408
application checklist
 about 489
 deployment checklist 491
 design checklist 489
 development checklist 490
 testing checklist 491
assets, transferring from issuing account

 about 453
 utilities, running 456, 457
 utilities, writing 454, 455, 456

B
backend server code
 endpoint, creating to fetch customer data 152
 endpoint, creating to post payment requests

153, 154, 155, 156
 method, writing to add transactions to database

161

 method, writing to publish documents to IPFS
network 157

 method, writing to submit transactions to
blockchain network 158, 159, 160

 method, writing to update customer's balance
160

 service, creating to obtain transaction details
156

 writing 150
backend server
 function, building to compare current hash

signature of file with hash recorded in
blockchain 354, 355

 method, building for listing files in directory 346,
347, 348

 method, building to read MTH and FTH from
blockchain 352, 353

 method, building to write file hash to blockchain
349, 350

 method, building to write MTH and FTH to
blockchain 350, 351

 service, writing to identify tampered files 361,
363

 service, writing to verify file tree structure 361
 service, writing to verify last modified time 359
 writing 344, 345, 346

[496]

 writing, to secure directory by recording hashes to
blockchain 356, 358, 359

bank backend server
 API endpoints 149
 app environment, creating 149
 application, methods 149
 building 148
 changes, for Bank B 162, 163
 code, writing 151
bank databases
 creating 145, 146
 database relations, creating 147
 setting up 145
 test customer data, inserting into customers table

148

bank domains
 bank's internal databases, setting up 218, 219,

220, 221
 hosts file, updating 214
 http server file, setting up 215, 217, 218
 self-signed certificates, issuing for 214, 215
 setting up 213
 stellar.toml file, setting up 215, 217, 218
bank portal, frontend
 App.js file, writing 245, 246, 247, 248, 249, 250
 React project environment, creating 244
 USD asset, mapping 245
bank portal
 backend, building 237, 238, 239, 240, 241,

242, 243
 building 237
 frontend, building 244
Bankchain directory
 reference link 119
banking and finance systems
 present-day 10
base asset 389
Bill of Entry (BOE) 134
Bill of Lading (BOL) 133, 261
block confirmation 64
Blockchain as a Service (BaaS) 16
blockchain corporate remittance application 117,

118

blockchain cross-border remittance
 payment request 194, 195, 196, 197

 test network, setting up 197, 198
 user accounts, creating 199
 workflow, designing for 194
blockchain identities, creating for banks
 about 124
 admin user, creating 125
 Bank B utility, changes 131
 Bank B, changes 127
 bank users, creating 128
 utility, creating to enroll admin user 125, 126
 utility, creating to register users 128, 129, 130
 utility, executing 127
 utility, running 131
blockchain network
 implementation strategies 16
 layout 117, 118
 Node.js backend 118
 Node.js transaction listener 118
 React frontend 118
blockchain oracles 487
blockchain payment ecosystem
 defining 61, 62, 63, 64
blockchain solution
 implementation approaches 15
blockchain technology 11, 13
blockchain, for financial services
 automated workflows 14
 decentralized systems 14
 inclusive finance 14
 information sharing 14
 reconciliation 13
 secure document sharing 14
blockchain-based workflows 260
blockchain
 contracts, migrating to 403, 404, 405
 overview 480
 tamper-proof document storage 331, 332
bridge server payment
 URL 235
bridge server
 setting up 226, 227, 228

C
callbacks server
 setting up 229, 230, 232, 233, 235, 236

[497]

Carry and Forwarding Agent (CFA) document 261
certificate authorities (CA) 122
chaincodes 485
compliance server
 setting up 223, 224, 225, 226
configtx file
 applications 121
 capabilities 121
 channels 121
 creating 121
 orderer 121
 organizations 121
 Profile section 121
contracts
 compiling 393, 394
 migrating, to blockchain 403, 404, 405
 migrating, to Ganache blockchain network 33,

34

Coordinated Universal Time (UTC) format 296
corporate remittance app frontend
 AppLogin component, building 173
 container component, building 173
 creating, in React 171
 methods, writing in App.js file 177
 React project environment, creating 172
 Transfer component, building 174
 ViewTransactions component, building 175, 176
corporate remittance app
 running 185, 186, 188, 189, 190
corporate remittance contract
 building 132
 corprem smart contract, deploying 135, 137,

139

 writing 132, 134, 135
corprem smart contract
 deploying 135, 137, 139
counter asset 389
cross-asset payments 486
Cross-Origin Resource Sharing (CORS) 82, 230
crypto-config file
 creating 120
currency exchange
 running 474, 475, 476, 478
currency trading exchange, App.js file
 account balance, setting 465, 466

 active trading asset pair, setting 473, 474
 assets, buying 470, 471
 assets, selling 470, 471
 default user account, setting 464, 465
 orderbook, displaying 466, 468, 469
 successful trades, displaying to user 469, 470
 writing 461, 462, 463, 464
currency trading exchange
 asset interfaces, setting up 460, 461
 building 457, 458
 React project environment, creating 459

D
DApps 18
decentralized exchange project
 scope 389
decentralized trading exchanges
 about 388, 486
 components 388
deployment checklist 491
design checklist 489
development checklist 490
distributed currency trading exchange 438, 439,

440

distributed currency trading exchange, user
accounts

 CreateAccount utility, running 446, 447
 CreateAccount utility, writing 442, 443, 444, 445
 creating 441
distributed ledger platforms, for financial

applications
 about 17
 Ethereum 17, 18
 Hyperledger Fabric 18, 19
 Stellar 19
Distributed Ledger Technology (DLT) 12
docker-compose files
 creating 122
 docker-compose-ca.yaml 122
 docker-compose-couch.yaml 122
DocsApp chaincode
 deploying 335
 writing 335
DocsApp smart contract
 deploying 338, 339, 340, 343

[498]

 writing 336, 337, 338
document hash 332
dynamic merchant addresses
 generating, with Hierarchical Deterministic (HD)

64, 65, 66, 67
dynamic payment addresses generation
 API, creating for 81, 82, 84, 85

E
e-commerce page, Sindbad Commerce
 App.js file, writing 72
 bCheck() method 78, 79
 componentDidMount() method, used for mapping

Shoes array 79
 Container.js file 70, 71
 gateway app, running 80, 81
 methods, declaring 72
 MMaskTransfer() method 75
 newPayment() method 73, 74
 PaymentWait() method 74
 render() method 80
 Shoes.js object 69
 startTimer() method 76
 tick() method 77
e-commerce website
 creating 67, 68, 69
ERC20 smart contract standard 23
ERC20 token standard 25, 26, 27
ERC721 smart contract standard 23
ERC721 token standard 28, 29, 30, 31
Ethereum 17
Ethereum Request for Comment (ERC) 17
Ethereum Virtual Machine (EVM) 17, 24
Exchange app 390
exchange app
 App.js file, writing 410, 411, 412
 building 406, 407, 408
 buy order, initiating 418, 419, 420, 421, 422
 contract interfaces, setting up 409, 410
 orderbook events, viewing 417
 orderbook, displaying 413, 414, 415, 417
 react project environment, creating 408
 running 425, 426, 427, 428, 429, 430, 431,

432, 433, 434, 435
 sell order, initiating 423

 user asset balances, setting 424, 425

F
Federated Byzantine Agreement (FBA) 12
federation servers
 setting up 221, 222, 223
file tree hash (FTH) 332
financial applications
 distributed ledger platforms 17
fungibility 23
fungible asset 23

G
Ganache blockchain network
 contracts, migrating to 33, 34

H
Hierarchical Deterministic (HD) wallets
 about 484
 used, for generating dynamic merchant

addresses 64, 65, 66, 67
Horizon 197
Hyperledger Fabric 18, 19
Hyperledger Fabric Bankchain network
 configtx file, creating 121
 crypto-config file, creating 120
 docker-compose files, creating 122
 launching 122, 124
 setting up 119
Hyperledger Fabric network
 admin identity, creating 334
 building 485
 first network sample, using 334
 setting up 333
 user identity, creating 335

I
Initial Crypto Offerings (ICO) 24
IPFS network
 binary, downloading 140
 installing 140
 key file, generating for network 142
 setting up 140
 testing 144

[499]

 used, for sharing document 485
IPFS nodes
 bootstrapping 143
 configuring 143
 initializing 141, 142
 starting 144

L
LC Master
 about 261
 smart contract, creating 266, 267
 smart contract, deploying 283, 284, 285, 286,

287

 smart contract, writing 267, 268, 269, 270, 271,
272, 273

LC module React app
 app methods, writing 298
 App.js file, creating 298
 BankLogin.js component, creating 293
 BankTabCreate.js component, creating 294, 295
 componentDidMount method, using 300, 301
 constructor() method, writing 299
 Container.js component, creating 296, 297
 contract interfaces, setting up 290, 291, 292
 createLC method, writing 301, 302
 creating 288, 289
 React components, building 293
 React project environment, creating 289, 290
 SellerTabSettle.js component, creating 295
 SellerTabView.js component, creating 296
 session setters, building 301
 settleLC method, writing 306, 307
 viewLC method, writing 303, 304
 viewSingleLC method, writing 305, 306
LC module
 running 307, 308, 309, 310, 311, 312, 313,

314, 315, 316, 317, 318, 319, 320, 321, 322,
323, 324, 325, 326, 327

LC smart contract
 creating 273, 274, 275, 276, 277, 278, 279,

281, 282
LC workflow
 project, scope 261
 setting up 262

M
main Ethereum network
 token wallet, connecting to 56, 57
matching engine 389
Membership Service Provider (MSP) 121
merchant HD wallet
 App.js 87
 building 86, 87
merchant wallet 63
merchant wallet interface 63
MetaMask 18
MetaMask account
 setting up 35
miner 12
modified time hash (MTH) 332
Moolah Coin 26
multisignature wallets 487
My Ether Wallet (MEW) 62

N
no objection certificate (NOC) 260
non-fungible asset 23
Non-Fungible Tokens (NFT) 24

O
orderbook 389
orderbook smart contract
 about 390, 394
 writing 395, 397, 398, 399, 400, 401, 402

P
payment ecosystem
 running 94, 96, 97, 98, 99, 100, 101, 102, 103,

104, 105, 106, 107, 108, 109, 111, 112
payment gateway
 about 59, 485
 creating 67, 68, 69
permissioned blockchains 12
postgresql
 installing 145
Practical Byzantine Fault Tolerance (PBFT) 12
private test Stellar network
 building 440, 441

[500]

R
React frontend, creating for tamper-proof

application
 about 363, 364
 app methods, writing 372, 373
 container component, building 365, 366
 FolderBlock component, building 367
 FolderBlockChkStatus component, building 368,

369, 370, 371
 PathMapper component, building 366
 project environment, creating 364
React
 corporate remittance app frontend, creating 171
ReactJS
 used, for creating token wallet frontend 35
Red Hat Enterprise Linux (RHEL) 145
remittance platform
 running 251, 252, 253, 254, 255

S
sharding 487
sidechains 488
Sindbad Commerce 68
smart contract code
 migrating, with Truffle 32, 33
 writing 24
smart contracts
 about 260
 LC 262
 LC Master 261
 USD (ERC20) 261
software development kit (SDK) 125
stablecoins 488
Stellar 19
Stellar Core 197
Stellar network
 setting up 485

T
tamper-proof application
 methods, writing 373, 374, 376, 377, 378, 379
 running 380, 381, 382, 383
tamper-proof document storage
 with blockchain 331, 332

tamperproof application 485
testing checklist 491
token wallet app frontend, creating with ReactJS
 about 35
 App.js file 40, 41, 42, 43, 45
 components 38, 39
 Container.js 39, 40
 React app, setting up 36
 token interfaces, adding to app 37, 38
token wallet app
 connecting, to main Ethereum network 56, 57
 functionalities 35
 running 47, 48, 49, 50, 51, 52, 53, 54, 55
token wallet frontend, creating with ReactJS
 App.js file 46
tokens 484
trading assets
 issuing 390
trading currency assets
 asset object, creating 447
 assets, transferring from issuing account 453
 creating 447
 trustline, extending to receiving accounts 448
trading exchange, components
 accounts 389
 matching engine 389
 orderbook 389
transaction listeners, building for banks
 about 163
 app environment, creating 164
 changes, for Bank B 169, 170
 code, writing 164
 method, writing to fetch compliance documents

from IPFS 168, 169
 transaction listener method, writing 165, 167,

168

transaction listeners
 methods 163
 tasks 163
Truffle
 used, for smart contract code migration 32, 33
trustline 439
trustline, extending to receiving accounts
 utility, running 452, 453
 utility, writing 448, 449, 450, 451

U
Universal Time Coordinated (UTC) 396
USD asset, blockchain cross-border remittance
 asset object, creating 206
 trustlines, extending to receive accounts 206
 utility, running 210
 utility, writing 206, 207, 208, 209
USD token contract
 writing 393
USD token
 contract, writing 390, 391, 392
 creating, for accounting 262, 263, 264
 deploying, for accounting 265
user accounts with USD, blockchain cross-border

remittance
 utilities, running 213

 utilities, writing 211, 212
user accounts, blockchain cross-border remittance
 createAccount utility, running 204, 205
 createAccount utility, writing 200, 201, 202,

203, 204
 funding, with USD 210
 USD asset, creating 205

W
wallets 484
workflow
 designing, for blockchain cross-border

remittance 194

Z
Zero-Knowledge Proof (ZKP) 486

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Blockchain Payments and Remittances
	Chapter 1: Blockchain in Financial Services
	Present-day banking and finance systems
	Understanding blockchain technology
	Blockchains for financial services
	How to approach implementing a blockchain solution
	Implementation strategies
	Popular distributed ledger platforms for financial applications
	Ethereum
	Hyperledger Fabric
	Stellar

	Summary

	Chapter 2: Building a Blockchain Wallet for Fungible and Non-Fungible Assets
	Technical requirements
	Understanding ERC20 and ERC721 smart contract standards
	Writing the smart contract code
	Creating the ERC20 Token contract
	Creating the ERC721 Token contract

	Migrating the smart contract code using Truffle
	Creating the token wallet frontend using ReactJS
	Setting up the React app
	Adding token interfaces to our app
	App components
	Container.js
	App.js

	Running our app
	Connecting to the main Ethereum network
	Summary

	Chapter 3: Designing a Payment Gateway for Online Merchants
	Technical requirements
	Defining our blockchain payment ecosystem
	Generating dynamic merchant addresses using HD wallets
	Creating an e-commerce website and payment gateway
	Shoes.js
	Container.js
	Writing the App.js file and declaring the methods
	newPayment()
	PaymentWait()
	MMaskTransfer()
	startTimer()
	tick()
	bCheck() – running a persistent balance check
	Using the componentDidMount() method to map the Shoes array
	render()

	Running the gateway app

	Creating an API for generating dynamic payment addresses
	Building the merchant HD wallet
	App.js
	Constructor()
	componentDidMount()
	render()
	getAccountTransactions()

	Running the payment ecosystem
	Summary

	Chapter 4: Corporate Remittances and Settlement
	Technical requirements
	Understanding the blockchain corporate remittance application and network layout
	Setting up the Hyperledger Fabric Bankchain network
	Creating the crypto-config file
	Creating the configtx file
	Creating the docker-compose files
	Launching the network

	Creating blockchain identities for the banks
	Creating the admin user
	Creating a utility to enroll the admin user
	Changes for Bank B
	Running the utility

	Creating the bank users
	Creating a utility to register users
	Changes for the Bank B utility
	Running the utilities

	Building the corporate remittance contract
	Writing the corporate remittance contract
	Deploying the corprem smart contract

	Setting up the IPFS network
	Downloading the binary and installing IPFS
	Initializing the IPFS nodes
	Generating a key file for the network
	Configuring the nodes
	Bootstrapping the nodes
	Starting the nodes and testing the network

	Setting up the bank databases
	Installing postgresql
	Creating the bank databases
	Creating the database relations
	Inserting test customer data into the customers table

	Building the bank backend servers
	Creating the app environment
	Writing the backend server code
	Creating an endpoint to fetch customer data
	Creating an endpoint to post payment requests
	Creating a service to get transaction details
	Writing a method to publish documents to the IPFS network
	Writing a method to submit transactions to the blockchain network
	Writing a method to update the customer's balance
	Writing a method to add transactions to the database

	Changes for backend server for Bank B

	Building the transaction listeners for the banks
	Creating the app environment
	Writing the transaction listener code
	Writing the transaction listener method
	Writing a method to fetch compliance documents from IPFS

	Changes for transaction listener for Bank B

	Creating the corporate remittance app frontend in React
	Creating the React project environment
	Building the container component
	Building the AppLogin component
	Building the Transfer component
	Building the ViewTransactions component
	Writing the methods in the App.js file
	Writing the constructor
	Writing a method for setting the user account
	Writing methods to toggle between app components
	Writing methods to handle input fields
	Writing a method to submit payment requests
	Writing a method to fetch customer transactions
	Writing a method to set the current user balance

	Running the corporate remittance app
	Summary

	Chapter 5: Enabling Cross-Border Remittances with Real-Time KYC/AML Verification
	Technical requirements
	Designing a workflow for blockchain cross-border remittance
	Understanding how a payment request works

	Setting up a test network
	Creating user accounts
	Writing the createAccount utility
	Running the createAccount utility
	Creating the USD asset
	Creating a new asset object
	Extending trustlines to receive accounts
	Writing the utility
	Running the utility

	Funding the user accounts with USD
	Writing the utilities
	Running the utities

	Setting up the bank domains
	Updating the hosts file
	Issuing the self-signed certificates for the domains
	Setting up the http server and stellar.toml file
	Setting up the bank's internal databases

	Setting up the federation servers
	Setting up the compliance server
	Setting up the bridge server
	Setting up the callbacks server
	Building the bank portal
	Building the bank portal backend
	Building the bank portal frontend
	Creating the React project environment
	Mapping the USD asset
	Writing the App.js file

	Running the remittance platform
	Summary

	Section 2: Blockchain Workflows Using Smart Contracts
	Chapter 6: Building a Letter of Credit Workflow Module Using Smart Contracts
	Technical requirements
	Understanding smart contracts and blockchain-based workflows
	Scope of an LC workflow project
	Setting up the LC workflow

	Creating a USD token for accounting
	Deploying a USD token for accounting
	Creating an LC Master smart contract
	Writing the contract

	Creating an LC smart contract
	Deploying the LC Master smart contract
	Creating the LC module React app
	Creating the React project environment
	Setting up the contract interfaces
	Building the React components
	Creating the BankLogin.js component
	Creating the BankTabCreate.js component
	Creating the SellerTabSettle.js component
	Creating the SellerTabView.js component
	Creating the Container.js component

	Writing the app methods and creating the App.js file
	Writing the constructor() method
	Using the componentDidMount method
	Building the session setters
	Writing the createLC method
	Writing the viewLC method
	Writing the viewSingleLC method
	Writing the settleLC method

	Running the LC module
	Summary

	Section 3: Securing Digital Documents and Files Using Blockchain
	Chapter 7: Building a Tamper-Proof Document Storage System
	Technical requirements
	Tamper-proof document storage using blockchain
	Setting up the Hyperledger Fabric network
	Bringing the first network sample online
	Creating the admin and user identities

	Writing and deploying the DocsApp chaincode
	Writing the DocsApp smart contract
	Deploying the DocsApp smart contract

	Building the backend services
	Writing the backend server
	Building a method for listing files in a directory
	Building a method to write a file hash to the blockchain
	Building a method to write the MTH and the FTH to the blockchain
	Building a method to read MTH and FTH from the blockchain
	Building a function to compare the current hash signature of a file with the hash recorded in the blockchain
	Writing a backend service for securing a directory by recording hashes in the blockchain
	Writing a service to verify the last modified time and the file tree structure
	Writing a service to inspect and identify tampered files

	Creating a React frontend for the app
	Creating the React project environment
	Building the container component
	Building the PathMapper component
	Building the FolderBlock component
	Building the FolderBlockChkStatus component
	Writing the app methods
	Creating a method to set the timer interval
	Creating a method to write the hashes to the blockchain
	Creating a method to check for a mismatch between the last modified time and the file tree structure
	Writing a method to check whether any files have been added or removed from the directory
	Writing a method for identifying tampered files from the list of files

	Running the tamper-proof application
	Summary

	Section 4: Decentralized Trading Exchanges Using Blockchain
	Chapter 8: Building a Decentralized Trading Exchange
	Technical requirements
	Decentralized trading exchanges
	Basic components of a trading exchange
	Scope of the decentralized exchange project

	Issuing the trading assets
	Writing the contracts
	Compiling the contracts

	Orderbook smart contract
	Writing the contract
	Migrating all the contracts to the blockchain

	Building the exchange app
	Building the app
	Creating the React project environment
	Setting up the contract interfaces
	Writing the App.js file
	Displaying the orderbook
	Watching orderbook events
	Initiating a buy order
	Initiating a sell order
	Setting the user asset balances

	Running the exchange app
	Summary

	Chapter 9: Developing a Currency Trading Exchange for Market Making
	Technical requirements
	Introducing the distributed currency trading exchange
	Building the private test Stellar network
	Creating the user accounts
	Writing the CreateAccount utility
	Running the CreateAccount utility

	Creating trading currency assets
	Creating a new asset object
	Extending trustlines to receiving accounts
	Writing the utility
	Running the utility

	Transferring the assets from the issuing account
	Writing the utilities
	Running the utilities

	Building the currency trading exchange
	Creating the React project environment
	Setting up the asset interfaces
	Writing the App.js file
	Setting the default user account
	Setting the account balance
	Displaying the orderbook
	Displaying successful trades to the user
	Buying and selling assets
	Setting the active trading asset pair

	Running the currency exchange
	Summary

	Chapter 10: Looking into the Future
	Summarizing our journey
	Extending concepts to other applications
	The road ahead – some additional blockchain concepts
	Conclusion

	Chapter 11: Appendix: Application Checklist
	Application checklist
	Design checklist
	Development checklist
	Testing checklist
	Deployment checklist

	Other Books You May Enjoy
	Index

