

PowerShell Pocket Reference

Third Edition

Portable Help for PowerShell Scripters

Lee Holmes

 PowerShell Pocket Reference

 by
 Lee
 Holmes

 Copyright © 2021 Lee Holmes. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

 	
 Acquisitions Editor:
 Suzanne McQuade

 	
 Development Editor:
 Angela Rufino

 	
 Production Editor:
 Kate Galloway

 	
 Copyeditor:
 Stephanie English

 	
 Proofreader:
 Jasmine Kwityn

 	
 Indexer:
 Potomac Indexing, LLC

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 May 2021:
 Third Edition

 Revision History for the Third Edition

 	
 2021-04-22:
 First Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098101671
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. PowerShell Pocket Reference, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author, and do not
 represent the publisher’s views. While the publisher and the
 author have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-10167-1

 [LSI]

A Guided Tour of PowerShell

Introduction

PowerShell has revolutionized the world of system management and command-line shells. From its object-based pipelines to its administrator focus to its enormous reach into other Microsoft management technologies, PowerShell drastically improves the productivity of administrators and power users alike.

When you’re learning a new technology, it’s natural to feel bewildered at first by all the unfamiliar features and functionality. This perhaps rings especially true for users new to
PowerShell because it may be their first experience with a fully featured command-line shell. Or worse, they’ve heard stories of PowerShell’s fantastic integrated scripting capabilities and fear being forced into a world of programming that they’ve actively avoided until now.

Fortunately, these fears are entirely misguided; PowerShell is a shell that both grows with you and grows on you. Let’s take a tour to see what it is capable of:

	
PowerShell works with standard Windows commands and applications. You don’t have to throw away what you already know and use.

	
PowerShell introduces a powerful new type of command. PowerShell commands (called cmdlets) share a common Verb-Noun syntax and offer many usability improvements over standard commands.

	
PowerShell understands objects. Working directly with richly structured objects makes working with (and combining) PowerShell commands immensely easier than working in the plain-text world of traditional shells.

	
PowerShell caters to administrators. Even with all its advances, PowerShell focuses strongly on its use as an interactive shell: the experience of entering commands in a running PowerShell application.

	
PowerShell supports discovery. Using three simple commands, you can learn and discover almost anything
PowerShell has to offer.

	
PowerShell enables ubiquitous scripting. With a fully fledged scripting language that works directly from the command line, PowerShell lets you automate tasks with ease.

	
PowerShell bridges many technologies. By letting you work with .NET, COM, WMI, XML, and Active Directory, PowerShell makes working with these previously isolated technologies easier than ever before.

	
PowerShell simplifies management of data stores. Through its provider model, PowerShell lets you manage data stores using the same techniques you already use to manage files and folders.

We’ll explore each of these pillars in this introductory tour of PowerShell. If you’re running any supported version of Windows (Windows 7 or later, or Windows 2012 R2 or later), Windows PowerShell is already installed. That said, a significant step up from this default installation is the open source
PowerShell Core.

An Interactive Shell

At its core, PowerShell is first and foremost an interactive shell. While it supports scripting and other powerful features, its focus as a shell underpins everything.

Getting started in PowerShell is a simple matter of launching PowerShell.exe rather than cmd.exe—the shells begin to diverge as you explore the intermediate and advanced functionality, but you can be productive in PowerShell immediately.

To launch PowerShell, click Start and then type PowerShell (or pwsh if you’ve jumped ahead!).

A PowerShell prompt window opens that’s nearly identical to the traditional command prompt of its ancestors. The PS C:\Users\Lee> prompt indicates that PowerShell is ready for input, as shown in Figure P-1.

[image: wpsp 0001]
Figure P-1. Windows PowerShell, ready for input

Once you’ve launched your PowerShell prompt, you can enter DOS- and Unix-style commands to navigate around the filesystem just as you would with any Windows or Unix command prompt—as in the interactive session shown in Example P-1. In this example, we use the pushd, cd, dir, pwd, and popd commands to store the current location, navigate around the filesystem, list items in the current directory, and then return to the original location. Try it!

Example P-1. Entering many standard DOS- and Unix-style file manipulation commands produces the same results you get when you use them with any other Windows shell

PS C:\Users\Lee> function prompt { "PS > " }
PS > pushd .
PS > cd \
PS > dir

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 5/8/2007 8:37 PM Blurpark
d---- 5/15/2016 4:32 PM Chocolatey
d---- 3/8/2020 12:45 PM DXLab
d---- 4/30/2020 7:00 AM Go
d---- 4/2/2016 3:05 PM Intel
d-r-- 12/15/2020 1:41 PM Program Files
d-r-- 11/28/2020 5:06 PM Program Files (x86)
d---- 5/12/2019 6:37 PM Python27
d---- 3/25/2018 1:11 PM Strawberry
d---- 12/16/2020 8:13 AM temp
d-r-- 8/11/2020 5:02 PM Users
da--- 12/16/2020 10:51 AM Windows

PS > popd
PS > pwd

Path

C:\Users\Lee

In this example, our first command customizes the prompt. In cmd.exe, customizing the prompt looks like prompt PG. In Bash, it looks like PS1="[\h] \w> ". In PowerShell, you define a function that returns whatever you want displayed.

The pushd command is an alternative name (alias) to the
much more descriptively named PowerShell command
Push-Location. Likewise, the cd, dir, popd, and pwd commands all have more memorable counterparts.

Although navigating around the filesystem is helpful, so is running the tools you know and love, such as ipconfig and
notepad. Type the command name and you’ll see results like those shown in Example P-2.

Example P-2. Windows tools and applications such as ipconfig run in PowerShell just as they do in cmd.exe

PS > ipconfig

Windows IP Configuration

Ethernet adapter Wireless Network Connection 4:

 Connection-specific DNS Suffix . : hsd1.wa.comcast.net.
 IP Address. : 192.168.1.100
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.1.1
PS > notepad
(notepad launches)

Entering ipconfig displays the IP addresses of your current network connections. Similarly, entering notepad runs—as you’d expect—the Notepad editor that ships with Windows. Try them both on your own machine.

Structured Commands (Cmdlets)

In addition to supporting traditional Windows executables, PowerShell introduces a powerful new type of command called a cmdlet (pronounced “command-let”). All cmdlets are named in a Verb-Noun pattern, such as Get-Process, Get-Content, and Stop-Process:

PS > Get-Process -Name lsass

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 668 13 6228 1660 46 932 lsass

In this example, you provide a value to the ProcessName parameter to get a specific process by name.

Note

Once you know the handful of common verbs in PowerShell, learning how to work with new nouns becomes much easier. While you may never have worked with a certain object before (such as a Service), the standard Get, Set, Start, and Stop actions still apply. For a list of these common verbs, see Table 10-1 in Chapter 10.

You don’t always have to type these full cmdlet names, however. PowerShell lets you use the Tab key to autocomplete cmdlet names and parameter names:

PS > Get-Pro<TAB> -N<TAB> lsass

For quick interactive use, even that may be too much typing. To help improve your efficiency, PowerShell defines aliases for all common commands and lets you define your own. In addition to alias names, PowerShell requires only that you type enough of the parameter name to disambiguate it from the rest of the parameters in that cmdlet. PowerShell is also case-insensitive. Using the built-in gps alias (which represents the Get-Process cmdlet) along with parameter shortening, you can instead type:

PS > gps -n lsass

Going even further, PowerShell supports positional parameters on cmdlets. Positional parameters let you provide parameter values in a certain position on the command line, rather than having to specify them by name. The Get-Process cmdlet takes a process name as its first positional parameter. This parameter even supports wildcards:

PS > gps l*s

Deep Integration of Objects

PowerShell begins to flex more of its muscle as you explore the way it handles structured data and richly functional objects. For example, the following command generates a simple text string. Since nothing captures that output, PowerShell displays it to you:

PS > "Hello World"
Hello World

The string you just generated is, in fact, a fully functional object from the .NET Framework. For example, you can access its Length property, which tells you how many characters are in the string. To access a property, you place a dot between the object and its property name:

PS > "Hello World".Length
11

All PowerShell commands that produce output generate that output as objects as well. For example, the Get-Process cmdlet generates a System.Diagnostics.Process object, which you can store in a variable. In PowerShell, variable names start with a $ character. If you have an instance of Notepad running, the following command stores a reference to it:

$process = Get-Process notepad

Since this is a fully functional Process object from the .NET Framework, you can call methods on that object to perform actions on it. This command calls the Kill() method, which stops a process. To access a method, you place a dot between the object and its method name:

$process.Kill()

PowerShell supports this functionality more directly through the Stop-Process cmdlet, but this example demonstrates an important point about your ability to interact with these rich objects.

Administrators as First-Class Users

While PowerShell’s support for objects from the .NET Framework quickens the pulse of most users, PowerShell continues
to focus strongly on administrative tasks. For example,
PowerShell supports MB (for megabyte) and GB (for gigabyte) as some of its standard administrative constants. How many GIF memes will fit in a 800 GB hard drive?

PS > 800GB / 2.2MB
372363.636363636

Although the .NET Framework is traditionally a development platform, it contains a wealth of functionality useful for administrators too! In fact, it makes PowerShell a great calendar. For example, is 2096 a leap year? PowerShell can tell you:

PS > [DateTime]::IsLeapYear(2096)
True

Going further, how might you determine how much time remains until the Y2038 Epochalypse? The following command converts "01/19/2038" (the date of the Year 2038 problem) to a date, and then subtracts the current date from that. It stores the result in the $result variable, and then accesses the TotalDays property:

PS > $result = [DateTime] "01/19/2038" - [DateTime]::Now
PS > $result.TotalDays
6242.49822756465

Composable Commands

Whenever a command generates output, you can use a pipeline character (|) to pass that output directly to another command as input. If the second command understands the objects produced by the first command, it can operate on the results. You can chain together many commands this way, creating powerful compositions out of a few simple operations. For example, the following command gets all items in the Path1 directory and moves them to the Path2 directory:

Get-Item Path1* | Move-Item -Destination Path2

You can create even more complex commands by adding additional cmdlets to the pipeline. In Example P-3, the first command gets all processes running on the system. It passes those to the Where-Object cmdlet, which runs a comparison against each incoming item. In this case, the comparison is
$_.Handles -ge 500, which checks whether the Handles property of the current object (represented by the $_ variable) is greater than or equal to 500. For each object in which this comparison holds true, you pass the results to the Sort-Object cmdlet, asking it to sort items by their Handles property. Finally, you pass the objects to the Format-Table cmdlet to generate a table that contains the Handles, Name, and Description of the process.

Example P-3. You can build more complex PowerShell commands by using pipelines to link cmdlets, as shown here with Get-Process, Where-Object, Sort-Object, and Format-Table

PS > Get-Process |
 Where-Object { $_.Handles -ge 500 } |
 Sort-Object Handles |
 Format-Table Handles,Name,Description -Auto

Handles Name Description
------- ---- -----------
 588 winlogon
 592 svchost
 667 lsass
 725 csrss
 742 System
 964 WINWORD Microsoft Office Word
 1112 OUTLOOK Microsoft Office Outlook
 2063 svchost

Techniques to Protect You from Yourself

While aliases, wildcards, and composable pipelines are powerful, their use in commands that modify system information can easily be nerve-racking. After all, what does this command do? Think about it, but don’t try it just yet:

PS > gps [b-t]*[c-r] | Stop-Process

It appears to stop all processes that begin with the letters b through t and end with the letters c through r. How can you be sure? Let PowerShell tell you. For commands that modify data, PowerShell supports -WhatIf and -Confirm parameters that let you see what a command would do:

PS > gps [b-t]*[c-r] | Stop-Process -whatif
What if: Performing operation "Stop-Process" on "ctfmon (812)".
What if: Performing operation "Stop-Process" on "Ditto (1916)".
What if: Performing operation "Stop-Process" on "dsamain (316)".
What if: Performing operation "Stop-Process" on "ehrecvr (1832)".
What if: Performing operation "Stop-Process" on "ehSched (1852)".
What if: Performing operation "Stop-Process" on "EXCEL (2092)".
What if: Performing operation "Stop-Process" on "explorer (1900)".
(...)

In this interaction, using the -WhatIf parameter with the Stop-Process pipelined command lets you preview which processes on your system will be stopped before you actually carry out the operation.

Note that this example is not a dare! In the words of one reviewer:

Not only did it stop everything, but on one of my old machines, it forced a shutdown with only one minute warning!

It was very funny though…At least I had enough time to save everything first!

Common Discovery Commands

While reading through a guided tour is helpful, I find that most learning happens in an ad hoc fashion. To find all commands that match a given wildcard, use the Get-Command cmdlet. For example, by entering the following, you can find out which PowerShell commands (and Windows applications) contain the word process:

PS > Get-Command *process*

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Process Get-Process [[-Name] <Str...
Application qprocess.exe c:\windows\system32\qproc...
Cmdlet Stop-Process Stop-Process [-Id] <Int32...

To see what a command such as Get-Process does, use the
Get-Help cmdlet, like this:

PS > Get-Help Get-Process

Since PowerShell lets you work with objects from the .NET Framework, it provides the Get-Member cmdlet to retrieve information about the properties and methods that an object, such as a .NET System.String, supports. Piping a string to the Get-Member command displays its type name and its members:

PS > "Hello World" | Get-Member

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
(...)
PadLeft Method System.String PadLeft(Int32 tota...
PadRight Method System.String PadRight(Int32 tot...
Remove Method System.String Remove(Int32 start...
Replace Method System.String Replace(Char oldCh...
Split Method System.String[] Split(Params Cha...
StartsWith Method System.Boolean StartsWith(String...
Substring Method System.String Substring(Int32 st...
ToCharArray Method System.Char[] ToCharArray(), Sys...
ToLower Method System.String ToLower(), System....
ToLowerInvariant Method System.String ToLowerInvariant()
ToString Method System.String ToString(), System...
ToUpper Method System.String ToUpper(), System....
ToUpperInvariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[]...
TrimEnd Method System.String TrimEnd(Params Cha...
TrimStart Method System.String TrimStart(Params C...
Length Property System.Int32 Length {get;}

Ubiquitous Scripting

PowerShell makes no distinction between the commands typed at the command line and the commands written in a script. Your favorite cmdlets work in scripts and your favorite scripting techniques (e.g., the foreach statement) work directly on the command line. For example, to add up the handle count for all running processes:

PS > $handleCount = 0
PS > foreach($process in Get-Process) {
 $handleCount += $process.Handles }
PS > $handleCount
19403

While PowerShell provides a command (Measure-Object) to measure statistics about collections, this short example shows how PowerShell lets you apply techniques that normally require a separate scripting or programming language.

In addition to using PowerShell scripting keywords, you can also create and work directly with objects from the .NET Framework that you may be familiar with. PowerShell becomes almost like the C# immediate mode in Visual Studio. Example P-4 shows how PowerShell lets you easily interact with the .NET Framework.

Example P-4. Using objects from the .NET Framework to retrieve a web page and process its content

PS > $webClient = New-Object System.Net.WebClient
PS > $content = $webClient.DownloadString(
 "https://devblogs.microsoft.com/powershell/feed/")
PS > $content.Substring(0,1000)
<?xml version="1.0" encoding="UTF-8"?><rss version="2.0"
 xmlns:content="http://purl.org/rss/1.0/modules/content/"
 xmlns:wfw="http://wellformedweb.org/CommentAPI/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
 xmlns:slash="http://purl.org/rss/1.0/modules/slash/" >
<channel>
 <title>PowerShell</title>
 <atom:link href="https://devblogs.microsoft.com/powersh..."
 <link>https://devblogs.microsoft.com/powershell</link>
 <description>Automating the world one-liner at a time…
 </description>
(...)

Ad Hoc Development

By blurring the lines between interactive administration and writing scripts, the history buffers of PowerShell sessions quickly become the basis for ad hoc script development. In this example, you call the Get-History cmdlet to retrieve the history of your session. For each item, you get its CommandLine property (the thing you typed) and send the output to a new script file.

PS > Get-History | ForEach-Object {
 $_.CommandLine } > c:\temp\script.ps1
PS > notepad c:\temp\script.ps1
(save the content you want to keep)
PS > c:\temp\script.ps1

Note

If this is the first time you’ve run a script in PowerShell, you’ll need to configure your execution policy.

Bridging Technologies

We’ve seen how PowerShell lets you fully leverage the .NET Framework in your tasks, but its support for common technologies stretches even farther. As Example P-5 (continued from Example P-4) shows, PowerShell supports XML.

Example P-5. Working with XML content in PowerShell

PS > $xmlContent = [xml] $content
PS > $xmlContent

xml xml-stylesheet rss
--- -------------- ---
version="1.0" encoding... type="text/xsl" href="... rss

PS > $xmlContent.rss

version : 2.0
content : http://purl.org/rss/1.0/modules/content/
wfw : http://wellformedweb.org/CommentAPI/
dc : http://purl.org/dc/elements/1.1/
atom : http://www.w3.org/2005/Atom
sy : http://purl.org/rss/1.0/modules/syndication/
slash : http://purl.org/rss/1.0/modules/slash/
channel : channel

PS > $xmlContent.rss.channel.item | select Title

title

PowerShell 7.2 Preview 2 release
Announcing PowerShell Crescendo Preview.1
You’ve got Help!
SecretManagement preview 6 and SecretStore preview 4
Announcing PowerShell 7.1
Announcing PSReadLine 2.1+ with Predictive IntelliSense
Updating help for the PSReadLine module
PowerShell Working Groups
(...)

PowerShell also lets you work with Windows Management Instrumentation (WMI) and Common Information Model (CIM):

PS > Get-CimInstance Win32_Bios

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009
Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber : xxxxxxxxxxx
Version : Nvidia - 42302e31

Or, as Example P-6 shows, you can work with Active Directory Service Interfaces (ADSI).

Example P-6. Working with Active Directory in PowerShell

PS > [ADSI] "WinNT://./Administrator" | Format-List *

UserFlags : {66113}
MaxStorage : {-1}
PasswordAge : {19550795}
PasswordExpired : {0}
LoginHours : {255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255
 255 255 255}
FullName : {}
Description : {Built-in account for administering
 the computer/domain}
BadPasswordAttempts : {0}
LastLogin : {5/21/2007 3:00:00 AM}
HomeDirectory : {}
LoginScript : {}
Profile : {}
HomeDirDrive : {}
Parameters : {}
PrimaryGroupID : {513}
Name : {Administrator}
MinPasswordLength : {0}
MaxPasswordAge : {3710851}
MinPasswordAge : {0}
PasswordHistoryLength : {0}
AutoUnlockInterval : {1800}
LockoutObservationInterval : {1800}
MaxBadPasswordsAllowed : {0}
RasPermissions : {1}
objectSid : {1 5 0 0 0 0 0 5 21 0 0 0 121 227
 252 83 122 130 50 34 67 23 10 50
 244 1 0 0}

Or, as Example P-7 shows, you can even use PowerShell for scripting traditional COM objects.

Example P-7. Working with COM objects in PowerShell

PS > $firewall = New-Object -com HNetCfg.FwMgr
PS > $firewall.LocalPolicy.CurrentProfile

Type : 1
FirewallEnabled : True
ExceptionsNotAllowed : False
NotificationsDisabled : False
UnicastResponsesToMulticastBroadcastDisabled : False
RemoteAdminSettings : System.__ComObject
IcmpSettings : System.__ComObject
GloballyOpenPorts : {Media Center
 Extender Service,
 Remote Media Center
 Experience, Adam
 Test Instance,
 QWAVE...}
Services : {File and Printer
 Sharing, UPnP
 Framework, Remote
 Desktop}
AuthorizedApplications : {Remote Assistance,
 Windows Messenger,
 Media Center,
 Trillian...}

Namespace Navigation Through Providers

Another avenue PowerShell offers for working with the system is providers. PowerShell providers let you navigate and manage data stores using the same techniques you already use to work with the filesystem, as illustrated in Example P-8.

Example P-8. Navigating the filesystem

PS > Set-Location c:\
PS > Get-ChildItem

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 5/8/2007 8:37 PM Blurpark
d---- 5/15/2016 4:32 PM Chocolatey
d---- 3/8/2020 12:45 PM DXLab
d---- 4/30/2020 7:00 AM Go
d---- 4/2/2016 3:05 PM Intel
d-r-- 12/15/2020 1:41 PM Program Files
d-r-- 11/28/2020 5:06 PM Program Files (x86)
d---- 5/12/2019 6:37 PM Python27
d---- 3/25/2018 1:11 PM Strawberry
d---- 12/16/2020 8:13 AM temp
d-r-- 8/11/2020 5:02 PM Users
da--- 12/16/2020 10:51 AM Windows

This also works on the registry, as shown in Example P-9.

Example P-9. Navigating the registry

PS > Set-Location HKCU:\Software\Microsoft\Windows\
PS > Get-ChildItem

 Hive: HKEY_CURRENT_USER\Software\Microsoft\Windows

Name Property
---- --------
CurrentVersion
DWM Composition : 1
 ColorPrevalence : 0
 ColorizationColor : 3290322719
 EnableAeroPeek : 1
 AccentColor : 4280243998
 EnableWindowColorization : 1
Shell
TabletPC
Windows Error Reporting

PS > Set-Location CurrentVersion\Run
PS > Get-ItemProperty .

(...)
OneDrive : "C:\Users\lee\AppData\Local\Microsoft\OneDriv..."
 /background
OpenDNS Updater : "C:\Program Files (x86)\OpenDNS Updater\OpenD..."
 /autostart
Ditto : C:\Program Files\Ditto\Ditto.exe
(...)

And it even works on the machine’s certificate store, as Example P-10 illustrates.

Example P-10. Navigating the certificate store

PS > Set-Location cert:\CurrentUser\Root
PS > Get-ChildItem

 Directory: Microsoft.PowerShell.Security\
 Certificate::CurrentUser\Root

Thumbprint Subject
---------- -------
CDD4EEAE6000AC7F40C3802C171E30148 CN=Microsoft Root Certificate...
BE36A4562FB2EE05DBB3D32323ADF4450 CN=Thawte Timestamping CA, OU...
A43489159A520F0D93D032CCAF37E7FE2 CN=Microsoft Root Authority, ...
9FE47B4D05D46E8066BAB1D1BFC9E48F1 CN=PowerShell Local Certifica...
7F88CD7223F3C813818C994614A89C99F CN=Microsoft Authenticode(tm)...
245C97DF7514E7CF2DF8BE72AE957B9E0 OU=Copyright (c) 1997 Microso...
(...)

Much, Much More

As exciting as this guided tour was, it barely scratches the surface of how you can use PowerShell to improve your productivity and systems management skills.

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	Constant width bold

	
Shows commands or other text that should be typed literally by the user.

	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/LeeHolmes/PowerShellCookbook.

If you have a technical question or a problem using the code examples, please send an email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “PowerShell Pocket Reference by Lee Holmes (O’Reilly), 3rd edition. Copyright 2021 Lee Holmes, 978-1-098-10167-1.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/powershell-pocket-3rd.

Email bookquestions@oreilly.com to comment or ask technical questions about this book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Chapter 1. PowerShell Language and Environment

Commands and Expressions

PowerShell breaks any line that you enter into its individual units (tokens), and then interprets each token in one of two ways: as a command or as an expression. The difference is subtle: expressions support logic and flow control statements (such as if, foreach, and throw), whereas commands do not.

You will often want to control the way that PowerShell interprets your statements, so Table 1-1 lists the available options.

Table 1-1. PowerShell evaluation controls

	Statement
	Explanation

	
Precedence control: ()

	
Forces the evaluation of a command or expression, similar to the way that parentheses are used to force the order of evaluation in a mathematical expression.

For example:

PS > 5 * (1 + 2)
15
PS > (dir).Count
227

	
Expression subparse: $()

	
Forces the evaluation of a command or expression, similar to the way that parentheses are used to force the order of evaluation in a mathematical expression.

However, a subparse is as powerful as a subprogram and is required only when the subprogram contains logic or flow control statements.

This statement is also used to expand dynamic information inside a string.

For example:

PS > "The answer is (2+2)"
The answer is (2+2)

PS > "The answer is $(2+2)"
The answer is 4

PS > $value = 10
PS > $result = $(
 if($value -gt 0) { $true }
 else { $false })
PS > $result
True

	
List evaluation: @()

	
Forces an expression to be evaluated as a list. If it is already a list, it will remain a list. If it is not, PowerShell temporarily treats it as one.

For example:

PS > "Hello".Length
5
PS > @("Hello").Length
1
PS > ([PSCustomObject] @{
Property1 = "Hello"
Count = 100 }).Count
100
PS > @([PSCustomObject] @{
Property1 = "Hello"
Count = 100 }).Count
1

	
DATA evaluation: DATA { }

	
Evaluates the given script block in the context of the PowerShell data language. The data language supports only data-centric features of the PowerShell language.

For example:

PS > DATA { 1 + 1 }
2
PS > DATA { $myVariable = "Test" }
Assignment statements are not
allowed in restricted language
mode or a Data section.

Comments

To create single-line comments, begin a line with the # character. To create a block (or multiline) comment, surround the region with the characters <# and #>:

This is a regular comment

<# This is a block comment

function MyTest
{
 "This should not be considered a function"
}

$myVariable = 10;

Block comment ends
#>

This is regular script again

Help Comments

PowerShell creates help for your script or function by looking at its comments. If the comments include any supported help tags, PowerShell adds those to the help for your command.

Comment-based help supports the following tags, which are all case-insensitive:

	.SYNOPSIS

	
A short summary of the command, ideally a single
sentence.

	.DESCRIPTION

	
A more detailed description of the command.

	.PARAMETER name

	
A description of parameter name, with one for each parameter you want to describe. While you can write a
.PARAMETER comment for each parameter, PowerShell also supports comments written directly above the parameter. Putting parameter help alongside the actual parameter makes it easier to read and maintain.

	.EXAMPLE

	
An example of this command in use, with one for each example you want to provide. PowerShell treats the line immediately beneath the .EXAMPLE tag as the example command. If this line doesn’t contain any text that looks like a prompt, PowerShell adds a prompt before it. It treats lines that follow the initial line as additional output and example commentary.

	.INPUTS

	
A short summary of pipeline input(s) supported by this command. For each input type, PowerShell’s built-in help follows this convention:

System.String
 You can pipe a string that contains a path to
 Get-ChildItem.

	.OUTPUTS

	
A short summary of items generated by this command. For each output type, PowerShell’s built-in help follows this convention:

System.ServiceProcess.ServiceController
 This cmdlet returns objects that represent the
 services on the computer.

	.NOTES

	
Any additional notes or remarks about this command.

	.LINK

	
A link to a related help topic or command, with one .LINK tag per link. If the related help topic is a URL, PowerShell launches that URL when the user supplies the -Online parameter to Get-Help for your command.

While these are all of the supported help tags you are likely to use, comment-based help also supports tags for some of
Get-Help’s more obscure features:

	
.COMPONENT

	
.ROLE

	
.FUNCTIONALITY

	
.FORWARDHELPTARGETNAME

	
.FORWARDHELPCATEGORY

	
.REMOTEHELPRUNSPACE

	
.EXTERNALHELP

For more information about these tags, type Get-Help about_Comment_Based_Help.

Variables

PowerShell provides several ways to define and access variables, as summarized in Table 1-2.

Table 1-2. PowerShell variable syntaxes

	Syntax
	Meaning

	
$simpleVariable = "Value"

	
A simple variable name. The variable name must consist of alphanumeric characters. Variable names are not case-sensitive.

	
$variable1,
$variable2 = "Value1", "Value2"

	
Multiple variable assignment. PowerShell populates each variable from the value in the corresponding position on the righthand side. Extra values are assigned as a list to the last variable listed.

	
${ arbitrary!@#@\#{var}iable } = "Value"

	
An arbitrary variable name. The variable name must be surrounded by curly braces, but it may contain any characters. Curly braces in the variable name must be escaped with a backtick (`).

	
 ${c:\filename.
extension}

	
Variable “Get and Set Content” syntax. This is similar to the arbitrary variable name syntax. If the name corresponds to a valid PowerShell path, you can get and set the content of the item at that location by reading and writing to the variable.

	
[datatype] $variable = "Value"

	
Strongly typed variable. Ensures that the variable may contain only data of the type you declare. PowerShell throws an error if it cannot coerce the data to this type when you assign it.

	
[constraint]
$variable = "Value"

	
Constrained variable. Ensures that the variable may contain only data that passes the supplied validation constraints:

[ValidateLength(4, 10)] $a = "Hello"

The supported validation constraints are the same as those supported as parameter validation attributes.

	
$SCOPE:variable

	
Gets or sets the variable at that specific scope. Valid scope names are global (to make a variable available to the entire shell), script (to make a variable available only to the current script or persistent during module commands), local (to make a variable available only to the current scope and subscopes), and private (to make a variable available only to the current scope). The default scope is the current scope: global when defined interactively in the shell, script when defined outside any functions or script blocks in a script, and local elsewhere.

	
New-Item Variable:\variable -Value value

	
Creates a new variable using the variable provider.

	
Get-Item Variable:\variable

Get-Variable variable

	
Gets the variable using the variable provider or Get-Variable cmdlet. This lets you access extra information about the variable, such as its options and description.

	
New-Variable variable
-Option option -Value value

	
Creates a variable using the
New-Variable cmdlet. This lets you provide extra information about the variable, such as its options and description.

Note

Unlike some languages, PowerShell rounds (rather than truncates) numbers when it converts them to the [int] data type:

PS > (3/2)
1.5
PS > [int] (3/2)
2

Booleans

Boolean (true or false) variables are most commonly initialized to their literal values of $true and $false. When PowerShell evaluates variables as part of a Boolean expression (for example, an if statement), though, it maps them to a suitable Boolean representation, as listed in Table 1-3.

Table 1-3. PowerShell Boolean interpretations

	Result
	Boolean representation

	$true

	True

	$false

	False

	$null

	False

	Nonzero number

	True

	Zero

	False

	Nonempty string

	True

	Empty string

	False

	Empty array

	False

	Single-element array

	The Boolean representation of its single element

	Multi-element array

	True

	Hashtable (either empty or not)

	True

Strings

PowerShell offers several facilities for working with plain-text data.

Literal and Expanding Strings

To define a literal string (one in which no variable or escape expansion occurs), enclose it in single quotes:

$myString = 'hello `t $ENV:SystemRoot'

$myString gets the actual value of hello `t $ENV:SystemRoot.

To define an expanding string (one in which variable and escape expansion occur), enclose it in double quotes:

$myString = "hello `t $ENV:SystemRoot"

$myString gets a value similar to hello C:\WINDOWS.

To include a single quote in a single-quoted string or a double quote in a double-quoted string, include two of the quote characters in a row:

PS > "Hello ""There""!"
Hello "There"!
PS > 'Hello ''There''!'
Hello 'There'!

Note

To include a complex expression inside an expanding string, use a subexpression. For example:

$prompt = "$(Get-Location) >"

$prompt gets a value similar to c:\temp >.

Accessing the properties of an object requires a
subexpression:

$version = "Current PowerShell version is:"
 $PSVersionTable.PSVersion.Major

$version gets a value similar to:

Current PowerShell version is: 3

Here Strings

To define a here string (one that may span multiple lines), place the two characters @" at the beginning and the two characters "@ on their own line at the end.

For example:

$myHereString = @"
This text may span multiple lines, and may
contain "quotes."
"@

Here strings may be of either the literal (single-quoted) or expanding (double-quoted) variety.

Escape Sequences

PowerShell supports escape sequences inside strings, as listed in Table 1-4.

Table 1-4. PowerShell escape sequences

	Sequence
	Meaning

	`0

	The null character. Often used as a record separator.

	`a

	The alarm character. Generates a beep when displayed on the console.

	`b

	The backspace character. The previous character remains in the string but is overwritten when displayed on the console.

	`e

	The escape character. Marks the beginning of an ANSI escape sequence such as "`e[2J“.

	`f

	A form feed. Creates a page break when printed on most printers.

	`n

	A newline.

	`r

	A carriage return. Newlines in PowerShell are indicated entirely by the `n character, so this is rarely required.

	`t

	A tab.

	`u{hex-code}

	A unicode character literal. Creates a character represented by the specified hexadecimal Unicode code point, such as `u{2265} (≥).

	`v

	A vertical tab.

	'' (two single quotes)

	A single quote, when in a literal string.

	"" (two double quotes)

	A double quote, when in an expanding string.

	`any other character

	That character, taken literally.

Numbers

PowerShell offers several options for interacting with numbers and numeric data.

Simple Assignment

To define a variable that holds numeric data, simply assign it as you would other variables. PowerShell automatically stores your data in a format that is sufficient to accurately hold it:

$myInt = 10

$myUnsignedInt = 10u
$myUnsignedInt = [uint] 10

$myInt gets the value of 10, as a (32-bit) integer. $myUnsignedInt gets the value of 10 as an unsigned integer.

$myDouble = 3.14

$myDouble gets the value of 3.14, as a (53-bit, 9 bits of precision) double.

To explicitly assign a number as a byte (8-bit) or short (16-bit) number, use the y or s suffixes. Prefixing either with u creates an unsigned version of that data type. You can also use the [byte], [int16], and [short] casts:

$myByte = 127y
$myByte = [byte] 127
$myUnsignedByte = 127uy

$myShort = 32767s
$myShort = [int16] 32767
$myShort = [short] 32767

$myUnsignedShort = 32767us
$myUnsignedShort = [ushort] 32767

To explicitly assign a number as a long (64-bit) integer or decimal (96-bit, 96 bits of precision), use the long (l) and decimal (d) suffixes. You can also use the [long] cast:

$myLong = 2147483648l
$myLong = [long] 2147483648

$myUnsignedLong = 2147483648ul
$myUnsignedLong = [ulong] 2147483648

$myDecimal = 0.999d

To explicitly assign a number as a BigInteger (an arbitrary large integer with no upper or lower bounds), use the BigInteger (n) suffix:

$myBigInt = 99999999999999999999999999999n

PowerShell also supports scientific notation, where e<number> represents multiplying the original number by the <number> power of 10:

$myPi = 3141592653e-9

$myPi gets the value of 3.141592653.

The data types in PowerShell (integer, long integer, double, and decimal) are built on the .NET data types of the same names.

Administrative Numeric Constants

Since computer administrators rarely get the chance to work with numbers in even powers of 10, PowerShell offers the numeric constants of pb, tb, gb, mb, and kb to represent petabytes (1,125,899,906,842,624), terabytes (1,099,511,627,776), gigabytes (1,073,741,824), megabytes (1,048,576), and kilobytes (1,024), respectively:

PS > $downloadTime = (1gb + 250mb) / 120kb
PS > $downloadTime
10871.4666666667

You can combine these numeric multipliers with a data type as long as the result fits in that data type, such as 250ngb.

Hexadecimal and Other Number Bases

To directly enter a hexadecimal number, use the hexadecimal prefix 0x:

$myErrorCode = 0xFE4A

$myErrorCode gets the integer value 65098.

To directly enter a binary number, use the binary prefix 0b:

$myBinary = 0b101101010101

$myBinary gets the integer value of 2901.

If you don’t know the hex or binary value as a constant or need to convert into Octal, use the [Convert] class from the .NET Framework. The first parameter is the value to convert, and the second parameter is the base (2, 8, 10, or 16):

$myOctal = [Convert]::ToInt32("1234567", 8)

$myOctal gets the integer value of 342391.

$myHexString = [Convert]::ToString(65098, 16)

$myHexString gets the string value of fe4a.

$myBinaryString = [Convert]::ToString(12345, 2)

$myBinaryString gets the string value of 11000000111001.

Note

See “Working with the .NET Framework” to learn more about using PowerShell to interact with the .NET Framework.

Large Numbers

To work with extremely large numbers, use the BigInt class.

[BigInt]::Pow(12345, 123)

To do math with several large numbers, use the [BigInt] cast (or the n BigInt data type) for all operands:

PS > 98123498123498123894n * 98123498123498123894n
9628220883992139841085109029337773723236

PS > $val = "98123498123498123894"
PS > ([BigInt] $val) * ([BigInt] $val)
9628220883992139841085109029337773723236

Imaginary and Complex Numbers

To work with imaginary and complex numbers, use the
System.Numerics.Complex class:

PS > [System.Numerics.Complex]::ImaginaryOne *
 [System.Numerics.Complex]::ImaginaryOne | Format-List

Real : -1
Imaginary : 0
Magnitude : 1
Phase : 3.14159265358979

Arrays and Lists

Array Definitions

PowerShell arrays hold lists of data. The @() (array cast) syntax tells PowerShell to treat the contents between the parentheses as an array. To create an empty array, type:

$myArray = @()

To define a nonempty array, use a comma to separate its
elements:

$mySimpleArray = 1,"Two",3.14

Arrays may optionally be only a single element long:

$myList = ,"Hello"

Or, alternatively (using the array cast syntax):

$myList = @("Hello")

Elements of an array don’t need to be all of the same data type, unless you declare it as a strongly typed array. In the following example, the outer square brackets define a strongly typed variable (as mentioned in “Variables”), and int[] represents an array of integers:

[int[]] $myArray = 1,2,3.14

In this mode, PowerShell generates an error if it cannot convert any of the elements in your list to the required data type. In this case, it rounds 3.14 to the integer value of 3:

PS > $myArray[2]
3

Note

To ensure that PowerShell treats collections of uncertain length (such as history lists or directory listings) as a list, use the list evaluation syntax @(…) described in “Commands and Expressions”.

Arrays can also be multidimensional jagged arrays (arrays within arrays):

$multiDimensional = @(
 (1,2,3,4),
 (5,6,7,8)
)

$multiDimensional[0][1] returns 2, coming from row 0,
column 1.

$multiDimensional[1][3] returns 8, coming from row 1,
column 3.

To define a multidimensional array that is not jagged, create a multidimensional instance of the .NET type. For integers, that would be an array of System.Int32:

$multidimensional = New-Object "Int32[,]" 2,4
$multidimensional[0,1] = 2
$multidimensional[1,3] = 8

Array Access

To access a specific element in an array, use the [] operator. PowerShell numbers your array elements starting at zero. Using $myArray = 1,2,3,4,5,6 as an example:

$myArray[0]

returns 1, the first element in the array.

$myArray[2]

returns 3, the third element in the array.

$myArray[-1]

returns 6, the last element of the array.

$myArray[-2]

returns 5, the second-to-last element of the array.

You can also access ranges of elements in your array:

PS > $myArray[0..2]
1
2
3

returns elements 0 through 2, inclusive.

PS > $myArray[-1..2]
6
1
2
3

returns the final element, wraps around, and returns elements 0 through 2, inclusive. PowerShell wraps around because the first number in the range is negative, and the second number in the range is positive.

PS > $myArray[-1..-3]
6
5
4

returns the last element of the array through to the third-to-last element in the array, in descending order. PowerShell does not wrap around (and therefore scans backward in this case) because both numbers in the range share the same sign.

If the array being accessed might be null, you can use the null conditional array access operator (?[]). The result of the expression will be null if the array being accessed did not exist. It will be the element at the specified index otherwise:

(Get-Process -id 0).Modules?[0]

Array Slicing

You can combine several of the statements in the previous section at once to extract more complex ranges from an array. Use the + sign to separate array ranges from explicit indexes:

$myArray[0,2,4]

returns the elements at indices 0, 2, and 4.

$myArray[0,2+4..5]

returns the elements at indices 0, 2, and 4 through 5, inclusive.

$myArray[,0+2..3+0,0]

returns the elements at indices 0, 2 through 3 inclusive, 0, and 0 again.

Note

You can use the array slicing syntax to create arrays as well:

$myArray = ,0+2..3+0,0

Hashtables (Associative Arrays)

Hashtable Definitions

PowerShell hashtables (also called associative arrays) let you associate keys with values. To define a hashtable, use the syntax:

$myHashtable = @{}

You can initialize a hashtable with its key/value pairs when you create it. PowerShell assumes that the keys are strings, but the values may be any data type:

$myHashtable = @{ Key1 = "Value1"; "Key 2" = 1,2,3; 3.14 = "Pi" }

To define a hashtable that retains its insertion order, use the [ordered] cast:

$orderedHash = [ordered] @{}
$orderedHash["NewKey"] = "Value"

Hashtable Access

To access or modify a specific element in an associative array, you can use either the array-access or property-access syntax:

$myHashtable["Key1"]

returns "Value1".

$myHashtable."Key 2"

returns the array 1,2,3.

$myHashtable["New Item"] = 5

adds "New Item" to the hashtable.

$myHashtable."New Item" = 5

also adds "New Item" to the hashtable.

XML

PowerShell supports XML as a native data type. To create an XML variable, cast a string to the [xml] type:

$myXml = [xml] @"
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>
"@

PowerShell exposes all child nodes and attributes as properties. When it does this, PowerShell automatically groups children that share the same node type:

$myXml.AddressBook

returns an object that contains a Person property.

$myXml.AddressBook.Person

returns a list of Person nodes. Each person node exposes contactType, Name, and Phone as properties.

$myXml.AddressBook.Person[0]

returns the first Person node.

$myXml.AddressBook.Person[0].ContactType

returns Personal as the contact type of the first Person node.

Simple Operators

Once you have defined your data, the next step is to work with it.

Arithmetic Operators

The arithmetic operators let you perform mathematical operations on your data, as shown in Table 1-5.

Note

The System.Math class in the .NET Framework offers many powerful operations in addition to the native operators supported by PowerShell:

PS > [Math]::Pow([Math]::E, [Math]::Pi)
23.1406926327793

See “Working with the .NET Framework” to learn more about using PowerShell to interact with the .NET Framework.

Table 1-5. PowerShell arithmetic operators

	Operator
	Meaning

	
+

	
The addition operator:

$leftValue + $rightValue

When used with numbers, returns their sum.

When used with strings, returns a new string created by appending the second string to the first.

When used with arrays, returns a new array created by appending the second array to the first.

When used with hashtables, returns a new hashtable created by merging the two hashtables. Since hashtable keys must be unique, PowerShell returns an error if the second hashtable includes any keys already defined in the first hashtable.

When used with any other type, PowerShell uses that type’s addition operator (op_Addition) if it implements one.

	
–

	
The subtraction operator:

$leftValue - $rightValue

When used with numbers, returns their difference.

This operator does not apply to strings, arrays, or hashtables.

When used with any other type, PowerShell uses that type’s subtraction operator (op_Subtraction) if it implements one.

	
*

	
The multiplication operator:

$leftValue * $rightValue

When used with numbers, returns their product.

When used with strings ("=" * 80), returns a new string created by appending the string to itself the number of times you specify.

When used with arrays (1..3 * 7), returns a new array created by appending the array to itself the number of times you specify.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type’s multiplication operator (op_Multiply) if it implements one.

	
/

	
The division operator:

$leftValue / $rightValue

When used with numbers, returns their quotient.

This operator does not apply to strings, arrays, or hashtables.

When used with any other type, PowerShell uses that type’s division operator (op_Division) if it implements one.

	
%

	
The modulus operator:

$leftValue % $rightValue

When used with numbers, returns the remainder of their division.

This operator does not apply to strings, arrays, or hashtables.

When used with any other type, PowerShell uses that type’s modulus operator (op_Modulus) if it implements one.

	
+=

-=

*=

/=

%=

	
Assignment operators:

$variable operator= value

These operators match the simple arithmetic operators (+, –, *, /, and %) but store the result in the variable on the lefthand side of the operator. It is a short form for

$variable = $variable operator value.

Logical Operators

The logical operators let you compare Boolean values, as shown in Table 1-6.

Table 1-6. PowerShell logical operators

	Operator
	Meaning

	
-and

	
Logical AND:

$leftValue -and $rightValue

Returns $true if both lefthand and righthand arguments evaluate to $true. Returns $false otherwise.

You can combine several -and operators in the same expression:

$value1 -and $value2 -and $value3 …

PowerShell implements the -and operator as a short-circuit operator and evaluates arguments only if all arguments preceding it evaluate to $true.

	
-or

	
Logical OR:

$leftValue -or $rightValue

Returns $true if the lefthand or righthand arguments evaluate to $true. Returns $false otherwise.

You can combine several -or operators in the same expression:

$value1 -or $value2 -or $value3 ...

PowerShell implements the -or operator as a short-circuit operator and evaluates arguments only if all arguments preceding it evaluate to $false.

	
-xor

	
Logical exclusive OR:

$leftValue -xor $rightValue

Returns $true if either the lefthand or righthand argument evaluates to $true, but not if both do.

Returns $false otherwise.

	
-not

!

	
Logical NOT:

-not $value

Returns $true if its righthand (and only) argument evaluates to $false. Returns $false otherwise.

Binary Operators

The binary operators, listed in Table 1-7, let you apply the Boolean logical operators bit by bit to the operator’s arguments. When comparing bits, a 1 represents $true, whereas a 0 represents $false.

Table 1-7. PowerShell binary operators

	Operator
	Meaning

	
-band

	
Binary AND:

$leftValue -band $rightValue

Returns a number where bits are set to 1 if the bits of the lefthand and righthand arguments at that position are both 1. All other bits are set to 0. For example:

PS > $int1 = 0b110110110
PS > $int2 = 0b010010010
PS > $result = $int1 -band $int2
PS > [Convert]::ToString($result, 2)
10010010

	
-bor

	
Binary OR:

$leftValue -bor $rightValue

Returns a number where bits are set to 1 if either of the bits of the lefthand and righthand arguments at that position is 1. All other bits are set to 0. For example:

PS > $int1 = 0b110110110
PS > $int2 = 0b010010010
PS > $result = $int1 -bor $int2
PS > [Convert]::ToString($result, 2)
110110110

	
-bxor

	
Binary exclusive OR:

$leftValue -bxor $rightValue

Returns a number where bits are set to 1 if either of the bits of the lefthand and righthand arguments at that position is 1, but not if both are. All other bits are set to 0. For example:

PS > $int1 = 0b110110110
PS > $int2 = 0b010010010
PS > $result = $int1 -bxor $int2
PS > [Convert]::ToString($result, 2)
100100100

	
-bnot

	
Binary NOT:

-bnot $value

Returns a number where bits are set to 1 if the bit of the righthand (and only) argument at that position is set to 1. All other bits are set to 0. For example:

PS > $int1 = 0b110110110
PS > $result = -bnot $int1
PS > [Convert]::ToString($result, 2)
11111111111111111111111001001001

	
-shl

	
Binary shift left:

$value -slh $count

Shifts the bits of a number to the left $count places. Bits on the righthand side are set to 0. For example:

PS > $int1 = 438
PS > [Convert]::ToString($int1, 2)
110110110

PS > $result = $int1 -shl 5
PS > [Convert]::ToString($result, 2)
11011011000000

	
-shr

	
Binary shift right:

$value -slr $count

Shifts the bits of a number to the right $count places. For signed values, bits on the lefthand side have their sign preserved. For example:

PS > $int1 = -2345
PS > [Convert]::ToString($int1, 2)
11111111111111111111011011010111

PS > $result = $int1 -shr 3
PS > [Convert]::ToString($result, 2)
11111111111111111111111011011010

Other Operators

PowerShell supports several other simple operators, as listed here.

-replace (Replace operator)

The replace operator returns a new string, where the text in "target" that matches the regular expression "pattern" has been replaced with the replacement text "replacement":

"target" -replace "pattern","replacement"

The following returns a new string, where the text in "target" that matches the regular expression "pattern" has been replaced with the output value of the script block supplied. In the script block, the $_ variable represents the current
System.Text.RegularExpressions.Match:

"target" -replace "pattern",{ scriptblock }

By default, PowerShell performs a case-insensitive comparison. The -ireplace operator makes this case-insensitivity explicit, whereas the -creplace operator performs a case-sensitive
comparison.

If the regular expression pattern contains named captures or capture groups, the replacement string may reference those as well. For example:

PS > "Hello World" -replace "(.*) (.*)",'$2 $1'
World Hello

If "target" represents an array, the -replace operator operates on each element of that array.

For more information on the details of regular expressions, see Chapter 2.

-f (Format operator)

The format operator returns a string where the format items in the format string have been replaced with the text equivalent of the values in the value array:

"Format String" -f values

For example:

PS > "{0:n0}" -f 1000000000
1,000,000,000

The format string for the format operator is exactly the format string supported by the .NET String.Format method.

For more details about the syntax of the format string, see Chapter 4.

-as (Type conversion operator)

The type conversion operator returns $value cast to the given .NET type:

$value -as [Type]

If this conversion is not possible, PowerShell returns $null. For example:

PS > 3/2 -as [int]
2
PS > $result = "Hello" -as [int]
PS > $result -eq $null
True

-split (Split operator)

The unary split operator breaks the given input string into an array, using whitespace (\s+) to identify the boundary between elements:

-split "Input String"

It also trims the results. For example:

PS > -split " Hello World "
Hello
World

The binary split operator breaks the given input string into an array, using the given
delimiter or script block to identify the boundary between elements:

"Input String" -split "delimiter",maximum,options
"Input String" -split { Scriptblock },maximum

Delimiter is interpreted as a regular expression match. Scriptblock is called for each character in the input, and a split is introduced when it returns $true.

Maximum defines the maximum number of elements to be returned, leaving unsplit elements as the last item. This item is optional. Use "0" for unlimited if you want to provide options but not alter the maximum.

Options define special behavior to apply to the splitting behavior. The possible enumeration values are:

	SimpleMatch

	
Split on literal strings, rather than regular expressions they may represent.

	RegexMatch

	
Split on regular expressions. This option is the default.

	CultureInvariant

	
Does not use culture-specific capitalization rules when doing a case-insensitive split.

	IgnorePatternWhitespace

	
Ignores spaces and regular expression comments in the split pattern.

	Multiline

	
Allows the ^ and $ characters to match line boundaries, not just the beginning and end of the content.

	Singleline

	
Treats the ^ and $ characters as the beginning and end of the content. This option is the default.

	IgnoreCase

	
Ignores the capitalization of the content when searching for matches.

	ExplicitCapture

	
In a regular expression match, only captures named groups. This option has no impact on the
-split operator.

For example:

PS > "1a2B3" -split "[a-z]+",0,"IgnoreCase"
1
2
3

-join (Join operator)

The unary join operator combines the supplied items into a single string, using no separator:

-join ("item1","item2",...,"item_n")

For example:

PS > -join ("a","b")
ab

The binary join operator combines the supplied items into a single string, using Delimiter as the separator:

("item1","item2",...,"item_n") -join Delimiter

For example:

PS > ("a","b") -join ", "
a, b

Comparison Operators

The PowerShell comparison operators, listed in Table 1-8, let you compare expressions against each other. By default,
PowerShell’s comparison operators are case-insensitive. For all operators where case sensitivity applies, the -i prefix makes this case insensitivity explicit, whereas the -c prefix performs a case-sensitive comparison.

Table 1-8. PowerShell comparison operators

	Operator
	Meaning

	
-eq

	
The equality operator:

$leftValue -eq $rightValue

For all primitive types, returns $true if $leftValue and $rightValue are equal.

When used with arrays, returns all elements in
$leftValue that are equal to $rightValue.

When used with any other type, PowerShell uses that type’s Equals() method if it implements one.

	
-ne

	
The negated equality operator:

$leftValue -ne $rightValue

For all primitive types, returns $true if$leftValue and $rightValue are not equal.

When used with arrays, returns all elements in
$leftValue that are not equal to$rightValue.

When used with any other type, PowerShell returns the negation of that type’s Equals() method if it implements one.

	
-ge

	
The greater-than-or-equal operator:

$leftValue -ge $rightValue

For all primitive types, returns $true if $leftValue is greater than or equal to $rightValue.

When used with arrays, returns all elements in
$leftValue that are greater than or equal to
$rightValue.

When used with any other type, PowerShell returns the result of that object’s Compare() method if it implements one. If the method returns a number greater than or equal to zero, the operator returns $true.

	
-gt

	
The greater-than operator:

$leftValue -gt $rightValue

For all primitive types, returns $true if $leftValue is greater than $rightValue.

When used with arrays, returns all elements in
$leftValue that are greater than $rightValue.

When used with any other type, PowerShell returns the result of that object’s Compare() method if it implements one. If the method returns a number greater than zero, the operator returns $true.

	
-in

	
The in operator:

$value -in $list

Returns $true if the value $value is contained in the list $list. That is, if $item -eq $value returns $true for at least one item in the list. This is equivalent to the
-contains operator with the operands reversed.

	
-notin

	
The negated in operator:

Returns $true when the -in operator would return $false.

	
-lt

	
The less-than operator:

$leftValue -lt $rightValue

For all primitive types, returns $true if $leftValue is less than $rightValue.

When used with arrays, returns all elements in
$leftValue that are less than $rightValue.

When used with any other type, PowerShell returns the result of that object’s Compare() method if it implements one. If the method returns a number less than zero, the operator returns $true.

	
-le

	
The less-than-or-equal operator:

$leftValue -le $rightValue

For all primitive types, returns $true if $leftValue is less than or equal to$rightValue.

When used with arrays, returns all elements in
$leftValue that are less than or equal to
$rightValue.

When used with any other type, PowerShell returns the result of that object’s Compare() method if it implements one. If the method returns a number less than or equal to zero, the operator returns $true.

	
-like

	
The like operator:

$leftValue -like Pattern

Evaluates the pattern against the target, returning $true if the simple match is successful.

When used with arrays, returns all elements in
$leftValue that match Pattern.

The -like operator supports the following simple wildcard characters:

	
?: Any single unspecified character

	
*: Zero or more unspecified characters

	
[a-b]: Any character in the range of a–b

	
[ab]: The specified characters a or b

For example:

PS > "Test" -like "[A-Z]e?[tr]"
True

	
-notlike

	
The negated like operator:

Returns $true when the -like operator would return $false.

	
-match

	
The match operator:

"Target" -match Regular Expression

Evaluates the regular expression against the target, returning $true if the match is successful. Once complete, PowerShell places the successful matches in the $matches variable.

When used with arrays, returns all elements in Target that match Regular Expression.

The $matches variable is a hashtable that maps the individual matches to the text they match. 0 is the entire text of the match, 1 and on contain the text from any unnamed captures in the regular expression, and string values contain the text from any named captures in the regular expression.

For example:

PS > "Hello World" -match "(.*) (.*)"
True
PS > $matches[1]
Hello

For more information on the details of regular expressions, see Chapter 2.

	
-notmatch

	
The negated match operator:

Returns $true when the -match operator would return $false.

The -notmatch operator still populates the $matches variable with the results of match.

	
-contains

	
The contains operator:

$list -contains $value

Returns $true if the list specified by $list contains the value $value—that is, if $item -eq $value returns $true for at least one item in the list. This is equivalent to the -in operator with the operands reversed.

	
-notcontains

	
The negated contains operator:

Returns $true when the -contains operator would return $false.

	
-is

	
The type operator:

$leftValue -is [type]

Returns $true if $value is (or extends) the specified .NET type.

	
-isnot

	
The negated type operator:

Returns $true when the -is operator would return $false.

Conditional Statements

Conditional statements in PowerShell let you change the flow of execution in your script.

if, elseif, and else Statements

if(condition)
{
 statement block
}
elseif(condition)
{
 statement block
}
else
{
 statement block
}

If condition evaluates to $true, PowerShell executes the statement block you provide. Then, it resumes execution at the end of the if/elseif/else statement list. PowerShell requires the enclosing braces around the statement block, even if the statement block contains only one statement.

Note

See “Simple Operators” and “Comparison Operators” for discussion on how PowerShell evaluates expressions as conditions.

If condition evaluates to $false, PowerShell evaluates any following (optional) elseif conditions until one matches. If one matches, PowerShell executes the statement block associated with that condition, and then resumes execution at the end of the
if/elseif/else statement list.

For example:

$textToMatch = Read-Host "Enter some text"
$matchType = Read-Host "Apply Simple or Regex matching?"
$pattern = Read-Host "Match pattern"
if($matchType -eq "Simple")
{
 $textToMatch -like $pattern
}
elseif($matchType -eq "Regex")
{
 $textToMatch -match $pattern
}
else
{
 Write-Host "Match type must be Simple or Regex"
}

If none of the conditions evaluate to $true, PowerShell executes the statement block associated with the (optional) else clause, and then resumes execution at the end of the
if/elseif/else statement list.

To apply an if statement to each element of a list and filter it to return only the results that match the supplied condition, use the Where-Object cmdlet or .where() method:

Get-Process | Where-Object { $_.Handles -gt 500 }

(Get-Process).where({ $_.Handles -gt 500})

Ternary Operators

$result = condition ? true value : false value

A short-form version of an if/else statement. If condition evaluates to $true, the result of the expression is the value of the true value clause. Otherwise, the result of the expression is the value of the false value clause. For example:

(Get-Random) % 2 -eq 0 ? "Even number" : "Odd number"

Null Coalescing and Assignment Operators

$result = nullable value ?? default value

Assignment version:

$result = nullable value
$result ??= default value

A short-form version of a ternary operator that only checks if the expression is null or not. If it is null, the result of the expression is the value of the default value clause. For example:

Get-Process | ForEach-Object { $_.CPU ?? "<Unavailable>" }

or

$cpu = (Get-Process -id 0).CPU
$cpu ??= "Unavailable"

switch Statements

switch options expression
{
 comparison value { statement block }
 -or-
 { comparison expression } { statement block }
 (...)
 default { statement block }
}

or:

switch options -file filename
{
 comparison value { statement block }
 -or
 { comparison expression } { statement block }
 (...)
 default { statement block }
}

When PowerShell evaluates a switch statement, it evaluates expression against the statements in the switch body. If
expression is a list of values, PowerShell evaluates each item against the statements in the switch body. If you specify the
-file option, PowerShell treats the lines in the file as though they were a list of items in
expression.

The comparison value statements let you match the current input item against the pattern specified by comparison value. By default, PowerShell treats this as a case-insensitive exact match, but the options you provide to the switch statement can change this, as shown in Table 1-9.

Table 1-9. Options supported by PowerShell switch statements

	Option
	Meaning

	
-casesensitive

-c

	
Case-sensitive match.

With this option active, PowerShell executes the associated statement block only if the current input item exactly matches the value specified by
comparison value. If the current input object is a string, the match is case-sensitive.

	
-exact

-e

	
Exact match

With this option active, PowerShell executes the associated statement block only if the current input item exactly matches the value specified by
comparison value. This match is case-insensitive. This is the default mode of operation.

	
-regex

-r

	
Regular-expression match

With this option active, PowerShell executes the associated statement block only if the current input item matches the regular expression specified by
comparison value. This match is case-insensitive.

	
-wildcard

-w

	
Wildcard match

With this option active, PowerShell executes the associated statement block only if the current input item matches the wildcard specified by
comparison value.

The wildcard match supports the following simple wildcard characters:

	
?: Any single unspecified character

	
*: Zero or more unspecified characters

	
[a-b]: Any character in the range of a–b

	
[ab]: The specified characters a or b

This match is case-insensitive.

The { comparison expression } statements let you process the current input item, which is stored in the $_ (or $PSItem)
variable, in an arbitrary script block. When it processes a
{ comparison expression } statement, PowerShell executes the associated statement block only if { comparison expression } evaluates to $true.

PowerShell executes the statement block associated with the (optional) default statement if no other statements in the switch body match.

When processing a switch statement, PowerShell tries to match the current input object against each statement in the switch body, falling through to the next statement even after one or more have already matched. To have PowerShell discontinue the current comparison (but retry the switch statement with the next input object), include a continue statement as the last statement in the statement block. To have PowerShell exit a switch statement completely after it processes a match, include a break statement as the last statement in the statement block.

For example:

$myPhones = "(555) 555-1212","555-1234"

switch -regex ($myPhones)
{
 { $_.Length -le 8 } { "Area code was not specified"; break }
 { $_.Length -gt 8 } { "Area code was specified" }
 "\((555)\).*" { "In the $($matches[1]) area code" }
}

produces the output:

Area code was specified
In the 555 area code
Area code was not specified

Note

See the next section on Looping Statements for more information about the break statement.

By default, PowerShell treats this as a case-insensitive exact match, but the options you provide to the switch statement can change this.

Looping Statements

Looping statements in PowerShell let you execute groups of statements multiple times.

for Statement

:loop_label for (initialization; condition; increment)
{
 statement block
}

When PowerShell executes a for statement, it first executes the expression given by initialization. It next evaluates
condition. If condition evaluates to $true,
PowerShell executes the given statement block. It then executes the expression given by increment. PowerShell continues to execute the statement block and increment statement as long as condition evaluates to $true.

For example:

for($counter = 0; $counter -lt 10; $counter++)
{
 Write-Host "Processing item $counter"
}

The break and continue statements (discussed in “Flow Control Statements”) can specify the loop_label of any enclosing looping statement as their target.

foreach Statement

:loop_label foreach(variable in expression)
{
 statement block
}

When PowerShell executes a foreach statement, it executes the pipeline given by expression—for example, Get-Process | Where-Object {$_.Handles -gt 500} or 1..10. For each item produced by the expression, it assigns that item to the variable specified by variable and then executes the given statement block. For example:

$handleSum = 0
foreach($process in Get-Process |
 Where-Object { $_.Handles -gt 500 })
{
 $handleSum += $process.Handles
}
$handleSum

In addition to the foreach statement, you can also use the
foreach method on collections directly:

$handleSum = 0
(Get-Process).foreach({ $handleSum += $_.Handles })

The break and continue statements (discussed in “Flow Control Statements”) can specify the loop_label of any enclosing looping statement as their target. In addition to the
foreach statement, PowerShell also offers the ForEach-Object cmdlet with similar capabilities.

while Statement

:loop_label while(condition)
{
 statement block
}

When PowerShell executes a while statement, it first evaluates the expression given by condition. If this expression evaluates to $true, PowerShell executes the given statement block.
PowerShell continues to execute the statement block as long as condition evaluates to $true. For example:

$command = "";
while($command -notmatch "quit")
{
 $command = Read-Host "Enter your command"
}

The break and continue statements (discussed in “Flow Control Statements”) can specify the loop_label of any enclosing looping statement as their target.

do … while Statement/do … until Statement

:loop_label do
{
 statement block
} while(condition)

or

:loop_label do
{
 statement block
} until(condition)

When PowerShell executes a do … while or do … until statement, it first executes the given statement block. In a do … while statement, PowerShell continues to execute the statement block as long as condition evaluates to $true. In a do … until statement, PowerShell continues to execute the statement as long as condition evaluates to $false. For example:

$validResponses = "Yes","No"
$response = ""
do
{
 $response = Read-Host "Yes or No?"
} while($validResponses -notcontains $response)
"Got $response"

$response = ""
do
{
 $response = Read-Host "Yes or No?"
} until($validResponses -contains $response)
"Got $response"

The break and continue statements (discussed in the next section) can specify the loop_label of any enclosing looping statement as their target.

Flow Control Statements

PowerShell supports two statements to help you control flow within loops: break and continue.

break

The break statement halts execution of the current loop.
PowerShell then resumes execution at the end of the current looping statement, as though the looping statement had completed naturally. For example:

for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 break
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output (notice the second column never reaches the value 2):

Processing item 0,0
Processing item 0,1
Processing item 1,0
Processing item 1,1
Processing item 2,0
Processing item 2,1
Processing item 3,0
Processing item 3,1
Processing item 4,0
Processing item 4,1

If you specify a label with the break statement—for example, break outer_loop—PowerShell halts the execution of that loop instead. For example:

:outer_loop for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 break outer_loop
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:

Processing item 0,0
Processing item 0,1

continue

The continue statement skips execution of the rest of the current statement block. PowerShell then continues with the next iteration of the current looping statement, as though the statement block had completed naturally. For example:

for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 continue
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:

Processing item 0,0
Processing item 0,1
Processing item 0,3
Processing item 0,4
Processing item 1,0
Processing item 1,1
Processing item 1,3
Processing item 1,4
Processing item 2,0
Processing item 2,1
Processing item 2,3
Processing item 2,4
Processing item 3,0
Processing item 3,1
Processing item 3,3
Processing item 3,4
Processing item 4,0
Processing item 4,1
Processing item 4,3
Processing item 4,4

If you specify a label with the continue statement—for example, continue outer_loop—PowerShell continues with the next iteration of that loop instead.

For example:

:outer_loop for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 continue outer_loop
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:

Processing item 0,0
Processing item 0,1
Processing item 1,0
Processing item 1,1
Processing item 2,0
Processing item 2,1
Processing item 3,0
Processing item 3,1
Processing item 4,0
Processing item 4,1

Classes

A class called "Example" that inherits from "BaseClass"
and implements the "ImplementedInterface" interface
class Example : BaseClass, ImplementedInterface
{
 ## Default constructor, which also invokes the constructor
 ## from the base class.
 Example() : base()
 {
 [Example]::lastInstantiated = Get-Date
 }

 ## Constructor with parameters
 Example([string] $Name)
 {
 $this.Name = $Name
 [Example]::lastInstantiated = Get-Date
 }

 ## A publicly visible property with validation attributes
 [ValidateLength(2,20)]
 [string] $Name

 ## A property that is hidden from default views
 static hidden [DateTime] $lastInstantiated

 ## A publicly visible method that returns a value
 [string] ToString()
 {
 ## Return statement is required. Implicit / pipeline output
 ## is not treated as output like it is with functions.
 return $this.ToString([Int32]::MaxValue)
 }

 ## A publicly visible method that returns a value
 [string] ToString([int] $MaxLength)
 {
 $output = "Name = $($this.Name);"
 "LastInstantiated = $([Example]::lastInstantiated)"
 $outputLength = [Math]::Min($MaxLength, $output.Length)
 return $output.Substring(0, $outputLength)
 }

}

Base classes and interfaces

To define a class that inherits from a base class or implements an interfaces, provide the base class and/or interface names after the class name, separated by a colon (deriving from a base class or implementing any interfaces is optional):

class Example [: BaseClass, ImplementedInterface]

Constructors

To define a class constructor, create a method with the same name as the class. You can define several constructors, including those with parameters. To automatically call a constructor from the base class, add : base() to the end of the method name:

Example() [: base()]

Example([int] $Parameter1, [string] $Parameter2) [: base()]

Properties

To define a publicly visible property, define a PowerShell variable in your class. As with regular Powershell variables, you may optionally add validation attributes or declare a type constraint for the property:

[ValidateLength(2,20)]
[string] $Name

To hide the property from default views (similar to a member variable in other languages), use the hidden keyword. Users are still able to access hidden properties if desired: they are just removed from default views. You can make a property static if you want it to be shared with all instances of your class in the current process:

static hidden [DateTime] $lastInstantiated

Methods

Define a method as though you would define a PowerShell function, but without the function keyword and without the param() statement. Methods support parameters, parameter validation, and can also have the same name as long as their parameters differ:

[string] ToString() { ... }

[string] ToString([int] $MaxLength) { ... }

Custom Enumerations

To define a custom enumeration, use the enum keyword:

enum MyColor {
 Red = 1
 Green = 2
 Blue = 3
}

If enumeration values are intended to be combined through bitwise operators, use the [Flags()] attribute. If you require that the enumerated values derive from a specific integral data type (byte, sbyte, short, ushort, int, uint, long or ulong), provide that data type after the colon character:

[Flags()] enum MyColor : uint {
 Red = 1
 Green = 2
 Blue = 4
}

Workflow-Specific Statements

Within a workflow, PowerShell supports three statements not supported in traditional PowerShell scripts: InlineScript,
Parallel, and Sequence.

Note

Workflows are no longer supported in PowerShell. This section exists to help you understand and interact with workflows that have already been written.

InlineScript

The InlineScript keyword defines an island of PowerShell script that will be invoked as a unit, and with traditional
PowerShell scripting semantics. For example:

workflow MyWorkflow
{
 ## Method invocation not supported in a workflow
 ## [Math]::Sqrt(100)

 InlineScript
 {
 ## Supported in an InlineScript
 [Math]::Sqrt(100)
 }
}

Parallel/Sequence

The Parallel keyword specifies that all statements within the statement block should run in parallel. To group statements that should be run as a unit, use the Sequence keyword:

workflow MyWorkflow
{
 Parallel
 {
 InlineScript { Start-Sleep -Seconds 2;
 "One thing run in parallel" }
 InlineScript { Start-Sleep -Seconds 4;
 "Another thing run in parallel" }
 InlineScript { Start-Sleep -Seconds 3;
 "A third thing run in parallel" }

 Sequence
 {
 Start-Sleep -Seconds 1
 "A fourth"
 "and fifth thing run as a unit, in parallel"
 }
 }
}

Note that you should not use PowerShell Workflows for the parallel statement alone—the -Parallel parameter to the ForEach-Object cmdlet is much more efficient.

Working with the .NET Framework

One feature that gives PowerShell its incredible reach into both system administration and application development is its capability to leverage Microsoft’s enormous and broad .NET
Framework.

Working with the .NET Framework in PowerShell comes mainly by way of one of two tasks: calling methods or accessing
properties.

Static Methods

To call a static method on a class, type:

[ClassName]::MethodName(parameter list)

For example:

PS > [System.Diagnostics.Process]::GetProcessById(0)

gets the process with the ID of 0 and displays the following
output:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle

Instance Methods

To call a method on an instance of an object, type:

$objectReference.MethodName(parameter list)

For example:

PS > $process = [System.Diagnostics.Process]::GetProcessById(0)
PS > $process.Refresh()

This stores the process with ID of 0 into the $process variable. It then calls the Refresh() instance method on that specific process.

Explicitly Implemented Interface Methods

To call a method on an explictly implemented interface, type:

([Interface] $objectReference).MethodName(parameter list)

For example:

PS > ([IConvertible] 123).ToUint16($null)

Static Properties

To access a static property on a class, type:

[ClassName]::PropertyName

or:

[ClassName]::PropertyName = value

For example, the [System.DateTime] class provides a Now static property that returns the current time:

PS > [System.DateTime]::Now
Sunday, July 16, 2006 2:07:20 PM

Although this is rare, some types let you set the value of some static properties.

Instance Properties

To access an instance property on an object, type:

$objectReference.PropertyName

or:

$objectReference.PropertyName = value

For example:

PS > $today = [System.DateTime]::Now
PS > $today.DayOfWeek
Sunday

This stores the current date in the $today variable. It then calls the DayOfWeek instance property on that specific date.

If the value of the property might be null, you can use the null conditional property access operator (?.). The result of the expression will be null if any property in the chain did not exist. It will be the final property’s value otherwise:

(Get-Process -id 0)?.MainModule?.Filename

Learning About Types

The two primary avenues for learning about classes and types are the Get-Member cmdlet and the documentation for the .NET Framework.

The Get-Member cmdlet

To learn what methods and properties a given type supports, pass it through the Get-Member cmdlet, as shown in Table 1-10.

Table 1-10. Working with the Get-Member cmdlet

	Action
	Result

	
[typename] |
Get-Member-Static

	
All the static methods and properties of a given type.

	
$objectReference |
Get-Member-Static

	
All the static methods and properties provided by the type in $objectReference.

	
$objectReference | Get-Member

	
All the instance methods and properties provided by the type in $objectReference. If
$objectReference represents a collection of items, PowerShell returns the instances and properties of the types contained by that collection. To view the instances and properties of a collection itself, use the -InputObject parameter of
Get-Member:

Get-Member -InputObject $objectReference

	
[typename] |
Get-Member

	
All the instance methods and properties of a
System.RuntimeType object that represents this type.

.NET Framework documentation

Another source of information about the classes in the .NET Framework is the documentation itself, available through the search facilities at Microsoft’s developer documentation site.

Typical documentation for a class first starts with a general overview, and then provides a hyperlink to the members of the class—the list of methods and properties it supports.

Note

To get to the documentation for the members quickly, search for them more explicitly by adding the term “members” to your search term:

classname members

The documentation for the members of a class lists their constructors, methods, properties, and more. It uses an S icon to represent the static methods and properties. Click the member name for more information about that member, including the type of object that the member produces.

Type Shortcuts

When you specify a type name, PowerShell lets you use a short form for some of the most common types, as listed in Table 1-11.

Table 1-11. PowerShell type shortcuts

	Type shortcut
	Full classname

	[Adsi]

	[System.DirectoryServices.​DirectoryEntry]

	[AdsiSearcher]

	[System.DirectoryServices.​DirectorySearcher]

	[Float]

	[System.Single]

	[Hashtable]

	[System.Collections.Hashtable]

	[Int]

	[System.Int32]

	[IPAddress]

	[System.Net.IPAddress]

	[Long]

	[System.Collections.Int64]

	[PowerShell]

	[System.Management.Automation.​PowerShell]

	[PSCustomObject]

	[System.Management.Automation.​PSObject]

	[PSModuleInfo]

	[System.Management.Automation.​PSModuleInfo]

	[PSObject]

	[System.Management.Automation.​PSObject]

	[Ref]

	[System.Management.Automation.​PSReference]

	[Regex]

	[System.Text.RegularExpressions.​Regex]

	[Runspace]

	[System.Management.Automation.​Runspaces.Runspace]

	[Runspace​Factory]

	[System.Management.Automation.​Runspaces.RunspaceFactory]

	[ScriptBlock]

	[System.Management.Automation.​ScriptBlock]

	[Switch]

	[System.Management.Automation.​SwitchParameter]

	[Wmi]

	[System.Management.ManagementObject]

	[WmiClass]

	[System.Management.ManagementClass]

	[WmiSearcher]

	[System.Management.​ManagementObjectSearcher]

	[Xml]

	[System.Xml.XmlDocument]

	[TypeName]

	[System.TypeName]

Creating Instances of Types

$objectReference = New-Object TypeName parameters
$objectReference = [TypeName]::new(parameters)

Although static methods and properties of a class generate objects, you’ll often want to create them explicitly yourself. PowerShell’s New-Object cmdlet lets you create an instance of the type you specify. The parameter list must match the list of parameters accepted by one of the type’s constructors, as described in the SDK documentation.

For example:

$webClient = New-Object Net.WebClient
$webClient.DownloadString("http://search.msn.com")

If the type represents a generic type, enclose its type parameters in square brackets:

PS > $hashtable =
 New-Object "System.Collections.Generic.Dictionary[String,Bool]"
PS > $hashtable["Test"] = $true

Most common types are available by default. However, many types are available only after you load the library (called the assembly) that defines them. The Microsoft documentation for a class includes the assembly that defines it.

To load an assembly, use the -AssemblyName parameter of the Add-Type cmdlet:

PS > Add-Type -AssemblyName System.Web
PS > [System.Web.HttpUtility]::UrlEncode("http://www.bing.com")
http%3a%2f%2fwww.bing.com

To update the list of namespaces that PowerShell searches by default, specify that namespace in a using statement:

PS > using namespace System.Web
PS > [HttpUtility]::UrlEncode("http://www.bing.com")

Interacting with COM Objects

PowerShell lets you access methods and properties on COM objects the same way you would interact with objects from the .NET Framework. To interact with a COM object, use its ProgId with the -ComObject parameter (often shortened to
-Com) on New-Object:

PS > $shell = New-Object -Com Shell.Application
PS > $shell.Windows() | Select-Object LocationName,LocationUrl

For more information about the COM objects most useful to system administrators, see Chapter 8.

Extending Types

PowerShell supports two ways to add your own methods and properties to any type: the Add-Member cmdlet and a custom types extension file.

The Add-Member cmdlet

The Add-Member cmdlet lets you dynamically add methods, properties, and more to an object. It supports the extensions shown in Table 1-12.

Table 1-12. Selected member types supported by the Add-Member cmdlet

	Member type
	Meaning

	
AliasProperty

	
A property defined to alias another property:

PS > $testObject = [PsObject] "Test"
PS > $testObject |
 Add-Member "AliasProperty" Count Length
PS > $testObject.Count
4

	
CodeProperty

	
A property defined by a System.Reflection.​Meth⁠odInfo.

This method must be public, static, return results (nonvoid), and take one parameter of type PsObject.

	
NoteProperty

	
A property defined by the initial value you provide:

PS > $testObject = [PsObject] "Test"
PS > $testObject |
 Add-Member NoteProperty Reversed tseT
PS > $testObject.Reversed
tseT

	
ScriptProperty

	
A property defined by the script block you provide. In that script block, $this refers to the current instance:

PS > $testObject = [PsObject] ("Hi" * 100)
PS > $testObject |
 Add-Member ScriptProperty IsLong {
 $this.Length -gt 100
 }
PS > $testObject.IsLong

True

	
PropertySet

	
A property defined as a shortcut to a set of properties. Used in cmdlets such as Select-Object:

PS > $testObject = [PsObject] [DateTime]::Now
PS > $collection = New-Object `
 Collections.ObjectModel.Collection[String]
$collection.Add("Month")
$collection.Add("Year")
$testObject |
 Add-Member PropertySet MonthYear $collection
$testObject | select MonthYear

Month Year
----- ----
 3 2010

	
CodeMethod

	
A method defined by a System.Reflection.​Meth⁠odInfo.

This method must be public, static, and take one parameter of type
PsObject.

	
ScriptMethod

	
A method defined by the script block you provide. In that script block, $this refers to the current instance, and $args refers to the input parameters:

PS > $testObject = [PsObject] "Hello"
PS > $testObject |
 Add-Member ScriptMethod IsLong {
 $this.Length -gt $args[0]
 }
PS > $testObject.IsLong(3)
True

PS > $testObject.IsLong(100)
False

Custom type extension files

While the Add-Member cmdlet lets you customize individual objects, PowerShell also supports configuration files that let you customize all objects of a given type. For example, you might want to add a Reverse() method to all strings or a
HelpUrl property (based on the documentation URLs) to all types.

PowerShell adds several type extensions to the file types.ps1xml, in the PowerShell installation directory. This file is useful as a source of examples, but you should not modify it directly. Instead, create a new one and use the Update-TypeData cmdlet to load your customizations. The following command loads Types.custom.ps1xml from the same directory as your profile:

$typesFile = Join-Path (Split-Path $profile) "Types.Custom.Ps1Xml"
Update-TypeData -PrependPath $typesFile

Writing Scripts, Reusing Functionality

When you want to start packaging and reusing your commands, the best place to put them is in scripts, functions, and script blocks. A script is a text file that contains a sequence of PowerShell commands. A function is also a sequence of
PowerShell commands, but is usually placed within a script to break it into smaller, more easily understood segments. A script block is a function with no name. All three support the same functionality, except for how you define them.

Writing Commands

Writing scripts

To write a script, write your PowerShell commands in a text editor and save the file with a .ps1 extension.

Writing functions

Functions let you package blocks of closely related commands into a single unit that you can access by name:

function SCOPE:name(parameters)
{
 statement block
}

or:

filter SCOPE:name(parameters)
{
 statement block
}

Valid scope names are global (to create a function available to the entire shell), script (to create a function available only to the current script), local (to create a function available only to the current scope and subscopes), and private (to create a function available only to the current scope). The default scope is the local scope, which follows the same rules as those of default variable scopes.

The content of a function’s statement block follows the same rules as the content of a script. Functions support the $args array, formal parameters, the $input enumerator, cmdlet keywords, pipeline output, and equivalent return semantics.

Note

A common mistake is to call a function as you would call a method:

$result = GetMyResults($item1, $item2)

PowerShell treats functions as it treats scripts and other commands, so this should instead be:

$result = GetMyResults $item1 $item2

The first command passes an array that contains the items $item1 and $item2 to the GetMyResults function.

A filter is simply a function where the statements are treated as though they are contained within a process statement block. For more information about process statement blocks, see “Cmdlet keywords in commands”.

Note

Commands in your script can access only functions that have already been defined. This can often make large scripts difficult to understand when the beginning of the script is composed entirely of helper functions. Structuring a script in the following manner often makes it more clear:

function Main
{
 (...)
 HelperFunction
 (...)
}

function HelperFunction
{
 (...)
}

. Main

Writing script blocks

$objectReference =
{
 statement block
}

PowerShell supports script blocks, which act exactly like unnamed functions and scripts. Like both scripts and functions, the content of a script block’s statement block follows the same rules as the content of a function or script. Script blocks support the $args array, formal parameters, the $input enumerator, cmdlet keywords, pipeline output, and equivalent return semantics.

As with both scripts and functions, you can either invoke or dot-source a script block. Since a script block does not have a name, you either invoke it directly (& { "Hello"}) or invoke the variable (& $objectReference) that contains it.

Running Commands

There are two ways to execute a command (script, function, or script block): by invoking it or by dot-sourcing it.

Invoking

Invoking a command runs the commands inside it. Unless explicitly defined with the GLOBAL scope keyword, variables and functions defined in the script do not persist once the script exits.

Note

By default, a security feature in PowerShell called
the Execution Policy prevents scripts from running. When you want to enable scripting in PowerShell, you must change this setting. To understand the different execution policies available to you, type Get-Help about_signing. After selecting an execution policy, use the Set-ExecutionPolicy cmdlet to configure it:

Set-ExecutionPolicy RemoteSigned

If the command name has no spaces, simply type its name:

c:\temp\Invoke-Commands.ps1 parameter1 parameter2 ...
Invoke-MyFunction parameter1 parameter2 ...

To run the command as a background job, use the background operator (&):

c:\temp\Invoke-Commands.ps1 parameter1 parameter2 ... &

You can use either a fully qualified path or a path relative to the current location. If the script is in the current directory, you must explicitly say so:

.\Invoke-Commands.ps1 parameter1 parameter2 ...

If the command’s name has a space (or the command has no name, in the case of a script block), you invoke the command by using the invoke/call operator (&) with the command name as the parameter:

& "C:\My Scripts\Invoke-Commands.ps1" parameter1 parameter2 ...

Script blocks have no name, so you place the variable holding them after the invocation operator:

$scriptBlock = { "Hello World" }
& $scriptBlock parameter1 parameter2 ...

If you want to invoke the command within the context of a module, provide a reference to that module as part of the
invocation:

$module = Get-Module PowerShellCookbook
& $module Invoke-MyFunction parameter1 parameter2 ...
& $module $scriptBlock parameter1 parameter2 ...

Dot-sourcing

Dot-sourcing a command runs the commands inside it. Unlike simply invoking a command, variables and functions defined in the script do persist after the script exits.

You invoke a script by using the dot operator (.) and providing the command name as the parameter:

. "C:\Script Directory\Invoke-Commands.ps1" Parameters
. Invoke-MyFunction parameters
. $scriptBlock parameters

When dot-sourcing a script, you can use either a fully qualified path or a path relative to the current location. If the script is in the current directory, you must explicitly say so:

. .\Invoke-Commands.ps1 Parameters

If you want to dot-source the command within the context of a module, provide a reference to that module as part of the invocation:

$module = Get-Module PowerShellCookbook
. $module Invoke-MyFunction parameters
. $module $scriptBlock parameters

Parameters

Commands that require or support user input do so through parameters. You can use the Get-Command cmdlet to see the parameters supported by a command:

PS > Get-Command Stop-Process -Syntax

Stop-Process [-Id] <int[]> [-PassThru] [-Force] [-WhatIf] [...]
Stop-Process -Name <string[]> [-PassThru] [-Force] [-WhatIf] [...]
Stop-Process [-InputObject] <Process[]> [-PassThru] [-Force] [...]

In this case, the supported parameters of the Stop-Process command are Id, Name, InputObject, PassThru, Force, WhatIf, and Confirm.

To supply a value for a parameter, use a dash character, followed by the parameter name, followed by a space, and then the parameter value:

Stop-Process -Id 1234

If the parameter value contains spaces, surround it with quotes:

Stop-Process -Name "Process With Spaces"

If a variable contains a value that you want to use for a parameter, supply that through PowerShell’s regular variable reference syntax:

$name = "Process With Spaces"
Stop-Process -Name $name

If you want to use other PowerShell language elements as a parameter value, surround the value with parentheses:

Get-Process -Name ("Power" + "Shell")

You only need to supply enough of the parameter name to disambiguate it from the rest of the parameters:

Stop-Process -N "Process With Spaces"

If a command’s syntax shows the parameter name in square brackets (such as [-Id]), then it is positional and you may omit the parameter name and supply only the value. PowerShell supplies these unnamed values to parameters in the order of their position:

Stop-Process 1234

Rather than explicitly providing parameter names and values, you can provide a hashtable that defines them and use the splatting operator:

$parameters = @{
 Path = "c:\temp"
 Recurse = $true
}

Get-ChildItem @parameters

To define the default value to be used for the parameter of a command (if the parameter value is not specified directly), assign a value to the PSDefaultParameterValues hashtable. The keys of this hashtable are command names and parameter names, separated by a colon. Either (or both) may use wildcards. The values of this hashtable are either simple parameter values, or script blocks that will be evaluated dynamically:

PS > $PSDefaultParameterValues["Get-Process:ID"] = $pid
PS > Get-Process

PS > $PSDefaultParameterValues["Get-Service:Name"] = {
 Get-Service -Name * | ForEach-Object Name | Get-Random }
PS > Get-Service

Providing Input to Commands

PowerShell offers several options for processing input to a command.

Argument array

To access the command-line arguments by position, use the argument array that PowerShell places in the $args special
variable:

$firstArgument = $args[0]
$secondArgument = $args[1]
$argumentCount = $args.Count

Formal parameters

To define a command with simple parameter support:

param(
 [TypeName] $VariableName = Default,
 ...
)

To define one with support for advanced functionality:

[CmdletBinding(cmdlet behavior customizations)]
param(
 [Parameter(Mandatory = $true, Position = 1, ...)]
 [Alias("MyParameterAlias"]
 [...]
 [TypeName] $VariableName = Default,
 ...
)

Formal parameters let you benefit from some of the many benefits of PowerShell’s consistent command-line parsing engine.

PowerShell exposes your parameter names (for example,
$VariableName) the same way that it exposes parameters in cmdlets. Users need to type only enough of your parameter name to disambiguate it from the rest of the parameters.

If you define a command with simple parameter support,
PowerShell attempts to assign the input to your parameters by their position if the user does not type parameter names.

When you add the [CmdletBinding()] attribute, [Parameter()] attribute, or any of the validation attributes, PowerShell adds support for advanced parameter validation.

Command behavior customizations

The elements of the [CmdletBinding()] attribute describe how your script or function interacts with the system:

	SupportsShouldProcess = $true

	
If $true, enables the -WhatIf and -Confirm parameters, which tells the user that your command modifies the
system and can be run in one of these experimental modes. When specified, you must also call the $psCmdlet.ShouldProcess() method before modifying system state. When not specified, the default is $false.

	DefaultParameterSetName = name

	
Defines the default parameter set name of this command. This is used to resolve ambiguities when parameters declare multiple sets of parameters and the user input doesn’t supply enough information to pick between available parameter sets. When not specified, the command has no default parameter set name.

	ConfirmImpact = "High"

	
Defines this command as one that should have its confirmation messages (generated by the $psCmdlet.​ShouldProcess() method) shown by default. More specifically, PowerShell defines three confirmation impacts: Low, Medium, and High. PowerShell generates the cmdlet’s confirmation messages automatically whenever the cmdlet’s impact level is greater than the preference variable. When not specified, the command’s impact is Medium.

Parameter attribute customizations

The elements of the [Parameter()] attribute mainly define how your parameter behaves in relation to other parameters (all elements are optional):

	Mandatory = $true

	
Defines the parameter as mandatory. If the user doesn’t supply a value to this parameter, PowerShell automatically prompts him for it. When not specified, the parameter is optional.

	Position = position

	
Defines the position of this parameter. This applies when the user provides parameter values without specifying the parameter they apply to (e.g., Argument2 in Invoke-MyFunction -Param1 Argument1 Argument2). PowerShell supplies these values to parameters that have defined a Position, from lowest to highest. When not specified, the name of this parameter must be supplied by the user.

	ParameterSetName = name

	
Defines this parameter as a member of a set of other related parameters. Parameter behavior for this parameter is then specific to this related set of parameters, and the parameter exists only in the parameter sets that it is defined in. This feature is used, for example, when the user may supply only a Name or ID. To include a parameter in two or more specific parameter sets, use two or more [Parameter()] attributes. When not specified, this parameter is a member of all parameter sets.

	ValueFromPipeline = $true

	
Declares this parameter as one that directly accepts pipeline input. If the user pipes data into your script or function, PowerShell assigns this input to your parameter in your command’s process {} block. When not specified, this parameter does not accept pipeline input directly.

	ValueFromPipelineByPropertyName = $true

	
Declares this parameter as one that accepts pipeline input if a property of an incoming object matches its name. If this is true, PowerShell assigns the value of that property to your parameter in your command’s process {} block. When not specified, this parameter does not accept pipeline input by property name.

	ValueFromRemainingArguments = $true

	
Declares this parameter as one that accepts all remaining input that has not otherwise been assigned to positional or named parameters. Only one parameter can have this
element. If no parameter declares support for this capability, PowerShell generates an error for arguments that cannot be assigned.

Parameter validation attributes

In addition to the [Parameter()] attribute, PowerShell lets you apply other attributes that add behavior or validation constraints to your parameters (all validation attributes are optional):

	[Alias("name")]

	
Defines an alternate name for this parameter. This is especially helpful for long parameter names that are descriptive but have a more common colloquial term. When not specified, the parameter can be referred to only by the name you originally declared.

	[AllowNull()]

	
Allows this parameter to receive $null as its value. This is required only for mandatory parameters. When not specified, mandatory parameters cannot receive $null as their value, although optional parameters can.

	[AllowEmptyString()]

	
Allows this string parameter to receive an empty string as its value. This is required only for mandatory parameters. When not specified, mandatory string parameters cannot receive an empty string as their value, although optional string parameters can. You can apply this to parameters that are not strings, but it has no impact.

	[AllowEmptyCollection()]

	
Allows this collection parameter to receive an empty collection as its value. This is required only for mandatory parameters. When not specified, mandatory collection parameters cannot receive an empty collection as their value, although optional collection parameters can. You can apply this to parameters that are not collections, but it has no impact.

	[ValidateCount(lower limit, upper limit)]

	
Restricts the number of elements that can be in a collection supplied to this parameter. When not specified, mandatory parameters have a lower limit of one element. Optional parameters have no restrictions. You can apply this to parameters that are not collections, but it has no impact.

	[ValidateLength(lower limit, upper limit)]

	
Restricts the length of strings that this parameter can accept. When not specified, mandatory parameters have a lower limit of one character. Optional parameters have no restrictions. You can apply this to parameters that are not strings, but it has no impact.

	[ValidatePattern("regular expression")]

	
Enforces a pattern that input to this string parameter must match. When not specified, string inputs have no pattern requirements. You can apply this to parameters that are not strings, but it has no impact.

	[ValidateRange(lower limit, upper limit)]

	
Restricts the upper and lower limit of numerical arguments that this parameter can accept. When not specified, parameters have no range limit. You can apply this to parameters that are not numbers, but it has no impact.

	[ValidateScript({ script block })]

	
Ensures that input supplied to this parameter satisfies the condition that you supply in the script block. PowerShell assigns the proposed input to the $_ (or $PSItem) variable, and then invokes your script block. If the script block returns $true (or anything that can be converted to $true, such as nonempty strings), PowerShell considers the validation to have been successful.

	[ValidateSet("First Option", "Second Option", …, "Last Option")]

	
Ensures that input supplied to this parameter is equal to one of the options in the set. PowerShell uses its standard meaning of equality during this comparison: the same rules used by the -eq operator. If your validation requires nonstandard rules (such as case-sensitive comparison of strings), you can instead write the validation in the body of the script or function.

	[ValidateNotNull()]

	
Ensures that input supplied to this parameter is not null. This is the default behavior of mandatory parameters, so this is useful only for optional parameters. When applied to string parameters, a $null parameter value gets instead converted to an empty string.

	[ValidateNotNullOrEmpty()]

	
Ensures that input supplied to this parameter is not null or empty. This is the default behavior of mandatory parameters, so this is useful only for optional parameters. When applied to string parameters, the input must be a string with a length greater than one. When applied to collection parameters, the collection must have at least one element. When applied to other types of parameters, this attribute is equivalent to the [ValidateNotNull()] attribute.

Pipeline input

To access the data being passed to your command via the pipeline, use the input enumerator that PowerShell places in the $input special variable:

foreach($element in $input)
{
 "Input was: $element"
}

The $input variable is a .NET enumerator over the pipeline input. Enumerators support streaming scenarios very efficiently but do not let you access arbitrary elements as you would with an array. If you want to process their elements again, you must call the Reset() method on the $input enumerator once you reach the end.

If you need to access the pipeline input in an unstructured way, use the following command to convert the input enumerator to an array:

$inputArray = @($input)

Cmdlet keywords in commands

When pipeline input is a core scenario of your command, you can include statement blocks labeled begin, process, and end:

param(...)

begin
{
 ...
}
process
{
 ...
}
end
{
 ...
}

PowerShell executes the begin statement when it loads your command, the process statement for each item passed down the pipeline, and the end statement after all pipeline input has been processed. In the process statement block, the $_ (or
$PSItem) variable represents the current pipeline object.

When you write a command that includes these keywords, all the commands in your script must be contained within the statement blocks.

$MyInvocation automatic variable

The $MyInvocation automatic variable contains information about the context under which the script was run, including detailed information about the command (MyCommand), the script that defines it (ScriptName), and more.

Retrieving Output from Commands

PowerShell provides three primary ways to retrieve output from a command.

Pipeline output

any command

The return value/output of a script is any data that it generates but does not capture. If a command contains:

"Text Output"
5*5

then assigning the output of that command to a variable creates an array with the two values Text Output and 25.

Return statement

return value

The statement:

return $false

is simply a short form for pipeline output:

$false
return

Exit statement

exit errorlevel

The exit statement returns an error code from the current command or instance of PowerShell. If called anywhere in a script (inline, in a function, or in a script block), it exits the script. If called outside of a script (for example, a function), it exits PowerShell. The exit statement sets the $LastExitCode automatic variable to errorLevel. In turn, that sets the $? automatic variable to $false if errorLevel is not zero.

Note

Type Get-Help about_automatic_variables for more information about automatic variables.

Managing Errors

PowerShell supports two classes of errors: nonterminating and terminating. It collects both types of errors as a list in the $error automatic variable.

Nonterminating Errors

Most errors are nonterminating errors, in that they do not halt execution of the current cmdlet, script, function, or pipeline. When a command outputs an error (via PowerShell’s error-output facilities), PowerShell writes that error to a stream called the error output stream.

You can output a nonterminating error using the Write-Error cmdlet (or the WriteError() API when writing a cmdlet).

The $ErrorActionPreference automatic variable lets you control how PowerShell handles nonterminating errors. It supports the following values, shown in Table 1-13.

Table 1-13. ErrorActionPreference automatic variable values

	Value
	Meaning

	Ignore

	Do not display errors, and do not add them to the $error collection. Only supported when supplied to the ErrorAction parameter of a command.

	SilentlyContinue

	Do not display errors, but add them to the $error collection.

	Stop

	Treat nonterminating errors as terminating errors.

	Continue

	Display errors, but continue execution of the current cmdlet, script, function, or pipeline. This is the default.

	Inquire

	Display a prompt that asks how PowerShell should treat this error.

Most cmdlets let you configure this explicitly by passing one of these values to the ErrorAction parameter.

Terminating Errors

A terminating error halts execution of the current cmdlet, script, function, or pipeline. If a command (such as a cmdlet or .NET method call) generates a structured exception (for example, if you provide a method with parameters outside their valid range), PowerShell exposes this as a terminating error. PowerShell also generates a terminating error if it fails to parse an element of your script, function, or pipeline.

You can generate a terminating error in your script using the throw keyword:

throw message

Note

In your own scripts and cmdlets, generate terminating errors only when the fundamental intent of the operation is impossible to accomplish. For example, failing to execute a command on a remote server should be considered a nonterminating error, whereas failing to connect to the remote server altogether should be considered a terminating error.

You can intercept terminating errors through the try, catch, and finally statements, as supported by many other programming languages:

try
{
 statement block
}
catch [exception type]
{
 error handling block
}
catch [alternate exception type]
{
 alternate error handling block
}
finally
{
 cleanup block
}

After a try statement, you must provide a catch statement, a finally statement, or both. If you specify an exception type (which is optional), you may specify more than one catch statement to handle exceptions of different types. If you specify an exception type, the catch block applies only to terminating errors of that type.

PowerShell also lets you intercept terminating errors if you define a trap statement before PowerShell encounters that error:

trap [exception type]
{
 statement block
 [continue or break]
}

If you specify an exception type, the trap statement applies only to terminating errors of that type.

Within a catch block or trap statement, the $_ (or $PSItem) variable represents the current exception or error being
processed.

If specified, the continue keyword tells PowerShell to continue processing your script, function, or pipeline after the point at which it encountered the terminating error.

If specified, the break keyword tells PowerShell to halt processing the rest of your script, function, or pipeline after the point at which it encountered the terminating error. The default mode is break, and it applies if you specify neither break nor continue.

Formatting Output

Pipeline | Formatting Command

When objects reach the end of the output pipeline, PowerShell converts them to text to make them suitable for human consumption. PowerShell supports several options to help you control this formatting process, as listed in Table 1-14.

Table 1-14. PowerShell formatting commands

	Formatting command
	Result

	
Format-Table

	
Formats the properties of the input objects as a table, including only the object properties you specify. If you do not specify a property list, PowerShell picks a default set.

In addition to supplying object properties, you may also provide advanced formatting statements:

PS > Get-Process | `
 Format-Table -Auto Name,`
 @{Label="HexId";
 Expression={ "{0:x}" -f $_.Id}
 Width=4
 Align="Right"
 }

The advanced formatting statement is a hashtable with the keys Label and Expression (or any short form of them). The value of the expression key should be a script block that returns a result for the current object (represented by the $_ variable).

For more information about the Format-Table cmdlet, type Get-Help Format-Table.

	
Format-List

	
Formats the properties of the input objects as a list, including only the object properties you specify. If you do not specify a property list, PowerShell picks a default set.

The Format-List cmdlet supports advanced formatting statements as used by the Format-Table cmdlet.

The Format-List cmdlet is the one you will use most often to get a detailed summary of an object’s properties.

The command Format-List * returns all properties, but it does not include those that PowerShell hides by default. The command Format-List * -Force returns all properties.

For more information about the Format-List cmdlet, type Get-Help Format-List.

	
Format-Wide

	
Formats the properties of the input objects in an extremely terse summary view. If you do not specify a property, PowerShell picks a default.

In addition to supplying object properties, you can also provide advanced formatting statements:

PS > Get-Process | `
 Format-Wide -Auto `
 @{ Expression={ "{0:x}" -f $_.Id} }

The advanced formatting statement is a hashtable with the key Expression (or any short form of it). The value of the expression key should be a script block that returns a result for the current object (represented by the $_ variable).

For more information about the Format-Wide cmdlet, type Get-Help Format-Wide.

Custom Formatting Files

All the formatting defaults in PowerShell (for example, when you do not specify a formatting command, or when you do not specify formatting properties) are driven by the
*.Format.Ps1Xml files in the installation directory.

To create your own formatting customizations, use these files as a source of examples, but do not modify them directly. Instead, create a new file and use the Update-FormatData cmdlet to load your customizations. The Update-FormatData cmdlet applies your changes to the current instance of PowerShell. If you wish to load them every time you launch PowerShell, call Update-FormatData in your profile script. The following command loads Format.custom.ps1xml from the same directory as your profile:

$formatFile = Join-Path (Split-Path $profile)
 "Format.Custom.Ps1Xml"
Update-FormatData -PrependPath $formatFile

Capturing Output

There are several ways to capture the output of commands in PowerShell, as listed in Table 1-15.

Table 1-15. Capturing output in PowerShell

	Command
	Result

	$variable = Command

	Stores the objects produced by the PowerShell command into $variable.

	$variable = Command | Out-String

	Stores the visual representation of the PowerShell command into $variable. This is the PowerShell command after it’s been converted to human-readable output.

	$variable =
NativeCommand

	Stores the (string) output of the native command into $variable. PowerShell stores this as a list of strings—one for each line of output from the native command.

	Command -OutVariable
variable

	For most commands, stores the objects produced by the PowerShell command into $variable. The parameter
-OutVariable can also be written
-Ov.

	Command > File

	Redirects the visual representation of the PowerShell (or standard output of a native command) into File, overwriting File if it exists. Errors are not captured by this redirection.

	Command >> File

	Redirects the visual representation of the PowerShell (or standard output of a native command) into File, appending to File if it exists. Errors are not captured by this redirection.

	Command 2> File

	Redirects the errors from the PowerShell or native command into File, overwriting File if it exists.

	Command n>File

	Redirects stream number n into File, overwriting File if it exists. Supported streams are 2 for error, 3 for warning, 4 for verbose, 5 for debug, 6 for the structured information stream, and * for all.

	Command 2>> File

	Redirects the errors from the PowerShell or native command into File, appending to File if it exists.

	Command n>> File

	Redirects stream number n into File, appending to File if it exists. Supported streams are 2 for error, 3 for warning, 4 for verbose, 5 for debug, 6 for the structured information stream, and * for all.

	Command > File 2>&1

	Redirects both the error and standard output streams of the PowerShell or native command into File, overwriting File if it exists.

	Command >> File 2>&1

	Redirects both the error and standard output streams of the PowerShell or native command into File, appending to File if it exists.

While output from the Write-Host cmdlet normally goes directly to the screen, you can use the structured information stream to capture it into a variable:

PS > function HostWriter { Write-Host "Console Output" }
PS > $a = HostWriter
Console Output
PS > $a
PS > $a = HostWriter 6>&1
PS > $a
Console Output

Common Customization Points

As useful as it is out of the box, PowerShell offers several avenues for customization and personalization.

Console Settings

The Windows PowerShell user interface offers several features to make your shell experience more efficient.

Adjust your font size

Both the Windows Terminal application and the default Windows Console let you adjust your font size.

To temporarily change your font size, hold down the Ctrl key and use the mouse to scroll up or down. In the Windows Terminal application, you can also use the Ctrl+Plus or Ctrl+Minus hotkeys. In the Windows Terminal application, Ctrl+0 resets the font size back to your default.

To change your font size default in the default Windows Console, open the System menu (right-click the title bar at the top left of the console window), select Properties→Font. If you launch Windows PowerShell from the Start menu, it launches with some default modifications to the font and window size. To change your font size default in the Windows Terminal application, add a fontSize setting to any of your terminal
profiles:

 {
 "guid": "...",
 "name": "PowerShell (Demos)",
 "fontSize": 18,
 "colorScheme": "Campbell Powershell",
 "source": "Windows.Terminal.PowershellCore"
 },

Adjust other Windows Terminal settings

The Windows Terminal application includes a wealth of configuration settings. A sample of these include:

	
Configuring the list of available shells and applications (such as bash.exe)

	
Color schemes and user interface themes

	
Binding actions to hotkeys

	
Text selection behavior

	
Window transparency

	
Background images

For a full list of these, see the documentation for global settings and general profile settings in Windows
Terminal.

Use hotkeys to operate the shell more efficiently

The PowerShell console supports many hotkeys that help make operating the console more efficient, as shown in Table 1-16.

Table 1-16. PowerShell hotkeys

	Hotkey
	Meaning

	Press and release the Windows key, and then type pwsh or powershell

	Launch PowerShell or Windows PowerShell. The Win+X hotkey also provides a quick way to launch Windows PowerShell.

	Up arrow

	Scan backward through your command history.

	Down arrow

	Scan forward through your command history.

	Left arrow

	Move cursor one character to the left on your command line.

	Right arrow

	Move cursor one character to the right on your command line. If at the end of the line, inserts a character from the text of your last command at that position.

	Ctrl+Left arrow

	Move the cursor one word to the left on your command line.

	Ctrl+Right arrow

	Move the cursor one word to the right on your command line.

	Home

	Move the cursor to the beginning of the command line.

	End

	Move the cursor to the end of the command line.

	Ctrl+Shift+PgUp,
Ctrl+Shift+PgDn

	In the Windows Terminal application, scroll through the screen buffer. In the Windows Console, you can use PgUp and PgDn.

	Ctrl+Shift+F

	In the Windows Terminal application, searches for text in the screen buffer. In the Windows Console, you can use Alt+Space E F.

	Alt+Space E K

	In the Windows Console, selects text to be copied from the screen buffer.

	Ctrl+C

	Cancel the current operation. If any text is selected, Ctrl+C copies this text into the clipboard.

	Ctrl+V

	Paste clipboard contents.

	Ctrl+Shift+T

	In the Windows Terminal application, opens a new tab. You can also use Ctrl+Shift+1, Ctrl+Shift+2, and similar to open a tab for that numbered profile (such as bash.exe).

	Ctrl+Shift+W, Alt+F4

	In the Windows Terminal application, close the current tab or entire application. In the Windows Console, you can use Alt+Space C to close the entire application.

	Ctrl+Break

	In the Windows Console, breaks the PowerShell debugger into the currently running script.

	Ctrl+Home

	Deletes characters from the beginning of the current command line up to (but not including) the current cursor position.

	Ctrl+End

	Deletes characters from (and including) the current cursor position to the end of the current command line.

	Ctrl+Z, Ctrl+Y

	Undo and Redo.

	F8

	Scan backward through your command history, only displaying matches for commands that match the text you’ve typed so far on the command line.

	Ctrl+R

	Begins an interactive search backward through your command history based on text you type interactively.

Note

The command-line editing experience offered in
PowerShell through the PSReadLine module is
far richer than what this table lists. It includes Emacs and Vi key bindings, as well as the ability to define your own—you can see the full default list by typing
Get-PSReadLineKeyHandler.

Profiles

PowerShell automatically runs the four scripts listed in Table 1-17 during startup. Each, if present, lets you customize your execution environment. PowerShell runs anything you place in these files as though you had entered it manually at the command line.

Table 1-17. PowerShell profiles

	Profile purpose
	Profile location

	Customization of all PowerShell sessions, including PowerShell hosting applications for all users on the system

	InstallationDirectory\profile.ps1

	Customization of pwsh.exe sessions for all users on the system

	InstallationDirectory\Microsoft.PowerShell_profile.ps1

	Customization of all PowerShell sessions, including PowerShell hosting applications

	<My Documents>\PowerShell\profile.ps1

	Typical customization of pwsh.exe sessions

	<My Documents>\PowerShell\Microsoft.PowerShell_profile.ps1

In Windows PowerShell, some of these locations will be
different.

PowerShell makes editing your profile script simple by defining the automatic variable $profile. By itself, it points to the “current user, pwsh.exe” profile. In addition, the $profile variable defines additional properties that point to the other profile locations:

PS > $profile | Format-List -Force

AllUsersAllHosts : C:\...Microsoft.PowerShell..\profile.ps1
AllUsersCurrentHost : C:\...\Microsoft.PowerShell_profile.ps1
CurrentUserAllHosts : D:\Lee\PowerShell\profile.ps1
CurrentUserCurrentHost : D:\...\Microsoft.PowerShell_profile.ps1

To create a new profile, type:

New-Item -Type file -Force $profile

To edit this profile, type:

notepad $profile

Prompts

To customize your prompt, add a prompt function to your profile. This function returns a string. For example:

function prompt
{
 "PS [$env:COMPUTERNAME] >"
}

Tab Completion

You can define a TabExpansion2 function to customize the way that PowerShell completes properties, variables, parameters, and files when you press the Tab key.

Your TabExpansion function overrides the one that PowerShell defines by default, though, so you may want to use its definition as a starting point:

Get-Content function:\TabExpansion2

User Input

You can define a PSConsoleHostReadLine function to customize the way that the PowerShell console host (not the Integrated Scripting Environment [ISE]) reads input from the user. This function is responsible for handling all of the user’s keypresses, and finally returning the command that PowerShell should invoke.

Command Resolution

You can intercept PowerShell’s command resolution behavior in three places by assigning a script block to one or all of the PreCommandLookupAction, PostCommandLookupAction, or CommandNotFoundAction properties of $executionContext.SessionState.InvokeCommand.

PowerShell invokes the PreCommandLookupAction after the user types a command name, but before it has tried to resolve the command. It invokes the PostCommandLookupAction once it has resolved a command, but before it executes the command. It invokes the CommandNotFoundAction when a command is not found, but before it generates an error message. Each script block receives two arguments—CommandName and Command​LookupEventArgs:

$executionContext.SessionState.
 InvokeCommand.CommandNotFoundAction = {
 param($CommandName,
 $CommandLookupEventArgs)
 (...)
}

If your script block assigns a script block to the CommandScriptBlock property of the CommandLookupEventArgs or assigns a
CommandInfo to the Command property of the CommandLookup​Even⁠tArgs, PowerShell will use that script block or command, respectively. If your script block sets the StopSearch property to true, PowerShell will do no further command resolution.

Chapter 2. Regular Expression Reference

Regular expressions play an important role in most text parsing and text matching tasks. They form an important underpinning of the -split and -match operators, the switch statement, the Select-String cmdlet, and more. Tables 2-1 through 2-10 list commonly used regular expressions.

Table 2-1. Character classes: patterns that represent sets of characters

	Character class
	Matches

	
.

	
Any character except for a newline. If the regular expression uses the SingleLine option, it matches any character.

PS > "T" -match '.'
True

	
[characters]

	
Any character in the brackets. For example: [aeiou].

PS > "Test" -match '[Tes]'
True

	
[^characters]

	
Any character not in the brackets. For example: [^aeiou].

PS > "Test" -match '[^Tes]'
False

	
[start-end]

	
Any character between the characters start and end, inclusive. You may include multiple character ranges between the brackets. For example, [a-eh-j].

PS > "Test" -match '[e-t]'
True

	
[^start-end]

	
Any character not between any of the character ranges start through end, inclusive. You may include multiple character ranges between the brackets. For example, [^a-eh-j].

PS > "Test" -match '[^e-t]'
False

	
\p{character class}

	
Any character in the Unicode group or block range specified by {character class}.

PS > "+" -match '\p{Sm}'
True

	
\P{character class}

	
Any character not in the Unicode group or block range specified by {character class}.

PS > "+" -match '\P{Sm}'
False

	
\w

	
Any word character. Note that this is the Unicode definition of a word character, which includes digits, as well as many math symbols and various other symbols.

PS > "a" -match '\w'
True

	
\W

	
Any nonword character.

PS > "!" -match '\W'
True

	
\s

	
Any whitespace character.

PS > "`t" -match '\s'
True

	
\S

	
Any nonwhitespace character.

PS > " `t" -match '\S'
False

	
\d

	
Any decimal digit.

PS > "5" -match '\d'
True

	
\D

	
Any character that isn’t a decimal digit.

PS > "!" -match '\D'
True

Table 2-2. Quantifiers: expressions that enforce quantity on the preceding expression

	Quantifier
	Meaning

	
<none>

	
One match.

PS > "T" -match 'T'
True

	
*

	
Zero or more matches, matching as much as possible.

PS > "A" -match 'T*'
True
PS > "TTTTT" -match '^T*$'
True

PS > 'ATTT' -match 'AT*'; $Matches[0]
True
ATTT

	
+

	
One or more matches, matching as much as possible.

PS > "A" -match 'T+'
False
PS > "TTTTT" -match '^T+$'
True

PS > 'ATTT' -match 'AT+'; $Matches[0]
True
ATTT

	
?

	
Zero or one matches, matching as much as possible.

PS > "TTTTT" -match '^T?$'
False

PS > 'ATTT' -match 'AT?'; $Matches[0]
True
AT

	
{n}

	
Exactly n matches.

PS > "TTTTT" -match '^T{5}$'
True

	
{n,}

	
n or more matches, matching as much as possible.

PS > "TTTTT" -match '^T{4,}$'
True

	
{n,m}

	
Between n and m matches (inclusive), matching as much as possible.

PS > "TTTTT" -match '^T{4,6}$'
True

	
*?

	
Zero or more matches, matching as little as possible.

PS > "A" -match '^AT*?$'
True

PS > 'ATTT' -match 'AT*?'; $Matches[0]
True
A

	
+?

	
One or more matches, matching as little as possible.

PS > "A" -match '^AT+?$'
False

PS > 'ATTT' -match 'AT+?'; $Matches[0]
True
AT

	
??

	
Zero or one matches, matching as little as possible.

PS > "A" -match '^AT??$'
True

PS > 'ATTT' -match 'AT??'; $Matches[0]
True
A

	
{n}?

	
Exactly n matches.

PS > "TTTTT" -match '^T{5}?$'
True

	
{n,}?

	
n or more matches, matching as little as possible.

PS > "TTTTT" -match '^T{4,}?$'
True

	
{n,m}?

	
Between n and m matches (inclusive), matching as little as possible.

PS > "TTTTT" -match '^T{4,6}?$'
True

Table 2-3. Grouping constructs: expressions that let you group characters, patterns, and other expressions

	Grouping construct
	Description

	
(text)

	
Captures the text matched inside the parentheses. These captures are named by number (starting at one) based on the order of the opening parenthesis.

PS > "Hello" -match '^(.*)llo$';
 $matches[1]
True
He

	
(?<name>)

	
Captures the text matched inside the parentheses. These captures are named by the name given in name.

PS > "Hello" -match '^(?<One>.*)llo$';
 $matches.One
True
He

	
(?<name1-name2>)

	
A balancing group definition. This is an advanced regular expression construct, but lets you match evenly balanced pairs of terms.

	
(?:)

	
Noncapturing group.

PS > "A1" -match '((A|B)\d)'; $matches
True

Name Value
---- -----
2 A
1 A1
0 A1

PS > "A1" -match '((?:A|B)\d)'; $matches
True

Name Value
---- -----
1 A1
0 A1

	
(?imnsx-imnsx:)

	
Applies or disables the given option for this group. Supported options are:

i case-insensitive
m multiline
n explicit capture
s singleline
x ignore whitespace

PS > "Te`nst" -match '(T e.st)'
False
PS > "Te`nst" -match '(?sx:T e.st)'
True

	
(?=)

	
Zero-width positive lookahead assertion. Ensures that the given pattern matches to the right, without actually performing the match.

PS > "555-1212" -match '(?=...-)(.*)';
 $matches[1]
True
555-1212

	
(?!)

	
Zero-width negative lookahead assertion. Ensures that the given pattern does not match to the right, without actually performing the match.

PS > "friendly" -match '(?!friendly)friend'
False

Table 2-4. More grouping constructs

	Grouping construct
	Description

	
(?<=)

	
Zero-width positive lookbehind assertion. Ensures that the given pattern matches to the left, without actually performing the match.

PS > "public int X" -match '^.*(?<=public)int .*$'
True

	
(?<!)

	
Zero-width negative lookbehind assertion. Ensures that the given pattern does not match to the left, without actually performing the match.

PS > "private int X" -match '^.*(?<!private)int .*$'
False

	
(?>)

	
Nonbacktracking subexpression. Matches only if this subexpression can be matched completely.

PS > "Hello World" -match '(Hello.*)orld'
True
PS > "Hello World" -match '(?>Hello.*)orld'
False

The nonbacktracking version of the subexpression fails to match, as its complete match would be “Hello World”.

Table 2-5. Atomic zero-width assertions: patterns that restrict where a match may occur

	Assertion
	Restriction

	
^

	
The match must occur at the beginning of the string (or line, if the Multiline option is in effect).

PS > "Test" -match '^est'
False

	
$

	
The match must occur at the end of the string (or line, if the Multiline option is in effect).

PS > "Test" -match 'Tes$'
False

	
\A

	
The match must occur at the beginning of the string.

PS > "The`nTest" -match '(?m:^Test)'
True
PS > "The`nTest" -match '(?m:\ATest)'
False

	
\Z

	
The match must occur at the end of the string, or before \n at the end of the string.

PS > "The`nTest`n" -match '(?m:The$)'
True
PS > "The`nTest`n" -match '(?m:The\Z)'
False
PS > "The`nTest`n" -match 'Test\Z'
True

	
\z

	
The match must occur at the end of the string.

PS > "The`nTest`n" -match 'Test\z'
False

	
\G

	
The match must occur where the previous match ended. Used with

System.Text.RegularExpressions.Match.NextMatch()

	
\b

	
The match must occur on a word boundary: the first or last characters in words separated by nonalphanumeric characters.

PS > "Testing" -match 'ing\b'
True

	
\B

	
The match must not occur on a word boundary.

PS > "Testing" -match 'ing\B'
False

Table 2-6. Substitution patterns: patterns used in a regular expression replace operation

	Pattern
	Substitution

	
$number

	
The text matched by group number number.

PS > "Test" -replace "(.*)st",'$1ar'
Tear

	
${name}

	
The text matched by group named name.

PS > "Test" -replace "(?<pre>.*)st",'${pre}ar'
Tear

	
$$

	
A literal $.

PS > "Test" -replace ".",'$$'
$$$$

	
$&

	
A copy of the entire match.

PS > "Test" -replace "^.*$",'Found: $&'
Found: Test

	
$`

	
The text of the input string that precedes the match.

PS > "Test" -replace "est$",'Te$`'
TTeT

	
$'

	
The text of the input string that follows the match.

PS > "Test" -replace "^Tes",'Res$'''
Restt

	
$+

	
The last group captured.

PS > "Testing" -replace "(.*)ing",'$+ed'
Tested

	
$_

	
The entire input string.

PS > "Testing" -replace "(.*)ing",'String: $_'
String: Testing

Table 2-7. Alternation constructs: expressions that let you perform either/or logic

	Alternation construct
	Description

	
|

	
Matches any of the terms separated by the vertical bar character.

PS > "Test" -match '(B|T)est'
True

	
(?(expression)
yes|no)

	
Matches the yes term if expression matches at this point. Otherwise, matches the no term. The no term is optional.

PS > "3.14" -match '(?(\d)3.14|Pi)'
True
PS > "Pi" -match '(?(\d)3.14|Pi)'
True
PS > "2.71" -match '(?(\d)3.14|Pi)'
False

	
(?(name)yes|no)

	
Matches the yes term if the capture group named name has a capture at this point. Otherwise, matches the no term. The no term is optional.

PS > "123" -match '(?<one>1)?(?(one)23|234)'
True
PS > "23" -match '(?<one>1)?(?(one)23|234)'
False
PS > "234" -match '(?<one>1)?(?(one)23|234)'
True

Table 2-8. Backreference constructs: expressions that refer to a capture group within the expression

	Backreference construct
	Refers to

	
\number

	
Group number number in the expression.

PS > "|Text|" -match '(.)Text\1'
True
PS > "|Text+" -match '(.)Text\1'
False

	
\k<name>

	
The group named name in the expression.

PS > "|Text|" -match '(?<Symbol>.)Text\k<Symbol>'
True
PS > "|Text+" -match '(?<Symbol>.)Text\k<Symbol>'
False

Table 2-9. Other constructs: other expressions that modify a regular expression

	Construct
	Description

	
(?imnsx-imnsx)

	
Applies or disables the given option for the rest of this expression. Supported options are:

i case-insensitive
m multiline
n explicit capture
s singleline
x ignore whitespace

PS > "Te`nst" -match '(?sx)T e.st'
True

	
(?#)

	
Inline comment. This terminates at the first closing parenthesis.

PS > "Test" -match '(?# Match "Test")Test'
True

	
[to end of line]

	
Comment form allowed when the regular expression has the IgnoreWhitespace option enabled.

PS > "Test" -match '(?x)Test # Matches Test'
True

Table 2-10. Character escapes: character sequences that represent another character

	Escaped character
	Match

	<ordinary characters>

	Characters other than . $ ^ { [(|) * + ? \ match themselves.

	\a

	A bell (alarm) \u0007.

	\b

	A backspace \u0008 if in a [] character class. In a regular expression, \b denotes a word boundary (between \w and \W characters) except within a [] character class, where \b refers to the backspace character. In a replacement pattern, \b always denotes a backspace.

	\t

	A tab \u0009.

	\r

	A carriage return \u000D.

	\v

	A vertical tab \u000B.

	\f

	A form feed \u000C.

	\n

	A new line \u000A.

	\e

	An escape \u001B.

	\ddd

	An ASCII character as octal (up to three digits). Numbers with no leading zero are treated as backreferences if they have only one digit, or if they correspond to a capturing group number.

	\xdd

	An ASCII character using hexadecimal representation (exactly two digits).

	\cC

	An ASCII control character; for example, \cC is Control-C.

	\udddd

	A Unicode character using hexadecimal representation (exactly four digits).

	\

	When followed by a character that is not recognized as an escaped character, matches that character. For example, * is the literal character *.

Chapter 3. XPath Quick Reference

Just as regular expressions are the standard way to interact with plain text, XPath is the standard way to interact with XML. Because of that, XPath is something you’re likely to run across in your travels. Several cmdlets support XPath queries:
Select-Xml, Get-WinEvent, and more. Tables 3-1 and 3-2 give a quick overview of XPath concepts.

For these examples, consider this sample XML:

<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>

Table 3-1. Navigation and selection

	Syntax
	Meaning

	
/

	
Represents the root of the XML tree.

For example:

PS > $xml | Select-Xml "/" |
 Select -Expand Node

AddressBook

AddressBook

	
/Node

	
Navigates to the node named Node from the root of the XML tree.

For example:

PS > $xml | Select-Xml "/AddressBook" |
 Select -Expand Node

Person

{Lee, Ariel}

	
/Node/*/Node2

	
Navigates to the node named Node2 via Node, allowing any single node in between.

For example:

PS > $xml | Select-Xml "/AddressBook/*/Name" |
 Select -Expand Node

#text

Lee
Ariel

	
//Node

	
Finds all nodes named Node, anywhere in the XML tree.

For example:

PS > $xml | Select-Xml "//Phone" |
 Select -Expand Node

type #text
---- -----
home 555-1212
work 555-1213
 555-1234

	
..

	
Retrieves the parent node of the given node.

For example:

PS > $xml | Select-Xml "//Phone" |
 Select -Expand Node

type #text
---- -----
home 555-1212
work 555-1213
 555-1234

PS > $xml | Select-Xml "//Phone/.."|
 Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}
Business Ariel 555-1234

	
@ Attribute

	
Accesses the value of the attribute named Attribute.

For example:

PS > $xml | Select-Xml "//Phone/@type" |
 Select -Expand Node

#text

home
work

Table 3-2. Comparisons

	Syntax
	Meaning

	
[]

	
Filtering, similar to the Where-Object cmdlet.

For example:

PS > $xml |
 Select-Xml "//Person[@contactType = 'Personal']" |
 Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}

PS > $xml | Select-Xml "//Person[Name = 'Lee']" |
 Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}

	
and

	
Logical and.

	
or

	
Logical or.

	
not()

	
Logical negation.

	
=

	
Equality.

	
!=

	
Inequality.

Chapter 4. .NET String Formatting

String Formatting Syntax

The format string supported by the format (-f) operator is a string that contains format items. Each format item takes the form of:

{index[,alignment][:formatString]}

index represents the zero-based index of the item in the object array following the format operator.

alignment is optional and represents the alignment of the item. A positive number aligns the item to the right of a field of the specified width. A negative number aligns the item to the left of a field of the specified width:

PS > ("{0,6}" -f 4.99), ("{0,6:##.00}" -f 15.9)
 4.99
 15.90

formatString is optional and formats the item using that type’s specific format string syntax (as laid out in Tables 4-1 and 4-2).

Standard Numeric Format Strings

Table 4-1 lists the standard numeric format strings. All format specifiers may be followed by a number between 0 and 99 to control the precision of the formatting.

Table 4-1. Standard numeric format strings

	Format specifier
	Name
	Description

	
C or c

	
Currency

	
A currency amount:

PS > "{0:C}" -f 1.23
$1.23

	
D or d

	
Decimal

	
A decimal amount (for integral types). The precision specifier controls the minimum number of digits in the result:

PS > "{0:D4}" -f 2
0002

	
E or e

	
Scientific

	
Scientific (exponential) notation. The precision specifier controls the number of digits past the decimal point:

PS > "{0:E3}" -f [Math]::Pi
3.142E+000

	
F or f

	
Fixed-point

	
Fixed-point notation. The precision specifier controls the number of digits past the decimal point:

PS > "{0:F3}" -f [Math]::Pi
3.142

	
G or g

	
General

	
The most compact representation (between fixed-point and scientific) of the number. The precision specifier controls the number of significant digits:

PS > "{0:G3}" -f [Math]::Pi
3.14
PS > "{0:G3}" -f 1mb
1.05E+06

	
N or n

	
Number

	
The human-readable form of the number, which includes separators between number groups. The precision specifier controls the number of digits past the decimal point:

PS > "{0:N4}" -f 1mb
1,048,576.0000

	
P or p

	
Percent

	
The number (generally between 0 and 1) represented as a percentage. The precision specifier controls the number of digits past the decimal point:

PS > "{0:P4}" -f 0.67
67.0000 %

	
R or r

	
Roundtrip

	
The Single or Double number formatted with a precision that guarantees the string (when parsed) will result in the original number again:

PS > "{0:R}" -f (1mb/2.0)
524288
PS > "{0:R}" -f (1mb/9.0)
116508.44444444444

	
X or x

	
Hexadecimal

	
The number converted to a string of hexadecimal digits. The case of the specifier controls the case of the resulting hexadecimal digits. The precision specifier controls the minimum number of digits in the resulting string:

PS > "{0:X4}" -f 1324
052C

Custom Numeric Format Strings

You can use custom numeric strings, listed in Table 4-2, to format numbers in ways not supported by the standard format strings.

Table 4-2. Custom numeric format strings

	Format specifier
	Name
	Description

	
0

	
Zero placeholder

	
Specifies the precision and width of a number string. Zeros not matched by digits in the original number are output as zeros:

PS > "{0:00.0}" -f 4.12341234
04.1

	
#

	
Digit placeholder

	
Specifies the precision and width of a number string. # symbols not matched by digits in the input number are not output:

PS > "{0:##.#}" -f 4.12341234
4.1

	
.

	
Decimal point

	
Determines the location of the decimal:

PS > "{0:##.#}" -f 4.12341234
4.1

	
,

	
Thousands separator

	
When placed between a zero or digit placeholder before the decimal point in a formatting string, adds the separator character between number groups:

PS > "{0:#,#.#}" -f 1234.121234
1,234.1

	
,

	
Number scaling

	
When placed before the literal (or implicit) decimal point in a formatting string, divides the input by 1,000. You can apply this format specifier more than once:

PS > "{0:##,,.000}" -f 1048576
1.049

	
%

	
Percentage placeholder

	
Multiplies the input by 100, and inserts the percent sign where shown in the format specifier:

PS > "{0:%##.000}" -f .68
%68.000

	
E0

E+0

E-0

e0

e+0

e-0

	
Scientific notation

	
Displays the input in scientific notation. The number of zeros that follow the E define the minimum length of the exponent field:

PS > "{0:##.#E000}" -f 2.71828
27.2E-001

	
' text '

" text "

	
Literal string

	
Inserts the provided text literally into the output without affecting formatting:

PS > "{0:#.00'##'}" -f 2.71828
2.72##

	
;

	
Section separator

	
Allows for conditional formatting.

If your format specifier contains no section separators, the formatting statement applies to all input.

If your format specifier contains one separator (creating two sections), the first section applies to positive numbers and zero, and the second section applies to negative numbers.

If your format specifier contains two separators (creating three sections), the sections apply to positive numbers, negative numbers, and zero:

PS > "{0:POS;NEG;ZERO}" -f -14
NEG

	
Other

	
Other character

	
Inserts the provided text literally into the output without affecting formatting:

PS > "{0:$## Please}" -f 14
$14 Please

Chapter 5. .NET DateTime Formatting

DateTime format strings convert a DateTime object to one of several standard formats, as listed in Table 5-1.

Table 5-1. Standard DateTime format strings

	Format specifier
	Name
	Description

	
d

	
Short date

	
The culture’s short date format:

PS > "{0:d}" -f [DateTime] "01/23/4567"
1/23/4567

	
D

	
Long date

	
The culture’s long date format:

PS > "{0:D}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567

	
f

	
Full date/short time

	
Combines the long date and short time format patterns:

PS > "{0:f}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 12:00 AM

	
F

	
Full date/long time

	
Combines the long date and long time format patterns:

PS > "{0:F}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 12:00:00 AM

	
g

	
General date/ short time

	
Combines the short date and short time format patterns:

PS > "{0:g}" -f [DateTime] "01/23/4567"
1/23/4567 12:00 AM

	
G

	
General date/long time

	
Combines the short date and long time format patterns:

PS > "{0:G}" -f [DateTime] "01/23/4567"
1/23/4567 12:00:00 AM

	
M or m

	
Month day

	
The culture’s MonthDay format:

PS > "{0:M}" -f [DateTime] "01/23/4567"
January 23

	
o

	
Round-trip date/time

	
The date formatted with a pattern that guarantees the string (when parsed) will result in the original DateTime again:

PS > "{0:o}" -f [DateTime] "01/23/4567"
4567-01-23T00:00:00.0000000

	
R or r

	
RFC1123

	
The standard RFC1123 format pattern:

PS > "{0:R}" -f [DateTime] "01/23/4567"
Fri, 23 Jan 4567 00:00:00 GMT

	
s

	
Sortable

	
Sortable format pattern. Conforms to ISO 8601 and provides output suitable for sorting:

PS > "{0:s}" -f [DateTime] "01/23/4567"
4567-01-23T00:00:00

	
t

	
Short time

	
The culture’s ShortTime format:

PS > "{0:t}" -f [DateTime] "01/23/4567"
12:00 AM

	
T

	
Long time

	
The culture’s LongTime format:

PS > "{0:T}" -f [DateTime] "01/23/4567"
12:00:00 AM

	
u

	
Universal sortable

	
The culture’s UniversalSortable DateTime format applied to the UTC equivalent of the input:

PS > "{0:u}" -f [DateTime] "01/23/4567"
4567-01-23 00:00:00Z

	
U

	
Universal

	
The culture’s FullDateTime format applied to the UTC equivalent of the input:

PS > "{0:U}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 8:00:00 AM

	
Y or y

	
Year month

	
The culture’s YearMonth format:

PS > "{0:Y}" -f [DateTime] "01/23/4567"
January, 4567

Custom DateTime Format Strings

You can use the custom DateTime format strings listed in Table 5-2 to format dates in ways not supported by the standard format strings.

Note

Single-character format specifiers are by default interpreted as a standard DateTime formatting string unless they are used with other formatting specifiers. Add the % character before them to have them interpreted as a custom format specifier.

Table 5-2. Custom DateTime format strings

	Format specifier
	Description

	
d

	
Day of the month as a number between 1 and 31. Represents single-digit days without a leading zero:

PS > "{0:%d}" -f
 [DateTime] "01/02/4567"
2

	
dd

	
Day of the month as a number between 1 and 31. Represents single-digit days with a leading zero:

PS > "{0:dd}" -f
 [DateTime] "01/02/4567"
02

	
ddd

	
Abbreviated name of the day of week:

PS > "{0:ddd}" -f
 [DateTime] "01/02/4567"
Fri

	
dddd

	
Full name of the day of the week:

PS > "{0:dddd}" -f
 [DateTime] "01/02/4567"
Friday

	
f

	
Most significant digit of the seconds fraction (milliseconds):

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:%f}" -f $date
0

	
ff

	
Two most significant digits of the seconds fraction (milliseconds):

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ff}" -f $date
09

	
fff

	
Three most significant digits of the seconds fraction (milliseconds):

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fff}" -f $date
093

	
ffff

	
Four most significant digits of the seconds fraction (milliseconds):

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ffff}" -f $date
0937

	
fffff

	
Five most significant digits of the seconds fraction (milliseconds):

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fffff}" -f $date
09375

	
ffffff

	
Six most significant digits of the seconds fraction (milliseconds):

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ffffff}" -f $date
093750

	
fffffff

	
Seven most significant digits of the seconds fraction (milliseconds):

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fffffff}" -f $date
0937500

	
F

FF

FFF

(…)

FFFFFFF

	
Most significant digit of the seconds fraction (milliseconds).

When compared to the lowercase series of 'f' specifiers, displays nothing if the number is zero:

PS > "{0:|F FF FFF FFFF|}" -f
 [DateTime] "01/02/4567"
| |----

	
%g or gg

	
Era (e.g., A.D.):

PS > "{0:gg}" -f [DateTime]
 "01/02/4567"
A.D.

	
%h

	
Hours, as a number between 1 and 12. Single digits do not include a leading zero:

PS > "{0:%h}" -f
 [DateTime] "01/02/4567 4:00pm"
4

	
hh

	
Hours, as a number between 01 and 12. Single digits include a leading zero. Note: this is interpreted as a standard DateTime formatting string unless used with other formatting specifiers:

PS > "{0:hh}" -f
 [DateTime] "01/02/4567 4:00pm"
04

	
%H

	
Hours, as a number between 0 and 23. Single digits do not include a leading zero:

PS > "{0:%H}" -f
 [DateTime] "01/02/4567 4:00pm"
16

	
HH

	
Hours, as a number between 00 and 23. Single digits include a leading zero:

PS > "{0:HH}" -f
 [DateTime] "01/02/4567 4:00am"
04

	
K

	
DateTime.Kind specifier that corresponds to the kind (i.e., local, UTC, or unspecified) of input date:

PS > "{0:%K}" -f
 [DateTime]::Now.ToUniversalTime()
Z

	
m

	
Minute, as a number between 0 and 59. Single digits do not include a leading zero:

PS > "{0:%m}" -f [DateTime]::Now
 7

	
mm

	
Minute, as a number between 00 and 59. Single digits include a leading zero:

PS > "{0:mm}" -f [DateTime]::Now
08

	
M

	
Month, as a number between 1 and 12. Single digits do not include a leading zero:

PS > "{0:%M}" -f
 [DateTime] "01/02/4567"
1

	
MM

	
Month, as a number between 01 and 12. Single digits include a leading zero:

PS > "{0:MM}" -f
 [DateTime] "01/02/4567"
01

	
MMM

	
Abbreviated month name:

PS > "{0:MMM}" -f
 [DateTime] "01/02/4567"
Jan

	
MMMM

	
Full month name:

PS > "{0:MMMM}" -f
 [DateTime] "01/02/4567"
January

	
s

	
Seconds, as a number between 0 and 59. Single digits do not include a leading zero:

PS > $date = Get-Date
PS > "{0:%s}" -f $date
7

	
ss

	
Seconds, as a number between 00 and 59. Single digits include a leading zero:

PS > $date = Get-Date
PS > "{0:ss}" -f $date
07

	
t

	
First character of the a.m./p.m. designator:

PS > $date = Get-Date
PS > "{0:%t}" -f $date
P

	
tt

	
a.m./p.m. designator:

PS > $date = Get-Date
PS > "{0:tt}" -f $date
PM

	
y

	
Year, in (at most) two digits:

PS > "{0:%y}" -f
 [DateTime] "01/02/4567"
67

	
yy

	
Year, in (at most) two digits:

PS > "{0:yy}" -f
 [DateTime] "01/02/4567"
67

	
yyy

	
Year, in (at most) four digits:

PS > "{0:yyy}" -f
 [DateTime] "01/02/4567"
4567

	
yyyy

	
Year, in (at most) four digits:

PS > "{0:yyyy}" -f
 [DateTime] "01/02/4567"
4567

	
yyyyy

	
Year, in (at most) five digits:

PS > "{0:yyyy}" -f
 [DateTime] "01/02/4567"
04567

	
z

	
Signed time zone offset from GMT. Does not include a leading zero:

PS > "{0:%z}" -f [DateTime]::Now
-8

	
zz

	
Signed time zone offset from GMT. Includes a leading zero:

PS > "{0:zz}" -f [DateTime]::Now
-08

	
zzz

	
Signed time zone offset from GMT, measured in hours and minutes:

PS > "{0:zzz}" -f [DateTime]::Now
-08:00

	
:

	
Time separator:

PS > "{0:y/m/d h:m:s}" -f
 [DateTime] "01/02/4567 4:00pm"
67/0/2 4:0:0

	
/

	
Date separator:

PS > "{0:y/m/d h:m:s}" -f
 [DateTime] "01/02/4567 4:00pm"
67/0/2 4:0:0

	
" text "

' text '

	
Inserts the provided text literally into the output without affecting formatting:

PS > "{0:'Day: 'dddd}" -f
 [DateTime]::Now
Day: Monday

	
%c

	
Syntax allowing for single-character custom formatting specifiers. The % sign is not added to the output:

PS > "{0:%h}" -f
 [DateTime] "01/02/4567 4:00pm"
4

	
Other

	
Inserts the provided text literally into the output without affecting formatting:

PS > "{0:dddd!}" -f [DateTime]::Now
Monday!

Chapter 6. Selected .NET Classes and
Their Uses

Tables 6-1 through 6-16 provide pointers to types in the .NET Framework that usefully complement the functionality that PowerShell provides. For detailed descriptions and documentation, refer to the official documentation.

Table 6-1. PowerShell

	Class
	Description

	System.Management.​Automa⁠tion.PSObject

	Represents a PowerShell object to which you can add notes, properties, and more.

Table 6-2. Utility

	Class
	Description

	System.DateTime

	Represents an instant in time, typically expressed as a date and time of day.

	System.Guid

	Represents a globally unique identifier (GUID).

	System.Math

	Provides constants and static methods for trigonometric, logarithmic, and other common mathematical functions.

	System.Random

	Represents a pseudorandom number generator, a device that produces a sequence of numbers that meet certain statistical requirements for randomness.

	System.Convert

	Converts a base data type to another base data type.

	System.Environment

	Provides information about, and means to manipulate, the current environment and platform.

	System.Console

	Represents the standard input, output, and error streams for console applications.

	System.Text.​Regular​Expres⁠sions.Regex

	Represents an immutable regular expression.

	System.Diagnostics.Debug

	Provides a set of methods and properties that help debug your code.

	System.Diagnostics.EventLog

	Provides interaction with Windows event logs.

	System.Diagnostics.Process

	Provides access to local and remote processes and enables you to start and stop local system processes.

	System.Diagnostics.Stopwatch

	Provides a set of methods and properties that you can use to accurately measure elapsed time.

	System.Media.SoundPlayer

	Controls playback of a sound from a .wav file.

Table 6-3. Collections and object utilities

	Class
	Description

	System.Array

	Provides methods for creating, manipulating, searching, and sorting arrays, thereby serving as the base class for all arrays in the Common Language Runtime.

	System.Enum

	Provides the base class for enumerations.

	System.String

	Represents text as a series of Unicode characters.

	System.Text.StringBuilder

	Represents a mutable string of characters.

	System.Collections.​Spe⁠cial⁠ized.OrderedDictionary

	Represents a collection of key/value pairs that are accessible by the key or index.

	System.Collections.ArrayList

	Implements the IList interface using an array whose size is dynamically increased as required.

Table 6-4. The .NET Framework

	Class
	Description

	System.AppDomain

	Represents an application domain, which is an isolated environment where applications execute.

	System.Reflection.Assembly

	Defines an Assembly, which is a reusable, versionable, and self-describing building block of a Common Language Runtime application.

	System.Type

	Represents type declarations: class types, interface types, array types, value types, enumeration types, type parameters, generic type definitions, and open or closed constructed generic types.

	System.Threading.Thread

	Creates and controls a thread, sets its priority, and gets its status.

	System.Runtime.​Interop​Servi⁠ces.Marshal

	Provides a collection of methods for allocating unmanaged memory, copying unmanaged memory blocks, and converting managed to unmanaged types, as well as other miscellaneous methods used when interacting with unmanaged code.

	Microsoft.CSharp.CSharpCodeProvider

	Provides access to instances of the C# code generator and code compiler.

Table 6-5. Registry

	Class
	Description

	Microsoft.Win32.Registry

	Provides RegistryKey objects that represent the root keys in the local and remote Windows Registry and static methods to access key/value pairs.

	Microsoft.Win32.RegistryKey

	Represents a key-level node in the Windows Registry.

Table 6-6. Input and Output

	Class
	Description

	System.IO.Stream

	Provides a generic view of a sequence of bytes.

	System.IO.BinaryReader

	Reads primitive data types as binary values.

	System.IO.BinaryWriter

	Writes primitive types in binary to a stream.

	System.IO.BufferedStream

	Adds a buffering layer to read and write operations on another stream.

	System.IO.Directory

	Exposes static methods for creating, moving, and enumerating through directories and subdirectories.

	System.IO.FileInfo

	Provides instance methods for creating, copying, deleting, moving, and opening files, and aids in the creation of
FileStream objects.

	System.IO.DirectoryInfo

	Exposes instance methods for creating, moving, and enumerating through directories and subdirectories.

	System.IO.File

	Provides static methods for creating, copying, deleting, moving, and opening files, and aids in the creation of
FileStream objects.

	System.IO.MemoryStream

	Creates a stream whose backing store is memory.

	System.IO.Path

	Performs operations on String instances that contain file or directory path information. These operations are performed in a cross-platform manner.

	System.IO.TextReader

	Represents a reader that can read a sequential series of characters.

	System.IO.StreamReader

	Implements a TextReader that reads characters from a byte stream in a particular encoding.

	System.IO.TextWriter

	Represents a writer that can write a sequential series of characters.

	System.IO.StreamWriter

	Implements a TextWriter for writing characters to a stream in a particular encoding.

	System.IO.StringReader

	Implements a TextReader that reads from a string.

	System.IO.StringWriter

	Implements a TextWriter for writing information to a string.

	System.IO.Compression.DeflateStream

	Provides methods and properties used to compress and decompress streams using the Deflate algorithm.

	System.IO.Compression.GZipStream

	Provides methods and properties used to compress and decompress streams using the GZip algorithm.

	System.IO.FileSystemWatcher

	Listens to the filesystem change notifications and raises events when a directory or file in a directory changes.

Table 6-7. Security

	Class
	Description

	System.Security.Principal.​Win⁠dowsIdentity

	Represents a Windows user.

	System.Security.Principal.​Win⁠dowsPrincipal

	Allows code to check the Windows group membership of a Windows user.

	System.Security.Princi⁠pal.​Well⁠KnownSidType

	Defines a set of commonly used security identifiers (SIDs).

	System.Security.Principal.​Win⁠dowsBuiltInRole

	Specifies common roles to be used with IsInRole.

	System.Security.SecureString

	Represents text that should be kept confidential. The text is encrypted for privacy when being used and deleted from computer memory when no longer needed.

	System.Security.​Cryptography.​TripleDESCryptoServicePro⁠vider

	Defines a wrapper object to access the cryptographic service provider (CSP) version of the TripleDES algorithm.

	System.Security.​Cryptogra⁠phy.​PasswordDeriveBytes

	Derives a key from a password using an extension of the PBKDF1 algorithm.

	System.Security.Cryptogra⁠phy.​SHA1

	Computes the SHA1 hash for the input data.

	System.Security.Access​Con⁠trol.FileSystemSecurity

	Represents the access control and audit security for a file or directory.

	System.Security.Access​Con⁠trol.RegistrySecurity

	Represents the Windows access control security for a registry key.

Table 6-8. User interface

	Class
	Description

	System.Windows.Forms.Form

	Represents a window or dialog box that makes up an application’s user interface.

	System.Windows.Forms.FlowLayoutPanel

	Represents a panel that dynamically lays out its contents.

Table 6-9. Image manipulation

	Class
	Description

	System.Drawing.Image

	A class that provides functionality for the Bitmap and Metafile classes.

	System.Drawing.Bitmap

	Encapsulates a GDI+ bitmap, which consists of the pixel data for a graphics image and its attributes. A bitmap is an object used to work with images defined by pixel data.

Table 6-10. Networking

	Class
	Description

	System.Uri

	Provides an object representation of a uniform resource identifier (URI) and easy access to the parts of the URI.

	System.Net.NetworkCredential

	Provides credentials for password-based authentication schemes such as basic, digest, Kerberos authentication, and NTLM.

	System.Net.Dns

	Provides simple domain name resolution functionality.

	System.Net.FtpWebRequest

	Implements a File Transfer Protocol (FTP) client.

	System.Net.HttpWebRequest

	Provides an HTTP-specific implementation of the WebRequest class.

	System.Net.WebClient

	Provides common methods for sending data to and receiving data from a resource identified by a URI.

	System.Net.Sockets.TcpClient

	Provides client connections for TCP network services.

	System.Net.Mail.MailAddress

	Represents the address of an electronic mail sender or recipient.

	System.Net.Mail.MailMessage

	Represents an email message that can be sent using the SmtpClient class.

	System.Net.Mail.SmtpClient

	Allows applications to send email by using the Simple Mail Transfer Protocol (SMTP).

	System.IO.Ports.SerialPort

	Represents a serial port resource.

	System.Web.HttpUtility

	Provides methods for encoding and decoding URLs when processing web requests.

Table 6-11. XML

	Class
	Description

	System.Xml.XmlTextWriter

	Represents a writer that provides a fast, noncached, forward-only way of generating streams or files containing XML data that conforms to the W3C Extensible Markup Language (XML) 1.0 and the namespaces in XML recommendations.

	System.Xml.XmlDocument

	Represents an XML document.

Table 6-12. Windows Management Instrumentation (WMI)

	Class
	Description

	System.Management.Man⁠age⁠men⁠t​Object

	Represents a WMI instance.

	System.Management.ManagementClass

	Represents a management class. A management class is a WMI class such as Win32_LogicalDisk (which can represent a disk drive) or Win32_Process (which represents a process such as an instance of Notepad.exe). The members of this class enable you to access WMI data using a specific WMI class path. For more information, see “Win32 Classes” in the official Windows Management Instrumentation documentation.

	System.Management.Manage⁠men⁠t​ObjectSearcher

	Retrieves a collection of WMI management objects based on a specified query. This class is one of the more commonly used entry points to retrieving management information. For example, it can be used to enumerate all disk drives, network adapters, processes, and many more management objects on a system or to query for all network connections that are up, services that are paused, and so on. When instantiated, an instance of this class takes as input a WMI query represented in an
ObjectQuery or its derivatives, and optionally a ManagementScope representing the WMI namespace to execute the query in. It can also take additional advanced options in an
EnumerationOptions. When the Get method on this object is invoked, the Management​ObjectSearcher executes the given query in the specified scope and returns a collection of management objects that match the query in a Management​ObjectCollection.

	System.Management.ManagementDateTimeConverter

	Provides methods to convert DMTF datetime and time intervals to CLR-compliant DateTime and
TimeSpan formats, and vice versa.

	System.Management.Management​EventWatcher

	Subscribes to temporary event notifications based on a specified event query.

Table 6-13. Active Directory

	Class
	Description

	System.DirectoryServices.​Direc⁠tor⁠ySearcher

	Performs queries against Active Directory.

	System.DirectoryServices.​Direc⁠tor⁠yEntry

	The DirectoryEntry class encapsulates a node or object in the Active Directory hierarchy.

Table 6-14. Database

	Class
	Description

	System.Data.DataSet

	Represents an in-memory cache of data.

	System.Data.DataTable

	Represents one table of in-memory data.

	System.Data.SqlClient.​SqlCom⁠mand

	Represents a Transact-SQL statement or stored procedure to execute against a SQL Server database.

	System.Data.SqlClient.​SqlCon⁠nection

	Represents an open connection to a SQL Server database.

	System.Data.SqlClient.​SqlDa⁠taA⁠dapter

	Represents a set of data commands and a database connection that are used to fill the DataSet and update a SQL Server database.

	System.Data.Odbc.OdbcCommand

	Represents a SQL statement or stored procedure to execute against a data source.

	System.Data.Odbc.​Odbc⁠Con⁠nec⁠tion

	Represents an open connection to a data source.

	System.Data.Odbc.OdbcData​Adapter

	Represents a set of data commands and a connection to a data source that are used to fill the DataSet and update the data source.

Table 6-15. Message queuing

	Class
	Description

	
System.Messaging.MessageQueue

	Provides access to a queue on a Message Queuing server.

Table 6-16. Transactions

	Class
	Description

	System.Transac⁠tions.​
Transaction

	Represents a transaction.

Chapter 7. WMI Reference

The Windows Management Instrumentation (WMI) facilities in Windows offer thousands of classes that provide information of interest to administrators. Table 7-1 lists the categories and subcategories covered by WMI and can be used to get a general idea of the scope of WMI classes. Table 7-2 provides a selected subset of the most useful WMI classes. For more information about a category, search the official WMI documentation.

Table 7-1. WMI class categories and subcategories

	Category
	Subcategory

	Computer system hardware

	Cooling device, input device, mass storage, motherboard, controller and port, networking device, power, printing, telephony, video, and monitor

	Operating system

	COM, desktop, drivers, filesystem, job objects, memory and page files, multimedia audio/visual, networking, operating system events, operating system settings, processes, registry, scheduler jobs, security, services, shares, Start menu, storage, users, Windows NT event log, Windows product activation

	WMI Service Management

	WMI configuration, WMI management

	General

	Installed applications, performance counter, security descriptor

Table 7-2. Selected WMI classes

	Class
	Description

	CIM_DataFile

	Represents a named collection of data or executable code. Currently, the provider returns files on fixed and mapped logical disks. In the future, only instances of files on local fixed disks will be returned.

	Win32_BaseBoard

	Represents a baseboard, which is also known as a motherboard or system board.

	Win32_BIOS

	Represents the attributes of the computer system’s basic input/output services (BIOS) that are installed on a computer.

	Win32_BootConfiguration

	Represents the boot configuration of a Windows system.

	Win32_CacheMemory

	Represents internal and external cache memory on a computer system.

	Win32_CDROMDrive

	Represents a CD-ROM drive on a Windows computer system. Be aware that the name of the drive does not correspond to the logical drive letter assigned to the device.

	Win32_ComputerSystem

	Represents a computer system in a Windows environment.

	Win32_ComputerSystemProduct

	Represents a product. This includes software and hardware used on this computer system.

	Win32_DCOMApplication

	Represents the properties of a DCOM application.

	Win32_Desktop

	Represents the common characteristics of a user’s desktop. The properties of this class can be modified by the user to customize the desktop.

	Win32_DesktopMonitor

	Represents the type of monitor or display device attached to the computer system.

	Win32_DeviceMemory​Address

	Represents a device memory address on a Windows system.

	Win32_Directory

	Represents a directory entry on a Windows computer system. A directory is a type of file that logically groups data files and provides path information for the grouped files. Win32_Directory does not include directories of network drives.

	Win32_DiskDrive

	Represents a physical disk drive as seen by a computer running the Windows operating system. Any interface to a Windows physical disk drive is a descendant (or member) of this class. The features of the disk drive seen through this object correspond to the logical and management characteristics of the drive. In some cases, this may not reflect the actual physical characteristics of the device. Any object based on another logical device would not be a member of this class.

	Win32_DiskPartition

	Represents the capabilities and management capacity of a partitioned area of a physical disk on a Windows system (for example, Disk #0, Partition #1).

	Win32_DiskQuota

	Tracks disk space usage for NTFS filesystem volumes. A system administrator can configure Windows to prevent further disk space use and log an event when a user exceeds a specified disk space limit. An administrator can also log an event when a user exceeds a specified disk space warning level. This class is new in Windows XP.

	Win32_DMAChannel

	Represents a direct memory access (DMA) channel on a Windows computer system. DMA is a method of moving data from a device to memory (or vice versa) without the help of the microprocessor. The system board uses a DMA controller to handle a fixed number of channels, each of which can be used by one (and only one) device at a time.

	Win32_Environment

	Represents an environment or system environment setting on a Windows computer system. Querying this class returns environment variables found in HKLM\System\CurrentControlSet\Control\Sessionmanager\Environment as well as HKEY_USERS\<user sid>\Environment.

	Win32_Group

	Represents data about a group account. A group account allows access privileges to be changed for a list of users (for example, Administrators).

	Win32_IDEController

	Manages the capabilities of an integrated device electronics (IDE) controller device.

	Win32_IRQResource

	Represents an interrupt request line (IRQ) number on a Windows computer system. An interrupt request is a signal sent to the CPU by a device or program for time-critical events. IRQ can be hardware- or software-based.

	Win32_LoadOrderGroup

	Represents a group of system services that define execution dependencies. The services must be initiated in the order specified by the Load Order Group, as the services are dependent on one another. These dependent services require the presence of the antecedent services to function correctly. The data in this class is derived by the provider from the registry key System\CurrentControlSet\Control\GroupOrderList.

	Win32_LogicalDisk

	Represents a data source that resolves to an actual local storage device on a Windows system.

	Win32_LogonSession

	Describes the logon session or sessions associated with a user logged on to Windows NT or Windows 2000.

	Win32_NetworkAdapter

	Represents a network adapter of a computer running on a Windows operating system.

	Win32_NetworkAdapter​Con⁠figuration

	Represents the attributes and behaviors of a network adapter. This class includes extra properties and methods that support the management of the TCP/IP and Internetworking Packet Exchange (IPX) protocols that are independent from the network adapter.

	WIN32_NetworkClient

	Represents a network client on a Windows system. Any computer system on the network with a client relationship to the system is a descendant (or member) of this class (for example, a computer running Windows 2000 Workstation or Windows 98 that is part of a Windows 2000 domain).

	Win32_NetworkConnection

	Represents an active network connection in a Windows environment.

	Win32_NetworkLogin​Pro⁠file

	Represents the network login information of a specific user on a Windows system. This includes but is not limited to password status, access privileges, disk quotas, and login directory paths.

	Win32_NetworkProtocol

	Represents a protocol and its network characteristics on a Win32 computer system.

	Win32_NTDomain

	Represents a Windows NT domain.

	Win32_NTEventlogFile

	Represents a logical file or directory of Windows NT events. The file is also known as the event log.

	Win32_NTLogEvent

	Used to translate instances from the Windows NT event log. An application must have SeSecurityPrivilege to receive events from the security event log; otherwise, “Access Denied” is returned to the application.

	Win32_OnBoardDevice

	Represents common adapter devices built into the motherboard (system board).

	Win32_OperatingSystem

	Represents an operating system installed on a computer running on a Windows operating system. Any operating system that can be installed on a Windows system is a descendant or member of this class. Win32_OperatingSystem is a singleton class. To get the single instance, use @ for the key.

Windows Server 2003, Windows XP, Windows 2000, and Windows NT 4.0: If a computer has multiple operating systems installed, this class returns only an instance for the currently active operating system.

	Win32_OSRecovery​Con⁠figu⁠ration

	Represents the types of information that will be gathered from memory when the operating system fails. This includes boot failures and system crashes.

	Win32_PageFileSetting

	Represents the settings of a page file. Information contained within objects instantiated from this class specifies the page file parameters used when the file is created at system startup. The properties in this class can be modified and deferred until startup. These settings are different from the runtime state of a page file expressed through the associated class Win32_PageFileUsage.

	Win32_PageFileUsage

	Represents the file used for handling virtual memory file swapping on a Win32 system. Information contained within objects instantiated from this class specifies the runtime state of the page file.

	Win32_PerfRawData_PerfNet_Server

	Provides raw data from performance counters that monitor communications using the WINS Server service.

	Win32_PhysicalMemory​Array

	Represents details about the computer system physical memory. This includes the number of memory devices, memory capacity available, and memory type (for example, system or video memory).

	Win32_PortConnector

	Represents physical connection ports, such as DB-25 pin male, Centronics, or PS/2.

	Win32_PortResource

	Represents an I/O port on a Windows computer system.

	Win32_Printer

	Represents a device connected to a computer running on a Microsoft Windows operating system that can produce a printed image or text on paper or another medium.

	Win32_Printer​Con⁠fig⁠ura⁠tion

	Represents the configuration for a printer device. This includes capabilities such as resolution, color, fonts, and orientation.

	Win32_PrintJob

	Represents a print job generated by a Windows application. Any unit of work generated by the Print command of an application that is running on a computer running on a Windows operating system is a descendant or member of this class.

	Win32_Process

	Represents a process on an operating system.

	Win32_Processor

	Represents a device that can interpret a sequence of instructions on a computer running on a Windows operating system. On a multiprocessor computer, one instance of the Win32_Processor class exists for each processor.

	Win32_Product

	Represents products as they are installed by Windows Installer. A product generally correlates to one installation package. For information about support or requirements for installation of a specific operating system, visit the Microsoft developer documentation site and search for “Operating System Availability of WMI Components.”

	Win32_QuickFix​Engi⁠neer⁠ing

	Represents system-wide Quick Fix Engineering (QFE) or updates that have been applied to the current operating system.

	Win32_QuotaSetting

	Contains setting information for disk quotas on a volume.

	Win32_Registry

	Represents the system registry on a Windows computer system.

	Win32_ScheduledJob

	Represents a job created with the AT command. The Win32_ScheduledJob class does not represent a job created with the Scheduled Task Wizard from the Control Panel. You cannot change a task created by WMI in the Scheduled Tasks UI.

Windows 2000 and Windows NT 4.0: You can use the Scheduled Tasks UI to modify the task you originally created with WMI. However, although the task is successfully modified, you can no longer access the task using WMI.

Each job scheduled against the schedule service is stored persistently (the scheduler can start a job after a reboot) and is executed at the specified time and day of the week or month. If the computer is not active or if the scheduled service is not running at the specified job time, the schedule service runs the specified job on the next day at the specified time.

Jobs are scheduled according to Universal Coordinated Time (UTC) with bias offset from Greenwich Mean Time (GMT), which means that a job can be specified using any time zone. The Win32_ScheduledJob class returns the local time with UTC offset when enumerating an object, and converts to local time when creating new jobs. For example, a job specified to run on a computer in Boston at 10:30 p.m. Monday PST will be scheduled to run locally at 1:30 a.m. Tuesday EST. Note that a client must take into account whether daylight saving time is in operation on the local computer, and if it is, then subtract a bias of 60 minutes from the UTC offset.

	Win32_SCSIController

	Represents a SCSI controller on a Windows system.

	Win32_Service

	Represents a service on a computer running on a Microsoft Windows operating system. A service application conforms to the interface rules of the Service Control Manager (SCM), and can be started by a user automatically at system start through the Services Control Panel utility or by an application that uses the service functions included in the Windows API. Services can start when there are no users logged on to the computer.

	Win32_Share

	Represents a shared resource on a Windows system. This may be a disk drive, printer, interprocess communication, or other shareable device.

	Win32_SoftwareElement

	Represents a software element, part of a software feature (a distinct subset of a product, which may contain one or more elements). Each software element is defined in a Win32_SoftwareElement instance, and the association between a feature and its Win32_Software​Feature instance is defined in the Win32_SoftwareFeature​Soft⁠war⁠eElements association class. For information about support or requirements for installation on a specific operating system, visit the Microsoft developer documentation site and search for “Operating System Availability of WMI Components.”

	Win32_SoftwareFeature

	Represents a distinct subset of a product that consists of one or more software elements. Each software element is defined in a Win32_SoftwareElement instance, and the association between a feature and its Win32_Software​Fea⁠ture instance is defined in the Win32_SoftwareFeature​Soft⁠wareElements association class. For information about support or requirements for installation on a specific operating system, visit the Microsoft developer documentation site and search for “Operating System Availability of WMI Components.”

	Win32_SoundDevice

	Represents the properties of a sound device on a Windows computer system.

	Win32_StartupCommand

	Represents a command that runs automatically when a user logs on to the computer system.

	Win32_SystemAccount

	Represents a system account. The system account is used by the operating system and services that run under Windows NT. There are many services and processes within Windows NT that need the capability to log on internally—for example, during a Windows NT installation. The system account was designed for that purpose.

	Win32_SystemDriver

	Represents the system driver for a base service.

	Win32_SystemEnclosure

	Represents the properties that are associated with a physical system enclosure.

	Win32_SystemSlot

	Represents physical connection points, including ports, motherboard slots and peripherals, and proprietary connection points.

	Win32_TapeDrive

	Represents a tape drive on a Windows computer. Tape drives are primarily distinguished by the fact that they can be accessed only sequentially.

	Win32_TemperatureProbe

	Represents the properties of a temperature sensor (e.g., electronic thermometer).

	Win32_TimeZone

	Represents the time zone information for a Windows system, which includes changes required for the daylight saving time transition.

	Win32_UserAccount

	Contains information about a user account on a computer running on a Windows operating system.

Because both the Name and Domain are key properties, enumerating Win32_UserAccount on a large network can affect performance negatively. Calling
GetObject or querying for a specific instance has less impact.

	Win32_VoltageProbe

	Represents the properties of a voltage sensor (electronic voltmeter).

	Win32_VolumeQuota​Set⁠ting

	Relates disk quota settings with a specific disk volume. Windows 2000/NT: This class is not available.

	Win32_WMISetting

	Contains the operational parameters for the WMI service. This class can have only one instance, which always exists for each Windows system and cannot be deleted. Additional instances cannot be created.

Chapter 8. Selected COM Objects and
Their Uses

As an extensibility and administration interface, many applications expose useful functionality through COM objects. Although PowerShell handles many of these tasks directly, many COM objects still provide significant value.

Table 8-1 lists a selection of the COM objects most useful to system administrators.

Table 8-1. COM identifiers and descriptions

	Identifier
	Description

	Access.Application

	Allows for interaction and automation of Microsoft Access.

	Agent.Control

	Allows for the control of Microsoft Agent 3D animated characters.

	AutoItX3.Control

	(nondefault) Provides access to Windows Automation via the AutoIt administration tool.

	CEnroll.CEnroll

	Provides access to certificate enrollment services.

	Certificate Authority.Request

	Provides access to a request to a certificate authority.

	COMAdmin.COMAdminCatalog

	Provides access to and management of the Windows
COM+ catalog.

	Excel.Application

	Allows for interaction and automation of Microsoft Excel.

	Excel.Sheet

	Allows for interaction with Microsoft Excel worksheets.

	HNetCfg.FwMgr

	Provides access to the management functionality of the Windows Firewall.

	HNetCfg.HNetShare

	Provides access to the management functionality of Windows Connection Sharing.

	HTMLFile

	Allows for interaction and authoring of a new Internet Explorer document.

	InfoPath.Application

	Allows for interaction and automation of Microsoft InfoPath.

	InternetExplorer. Application

	Allows for interaction and automation of Internet Explorer.

	IXSSO.Query

	Allows for interaction with Microsoft Index Server.

	IXSSO.Util

	Provides access to utilities used along with the IXSSO.Query object.

	LegitCheckControl.LegitCheck

	Provide access to information about Windows Genuine Advantage status on the current computer.

	MakeCab.MakeCab

	Provides functionality to create and manage cabinet (.cab) files.

	MAPI.Session

	Provides access to a Messaging Application Programming Interface (MAPI) session, such as folders, messages, and the address book.

	Messenger.MessengerApp

	Allows for interaction and automation of Messenger.

	Microsoft.FeedsManager

	Allows for interaction with the Microsoft RSS feed platform.

	Microsoft.ISAdm

	Provides management of Microsoft Index Server.

	Microsoft.Update. AutoUpdate

	Provides management of the auto update schedule for Microsoft Update.

	Microsoft.Update.Installer

	Allows for installation of updates from Microsoft Update.

	Microsoft.Update.Searcher

	Provides search functionality for updates from Microsoft Update.

	Microsoft.Update.Session

	Provides access to local information about Microsoft Update history.

	Microsoft.Update.SystemInfo

	Provides access to information related to Microsoft Update for the current system.

	MMC20.Application

	Allows for interaction and automation of Microsoft Management Console (MMC).

	MSScriptControl. ScriptControl

	Allows for the evaluation and control of WSH scripts.

	Msxml2.XSLTemplate

	Allows for processing of XSL transforms.

	Outlook.Application

	Allows for interaction and automation of your email, calendar, contacts, tasks, and more through Microsoft Outlook.

	OutlookExpress.MessageList

	Allows for interaction and automation of your email through Microsoft Outlook Express.

	PowerPoint.Application

	Allows for interaction and automation of Microsoft PowerPoint.

	Publisher.Application

	Allows for interaction and automation of Microsoft Publisher.

	RDS.DataSpace

	Provides access to proxies of Remote DataSpace business objects.

	SAPI.SpVoice

	Provides access to the Microsoft Speech API.

	Scripting.FileSystemObject

	Provides access to the computer’s filesystem. Most functionality is available more directly through PowerShell or through PowerShell’s support for the .NET Framework.

	Scripting.Signer

	Provides management of digital signatures on WSH files.

	Scriptlet.TypeLib

	Allows the dynamic creation of scripting type library (.tlb) files.

	ScriptPW.Password

	Allows for the masked input of plain-text passwords. When possible, you should avoid this, preferring the Read-Host cmdlet with the -AsSecureString parameter.

	SharePoint.OpenDocuments

	Allows for interaction with Microsoft SharePoint Services.

	Shell.Application

	Provides access to aspects of the Windows Explorer Shell application, such as managing windows, files and folders, and the current session.

	Shell.LocalMachine

	Provides access to information about the current machine related to the Windows shell.

	Shell.User

	Provides access to aspects of the current user’s Windows session and profile.

	SQLDMO.SQLServer

	Provides access to the management functionality of Microsoft SQL Server.

	Vim.Application

	(nondefault) Allows for interaction and automation of the VIM editor.

	WIA.CommonDialog

	Provides access to image capture through the Windows Image Acquisition facilities.

	WMPlayer.OCX

	Allows for interaction and automation of Windows Media Player.

	Word.Application

	Allows for interaction and automation of Microsoft Word.

	Word.Document

	Allows for interaction with Microsoft Word documents.

	WScript.Network

	Provides access to aspects of a networked Windows environment, such as printers and network drives, as well as computer and domain information.

	WScript.Shell

	Provides access to aspects of the Windows Shell, such as applications, shortcuts, environment variables, the registry, and the operating environment.

	WSHController

	Allows the execution of WSH scripts on remote computers.

Chapter 9. Selected Events and Their Uses

PowerShell’s eventing commands give you access to events from the .NET Framework, as well as events surfaced by Windows Management Instrumentation (WMI). Table 9-1 lists a selection of .NET events. Table 9-2 lists a selection of WMI events.

Table 9-1. Selected .NET events

	Type
	Event
	Description

	System.AppDomain

	
AssemblyLoad

	Occurs when an assembly is loaded.

	System.AppDomain

	TypeResolve

	Occurs when the resolution of a type fails.

	System.AppDomain

	ResourceResolve

	Occurs when the resolution of a resource fails because the resource is not a valid linked or embedded resource in the assembly.

	System.AppDomain

	AssemblyResolve

	Occurs when the resolution of an assembly fails.

	System.AppDomain

	ReflectionOnly​Assem⁠blyResolve

	Occurs when the resolution of an assembly fails in the reflection-only context.

	System.AppDomain

	UnhandledException

	Occurs when an exception is not caught.

	System.Console

	CancelKeyPress

	Occurs when the Control modifier key (Ctrl) and C console key (C) are pressed simultaneously (Ctrl+C).

	Microsoft.Win32.​SystemEvents

	DisplaySettings​Chang⁠ing

	Occurs when the display settings are changing.

	Microsoft.Win32.​SystemEvents

	DisplaySettingsChanged

	Occurs when the user changes the display settings.

	Microsoft.Win32.​SystemEvents

	InstalledFontsChanged

	Occurs when the user adds fonts to or removes fonts from the system.

	Microsoft.Win32.​SystemEvents

	LowMemory

	Occurs when the system is running out of available RAM.

	Microsoft.Win32.​SystemEvents

	PaletteChanged

	Occurs when the user switches to an application that uses a different palette.

	Microsoft.Win32.​SystemEvents

	PowerModeChanged

	Occurs when the user suspends or resumes the system.

	Microsoft.Win32.​SystemEvents

	SessionEnded

	Occurs when the user is logging off or shutting down the system.

	Microsoft.Win32.​SystemEvents

	SessionEnding

	Occurs when the user is trying to log off or shut down the system.

	Microsoft.Win32.​SystemEvents

	SessionSwitch

	Occurs when the currently logged-in user has changed.

	Microsoft.Win32.​SystemEvents

	TimeChanged

	Occurs when the user changes the time on the system clock.

	Microsoft.Win32.​SystemEvents

	UserPreferenceChanged

	Occurs when a user preference has changed.

	Microsoft.Win32.​SystemEvents

	
UserPreferenceChanging

	Occurs when a user preference is changing.

	System.Net.​WebClient

	OpenReadCompleted

	Occurs when an asynchronous operation to open a stream containing a resource completes.

	System.Net.​WebClient

	OpenWriteCompleted

	Occurs when an asynchronous operation to open a stream to write data to a resource completes.

	System.Net.​WebClient

	DownloadString​Com⁠ple⁠ted

	Occurs when an asynchronous resource-download operation completes.

	System.Net.​WebClient

	DownloadDataCompleted

	Occurs when an asynchronous data download operation completes.

	System.Net.​WebClient

	DownloadFileCompleted

	Occurs when an asynchronous file download operation completes.

	System.Net.​WebClient

	UploadStringCompleted

	Occurs when an asynchronous string-upload operation completes.

	System.Net.​WebClient

	UploadDataCompleted

	Occurs when an asynchronous data-upload operation completes.

	System.Net.​WebClient

	UploadFileCompleted

	Occurs when an asynchronous file-upload operation completes.

	System.Net.​WebClient

	UploadValuesCompleted

	Occurs when an asynchronous upload of a name/value collection completes.

	System.Net.​WebClient

	DownloadProgres⁠s​Changed

	Occurs when an asynchronous download operation successfully transfers some or all of the data.

	System.Net.​WebClient

	UploadProgressChanged

	Occurs when an asynchronous upload operation successfully transfers some or all of the data.

	System.Net.​Sock⁠ets.Socket​AsyncEventArgs

	Completed

	The event used to complete an asynchronous operation.

	System.Net.​Net⁠work​Informa⁠tion.​Net⁠workChange

	NetworkAvailabilityChanged

	Occurs when the availability of the network changes.

	System.Net.​Net⁠work​Informa⁠tion.​Net⁠workChange

	NetworkAddressChanged

	Occurs when the IP address of a network interface changes.

	System.IO.​FileSystemWatcher

	Changed

	Occurs when a file or directory in the specified path is changed.

	System.IO.​FileSystemWatcher

	Created

	Occurs when a file or directory in the specified path is created.

	System.IO.​FileSystemWatcher

	Deleted

	Occurs when a file or directory in the specified path is deleted.

	System.IO.​FileSystemWatcher

	Renamed

	Occurs when a file or directory in the specified path is renamed.

	System.​Timers.Timer

	Elapsed

	Occurs when the interval elapses.

	System.​Diag⁠nos⁠tics.​Even⁠tLog

	EntryWritten

	Occurs when an entry is written to an event log on the local computer.

	System.​Diag⁠nos⁠tics.​Pro⁠cess

	OutputDataReceived

	Occurs when an application writes to its redirected StandardOutput stream.

	System.​Diag⁠nos⁠tics.​Pro⁠cess

	ErrorDataReceived

	Occurs when an application writes to its redirected StandardError stream.

	System.​Diag⁠nos⁠tics.​Pro⁠cess

	Exited

	Occurs when a process exits.

	System.IO.Ports.​SerialPort

	ErrorReceived

	Represents the method that handles the error event of a
SerialPort object.

	System.IO.Ports.​SerialPort

	PinChanged

	Represents the method that will handle the serial pin changed event of a
SerialPort object.

	System.IO.Ports.​SerialPort

	DataReceived

	Represents the method that will handle the data received event of a SerialPort object.

	System.​Man⁠age⁠ment.​Automa⁠tion.Job

	StateChanged

	Event fired when the status of the job changes, such as when the job has completed in all runspaces or failed in any one runspace.

	System.​Man⁠age⁠ment.​Automa⁠tion.​Debug⁠ger

	DebuggerStop

	Event raised when PowerShell stops execution of the script and enters the debugger as the result of encountering a breakpoint or executing a step command.

	System.​Man⁠age⁠ment.​Automa⁠tion.​Debug⁠ger

	BreakpointUpdated

	Event raised when the breakpoint is updated, such as when it is enabled or disabled.

	System.​Man⁠age⁠ment.​Automa⁠tion.​Run⁠spa⁠ces.​Run⁠space

	StateChanged

	Event that is raised when the state of the runspace changes.

	System.​Man⁠age⁠ment.​Automa⁠tion.​Run⁠spa⁠ces.​Run⁠space

	AvailabilityChanged

	Event that is raised when the availability of the runspace changes, such as when the runspace becomes available and when it is busy.

	System.​Man⁠age⁠ment.​Automa⁠tion.​Run⁠spa⁠ces.​Pipe⁠line

	StateChanged

	Event raised when the state of the pipeline changes.

	System.​Man⁠age⁠ment.​Automa⁠tion.​Power⁠Shell

	InvocationStateChanged

	Event raised when the state of the pipeline of the PowerShell object changes.

	System.​Man⁠age⁠ment.​Automa⁠tion.​PSData​Collection[T]

	DataAdded

	Event that is fired after data is added to the collection.

	System.​Man⁠age⁠ment.​Automa⁠tion.PSData​Collection[T]

	Completed

	Event that is fired when the
Complete method is called to indicate that no more data is to be added to the collection.

	System.​Man⁠age⁠ment.​Automa⁠tion.​Run⁠spa⁠ces.​Run⁠spa⁠cePool

	StateChanged

	Event raised when the state of the runspace pool changes.

	System.​Man⁠age⁠ment.​Automa⁠tion.​Run⁠spa⁠ces.​Pipe⁠line​Reader[T]

	DataReady

	Event fired when data is added to the buffer.

	System.​Diag⁠nos⁠tics.​Event⁠ing.Reader.​Even⁠tLogWatcher

	EventRecordWritten

	Allows setting a delegate (event handler method) that gets called every time an event is published that matches the criteria specified in the event query for this object.

	System.Data.​Com⁠mon.​Db⁠Con⁠nec⁠tion

	StateChange

	Occurs when the state of the event changes.

	System.Data.​SqlClient.​SqlBulk⁠Copy

	SqlRowsCopied

	Occurs every time that the number of rows specified by the NotifyAfter property have been processed.

	System.Data.​SqlClient.​SqlCom⁠mand

	StatementCompleted

	Occurs when the execution of a Transact-SQL statement completes.

	System.Data.​SqlClient.​SqlCon⁠nection

	InfoMessage

	Occurs when SQL Server returns a warning or informational message.

	System.Data.​SqlClient.​SqlCon⁠nection

	StateChange

	Occurs when the state of the event changes.

	System.Data.​SqlClient.​SqlDa⁠taAdapter

	RowUpdated

	Occurs during Update after a command is executed against the data source. The attempt to update is made, so the event fires.

	System.Data.​SqlClient.​SqlDa⁠taAdapter

	RowUpdating

	Occurs during Update before a command is executed against the data source. The attempt to update is made, so the event fires.

	System.Data.​SqlClient.​SqlDa⁠taAdapter

	FillError

	Returned when an error occurs during a fill operation.

	System.Data.​SqlClient.​SqlDe⁠pendency

	OnChange

	Occurs when a notification is received for any of the commands associated with this Sql​Dep⁠end⁠ency object.

Generic WMI Events

Some generic WMI events include the following:

	__InstanceCreationEvent

	
This event class generically represents the creation of instances in WMI providers, such as Processes, Services, Files, and more.

A registration for this generic event looks like:

$query = "SELECT * FROM __InstanceCreationEvent " +
 "WITHIN 5 " +
 "WHERE targetinstance is a
 'Win32_UserAccount'
Register-CimIndicationEvent -Query $query

	__InstanceDeletionEvent

	
This event class generically represents the removal of instances in WMI providers, such as Processes, Services, Files, and more.

A registration for this generic event looks like:

$query = "SELECT * FROM __InstanceDeletionEvent " +
 "WITHIN 5 " +
 "WHERE targetinstance is a
 'Win32_UserAccount'
Register-CimIndicationEvent -Query $query

	__InstanceModificationEvent

	
This event class generically represents the modification of instances in WMI providers, such as Processes, Services, Files, and more.

A registration for this generic event looks like:

$query = "SELECT * FROM __InstanceModificationEvent "
 + "WITHIN 5 " +
 "WHERE targetinstance is a
 'Win32_UserAccount'
Register-CimIndicationEvent -Query $query

Table 9-2. Selected WMI Events

	Event
	Description

	
Msft_WmiProvider_​Opera⁠tio⁠nEvent

	
The Msft_WmiProvider_​Opera⁠tionEvent event class is the root definition of all WMI provider events. A provider operation is defined as some execution on behalf of a client via WMI that results in one or more calls to a provider executable. The properties of this class define the identity of the provider associated with the operation being executed and is uniquely associated with instances of the class Msft_Providers. Internally, WMI can contain any number of objects that refer to a particular instance of
__Win32Provider since it differentiates each object based on whether the provider supports per-user or per-locale instantiation and also depending on where the provider is being hosted. Currently
TransactionIdentifier is always an empty string.

	
Win32_ComputerSystemEvent

	
This event class represents events related to a computer system.

	
Win32_ComputerShutdown​E⁠vent

	
This event class represents events when a computer has begun the process of shutting down.

	
Win32_IP4RouteTableEvent

	
The Win32_IP4RouteTable​Event class represents IP route change events resulting from the addition, removal, or modification of IP routes on the computer system.

	
RegistryEvent

	
The registry event classes allow you to subscribe to events that involve changes in hive subtrees, keys, and specific values.

	
RegistryKeyChangeEvent

	
The RegistryKeyChangeEvent class represents changes to a specific key. The changes apply only to the key, not its subkeys.

	
RegistryTreeChangeEvent

	
The RegistryTreeChangeEvent class represents changes to a key and its subkeys.

	
RegistryValueChangeEvent

	
The RegistryValueChange​Event class represents changes to a single value of a specific key.

	
Win32_SystemTrace

	
The SystemTrace class is the base class for all system trace events. System trace events are fired by the kernel logger via the event tracing API.

	
Win32_ProcessTrace

	
This event is the base event for process events.

	
Win32_ProcessStartTrace

	
The ProcessStartTrace event class indicates a new process has started.

	
Win32_ProcessStopTrace

	
The ProcessStopTrace event class indicates a process has terminated.

	
Win32_ModuleTrace

	
The ModuleTrace event class is the base event for module events.

	
Win32_ModuleLoadTrace

	
The ModuleLoadTrace event class indicates a process has loaded a new module.

	
Win32_ThreadTrace

	
The ThreadTrace event class is the base event for thread events.

	
Win32_ThreadStartTrace

	
The ThreadStartTrace event class indicates a new thread has started.

	
Win32_ThreadStopTrace

	
The ThreadStopTrace event class indicates a thread has terminated.

	
Win32_PowerManagement​Event

	
The Win32_PowerManagement​Event class represents power management events resulting from power state changes. These state changes are associated with either the Advanced Power Management (APM) or the Advanced Configuration and Power Interface (ACPI) system management protocols.

	
Win32_DeviceChangeEvent

	
The Win32_DeviceChangeEvent class represents device change events resulting from the addition, removal, or modification of devices on the computer system. This includes changes in the hardware configuration (docking and undocking), the hardware state, or newly mapped devices (mapping of a network drive). For example, a device has changed when a WM_DEVICECHANGE message is sent.

	
Win32_SystemConfigurationChangeEvent

	
The Win32_System​Con⁠fig⁠ura⁠tion⁠Change⁠Event is an event class that indicates the device list on the system has been refreshed, meaning a device has been added or removed or the configuration changed. This event is fired when the Windows message “DevMgrRefreshOn<ComputerName>” is sent. The exact change to the device list is not contained in the message, and therefore a device refresh is required in order to obtain the current system settings. Examples of configuration changes affected are IRQ settings, COM ports, and BIOS version, to name a few.

	
Win32_VolumeChangeEvent

	
The Win32_VolumeChangeEvent class represents a local drive event resulting from the addition of a drive letter or mounted drive on the computer system (e.g., CD-ROM). Network drives are not currently supported.

Chapter 10. Standard PowerShell Verbs

Cmdlets and scripts should be named using a Verb-Noun syntax (e.g., Get-ChildItem). The official guidance is that, with rare exception, cmdlets should use the standard PowerShell verbs. They should avoid any synonyms or concepts that can be mapped to the standard. This allows administrators to quickly understand a set of cmdlets that use a new noun.

Note

To quickly access this list (without the definitions), type Get-Verb.

Verbs should be phrased in the present tense, and nouns should be singular. Tables 10-1 through 10-6 list the different categories of standard PowerShell verbs.

Table 10-1. Standard PowerShell common verbs

	Verb
	Meaning
	Synonyms

	Add

	Adds a resource to a container or attaches an element to another element

	Append, Attach, Concatenate, Insert

	Clear

	Removes all elements from a container

	Flush, Erase, Release, Unmark, Unset, Nullify

	Close

	Removes access to a resource

	Shut, Seal

	Copy

	Copies a resource to another name or container

	Duplicate, Clone, Replicate

	Enter

	Sets a resource as a context

	Push, Telnet, Open

	Exit

	Returns to the context that was present before a new context was entered

	Pop, Disconnect

	Find

	Searches within an unknown context for a desired item

	Dig, Discover

	Format

	Converts an item to a specified structure or layout

	Layout, Arrange

	Get

	Retrieves data

	Read, Open, Cat, Type, Dir, Obtain, Dump, Acquire, Examine, Find, Search

	Hide

	Makes a display not visible

	Suppress

	Join

	Joins a resource

	Combine, Unite, Connect, Associate

	Lock

	Locks a resource

	Restrict, Bar

	Move

	Moves a resource

	Transfer, Name, Migrate

	New

	Creates a new resource

	Create, Generate, Build, Make, Allocate

	Open

	Enables access to a resource

	Release, Unseal

	Optimize

	Increases the effectiveness of a resource

	Improve, Fix

	Pop

	Removes an item from the top of a stack

	Remove, Paste

	Push

	Puts an item onto the top of a stack

	Put, Add, Copy

	Redo

	Repeats an action or reverts the action of an Undo

	Repeat, Retry, Revert

	Resize

	Changes the size of a resource

	Change, Grow, Shrink

	Remove

	Removes a resource from a container

	Delete, Kill

	Rename

	Gives a resource a new name

	Ren, Swap

	Reset

	Restores a resource to a predefined or original state

	Restore, Revert

	Select

	Creates a subset of data from a larger data set

	Pick, Grep, Filter

	Search

	Finds a resource (or summary information about that resource) in a collection (does not actually retrieve the resource but provides information to be used when retrieving it)

	Find, Get, Grep, Select

	Set

	Places data

	Write, Assign, Configure

	Show

	Retrieves, formats, and displays information

	Display, Report

	Skip

	Bypasses an element in a seek or navigation

	Bypass, Jump

	Split

	Separates data into smaller elements

	Divide, Chop, Parse

	Step

	Moves a process or navigation forward by one unit

	Next, Iterate

	Switch

	Alternates the state of a resource between different alternatives or options

	Toggle, Alter, Flip

	Undo

	Sets a resource to its previous state

	Revert, Abandon

	Unlock

	Unlocks a resource

	Free, Unrestrict

	Use

	Applies or associates a resource with a context

	With, Having

	Watch

	Continually monitors an item

	Monitor, Poll

Table 10-2. Standard PowerShell communication verbs

	Verb
	Meaning
	Synonyms

	Connect

	Connects a source to a destination

	Join, Telnet

	
Disconnect

	Disconnects a source from a destination

	Break, Logoff

	Read

	Acquires information from a nonconnected source

	Prompt, Get

	Receive

	Acquires information from a connected source

	Read, Accept, Peek

	Send

	Writes information to a connected destination

	Put, Broadcast, Mail

	Write

	Writes information to a nonconnected destination

	Puts, Print

Table 10-3. Standard PowerShell data verbs

	Verb
	Meaning
	Synonyms

	Backup

	Backs up data

	Save, Burn

	Checkpoint

	Creates a snapshot of the current state of data or its configuration

	Diff, StartTransaction

	Compare

	Compares a resource with another resource

	Diff, Bc

	Compress

	Reduces the size or resource usage of an item

	Zip, Squeeze, Archive

	Convert

	Changes from one representation to another when the cmdlet supports bidirectional conversion or conversion of many data types

	Change, Resize, Resample

	ConvertFrom

	Converts from one primary input to several supported outputs

	Export, Output, Out

	ConvertTo

	Converts from several supported inputs to one primary output

	Import, Input, In

	Dismount

	Detaches a name entity from a location in a namespace

	Dismount, Unlink

	Edit

	Modifies an item in place

	Change, Modify, Alter

	Expand

	Increases the size or resource usage of an item

	Extract, Unzip

	Export

	Stores the primary input resource into a backing store or interchange format

	Extract, Backup

	Group

	Combines an item with other related items

	Merge, Combine, Map

	Import

	Creates a primary output resource from a backing store or interchange format

	Load, Read

	Initialize

	Prepares a resource for use and initializes it to a default state

	Setup, Renew, Rebuild

	Limit

	Applies constraints to a resource

	Quota, Enforce

	Merge

	Creates a single data instance from multiple data sets

	Combine, Join

	Mount

	Attaches a named entity to a location in a namespace

	Attach, Link

	Out

	Sends data to a terminal location

	Print, Format, Send

	Publish

	Make a resource known or visible to others

	Deploy, Release, Install

	Restore

	Restores a resource to a set of conditions that have been predefined or set by a checkpoint

	Repair, Return, Fix

	Save

	Stores pending changes to a recoverable store

	Write, Retain, Submit

	Sync

	Synchronizes two resources with each other

	Push, Update

	Unpublish

	Removes a resource from public visibility

	Uninstall, Revert

	Update

	Updates or refreshes a resource

	Refresh, Renew, Index

Table 10-4. Standard PowerShell diagnostic verbs

	Verb
	Meaning
	Synonyms

	Debug

	Examines a resource, diagnoses operational problems

	Attach, Diagnose

	Measure

	Identifies resources consumed by an operation or retrieves statistics about a resource

	Calculate, Determine, Analyze

	Ping

	Determines whether a resource is active and responsive (in most instances, this should be replaced by the verb Test)

	Connect, Debug

	Repair

	Recovers an item from a damaged or broken state

	Fix, Recover, Rebuild

	Resolve

	Maps a shorthand representation to a more complete one

	Expand, Determine

	Test

	Verify the validity or consistency of a resource

	Diagnose, Verify, Analyze

	Trace

	Follow the activities of the resource

	Inspect, Dig

Table 10-5. Standard PowerShell lifecycle verbs

	Verb
	Meaning
	Synonyms

	Approve

	Gives approval or permission for an item or resource

	Allow, Let

	Assert

	Declares the state of an item or fact

	Verify, Check

	Build

	Creates an artifact (usually a binary or document) out of some set of input files (usually source code or declarative documents)

	Compile, Generate

	Complete

	Finalizes a pending operation

	Finalize, End

	Confirm

	Approves or acknowledges a resource or process

	Check, Validate

	Deny

	Disapproves or disallows a resource or process

	Fail, Halt

	Deploy

	Sends an application, website, or solution to a remote target[s] in such a way that a consumer of that solution can access it after deployment is complete

	Ship, Release

	Disable

	Configures an item to be unavailable

	Halt, Hide

	Enable

	Configures an item to be available

	Allow, Permit

	Install

	Places a resource in the specified location and optionally initializes it

	Setup, Configure

	Invoke

	Calls or launches an activity that cannot be stopped

	Run, Call, Perform

	Register

	Adds an item to a monitored or publishing resource

	Record, Submit, Journal, Subscribe

	Request

	Submits for consideration or approval

	Ask, Query

	Restart

	Stops an operation and starts it again

	Recycle, Hup

	Resume

	Begins an operation after it has been suspended

	Continue

	Start

	Begins an activity

	Launch, Initiate

	Stop

	Discontinues an activity

	Halt, End, Discontinue

	Submit

	Adds to a list of pending actions or sends for approval

	Send, Post

	Suspend

	Pauses an operation, but does not discontinue it

	Pause, Sleep, Break

	Uninstall

	Removes a resource from the specified location

	Remove, Clear, Clean

	Unregister

	Removes an item from a monitored or publishing resource

	Unsubscribe, Erase, Remove

	Wait

	Pauses until an expected event occurs

	Sleep, Pause, Join

Table 10-6. Standard PowerShell security verbs

	Verb
	Meaning
	Synonyms

	Block

	Restricts access to a resource

	Prevent, Limit, Deny

	Grant

	Grants access to a resource

	Allow, Enable

	Protect

	Limits access to a resource

	Encrypt, Seal

	Revoke

	Removes access to a resource

	Remove, Disable

	Unblock

	Removes a restriction of access to a resource

	Clear, Allow

	Unprotect

	Removes restrictions from a protected resource

	Decrypt, Decode

Index
Symbols
	!= (inequality) comparisons in XPath, XPath Quick Reference
	" " (quotation marks, double)	custom DateTime format specifier, Custom DateTime Format Strings
	in format strings, Custom Numeric Format Strings
	in strings, Literal and Expanding Strings

	# (hash symbol)	beginning single-line comments, Comments
	digit placeholder in format strings, Custom Numeric Format Strings
	to-end-of-line construct, Regular Expression Reference

	$ (dollar sign)	$ args special variable, Argument array
	$() expression subparse, Commands and Expressions
	$ErrorActionPreference automatic variable, Nonterminating Errors
	$executionContext.SessionState.InvokeCommand, Command Resolution
	$input special variable, Pipeline input
	$LastExitCode automatic variable, Exit statement
	$MyInvocation automatic variable, $MyInvocation automatic variable
	$profile automatic variable, Profiles
	$_ (or $PSItem) variable, Cmdlet keywords in commands, Terminating Errors
	$_ current object variable, Composable Commands
	in atomic zero-width assertions, Regular Expression Reference
	Get-Process cmdlet, Deep Integration of Objects
	in substitution patterns, Regular Expression Reference
	in variable names, Deep Integration of Objects, Variables

	% (percent sign)	%= modulus and assignment, Arithmetic Operators
	%c format specifier, Custom DateTime Format Strings
	%g or %gg format specifier, Custom DateTime Format Strings
	%H or %h format specifier, Custom DateTime Format Strings
	in format strings, Custom Numeric Format Strings
	modulus operator, Arithmetic Operators

	& (ampersand)	background operator, Invoking
	invoke/call operator, Invoking

	' ' (quotation marks, single)	custom DateTime format specifier, Custom DateTime Format Strings
	in format strings, Custom Numeric Format Strings
	in strings, Literal and Expanding Strings

	() (parentheses)	precedence control, Commands and Expressions
	in regular expressions, Regular Expression Reference, Regular Expression Reference

	* (asterisk)	*= multiplication and assignment, Arithmetic Operators
	*? quantifier, Regular Expression Reference
	in regular expressions, Regular Expression Reference
	multiplication operator, Arithmetic Operators
	wildcard in cmdlet parameters, Structured Commands (Cmdlets)

	+ (plus sign)	+= addition and assignment, Arithmetic Operators
	+? quantifier, Regular Expression Reference
	addition operator, Arithmetic Operators
	in regular expressions, Regular Expression Reference
	separating array ranges from explicit indexes, Array Slicing

	, (comma)	number scaling format specifier, Custom Numeric Format Strings
	thousands separator in format strings, Custom Numeric Format Strings

	- (minus sign)	–= subtraction and assignment, Arithmetic Operators

	. (dot)	.. XML node retrieval, XPath Quick Reference
	decimal point format specifier, Custom Numeric Format Strings
	dot notation, Deep Integration of Objects
	dot-sourcing, Dot-sourcing
	matching any character except newline, Regular Expression Reference

	/ (slash)	/= division and assignment, Arithmetic Operators
	date separator, Custom DateTime Format Strings
	division operator, Arithmetic Operators
	XML root, XPath Quick Reference

	0 (zero) format specifier, Custom Numeric Format Strings
	: (colon), time separator, Custom DateTime Format Strings
	; (semicolon), section separator in format strings, Custom Numeric Format Strings
	<## >, enclosing multiline comments, Comments
	<none> quantifier, Regular Expression Reference
	= equality comparison in XPath, XPath Quick Reference
	? (question mark)	(?.) null conditional operator, Instance Properties
	(?[]) null conditional array, Array Access
	alternation constructs, Regular Expression Reference
	grouping constructs, Regular Expression Reference
	other constructs, Regular Expression Reference
	in regular expressions, Regular Expression Reference

	@ (at sign)	@" and "@ enclosing here strings, Literal and Expanding Strings
	@() array cast syntax, Array Definitions
	@() list evaluation, Commands and Expressions, Array Definitions
	@{} hashtable access, Hashtable Definitions
	attribute selector in XPath, XPath Quick Reference
	{} splatting operator, Parameters

	[] (square brackets)	in arrays, Array Definitions, Array Access
	character classes, Regular Expression Reference
	command parameter names, Parameters
	filtering in XPath, XPath Quick Reference

	\ (backslash)	backreference construct, Regular Expression Reference
	escaped character, Regular Expression Reference

	^ (caret)	in atomic zero-width assertions, Regular Expression Reference
	negating character classes, Regular Expression Reference

	{} (braces) quantifier, Regular Expression Reference-Regular Expression Reference
	| (pipeline character)	alternation constructs, Regular Expression Reference
	composable commands, Composable Commands

	– (minus sign)	subtraction operator, Arithmetic Operators

A
	\a escaped character, Regular Expression Reference
	\A in atomic zero-width assertions, Regular Expression Reference
	a.m./p.m. (t and tt) custom format specifiers, Custom DateTime Format Strings
	Access.Application object, Selected COM Objects and
Their Uses
	AccessControl classes, Selected .NET Classes and
Their Uses
	Active Directory, Bridging Technologies, Selected .NET Classes and
Their Uses
	Active Directory Services Interfaces (see ADSI)
	Add verb, Standard PowerShell Verbs
	Add-Member cmdlet, Extending Types-The Add-Member cmdlet
	Add-Type cmdlet, Creating Instances of Types
	addition (+) operator, Arithmetic Operators
	administrators, Administrators as First-Class Users
	ADSI (Active Directory Service Interface), Bridging Technologies
	Agent.Control object, Selected COM Objects and
Their Uses
	aliases for cmdlets, Structured Commands (Cmdlets)
	AliasProperty, Add-Member, The Add-Member cmdlet
	alternation constructs, Regular Expression Reference
	AND operator	binary (-band), Binary Operators
	logical (-and), Logical Operators

	and, XPath logical, XPath Quick Reference
	AppDomain class, Selected .NET Classes and
Their Uses
	AppDomain event type, Selected Events and Their Uses
	Approve verb, Standard PowerShell Verbs
	arbitrary variable syntax, Variables
	argument ($args) array, Argument array
	arithmetic operators, Arithmetic Operators
	array cast syntax @(), Array Definitions
	Array class, Selected .NET Classes and
Their Uses
	ArrayList class, Selected .NET Classes and
Their Uses
	arrays, Array Definitions-XML	access to array elements, Array Access-Array Access
	definitions of arrays, Array Definitions-Array Definitions
	hashtables, Hashtable Definitions
	slicing of arrays, Array Slicing

	-as (type conversion) operator, -as (Type conversion operator)
	assemblies (libraries), loading, Creating Instances of Types
	Assembly class, Selected .NET Classes and
Their Uses
	AssemblyLoad event, Selected Events and Their Uses
	-AssemblyName parameter, Creating Instances of Types
	AssemblyResolve event, Selected Events and Their Uses
	Assert verb, Standard PowerShell Verbs
	assignment operators, Arithmetic Operators, Null Coalescing and Assignment Operators
	assignment, variable, Simple Assignment-Simple Assignment
	associative arrays, Hashtable Definitions
	atomic zero-width assertions, Regular Expression Reference
	AutoItX3.Control object, Selected COM Objects and
Their Uses
	Automation.Job event type, Selected Events and Their Uses
	AvailabilityChanged event, Selected Events and Their Uses

B
	\B in atomic zero-width assertions, Regular Expression Reference
	\b	in atomic zero-width assertions, Regular Expression Reference
	escaped character, Regular Expression Reference

	background (&) operator, Invoking
	backreference constructs, Regular Expression Reference
	Backup verb, Standard PowerShell Verbs
	base classes and interfaces, Base classes and interfaces
	begin statement, Cmdlet keywords in commands
	BigInt class, Large Numbers
	binary numbers, Hexadecimal and Other Number Bases
	binary operators, Binary Operators-Binary Operators, -split (Split operator), -join (Join operator)
	BinaryReader class, Selected .NET Classes and
Their Uses
	BinaryWriter class, Selected .NET Classes and
Their Uses
	Bitmap class, Selected .NET Classes and
Their Uses
	block comments, Comments
	Block verb, Standard PowerShell Verbs
	Booleans, Booleans
	break keyword, Terminating Errors
	break statement, break
	BreakpointUpdated event, Selected Events and Their Uses
	BufferedStream class, Selected .NET Classes and
Their Uses
	Build verb, Standard PowerShell Verbs

C
	C or c (currency) format specifier, Standard Numeric Format Strings
	C#, Ubiquitous Scripting
	call/invoke (&) operator, Invoking
	CancelKeyPress event, Selected Events and Their Uses
	capturing output of commands, Capturing Output-Capturing Output
	-casesensitive or -c match, switch Statements
	catch statement, Terminating Errors
	\cC escaped character, Regular Expression Reference
	CEnroll.CEnroll object, Selected COM Objects and
Their Uses
	certificate store, navigating, Namespace Navigation Through Providers
	CertificateAuthority.Request object, Selected COM Objects and
Their Uses
	Changed event, Selected Events and Their Uses
	character classes, in regular expressions, Regular Expression Reference-Regular Expression Reference
	character escapes, Regular Expression Reference
	Checkpoint verb, Standard PowerShell Verbs
	CIM (Common Information Model), Bridging Technologies
	CIM_DataFile, WMI Reference
	classes, Selected .NET Classes and
Their Uses-Selected .NET Classes and
Their Uses	Active Directory, Selected .NET Classes and
Their Uses
	characters, in regular expressions, Regular Expression Reference-Regular Expression Reference
	collections and object, Selected .NET Classes and
Their Uses
	database, Selected .NET Classes and
Their Uses
	image manipulation, Selected .NET Classes and
Their Uses
	input and output, Selected .NET Classes and
Their Uses-Selected .NET Classes and
Their Uses
	learning about, Base classes and interfaces
	.NET Framework, Selected .NET Classes and
Their Uses
	networking, Selected .NET Classes and
Their Uses
	for number bases, Hexadecimal and Other Number Bases
	Powershell object, Selected .NET Classes and
Their Uses
	registry, Selected .NET Classes and
Their Uses, WMI Reference, Generic WMI Events
	security, Selected .NET Classes and
Their Uses
	user interface, Selected .NET Classes and
Their Uses
	utility, Selected .NET Classes and
Their Uses-Selected .NET Classes and
Their Uses
	WMI, Selected .NET Classes and
Their Uses, WMI Reference-WMI Reference, Generic WMI Events-Generic WMI Events
	XML, Selected .NET Classes and
Their Uses

	Clear verb, Standard PowerShell Verbs
	Close verb, Standard PowerShell Verbs
	cmdlet keywords in commands, Cmdlet keywords in commands
	CmdletBinding attribute, Formal parameters
	cmdlets, Structured Commands (Cmdlets)-Structured Commands (Cmdlets), Standard PowerShell Verbs	(see also specific cmdlets by name)
	aliases for, Structured Commands (Cmdlets)
	autocompletion for, Structured Commands (Cmdlets)
	checking possible results of, Techniques to Protect You from Yourself
	linking with pipelines, Composable Commands
	and parameters, Structured Commands (Cmdlets)
	positional parameters for, Structured Commands (Cmdlets)
	in scripts, Ubiquitous Scripting-Ubiquitous Scripting
	standard PowerShell verbs, Standard PowerShell Verbs-Standard PowerShell Verbs
	syntax, Structured Commands (Cmdlets), Standard PowerShell Verbs

	CodeMethod, Add-Member, The Add-Member cmdlet
	CodeProperty, Add-Member, The Add-Member cmdlet
	collections and object utilities, Selected .NET Classes and
Their Uses
	COM objects, Bridging Technologies, Interacting with COM Objects, Selected COM Objects and
Their Uses-Selected COM Objects and
Their Uses
	COMAdmin.COMAdminCatalog object, Selected COM Objects and
Their Uses
	command resolution, Command Resolution
	CommandLookupEventArgs, Command Resolution
	CommandNotFoundAction, Command Resolution
	commands, Introduction	(see also cmdlets)
	$MyInvocation automatic variable, $MyInvocation automatic variable
	argument array, Argument array
	behavior customizations, Command behavior customizations
	capturing output from, Capturing Output-Capturing Output
	composable, Composable Commands
	discovery, Common Discovery Commands
	DOS, in interactive shell, An Interactive Shell
	dot-sourcing, Dot-sourcing
	evaluation controls, Commands and Expressions-Commands and Expressions
	exit statement, Exit statement
	formatting output, Formatting Output-Custom Formatting Files
	invoking, Invoking-Invoking, Command Resolution
	parameter attributes, Parameter attribute customizations-Parameter attribute customizations
	parameter validation attributes, Parameter validation attributes-Parameter validation attributes
	parameters, Parameters-Parameters
	pipeline input, Pipeline input
	pipeline output, Pipeline output
	PowerShell, An Interactive Shell-An Interactive Shell, Commands and Expressions-Commands and Expressions
	providing input to, Providing Input to Commands-$MyInvocation automatic variable
	retrieving output from, Retrieving Output from Commands-Exit statement
	return statement, Return statement
	running, Running Commands-Parameters
	Unix, in interactive shell, An Interactive Shell
	writing, Writing scripts-Writing script blocks

	comments, Comments-Help Comments, Regular Expression Reference
	Common Information Model (see CIM)
	communication, verbs for, Standard PowerShell Verbs
	Compare verb, Standard PowerShell Verbs
	comparison operators, Comparison Operators-Comparison Operators	-contains, Comparison Operators
	equality (-eq), Comparison Operators
	greater than (-gt), Comparison Operators
	greater than or equal (-ge), Comparison Operators
	in operator (-in), Comparison Operators
	less than (-lt), Comparison Operators
	less than or equal (-le), Comparison Operators
	-like, Comparison Operators
	-match, Comparison Operators
	negated contains (-notcontains), Comparison Operators
	negated equality (-ne), Comparison Operators
	negated in (-notin), Comparison Operators
	negated like (-notlike), Comparison Operators
	negated match (-notmatch), Comparison Operators
	negated type (-isnot), Comparison Operators
	type operator (-is), Comparison Operators

	comparison value statements, switch Statements
	comparisons in XPath, XPath Quick Reference
	Complete verb, Standard PowerShell Verbs
	Completed event, Selected Events and Their Uses
	complex numbers, Imaginary and Complex Numbers
	Component Object Model (see COM objects)
	Compress verb, Standard PowerShell Verbs
	computer system hardware, WMI class category, WMI Reference
	conditional statements	if, elseif, and else, Conditional Statements-switch Statements
	null coalescing and assignment operators, Null Coalescing and Assignment Operators
	switch statements, switch Statements-switch Statements
	ternary operators, Ternary Operators

	-Confirm parameter, Techniques to Protect You from Yourself
	Confirm verb, Standard PowerShell Verbs
	Connect verb, Standard PowerShell Verbs
	Console class, Selected .NET Classes and
Their Uses
	Console event type, Selected Events and Their Uses
	console settings, customizing, Console Settings-Use hotkeys to operate the shell more efficiently
	constants, administrative numeric, Administrative Numeric Constants
	constrained variables, Variables
	constructors, Constructors
	-contains operator, Comparison Operators
	continue keyword, Terminating Errors
	continue statement, continue-continue
	Convert class, Hexadecimal and Other Number Bases, Selected .NET Classes and
Their Uses
	Convert verb, Standard PowerShell Verbs
	ConvertFrom verb, Standard PowerShell Verbs
	ConvertTo verb, Standard PowerShell Verbs
	Copy verb, Standard PowerShell Verbs
	Created event, Selected Events and Their Uses
	Cryptography classes, Selected .NET Classes and
Their Uses
	CSharpCodeProvider class, Selected .NET Classes and
Their Uses
	currency (C or c) format specifier, Standard Numeric Format Strings
	custom enumeration, Custom Enumerations
	custom type extension files, Custom type extension files
	customization points, Common Customization Points-Command Resolution	command resolution, Command Resolution
	console settings, Console Settings-Use hotkeys to operate the shell more efficiently
	profiles, Profiles
	prompts, Prompts
	tab completion, Tab Completion
	user input, User Input

D
	D or d (decimal) format specifier, Standard Numeric Format Strings
	D or d format specifier (DateTime), .NET DateTime Formatting
	\D or \d character class, Regular Expression Reference
	d to dddd custom format specifiers (DateTime), Custom DateTime Format Strings
	Data classes, Selected .NET Classes and
Their Uses
	DATA evaluation (DATA {}), Commands and Expressions
	data types	array elements, Array Definitions
	int, Variables
	.NET Framework, Learning About Types-Custom type extension files
	System.Type class, Selected .NET Classes and
Their Uses
	XML, Bridging Technologies-Namespace Navigation Through Providers, XML

	data verbs, Standard PowerShell Verbs-Standard PowerShell Verbs
	DataAdded event, Selected Events and Their Uses
	database classes, Selected .NET Classes and
Their Uses
	DataReady event, Selected Events and Their Uses
	DataReceived event, Selected Events and Their Uses
	DataSet class, Selected .NET Classes and
Their Uses
	DataTable class, Selected .NET Classes and
Their Uses
	DateTime class, Selected .NET Classes and
Their Uses
	DateTime format strings, .NET DateTime Formatting-Custom DateTime Format Strings	custom strings, Custom DateTime Format Strings-Custom DateTime Format Strings
	standard strings, .NET DateTime Formatting-.NET DateTime Formatting

	day of month (d and dd) custom format specifiers, Custom DateTime Format Strings
	day of week (ddd and dddd) custom format specifiers, Custom DateTime Format Strings
	\ddd escaped character, Regular Expression Reference
	Debug class, Selected .NET Classes and
Their Uses
	Debug verb, Standard PowerShell Verbs
	DebuggerStop event, Selected Events and Their Uses
	decimal (D or d) format specifier, Standard Numeric Format Strings
	decimal numbers, Simple Assignment
	decimal point (.) format specifier, Custom Numeric Format Strings
	default statement in switch statements, switch Statements
	DeflateStream class, Selected .NET Classes and
Their Uses
	Deleted event, Selected Events and Their Uses
	Deny verb, Standard PowerShell Verbs
	Deploy verb, Standard PowerShell Verbs
	diagnostics	classes, Selected .NET Classes and
Their Uses
	event type, Selected Events and Their Uses
	.NET events, Selected Events and Their Uses
	verbs, Standard PowerShell Verbs

	digit placeholder (#) format specifier, Custom Numeric Format Strings
	Directory class, Selected .NET Classes and
Their Uses
	DirectoryEntry class, Selected .NET Classes and
Their Uses
	DirectoryInfo class, Selected .NET Classes and
Their Uses
	DirectorySearcher class, Selected .NET Classes and
Their Uses
	DirectoryServices classes, Selected .NET Classes and
Their Uses
	Disable verb, Standard PowerShell Verbs
	Disconnect verb, Standard PowerShell Verbs
	discovery commands, Common Discovery Commands
	Dismount verb, Standard PowerShell Verbs
	DisplaySettingsChanged event, Selected Events and Their Uses
	DisplaySettingsChanging event, Selected Events and Their Uses
	division operator (/), Arithmetic Operators
	Dns class, Selected .NET Classes and
Their Uses
	do … while or do … until statement, do … while Statement/do … until Statement
	documentation	.NET Framework, .NET Framework documentation
	WMI, WMI Reference

	DOS commands in interactive shell, An Interactive Shell
	dot notation (.), Deep Integration of Objects
	dot-sourcing, Writing script blocks
	DownloadDataCompleted event, Selected Events and Their Uses
	DownloadFileCompleted event, Selected Events and Their Uses
	DownloadProgressChanged event, Selected Events and Their Uses
	DownloadStringCompleted event, Selected Events and Their Uses
	Drawing classes, Selected .NET Classes and
Their Uses

E
	\e escaped character, Regular Expression Reference
	E or e (exponential) format specifier, Standard Numeric Format Strings
	E0, E+0, E-0 (scientific notation) format specifiers, Custom Numeric Format Strings
	Edit verb, Standard PowerShell Verbs
	Elapsed event, Selected Events and Their Uses
	else statement, if, elseif, and else Statements-if, elseif, and else Statements
	elseif statement, if, elseif, and else Statements-if, elseif, and else Statements
	Enable verb, Standard PowerShell Verbs
	end statement, Cmdlet keywords in commands
	Enter verb, Standard PowerShell Verbs
	EntryWritten event, Selected Events and Their Uses
	Enum class, Selected .NET Classes and
Their Uses
	enumerations, custom, Custom Enumerations
	Environment class, Selected .NET Classes and
Their Uses
	equality operator (-eq), Comparison Operators
	error output stream, Nonterminating Errors
	$ErrorActionPreference automatic variable, Nonterminating Errors
	ErrorDataReceived event, Selected Events and Their Uses
	ErrorReceived event, Selected Events and Their Uses
	errors, managing, Managing Errors-Terminating Errors
	escape sequences, Escape Sequences
	escaped characters, Regular Expression Reference
	evaluation controls, Commands and Expressions-Commands and Expressions
	EventLog class, Selected .NET Classes and
Their Uses
	EventLog event type, Selected Events and Their Uses
	EventRecordWritten event, Selected Events and Their Uses
	events	.NET Framework, Selected Events and Their Uses-Selected Events and Their Uses
	WMI, Generic WMI Events-Generic WMI Events

	-exact or -e match, switch Statements
	Excel.Application object, Selected COM Objects and
Their Uses
	Excel.Sheet object, Selected COM Objects and
Their Uses
	exclusive OR operator	binary (-bxor), Binary Operators
	logical (xor), Logical Operators

	executing commands, Running Commands-Parameters
	Execution Policy, Ad Hoc Development, Invoking
	$executionContext.SessionState.InvokeCommand, Command Resolution
	exit statement, Exit statement
	Exit verb, Standard PowerShell Verbs
	Exited event, Selected Events and Their Uses
	Expand verb, Standard PowerShell Verbs
	expanding strings, Literal and Expanding Strings
	explicitly implemented interface methods, Explicitly Implemented Interface Methods
	exponential (E or e) format specifier, Standard Numeric Format Strings
	Export verb, Standard PowerShell Verbs
	expression subparse $(), Commands and Expressions
	extending types, Extending Types-Custom type extension files

F
	\f escaped character, Regular Expression Reference
	F or f (fixed-point) format specifier, Standard Numeric Format Strings
	F or f format specifier (DateTime), .NET DateTime Formatting
	f to fffffff custom format specifiers (DateTime), Custom DateTime Format Strings
	F to FFFFFFF custom format specifiers (DateTime), Custom DateTime Format Strings
	File class, Selected .NET Classes and
Their Uses
	-file option in switch statements, switch Statements
	FileInfo class, Selected .NET Classes and
Their Uses
	filesystem, navigating, Namespace Navigation Through Providers
	FileSystemSecurity class, Selected .NET Classes and
Their Uses
	FileSystemWatcher class, Selected .NET Classes and
Their Uses
	FileSystemWatcher event type, Selected Events and Their Uses
	FillError event, Selected Events and Their Uses
	finally statement, Terminating Errors
	Find verb, Standard PowerShell Verbs
	fixed-point (F or f) format specifier, Standard Numeric Format Strings
	flow control statements, Flow Control Statements-continue
	FlowLayoutPanel class, Selected .NET Classes and
Their Uses
	font size, Console setting, Adjust your font size
	for looping statement, for Statement
	foreach looping statement, foreach Statement
	Foreach-Object cmdlet, foreach Statement
	Form class, Selected .NET Classes and
Their Uses
	format operator (-f), -f (Format operator), String Formatting Syntax
	Format verb, Standard PowerShell Verbs
	Format-List Properties command, Formatting Output
	Format-Table cmdlet, Composable Commands
	Format-Table Properties command, Formatting Output
	Format-Wide Property command, Formatting Output
	*.Format.Ps1Xml file, Custom Formatting Files
	formatting	DateTime strings, .NET DateTime Formatting-Custom DateTime Format Strings
	.NET strings, String Formatting Syntax-Custom Numeric Format Strings
	output, Formatting Output-Custom Formatting Files

	FtpWebRequest class, Selected .NET Classes and
Their Uses
	functions, writing, Writing functions

G
	\G in atomic zero-width assertions, Regular Expression Reference
	G or g format specifier, Standard Numeric Format Strings
	G or g format specifier (DateTime), .NET DateTime Formatting
	gb (gigabyte), Administrative Numeric Constants
	GB constant, Administrators as First-Class Users
	-ge (greater than or equal operator), Comparison Operators
	general (G or g) format specifier, Standard Numeric Format Strings
	general date/long time (g) format specifier, .NET DateTime Formatting
	general date/short time (G) format specifier, .NET DateTime Formatting
	Get and Set Content variable syntax, Variables
	Get verb, Standard PowerShell Verbs
	Get-Command cmdlet, Common Discovery Commands, Parameters
	Get-Help cmdlet, Common Discovery Commands
	Get-History cmdlet, Ad Hoc Development
	Get-Item variable syntax, Variables
	Get-Member cmdlet, Common Discovery Commands, The Get-Member cmdlet
	Get-Process cmdlet, Common Discovery Commands
	Get-Variable cmdlet, Variables
	Get-Verb cmdlet, Standard PowerShell Verbs
	Get-WinEvent cmdlet, XPath Quick Reference
	%gg or %g custom format specifier (DateTime), Custom DateTime Format Strings
	Grant verb, Standard PowerShell Verbs
	greater than operator (-gt), Comparison Operators
	Group verb, Standard PowerShell Verbs
	grouping constructs, Regular Expression Reference-Regular Expression Reference
	-gt (greater than operator), Comparison Operators
	Guid (globally unique identifier) class, Selected .NET Classes and
Their Uses
	GZipStream class, Selected .NET Classes and
Their Uses

H
	%H or %h custom format specifier (DateTime), Custom DateTime Format Strings
	hashtables, Hashtable Definitions
	help, comment-based, Help Comments-Help Comments
	here strings, Here Strings
	hexadecimal (X or x) format specifier, Standard Numeric Format Strings
	hexadecimal numbers, Hexadecimal and Other Number Bases
	HH or hh custom format specifier (DateTime), Custom DateTime Format Strings
	Hide verb, Standard PowerShell Verbs
	HNetCfg.FwMgr object, Selected COM Objects and
Their Uses
	HNetCfg.HNetShare object, Selected COM Objects and
Their Uses
	hot keys, Use hotkeys to operate the shell more efficiently-Use hotkeys to operate the shell more efficiently
	hours-related format specifiers, Custom DateTime Format Strings
	HTMLFile object, Selected COM Objects and
Their Uses
	HttpUtility class, Selected .NET Classes and
Their Uses
	HttpWebRequest class, Selected .NET Classes and
Their Uses

I
	if, elseif, and else statements, if, elseif, and else Statements-if, elseif, and else Statements
	Image class, Selected .NET Classes and
Their Uses
	imaginary numbers, Imaginary and Complex Numbers
	Import verb, Standard PowerShell Verbs
	-in operator, Comparison Operators
	InfoMessage event, Selected Events and Their Uses
	InfoPath.Application object, Selected COM Objects and
Their Uses
	Initialize verb, Standard PowerShell Verbs
	inline comments, # in, Regular Expression Reference
	InlineScript keyword, InlineScript
	input	classes, Selected .NET Classes and
Their Uses-Selected .NET Classes and
Their Uses, Selected .NET Classes and
Their Uses
	customizing user input, User Input
	.NET events, Selected Events and Their Uses, Selected Events and Their Uses
	providing to commands, Providing Input to Commands-$MyInvocation automatic variable

	$input special variable, Pipeline input
	Install verb, Standard PowerShell Verbs
	InstalledFontsChanged event, Selected Events and Their Uses
	instance methods, calling, Instance Methods
	instance properties, accessing, Instance Properties
	InstanceCreationEvent class, Generic WMI Events
	InstanceDeletionEvent class, Generic WMI Events
	InstanceModificationEvent class, Generic WMI Events
	instances of types, creating, Creating Instances of Types
	int data type, Variables
	Integrated Scripting Environment (see ISE)
	interactive shell, PowerShell as, An Interactive Shell-An Interactive Shell
	interfaces	defining classes that implement, Base classes and interfaces
	methods for explicitly implemented, Explicitly Implemented Interface Methods

	InternetExplorer.Application object, Selected COM Objects and
Their Uses
	InvocationStateChanged event, Selected Events and Their Uses
	invoke (&) operator, Invoking
	Invoke verb, Standard PowerShell Verbs
	invoking commands, Invoking-Invoking, Command Resolution
	IO (input-output)	classes, Selected .NET Classes and
Their Uses-Selected .NET Classes and
Their Uses, Selected .NET Classes and
Their Uses
	.NET events, Selected Events and Their Uses-Selected Events and Their Uses

	ipconfig tool, An Interactive Shell
	-is (type) operator, Comparison Operators
	ISE (Integrated Scripting Environment), User Input
	IsLeapYear() method, Administrators as First-Class Users
	-isnot (negated type) operator, Comparison Operators
	IXSSO.Query object, Selected COM Objects and
Their Uses
	IXSSO.Util object, Selected COM Objects and
Their Uses

J
	jagged array, Array Definitions
	-join operator, -join (Join operator)
	Join verb, Standard PowerShell Verbs

K
	\k backreference construct, Regular Expression Reference
	K custom format specifier (DateTime), Custom DateTime Format Strings
	kb (kilobyte), Administrative Numeric Constants
	keyboard shortcuts for PowerShell, Type Shortcuts
	Kill() method, Process object, Deep Integration of Objects

L
	large numbers, Large Numbers
	$LastExitCode automatic variable, Exit statement
	LegitCheckControl.LegitCheck object, Selected COM Objects and
Their Uses
	Length property, Deep Integration of Objects
	less than operator (-lt), Comparison Operators
	less than or equal operator (-le), Comparison Operators
	lifecycle verbs, Standard PowerShell Verbs
	-like operator, Comparison Operators
	Limit verb, Standard PowerShell Verbs
	list evaluation @(), Commands and Expressions, Array Definitions
	lists (see arrays)
	literal strings, Literal and Expanding Strings, Custom Numeric Format Strings
	Lock verb, Standard PowerShell Verbs
	logical operators, Logical Operators, XPath Quick Reference
	long date (D) format specifier, .NET DateTime Formatting
	long date/long time (f) format specifier, .NET DateTime Formatting
	long date/short time (f) format specifier, .NET DateTime Formatting
	long time (T) format specifier, .NET DateTime Formatting
	lookahead assertions, Regular Expression Reference
	lookbehind assertions, Regular Expression Reference
	looping statements, Looping Statements-Parallel/Sequence	classes, Base classes and interfaces
	custom enumerations, Custom Enumerations
	do … while/do … until, do … while Statement/do … until Statement
	flow control, Flow Control Statements-continue
	for, for Statement
	foreach, foreach Statement
	while, while Statement
	workflow-specific statements, Workflow-Specific Statements-Parallel/Sequence

	loop_label, foreach Statement
	LowMemory event, Selected Events and Their Uses
	-lt (less than) operator, Comparison Operators

M
	M or m format specifier (DateTime), .NET DateTime Formatting
	m or mm custom format specifier (DateTime), Custom DateTime Format Strings
	M to MMMM custom format specifiers (DateTime), Custom DateTime Format Strings
	MailAddress class, Selected .NET Classes and
Their Uses
	MailMessage class, Selected .NET Classes and
Their Uses
	MakeCab.MakeCab object, Selected COM Objects and
Their Uses
	ManagementClass class, Selected .NET Classes and
Their Uses
	ManagementDateTimeConverter class, Selected .NET Classes and
Their Uses
	ManagementEventWatcher class, Selected .NET Classes and
Their Uses
	ManagementObject class, Selected .NET Classes and
Their Uses
	ManagementObjectSearcher class, Selected .NET Classes and
Their Uses
	MAPI.Session object, Selected COM Objects and
Their Uses
	Marshal class, Selected .NET Classes and
Their Uses
	-match operator, Comparison Operators
	Math class, Arithmetic Operators, Selected .NET Classes and
Their Uses
	mb (megabyte), Administrative Numeric Constants
	MB constant, Administrators as First-Class Users
	Measure verb, Standard PowerShell Verbs
	Measure-Object command, Ubiquitous Scripting
	MemoryStream class, Selected .NET Classes and
Their Uses
	Merge verb, Standard PowerShell Verbs
	message queuing, Selected .NET Classes and
Their Uses
	MessageQueue class, Selected .NET Classes and
Their Uses
	Messenger.MessengerApp object, Selected COM Objects and
Their Uses
	methods	versus functions, Methods, Writing functions
	IsLeapYear(), Administrators as First-Class Users
	Kill(), Deep Integration of Objects

	Microsoft .NET classes, Selected .NET Classes and
Their Uses
	Microsoft.FeedsManager object, Selected COM Objects and
Their Uses
	Microsoft.ISAdm object, Selected COM Objects and
Their Uses
	Microsoft.Update.AutoUpdate object, Selected COM Objects and
Their Uses
	Microsoft.Update.Installer object, Selected COM Objects and
Their Uses
	Microsoft.Update.Searcher object, Selected COM Objects and
Their Uses
	Microsoft.Update.Session object, Selected COM Objects and
Their Uses
	Microsoft.Update.SystemInfo object, Selected COM Objects and
Their Uses
	Microsoft.Win32.SystemEvents type, Selected Events and Their Uses
	minute (m or mm) custom format specifiers, Custom DateTime Format Strings
	MMC20.Application object, Selected COM Objects and
Their Uses
	modulus operator (%), Arithmetic Operators
	month-related (M to MMMM) custom format specifiers, Custom DateTime Format Strings
	month/day format specifier, .NET DateTime Formatting
	Mount verb, Standard PowerShell Verbs
	Move verb, Standard PowerShell Verbs
	Msft_WmiProvider_OperationEvent class, Generic WMI Events
	MSScriptControl.ScriptControl object, Selected COM Objects and
Their Uses
	Msxml2.XSLTemplate object, Selected COM Objects and
Their Uses
	multidimensional arrays, Array Definitions
	multiline comments, Comments
	multiple variable assignment syntax, Variables
	multiplication (*) operator, Arithmetic Operators
	$MyInvocation automatic variable, $MyInvocation automatic variable

N
	\n escaped character, Regular Expression Reference
	N or n (number) format specifier, Standard Numeric Format Strings
	namespaces, navigating, Namespace Navigation Through Providers
	naming conventions, cmdlets and scripts, Structured Commands (Cmdlets), Standard PowerShell Verbs
	navigation	namespace, through providers, Namespace Navigation Through Providers
	in XPath, XPath Quick Reference

	negated contains (-⁠notcontains) operator, Comparison Operators
	negated equality operator (-ne), Comparison Operators
	negated in operator (-notin), Comparison Operators
	negated like operator (-notlike), Comparison Operators
	negated match (-notmatch) operator, Comparison Operators
	negated type operator (-isnot), Comparison Operators
	Net classes, Selected .NET Classes and
Their Uses
	.NET Framework, Working with the .NET Framework-Custom type extension files	administrator support from, Administrators as First-Class Users
	classes, Selected .NET Classes and
Their Uses-Selected .NET Classes and
Their Uses
	DateTime formatting, .NET DateTime Formatting-Custom DateTime Format Strings
	documentation, .NET Framework documentation
	events, Selected Events and Their Uses-Selected Events and Their Uses
	explicitly implemented interface methods, Explicitly Implemented Interface Methods
	instance methods, Instance Methods
	instance properties, Instance Properties
	interacting with COM objects, Interacting with COM Objects
	static methods, Static Methods
	static properties, Static Properties
	string formatting, String Formatting Syntax-Custom Numeric Format Strings
	support for, Common Discovery Commands
	types, Learning About Types-Custom type extension files

	NetworkAddressChanged event, Selected Events and Their Uses
	NetworkAvailabilityChanged event, Selected Events and Their Uses
	NetworkChange event type, Selected Events and Their Uses
	NetworkCredential class, Selected .NET Classes and
Their Uses
	New verb, Standard PowerShell Verbs
	New-Item variable syntax, Variables
	New-Object cmdlet, Creating Instances of Types
	New-Variable syntax, Variables
	Node, XPath and XML, XPath Quick Reference
	nonbacktracking subexpressions, Regular Expression Reference
	nonterminating errors, Nonterminating Errors
	not jagged multidimensional array, Array Definitions
	NOT operator	binary (-bnot), Binary Operators
	logical (-not), Logical Operators

	not(), XPath logical, XPath Quick Reference
	-notcontains operator, Comparison Operators
	notepad tool, An Interactive Shell
	NoteProperty, Add-Member, The Add-Member cmdlet
	-notin operator, Comparison Operators
	-notlike operator, Comparison Operators
	-notmatch operator, Comparison Operators
	null coalescing operator, Null Coalescing and Assignment Operators
	null conditional (?.) operator, Instance Properties
	null conditional (?[]) operator, Array Access
	number (N or n) format specifier, Standard Numeric Format Strings
	number scaling (,) format specifier, Custom Numeric Format Strings
	numbers, Numbers-Imaginary and Complex Numbers	assigning to variables, Simple Assignment-Simple Assignment
	hexadecimal and other bases, Hexadecimal and Other Number Bases
	imaginary and complex, Imaginary and Complex Numbers
	large numbers, Large Numbers
	numeric constants, Administrative Numeric Constants
	rounding versus truncating, Variables

	numeric format strings in .NET, Standard Numeric Format Strings-Custom Numeric Format Strings

O
	o format specifier (DateTime), .NET DateTime Formatting
	objects	COM, Bridging Technologies, Interacting with COM Objects, Selected COM Objects and
Their Uses-Selected COM Objects and
Their Uses
	deep integration of, Deep Integration of Objects
	instance properties, Instance Properties
	in interactive shell, Ad Hoc Development
	referencing current, Deep Integration of Objects
	in scripts, Ubiquitous Scripting
	types, Learning About Types-Custom type extension files
	utilities classes, Selected .NET Classes and
Their Uses

	Octal numbers, Hexadecimal and Other Number Bases
	OdbcCommand class, Selected .NET Classes and
Their Uses
	OdbcConnection class, Selected .NET Classes and
Their Uses
	OdbcDataAdapter class, Selected .NET Classes and
Their Uses
	OnChange event, Selected Events and Their Uses
	Open verb, Standard PowerShell Verbs
	OpenReadCompleted event, Selected Events and Their Uses
	OpenWriteCompleted event, Selected Events and Their Uses
	operating system, WMI class category, WMI Reference
	operators, Simple Operators-Comparison Operators	arithmetic, Arithmetic Operators
	assignment, Null Coalescing and Assignment Operators
	background (&), Invoking
	binary, Binary Operators-Binary Operators, -split (Split operator), -join (Join operator)
	comparison, Comparison Operators-Comparison Operators
	format (-f), -f (Format operator), String Formatting Syntax
	invoke/call (&), Invoking
	-join, -join (Join operator)
	logical, Logical Operators, XPath Quick Reference
	null coalescing, Null Coalescing and Assignment Operators
	null conditional (?.), Instance Properties
	null conditional (?[]), Array Access
	-replace, -replace (Replace operator)
	splatting (@{}), Parameters
	-split, -split (Split operator)
	square brackets ([]), Array Access
	ternary, Ternary Operators
	type conversion (-as), -as (Type conversion operator)

	Optimize verb, Standard PowerShell Verbs
	OR operator	binary (-bor), Binary Operators
	logical (-or), Logical Operators

	or, XPath logical, XPath Quick Reference
	OrderedDictionary class, Selected .NET Classes and
Their Uses
	Other format specifier (DateTime), Custom DateTime Format Strings
	Other in format strings, Custom Numeric Format Strings
	Out verb, Standard PowerShell Verbs
	Outlook.Application object, Selected COM Objects and
Their Uses
	OutlookExpress.MessageList object, Selected COM Objects and
Their Uses
	output	capturing, Capturing Output-Capturing Output
	classes, Selected .NET Classes and
Their Uses-Selected .NET Classes and
Their Uses, Selected .NET Classes and
Their Uses
	formatting, Formatting Output-Custom Formatting Files
	.NET events, Selected Events and Their Uses, Selected Events and Their Uses
	retrieving from commands, Retrieving Output from Commands-Exit statement

	OutputDataReceived event, Selected Events and Their Uses

P
	P or p (percent) format specifier, Standard Numeric Format Strings
	\P or \p character class, Regular Expression Reference
	PaletteChanged event, Selected Events and Their Uses
	Parallel keyword, Parallel/Sequence
	Parameter attribute, Parameter attribute customizations-Parameter attribute customizations
	parameter validation attributes, Parameter validation attributes-Parameter validation attributes
	parameters	and cmdlets, Structured Commands (Cmdlets)
	commands supported by, Parameters-Parameters

	PasswordDeriveBytes class, Selected .NET Classes and
Their Uses
	Path class, Selected .NET Classes and
Their Uses
	pb (petabyte), Administrative Numeric Constants
	percent (P or p) format specifier, Standard Numeric Format Strings
	percentage placeholder (%) format specifier, Custom Numeric Format Strings
	PinChanged event, Selected Events and Their Uses
	Ping verb, Standard PowerShell Verbs
	pipeline character (|), Composable Commands, Regular Expression Reference
	Pipeline event type, Selected Events and Their Uses
	pipeline input, Pipeline input
	pipeline output, Pipeline output
	Pop verb, Standard PowerShell Verbs
	positional parameters, Structured Commands (Cmdlets), Parameters
	PostCommandLookupAction, Command Resolution
	PowerModeChanged event, Selected Events and Their Uses
	PowerPoint.Application object, Selected COM Objects and
Their Uses
	PowerShell, Introduction-Namespace Navigation Through Providers, XML	(see also commands; scripts)
	administrator functionality, Administrators as First-Class Users
	arrays, Array Definitions-XML
	bridging technologies, Bridging Technologies-Namespace Navigation Through Providers
	comments, Comments-Help Comments, Regular Expression Reference
	conditional statements, Conditional Statements-switch Statements
	customization points, Common Customization Points-Command Resolution
	error management, Managing Errors-Terminating Errors
	interactive shell example, An Interactive Shell-An Interactive Shell
	looping statements, Looping Statements-Parallel/Sequence
	object integration, Deep Integration of Objects
	parameters to check impacts, Techniques to Protect You from Yourself
	providers, namespace navigation through, Namespace Navigation Through Providers
	strings, Strings-Escape Sequences
	variables, Deep Integration of Objects, Variables-Booleans, Numbers-Imaginary and Complex Numbers
	XML support, Bridging Technologies-Namespace Navigation Through Providers, XML

	precedence control (), Commands and Expressions
	PreCommandLookupAction, Command Resolution
	Principal classes, Selected .NET Classes and
Their Uses
	Process class, Selected .NET Classes and
Their Uses
	Process object, Deep Integration of Objects
	process statement, Cmdlet keywords in commands
	$profile automatic variable, Profiles
	profiles, Profiles
	prompt, customizing, Prompts
	properties, Properties
	PropertySet, Add-Member, The Add-Member cmdlet
	Protect verb, Standard PowerShell Verbs
	providers, namespace navigation, Namespace Navigation Through Providers-Namespace Navigation Through Providers
	PSConsoleHostReadLine function, User Input
	PSDataCollection[T] event type, Selected Events and Their Uses
	PSDefaultParameterValues hashtable, Parameters
	$PSItem variable, Cmdlet keywords in commands, Terminating Errors
	PSObject class, Selected .NET Classes and
Their Uses
	PSReadLine module, Use hotkeys to operate the shell more efficiently
	Publish verb, Standard PowerShell Verbs
	Publisher.Application object, Selected COM Objects and
Their Uses
	Push verb, Standard PowerShell Verbs
	Push-Location command, An Interactive Shell
	pushd command, An Interactive Shell

Q
	quantifiers in regular expressions, Regular Expression Reference-Regular Expression Reference

R
	\r escaped character, Regular Expression Reference
	R or r format specifier, Standard Numeric Format Strings
	R or r format specifier (DateTime), .NET DateTime Formatting
	Random class, Selected .NET Classes and
Their Uses
	ranges of array elements, Array Access-Array Access
	RDS.DataSpace object, Selected COM Objects and
Their Uses
	Read verb, Standard PowerShell Verbs
	Receive verb, Standard PowerShell Verbs
	Redo verb, Standard PowerShell Verbs
	ReflectionOnlyAssemblyResolve event, Selected Events and Their Uses
	Regex class, Selected .NET Classes and
Their Uses
	Register verb, Standard PowerShell Verbs
	registry, Namespace Navigation Through Providers	.NET classes, Selected .NET Classes and
Their Uses
	WMI classes, WMI Reference, Generic WMI Events

	RegistryEvent class, Generic WMI Events
	RegistryKey class, Selected .NET Classes and
Their Uses
	RegistryKeyChangeEvent class, Generic WMI Events
	RegistrySecurity class, Selected .NET Classes and
Their Uses
	RegistryTreeChangeEvent class, Generic WMI Events
	RegistryValueChangeEvent class, Generic WMI Events
	regular expressions, Regular Expression Reference-Regular Expression Reference	alternation constructs, Regular Expression Reference
	atomic zero-width assertions, Regular Expression Reference
	backreference constructs, Regular Expression Reference
	character classes, Regular Expression Reference-Regular Expression Reference
	character escapes, Regular Expression Reference
	grouping constructs, Regular Expression Reference-Regular Expression Reference
	quantifiers, Regular Expression Reference-Regular Expression Reference
	substitution patterns, Regular Expression Reference
	Text.RegularExpressions.Regex class, Selected .NET Classes and
Their Uses

	regular-expression (-regex or -r) match, switch Statements
	Remove verb, Standard PowerShell Verbs
	Renamed event, Selected Events and Their Uses
	Repair verb, Standard PowerShell Verbs
	-replace operator, -replace (Replace operator)
	Request verb, Standard PowerShell Verbs
	Reset verb, Standard PowerShell Verbs
	Resize verb, Standard PowerShell Verbs
	Resolve verb, Standard PowerShell Verbs
	ResourceResolve event, Selected Events and Their Uses
	Restart verb, Standard PowerShell Verbs
	Restore verb, Standard PowerShell Verbs
	Resume verb, Standard PowerShell Verbs
	return statement, Return statement
	Revoke verb, Standard PowerShell Verbs
	RFC1123 (R or r) format specifier (DateTime), .NET DateTime Formatting
	rounding versus truncating numbers, Variables
	roundtrip (o) format specifier (DateTime), .NET DateTime Formatting
	roundtrip (R or r) format specifier, Standard Numeric Format Strings
	RowUpdated event, Selected Events and Their Uses
	RowUpdating event, Selected Events and Their Uses
	running commands, Running Commands-Parameters
	Runspace event type, Selected Events and Their Uses

S
	s format specifier (DateTime), .NET DateTime Formatting
	s or ss custom format specifier (DateTime), Custom DateTime Format Strings
	\S or \s character class, Regular Expression Reference
	SAPI.SpVoice object, Selected COM Objects and
Their Uses
	Save verb, Standard PowerShell Verbs
	scientific notation, Simple Assignment, Standard Numeric Format Strings, Custom Numeric Format Strings
	scope names for functions, Writing functions
	scope variable syntax, Variables
	script blocks, writing, Writing script blocks
	Scripting.FileSystemObject object, Selected COM Objects and
Their Uses
	Scripting.Signer object, Selected COM Objects and
Their Uses
	Scriptlet.TypeLib object, Selected COM Objects and
Their Uses
	ScriptMethod, Add-Member, The Add-Member cmdlet
	ScriptProperty, Add-Member, The Add-Member cmdlet
	ScriptPW.Password object, Selected COM Objects and
Their Uses
	scripts	ad hoc development of, Ad Hoc Development
	cmdlets in, Ubiquitous Scripting-Ubiquitous Scripting
	defining script, Writing Scripts, Reusing Functionality
	Verb-Noun syntax, Structured Commands (Cmdlets), Standard PowerShell Verbs
	writing commands, Writing scripts-Writing script blocks

	Searches verb, Standard PowerShell Verbs
	seconds (s and ss) custom format specifiers, Custom DateTime Format Strings
	section separator (;), format strings, Custom Numeric Format Strings
	SecureString class, Selected .NET Classes and
Their Uses
	Security classes, Selected .NET Classes and
Their Uses
	security verbs, Standard PowerShell Verbs
	Select verb, Standard PowerShell Verbs
	Select-Xml cmdlet, XPath Quick Reference
	Send verb, Standard PowerShell Verbs
	Sequence keyword, Parallel/Sequence
	SerialPort class, Selected .NET Classes and
Their Uses
	SerialPort event type, Selected Events and Their Uses
	SessionEnded event, Selected Events and Their Uses
	SessionEnding event, Selected Events and Their Uses
	SessionSwitch event, Selected Events and Their Uses
	Set verb, Standard PowerShell Verbs
	SHA1 class, Selected .NET Classes and
Their Uses
	SharePoint.OpenDocument object, Selected COM Objects and
Their Uses
	Shell.Application object, Selected COM Objects and
Their Uses
	Shell.LocalMachine object, Selected COM Objects and
Their Uses
	Shell.User object, Selected COM Objects and
Their Uses
	shift left (-shl) operator, Binary Operators
	shift right (-shr) operator, Binary Operators
	short date (d) format specifier, .NET DateTime Formatting
	short time (t) format specifier, .NET DateTime Formatting
	shortcuts for object types, Type Shortcuts
	Show verb, Standard PowerShell Verbs
	simple variable syntax, Variables
	single-line comments, Comments
	Skip verb, Standard PowerShell Verbs
	slicing arrays, Array Slicing
	SmtpClient class, Selected .NET Classes and
Their Uses
	SocketAsyncEvenArgsCompleted event, Selected Events and Their Uses
	Sort-Object cmdlet, Composable Commands
	sortable (s) format specifier (DateTime), .NET DateTime Formatting
	SoundPlayer class, Selected .NET Classes and
Their Uses
	splatting (@{}) operator, Parameters
	-split operator, -split (Split operator)
	Split verb, Standard PowerShell Verbs
	SqlClient classes, Selected .NET Classes and
Their Uses
	SqlClient event type, Selected Events and Their Uses
	SqlCommand class, Selected .NET Classes and
Their Uses
	SqlConnection class, Selected .NET Classes and
Their Uses
	SqlDataAdapter class, Selected .NET Classes and
Their Uses
	SQLDMO.SQLServer object, Selected COM Objects and
Their Uses
	SqlRowsCopied event, Selected Events and Their Uses
	Start verb, Standard PowerShell Verbs
	start-end character classes, Regular Expression Reference
	StateChange event, Selected Events and Their Uses, Selected Events and Their Uses
	StateChanged event, Selected Events and Their Uses, Selected Events and Their Uses
	StatementCompleted event, Selected Events and Their Uses
	static methods, calling, Static Methods
	static properties, accessing, Static Properties
	Step verb, Standard PowerShell Verbs
	Stop verb, Standard PowerShell Verbs
	Stop-Process cmdlet, Deep Integration of Objects, Techniques to Protect You from Yourself
	Stopwatch class, Selected .NET Classes and
Their Uses
	Stream class, Selected .NET Classes and
Their Uses
	StreamReader class, Selected .NET Classes and
Their Uses
	StreamWriter class, Selected .NET Classes and
Their Uses
	String class, Selected .NET Classes and
Their Uses
	string formatting, String Formatting Syntax-Custom Numeric Format Strings	custom numeric strings, Custom Numeric Format Strings-Custom Numeric Format Strings, Custom DateTime Format Strings-Custom DateTime Format Strings
	standard numeric strings, Standard Numeric Format Strings-Standard Numeric Format Strings, .NET DateTime Formatting
	syntax, String Formatting Syntax

	StringBuilder class, Selected .NET Classes and
Their Uses
	StringReader class, Selected .NET Classes and
Their Uses
	strings, Strings-Escape Sequences	escape sequences, Escape Sequences
	expanding, Literal and Expanding Strings
	here, Here Strings
	literal, Literal and Expanding Strings, Custom Numeric Format Strings
	parameter validation attributes, Parameter validation attributes
	WebClient event types, Selected Events and Their Uses

	StringWriter class, Selected .NET Classes and
Their Uses
	strongly typed variable syntax, Variables
	structured commands (see cmdlets)
	subexpression, expanding string, Literal and Expanding Strings
	Submit verb, Standard PowerShell Verbs
	substitution patterns, in regular expressions, Regular Expression Reference
	subtraction (–) operator, Arithmetic Operators
	Suspend verb, Standard PowerShell Verbs
	switch statement, switch Statements-switch Statements
	Switch verb, Standard PowerShell Verbs
	Sync verb, Standard PowerShell Verbs
	System classes, Selected .NET Classes and
Their Uses
	System.Math class, Arithmetic Operators, Selected .NET Classes and
Their Uses
	System.Numerics.Complex class, Imaginary and Complex Numbers

T
	t (a.m.) custom format character (DateTime), Custom DateTime Format Strings
	\t escaped character, Regular Expression Reference
	T or t format specifier (DateTime), .NET DateTime Formatting
	tab completion, customizing, Tab Completion
	TabExpansion function, Tab Completion
	tb (terabyte), Administrative Numeric Constants
	TcpClient class, Selected .NET Classes and
Their Uses
	terminating errors, Terminating Errors-Terminating Errors
	ternary operators, Ternary Operators
	Test verb, Standard PowerShell Verbs
	text selection, making easier, Use hotkeys to operate the shell more efficiently
	TextReader class, Selected .NET Classes and
Their Uses
	TextWriter class, Selected .NET Classes and
Their Uses
	thousands separator (,) format specifier, Custom Numeric Format Strings
	Thread class, Selected .NET Classes and
Their Uses
	threading, WMI events, Generic WMI Events
	throw keyword, Terminating Errors
	time (see DateTime format strings)
	time zone offset (z to zzz) custom format specifiers, Custom DateTime Format Strings
	TimeChanged event, Selected Events and Their Uses
	Timer event type, Selected Events and Their Uses
	tokens, Commands and Expressions
	Trace verb, Standard PowerShell Verbs
	Transaction class, Selected .NET Classes and
Their Uses
	transactions, Selected .NET Classes and
Their Uses
	trap statement, Terminating Errors
	TripleDESCryptoServiceProvider class, Selected .NET Classes and
Their Uses
	try, catch, and finally statements, Terminating Errors
	tt (p.m.) custom format specifier (DateTime), Custom DateTime Format Strings
	Type class, Selected .NET Classes and
Their Uses
	type conversion operator (-as), -as (Type conversion operator)
	type operator (-is), Comparison Operators
	TypeResolve event, Selected Events and Their Uses
	types, object	COM object interaction, Interacting with COM Objects
	creating instances of, Creating Instances of Types
	extending, Extending Types-Custom type extension files
	learning about, Learning About Types-.NET Framework documentation
	shortcuts for, Type Shortcuts

	types.custom.ps1xml file, Custom type extension files

U
	U or u format specifier (DateTime), .NET DateTime Formatting
	\udddd escaped character, Regular Expression Reference
	unary join operator, -join (Join operator)
	unary split operator, -split (Split operator)
	Unblock verb, Standard PowerShell Verbs
	Undo verb, Standard PowerShell Verbs
	UnhandledException event, Selected Events and Their Uses
	Uninstall verb, Standard PowerShell Verbs
	Universal sortable (u) format specifier, .NET DateTime Formatting
	Universal time (U) format specifier, .NET DateTime Formatting
	Unix commands, running in interactive shell, An Interactive Shell
	Unlock verb, Standard PowerShell Verbs
	Unprotect verb, Standard PowerShell Verbs
	Unpublish verb, Standard PowerShell Verbs
	Unregister verb, Standard PowerShell Verbs
	Update verb, Standard PowerShell Verbs
	Update-FormatData cmdlet, Custom Formatting Files
	Update-TypeData cmdlet, Custom type extension files
	UploadDataCompleted event, Selected Events and Their Uses
	UploadFileCompleted event, Selected Events and Their Uses
	UploadProgressChanged event, Selected Events and Their Uses
	UploadStringCompleted event, Selected Events and Their Uses
	UploadValues Completed event, Selected Events and Their Uses
	Uri class, Selected .NET Classes and
Their Uses
	Use verb, Standard PowerShell Verbs
	user input	commands supporting, Parameters-Parameters
	customizing, User Input

	user interface classes, Selected .NET Classes and
Their Uses
	UserPreferenceChanged event, Selected Events and Their Uses
	UserPreferenceChanging event, Selected Events and Their Uses
	using statement, Creating Instances of Types
	utility classes, Selected .NET Classes and
Their Uses-Selected .NET Classes and
Their Uses

V
	\v escaped character, Regular Expression Reference
	variables	$ args special variable, Argument array
	$ErrorActionPreference automatic variable, Nonterminating Errors
	$input special variable, Pipeline input
	$LastExitCode automatic variable, Exit statement
	$MyInvocation automatic variable, $MyInvocation automatic variable
	$profile automatic variable, Profiles
	$_ (or $PSItem) variable, Cmdlet keywords in commands, Terminating Errors
	$_ current object variable, Composable Commands
	numbers, Numbers-Imaginary and Complex Numbers
	PowerShell, Variables-Booleans
	Process object, Deep Integration of Objects

	Verb-Noun syntax, Structured Commands (Cmdlets), Standard PowerShell Verbs
	verbs, Standard PowerShell Verbs-Standard PowerShell Verbs	common, Standard PowerShell Verbs-Standard PowerShell Verbs
	communication, Standard PowerShell Verbs
	data, Standard PowerShell Verbs-Standard PowerShell Verbs
	diagnostic, Standard PowerShell Verbs
	lifecycle, Standard PowerShell Verbs
	security, Standard PowerShell Verbs

	Vim.Application class, Selected COM Objects and
Their Uses
	Visual Studio, Ubiquitous Scripting

W
	\W or \w character class, Regular Expression Reference
	Wait verb, Standard PowerShell Verbs
	Watch verb, Standard PowerShell Verbs
	WebClient class, Selected .NET Classes and
Their Uses
	WebClient event type, Selected Events and Their Uses
	WellKnownSidType class, Selected .NET Classes and
Their Uses
	-WhatIf parameter, Techniques to Protect You from Yourself
	.where() method, if, elseif, and else Statements
	Where-Object cmdlet, Composable Commands, if, elseif, and else Statements, XPath Quick Reference
	while looping statement, while Statement
	WIA.CommonDialog class, Selected COM Objects and
Their Uses
	-wildcard or -w match, switch Statements
	wildcards in cmdlet parameters, Structured Commands (Cmdlets)
	Win32_BaseBoard class, WMI Reference
	Win32_BIOS class, WMI Reference
	Win32_BootConfiguration class, WMI Reference
	Win32_CacheMemory class, WMI Reference
	Win32_CDROMDrive class, WMI Reference
	Win32_ComputerShutdownEvent class, Generic WMI Events
	Win32_ComputerSystem class, WMI Reference
	Win32_ComputerSystemEvent class, Generic WMI Events
	Win32_ComputerSystemProduct class, WMI Reference
	Win32_DCOMApplication class, WMI Reference
	Win32_Desktop class, WMI Reference
	Win32_DesktopMonitor class, WMI Reference
	Win32_DeviceChangeEvent class, Generic WMI Events
	Win32_DeviceMemoryAddress class, WMI Reference
	Win32_Directory class, WMI Reference
	Win32_DiskDrive class, WMI Reference
	Win32_DiskPartition class, WMI Reference
	Win32_DiskQuota class, WMI Reference
	Win32_DMAChannel class, WMI Reference
	Win32_Environment class, WMI Reference
	Win32_Group class, WMI Reference
	Win32_IDEController class, WMI Reference
	Win32_IP4RouteTableEvent class, Generic WMI Events
	Win32_IRQResource class, WMI Reference
	Win32_LoadOrderGroup class, WMI Reference
	Win32_LogicalDisk class, WMI Reference
	Win32_LogonSession class, WMI Reference
	Win32_ModuleLoadTrace event class, Generic WMI Events
	Win32_ModuleTrace event class, Generic WMI Events
	Win32_NetworkAdapter class, WMI Reference
	Win32_NetworkAdapterConfiguration class, WMI Reference
	Win32_NetworkClient class, WMI Reference
	Win32_NetworkConnection class, WMI Reference
	Win32_NetworkLoginProfile class, WMI Reference
	Win32_NetworkProtocol class, WMI Reference
	Win32_NTDomain class, WMI Reference
	Win32_NTEventLogFile class, WMI Reference
	Win32_NTLogEvent class, WMI Reference
	Win32_OnBoardDevice class, WMI Reference
	Win32_OperatingSystem class, WMI Reference
	Win32_OSRecoveryConfiguration class, WMI Reference
	Win32_PageFileSetting class, WMI Reference
	Win32_PageFileUsage class, WMI Reference
	Win32_PerfRawData_PerfNet_Server class, WMI Reference
	Win32_PhysicalMemoryArray class, WMI Reference
	Win32_PortConnector class, WMI Reference
	Win32_PortResource class, WMI Reference
	Win32_PowerManagementEvent class, Generic WMI Events
	Win32_Printer class, WMI Reference
	Win32_PrinterConfiguration class, WMI Reference
	Win32_PrintJob class, WMI Reference
	Win32_Process class, WMI Reference
	Win32_Processor class, WMI Reference
	Win32_ProcessStartTrace event class, Generic WMI Events
	Win32_ProcessStopTrace event class, Generic WMI Events
	Win32_ProcessTrace event class, Generic WMI Events
	Win32_Product class, WMI Reference
	Win32_QuickFixEngineering class, WMI Reference
	Win32_QuotaSetting class, WMI Reference
	Win32_Registry class, WMI Reference
	Win32_ScheduledJob class, WMI Reference, WMI Reference
	Win32_Service class, WMI Reference
	Win32_Share class, WMI Reference
	Win32_SoftwareElement class, WMI Reference
	Win32_SoftwareFeature class, WMI Reference
	Win32_SoundDevice class, WMI Reference
	Win32_StartupCommand class, WMI Reference
	Win32_SystemAccount class, WMI Reference
	Win32_SystemConfigurationChangeEvent class, Generic WMI Events
	Win32_SystemDriver class, WMI Reference
	Win32_SystemEnclosure class, WMI Reference
	Win32_SystemSlot class, WMI Reference
	Win32_SystemTrace event class, Generic WMI Events
	Win32_TapeDrive class, WMI Reference
	Win32_TemperatureProbe class, WMI Reference
	Win32_ThreadStartTrace event class, Generic WMI Events
	Win32_ThreadStopTrace event class, Generic WMI Events
	Win32_ThreadTrace event class, Generic WMI Events
	Win32_TimeZone class, WMI Reference
	Win32_UserAccount class, WMI Reference
	Win32_VoltageProbe class, WMI Reference
	Win32_VolumeChangeEvent class, Generic WMI Events
	Win32_VolumeQuotaSetting class, WMI Reference
	Win32_WMISetting class, WMI Reference
	Windows Console, Adjust your font size
	Windows Management Instrumentation (see WMI)
	Windows registry (see registry)
	Windows shell, An Interactive Shell
	Windows Terminal, settings, Adjust your font size-Use hotkeys to operate the shell more efficiently
	WindowsBuiltInRole class, Selected .NET Classes and
Their Uses
	WindowsIdentity class, Selected .NET Classes and
Their Uses
	WindowsPrincipal class, Selected .NET Classes and
Their Uses
	WMI (Windows Management Instrumentation)	classes, Selected .NET Classes and
Their Uses, WMI Reference-WMI Reference, Generic WMI Events-Generic WMI Events
	events, Generic WMI Events-Generic WMI Events
	PowerShell support for, Bridging Technologies

	WMI Service Management, class category, WMI Reference
	WMPlayer.OCX object, Selected COM Objects and
Their Uses
	Word.Application object, Selected COM Objects and
Their Uses
	Word.Document object, Selected COM Objects and
Their Uses
	workflow-specific statements, Workflow-Specific Statements-Parallel/Sequence
	Write verb, Standard PowerShell Verbs
	Write-Error cmdlet, Nonterminating Errors
	Write-Host cmdlet, Capturing Output
	writing scripts, reusing functionality, Writing Scripts, Reusing Functionality-Writing script blocks
	WScript.Network object, Selected COM Objects and
Their Uses
	WScript.Shell object, Selected COM Objects and
Their Uses
	WSHController object, Selected COM Objects and
Their Uses

X
	X or x format specifier, Standard Numeric Format Strings
	\xdd escaped character, Regular Expression Reference
	XML	support for, Bridging Technologies-Namespace Navigation Through Providers, XML
	XmlDocument class, Selected .NET Classes and
Their Uses
	XmlTextWriter class, Selected .NET Classes and
Their Uses
	XPath quick reference, XPath Quick Reference

	xor (exclusive OR) operator	binary (-bxor), Binary Operators
	logical (-xor), Logical Operators

	XPath quick reference, XPath Quick Reference-XPath Quick Reference

Y
	Y or y format specifier (DateTime), .NET DateTime Formatting
	y to yyyyy custom format specifiers (DateTime), Custom DateTime Format Strings
	year-related (y to yyyyy) custom format specifiers, Custom DateTime Format Strings
	year/month (Y or y) format specifier, .NET DateTime Formatting

Z
	\Z or \z in atomic zero-width assertions, Regular Expression Reference
	z to zzz custom format specifiers (DateTime), Custom DateTime Format Strings
	zero placeholder (0) format specifier, Custom Numeric Format Strings

 About the Author

 Lee Holmes is a security architect in Azure Security, an original developer on the PowerShell team, and has been an authoritative source of information about PowerShell since its earliest betas. His vast experience with both world-scale security and operational management—and PowerShell itself—give him the background to integrate both the “how” and the “why” into discussions.

You can find him on Twitter (@Lee_Holmes), as well as his personal site.

Colophon

 The animal on the cover of PowerShell Pocket Reference is an eastern box turtle (Terrapene carolina carolina). This box turtle is native to North America, specifically northern parts of the United States and Mexico. The male turtle averages about six inches long and has red eyes; the female is a bit smaller and has yellow eyes.

 This turtle is omnivorous as a youth but largely herbivorous as an adult. Its domed shell is hinged on the bottom and snaps tightly shut if the turtle is in danger. Box turtles usually stay within the area in which they are born, rarely leaving a 750-foot radius. When mating, male turtles sometimes shove and push one another to win a female’s attention. During copulation, it is possible for the male turtle to fall backward, be unable to right himself, and starve to death.

Although box turtles can live for more than 100 years, their habitats are seriously threatened by land development and roads. Turtles need loose, moist soil in which to lay eggs and burrow during their long hibernation season. Experts strongly discourage taking turtles from their native habitats—not only will it disrupt the community’s breeding opportunities, but turtles become extremely stressed outside of their known habitats and may perish quickly.

Many of the animals on O’Reilly covers are endangered; all of them are important to the world.

Color illustration by Karen Montgomery, based on a black and white engraving from Dover’s Animals. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	A Guided Tour of PowerShell

	Introduction

	An Interactive Shell

	Structured Commands (Cmdlets)

	Deep Integration of Objects

	Administrators as First-Class Users

	Composable Commands

	Techniques to Protect You from Yourself

	Common Discovery Commands

	Ubiquitous Scripting

	Ad Hoc Development

	Bridging Technologies

	Namespace Navigation Through Providers

	Much, Much More

	Conventions Used in This Book

	Using Code Examples

	O’Reilly Online Learning

	How to Contact Us

	1. PowerShell Language and Environment

	Commands and Expressions

	Comments

	Help Comments

	Variables

	Booleans

	Strings

	Literal and Expanding Strings

	Here Strings

	Escape Sequences

	Numbers

	Simple Assignment

	Administrative Numeric Constants

	Hexadecimal and Other Number Bases

	Large Numbers

	Imaginary and Complex Numbers

	Arrays and Lists

	Array Definitions

	Array Access

	Array Slicing

	Hashtables (Associative Arrays)

	Hashtable Definitions

	Hashtable Access

	XML

	Simple Operators

	Arithmetic Operators

	Logical Operators

	Binary Operators

	Other Operators

	Comparison Operators

	Conditional Statements

	if, elseif, and else Statements

	Ternary Operators

	Null Coalescing and Assignment Operators

	switch Statements

	Looping Statements

	for Statement

	foreach Statement

	while Statement

	do … while Statement/do … until Statement

	Flow Control Statements

	Classes

	Custom Enumerations

	Workflow-Specific Statements

	Working with the .NET Framework

	Static Methods

	Instance Methods

	Explicitly Implemented Interface Methods

	Static Properties

	Instance Properties

	Learning About Types

	Type Shortcuts

	Creating Instances of Types

	Interacting with COM Objects

	Extending Types

	Writing Scripts, Reusing Functionality

	Writing Commands

	Running Commands

	Providing Input to Commands

	Retrieving Output from Commands

	Managing Errors

	Nonterminating Errors

	Terminating Errors

	Formatting Output

	Custom Formatting Files

	Capturing Output

	Common Customization Points

	Console Settings

	Profiles

	Prompts

	Tab Completion

	User Input

	Command Resolution

	2. Regular Expression Reference
	3. XPath Quick Reference
	4. .NET String Formatting

	String Formatting Syntax

	Standard Numeric Format Strings

	Custom Numeric Format Strings

	5. .NET DateTime Formatting

	Custom DateTime Format Strings

	6. Selected .NET Classes and
Their Uses
	7. WMI Reference
	8. Selected COM Objects and
Their Uses
	9. Selected Events and Their Uses

	Generic WMI Events

	10. Standard PowerShell Verbs
	Index

OEBPS/Images/fig6_06.png
R =
S

= “\%\Eﬁ/\\\\&‘};:& NS
e =
S == =N

SN R e : . =
NPT e oS ——=~

—_— e SN
Y
= \

e — S— s K\ ﬁw‘\ .4«_-.»“& s SN EN\- —
= /ad AN = IR P) Vir =: SR -\
A DN, 68 e e e

NN\ !%”;w»" @E""’; I SINANNIHES S N,
E WA S ' O\ N S ——

OEBPS/Images/cover.png
O'REILLY"

PowerShel
Pocket
Reference

Portable Help for
PowerShell Scripters

Lee Holmes

OEBPS/Images/wpsp_0001.png
Windows Pow]
Copyright (C) M1crosoft Corporation. All rights reserved.

Try the new cross-platform Powershell https://aka.ms/pscoreb

PS C:\Users\lee>

