

Raspberry Pi Cookbook
FOURTH EDITION

Software and Hardware
Problems and Solutions

Dr. Simon Monk

Raspberry Pi Cookbook
by Simon Monk
Copyright © 2023 Simon Monk. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Zan McQuade
Development Editor: Jeff Bleiel
Production Editor: Clare Laylock
Copyeditor: Penelope Perkins
Proofreader: Piper Editorial Consulting, LLC
Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea
August 2014: First Edition
June 2016: Second Edition
October 2019: Third Edition
December 2022: Fourth Edition

Revision History for the Fourth Edition
2022-12-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098130923 for release
details.
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Raspberry Pi Cookbook, the cover image, and related trade dress are

http://oreilly.com/
http://oreilly.com/catalog/errata.csp?isbn=9781098130923

trademarks of O’Reilly Media, Inc.
The views expressed in this work are those of the author, and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.
978-1-098-13092-3
[LSI]

Dedication
To my late mother Anne Kemp (1924–2022), whose good cheer and ability
to laugh in the face of adversity was an example to us all

Preface to the Fourth Edition

Launched in 2011, the Raspberry Pi has found a role both as a very low-
cost Linux-based computer and as a platform for embedded computing. It
has proven popular with educators and hobbyists alike.
As of this writing, more than 40 million Raspberry Pis have been sold. The
Raspberry Pi 4 with an option of 8 GB of memory makes the Raspberry Pi
more than powerful enough to use as a replacement for a desktop computer,
and the Pi 400 with its built-in keyboard makes a very capable replacement
for a desktop computer.
The availability of open source Linux software for internet browsing, email,
office suites, and photo editing is set to make the Raspberry Pi even more
popular.
Even the latest Raspberry Pi 4 and Pi 400 still includes the general-purpose
input/output (GPIO) pins that allow the hobbyist to add their own electronic
contraptions to the Raspberry Pi.
This edition has been thoroughly updated to encompass the new models of
Raspberry Pi, as well as the many changes and improvements to its
Raspberry Pi OS. In particular you will find new chapters on:

Machine Learning
Raspberry Pi Pico and Pico W

This book is designed so that you can read it linearly, as you would a
regular book, or access recipes at random. You can search the table of
contents or index for the recipe that you want and then jump directly to it. If
the recipe requires you to know about other things, it will refer you to other
recipes, rather like a cookbook might refer you to base sauces before
showing you how to cook something fancier.
The world of Raspberry Pi moves quickly. With a large, active community,
new interface boards and software libraries are being developed all the

time. In addition to examples that use specific interface boards or software,
the book also covers basic principles so that you can have a better
understanding of how to use new technologies that come along as the
Raspberry Pi ecosystem develops.
As you would expect, a large body of code (mostly Python programs)
accompanies the book. These programs are all open source and available on
GitHub. For most of the software-based recipes, all you need is a Raspberry
Pi. I recommend a Raspberry Pi 3 or 4 model B. When it comes to recipes
that involve making your own hardware to interface with the Raspberry Pi,
I have tried to make good use of ready-made modules as well as solderless
breadboard and jumper wires to avoid the need for soldering.
If you want to make breadboard-based projects more durable, I suggest
using prototyping boards with the same layout as a half-size breadboard,
such as those sold by Adafruit and elsewhere, so that the design can easily
be transferred to a soldered solution.

Using This Book
The cookbook style of this book means that it is not a book that you must
read in order from front to back. The book is made up of individual recipes
grouped into chapters. Where a recipe needs you to have prior knowledge
of some other topic, the recipe will send you off to another recipe for that
topic.
You’ll probably find that you jump around from recipe to recipe as you try
to get your Raspberry Pi project to do what you want.
I have mapped out a few paths through the book that I think would be
useful to different types of readers:

Complete Raspberry Pi beginner
Read most of Chapters 1, 2, and 3—in particular, start with Recipes
1.1, 1.2, and 1.4—and then wander at will.

Python learner

https://oreil.ly/fEB8p

If you want to use your Raspberry Pi to learn how to program in Python,
work your way through Chapters 4 to 7. You will probably find that you
need to jump off to various recipes in earlier chapters.

Electronics hobbyist
If you don’t already have them, you’ll need to pick up some Python
skills by working through Chapters 4 to 7, and then work through
Chapters 8 and 9 before picking out some interesting recipes in the later
chapters to start making yourself some Raspberry Pi electronics
projects.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This icon signifies a tip, suggestion, or general note.

WARNING
This icon indicates a warning or caution.

NOTE
This icon points you to the related video for that section.

Using Code Examples
Supplemental material (code examples, etc.) is available for download at
https://github.com/simonmonk/raspberrypi_cookbook_ed4.
This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.
We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Raspberry Pi
Cookbook, Fourth Edition, by Simon Monk (O’Reilly). Copyright 2023
Simon Monk, 978-1-098-13092-3.”
If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

https://github.com/simonmonk/raspberrypi_cookbook_ed4
mailto:permissions@oreilly.com

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, conferences, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand access
to live training courses, in-depth learning paths, interactive coding
environments, and a vast collection of text and video from O’Reilly and
200+ other publishers. For more information, please visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/raspberry-pi-cookbook-4e.
Email bookquestions@oreilly.com to comment or ask technical questions
about this book.
For news and information about our books and courses, visit
https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media.
Follow us on Twitter: http://twitter.com/oreillymedia.

http://oreilly.com/
http://www.oreilly.com/
https://oreil.ly/raspberry-pi-cookbook-4e
mailto:bookquestions@oreilly.com
https://oreilly.com/
https://linkedin.com/company/oreilly-media
http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia.

Acknowledgments
As always, I thank my wife, Linda, for her patience and support.
I also thank the technical reviewers Ian Huntley, Mike Bassett, Kevin
McAleer, and Matthew Monk for their excellent help and suggestions that
have without a doubt contributed greatly to this book.
Thanks also to the very helpful and well-organized Jeff Bleiel and all the
O’Reilly team and, of course, Penelope Perkins for her keen eye.

http://www.youtube.com/oreillymedia

Chapter 1. Setup and
Management

1.0 Introduction
When you buy a Raspberry Pi, you are essentially buying an assembled
printed circuit board, or in the case of a Raspberry Pi 400, a circuit board in
a keyboard case. For a fully functioning system, you are going to need at
least a suitable power supply, operating system on microSD card, and
mouse.
The recipes in this chapter are concerned with getting your Raspberry Pi set
up and ready for use.
Because the Raspberry Pi uses standard USB and Bluetooth keyboards and
mice, most of the setup is pretty straightforward, so you’ll concentrate only
on those tasks that are specific to the Raspberry Pi.

1.1 Selecting a Model of Raspberry Pi

Problem
Many models of Raspberry Pi are available, and you are not sure which one
to use.

Solution
The decision as to which Raspberry Pi model to use depends very much on
what you plan to do with it. Table 1-1 lists some uses and my model
recommendations.

Table 1-1. Selecting a model of Raspberry Pi

Usage Suggested model NotesUsage Suggested model Notes
Desktop
computer
replacement

Raspberry Pi 400 or
Raspberry Pi 4
model B (4 GB)

You will need the 4 GB of memory if you are web
browsing. The Pi 400 offers the convenience being
built into a keyboard case.

Electronics
experimentation

Raspberry Pi 2 or 3
model B

Reasonably up-to-date hardware will minimize
software problems. No need for more performance.

Computer
vision

Raspberry Pi 4
model B (4 GB)

Maximum performance required.

Home
automation

Raspberry Pi 2 or 3
model B

Low-power consumption and more than enough
power.

Media center Raspberry Pi 3 or 4 For video performance.

Electronic
display board

Any model A model with WiFi, advantageous for remote access.

Embedded
wireless
electronics
project

Raspberry Pi Zero 2
W or Pico W

Low cost and WiFi enabled for IoT (Internet of
Things) and other wireless projects.

Embedded
electronics
project

Pico Very low cost and little in common with most
Raspberry Pis other than the name. See Chapter 19
for more information.

If you want a good general-purpose Raspberry Pi, I recommend a
Raspberry Pi 4 model B. With four times as much memory as the original
Raspberry Pi and a quad-core processor, it will cope with most tasks much
better than the Pi Zero, but it doesn’t get as hot or use as much power as the
Raspberry Pi 4. The Raspberry Pi 3 model B+ also has the great advantage
of having WiFi and Bluetooth built in, so there’s no need for an extra USB
WiFi adapter or Bluetooth hardware.

THE RASPBERRY PI 4 MODEL B
As of this writing, the Raspberry Pi 4 model B (Figure 1-1) is the latest standard Raspberry Pi.

The new model has also, for the first time, allowed users a choice of memory sizes (1 GB, 2
GB, 4 GB, or 8 GB), with the price reflecting your memory choice.

One of the most significant changes is that the micro-USB socket that supplied power to earlier
versions has been dropped in favor of the USB-C connector. Also, the single full-size HDMI
connector of the earlier versions has been replaced by a pair of micro-HDMI connectors—so
you’ll need a special HDMI lead or an adapter. And yes, you can connect two monitors at the
same time.

Under the hood, this Raspberry Pi is much faster than its predecessors (especially if you go for
the 4 GB or 8 GB memory versions). In fact, some benchmarks suggest it is three to four times
faster than any previous Raspberry Pi. This comes at the cost of the main chip on the board
operating much hotter than in earlier versions—hot enough, in fact, to hurt.

Figure 1-1. The Raspberry Pi 4 model B

If, on the other hand, you are embedding a Raspberry Pi in a project for a
single purpose, using a compact Pi Zero W and saving a few dollars might

well be an option.

THE RASPBERRY PI 400
The Raspberry Pi makes a pretty good desktop computer replacement, and no Raspberry Pi is
better suited to this than the Raspberry Pi 400 (Figure 1-2).

Figure 1-2. The Raspberry Pi 400

The Raspberry Pi 400 is essentially the same hardware as the Raspberry Pi 4, but built into a
keyboard case, reminiscent of the home computers of the 1990s. The HDMI and USB ports are
all accessible at the back of the Pi 400. The GPIO pins are accessible at the back of the
computer, but are not as easy to access as a regular Raspberry Pi, so if you are buying a
Raspberry Pi to learn about electronics, a regular Pi is probably a better choice. However, if you
just want a desktop replacement, then a Pi 400 is a really good choice.

Discussion
Figure 1-3 shows the Pi Zero W, the Raspberry Pi 3 B, and the Raspberry Pi
4.

Figure 1-3. From left to right, the Raspberry Pi Zero W, the Raspberry Pi 3 B, and the Raspberry
Pi 4 B

As you can see from Figure 1-3, the Pi Zero W is roughly half the size of
the Pi 3 B or Pi 4 B, and it has a single micro-USB socket for
communication and a second one for power. The Pi Zero W also saves
space by using a mini-HDMI socket and micro-USB on-the-go socket. If
you want to connect a keyboard, monitor, and mouse to a Pi Zero, you’ll
need adapters for both the USB and the HDMI ports before you can connect
standard peripherals. The Raspberry Pi A+ is larger than the Pi Zero and
has full-size USB and HDMI ports.
Table 1-2 summarizes the differences between all the Raspberry Pi models
to date, with the most recently released models toward the top.

Table 1-2. Raspberry Pi models

Model RAM Processor
(cores *
clock)

USB
sockets

Ethernet
port

Notes

400 4 GB 4 * 1.8 GHz 4 (2 x
USB3)

yes Built into a keyboard

4 B 1/2/4/8
GB

4 * 1.5 GHz 4 (2 x
USB3)

yes 2 x micro-HDMI video

Model RAM Processor
(cores *
clock)

USB
sockets

Ethernet
port

Notes

Compute
4

1/2/4/8
GB

4 * 1.5 GHz no no For embedding in products (see
sidebar)

3 A+ 512 MB 4 * 1.4 GHz 1 no WiFi and Bluetooth

3 B+ 1 GB 4 * 1.4 GHz 4 yes WiFi and Bluetooth

3 B 1 GB 4 * 1.2 GHz 4 yes WiFi and Bluetooth

Zero 2
W

512 MB 4 * 1 GHz 1 (micro) no WiFi and Bluetooth

Zero W 512 MB 1 * 1 GHz 1 (micro) no WiFi and Bluetooth

Zero 512 MB 1 * 1 GHz 1 (micro) no Low cost

2 B 1 GB 4 * 900 MHz 4 yes

A+ 256 MB 1 * 700 MHz 1 no

B+ 512 MB 1 * 700 MHz 4 yes Discontinued

A 256 MB 1 * 700 MHz 1 no Discontinued

B rev2 512 MB 1 * 700 MHz 2 yes Discontinued

B rev1 256 MB 1 * 700 MHz 2 yes Discontinued

If you have one of the older or discontinued Raspberry Pi models, it is still
useful. Those models do not have quite the performance of the latest
Raspberry Pi 4, but for many situations, that does not matter.
If you are buying a new Raspberry Pi, I consider the best choice for use as a
general-purpose computer to be the Raspberry Pi 4 or 400. If you don’t
need WiFi or want a smaller device, also consider the 3 B, 2 B, or Zero W.

THE RASPBERRY PI COMPUTE 4
The Raspberry Pi is such a useful device that it has found its way into many commercial
products. Sometimes this is a little wasteful, as the product may not have need of all the
connectors and other features of, say, a Raspberry Pi 4.

The Raspberry Pi Compute 4 (and its predecessors) provides a neat module (Figure 1-4) that has
connectors on the underside designed to mate to a carrier board, as a really easy way for a
product to incorporate a Linux computer. Because the module and its associated WiFi and
Bluetooth are already certified as CE and FCC compliant, making your product comply with
relevant standards is a lot easier.

Figure 1-4. The Raspberry Pi Compute Module 4

See Also
For more information on the Raspberry Pi models, see https://oreil.ly/oY-
A_.
Take a look at the Raspberry Pi Compute Modules.

https://oreil.ly/oY-A_
https://oreil.ly/3HjzD

The low cost of the Pi Zero and Pi Zero W models makes them ideal for
embedding in electronics projects without worrying about the expense. See
Recipe 10.18.

1.2 Connecting the System

Problem
You have everything that you need for your Raspberry Pi, and you want to
connect it all.

Solution
Unless you are embedding your Raspberry Pi in a project or using it as a
media center, you need to attach a keyboard (unless you are using a Pi 400),
a mouse, and a monitor.
Figure 1-5 shows a typical Raspberry Pi system. If you have a Raspberry Pi
4, you could (if you really wanted) connect a second monitor. However, if
you have just one monitor, connect it to the micro-HDMI connector closest
to the USB-C power connector.

Figure 1-5. A typical Raspberry Pi system

Discussion
The Raspberry Pi is perfectly happy with pretty much any USB keyboard
and mouse, wired or wireless.
The Raspberry Pi 4 lets you connect two monitors to your system at the
same time. When you do so, you’ll be able to move your mouse cursor
between screens, but Raspberry Pi OS will need to know where the screens
are relative to each other. To enable this, open the Raspberry Menu (the one
with the Raspberry Pi icon), go to the Preferences section, and open the
Screen Configuration tool (Figure 1-6).

Figure 1-6. Arranging multiple screens

You can drag the two boxes labeled HDMI-1 and HDMI-2 around to
represent the physical position of the two monitors. In Figure 1-6, the
monitors are side by side, with the monitor connected to HDMI-1 on the
left.
If you have an older Raspberry Pi or a model A or A+ and run out of USB
sockets, you will also need a USB hub.

See Also
Check out the official Raspberry Pi Quick Start Guide.

1.3 Enclosing a Raspberry Pi

Problem

https://oreil.ly/GZtqA

You need an enclosure for your Raspberry Pi.

Solution
Apart from the Raspberry Pi 400, Raspberry Pis do not come with an
enclosure unless you buy one as part of a kit. This makes it a little
vulnerable, given that bare connections are on the underside of the circuit
board that could easily be short-circuited if the Raspberry Pi is placed on
something metal.
It is a good idea to buy some protection for your Raspberry Pi in the form
of a case. If you intend to use the Raspberry Pi’s general-purpose
input/output (GPIO) pins (the pins that allow you to connect to external
electronics), the Pibow Coupé shown in Figure 1-7 is a beautiful and
practical design that is available for both the Raspberry Pi 4 and earlier
versions.

Discussion
A vast array of case styles are available to choose from, including the
following:

Simple, two-part, click-together plastic boxes
VESA mountable boxes (for attaching to the back of a monitor or TV)
LEGO-compatible boxes
3D-printed box designs
Laser-cut acrylic designs
Designs that act as a large heat sink for cooling
Designs with a built-in fan
DIN-rail designs for labs and workshops

Figure 1-7. A Raspberry Pi 2 in a Pibow Coupé

The case you buy is very much a matter of personal taste. However,
consider the following:

Do you need to have access to the GPIO connector? This is important if
you plan to attach external electronics to your Raspberry Pi.
Is the case well ventilated? This is important if you plan to overclock
your Raspberry Pi (Recipe 1.13) or run it hard playing videos or games,
because these will all generate more heat.
Finally, make sure you get one that fits your model of Raspberry Pi.

If you have access to a 3D printer, you can also print your own case. Search
for Raspberry Pi on Thingiverse or MyMiniFactory, and you’ll find lots of
designs.

https://www.thingiverse.com/
https://www.myminifactory.com/

You will also find kits that have tiny self-adhesive heat sinks to attach to the
chips on the Raspberry Pi. These can be of some use if you are demanding a
lot of your Raspberry Pi, say, by playing a lot of videos, but generally they
are the equivalent of “go-faster” stripes on a car.
If you have a Raspberry Pi 4, you can reduce the temperature by fitting a
small fan such as the Pimoroni Fan SHIM, as shown in Figure 1-8.

Figure 1-8. The Pimoroni Fan SHIM

See Also

You will also find many styles of cases at other Raspberry Pi suppliers and
on eBay.

1.4 Selecting a Power Supply

Problem
You need to select a power supply for your Raspberry Pi.

Solution
The basic electrical specification for a power supply suitable for a
Raspberry Pi is that it provides a regulated 5V DC (direct current).
The amount of current that the power supply must be capable of providing
depends both on the model of Raspberry Pi and on the peripherals attached
to it. It is worth getting a power supply that can easily cope with the
Raspberry Pi, and you should consider 1A to be a minimum for any model
of Raspberry Pi.
If you buy your power supply from the same place that you buy the
Raspberry Pi, the seller should be able to tell you whether it will work with
the Raspberry Pi.
The Raspberry Pi 4 should be used with a 3A power supply. This is in part
because its greater processing power than earlier models requires more
electrical power, but also because its two USB3 ports are able to supply up
to 1.2A to high-power USB peripherals such as external USB drives.
If you are going to be using WiFi or USB peripherals that require
significant amounts of power with pre-Raspberry Pi 4 models, you should
get a power supply capable of 1.5A or even 2A. Also beware of very low-
cost power supplies that might not provide an accurate or reliable 5V.

Discussion

The Raspberry Pi 4 is the first Raspberry Pi to use the more modern USB-C
connector. Unlike the micro-USB connector used on earlier boards, this
connector is reversible (Figure 1-9).

Figure 1-9. Power and video connections for the Raspberry Pi 3 (top) and 4 (bottom)

In Figure 1-9, you can see the USB-C power connector of a Raspberry Pi 4
below the micro-USB connector of a Raspberry Pi 3. As an aside, you can
also see the pair of micro-HDMI video ports that replace the single full-size
HDMI connector.
Whether your Raspberry Pi uses a USB-C connector or a micro-USB
connector, the power supply and connectors are actually the same as those
found in many smartphone chargers. If they terminate in a micro-USB plug,
they are almost certainly 5V (but check). The only question, then, is
whether they can supply enough current.

If they can’t, a few bad things can happen:
They might become hot and be a potential fire risk.
They might simply fail.
At times of high load (say, when the Pi is using WiFi or playing video),
the voltage might dip and the Raspberry Pi might reset itself.

If you are using a Raspberry Pi 3 or earlier, look for a power supply that
says it can supply 1A or more. If it specifies a number of watts (W) rather
than amps (A), divide the number of watts by 5 to get the number of amps.
So a 5V 10W power supply can supply 2A (2,000mA).
Using a power supply with, say, a maximum current of 2A will not use any
more electricity than a 700mA power supply. The Raspberry Pi takes only
as much current as it needs.
In Figure 1-10, I measure the current taken by a Raspberry Pi model B and
compare it with a Raspberry Pi 2 model B and a Raspberry Pi 4.

Figure 1-10. Raspberry Pi current consumption during booting

The newer Raspberry Pis (starting with the A+ and all the way through to
the Pi 4) are far more power-efficient than the original Raspberry Pi 1
models, but when the processor is fully occupied and has a lot of
peripherals attached, they can still reach similar current requirements, and,
in the case of the Raspberry Pi 4, quite a lot more.
As you can see in Figure 1-10, if your Raspberry Pi is going to be on all the
time, a Raspberry Pi 2 will run cooler and use a lot less power than the
newest Raspberry Pi 4.
In Figure 1-10, you can see that the current rarely exceeds 700mA.
However, the processor isn’t really doing very much here. Were you to start
playing HD video, the current would increase considerably. When it comes
to power supplies, it’s always better to have something in reserve.

See Also
You can buy an uninterruptible power supply (UPS) for the Raspberry Pi.
This ensures that the Pi can keep running for 10–30 minutes in the event of
a power failure.
The Raspberry Pi has no on/off switch, but you can buy a module that will
turn off the power when the Raspberry Pi shuts down.

1.5 Selecting an Operating System

Problem
There are several Raspberry Pi operating systems, and you are not sure
which one to use.

Solution
The answer to this question depends on what you intend to do with your
Raspberry Pi.

https://oreil.ly/F0Pn2
https://oreil.ly/IUc2G

For general use as a computer or for using in electronic projects, you should
use Raspberry Pi OS, the standard and official distribution for the
Raspberry Pi.
If you plan to use your Raspberry Pi as a media center, a number of
distributions (versions of Linux) are available specifically for that purpose
(see Recipe 4.1).
In this book, we use Raspberry Pi OS almost exclusively, although most of
the recipes will work with any Debian-based Linux distribution.

Discussion
If you are interested in trying out some different distributions, you can
purchase some microSD cards, which are not expensive, and copy the
various distributions onto them. If you do this, it is a good idea to keep your
files that you don’t want to lose on a USB flash drive plugged into your
Raspberry Pi.
Note that if you are using one of the upcoming recipes to write your own
SD card, you need to have a computer that has an SD card slot (and an SD-
to-microSD adapter), or you can buy an inexpensive USB SD card reader.

See Also
Check out the official list of Raspberry Pi distributions.

1.6 Installing an Operating System Using
Raspberry Pi Imager

Problem
You want to put the operating system for your Raspberry Pi directly onto a
microSD card ready for use by your Pi.

Solution

https://oreil.ly/1X8oa

Before you can use your Raspberry Pi, you must prepare a microSD card
with the Raspberry Pi OS operating system by writing a disk image onto the
microSD card.
The process of writing the disk image onto the microSD card is as follows:

1. Using a Mac, Windows, or Linux computer (not your Raspberry Pi),
download the Raspberry Pi Imager.

2. Insert the microSD card into your computer. It’s also a good idea to
disconnect any other removable media so that you don’t accidentally
overwrite the wrong device.

3. Start the Raspberry Pi Imager (Figure 1-11).
4. Select the Operating System as Raspberry Pi OS (32-bit) and the SD

card.
5. Click Write and wait while the image file is copied onto the

removable media.

Figure 1-11. Using Raspberry Pi Imager to write an SD card

https://oreil.ly/1X8oa

After the SD card or other removable media is prepared, you can plug it in
to your Raspberry Pi, and when the Raspberry Pi is powered up, it will boot
into whatever operating system distribution you installed.

Discussion
Vendors of hardware sometimes offer their own disk image that has support
for their hardware built into it. It’s best to avoid using such images because
doing so means that you will not get all the benefits of using a standard
Raspberry Pi OS distribution and all the pre-installed software. It also
means that if you have a problem with a piece of software, it will be a lot
more difficult to find support because you are using a nonstandard
distribution.
The Raspberry Pi 4 and 400 hardware does have a 64-bit processor and a
64-bit version of the operating system is available, but at the time of writing
using the default Raspberry Pi OS 32-bit option is much more stable.

MICROSD CARDS
Not all microSD cards are created equal, and the performance of your Raspberry Pi will be
better with a better card. So look for a card specified as being “class 10.” Raspberry Pi OS
includes a utility (Figure 1-12) to test your microSD card. You can find it by selecting
Accessories, then Raspberry Pi Diagnostics from the Raspberry Menu.

Figure 1-12. Using the Raspberry Pi Diagnostics tool to test your SD card

When it comes to capacity, you should look for cards of at least 16 GB, and, really, given the
small difference in price, a 32 GB card is the better choice, as it will give you plenty of room for
expansion.

See Also
The Raspberry Pi guide to installing Raspberry Pi OS can be found at
https://www.raspberrypi.com/software.

https://www.raspberrypi.com/software

1.7 Booting Up Your Raspberry Pi for the
First Time

Problem
You’ve set up a microSD card, and you want to know how to set up your
Raspberry Pi.

Solution
The first time that you boot up your Raspberry Pi (as shown in Figure 1-
13), you will be taken through some setup questions.

Figure 1-13. Configuring Raspberry Pi after installation

Clicking Next prompts you to create a new user account (Figure 1-14).

Figure 1-14. Creating a user account

Prior to April 2022 this step was not part of the setup procedure, as the
username of “pi” was automatically created for you. As a result many
tutorials and books assume that your home directory is /home/pi. Unless
you have strong feelings about your username, I would recommend sticking
to the username “pi” but create a strong password (not the default of
“raspberry”).
After you are up and running, the first thing you should do is connect your
Raspberry Pi to the internet (Recipes 2.1 and 2.5), because next you’ll be
asked to connect to a WiFi network to check for updates. Updating requires
an internet connection, so it won’t work unless you have connected to your
network. If you are connected (either by WiFi or Ethernet), it’s a good idea
to check for updates now. If not, you can always check later using Recipe
3.40.

Discussion

It is a good idea to set the right time zone. If you don’t, the Raspberry Pi
will show the incorrect time because it gets its time from an internet time
server.

See Also
The Raspberry Pi guide to installing Raspberry Pi OS can be found at
https://www.raspberrypi.com/software.

1.8 Setting Up a Headless Raspberry Pi

Problem
You want to use a Raspberry Pi without having to connect a keyboard,
mouse, and monitor to it.

Solution
Use the settings option on the Raspberry Pi Imager to start your Raspberry
Pi with network credentials and enable SSH (Recipe 2.7) so that you can
connect to the Raspberry Pi from another computer.
After you have selected the operating system in the Raspberry Pi Imager, a
cog settings icon will appear. When you click on this, you’ll be presented
with a list of settings (Figure 1-15) that you can use to preconfigure your
Raspberry Pi so that other computers on your network can connect to it.
To be able to access the Raspberry Pi remotely, as a minimum you must:

Enable SSH (Secure Shell)
Set the username and password
Configure the wireless LAN with the name of your network (SSID, or
service set identifier) and password

It’s also not a bad idea to set the hostname, especially if you are going to
have more than one Raspberry Pi on your network and you want to tell
which is which.

https://www.raspberrypi.com/software

Figure 1-15. Preconfiguring a Raspberry Pi with the Pi Imager

Discussion
Once you put the microSD card into your Raspberry Pi and boot up, you
can connect to your Raspberry Pi from another computer using SSH. The
only obstacle to doing this is that you need to know the IP address that your
home hub assigned to your Raspberry Pi when it connected to it. You can
find this by temporarily connecting keyboard, mouse, and monitor and
following Recipe 2.2, after which you should follow Recipe 2.3 so that the
IP address will be fixed.
Sometimes it isn’t convenient to attach all those things to your Raspberry
Pi. In this case, you can use the various tools available on Android and iOS
to scan your network from your mobile phone and report a list of connected
computers along with their IP addresses (Figure 1-16).

Figure 1-16. Scanning your network to find an IP address

See Also
For more information on connecting to your Raspberry Pi with SSH,
see Recipe 2.7.

1.9 Booting from a Real Hard Disk or USB
Flash Drive

Problem
Your microSD card is too small and/or you are concerned about your entire
operating system running on an SD card.

Solution
Before the Raspberry Pi 4 and 400 came along, booting from a hard disk or
flash drive was possible, but not very easy, involving some complex
commands and the possibility of “bricking” your Raspberry Pi if you got it
wrong. If you have a Raspberry Pi 4 or 400, then it is now really
straightforward and starts with the Raspberry Pi Imager.
The process is similar to setting up a microSD card using the Raspberry Pi
Imager. To follow this recipe, you’ll need a Windows, Mac, or Linux
computer; a USB SSD (solid state drive); and a microSD card. Even though
the whole point of this recipe is to replace the microSD card as the boot
device, you still need two microSD cards: one being your existing microSD
boot device for your Raspberry Pi and a second blank microSD card.

1. Insert the blank microSD card into your card reader.
2. Start the Raspberry Pi Imager, and then from the Operating System

drop-down, select Misc Utility Images and then Bootloader and then
USB Boot (Figure 1-17). Note that if these options aren’t present in
your Raspberry Pi Imager, then you probably need to download the
latest version.

3. Select your microSD card from the Storage drop-down and then click
Write.

https://oreil.ly/1X8oa

4. Put the newly written microSD card into your Raspberry Pi and power
it up. The only purpose of this microSD card image is to reconfigure
your Raspberry Pi for USB booting. Once it’s done its work, the
screen will turn green.

5. Power down your Raspberry Pi and swap the microSD cards, so that
you now have your original microSD system card in the Raspberry
Pi.

6. Boot your Raspberry Pi and from the Raspberry Menu, select
Accessories and then SD Card Copier (Figure 1-18). Select your
system microSD card as the source and the external USB drive as the
destination, then click Start.

7. When the copy is complete, you can shut down your Raspberry Pi
again and remove the microSD card. The next time you switch on
your Raspberry Pi, it should boot from the USB drive.

Figure 1-17. Using the Raspberry Pi Imager to configure USB booting

Figure 1-18. Copying your microSD card to an external flash drive

Discussion
If you are starting with a fresh image, rather than wanting to copy over the
current contents of your microSD card, then you can get away with using
just one microSD card. Between steps 4 and 5, set up the microSD card
with a fresh Raspberry Pi OS image by following Recipe 1.6.

See Also
Check out the documentation for the Raspberry Pi Imager.

1.10 Connecting a DVI or VGA Monitor

Problem
Your monitor does not have an HDMI connector, but you want to use it
with your Raspberry Pi.

Solution
Many people have been caught out by this problem. Fortunately, it is
possible to buy adapters for monitors with a DVI or VGA input, but no
HDMI connectors.

https://oreil.ly/Q2F96

DVI adapters are the simplest and cheapest. They are available for less than
$5 if you search for “HDMI male to DVI female converter.”

Discussion
Using VGA adapters is more complex because they require some
electronics to convert the signal from digital to analog, so beware of leads
that do not contain these. The official converter is called Pi-View and is
available wherever the Raspberry Pi is sold. Pi-View has the advantage of
having been tested and found to work with Raspberry Pi. You can find
cheaper alternatives on the internet, but often these won’t work.
However, given that new monitors all have HDMI connectors, you are
probably better off spending your money on a new monitor rather than an
adapter.

See Also
eLinux has tips on what to look for in a converter.

1.11 Using a Composite Video Monitor/TV

Problem
The text on your low-resolution composite monitor is illegible.

Solution
You need to adjust the resolution of the Raspberry Pi for a small screen.
The Raspberry Pi has two types of video output: (1) HDMI, and (2)
composite video from the audio jack, for which you need a special lead. Of
these, the HDMI is by far the better-quality option. If you’re intending to
use a composite video as your main screen, you might want to think again.
If you are using a composite video screen—say, because you need a really
small screen—you need to make a few adjustments to fit the video output to

https://oreil.ly/nQmSB

the screen. You need to make some changes to the file /boot/config.txt.
You can edit this file on your Mac or PC by inserting the SD card back into
an SD card reader, or you can edit it on the Raspberry Pi without having to
remove the card. Editing files on the Raspberry Pi itself is normally done
using the nano editor. This is a little tricky, and I suggest you read Recipe
3.7 thoroughly before you try editing your first file. If you are happy to go
ahead and edit the file using nano, enter the following command in a
Terminal session:

$ sudo nano /boot/config.txt

Note that to save and exit nano, press Ctrl-X, then press Y (to confirm), and
then press Enter.

THE TERMINAL
If you are a Mac or Windows user, you may not be familiar with the idea of a Terminal or
command line. Raspberry Pi OS is based on Linux, and although most things can be done in
Linux by point and click, sometimes a need still exists to run commands when installing
software or configuring the operating system in some way. To get an overview of using the
Terminal, skip ahead to Recipe 3.3.

If the text is too small to read, it’s best to remove the SD card from the
Raspberry Pi and insert it into your computer. The file will then be in the
top-level directory on the SD card, and you can use a text editor on your PC
(such as Notepad++) to modify it.
You need to know the resolution of your screen. For a lot of small screens,
this will be 320 x 240 pixels. Find the two lines in the file that read as
follows:

#framebuffer_width=1280
#framebuffer_height=720

Remove the # from the beginning of each line and change the two numbers
to the width and height of your screen. Removing the # enables the line. In

the following example, the screen size has been modified to be 320 by 240:

framebuffer_width=320
framebuffer_height=240

Save the file and restart your Raspberry Pi. You should find that everything
has become a lot easier to read. You’ll probably also find that there is a big,
thick border around the screen. To adjust this, see Recipe 1.12.

Discussion
Many low-cost CCTV monitors that can make a great companion for the
Raspberry Pi are available when you’re making something like a retro game
console (Recipe 4.4). However, these monitors are often very low
resolution.

See Also
For another tutorial on using composite monitors, see this Adafruit tutorial.
Also, see Recipes 1.10 and 1.12 to adjust your picture when you’re using
the HDMI video output.

1.12 Adjusting the Picture Size on Your
Monitor

Problem
When you first connect a Raspberry Pi to a monitor, you might find that
you can’t read some of the text because it extends off the screen, or that the
picture isn’t using all the space available on the screen.

Solution

https://oreil.ly/Fykbw

If your problem is that a large black border is around the picture, you can
make the screen fill the whole area of the monitor using the Raspberry Pi’s
desktop Configuration tool (see Figure 1-19). To open this, go to the
Raspberry Menu, select Preferences, click Raspberry Pi Configuration, and
select the Display tab.
Click the toggle switch next to Underscan. Note that the change will not
take effect until you have clicked OK and then rebooted your Raspberry Pi.
If you have the opposite problem and your text extends off the edges of the
screen, the solution is the same: click the toggle switch for Underscan.

Figure 1-19. Using the Raspberry Pi Configuration tool to control underscan

The second step is to edit the file /boot/config.txt. You can do this either by
removing the SD card and mounting it on your PC or Mac or by editing the

SD card on the Raspberry Pi. Editing files on the Raspberry Pi itself is
normally done using the nano editor. This is a little tricky; I suggest you
read Recipe 3.7 thoroughly before you try editing your first file. If you are
happy to go ahead and edit the file using nano, enter the following
command in a Terminal session:

$ sudo nano /boot/config.txt

Look for the section dealing with overscan. The four lines you need to
change are shown in the middle of Figure 1-20, each beginning with
#overscan.

Figure 1-20. Adjusting overscan

For the lines to take effect, you need to enable them by removing the #
character from the start of each line.

Then, using trial and error, change the settings until the screen fills as much
of the monitor as possible. Note that the four numbers should be negative.
Try setting them all to –20 to start with. This will decrease the area of the
screen that is used.
To save and exit nano, press Ctrl-X, then press Y (to confirm), and then
press Enter.

Discussion
Having to repeatedly restart the Raspberry Pi to see the effects of the
changes in resolution is a little tedious. Fortunately, you need to do this
procedure only once. Most monitors and TVs work just fine without any
need for underscanning.

See Also
You can also configure underscanning using the raspi-config utility.

1.13 Maximizing Performance

Problem
Your Raspberry Pi seems to be very slow, so you want to overclock it to
make it run faster.

Solution
If you have a Raspberry Pi 3, 4, or 400 with a quad-core processor, you are
unlikely to find it to be too slow. However, older Raspberry Pis 1 and 2 can
be pretty sluggish.
You can increase the clock frequency of a Raspberry Pi 1 or 2 to make it
run a little faster. This will make it consume a bit more power and run a
little hotter (see the Discussion section that follows).

https://oreil.ly/0QyQi

The method of overclocking described here is called dynamic overclocking
because it automatically monitors the temperature of the Raspberry Pi and
drops the clock speed back down if things begin to get too hot. This is
called throttling.
Run the raspi-config utility by issuing the following command in an
SSH Terminal:

$ sudo raspi-config

Select the Overclock option. You are then presented with the options shown
in Figure 1-21.

Figure 1-21. Configuring overclocking with the raspi-config utility from the command line

Select an option. If you find that your Raspberry Pi starts to become
unstable and hangs unexpectedly, you might need to choose a more
conservative option or turn overclocking off by setting it back to None.

Discussion
The performance improvements from overclocking can be quite dramatic.
To measure these, I used a Raspberry Pi B, without a case, at an ambient
room temperature of 60 degrees (15 degrees C).
The test program was the following Python script. This just hammers the
processor (that is, makes it work really hard) and is not really representative

of the other things that go on in a computer, such as writing to the SD card,
graphics, and so on. However, it does give a good indication of raw CPU
performance if you want to test the effect of overclocking on your
Raspberry Pi:

import time

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

before_time = time.process_time()
for i in range(1, 10000):
 factorial(200)
after_time = time.process_time()

print(after_time - before_time)

Note that we are jumping ahead a lot here, so if you are not familiar with
Python, come back to this when you have read through Chapter 5.
Check out the results of the test in Table 1-3. The current and temperature
were measured using test equipment.

Table 1-3. Overclocking

 Speed test Current Temperature (degrees C)
700 MHz 15.8 seconds 360mA 27

1 GHz 10.5 seconds 420mA 30

As you can see, the performance has increased by 33% but at a cost of
drawing more current and a slightly higher temperature.
A well-ventilated enclosure will help to keep your Raspberry Pi running at
full speed. Some efforts to add water cooling to the Raspberry Pi have also
been made. Frankly, this is just silly.

See Also
Much more information about the raspi-config utility is available at
https://oreil.ly/1lwy6.

1.14 Changing Your Password

Problem
You want to change your password.

Solution
After you install Raspberry Pi OS onto your SD card, you are prompted to
create a user account and associated password. You can change the
password any time using the Raspberry Pi Configuration tool. To open this,
go to the Raspberry Menu, select Preferences, and then click Raspberry Pi
Configuration. Click the System tab. There, you’ll find the Change
Password option (Figure 1-22).

https://oreil.ly/1lwy6

Figure 1-22. Changing your password with the Raspberry Pi Configuration tool

Changing your password is one setting for which you do not need to restart
your Raspberry Pi for the change to take effect.

Discussion
You can also change the password from a Terminal session simply by using
the passwd command, as follows:

$ passwd
Changing password for pi.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

See Also
You can also change your password using the raspi-config utility.

1.15 Shutting Down Your Raspberry Pi

Problem
You want to shut down your Raspberry Pi.

Solution
In the upper lefthand corner of the desktop, click the Raspberry Menu. A
dialog box opens, offering three shutdown options (Figure 1-23):

Shutdown
Shuts down the Raspberry Pi. You will need to unplug the power and
then plug it back in to get the Raspberry Pi to boot up again. Or, if you
have a Pi 400, press the Power button on the keyboard.

Reboot
Reboots the Raspberry Pi.

Logout
Logs you out and displays a prompt to enter your login credentials so
that you can log back in.

Figure 1-23. Shutting down your Raspberry Pi

https://oreil.ly/0QyQi

You can also reboot using the Terminal by issuing the following command:

$ sudo reboot

You might need to do this after installing some software. When you do
reboot, you’ll see the message shown in Figure 1-24, which illustrates the
multiuser nature of Linux and warns all users connected to the Pi.

Figure 1-24. Shutting down your Raspberry Pi from the Terminal

Discussion
It is better to shut down your Raspberry Pi as described than to simply pull
out the power plug because your Raspberry Pi might be in the middle of
writing to the microSD card as you power it down. This could lead to file
corruption.
Shutting down a Raspberry Pi does not actually turn off the power. It goes
into a low-power mode—and it is a pretty low-power device anyway (but
the Raspberry Pi hardware has no control over its power supply).

When a Raspberry Pi 400 (with its built-in keyboard) has been shut down,
you can turn it on by pressing the F10 key, which also has an on/off icon on
the key.

See Also
You can buy a module that will turn off the power when the Raspberry Pi
shuts down.
For information on adding a Start button to your Raspberry Pi, see Recipe
13.13.

1.16 Installing the Raspberry Pi Camera
Module

Problem
You want to use the Raspberry Pi Camera Module.

Solution
The Raspberry Pi Camera Module (Figure 1-25) is attached to a Raspberry
Pi by a ribbon cable.

https://oreil.ly/Jsx_U

Figure 1-25. The Raspberry Pi Camera Module

There are three versions of the Pi Camera: the original version 1 (as shown
in Figure 1-25); the newer, higher-resolution version 2; and the HQ (High
Quality) camera, which takes interchangeable lenses and boasts a resolution
of 12 megapixels.
The ribbon cable attaches to a special connector between the audio and
HDMI sockets on a Raspberry Pi 2, 3, or 4. To fit the cable onto your Pi,
gently pull up the levers on either side of the connector so that they unlock,
and then press the cable into the slot with the shiny metal connector pads of
the cable facing away from the Ethernet socket. Press the two levers of the
connector back down to lock the cable in place (Figure 1-26).

Figure 1-26. Attaching a Raspberry Pi Camera Module to a Raspberry Pi 4 model B

WARNING
The Camera Module packaging states that it is sensitive to static. Before handling it, ground
yourself by touching something grounded, like the metal case of a PC.

Note that the Raspberry Pi Zero requires a special cable or adapter because
its Camera connector is smaller than that of a full-size Raspberry Pi (see
“Modules”).
The Camera Module requires some software configuration. At the time of
writing, the camera interface is moving from Raspberry Pi–specific
software to the libcamera library. So, before following the instructions,
you may want to check to see the current status of the Camera Module’s
software.
These instructions describe the “legacy” Raspberry Pi camera software that
works on even quite ancient models of Raspberry Pi.
The graphical Raspberry Pi Configuration tool doesn’t include an option to
enable the camera, so you must start the raspi-config utility from a
Terminal session.

$ sudo rasp-config

This will display options for configuring your Raspberry Pi.
Select Interfacing Options, and you’ll see the Camera option (Figure 1-27).
Select the first option to enable legacy support, and then reboot your
Raspberry Pi.

https://oreil.ly/JN0wm

Figure 1-27. Enabling the camera using raspi-config from the command line

Two commands are available for capturing still images and videos:
raspistill and raspivid.

To capture a single still image, use the raspistill command:

$ raspistill -o image1.jpg

A preview screen displays for about five seconds and then takes a
photograph and stores it in the file image1.jpg in the current directory.
To capture video, use the command raspivid:

$ raspivid -o video.h264 -t 10000

The number at the end of the line is the recording duration in milliseconds
—in this case, 10 seconds.

Discussion

Both raspistill and raspivid have a large number of options. If you
type either command without any parameters, help text displays the
available options.
You can also buy a NoIR (no infrared) version of the camera that has the
infrared filter removed from the Camera Module to allow it to work at night
under infrared illumination.
An alternative to the Camera Module is to use a USB webcam (see Recipe
8.2).

See Also
Find out more about the Raspberry Pi Camera Module at
https://oreil.ly/diUuB.

1.17 Using Bluetooth

Problem
You want to use Bluetooth with your Raspberry Pi.

Solution
If you have a Raspberry Pi 3, 4, or 400, the good news is that along with
WiFi, you also get Bluetooth hardware. If you have an older Raspberry Pi,
you can attach a USB Bluetooth adapter to it. In both cases, the software
that you need for Bluetooth is now included in Raspberry Pi OS.
If you have an older Raspberry Pi, be aware that not all Bluetooth adapters
are compatible with the Raspberry Pi. Most are, but to be sure, buy one that
is advertised as working with the Raspberry Pi. Figure 1-28 shows a
Raspberry Pi 2 equipped with both a USB Bluetooth adapter (nearest to the
camera) and a USB WiFi adapter.

https://oreil.ly/diUuB

Figure 1-28. Raspberry Pi 2 with USB Bluetooth and WiFi adapters

Bluetooth features are integrated into the Raspberry Pi OS desktop in much
the same way as on a Mac. In the upper-right corner of the screen, you will
see the Bluetooth icon (Figure 1-29). Click this to open a menu of
Bluetooth options.

Figure 1-29. The Raspberry Pi OS Bluetooth menu

If you want to connect a Bluetooth peripheral such as a keyboard, click Add
Device. The Add New Device dialog box opens, showing a list of available
devices with which you can connect, or pair (Figure 1-30).

Figure 1-30. Pairing a Bluetooth device

You can then select the device that you want to pair with, and then follow
the instructions that appear on your Raspberry Pi and the device you are
pairing with.

Discussion
You can pair phones, Bluetooth speakers, keyboards, and mice to your
Raspberry Pi. I find that connecting a new Bluetooth device doesn’t always
work the first time. So if you initially have a problem pairing with a device,
try a few more times before you give up.
Most of the time, using the desktop interface to add Bluetooth devices to
your Raspberry Pi system is convenient; however, you can also pair
Bluetooth devices using the command-line interface.
To run Bluetooth commands from the command line, use the
bluetoothctl command:

$ bluetoothctl
[NEW] Controller B8:27:EB:50:37:8E raspberrypi [default]
[NEW] Device 51:6D:A4:B8:D1:AA 51-6D-A4-B8-D1-AA
[NEW] Device E8:06:88:58:B2:B5 si’s keyboard #1
[bluetooth]#

This scans for Bluetooth devices and also provides a pair command that
will allow you to pair with the device using its ID—for example:

[bluetooth]# pair E8:06:88:58:B2:B5

See Also
Take a look at a list of Bluetooth adapters that are compatible with the
Raspberry Pi.
The Blue Dot software for Android phones enables you to control hardware
attached to your Raspberry Pi using Bluetooth and your mobile phone. You
will find an example of this in Recipe 11.8.
If you pair your Raspberry Pi with a Bluetooth speaker, you also need to set
the speaker to be the output for sound (Recipe 16.2).

https://oreil.ly/pULy3

Chapter 2. Networking

2.0 Introduction
The Raspberry Pi is designed to be connected to the internet. Its ability to
communicate on the internet is one of its key features and opens up all sorts
of possible uses, including home automation, web serving, network
monitoring, and so on.
The connection can be wired through an Ethernet cable (in the case of most
models), and newer models have built-in WiFi.
Having a connected Raspberry Pi also means that you can connect to it
remotely from another computer. This is very useful for situations in which
the Raspberry Pi itself is used as a headless server and doesn’t have a
keyboard, mouse, and monitor attached to it.
This chapter gives you recipes for connecting your Raspberry Pi to the
internet and controlling it remotely over a network.

2.1 Connecting to a Wired Network

Problem
You want to connect your Raspberry Pi to the internet using a wired
network connection.

Solution
First, if you have an old model A Raspberry Pi or a Pi Zero, there is no
RJ45 connector for Ethernet. In this case, your best option for internet
access is to use a wireless USB adapter (see Recipe 2.5).
If you have a model B or B+ Raspberry Pi (1, 2, 3, 4, or 400) then you are
in luck; just plug an Ethernet patch cable into its RJ45 socket and then

connect the other end to a spare socket on the back of your home router
(Figure 2-1).

Figure 2-1. Connecting Raspberry Pi to a home router

The network LEDs on your Raspberry Pi should immediately begin to
flicker as the Raspberry Pi connects to your network.

Discussion
Raspberry Pi OS is preconfigured to connect to any network using Dynamic
Host Configuration Protocol (DHCP). It will automatically be assigned an
IP address as long as DHCP is enabled on your network.
If the LEDs blink, but you cannot connect to the internet on your Raspberry
Pi using a browser, check that DHCP is enabled on your network
management console. Go to the admin page of your home router, sign in
with the admin password, and look for an option like that shown in
Figure 2-2.

Figure 2-2. Enabling DHCP on your home router

See Also
To connect to a wireless network, see Recipe 2.5.

2.2 Finding Your IP Address

Problem
You want to know the IP address of your Raspberry Pi so that you can
communicate with it, whether connecting to it as a web server, exchanging
files, or controlling it remotely with SSH (Recipe 2.7) or VNC (Recipe 2.8).

Solution
An IPv4 address (as used for local addresses) is a four-part number
uniquely identifying a computer’s network interface within a network. Each

part is separated from the next part by a dot.
To find the IP address of your Raspberry Pi, you need to issue this
command in a Terminal window:

$ hostname -I
192.168.1.16 fd84:be52:5bf4:ca00:618:fd51:1c

The first part of the response is the local IP address of your Raspberry Pi on
your home network.

Discussion
A Raspberry Pi can have more than one IP address (i.e., one for each
network connection). So if you have both a wired connection and a wireless
connection to your Pi, it would have two IP addresses. Normally, however,
you would connect it by only one method or the other, not both. To see all
the network connections, use the ifconfig command:

$ ifconfig

eth0 Link encap:Ethernet HWaddr b8:27:eb:d5:f4:8f
 inet addr:192.168.1.16 Bcast:192.168.255.255
Mask:255.255.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1114 errors:0 dropped:1 overruns:0 frame:0
 TX packets:1173 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:76957 (75.1 KiB) TX bytes:479753 (468.5 KiB)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

wlan0 Link encap:Ethernet HWaddr 00:0f:53:a0:04:57
 inet addr:192.168.1.13 Bcast:192.168.255.255
Mask:255.255.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:38 errors:0 dropped:0 overruns:0 frame:0
 TX packets:28 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:6661 (6.5 KiB) TX bytes:6377 (6.2 KiB)

Looking at the results of running the ifconfig command, you can see
that the Pi in question is connected by both a wired connection (eth0) with
an IP address of 192.168.1.16 and a wireless connection (wlan0) with an
IP address of 192.168.1.13. The lo network interface is a virtual interface
that allows the computer to communicate with itself.

See Also
Wikipedia has everything you want to know about IP addresses.

2.3 Setting a Static IP Address

Problem
You want to set the IP address of your Raspberry Pi so that it does not
change.

Solution
Although it is possible to set the static IP address of a Raspberry Pi on the
Pi itself, it is better practice to configure this on your network, as it may
lead to problems if you move the Raspberry Pi to a different network.
All the computers, TVs, phones, and other internet-enabled devices in your
home are generally connected to the internet via the router that links your
phone line, 4G, or a fiber-optic cable to your house. All of these devices,
whether they connect to the router by WiFi or via a direct cable connection,
are said to be part of your local area network (LAN).
By default, when you connect a new device to your LAN (such as a
Raspberry Pi), either by plugging it in with an Ethernet cable or by using
WiFi, the LAN controller (your router) will use a system called DHCP to

https://oreil.ly/71IwC

allocate an IP address for the device. This address will be allocated from a
pool of IP addresses that might range from, for example, 192.168.1.2 to
192.168.1.199 (or maybe 10.0.0.2 to 10.0.0.199). In other words, just the
last part of the four-part IP address changes for each device connected to
the LAN.
When DHCP allocates an IP address to a device, it does so with a lease
time, which is how long that device will be guaranteed to keep the IP
address without risk of it being allocated to some other device. Generally
speaking, the default for this lease time is fairly short; on my router, it’s a
week. This means that the IP address of my Raspberry Pi can change
without warning after a week of inactivity, and if the Pi is being used in a
project without keyboard, mouse, and monitor, it can be difficult to find its
IP address to allow me to connect to it. This is why you might want to set a
static IP address for your Raspberry Pi.
One way to ensure that your Raspberry Pi’s IP address doesn’t change is to
simply go to your router control interface and change the DHCP lease time
to a much higher value. To access this interface, you will need to use a
computer (it could be your Raspberry Pi, but it doesn’t have to be) and go to
a specific address that is often written on the router, described as router
address or admin console address. For my router this is http://192.168.1.1.
A username and password will also need to be entered. These are not the
same as the WiFi access point name and password. They’re often also
written somewhere on the router and often have default values of admin and
password, respectively.
After you are connected, you will need to hunt around your admin console’s
various pages for any mention of DHCP settings, which should look
something like Figure 2-3.

Figure 2-3. Changing the DHCP lease time

Change the “Lease duration” (or whatever it’s specifically labeled for your
router) to the maximum allowed.
One downside of extending the lease duration like this is that it applies to
all the devices on your LAN. So if you have a lot of devices, it’s possible
that you might run out of IP addresses because DHCP is unable to
reallocate old IP addresses until the lease period has expired.
A better approach is to use something called DHCP reservation. This
instructs DHCP to permanently allocate a particular IP address to a
particular device. In Figure 2-4, you can see that I have allocated the IP
address of 192.168.1.3 to the device raspberrypi-Ethernet (a Raspberry Pi
connected by Ethernet cable to the router).
From now on, whenever that Raspberry Pi is connected to the LAN, it will
be assigned the IP address 192.168.1.3, and DHCP will not allocate that IP
address to any other device.

Figure 2-4. Allocating a DHCP reservation

Discussion
Networking has changed a lot with different versions of Raspberry Pi OS.
These instructions apply to the latest (as of this writing) version. If you
don’t have the latest version of Raspberry Pi OS, you should get it, because
Raspberry Pi OS is always evolving and improving. You can learn how to
do this in Recipe 3.40. To find out what version of the OS you have, see
Recipe 3.39.

See Also
Wikipedia has everything you want to know about IP addresses.

2.4 Setting the Network Name of a Raspberry
Pi

Problem
You want to change the name of your Raspberry Pi as it appears on your
network so that it’s not just called “raspberrypi.”

https://oreil.ly/71IwC

Solution
There are several ways of doing this. Whichever method you use, make
sure that the network name you choose does not contain spaces and
contains only letters, numeric digits, and the hyphen (-) character.
In all three methods, you also need to restart your Raspberry Pi for the
changes to take effect.

Setting the network name using the Raspberry Pi Configuration
tool
Unless you are running your Raspberry Pi headless (without monitor and
keyboard attached), the simplest way to set the network name of your
Raspberry Pi is to use the Raspberry Pi Configuration tool. To open this, go
to the Raspberry Menu, select Preferences, and then click Raspberry Pi
Configuration. Then click the System tab (Figure 2-5).

Figure 2-5. Changing the hostname using the Raspberry Pi Configuration tool

Change the name in the Hostname field to your preferred name and click
OK. You are prompted to reboot for the changes to take effect (Recipe
1.15).

Setting the network name using the command line (the easy
way)
You can also change your Raspberry Pi’s network name from the command
line using the raspi-config utility. Run the following command in a
Terminal session:

$ sudo raspi-config

This opens the raspi-config utility. Use the up/down arrow keys to
select Network Options and then press Enter. This opens a form in which
you can enter the new network name (Figure 2-6). Note that this interface
uses only the command line, so you can use it from an SSH session (Recipe
2.7).

Figure 2-6. Setting the hostname of a Raspberry Pi using raspi-config

Setting the network name using the command line (the hard
way)
If you really want to do it the hard way, you can directly edit the files that
control the Raspberry Pi’s network name. There are two files that you need
to change.

First, edit the file /etc/hostname. You can do this by opening a Terminal
window and typing the command:

$ sudo nano /etc/hostname

Replace raspberrypi with a name of your choice.

Second, open the file /etc/hosts in an editor using the command:

$ sudo nano /etc/hosts

The file will look something like this:

127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

127.0.1.1 raspberrypi

Change the name at the end of the file (raspberrypi) to your preferred
new name.

Discussion
Changing the name of your Pi can be very useful, especially if you have
more than one Pi connected to your network.

See Also
See Recipe 2.3 to change the IP address of your Raspberry Pi.

2.5 Setting Up a Wireless Connection

Problem
You want to connect your Raspberry Pi to the internet using WiFi.

Solution
There are various methods of setting up a WiFi connection with your
Raspberry Pi.

Setting up WiFi from the desktop
Setting up WiFi in the latest Raspberry Pi OS is really easy. In the upper-
right corner of your screen, click the network icon (the two computers). You
are then presented with a list of WiFi networks. Select your network; a
prompt appears in which you can enter your pre-shared key (password).
Enter your password. After a while, the network icon will switch to the
standard WiFi symbol, and you’ll be connected (Figure 2-7).

Figure 2-7. Connecting to a WiFi network

Setting up WiFi using the command line
This method of setting up WiFi is great if you are setting up your Raspberry
Pi so that, after you configure it, you can use it without keyboard and
monitor attached. However, you’ll need to temporarily have network access
to the Raspberry Pi by connecting it to your router using an Ethernet cable
(Recipe 2.1).
Run the following command to start the raspi-config utility:

$ sudo raspi-config

Then, from the menu that opens, select System Options (use the arrow keys
and press Enter) and then select Wireless LAN (Figure 2-8).

Figure 2-8. Setting up WiFi using raspi-config

A prompt appears, asking for the SSID (WiFi name) and password.

Discussion
WiFi uses quite a lot of power, so if you find your Pi rebooting
unexpectedly or not booting properly, you might need to use a larger power
supply for it. Look for a supply that is 1.5A or higher; if you are using a
Raspberry Pi 4 and are hanging high-power USB peripherals on it, use a 3A
power supply.

If you are using your Raspberry Pi as a media center (see Recipe 4.1), there
will be a settings page on which you can connect the media center to your
network using WiFi.

See Also
eLinux maintains a list of WiFi adapters that are compatible with the
Raspberry Pi.
For more information on setting up a wired network, see Recipe 2.1.

2.6 Connecting with a Console Lead

Problem
No network connection is available, but you still want to be able to
remotely control your Raspberry Pi from another computer.

Solution
Use a console cable (a special lead that you need to buy separately—see
“Miscellaneous”) to connect to a Raspberry Pi.

Power Consumption
The console lead will typically only be able to supply 500mA, which is fine for early Raspberry
Pis, but not enough for a Raspberry Pi 4 or 400. If you are using a 4 or 400, then you will need to
use a power adapter with it (Recipe 1.4) and leave the red power lead of the console lead
(described after Figure 2-11) unconnected to the 5V Raspberry Pi pin.

To use this method, you’ll need to enable the serial interface. This means
that, at least while you are setting up your Raspberry Pi, you need to have a
keyboard, monitor, and mouse attached.

https://oreil.ly/67Mn1

To enable the serial interface, go to the Raspberry Menu, select Preferences,
and then click Raspberry Pi Configuration. Select the Interfaces tab and
then click the toggle switch for Serial Port, as shown in Figure 2-9.

Figure 2-9. Enabling the serial interface using the Raspberry Pi Configuration tool

As with most Raspberry Pi configurations, you can also use the command-
line raspi-config utility by running this command in a Terminal
session:

$ sudo raspi-config

Select Interfacing Options and then Serial, as shown in Figure 2-10.

Figure 2-10. Enabling the serial interface using the raspi-config utility

Console cables are great for a Pi that is going to be used headless—that is,
without keyboard, mouse, or monitor.
The console cable shown in Figure 2-11 is available from Adafruit.

https://oreil.ly/4Y7Xv

Figure 2-11. A console cable

Connect the lead as follows and by referring to Figure 2-11:
1. Connect the red (5V) lead to the 5V pin, one pin to the left of the edge

of the GPIO header. Note that if your console lead is a 3V lead, or you
have a Raspberry Pi 4 or 400 that takes too much current for the serial
lead, then leave this wire unconnected and power the Raspberry Pi as
usual using its USB power connector.

2. Connect the black (GND) lead to GND on the next pin to the left on
the Raspberry Pi.

3. Connect the white lead (Rx) to Raspberry Pi GPIO 14 (TXD), to the
left of the black lead.

4. Connect the green lead (Tx) to GPIO 15 (RXD), to the left of the
white lead.

If you use a different lead, the wire colors might well be different, so
always check the documentation for the lead or else you risk damaging your
Raspberry Pi.

Note that the USB lead also provides 5V on the red wire, with enough
power for the Pi on its own but not with a lot of devices attached.
If you are a Windows or macOS user, you will need to install drivers for the
USB lead; the driver that you will need to install depends on the chip used
by the console lead manufacturer. Please refer to the manufacturer’s
website. For a Mac, you can find out more information on that at this
Adafruit tutorial.
To connect to the Pi from macOS, you will need to run the Terminal and
enter the following command:

$ sudo cu -l /dev/cu.usbserial -s 115200

After connecting, press Enter, and the Raspberry Pi login prompt should
appear (Figure 2-12). The default username and password are pi and
raspberry, respectively.

https://oreil.ly/RF9uE

Figure 2-12. Logging in with a console cable

If you are trying to connect to your Raspberry Pi from a Windows
computer, you need to download the Terminal software called PuTTY.
When you run PuTTY, change the “Connection type” to Serial and set the
speed to 115200. You also need to set the “Serial line” to be the COM port
in use by the cable. This might be COM7, but if that doesn’t work, check it
using Ports in the Windows Device Manager.
When you click Open and press Enter, the Terminal session should start
with a login prompt.

Discussion
The console cable can be a very convenient way of using your Pi if you are
traveling light because it provides both power and a way to control the Pi
remotely.

http://www.putty.org/

The console lead has a chip in the USB end that provides a USB-to-serial
interface. This sometimes (depending on your operating system) requires
the installation of drivers on your PC. You should be able to use any USB-
to-serial converter as long as it has the necessary drivers for your PC.
Plugging the sockets of the lead into the right places is made easier if you
carefully glue (or tape) the four sockets together in the right order so that
they fit over the GPIO header in a block.
Finding the right position on the GPIO header is made easier if you use a
GPIO template like the Raspberry Leaf (see Recipe 10.1). The Raspberry Pi
pinouts are shown in Appendix B.

See Also
You can find out more about using the serial console at this Adafruit
tutorial. Adafruit also sells console cables. The lead used here is one
supplied by Adafruit (product code 954).

2.7 Controlling the Pi Remotely with SSH

Problem
You want to connect to a remote Pi from another computer using Secure
Shell (SSH).

Solution
Before you can connect to your Raspberry Pi using SSH, you must turn on
SSH. On newer versions of Raspberry Pi OS, you can use the Raspberry Pi
Configuration tool (Figure 2-13), which you can find on the Raspberry
Menu under Preferences. Just select the enabled radio button for SSH and
click OK. You are then prompted to restart.
You can also enable SSH from the Raspberry Pi Imager in its Advanced
options dialog (Recipe 1.8).

https://oreil.ly/DUImc

If you prefer to use the command line, use the raspi-config utility. You
can start this at any time by entering the following command in a Terminal:

$ sudo raspi-config

Select the Interfaces tab, scroll down to the SSH option, and then click the
Enabled button.

Figure 2-13. Turning on SSH using the Raspberry Pi Configuration tool

If you are using macOS or have Linux installed on the computer from
which you want to connect your Pi, all you need to do to connect is open a
Terminal window and enter the following command:

$ ssh 192.168.1.16 -l pi

Here, the IP address (192.168.1.16) is the IP address of your Pi (see
Recipe 2.2). You are then prompted for your password and logged in to the
Pi (Figure 2-14).

Figure 2-14. Logging in with SSH

To connect from a Windows computer, you will need to use PuTTY (Recipe
2.6) to start an SSH session.

Discussion
SSH is a very common way of connecting to remote computers; any
commands that you could issue on the Pi itself, you can use from SSH. It is
also, as its name suggests, secure because the communication is encrypted.
Unlike the console lead solution of Recipe 2.6, SSH will only work if your
Raspberry Pi is connected to the same network as the computer trying to
connect to it.
Perhaps the only drawback to SSH is that it is a command-line rather than
graphical environment. If you need remote access to the full Raspberry Pi
desktop environment, you need to use VNC (Recipe 2.8).

See Also
Check out this Adafruit tutorial.

2.8 Controlling the Pi Remotely with VNC

Problem
You want access to the full Raspberry Pi OS graphical desktop from a PC
(Windows or Linux) or macOS using virtual network computing (VNC).

Solution
Use the pre-installed VNC software on Raspberry Pi OS. However, to do
so, you first need to configure your Raspberry Pi to turn it on. You can do
this using the Raspberry Pi Configuration tool, which you can find in the
Preferences section of the Raspberry Menu on the Raspberry Pi desktop.
Click the Interfaces tab, scroll down to the VNC option, select the enabled
radio button, and click OK (Figure 2-15).

https://oreil.ly/18foc

Figure 2-15. Turning on the VNC interface

If the Raspberry Pi doesn’t have a monitor attached, you need to specify the
resolution of the virtual monitor that you’ll see when you connect to the
Raspberry Pi from another computer using VNC. You can do this from the
Display section of the Raspberry Pi Configuration tool (Figure 2-16). To
avoid scrolling, select a resolution that’s a bit lower than that of the monitor
from which you will be viewing the virtual screen.

Figure 2-16. Setting the virtual screen resolution using the Raspberry Pi Configuration tool

To connect to the Pi from a remote computer, you need to install VNC
client software. RealVNC VNC Viewer is a popular choice and is available
for Windows, Linux, and macOS.
When you run the client program on macOS or a PC, you’ll be asked to
enter the IP address of the VNC server to which you want to connect (the IP
address of your Pi).
You are then prompted for your password (Figure 2-17).

http://www.realvnc.com/

Figure 2-17. Authenticating a VNC connection

The catchphrase and signature are security devices designed to alert you if
someone is hacking your Raspberry Pi. If either changes when you
authenticate another time, your Raspberry Pi might be compromised.

Discussion
VNC will only work if the Raspberry Pi and the remote computer are on the
same network. Some VNC clients allow you to transfer files between your
computer and the Raspberry Pi and to copy and paste text between them.
Although you can do most things with SSH using the command line,
sometimes it is useful to have access to the graphical environment of your
Raspberry Pi.
The Raspberry Pi’s VNC server automatically starts when you reboot, as
long as the VNC option is enabled.

See Also

Check out this Adafruit tutorial.
You can also enable VNC while setting up a new Raspberry Pi (see Recipe
1.6).

2.9 Using a Raspberry Pi for Network-
Attached Storage

Problem
You want to use your Raspberry Pi as network-attached storage (NAS) by
accessing a large USB drive attached to your Raspberry Pi from computers
on your network.

Solution
The solution to this problem is to install and configure Samba. To do this,
issue the following commands:

$ sudo apt update
$ sudo apt install samba
$ sudo apt install samba-common-bin

Now, attach the USB hard drive to the Raspberry Pi. It will automatically
mount in your /media/pi folder. To check that it’s there, run this command:

$ cd /media/pi
$ ls

The drive should be listed with whatever name you gave it when you
formatted it. It will automatically mount itself whenever the Raspberry Pi
reboots. Make a note of this name, as you will need it in a moment.
Next, you need to configure Samba so that the drive can be shared on the
network. To do this, you first need to add a Samba user (pi). Enter the

https://oreil.ly/HfM9y

following command and type in a password:

$ sudo smbpasswd -a pi
New SMB password:
Retype new SMB password:
Added user pi.

You now need to make some changes to the file /etc/samba/smb.conf, so
enter this command:

$ sudo nano /etc/samba/smb.conf

The first line you’re looking for is near the top of the file:

workgroup = WORKGROUP

You only need to change this if you plan to connect from a Windows
machine. This should be the name of your Windows workgroup. For recent
versions of Windows, this will be WORKGROUP. Note that generally
connecting to NAS in a mixed network of Macs and Windows PCs (and, for
that matter, Linux machines) works just fine.
Finally, scroll to the end of the file and add the following lines, changing
NAS to the name of your USB drive that you noted earlier:

[USB]
path = /media/pi/NAS
comment = NAS Drive
valid users = pi
writeable = yes
browseable = yes
create mask = 0777
public = yes

Save the file and then restart Samba by entering the following:

$ sudo systemctl restart smbd

If all is well, your USB drive should now be shared on your network.

Discussion
To connect to the drive on macOS, select Go, and then, from the Finder
menu, click Connect to Server. Next, in the Server Address field, enter
smb://raspberrypi/USB. A login dialog box opens, in which you
need to change the username to pi (Figure 2-18).

Figure 2-18. Connecting to NAS with the macOS Finder

If you are connecting to NAS from a Windows machine, the exact
procedure will vary depending on your version of Windows. However, the
basic principle is that at some point you will need to enter the network
address, which should be \\raspberrypi\USB (Figure 2-19).

Figure 2-19. Connecting to NAS from Windows

You are then prompted for the username and password before you can use
the NAS disk (Figure 2-20). You should only have to do this the first time.
After the network place is added, you should be able to navigate directly to
it in File Explorer.

Figure 2-20. Browsing NAS on Windows

If you are a Linux user, the following command should mount the NAS
drive for you:

$ sudo mkdir /pishare
$ sudo smbmount -o username=pi,password=raspberry
//192.168.1.16/USB /pishare

You should be able to connect to the Raspberry Pi using the hostname
(raspberrypi), but if this does not work, try using the IP address of your
Raspberry Pi, something like smb://192.168.1.16/USB.

See Also
You might want to change your Raspberry Pi’s network name to something
inappropriate like “piNAS” (see Recipe 2.4).

2.10 Setting Up a Network Printer

Problem
You want to print to a network printer from your Raspberry Pi.

Solution
Use Common Unix Printing System (CUPS) software.
Start by entering the following commands into a Terminal to install CUPS
(this can take some time):

$ sudo apt update
$ sudo apt install cups

Give yourself admin privileges for CUPS by entering the following
command:

$ sudo usermod -a -G lpadmin pi

This last command adds the lpadmin group used by CUPS to the user pi
so that you have permission to print.
CUPS is configured via a web interface, so start your Chromium web
browser from the Raspberry Pi Menu and then enter the address
http://localhost:631 into the address bar.

On the Administration tab, choose the Add Printer option. This displays a
list of printers that are on the network or are connected directly to the
Raspberry Pi’s USB port (Figure 2-21).

Figure 2-21. Discovering printers with CUPS

Follow the series of dialog boxes to set up the printer.

Discussion
When you’re finished, you can test out the printer by firing up LibreOffice
(Recipe 4.2). Type some text, and when you go to print it, you should see
your newly added printer available for printing (Figure 2-22).

Figure 2-22. The print dialog box

See Also
Visit the official CUPS website.

http://www.cups.org/

Chapter 3. Operating System

3.0 Introduction
This chapter explores many aspects of the Linux operating system used by
the Raspberry Pi. A lot of this involves the use of the command line. If you
are used to Windows or macOS, this can come as a bit of a shock. However,
when you get used to it, doing things with the command line can be
surprisingly effective.
You can accomplish many simple file operations like moving files around,
renaming, copying, and deleting files graphically using a more Windows or
macOS approach, and this is the subject of our first recipe.

3.1 Browsing Files Graphically

Problem
You want to move files around using a graphical interface like you can on a
macOS-based machine or Windows PC.

Solution
Use the File Manager.
You can find this program on the Raspberry Menu, in the Accessories group
(Figure 3-1).
Using the File Manager, you can drag a file or directory from one directory
to another or use the Edit menu to copy a file from one location and paste it
to a second. This operates in much the same way as the Windows File
Explorer or macOS Finder.

Figure 3-1. The File Manager

Discussion
The lefthand side of the File Manager shows the folder structure.
The central area displays the files in the current folder, which you can
navigate using the buttons in the toolbar or by typing a location in the
filepath area at the top.
You can right-click a file to open a menu with options you can use on that
file (Figure 3-2).
You can also select more than one file at a time for copying or dragging by
holding down the Ctrl key while you select files, or you can select a range
of files by selecting one file and then holding down the Shift key while you
select the last file in the range.

Figure 3-2. Right-clicking a file opens a menu with more options

See Also
To rename a file or folder, see Recipe 3.6.

3.2 Copying Files onto a USB Flash Drive

Problem
You want to copy a file from your Raspberry Pi onto a USB flash drive.

Solution
Insert the USB flash drive into a USB port, and the dialog shown in
Figure 3-3 should appear. Select OK to open it in the File Manager.

Figure 3-3. The removable-media dialog box

The drive will be mounted in /media/pi followed by the name of the flash
drive (in my case, UNTITLED). To copy a file from your home folder, drag
it onto the folder representing your flash drive, as shown in Figure 3-4.

Figure 3-4. Copying a file by dragging it onto a USB flash drive

Windows, macOS, and Linux all have their own disk formats. The USB
flash drive should be formatted as FAT32 or exFAT for maximum
compatibility with macOS and Windows computers. exFAT supports larger
disk sizes than FAT32.

Discussion
After your USB flash drive is mounted on the Raspberry Pi’s filesystem,
you can also copy files using the command line. The following example
copies the file test.txt to the flash drive:

$ cd /home/pi
$ cp test.txt /media/pi/UNTITLED/

In this example, cd is the command to change your current directory, and
cp is the copy command. These commands are explained more fully in
Recipes 3.4 and 3.5.

See Also
For general information on using the File Manager, see Recipe 3.1.
To copy files from the command line, see Recipe 3.4.

3.3 Starting a Terminal Session

Problem
When using a Raspberry Pi, you need to issue text commands in a Terminal.

Solution
At the top of the Raspberry Pi desktop, select the Terminal icon (it looks
like a black computer monitor), or, on the Raspberry Menu, in the
Accessories group, select the Terminal option (Figure 3-5).

Figure 3-5. Opening the Terminal

Discussion
When the Terminal starts, it is set to your home directory (/home/pi).

You can open as many Terminal sessions as you want. It is often useful to
have a couple of sessions open in different directories so that you don’t
need to constantly switch directories using cd (Recipe 3.4).

When using the Terminal, everything is case sensitive. That is, if you are
using a command, you must use the correct case when you’re typing. For
example, the ls command that you will meet in the next recipe must be
typed as ls and not LS or Ls or lS. Similarly, all filenames are case
sensitive, so files named picture.jpg and Picture.jpg are two different files.

See Also
In the next section (Recipe 3.4), you will look at navigating the directory
structure using the Terminal.

3.4 Navigating the Filesystem Using a
Terminal

Problem
You need to know how to change directories and move about the filesystem
using the Terminal.

Solution
The main command used for navigating the filesystem is cd (change
directory). After cd, you need to specify the directory that you want to
change to. This can be either a relative path to a directory within your
current directory or an absolute path to somewhere else on the filesystem.
To see what the current directory is, use the command pwd (print working
directory).

Discussion

Try out a few examples. Open a Terminal session, and you should see a
prompt like this:

pi@raspberrypi: ~ $

The prompt that you see after each command (pi@raspberrypi: ~ $)
is a reminder of your username (pi) and your computer name
(raspberrypi). The ~ character is shorthand for your home directory
(/home/pi or whatever username you chose when setting up your Raspberry
Pi). So at any point you can change your current directory to your home
directory as follows:

$ cd ~

TIP
Throughout the book, I use a $ at the beginning of each line where you are expected to type a
command. This is called the prompt. The response from the command line is not prefixed by
anything; it appears just as it does on the Raspberry Pi’s screen.

You can confirm that the command did indeed set the directory to home by
using the pwd command:

$ pwd
/home/pi

If you want to move up one level in the directory structure, you can use the
special value .. (two dots) after the cd command, as shown here:

$ cd ..
$ pwd
/home

As you might have deduced by now, the path to a particular file or directory
is made up of words separated by a /. So the very root of the entire
filesystem is /, and to access the home directory within /, you would refer to
/home/. Then, to find the pi directory within that, you would use /home/pi/.
You can omit the final / from a path.
Paths can be absolute (starting with a / and specifying the full path from the
root), or they can be relative to the current working directory, in which case
they must not start with a / and they assume that the current directory is the
starting point. For instance, starting at the root directory (/) you could use
relative paths to navigate to your home directory (assuming your username
is “pi”) like this:

$ cd /
$ pwd
/
$ cd home/pi
$ pwd
/home/pi

You will have full read and write access to the files in your home directory,
but when you move into the places where system files and applications are
kept, your access to some files will be restricted to read-only. You can
override this (Recipe 3.12), but some care is required.
Check out the root of the directory structure by entering the commands cd
/ and ls, as shown in Figure 3-6.

Figure 3-6. Listing the contents of a directory

The ls command (list) shows us all of the files and directories below (/) the
root directory. You will see a home directory listed, which is the directory
you have just come from.
Now change into one of those directories using the commands shown in
Figure 3-7.

Figure 3-7. Changing directory and listing the contents

You will see that the files and folders have some color coding. Files are
displayed in various colors, whereas folders are dark blue.
Unless you particularly like typing, the Tab key offers a convenient
shortcut. If you start typing the name of a file, pressing the Tab key allows
the autocomplete feature to attempt to complete the filename. For example,
if you’re going to change directory to network, type the command cd
netw and then press the Tab key. Because netw is enough to uniquely
identify the file or directory, pressing the Tab key will autocomplete it.
If what you have typed is not enough to uniquely identify the file or
directory, pressing the Tab key another time will display a list of possible
options that match what you have typed so far. So if you had stopped at ne
and pressed the Tab key, you would see something like Figure 3-8.

Figure 3-8. Autocompletion using the Tab key

You can provide an extra argument after ls to narrow down the things that
you want to list. Change directory to /etc and then run the following:

$ ls f*
fake-hwclock.data fb.modes fstab fuse.conf

fonts:
conf.avail conf.d fonts.conf fonts.dtd

foomatic:
defaultspooler direct filter.conf

fstab.d:
pi@raspberrypi /etc $

The * character is called a wildcard. In specifying f* after ls, we are
saying that we want to list everything that begins with an f.
Helpfully, the results first list all the files within /etc that begin with f, and
then the contents of all the directories in that folder beginning with f.
A common use of wildcards is to list all files with a certain extension (e.g.,
ls *.docx).

A convention in Linux (and many other operating systems) is to prefix with
a period any files that should be hidden from the user. Any so-named files
or folders will not appear when you type ls unless you supply ls with the
option -a (all).

For example:

$ cd ~
$ ls -a
. Desktop .pulse
.. .dillo .pulse-
cookie
Adafruit-Raspberry-Pi-Python-Code .dmrc
python_games
.advance .emulationstation
sales_log
.AppleDB .fltk servo.py
.AppleDesktop .fontconfig .stella
.AppleDouble .gstreamer-0.10
stepper.py.save
Asteroids.zip .gvfs
switches.txt.save
atari_roms indiecity
Temporary Items
.bash_history .local
thermometer.py
.bash_logout motor.py
.thumbnails
.bashrc .mozilla .vnc
.cache mydocument.doc
.Xauthority
.config Network Trash Folder
.xsession-errors
.dbus .profile
.xsession-errors.old

As you can see, the majority of the files and folders in your home directory
are hidden.

See Also
To change file permissions, see Recipe 3.14.

3.5 Copying a File or Folder

Problem
You want to copy a file using a Terminal session.

Solution
Use the cp command to copy files and directories.

Discussion
You can, of course, copy files using the File Manager and its copy and paste
menu options (Recipe 3.1) or keyboard shortcuts.
The simplest example of copying in a Terminal session is to make a copy of
a file within your working directory. The cp command is followed first by
the file to copy and then by the name to be given to the new file.
For example, the following code creates a file called myfile.txt and then
makes a copy of it with the name myfile2.txt; you can find out more about
the trick of creating a file using the > command in Recipe 3.9:

$ echo "hello" > myfile.txt
$ ls
myfile.txt
$ cp myfile.txt myfile2.txt
$ ls
myfile.txt myfile2.txt

Although in this example both filepaths are local to the current working
directory, the filepaths can be to anywhere in the filesystem where you have
write access. The following example copies the original file to an area
named /tmp, which is a location for temporary files (do not put anything
important in that folder):

$ cp myfile.txt /tmp

Note that in this case, the name to be given to the new file is not specified,
just the directory where it is to go. This will create a copy of myfile.txt in
/tmp with the same name of myfile.txt.
Sometimes, rather than copying just one file, you might want to copy an
entire directory full of files and possibly other directories. To copy a

directory and all its contents, you need to use the -r option (for recursive):

$ cp -r mydirectory mydirectory2

Whenever you are copying files or folders, the result of the command will
tell you if you do not have permission. If that’s the case, you will need to
either change the permissions of the folder into which you are copying
(Recipe 3.14) or copy the files with superuser privileges (Recipe 3.12).

See Also
You can also rename files rather than copy them; see Recipe 3.6.
For a useful description of the many optional parameters to the cp
command, see https://oreil.ly/Cq2SJ.

3.6 Renaming a File or Folder

Problem
You need to rename a file using a Terminal session.

Solution
Use the mv command to rename files and directories.

Discussion
The mv (move) command is used in a similar way to the cp command,
except that the file or folder being moved is simply renamed rather than a
duplicate being made.
For example, to rename a file from my_file.txt to my_file.rtf, you use the
following command:

https://oreil.ly/Cq2SJ

$ mv my_file.txt my_file.rtf

Changing a directory name is just as straightforward, and you don’t need
the recursive -r option you used when copying, because changing a
directory’s name implicitly means that everything within it is contained in a
renamed directory.

See Also
To copy a file or folder, see Recipe 3.5.

3.7 Editing a File

Problem
You want to run an editor from the command line to change a configuration
file.

Solution
Use the nano editor included with most Raspberry Pi distributions.

Discussion
To use nano, simply type the command nano followed by the filename or
path to the file that you want to edit. If the file doesn’t exist, it will be
created when you save it. However, this will happen only if you have write
permissions in the directory to which you are trying to write the file.
From your home directory, type the command nano my_file.txt to
edit or create the file my_file.txt. Figure 3-9 shows nano in action.

Figure 3-9. Editing a file with nano

You cannot use the mouse to position the cursor; you must use the arrow
keys instead.
The area at the bottom of the screen lists a number of commands that you
can access by holding down the Ctrl key and pressing the letter indicated.
Most of these are not that useful. The ones that you are most likely to use
are as follows:

Ctrl-X
Exit. You will be prompted to save the file before nano exits.

Ctrl-V
Next page. Think of it as an arrow pointing downward. This allows you
to move through a large file one screen at a time.

Ctrl-Y
Previous page.

Ctrl-W
Where is. This allows you to search for a piece of text.

Ctrl-O
Output. This will write (save) the file without exiting the editor.

Some fairly crude copy-and-paste options are also there, but in practice, it’s
easier to use the normal clipboard from the menu that you access with a
right-click, as demonstrated in Figure 3-10.

Figure 3-10. Using the clipboard in nano

Using this clipboard also enables you to copy and paste text between other
windows, such as your browser.
When you’re ready to save your changes to the file and exit nano, use the
command Ctrl-X. Type Y to confirm that you want to save the file. nano
then displays the filename as the default name to save the file under; press
Enter to save and exit.
If you want to abandon the changes you have made, enter N in place of Y.

See Also
Editors are very much a matter of personal taste. Many other editors that are
available for Linux will work just fine on Raspberry Pi. The Vim (Vi
IMproved) editor has many fans in the Linux world. This is also included in
the popular Raspberry Pi distributions. It is not, however, an easy editor for
the beginner. You can run it in the same way as nano, but you use the
command vi instead of nano.

https://oreil.ly/y0fym

3.8 Viewing the Contents of a File

Problem
You want to view the contents of a small file without editing it.

Solution
Use the cat command or the more command to view the file.

For example:

$ more myfile.txt
This file contains
some text

Discussion
The cat command displays the whole contents of the file, even if the
contents are longer than will fit on the screen.
The more command displays only one screen of text at a time. Press the
space bar to display the next screen.

See Also
You can also use cat to concatenate (join together) a number of files
(Recipe 3.32).
Another popular command related to more is less. less is like more
except that it allows you to move backward in the file as well as forward.

3.9 Creating a File Without Using an Editor

Problem
You want to create a one-line file without having to use an editor.

Solution
Use the > and echo commands to redirect what you type on the command
line to a file.
For example:

$ echo "file contents here" > test.txt
$ more test.txt
file contents here

WARNING
The > command overwrites any existing file with the same name, so use it with caution.

Discussion
If you just want to create an empty file and edit it later, you can use the
touch command followed by a filename, like this:

$ touch test.txt

If you use the touch command on a file that already exists, it will change
the modified timestamp on the file as if you had just edited it.

See Also
To use the more command to view files without using an editor, see Recipe
3.8.
To use > to capture other kinds of system output, see Recipe 3.31.

3.10 Creating a Directory

Problem

You want to create a new directory using the Terminal.

Solution
The mkdir command creates a new directory.

Discussion
To create a directory, use the mkdir command. Try out the following
example (note that only the commands are shown, not the responses):

$ cd ~
$ mkdir my_directory
$ cd my_directory
$ ls

You need to have write permissions in the directory within which you are
trying to create the new directory.

See Also
For general information on using the Terminal to navigate the filesystem,
see Recipe 3.4.

3.11 Deleting a File or Directory

Problem
You want to delete a file or directory using the Terminal.

Solution
The rm (remove) command will delete a file or directory and its contents.
You should use this with extreme caution.

Discussion
Deleting a single file is simple and safe. The following example will delete
the file my_file.txt from the home directory; you can use the ls command
to make sure it’s gone:

$ cd ~
$ rm my_file.txt
$ ls

You need to have write permissions in the directory within which you are
trying to carry out the deletion.
You can also use the * wildcard when deleting files. This example deletes
all the files that begin with my_file. in the current directory:

$ rm my_file.*

You could also delete all the files in the directory by typing:

$ rm *

If you want to recursively delete a directory (that is, not just the directory
itself, but all the files and directories that it contains), you can use the -r
option:

$ rm -r mydir

WARNING
When deleting files from a Terminal window, remember that you do not have the safety net of a
recycle bin from which deleted files can be retrieved. Also, generally speaking, you won’t be
given the option to confirm; the files will just immediately be deleted. This can be totally
devastating if you combine it with the sudo command (Recipe 3.12).

See Also
For more information on navigating the file system using the Terminal, see
Recipe 3.4.
If you are concerned about accidentally deleting files or folders, you can
force the rm command to confirm deletions by setting up a command alias
(Recipe 3.36).

3.12 Performing Tasks with Superuser
Privileges

Problem
Some commands don’t work because you have insufficient privileges.

Solution
You need to issue commands with superuser privileges. The sudo
(substitute user do) command allows you to perform actions with superuser
privileges. Just prefix the command with sudo.

Be Careful of sudo
As was once said in a famous movie franchise, “with great power comes great responsibility.” The
sudo command allows you to do really dangerous things, like deleting important system files that
could render your Raspberry Pi useless without a complete reinstallation of Raspberry Pi OS.

Discussion
Most tasks that you want to perform on the command line can usually be
performed without superuser privileges. The most common exceptions to
this are when you’re installing new software and editing configuration files.

The apt command is the principal way of installing new software into
Raspberry Pi OS. You will meet it formally in Recipe 3.17.
Another example requiring superuser privileges is the reboot command.
If you try to run it as a normal user, you will receive a number of error
messages:

$ reboot
Failed to set wall message, ignoring: Interactive authentication
required.
Failed to reboot system via logind: Interactive authentication
required.
Failed to open /dev/initctl: Permission denied
Failed to talk to init daemon.

If you issue the same command prefixed with sudo, the command will
work just fine:

$ sudo reboot

If you have a whole load of commands to run as superuser and don’t want
to have to prefix each command with sudo, you can use the following
command:

$ sudo sh

Note how the prompt changes from $ to #. All subsequent commands will
be run as superuser. When you want to revert to being a regular user, enter
the exit command:

exit
$

See Also

To understand more about file permissions, see Recipe 3.13.
To install software using apt, see Recipe 3.17.

3.13 Understanding File Permissions

Problem
You have seen the strange characters that accompany a filename when it is
listed. You would like to know what they all mean.

Solution
To see the permissions and ownership information relating to files and
directories, use the ls command with the option -l.

Discussion
Run the command ls -l (the option letter is a lowercase L), and you will
see a result like this:

$ ls -l
total 16
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file1.txt
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file2.txt
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file3.txt
drwxr-xr-x 2 pi pi 4096 Apr 23 15:23 mydir

The first line of response from the ls command tells you 16 files are in the
directory.
Figure 3-11 shows the different sections of the listing information. The first
block contains the permissions. In the second block, the number 1 (labeled
“Files”) indicates how many files are involved. This field makes sense only
if the listing entry is for a directory; if it is a file, it will mostly just be 1.
The next two entries (both pi) are the owner and group of the file. The size
entry (the fifth block) indicates the size of the file in bytes. The date

modified will change every time the file is edited or changed, and the final
entry is the actual name of the file or directory.

Figure 3-11. File permissions

The permissions block is split into four sections (Type, Owner, Group, and
Other). The first section is the type of the file. If this is a directory, it will be
the character d; if it is a file, the entry will just be a -.

The next section comprises three characters that specify the various owner
permissions for the file. Each character is a flag that is either on or off. If
the owner has read permissions, an r will be in the first character position.
If the owner has write permissions, a w will be in the second slot. The third
position, which is - in this example, will have an x if the file is executable
(a program or script) by the owner.
The third section has the same three flags but for any users in the group.
Users can be organized into groups. In this case, the file has a user pi and a

group ownership of pi. If any other users were in the group pi, they would
have the permissions specified here.
The final section specifies the permissions for users who are neither pi nor
in the group pi.

Because most people will only ever use the Raspberry Pi as the user pi, the
permissions of most interest are in the first section.

See Also
To change file permissions, see Recipe 3.14.

3.14 Changing File Permissions

Problem
You need to change the permissions of a file.

Solution
You can use the command chmod to modify file permissions.

Discussion
Common reasons why you might want to change file permissions include
needing to edit a file that is marked as read-only and giving a file execute
permissions so that it can run as a program or script.
The chmod command allows you to add or remove permissions for a file.
There are two syntaxes for doing this: one requires the use of octal (base 8),
and the other is text based. We’ll use the easier-to-understand text method.
The first parameter to chmod is the change to make, and the second is the
file or folder to which it should apply. The change parameter takes the
form of the permission scope (+, -, = for add, remove, and set,
respectively) and then the permission type.

For example, the following command will add execute (x) rights for the
owner (user) of the file file2.txt:

$ chmod u+x file2.txt

If we now list the directory, we can see that the x permission has been
added:

$ ls -l
total 16
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file1.txt
-rwxr--r-- 1 pi pi 5 Apr 24 08:08 file2.txt
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file3.txt
drwxr-xr-x 2 pi pi 4096 Apr 23 15:23 mydir

If we wanted to add execute permissions for the group or for other users, we
would use g and o, respectively. The letter a adds the permission for
everyone.
You will often find examples of setting the file permissions using a number.
For example:

$ chmod 777 file1.txt

Each of the three digits represents 3 bits for the owner, group, and other
parts of the file permission. The digits are octal, that is number base 8, so
their binary values are as shown in the following table.

Octal Binary
0 000

1 001

2 010

3 011

4 100

5 101

Octal Binary
6 110

7 111

For example, a file permission of rwxr--r-- would be represented by the
number 744.

See Also
For background on file permissions, see Recipe 3.13.
For a chmod octal calculator, see https://chmod-calculator.com.

See Recipe 3.15 for changing file ownership.

3.15 Changing File Ownership

Problem
You need to change the ownership of a file.

Solution
You can use the command chown (change owner) to modify the ownership
of a file or directory.

Discussion
As we discovered in Recipe 3.13, any file or directory has both an owner
and a group associated with it. Because most users of the Raspberry Pi will
just have the single user pi, we don’t really need to worry about groups.

Occasionally, you will find files on your system that have been installed
with a different user than pi. If this is the case, you can change the
ownership of the file using the chown command.

https://chmod-calculator.com/

To change the owner of a file, use chown followed by the new owner and
group, separated by a colon, and then the name of the file.
You will probably find that you need superuser privileges to change
ownership, in which case you should prefix the command with sudo
(Recipe 3.12). In this example, we change the owner of file2.txt from pi to
root:

$ sudo chown root:root file2.txt
$ ls -l
total 16
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file1.txt
-rwxr--r-- 1 root root 5 Apr 24 08:08 file2.txt
-rw-r--r-- 1 pi pi 5 Apr 23 15:23 file3.txt
drwxr-xr-x 2 pi pi 4096 Apr 23 15:23 mydir

See Also
For background on file permissions, see Recipe 3.13.
Also see Recipe 3.14 for changing file permissions.

3.16 Making a Screen Capture

Problem
You want to capture an image of the Raspberry Pi’s screen and save it to a
file.

Solution
Use the delightfully named scrot (SCReenshOT) screen capture software.

Discussion
The simplest way to trigger a screen capture is just to enter the command
scrot. This will immediately take an image of the primary display and

save it in a file named something like 2023-04-25-
080116_1024x768_scrot.png within the current directory.
Sometimes you want a screenshot to show a menu being opened or
something that generally disappears when the window loses focus. For such
situations, you can specify a delay before the capture takes place by using
the -d option:

$ scrot -d 5

The delay is specified in seconds.
If you capture the entire screen, you can crop it later with image editing
software, such as GIMP (Recipe 4.6). However, it is more convenient to
just capture a specific area of the screen in the first place, which you can do
by using the -s option.

To use this option, type the following command and then, with the mouse,
drag to define the area of screen that you want to capture:

$ scrot -s

The filename will include the dimensions in pixels of the image captured.

See Also
The scrot command has a number of other options to control things like
using multiple screens and changing the format of the saved file. You can
find out more about scrot from its manpage by entering the following
command:

$ man scrot

MANPAGES
Manpages (manual pages) are available for almost all Raspberry Pi OS commands, and you can
see them by entering the command name followed by the command itself. However, a
command’s manpage is not always very accessible, being a thorough reference for the
command rather than a simple guide for how to use it. So it’s often better just to do an internet
search for the command.

3.17 Installing Software with apt

Problem
You want to install software using the command line.

Solution
The most frequently used tool for installing software from a Terminal
session is apt (the Advanced Packaging Tool).

The basic format of the command, which you must run as superuser, is as
follows:

$ sudo apt install <name of software>

For example, to install the AbiWord word processing software, you would
enter this command:

$ sudo apt install abiword

Discussion
The apt package manager uses a list of available software. This list is
included with the Raspberry Pi operating system distribution but is likely to
be out of date. So it is a good idea to always run the following command to
update the list before installing new software using apt:

$ sudo apt update

The list and the software packages for installation are all on the internet, so
none of this will work unless your Raspberry Pi has an internet connection.

TIP
If you find that when you update you get an error like E: Problem with MergeList
/var/lib/dpkg/status, try running these commands, which will remove the offending file
and replace it with a new, empty one:

$ sudo rm /var/lib/dpkg/status
$ sudo touch /var/lib/dpkg/status

The installation process can often take a while because the files must be
downloaded and installed. Some installations will also add shortcuts to your
desktop or the program groups on your Raspberry Menu.
You can search for software to install using the command apt search
followed by a search string such as abiword. This then displays a list of
matching packages that you could install.

See Also
See Recipe 3.18 for removing programs that you no longer need so that you
can free up space.
See also Recipe 3.21 for downloading source code from GitHub.
For installing Python programs with pip, see Recipe 3.19.
To install software using a graphical user interface, see Recipe 4.2.

3.18 Removing Software Installed with apt

Problem
Having installed a whole load of programs using apt, you now find that
you want to remove some of them.

Solution
The apt utility has an option (remove) that will remove a package, but it
will remove only those packages that have been installed with apt
install.

For example, if you wanted to remove AbiWord, you would use the
following command:

$ sudo apt remove abiword

Discussion
Removing a package like this doesn’t always delete everything because
packages often have prerequisite packages that are installed as well. To
remove these, you can use the autoremove option, as shown here:

$ sudo apt autoremove abiword
$ sudo apt clean

The apt clean option will do some further tidying up of unused package
installation files.

See Also
See Recipe 3.17 for installing packages using apt.

3.19 Installing Python Packages with pip3

Problem

You want to use the pip3 or pip (Pip Installs Packages) package manager
to install Python libraries.

Solution
If you have the latest version of Raspberry Pi OS, pip3 will already be
installed, and you can run it from the command line. pip3 installs Python 3
packages, and on the rare occasion that you might need to install packages
for Python 2, just use pip.

Here is an example of using pip3 to install:

$ pip3 install pyserial

If pip3 is not installed on your system, you can install it using this
command:

$ sudo apt install python3-pip

Sometimes you will want the software package to be installed for both
Python 2 and Python 3, and so you might find yourself running the same
commands using both pip and pip3.

Discussion
Although many Python libraries can be installed using apt (see Recipe
3.17), some can’t, and you must use pip instead.

See Also
To install software using apt, see Recipe 3.17.

3.20 Fetching Files from the Command Line

Problem
You want to download a file from the internet without using a web browser.

Solution
You can use the wget command to fetch a file from the internet.

For example, the following command fetches the file Pifm.tar.gz from
https://www.icrobotics.co.uk:

$ wget http://www.icrobotics.co.uk/wiki/images/c/c3/Pifm.tar.gz
--2013-06-07 07:35:01--
http://www.icrobotics.co.uk/wiki/images/c/c3/Pifm.tar.gz
Resolving www.icrobotics.co.uk (www.icrobotics.co.uk)...
155.198.3.147
Connecting to www.icrobotics.co.uk
(www.icrobotics.co.uk)|155.198.3.147|
:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 5521400 (5.3M) [application/x-gzip]
Saving to: `Pifm.tar.gz'

100%[==>]
5,521,400 601K/s

2018-06-07 07:35:11 (601 KB/s) - `Pifm.tar.gz' saved
[5521400/5521400]

If your URL contains any special characters, it’s a good idea to enclose
them in double quotes.

Discussion
You’ll find that some instructions for installing software rely on using
wget to fetch files. It’s often more convenient to do this from the command
line rather than use a browser, find the file, download it, and then copy it to
the place you need it.
The wget command takes the URL to download as its argument and
downloads it into the current directory. It’s typically used to download an

archive file of some type but will also download any web page. So, you
could, for example, fetch the Google homepage into a file called
index.xhtml using the command:

$ wget google.com

See Also
For information on installing with apt, see Recipe 3.17.

3.21 Fetching Source Code with Git

Problem
Sometimes Python libraries and another software are hosted on the GitHub
website or other online Git repository. You need to be able to fetch them
onto your Raspberry Pi.

Solution
To use code in Git repositories, you need to use the git clone command
to make your own copy of the files.
For example, the following command will download all of the source code
examples from this book into a new folder:

$ git clone
https://github.com/simonmonk/raspberrypi_cookbook_ed4.git

Along with the URL for the code to clone, there is a web page that you can
visit with a browser. If you go to the GitHub web page for this book, you
will find a web page similar to the one shown in Figure 3-12.
Clicking the Code button allows you to copy the repository’s URL and then
paste it after the command git in your Terminal session.

https://oreil.ly/5fUnD

Discussion
There is a difference between Git and GitHub. Git is software used to
manage code, and GitHub is one of many websites hosting code, which was
pushed there using Git. In fact, you can actually host your own Git
repository on a Raspberry Pi if you want to. However, there are benefits to
using a Git-based website such as GitHub or GitLab:

Your code is stored in the cloud, so if your disk (or SD card) breaks, you
won’t lose the code.
The code is publicly visible, so other people can look at it and use it, and
if they find things wrong with it they might even offer up fixes for you.
You can include documentation about your project for all to see in the
README file.

Figure 3-12. The GitHub repository page for this book

If you are working on a Raspberry Pi project that you think others might be
interested in, I would recommend using GitHub or GitLab to host your
code. There is a little bit to learn, but it’s worth the effort.
Another advantage to using Git (whether locally or with a service like
GitHub) is that every time you do a chunk of work on a project, you will
push that work up to the master copy of your code. This doesn’t replace the
code that was already there, but is instead stored as a new edition. You can
at any time recover earlier versions of the code should you make a mistake.

WARNING
The terms “master” and “slave” used in the 1-wire and SPI interfaces were written into standards
and code many years ago. The origins of these words are clearly problematic. There are moves to
replace this terminology with something more modern (and more technically accurate). But for
now, unfortunately, we will continue seeing these names until code libraries and the standards they
reflect are brought up-to-date.

I host all of the code from my books and other projects on GitHub. These
are the steps I take when I make a new repository:

1. Go to your home page on GitHub (you’ll need to create an account)
and click the + button and select the New Repository option.

2. Give the repository a name and short description.
3. Check the option “Initialize this repository with a README.”
4. Select a license—I select MIT for no better reason than my great

respect for that august center of learning, reasoning that if it has a
license for sharing my work, it’s probably a good one.

5. Click “Create repository.”
6. Back on your computer (Raspberry Pi or other), open a Terminal

(Recipe 3.3).
7. Run the command git followed by the URL of the repository. This

will create a folder for the project. Any files that you write in this
folder will eventually be saved to GitHub when you type the
following commands:

$ git add .
$ git commit -m "message about what you changed or added"
$ git push

The first of these commands adds all of the changed or new files to the list
of files to be committed. The commit command gives you an option to
explain what’s new in the changes being committed. Finally, the push
command pushes the changes up to GitHub. At this point, you are prompted
for your GitHub username and password. The password will actually be a
token that you generate from your GitHub account.
You will find GitHub to be a rich source of Python and other code for use
with the Raspberry Pi. This is especially true when it comes to software
interfaces to different types of hardware, such as displays and sensors.

See Also
Learn more about Git and the Git hosting services GitHub and GitLab.
For information on downloading this book’s program code and other files
relating to this book, see Recipe 3.22.

3.22 Fetching This Book’s Accompanying
Code

Problem
You want to download all the source code and other files relating to this
book.

Solution
You can either clone the files from GitHub as described in Recipe 3.21 or,
as we will describe here, get the downloads as a single ZIP archive file from
GitHub.

http://www.git-scm.com/
http://www.github.com/
https://gitlab.com/

A good starting point for getting the book’s downloads is to go to the
book’s web page using the browser on your Raspberry Pi. Here, in addition
to a link to the book’s code hosted on GitHub, you will find errata and other
information about the book.
So whether you begin at the website or directly at the GitHub page, when
you click the Code button, you will see the Download ZIP option (Figure 3-
13).

Figure 3-13. Downloading the ZIP file from the GitHub repository page for this book

Click the Download ZIP option. Chromium saves this to your Downloads
folder. Click the down arrow next to the downloaded ZIP file and then
select the option “Show in folder.”
This opens a File Manager window in the Downloads folder. Find the ZIP
file that has just been downloaded.
Double-click the ZIP file to open the Xarchiver tool and then click the
“Extract files” icon.

http://simonmonk.org/pi-cookbook-ed4
https://oreil.ly/nH5yl

In the dialog that appears, change the path to which the extracted folder is
to be saved to /home/pi and then click Extract.
After the files have been extracted, there will be a new folder in your home
directory containing all the downloads for the book.

Discussion
If you now use the File Manager to see what’s in your home directory, you
will find a folder called raspberry_pi_cookbook_ed4-master.

See Also
For more information on using Git and GitHub, see Recipe 3.21.

3.23 Running a Program Automatically on
Startup

Problem
You want a program or script to start automatically as your Raspberry Pi
boots.

Solution
Modify your rc.local file to run the program you want.
Edit the file /etc/rc.local using the following command:

$ sudo nano /etc/rc.local

Add the following line after the first block of comment lines that begin with
#:

$ /usr/bin/python /home/pi/my_program.py &

It is important to include the & on the end of the command line so that it is
run in the background; otherwise your Raspberry Pi will not finish booting.

Discussion
This way of autorunning a program needs a very careful edit of rc.local, or
you can stop your Raspberry Pi from booting.

See Also
A safer way of autorunning a program is detailed in Recipe 3.24.

3.24 Running a Program Automatically as a
Service

Problem
You want to arrange for a script or program to start automatically every
time the Raspberry Pi reboots.

Solution
Debian Linux, on which most Raspberry Pi distributions are based, uses a
dependency-based mechanism for automating the running of commands at
startup. This is a little tricky to use and involves creating a configuration
file for the script or program that you want to run, which will reside in a
folder called init.d.

Discussion
The following example shows you how to run a Python script in your home
directory. The script could do anything, but in this case, the script runs a
simple Python web server, which is described further in Recipe 7.17.
The steps involved are:

1. Create an init script.
2. Make the init script executable.
3. Tell the system about the new init script.

First, create the init script. You need to create this in the folder /etc/init.d/.
The script can be called anything, but in this example, we call it
my_server.

Create the new file by using nano with the following command:

$ sudo nano /etc/init.d/my_server

Paste the following code into the editor window and save the file. This is a
lot to type, so if you are reading a paper copy of this book, you can copy
and paste the code from this web page; just scroll down until you find this
chapter and recipe:

BEGIN INIT INFO
Provides: my_server
Required-Start: $remote_fs $syslog $network
Required-Stop: $remote_fs $syslog $network
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Simple Web Server
Description: Simple Web Server
END INIT INFO

#! /bin/sh
/etc/init.d/my_server

export HOME
case "$1" in
 start)
 echo "Starting My Server"
 sudo /usr/bin/python /home/pi/myserver.py 2>&1 &
 ;;
stop)
 echo "Stopping My Server"
 PID=`ps auxwww | grep myserver.py | head -1 | awk '{print $2}'`
 kill -9 $PID
 ;;
*)

https://oreil.ly/otjS3

 echo "Usage: /etc/init.d/my_server {start|stop}"
 exit 1
;;
esac
exit 0

This is quite a lot of work to automate the running of a script, but most of it
is boilerplate code that is the same for every service. To run a different
script, just work your way through the script, changing the descriptions and
the name of the Python file that you want to run.
The next step is to make this file executable for the owner, which you do
using this command:

$ sudo chmod o+x /etc/init.d/my_server

Now that the program is set up as a service, you can use the following
command to test that everything is OK before you set it to autostart as part
of the boot sequence:

$ /etc/init.d/my_server start
Starting My Server
Bottle v0.11.4 server starting up (using WSGIRefServer())...
Listening on http://192.168.1.16:80/
Hit Ctrl-C to quit.

Finally, if that runs OK, use the following command to make the system
aware of the new service that you have defined:

$ sudo update-rc.d my_server defaults

See Also
For a simpler approach to making a program run automatically, see Recipe
3.23.
For more information on changing file and folder permissions, see Recipe
3.13.

3.25 Running a Program Automatically at
Regular Intervals

Problem
You want to run a script once each day or at regular intervals.

Solution
Use the Linux crontab (chronological table) command.

To do this, the Raspberry Pi needs to know the time and date and therefore
needs a network connection.

Discussion
The command crontab allows you to schedule events to take place at
regular intervals. This can be daily or hourly, and you can even define
complicated patterns so different things happen on different days of the
week. This is useful for backup tasks that you might want to run in the
middle of the night.
You can edit the scheduled events using the following command:

$ crontab -e

If the script or program that you want to run needs to be run as superuser,
prefix all the crontab commands with sudo (Recipe 3.12).

The comment line (starting with a #) indicates the format of a crontab
line. The digits are, in order, minute, hour, day of month, month, and day of
week and are followed by the command that you want to run.
If there is a * in the relevant position, that means every; if there is a number
instead, the script runs only at that minute/hour/day of the month.

For example, to run myscript.sh every day at 1 a.m., you would add the line
shown in Figure 3-14.

Figure 3-14. Editing crontab

By specifying a range of day numbers, say 1–5 (Monday to Friday), in the
day of week column, the script will run only at 1 a.m. on those days, as
demonstrated here:

0 1 * * 1-5 /home/pi/myscript.sh

If your script needs to be run from a particular directory, you can use a
semicolon (;) to separate multiple commands, as shown here:

0 1 * * * cd /home/pi; python mypythoncode.py

See Also
You can see the full manpage documentation for crontab by entering this
command:

$ man crontab

3.26 Finding a File

Problem
You want to find a file that you know is on the system somewhere.

Solution
Use the Linux find command.

Discussion
Starting with a directory specified in the command, the find command
will search for a file that you specify and, if it finds the file, display its
location.
For example:

$ find /home/pi -name gemgem.py
/home/pi/python_games/gemgem.py

You can start the search at various points on the tree, even at the root of the
entire filesystem (/). A search of the entire filesystem will take a lot longer
and will also produce error messages. You can redirect these error messages
by adding 2>/dev/null to the end of the line.

To search for the file throughout the entire filesystem, use the following
command:

$ find / -name gemgem.py 2>/dev/null
/home/pi/python_games/gemgem.py

Note that 2>/dev/null redirects output that would make it difficult to
see the file when it was eventually found. You can find out more about
redirection in Recipe 3.31.
You can also use wildcards with find as follows:

$ find /home/pi -name match*
/home/pi/python_games/match4.wav
/home/pi/python_games/match2.wav
/home/pi/python_games/match1.wav
/home/pi/python_games/match3.wav

/home/pi/python_games/match0.wav
/home/pi/python_games/match5.wav

See Also
The find command has a number of other advanced features for
searching. To see the full manpage documentation for find, use this
command:

$ man find

3.27 Using the Command-Line History

Problem
You want to be able to repeat commands on the command line without
having to type them again.

Solution
Use the up arrow and down arrow keys to select previous commands from
the command history, and use the history command with grep to find
older commands.

Discussion
You can access the previous command you ran by pressing the up arrow
key. Pressing it again will take you to the command before that, and so on.
If you overshoot the command you wanted, the down arrow key will take
you back in the other direction.
If you want to cancel without running the selected command, use Ctrl-C.
Ctrl-C is command line for stop what you are doing; in many situations, it
will stop a program entirely.

Over time, your command history will grow too large for you to use the
arrow keys to find a command that you used ages ago. To find a command
from way back, you can use the history command:

$ history
 1 sudo nano /etc/init.d/my_server
 2 sudo chmod +x /etc/init.d/my_server
 3 /etc/init.d/my_server start
 4 cp /media/4954-5EF7/sales_log/server.py myserver.py
 5 /etc/init.d/my_server start
 6 sudo apt update
 7 sudo apt install bottle
 8 sudo apt install python-bottle

This lists all of your command history and is likely to have far too many
entries for you to find the command you want. To remedy this, you can use
the | character to pipe (see Recipe 3.33) the history command into the
grep command, which will display only results matching a search string.
So, for example, to find all the apt (Recipe 3.17) commands that you’ve
issued, you can use the line:

$ history | grep apt
 6 sudo apt update
 7 sudo apt install bottle
 8 sudo apt install python-bottle
 55 history | grep apt

Each history item has a number next to it, so if you find the line you were
looking for, you can run it using ! followed by the history number, as
shown here:

$!6
sudo apt update
.....

See Also
To find files rather than commands, see Recipe 3.26.

3.28 Monitoring Processor Activity

Problem
The Raspberry Pi can run a bit slow sometimes, so you want to see what’s
hogging the processor.

Solution
Use the Task Manager utility, which you’ll find on the Raspberry Menu, in
the Accessories group (Figure 3-15).

Figure 3-15. The Task Manager

The Task Manager allows you to see at a glance how much CPU and
memory are being used. You can also right-click a process and select the
option to kill it from the pop-up menu that appears.
The bar graphs toward the top of the window display the total CPU usage
and memory usage. The processes are listed below that, and you can see the
CPU share each is taking.

Discussion
If you prefer to do this type of thing from the command line, use the Linux
top command to display very similar data about processor and memory
usage and which processes are using the most resources (Figure 3-16). You
can then use the kill command to kill a process. You will need to do this
as superuser.
In this case, you can see that the top process is a Python program that uses
97% of CPU. The first column shows its process ID (2447). To kill this
process, enter this command:

$ kill 2447

It is quite possible to kill some vital operating system process this way, but
if you do, powering off your Pi and turning it back on again will restore
things to normal.

Figure 3-16. Using the top command to see resource usage

Sometimes you might have a process running that is not immediately
visible when you use top. If this is the case, you can search all the
processes running by using the ps command and piping (Recipe 3.33) the
results to the grep command (Recipe 3.27), which will search the results
and highlight items of interest.
For example, to find the process ID for our CPU-hogging Python process,
we could run the following command:

$ ps -ef | grep "python"
pi 2447 2397 99 07:01 pts/0 00:00:02 python speed.py
pi 2456 2397 0 07:01 pts/0 00:00:00 grep --color=auto
python

In this case, the process ID for the Python program speed.py is 2447.
The second entry in the list is the process for the ps command itself.

THE KILLALL COMMAND
A variation on the kill command is the killall command. Use this with caution because it
kills all processes that match its argument. So, for example, the following command will kill all
Python programs running on the Raspberry Pi:

$ sudo killall python

If you want even more information, try the htop command as an
alternative to top.

See Also
See also the manpages for top, ps, grep, kill, and killall. You can
view these by typing the man command followed by the name of the
command for which you want information, as shown here:

$ man top

3.29 Working with File Archives

Problem
You have downloaded a compressed file and want to uncompress it.

Solution
Depending on the file type, you will need to use the tar command or the
gunzip command.

Discussion
If the file that you want to uncompress just has the extension .gz, you can
unzip it using the command:

$ gunzip myfile.gz

You also often find files (called tarballs) that contain a directory that has
been archived with the Linux tar utility and then compressed with gzip
into a file with a name like myfile.tar.gz.
You can extract the original files and folders out of a tarball by using the
tar command:

$ tar -xzf myfile.tar.gz

If the file is a ZIP archive, you can use the File Manager and Xarchiver
tools, as shown in Recipe 3.22.

See Also
You can find out more about tar from its manpage, which you can access
with the command man tar.

3.30 Listing Connected USB Devices

Problem
You’ve plugged in a USB device and want to make sure Linux recognizes
it.

Solution
Use the lsusb (like ls but for USB devices) command. This lists all of
the devices attached to the USB ports on your Raspberry Pi:

$ lsusb
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.

Bus 001 Device 004: ID 15d9:0a41 Trust International B.V. MI-
2540D
 [Optical mouse]

Discussion
This command informs you as to whether a device is connected, but it will
not guarantee that the device is working correctly. There might be drivers to
install or configuration changes to make for the hardware.

3.31 Redirecting Output from the Command
Line to a File

Problem
You want to quickly create a file with some text or record a directory listing
into a file.

Solution
Use the > command to redirect output that would otherwise appear in your
Terminal after you run the command.
For example, to copy a directory listing into a file called myfiles.txt, do the
following:

$ ls > myfiles.txt
$ more myfiles.txt
Desktop
indiecity
master.zip
mcpi

Discussion
You can use the > command on any Linux command that produces output,
even if you are running, say, a Python program.

You can also use the opposite (<) command to redirect user input, although
this is not nearly as useful as >.

See Also
To use the cat command to join together a number of files, see Recipe
3.32.

3.32 Concatenating Files

Problem
You have a number of text files, and you want to join them into one big file.

Solution
Use the cat command to concatenate a number of files into one output
file.
For example:

$ cat file1.txt file2.txt file3.txt > full_file.txt

Discussion
Joining files is the real purpose of the cat command. You can supply as
many filenames as you like, and they will all be written to the file that you
specify. If you do not redirect the output, it will just appear in your Terminal
window. If they are big files, this process might take some time!

See Also
See also Recipe 3.8, in which cat is used to display the contents of a file.

3.33 Using Pipes

Problem
You want to use the output of one Linux command as the input to another
command.

Solution
Use the pipe command, which is the bar symbol (|) on your keyboard, to
pipe the output of one command to another.
For example:

$ ls -l *.py | grep Jun
-rw-r--r-- 1 pi pi 226 Jun 7 06:49 speed.py

This example will find all the files with the extension py that also have
Jun in their directory listing, indicating that they were last modified in
June.

Discussion
At first sight, this looks rather like output redirection using > (Recipe 3.31).
The difference is that > will not work if the target is another program. It
will work only for redirecting to a file.
You can chain together as many programs as you like, as shown here,
although this isn’t something you will do often:

$ command1 | command2 | command3

See Also
See Recipe 3.27 to search your command history using pipe and grep,
and Recipe 3.28 for an example of using grep to find a process.

3.34 Hiding Output to the Terminal

Problem
You want to run a command, but you don’t want the output filling up your
screen.

Solution
Redirect the output to /dev/null using >.

For example:

$ ls > /dev/null

The dev directory contains operating system devices, including things like
serial ports. Within this directory, a special device (the null device) is
defined that simply discards everything sent to it.

Discussion
This example illustrates the syntax but is otherwise pretty useless. A more
common use is when you’re running a program and the developer has left a
lot of trace messages in its code, which you don’t really want to see. The
following example hides superfluous output from the find command (see
Recipe 3.36):

$ find / -name gemgem.py 2>/dev/null
/home/pi/python_games/gemgem.py

See Also
For more information about redirecting standard output, see Recipe 3.31.

3.35 Running Programs in the Background

Problem
You want to run a program while also working on some other task.

Solution
Run the program or command in the background using the & command.

For example:

$ python speed.py &
[1] 2528
$ ls

Rather than wait until the program has finished running, the command line
displays the process ID (the second number) and immediately allows you to
continue with whatever other commands you want to run. You can then use
this process ID to kill the background process (Recipe 3.28).
To bring the background process back to the foreground, use the fg
command:

$ fg
python speed.py

This reports the command or program that is running and then waits for it to
finish.

Discussion
Output from the background process will still appear in the Terminal.
An alternative to putting processes in the background is to just open more
than one Terminal window.

See Also
For information on managing processes, see Recipe 3.28.

3.36 Creating Command Aliases

Problem
You want to create aliases (shortcuts) to commands that you use frequently.

Solution
Edit the file ~/.bashrc using nano (Recipe 3.7), and then move to the end of
the file and add as many lines as you want, like this:

alias L='ls -a'

This creates an alias called L that, when entered, will be interpreted as the
command ls -a.

Save and exit the file using Ctrl-X and Y, and then type the following
command to update the Terminal with the new alias:

$ source .bashrc

Discussion
Many Linux users set up an alias for rm, like the following, so that it
confirms deletions:

$ alias rm='rm -i'

This is not a bad idea, as long as you do not forget when you use someone
else’s system who doesn’t have this alias set up!

See Also
For more information about rm, see Recipe 3.11.

3.37 Setting the Date and Time

Problem
You want to manually set the date and time on your Raspberry Pi because it
does not have an internet connection.

Solution
Use the Linux date command.

The date and time format is MMDDhhmmYYYY, in which MM is the
month number; DD is the day of the month; hh and mm are the hours and
minutes, respectively; and YYYY is the year.
For example:

$ sudo date 010203042019
Wed 2 Jan 03:04:00 GMT 2019

Discussion
If the Raspberry Pi is connected to the internet, as it boots up it will
automatically set its own time using an internet time server.
You can also use date to display the local time by entering date on its
own:

$ date
Fri 19 Jul 10:59:08 BST 2019

3.38 Finding Out How Much Room You Have
on the SD Card

Problem

You want to know how much free space there is on the SD card.

Solution
Use the Linux df (disk filesystem) command:

$ df -h
Filesystem Size Used Avail Use% Mounted on
rootfs 3.6G 1.7G 1.9G 48% /
/dev/root 3.6G 1.7G 1.9G 48% /
devtmpfs 180M 0 180M 0% /dev
tmpfs 38M 236K 38M 1% /run
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 75M 0 75M 0% /run/shm
/dev/mmcblk0p1 56M 19M 38M 34% /boot

The -h option shows the sizes using the KB, MB, and GB symbols
(shortened to K, M, and G) rather than the number of bytes.

Discussion
Looking at the first line of the results, you can see that 3.6 GB of storage is
on the SD card, of which 1.7 GB is used.
When you run out of disk space, you are likely to get unexpected bad
behavior, such as error messages saying that a file could not be written.

See Also
You can find the manpage for df with the command man df.

3.39 Finding Out What Operating System
Version You Are Running

Problem

You want to know exactly what version of Raspberry Pi OS you are
running.

Solution
Enter the following command into a Terminal or Secure Shell (SSH)
session:

$ cat /etc/os-release
PRETTY_NAME="Raspbian GNU/Linux 11 (bullseye)"
NAME="Raspbian GNU/Linux"
VERSION_ID="11"
VERSION="11 (bullseye)"
VERSION_CODENAME=bullseye
ID=raspbian
ID_LIKE=debian
HOME_URL="http://www.raspbian.org/"
SUPPORT_URL="http://www.raspbian.org/RaspbianForums"
BUG_REPORT_URL="http://www.raspbian.org/RaspbianBugs"

Discussion
As you can see from the result in the previous example, the first line tells us
all we need to know. In this case, my Raspberry Pi is running Raspbian
(Raspberry Pi OS) version 11, which also goes under the nickname
bullseye.
It can be useful to know what version of Raspberry Pi OS you are running if
you are having problems with a certain piece of software. Often the first
question that you will be asked by support is What version of Raspberry Pi
OS are you running?
You might need to know what version of the Linux kernel you have on your
Raspberry Pi. You can find this using the following command:

$ uname -a
Linux raspberrypi 5.15.32-v7l+ #1538 SMP Thu Mar 31 19:39:41 BST
2022
 armv7l GNU/Linux

Here you can see that the author’s Raspberry Pi uses v5.15 of the kernel.

See Also
To see how much room you have left on your SD card or other boot disk,
see Recipe 3.38.

3.40 Updating Raspberry Pi OS

Problem
You want to update your Raspberry Pi to the latest version of Raspberry Pi
OS.

Solution
If you have a fairly new version of Raspberry Pi OS (Bullseye onwards),
then an icon should be in the top right of the screen that looks like an arrow
pointing down toward a tray (Figure 3-17). When you click on this, you are
given the option to see available updates and install them.

Figure 3-17. Installing updates from the desktop

If you prefer, you can install from the command line. Open a command line
using the Terminal (Recipe 3.3) and enter the following command to update
your system to the latest version:

$ sudo apt update
$ sudo apt full-upgrade

This will take some time, especially if there is a lot to upgrade. Most
important, if you have any precious files on your system, I recommend
copying them onto a USB flash drive (Recipe 3.2) before upgrading.

Discussion

The first of these commands doesn’t actually update Raspberry Pi OS; it
just updates the apt package manager to make it aware of the latest
versions of the packages that comprise your operating system and related
software.
The command full-upgrade upgrades the operating system itself.
During the process, you will be warned how much disk space will be
required, so you should use Recipe 3.38 to check that you have enough
room before pressing Y to go ahead with the upgrade.
Keeping your distribution up to date is important for a number of reasons.
First, one of the main reasons that the operating system is changed is to fix
bugs. So problems during the installation of software often vanish after a
system update. Second, if you expose your Raspberry Pi to the internet, new
versions of Raspberry Pi OS often patch security vulnerabilities.

See Also
To start again with a completely fresh installation of Raspberry Pi OS, see
Recipe 1.6.

Chapter 4. Using Ready-Made
Software

4.0 Introduction
This chapter contains a number of recipes for using ready-made software on
the Raspberry Pi.
Some of the recipes in this chapter are concerned with converting the
Raspberry Pi into a single-use appliance, while others use specific pieces of
software on a Raspberry Pi.

4.1 Making a Media Center

Problem
You want to convert your Raspberry Pi into a super-duper media center.

Solution
To use your Raspberry Pi as a media center, you should go for the superior
performance of the Raspberry Pi 4 B, as video playing is very processor
intensive.
You can set up your Raspberry Pi as a media center while using the
Raspberry Pi Imager (Recipe 1.6) to write to a microSD card. Instead of
selecting Raspberry Pi OS as the distribution to install, select LibreELEC
from the Media Player OS section of the Operating System button
(Figure 4-1).

Figure 4-1. Using the Raspberry Pi Imager to write LibreELEC onto a microSD card

LibreELEC is a distribution that optimizes your Raspberry Pi as a media
center. It incudes the Kodi media center software, which is based on the
XBMC open source project that was originally developed to convert Xbox
game consoles into media centers. The code has since been ported to many
platforms, including the Raspberry Pi (Figure 4-2).

Figure 4-2. Raspberry Pi as a media center

Raspberry Pi is perfectly capable of playing full HD video as well as
streamed music, MP3 files, and internet radio.

Discussion
Kodi is a powerful piece of software with many features and is very
intuitive to set up. Perhaps the simplest way to check whether it is working
is to put some music and/or video files onto a USB flash drive or external
USB hard disk and connect it to the Raspberry Pi. You should be able to
play them from Kodi.
Since the Raspberry Pi is likely to be sitting near your TV, you might find
that your TV has a USB port that can provide enough current to run the
Raspberry Pi. If this is the case, you won’t need a separate power supply.
A wireless keyboard and mouse are a good idea because, if you buy them as
a pair, they will use a single USB port for the dongle, which avoids the need
for wires trailing all over the place. You can also buy mini keyboards with
built-in trackpads that are useful in this situation.

https://kodi.wiki/

A wired network connection is generally higher performance and better
than a WiFi connection, but it is not always convenient to have the Pi near
an Ethernet socket. If this is the case, you can set up XBMC to use WiFi.
Setting up Kodi is very intuitive, and you can find full instructions on using
the software at http://kodi.wiki.

See Also
A popular alternative to LibreELEC, which can also be installed from the
Raspberry Pi Imager, is OSMC.
You can add an infrared (IR) remote to Raspberry Pi to control Kodi.

4.2 Installing Recommended Software

Problem
You want to install some commonly used software on your Raspberry Pi.

Solution
Use the Recommended Software tool (Figure 4-3), which you will find in
the Preferences section of the Raspberry Menu.

http://kodi.wiki/
https://osmc.tv/
https://oreil.ly/NhDEJ

Figure 4-3. The Recommended Software tool

This tool includes many pieces of software that in the past were pre-
installed on Raspberry Pi OS. So, it has many of the most common and
useful pieces of Raspberry Pi software in it. Use it to browse to the software
that you want to install, select the checkbox for the desired programs, and
click Apply.
The software will then be downloaded and installed. When the installer has
finished, the new software will appear on your Raspberry Menu.

Discussion
If you can’t find the software that you want using the Recommended
Software tool, you can widen the net and use the similar Add/Remove
Software tool, also in the Preferences section of the Raspberry Menu
(Figure 4-4).

This tool has thousands of software packages and programs for you to
install; sometimes it is easier to type something in the search area, rather
than browse through all the packages.

Figure 4-4. The Add/Remove Software tool

See Also
To install software using the apt command line tool, see Recipe 3.17.

4.3 Using Office Software

Problem
You need to open word processor, presentation, and spreadsheet documents
on a Raspberry Pi.

Solution
Install LibreOffice using the Recommended Software tool (Recipe 4.2).

Discussion
The LibreOffice suite of programs (Figure 4-5) makes a good (and free)
alternative to Microsoft Office. It includes a word processor, spreadsheet,
presentation, and drawing software. In fact, the LibreOffice Writer word
processor will open and save Microsoft Word documents, and the
spreadsheet and presentation programs are pretty compatible with their
Microsoft counterparts.

Figure 4-5. LibreOffice Writer

A Raspberry Pi 4 or 400 will run office applications much better than an
older Raspberry Pi.
These days it’s often more convenient to keep your documents in the cloud
and edit them in a browser. The most common examples of these services
are Microsoft 365 and Google Docs. Both require you to sign up for an
account, but the Chromium browser is perfectly capable of using these
services (Figure 4-6).

Figure 4-6. Using a Google Docs spreadsheet in the Chromium browser

See Also
Visit https://www.libreoffice.org for more information on the LibreOffice
suite of software.
If you just want to edit an unformatted text file, you can use the nano editor
(Recipe 3.7) or VisualStudio Code (Recipe 4.10).

4.4 Running a Vintage Game Console
Emulator

Problem
You want to turn your Raspberry Pi into a vintage game console.

Solution

https://www.libreoffice.org/

If you fancy rediscovering your misspent youth and playing Asteroids on an
emulator for the Atari 2600 (Figure 4-7), the RetroPie project will appeal to
you.

Figure 4-7. Asteroids on the Stella Atari 2600 emulator

Many wonderful projects have been built that create custom consoles and
game tables complete with retro game controllers.
Although you can install RetroPie on top of Raspberry Pi OS, the easiest
way to use it is to write it onto a microSD card using the Raspberry Pi
Imager (Recipe 1.6).

WARNING
It is worth noting that even though these games are ancient, they are still owned by someone. The
ROM image files that you need to play the games on an emulator, although easy to find on the
internet, are not necessarily yours to take. So please stick to the law.

Discussion
The emulator uses a surprisingly large amount of the Raspberry Pi’s meager
resources, so you might find that you need to use a Raspberry Pi 4, 3, or 2.
In an internet search, you can find many people who have taken this basic
setup and added a retro USB controller, like the widely available and quite
low-cost controllers, and built the Pi and a monitor into a big arcade-style
housing. You can also buy a kit called the Picade from Pimoroni to make a
lovely arcade machine (Figure 4-8).

Figure 4-8. The Pimoroni Picade kit

See Also
Full RetroPie documentation is available on the RetroPie site.

https://retropie.org.uk/

4.5 Turning Your Raspberry Pi into a Radio
Transmitter

Problem
You want to convert your Raspberry Pi into a low-powered FM transmitter
that will send a radio signal to a normal FM radio receiver (Figure 4-9).

Solution
Back in the early days of the Raspberry Pi, some clever folks at Imperial
College, London, created some C code that allows you to do just this. The
download even plays the Star Wars theme as a sample. This project will still
work if you have an original Raspberry Pi 1.
The project lives on for newer Raspberry Pis as an altogether more
advanced project called rpitx.
All you need is a short length of wire attached to general-purpose
input/output (GPIO) pin 4. A 10 cm female-to-male header lead will work
just fine for this. In fact, it should work with a radio sitting right next to
your Pi without any kind of antenna—such is the strength of the
transmission.

https://oreil.ly/s18aK

Figure 4-9. Raspberry Pi as an FM transmitter

The first step is to install the rpitx software using the following commands.
Note that this installation will change some things about how your
Raspberry Pi is configured, including the frequency at which the GPU
(graphics process) works. So if this is your main Raspberry Pi, make sure
you first back up anything precious. Here’s the code you need:

$ git clone https://github.com/F5OEO/rpitx
$ cd rpitx
$./install.sh

You will now need to do something else for a good 15 minutes or so while
the software installs. You might see what look like error messages and
warnings, but these are normal. At the end of the installation, the installer
script will ask:

In order to run properly, rpitx need to modify /boot/config.txt.
Are you
 sure (y/n)

Press Y, and the script will then confirm the changes it has made with the
following message:

Set GPU to 250Mhz in order to be stable

If you need to reverse this change, edit /boot/config.txt by removing the last
line that says gpu_freq=250, then reboot.

Next, find yourself an FM radio receiver and tune it to 103.0 MHz. If this
frequency is already occupied by some other transmission, pick another
frequency and make note of it.
Now run the following command (changing the frequency parameter from
103.0 if you had to change frequency):

sudo ./pifmrds -freq "103.0" -audio src/pifmrds/stereo_44100.wav

If all is well, you should hear the voice of the developer talking about left
and right channels.

Discussion
You need to know that this project may not be legal in your country. The
power output is higher than that of FM transmitters used with MP3 players.
Were you to put a Raspberry Pi in your vehicle, this would be a great way
to output sound through the vehicle’s audio system.

See Also
To learn more about the rpitx project, see https://oreil.ly/TrlO1.

https://oreil.ly/TrlO1

4.6 Editing Bitmap Images

Problem
You want to manipulate a photograph or other image.

Solution
Install and run the GNU Image Manipulation Program (GIMP; see
Figure 4-10).

Figure 4-10. GIMP on the Raspberry Pi

GIMP is available to install from the Add/Remove Software tool
(see Recipe 4.2). When you search for GIMP, a lot of results will come back
for various GIMP utilities, so look for the package called “GNU Image
Manipulation Program.”

If you prefer to install GIMP from the command line, open a Terminal
session and type the following command:

$ sudo apt install gimp

Once GIMP is installed, you’ll find an entry for GNU Image Manipulation
Program in your Raspberry Menu under the Graphics heading.

Discussion
Despite being hungry for memory and processor power, GIMP is usable
even on a Raspberry Pi 2 B, but there will be much less waiting around if
you use a Raspberry Pi 4 or 400.

See Also
Find out more from the GIMP website.
GIMP has a lot of features and is a very sophisticated image-editing
program, so it does take a little learning. You’ll find an online manual for
the software at the GIMP website.
For more information on installing with apt, see Recipe 3.17.

For editing vector images, see Recipe 4.7.

4.7 Editing Vector Images

Problem
You want to create or edit high-quality vector drawings such as Scalable
Vector Graphics (SVG).

Solution

http://www.gimp.org/

Inkscape is one of the packages available from the Add/Remove Software
tool (see Recipe 4.2). Open the tool up and search for “Inkscape.”
If you prefer to install Inkscape from the command line, you can do so with
the following commands:

$ sudo apt update
$ sudo apt install inkscape

Once Inkscape is installed, its icon will appear in the Graphics section of
your Raspberry Menu.

Discussion
Inkscape (Figure 4-11) is the most-used open source vector image editor.
Vector drawing packages differ from bitmap image editors like GIMP
(Recipe 4.6) in that the image is made up of shapes, lines, text, etc. that are
stored as such, rather than being converted into pixels. This means that you
can come back and edit those things (perhaps the position of a line), which
is not possible in a bitmap editor.

Figure 4-11. Inkscape on a Raspberry Pi

Inkscape is a very powerful piece of software with many features that can
take some time to master, so don’t be disheartened if it won’t do what you
want at first. You will probably need to run through a few tutorials.
Inkscape is another program best run with the extra power of a Raspberry Pi
4 or 400.

See Also
For documentation on Inkscape, visit Inkscape.org.
For editing bitmap images such as photographs, see Recipe 4.6.

4.8 Using Bookshelf

https://inkscape.org/

Problem
You want to read Raspberry Pi books and magazines for free.

Solution
Use the pre-installed Bookshelf application. You will find this application in
the Help section of the Raspberry Menu. Open it and you will see (Figure 4-
12) past issues of The MagPi, Wireframe, and HackSpace magazines, as
well as books from the Raspberry Pi Press.

Figure 4-12. The Bookshelf application

Discussion
This is a really great resource. You will find lots of articles in The MagPi
magazine to get started with various aspects of the Raspberry Pi. It is also a
great source of inspiration for projects.

See Also

Lots of interesting Raspberry Pi resources are available at the Raspberry Pi
Foundation.
You can also download back issues of The MagPi magazine in PDF or
subscribe to the paper edition.

4.9 Playing Internet Radio

Problem
You want to be able to play internet radio on your Raspberry Pi.

Solution
The VLC media player should be pre-installed with Raspberry Pi OS. You
will find it under Sound & Video in the Raspberry Menu. If it’s not there,
you can install it using the Preferred Software tool (Recipe 4.2).
If you prefer to install the VLC media player from the command line, you
can do so by running the following command:

sudo apt install vlc

Run the program and then, on the Media menu, select the Open Network
Stream option. This opens a dialog box (see Figure 4-13) in which you can
enter the URL of the internet radio station that you want to play. You will
need to plug headphones or amplified speakers into the audio socket on the
Raspberry Pi.

https://oreil.ly/hRC8U
https://oreil.ly/HJMHT

Figure 4-13. VLC on a Raspberry Pi

Discussion
You also can run VLC from the command line as follows:

$ vlc http://www.a-1radio.com/listen.pls -I dummy

VLC will probably produce a series of error messages but then play the
audio just fine. The -I dummy option prevents a VLC window opening.

See Also
This recipe borrows heavily from this tutorial, in which Jan Holst Jensen
takes things a step further and adds radio-style controls to the project.

https://oreil.ly/5RYCq

For UK readers, you can find a list of the BBC radio stream URLs online.

4.10 Using Visual Studio Code

Problem
You want to use a light-weight programming editor.

Solution
Install Microsoft’s Visual Studio Code, or VS Code, as we shall refer to it
from now on.
You will find VS Code in the Programming section of the Recommended
Software tool (Recipe 4.2).
If you prefer to install it from the command line, you can use the following
command:

$ sudo apt install code

Discussion
VS Code is much loved by programmers. It sits in a happy place, halfway
between a simple text editor and a fully featured integrated development
environment (IDE). It’s very easy to use and offers helpful suggestions as
you write your code, without you having to learn the ins and outs of a more
complex IDE. It offers support for many programming languages and does
nice things like color-code your programs to make them easier to read.
If you are a seasoned programmer, you may prefer to edit your Raspberry Pi
Python code using Visual Studio Code rather than a beginner’s Python IDE
like Thonny or Mu (Recipes 5.3 and 5.4). This is particularly true if your
project consists of multiple files. Figure 4-14 shows the file explorer area
on the left, where you can see all the files in your project. Clicking on one
makes it available in the editor area, and open files each have their own tab.

https://oreil.ly/E_UPI

Figure 4-14. VS Code on a Raspberry Pi

As you can see, the editor highlights the language syntax, color-coding it to
make it easier to read and spot mistakes.
Visual Studio Code is a useful tool to have around, whether programming in
Python (see Chapter 5) or some other language.

See Also
The simple text editor nano is an easy way to edit code (see Recipe 3.7).
Thonny is a Python editor aimed at beginners (see Recipe 5.3).

4.11 Controlling a Laser Cutter

Problem

You want to control your low-cost K40 laser cutter from your Raspberry Pi.

Solution
If you have one of the popular and low-cost Chinese laser cutters of the
K40 variety (Figure 4-15), you can use the K40 Whisperer software to
control it. Thus, instead of having to use a relatively expensive Windows
computer to control your laser cutter, you can use a much lower cost
Raspberry Pi.

Figure 4-15. A K40 laser cutter

This software is written in Python, but also relies on the Inkscape vector
drawing package. So if you have not already done so, install Inkscape by
following Recipe 4.7.

Next, download the source code for the K40 Whisperer software. Select the
latest download from the K40 Whisperer Source column. Double-click the
downloaded ZIP file and extract it into your home directory (/home/pi).
Inside the unzipped directory, you will find a file called
README_Linux.txt. The instructions here are based on that file. The
README is for Linux in general rather than being Raspberry Pi–specific.
First, run the following two commands to create a user group for the
software. The first adds a new user group specifically for the laser cutter,
and the second adds the user pi to that group. If you created a different
username when setting up your Raspberry Pi, use that in place of pi:

$ sudo groupadd lasercutter
$ sudo usermod -a -G lasercutter pi

Make sure that your laser cutter is connected to your Raspberry Pi with its
USB lead and the laser cutter is switched on. You now need to run the
following commands to find out the USB vendor and product ID for the
laser cutter. These will probably be 1a86 and 5512, respectively, but it’s
worth checking in case the laser cutter’s manufacturer changed them. To do
this, run the lsusb command:

$ lsusb
Bus 001 Device 004: ID 1a86:5512 QinHeng Electronics CH341 in
EPP/MEM/I2C mode,
 EPP/I2C adapter
Bus 001 Device 005: ID 0424:7800 Microchip Technology, Inc.
(formerly SMSC)
Bus 001 Device 003: ID 0424:2514 Microchip Technology, Inc.
(formerly SMSC)
 USB 2.0 Hub
Bus 001 Device 002: ID 0424:2514 Microchip Technology, Inc.
(formerly SMSC)
 USB 2.0 Hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

This will list all the USB devices connected to your Raspberry Pi; look for
the entry that corresponds to your laser cutter. In this case, it’s the only

https://oreil.ly/nVQlT

Chinese name there (QinHeng). But you can confirm this if you need to by
unplugging the laser cutter and running the lsusb command again and
seeing which entry disappears.
On the line for this entry you can see the text 1a86:5512. The part
before the : is the vendor ID and 5512 is the product ID. You need to know
these because you are going to use them in a configuration file.
Create and edit a new file in nano using the command:

$ sudo nano /etc/udev/rules.d/97-ctc-lasercutter.rules

You can find information on editing files in Recipe 3.7. Paste the following
text into the file. If your vendor and product IDs are different from mine,
change the appropriate parts of the text to match your IDs:

SUBSYSTEM=="usb", ATTRS{idVendor}=="[1a86]", ATTRS{idProduct}=="
[5512]",
 ENV{DEVTYPE}=="usb_device", MODE="0664", GROUP="lasercutter"

Reboot your Raspberry Pi and then continue the installation by running the
following command to install some more modules that K40 Whisperer
needs:

$ sudo apt install libxml2-dev libxslt-dev
$ sudo apt install libusb-1.0-0
$ sudo apt install libusb-1.0-0-dev

Make sure that you are in the directory where you downloaded the K40
Whisperer and run the following command:

$ pip3 install -r requirements.txt

You are now ready to run the program using the following command. This
will open a window. Click the File menu and then Options to configure the

software (Figure 4-16):

$ python3 k40_whisperer.py

Figure 4-16. Configuring K40 Whisperer

Consult the manual that came with your laser cutter to find the version of
the control board used in it. If you can’t find this, you might need to try a
few different options for the Board Name setting. You do not need to
change any of the other settings.
With the Settings window closed, you can load an SVG file to cut
(Figure 4-17).

Figure 4-17. Ready to cut

Discussion
Laser cutters often come with their own proprietary software to control the
cutter that is generally run on a Microsoft Windows computer. It may even
have a hardware USB dongle designed to tie that piece of software to your
computer.
The K40 Whisperer software cuts and engraves directly from SVG
drawings. You just draw outlines in different colors with a line width of
0.1mm. Red lines mean cut, blue lines mean vector engrave (lightly burn an
outline), and black lines mean raster engrave (scan back and forth to burn
out an area of the surface).

See Also
For full information on K40 Whisperer, see https://oreil.ly/5RJth.
To create the SVG drawings for your laser cutting and etching, you can use
InkScape (Recipe 4.7).
A Raspberry Pi also makes a great controller for a 3D printer using
OctoPrint.

https://oreil.ly/5RJth
https://octoprint.org/

Chapter 5. Python Basics

5.0 Introduction
Although many languages can be used to program the Raspberry Pi, Python
is the most popular. In fact, the “Pi” in Raspberry Pi is inspired by the word
“python.”
In this chapter, you’ll find a host of recipes to help you start programming
with Raspberry Pi.

5.1 Deciding Between Python 2 and Python 3

Problem
You need to use Python but are unsure which version to use.

Solution
Use Python 3 until you face a problem that is best solved by reverting to
version 2.
To install Python 2 on Raspberry Pi OS, run the following commands:

$ sudo apt update
$ sudo apt install python2

You can then run Python 2 using the command python2.

Discussion
Although Python’s most recent version, Python 3, has been around for
years, you’ll find that a lot of people still use Python 2. Python 3 (the
default for Raspberry Pi OS) is run by using either of the commands

python or python3. The examples in this book are written for Python 3
unless otherwise stated. Most will run on both Python 2 and Python 3
without modification.
This reluctance on the part of the Python community to ditch the older
version is largely because Python 3 introduced some changes that broke
compatibility with version 2. As a result, some of the huge body of third-
party libraries developed for Python 2 won’t work under Python 3.
My strategy is to write in Python 3 whenever possible, reverting Python 2
only when I need to because of compatibility problems.

See Also
For a good summary of the Python 2 versus Python 3 debate, see the Python
wiki.

5.2 Choosing a Python Editor

Problem
Many options are available when it comes to Python editors, and you want
to know which one you should start with.

Solution
Most people will start with either Thonny (Recipe 5.3) or Mu (Recipe 5.4).
Both are good editors and both are easy to use.
Thonny is pre-installed with Raspberry Pi OS, whereas Mu has to be
installed. You will find lots of resources for both editors, and Thonny is
recommended over Mu in most material from the Raspberry Pi Foundation.

Discussion
It doesn’t matter too much which editor you start with. You might like to try
out both Thonny and Mu and see which you like best.

https://oreil.ly/INjql

As you get more advanced in your programming experience, you should try
VS Code (Recipe 4.10) as a more professional tool.

See Also
VS Code is described in Recipe 4.10 and Thonny in Recipe 5.3.

5.3 Editing Python Programs with Thonny

Problem
You want to edit your Python programs using Thonny.

Solution
Thonny should be pre-installed with Raspberry Pi OS. But if it’s not in the
Programming section of your Raspberry Menu, you can install it using the
Recommended Software tool (Recipe 4.2).
Start by opening Thonny from the Programming section of your Raspberry
Menu and enter the following lines of text, as also shown in Figure 5-1:

for i in range(1, 10):
 print(i)

When you start the second line of the program, the print statement should
indent automatically.

Figure 5-1. The Thonny editor

You can run the program to see what it does by clicking the Run button.
Before it runs the program, Thonny will prompt you to save the file. Give it
a name such as count.py. The program will then run and you’ll see the
output at the bottom of the Thonny window (Figure 5-2).

Figure 5-2. Running a program in Thonny

Although you can call your Python programs anything you like, the
convention is that you give them the file extension .py.

Discussion
We haven’t started on Python programming yet, but from this example, you
can see how a program is a matter of giving instructions to the computer in
the Python programming language. In this case, the instructions are to print
out a series of numbers.

See Also
A popular alternative to Thonny is Mu (Recipe 5.4).
Visit the official Thonny web page for more information.
As well as using Mu to edit and run Python files, you can also edit Python
files in nano (Recipe 3.7) and then run them from a Terminal session
(Recipe 5.6).

5.4 Editing Python Programs with Mu

Problem
You want to edit your Python programs using Mu.

Solution
Mu is not pre-installed in the latest versions of Raspberry Pi OS. To install
it, use the Recommended Software tool (Recipe 4.2). Once it’s installed,
you will find it in the Programming section of the Raspberry Menu
(Figure 5-3).

https://thonny.org/

Figure 5-3. Opening Mu from the Raspberry Menu

When you first start Mu, you are prompted to select a mode (Figure 5-4).

Figure 5-4. Selecting a mode for Mu

Select the Python 3 mode and click OK. This opens the Mu editor, so it’s
ready for you to start writing some Python.
Let’s try it out. Carefully type the following test into the editor area under
the comment “Write your code here :-)”:

for i in range(1, 10):
 print(i)

This short program will count to 9. Don’t worry how it works for now; all
will be explained in Recipe 5.23. Note that when you get to the end of the
first line and press Enter, the second line with the print statement should
indent automatically (Figure 5-5).

Figure 5-5. Editing code in Mu

Before we can run the program we need to save it to a file, so at the top of
the Mu window, click the Save button and then name the file count.py
(Figure 5-6).

Figure 5-6. Saving a file in Mu

Now that the file is saved, run the program by clicking the Run button at the
top of the Mu window. This causes the Mu editor screen to split, with the
bottom half showing the result of running the program (Figure 5-7).

Figure 5-7. Running the program count.py

If you have already followed Recipe 3.22 and downloaded the files
accompanying this book, you can open these directly in Mu using the Open
button and then navigating to the folder
~/raspberrypi_cookbook_ed4/python, as shown in Figure 5-8. Note that Mu
is Python 3, and a few Python programs for this book work only with
Python 2, so check the text of the recipe that the code belongs to if you have
problems running it from Mu.

Figure 5-8. Accessing this book’s Python code from Mu

Discussion
Python is unusual for a programming language in that indentation is a
fundamental part of the language. Whereas many C-based languages use {
and } to delimit a block of code, Python uses the indentation level. So in the
preceding example, Python knows that print is to be invoked repeatedly
as part of the for loop because it is indented four spaces from the left.

When you’re starting out in Python, it’s not uncommon to see an error such
as “IndentationError: unexpected indent,” which means that something is

not indented correctly somewhere. If everything appears to line up, double-
check that none of the indents contain tab characters because Python treats
tabs differently.
You can use either spaces or tabs but you can’t mix them in the same block,
and it is very bad practice to mix them in the same program (even if Python
allows you to do so).
In selecting Python 3 for our editing mode (Figure 5-4), we ignored the
other mode options. The Adafruit CircuitPython mode allows you to use
your Raspberry Pi to program Adafruit’s range of CircuitPython boards, and
the BBC micro:bit mode allows you to write MicroPython programs for a
BBC micro:bit board. Both of these activities are about using other boards
that are not covered in this book; however, it’s good to know that options
are available for using the Raspberry Pi with these microcontroller boards.

See Also
The other popular Python editor for beginners is Thonny (Recipe 5.3).
As well as using Mu to edit and run Python files, you can also edit files in
nano (Recipe 3.7) and then run them from a Terminal session (Recipe 5.6).

5.5 Using the Python Console

Problem
You want to enter Python commands without writing an entire program. It
can be useful to do this to experiment with some features of Python.

Solution
Use the Python console, either within Thonny or in a Terminal session. The
Python console provides a command line a little like that of Raspberry Pi
OS (Recipe 3.3), but instead of entering operating system commands, you
can enter Python commands. If you are using Mu (Recipe 5.4), you can

access the Python console by clicking the REPL (Read Eval Print Loop)
button at the top of the Mu window (Figure 5-9).
Ignoring everything except the bottom of Figure 5-9, you can see a
command prompt where you can type Python commands. In this case, I
have typed the following after the In [1]: prompt:

2 + 2

and reassuringly received the answer:

4

Figure 5-9. Entering commands in the Mu REPL

Discussion
An alternative to using Mu to run individual Python commands is to start a
Python 3 console in a Terminal window by typing the command python3.

The >>> prompt indicates that you can type Python commands. If you need
to type multiline commands, then the console will automatically provide a
continuation line indicated by three dots. You still need to indent such lines
by four spaces, as shown in the following session:

>>> from time import sleep
>>> while True:
... print("hello")
... sleep(1)
...
hello
hello

You need to press Enter twice after your last command for the console to
recognize the end of the indented block and run the code.
The Python console also provides a command history so that you can move
back and forth through your previous commands using the up and down
arrow keys.
When you are finished with the Python console and want to return to the
command line, type exit().

HELP IS AT HAND
The console can be a useful place to test out lines of code while you are developing a program,
without having to run the whole program. You can get help on many Python features by typing
help(thing) into the console, where thing is the thing you want help on.

For example, try typing help(print) into the Python console.

See Also
If you have more than a couple of lines that you want to type in, chances are
you would be better off using Thonny or Mu (Recipe 5.3 or 5.4) to edit and

run a file.

5.6 Running Python Programs from the
Terminal

Problem
Running programs from within Thonny (Recipe 5.3) or Mu (Recipe 5.4) is
fine, but sometimes you want to run a Python program from a Terminal
window.

Solution
Use the python or python3 command in a Terminal, followed by the
filename containing the program you want to run. (Raspberry Pi OS comes
only with Python 3, so both the python or python3 commands will run
a Python 3 program. Which command you use is up to you.)

Discussion
To run a Python 3 program from the command line, use a command like
this:

$ python3 myprogram.py

If you want to run the program using Python 2, change the command
python3 to python2 after installing Python 2 as described in Recipe
5.1. In both cases the Python program that you want to run should be in a
file with the extension .py.
You can run most Python programs as a normal user; however, some you’ll
need to run as superuser. If this is the case for your program, prefix the
command with sudo: but be aware that if someone malicious wrote that

program, giving it such privileges could allow it to get up to all sorts of
mischief:

$ sudo python3 myprogram.py

In the earlier examples, you need to include python3 in the command to
run the program, but you can optionally add a line to the start of a Python
program so that Linux knows it is a Python program. This special line is
called a shebang (a contraction of the names of two symbols, “hash” and
exclamation mark, or “bang”). The following single-line example program
illustrates this:

#!/usr/bin/python3
print("I'm a program, I can run all by myself")

Before you can run this directly from the command line, you must give the
file write permissions by using the following command (see Recipe 3.14);
this example assumes the file is called test.py:

$ chmod +x test.py

The parameter +x means to add execute permissions to the file.

Now you can run the Python program test.py using the single command:

$./test.py
I'm a program, I can run all by myself
$

The ./ at the start of the line is needed for the command line to find the file.
If you run a Python program with the -i option, the program will run and a
console will open. This can be useful for debugging because you will have
access to the program’s variables within the console, as if you had just
typed the program directly into the console.

See Also
Recipe 3.25 shows you how to run a Python program as a timed event.
To automatically run a program at startup, see Recipe 3.23.

5.7 Assigning Names to Values (Variables)

Problem
You want to give a value a name.

Solution
You assign a value to a name using =.

Discussion
In Python, you don’t have to declare the type of a variable; you can just
assign it a value using the assignment operator (=), as shown in the
following examples:

a = 123
b = 12.34
c = "Hello"
d = 'Hello'
e = True

You can define character-string constants using either single or double
quotes. The logical constants in Python are True and False, and they are
case sensitive.
By convention, variable names begin with a lowercase letter, and if the
variable name consists of more than one word, the words are joined
together with an underscore character. A variable name cannot start with a
digit, but may include digits after the first character.

It is always a good idea to give your variables descriptive names so that
when you come back to your program after a break, you can work out how
it works.
Some examples of valid variable names are x, total, and
number_of_chars.

See Also
You also can assign a variable a value that is a list (Recipe 6.1) or a
dictionary (Recipe 6.13).
For more information on arithmetic with variables, see Recipe 5.10.

5.8 Displaying Output

Problem
You want to see the value of a variable.

Solution
Use the print command. You can try the following example in the Python
console (Recipe 5.5):

>>> x = 10
>>> print(x)
10
>>>

Note that the print command starts a new line to print on.

Discussion
In Python 2, you could use the print command without parentheses
around the value. However, this is not true in Python 3, so for compatibility

with both versions of Python, always use parentheses around the value you
are printing.

See Also
To read user input, see Recipe 5.9.
To better format what is printed, see Recipes 7.1 and 7.2.

5.9 Reading User Input

Problem
You want to prompt the user to enter a value.

Solution
Use the input (Python 3) command. You can try the following example in
the Python 3 console (Recipe 5.5):

>>> x = input("Enter Value:")
Enter Value:23
>>> print(x)
23
>>>

Discussion
In Python 3, input behaves quite differently than it did in Python 2. In
Python 3, input returns a string, even if what was typed was a number.
This was not the case in Python 2, where if the text looked like a number, it
was converted to a number.

See Also
Find more information on input in Python 2 at https://oreil.ly/EhqMt.

https://oreil.ly/EhqMt

5.10 Using Arithmetic Operators

Problem
You want to do arithmetic in Python.

Solution
Use the +, -, *, and / operators.

Discussion
The most common operators for arithmetic are +, -, *, and /, which are,
respectively, add, subtract, multiply, and divide.
You can also group together parts of the expression with parentheses, as
shown in the following example, which, given a temperature in degrees
Celsius, converts it to degrees Fahrenheit:

>>> tempC = input("Enter temp in C: ")
Enter temp in C: 20
>>> tempF = (int(tempC) * 9) / 5 + 32
>>> print(tempF)
68.0
>>>

The int function converts the string of characters from input into an
integer number.
Other arithmetic operators include % (modulo remainder) and ** (raise to
the power of). For example, to raise 2 to the power of 8, you would write
the following:

>>> 2 ** 8
256

The order in which the arithmetic operators are evaluated can make a
difference to the calculation. For example, which of these is the result of 2 +
3 * 2:

(2 + 3) * 2 = 10
2 + (3 * 2) = 8

The answer for Python 3 is 8, because * is always done before +.

A mnemonic for remembering the order of precedence for operations is
BODMAS:

Brackets
Orders (raising to power **)
Division
Multiplication
Adding
Subtracting

Something that you will often want to do when programming is to increase
the value in a variable by a certain amount. If you have a variable called x
that contains a number, you can add 1 to it using:

x = x + 1

Because this is such a common thing to want to do, there are shortcuts for
operators like +, -, *, and / that both apply the operator and assign the new
value. So to add 1 to x, you can also write:

x += 1

See Also
See Recipe 5.9 on using the input command, and Recipe 5.14 on
converting the string value from input to a number.

The Math library has many useful math functions that you can use.

https://oreil.ly/afV6D

5.11 Creating Strings

Problem
You want to create a string variable—that is, a variable that contains text.

Solution
Use the assignment operator (=) and a string constant to create a new string.
You can use either double or single quotation marks around the string, but
they must match. For example:

>>> s = "abc def"
>>> print(s)
abc def
>>>

Discussion
If double or single quotes are within a string, then choose the other type of
quotes as the beginning and ending markers of the string. For example:

>>> s = "Isn't it warm?"
>>> print(s)
Isn't it warm?
>>>

Sometimes you’ll need to include special characters such as tab or newline
inside your string. This requires the use of what are called escape
characters. To include a tab, use \t, and for a newline, use \n. For
example:

>>> s = "name\tage\nMatt\t14"
>>> print(s)
name age
Matt 14
>>>

See Also
For a full list of escape characters, see the Python Reference Manual.

5.12 Concatenating (Joining) Strings

Problem
You want to join a number of strings together.

Solution
Use the + (concatenate) operator.

For example:

>>> s1 = "abc"
>>> s2 = "def"
>>> s = s1 + s2
>>> print(s)
abcdef
>>>

Discussion
In many languages, you can have a chain of values to concatenate, some of
which are strings and some of which are other types, such as numbers, and
the numbers will automatically be converted into strings during the
concatenation. This is not the case in Python, and if you try the following
command, you will get an error:

>>> "abc" + 23
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str

https://oreil.ly/mrYmw

In Python, you must convert each component that you want to concatenate
into a string before concatenating, as shown in this example:

>>> "abc" + str(23)
'abc23'
>>>

See Also
See Recipe 5.13 for more information about converting numbers into
strings using the str function.

5.13 Converting Numbers into Strings

Problem
You want to convert a number into a string.

Solution
Use the str Python function.

For example:

>>> str(123)
'123'
>>>

Discussion
A common reason for wanting to convert a number into a string is so you
can then concatenate it with another string (Recipe 5.12).

See Also
For the reverse operation of turning a string into a number, see Recipe 5.14.

5.14 Converting Strings into Numbers

Problem
You want to convert a string into a number.

Solution
Use the int or float Python function.

For example, to convert the string -123 into a number, you could use the
following:

>>> int("-123")
-123
>>>

This will work on both positive and negative whole numbers.
To convert a floating-point number, use float instead of int:

>>> float("123.45")
123.45
>>>

Discussion
Both int and float will handle leading zeros correctly and are tolerant
of any spaces or other whitespace characters around the number.
You can also use int to convert a string representing a number in a number
base other than the default of 10 by supplying the number base as the
second argument. The following example converts the string representation
of binary 1001 into a number:

>>> int("1001", 2)
9
>>>

This second example converts the hexadecimal number AFF0 into an
integer:

>>> int("AFF0", 16)
45040
>>>

See Also
For the reverse operation of turning a number into a string, see Recipe 5.13.

5.15 Finding the Length of a String

Problem
You need to know how many characters there are in a string.

Solution
Use the len Python function.

Discussion
For example, to find the length of the string abcdef, you would use:

>>> len("abcdef")
6
>>>

See Also
The len command also works on lists (Recipe 6.3).

5.16 Finding the Position of One String
Within Another

Problem
You need to find the position of one string within another string.

Solution
Use the find Python function.

For example, to find the starting position of the string def within the string
abcdefghi, you would use:

>>> s = "abcdefghi"
>>> s.find("def")
3
>>>

The character positions start at 0 (not 1), so a position of 3 means the fourth
character in the string.

Discussion
If the string you’re looking for doesn’t exist in the string being searched,
find returns the value –1.

See Also
The replace function is used to find and then replace all occurrences of a
string (Recipe 5.18).

5.17 Extracting Part of a String

Problem
You want to cut out a section of a string between certain character positions.

Solution
Use the Python [:] slice notation.

For example, to cut out a section from the second character to the fifth
character of the string abcdefghi, you would use the following:

>>> s = "abcdefghi"
>>> s[1:5]
'bcde'
>>>

The character positions start at 0 (not 1), so a position of 1 means the
second character in the string, and 5 means the sixth character; however, the
character range is exclusive (characters end at index position 4 not 5) at the
high end. Thus, in this example, the letter f is not included, even though it is
character 5.

Discussion
The [:] notation is quite powerful. You can omit either argument, in which
case the start or end of the string is assumed as appropriate. For example:

>>> s = "abcdefghi"
>>> s[:5]
'abcde'
>>>

and:

>>> s = "abcdefghi"
>>> s[3:]
'defghi'
>>>

You can also use negative indices to count back from the end of the string.
This can be useful in situations such as when you want to find the three-
letter extension of a file, as in the following example:

>>> "myfile.txt"[-3:]
'txt'

See Also
Recipe 5.12 describes joining strings together rather than splitting them.
Recipe 6.11 uses the same syntax but with lists rather than strings.
Another and more powerful way to manipulate strings is described in
Recipe 7.23.

5.18 Replacing One String of Characters with
Another Within a String

Problem
You want to replace all occurrences of a string within another string.

Solution
Use the replace function.

For example, to replace all occurrences of X with times, you would use
the following:

>>> s = "It was the best of X. It was the worst of X"
>>> s.replace("X", "times")

'It was the best of times. It was the worst of times'
>>>

The function replace takes two parameters. The first is the string to find,
and the second is what it should be replaced with.

Discussion
The string you’re searching for must match exactly; that is, the search is
case sensitive and will include spaces.

See Also
See Recipe 5.16 for searching for a string without performing a
replacement.
Another and more powerful way to manipulate strings is described in
Recipe 7.23.

5.19 Converting a String to Uppercase or
Lowercase

Problem
You want to convert all the characters in a string to uppercase or lowercase
letters.

Solution
Use the upper or lower function as appropriate.

For example, to convert aBcDe to uppercase, you would use the following:

>>> "aBcDe".upper()
'ABCDE'
>>>

To convert it to lowercase, use this:

>>> "aBcDe".lower()
'abcde'
>>>

Note that even though upper and lower do not take any parameters, they
still need a () on the end.

Discussion
Like most functions that manipulate a string in some way, upper and
lower do not actually modify the string but rather return a modified copy
of the string.
For example, the following code returns a copy of the string s, but note
how the original string is unchanged:

>>> s = "aBcDe"
>>> s.upper()
'ABCDE'
>>> s
'aBcDe'
>>>

To change the value of s to be all uppercase, do the following:

>>> s = "aBcDe"
>>> s = s.upper()
>>> s
'ABCDE'
>>>

See Also
See Recipe 5.18 for replacing text within strings.

5.20 Running Commands Conditionally (if)

Problem
You want to run some Python commands only when some condition is true.

Solution
Use the Python if command.

The following example will print the message x is big only if x has a
value greater than 100:

>>> x = 101
>>> if x > 100:
... print("x is big")
...
x is big

Discussion
After the if keyword, there is a condition. This condition often, but not
always, compares two values and gives an answer that is either True or
False. If it is True, the subsequent indented lines will all be executed.

It is quite common to want to do one thing if a condition is True and
something different if it is False. In this case, the else command is used
with if, as shown in this example:

x = 101
if x > 100:
 print("x is big")
else:
 print("x is small")

print("This will always print")

You can also chain together a long series of elif (else if) conditions. If
any one of the conditions succeeds, that block of code is executed, and none
of the other conditions that follow it are tried.
For example:

x = 90
if x > 100:
 print("x is big")
elif x < 10:
 print("x is small")
else:
 print("x is medium")

This example will print x is medium.

See Also
See Recipe 5.21 for more information on different types of comparisons
you can make.

5.21 Comparing Values

Problem
You want to compare the values of two quantities.

Solution
Use one of the comparison operators: <, >, <=, >=, ==, or !=.

Discussion
You used the < (less than) and > (greater than) operators in Recipe 5.20.
Here’s the full set of comparison operators:

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Exactly equal to

!= Not equal to

Some people prefer to use the <> operator in place of !=. Both work the
same.
You can test these commands using the Python console (Recipe 5.5), as
shown in the following exchange:

>>> 1 != 2
True
>>> 1 != 1
False
>>> 10 >= 10
True
>>> 10 >= 11
False
>>> 10 == 10
True
>>>

A common mistake is to use = (set a value) instead of == (double equals) in
comparisons. This can be difficult to spot because if one half of the
comparison is a variable, it is perfectly legal syntax and will run, but it will
not produce the result you were expecting.
As well as comparing numbers, you can also compare strings by using these
comparison operators, as shown here:

>>> 'aa' < 'ab'
True
>>> 'aaa' < 'aa'
False

The strings are compared lexicographically—that is, in the order that you
would find them in a dictionary.
This is not quite correct because, for each letter, the uppercase version of
the letter is considered less than the lowercase equivalent. Each letter has a
value, called its ASCII code, and an uppercase letter has a lower numeric
value than the lowercase version of the same letter.
For example:

>>> 'B' > 'a'
False
>>> 'B' > 'A'
True

See Also
For more information using if command and logical operators, see
Recipes 5.20 and 5.22.
Another and more powerful way to manipulate strings is described in
Recipe 7.23.

5.22 Using Logical Operators

Problem
You need to specify a complex condition in an if statement.

Solution
Use one of the logical operators: and, or, or not.

Discussion
As an example, you might want to check whether a variable x has a value
between 10 and 20. For that, you would use the and operator:

https://oreil.ly/87YKO

>>> x = 17
>>> if x >= 10 and x <= 20:
... print('x is in the middle')
...
x is in the middle

You can combine as many and and or statements as you need, and you can
also use brackets to group them if the expressions become complicated.

See Also
For more information on the if command and comparing values, see
Recipes 5.20 and 5.21.

5.23 Repeating Instructions an Exact Number
of Times

Problem
You need to repeat some program code an exact number of times.

Solution
Use the Python for command and iterate over a range.

For example, to repeat a command 10 times, use the following:

>>> for i in range(1, 11):
... print(i)
...
1
2
3
4
5
6
7
8
9

10
>>>

Discussion
The second parameter in the range command is exclusive; that is, to count
up to 10, you must specify a value of 11.

See Also
If the condition for stopping the loop is more complicated than simply
repeating the command a certain number of times, see Recipe 5.24.
If you are trying to repeat commands for each element of a list or
dictionary, see Recipes 6.7 or 6.16, respectively.

5.24 Repeating Instructions Until Some
Condition Changes

Problem
You need to repeat some program code until something changes.

Solution
Use the Python while statement. The while statement repeats its nested
commands until its condition becomes false. The following example will
stay in the loop until the user enters X for exit:

>>> answer = ''
>>> while answer != 'X':
... answer = input('Enter command:')
...
Enter command:A
Enter command:B
Enter command:X
>>>

Discussion
Note that answer is given an initial value of an empty string, before
the while loop starts. If you did not do this, the while line would cause
an error, because at that point, answer would be undefined and not have a
value to compare.

See Also
If you just want to repeat some commands a certain number of times, see
Recipe 5.23.
If you are trying to repeat commands for each element of a list or
dictionary, see Recipes 6.7 or 6.16, respectively.

5.25 Breaking Out of a Loop

Problem
You are in a loop and need to exit the loop if some condition occurs.

Solution
Use the Python break statement to exit either a while or a for loop.

The following example behaves in exactly the same way as the example
code in Recipe 5.24:

>>> while True:
... answer = input('Enter command:')
... if answer == 'X':
... break
...
Enter command:A
Enter command:B
Enter command:X
>>>

The line while True: looks a bit odd at first. This just means repeat
forever, or until you jump out of the loop by some other means.

Discussion
This example uses the input command as it works in Python 3. To run the
example in Python 2, substitute the command raw_input for input.

This example behaves in exactly the same way as the example in Recipe
5.24. However, in this case, the condition for the while loop is just True,
so the loop will never end unless we use break to exit the loop when the
user enters X.

See Also
You can also leave a while loop by using its condition; see Recipe 5.24.

5.26 Defining a Function in Python

Problem
You want to avoid repeating the same code over and over in a program.

Solution
Create a function that groups together lines of code, allowing it to be called
from multiple places.
The following example illustrates how to create and then call a function in
Python:

def count_to_10():
 for i in range(1, 11):
 print(i)

This example uses the def command to define a function called
count_to_10, which will print out the numbers 1 to 10 whenever it is
called:

>>> count_to_10()
1
2
3
4
5
6
7
8
9
10
>>>

Discussion
The conventions for naming functions are the same as for variables in
Recipe 5.7; that is, they should start with a lowercase letter, and if the name
consists of more than one word, the words should be separated by
underscores.
The example function is a little inflexible because it can only count to 10. If
we wanted to make it more flexible—for example, so it could count up to
any number—we could include the maximum number as a parameter to the
function, as this example illustrates:

def count_to_n(n):
 for i in range(1, n + 1):
 print(i)

count_to_n(5)
>>> count_to_10()
1
2
3
4
5
>>>

The parameter n is included inside the parentheses and then used inside the
range command, but not before 1 is added to it.

Using a parameter for the number you want to count up to means that if you
usually count to 10 but sometimes count to a different number, you will
always have to specify the number. You can, however, specify a default
value for a parameter, and hence have the best of both worlds, as shown in
this example:

def count_to_n(n=10):
 for i in range(1, n + 1):
 print(i)

count_to_n()

This will now count to 10 unless a different number is specified when you
call the function.
If your function needs more than one parameter, perhaps to count between
two numbers, the parameters are separated by commas:

def count(from_num=1, to_num=10):
 for i in range(from_num, to_num + 1):
 print(i)

count()
1
2
3
4
5
6
7
8
9
10
>>>
count(5)
1
2
3
4
5

>>>
count(5, 10)
5
6
7
8
9
10
>>>

If you want some parameters to have default values and others not, the ones
with defaults have to come after the ones without. That is,
count(from_num, to_num=10) is allowed but
count(from_num=1, to_num) is not allowed.

All these examples are functions that do not return any value; they just do
something. If you need a function to return a value, you need to use the
return command.

The following function takes a string as an argument and adds the word
please to the end of the string:

def make_polite(sentence):
 return sentence + " please"

print(make_polite("Pass the cheese"))

When a function returns a value, you can assign the result to a variable, or,
as in this example, you can print out the result.

See Also
To return more than one value from a function, see Recipe 7.3.

Chapter 6. Python Lists and
Dictionaries

6.0 Introduction
In Chapter 5, we looked at the basics of the Python language. In this
chapter, we will look at two key Python data structures: lists and
dictionaries.

6.1 Creating a List

Problem
You want to use a variable to hold a series of values rather than just one
value.

Solution
Use a list. In Python, a list is a collection of values stored in a specific order
so that you can access them by position.
You create a list by using the [and] characters to contain its initial
contents:

>>> a = [34, 'Fred', 12, False, 72.3]
>>>

Unlike the more rigid arrays in languages like C, you don’t need to specify
the size of a list in Python when you declare it. You can also change the
number of elements in the list any time you like.

Discussion
As this example illustrates, the items in a list do not need to be the same
type, although they often are. In fact its quite common for the elements of a
list to themselves be lists.
To create an empty list that you can add items to later, you can use:

>>> a = []
>>>

6.2 Accessing Elements of a List

Problem
You want to find individual elements of a list or change them.

Solution
Use the [] notation to access elements of a list by their position in the list.
For example, to access the element at position 1 in a list:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a[1]
'Fred'

Discussion
The list positions (indices) start at 0 for the first element (not at 1).
As well as using the [] notation to read values out of a list, you can also
use it to change values at a certain position, as shown here:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a[1] = 777
>>> a
[34, 777, 12, False, 72.3]

If you try to change (or, for that matter, read) an element of a list using an
index that is too large, you will get an “index out of range” error:

>>> a[50] = 777
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list assignment index out of range
>>>

A handy quirk of Python lists is that you can also access elements starting
from the end (right) of the list using negative indices. The index position of
-1 is the last element of the list, and -2 the next to the last, and so on. An
example of this is:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a[-1]
72.3
>>> a[-2]
False
>>>

6.3 Finding the Length of a List

Problem
You need to know how many elements there are in a list.

Solution
Use the len Python function.

For example:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> len(a)
5

The function len has been in the Python language from version 1 and is
rather contrary to the more object-oriented, class-based versions 2 and 3 of
Python. For these, it would make more sense for you to be able to write
something like:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a.length() # This example won't work

But you can’t—that’s just how it is with Python.

Discussion
The len command also works on strings (Recipe 5.15).

6.4 Adding Elements to a List

Problem
You need to add an item to a list.

Solution
Use the append, insert, or extend Python functions.

To add a single item to the end of a list, use append, as shown here:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a.append("new")
>>> a
[34, 'Fred', 12, False, 72.3, 'new']

Discussion
Sometimes you don’t want to add the new elements to the end of a list, but
instead want to insert them at a certain position in the list. For this, use the

insert command. The first argument is the index where the item should
be inserted, and the second argument is the item to be inserted:

>>> a.insert(2, "new2")
>>> a
[34, 'Fred', 'new2', 12, False, 72.3]

Note how all the elements after the newly inserted element are shifted up
one position.
Both append and insert add only one element to a list. The extend
function adds all the elements of one list to the end of another:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> b = [74, 75]
>>> a.extend(b)
>>> a
[34, 'Fred', 12, False, 72.3, 74, 75]

An alternative to using append is to use += as the following example
illustrates:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> b = [74, 75]
>>> a += b
>>> a
[34, 'Fred', 12, False, 72.3, 74, 75]

6.5 Removing Elements from a List

Problem
You need to remove an item from a list.

Solution
Use the pop Python function.

The command pop with no parameters removes the last element of a list:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a.pop()
72.3
>>> a
[34, 'Fred', 12, False]

Discussion
Notice that pop returns the value removed from the list.

To remove an item in a position other than the last element, use pop with a
parameter indicating the position from which the item should be removed:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a.pop(0)
34

If you use an index position that is beyond the end of the list, you will get
an “Index out of range” error.
If you want to remove something from a list by its value rather than its
position in the list, you can use remove, as the following example
illustrates:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> a.remove(12)
a
[34, 'Fred', False, 72.3]
>>>

6.6 Creating a List by Parsing a String

Problem

You need to convert a string of words separated by some character into an
array of strings, with each string in the array being one of the words.

Solution
Use the split Python string function.

The command split with no parameters separates out the words of a
string into individual elements of an array:

>>> "abc def ghi".split()
['abc', 'def', 'ghi']

If you supply split with a parameter, it will split the string using the
parameter as a separator.
For example:

>>> "abc--de--ghi".split('--')
['abc', 'de', 'ghi']

Discussion
This command can be very useful when you are, for example, importing
data from a file. The split command can optionally take an argument that
is the string to use as a delimiter when you are splitting the string. So if you
were to use commas as a separator, you could split the string as follows:

>>> "abc,def,ghi".split(',')
['abc', 'def', 'ghi']

If you want to go the other way and convert your list of strings into a single
string, you can use the join command as shown:

>>> a = ['abc', 'def', 'ghi']

>>> "".join(a)
'abcdefghi'

See Also
Another and more powerful way to manipulate strings is described in
Recipe 7.23.

6.7 Iterating Over a List

Problem
You need to apply some lines of code to each item of a list in turn.

Solution
Use the for Python command:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> for x in a:
... print(x)
...
34
Fred
12
False
72.3
>>>

Discussion
The for keyword is immediately followed by a variable name (in this case,
x). This is called the loop variable; it will be set to each element of the list
specified after in.

The indented lines that follow will be executed one time for each element in
the list. Each time through the loop, x will be given the value of the element

in the list at that position. You can then use x to print out the value, as
shown in the example.

See Also
Comprehensions are another way to manipulate lists (see Recipe 6.12).

6.8 Enumerating a List

Problem
You need to run some lines of code for each item in a list in turn, but you
also need to know the index position of each item.

Solution
Use the for Python language along with the enumerate command:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> for (i, x) in enumerate(a):
... print(i, x)
...
(0, 34)
(1, 'Fred')
(2, 12)
(3, False)
(4, 72.3)
>>>

Discussion
It’s quite common to need to know the position of something in a list while
enumerating each of the values. An alternative method is to simply count
with an index variable and then access the value using the [] syntax:

>>> a = [34, 'Fred', 12, False, 72.3]
>>> for i in range(len(a)):

... print(i, a[i])

...
(0, 34)
(1, 'Fred')
(2, 12)
(3, False)
(4, 72.3)
>>>

See Also
Comprehensions are another way to manipulate lists (see Recipe 6.12).
See Recipe 6.7 to iterate over a list without needing to know each item’s
index position.

6.9 Testing if Something Is in a List

Problem
You want to know if a list contains a certain element.

Solution
Use the in keyword as the following example illustrates:

>>> x = [12, 66, 32, 6, 99]
>>> 66 in x
True
>>> 77 in x
False
>>>

Discussion
Although you could iterate over the list looking for the element, using the
in command will make your code simpler and easier to read.

The in command also works on strings.

See Also
For iterating over the elements of a list, see Recipe 6.7

6.10 Sorting a List

Problem
You need to sort the elements of a list.

Solution
Use the sort Python command:

>>> a = ["it", "was", "the", "best", "of", "times"]
>>> a.sort()
>>> a
['best', 'it', 'of', 'the', 'times', 'was']

The sort command uses the standard Python comparison operators. This
means that for strings, list elements will be sorted alphabetically in
ascending order.

Discussion
When you sort a list, you’re actually modifying it rather than returning a
sorted copy of the original list. This means that if you also need the original
list, you need to use the copy command in the standard library to make a
copy of the original list before sorting it:

>>> from copy import copy
>>> a = ["it", "was", "the", "best", "of", "times"]
>>> b = copy(a)
>>> b.sort()
>>> a
['it', 'was', 'the', 'best', 'of', 'times']
>>> b

['best', 'it', 'of', 'the', 'times', 'was']
>>>

The copy module is required to be able to copy objects. You can find out
more about modules in Recipe 7.11.

6.11 Cutting Up a List

Problem
You need to make a sublist of a list, using a range of the original list’s
elements.

Solution
Use the [:] Python construction. The following example returns a list
containing the elements of the original list from index position 1 to index
position 2 (the number after the : is exclusive—that is, elements up to but
not including element 2:

>>> l = ["a", "b", "c", "d"]
>>> l[1:3]
['b', 'c']

Note that the character positions start at 0 (not at 1), so a position of 1
means the second character in the string, and 3 means the fourth; however,
the character range is exclusive at the high end, so the letter d is not
included in this example.

Discussion
The [:] notation is quite powerful. You can omit either argument, in which
case the start or end of the list is assumed, as appropriate.
For example:

>>> l = ["a", "b", "c", "d"]
>>> l[:3]
['a', 'b', 'c']
>>> l[3:]
['d']
>>>

You can also use negative indices to count back from the end of the list. The
following example returns the last two elements in the list:

>>> l[-2:]
['c', 'd']

Incidentally, l[:-2] returns ['a', 'b'] in the preceding example.

See Also
See Recipe 5.17, in which the same syntax is used for strings.

6.12 Using Comprehensions

Problem
You want a neater way of building one list from another, while filtering or
transforming the original list.

Solution
Use a comprehension.
Comprehensions don’t do anything that you can’t do with a regular loop,
but they do simplify activities involving lists and, when well used, make
your code more readable.
A comprehension will take an existing list and create a new list from the
elements of the original list, either filtering the list so that only qualifying
elements are included in the new list, or creating a new list containing the

same number of elements of the original list but with each element
manipulated in some way.
As a reminder, without using a comprehension, the following code will take
a list and filter it into a new list that just contains the elements that begin
with the letter a:

new_list = []
people = ['agnes', 'andrew','jane','peter']
for person in people:
 if person[0] == 'a':
 new_list.append(person)
print(new_list)

When you run this program (ch_06_filter.py) you will see that new_list
just contains the names starting with a:

$ python3 ch_06_filter.py
['agnes', 'andrew']

We can shorten this example considerably by using a comprehension
(ch_06_ fil ter_comp.py):

people = ['agnes', 'andrew','jane','peter']
new_list = [person for person in people if person[0] == 'a']
print(new_list)

This will produce exactly the same output as ch_06_filter.py, using fewer
lines of code. The comprehension is contained in square brackets, and the
first word in the comprehension is person. This indicates that person
(yet to be specified) is what will be added to the list copy. We then have
for person in people, which is the normal way of iterating over a
list, with the list being called people and each element in the list being
called person. The final part of the comprehension is the condition if
person[0] == 'a'. This is the part that rejects all the elements of the
list that don’t start with a.

The condition of a comprehension is optional and you may just want to use
the comprehension to modify each element of the list. The example of
ch_06_change_comp.py capitalizes the names and returns a new list, with
the initial letter of each name in uppercase:

people = ['agnes', 'andrew','jane','peter']
new_list = [person.capitalize() for person in people]
print(new_list)

$ python3 ch_06_change_comp.py
['Agnes', 'Andrew', 'Jane', 'Peter']

Discussion
Comprehensions are a really powerful and useful technique for
manipulating lists. At first the syntax might look a little strange for being
enclosed in square brackets. But it is a great way of keeping your code
concise without making it any harder to understand how it works.

See Also
For iterating over a list without using a comprehension, see Recipe 6.7.

6.13 Creating a Dictionary

Problem
You need to create a lookup table in which you associate values with keys.

Solution
Use a Python dictionary.
Lists are great when you need to access a list of items in order, or when you
always know the index of the element that you want to use. Dictionaries are

an alternative to lists for storing collections of data, but they are organized
very differently, as shown in Figure 6-1.

Figure 6-1. A Python dictionary

A dictionary stores key/value pairs in such a way that you can use the key
to retrieve that value very efficiently and without having to search the entire
dictionary.
To create a dictionary, you use the {} notation:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234
666666'}

Discussion
In this example, the keys of the dictionary are strings, but they do not need
to be; they could be numbers or any data type, although strings are most
commonly used.
The values can also be of any data type, including other dictionaries or lists.
The following example creates one dictionary (a) and then uses it as a value
in a second dictionary (b):

>>> a = {'key1':'value1', 'key2':2}

>>> a
{'key2': 2, 'key1': 'value1'}
>>> b = {'b_key1':a}
>>> b
{'b_key1': {'key2': 2, 'key1': 'value1'}}

When you display the contents of a dictionary, notice that the order of the
items in the dictionary might not match the order in which they were
specified when the dictionary was created and initialized with some
content:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234
666666'}
>>> phone_numbers
{'Jane': '01234 666666', 'Simon': '01234 567899'}

Unlike lists, dictionaries have no concept of keeping items in order.
Because of the way they are represented internally, the order of a
dictionary’s contents will be—for all intents and purposes—random.
The reason the order appears to be random is that the underlying data
structure is a hash table. Hash tables use a hashing function to decide
where to store each value; the hashing function calculates a numeric
equivalent to any object.
You can find out more about hash tables on Wikipedia.

See Also
Dictionaries have much in common with the JSON data structuring
language described in Recipe 7.20.

6.14 Accessing a Dictionary

Problem
You need to find and change entries in a dictionary.

https://oreil.ly/gU0OI

Solution
Use the Python [] notation. Specify the key of the entry to which you need
access within the brackets, as follows:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234
666666'}
>>> phone_numbers['Simon']
'01234 567899'
>>> phone_numbers['Jane']
'01234 666666'

Discussion
The lookup process is in one direction only, from key to value.
If you use a key that is not present in the dictionary, you will get a
“KeyError.” For example:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234
666666'}
>>> phone_numbers['Phil']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'Phil'
>>>

As well as using the [] notation to read values from a dictionary, you can
also use it to add new values or overwrite existing ones.
The following example adds a new entry to the dictionary with a key of
Pete and a value of 01234 777555:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234
666666'}
>>> phone_numbers['Pete'] = '01234 777555'
>>> phone_numbers['Pete']
'01234 777555'

If the key is not in use in the dictionary, a new entry is automatically added.
If the key is already present, then whatever value was there before will be
overwritten by the new value.

See Also
For information on handling errors, see Recipe 7.10.

6.15 Removing Entries from a Dictionary

Problem
You need to remove an item from a dictionary.

Solution
Use the pop command, specifying the key for the item that you want to
remove:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234
666666'}
>>> phone_numbers.pop('Jane')
'01234 666666'
>>> phone_numbers
{'Simon': '01234 567899'}

Discussion
The pop command returns the value of the item removed from the
dictionary. In the preceding example, even though Jane is removed from the
dictionary, the pop command returns the Jane entry in case you want it for
some other purpose.

6.16 Iterating Over Dictionaries

Problem
You need to do something to each of the items in the dictionary in turn.

Solution
Use the for command to iterate over the keys of the dictionary:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234
666666'}
>>> for name in phone_numbers:
... print(name)
...
Jane
Simon

Notice how the keys didn’t print in the same order in which they were
created. This is a feature of dictionaries. The order of the entries is not
remembered.

Discussion
You can use a couple of other techniques to iterate over a dictionary. The
following form can be useful if you need access to the values as well as the
keys:

>>> phone_numbers = {'Simon':'01234 567899', 'Jane':'01234
666666'}
>>> for name, num in phone_numbers.items():
... print(name + " " + num)
...
Jane 01234 666666
Simon 01234 567899

See Also
See the for command used elsewhere in Recipes 5.23 and 6.7.

Chapter 7. Advanced Python

7.0 Introduction
In this chapter, we’ll explore some of the more advanced concepts in the
Python language—in particular reading and writing files, handling
exceptions, using modules, and basic internet programming.
Although we have already met various aspects of object orientation, classes,
and methods, in this chapter we will examine them in more detail and
explain what is going on.

7.1 Formatting Numbers

Problem
You want to format numbers to a certain number of decimal places.

Solution
Apply a format string to the number.

For example:

>>> x = 1.2345678
>>> "x={:.2f}".format(x)
'x=1.23'
>>>

The result returned by the format method is a string, which will be
displayed in the Terminal because we are working interactively. However,
when using format in a program, it’s most likely to be used inside a
print statement, like this:

x = 1.2345678
print("x={:.2f}".format(x))

Discussion
The formatting string can contain a mixture of regular text and markers
delimited by { and }. The parameters to the format function (there can be
as many as you like) will be substituted in place of the marker, according to
the format specifier.
In the preceding example, the format specifier is :.2f, which means that
the number will be specified with two digits after the decimal place and is a
float, f.

If you wanted the number to be formatted so that the total length of the
number is always seven digits (or padding spaces), you would add another
number before the decimal place, like this:

>>> "x={:7.2f}".format(x)
'x= 1.23'
>>>

In this case, since the number is only three digits long, there are four spaces
of padding before the 1. If you wanted the padding to take the form of
leading zeros, you would use:

>>> "x={:07.2f}".format(x)
'x=0001.23'
>>>

A more complicated example might be to display the temperature in both
degrees Celsius and degrees Fahrenheit, as shown here:

>>> c = 20.5
>>> "Temperature {:5.2f} deg C, {:5.2f} deg F.".format(c, c * 9 /
5 + 32)

'Temperature 20.50 deg C, 68.90 deg F.'
>>>

You can also use the format method to display numbers in hexadecimal
and binary.
For example:

>>> "{:X}".format(42)
'2A'
>>> "{:b}".format(42)
'101010'

Since version 3.6 of Python, there has been a new way of formatting strings
and other objects called f-strings. These allow you to place bits of Python
(often just a variable name) inside a Python string for evaluation. For
example:

>>> temp = 20.4
>>> humidity = 80
>>> F"Temperature C: {temp} Humidity: {humidity}"
'Temperature C: 20.4 Humidity: 80'
>>>

The f-string uses an F in front of the opening string quote mark and
anything between { and } is treated as Python code to be evaluated. So, if
you wanted your temperature in Fahrenheit, you could write:

>>> temp = 20.4
>>> humidity = 80
>>> F"Temperature F: {temp * 9 / 5 + 32} Humidity: {humidity}"
'Temperature F: 68.72 Humidity: 80'
>>>

The f-string syntax is in many cases much easier to read that the string
format method.

See Also
Formatting in Python involves a whole formatting language.
For more information on f-strings, see https://realpython.com/python-f-
strings.

7.2 Formatting Dates and Times

Problem
You want to convert a date into a string and format it in a certain way.

Solution
Apply a format string to the date object.

For example:

>>> from datetime import datetime
>>> d = datetime.now()
>>> "{:%Y-%m-%d %H:%M:%S}".format(d)
'2021-12-09 16:00:45'
>>>

The result returned by the format method is a string, which will be
displayed in the Terminal because we are working interactively. However,
when using format in a program, it’s most likely to be used inside a
print statement, like this:

from datetime import datetime
d = datetime.now()
print("{:%Y-%m-%d %H:%M:%S}".format(d))

Discussion

https://oreil.ly/988vF
https://realpython.com/python-f-strings

The Python formatting language includes some special symbols for
formatting the date: %y (which gives the year without century as a zero-
padded decimal number), %m, and %d correspond to year, month, and day
numbers, respectively.
Other symbols useful for formatting the date are %B, which supplies the full
name of the month, and %Y, which gives the year in four-digit format, as
shown here:

>>> "{:%d %B %Y}".format(d)
'09 December 2021'

The f-string syntax described at the end of Recipe 7.1 can also be used to
format dates as follows:

>>> from datetime import datetime
>>> d = datetime.now()
>>> F"{d:%B %d, %Y}"
'August 19, 2022'
>>>

See Also
See Recipe 7.1 for formatting of numbers.
See the Python strftime cheatsheet for more about all the options for
formatting dates and times.

7.3 Returning More Than One Value

Problem
You need to write a function that returns more than one value.

Solution

http://strftime.org/

Design your function to return a Python tuple and use the multiple variable
assignment syntax. A tuple is a Python data structure that’s a little like a
list, except that tuples are enclosed in parentheses rather than brackets.
They are also of fixed size.
For example, you could have a function that converts a temperature in
Kelvin into both Fahrenheit and Celsius. You can arrange for this function
to return the temperature in both these units by separating the multiple
return values with commas:

>>> def calculate_temperatures(kelvin):
... celsius = kelvin - 273
... fahrenheit = celsius * 9 / 5 + 32
... return (celsius, fahrenheit)
...
>>> (c, f) = calculate_temperatures(340)
>>>
>>> print(c)
67
>>> print(f)
152.6

When you call the function, you just provide the same number of variables
before the =, and each of the return values will be assigned to the variable
in the same position.

Discussion
Sometimes, when you have just a few values to return, this is the best way
to return multiple values. However, if the data is complex, you might find
that a neater solution is to use Python’s object-oriented features and define a
class that contains the data. That way, you can return an instance of the
class rather than a tuple.

See Also
See Recipe 7.4 for information on defining classes.

7.4 Defining a Class

Problem
You need to group related data and functionality into a class.

Solution
The concept of classes is central to that of object-orientation. A class is a
little like a Python module (and in fact many Python modules contain
classes) in that it collects together a set of functions. However, a class
formalizes this structure insisting that classes are created in a certain way,
and that all methods and variables relating to the class are bundled up into
that class. Classes can also be arranged in a hierarchy, in which more
specific classes can inherit methods from more generic classes, making it
easier to write code that isn’t repeated in multiple places in your program.
Define a class and provide it with the member variables you need.
The following example defines a class to represent an address book entry:

class Person:
 '''This class represents a person object'''

 def __init__(self, name, tel):
 self.name = name
 self.tel = tel

The first line inside the class definition uses triple single quotes to denote a
documentation string, which should explain the purpose of the class.
Although entirely optional, adding a documentation string to a class allows
others to see what the class does. This is particularly useful if the class is
made available for others to use.
Documentation strings (or doc strings) are not like normal comments
because, although they are not active lines of code, they do become
associated with the class; thus, at any time, you can read the doc string for a

class using the following command (with double underscores on either side
of the word doc):

Person.__doc__

Inside the class definition is the constructor method, which will be called
automatically whenever you create a new instance of the class. A class is
like a template, so in defining a class called Person, we do not create any
actual Person objects until later:

def __init__(self, name, tel):
 self.name = name
 self.tel = tel

The constructor method must be named as shown, with double underscores
on either side of the word init.

Discussion
One way in which Python differs from most object-oriented languages is
that you need to include the special variable self as a parameter to all the
methods that you define within the class. This is a reference to, in this case,
the newly created instance. The variable self is the same concept as the
special variable this that you find in Java and some other languages.

The code in this method transfers parameters that were supplied to it into
member variables. The member variables do not need to be declared in
advance, but they do need to be prefixed by self.

So this line:

self.name = name

creates a variable called name that’s accessible to every member of the
class Person and initializes it with the value passed into the call to create

an instance, which looks like this:

p = Person("Simon", "1234567")

We can then check that our new Person object, p, has a name of
"Simon" by typing the following:

>>> p.name
Simon

In a complex program, it is good practice to put each class in its own file
with a filename that matches the class name. This also makes it easy to
convert the class into a module (see Recipe 7.11).

See Also
See Recipe 7.5 for information on defining methods.

7.5 Defining a Method

Problem
You need to add some code to a class.

Solution
Functions that are associated with a particular class are called methods.
The following example shows how you can include a method within a class
definition:

class Person:
 '''This class represents a person object'''

 def __init__(self, first_name, surname, tel):

 self.first_name = first_name
 self.surname = surname
 self.tel = tel

 def full_name(self):
 return self.first_name + " " + self.surname

The full_name method concatenates the first name and surname
attributes of the person, placing a space between them, and might product
an output something like this:

Simon Monk

Discussion
You can think of methods as functions that are tied to a specific class and
may or may not use member variables of that class in their processing. So,
as with a function, you can write whatever code you like in a method and
also have one method call another.

See Also
See Recipe 7.4 for information on defining a class.

7.6 Inheritance

Problem
You need a specialized version of an existing class.

Solution
Use inheritance to create a subclass of an existing class and add new
member variables and methods.
By default, all new classes that you create are subclasses of object. You
can change this by specifying the class you want to use as a superclass in

parentheses after the class name in a class definition. The following
example defines a class (Employee) as a subclass of Person and adds a
new member variable (salary) and an extra method (give_raise):

class Employee(Person):

 def __init__(self, first_name, surname, tel, salary):
 super().__init__(first_name, surname, tel)
 self.salary = salary

 def give_raise(self, amount):
 self.salary = self.salary + amount

Note that the preceding example is for Python 3. For Python 2, you can’t
use super the same way. Instead, you must write the following:

class Employee(Person):

 def __init__(self, first_name, surname, tel, salary):
 Person.__init__(self, first_name, surname, tel)
 self.salary = salary

 def give_raise(self, amount):
 self.salary = self.salary + amount

Discussion
In both of these examples, the initializer method for the subclass first uses
the initializer method of the parent class (superclass) and then adds the
member variable. This has the advantage of not requiring you to repeat the
initialization code in the new subclass.

See Also
See Recipe 7.4 for information on defining a class.
The Python inheritance mechanism is very powerful and supports multiple
inheritance, in which a subclass inherits from more than one superclass. For
more on multiple inheritance, see the official documentation for Python.

https://oreil.ly/BCjqx

7.7 Writing to a File

Problem
You need to write something to a file.

Solution
Use the open, write, and close functions to open a file, write some
data, and then close the file:

>>> f = open('test.txt', 'w')
>>> f.write('This file is not empty')
>>> f.close()

Discussion
In the preceding example, the file has an extension of txt, implying a text
file, but any file extension can be used here.
Once you have opened the file, you can make as many writes to it as you
like before closing it. Note that it is important to use close because
although each write should update the file immediately, it might be buffered
in memory and data could be lost. It could also leave the file locked so that
other programs can’t open it.
The open function takes two parameters. The first is the path to the file to
be written. This can be relative to the current working directory or, if it
starts with a /, an absolute path.

The second (optional) parameter is the mode in which the file should be
opened. If this is omitted, then read-only (r) mode is assumed. To overwrite
an existing file or create the file with the name specified if it doesn’t already
exist, use w. Table 7-1 shows the full list of file mode characters. You can
combine these using +. For example, to open a file in read and binary mode,
you would use this:

>>> f = open('test.txt', 'r+b')

Table 7-1. File modes

Mode Description

r Read

w Write

a Append to the end of an existing file rather than overwrite it

b Binary mode

t Text mode (default)

+ A shortcut for r+w

Binary mode allows you to read or write binary streams of data, such as
images, rather than text.

See Also
To read the contents of a file, see Recipe 7.8.
For more information on handling exceptions, see Recipe 7.10.

7.8 Reading from a File

Problem
You need to read the contents of a file into a string variable.

Solution
To read a file’s contents, you need to use the file methods open, read, and
close. The following example reads the entire contents of the file and
assigns them to the variable s:

f = open('test.txt')
s = f.read()
f.close()

Discussion
You can also read text files one line at a time using the method readline.

The preceding example will throw an exception if the file doesn’t exist or is
not readable for some other reason. You can handle this by enclosing the
code in a try/except construction, like so:

try:
 f = open('test.txt')
 s = f.read()
 f.close()
except IOError:
 print("Cannot open the file")

See Also
To write things to a file, and for a list of file open modes, see Recipe 7.7.
For more information on handling exceptions, see Recipe 7.10.
To parse JSON data, see Recipe 7.20.

7.9 Using Pickling to Save and Load Data in
a File

Problem
You want to save the entire contents of a data structure to a file so that it can
be read the next time the program is run.

Solution

Use the Python pickling feature to dump the data structure to file in a
format that can be automatically read back into memory as an equivalent
data structure later on.
The following example saves a complex list structure to a file called
mylist.pickle:

>>> import pickle
>>> mylist = ['some text', 123, [4, 5, True]]
>>> f = open('mylist.pickle', 'wb')
>>> pickle.dump(mylist, f)
>>> f.close()

To unpickle the contents of the file into a new list, use the following:

>>> f = open('mylist.pickle', 'rb')
>>> other_array = pickle.load(f)
>>> f.close()
>>> other_array
['some text', 123, [4, 5, True]]

Discussion
Pickling will work on pretty much any data structure you can throw at it. It
doesn’t need to be a list. The extension of the file you pickle to doesn’t
matter either. Using .pickle makes sense, but you could equally use .txt or
.pic.
The file is saved in a binary format that is not human-readable; you must
open the file using the wb (write binary) option when writing the file and
the rb (read binary) option when reading the file.

See Also
To write things to a file and for a list of file open modes, see Recipe 7.7.
An alternative to pickling is to save your objects as JSON files as described
in Recipe 7.21.

7.10 Handling Exceptions

Problem
If something goes wrong while a program is running, you want to catch the
error or exception and display a user-friendly error message.

Solution
Use Python’s try/except construct.

The following example, from Recipe 7.8, catches any problems when
opening a file:

try:
 f = open('test.txt')
 s = f.read()
 f.close()
except IOError:
 print("Cannot open the file")

Since you wrapped the potentially error-prone commands to open the file in
a try/except construction, any error that occurs will be captured before
it displays an error message, allowing you to handle it in your own way.
Here, this means displaying the friendly message “Cannot open the file.”

Discussion
A common situation in which runtime exceptions can occur, in addition to
during file access, is when you are accessing a list and the index you are
using is outside the bounds of the list. For example, this happens if you try
to access the fifth (index 4) element of a three-element list:

>>> list = [1, 2, 3]
>>> list[4]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

Errors and exceptions are arranged in a hierarchy, and you can be as
specific or general as you like when catching the exceptions.
The class Exception is pretty near the top of that tree (most general) and
will catch almost any exception. You can also have separate except
sections for catching different types of exceptions and handling each in a
different way. If you do not specify any exception class, all exceptions will
be caught by the except command.

Python also allows you to have else and finally clauses in your error
handling:

list = [1, 2, 3]
try:
 list[8]
except:
 print("out of range")
else:
 print("in range")
finally:
 print("always do this")

The else clause will be run if there is no exception, and the finally
clause will be run whether there is an exception or not.
Whenever an exception occurs, you can get more information about it by
using the Exception object, which is available only if you use the as
keyword to put it in a variable, as shown in the following example:

>>> list = [1, 2, 3]
>>> try:
... list[8]
... except Exception as e:
... print("out of range")
... print(e)
...
out of range
list index out of range
>>>

This enables you to handle the error in your own way, while keeping hold
of the original error message.

See Also
See the official Python documentation for Python exception class hierarchy.

7.11 Using Modules

Problem
You want to use a Python module in your program.

Solution
Use the import command:

import random

Discussion
A large number of modules (sometimes called libraries) are available for
Python. Many are included with Python as part of the standard library, and
others can be downloaded and installed into Python. Standard Python
libraries include modules for random numbers, database access, various
internet protocols, object serialization, and many other functions.
One consequence of having so many modules is the potential for conflict—
for example, if two modules have a function of the same name. To avoid
such conflicts, specify how much of the module is accessible when
importing a module.
So if you just use a command like this:

import random

https://oreil.ly/TQIdm

there is no possibility of a conflict because you will only be able to access
functions or variables in the module by prefixing them with random (e.g.,
random.randint). Incidentally, you’ll be meeting the random package
in the next recipe.
If, on the other hand, you use the command in the following example, every
function or variable in the module will be accessible without your having to
add anything in front of it; unless you know what all the functions are in all
the modules you are using, there is a much greater chance of conflict:

from random import *

In between these two extremes, you can explicitly specify the components
of a module that you need within a program so that they can be
conveniently used without any prefix.
For example:

>>> from random import randint
>>> print(randint(1,6))
2
>>>

Another option is to use the as keyword to provide a more convenient or
meaningful name for the module when referencing it:

>>> import random as R
>>> R.randint(1, 6)

See Also
The Python Standard Library includes a definitive list of all the Python
modules.

7.12 Generating Random Numbers

https://oreil.ly/N6iF9

Problem
You need to generate a random number within a range of numbers.

Solution
Use the random library:

>>> import random
>>> random.randint(1, 6)
2
>>> random.randint(1, 6)
6
>>> random.randint(1, 6)
5

The number generated will be between the two arguments (inclusive)—in
this case, simulating a gaming die.

Discussion
The numbers generated are not truly random but are what is known as a
pseudorandom number sequence; that is, they are a long sequence of
numbers that, when taken in a large enough quantity, show what
statisticians call a random distribution. For games, this is perfectly good
enough, but if you were generating lottery numbers, you would need to look
at special randomizing hardware. Computers are just plain bad at being
random; it’s not really in their nature.
A common use of random numbers is to select something at random from a
list. You can do this by generating an index position and using that, but
there is also a command in the random module specifically for this. Try
the following example:

>>> import random
>>> random.choice(['a', 'b', 'c'])
'a'
>>> random.choice(['a', 'b', 'c'])
'b'

>>> random.choice(['a', 'b', 'c'])
'a'

When making random selections like this, it’s not uncommon to prevent
choices from repeating. For example, if you have already chosen 'a' at
random, it shouldn’t be chosen again.
One way to do this is to take a copy of your list and then, whenever you
have selected an item from it, remove that item so that it can’t be chosen
again. Here’s how you could do that in a small program that you can find
with the book downloads (see Recipe 3.22); this program is
ch_07_random.py:

import random
from copy import copy

list = ['a', 'b', 'c']

working_list = copy(list)
while len(working_list) > 0 :
 x = random.choice(working_list)
 print(x)
 working_list.remove(x)

Run the program, and it will display the list items, selected at random, just
once:

$ python3 ch_07_random.py
b
c
a

The order is likely to be different each time you run the program.

See Also
See the official reference for the random package for more information on
this.

https://oreil.ly/MAJOm

7.13 Making Web Requests from Python

Problem
You need to read the contents of a web page into a string using Python.

Solution
Python has an extensive library for making HTTP requests called urllib
(URL Library).
The following Python 3 example reads the contents of the Google home
page into the string contents:

import urllib.request
contents =
urllib.request.urlopen("https://www.google.com/").read()
print(contents)

Discussion
Having read the HTML, you are then likely to want to search it and extract
the parts of the text that you really want. For this, you will need to use the
string manipulation functions (see Recipes 5.16 and 5.17).

See Also
For more internet-related examples using Python, see Chapter 17.
When the web request returns JSON data, you can parse it using Recipe
7.20.

7.14 Specifying Command-Line Arguments
in Python

Problem

You want to run a Python program from the command line and pass it
parameters.
Rather than just run a Python program, you want to supply some extra
parameters to the program that the program can then use. For example:

$ python3 ch_07_cmdline.py a b c

Solution
Import sys and use its argv variable, as shown in the following example.
This returns a list, the first element of which is the name of the program.
The other elements are any parameters (separated by spaces) that were
typed on the command line after the program name.
The code for this example and for the other examples in this book can be
downloaded (see Recipe 3.22); the program is called ch_07_cmdline.py:

import sys

for (i, value) in enumerate(sys.argv):
 print(F"arg: {i} {value}")

Running the program from the command line, with some parameters after
it, results in the following output:

$ python3 ch_07_cmdline.py a b c
arg: 0 cmd_line.py
arg: 1 a
arg: 2 b
arg: 3 c

Discussion
Being able to specify command-line arguments can be useful for
automating the running of Python programs, either at startup (Recipe 3.23)
or on a timed basis (Recipe 3.25).

See Also
For basic information on running Python from the command line, see
Recipe 5.6.
To print out argv, we used list enumerations (Recipe 6.8).

Visit the Python documentation for an alternative and more advanced way
to use command-line arguments.

7.15 Running Linux Commands from Python

Problem
You want to run a Linux command or program from your Python program.

Solution
Use the system command.

For example, to delete a file called myfile.txt in the directory from which
you started Python, you could do the following:

import os
os.system("rm myfile.txt")

Discussion
Sometimes rather than just execute a command blindly, as in the preceding
example, you need to capture the response of the command. Let’s say you
wanted to use the hostname command to find the IP address (see Recipe
2.2) of the Raspberry Pi. In this case, you can use the check_output
function in the subprocess library:

import subprocess
ip = subprocess.check_output(['hostname', '-I'])

https://oreil.ly/ffNSo

The variable ip will contain the IP address of the Raspberry Pi. Unlike
system, check_output requires the command itself and any
parameters to be supplied as separate elements of a list.

See Also
For documentation on the OS library, see https://oreil.ly/1LL8G.

For more information on the subprocess library, see
https://oreil.ly/HVBq-.
In Recipe 15.7, you’ll find an example that uses subprocess to display
the IP address, hostname, and time of your Raspberry Pi on an ePaper
display.

7.16 Sending Email from Python

Problem
You want to send an email message from a Python program.

Solution
Python has a library for the Simple Mail Transfer Protocol (SMTP) that you
can use to send emails:

Passwords in Code
Be very careful putting usernames and passwords into your code, especially if the code is part of a
project that you are uploading to the internet. It is all too easy to forget and upload your password
to somewhere like GitHub.

The example that follows is for Google’s Gmail. Google has a concept of
application-specific passwords, which makes this kind of access more

https://oreil.ly/1LL8G
https://oreil.ly/HVBq-

secure by insisting on a long, random password that is different from your
normal password. To get this password, you have to first log in to Google
normally from a browser, go to https://myaccount.google.com/, and then
click on Security in the lefthand navigation. In the “Signing in to Google”
section, select the option called App Passwords (Figure 7-1). Note that your
Google account must have two factor authentication enabled to access this
option.

Figure 7-1. App Passwords in Google

In the Select App drop-down list, choose “email.” In the Select Device
drop-down list, choose “Other” and give the device (your Raspberry Pi) a
name (such as “Raspberry Pi Python”) so that you will remember the
purpose of the App Password. When you click the Generate button, a
password will be generated for you (Figure 7-2).
You will need to copy this password and paste it into the Python program
listed as follows (ch_07_gmail.py):

import smtplib

GMAIL_USER = 'your email address'
GMAIL_PASS = 'your password'

https://myaccount.google.com/

SMTP_SERVER = 'smtp.gmail.com'
SMTP_PORT = 587

def send_email(recipient, subject, text):
 smtpserver = smtplib.SMTP(SMTP_SERVER, SMTP_PORT)
 smtpserver.ehlo()
 smtpserver.starttls()
 smtpserver.ehlo
 smtpserver.login(GMAIL_USER, GMAIL_PASS)
 header = 'To:' + recipient + '\n' + 'From: ' + GMAIL_USER
 header = header + '\n' + 'Subject:' + subject + '\n'
 msg = header + '\n' + text + ' \n\n'
 smtpserver.sendmail(GMAIL_USER, recipient, msg)
 smtpserver.close()

send_email('destination email address', 'subject', 'message')

Figure 7-2. Generating a new App Password in Google

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
To use this example to send an email to an address of your choice, first
change the variables GMAIL_USER and GMAIL_PASS to match your
email credentials. For Gmail, the password should be the application-
specific password you just generated.

If you are not using Gmail, you will also need to change the value of
SMTP_SERVER, and possibly of SMTP_PORT as well, to match those
values for your email provider.
You also need to change the destination email address in the last line, and
you can change the subject and message here if desired.

Discussion
The send_email method simplifies the use of the smtplib library into
a single function that you can reuse in your projects.
Being able to send emails from Python opens up all sorts of project
opportunities. For example, you could use a device such as a passive
infrared (PIR) sensor to send an email when movement is detected.

See Also
For a similar example that uses the IFTTT web service to send emails, see
Recipe 17.4.
To perform HTTP requests from the Raspberry Pi, see Recipe 7.13.
Find more information on the smtplib at Python.org.

Google Support has more information on Google App Passwords.
For many more internet-related recipes, see Chapter 17.

7.17 Writing a Simple Web Server in Python

Problem
You need to create a simple Python web server, but you don’t want to have
to run a full web server stack.

Solution

https://oreil.ly/R19Uj
https://oreil.ly/T38fZ

Use the bottle Python library to run a pure Python web server that will
respond to HTTP requests.
To install bottle, use the following command:

$ sudo pip3 install bottle

The following Python program (called ch_07_bottle_test.py) simply serves
up a message displaying what time the Raspberry Pi thinks it is. As with all
the program examples in this book, you can also download it (see Recipe
3.22):

from bottle import route, run, template
from datetime import datetime

@route('/')
def index(name='time'):
 dt = datetime.now()
 time = "{:%Y-%m-%d %H:%M:%S}".format(dt)
 return template('Pi thinks the date/time is: {{t}}',
t=time)

run(host='0.0.0.0', port=80)

To start the program, you need to run it with superuser privileges:

$ sudo python3 ch_07_bottle_test.py

Figure 7-3 shows the page you see if you connect to the Raspberry Pi from
a browser anywhere on your network.

Figure 7-3. Browsing to a Python bottle web server

This example requires a little explanation.
After the import commands, the @route command links the URL path /
with the handler function that follows it.
That handler function formats the date and time and then returns a string of
HTML to be rendered by the browser. In this case, it uses a template into
which values can be substituted.
The final run line actually starts the web serving process. Port 80 is the
default port for web serving; if you want to use a different port, add a :
followed by the port number after the server address.

Discussion
You can define as many routes and handlers as you like within the program.
bottle is perfect for small, simple web server projects, and because it’s
written in Python, it’s very easy to write a handler function to control
hardware in response to the user interacting with the page in a browser. You
will find other examples using bottle in Chapter 17.

The Raspberry Pi (especially a Raspberry Pi 4) is perfectly capable of
running a full web server stack (web server, web framework, and database),
a popular example being Apache, PHP, and MySQL. This will never
perform as well as proper server hardware, but it can be a great playground
for learning how these things work.

See Also

To set up a Raspberry Pi as a LAMP (Linux, Apache, MySQL, and PHP),
see https://oreil.ly/MlE00.
For more information, see the bottle documentation.

For more on formatting dates and times in Python, see Recipe 7.2.
For a whole load of internet-related recipes, see Chapter 17.

7.18 Doing Nothing in Python

Problem
You want Python to kill time for a while. You might want to do this, for
example, to create a delay between sending messages to the Terminal.

Solution
Use the sleep function in the time library as illustrated in the following
code example, ch_07_sleep_test.py:

import time

x = 0
while True:
 print(x)
 time.sleep(1)
 x += 1

You can find the code for this example, as well as the other code examples
in this recipe, with the code downloads for the book (see Recipe 3.22).
The main loop of the program will delay for one second before printing the
next number.

Discussion
The function time.sleep takes a value representing seconds as its
parameter. However, if you want shorter delays than a second, you can

https://oreil.ly/MlE00
https://oreil.ly/DCAdz

specify decimals. For example, to delay for a millisecond, you would use
time.sleep(0.001).

It’s a good idea to put a short delay in any loop that continues indefinitely,
or even just continues for more than a fraction of a second, because when
sleep is being called, the processor is freed up to allow other processes to do
some work.
When you are using the GPIO pins in Recipe 11.1 and many other recipes,
delays are used to do things like control the timing for LEDs blinking on
and off.

See Also
For an interesting discussion of how time.sleep can reduce the CPU
load of your Python program, see https://oreil.ly/FgpUQ.

7.19 Doing More Than One Thing at a Time

Problem
Your Python program is busy doing one thing, and you want it to do
something else at the same time.

Solution
Use the Python threading library.

The following example (ch_07_thread_test.py) sets a thread running that
will interrupt the counting of the main thread. As with all the program
examples in this book, you can also download it (see Recipe 3.22):

import threading, time, random

def annoy(message):
 while True:
 time.sleep(random.randint(1, 3))
 print(message)

https://oreil.ly/FgpUQ

t = threading.Thread(target=annoy, args=('BOO !!',))
t.start()

x = 0
while True:
 print(x)
 x += 1
 time.sleep(1)

The output on the console will look something like this:

$ python3 ch_07_thread_test.py
0
1
BOO !!
2
BOO !!
3
4
5
BOO !!
6
7
8

When you start a new thread of execution using the Python threading
library, you must specify a (target) function that is to be run as that
thread. In this example, the function, called annoy, contains a loop that
will continue indefinitely printing out a message after a random interval of
between 1 and 3 seconds. Note that the args parameter is used to pass a
string to annoy.

To start the thread actually running, the start method on the Thread
class is called. This method has two parameters: the first is the name of the
function to run (in this case, annoy), and the second is a tuple that contains
any parameters that are to be passed to the function (in this case, 'BOO
!!').

You can see that the main thread, which is just happily counting, will be
interrupted every few seconds by the thread running in the annoy function.

Discussion
Threads like these are also sometimes called lightweight processes because
they are similar in effect to having more than one program or process
running at the same time. They do, however, have the advantage that
threads running in the same program have access to the same variables, and
when the main thread of the program exits, so do any threads that are
started in it.

See Also
For a good introduction to threading in Python, see
https://pymotw.com/3/threading.

7.20 Parsing JSON Data

Problem
You want to parse data in the popular JSON (JavaScript Object
Notation) data structuring language.
This might be because you are downloading data from a web service or
have data saved in a JSON file.

Solution
Use the json package, as shown in the following example:

import json

s = '{"books" : [
 {"title" : "Programming Arduino", "price" : 10.95},
 {"title" : "Pi Cookbook", "price" : 19.95}
]}'

j = json.loads(s)
print(j['books'][1]['title'])

https://pymotw.com/3/threading

As with all the program examples in this book, you can also download this
program (see Recipe 3.22). The file is called ch_07_parse_json.py.
I have split the JSON string onto multiple lines in the previous example to
make it easier to see the structure of the data.
The loads (load string) function parses the string into a data structure
stored in the variable j. You can then access the contents of the structure as
if it were a combination of Python lists and tables. In this case, the title
of element 1 of the books list is printed (Pi Cookbook).

Discussion
If you want to parse the content of a file containing JSON data, you could
use Recipe 7.8 to read the file into a string and then use the method just
shown. However, it is more efficient, especially for large files, to use
json.load (note that it’s load, not loads) directly on the file.

For example, you could create a file called ch_07_example_file.json that
contains the following JSON:

{"books" : [
 {"title" : "Programnming Arduino", "price" : 10.95},
 {"title" : "Pi Cookbook", "price" : 19.95}
]}

The following code would read the file and parse it, producing the same
result as the first example in this recipe, but the code fetches its JSON from
a file (you can find this example in the file ch_07_parse_json_file.py):

import json

file_name = 'ch_07_example_file.json'
json_file = open(file_name)

j = json.load(json_file)
json_file.close()

print(j['books'][1]['title'])

The final example in this recipe deals with parsing data from a web request.
Most web service APIs have a JSON interface. The following example uses
the weatherstack.com (formerly known as Apixu) weather service. To use
this service, you will need to sign up for an account (a free one will do):

import json
import urllib.request

key = 'paste_your_key_here'

response =
urllib.request.urlopen('http://api.weatherstack.com/current?
 access_key=' + key + '&query=Paris')
j = json.load(response)

print(j['current']['weather_descriptions'][0])

Before running ch_07_parse_json_url.py, remember to change the value of
key to your key. You may also want to change the location from “Paris” to
your location.
When you run the program, you should see something like this:

$ python3 ch_07_parse_json_url.py
Partly cloudy

The API actually returns a lot of data. You can see it all if you change the
program to include a final line print(j).

You can then change how you navigate into the data to get the information
you want.

See Also
For reading and writing files, see Recipes 7.7 and 7.8.

7.21 Saving Dictionaries as JSON Files

https://weatherstack.com/

Problem
You have a dictionary that you want to save as a text file in JSON format.

Solution
Use the dump function in the json package to write a dictionary or other
object to a file.
The example in ch_07_json_dump.py is:

import json

phone_numbers = {'Simon':'01234 567899', 'Jane':'01234 666666'}

f = open('test.txt', 'w')
json.dump(phone_numbers, f)
f.close()

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).

Discussion
The dump function will also work on lists and any combination of lists and
dictionaries or other objects that you might want to save like this.
When it comes to reconstituting the text in the file, you can do so using
json.load as described in Recipe 7.20.

Saving objects as JSON files rather than using pickling (Recipe 7.9) has the
advantage that the files can be read and edited in a text editor, something
that is not possible with pickling.

See Also
For information on pickling, see Recipe 7.9.

7.22 Creating User Interfaces

Problem
You want to easily create a graphical user interface (GUI) for your Python
app.

Solution
Use guizero. Laura Sach and Martin O’Hanlon at the Raspberry Pi
Foundation have created a Python library that makes it super easy to design
GUIs for your projects.
Originally designed for the Raspberry Pi, guizero is also perfectly happy
on most environments that run Python, so you can use it on your PC or Mac
as well as on your Raspberry Pi. To install guizero, run the following
command from the Terminal:

$ sudo pip3 install guizero

Once installation is complete, you can try out guizero using the example
program ch_07_guizero.py that is included with the book downloads
(Recipe 3.22):

from guizero import *

def say_hello():
 info("An Alert", "Please don't press this button again")

app = App(title="Pi Cookbook Example", height=200)
button = PushButton(app, text="Don't Press Me",
command=say_hello)

app.display()

When you run the program using the following command, a window with a
button on it opens on your screen. If you click on the button, an alert

message appears (Figure 7-4):

$ python3 ch_07_guizero.py

Figure 7-4. A guizero example program

This example shows how easy it is to hook a Python function up to a button
so that when the button is clicked, the function is run.
The function (say_hello) is defined first in the program. Then a new
variable, app, is defined and initialized to be an instance of the class App,
with some parameters that specify a title to appear at the top of the window
and the window’s height in pixels. Both parameters are optional, and many
other available options are defined in the documentation for guizero.

This app variable is then supplied as the first of the parameters to the
PushButton that is created on the next line. The button uses the
command parameter to specify the function to be run when the button is
clicked. Note that when you specify the function to run, you do not put ()
after it because you are referring to the function, not calling it.

Discussion
This is an introductory example of guizero, just to get you started. The
library is by no means just limited to buttons on a screen. The main goal of

https://oreil.ly/T1IQr

the library is to allow you to create simple user interfaces with a minimal
amount of programming. When you want to start making things a bit
fancier, you can delve into various ways of laying out the widgets (buttons,
checkboxes, sliders, etc.) in your window and changing font sizes and
colors. However, as always, start by keeping it simple.

See Also
For full information on guizero, see the excellent documentation at this
guizero GitHub site.

guizero is also used in Recipes 11.9, 11.10, and 11.11.

7.23 Using Regular Expressions to Search
for Patterns in Text

Problem
You want to do a complex search, looking for something in a piece of text.

Solution
Use Python’s regular expression (regex) feature. Regular expressions have
been around since the early days of computer science, when computer
science was a branch of mathematics and benefited from the rigor of the
mathematician’s mind.
A regular expression is a way of describing a pattern that occurs in some
text. This is similar to Recipe 5.16. However, with regular expressions you
can find more flexible wildcard matches, as shown here:

import re

text = "looking forward to finding the word for"
x = re.search("(^|\s)for($|\s)", text)

print(x.span())

https://oreil.ly/kb1jz

As with all the program examples in this book, you can also download this
program, called ch_07_regex_find.py (see Recipe 3.22).
If you run this program, you will get the following output:

$ python3 ch_07_regex_find.py
(35, 39)

This indicates that the word for has been found at character position 35
(actually the space before for) in the string. The second value is the end
position index. Notice that the program has ignored the word forward. Let’s
take a look at how this code works.
First, we need to import the re (regular expression) module. Next, we add
the variable text that contains the test string that we are going to search
within.
We then use the search function to find what we want in the string. The
first parameter is the regular expression, and the second is the string to
search. In this case, the regular expression is the following string:

"(^|\s)for($|\s)"

Right in the middle of the regular expression is the word for. That’s to be
expected, because that’s the word we’re looking for. To either side of for are
expressions in parentheses. Before it we have this:

(^|\s)

The three magic symbols are ^, which means the start of the string; |,
which means or; and \s, which means any whitespace character (space or
tab). So you can read this section as matching either the start of the string or
some whitespace, before trying to match for. That is, for must either come
at the start of the string or be preceded by a space or some other whitespace

character. This ensures that the regular expression does not match words
that end in for.
There is a similar expression after for that must also match:

($|\s)

Here, the new special symbol is $, which indicates the end of the string. In
other words, after the letters for, a match will occur only if we are at the end
of the string or there is a space or other whitespace character.
Table 7-2 shows some of the most common regular expression symbols.
You can find a complete list on this W3Schools.com page.

Table 7-2. Common regular expression symbols

Special
symbol

Meaning

. Matches any single character.

^ Matches the beginning of the string.

$ Matches the end of the string.

\d Any digit.

\s Whitespace.

\w Alphanumeric (digits and uppercase and lowercase letters).

* Zero or more occurrences of whatever follows it. For example, *\d will match a
string of zero or more digits.

+ One or more occurrences of whatever follows it.

[] Will match any of the characters contained between the brackets. You can also do
ranges, such as [a–d], which will match any of the characters a to d.

The best way to become familiar with regular expressions is to play with an
online regular expression tester.

Discussion

https://oreil.ly/bzhpm

It can be tricky tuning a regular expression so that it works just right. An
online regular expression tool (Figure 7-5) can be a big help in learning
how to properly structure and test a regular expression.
The online tester has an area where you can write your regular expression,
and a test string area, where you can put the text that you want to use with
your regular expression. The tool then highlights what has matched. In
Figure 7-5, the tool has correctly highlighted the word for.

Figure 7-5. The pythex online regular expression tester

See Also
To replace the text you have matched, see Recipe 7.24.
For more details about regular expressions in Python, see this
W3Schools.com page.

7.24 Using Regular Expressions to Validate
Data Entry

https://pythex.org/
https://oreil.ly/bzhpm

Problem
You have some text that you want to validate; for example, you want to
make sure that the text looks like an email address.

Solution
Use a regular expression (Recipe 7.23).
Regular expressions are mainly used to validate information entered by a
user. For example, if you have ever completed an online form that includes
your email address, and you typed in something that didn’t look like an
email address, the message you received saying that the address wasn’t a
valid format probably came from a regular expression validation.
Try out the code in the file ch_07_regex_email.py (all program examples in
this book are available for download; see Recipe 3.22):

import re

regex = '^[\w_\.+-]+@[\w_\.-]+\.[\w_-]+$'
while True:
 text = input("Enter an email address: ")
 if re.search(regex, text):
 print("valid")
 else:
 print("invalid")

This program will repeatedly prompt you to enter an email address and then
report whether it is valid. An online search will uncover alternative regular
expressions for email and for pretty much any other type of validation.
This one looks for one or more alphanumerics (plus _ . + or -), followed by
an @ symbol, followed by a repeat of that sequence, followed by the
sequence again but without a period in the string, which makes sure that the
email doesn’t end in a period.

Discussion

If you have a particular validation in mind (for example, a phone number or
website), someone will almost certainly have made a regular expression for
it. So before writing your own, do an internet search. There is no point in
reinventing the wheel.

See Also
For the basics on regular expressions, see Recipe 7.23.

7.25 Using Regular Expressions for Web
Scraping

Problem
You want to write a Python program that automatically fetches (scrapes)
information from a web page.

Solution
Use regular expressions to match text in the page’s contents, which are in
HTML format.
Regular expressions are very useful for web scraping. Web scraping means
automatically reading things from a web page’s HTML. For example, if I
want a Python program to automatically give me the current Amazon
ranking of this book, I need to be able to grab the number from the Amazon
sales rank (circled in Figure 7-6).

Figure 7-6. Web scraping from Amazon

If I click View Source in my browser and then search for “Sellers Rank,” I
can find the relevant piece of HTML, which looks like this:

<li id="SalesRank">
Amazon Best Sellers Rank:
#746,779 in Books (<a href="https://www.amazon.com/best-sellers-
books-Amazon
/zgbs/books/ref=pd_dp_ts_books_1">See Top 100 in Books)

I can use this as my test text in an online regular expression tester and work
on an expression that will extract the Amazon rank. We can assume that this
will be everything between # and in Books.
Here is the code for this, which you can also find in the downloads for the
book (Recipe 3.22) in the file ch_07_regex_scraping.py:

import re
import urllib.request

regex = '#([\d,]+) in Books'

url = 'https://www.amazon.com/Raspberry-Pi-Cookbook-Software-
Solutions/
 dp/1492043222/'

print("The Amazon rank is.....")
text = urllib.request.urlopen(url).read().decode('utf-8')
print(re.search(regex, text).group())

The output of the file will look something like this:

$ python3 test.py
The Amazon rank is.....
#746,779 in Books

The code first reads the web page contents. The text must then be converted
to UTF-8 format (Latin alphabet only) before it can be used with the re
regular expression module.

Discussion
Many websites offer APIs (see Recipe 7.20). If the information you’re
trying to scrape is available through an API, then that is a much better way
of getting it—not least because web scraping is very dependent on the
appearance and wording of the page, which means that if the site is
revamped, you’ll probably need to come up with a new regular expression.

See Also
To read the contents of a web page, see Recipe 7.13.
For the basics on regular expressions, see Recipe 7.23.

Chapter 8. Computer Vision

8.0 Introduction
Computer vision (CV) allows your Raspberry Pi to “see” things. In practical
terms, this means that your Raspberry Pi can analyze an image, look for
items of interest, and even recognize faces and text.
If you connect a Raspberry Pi to a camera to supply the images, all sorts of
possibilities open up. This theme is continued in Chapter 9 where we take
this a stage further into the realm of machine learning.

8.1 Installing OpenCV

Problem
You want to install OpenCV computer vision software on your Raspberry
Pi.

Solution
To install OpenCV, first install the prerequisite packages and update the
NumPy Python library using these commands:

$ sudo apt install libatlas-base-dev
$ pip3 install --upgrade pip
$ pip3 install imutils
$ pip3 install numpy --upgrade

Then install OpenCV itself using:

$ pip3 install opencv-python

http://opencv.org/

After installation is complete, you can check that everything is working by
starting Python 3, importing cv2, and checking the version:

$ python3
Python 3.9.2 (default, Mar 12 2021, 04:06:34)
[GCC 10.2.1 20210110] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> import cv2
>>> cv2.__version__
'4.6.0'
>>>
>>> exit()

Note that __version__ is the word “version” with two underscore
characters on each side.

Discussion
Computer vision is both processor and memory intensive, so although
OpenCV will just about work on an older Raspberry Pi, it can be slow on
anything earlier than a Raspberry Pi 2. And if you plan to try out the recipes
in Chapter 9, you will need at least a Pi 4 or 400.

See Also
The first recipe in this chapter to use OpenCV is Recipe 8.4. It contains
useful details for getting started with OpenCV.

8.2 Setting Up a USB Camera for Computer
Vision

Problem
You want to set up a USB webcam for use in computer vision (CV)
projects.

Solution
Use a USB webcam that is compatible with the Raspberry Pi. Choose a
good-quality camera. If you are working on a project for which you need
the camera close to the subject, select one that has a manual focus option.
For getting really close to the subject, a low-cost USB endoscope can be
useful.
Depending on your CV project, you might want to set up a well-lighted
area. Figure 8-1 shows a simple light box made from a translucent plastic
storage box that is illuminated from the sides and top to give even lighting.
The webcam is attached to a hole in the top of the box. This arrangement is
used in Recipe 8.4.

Figure 8-1. Using a homemade light box for even illumination

You can also buy commercial light tents, designed for photography, that
work well.

https://oreil.ly/wrI0U

You might need a little trial and error to get your system brightly and evenly
illuminated. Shadows can be particularly problematic.

Discussion
You can test out your USB camera from the OpenCV console. Start Python
3 and then enter the following commands:

$ python3
Python 3.9.2 (default, Mar 12 2021, 04:06:34)
[GCC 10.2.1 20210110] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> import cv2
>>> from imutils.video import VideoStream
>>> vs = VideoStream(src=0).start()
>>> img = vs.read()
>>> cv2.imshow('image',img)
>>> cv2.waitKey(0)

A window should open showing an image from your camera after the last
line of code is entered. You may have to close the entire Terminal window
to get the image window to close.
In OpenCV, even single images are just taken as frames from a video
stream. Notice that on the third line you previously entered, we have
src=0. This means the first camera that OpenCV can find. So, if you have
multiple cameras, you can use a different number here.
Once the image has been read using vs.read(), you can use OpenCV’s
imshow utility method to display the image. You will find that you use this
a lot to debug your computer vision projects.
The final cv2.waitKey(0) is required to allow OpenCV to actually
render the image in the background until a key is pressed.

See Also
To use a Raspberry Pi Camera Module with OpenCV, see Recipe 8.3.

8.3 Using a Raspberry Pi Camera Module for
Computer Vision

Problem
You want to use a Raspberry Pi Camera Module that connects directly to
your Raspberry Pi with OpenCV.

Solution
The Raspberry Pi Camera Module should automatically show up as a
camera device once you have followed Recipe 1.16 to install it.
Having installed the camera, you can now try the following commands to
make sure that it’s working:

$ python3
Python 3.9.2 (default, Mar 12 2021, 04:06:34)
[GCC 10.2.1 20210110] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> import cv2
>>> from imutils.video import VideoStream
>>> vs = VideoStream(src=0).start()
>>> img = vs.read()
>>> cv2.imshow('image',img)
>>> cv2.waitKey(0)

Discussion
Note that in early versions of Raspberry Pi OS, you had to install a driver to
make the camera module available to OpenCV; if OpenCV doesn’t detect
the camera module, try updating your Raspberry Pi OS to the latest version
(Recipe 3.40).

See Also
See Recipe 1.16 for information on installing the Raspberry Pi Camera
Module.

See http://picamera.readthedocs.org for information on the picamera
Python module.
To use a USB camera with OpenCV, see Recipe 8.2.

8.4 Counting Coins

Problem
You want to use computer vision to count the number of coins in your
webcam’s view.

Solution
Use OpenCV’s Hough Circles detector to provide a real-time count of the
number of coins placed within view of the webcam. Hough Circles will
detect any type of circles, and works well detecting most coins.
This is one use of CV for which you really need good lighting and a camera
fixed in position. I used the setup shown in Figure 8-1.
The critical part of many computer vision projects is getting the parameters
right and this recipe is no exception. For this reason, before using the final
program that just gives a count of coins, we will use a test program that
draws outlines around the coins, so that we can see what’s going on.
You can find the code for this example, as well as the other examples in this
recipe, with the downloads for the book (see Recipe 3.22). The program is
called ch_08_coin_count_test.py.
Put some coins under your camera and run the program. A window like that
in Figure 8-2 should appear.

http://picamera.readthedocs.org/

Figure 8-2. Counting coins

If you are lucky, your coins will all have circles around them, and you
should see output in the console like this:

$ python3 ch_08_coin_count_test.py
[[[380.5 338.5 37.9]
 [553.5 249.5 34.9]
 [538.5 357.5 31.4]
 [546.5 442.5 30.7]
 [418.5 244.5 33.1]]]

To refresh the image, press any key; when you want to exit the program,
press the X key.

If your coins are not all circled, you’ll need to adjust some parameters
(param1, param2, minRadius, and maxRadius) in the program
ch_08_coin_count_test.py :

import cv2
from imutils.video import VideoStream
from imutils import resize

vs = VideoStream(src=0).start()

while True:
 img = vs.read()
 img = resize(img, width=800)
 img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 img = cv2.blur(img, (3, 3))

 detected_circles = cv2.HoughCircles(img,
 cv2.HOUGH_GRADIENT, 1, 20, param1 = 50,
 param2 = 30, minRadius = 15, maxRadius = 100)

 print(detected_circles)

 for pt in detected_circles[0]:
 a, b, r = pt[0], pt[1], pt[2]
 cv2.circle(img, (int(a), int(b)), int(r), (0, 255, 0),
2)

 cv2.imshow('image', img)
 key = cv2.waitKey(0)
 cv2.destroyAllWindows()
 if key == ord('x'):
 break

vs.stop()

You should not need to change the parameter param1. If you are interested
in what it and the other parameters do, you can read about them at
https://oreil.ly/3AmKn.
If you are getting a lot of false circles, try increasing the value of param2.
But the most likely parameters in need of change are minRadius and
maxRadius, as these will be sensitive to the resolution of your camera, its

https://oreil.ly/3AmKn

lens focal length, and the distance to the coins. So if no coins are circled,
increase the value of maxRadius.

Tweak the parameters until your coins are being correctly identified.

Discussion
Here’s a quick run-through of how the test program works.
Most of the code lives in a try block within the while True: block.
This ensures that when you press Ctrl-C to quit the program, the video
stream is stopped.
After reading the image, there are a couple of processing stages. First, the
image is resized to a width of 800 pixels, then converted to grayscale, and
finally a blur filter is applied. The blur filter helps improve the circle
matching.
The call to cv.HoughCircles returns an array of the circles that
OpenCV has found. The three values are the x and y coordinates of the
center of the circle and the circle’s radius.
To render these circles on top of the image of the coins, a for loop is used
to iterate over each of the detected circles and then
the cv2.circle method is used to draw a black (0, 0, 0) circle 2 pixels
wide around each coin.
The actual coin counting program is just a simplification of the test
program, so when you are ready, run the
program ch_08_coin_count.py. Try moving coins in and out of the field of
view and notice how the count changes. You could also add some different
shaped objects among the coins and verify that they are not identified as
coins.
An interesting project would be to use the radius of the coins to identify
their monetary value and add up the value of the coins on the table.

See Also

For information on installing OpenCV, see Recipe 8.1
For information on setting up a camera, see Recipe 8.2.

8.5 Face Detection

Problem
You want to find the coordinates of faces in a photograph or webcam
image.

Solution
Use the HAAR-like feature detection in OpenCV to analyze an image and
pick out the faces. HAAR stands for High Altitude Aerial Reconnaissance,
and we are using some of the features developed for that application here.
If you have not already done so, install OpenCV (see Recipe 8.1).
You can find the code for this example, as well as the other examples in this
recipe, with the downloads for the book (see Recipe 3.22). The program is
called ch_08_faces.py.
You will find a suitable image file for testing called faces.jpg in the same
folder as the Python program. Run the program, and you should see output
like this and an image like Figure 8-3:

$ python3 ch_08_faces.py
[[173 139 66 66]
 [367 60 66 66]
 [564 73 66 66]]

Note that the faces.jpg file (or whatever image file you use) must be in the
same directory as the Python program.

Figure 8-3. Detecting faces

Discussion
Here’s the listing for the program (ch_08_faces.py):

import cv2, pkg_resources

haar_file = pkg_resources.resource_filename('cv2',
 'data/haarcascade_frontalface_default.xml')
face_cascade = cv2.CascadeClassifier(haar_file)

img = cv2.imread('faces.jpg', cv2.IMREAD_GRAYSCALE)

scale_factor = 1.4
min_neighbors = 5

faces = face_cascade.detectMultiScale(img, scale_factor,
min_neighbors)
print(faces)

for (x,y,w,h) in faces:
 img = cv2.rectangle(img, (x,y), (x+w,y+h), (255, 255, 255),
2)

cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

The OpenCV system contains a whole load of classifiers for detecting faces
and other features. These are all contained in the directory found using the
pkg_resources utility package. The actual face detector that we are
going to use in this program is contained in an XML descriptor file called
haarcascade_frontalface_default.xml.
The image is read into a file as grayscale. The parameters scale_factor
and min_neighbors may need tweaking if you use an image of your
own rather than the test image.

scale_factor
This determines the step size that the face detector will use in trying to
find faces by automatically changing the image scale. In this case, a
value of 1.4 means the scale will change by 40% each time. Setting this
to a higher number will speed up face matching but may result in some
faces being missed.

min_neighbors
If this parameter is too low, the algorithm essentially becomes less fussy
about what it considers to be a face.

Once the faces are detected, the print command shows the coordinates of
the rectangles found, and then the for loop superimposes them on the
image before displaying it.
There are many built-in HAAR features. You can list them all using the
following command:

$ cd /.local/lib/python3.9/site-packages/cv2/data/
$ ls
haarcascade_eye.xml
haarcascade_lowerbody.xml
haarcascade_frontalcatface_extended.xml
haarcascade_profileface.xml
haarcascade_frontalcatface.xml
 haarcascade_righteye_2splits.xml
haarcascade_frontalface_alt2.xml
 haarcascade_russian_plate_number.xml
haarcascade_frontalface_alt_tree.xml haarcascade_smile.xml
haarcascade_frontalface_alt.xml
haarcascade_upperbody.xml
haarcascade_frontalface_default.xml __init__.py
haarcascade_fullbody.xml __pycache__
haarcascade_lefteye_2splits.xml

As you can see, they are all associated with parts of the body. You can even
look for smiles!

See Also
In Chapter 9 we will return to object recognition, but by using machine
learning techniques we will be able to detect all sorts of objects.
For information on installing OpenCV, see Recipe 8.1.
For information on setting up a camera, see Recipe 8.2.
For more information on face detection, see https://oreil.ly/iNJu8.

8.6 Motion Detection

Problem
You want to use a camera connected to your Raspberry Pi to detect
something moving in its field of view.

Solution

https://oreil.ly/iNJu8

Use OpenCV and NumPy to detect changes between successive frames
from the camera.
The program that follows compares each captured image with the previous
image. It then uses NumPy (a numeric library for Python) to calculate how
different the two images are. If this measure of difference exceeds a
threshold, it prints out a message saying that movement was detected.
You can find the code for this example, as well as for the other examples in
this recipe, with the downloads for the book (see Recipe 3.22). The program
is called ch_08_detect_motion.py.
Attach your USB webcam or Raspberry Pi camera and then run the
program. Try moving your hand in front of the field of view, and you
should see a message that says “Movement detected”:

import cv2
import numpy as np
from imutils.video import VideoStream
from imutils import resize

diff_threshold = 1000000

vs = VideoStream(src=0).start()

def getImage():
 im = vs.read()
 im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
 im = cv2.blur(im, (20, 20))
 return im

old_image = getImage()

while True:
 new_image = getImage()
 diff = cv2.absdiff(old_image, new_image)
 diff_score = np.sum(diff)
 # print(diff_score)
 if diff_score > diff_threshold:
 print("Movement detected")
 old_image = new_image

If you get too many false alarms, then increase the value of
diff_threshold. You might also want to uncomment the
line print(diff_score), as this will show you what sort of difference
values are being detected.
The results are improved by setting the image to grayscale and applying a
blur filter.

Discussion
Successive frames of the image might look like Figures 8-4 and 8-5. When
the first image is subtracted from the second, the resulting image will look
like Figure 8-6.

Figure 8-4. Movement detection, frame 1

Figure 8-5. Movement detection, frame 2

Figure 8-6. Movement detection, the difference image

Although the code for this recipe just displays a message, there is no reason
why your code shouldn’t turn on a light, or perform some other action using
the GPIO pins.

See Also
For information on installing OpenCV, see Recipe 8.1.
For information on setting up a camera, see Recipe 8.2.
An alternative way to detect movement is to use a passive infrared (PIR)
sensor; see Recipe 13.9.

8.7 Extracting Text from an Image

Problem
You want to be able to convert an image containing text to actual text.

Solution
Use the Tesseract optical character recognition (OCR) software to extract
text from the image. To install Tesseract, run the following commands (you
will probably want to copy and paste this from the file long_commands.txt
in the book downloads [Recipe 3.22]):

$ sudo apt install tesseract-ocr
$ sudo apt install libtesseract-dev

To try out Tesseract, you will need an image file that contains some text.
You will find one called ocr_test.tiff with the downloads for the book (see
Recipe 3.22). To convert the image to text, run the following command:

$ cd ~/raspberrypi_cookbook_ed4
$ tesseract ocr_test.tiff stdout
Page 1
This is an image

of some text.

If you take a look at the image file ocr_test.tiff, you will see that it is indeed
an image containing those words.

Discussion
Although I used a TIFF image, the tesseract library will work with
most image types, including PDF, PNG, and JPEG files.

See Also
For more information on the tesseract library, see
https://oreil.ly/Evdxw.

https://oreil.ly/Evdxw

Chapter 9. Machine Learning

9.0 Introduction
You may be surprised to hear that your humble Raspberry Pi is a great
platform for experimenting with machine learning. In this chapter you will
experiment with recognizing objects in real-time video, recognizing sounds,
and linking all this to your own Python programs.
Programming a computer involves giving the computer a list of instructions
to follow. A procedure is created to accomplish the thing we want the
computer to do. This is expressed in a programming language such as
Python and works really well for things like storing data or making
calculations. However, it’s quite hard to think of how you would write a
program to respond to a spoken command, or to identify objects in a
photograph. The way humans and other animals learn such things is through
practice. Our brains gradually learn to recognize things through experience.
No program is running in our heads to do these things; we learn to do them.
Machine learning (ML) involves a normal computer running special
machine learning programs (that bit is normal programming) that process
large amounts of data and learn from that data in much the same way as a
brain does. We can, for example, train the computer to recognize spoken
commands by providing it with lots of samples of the commands, along with
other examples and background noise that we want the computer to learn to
ignore.
Most ML is concerned with classification. That is, taking some input and
putting it into a category. For example, this could be taking data about a
sound sample and assigning probabilities as to which of a set of predefined
words or phrases that sample contains. Or, it might be classifying objects in
an image to decide which animal a picture represents or whether that animal
is present in a video stream containing lots of things.

There are various mechanisms for this learning, some of which rely on
conventional statistics and others that use neural network simulations. The
neural network approach uses a conventional program to simulate a network
of neurons like those in a brain. Each neuron has an output that “fires” when
the weighted values of all its input exceed some threshold. These weights
are adjusted during the training process, improving the accuracy of the
neural network, until the neural network is operating acceptably well.
Training is actually often a lot harder than this, and it often requires changes
to the configuration of the neural network rather than just changes to
weights. However, good software can help to automate much of this process.
In this chapter we will start using pretrained models that have been made
from huge sets of data by machine learning experts and are available for us
to use for free, courtesy of TensorFlow. We will look at how we can use
these models to classify objects in video and sounds in real time, and also
how we can hook our own Python code into this process. These standard,
pretrained models do require us to do some conditioning of our video
source.
We will then take a look at the Edge Impulse platform to illustrate creating
and training our own machine learning model. Edge Impulse greatly
simplifies the process of using machine learning by providing a cloud
service that does all the work that needs high-performance computing—the
data preparation and training. Doing all the heavy lifting in the cloud allows
you to download the trained model onto a much lower-power device like the
Raspberry Pi.
TensorFlow and Edge Impulse require the use of a Raspberry Pi 4 or 400. In
addition, you will need a webcam (or Raspberry Pi Camera Module)
connected to your Raspberry Pi and a microphone. The microphone on a
USB webcam will work just fine (just plug it in), or you can use a USB
microphone as described in Recipe 16.6 for the sound projects.
Machine learning is a huge topic about which many books have been
written, so by necessity this chapter is intended only to get you started with
some ML projects.

9.1 Identifying Objects in Video with
TensorFlow Lite

Problem
You want your Raspberry Pi to dynamically identify objects from video.

Solution
Follow Recipe 8.1 to install OpenCV, which will be needed for most of the
recipes in this chapter.
Use a TensorFlow pretrained model with a USB webcam or Raspberry Pi
Camera Module. This will dynamically annotate your video stream as
objects are identified (Figure 9-1).

Figure 9-1. Object identification in a video stream

To run this example, change to your home directory and download the
TensorFlow examples using the command:

$ git clone https://github.com/tensorflow/examples --depth 1

Change directory to the following example project folder, build the project
by running the setup.sh script, and finally run the Python program. This will
annotate the video at about 6 frames per second, identifying all sorts of
things from your webcam or Raspberry Pi Camera Module. Try holding up
various objects for it to identity:

$ sudo apt install libportaudio2

$ cd ~/examples/lite/examples/object_detection/raspberry_pi
$ sh setup.sh
$ python3 detect.py --model efficientdet_lite0.tflite

Discussion
In Chapter 8 we went as far as counting coins. But this relied on classical
image processing techniques, looking for edges in images, looking for
differences between images, etc. This approach relied on controlled lighting
and no machine learning was involved.
Just take a moment to think about what is going on here. This is pretty
amazing: your Raspberry Pi is actually seeing and identifying things. It is
able to do this because the model has been trained on thousands of images of
objects and has learned to distinguish them, or at least hazard a good guess.
And it can do this whatever the angle they are viewed at, whatever the
lighting and background.
One interesting feature of Figure 9-1 is that the small coffee mug in the
author’s hand has been misidentified as a “remote,” perhaps because of the
way it is being held. Even the mistakes are the sort of mistake that a human
might make, because the “seeing” is taking place in a similar way.

See Also
In Recipe 9.2 we will modify this example program to run some of our own
code when an object of interest is detected.
You can use other ready-trained TensorFlow Lite models. Learn more about
TensorFlow at https://www.tensorflow.org.

9.2 Reacting to Objects in Video with
TensorFlow Lite

Problem

https://oreil.ly/YpBVp
https://www.tensorflow.org/

You want to use a Python program to carry out an action when a certain type
of object is identified from a video stream.

Solution
Modify the TensorFlow object identification example from Recipe 9.1 so
that when a particular type of object is detected, some of your own code is
run.
Follow Recipe 9.1 to install the pretrained TensorFlow model for object
detection.
Copy the file ch_09_person_detector.py to the working folder for the object
detection example. Then change to that directory and run the program using
the following commands:

$ cd ~/examples/lite/examples/object_detection/raspberry_pi/
$ cp ~/raspberrypi_cookbook_ed4/python/ch_09_person_detector.py .
$ python3 ch_09_person_detector.py

As with all the program examples in this book, you can download this code
(see Recipe 3.22).
When you run the program, whenever a person is in front of your webcam, a
message will appear in the Terminal saying “Something Detected!”. When
this happens, a date-stamped PNG image file will be created, containing the
image that the Raspberry Pi saw:

$ ls *.png
2022-04-21-05-57-27.png
2022-04-21-05-57-37.png
2022-04-21-06-19-17.png

If you view these files using the File Explorer, then you can double-click
one to open it and view it.

Discussion

The program ch_09_person_detector.py started life as a copy of
TensorFlow’s example program detect.py. The program for this recipe is too
long to list in full here, so you might like to open it in an editor. Here’s the
key part, all contained in the run function:

last_detection_time = 0

Continuously capture images from the camera and run inference
while cap.isOpened():
 success, image = cap.read()
 if not success:
 sys.exit(
 'ERROR: Unable to read from webcam. Please verify your
webcam settings.'
)
 image = cv2.flip(image, 1)

 # Convert the image from BGR to RGB as required by the TFLite
model.
 rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 # Create a TensorImage object from the RGB image.

 input_tensor = vision.TensorImage.create_from_array(rgb_image)

 # Run object detection estimation using the model.
 detection_result = detector.detect(input_tensor)

 # Draw keypoints and edges on input image
 image = utils.visualize(image, detection_result)

 for detection in detection_result.detections:
 object_type = detection.categories[0].category_name
 time_now = time.time()
 if object_type == 'person' and time_now >
last_detection_time + 10:
 print("***********************************")
 print("Person Detected!")
 print("***********************************")
 # do your own thing here !
 last_detection_time = time_now
 ts = "{:%Y-%m-%d-%H-%M-
%S}".format(datetime.datetime.now())
 cv2.imwrite(ts + ".png", image)

Our additions to the code are shown in bold.

The variable last_detection_time keeps track of when a person was
last detected so that it can wait for a while after detecting someone before
writing another file. Otherwise, a lot of files would be created.
The line detection_result =
detector.detect(input_tensor) creates a list of detection events,
each of which might look like this:

Detection(bounding_box=BoundingBox(origin_x=418, origin_y=285,
width=16,
 height=40),
categories=[Category(index=83, score=0.3515625,
display_name='', category_name='book')])

This is a list of tuples, with the first part of the tuple being the bounding box
of the thing detected and the second part a list of categories that the object
could fit, with the most likely first. That means that to get the name of the
category, which will tell us the type of the object, we need to get the first
category in that list [0] and use its category_name.

Iterating over this list of detection_result, we check the time and
then see if the object_type is “person.” If it is, and sufficient time has
elapsed since an object was last detected (10 seconds), the file is saved using
cv2.imwrite using the current date and time as the filename.

You could do all sorts of things with a program like this. For example, you
could detect your pet and make an automated pet feeder that controls a
motor and deposits some food for the animal.

See Also
You can use other ready-trained TensorFlow Lite models. Learn more about
TensorFlow at https://www.tensorflow.org.

9.3 Identifying Sounds with TensorFlow Lite

https://oreil.ly/YpBVp
https://www.tensorflow.org/

Problem
You want to make your Raspberry Pi identify different types of sounds that
it hears with its microphone.

Solution
Use a pretrained TensorFlow model from the TensorFlow examples.
If you have not already done so, change to your home directory and then
download the TensorFlow examples using the command:

$ git clone https://github.com/tensorflow/examples --depth 1

Change directory to the following example project folder, build the project
by running the setup.sh script, and then finally, run the Python program:

$ cd ~/examples/lite/examples/sound_classification/raspberry_pi
$ sh setup.sh
$ python3 classify.py

This will open the window shown in Figure 9-2. Try whistling and making
some other noises and see how the classifier does.

Figure 9-2. Sound identification

Discussion
In this example, anything with a score of less than 0.2 is probably incorrect
—either that or TensorFlow has much better hearing than the author.
However, the top result seems pretty reliable and the model can identify a lot
of different sounds.
Pretrained models like the one used here rely on many thousands of sound
samples that have been carefully categorized. Then the model is carefully
trained on these samples, along with other background noise, to make
something that can usefully identify different sounds.

See Also

See Recipe 9.4 to add your own code to do something when whistling is
detected.
See Recipe 9.6 for training your own network to recognize a spoken
command.

9.4 Reacting to a Whistle with TensorFlow
Lite

Problem
You want your Raspberry Pi to respond to a whistle by running some of your
own Python code.

Solution
First, install the TensorFlow example in Recipe 9.3, and then adapt the
example Python program.
Copy the file ch_09_detect_whistle.py to the working folder for the sound
classification example. Then change to that directory and run the program
using the following commands:

$ cd ~/examples/lite/examples/sound_classification/raspberry_pi/
$ cp ~/raspberrypi_cookbook_ed4/python/ch_09_detect_whistle.py .
$ python3 ch_09_detect_whistle.py

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
When you run the program, you will see something like the following. Every
time you whistle near the microphone, you’ll see the message “Whistling
Detected”:

$ python3 ch_09_detect_whistle.py
Listening for Whistles...
Whistling Detected

Discussion
Let’s take a look at the code for this:

import time
from tflite_support.task import audio
from tflite_support.task import core
from tflite_support.task import processor

model = 'yamnet.tflite'
num_threads = 4
score_threshold = 0.6
overlapping_factor = 0.5

Initialize the audio classification model.
base_options = core.BaseOptions(
 file_name=model, use_coral=False, num_threads=num_threads)
classification_options = processor.ClassificationOptions(
 max_results=1, score_threshold=score_threshold)
options = audio.AudioClassifierOptions(
 base_options=base_options,
classification_options=classification_options)
classifier = audio.AudioClassifier.create_from_options(options)

Initialize the audio recorder and a tensor to store the audio
input.
audio_record = classifier.create_audio_record()
tensor_audio = classifier.create_input_tensor_audio()

We'll try to run inference every interval_between_inference
seconds.
This is usually half of the model's input length to create an
overlapping
between incoming audio segments to improve classification
accuracy.
input_length_in_second = float(len(
 tensor_audio.buffer)) / tensor_audio.format.sample_rate
interval_between_inference = input_length_in_second * (1 -
overlapping_factor)
pause_time = interval_between_inference * 0.1
last_inference_time = time.time()

Start audio recording in the background.
audio_record.start_recording()

print('Listening for Whistles...')

while True:
 tensor_audio.load_from_audio_record(audio_record)

 results = classifier.classify(tensor_audio)
 if len(results.classifications) > 0:
 classification = results.classifications[0]
 if len(classification.categories) > 0:
 top_category = classification.categories[0]
 if top_category.category_name == 'Whistling':
 print('Whistling Detected')
 time.sleep(pause_time)

The code is a simplified version of the TensorFlow example, and like that
example, a lot of the work is hidden away in the AudioClassifier
class, which we can make use of in our programs.
The audio classifier is configured with parameters. Most of these options,
such as max_results and score_threshold, are obvious. The
num_threads option specifies the number of threads of execution
(see Recipe 7.19) devoted to running the example code, and
enable_edge_tpu is used only if you have machine learning accelerator
hardware attached to your Raspberry Pi.
The program will periodically take audio samples, then try to infer the
presence of whistling on them. It does this using overlapping time windows,
so as to make it more likely that no whistles will be missed.
The main while loop checks to see if it’s time to look for whistles again. If
it is, it classifies the audio, and if there is a result, checks to see if it is a
whistle.
The final time.sleep allows your Pi’s processor to get on with other
things for a while before it’s needed for classifying again.

See Also
To hook your own code into video classification, see Recipe 9.2.

9.5 Installing Edge Impulse

Problem

You want to use the Edge Impulse platform to train your own ML model for
use on your Raspberry Pi.

Solution
Much of the work of Edge Impulse takes place on the company’s servers and
is accessed through its website). To use these servers, Edge Impulse, not
unreasonably, asks you to create an account. For noncommercial
“developer” use, this is free.
In addition to the EdgeImpulse website, we also need to install a local part
of the software on our Raspberry Pi. Before you start, it’s a good idea to
make sure that your Raspberry Pi OS is up to date (Recipe 3.40).
Start by running the following commands in a Terminal window:

$ curl -sL https://deb.nodesource.com/setup_12.x | sudo bash -
$ sudo apt install -y gcc g++ make build-essential nodejs sox
gstreamer1.0-tools
 gstreamer1.0-plugins-good gstreamer1.0-plugins-base
 gstreamer1.0-plugins-base-apps
$ npm config set user root && sudo npm install edge-impulse-linux
-g
 --unsafe-perm

Because copying such long commands is error prone and tedious, these
commands are also in the file long_commands.txt in the code for the book
(Recipe 3.22).
We are also going to need the Python interface for Edge Impulse. Edge
Impulse relies on a Python library called NumPy. This needs to be updated
to its latest version:

$ pip3 install numpy --upgrade

Discussion
Edge Impulse is based on the TensorFlow machine learning library that we
used in our earlier recipes. However, it adds a slick and helpful web-based

http://edgeimpulse.com/

user interface and cloud-based servers to make it a lot easier to get started
with training our own ML models.
Although Edge Impulse is now installed onto your Raspberry Pi, we need an
example to run. We’ll explore this in Recipe 9.6.

See Also
The Edge Impulse website has a wealth of material.
Learn about TensorFlow, on which Edge Impulse is based.

9.6 Recognizing a Spoken Command (in the
Cloud)

Problem
You want your Raspberry Pi to be able to recognize a spoken command
using a cloud service.

Solution
After registering on the Edge Impulse website and installing the software on
your Raspberry Pi, use the wizard to train a neural network. You can then
test how well the trained model works in your browser, before running it
locally on your Raspberry Pi.
Go to https://studio.edgeimpulse.com and log in using the account you
created in Recipe 9.5.
You now need to create a new project and give it a name. If you have just
registered with Edge Impulse, the website will probably take you to the New
Project Wizard. Cancel this wizard if it has started, and instead click on the
“+ Create new project” button. This will open a dialog (Figure 9-3) where
you should enter a name for your project; use the name “hey pi.”

http://edgeimpulse.com/
https://www.tensorflow.org/
https://studio.edgeimpulse.com/

Figure 9-3. Creating a new Edge Impulse project

Select the Developer option. This is the free option and imposes a few
constraints on the use of Edge Impulse, which we will not be likely to
exceed.
Clicking on the “Create new project” button takes us to a dialog for
choosing what type of data we are going to be dealing with. However, we’re
going to use the getting started wizard, so close this popup; you’ll return to
the project page for the “hey pizza” project. Scroll to the bottom of the page
and select the option “Launch getting started wizard.” This will warn you
that your project will be cleared out, but that’s fine, so select Yes and then
confirm the action. The Welcome wizard will launch and offer to make your
model in five minutes. Click on the button to accept this option and, for your
phrase to be recognized, use “hey pi” (Figure 9-4) and then click Next.

Figure 9-4. Selecting a phrase to recognize

Now comes the fun part. For our Raspberry Pi to recognize the phrase “hey
pi,” we need to give it lots of examples of us saying that. The wizard will
now ask us to record ourselves saying “hey pi” repeatedly for an oddly
specific 38 seconds (Figure 9-5). You’ll also be asked for access to your
microphone, which you should grant.

Figure 9-5. Collecting sound data

If Edge Impulse needs more data, it may ask you to say the phrase some
more. Eventually, it will have enough samples, and you can move onto the
next step of adding other data.
This other data takes the form of random words and background noise from
Edge Impulse’s collections of such data and will help the neural network to
distinguish “hey pi” from any other sounds that the microphone may be
picking up.
The next step of the wizard is to “Design your Impulse.” An impulse is Edge
Impulse’s way of describing the neural network (or other type of ML model)
as well as the associated preprocessing of data. In designing the impulse, we

also get the opportunity to look inside the model and gain some reassurance
about how this is all working.
If you want to take a look at what’s going on behind the wizard, you can
just close the wizard overlay and then continue with it later. For
example, Figure 9-6 shows what’s called a feature explorer view of the
sound samples, where samples of “hey pi,” noise, and other random phrases
are all plotted in a 3D space. The instances of “hey pi” are all clustered
together, indicating a good recognition by the impulse.

Figure 9-6. Exploring features

When the wizard resumes, its next step is to train the neural network. This
takes a few minutes as the weights of the neural network are adjusted until it
can accurately identify the phrase: “hey pi.” We can now check out the
impulse and see how well it performs, all within our browser (Figure 9-7).
Note that before letting us play with the impulse, it is built into a deployable
package that we will later be able to deploy onto our Raspberry Pi.

Figure 9-7. Testing the impulse

In Figure 9-7 whenever we say something, or a noise is heard, the impulse
categorizes it as either HEY_PI, NOISE, or UNKNOWN, and against each
of these, it offers a probability. So if you look at the row that starts 488 (the
sample number), you can see that there is an 87% probability that “hey pi”
was detected and very low probability that noise or an unknown sound was
detected.

Discussion
To see how well this speech recognition is working, try getting other people
to say “hey pi” or try saying similar phrases yourself.
This makes a very impressive demonstration. But, at the moment, everything
is happening on the Edge Impulse servers. The only thing happening on our
Raspberry Pi is the passing of sound data from our microphone to Edge
Impulse. In Recipe 9.7 we will look at how we can bring some of the action
back to our Raspberry Pi.

See Also
Edge Impulse has a lot of useful documentation.

9.7 Recognizing a Spoken Command
(Locally)

Problem
You want your Raspberry Pi to be able to recognize a spoken command
locally, without relying on the internet.

Solution
If you haven’t already done so, you’ll need to follow Recipes 9.5 and 9.6.
To run our phrase recognition impulse locally on the Raspberry Pi, we can
download it and then run it using the Edge Impulse Linux runner. This will

https://oreil.ly/QmEWg

already be installed as part of Recipe 9.5.
Run the following command (note that if this is the first time that you are
doing this, then you don’t need the --clean option):

$ edge-impulse-linux-runner --clean
Edge Impulse Linux runner v1.3.5
? What is your user name or e-mail address (edgeimpulse.com)?
 anonymised@email.com
? What is your password? [hidden]

[RUN] Downloading model...
[BLD] Created build job with ID 2540059
[BLD] Writing templates...
.... lots of build messages
[BLD] Building binary OK
[RUN] Downloading model OK
[RUN] Stored model version in /home/pi/.ei-linux-
runner/models/93963/v2/model.eim
[RUN] Starting the audio classifier for Simon / hey pi (v2)
[RUN] Parameters freq 16000Hz window length 1000ms. classes
 ['hey_pi', 'noise', 'unknown']
? Select a microphone USB-Audio - HD Pro Webcam C920
[RUN] Using microphone hw:2,0
classifyRes 11ms. { hey_pi: '0.0049', noise: '0.9479', unknown:
'0.0472' }
classifyRes 5ms. { hey_pi: '0.9590', noise: '0.0001', unknown:
'0.0409' }
classifyRes 5ms. { hey_pi: '0.9899', noise: '0.0000', unknown:
'0.0101' }
q

This is actually quite a lengthy process, with a lot of build messages
appearing in the Terminal, that I have omitted from the preceding transcript.
When you run the command, you will be asked for your Edge Impulse login
details (email and password). This will start the process of building and
downloading the impulse into a compact form that you can run on your
Raspberry Pi. Building takes a while, but it only needs to be done once.
Once the build process is complete, you will be prompted to select the
microphone that you want to use and finally your Raspberry Pi will start

listening to you, and reporting the results of each sample it hears and
providing a probability of each sample being “hey pi.”

Discussion
The really neat thing about this process is that our advanced machine
learning model has been built and compressed into a form that we can run on
a relatively modestly powerful Raspberry Pi. You can see information about
this from the Edge Impulse Dashboard.
Take a little time to explore the information there. In particular, try clicking
on Transfer Learning from the Impulse Design option on the sidebar
(Figure 9-8).

Figure 9-8. Details of the deployed impulse

As you can see, among other interesting information, the deployed impulse
can run in 45k bytes of memory and requires only about 123k bytes of
permanent storage.
Although we can now run the impulse directly on our Raspberry Pi, it would
be nice to get this to work with Python so that we can write our own projects
using Edge Impulse. This is the topic of Recipe 9.8.

See Also
You can find documentation for Edge Impulse on Linux
at https://oreil.ly/9gCre.

9.8 Responding to a Spoken Command in
Python

Problem
Seeing the Edge Impulse system recognize a spoken phrase is pretty
amazing, but you want to take this a step further and have it trigger an action
in your own Python program.

Solution
First of all, set up Edge Impulse by following Recipe 9.5, and then create a
trained impulse by following Recipe 9.6.
Next, you need to install the Python SDK (software development kit):

$ sudo apt install libatlas-base-dev libportaudio0 libportaudio2
libportaudiocpp0
 portaudio19-dev
$ pip3 install edge_impulse_linux -i https://oreil.ly/ua1nS

I found that I had to update my version of the Python NumPy library and
install the PyAudio module by running:

$ pip3 install numpy --upgrade
$ pip3 install pyaudio

Next, let’s download the trained model from the Edge Impulse server using
the following command:

https://oreil.ly/9gCre

$ edge-impulse-linux-runner --download modelfile.eim

The program 09_hey_pi.py listed as follows will respond by printing “Hello
you!” every time it hears the phrase “hey pi.” Before running it, you may
need to change the line audio_device_id from 2 to the ID for your
microphone:

import sys
import signal
from edge_impulse_linux.audio import AudioImpulseRunner

modelfile = '/home/pi/modelfile.eim'
audio_device_id = 2

runner = None

def signal_handler(sig, frame):
 print('Interrupted')
 if (runner):
 runner.stop()
 sys.exit(0)

signal.signal(signal.SIGINT, signal_handler)

with AudioImpulseRunner(modelfile) as runner:
 try:
 model_info = runner.init()
 labels = model_info['model_parameters']['labels']
 print('Loaded runner for "' + model_info['project']
['owner'] + ' / ' +
 model_info['project']['name'] + '"')

 for res, audio in
runner.classifier(device_id=audio_device_id):
 score = res['result']['classification']['hey_pi']
 if (score > 0.7):
 print('Hello you!')

 finally:
 if (runner):
 runner.stop()

Run the program and try experimenting with different phrases to see how
accurate the detection of “hey pi” is:

$ python3 07_hey_pi.py
Loaded runner for "Simon / Hey Pi"
selected Audio device: 2
Hello you!
Hello you!
Hello you!

Discussion
The program is based around the AudioImpulseRunner from the Edge
Impulse Python library. This runner repeatedly listens to audio samples and
then attempts to classify the sounds it hears. In this case, it’s determining if
the phrase “hey pi” has been heard. This runner holds the microphone as a
resource, so it is important that if Ctrl-C is pressed to stop the program, the
code ends neatly, releasing the audio device. That is where the
signal_handler function comes in, linked to signal.SIGINT (Ctrl-
C).
Inside the runner’s with/as block, the runner is first initialized
using runner.init() and then details of the model being used are
displayed.
The for loop effectively iterates over an endless stream of results supplied
by runner.classifier. Each result has a score, and if the score is
greater than 0.7, the message “Hello you!” is printed. The threshold of 0.7 is
quite low, so you’ll find that you can fool your Pi into responding using
similar phrases. Try increasing it to 0.95.

See Also
Although all we are doing here is printing a message when the phrase is
detected, there is no reason why we couldn’t use this to control hardware
using the GPIO pins (Recipe 10.1) or with some of the recipes
in Chapter 18.

Chapter 10. Hardware Basics

10.0 Introduction
This chapter contains some basic recipes for setting up and using the
Raspberry Pi’s general-purpose input/output (GPIO) connector. This
connector enables you to connect all sorts of interesting electronics to your
Raspberry Pi.

10.1 Finding Your Way Around the GPIO
Connector

Problem
You need to connect electronics to the GPIO connector, but first you need to
know more about what all the pins do.

Solution
There have been three versions of the Raspberry Pi GPIO connector: two
26-pin layouts for the original Raspberry Pi, and one 40-pin layout that was
introduced with the Raspberry Pi “+” models and has been in use ever
since.
A 26-pin Raspberry Pi is more of a vintage collectible than a practical
computer, and you’ll likely find it slow and incompatible with a whole slew
of software. So, for practical terms, you’ll probably need to get a Raspberry
Pi 4 or 400, or at least a Pi 3.
Figure 10-1 shows the current 40-pin layout, which is the same for all 40-
pin GPIO Raspberry Pi models right up to the Raspberry Pi 4 and 400.
The top 26 pins are the same as the 26 pins of the original Raspberry Pi
model B revision 2. This allows the 40-pin Raspberry Pi models to use

hardware and software designed for the earlier 26-pin Raspberry Pi designs.
The extra pins of the 40-pin connector are made up of three useful extra
GND connections and nine GPIO pins. The ID_SD and ID_SC pins are
intended for use in communicating with a special serial memory chip,
which can be included on interface boards that conform to the hardware
attached on top (HAT) standard and allows the Raspberry Pi to identify the
board (see the Discussion section).

Figure 10-1. The GPIO pinout (40-pin models)

At the top of the connector, there are 3.3V and 5V power supplies. The
GPIO uses 3.3V for all inputs and outputs. Any pin with a number next to it
can act as a GPIO pin. Those that have another name after the number also
have some other special purpose: 14 TXD and 15 RXD are the transmit and
receive pins of the serial interface; 2 SDA and 3 SCL form the I2C
interface; and 10 MOSI, 9 MISO, and 11 SCKL form the SPI interface.

3V Only
The GPIO connector has both 3V (actually 3.3V) and 5V power pins. This gives the false
impression that the Raspberry Pi is OK with you connecting 5V electronics to it. Although it can
supply 5V power to a device, all connections to GPIO pins on the Pi must be 3V, or they will
damage your Raspberry Pi. Typically, connecting a 5V connection to a GPIO pin will burn out
that pin and possibly the whole of the Raspberry Pi’s processor.

Discussion
Working out which pin is which on a Raspberry Pi is quite error prone if
you rely on counting down the pin connector to find the pin you need. A
better way of finding the correct pin is to use a GPIO template like the
Raspberry Leaf shown in Figure 10-2.

Figure 10-2. The Raspberry Leaf GPIO template

This template fits over the GPIO pins, indicating which pin is which. Other
GPIO templates include the Pi GPIO reference board.
The HAT standard is an interface standard that you can use with the
Raspberry Pi 4, 3, 2, B+, A+, and Zero. This standard does not in any way
stop you from just using GPIO pins directly; however, interface boards that
conform to the HAT standard can call themselves HATs. HATs differ from
regular Raspberry Pi interface boards in that they must contain a little
electrically erasable programmable read-only memory (EEPROM) chip that
is used to identify the HAT so that ultimately the Raspberry Pi can
autoinstall necessary software. As of this writing, HATs have not quite met
that level of sophistication, but the idea is a good one. The pins ID_SD and
ID_SC are used to communicate with a HAT EEPROM.

See Also
The Raspberry Pi GPIO connector has only digital inputs and outputs; it
doesn’t have the analog inputs found on some similar boards. You can get
around this shortcoming by using a separate analog-to-digital converter
(ADC) chip (Recipe 14.7) or by using resistive sensors (Recipe 14.1).
For an example of a HAT, see the Sense HAT described in Recipe 10.15.

10.2 Using the GPIO Connector on a
Raspberry Pi 400

Problem
The GPIO connector on the Raspberry Pi 400 is a little hard to reach
because it’s on the back and recessed. How do I access it easily?

Solution
The pinout of the GPIO connector on a Raspberry Pi 400 is the same as all
the 40-pin GPIO Raspberry Pis. To make it easier to attach jumper wires to
the connector, use a GPIO adapter like the MonkMakes GPIO Adapter for
Pi 400 shown in Figure 10-3.

https://oreil.ly/Nb5ez

Figure 10-3. A Raspberry Pi 400 GPIO adapter and template

Other types of GPIO adapters are available from SparkFun, Pi Hut, and
others.

Discussion
You are unlikely to want to embed a bulky and relatively expensive Pi 400
into your electronics project. However, if your goal is to learn about
electronics with your Pi 400, then an adapter is a lot easier than trying to
attach jumper wires to the back of the Pi 400.
HATs don’t fit onto the Pi 400 without an adapter either, so a GPIO adapter
also allows add-on HATs to be used with the Pi 400, such as the Sense HAT
shown in Figure 10-4.

Figure 10-4. A Raspberry Pi 400 with Sense HAT

There are a few add-on boards (Adafruit calls them bonnets) designed to
work well with the Pi 400, such as the Air Quality board shown in
Figure 10-5, the Pimoroni Breakout Garden for Pi 400, and the Adafruit
Cyberdeck Bonnet.

Figure 10-5. The Air Quality board for Raspberry Pi 400

See Also
For more information on the Sense HAT pictured in Figure 10-4, see Recipe
10.15.

10.3 Keeping Your Raspberry Pi Safe When
Using the GPIO Connector

Problem
You want to connect external electronics to your Raspberry Pi and don’t
want to accidentally damage or break it.

Solution
Obey these simple rules to reduce the risk of damaging your Raspberry Pi
when using the GPIO connector:

Do not poke at the GPIO connector with a screwdriver or any metal
object when the Pi is powered up.
Do not connect electronic components to the GPIO pins or a breadboard
with the Raspberry Pi powered on.
Do not power the Pi with more than 5V.
Always connect the Raspberry Pi GND pin to the GND connection of
whatever device you are attaching.
Do not put more than 3.3V on any GPIO pin being used as an input.
Do not draw more than 16mA per output; keep the total for all outputs
below 100mA on a 40-pin Raspberry Pi and below 50mA for an old 26-
pin Raspberry Pi.
When using LEDs, 3mA is enough to light a red LED reasonably
brightly with a 470Ω series resistor.
Do not draw more than a total of 250mA from the 5V supply pins for
Raspberry Pi models 1 to 3. For the Pi 4, 5V power comes directly from
USB, so the maximum depends on your power supply. 1A is a
reasonable maximum with a 3A power supply.

Discussion
There is no doubt about it: the Raspberry Pi is a little fragile when it comes
to adding external electronics. The newer Raspberry Pi models are a bit
more robust but still quite easy to break. Exercise caution and check what
you have done before you power up the Raspberry Pi, or you run the risk of
having to replace it.

See Also
Read this very good discussion of the Raspberry Pi’s GPIO output
capabilities.

10.4 Setting Up I2C

https://oreil.ly/RGot4

Problem
You want to set up the I2C bus (Inter-Integrated Circuit) so that you can use
some add-ons that require it with your Raspberry Pi.

Solution
In the latest versions of Raspberry Pi OS, enabling I2C is simply a matter of
using the Raspberry Pi Configuration tool that you will find on the
Raspberry Menu, under Preferences (Figure 10-6). On the Interfaces tab,
click the toggle switch for I2C to turn it on and then click OK.

Figure 10-6. Enabling I2C using the Pi Configuration tool

On older versions of Raspberry Pi OS, or if you prefer the command line,
the raspi-config utility does the same job.

Start raspi-config using the following command:

$ sudo raspi-config

Then, from the menu that appears, select Interfacing Options and scroll
down to I2C (Figure 10-7).

Figure 10-7. Enabling I2C using raspi-config

You are then asked, “Would you like the ARM I2C interface to be
enabled?” to which you should respond Yes. You will also be asked if you
want the I2C module loading at startup, to which you should also respond
Yes.

At this point, you’ll probably also want to install the Python I2C library
using this command:

$ sudo apt install python-smbus

You will then need to reboot the Raspberry Pi for the changes to take effect.

Discussion

Using I2C modules is a really good way of interfacing with the Pi. It
reduces the number of wires that you need to connect everything (to just
four), and some really neat I2C modules are available.
However, don’t forget to calculate the total of the current used by the I2C
modules and make sure that it doesn’t exceed the limits specified in Recipe
10.3.
Figure 10-8 shows a selection of I2C modules available from Adafruit.
Other suppliers, such as SparkFun, also have I2C devices. From left to right
in the figure, there are LED matrix displays; a four-digit, seven-segment
LED display; a 16-channel PWM/servo controller; and a real-time clock
module.

Figure 10-8. I2C modules

Other I2C modules include FM radio transmitters, ultrasonic range finders,
OLED (organic light-emitting diode) displays, and various types of sensors.

See Also
See some of the I2C recipes in this book, including Recipes 12.3,
15.1, and 15.2.

10.5 Using I2C Tools

Problem
You have an I2C device attached to your Raspberry Pi, and you want to
check that it is attached properly and find the correct I2C address to use
with the device.

Solution
Install and use i2c-tools.

TIP
On newer distributions, you might find that i2c-tools is already installed.

From a Terminal window on your Pi, type the following commands to fetch
and install the i2c-tools:

$ sudo apt install i2c-tools

Attach your I2C device to the Pi and run the command:

$ sudo i2cdetect -y 1

Note that if you are using a very old Raspberry Pi revision 1 board, you
need to change 1 to 0 in the preceding line of code.

If I2C is available, you will see some output like that shown in Figure 10-9,
which indicates that two I2C addresses are in use—0x68 and 0x70.

HEXADECIMAL
Hexadecimal (or just hex) is a way of representing numbers using the number base 16 rather
than the number base 10 that we use in everyday life.

In hexadecimal, each digit can have one of sixteen possible values. In addition to the familiar
digit values of 0 to 9, hex uses the letters A to F; the letter A represents decimal 10, and F
decimal 15.

There is no particular reason to use hex over decimal, except that in the unlikely event that you
want to convert a number into binary, it’s much easier to do from hex than decimal.

To avoid confusion as to whether a number is being represented in decimal or hex, it is common
to prefix hex numbers with 0x. In the preceding example, the hex number 0x68 is (in decimal) 6
x 16 + 8 = 104, and 0x70 is 7 x 16 = 112.

Figure 10-9. i2c-tools

Discussion
i2cdetect is a useful diagnostic tool and worth running the first time
you use a new I2C device.
You need to ensure that the I2C address used by the device is the same as
that required by the software. You’ll sometimes find little switches or solder
bridges that can be used to change the I2C address of the device. This is

especially useful if you have more than one device with the same address
connected to the same Raspberry Pi.

See Also
See some of the I2C recipes in this book, including Recipes 12.3,
15.1, and 15.2.
For more information on installing with apt, see Recipe 3.17.

10.6 Setting Up SPI

Problem
You have a device that uses the Serial Peripheral Interface (SPI) bus, and
you want to use the device with your Raspberry Pi.

Solution
By default, SPI is disabled in Raspberry Pi OS. To enable it, the procedure
is almost the same as Recipe 10.4. On the Raspberry Menu, under
Preferences, open the Raspberry Pi Configuration tool (Figure 10-10). Go
to the Interfaces tab, click the toggle switch for SPI, and click OK.

Figure 10-10. Enabling SPI using the Pi Configuration tool

On older versions of Raspberry Pi OS, or if you prefer the command line,
use the raspi-config utility:

$ sudo raspi-config

Select Interfacing Options, followed by SPI, and then respond Yes before
rebooting your Raspberry Pi. After the reboot, SPI will be available.

Discussion
SPI allows serial transfer of data between the Raspberry Pi and peripheral
devices, such as ADCs and port expander chips (for extra GPIO pins),
among other devices.
You can check that SPI is working with the following command:

$ ls /dev/*spi*
/dev/spidev0.0 /dev/spidev0.1

If, instead of spidev0.0 and spidev0.1 being reported, nothing
appears, it means that SPI is not enabled.

See Also
We use an SPI analog-to-digital converter chip in Recipe 14.7.

10.7 Installing pySerial for Access to the
Serial Port from Python

Problem
You want to use the serial port receive and transmit (RXD and TXD pins)
on the Raspberry Pi using Python.

Solution
First, enable the serial port using Recipe 2.6.
Then, install the pyserial library:

$ sudo pip3 install pyserial

Discussion
The library is pretty easy to use. Create a connection by using the following
syntax:

ser = serial.Serial(DEVICE, BAUD)

DEVICE is the device for the serial port (/dev/serial0) and BAUD is
the baud rate as a number, not a string. The RXD and TXD pins on the
GPIO connector are mapped to the Linux device /dev/serial0, and 9600 is
the closest there is to a standard baud rate and is used by many devices:

ser = serial.Serial('/dev/serial0', 9600)

After a connection is established, you can send data over serial like this:

ser.write('some text')

Listening for a response normally involves a loop that reads and prints, as
illustrated in this example:

while True:
 print(ser.read())

See Also
You will need to use this technique in recipes that connect hardware to the
serial port, such as Recipe 13.10.

10.8 Installing Minicom to Test the Serial Port

Problem
You want to send and receive serial commands from a Terminal session.

Solution
Install Minicom:

$ sudo apt install minicom

After Minicom is installed, you can start a serial communication session
with a serial device connected to the RXD and TXD pins of the GPIO
connector using this command:

$ minicom -b 9600 -o -D /dev/serial0

The parameter after -b is the baud rate, and the parameter after -D is the
serial port. Be sure to use the same baud rate as the one on the device you
are communicating with.
This will start a Minicom session. A peculiarity of the (very old) Minicom
standard is that nothing appears on the screen when you type. So, one of the
first things you want to do is turn on local Echo so that you can see the
commands as you type. To do this, press Ctrl-A and then Z; you’ll see the
command list shown in Figure 10-11. Press E to turn on local Echo.

Figure 10-11. Minicom commands

Now, anything you type will be sent to the serial device, and all messages
coming from the device will also be displayed.

Discussion
Minicom is a great tool for checking out the messages coming from a serial
device or for making sure that it’s working.

See Also
Check out the Minicom documentation.
If you want to write a Python program to handle the serial communications,
you will need the Python pyserial library (Recipe 10.7).

10.9 Using a Breadboard with Jumper Leads

Problem
You want to do some electronic prototyping using your Raspberry Pi and a
solderless breadboard.

Solution
Use male-to-female jumper wires and a GPIO pin label template like the
Raspberry Leaf (Figure 10-12).

https://oreil.ly/fVKAF

Figure 10-12. Connecting Raspberry Pi to a breadboard using male-to-female jumper wires

Discussion
It’s not always easy to identify the pins that you want on a bare Raspberry
Pi board. You can greatly simplify this by printing out a template, like the
Raspberry Leaf, to fit over the pins.
It’s also useful to have a selection of male-to-male jumper wires for making
connections from one part of the breadboard to another.
Female-to-female jumper wires are useful for connecting modules with
male header pins directly to the Raspberry Pi, when no other components
might warrant the use of a breadboard.

A good way of getting a breadboard, Raspberry Leaf, and set of jumper
wires is to buy a starter kit based around a breadboard, like the Project Box
1 kit for Raspberry Pi from MonkMakes.

See Also
We fully discuss an example of connecting an LED in Recipe 11.1.

10.10 Using a Raspberry Squid

Problem
You want to connect an RGB LED to your Raspberry Pi without having to
build something on a breadboard.

Solution
Use a Raspberry Squid RGB LED (Figure 10-13).
The Raspberry Squid is an RGB LED with built-in series resistors and
female header leads; thus, it can be plugged directly onto the GPIO pins of
a Raspberry Pi. The Squid has color-coded leads. The black lead goes to
one of the GPIO GND pins, and the red, green, and blue leads go to GPIO
pins used for the red, green, and blue channels. The red, green, and blue
outputs can be simple digital outputs or pulse-width modulation (PWM)
outputs (Recipe 11.3) that allow you to mix different colors.
You can find instructions for making your own Squid, but you can also buy
a ready-made Squid.
The gpiozero Python library comes pre-installed on Raspberry Pi OS
and has support for RGB LEDs like the Squid.

https://oreil.ly/ldYBL
https://oreil.ly/BApSy
http://monkmakes.com/

Figure 10-13. The Raspberry Squid

As with all the program examples in this book, you can download this
program (see Recipe 3.22). The file is called ch_10_squid_test.py. This
program tells you pretty much all you need to know about using the
Raspberry Squid:

from gpiozero import RGBLED
from time import sleep
from colorzero import Color

led = RGBLED(18, 23, 24)
led.color = Color('red')
sleep(2)
led.color = Color('green')
sleep(2)
led.color = Color('blue')
sleep(2)
led.color = Color('white')
sleep(2)

Having imported the various modules you need, you can create a new
RGBLED object, supplying the three pins to be used for its red, green, and
blue channels (in this case, 18, 23, and 24). You can then set the color by
using the led.color = command, which expects a color.

The color is supplied using the Color class from the colorzero
module. This enables you to specify a color by name, as we did here (most
work), or by specifying the separate red, green, and blue color values. For
example, the following would set the LED to red:

led.color = Color(255, 0, 0)

After the color is set, time.sleep(2) is used to create a two-second
delay before the next color change.

Discussion
You do not need to use all three color channels of a Squid, and it can be
quite handy to just check that a GPIO pin is turning on and off as you

expect before attaching some other electronics to it.

See Also
For information on the Squid Button, see Recipe 10.11.
Recipe 11.11 is an example project that controls an RGB LED (Squid- or
breadboard-based).

10.11 Using a Raspberry Squid Button

Problem
You want to connect a push switch to your Raspberry Pi without having to
build something on a breadboard.

Solution
Use a Squid Button.
The Squid Button (Figure 10-14) is a push button with female header leads
connected to the contacts so that you can plug it directly into the GPIO
connector of a Raspberry Pi. The Squid Button also includes a low-value
resistor that limits the current that would flow if the Squid Button were to
be accidentally connected to a digital output rather than a digital input.

Figure 10-14. A Squid Button

You can use the Squid Button directly with the gpiozero library, as the
following example shows. As with all the program examples in this book,
you can download it (see Recipe 3.22). The file is called
ch_10_button_test.py:

from gpiozero import Button
import time

button = Button(7)

while True:
 if button.is_pressed:
 print(time.time())

The number (in this case, 7) indicates the GPIO pin that the button is
connected to. The other pin is connected to GND.
When the button is pressed, the timestamp in seconds is printed.

Discussion
The Squid Button is useful for testing projects that use a digital input, but
because the button is suitable for panel mounting, you can also build it into

more permanent projects.

See Also
For more information on using switches, see Recipes 13.1 through 13.6.
For information on the Squid RGB LED, see Recipe 10.10.

10.12 Converting 5V Signals to 3.3V with Two
Resistors

Problem
The Raspberry Pi operates at 3.3V, but you want to connect the 5V output
of an external module to a GPIO pin on the Pi without damaging it.

Solution
Use a pair of resistors as a potential divider to reduce the output voltage.
Figure 10-15 shows how you might use the 5V serial connection of an
Arduino Uno to a Raspberry Pi.
On the Raspberry Pi, GPIO14 is also the TXD pin and GPIO15 is the RXD
pin.
To make this recipe, you will need:

270Ω resistor (see “Resistors and Capacitors” in Appendix A)
470Ω resistor (see “Resistors and Capacitors” in Appendix A)

Figure 10-15. Using resistors to convert a 5V signal to 3.3V

The TXD signal from the Pi is a 3.3V output. This can be connected
directly to a 5V input on the Arduino without any problem. The Arduino
module will recognize anything over about 2.5V as being high.
The problem arises when you need to connect the 5V output of the Arduino
module to the RXD pin of the Pi. You must not connect this directly to the
RXD input—the 5V signal could damage the Pi. Instead, the two resistors
shown in Figure 10-15 are used.

Discussion
The resistors used here will draw a current of 6mA. Given that the Pi uses a
fairly hefty 500mA, this will not noticeably affect the current consumption
of the Pi.
If you want to minimize the current used by the potential divider, use larger
value resistors, scaled proportionally—for example, 27kΩ and 47kΩ, which
will draw a miserly 60µA.

See Also

If you have multiple signals to convert between 3.3V and 5V, it’s probably
best to use a multichannel level converter module—see Recipe 10.13.

10.13 Converting 5V Signals to 3.3V with a
Level Converter Module

Problem
The Raspberry Pi operates at 3.3V. You want to connect a number of 5V
digital pins to GPIO pins on the Pi without damaging it.

Solution
Use a bidirectional level converter module, such as the ones shown in
Figure 10-16.
These modules are very easy to use. One side has the power supply at one
voltage and a number of channels that can be either inputs or outputs at that
voltage. The pins on the other side of the module have a power pin at the
second voltage, and all the inputs and outputs on that side are automatically
converted to the voltage level for that side.

Figure 10-16. Level converter modules

Discussion
These level converters are available with differing numbers of channels.
The two shown in Figure 10-16 have four and eight channels.
You can find sources for such level converters in Appendix A.

See Also
See Recipe 10.12, especially if you have only one or two levels to convert.
Normally 5V logic inputs will accept 3.3V outputs without a problem;
however, in some instances, such as when using LED strips (Recipe 15.5),
this might not be the case, and thus you could use one of the just-described
modules to raise the logic level.

10.14 Powering a Raspberry Pi with a LiPo
Battery

Problem
You want to power your Raspberry Pi from a 3.7V lithium-ion polymer
(LiPo) battery.

Solution
Use a boost regulator module (Figure 10-17). The module shown is from
SparkFun, but similar, less-expensive designs are available on eBay.
As always with such low-cost purchases from eBay, you should test the
module thoroughly before using it. They do not always work exactly as
advertised, and quality can be quite variable.
The advantage of this kind of module is that it acts as a voltage regulator to
supply 5V to the Pi and also has a USB socket of its own to supply power to
its charging circuit. If you plug the Pi’s power adapter into the socket on the
charger, the Pi will be powered and the battery charged, allowing you to
unplug the USB power and use the Pi on the battery for as long as it has
enough power.
With a 1300mA LiPo battery, you can expect the Pi to be powered for two
or three hours.

Figure 10-17. Powering a Raspberry Pi with a 3.7V LiPo battery

Discussion
If you plan to handle the charging of the battery elsewhere, you can just go
for a boost converter module, without the charger, at a lower cost.
Battery power is far more practical for earlier versions of Raspberry Pi such
as models 2 and 3, but the 4 uses a lot more current (a 3A power supply is
recommended).

Alternatively there are LiPo battery-based portable 5V USB battery packs
that can be used to power your Raspberry Pi and effectively replicate the
previously described approach, but as a cased consumer product. But make
sure you get one that can supply enough current for your model of
Raspberry Pi (see Recipe 1.4).

See Also
Find out more about SparkFun’s charger booster module at
https://oreil.ly/UoXQm.

10.15 Getting Started with the Sense HAT

Problem
You want to know how to use a Raspberry Pi Sense HAT.

Solution
The Raspberry Pi Sense HAT (Figure 10-18) is a useful and somewhat
confusingly named interface board for the Raspberry Pi. Yes, it includes
sensors—in fact, it can measure temperature, relative humidity, and
atmospheric pressure (Recipe 14.12). It also has an accelerometer, a
gyroscope (Recipe 14.16), and a magnetometer (Recipe 14.15) for
navigation-type projects. It also has a full-color 8×8 LED matrix display
(Recipe 15.3).

https://oreil.ly/UoXQm

Figure 10-18. The Raspberry Pi Sense HAT

Put the Sense HAT onto your Raspberry Pi before powering it up.
Raspberry Pi OS already includes all the software that you need for the
Sense HAT. The Sense HAT uses I2C, so you need to follow the usual I2C
setup (Recipe 10.4).

Discussion
More recipes that use the Sense HAT are in this book, but for now, you can
just check that everything is working by using the following to open a
Python console:

$ sudo python3

Then enter the following commands into the console:

>>> from sense_hat import SenseHat
>>> hat = SenseHat()
>>> hat.show_message('Raspberry Pi Cookbook')

The message “Raspberry Pi Cookbook” should then scroll across the screen
of the LED matrix.

See Also
See the programming reference for the Sense HAT.
To measure temperature, humidity, and atmospheric pressure, see Recipe
14.12.
To use the Sense HAT’s accelerometer and gyroscope, see Recipe 14.16.
To use the magnetometer to detect north and detect the presence of a
magnet, see Recipes 14.15 and 14.18, respectively.

10.16 Getting Started with the Explorer HAT
Pro

Problem
You want to know how to get started with the Pimoroni Explorer HAT Pro.

Solution
Plug the HAT into your Raspberry Pi and install the explorerhat Pro
Python library.
Figure 10-19 shows a Pimoroni Explorer HAT Pro on a Raspberry Pi B+.

https://oreil.ly/upoE1

Figure 10-19. A Pimoroni Explorer HAT Pro

The Explorer HAT Pro has some useful input/output options as well as an
area where a small solderless breadboard can be attached. Some of its
features are:

4 LEDs
4 buffered inputs
4 buffered outputs (up to 500mA)
4 analog inputs
2 low-power motor drivers (max 200mA)
4 capacitive touch pads
4 capacitive crocodile clip pads

Here’s a little experiment you can try that makes the built-in red LED blink.
Open an editor and paste in the following code:

import explorerhat, time

while True:
 explorerhat.light.red.on()
 time.sleep(0.5)
 explorerhat.light.red.off()
 time.sleep(0.5)

As with all the program examples in this book, you can download this
program (see Recipe 3.22). The file is called ch_10_explorer_hat_blink.py.

Discussion
The Explorer HAT Pro provides four buffered inputs and outputs—that is,
inputs and outputs that are not connected directly to the Raspberry Pi but
instead are connected to chips on the Explorer HAT Pro. This means that if
you accidentally connect things incorrectly, the Explorer HAT Pro will be
damaged rather than your Raspberry Pi.

See Also
You can use the Explorer HAT Pro for capacitive touch sensing (Recipe
14.21).

10.17 Making a HAT

Problem
You want to create a prototype Raspberry Pi interface board that conforms
to the HAT standard.

Solution

Use a Perma-Proto Pi HAT (Figure 10-20).

Figure 10-20. A Perma-Proto Pi HAT

With the advent of the Raspberry Pi B+ with a 40-pin GPIO header, a new
standard for add-on boards for the Raspberry Pi was defined, called HAT
(hardware attached on top). You do not need to stick to this standard,
especially if you are just making a one-off product for yourself, but if you
are designing a product to sell, it might make sense for you to conform to
the HAT standard.
The HAT standard defines the size and shape of the PCB (printed circuit
board) and also mandates that the PCB have an EEPROM chip soldered
onto the board. This chip is connected to the ID_SD and ID_SC pins of the
GPIO header and in the future will allow some configuration of the Pi and

even automatic loading of software to occur when the Raspberry Pi is
booted up with a HAT attached.
The prototyping area of the board is made up of a breadboard format layout
of two rows of five holes plus power rails down both sides of the board.
If you don’t care about programming the EEPROM, you can stop here.
However, if you want to add your own custom information onto the HAT’s
EEPROM, read on to the Discussion.

Discussion
The HAT standard makes a lot of sense. However, as of this writing,
Raspberry Pi OS does not make use of any information written in the HAT’s
EEPROM. This is likely to change in the future and leads to the exciting
possibility of HATs automatically doing things like enabling I2C and
installing Python libraries for their hardware, just by being present on the
Raspberry Pi.
To write data into the EEPROM, you first need to enable the hidden I2C
port used by the ID_SD and ID_SC pins, which are used to read and write
to the EEPROM. To do that, you will need to edit /boot/config.txt by adding
in or uncommenting the following line:

dtparam=i2c_vc=on

After you do this, reboot your Raspberry Pi; you should then be able to
detect that the I2C EEPROM is attached to the I2C bus using i2c-tools
(Recipe 10.5):

$ i2cdetect -y 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: 50 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

You can see from the result of the i2cdetect command that the
EEPROM has an I2C address of 50. Note that the option -y 0, rather than
the usual -y 1, is used because this is not the normal I2C bus on pins 2
and 3, but rather the I2C bus dedicated to the HAT EEPROM.
To read and write the EEPROM, you need to download some tools using
the following commands:

$ git clone https://github.com/raspberrypi/hats.git
$ cd hats/eepromutils
$ make

Writing to the EEPROM is a three-step process. First, you must edit the file
eeprom_settings.txt. Change at least the product_id, product_version,
vendor, and product fields to be your company name and product name.
Note that lots of other options are in this file, which is well documented.
They include specifying back-powering options, GPIO pins used, and so on.
Second, after editing the file, run the following command to convert the text
file into a file suitable for writing to the EEPROM (rom_file.eep):

$./eepmake eeprom_settings.txt rom_file.eep
Opening file eeprom_settings.txt for read
UUID=7aa8b587-9c11-4177-bf14-00e601c5025e
Done reading
Writing out...
Done.

Finally, copy rom_file.eep onto the EEPROM by running the following
command:

sudo ./eepflash.sh -w -f=rom_file.eep -t=24c32
This will disable the camera so you will need to REBOOT after
this...
This will attempt to write to i2c address 0x50. Make sure there

is...
This script comes with ABSOLUTELY no warranty. Continue only if
you...
Do you wish to continue? (yes/no): yes
Writing...
0+1 records in
0+1 records out
127 bytes (127 B) copied, 2.52071 s, 0.1 kB/s
Done.
pi@raspberrypi ~/hats/eepromutils $

When writing is complete, you can read the ROM back using these
commands:

$ sudo ./eepflash.sh -r -f=read_back.eep -t=24c32
$./eepdump read_back.eep read_back.txt
$ more read_back.txt

See Also
See the Raspberry Pi HAT design guide.
Many ready-made HATs are on the market, including the Stepper Motor
(Recipe 12.8), Capacitive Touch (Recipe 14.21), and 16-Channel PWM
(Recipe 12.3) HATs from Adafruit, as well as the Pimoroni Explorer HAT
Pro (Recipe 10.16).

10.18 Using the Raspberry Pi Zero 2 and Pi
Zero 2 W

Problem
You want to learn more about the Pi Zero 2 and Pi Zero 2 W and how to
make use of them in electronics projects.

Solution

https://oreil.ly/6Zvbx

The small size and low cost of the Pi Zero 2 make it the ideal choice for
embedding in electronics projects. The Pi Zero 2 W adds WiFi and
Bluetooth capabilities to the Pi Zero 2, making it great for small Internet of
Things (IoT) projects.
Figure 10-21 shows a Raspberry Pi Zero 2 W.

Figure 10-21. The Raspberry Pi Zero 2 W

The Pi Zero 2 and Pi Zero 2 W are supplied without header pins attached,
so your first job is likely to be to solder pins onto it. Suitable header pins
are available in Pi Zero starter kits, such as the one supplied by Pi Hut.
It is also possible to buy the Pi Zero 2 W with header pins presoldered, but
that is more expensive than the DIY version.
You can also find so-called hammer pins that are tight fitting and do not
require soldering.

Discussion

With only one USB connector—and a micro-USB OTG (on-the-go)
connector at that—you’ll need a USB adapter and USB hub to be able to
plug in a USB WiFi dongle, keyboard, and mouse in order to set up the Pi
Zero 2.
Alternatively, you can use a console cable as described in Recipe 2.6 to set
up WiFi by editing /etc/network/interfaces, as described in Recipe 2.5.
After that is set up, you can connect to the Pi Zero wirelessly using SSH
(Recipe 2.7).

See Also
For a comparison of the Raspberry Pi models available, see Recipe 1.1.

Chapter 11. Controlling
Hardware

11.0 Introduction
In this chapter, you come to grips with the control of electronics through the
Raspberry Pi’s general-purpose input/output (GPIO) connector.
Most of the recipes require the use of a solderless breadboard and male-to-
female and male-to-male jumper wires (see Recipe 10.9). To maintain
compatibility with older 26-pin Raspberry Pi models, all the breadboard
examples here use only the top 26 pins common to both GPIO layouts (see
Recipe 10.1).
For a kit of parts, and breadboard, that are suitable for many of the recipes
in this chapter, take a look at the Project Box 1 kit for Raspberry Pi.

11.1 Connecting an LED

Problem
You want to know how to connect an LED to the Raspberry Pi.

Solution
Connect an LED to one of the GPIO pins using a 470Ω or 1kΩ series
resistor to limit the current. To make this recipe, you will need the
following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
470Ω resistor (see “Resistors and Capacitors”)
LED (see “OptoElectronics”)

https://oreil.ly/0RI4J

Figure 11-1 shows how you can wire this LED using a solderless
breadboard and male-to-female jumper leads. The LED has positive and
negative leads. The positive lead is the longer and will be the one on the
same row as the resistor in Figure 11-1.
The resistor shown is a 470Ω resistor, which will make the LED shine
brightly without drawing so much current that the Raspberry Pi could be
damaged.

Figure 11-1. Connecting an LED to a Raspberry Pi

Having connected the LED, we need to be able to turn it on and off using
commands from Python.
Start a Python console from the Terminal and enter these commands:

$ sudo python3
>>> from gpiozero import LED
>>> led = LED(18)
>>> led.on()
>>> led.off()
>>>

This will turn your LED on after the led.on() command, and off again
after the led.off() command.

Discussion
LEDs are a very useful, cheap, and efficient way of producing light, but you
do have to be careful how you use them. If they are connected directly to a
voltage source (such as a GPIO output) that is greater than about 1.7 volts,
they will draw a very large current. This can often be enough to destroy the
LED or whatever is providing the current—which is not good if your
Raspberry Pi is providing the current.
You should always use a current-limiting resistor with an LED. The series
resistor is placed between the LED and the voltage source, which limits the
amount of current flowing through the LED to a level that is safe for both
the LED and the GPIO pin driving it.
Raspberry Pi GPIO pins are guaranteed to provide only about 3mA or
16mA of current (depending on the board and number of pins in use)—see
Recipe 10.3. LEDs will generally illuminate with any current greater than
1mA, but they will be brighter with more current. Use Table 11-1 as a guide
to selecting a series resistor based on the type of LED; the table also
indicates the approximate current that will be drawn from the GPIO pin.

Table 11-1. Selecting series resistors
for LEDs and a 3.3V GPIO pin

LED type Resistor Current (mA)

Red 470Ω 3.5

Red 1kΩ 1.5

Orange, yellow, green 470Ω 2

Orange, yellow, green 1kΩ 1

Blue, white 100Ω 3

Blue, white 270Ω 1

As you can see, in all cases it is safe to use a 470Ω resistor. If you are using
a blue or white LED, you can reduce the value of the series resistor

considerably without risk of damaging your Raspberry Pi.
If you want to extend the experiments that you made in the Python console
into a program that makes the LED blink on and off repeatedly, you could
paste the code that you’ll find in ch_11_led_blink.py into an editor (as with
all the program examples in this book, you can download this program [see
Recipe 3.22]):

from gpiozero import LED
from time import sleep

led = LED(18)

while True:
 led.on()
 sleep(0.5)
 led.off()
 sleep(0.5)

To run the command, enter the following:

$ python3 ch_11_led_blink.py

The sleep period of 0.5 seconds between turning the LED on and turning it
off again makes the LED blink once a second.
The LED class also has a built-in method for blinking, as illustrated by this
example:

from gpiozero import LED

led = LED(18)
led.blink(0.5, 0.5, background=False)

The first two parameters to blink are the on time and off time,
respectively. The optional background parameter is interesting because if
you set this to True, your program will be able to continue running other
commands in the background while the LED is blinking.

When you are ready to stop the LED blinking in the background, you can
just use led.off(). This technique can greatly simplify your programs.
The example in ch_11_led_blink_2.py shows this in action:

from gpiozero import LED

led = LED(18)
led.blink(0.5, 0.5, background=True)
print("Notice that control has moved away - hit Enter to
continue")
input()
print("Control is now back")
led.off()
input()

When the program starts, the LED will be set blinking in the background
and the program is free to move onto the next command and print “Notice
that control has moved away - hit Enter to continue.” The input()
command will cause the program to halt and wait for input (you can just
press the Enter key). But notice that before you press Enter, the LED is still
blinking even though the program has moved on to wait for input.
When you do press Enter again, the led.off() command stops the
LED’s background blinking.

See Also
Check out this series resistor calculator.
For more information on using a breadboard and jumper wires with the
Raspberry Pi, see Recipe 10.9.
See the gpiozero documentation on LEDs.

11.2 Leaving the GPIO Pins in a Safe State

Problem

https://oreil.ly/aB6Dd
https://oreil.ly/B3lyu

You want all the GPIO pins to be set to inputs whenever your program exits
to reduce the chance of an accidental short on the GPIO header, which
could damage your Raspberry Pi.

Solution
Whenever you exit a program that uses gpiozero, it will automatically
set all the GPIO pins into a safe input state.

Discussion
Earlier methods of accessing the GPIO pins, such as the RPi.GPIO library,
did not automatically set the GPIO pins to be in a safe input state. Instead,
they required you to call a cleanup function before exiting the program.

If cleanup was not called or the Pi was not rebooted, pins set to be
outputs would remain as outputs after the program has finished. If you were
to start wiring up a new project, unaware of this problem, your new circuit
might accidentally short a GPIO output to one of the supply voltages or
another GPIO pin in the opposite state. A typical scenario in which this
might happen would be if you were to connect a push switch, connecting a
GPIO pin that you had configured as an output and HIGH to GND.
Fortunately for us, the gpiozero library now takes care of this.

See Also
For more information on exception handling in Python, see Recipe 7.10.

11.3 Controlling the Brightness of an LED

Problem
You want to vary the brightness of an LED from a Python program.

Solution

The gpiozero library has a pulse-width modulation (PWM) feature that
enables you to control the power to an LED and its brightness. To try it out,
connect an LED as described in Recipe 11.1 and run this test program
(ch_11_led_brightness.py):

from gpiozero import PWMLED

led = PWMLED(18)

while True:
 brightness_s = input("Enter Brightness (0.0 to 1.0):")
 brightness = float(brightness_s)
 led.value = brightness

The program is included in the code download (see Recipe 3.22).
Run the Python program, and you will be able to change the brightness by
entering a number between 0.0 (off) and 1.0 (full brightness):

$ python ch_11_led_brightness.py
Enter Brightness (0.0 to 1.0):0.5
Enter Brightness (0.0 to 1.0):1
Enter Brightness (0.0 to 1.0):0

Exit the program by pressing Ctrl-C. Ctrl-C is command line for stop what
you are doing; in many situations, it will stop a program entirely.
Note that when controlling an LED’s brightness like this, you must define
the LED as being PWMLED and not just LED.

Discussion
PWM is a clever technique by which you vary the length of pulses while
keeping the overall number of pulses per second (the frequency in Hz)
constant. Figure 11-2 illustrates the basic principle of PWM.

Figure 11-2. Pulse-width modulation

If the pulses are only high for a short amount of time, the LED will appear
dim, whereas if the pulse is high a much higher proportion of the time, the
LED will appear brighter.
By default, the PWM frequency is 100Hz; that is, the LED flashes 100
times per second. You can change this where you define PWMLED by
supplying the optional frequency parameter:

led = PWMLED(18, frequency=1000)

The value is in Hz, so in this case, the frequency is set to 1,000 Hz (1 kHz).
Table 11-2 compares frequencies specified in the parameter to the actual
frequencies on the pin measured with an oscilloscope.

Table 11-2. Requested frequency
against measured frequency

Requested frequency Measured frequency

50 Hz 50 Hz

100 Hz 98.7 Hz

200 Hz 195 Hz

500 Hz 470 Hz

1 kHz 880 Hz

10 kHz 4.2 kHz

You can see that the frequency becomes less accurate as it increases. This
means that this PWM feature is no good for audio (20 Hz to 20 kHz), but
plenty fast enough for controlling the brightness of LEDs or the speed of
motors. If you want to experiment with this yourself, the program is in the
code download and called ch_11_pwm_f_test.py.

See Also
For more information on PWM, see Wikipedia.
Recipe 11.11 uses PWM to change the color of an RGB LED, and Recipe
12.4 uses PWM to control the speed of a DC motor.
For more information on using a breadboard and jumper wires with the
Raspberry Pi, see Recipe 10.9. You can also control the brightness of the
LED with a slider control—see Recipe 11.10.

https://oreil.ly/e6KOZ

11.4 Switching a High-Power DC Device
Using a Transistor

Problem
You want to control the current to a high-power, low-voltage DC device
such as a 12V LED module.

Solution
These high-power LEDs use far too much current to power directly from a
GPIO pin. They also require 12V rather than 3.3V. To control such a high-
power load, you need to use a transistor.
In this case, you’ll use a high-power type of transistor called a metal–
oxide–semiconductor field-effect transistor (MOSFET), which costs less
than a dollar but can handle loads up to 30 amps—many times more than is
required for the high-power LEDs. The MOSFET used is a FQP30N06L
(see “Transistors and Diodes”).
Figure 11-3 shows how you can connect a MOSFET on a breadboard. Make
sure that you correctly identify the positive and negative supply leads for
the LED module.

Figure 11-3. Controlling large currents with a MOSFET

To make this recipe, you will need the following:
Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
1kΩ resistor (see “Resistors and Capacitors”)
FQP30N06L N-Channel MOSFET or TIP120 Darlington transistor (see
“Transistors and Diodes”)
12V power adapter
12V DC LED module

The Python code to turn the LED panel on and off is exactly the same as if
we were controlling a single low-power LED without the MOSFET (see
Recipe 11.1).
You can also use PWM with the MOSFET to control the brightness of the
LED module (see Recipe 11.3).

Discussion

Whenever you need to power anything significant using the GPIO
connector, use batteries or an external power adapter. The GPIO connector
can supply only relatively low currents (Recipe 10.3). In this case, you’ll
use a 12V DC power adapter to provide the power to the LED panel. Pick a
power adapter that has sufficient power handling. Thus, if the LED module
is 5W, you need at least a 12V 5W power supply (6W would be better). If
the power supply specifies a maximum current rather than power, you can
calculate its power by multiplying the voltage by the maximum current. For
instance, a 500mA 12V power supply can provide 6W of power.
The resistor is necessary to ensure that the peak currents that occur as the
MOSFET switches from off to on, and vice versa, do not overload the
GPIO pin. The MOSFET switches the negative side of the LED panel, so
the positive supply is connected directly to the positive side of the LED
panel, and the negative side of the LED panel is connected to the drain of
the MOSFET. The source connection of the MOSFET is connected to
GND, and the MOSFET’s gate pin controls the flow of current from the
drain to the source. If gate voltage is above 2V or so, the MOSFET will turn
on, and current flows through both it and the LED module.

Not Suitable for AC
Do not try to use this circuit for switching 110 or 220V AC. It won’t work and is extremely
dangerous to try. Instead, use Recipe 11.7.

The MOSFET used here is an FQP30N06L. The L at the end means that it
is a logic-level MOSFET whose gate threshold voltage is suitable for use
with 3.3V digital outputs. The non-L version of this MOSFET is also likely
to work just fine, but you can’t guarantee that it will, as the specified range
of gate threshold voltages is 2V to 4V. Therefore, if you were unlucky and
got a MOSFET at the 4V end, it would not switch well.

An alternative to using a MOSFET is to use a power Darlington transistor
like the TIP120. This has a pinout compatible with the FQP30N06L, so you
can keep the same breadboard layout.
This circuit is suitable for controlling the power to other low-voltage DC
devices. The only real exceptions are motors and relays, which require
some extra treatment (see Recipe 11.5).

See Also
Check out the datasheet for the MOSFET.
If you would like to create a graphical user interface with which to control
your LED module, see Recipe 11.9 for a simple on/off control, and Recipe
11.10 for variable control of the brightness with a slider.

11.5 Switching a High-Power Device Using a
Relay

Problem
You want to turn devices on and off that might not be suitable for switching
with a MOSFET.

Solution
Use a relay and small transistor.
Using a transistor by itself (Recipe 11.4) works well for medium loads of a
few hundred mA or a bit more. But for higher currents or for situations
when the controlling electronics need to be electrically isolated from the
device being switched, it is more convenient to use a relay.
Figure 11-4 shows how you can connect a transistor and relay on a
breadboard. Make sure that both the transistor and diode are placed the right
way. The diode has a stripe at one end, and the transistor used here has one
flat side and one curved side.

http://bit.ly/18J3bxT

To make this recipe, you will need the following:
Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
1kΩ resistor (see “Resistors and Capacitors”)
Transistor 2N3904 (see “Transistors and Diodes”)
1N4001 diode (see “Transistors and Diodes”)
5V relay (see “Miscellaneous”)
Multimeter

You can use the same LED blink program that you used in Recipe 11.1. If
all is well, you’ll hear a click from the relay and a beep from the multimeter
each time the contacts are closed. However, relays are slow mechanical
devices, so don’t try to use them with pulse-width modulation (PWM): it
can damage the relay.

Figure 11-4. Using a relay with a Raspberry Pi

Discussion
Relays have been around since the early days of electronics and have the
great advantage of being easy to use, plus they’ll work in any situation in
which a switch would normally work—for example, when you’re switching
AC (alternating current), or in situations for which the exact wiring of the
device being switched is unknown.
If the relay contacts are asked to exceed their specifications, the relay’s life
will be shortened. There will be arcing, and the contacts can eventually fuse

together. There is also the possibility of the relay becoming dangerously
hot. When in doubt, overspecify the relay contacts.
Figure 11-5 shows the schematic symbol, pin layout, and package of a
typical relay.

Figure 11-5. The workings of a relay

A relay is essentially a switch whose contacts are closed when an
electromagnet pulls them together. Because the electromagnet and switch
are not connected electrically in any way, this protects the circuit driving
the relay coil from any high voltages on the switch side.
The downside of relays is that they are slow to operate and will eventually
wear out after many hundreds of thousands of operations. This means they
are suitable only for slow on/off control, and not for fast switching like
PWM.
The coil of a relay requires about 50mA to close the connection. Because a
Raspberry Pi GPIO pin is capable of supplying only about 3mA, you need
to use a small transistor as a switch. You don’t need to use a high-power
MOSFET like you did in Recipe 11.4; you can just use a small transistor
instead. This has three connections. The base (middle lead) is connected to
the GPIO pin via a 1kΩ resistor to limit the current. The emitter is
connected to GND, and the collector is connected to one side of the relay.
The other side of the relay is connected to 5V on the GPIO connector. The
diode is used to suppress any high-voltage pulses that occur when the
transistor rapidly switches the power to the relay’s coil.

WARNING
Although relays can be used to switch 110V or 220V AC, this voltage is very dangerous and
should not be used on a breadboard. If you want to switch high voltages, use Recipe 11.7 instead.

See Also
For switching direct current (DC) using a power MOSFET, see Recipe 11.4.

11.6 Switching Using a Solid-State Relay

Problem
You want to use a solid-state (no moving parts) relay with your Raspberry
Pi.

Solution

Not Suitable for High Voltage
The solution detailed here is only suitable for switching low-voltage (less than 16V) AC or DC.
You must not use this with the domestic 110V or 220V AC supply.

Connect a GPIO pin directly to the input of a solid-state relay (SSR) such as
the MonkMakes SSR shown in Figure 11-6.

Figure 11-6. Using a solid-state relay to control a pump

The input to the SSR can be directly switched from a Raspberry Pi GPIO
pin acting as a digital output. Then the Raspberry Pi GPIO pin connected to
the SSR’s input goes to 3.3V, and the output switches on, just like an
electromechanical relay.

Discussion
Whereas electromechanical relays as described in Recipe 11.5 electrically
isolate their input and output using an electromagnet and switch, SSRs use
optoelectronics to isolate the input from the output. Figure 11-7 shows the
schematic diagram for the MonkMakes SSR. The part labeled IC1 is
effectively an LED and series of photocells in a sealed and light-proof
integrated circuit package. When the LED lights, it generates a voltage that

is used to control the two MOSFET transistors labeled Q1 and Q2. Two are
required so that both DC and AC (where the voltage reverses) can be
switched.

Figure 11-7. The schematic for an SSR

See Also
To use an electromechanical relay, see Recipe 11.5.

11.7 Controlling High-Voltage AC Devices

Problem
You want to switch 110 or 220V alternating current (AC) on and off, using
a Raspberry Pi.

Solution
Use a PowerSwitch Tail II (see Figure 11-8) or Four Ouput Power Relay.
These handy devices make it really safe and easy to switch AC equipment
on and off from a Raspberry Pi. They have an AC socket on one end and a
plug (or plugs) on the other, like an extension cable; the only difference is

https://oreil.ly/2bqvB

that the control box in the middle of the lead has three screw terminals. By
attaching terminal 2 to GND and terminal 1 to a GPIO pin, the device acts
like a switch to turn the appliance on and off.

Figure 11-8. Using a PowerSwitch Tail with Raspberry Pi

You can use the same Python code that you did in Recipe 11.1 to use the
PowerSwitch Tail, as shown in Figure 11-8.

Discussion
The PowerSwitch Tail uses a relay, but to switch the relay, it uses a
component called an opto-isolator, which has an LED shining onto a photo-
TRIAC (a high-voltage, light-sensitive switch); when the LED is
illuminated, the photo-TRIAC conducts, supplying current to the relay coil.

The LED inside the opto-isolator has its current limited by a resistor so that
only 3mA flows through it when you supply it with 3.3V from a GPIO pin.
You will also find devices similar to, but less expensive than, the
PowerSwitch Tail for sale on eBay and Amazon.

See Also
For switching DC using a power MOSFET, see Recipe 11.4; for switching
using a relay on a breadboard, see Recipe 11.5.

11.8 Controlling Hardware with Android and
Bluetooth

Problem
You want to use your Android mobile phone and Bluetooth to interact with
your Raspberry Pi.

Solution
Use the free Blue Dot Android app and Python library:

$ sudo pip3 install bluedot

Next, you need to make sure that your Raspberry Pi is discoverable. In the
upper-right corner of the Raspberry Pi’s screen, click the Bluetooth icon,
and then click Make Discoverable (Figure 11-9).

Figure 11-9. Making your Raspberry Pi discoverable in Bluetooth

Next, you need to pair your Raspberry Pi and phone. Make sure that your
phone has Bluetooth turned on, and then click Add New Device on your
Raspberry Pi’s Bluetooth menu (Figure 11-10).

Figure 11-10. Pairing your Raspberry Pi and phone

Find your phone in the list and then click Pair. You then are prompted on
your phone to confirm a code to complete the pairing.
When the pairing is complete, go to the Play Store app on your phone.
Search for and install the Blue Dot app. The app won’t be able to work with
your phone until you run a Python program that uses the Python Blue Dot

code to listen for commands, so run the following program
(ch_11_bluedot.py) on your Raspberry Pi:

from bluedot import BlueDot
bd = BlueDot()
while True:
 bd.wait_for_press()
 print("You pressed the blue dot!")

As with all the program examples in this book, you can download this
program (see Recipe 3.22).
Now it’s time to open the Blue Dot app on your phone. When you do this, it
provides a list of Blue Dot devices (Figure 11-11).

Figure 11-11. Connecting to your Raspberry Pi with Blue Dot

After you’re connected, the eponymous blue dot will appear, as shown in
Figure 11-12.

Figure 11-12. The blue dot

When you tap on the Blue Dot, your Python program will print out the
message: “You pressed the blue dot!”:

$ python3 ch_11_bluedot.py
Server started B8:27:EB:D5:6C:E9
Waiting for connection
Client connected C0:EE:FB:F0:94:8F
You pressed the blue dot!
You pressed the blue dot!
You pressed the blue dot!

Discussion
The big blue dot isn’t just a button; you can also use it as a joystick. You
can slide, swipe, and rotate the dot. The Blue Dot library allows you to link
handler functions to events such as swiping and rotating. For more
information on this, take a look at the documentation.

See Also
For full information on Blue Dot, see the Blue Dot website.

https://oreil.ly/XzasL
https://oreil.ly/hA1O2

There is also a Blue Dot Python module that lets you use a second
Raspberry Pi as the Blue Dot remote.
See Recipe 1.17 for more information on using Bluetooth with a Raspberry
Pi.

11.9 Making a User Interface to Turn Things
On and Off

Problem
You want to make an application to run on the Raspberry Pi that has a
button for turning things on and off.

Solution
Use guizero to provide the user interface for gpiozero to turn the pin
on and off (Figure 11-13).

Figure 11-13. An on/off switch in guizero

If you haven’t already done so, install guizero using the following
command:

$ sudo pip3 install guizero

https://oreil.ly/Wk0tP

You’ll need to connect an LED or some other kind of output device to
GPIO pin 18. Using an LED (Recipe 11.1) is the easiest option for getting
started.
As with all the program examples in this book, you can download the code
for this recipe (see Recipe 3.22). The file is called ch_11_gui_switch.py and
creates the switch shown in Figure 11-13:

from gpiozero import DigitalOutputDevice
from guizero import App, PushButton

pin = DigitalOutputDevice(18)

def start():
 start_button.disable()
 stop_button.enable()
 pin.on()

def stop():
 start_button.enable()
 stop_button.disable()
 pin.off()

app = App(width=100, height=150)
start_button = PushButton(app, command=start, text="On")
start_button.text_size = 30
stop_button = PushButton(app, command=stop, text="Off",
enabled=False)
stop_button.text_size = 30
app.display()

Discussion
The example uses a pair of buttons, and when you press one, it disables
itself and enables its counterpart. It also uses gpiozero to change the
state of the output pin using the on() and off() methods. This example
would work just the same if we used the line pin = LED(18) rather than
pin = DigitalOutputDevice(18), but using
DigitalOutputDevice keeps things more generic. After all, you could
be controlling anything from pin 18, not just an LED.

See Also
You can also use this program to control a high-power DC device (Recipe
11.4), a relay (Recipe 11.5), or a high-voltage AC device (Recipe 11.7).
For more information on guizero, see Recipe 7.22.

11.10 Making a User Interface to Control
PWM Power for LEDs and Motors

Problem
You want to make an application to run on the Raspberry Pi that has a slider
to control power to a device using pulse-width modulation (PWM).

Solution
Using the gpiozero and guizero user interface framework, write a
Python program that uses a slider to change the PWM duty cycle between 0
and 100% (Figure 11-14).

Figure 11-14. User interface for controlling PWM power

You’ll need to connect an LED or some other kind of output device to
GPIO pin 18 that is capable of responding to a PWM signal. Using an LED
(Recipe 11.1) is the easiest option to start with.

Open an editor and paste in the following code (the name of the file is
ch_11_gui_slider.py):

from gpiozero import PWMOutputDevice
from guizero import App, Slider

pin = PWMOutputDevice(18)

def slider_changed(percent):
 pin.value = int(percent) / 100

app = App(title='PWM', width=500, height=150)
slider = Slider(app, command=slider_changed, width='fill',
height=50)
slider.text_size = 30
app.display()

As with all the program examples in this book, you can download the code
for this recipe (see Recipe 3.22).
Run the program using the following command:

$ python3 gui_slider.py

Discussion
The example program uses the Slider class. The command option runs
the slider_changed command every time the value of the slider is
changed. This updates the value of the output pin. The parameter to the
slider_changed function is a string, even though it contains a number
between 0 and 100, so int is used to convert it into a number, and then the
percent value has to be divided by 100 to give a value between 0 and 1 for
the PWM output.

See Also
You can use this program to control an LED (Recipe 11.1), a DC motor
(Recipe 12.4), or a high-power DC device (Recipe 11.4).

11.11 Making a User Interface to Change the
Color of an RGB LED

Problem
You want to control the color of an RGB LED.

Solution
Use PWM to control the power to each of the red, green, and blue channels
of an RGB LED.
To make this recipe, you will need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
Three 470Ω resistors (see “Resistors and Capacitors”)
RGB common cathode LED (see “OptoElectronics”)

Figure 11-15 shows how you can connect your RGB LED on a breadboard.
Make sure that the LED is the correct way around; the longest lead should
be the second lead from the top of the breadboard. This connection is called
the common cathode because the negative connections (cathodes) of the
red, green, and blue LEDs within the LED case have all their negative sides
connected together to reduce the number of pins needed in the package.

Figure 11-15. Using an RGB LED with a Raspberry Pi

An alternative to using a breadboard (avoiding fiddly resistors) is to use a
Raspberry Squid (see Recipe 10.10).
The upcoming program has three sliders to control the red, green, and blue
channels of the LED (Figure 11-16).

Figure 11-16. User interface for controlling an RGB LED

Open an editor and paste in the following code from the file
ch_11_gui_slider_RGB.py:

from gpiozero import RGBLED
from guizero import App, Slider
from colorzero import Color

rgb_led = RGBLED(18, 23, 24)

red = 0
green = 0
blue = 0

def red_changed(value):
 global red
 red = int(value)
 rgb_led.color = Color(red, green, blue)

def green_changed(value):
 global green
 green = int(value)
 rgb_led.color = Color(red, green, blue)

def blue_changed(value):
 global blue
 blue = int(value)
 rgb_led.color = Color(red, green, blue)

app = App(title='RGB LED', width=500, height=400)

Slider(app, command=red_changed, end=255, width='fill',
height=50).text_size = 30
Slider(app, command=green_changed, end=255,
 width='fill', height=50).text_size = 30
Slider(app, command=blue_changed, end=255,
 width='fill', height=50).text_size = 30

app.display()

As with all the program examples in this book, you can download the code
for this recipe (see Recipe 3.22).

Discussion
The code is similar in operation to the control for a single PWM channel,
described in Recipe 11.10. However, in this case, you need three PWM
channels and three sliders, one for each color.
The type of RGB LED used here is a common cathode. If you have the
common anode type, you can still use it, but connect the common anode to
the 3.3V pin on the GPIO connector. You will find that the slider is
reversed, so a setting of 255 becomes off and 0 becomes full on.
When you are selecting an LED for this project, LEDs labeled “diffused”
are best because they allow the colors to be mixed better.

See Also
If you want to control just one PWM channel, see Recipe 11.10.

11.12 Using an Analog Meter as a Display

Problem
You want to connect an analog panel voltmeter to a Raspberry Pi.

Solution
Assuming you have a 5V voltmeter, you can use a PWM output to drive the
meter directly, connecting the negative side of the meter to GND and the
positive side to a GPIO pin (Figure 11-17). If the meter is the common 5V
kind, you’ll only be able to display voltages up to 3.3V.
If you want to use almost the full range of a 5V voltmeter, you’ll need a
transistor to act as a switch for the PWM signal and a 1kΩ resistor to limit
the current to the base of the transistor.
To make this recipe, you’ll need the following:

5V panel meter (see “Miscellaneous”)
Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
Two 1kΩ resistors (see “Resistors and Capacitors”)
Transistor 2N3904 (see “Transistors and Diodes”)

Figure 11-18 shows the breadboard layout for this.

Figure 11-17. Connecting a voltmeter directly to a GPIO pin

Figure 11-18. Using a 5V panel meter with 3.3V GPIO

Discussion
To test the voltmeter, use the same program as you did for controlling the
brightness of the LED in Recipe 11.10.
You will probably notice that the needle gives a steady reading at either end
of the scale, but everywhere else it jitters a bit. This is a side effect of the
way the PWM signals are generated. For a steadier result, you can use
external PWM hardware like the 16-channel module used in Recipe 12.3.

See Also
For more information about how old-fashioned voltmeters work, see
Wikipedia.
For more information on using a breadboard and jumper wires with the
Raspberry Pi, see Recipe 10.9.

https://oreil.ly/RnL4a

Chapter 12. Motors

12.0 Introduction
In this chapter, you will investigate the use of different types of motors with
the Raspberry Pi. This includes DC motors, servomotors, and stepper
motors.
Motors come in all shapes and sizes (Figure 12-1). The most common is the
simple brushed DC motor that you might find in a toy car. In this chapter,
we will also look at servomotors, where the position of the motor’s shaft is
set using pulses generated by the Raspberry Pi, and at stepper motors,
which don’t rotate smoothly, but, as the name suggests, in tiny steps, as
their coils are energized in sequence.

Figure 12-1. A selection of motors

12.1 Controlling Servomotors

Problem
You want to use a Raspberry Pi to control the position of a servomotor.

Solution
Use pulse-width modulation (PWM) to control the width of pulses to a
servomotor to change its angle. Although this will work, the PWM
generated is not completely stable, so there will be a little bit of jitter with
the servo. For alternative solutions that produce much more stable pulse
timing, see Recipes 12.2 and 12.3.
If you have a Raspberry Pi 1, you should power the servo from a separate
5V power supply because peaks in the load current are very likely to crash
or overload the Raspberry Pi. If you have a Raspberry Pi B+ or newer,
improvements in the onboard voltage regulation mean that you might get
away with powering small servos directly from the 5V pin on the general-
purpose input/output (GPIO) port.
Figure 12-2 shows a small 9g servo (see “Miscellaneous”) working quite
happily with a Raspberry Pi B+.

Figure 12-2. Direct connection of a small servo to a Raspberry Pi B+

The leads of the servo are usually colored so that the 5V wire is red, the
ground is brown, and the control lead is orange. The 5V and ground leads
are connected to the GPIO header 5V and GND pins, and the control lead is
connected to pin 18. The connections are made with female-to-male header
leads.
If you are using a separate power supply, a breadboard is a good way of
keeping all the leads together.
In this case, you will need the following:

5V servomotor (see “Miscellaneous”)
Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
1kΩ resistor (see “Resistors and Capacitors”)
5V 1A power supply or 4.8V battery pack (see “Miscellaneous”)

Figure 12-3 shows the breadboard layout for this.

Figure 12-3. Controlling a servomotor

The 1kΩ resistor is not essential, but it does protect the GPIO pin from
unexpectedly high currents in the control signal, which could occur if a
fault developed on the servo.
You can, if you prefer, power the servo from a battery pack rather than a
power supply. Using a four-cell AA battery holder with rechargeable
batteries will provide around 4.8V and work well with a servo. Using four
alkali AA cells to provide 6V will be fine for many servos, but check the
datasheet of your servo to make sure it is OK with 6V.
The user interface for setting the angle of the servo is based on the
ch_11_gui_slider.py program, which is intended for controlling the
brightness of an LED (Recipe 11.10). However, you can modify it so that
the slider sets the angle to be between –90 and 90 degrees (Figure 12-4).

Figure 12-4. User interface for controlling a servomotor

Open an editor and paste in the following code (the file is called
ch_12_servo.py):

from gpiozero import AngularServo
from guizero import App, Slider

servo = AngularServo(18, min_pulse_width=0.5/1000,
max_pulse_width=2.5/1000)

def slider_changed(angle):
 servo.angle = int(angle)

app = App(title='Servo Angle', width=500, height=150)
slider = Slider(app, start=-90, end=90, command=slider_changed,
width='fill',
 height=50)
slider.text_size = 30
app.display()

As with all the program examples in this book, you can download this code
(see Recipe 3.22).
Note that this program uses a graphical user interface, so you can’t run it
from SSH or the Terminal. You must run it from the windowing
environment on the Pi itself or via remote control using virtual network
computing (VNC) (Recipe 2.8).
The gpiozero class AngularServo takes care of all the pulse
generation. It just leaves us to specify the angle to which we want the servo

arm to position itself. Pretty much all other software that works with
servomotors specifies angles of between 0 and 180 degrees, where 0 is as
far as the servo arm can go to one side, 90 is in the middle, and 180 is as far
as it can go to the other side. The gpiozero library does things
differently, and probably more logically, by referring to the center position
as 0 and to the angles on one side as negative and on the other side as
positive.
When defining the servo, the first parameter (18 in this case) specifies the
control pin for the servomotor. The optional parameters of
min_pulse_width and max_pulse_width set the minimum and
maximum pulse lengths in seconds. For a typical servo, these values should
be 0.5 milliseconds and 2.5 milliseconds. For some reason, the default
values in gpiozero are 1 and 2 milliseconds; thus the servomotor has a
very restricted range unless you set these values as we have here.

Discussion
Servomotors are used in remote control vehicles and robotics. Most
servomotors are not continuous; that is, they cannot rotate all the way
around but rather can rotate only over an angle range of about 180 degrees.
The position of the servomotor is set by the length of a pulse. The servo
expects to receive a pulse at least every 20 milliseconds. If that pulse is high
for 0.5 milliseconds, the servo angle will be –90 degrees; if it’s high for 1.5
milliseconds, the motor will be at its center position (0 degrees); and if the
pulse is high for 2.5 milliseconds, the servo angle will be 90 degrees
(Figure 12-5).

Figure 12-5. Servomotor timing pulses

If you have a few servomotors to connect, the MonkMakes Servo Six board
(Figure 12-6) makes the wiring easier.

Figure 12-6. Connecting servomotors with the Servo Six board

See Also
If you have a lot of servos to control or require greater stability and
precision, you can use a dedicated servo controller module, as described in
Recipe 12.3.
See more information in the full documentation of the Servo Six board.
Adafruit has developed another method of servo control.
For an alternative solution that produces much more stable pulse timing
using the ServoBlaster device driver software, see Recipe 12.2.

12.2 Controlling Servomotors Precisely

https://oreil.ly/ua1nS
https://oreil.ly/tprnc

Problem
The pulse generation function of the gpiozero library is not precise or
jitter-free enough for your servo application.

Solution
Install the ServoBlaster device driver.

ServoBlaster and Sound
The ServoBlaster software uses Raspberry Pi hardware that is also involved in generating sound.
Thus, you won’t be able to play audio through your Raspberry Pi’s audio jack or HDMI while
using ServoBlaster.

The ServoBlaster software created by Richard Hirst uses Raspberry Pi CPU
hardware to generate pulses with much more accurate timings than are
possible using gpiozero. Install ServoBlaster using the following
commands and then reboot your Raspberry Pi:

$ git clone https://github.com/srcshelton/servoblaster.git
$ cd servoblaster
$ sudo make
$ sudo make install

You can modify the program from Recipe 12.1 to use the ServoBlaster
code. You can find the modified program in the file ch_12_servo_blaster.py.
As with all the program examples in this book, you can download it (see
Recipe 3.22). This program assumes that the servo control pin is connected
to GPIO 18:

import os
from guizero import App, Slider

servo_min = 500 # uS
servo_max = 2500 # uS
servo = 2 # GPIO 18

def map(value, from_low, from_high, to_low, to_high):
 from_range = from_high - from_low
 to_range = to_high - to_low
 scale_factor = float(from_range) / float(to_range)
 return to_low + (value / scale_factor)

def set_angle(angle):
 pulse = int(map(angle+90, 0, 180, servo_min, servo_max))
 command = "echo {}={}us > /dev/servoblaster".format(servo,
pulse)
 os.system(command)

def slider_changed(angle):
 set_angle(int(angle))

app = App(title='Servo Angle', width=500, height=150)
slider = Slider(app, start=-90, end=90, command=slider_changed,
width='fill',
 height=50)
slider.text_size = 30
app.display()

The user interface code is almost the same as Recipe 12.1. The differences
are in the set_angle function. This function first uses a utility function
called map that converts the angle into a pulse duration using the constants
servo_min and servo_max. Then it constructs a command that will be
run as if from the command line. The format of this line starts with the
echo command, followed by the servo number to be controlled, an equal
sign, and then a pulse duration in microseconds. This string part of the
command will be directed to the device /dev/servoblaster. The servo will
then adjust its angle.

Killing ServoBlaster
When ServoBlaster, or more specifically, the service servo.d, is running, you will not be able to
use the servo pins for anything, and audio on the Raspberry Pi will not work. So when you need to
use the pins for something else, use the following commands to disable ServoBlaster and then
reboot your Pi:

$ sudo update-rc.d servoblaster disable
$ sudo reboot

When your Raspberry Pi restarts, ServoBlaster will no longer have control of your pins, and you’ll
be able to use sound again on your Pi. You can always turn ServoBlaster back on again using:

$ sudo update-rc.d servoblaster enable
$ sudo reboot

Discussion
The ServoBlaster driver is very powerful, and you can configure it to allow
you to use pretty much all the GPIO pins to control servos. Its default setup
defines eight GPIO pins to act as servo control pins. These are each given a
channel number, as shown in Table 12-1.

Table 12-1. Servo
channel default pin

allocation for
ServoBlaster

Servo channel GPIO pin
0 4

1 17

2 18

3 27

Servo channel GPIO pin
4 22

5 23

6 24

7 25

Connecting so many servos can result in jumper-lead spaghetti. A board
like the MonkMakes Servo Six (Figure 12-6) greatly simplifies the wiring
of the servos to your Raspberry Pi.

See Also
More information is available in the full documentation for ServoBlaster.
If you don’t need the precise timing of ServoBlaster, the gpiozero library
can also generate pulses for your servo, as described in Recipe 12.1.

12.3 Controlling Multiple Servomotors
Precisely

Problem
You need to control lots of servos with high precision and without the loss
of sound that comes with using ServoBlaster.

Solution
Although the ServoBlaster code (see Recipe 12.2) allows you to control up
to eight servos accurately, it does rather take over your Raspberry Pi’s
hardware and disables sound generation.
The alternative to ServoBlaster is to use a servomotor HAT like the one
shown in Figure 12-7 that has its own servo controlling hardware, relieving
the Raspberry Pi’s hardware.

https://oreil.ly/RwwDz

This Adafruit HAT allows you to control up to 16 servos or PWM channels
using the I2C interface of the Raspberry Pi. The servos just plug straight
into the HAT.
Power is supplied to the logic circuits of the module from the 3.3V
connection of the Raspberry Pi. This is entirely separate from the power
supply for the servomotors, which comes from an external 5V power
adapter.
You can, if you prefer, power the servos from a battery pack rather than a
power supply. Using a four-cell AA battery holder with rechargeable
batteries provides around 4.8V and works well with most servos. Using four
alkali AA cells to provide 6V will be fine for many servos, but check the
datasheet of your servo to make sure it is OK with 6V.
The pin headers for connecting servos are conveniently arranged so that the
servo lead fits directly onto the pins. Be careful to get them facing the
correct way.

Figure 12-7. Adafruit servomotor HAT

To use the Adafruit software for this module, you will need to set up I2C on
the Raspberry Pi (Recipe 10.4).
The software for this board uses some helpful software from Adafruit that
allows you to use an entire range of their accessory add-on boards.
To install the Adafruit blinka code needed for this board, run the following
commands:

$ pip3 install adafruit-blinka
$ sudo pip3 install adafruit-circuitpython-servokit

Open an editor and paste in the following code (the name of the file is
ch_12_servo_adafruit.py):

from adafruit_servokit import ServoKit
from guizero import App, Slider

servo_kit = ServoKit(channels=16)

def slider_changed(angle):
 servo_kit.servo[0].angle = int(angle) + 90

app = App(title='Servo Angle', width=500, height=150)
slider = Slider(app, start=-90, end=90, command=slider_changed,
width='fill',
 height=50)
slider.text_size = 30
app.display()

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
When you run the program, you will get the same window containing a
slider as shown in Figure 12-4. Use this to move the servo arm about.
Adafruit’s software is not compatible with Python 2, so you need to run any
programs that use the Adafruit software via the python3 command.

Note that this program uses a graphical user interface (GUI), so you can’t
run it from SSH or the Terminal; you must run it from the windowing
environment on the Pi itself or via remote control using VNC (Recipe 2.8):

$ python3 ch_12_servo_adafruit.py

The Adafruit software uses the servomotor angle range of 0 to 180, rather
than gpiozero’s –90 to 90 degrees, so to keep the user interface the same,
90 is added to the angle supplied by the slider.
To address a specific servo channel among the 16 available channels, the
channel number (between 0 and 15) is specified inside the square brackets
in the command servo_kit.servo[0].angle.

Discussion

When selecting a power supply for this module, remember that a standard
remote control servo can easily draw 400mA while it’s moving, and more if
it’s under load. So if you plan to have a lot of large servos moving at the
same time, you will need a big power adapter.

See Also
Visit Adafruit for information on this Adafruit product.
A Servo HAT is great if your Raspberry Pi is close to the servomotors, but
if your servos are distant from where you want the Raspberry Pi to be,
Adafruit also sells a servo module (product ID 815) that has the same servo
controller hardware as the servo HAT but just four pins to connect the I2C
interface of the board to the Raspberry Pi’s I2C interface.

12.4 Controlling the Speed of a DC Motor

Problem
You want to control the speed of a DC motor using your Raspberry Pi.

Solution
You can use the same design as Recipe 11.4. However, you should place a
diode across the motor to prevent voltage spikes from damaging the
transistor or even the Raspberry Pi. The 1N4001 is a suitable diode for this.
The diode has a stripe at one end, so make sure that this is facing the proper
direction (Figure 12-8).

https://oreil.ly/Oizzu

Figure 12-8. Controlling a high-power motor

You’ll need the following:
3V to 12V DC motor
Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
1kΩ resistor (see “Resistors and Capacitors”)
MOSFET transistor FQP30N06L (see “Transistors and Diodes”)
Diode 1N4001 (see “Transistors and Diodes”)
Power supply with voltage to match the motor

As with all the program examples in this book, you can download this
program (see Recipe 3.22). The file is called ch_12_gui_slider.py.
Note that this program uses a GUI, so you can’t run it from SSH. You must
run it from the windowing environment on the Pi itself or via remote
control using VNC (Recipe 2.8).

Discussion

If you are using only a low-power DC motor (less than 200mA), you can
use a smaller (and cheaper) transistor such as the 2N3904 (see “Transistors
and Diodes”). Figure 12-9 shows the breadboard layout to use a 2N3904.
You can probably get away with powering a small motor from the 5V
supply line on the GPIO connector. If you find that the Raspberry Pi
crashes, use an external power supply, as shown in Figure 12-8.

Figure 12-9. Controlling a low-power motor

See Also
For more information on using a breadboard and jumper wires with the
Raspberry Pi, see Recipe 10.9.
This design controls only the motor’s speed. It can’t control its direction.
For that, you need to see Recipe 12.5.

12.5 Controlling the Direction of a DC Motor

Problem

You want to control both the speed and direction of a small DC motor.

Solution
Use an H-bridge chip or module, the most common chip being the L293D.
These are low cost and easy to use. Other H-bridge chips or modules
usually use the same pair of control pins for the direction of each motor (see
the discussion).
The L293D chip is actually capable of driving two motors without any extra
hardware. The Discussion also mentions a few other options for controlling
DC motors. To try out the L293D to control a motor, you’ll need the
following:

3V to 12V DC motor
Breadboard and jumper wires (male-to-female; see “Prototyping
Equipment and Kits”)
L293D chip (see “Integrated Circuits”)
Power supply with voltage to match the motor

Figure 12-10 shows the breadboard layout.

Figure 12-10. Using an L293D chip to control a motor

Make sure the chip is facing the proper direction: it has a notch at the top,
which is the end that should be at the top of the breadboard.
The test program for this recipe (ch_12_motor_control.py) allows you to
enter the letter f or r and then a single digit between 0 and 9. The motor will
then go either forward or backward at a speed specified by the digit—0 for
stopped, 9 for full speed:

$ python3 ch_12_motor_control.py
Command, f/r 0..9, E.g. f5 :f5
Command, f/r 0..9, E.g. f5 :f1
Command, f/r 0..9, E.g. f5 :f2
Command, f/r 0..9, E.g. f5 :r2

Open an editor and paste in the following code. As with all the program
examples in this book, you can also download it (see Recipe 3.22).

This program uses the command line, so you can run it from SSH or the
Terminal:

from gpiozero import Motor

motor = Motor(forward=23, backward=24)

while True:
 cmd = input("Command, f/r 0..9, E.g. f5 :")
 direction = cmd[0]
 speed = float(cmd[1]) / 10.0
 if direction == "f":
 motor.forward(speed=speed)
 else:
 motor.backward(speed=speed)

gpiozero conveniently has a class called Motor that we can use to
control both the speed and direction of a single DC motor. When you create
an instance of the class, you need to specify the forward and backward
control pins.
The forward and backward methods of Motor take an optional
parameter of speed between 0 and 1, where 1 is full speed.

Discussion
The Motor class of gpiozero hides the complexity of the H-bridge’s
hardware.
Figure 12-11 shows how an H-bridge works, using switches rather than
transistors or a chip. By reversing the polarity across the motor, an H-bridge
also reverses the direction in which the motor turns.
In Figure 12-11, S1 and S4 are closed and S2 and S3 are open. This allows
current to flow through the motor, with terminal A being positive and
terminal B being negative. If we were to reverse the switches, so that S2
and S3 are closed and S1 and S4 are open, B would be positive and A
would be negative, and the motor would turn in the opposite direction.

However, you might have spotted a danger with this circuit. If by some
chance S1 and S2 are both closed, the positive supply will be directly
connected to the negative supply, and you will have a short circuit. The
same is true if S3 and S4 are both closed at the same time.

Figure 12-11. An H-bridge

Although you can use individual transistors to make an H-bridge, it is
simpler to use an H-bridge integrated circuit (IC) such as the L293D. This
chip actually has two H-bridges in it, so you can use it to control two
motors. It also has logic to ensure that the equivalent of closing both S1 and
S2 cannot happen.
The L293D uses two control pins for each of the two motor control
channels: a forward pin and a backward pin. If the forward pin (23) is high
and the backward pin (24) is low, the motor will turn in one direction. If
those two pins are reversed, the motor will turn in the opposite direction.

As an alternative to using an L293D on a breadboard, very low-cost
modules are available from eBay that include a L293D on a printed circuit
board (PCB) with screw terminals to attach motors and header pins to link
directly to the Raspberry Pi GPIO connector. You can find high-power
motor controller modules that operate on the same principles but at much
higher currents, even up to 20A or more. Pololu has an impressive range of
such motor controller boards.

See Also
You also can use the Adafruit Stepper Motor HAT (Recipe 12.8) to control
the speed and direction of a DC motor.
Check out the L293D datasheet and the SparkFun Motor Driver module
product page.
For more information on using a breadboard and jumper wires with the
Raspberry Pi, see Recipe 10.9.

12.6 Using a Unipolar Stepper Motor

Problem
You want to drive a five-lead unipolar stepper motor using a Raspberry Pi.

Solution
Use a ULN2803 Darlington driver chip on a breadboard.
Stepper motors fit somewhere between DC motors and servomotors in the
world of motor technologies. Like a regular DC motor, they can rotate
continuously, but you can also very accurately position them by moving
them a step at a time in either direction.
To make this recipe, you’ll need the following:

5V, five-pin unipolar stepper motor (see “Miscellaneous”)

https://www.pololu.com/
https://oreil.ly/OXffw
https://oreil.ly/ZedYj

ULN2803 Darlington driver IC (see “Integrated Circuits”)
Breadboard and jumper wires (see “Prototyping Equipment and Kits”)

Figure 12-12 shows the wiring diagram for using a ULN2803. Note that
you can use the chip to drive two such motors. To drive a second stepper
motor, you need to connect four more control pins from the GPIO connector
to pins 5 to 8 of the ULN2803, and then you connect the second motor’s
four pins to pins 11 to 14 of the ULN2803.

Figure 12-12. Using a ULN2803 to control a unipolar stepper motor

The 5V supply from the GPIO connector can work acceptably with a small
stepper motor. If you experience problems with the Raspberry Pi crashing
or need to use a bigger stepper motor, use a separate supply for the power to
the motor (pin 10 of the ULN2803).
Open an editor and paste in the following code (ch_12_stepper.py). This
program uses the command line, so you can run it from SSH:

from gpiozero import Motor
import time

coil1 = Motor(forward=18, backward=23, pwm=False)
coil2 = Motor(forward=24, backward=17, pwm=False)

forward_seq = ['FF', 'BF', 'BB', 'FB']
reverse_seq = list(forward_seq) # to copy the list
reverse_seq.reverse()

def forward(delay, steps):
 for i in range(steps):
 for step in forward_seq:
 set_step(step)
 time.sleep(delay)

def backwards(delay, steps):
 for i in range(steps):
 for step in reverse_seq:
 set_step(step)
 time.sleep(delay)

def set_step(step):
 if step == 'S':
 coil1.stop()
 coil2.stop()
 else:
 if step[0] == 'F':
 coil1.forward()
 else:
 coil1.backward()
 if step[1] == 'F':
 coil2.forward()
 else:
 coil2.backward()

while True:
 set_step('S')
 delay = input("Delay between steps (milliseconds)?")
 steps = input("How many steps forward? ")
 forward(int(delay) / 1000.0, int(steps))
 set_step('S')
 steps = input("How many steps backwards? ")
 backwards(int(delay) / 1000.0, int(steps))

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
When you run the program, you are prompted for a delay between steps.
This should be 2 or more. You are then prompted for the number of steps in
each direction:

$ python3 ch_12_stepper.py
Delay between steps (milliseconds)?2
How many steps forward? 100

How many steps backwards? 100
Delay between steps (milliseconds)?10
How many steps forward? 50
How many steps backwards? 50
Delay between steps (milliseconds)?

This code is explained in the Discussion section that follows, because it
helps to know a bit more about how stepper motors work to follow the
code.

Discussion
Stepper motors use a cogged rotor with alternating north and south poles
and electromagnets to nudge the wheel around a step at a time (Figure 12-
13). Note that the colors of the leads will vary.
Energizing the coils in a certain order drives the motor around. The number
of steps that the stepper motor has in a 360-degree rotation is actually the
number of teeth on the rotor.

Figure 12-13. A stepper motor

The two coils are each controlled by an instance of the gpiozero class
Motor and are called coil1 and coil2.

The program uses a list of strings to represent each of the four energization
stages that make up a single step:

forward_seq = ['FF', 'BF', 'BB', 'FB']

Each pair of letters indicates the current direction for coil1 and coil2:
either forward or backward. So, looking for a moment at Figure 12-13 and

assuming that the common Red connection is to GND, the letter F for the
Pink-Orange coil might make Pink high and Orange low, whereas B would
reverse this.
The sequence for rotating the motor in the opposite direction is just the
reverse of the sequence for moving forward.
You can use the forward and backward functions in your programs to
step the motor back and forth. The first argument to either function is the
delay in milliseconds between each part of the step sequence. The minimum
value for this depends on the motor you use. If it’s too small, the motor will
not turn. Typically, two milliseconds or more will be fine. The second
parameter is the number of steps to take:

def forward(delay, steps):
 for i in range(steps):
 for step in forward_seq:
 set_step(step)
 time.sleep(delay)

The forward function has two nested for loops. The outer loop repeats
for the number of steps, and the inner one iterates over the sequence of
motor activations, calling set_step for each in sequence:

def set_step(step):
 if step == 'S':
 coil1.stop()
 coil2.stop()
 else:
 if step[0] == 'F':
 coil1.forward()
 else:
 coil1.backward()
 if step[1] == 'F':
 coil2.forward()
 else:
 coil2.backward()

The set_step function sets each coil’s polarity, depending on the
message supplied as its step argument. The command S stops the power

to both coils so that we can avoid using current when the motor isn’t
moving. If the first letter is an F, then coil1 is set to forward; otherwise
it is set to backward. coil2 is set in the same way but using the second
letter of step.

The main loop sets the step to S between moving forward and backward,
to deactivate both coils when the motor is not actually turning. Otherwise,
one of the coils might be left on, causing the motor to unnecessarily draw
current.

See Also
If you have a four-wire bipolar stepper motor, see Recipe 12.7.
For more information, see the Wikipedia article on stepper motors, where
you will also see the different types and how they work, as well as find a
nice, animated explanation of the activation pattern for driving the motor.
For information on using servomotors, see Recipe 12.1; for information on
controlling DC motors, see Recipes 12.4 and 12.5.
For more information on using a breadboard and jumper wires with the
Raspberry Pi, see Recipe 10.9.

12.7 Using a Bipolar Stepper Motor

Problem
You want to drive a four-lead bipolar stepper motor using a Raspberry Pi.

Solution
Use an L293D H-bridge driver chip. An H-bridge is required to drive a
bipolar stepper motor because, as the word bipolar suggests, the direction
of current across the windings needs to be reversed, rather like driving a DC
motor in both directions (see Recipe 12.5).
To make this recipe, you’ll need the following:

https://oreil.ly/qj_Vd

12V, four-pin bipolar stepper motor (see “Miscellaneous”)
L293D H-bridge IC (see “Integrated Circuits”)
Breadboard and jumper wires (see “Prototyping Equipment and Kits”)

The motor used here, a 12V one, is somewhat larger than the unipolar
stepper motor example in Recipe 12.6. The power for the motor itself is
therefore supplied from an external power supply rather than from the
Raspberry Pi. See the wiring diagram in Figure 12-14.

Figure 12-14. Using an L293D to control a bipolar stepper motor

Discussion
A bipolar stepper motor is just like the unipolar version shown in Figure 12-
13, except that the red central tapping connections to the coils are not
present. The same energization pattern will work just as well on both
variants, but for a bipolar motor, the direction of the current in the whole of
the coil must be reversible; hence, two H-bridges are necessary.
You can use the same ch_12_stepper.py program to control this stepper (see
Recipe 12.6). The design uses both H-bridges of the L293D, so you need
one of these chips for each motor that you want to control.

See Also
If the type of stepper motor you have is a five-wire unipolar stepper motor,
see Recipe 12.6.
For more information on stepper motors—the different types and how they
work—see Wikipedia, where you will also find a nice animated explanation
of the activation pattern for driving the motor.
For information on using servomotors, see Recipe 12.1; for information on
controlling DC motors, see Recipes 12.4 and 12.5.
For more information on using a breadboard and jumper wires with the
Raspberry Pi, see Recipe 10.9.

12.8 Using a Stepper Motor HAT to Drive a
Bipolar Stepper Motor

Problem
You want to control multiple bipolar stepper motors using a single interface
board.

Solution

https://oreil.ly/qj_Vd

Use an Adafruit Stepper Motor HAT.
This board is capable of driving two bipolar stepper motors. Figure 12-15
shows the board with one bipolar stepper motor, with one coil connected to
the M1 terminals and the other coil to the M2 terminals. The power for the
motors is supplied separately at the screw terminals on the right.

I2C Buses
If you followed Recipe 10.17 to make your own HAT and enabled the I2C bus 0 as described
there, you will need to reverse the change to /boot/config.txt because the Adafruit autodetects the
I2C bus to use and will detect the wrong one if bus 0 is enabled.

In /boot/config.txt, delete or comment out this line (by putting a # at the beginning of it):

dtparam=i2c_vc=on

After you do this, reboot your Raspberry Pi.

Figure 12-15. Using an Adafruit Stepper Motor HAT to control a bipolar stepper motor

This HAT uses I2C, so make sure that you have I2C enabled (Recipe 10.4).
This board is supported by an excellent Adafruit tutorial.

Discussion
When you run the program supplied in the Adafruit tutorial, the motor
begins to turn, and the program loops around four different modes of
stepping.

See Also
For a discussion of the HAT standard and how to make your own HAT, see
Recipe 10.17.

https://oreil.ly/7k0bZ

For more information on using this HAT and its accompanying library, see
https://oreil.ly/3a4Jm.
To use an L293D to control a stepper motor, see Recipe 12.7.

https://oreil.ly/3a4Jm

Chapter 13. Digital Inputs

13.0 Introduction
In this chapter, we look at recipes for using digital components such as
switches and keypads. This chapter also covers modules that have a digital
output that can be connected to a Raspberry Pi general-purpose input/output
(GPIO) acting as an input.
Many of the recipes require the use of a solderless breadboard and jumper
wires (see Recipe 10.9).

13.1 Connecting a Push Switch

Problem
You want to connect a switch to your Raspberry Pi so that when you press
it, some Python code is run.

Solution
Connect a switch to a GPIO pin and use the gpiozero library in your
Python program to detect the button press.
To make this recipe, you’ll need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
Tactile push switch (see “Miscellaneous”)

Figure 13-1 shows how to connect a tactile push switch using a breadboard
and jumper wires.

Figure 13-1. Connecting a push switch to a Raspberry Pi

An alternative to using a breadboard and tactile switch is to use a Squid
Button (Figure 13-2). This is a push switch with female header leads
soldered to the end, which you can directly connect to the GPIO connector
(Recipe 10.11).

Figure 13-2. A Squid Button

Open an editor and paste in the following code (ch_13_switch.py):

from gpiozero import Button

button = Button(18)

while True:
 if button.is_pressed:
 print("Button Pressed")

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
This is what you will see when you run the program and as you press the
button:

pi@raspberrypi ~ $ python3 ch_13_switch.py
Button Pressed
Button Pressed
Button Pressed
Button Pressed

In fact, the “Button Pressed” messages will probably go shooting off the
bottom of the screen. This is because the program checks very frequently
for button presses. Another problem with this code is that while it is
watching for button presses, it can’t be getting on with other things.
We can improve on this code, both to do something only once when pressed
and to allow other things to be going on until a button is pressed. You will
find these changes in the following code (ch_13_switch_2.py):

from gpiozero import Button
from time import sleep

def do_stuff():
 print("Button Pressed")

button = Button(18)
button.when_pressed = do_stuff

while True:
 print("Busy doing other stuff")
 sleep(2)

When you run this program, you will see output like this:

$ python3 ch_13_switch_2.py
Busy doing other stuff
Busy doing other stuff
Button Pressed
Busy doing other stuff
Busy doing other stuff

When you press the button, the function do_stuff is run, irrespective of
what the program is otherwise doing. This approach is called using
interrupts and is often used in programs that need to trigger actions when a
button is pressed, but also need to be doing other things.
Note that this line:

button.when_pressed = do_stuff

includes do_stuff without () on the end. This is because we are
referring to the function, not actually calling it, until the interrupt occurs. In
other words, we are telling the interrupt handler which function to call when
there is an interrupt, not asking it to call the function immediately.

Discussion
Notice that the switch is wired so that when it is pressed, it connects pin 18,
which is configured as an input to GND.
You might expect the push switch to have just two connections, which are
either open or closed. Although some of these tactile push switches do have
just two connections, most have four to provide mechanical strength.
Figure 13-3 shows how these connections are arranged.

Figure 13-3. A tactile push switch

Actually, there are really only two electrical connections, because inside the
switch package, pins B and C are connected together, as are A and D.

See Also
For more information on using a breadboard and jumper wires with the
Raspberry Pi, see Recipe 10.9.
To debounce a switch, see Recipe 13.5.
To use external pull-up or pull-down resistors, see Recipe 13.6.

13.2 Toggling with a Push Switch

Problem
You want to create a push switch that toggles something between on and off
each time you press it.

Solution
Read the last state of the button (that is, whether the button is on or off) and
invert that value each time the button is pressed.
The following example toggles an LED on and off as you press the switch.
To make this recipe, you will need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
Tactile push switch (see “Miscellaneous”)
LED (see “OptoElectronics”)
470Ω resistor (see “Resistors and Capacitors”)

Figure 13-4 shows how to connect a tactile push switch and LED, using a
breadboard and jumper wires.

Figure 13-4. Connecting a push switch and LED to a Raspberry Pi

In addition to the male-to-female jumper wires connecting the Raspberry Pi
to the breadboard, you also need one male-to-male jumper wire or solid
core wire.
As an alternative to a breadboard and separate components, you could use a
Raspberry Squid (Recipe 10.10) and a Squid Button (Recipe 13.1).
Open an editor and paste in the following code (ch_13_switch_on_off.py):

from gpiozero import Button, LED
from time import sleep

led = LED(23)

def toggle_led():
 print("toggling")
 led.toggle()

button = Button(18)
button.when_pressed = toggle_led

while True:
 print("Busy doing other stuff")
 sleep(2)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
The program is based on ch_13_switch_2.py and again uses interrupts so
that the program can be getting on with other things until a button press
happens.
When the button is pressed, the function toggle_led is called. This
toggles the LED; that is, if it’s on, it turns it off, and if it’s off, it turns it on.

Discussion
Depending on the quality of your switch, you may have noticed that
sometimes the LED doesn’t toggle, but that two or more “toggling”
messages appear in the Terminal. This is due to something called switch
bounce, which we will discuss further in Recipe 13.5.

See Also
For the documentation on the gpiozero Button class, see
https://oreil.ly/SXIZ9.

13.3 Using a Two-Position Toggle or Slide
Switch

Problem

https://oreil.ly/SXIZ9

You want to connect a two-position toggle or slide switch to your Raspberry
Pi and be able to find the position of the switch in your Python program.

Solution
Use the switch as you would a tactile push switch (Recipe 13.1): just
connect the center and one end contact (Figure 13-5).
To make this recipe, you will need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
Miniature toggle or slide switch (see “Miscellaneous”)

The same code you used in Recipe 13.1 works with this arrangement.

Figure 13-5. Connecting a slide switch to a Raspberry Pi

Discussion
These types of slide switches are useful because you can see the position
they are set to without the need for some additional indicator like an LED.
However, they are more fragile and a little more expensive than the tactile

push switches that are used more and more in consumer electronics because
they can sit behind a nicer-looking plastic button.

See Also
To use a three-position switch with a center-off position, see Recipe 13.4.

13.4 Using a Center-Off Toggle or Slide
Switch

Problem
You want to connect a three-position (center-off) toggle switch to your
Raspberry Pi and be able to find the position of the switch in your Python
program.

Solution
Connect the switch to two GPIO pins, as shown in Figure 13-6, and use the
gpiozero library in your Python program to detect the position of the
switch.
To make this recipe, you will need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
Miniature center-off three-position toggle switch (see “Miscellaneous”)

Figure 13-6. Connecting a three-position switch to a Raspberry Pi

The common (center) connection of the switch is connected to GND, and
each of the two ends of the switch are connected to a GPIO pin.
Open an editor and paste in the following code (ch_13_switch_3_pos.py):

from gpiozero import Button

switch_top = Button(18)
switch_bottom = Button(23)

switch_position = "unknown"

while True:
 new_switch_position = "unknown"
 if switch_top.is_pressed:
 new_switch_position = "top"
 elif switch_bottom.is_pressed:
 new_switch_position = "bottom"

 else:
 new_switch_position = "center"

 if new_switch_position != switch_position:
 switch_position = new_switch_position
 print(switch_position)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
Run the program, and as you move the switch from top to center to bottom,
the position of the switch is reported every time it changes:

$ python3 ch_13_switch_3_pos.py
center
top
center
bottom

Discussion
The program sets up two inputs as separate buttons. Inside the loop, both
button states are read, and the three conditions of the if, elif, and else
structure determine the position of the switch, assigning the value to a
variable called new_switch_ posi tion. If this differs from the
previous value, the switch position is printed.
You will find a wide range of types of toggle switches. Some will be
described as DPDT, SPDT, SPST, or SPST-momentary-on, and so on. The
meaning of these letters is as follows:

D: Double
S: Single
P: Pole
T: Throw

Thus, a DPDT switch is double pole, double throw. The word pole refers to
the number of separate switch contacts that are controlled from the one
mechanical lever. Thus, a double pole switch can switch two things on and

off. A single throw switch can only open or close a single contact (or two
contacts if it is double pole). However, a double throw switch can connect
the common contact to one of two other contacts.
Figure 13-7 shows the most common types of switches.

Figure 13-7. Types of toggle switches

See Also
For more information on how if statements work, see Recipe 5.20.

For more information on toggle switches, see https://oreil.ly/uDigs.
For the most basic switch recipe, see Recipe 13.1.

https://oreil.ly/uDigs

13.5 Debouncing a Button Press

Problem
Sometimes when you press the button on a switch, the expected action
happens more than once because the switch contacts bounce (Figure 13-8).
In that case, you want to write code that debounces the switch.

Solution
The gpiozero Button class includes code that deals with bouncing of
switch contacts. However, by default this is turned off. You can change it
when you create a button instance using the optional bounce_time
parameter.
See the Discussion for more information on what is going on with switch
bouncing. But the basic idea is that when a switch is pressed, the contacts
can bounce, producing false readings of the switch position. The
bounce_time parameter determines how long false changes of the switch
state should be ignored for.
In Recipe 13.2, for example, you might have noticed that pressing the
button often doesn’t seem to toggle the LED. This will happen if you get an
even number of bounces when you press the button, so that one bounce
turns the LED on and a second bounce immediately turns it off again
(within a fraction of a second), with the result that it looks like nothing
happened.
You can modify the program ch_13_switch_on_off.py to set the debouncing
time by adding the bounce_time optional parameter where you define
the button:

from gpiozero import Button, LED
from time import sleep

led = LED(23)

def toggle_led():

 print("toggling")
 led.toggle()

button = Button(18, bounce_time=0.1)
button.when_pressed = toggle_led

while True:
 print("Busy doing other stuff")
 sleep(2)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
In this example, the bounce time is set to 0.1 seconds, which should be
more than enough time for the switch contacts to settle.

Discussion
Switch bouncing occurs on most switches and can be quite severe on some
switches, as the oscilloscope trace in Figure 13-8 shows.

Figure 13-8. Contact bounce with a poor switch

You can see that there is contact bounce both as the switch closes and when
it is released. Most switches are not as bad as this one.

See Also
For the basics of connecting a button, see Recipe 13.1.

13.6 Using an External Pull-Up Resistor

Problem
You want to run a long wire from the Raspberry Pi to the switch, but you
are getting some false readings on the input pin.

Solution

The Raspberry Pi GPIO pins include pull-up resistors. When a GPIO pin is
being used as a digital input, its pull-up resistor will keep the input high
(3.3V) until the input is pulled down to GND, perhaps by a switch. In
addition, the pull-up resistor can be turned on and off within your Python
program.
These internal pull-up resistors are quite weak (about 40kΩ), which means
that if you run a long lead to the switch, or operate in an electrically noisy
environment, you might get false triggerings on the digital input. You can
overcome this by turning off the internal pull-up and pull-down resistors
and using an external pull-up resistor.
Figure 13-9 shows the use of an external pull-up resistor.
To test out this hardware, you can use the program ch_13_switch.py; see
Recipe 13.1.

Discussion
The lower the resistance of the resistor, the longer the range of your switch.
However, when you press the button, a current flows from 3.3V through the
resistor to ground. A 100Ω resistor draws a current of 3.3V/100Ω = 33mA.
This is within the safe limit for the 3.3V supply of 50mA for a Raspberry Pi
1, so don’t use a lower value than this if you have an older Raspberry Pi. If
you are using a newer 40-pin GPIO Raspberry Pi, you could drop this value
even further, perhaps to 47Ω.
In almost all cases, a 1kΩ resistor will provide a long range with no
problems.

Figure 13-9. Using an external pull-up resistor

See Also
For the basics of connecting a button, see Recipe 13.1.

13.7 Using a Rotary (Quadrature) Encoder

Problem
You want to detect rotation by using a rotary encoder (a control that you
rotate like a volume knob).

Solution

Use a rotary (quadrature) encoder connected to two GPIO pins (see
Figure 13-10).

Figure 13-10. Connecting a rotary encoder

To make this recipe, you will need the following:
Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
Rotary encoder (quadrature type; see “Miscellaneous”)

This type of rotary encoder is called a quadrature encoder, and it behaves
like a pair of switches. The sequence in which they open and close as the
rotary encoder’s shaft is turned determines the direction of rotation.
The rotary encoder shown in Figure 13-10 has the center lead as the
common lead and the two leads on either side as A and B. Not all rotary
encoders use this layout, so check the pinout on the datasheet for the rotary
encoder that you are using. The issue is often confused further because
many rotary encoders include a push switch, which will have a separate pair
of contacts.
Open an editor and paste in the following code (ch_13_rotary_encoder.py):

from gpiozero import Button
import time

input_A = Button(18)
input_B = Button(23)

old_a = True
old_b = True

def get_encoder_turn():
 # return -1 (cce), 0 (no movement), or +1 (cw)
 global old_a, old_b
 result = 0
 new_a = input_A.is_pressed
 new_b = input_B.is_pressed
 if new_a != old_a or new_b != old_b :
 if old_a == 0 and new_a == 1 :
 result = (old_b * 2 - 1)
 elif old_b == 0 and new_b == 1 :
 result = -(old_a * 2 - 1)
 old_a, old_b = new_a, new_b
 time.sleep(0.001)
 return result

x = 0

while True:
 change = get_encoder_turn()
 if change != 0 :
 x = x + change
 print(x)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
The test program simply counts up as you turn the rotary encoder
clockwise, and down when you rotate it counterclockwise:

$ python3 ch_13_rotary_encoder.py
1
2
3
4
5
6
7

8
9
10
9
8
7
6
5
4

Discussion
Rotary encoders have replaced variable resistors in many applications, as
they are generally lower cost and do not suffer from track corrosion or wear.
Figure 13-11 shows the sequence of pulses that you will get from the two
contacts, A and B. You can see that the pattern repeats itself after four steps
(hence the name quadrature encoder).

Figure 13-11. How quadrature encoders work

When rotating clockwise (left to right in Figure 13-11), the sequence will
be:

Phase A B

1 0 0

2 0 1

3 1 1

4 1 0

When rotating in the opposite direction, the sequence of phases will be
reversed:

Phase A B

4 1 0

3 1 1

2 0 1

1 0 0

The Python program listed previously implements the algorithm for
determining the rotation direction in the function get_encoder_turn.
The function will return 0 if there has been no movement, 1 for a rotation
clockwise, or -1 for a rotation counterclockwise. It uses two global
variables, old_a and old_b, to store the previous states of the switches A
and B. By comparing them with the newly read values, it can determine
(using a bit of clever logic) which direction the encoder is turning.
The sleep period of one millisecond is to ensure that the next new sample
doesn’t occur too soon after the previous sample; otherwise, the transitions
can give false readings.
The test program should work reliably no matter how fast you turn the knob
on the rotary encoder; however, try to avoid doing anything time consuming
in the loop, or you might find that turn steps are missed.

See Also
You can also measure the rotated position of a knob by using a variable
resistor with the step response method (Recipe 14.1) or by using an analog-
to-digital converter (Recipe 14.7).

13.8 Using a Keypad

Problem
You want to interface a keypad with your Raspberry Pi.

Solution
Keypads are arranged in rows and columns, with a push switch on the
intersection of each row or column. To find out which key is pressed, you
first connect all the row and column connections to Raspberry Pi GPIO
pins. So, for a 4×3 keypad, you will need four pins for the rows and three
pins for the columns (a total of seven). By scanning each column in turn
(setting it to output high) and reading the value of each of the row inputs,
you can determine which (if any) key is pressed. You can also tell if more
than one key is pressed at the same time; as for a particular column, if more
than one key is pressed, the corresponding rows will all be high.
Note that keypads show considerable variation in their pinouts.
To make this recipe, you will need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
4×3 keypad (see “Miscellaneous”)
Seven male header pins (see “Miscellaneous”)

Figure 13-12 shows the wiring diagram for the project using the SparkFun
keypad listed in “Miscellaneous”. The keypad is supplied without header
pins, which you must solder onto the keypad.

Figure 13-12. Keypad wiring diagram

Open an editor and paste in the following code (ch_13_keypad.py).

WARNING
Before you run the program, make sure that the row and column pins are correct for the keypad
that you are using. If necessary, change the values in the variables rows and cols. If you do not
do this, it is possible that pressing a key could short one GPIO output to another, where one is
high and the other is low. This would likely damage your Raspberry Pi.

from gpiozero import Button, DigitalOutputDevice
import time

rows = [Button(17), Button(25), Button(24), Button(23)]
cols = [DigitalOutputDevice(27), DigitalOutputDevice(18),
 DigitalOutputDevice(22)]
keys = [

 ['1', '2', '3'],
 ['4', '5', '6'],
 ['7', '8', '9'],
 ['*', '0', '#']]

def get_key():
 key = 0
 for col_num, col_pin in enumerate(cols):
 col_pin.off()
 for row_num, row_pin in enumerate(rows):
 if row_pin.is_pressed:
 key = keys[row_num][col_num]
 col_pin.on()
 return key

while True:
 key = get_key()
 if key :
 print(key)
 time.sleep(0.3)

When you run the program, you can see each keypress being printed:

$ sudo python3 ch_13_keypad.py
1
2
3
4
5
6
7
8
9
*
0
#

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
There is a push switch at the intersection of every row and column, so that
when the switch is pressed, the particular row and column will become
connected.

The rows and columns defined here are correct for the SparkFun keypad
listed in “Miscellaneous” in Appendix A. The first row is connected to
GPIO pin 17, the second to pin 25, and so on. The wiring of the row and
column to the keypad connector is illustrated in Figure 13-13.

Figure 13-13. Keypad pin connections

Discussion
The keys variable contains a map of the key name for each row and
column position. You can customize this for your keypad.
All the real action takes place in the get_key function. This enables each
column in turn by setting it to low. An inner loop then tests each of the rows
in turn. If one of the rows is low, the key name corresponding to that row

and column is looked up in the keys array. If no keypress is detected, the
default value of key (0) is returned.

The main while loop just gets the key value and prints it. The sleep
command slows down the output.

See Also
An alternative to adding a keypad is simply to use a USB keyboard; that
way you can just catch keystrokes, as described in Recipe 13.11.

13.9 Detecting Movement

Problem
You want to trigger some action in Python when movement is detected.

Solution
Use a passive infrared (PIR) motion detector module.
To make this recipe, you will need the following:

Female-to-female jumper wires (see “Prototyping Equipment and Kits”)
PIR motion detector module (see “Modules”)

Figure 13-14 shows how the sensor module is wired. This module expects a
power supply of 5V and has an output of 3.3V, making it ideal for use with
a Raspberry Pi.

WARNING
Make sure that the PIR module you use has a 3.3V output. If it has a 5V output, you will need to
use a pair of resistors to reduce it to 3.3V (see Recipe 14.8).

Figure 13-14. Wiring a PIR motion detector

Open an editor and paste in the following code (ch_13_pir.py):

from gpiozero import MotionSensor

pir = MotionSensor(18)

while True:
 pir.wait_for_motion()
 print("Motion detected!")

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
The program simply prints out the state of the GPIO input 18:

$ python3 ch_13_pir.py
Motion Detected
Motion Detected

Discussion
gpiozero provides a class for the PIR sensor, MotionSensor, so we
might as well use it. However, this class doesn’t really do anything except
monitor the pin in question as a digital input.
When triggered, the output of the PIR sensor will stay high for a little
while. You can adjust this using one of the trimpots (variable resistors) on
its circuit board. The second trimpot (if present) will set the threshold of
light level that will disable the sensor. This is useful when the sensor is
being used to control a light—turning the light on when detecting
movement, but only when it’s dark.

See Also
More information is available in the full documentation for
MotionSensor.

You could combine this recipe with Recipe 7.16 to send an email when an
intruder is detected, or you could integrate it with If This Then That
(IFTTT) to provide a bevy of possible ways of being notified (see Recipe
17.4).
To detect movement using computer vision and a webcam, see Recipe 8.6.

13.10 Adding GPS to the Raspberry Pi

Problem
You want to connect a serial GPS module to a mobile Raspberry Pi and
access the data using Python.

Solution
A serial GPS module, with 3.3V output, can be connected directly to
Raspberry Pi’s RXD connection. This means that for it to work, you must

https://oreil.ly/nJpBG

follow Recipe 2.6. Note that, although you need to enable the serial port
hardware, you should not enable the serial console option.
Figure 13-15 shows how the module is wired. The RXD of the Raspberry Pi
connects to TX of the GPS module. The only other connections are for
GND and power, so we can use three female-to-female headers.

Check Your Voltage
Some GPS modules need a supply voltage of 3.3V rather than the 5V shown as follows. So check
before connecting.

Figure 13-15. Wiring a GPS to a Raspberry Pi

You can see the raw GPS data using Minicom (see Recipe 10.8). Use the
following minicom command to see the messages appear once per second
on the /dev/serial0 device:

$ minicom -b 9600 -o -D /dev/serial0
Welcome to minicom 2.8
OPTIONS: I18n
Port /dev/serial0, 12:55:56
Press CTRL-A Z for help on special keys
$GPGGA,120346.694,5342.6175,N,00239.7791,W,1,04,5.6,84.4,M,51.3,M
,,0000*7A
$GPGSA,A,3,01,03,31,04,,,,,,,,,6.9,5.6,4.0*3E
$GPGSV,3,1,12,04,63,150,23,03,56,078,41,19,46,263,23,17,39,226,18
*79
$GPGSV,3,2,12,09,37,197,20,06,36,302,20,01,26,134,13,31,20,048,31
*74
$GPGSV,3,3,12,12,08,327,14,21,06,136,,11,04,304,,25,04,001,*72
$GPRMC,120346.694,A,5432.6175,N,00139.7791,W,002.8,084.6,060922,,
,A*7F

If you don’t see any data, check your connections and make sure that the
serial port hardware is enabled. Note that it’s fine to test that the GPS
module is basically working indoors without a GPS signal. But if you want
to get an actual GPS fix, you might need to take your Raspberry Pi
outdoors, or at least have the GPS module right next to a window.
As you can see from the preceding sample, GPS messages require some
decoding. The good news is that it’s fairly easy to spot the actual latitude
and longitude figures in the various messages that come from the GPS
module. In the preceding example, you can see that the message starting
with $GPRMC has comma-separated fields, the third of which is a number
(5432.6175) followed by a letter (N or S). This is the latitude in hundredths
of a degree. The next two fields show the longitude in a similar way.
You can find an example of accessing GPS data from a Python program
in ch_13_gps_serial.py:

import serial

ser = serial.Serial('/dev/serial0')

while True:
 line = ser.readline().decode("utf-8")
 message = line.split(',')
 if message[0] == '$GPRMC':
 if message[2] == 'A':

 lat = message[3] + message[4]
 lon = message[5] + message[6]
 print(F"lat={lat} \tlon={lon}")
 else:
 print("No fix")

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
Run the program and you should see some trace like this. Remember it can
take a while for the GPS module to get a fix:

$ python3 -i ch_13_gps_serial.py
No fix
No fix
lat=5432.6028N lon=00139.0515W
lat=5432.6028N lon=00139.0514W

Discussion
The program reads every incoming message, looking for $GPRMC
messages and then splits the message into its component parts. The second
element of the resulting list will be A if the position is known.

If the position is known, the latitude and longitude are.

See Also
Find out more about the meaning of the various fields in the GPS messages.
For an interesting tutorial on GPS tracking using Python,
see https://oreil.ly/tSVi6.

13.11 Intercepting Keypresses

Problem
You want to intercept individual keypresses on a USB keyboard or numeric
keypad.

https://oreil.ly/6OVLR
https://oreil.ly/tSVi6

Solution
There are at least two ways to solve this problem. The more straightforward
approach is to use the sys.stdin.read function. This has the advantage
over the other method of not requiring a GUI to be running, so a program
using it can be run from an SSH session.
Open an editor, paste in the following code (ch_13_keys_sys.py), run the
program, and start pressing some keys:

import sys, tty, termios

def read_ch():
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(sys.stdin.fileno())
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

while True:
 ch = read_ch()
 if ch == 'x':
 break
 print("key is: " + ch)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22). To stop the program, press the x key.
The alternative to this is to use pygame, a Python library intended for
writing games, which can also be used to detect keypresses. You could then
use this to perform some action.
The following example program (ch_13_keys_pygame.py) illustrates the
use of pygame to print out a message each time a key is pressed. However,
it works only if the program has access to the windowing system, so you
will need to run it using VNC (Recipe 2.8) or run it directly on the
Raspberry Pi:

import pygame
import sys
from pygame.locals import *

pygame.init()
screen = pygame.display.set_mode((640, 480))
pygame.mouse.set_visible(0)

while True:
 for event in pygame.event.get():
 if event.type == QUIT:
 sys.exit()
 if event.type == KEYDOWN:
 print("Code: " + str(event.key) + " Char: " +
chr(event.key))

This opens a blank Pygame window, and keys will be intercepted only if the
Pygame window is selected. The program produces output in the Terminal
window from which the program is run.
If you press an arrow key or Shift key with the first stdin read approach,
the program will throw an error because those keys don’t have an ASCII
value:

$ python3 ch_13_keys_pygame.py
Code: 97 Char: a
Code: 98 Char: b
Code: 99 Char: c
Code: 120 Char: x
Code: 13 Char:

In this case, Ctrl-C won’t stop this program from running. To stop the
program, click the X on the Pygame window.

Discussion
When you are using the pygame approach, other keys have constant values
defined for them, which allows you to use the cursor and other non-ASCII
keys (like the up arrow key and Home) on the keyboard. This isn’t possible
with the other approach.

See Also
Intercepting keyboard events can also be an alternative to using a matrix
keypad (Recipe 13.8).

13.12 Intercepting Mouse Movements

Problem
You want to detect mouse movements in Python.

Solution
The solution to this is very similar to that of using pygame to intercept
keyboard events (Recipe 13.11).
Open an editor and paste in the following code (ch_13_mouse_pygame.py):

import pygame
import sys
from pygame.locals import *

pygame.init()
screen = pygame.display.set_mode((640, 480))
pygame.mouse.set_visible(0)

while True:
 for event in pygame.event.get():
 if event.type == QUIT:
 sys.exit()
 if event.type == MOUSEMOTION:
 print("Mouse: (%d, %d)" % event.pos)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
When you run the program, the MOUSEMOTION event is triggered
whenever the mouse moves within the pygame window. You can find the
coordinates from the pos value of the event. The coordinates are absolute
coordinates relative to the upper-left corner of the window:

Mouse: (262, 285)
Mouse: (262, 283)
Mouse: (262, 281)
Mouse: (262, 280)
Mouse: (262, 278)
Mouse: (262, 274)
Mouse: (262, 270)
Mouse: (260, 261)
Mouse: (258, 252)
Mouse: (256, 241)
Mouse: (254, 232)

Discussion
Other events that you can intercept are MOUSEBUTTONDOWN and
MOUSEBUTTONUP. These can be used to detect when the left mouse button
has been pressed or released.

See Also
You can find the documentation for mouse at the pygame website.

13.13 Giving the Raspberry Pi a Reset Button

Problem
You want a reset button to start up your Raspberry Pi 4 or earlier like a
typical desktop computer.

Solution
If you have a Raspberry Pi 400, there is nothing to do; this version of the
Raspberry Pi already has a power on switch.
When you are finished using your Raspberry Pi, you should really shut it
down; otherwise, it’s possible to corrupt the SD card image, which would
mean you’d have to reinstall Raspberry Pi OS. Having shut down your
Raspberry Pi, you can get it to boot up again by unplugging the USB lead

https://oreil.ly/7Qojm

and then plugging it back in. But a neater solution is to add a reset button to
your Raspberry Pi.
For this recipe, you will need the following:

Two-way 1⁄10-inch header pins (see “Miscellaneous”)

A recycled PC start button or MonkMakes Squid Button (see
“Modules”)
Soldering equipment (see “Prototyping Equipment and Kits”)

Most models of Raspberry Pi have a connector just for this purpose. Its
location on the board varies, but it’s always labeled RUN. Figure 13-16
shows its position on a Raspberry Pi 4, and Figure 13-17 on a Raspberry Pi
3.

Figure 13-16. Position of the RUN contacts on a Raspberry Pi 4

Figure 13-17. Position of the RUN contacts on a Raspberry Pi 3

The holes for the contacts are one-tenth of an inch apart and are designed to
be fitted with standard header pins. Push through the short end of the pins
from the top of the board and solder the underside. After you’ve soldered
them in place, the Raspberry Pi with RUN header pins should look like
Figure 13-18.

Figure 13-18. Pins attached to a Raspberry Pi

Now that the pins are attached, the button connectors can just be pushed
over the header pins, as shown in Figure 13-19.

Figure 13-19. A Raspberry Pi 3 complete with reset button

Discussion
To test out your modification, power up your Raspberry Pi and then shut it
down by selecting Shutdown from the Raspberry Menu (Figure 13-20).
After a while the screen will close down and the Pi will go into a halt mode,
where it uses minimal power and is basically on standby.
Now, to start your Pi, all you need to do is press the button, and it will boot
up!

Figure 13-20. Shutting down the Raspberry Pi

See Also
For more information on shutting down and starting your Raspberry Pi, see
Recipe 1.15.

Chapter 14. Sensors

14.0 Introduction
In this chapter, we look at recipes for using sensors of various types that
will enable the Raspberry Pi to measure temperature, light, and more.
Unlike boards such as the Arduino and the Raspberry Pi Pico, a regular
Raspberry Pi lacks analog inputs. This means that for many sensors, it is
necessary to use additional analog-to-digital converter (ADC) hardware.
Fortunately, this is relatively easy to do. It is also possible to use resistive
sensors with a capacitor and a couple of resistors.
Many of the recipes will require the use of a solderless breadboard and
male-to-female jumper wires (see Recipe 10.9).

14.1 Using Resistive Sensors

Problem
You want to connect a variable resistor to a Raspberry Pi and measure its
resistance to determine the position of the variable resistor’s knob in your
Python program.

Solution
You can measure resistance on a Raspberry Pi using nothing more than a
capacitor, a couple of resistors, and two general-purpose input/output
(GPIO) pins. In this case, you will be able to estimate the position of the
knob on a small variable resistor (trimpot) by measuring its resistance from
its slider contact to one end of the pot.
To make this recipe, you’ll need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)

10kΩ trimpot (see “Resistors and Capacitors”)
Two 1kΩ resistors (see “Resistors and Capacitors”)
330 nF capacitor (see “Resistors and Capacitors”)

Figure 14-1 shows the arrangement of components on the breadboard.

Figure 14-1. Measuring resistance on a Raspberry Pi

This recipe makes use of a Python library that the author developed to make
this approach to using analog sensors easier. To install it, run the following
commands:

$ git clone https://github.com/simonmonk/pi_analog.git
$ cd pi_analog
$ sudo python3 setup.py install

Open an editor and paste in the following code
(ch_14_resistance_meter.py):

from PiAnalog import *
import time

p = PiAnalog()

while True:
 print(p.read_resistance())
 time.sleep(1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
When you run the program, you should see some output like this:

$ python3 ch_14_resistance_meter.py
5588.419502667787
5670.842306126099
8581.313103654076
10167.614271851775
8724.539614581638
4179.124682880563
267.41950235897957

The reading will vary as you rotate the knob of the trimpot. Ideally, the
resistance reading will vary between 0 and 10,000Ω, but in practice, there
will be some error.

Discussion
To explain how the PiAnalog class works, I first need to explain how the
step response technique for measuring the resistance of the variable resistor
works.
Figure 14-2 shows the schematic diagram for the recipe.
This way of doing things is called step response because it works by seeing
how the circuit responds from the step change when an output is switched
from low to high.

Figure 14-2. Measuring resistance using step response

You can think of a capacitor as a tank of electricity and, as it fills with
charge, the voltage across it increases. You can’t measure that voltage
directly because the Raspberry Pi doesn’t have an analog-to-digital
converter (ADC). However, you can time how long it takes for the capacitor
to fill with charge to the extent that it rises above the 1.65V or so that
constitute a high digital input. The speed at which the capacitor fills with
charge depends on the value of the variable resistor (Rt). The lower the
resistance, the faster the capacitor fills with charge and the voltage rises.
To be able to get a good reading, you must also be able to empty the
capacitor each time before you take a reading. In Figure 14-2, connection A
is used to charge the capacitor through Rc and Rt, and connection B is used

to discharge (empty) the capacitor through Rd. The resistors Rc and Rd are
used to prevent too much current from flowing through the Raspberry Pi’s
relatively fragile GPIO pins as the capacitor is charged and discharged.
The steps involved in taking a reading are first to discharge the capacitor
through Rd and then to let it charge through Rc and Rt. To discharge it,
connection A (GPIO 18) is set to be an input, effectively disconnecting Rc
and Rt from the circuit. Connection B (GPIO 23) is then set to be a low
output. This is held there for 100 milliseconds to empty the capacitor.
Now that the capacitor is empty, you can start to allow charge to flow into it
by setting connection B to be an input (effectively disconnecting it) and
then enabling connection A to be a high output at 3.3V. Capacitor C will
now begin to charge through Rc and Rt.
Figure 14-3 shows how a resistor and capacitor in this kind of arrangement
charge and discharge as the voltage is toggled between high and low.
You can see that the voltage at the capacitor increases rapidly at first but
then trails off as the capacitor becomes full. Fortunately, you are interested
in the portion of the curve up until the capacitor reaches about 1.65V, which
is a fairly straight line, meaning that the time taken for the voltage across
the capacitor to rise to this point is roughly proportional to the resistance of
Rt and hence the position of the knob.
This approach is not hugely accurate, but it is very low cost and easy to use.
The inaccuracy is largely because capacitors of a suitable value are accurate
to only 10%.

Figure 14-3. Charging and discharging a capacitor

See Also
Using a step response works well with all kinds of resistive sensors for light
(Recipe 14.2), temperature (Recipe 14.3), and even gas detection (Recipe
14.4).
For more accurate measurements of the trimpot position, see Recipe 14.7,
in which the pot is used with an ADC.

14.2 Measuring Light

Problem

You want to measure light intensity with a Raspberry Pi and a photoresistor.

Solution
Use the same basic recipe and code as Recipe 14.1, but replace the trimpot
with a photoresistor.
To make this recipe, you’ll need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
Photoresistor or Phototransistor (see “Resistors and Capacitors”)
Two 1kΩ resistors (see “Resistors and Capacitors”)
330 nF capacitor (see “Resistors and Capacitors”)

All of these parts are included in the Project Box 1 kit for Raspberry Pi
from MonkMakes (see “Prototyping Equipment and Kits”).
Figure 14-4 shows the arrangement of components on the breadboard. If
you are using a phototransistor rather than a photoresistor, then the longer
lead is the negative lead and should go to row 4 of the breadboard.

Figure 14-4. Measuring light on a Raspberry Pi

Using the same program as Recipe 14.1 (ch_14_resistance_meter.py), you
will see the output vary as you move your hand over the

photoresistor/phototransistor to cut out some of the light.
Note that this program needs the PiAnalog library to be installed (see
Recipe 14.1).
This solution provides relatively reliable readings of light levels. As an
adaptation of the general solution for using resistive sensors (Recipe 14.1),
it also copes with measuring a resistance of 0Ω without any risk of
damaging the GPIO pins of the Raspberry Pi.

Discussion
A photoresistor is a resistor whose resistance varies depending on the
amount of light coming through its transparent window. The brighter the
light, the lower the resistance. Typically, the resistance varies from about
1kΩ in bright light up to perhaps 100kΩ in complete darkness.
A phototransistor works in a similar way, conducting more as more light
falls on it. But unlike the photoresistor, the phototransistor has a positive
and negative and won’t work if connected the wrong way around.

See Also
You could also use an ADC with the photoresistor or phototransistor
(Recipe 14.7).

14.3 Measuring Temperature with a
Thermistor

Problem
You want to measure temperature using a thermistor.

Solution

A thermistor is a resistor whose resistance varies with temperature. Use the
step response method (Recipe 14.1) to measure the resistance of the
thermistor and then calculate the temperature.
To make this recipe, you will need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
1k thermistor (see “Resistors and Capacitors”)
Two 1kΩ resistors (see “Resistors and Capacitors”)
330 nF capacitor (see “Resistors and Capacitors”)

All of these parts are included in the Project Box 1 kit for Raspberry Pi
from MonkMakes (see “Prototyping Equipment and Kits”). When you get
your thermistor, make sure that you know its values of Beta and R0
(resistance at 25°C) and that it is a negative temperature coefficient (NTC)
device.
Figure 14-5 shows the breadboard layout for this recipe.

Figure 14-5. Breadboard layout for using a thermistor

Note that this program needs the PiAnalog library to be installed (see
Recipe 14.1).
The following code (ch_14_thermistor.py) illustrates the use of the
PiAnalog module:

from PiAnalog import *
import time

p = PiAnalog()

while True:
 print(p.read_temp_c())
 time.sleep(1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
When you run the program, you will see a series of temperature
measurements in degrees Celsius. To convert to degrees Fahrenheit, change
the code p.read_temp_c() to p.read_temp_f():

$ python3 ch_14_thermistor.py
18.735789861164392
19.32060395712483
20.2694035007122
21.03181169007422
21.26640936199749

Discussion
Calculating the temperature from the resistance of the thermistor requires
some fairly hairy math using logarithms called the Steinhart-Hart equation.
This equation needs to know two things about the thermistor: its resistance
at 25°C (called R0) and a constant for the thermistor called Beta, or
sometimes just B. If you use a different thermistor, you will need to plug
these values into the code when you call read_temp_c. For example:

read_temp_c(self, B=3800.0, R0=1000.0)

Note that a capacitor typically has an accuracy of only 10%, and thermistors
are similarly inaccurate in their value of R0, so do not expect massively
accurate results.

See Also
To measure temperature using a TMP36, see Recipe 14.10.
To measure temperature using a digital temperature sensor (DS18B20), see
Recipe 14.13.
To measure temperature using a Sense HAT, see Recipe 14.12.

14.4 Detecting Methane

Problem
You want to measure gas levels using a methane sensor.

Solution
Low-cost resistive gas sensors are available that can easily be wired to a
Raspberry Pi to detect gases such as methane. You can use the step response
method that you first used in Recipe 14.1.
To make this recipe, you’ll need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
Methane sensor (see “Modules”)
Two 1kΩ resistors (see “Resistors and Capacitors”)
330 nF capacitor (see “Resistors and Capacitors”)

The sensor contains a heating element that requires 5V at up to 150mA. The
Raspberry Pi is capable of providing this as long as its power supply can
provide the extra 150mA.
The sensor module has rather thick legs—too thick to fit into breadboard
holes. One way around this is to solder short lengths of solid core wire to
each lead (Figure 14-6). Another is to buy SparkFun’s gas sensor breakout
board, which will allow you to plug the sensor in directly.

https://oreil.ly/cKxym

Figure 14-6. Soldering leads onto the gas sensor

Wire the breadboard as shown in Figure 14-7 if you’re using the SparkFun
breakout board, or as shown in Figure 14-8 if you soldered longer leads to
the gas sensor.

Figure 14-7. Connecting a methane gas sensor to a Raspberry Pi (breakout board)

Note that the direct connection shown in Figure 14-8 uses the same symbol
for the breakout board rather than the sensor on its own, but if you look
carefully, the connections are to the six sensor pins, not the four pins of the
breakout.

Figure 14-8. Connecting a methane gas sensor to a Raspberry Pi (direct)

You can use the exact same program as Recipe 14.1, and you can test the
methane sensor by breathing on it. You should see the readings from the
sensor drop when you breathe on it.

Discussion
The obvious use of a methane gas sensor is for novelty fart-detecting
projects. A more serious use would be for detecting leaks of natural gas.
You could, for instance, imagine a Raspberry Pi home-watch project that
monitored the home with various sensors. It could then send you an email
while you were on vacation informing you that your house was about to
explode. Or maybe not.
These types of sensors (Figure 14-9) use a heating element that warms a
resistive surface impregnated with a catalyst sensitive to a particular gas.
When the gas is present, the resistance of the catalyst layer changes.

Figure 14-9. A methane gas sensor

Both the heater and the sensing surface are electrically just resistors. So
both can be connected either way around.
This particular gas sensor is most sensitive to methane, but it will also
detect other gases to a lesser extent. That is why breathing on the sensor
alters the reading, as healthy individuals will not normally breathe out
methane. The cooling effect of blowing on the element can also have an
effect.

See Also
You can find the datasheet for this sensor. This will give you all sorts of
useful information about the sensor’s sensitivity to various gases.
A range of these low-cost sensors are available for sensing different gases.
See a list of sensors offered by SparkFun.

14.5 Measuring Air Quality (CO2)

Problem
Carbon dioxide (CO2) concentration is an indicator of air quality. You want
to use your Raspberry Pi to measure this quality using a special sensor.

https://oreil.ly/lslf4
https://oreil.ly/Q1hM6

Solution
Use a low-cost (well, relatively low-cost) MH-Z14A CO2 sensor module,
shown connected to a Raspberry Pi in Figure 14-10.

Figure 14-10. An MH-Z14A CO2 sensor connected to a Raspberry Pi

To make this recipe, you’ll need the following:
An MH-Z14A CO2 sensor module (see “Modules”)

Female-to-female jumper wires (see “Prototyping Equipment and Kits”)

Make the following connections between the Z14A sensor and your
Raspberry Pi:

Pin 16 of the MH-Z14A to GND on the Raspberry Pi
Pin 17 of the MH-Z14A to 5V on the Raspberry Pi
Pin 18 of the MH-Z14A to GPIO 14 (TXD) on the Raspberry Pi
Pin 19 of the MH-Z14A to GPIO 15 (RXD) on the Raspberry Pi

This sensor uses the serial port. This means that for it to work, you must
follow Recipe 2.6. Note that even though you need to enable the serial port
hardware, you should not enable the serial console option.
The following test program reads the level of CO2 from the sensor and
reports it once per second (ch_14_co2.py):

import serial, time

request_reading = bytes([0xFF, 0x01, 0x86, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x79])

def read_co2():
 sensor.write(request_reading)
 time.sleep(0.1)
 raw_data = sensor.read(9)
 high = raw_data[2]
 low = raw_data[3]
 return high * 256 + low;

sensor = serial.Serial('/dev/serial0')
print(sensor.name)
if sensor.is_open:
 print("Open")

while True:
 print("CO2 (ppm):" + str(read_co2()))
 time.sleep(1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
When the program is run, the CO2 level should (unless you are in a small,
unventilated room) be about 400 ppm. If you breathe on the sensor for a

few seconds, the readings will slowly begin to rise and then fall back to a
normal reading over the next few minutes:

$ python3 ch_14_co2.py
/dev/ttyS0
Open
CO2 (ppm):489
CO2 (ppm):483
CO2 (ppm):483
CO2 (ppm):481
CO2 (ppm):491
CO2 (ppm):517
CO2 (ppm):619
CO2 (ppm):734
CO2 (ppm):896
CO2 (ppm):1367

The sensor uses a request/response communication protocol. So when you
want to receive a reading from the sensor, you first need to send the 9-byte
message contained in request_reading. The sensor will immediately
respond with a 9-byte message. We are interested only in bytes 2 and 3,
which contain the high and low bytes of the CO2 reading in ppm.

Discussion
Normal levels of CO2 are around 400 to 1,000 ppm. Above that, the air can
begin to feel stale, and you might feel drowsy. Studies have shown that high
levels of CO2 because of poor ventilation can result in decreased mental
performance. As a result of running the program overnight, I now leave the
window and/or door ajar in my bedroom.

See Also
Learn more about the Z14A protocol.
Find more information about safe levels of CO2.

14.6 Measuring Soil Moisture

https://oreil.ly/Zc6is
https://oreil.ly/h0QGj

Problem
You want to measure the moisture of the soil around your plants.

Solution
Use a MonkMakes Plant Monitor board. Unlike most other soil moisture
boards, this board has a serial interface, and so you must first follow Recipe
2.6 to enable the serial interface. Connect up the board as shown in
Figure 14-11.

Figure 14-11. A Plant Monitor connected to a Raspberry Pi

The connections are:
GND to GND
3.3V on the Raspberry Pi to 3V on the Plant Monitor
14 TXD on the Raspberry Pi to RX_IN on the Plant Monitor
15 RXD on the Raspberry Pi to TX_OUT on the Plant Monitor

Then download the Python software for the board using the command:

$ git clone https://github.com/monkmakes/pmon.git

This is another program that uses guizero, so if you have not already
installed guizero, do so, using the command:

$ pip3 install guizero

Then change to the examples directory and run the example program, using
the commands:

$ cd pmon/raspberry_pi
$ python3 01_meter.py

This will open the window shown in Figure 14-12.

Figure 14-12. Monitoring soil moisture, temperature, and humidity with a Raspberry Pi

Discussion
Most soil moisture sensors need analog inputs and so are not readily
connected to a Raspberry Pi. The MonkMakes Plant Monitor uses a serial
interface, making it very suitable for connecting to a Raspberry Pi. It

reports the temperature and humidity at the plant and has an RGB LED that
indicates the soil moisture.
The code for the preceding example program is:

import threading
import time
from guizero import App, Text
from plant_monitor import PlantMonitor

pm = PlantMonitor()

app = App(title="Plant Monitor", width=550, height=300,
layout="grid")

def update_readings(): # update fields with new temp and eCO2
readings
 while True:
 wetness_field.value = str(pm.get_wetness())
 temp_c_field.value = str(pm.get_temp())
 humidity_field.value = str(pm.get_humidity())
 time.sleep(2)

t1 = threading.Thread(target=update_readings)

define the user interface
Text(app, text="Wetness (%)", grid=[0,0], size=20)
wetness_field = Text(app, text="-", grid=[1,0], size=100)
Text(app, text="Temp (C)", grid=[0,1], size=20)
temp_c_field = Text(app, text="-", grid=[1,1], size=50)
Text(app, text="Humidity (%)", grid=[0,2], size=20)
humidity_field = Text(app, text="-", grid=[1,2], size=50)
t1.start() # start the thread that updates the readings
app.display()

Most of the code is to provide the user interface using guizero (Recipe
7.22). The key steps for the plant monitor are to first create an instance of
the PlantMonitor class using pm = PlantMonitor(), and then
access wetness, temperature, and humidity readings using
pm.get_wetness(), pm.get_temp(), and
pm.get_humidity(), respectively.

See Also

For full information on the MonkMakes Plant Monitor,
see https://oreil.ly/zOQWq.
For measuring temperature and humidity using a Sense HAT, see Recipe
14.12.
For an example of a Raspberry Pi Pico using a Plant Monitor, see Recipe
19.11.

14.7 Measuring a Voltage

Problem
You want to measure an analog voltage.

Solution
The Raspberry Pi GPIO connector has only digital inputs. If you want to
measure a voltage, you need to use a separate analog-to-digital converter
(ADC).
Use the MCP3008 eight-channel ADC chip. This chip has eight analog
inputs, so you can connect up to eight sensors to one of these and interface
to the chip using the Raspberry Pi SPI.
To make this recipe, you will need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
MCP3008 eight-channel ADC integrated circuit (IC) (see “Integrated
Circuits”)
10kΩ trimpot (see “Resistors and Capacitors”)

Figure 14-13 shows the breadboard layout for using this chip. Make sure
that you get the chip facing the proper direction. The little notch in the
package should be toward the top of the breadboard.

https://oreil.ly/zOQWq

Figure 14-13. Using an MCP3008 ADC IC with a Raspberry Pi

The variable resistor has one end connected to 3.3V and the other to GND,
which allows the middle connection to be set to any voltage between 0 and
3.3V.
Before trying the program, make sure you have SPI enabled (Recipe 10.6).
This recipe also explains a bit more about SPI.
Open an editor and paste in the following code (ch_14_adc_test.py):

from gpiozero import MCP3008
import time

analog_input = MCP3008(channel=0)

while True:
 reading = analog_input.value
 voltage = reading * 3.3
 print("Reading={:.2f}\tVoltage={:.2f}".format(reading,
voltage))
 time.sleep(1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
When you run the program, you should see output like this as you turn the
variable resistor to alter the voltage:

$ python3 ch_14_adc_test.py
Reading=0.60 Voltage=2.00
Reading=0.54 Voltage=1.80
Reading=0.00 Voltage=0.00
Reading=0.00 Voltage=0.00
Reading=0.46 Voltage=1.53
Reading=0.99 Voltage=3.28

The readings from the MCP3008 channel are between 0 and 1. You can
convert these into a voltage by multiplying by 3.3 (the supply voltage).

Discussion
The MCP3008 has 10-bit ADCs, so when you take a reading, it gives you a
number between 0 and 1023. The MCP3008 class converts this into a
voltage value by multiplying the reading by the voltage range (3.3V) and
then dividing it by 1,024.
If you don’t need all the features of a proper Raspberry Pi, you can use a
Raspberry Pi Pico, which has analog inputs available so that you don’t need
an ADC chip. You can find out about this in Recipe 19.7.
You can combine any of the following recipes that use the MCP3008 to
allow readings to be taken from up to eight sensors.
You can also use resistive sensors with the MCP3008 by combining them
with a fixed-value resistor and arranging them as a voltage divider (see
Recipes 14.8 and 14.9).

See Also
If you’re just interested in detecting the turning of a knob, you can use a
rotary encoder instead of a pot (Recipe 13.7).
You can also detect the position of a pot without the use of an ADC chip by
using the step response method (Recipe 14.1).
Check out the datasheet for the MCP3008.
The Explorer HAT Pro from Pimoroni also has an ADC (Recipe 10.16).

14.8 Reducing Voltages for Measurement

Problem
You want to measure a voltage, but it is higher than the 3.3V possible using
an MCP3008 (Recipe 14.7).

Solution
Use a pair of resistors to act as a voltage divider to reduce the voltage to a
suitable range.
To try this recipe, you’ll need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
MCP3008 eight-channel ADC IC (see “Integrated Circuits”)
10kΩ resistor (see “Resistors and Capacitors”)
3.3kΩ resistor (see “Resistors and Capacitors”)
9V battery and clip lead

Figure 14-14 shows the arrangement for this, using a breadboard. The setup
will measure the voltage of the battery.

https://oreil.ly/SZif8

Figure 14-14. Reducing the voltage of analog inputs

WARNING
Never use this recipe to measure high-voltage AC, or any type of AC for that matter. It is for low-
voltage DC only.

Open an editor and paste in the following code (ch_14_adc_scaled.py):

from gpiozero import MCP3008
import time

R1 = 10000.0
R2 = 3300.0
analog_input = MCP3008(channel=0)

while True:
 reading = analog_input.value
 voltage_adc = reading * 3.3
 voltage_actual = voltage_adc / (R2 / (R1 + R2))

 print("Battery Voltage=" + str(voltage_actual))
 time.sleep(1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
The program is very similar to that of Recipe 14.7. The main difference is
the scaling, using the values of the two resistors, which are held in the
variables R1 and R2.

When you run the program, the battery voltage is displayed:

$ python3 ch_14_adc_scaled.py
Battery Voltage=8.62421875

WARNING
Read the discussion carefully before attaching anything higher than 9V, or you might destroy the
MCP3008.

Discussion
This arrangement of resistors is called a voltage divider or sometimes a
potential divider (Figure 14-15). The formula for calculating the output
voltage, given the input voltage and the values of the two resistors, is as
follows:

Vout = Vin * R2 / (R1 + R2)

Figure 14-15. A voltage divider

This means that if R1 and R2 were both the same value (say, 1kΩ), Vout
would be half of Vin.
When choosing R1 and R2, you also need to consider the current flowing
through them. This will be Vin/(R1 + R2). In the preceding example, R1 is
10kΩ and R2 is 3.3kΩ, so the current flowing will be 9V/13.3kΩ =
0.68mA. This is low, but still enough to eventually drain the battery, so do
not leave it connected all the time.

See Also
To avoid the math, you can use an online resistor calculator.
The voltage divider is also used to convert resistance to voltage when using
a resistive sensor with an ADC (Recipe 14.9).

14.9 Using Resistive Sensors with an ADC

Problem

https://oreil.ly/t9C0r

You have a resistive sensor that you wish to use with an MCP3008 ADC
chip.

Solution
Use a potential divider with one fixed resistor and the resistive sensor to
convert the resistance of the sensor into a voltage that can be measured with
the ADC. As an example, you can remake the light sensor project of Recipe
14.2 to use the MCP3008 instead of the step response technique.
To try this recipe, you’ll need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
MCP3008 eight-channel ADC IC (see “Integrated Circuits”)
10kΩ resistor (see “Resistors and Capacitors”)
Photoresistor (see “Resistors and Capacitors”)

Figure 14-16 shows the arrangement for this, using a breadboard.
You can use the exact same program as Recipe 14.7 (ch_14_adc_test.py).
Covering up the light sensor with your hand changes the readings. You also
need to set up SPI on your Raspberry Pi so, if you haven’t already done so,
follow Recipe 10.6 first.

$ python3 ch_14_adc_test.py
Reading=0.60 Voltage=2.00
Reading=0.54 Voltage=1.80

Figure 14-16. Using a photoresistor with an ADC

These readings can be quite a bit different, depending on your photoresistor,
but the important thing is that the figure changes as the light level changes.

Discussion
The choice of fixed-value resistor is not very critical. If the value is too high
or too low, you will find that the range of readings is rather narrow. Select a
resistor value somewhere between the minimum and maximum resistance
of the sensor. You might need to experiment with a few resistors before
deciding on one that suits your sensor over the range of readings you’re
interested in. If in doubt, start with 10kΩ and see how that works.

You can swap out the photoresistor for pretty much any resistive sensor. So,
for instance, you could use the gas sensor from Recipe 14.4.

See Also
To measure light intensity without the complication of an ADC, see Recipe
14.2.
For an example of using more than one channel of the ADC at a time, see
Recipe 14.14.

14.10 Measuring Temperature with an ADC

Problem
You want to measure temperature using a TMP36 and an analog-to-digital
converter.

Solution
Use an MCP3008 ADC chip with the TMP36.
To try this recipe, you will need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
MCP3008 eight-channel ADC IC (see “Integrated Circuits”)
TMP36 temperature sensor (see “Integrated Circuits”)

Figure 14-17 shows the arrangement for this, using a breadboard.

Figure 14-17. Using a TMP36 with an ADC

Make sure that you have the TMP36 facing the proper direction. One side
of the package is flat, whereas the other is curved.
You will need to set up SPI on your Raspberry Pi, so if you haven’t already
done so, follow Recipe 10.6.
Open an editor and paste in the following code (ch_14_adc_tmp36.py):

from gpiozero import MCP3008
import time

analog_input = MCP3008(channel=0)

while True:
 reading = analog_input.value

 voltage = reading * 3.3
 temp_c = voltage * 100 - 50
 temp_f = temp_c * 9.0 / 5.0 + 32
 print("Temp C={:.2f}\tTemp F={:.2f}".format(temp_c, temp_f))
 time.sleep(1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
The program is based on that of Recipe 14.7. A little bit of additional math
calculates the temperature in degrees Celsius and Fahrenheit:

$ python3 ch_14_adc_tmp36.py
Temp C=18.64 Temp F=65.55
Temp C=20.25 Temp F=68.45
Temp C=23.47 Temp F=74.25
Temp C=25.08 Temp F=77.15

Discussion
The TMP36 outputs a voltage that is proportional to the temperature.
According to the datasheet for the TMP36, the temperature in degrees
Celsius is calculated as the voltage (in volts) × 100 – 50.
The TMP36 is fine for measuring the approximate temperature but is
specified as having an accuracy of only 2°C. This will only get worse if you
attach long leads to it. To some extent, you can calibrate an individual
device, but, for better accuracy, use a DS18B20 (Recipe 14.13), which has a
stated accuracy of 0.5% over a temperature range of –10 to +85 degrees
Celsius. Being a digital device, it should not suffer any loss of accuracy
when attached to long leads.

See Also
Take a look at the TMP36 datasheet.
To measure temperature using a thermistor, see Recipe 14.3.
To measure temperature using a Sense HAT, see Recipe 14.12.

https://oreil.ly/9Dfrq

To measure temperature using a digital temperature sensor (DS18B20), see
Recipe 14.13.

14.11 Measuring the Raspberry Pi CPU
Temperature

Problem
You want to know just how hot your Raspberry Pi’s CPU is getting.

Solution
Use the gpiozero library to access the temperature sensor built into the
Broadcom chip. Your Raspberry Pi should already have the gpiozero
library installed. But if it doesn’t, you can install it using:

$ sudo pip3 install gpiozero

The example program ch_14_cpu_temp.py will repeatedly print the CPU
temperature:

import time
from gpiozero import CPUTemperature

while True:
 cpu_temp = CPUTemperature()
 print(cpu_temp.temperature)
 time.sleep(1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
When you run this program, it reports the temperature in degrees C once a
second:

$ python3 ch_14_cpu_temp.py
37.485
38.459
36.511
36.998

Discussion
Because the Raspberry Pi’s CPU is busy running code, the temperature
reported will not have much to do with the ambient temperature, but will be
more an indication as to how hard the Pi is working and how well ventilated
it is.

See Also
To measure temperature using a thermistor, see Recipe 14.3.
To measure temperature using a TMP36, see Recipe 14.10.
To measure temperature using a Sense HAT, see Recipe 14.12.
To measure temperature using a digital temperature sensor (DS18B20), see
Recipe 14.13.

14.12 Measuring Temperature, Humidity, and
Pressure with a Sense HAT

Problem
You want to measure temperature, humidity, and pressure, but you don’t
really want to have to attach three separate sensors.

Solution
Use a Raspberry Pi Sense HAT (Figure 14-18). That way, you get all of
those sensors plus some extras, like a display.

Figure 14-18. A Sense HAT

The Sense Hat software comes pre-installed on Raspberry Pi OS.
Open an editor and paste in the following code (ch_14_sense_hat_thp.py):

from sense_hat import SenseHat
import time

hat = SenseHat()

while True:
 t = hat.get_temperature()
 h = hat.get_humidity()
 p = hat.get_pressure()
 print('Temp C:{:.2f} Hum:{:.0f} Pres:{:.0f}'.format(t, h, p))
 time.sleep(1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
When you run the program, the Terminal displays something like this:

$ python3 ch_14_sense_hat_thp.py
Temp C:27.71 Hum:56 Pres:1005
Temp C:27.60 Hum:55 Pres:1005

The temperature is in degrees C, the humidity is the relative humidity as a
percentage, and the atmospheric pressure is in millibars.

Discussion
You will find that the temperature readings from the Sense HAT are on the
high side. This is because the temperature sensor is built into the humidity
sensor and is on the Sense HAT PCB. The Sense HAT generates very little
heat (unless you use the display), but the Raspberry Pi under the Sense HAT
does get warm and will increase the temperature of the HAT. The best way
to avoid this problem is to use a 40-way ribbon cable to move the Sense
HAT away from the Raspberry Pi. There are also attempts to adjust the
readings by using the temperature reading of the Raspberry Pi. Personally, I
feel that these compensation attempts are probably very specific to the
user’s posting and are unlikely to produce reliable results.
As well as reading the temperature from the humidity sensor, the pressure
sensor also has a temperature sensor built in that you can read like this:

t = hat.get_temperature_from_pressure()

It is unclear from the documentation as to whether this reading is any more
accurate than using the humidity sensor, but for my setup, it reported
temperatures about 1 degree Celsius lower than the humidity sensor.

See Also
To get started with the Sense HAT, see Recipe 10.15.
Check out the programming reference for the Sense HAT.
The Sense HAT also has an accelerometer, a magnetometer (Recipe 14.15),
and a gyroscope (Recipe 14.16) for navigation-type projects. It also has a

https://oreil.ly/yok86
https://oreil.ly/JtbT3

full-color 8×8 LED matrix display (Recipe 15.3).

14.13 Measuring Temperature Using a Digital
Sensor

Problem
You want to measure temperature using an accurate digital sensor.

Solution
Use the DS18B20 digital temperature sensor. This device is more accurate
than the TMP36 used in Recipe 14.10, and it uses a digital interface, so it
doesn’t require an ADC chip.
Although the interface to this chip is called one-wire, this just refers to the
data pin. You do need at least one other wire to connect to a one-wire
device.
To make this recipe, you will need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
DS18B20 temperature sensor (see “Integrated Circuits”)
4.7kΩ resistor (see “Resistors and Capacitors”)

Fit the components onto the breadboard as shown in Figure 14-19. Make
sure that you get the DS18B20 facing the proper direction.

Figure 14-19. Connecting a DS18B20 to a Raspberry Pi

The latest version of Raspberry Pi OS has support for the one-wire interface
used by the DS18B20, but you do need to enable it using the Raspberry Pi
Configuration tool (Figure 14-20).

Figure 14-20. Enabling the one-wire interface

You will find the example code for this recipe in ch_14_temp_DS18B20.py:

import glob, time

base_dir = '/sys/bus/w1/devices/'
device_folder = glob.glob(base_dir + '28*')[0]
device_file = device_folder + '/w1_slave'

def read_temp_raw():
 f = open(device_file, 'r')
 lines = f.readlines()
 f.close()
 return lines

def read_temp():
 lines = read_temp_raw()
 while lines[0].strip()[-3:] != 'YES':
 time.sleep(0.2)
 lines = read_temp_raw()

 equals_pos = lines[1].find('t=')
 if equals_pos != -1:
 temp_string = lines[1][equals_pos+2:]
 temp_c = float(temp_string) / 1000.0
 temp_f = temp_c * 9.0 / 5.0 + 32.0
 return temp_c, temp_f

while True:
 temp_c, temp_f = read_temp()
 print('Temp C={:.2f}\ttemp F={:.2f}'.format(temp_c, temp_f))
 time.sleep(1)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
When the program is run, it reports the temperature once per second in both
degrees Celsius and degrees Fahrenheit:

$ python3 ch_14_temp_DS18B20.py
temp C=25.18 temp F=77.33
temp C=25.06 temp F=77.11
temp C=26.31 temp F=79.36
temp C=28.87 temp F=83.97

Discussion
At first sight, the program looks a little odd. The interface to the DS18B20
uses a file-like interface. The file interface for the device will always be in
the folder /sys/bus/w1/devices/, and the name of the filepath will start with
28, but the rest of the filepath will be different for each sensor.
The code assumes there will be only one sensor and finds the first folder
starting with 28. To use multiple sensors, use different index values inside
the square brackets.
Within that folder will be a file called w1_slave, which is opened and read
to find the temperature.
The sensor actually returns strings of text like this:

81 01 4b 46 7f ff 0f 10 71 : crc=71 YES
81 01 4b 46 7f ff 0f 10 71 t=24062

The remainder of the code extracts the temperature part of this message.
This appears after t= and is the temperature in one-thousandths of a degree
Celsius.
The read_temp function calculates the temperature in both degrees
Celsius and degrees Fahrenheit and returns both values.
In addition to the basic chip version of the DS18B20, you can also buy a
version encapsulated in a rugged and waterproof probe.

See Also
To find out about logging readings, see Recipe 14.24.
This recipe is heavily based on this Adafruit tutorial.
Take a look at the datasheet for the DS18B20.
To measure temperature using a thermistor, see Recipe 14.3.
To measure temperature using a TMP36, see Recipe 14.10.
To measure temperature using a Sense HAT, see Recipe 14.12.

14.14 Measuring Acceleration with an
MMA8452Q Module

Problem
You want to connect a triple-axis accelerometer to a Raspberry Pi.

Solution
Use an I2C accelerometer chip to measure the X, Y, and Z analog outputs.
To try this recipe, you will need the following:

Breadboard (see “Prototyping Equipment and Kits”)
Four female-to-female jumper wires (see “Prototyping Equipment and
Kits”)

https://oreil.ly/o4oQu
https://oreil.ly/Jlgx8

MMA8452Q triple-axis accelerometer (see “Modules”)
Figure 14-21 shows the arrangement for this, using a breadboard. It uses
three channels of the ADC to measure the X, Y, and Z acceleration forces.

Figure 14-21. Connecting a triple-axis I2C accelerometer

You will need to enable I2C on your Raspberry Pi so, if you have not
already done so, follow Recipe 10.4.
The example code for this can be found in the file ch_14_i2c_acc.py:

import smbus
import time

bus = smbus.SMBus(1)

i2c_address = 0x1D
control_reg = 0x2A

bus.write_byte_data(i2c_address, control_reg, 0x01) # Start
bus.write_byte_data(i2c_address, 0x0E, 0x00) # 2g range

time.sleep(0.5)

def read_acc():
 data = bus.read_i2c_block_data(i2c_address, 0x00, 7)
 x = (data[1] * 256 + data[2]) / 16
 if x > 2047 :
 x -= 4096
 y = (data[3] * 256 + data[4]) / 16
 if y > 2047 :
 y -= 4096
 z = (data[5] * 256 + data[6]) / 16
 if z > 2047 :
 z -= 4096
 return (x, y, z)

while True:
 print("x={:.6f}\ty={:.6f}\tz={:.6f}".format(x, y, z))
 time.sleep(0.5)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
The program reads the three forces corresponding to the accelerations and
prints them out:

$ python3 ch_14_i2c_acc.py
x=-122.000000 y=56.000000 z=-1023.000000
x=-933.000000 y=251.000000 z=-350.000000
x=-937.000000 y=257.000000 z=-347.000000
x=-933.000000 y=262.000000 z=-350.000000
x=-931.000000 y=259.000000 z=-355.000000
x=-1027.000000 y=-809.000000 z=94.000000

Tilt the accelerometer in various directions to see how the readings change.
A reading of 0 indicates no net force. Positive values (up to 2047 for 2g)
indicate force in one direction and negative in the opposite. You can see that
the Z force is close to –1023 (1g) in the first reading where the sensor is
horizontal.

Discussion

You might need to change the I2C address of your device. You can check
this by wiring it up and then running the following command:

$ sudo i2cdetect -y 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- 1d -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

As you can see, in this case, the module that I used has an I2C address of
1d. Thus, that is what the variable i2c_address is set to in the program.

Referring to the preceding Python code, the device has a control register to
which a command 1 must be written to start the device running. A second
configuration command of 0 is then written to register 0x0E, to set the
acceleration range of the device to a maximum of 2g. These parameters are
specified in the datasheet for the MMA8452Q.
When a reading is required, the I2C bus is read and the data bytes split into
the three X, Y, and Z acceleration readings.
The most common use for an accelerometer is to detect tilt. This works
because the Z-axis force is dominated by the pull of gravity (Figure 14-22).
When the accelerometer is tilted in one direction, some of that vertical force
of gravity becomes active on another axis of the accelerometer.

https://oreil.ly/vM2rr

Figure 14-22. Detecting tilt with an accelerometer

We can use this principle to detect when the tilt is past a certain threshold.
The following program (ch_14_i2c_acc_tilt.py) illustrates this point:

import smbus
import time

bus = smbus.SMBus(1)

i2c_address = 0x1D
control_reg = 0x2A

bus.write_byte_data(i2c_address, control_reg, 0x01) # Start
bus.write_byte_data(i2c_address, 0x0E, 0x00) # 2g range

time.sleep(0.5)

def read_acc():
 data = bus.read_i2c_block_data(i2c_address, 0x00, 7)
 x = (data[1] * 256 + data[2]) / 16
 if x > 2047 :
 x -= 4096
 y = (data[3] * 256 + data[4]) / 16
 if y > 2047 :
 y -= 4096
 z = (data[5] * 256 + data[6]) / 16
 if z > 2047 :
 z -= 4096
 return (x, y, z)

while True:
 x, y, z = read_acc()
 if x > 400:
 print("Left")

 elif x < -400:
 print("Right")
 elif y > 400:
 print("Back")
 elif y < -400:
 print("Forward")
 time.sleep(0.2)

When you run the program, you will begin to see direction messages:

$ python3 ch_14_i2c_acc_tilt.py
Left
Left
Right
Forward
Forward
Back
Back

You could use this to control a roving robot or a motorized pan-tilt head
with a webcam attached.

See Also
Take a look at the datasheet for the MMA8452Q.
The Sense HAT includes an accelerometer (Recipe 14.16).

14.15 Finding Magnetic North with the Sense
HAT

Problem
You want to use a Sense HAT to detect magnetic north.

Solution
Use the Python library for the built-in three-axis magnetometer in the Sense
HAT.

https://oreil.ly/sFfaV

First follow Recipe 10.15 to install the Sense HAT library.
Open an editor and paste in the following code
(ch_14_sense_hat_compass.py):

from sense_hat import SenseHat
import time

sense = SenseHat()

while True:
 bearing = sense.get_compass()
 print('Bearing: {:.0f} to North'.format(bearing))
 time.sleep(0.5)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
When you run this program, you’ll see a series of bearing readings:

$ python3 ch_14_sense_hat_compass.py
Bearing: 138 to North
Bearing: 138 to North

Discussion
The compass will be sensitive to other nearby sources of magnetic field, so
you might find it difficult to get accurate bearings. It can, however, make
quite a good magnet detector.

See Also
You can find documentation for Sense HAT at https://oreil.ly/dhevo and
https://oreil.ly/xdFCf.
To use the Sense HAT to detect a magnet, see Recipe 14.18.

https://oreil.ly/dhevo
https://oreil.ly/xdFCf

14.16 Using the Inertial Measurement Unit of
the Sense HAT

Problem
You want more accurate orientation information from your Raspberry Pi
than provided by the accelerometer from Recipe 14.14.

Solution
Use the Inertial Measurement Unit (IMU) of the Sense HAT. This unit
includes a three-axis accelerometer like the one in Recipe 14.14, but it also
has a three-axis gyroscope and a magnetometer. The readings from these
different sensors are combined to let you get a more accurate orientation for
the Sense HAT, expressed as pitch, roll, and yaw (as shown in Figure 14-
23).

Figure 14-23. Pitch, roll, and yaw

Pitch, roll, and yaw are three terms that come from aviation. They are
relative to the axis of the plane’s flight. The pitch is the angle to the
horizontal. The roll is the degree of rotation around the plane’s axis of flight
(imagine one wing going up and the other down), and yaw is the rotation on
the horizontal axis (think changing bearing).

Open an editor and paste in the following code
(ch_14_sense_hat_orientation.py):

from sense_hat import SenseHat

sense = SenseHat()

sense.set_imu_config(True, True, True)

while True:
 o = sense.get_orientation()
 print("p: {:.0f}, r: {:.0f}, y: {:.0f}".format(o['pitch'],
o['roll'],
o['yaw']))

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
The function set_imu_config specifies which of the compass,
gyroscope, and accelerometer (in that order) should be used to measure the
orientation. Setting all three to True means that all are used to make the
measurement.
When you run the program, you’ll see output similar to this:

$ python3 ch_14_sense_hat_orientation.py
p: 1, r: 317, y: 168
p: 1, r: 318, y: 169

Try tilting the Sense HAT and Raspberry Pi forward toward the USB ports,
and you should see the value of pitch increase.

Discussion
An accelerometer measures forces on a stationary mass and can therefore
measure the degree of tilt by calculating how much of the force supplied by
gravity (Z-axis) influences the force measured on the X- and Y-axes.
A gyroscope is different. It measures the force on moving masses (vibrating
back and forth) as those masses turn relative to the path of the movement,

using a force called the Coriolis effect.

See Also
For more information on the Sense HAT’s IMU, see https://oreil.ly/Tr8YV.
To measure temperature, humidity, and atmospheric pressure, see Recipe
14.12.
The IMU of the Sense HAT can also be used to make a compass and detect
the presence of a magnet (Recipe 14.18).
To find out more about gyroscopes and the Coriolis effect, see
https://oreil.ly/TXHIz.

14.17 Sensing a Magnet with a Reed Switch

Problem
You want to detect the presence of a magnet.

Solution
Use a reed switch (Figure 14-24). It works just like a regular switch except
it activates only when a magnet is near. Figure 14-25 shows how a reed
switch works.

Figure 14-24. A reed switch

https://oreil.ly/Tr8YV
https://oreil.ly/TXHIz

Figure 14-25. How a reed switch works

The two reed contacts are encased in a glass tube. When a magnet is placed
near the reed switch, the reeds are pulled together and make contact.
You can use any of the regular switch recipes in Chapter 13 with a reed
switch, starting with Recipe 13.1.

Discussion
Reed switches are a low-tech way of detecting a magnet. They have been
around since the 1930s and are extremely reliable. They are commonly used
in security systems in which a plastic-encased reed switch is placed on a
door frame, with a fixed magnet in another plastic enclosure on the door
itself. When the door opens, the reed switch contacts open, triggering the
alarm.

See Also
To detect a magnet using the magnetometer of the Sense HAT, see Recipe
14.18.

14.18 Sensing a Magnet with the Sense HAT

Problem
You want to detect the presence of a magnet using a Sense Hat with built-in
magnetometer and a Python program.

Solution
Use the Sense HAT’s Python library to interface with its magnetometer.
Open an editor and paste in the following code
(ch_14_sense_hat_magnet.py):

from sense_hat import SenseHat
import time

hat = SenseHat()
fill = (255, 0, 0)

while True:
 reading = int(hat.get_compass_raw()['z'])
 if reading > 200:
 hat.clear(fill)
 time.sleep(0.2)
 else:
 hat.clear()

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
When the magnet draws close to the Sense HAT, the LEDs will all turn red
for one-fifth of a second.

Discussion
It doesn’t matter which axis of the compass data you use; all three will be
greatly disrupted by the presence of a fixed magnet.

See Also
To detect a magnet using a reed switch, see Recipe 14.17.
For other ways to use the Sense HAT display, see Recipe 15.3.

14.19 Measuring Distance Using Ultrasound

Problem
You want to measure distance using an ultrasonic range finder.

Solution
Use a low-cost HC-SR04 range finder. This device needs two GPIO pins:
one to trigger the pulse of ultrasound and the other to monitor how long it
takes for the echo to return.
To make this recipe, you will need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
HC-SR04 range finder (eBay)
470Ω resistor (see “Resistors and Capacitors”)
270Ω resistor (see “Resistors and Capacitors”)

Fit the components onto the breadboard as shown in Figure 14-26. The
resistors are necessary to reduce the echo output of the range finder from
5V to 3.3V (see Recipe 10.12).
Open an editor and paste in the following code (ch_14_ranger.py):

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(echo=18, trigger=17)
while True:
 cm = sensor.distance * 100
 inch = cm / 2.5
 print("cm={:.0f}\tinches={:.0f}".format(cm, inch))
 sleep(0.5)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).

Figure 14-26. Connecting an SR04 rangefinder to a Raspberry Pi

The operation of the program is described in the Discussion. When the
program is run, it reports the distance in both centimeters and inches once
per second. Use your hand or some other obstacle to change the reading:

$ python3 ch_14_ranger.py
cm=154.7 inches=61.8
cm=12.9 inches=5.1
cm=14.0 inches=5.6
cm=20.2 inches=8.0

Discussion

Although several ultrasonic range finders are available, the type used here
is easy to use and low cost. It works by sending a pulse of ultrasound and
then measuring the amount of time taken for the echo to be received. One of
the round ultrasonic transducers on the front of the device is the transmitter,
and the other is the receiver.
This process is controlled from the Raspberry Pi. The difference between
this type of device and more expensive models is that the more expensive
versions include their own microcontroller, which carries out all the
necessary timing and provides an I2C or serial interface to return a final
reading.
When you are using one of these sensors with a Raspberry Pi, the trig
(trigger) input of the range finder is connected to a GPIO output, and the
echo output of the range finder is connected to a GPIO input on the
Raspberry Pi after having its voltage range lowered from 5V to a safe 3.3V.
Figure 14-27 shows an oscilloscope trace of the sensor in action. The top
trace is connected to trig, and the bottom trace is connected to echo. You
can see that first the trig pin is taken high for a short pulse. There is then a
short delay before the echo pin goes high. This stays high for a period that
is proportional to the distance from the sensor.

Figure 14-27. The oscilloscope trace for trigger and echo

This program makes use of the DistanceSensor class of the
gpiozero library, which takes care of the pulse generation and
measurement for us.
This method of measuring distance is not terribly accurate because
temperature, pressure, and relative humidity all alter the speed of sound
(about 30 cm per millisecond) and hence the distance readings.

See Also
Take a look at the datasheet for the ultrasonic range finder.
The documentation for the DistanceSensor class is available at
https://oreil.ly/XYk3m.

https://oreil.ly/lreGc
https://oreil.ly/XYk3m

14.20 Measuring Distance Using a Time-of-
Flight Sensor

Problem
You want to measure distance without using ultrasound (perhaps you have
animals who would be frightened by ultrasound, or you want to measure
distance more accurately).

Solution
Use a VL53L1X I2C time-of-flight (ToF) sensor. These sensors are more
expensive than their ultrasound equivalents. However, because they use
light rather than sound, they are more accurate.
The most common of these devices is the VL53L1X, and it’s available as a
low-cost module from eBay as well as from other suppliers. The Pimoroni
device we are using here has the advantage that it is compatible with the
Pimoroni Breakout Garden system and can therefore be plugged in without
any soldering. Figure 14-28 shows the ToF sensor and Breakout Garden.

Figure 14-28. A VL53L1X ToF sensor and Pimoroni Breakout Garden

To make this project, you will need either:
Pimoroni Breakout Garden (see “Prototyping Equipment and Kits”)
Pimoroni VL53L1X distance sensor (see “Modules”)

or:
Generic VL53L1X distance sensor module (see “Modules”)
Four male-to-female jumper wires (see “Prototyping Equipment and
Kits”)

Connecting this I2C device to a Raspberry Pi is just like connecting any
other. The device will work at 3V so, in addition to connecting 3V and
GND, you should connect the SDA pin of the sensor to the SDA pin of the
Raspberry Pi (also called GPIO 2) and the SCL pin of the sensor to the SCL
pin of the Raspberry Pi (GPIO 3).

If you chose to use the Breakout Garden, just make sure you place the
sensor in the appropriate orientation (see Figure 14-28). If you are using
jumper wires, connect the devices as follows:

The VCC pin of the VL53L1X to 3V on the Raspberry Pi
The GND pin of the VL53L1X to GND on the Raspberry Pi
The SDA pin of the VL53L1X to GPIO 2 (SDA) on the Raspberry Pi
The SCL pin of the VL53L1X to GPIO 3 (SCL) on the Raspberry Pi

The VL53L1X uses I2C, so you need to enable this by following Recipe
10.4. After you’ve enabled it, run the following commands to install the
software for the VL53L1X:

$ sudo pip3 install smbus2
$ sudo pip3 install vl53l1x

The test program for this recipe (ch_14_tof.py) prints the distance
measurement in millimeters once per second:

import VL53L1X, time

tof = VL53L1X.VL53L1X(i2c_bus=1, i2c_address=0x29)
tof.open()
tof.start_ranging(1) # Start range1=Short 2=Medium 3=Long

while True:
 mm = tof.get_distance() # Grab the range in mm
 print("mm=" + str(mm))
 time.sleep(1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
Note that if your device has a different I2C address, you might need to
change 0x29 to the address of your device.

Discussion

The VL53L1X ToF sensor is an amazing little device that contains a low-
power infrared laser and receiver as well as all the electronics needed to
communicate over I2C.
The module works on a similar principle to that of the ultrasonic range
finder of Recipe 14.19, except that instead of gauging distance by
measuring the time it takes for sound to travel to a target and back as a
reflection, the ToF sensor measures the time it takes for a pulse of laser
light to bounce back from a target.

See Also
To measure distance using ultrasonics, see Recipe 14.19.
See the datasheet for the VL53L1X.

14.21 Adding Touch Sensing to Your
Raspberry Pi

Problem
You want to provide a touch interface to your Raspberry Pi.

Solution
Use an Adafruit Capacitive Touch HAT (Figure 14-29).
Touch sensors are a lot of fun and are great for educational use. You can
attach anything that conducts even just a little bit of electricity—including
fruit. A popular project is to construct a fruit keyboard using alligator clips
to attach a variety of fruits and vegetables to the sense terminals on the
board. Then, as you touch the different pieces of fruit, different sounds are
made.
The Adafruit Capacitive Touch HAT uses the Raspberry Pi’s I2C interface.
You also need SPI tools installed so, if you have not already done so, follow
Recipes 10.4 and 10.6.

https://oreil.ly/R_uBy

Figure 14-29. An Adafruit Capacitive Touch HAT attached to an apple

To install the Python library for the HAT, run the following commands:

$ pip3 install adafruit-blinka
$ pip3 install adafruit-circuitpython-mpr121

To test out the Capacitive Touch HAT, run the following program
(ch_14_touch.py):

import time
import board
import busio
import adafruit_mpr121
i2c = busio.I2C(board.SCL, board.SDA)
mpr121 = adafruit_mpr121.MPR121(i2c)

while True:
 if mpr121[0].value:
 print("Pin 0 touched!")

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
When you touch the pad labeled 0 with your finger, you should see output
like this:

$ python3 ch_14_touch.py
Pin 0 touched!
Pin 0 touched!

You can either just touch the connection pads or connect the pads to a piece
of fruit using an alligator clip, as shown in Figure 14-29.

Discussion
The Adafruit Capacitive Touch HAT has 12 touch contacts. If you need
only a few touch contacts, you can use the Pimoroni Explorer HAT Pro,
which has four alligator-clip-compatible contacts (Figure 14-30).

Figure 14-30. The Explorer HAT Pro with fruit

To use the Explorer HAT Pro’s touch contacts, first follow Recipe 10.16 to
install the library for the HAT.
In addition to the four terminals on the side that are designed for alligator
clips, four touch switches labeled 1 to 4 also use the touch interface.

See Also
More information is available in the Adafruit Touch HAT documentation
and the Explorer HAT Pro documentation.

14.22 Reading Smart Cards with an RFID
Reader/Writer

https://oreil.ly/0x_YZ
https://oreil.ly/ifpdt

Problem
You want to read from and write to radio-frequency identification (RFID)
smart cards.

Solution
Get a low-cost RC-522 RFID card reader/writer and use the
SimpleMFRC522 Python library.

For this recipe, you will need the following:
RC-522 card reader; this is often sold with a selection of RFID tags to
use (see “Modules”)
Seven female-to-female jumper wires (see “Prototyping Equipment and
Kits”)

Figure 14-31 shows the RC-522 wired up to a Raspberry Pi. The RC-522
uses the Raspberry Pi’s SPI interface, so you will need to follow Recipe
10.6.

Figure 14-31. Connecting a Raspberry Pi and RC-522

Table 14-1 shows the connections you need to make using the jumper wires,
with suggested colors for the leads to make it easy to identify which lead is
which.

Table 14-1. Connecting a Raspberry
Pi and an RFID reader/writer

Lead color RC-522 pin Raspberry Pi pin
Orange SDA GPIO8

Yellow SCK SCLK / GPIO11

White MOSI MOSI / GPIO10

Green MISO MISO/GPIO9

Blue GND GND

Gray RST GPIO25

Red 3.3V 3.3V

Note that, although the RC-522 pin has some pins marked SDA and SCL,
as if the device were using I2C, in this recipe the device uses the Raspberry
Pi’s SPI interface.
To use the module, first fetch the Clever Card Kit software using the
commands that follow. This will install all of the prerequisite software for
the RC-522. You will need to reboot when it’s finished installing:

$ wget http://monkmakes.com/downloads/mmcck.sh
$ chmod +x mmcck.sh
$./mmcck.sh

To test the reader, run the program in the clever_card_kit directory called
01_read.py:

$ cd ~/clever_card_kit
$ python3 01_read.py
Hold a tag near the reader
894922433952

894922433952

894922433952

When you hold a card next to the RC-522, the RFID tag inside the card’s
unique number will be printed out. When you’ve had enough of reading
cards, hit Ctrl-C. Here’s the code:

import RPi.GPIO as GPIO
import SimpleMFRC522

reader = SimpleMFRC522.SimpleMFRC522()

print("Hold a tag near the reader")

try:
 while True:
 id, text = reader.read()
 print(id)
 print(text)

finally:
 print("cleaning up")
 GPIO.cleanup()

The RPi.GPIO is imported merely so that it can be used to cleanup the
GPIO pins when the program exits. The function call reader.read()
will wait for an RFID tag to come near the reader/writer and return the
card’s unique number (id) and any text message stored on the card (text).

You can’t change the unique number assigned to each tag during
manufacture, but you can store small amounts of data on a card. To do this,
use the program 02_write.py:

$ python3 02_write.py
New Text: Raspberry Pi
Now scan a tag to write
written
894922433952
Raspberry Pi
New Text:

Having written some text onto the card, you can check whether it’s there by
using 01_read.py. The code for 02_write.py is:

import RPi.GPIO as GPIO
import SimpleMFRC522

reader = SimpleMFRC522.SimpleMFRC522()

try:
 while True:
 text = input('New Text: ')
 print("Now scan a tag to write")
 id, text = reader.write(text)
 print("written")

 print(id)
 print(text)
finally:
 print("cleaning up")
 GPIO.cleanup()

Using the full features of an RFID card reader is pretty complex. The
SimpleMFRC522 class greatly simplifies this process into basic reading
and writing of text to the card. After instantiating the SimpleMFRC522
class, you can just call read to read from a card that is being scanned. This
returns both the ID and any text written on the card. The write method
returns the same values, but also allows you to specify the text to be written
to the card.

Discussion
RFID tags are available in all sorts of shapes and sizes. But a number of
different standards are used that operate at different frequencies and use
different communication protocols, so when looking for cards to work with
the RC-522, look for cards described as 13.56 MHz. The
SimpleMFRC522 code is also a bit fussy about the cards it will work
with, so if you plan to use it, also look for tags described as being Mifare 1k
compatible.
Because of the differences between what cards can store in their memory
and how they store it, it’s often better not to rely on storing data on the tag
but rather to use the card’s unique ID. You can then store data against that
unique key. The programs 05_launcher_setup.py and 05_launcher.py in the
clever_card_kit directory show how you can use this approach using table
data stored in a pickle file (see Recipe 7.9).

See Also
More information is available in the full documentation of
SimpleMFRC522 code.

14.23 Displaying Sensor Values

Problem

https://oreil.ly/QibgQ

You have a sensor wired to your Raspberry Pi, and you want a big digital
display of the reading on the screen.

Solution
Use the guizero library to open a window, and display the reading on it
in a large font (Figure 14-32).

Figure 14-32. Displaying a sensor reading using guizero

This example uses data from the ToF range finder of Recipe 14.20. So
complete that recipe first if you want to try out this example. Alternatively,
most of the other sensor recipes in this chapter could be adapted to work
with this recipe. Test out the recipe by opening an editor and pasting in the
following code (ch_14_gui_sensor_reading.py):

import VL53L1X, time
from guizero import App, Text

tof = VL53L1X.VL53L1X(i2c_bus=1, i2c_address=0x29)
tof.open()
tof.start_ranging(1)

def update_reading():
 mm = tof.get_distance()
 reading_text.value = str(mm)

app = App(width=300, height=150)
reading_text = Text(app, size=100)

reading_text.repeat(1000, update_reading)
app.display()

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
The function update_reading gets a new reading from the range finder
(or whatever sensor you have chosen to use) and sets the value of
reading_text to be that value (as a string).

To ensure that the readings are updated automatically, the repeat method
is called on reading_text with a first parameter of the number of
milliseconds between updates (in this case, 1000) and a second parameter
of the function to call (update_reading).

Discussion
Although this recipe uses a distance sensor, it works equally well with the
other sensor recipes in this chapter. You just need to change the method of
obtaining a reading from the sensor.

See Also
For information on formatting numbers to a certain number of decimal
places, see Recipe 7.1.
For an example of displaying sensor data in a web browser rather than an
application window, see Recipe 17.2.

14.24 Logging to a USB Flash Drive

Problem
You want to log data measured with a sensor onto a USB flash drive.

Solution

Write a Python program that writes the data to a file on a USB flash drive.
By writing the file in comma-separated value (CSV) format, you can import
it directly into a spreadsheet, including LibreOffice on the Raspberry Pi
(Recipe 4.3).
The example program (ch_14_temp_log.py) will log temperature readings
recorded from your Raspberry Pi’s CPU (see Recipe 14.11):

import glob, time, datetime
from gpiozero import CPUTemperature

log_period = 600 # seconds

logging_folder = glob.glob('/media/pi/*')[0]
dt = datetime.datetime.now()
file_name = "temp_log_{:%Y_%m_%d}.csv".format(dt)
logging_file = logging_folder + '/' + file_name

def read_temp():
 cpu_temp = CPUTemperature().temperature
 return cpu_temp

def log_temp():
 temp_c = read_temp()
 dt = datetime.datetime.now()
 f = open(logging_file, 'a')
 line = '\n"{:%H:%M:%S}","{}"'.format(dt, temp_c)
 f.write(line)
 print(line)
 f.close()

print("Logging to: " + logging_file)
while True:
 log_temp()
 time.sleep(log_period)

As with all the program examples in this book, you can download this
program (see Recipe 3.22).
The program is set to log the temperature every 10 minutes (600 seconds).
You can alter this by changing the value of log_period.

You need to run this program using sudo to allow access to the flash drive:

$ $ sudo python3 ch_14_temp_log.py
Logging to: /media/pi/temp_log_2022_06_22.csv
"13:09:02","38.459"
"13:09:12","38.946"
"13:09:22","37.972"
"13:09:32","37.485"

When logging starts, the path to the logging file on the flash drive is
displayed.
Note that to speed things up, the logging period was set to 10 seconds.

Discussion
When you plug a USB flash drive into a Raspberry Pi, it automatically
installs it under /media/pi. If more than one removable drive is attached to
your Raspberry Pi, the program uses the first folder it finds inside /media.
The name of the logging file is constructed from the current date.
If you open the file in a spreadsheet, you will be able to edit it directly. Your
spreadsheet might ask you to specify the separator for the data, which will
be a comma.
Figure 14-33 shows a set of data captured using this recipe, and the
resulting file has been opened with the LibreOffice spreadsheet (Recipe
4.3) running on the Raspberry Pi.

Figure 14-33. Charting data with a spreadsheet

See Also
This program could easily be adapted for use with any of the other sensors
used in this chapter.
For an example of logging sensor data to a web service, see Recipe 17.7.

Chapter 15. Displays

15.0 Introduction
Although the Raspberry Pi can use a monitor or TV as a display, it is often
nice to use a smaller, more specialized display with it. In this chapter, we
explore a range of different displays that can be attached to a Raspberry Pi.
An alternative to attaching special-purpose displays as described in this
chapter is to attach a monitor (this can be a small one) to your Raspberry Pi
or even use a phone or tablet connected over VNC.

15.1 Using a Four-Digit LED Display

Problem
You want to display a four-digit number in an old-fashioned, seven-segment
LED display.

Solution
Attach an Inter-Integrated Circuit (I2C) LED module, such as the model
shown in Figure 15-1, to a Raspberry Pi using female-to-female jumper
wires.

Figure 15-1. Seven-segment LED display with a Raspberry Pi

To make this recipe, you’ll need the following:
Four female-to-female jumper wires (see “Prototyping Equipment and
Kits”)
Adafruit 4×7-segment LED with I2C backpack (see “Modules”)

The connections between the Raspberry Pi and the module are as follows:
VCC (+) on the display to 5V on the Raspberry Pi general-purpose
input/output (GPIO) connector
GND (–) on the display to GND on the Raspberry Pi GPIO connector
SDA (D) on the display to GPIO 2 (SDA) on the Raspberry Pi GPIO
connector
SCL (C) on the display to GPIO 3 (SCL) on the Raspberry Pi GPIO
connector

Note that Adafruit also supplies a jumbo-size LED display. You can connect
this to the Raspberry Pi using the connections in the preceding list, but the
larger display has two positive power pins: one for the logic (V_IO) and
one for the display (5V). This is because, being a large display, it requires
more current. Fortunately, the Raspberry Pi can supply enough power for it.
You can use an extra female-to-female jumper wire to connect this extra pin
to the second 5V pin on the GPIO connector.
For this recipe to work, you’ll also need to set up your Raspberry Pi for
I2C, so follow Recipe 10.4 first.
Enter these commands to install the Adafruit code to support this display:

$ cd ~
$ pip3 install adafruit-blinka
$ pip3 install adafruit-circuitpython-ht16k33
$ sudo apt install python3-pil

As a simple example, the program ch_15_7_seg.py counts up from 0 to
9999 once a second and then restarts at 0:

import board
from adafruit_ht16k33.segments import Seg7x4
from time import sleep

i2c = board.I2C()
display = Seg7x4(i2c)
display.brightness = 0.5

x = 0

while True:
 display.print(" ")
 display.print(x)
 x += 1
 if x > 9999:
 x = 0
 sleep(1)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).

Discussion
The Adafruit software for this display uses the Blinka module that allows
you to run Adafruit’s CircuitPython libraries in regular Python.
To set up the display, an I2C instance is created, and then a Seg7x4 instance
is created with the I2C interface as a parameter.
The display can show numbers or rudimentary text. It displays text and
numbers sequentially, without clearing the previous display, so if you asked
it to display 1 and then 2, it would actually display 12, scrolling the old
digits to the left before displaying the new digit. So, to clear the display
before showing the next digit, you can print four spaces using
display.print(" ").

See Also
Find out more about the Adafruit CircuitPython library.

15.2 Displaying Graphics on an I2C LED
Matrix

Problem
You want to control the pixels of a multicolor LED matrix display.

Solution
Use an I2C LED module, such as the model shown in Figure 15-2, attached
to a Raspberry Pi using female-to-female jumper wires.

https://oreil.ly/x3Dg9

Figure 15-2. LED matrix display with a Raspberry Pi 400 and GPIO adapter

To make this recipe, you’ll need the following:
Four female-to-female jumper wires (see “Prototyping Equipment and
Kits”)
Adafruit bicolor LED square-pixel matrix with I2C backpack (see
“Modules”)
If you are using a Pi 400 as shown in Figure 15-2, you will also need a
GPIO adapter to be able to access the pins easily.

The connections between the Raspberry Pi and the module are as follows:
VCC (+) on the display to 5V on the Raspberry Pi GPIO connector

GND (–) on the display to GND on the Raspberry Pi GPIO connector
SDA (D) on the display to GPIO 2 (SDA) on the Raspberry Pi GPIO
connector
SCL (C) on the display to GPIO 3 (SCL) on the Raspberry Pi GPIO
connector

For this recipe to work, you will also need to set up your Raspberry Pi for
I2C, so follow Recipe 10.4 first.
The display uses the same module code as Recipe 15.1. If you have not
already installed it, run the following commands:

$ cd ~
$ pip3 install adafruit-blinka
$ pip3 install adafruit-circuitpython-ht16k33
$ sudo apt install python3-pil

The example program ch_15_matrix.py sets a randomly selected pixel to a
randomly selected color from off: red, green, or orange. It does this 10
times a second:

import board
from adafruit_ht16k33.matrix import Matrix8x8x2
from time import sleep
from random import randint

i2c = board.I2C()
display = Matrix8x8x2(i2c)
display.brightness = 0.5

while True:
 x = randint(0, 8)
 y = randint(0, 8)
 color = randint(0, 4)
 display[x, y] = color
 sleep(0.1)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).

Discussion
The program imports the Matrix8x8x2 class, which is then initialized with
the I2C port. x and y coordinates are selected at random, each from a value
of 0 to 7. The color is a randomly selected number between 0 and 3: 0 is
off, 1 is red, 2 is green, and 3 is orange (both red and green). These are the
only colors available on this display, but it still looks pretty!

See Also
You can find out more about the I2C LED module at https://oreil.ly/yA49j.

15.3 Using the Sense HAT LED Matrix
Display

Problem
You want to display messages and graphics using the display of a Sense
HAT.

Solution
Follow Recipe 10.15 to install the software that the Sense HAT needs and
then use the library commands to display text.
The program ch_15_sense_hat_clock.py illustrates this by repeatedly
displaying the date and time in a scrolling message:

from sense_hat import SenseHat
from datetime import datetime
import time

hat = SenseHat()
time_color = (0, 255, 0) # green
date_color = (255, 0, 0) # red

while True:
 now = datetime.now()

https://oreil.ly/yA49j

 date_message = '{:%d %B %Y}'.format(now)
 time_message = '{:%H:%M:%S}'.format(now)

 hat.show_message(date_message, text_colour=date_color)
 hat.show_message(time_message, text_colour=time_color)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).

Discussion
Two colors are defined so that the date and time parts of the message can be
displayed in different colors. These colors are then used as an optional
parameter to show_message. Other optional parameters to
show_message are:

scroll_speed
This is actually the delay between each scrolling step rather than the
speed. A higher value makes the scrolling slower.

back_colour
This sets the background color. Note the British spelling of “colour,”
with a “u.”

You can use the display for a lot more than just displaying scrolling text.
Starting at its most basic, you can set individual pixels using set_pixel,
set the orientation of the display using set_rotation, and display an
image (albeit a small one) with load_image. The example that follows,
which you can find in ch_15_sense_hat_taster.py, illustrates these function
calls. As with all the program examples in this book, you can download
them (see Recipe 3.22).
The image must be just 8×8 pixels, but you can use most common graphics
formats, such as .jpg and .png, and the bit depth will be handled
automatically:

from sense_hat import SenseHat
import time

hat = SenseHat()

red = (255, 0, 0)

hat.load_image('small_image.png')
time.sleep(1)
hat.set_rotation(90)
time.sleep(1)
hat.set_rotation(180)
time.sleep(1)
hat.set_rotation(270)
time.sleep(1)

hat.clear()
hat.set_rotation(0)
for xy in range(0, 8):
 hat.set_pixel(xy, xy, red)
 hat.set_pixel(xy, 7-xy, red)

Figure 15-3 shows the Sense HAT displaying a crude image.

Figure 15-3. A Sense HAT displaying an “image”

See Also
More information is available in the full documentation on the Sense HAT.
For information on formatting dates and times, see Recipe 7.2.
Other recipes that use the Sense HAT are Recipes 10.15, 14.12, 14.15,
14.16, and 14.18.

15.4 Using an OLED Graphical Display

Problem
You want to attach a graphical OLED (organic LED) display to your
Raspberry Pi.

Solution
Use an OLED display based on the SSD1306 driver chip, using an I2C
interface (Figure 15-4).

https://oreil.ly/fSiQG

Figure 15-4. An I2C OLED display on a Raspberry Pi 400

To make this recipe, you will need the following:
Four female-to-female jumper wires (see “Prototyping Equipment and
Kits”)
I2C OLED display 128×64 pixels (see “Modules”)

The connections between the Raspberry Pi and the module are as follows:
VCC on the display to 5V on the Raspberry Pi GPIO connector
GND on the display to GND on the Raspberry Pi GPIO connector
SDA on the display to GPIO 2 (SDA) on the Raspberry Pi GPIO
connector
SCL on the display to GPIO 3 (SCL) on the Raspberry Pi GPIO
connector

For this recipe to work, you will also need to set up your Raspberry Pi for
I2C, so follow Recipe 10.4 first.
Adafruit has a library for these displays, which you can install using these
commands:

$ cd ~
$ pip3 install adafruit-blinka
$ pip3 install adafruit-circuitpython-ssd1306

This library uses the Python Image Library (PIL) and NumPy modules,
which you can install using the following command:

$ sudo apt install python3-pil
$ sudo apt install python3-numpy

The code example ch_15_oled_clock.py displays the time and date on the
OLED display:

import board
from PIL import Image, ImageDraw, ImageFont
import adafruit_ssd1306
from time import sleep
from datetime import datetime

Set up display
i2c = board.I2C()
disp = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c, addr=0x3C)
small_font = ImageFont.truetype('FreeSans.ttf', 12)
large_font = ImageFont.truetype('FreeSans.ttf', 33)
disp.fill(0)
disp.show()

Make an image to draw on in 1-bit color.
width = disp.width
height = disp.height
image = Image.new('1', (width, height))
draw = ImageDraw.Draw(image)

Display a message on 3 lines, first line big font
def display_message(top_line, line_2):
 draw.rectangle((0,0,width,height), outline=0, fill=0)

 draw.text((0, 0), top_line, font=large_font, fill=255)
 draw.text((0, 50), line_2, font=small_font, fill=255)
 disp.image(image)
 disp.show()

while True:
 now = datetime.now()
 date_message = '{:%d %B %Y}'.format(now)
 time_message = '{:%H:%M:%S}'.format(now)
 display_message(time_message, date_message)
 sleep(0.1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).

Discussion
Every I2C slave device has an address, which is set in the line:

disp = adafruit_ssd1306.SSD1306_I2C(128, 64, i2c, addr=0x3C)

This is fixed at 3C (hex) for many of the low-cost I2C modules, but may
vary, so you should check any documentation that comes with the device or
use I2C tools (Recipe 10.5) to list all the I2C devices attached to the bus so
that you can see the address of your display.
The preceding code example uses a technique called double buffering. This
involves preparing what is to be displayed and then switching it onto the
image in one go. This prevents the display from flickering.
You can see the code for this in the display_message function. First it
draws onto the image a blank rectangle the entire size of the display. It then
draws the text onto the image, and then sets the display content to
be image using disp.image(image). The display isn’t actually
updated until the function disp.show() is called.

Small OLED displays are cheap, don’t use much current, and have high
resolution despite their diminutive size. They are replacing LCD displays in
many consumer products.

See Also
The instructions here are for four-pin I2C interfaces. If you really want to
use the SPI interface, take a look at Adafruit’s tutorial.

15.5 Using Addressable RGB LED Strips

Problem
You want to connect an RGB LED strip (NeoPixels) to your Raspberry Pi.

Solution
Use an LED strip based on the WS2812 RGB LED chips on your Raspberry
Pi.
Using these LED strips (Figure 15-5) can be really easy, with a direct
connection to the Raspberry Pi and power for the LEDs supplied by the
Raspberry Pi’s 5V supply. This is the “Happy Day” scenario that should
work just fine, but do see the Discussion for providing external power so
that your LED strip use is trouble-free.

Don’t Power the LEDs from the Pi’s 3.3V Supply
Although it might be tempting to power the LEDs from the 3.3V supply pin on the GPIO
connector, do not do this—it can supply only low currents (see Recipe 10.3). Using this pin could
easily damage your Raspberry Pi.

https://oreil.ly/EzEeu

Figure 15-5. An LED strip of 10 LEDs

The LED strip used in Figure 15-5 is cut from a reel. In this case, there are
10 LEDs. Because each LED can use up to 60mA, 10 is probably a sensible
limit for the number of LEDs that can be used without arranging for a
separate power supply for the LED strip (see the Discussion section).
To connect the strip to the Raspberry Pi, jumper wires with female
connectors on one end were cut and the wire ends soldered to the three
connections on the LED strip (see Recipe 10.3): GND, DI (data in), and 5V.
These can then be attached to GPIO pins GND, GPIO 18, and 5V,
respectively.
Notice that the LED strip has right-facing arrows printed on it (Figure 15-
6). Make sure that when you solder leads to the LED strip, you start from
the cut end to the left of the arrows.

Figure 15-6. An LED strip close-up

We are going to use the Adafruit software to control our addressable LEDs.
To install it, run the following commands:

$ pip3 install adafruit-blinka
$ sudo pip3 install rpi_ws281x adafruit-circuitpython-neopixel

The following example program (ch_15_neopixel.py) will set the LED red
in successive positions along the strip:

import time
import board
from neopixel import NeoPixel

led_count = 5
red = (100, 0, 0)
no_color = (0, 0, 0)

strip = NeoPixel(board.D18, led_count, auto_write=False)

def clear():
 for i in range(0, led_count):
 strip[i] = no_color
 strip.show()

i = 0
while True:
 clear()
 strip[i] = red
 strip.show()
 time.sleep(1)

 i += 1
 if i >= led_count:
 i = 0

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
Run the program with Python 3 and use the sudo command like this:

$ sudo python3 ch_15_neopixel.py

If you have a different number of LEDs in your strip, modify led_count.
The rest of the constants do not need to be changed.
You can use only GPIOs 10, 12, 18, and 21 with NeoPixels. If you want to
use a different GPIO pin, change board.D18 to whichever pin you are
using.
You can set the color of each of the LEDs independently. The colors are set
as a tuple of red, green, and blue intensities. To change the color of an LED
at a particular position, use the strip variable as if it were an array and set
that element to the color you want. For example (strip[i] = red).

The changes to the LED colors are not actually updated until the method
show is called.

Discussion
Each LED in the strip can use a maximum of about 60mA. They will do
this only if all three color channels (red, green, and blue) are at maximum
brightness (255). If you plan to use a lot of LEDs, you’ll need to use a
separate 5V power supply sufficient to supply all the LEDs in your strip.
Figure 15-7 shows how you would wire up a separate power supply. A
female direct current (DC) jack-to-screw terminal adapter (see “Prototyping
Equipment and Kits”) makes it easy to connect an external power supply to
a breadboard.

Figure 15-7. Powering an LED strip with an external power supply

See Also
NeoPixels are also available in ring format.
You can read more about the Adafruit approach to NeoPixels at
https://oreil.ly/-oA90.

15.6 Using the Pimoroni Unicorn HAT

Problem
You want an RGB LED matrix display for your Raspberry Pi.

Solution
Use a Pimoroni Unicorn HAT to provide an 8x8 LED matrix (Figure 15-8).
Start by installing the Unicorn HAT software from Pimoroni:

$ curl https://get.pimoroni.com/unicornhat | bash

https://oreil.ly/a1pKB
https://oreil.ly/-oA90

You will be asked several times to confirm various bits of software to install
and finally to reboot your Raspberry Pi.

Figure 15-8. The Pimoroni Unicorn HAT on a Raspberry Pi 3

When you’ve completed the installation, here’s a colorful program
(ch_15_unicorn.py) to run on it. It will repeatedly set the color of a random
pixel to a random color. Run the program using the sudo command:

import time
import unicornhat as unicorn
from random import randint

unicorn.set_layout(unicorn.AUTO)
unicorn.rotation(0)
unicorn.brightness(1)
width, height = unicorn.get_shape()

while True:
 x = randint(0, width)

 y = randint(0, height)
 r, g, b = (randint(0, 255), randint(0, 255), randint(0, 255))
 unicorn.set_pixel(x, y, r, g, b)
 unicorn.show()
 time.sleep(0.01)

time.sleep(1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).

Discussion
The Unicorn HAT makes a very convenient way to attach a matrix of
addressable LEDs. You will also find other chains of addressable LEDs laid
out in various configurations, including matrices with even more LEDs on
them. Generally, such matrices of addressable LEDs are actually arranged
electrically as a long chain of LEDs.

See Also
For more information on addressable (NeoPixel) LEDs, see Recipe 15.5.

15.7 Using an ePaper Display

Problem
You want to use your Raspberry Pi to control an ePaper display.

Solution
Attach an Inky pHAT or Inky wHAT module to your Raspberry Pi
(Figure 15-9). Download the Pimoroni software for this using the
command:

$ curl https://get.pimoroni.com/inkyphat | bash

If (when prompted) you accept the option to fetch examples and
documentation, this will take quite some time to install.
As an example program (ch_15_phat.py), let’s have the Inky pHAT display
the Raspberry Pi’s IP address:

from inky import InkyPHAT
from PIL import Image, ImageFont, ImageDraw
from font_fredoka_one import FredokaOne
import subprocess

inky_display = InkyPHAT("red")
inky_display.set_border(inky_display.WHITE)

img = Image.new("P", (inky_display.WIDTH, inky_display.HEIGHT))
draw = ImageDraw.Draw(img)
font = ImageFont.truetype(FredokaOne, 22)

message = str(subprocess.check_output(['hostname', '-
I'])).split()[0][2:]
print(message)

w, h = font.getsize(message)
x = (inky_display.WIDTH / 2) - (w / 2)
y = (inky_display.HEIGHT / 2) - (h / 2)

draw.text((x, y), message, inky_display.RED, font)
inky_display.set_image(img)
inky_display.show()

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
The example program uses the subprocess library (Recipe 7.15) to obtain
the IP address assigned to the Raspberry Pi.

Figure 15-9. The Pimoroni Inky pHAT attached to a Raspberry Pi 3

Discussion
You won’t be playing any video games on these displays because they take
a few seconds to update but, after they update, the ePaper keeps whatever
you have drawn on it even when the power is removed. Pimoroni sells
small displays like the Inky pHAT used here, and also a display twice the
size that is pretty much as big as the Raspberry Pi (Inky wHAT).

See Also
More information is available in the full documentation of Inky pHAT.

https://oreil.ly/-rP4D

Chapter 16. Sound

16.0 Introduction
In this chapter, you learn how to use sound with your Raspberry Pi. There
are recipes both for playing sounds in various ways—using loudspeakers or
a buzzer—and for using a microphone to record sounds.

16.1 Connecting a Loudspeaker

Problem
You want to play sounds from your Raspberry Pi.

Solution
Attach a powered speaker such as the one shown in Figure 16-1.
Having attached the speaker to the audiovisual socket, you will also need to
configure the Raspberry Pi to play through the audiovisual jack, not HDMI,
using Recipe 16.2.

Figure 16-1. Attaching a rechargeable amplified speaker to a Raspberry Pi

An alternative to using a general-purpose speaker like the one shown in
Figure 16-1 is to use a speaker kit designed specifically for the Raspberry
Pi, such as the MonkMakes Speaker Kit for Raspberry Pi, shown in
Figure 16-2.

Figure 16-2. The MonkMakes amplified speaker and a Raspberry Pi

This speaker is connected using the audio lead supplied with the kit, and the
speaker uses the Raspberry Pi’s 5V power supply, connected using female-
to-female leads.
Raspberry Pi OS comes with a handy program to test that your speaker is
working. Type the following command in the Terminal:

$ speaker-test -t wav -c 2

speaker-test 1.1.3

Playback device is default
Stream parameters are 48000Hz, S16_LE, 2 channels
WAV file(s)
Rate set to 48000Hz (requested 48000Hz)
Buffer size range from 256 to 32768
Period size range from 256 to 32768
Using max buffer size 32768
Periods = 4
was set period_size = 8192
was set buffer_size = 32768
 0 - Front Left
 1 - Front Right
Time per period = 2.411811
 0 - Front Left
 1 - Front Right

When you run this command, you will hear a voice saying “front left,”
“front right,” and so on. This is designed to test a stereo audio setup.

Discussion
As well as connecting amplified loudspeakers of various types, you can also
directly connect a pair of headphones to a Raspberry Pi’s audio socket.
By default, a Raspberry Pi’s output is via the HDMI cable. So if your Pi is
connected to a TV or a monitor with built-in speakers, all you need to do to
hear sounds from your Raspberry Pi is to turn up the volume on your TV or
monitor. However, if you are using the Raspberry Pi without a monitor, or
your monitor doesn’t have speakers, you can follow this recipe.

See Also
To pair your Raspberry Pi with a Bluetooth speaker, see Recipe 1.17.
To specify where sound is output, see Recipe 16.2.
To play a test sound, see Recipe 16.5.
For more information on the Speaker Kit for Raspberry Pi, see
https://oreil.ly/Q73vu.

16.2 Controlling Where Sound Is Output

Problem
You want to control which of several output options the Raspberry Pi will
use when making sounds.

Solution
The simplest way to set the audio output is to use the selector available
when you right-click the Speaker icon in the upper-right corner of your
desktop (Figure 16-3).

https://oreil.ly/Q73vu

Figure 16-3. Changing the audio output device

Note that the entry Comiso M20 in Figure 16-3 is for a Bluetooth speaker
that has already been paired with the Raspberry Pi (see Recipe 1.17).

Discussion
If you are running your Raspberry Pi headless (without a monitor), you can
still control where the sound is output using the raspi-config
command-line utility.
Open a Terminal session and enter the following command:

$ sudo raspi-config

Then select the option System, followed by Audio. You can then select the
option you want, as shown in Figure 16-4.

Figure 16-4. Using raspi-config to change the audio output device

See Also
To learn about connecting a speaker to your Raspberry Pi, see Recipe 16.1.
For more sound input and output options, you can use the Audio Device
Settings tool; see Recipe 16.6.

16.3 Playing Audio on a Raspberry Pi
Without an Audio Socket

Problem
You want high-quality audio output on a Raspberry Pi without an audio
jack, like a Pi Zero or Pi 400.

Solution
Attach a Pimoroni Audio DAC Shim as shown in Figure 16-5 to the GPIO
connector and connect the line out to an audio amplifier. If you are using a

Raspberry Pi 400, you’ll need a GPIO adapter to gain access to the GPIO
pins.

Figure 16-5. Attaching an Audio DAC SHIM to a Raspberry Pi 400

Pimoroni’s SHIM concept is a clever one, which allows small add-on
boards to be attached to the GPIO connector without the use of soldering or
a connector socket. It just slides over the GPIO connector as a tight fit,
slightly sprung to make good contact with the pins.
For the Audio DAC card to be recognized, you need to install some
software from Pimoroni, by running the following commands:

$ cd ~
$ git clone https://github.com/pimoroni/pirate-audio
$ cd pirate-audio/mopidy
$ sudo ./install.sh

Once the install has finished, restart your Raspberry Pi, and you should find
that when you right-click on the Audio icon on the top right of the desktop,
the new sound interface will be available to select (Figure 16-6).

Figure 16-6. Selecting the Audio DAC SHIM for output

Discussion
The output from the Audio DAC SHIM may be the same connector as a
headphone jack, but you should not connect headphones directly. This
connector is just for connecting to your HiFi and is not powerful enough to
drive headphones directly.
A more conventional way to add a new audio interface to your Raspberry Pi
is to attach a USB sound card. Most of these that claim to work with Linux
will work fine on a Raspberry Pi.

See Also
As well as configuring the Pi for the Audio DAC, the installation script in
this recipe also installs Mopidy, a version of MPD (Music Player Daemon).

16.4 Playing Sound from the Command Line

Problem
You want to be able to play a sound file from the Raspberry Pi’s command
line.

Solution

https://oreil.ly/j1PO8

Use the built-in VLC software from the command line. To try this out,
locate the file called school_bell.mp3 in this book’s downloads in the
python directory. You can play this license-free sound using the following
command. Note that on the command line, the command cvlc, not vlc, is
used:

$ cvlc ~/raspberrypi_cookbook_ed4/python/school_bell.mp3

This will play the sound file through the current audio output device.

Discussion
VLC will play most types of sound files, including MP3, WAV, AIFF, AAC,
and OGG. However, if you want to play only uncompressed WAV files, you
can also use the lighter-weight aplay command:

$ aplay ~/raspberrypi_cookbook_ed4/python/school_bell.mp3

See Also
VLC is also used in Recipe 4.9.
Documentation for aplay is available at https://oreil.ly/Fbs94.

16.5 Playing Sound from Python

Problem
You want to play a sound file from your Python program.

Solution
If you need to play the sound from a Python program, you can use the
Python subprocess module (ch_16_play_sound.py), as shown here:

https://oreil.ly/Fbs94

import subprocess

sound_file = 'school_bell.mp3'

subprocess.run(['cvlc', sound_file])

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).

Discussion
You can also play sounds using the pygame library
(ch_16_play_sound_pygame.py), as illustrated here:

import pygame

sound_file =
'/home/pi/raspberrypi_cookbook_ed4/python/school_bell.wav'

pygame.mixer.init()
pygame.mixer.music.load(sound_file)
pygame.mixer.music.play()

while pygame.mixer.music.get_busy() == True:
 continue

The sound file must be either an OGG file or an uncompressed WAV file. I
found that the sound would play only through the HDMI channel.

See Also
To play sounds directly from the command line, see Recipe 16.4.
You also can use pygame for intercepting keypresses (Recipe 13.11) and
mouse movements (Recipe 13.12).

16.6 Using a USB Microphone

Problem
You want to connect a microphone to your Raspberry Pi to capture sound.

Solution
Use a USB microphone like the one shown in Figure 16-7, or the
microphone of a USB webcam, or something a bit more substantial and of
better quality.
These devices come in various shapes and sizes. Some fit directly into the
USB socket, others have a USB lead attached to them, and some are part of
a headset.
Having plugged in your USB microphone, check that Raspberry Pi OS is
aware of it by running this command, which lists available devices from
which you can record:

$ arecord -l
**** List of CAPTURE Hardware Devices ****
card 1: H340 [Logitech USB Headset H340], device 0: USB Audio
[USB Audio]
 Subdevices: 1/1
 Subdevice #0: subdevice #0

Figure 16-7. Attaching a USB microphone to a Raspberry Pi

In this case, I’m using a microphone that’s part of a Logitech USB headset
with microphone. As the previously described output shows, this is card 1,
subdevice 0. We’ll need this information when we come to recording
sounds.
To make the microphone active, you need to right-click on the speaker icon
in the top right of the screen. Then select your USB mic device from the
Audio Inputs list, as shown in Figure 16-8. Here we are selecting the
microphone of a USB webcam.

Figure 16-8. Selecting the microphone as an audio device

You can now try to make a recording from the command line and then play
it back. To record, use the following command:

$ arecord -d 3 test.wav

The -d parameter specifies the duration of the recording in seconds.

To play back the sound you have just recorded, use the following:

$ aplay test.wav
Playing WAVE 'test.wav' : Unsigned 8 bit, Rate 8000 Hz, Mono

You can interrupt the sound playing by pressing Ctrl-C.

Discussion
I have had mixed results with the tiny push-in microphones like the one
shown in Figure 16-7. Some work and some don’t. So, if you have followed
the instructions here and you still can’t get your microphone to record
anything, try a different one.
The arecord command has optional parameters that enable you to control
the sample rate and format of the audio you record. So, for example, if you
want to record at 16,000 samples a second rather than the default of 8,000,
use the following command:

$ arecord -r 16000 -d 3 test.wav

When you play back the sound, aplay will automatically detect the
sample rate, so you can just do this:

$ aplay test.wav
Playing WAVE 'test.wav' : Unsigned 8 bit, Rate 16000 Hz, Mono

See Also
For ways of attaching a speaker to your Raspberry Pi, see Recipe 16.1.
For other methods of playing a sound file, see Recipes 16.4 and 16.5.

16.7 Making a Buzzing Sound

Problem
You want to make a buzzing sound with the Raspberry Pi.

Solution
Use a piezoelectric buzzer connected to a GPIO pin.
Most small piezo buzzers work just fine using the arrangement shown in
Figure 16-9. The one I used is an Adafruit-supplied component (see
“Miscellaneous”). You can connect the buzzer pins directly to the
Raspberry Pi using female-to-female headers (see “Prototyping Equipment
and Kits”).
These buzzers use very little current. However, if you have a large buzzer or
just want to play it safe, put a 470Ω resistor between the GPIO pin and the
buzzer lead.

Figure 16-9. Connecting a piezo buzzer to a Raspberry Pi

Paste the following code into an editor (ch_16_buzzer.py):

from gpiozero import Buzzer

buzzer = Buzzer(18)

def buzz(pitch, duration):
 period = 1.0 / pitch
 delay = period / 2
 cycles = int(duration * pitch)
 buzzer.beep(on_time=period, off_time=period, n=int(cycles/2))

while True:
 pitch_s = input("Enter Pitch (200 to 2000): ")
 pitch = float(pitch_s)
 duration_s = input("Enter Duration (seconds): ")

 duration = float(duration_s)
 buzz(pitch, duration)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
When you run the program, it first prompts you for the pitch in Hz and then
for the duration of the buzz in seconds:

$ python3 ch_16_buzzer.py
Enter Pitch (200 to 10000): 2000
Enter Duration (seconds): 20

Discussion
Piezo buzzers don’t have a wide range of frequencies, nor is the sound
quality remotely good. However, you can vary the pitch a little. The
frequency generated by the code is not very accurate, and you might hear a
bit of warbling.
The program works by using the gpiozero Buzzer class to toggle GPIO
pin 18 on and off, with a short delay in between. The delay is calculated
from the pitch. The higher the pitch (frequency), the shorter the delay
needs to be.

See Also
Take a look at the datasheet for the piezo buzzer.
For better audio output options, see Recipe 16.1.

https://oreil.ly/pxeAm

Chapter 17. The Internet of
Things

17.0 Introduction
The Internet of Things (IoT) is the rapidly growing network of devices
(things) connected to the internet. That doesn’t just mean more and more
computers using browsers, but actual appliances and wearable and portable
technology. This includes all sorts of home automation, from smart
appliances and lighting to security systems and even internet-operated pet
feeders, as well as lots of less practical but fun projects.
In this chapter, you learn how your Raspberry Pi can participate in the IoT
in various ways.

17.1 Controlling GPIO Outputs Using a Web
Interface

Problem
You want to control general-purpose input/output (GPIO) outputs using a
web interface to your Raspberry Pi.

Solution
Use the bottle Python web server library (Recipe 7.17) to create an
HTML web interface to control the GPIO port.
To make this recipe, you will need the following:

Breadboard and jumper wires (see “Prototyping Equipment and Kits”)
Three 1kΩ resistors (see “Resistors and Capacitors”)

Three LEDs (see “OptoElectronics”)
Tactile push switch (see “Miscellaneous”)

Figure 17-1 shows the breadboard layout for this.

Figure 17-1. The breadboard layout controlling GPIO outputs from a web page

An alternative to using a breadboard is to attach a Raspberry Squid and
Squid Button (see Recipes 10.10 and 10.11). You can plug these directly
into the GPIO pins of the Raspberry Pi, as shown in Figure 17-2.

Figure 17-2. Raspberry Squid and Squid Button

To install the bottle library, see Recipe 7.17.

Open an editor and paste in the following code (ch_17_web_control.py):

from bottle import route, run
from gpiozero import LED, Button

leds = [LED(18), LED(23), LED(24)]
switch = Button(25)

def switch_status():
 if switch.is_pressed:

 return 'Down'
 else:
 return 'Up'

def html_for_led(led_number):
 i = str(led_number)
 result = " <input type='button'
 onClick='changed(" + i + ")' value='LED " + i
 + "'/>"
 return result

@route('/')
@route('/<led_number>')
def index(led_number="n"):
 if led_number != "n":
 leds[int(led_number)].toggle()
 response = "<script>"
 response += "function changed(led)"
 response += "{"
 response += " window.location.href='/' + led"
 response += "}"
 response += "</script>"

 response += '<h1>GPIO Control</h1>'
 response += '<h2>Button=' + switch_status() + '</h2>'
 response += '<h2>LEDs</h2>'
 response += html_for_led(0)
 response += html_for_led(1)
 response += html_for_led(2)
 return response

run(host='0.0.0.0', port=80)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
You must run the program as superuser:

$ sudo python3 ch_17_web_control.py

If it starts correctly, you should see a message like this:

Bottle server starting up (using WSGIRefServer())...
Listening on http://0.0.0.0:80/
Hit Ctrl-C to quit.

If you see error messages, make sure that you are using the sudo
command.
Open a browser window from any machine on your network, even the
Raspberry Pi itself, and navigate to the IP address of the Raspberry Pi (see
Recipe 2.2). The web interface shown in Figure 17-3 should appear.

Figure 17-3. A web interface to GPIO

If you click one of the three LED buttons at the bottom of the screen, you
should find that the appropriate LED toggles on and off.
Also, if you hold down the button as you reload the web page, you should
see that the text next to “Button” says “Down” rather than “Up.”

Discussion
To understand how the program works, we first need to look at how a web
interface works. All web interfaces rely on a server somewhere (in this
case, a program on the Raspberry Pi) responding to requests from a web
browser.
When the server receives a request, it looks at the information that comes
with the request and formulates some HyperText Markup Language
(HTML) in response.

If the web request is just to the root page (for my Raspberry Pi, the root
page is http://192.168.1.8/), led_number will be given a default value of
n. However, if we were to browse the URL http://192.168.1.8/2, the 2 on
the end of the URL would be assigned to the led_number parameter.

The led_number parameter is then used to determine that LED 2 should
be toggled.
To be able to access this LED-toggling URL, we need to arrange things so
that when the button for LED 2 is clicked, the page is reloaded with this
extra parameter on the end of the URL. The trick here is to include a
JavaScript function in HTML that is returned to the browser. When the
browser runs this function, it causes the page to be reloaded with the
appropriate extra parameter.
This all means that we have a rather mind-bending situation in which the
Python program is generating code in JavaScript to be run later by the
browser. The lines that generate this JavaScript function are as follows:

 response = "<script>"
 response += "function changed(led)"
 response += "{"
 response += " window.location.href='/' + led"
 response += "}"
 response += "</script>"

We need to also generate the HTML that will eventually call this script
when a button is clicked. Rather than repeat the HTML for each of the web
page buttons, this is generated by the function html_for_led:

def html_for_led(led):
 i = str(led)
 result = " <input type='button' onClick='changed(" + i + ")'
 value ='LED " + i + "'/>"
 return result

This code is used three times, once for each button, and links a button click
with the changed function. The function is also supplied with the LED

number as its parameter.
The process of reporting the state of the button tests to see whether the
button is clicked and reports the appropriate HTML.

See Also
For more information on using bottle, see the bottle documentation.

17.2 Displaying Sensor Readings on a Web
Page

Problem
You want to display sensor readings from your Raspberry Pi on a web page
that automatically updates.

Solution
Use the bottle web server and some fancy JavaScript to automatically
update your display.
The example shown in Figure 17-4 displays the Raspberry Pi’s CPU
temperature using its built-in sensor.

https://oreil.ly/rWbjU

Figure 17-4. Displaying the Raspberry Pi CPU temperature

To install the bottle library, see Recipe 7.17.

All four files for this example are contained in the folder
ch_17_web_sensor:

web_sensor.py
Contains the Python code for the bottle server.

main.xhtml
Contains the web page that will be displayed in your browser.

justgage.1.0.1.min.js
A third-party JavaScript library that displays the temperature meter.

raphael.2.1.0.min.js
A library used by the justgage library.

To run the program, change directory to ch_17_web_sensor.py and then run
the Python program using the following:

$ sudo python3 web_sensor.py

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
Then open a browser, either on the same Raspberry Pi or on any computer
on the same network as the Raspberry Pi, and enter the IP address of the
Raspberry Pi into the browser’s address bar. The page shown in Figure 17-4
should appear.

Discussion
The main program (web_sensor.py) is quite concise:

import os, time
from bottle import route, run, template

def cpu_temp():
 cpu_temp = CPUTemperature()
 return str(cpu_temp.temperature)

@route('/temp')
def temp():
 return cpu_temp()

@route('/')
def index():
 return template('main.xhtml')

@route('/raphael')
def index():
 return template('raphael.2.1.0.min.js')

@route('/justgage')
def index():
 return template('justgage.1.0.1.min.js')

run(host='0.0.0.0', port=80)

The function cpu_temp reads the temperature of the Raspberry Pi’s CPU,
as described in Recipe 14.11.
Four routes are then defined for the bottle web server. The first (/temp)
returns a string containing the CPU temperature in degrees C. The root
route (/) returns the main HTML template for the page (main.xhtml).
The other two routes provide access to copies of the raphael and
justgage JavaScript libraries.

The file main.xhtml mostly contains the JavaScript to render the user
interface:

<html>
<head>
<script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min
.js"
type="text/javascript" charset="utf-8"></script>
<script src="raphael"></script>
<script src="justgage"></script>

<script>
function callback(tempStr, status){
if (status == "success") {
 temp = parseFloat(tempStr).toFixed(2);
 g.refresh(temp);
 setTimeout(getReading, 1000);
}
else {
 alert("There was a problem");
 }
}

function getReading(){
 $.get('/temp', callback);
}
</script>
</head>

<body>
<div id="gauge" class="200x160px"></div>

<script>
var g = new JustGage({
 id: "gauge",

 value: 0,
 min: 10,
 max: 60,
 title: "CPU Temp 'C"
});
getReading();
</script>

</body>
</html>

The jquery, raphael, and justgage libraries are all imported
(jquery from https://oreil.ly/nfC6s, and the other two from local copies).

Getting a reading from the Raspberry Pi to the browser window is a two-
stage process. First, the function getReading is called. This sends a web
request with the route /temp to web_sensor.py and specifies a
function called callback to be run when the web request completes. The
callback function is then responsible for updating the justgage
display before setting a timeout to call getReading again after a second.

See Also
For an example of using a Python app to display sensor values in an
application rather than a web page, see Recipe 14.23.
The justgage library has all sorts of useful options for displaying sensor
values.

17.3 Getting Started with Node-RED

Problem
You want to create simple IoT workflows, such as sending a tweet when a
button is pressed on your Raspberry Pi.

Solution

https://oreil.ly/nfC6s
https://oreil.ly/tBcYu

Use the Node-RED system that can be found in the Programming section of
the Recommended Software tool (Recipe 4.2). Use the following example
to start a Node-RED server:

$ node-red-pi --max-old-space-size=256

Then connect to the server using a browser. This can be on the Raspberry Pi
itself, in which case you can connect to the URL http://127.0.0.1:1880/—or
if you are connecting from another computer on your network, change
127.0.0.1 to the local IP address of your Raspberry Pi (Recipe 2.2).
Figure 17-5 shows the sort of thing you can expect to see in your browser
when you connect to the Node-RED server.

Figure 17-5. The Node-RED web interface

The idea behind Node-RED is that you draw your program (called a flow)
rather than write code. To do this, you drag nodes onto the editor area and
then connect them together. For example, Figure 17-5 shows a minimal
flow with two Raspberry Pi pins linked together. One pin acts as an input

and might be connected to a switch (let’s pick GPIO 25 as an example), and
the other is connected to an LED (let’s assume GPIO 18). You can
accomplish this using a Squid LED and button as in Recipe 17.1.
The node on the left, labeled PIN 22, is the input (connected to the switch
on GPIO 25), and PIN 12 is the output (connected to the LED on GPIO 18).
Node-RED uses the pin positions (where the top left pin is pin 1, its
neighbor to the right is pin 2, and so on) rather than the GPIO names.
To create this flow in your editor, scroll down the list of nodes on the left
until you get to the Raspberry Pi section. Drag the “rpi gpio” node that has
a Raspberry Pi icon on the left side to the editor area. This will be the input.
Double-click it to open the window shown in Figure 17-6. Select “22 -
GPIO25” and click Done.

Figure 17-6. Selecting GPIO25 in Node-RED

Next, select the other “rpi gpio” node type (with the Raspberry Pi icon on
the right) and drag it to the editor area, and then double-click it to open the
window shown in Figure 17-6; this time select “12 - GPIO18,” and click
Done.
Link the two nodes together by dragging out from the round connector on
the right of the input node, so that the flow looks like Figure 17-5.

Assuming that you have a push switch and LED connected to your
Raspberry Pi, you can now run this flow by clicking the Deploy button. The
LED should light, and when you press the button on the switch connected
to your Raspberry Pi, the LED should turn off. The logic of this is inverted,
but let’s leave that for now. We revisit this in the next chapter, where you
learn a lot more about Node-RED.
This is all very neat, but as yet it does not have much to do with the IoT.
This is where some of the other node types of Node-RED come into play. If
you browse the list, you’ll find all sorts of nodes, including the Tweet node.
You can connect this node as a second output to the PIN 22 node, so that the
flow now looks like Figure 17-7. Double-click the Tweet node to configure
it with your Twitter credentials. Now when you press the button, a tweet
will be sent.

Figure 17-7. Sending tweets from Node-RED

Discussion
Node-RED is an extremely powerful system, and consequently, becoming
familiar with all its features and its odd quirks will take some time. As well
as creating direct flows like the one we made here, you can also introduce
switching code (like an if statement) and functions that transform the
messages being passed between the nodes.
We have only just touched on Node-RED here; if you want to learn more, I
suggest working through the documentation mentioned in the See Also
section and much of Chapter 18.
Having played with Node-RED and decided that you like it, you may well
want to ensure that it starts automatically whenever your Raspberry Pi

reboots by issuing the following commands:

$ sudo systemctl enable nodered.service
$ sudo systemctl start nodered.service

See Also
More information is available in the full documentation on using Node-
RED on the Raspberry Pi.
Find some good video introductions to Node-RED at https://oreil.ly/uxGHZ
and https://oreil.ly/ZSDNi.

17.4 Sending Email and Other Notifications
with IFTTT

Problem
You want a flexible way for your Raspberry Pi to send notifications through
email, Facebook, Twitter, or Slack.

Solution
Have your Raspberry Pi send requests to the If This Then That (IFTTT)
Maker channel to trigger configurable notifications.
This recipe is illustrated with an example that sends you an email when the
CPU temperature of your Raspberry Pi exceeds a threshold.
You need to create an account with IFTTT before you can begin using it, so
visit www.ifttt.com, sign up for a free account, and log in.
The next step is to create a new IFTTT applet on the IFTTT website. An
applet is like a rule, such as When I get a web request from a Raspberry Pi,
send an email. Click the CREATE button on the web page. This will prompt
you to first enter the IF THIS part of the recipe and later the THEN THAT
part.

https://oreil.ly/NpEhD
https://oreil.ly/uxGHZ
https://oreil.ly/ZSDNi
https://www.ifttt.com/

In this case, the IF THIS part (the trigger) is going to be the receipt of a web
request from your Raspberry Pi, so click THIS and then enter Webhooks
into the search field to find the Webhooks channel. Select the Webhooks
channel and, when prompted, select the option “Receive a web request.”
Clicking Create should bring up something like Figure 17-8.

Figure 17-8. The “Receive a web request” trigger form

In the Event Name field, enter the text cpu_too_hot and then click
“Create trigger.”
This will now move you to the THEN THAT portion of the recipe, the
action, and you will need to select an action channel. There are many

options, but for this example, you will use the Email channel, so in the
search field, type Email and then select the Email channel.

Having selected the Email channel, select the action “Send me an email,”
which displays the form shown in Figure 17-9.
Change the text so that it appears as shown in Figure 17-9. Note that the
special values OccurredAt and Value1 will both be surrounded by {{ and
}}. These values are called ingredients and are variable values that will be
taken from the web request and substituted into the email subject and body.
Click “Create action” and then Finish to complete the recipe creation.

Figure 17-9. Completing the action fields in IFTTT

One final piece of information that we need is the API key for the
Webhooks channel. This is so that other people can’t bombard you with
emails about their Raspberry Pi’s CPU temperature.
To find this key on the IFTTT website, click the My Services option on the
menu that appears when you click next to your user icon, and then find
Webhooks. On the Webhooks page, click Documentation, and a page like
Figure 17-10 displays; here you can see your key (which is intentionally
obscured in this figure). You will need to paste this key into the code that
follows in the line KEY = 'your_key_here'.

Figure 17-10. Finding your API key

The Python program to send the web request is called
ch_17_ifttt_cpu_temp.py:

import time
from gpiozero import CPUTemperature
import requests

MAX_TEMP = 33.0
MIN_T_BETWEEN_WARNINGS = 60 # Minutes

EVENT = 'cpu_too_hot'
BASE_URL = 'https://maker.ifttt.com/trigger/'
KEY = 'your_key_here'

def send_notification(temp):
 data = {'value1' : temp}
 url = BASE_URL + EVENT + '/with/key/' + KEY
 response = requests.post(url, json=data)
 print(response.status_code)

def cpu_temp():
 cpu_temp = CPUTemperature().temperature
 return cpu_temp

while True:
 temp = cpu_temp()
 print("CPU Temp (C): " + str(temp))
 if temp > MAX_TEMP:
 print("CPU TOO HOT!")
 send_notification(temp)
 print("No more notifications for: " +
str(MIN_T_BETWEEN_WARNINGS)
 + " mins")
 time.sleep(MIN_T_BETWEEN_WARNINGS * 60)
 time.sleep(1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
I have left the MAX_TEMP deliberately low for testing purposes. If you live
somewhere hot, you’ll want to bump this number up to 60 or 70.
Paste the key into ch_17_ifttt_cpu_temp.py on the line that starts KEY= and
then run the program using:

$ python3 ch_17_ifttt_cpu_temp.py

You can increase your CPU temperature by playing a video or temporarily
wrapping your Raspberry Pi in bubble wrap. When the event is triggered,
you should receive an email that looks like Figure 17-11. Notice how the
values have been substituted into the email (again, the obscuring is
intentional).

Figure 17-11. A notification email message

Discussion
Most of the action for this program takes place in the
send_notification function. This function first constructs a URL that
includes the key and request parameter value1 (containing the
temperature) and then uses the Python requests library to send the web
request to IFTTT.
The main loop continually checks the CPU temperature against the
MAX_TEMP; if the temperature exceeds MAX_TEMP, the web request is
sent, and a long sleep is started as specified by
MIN_T_BETWEEN_WARNINGS. The sleep prevents your inbox from being
flooded with notifications.
As an alternative to using IFTTT, you could, of course, just send an email
directly using Recipe 7.16. However, by using IFTTT to send the messages,

you are not restricted to email notifications—you could use any of the
action channels available in IFTTT without having to write any code.

See Also
To send an email directly from Python, see Recipe 7.16.
The code to measure the CPU temperature is described in Recipe 14.11.

17.5 Sending Tweets Using ThingSpeak

Problem
You want to automatically send tweets from your Raspberry Pi—for
example, to irritate people by telling them the temperature of your CPU.

Solution
You could just use Recipe 17.4 and change the action channel to Twitter.
However, the ThingSpeak service is an alternative way of doing this.
ThingSpeak is similar to IFTTT but is aimed squarely at IoT projects. It
allows you to create channels that can store and retrieve data using web
requests, and it also has a number of actions, including ThingTweet, which
provides a web services wrapper around Twitter. This is easier to use than
the Twitter API, which requires you to register your application with
Twitter.
Start by visiting https://thingspeak.com and signing up. Note that this also
involves creating a MATLAB account for no particularly good reason.
Next, select the ThingTweet action from the Apps menu. You are prompted
to log in to Twitter, and then your action will become activated (Figure 17-
12).

https://thingspeak.com/
https://thingspeak.com/

Figure 17-12. The ThingTweet action

The Python program to send the web request that triggers the tweet is called
ch_17_send_tweet.py:

import time
from gpiozero import CPUTemperature
import requests

MAX_TEMP = 35.0
MIN_T_BETWEEN_WARNINGS = 60 # Minutes

BASE_URL =
'https://api.thingspeak.com/apps/thingtweet/1/statuses/update/'
KEY = 'your_key_here'

def send_notification(temp):
 status = 'Thingtweet: Raspberry Pi getting hot. CPU temp=' +
str(temp)
 data = {'api_key' : KEY, 'status' : status}
 response = requests.post(BASE_URL, json=data)
 print(response.status_code)

def cpu_temp():
 cpu_temp = CPUTemperature().temperature
 return cpu_temp

while True:
 temp = cpu_temp()
 print("CPU Temp (C): " + str(temp))
 if temp > MAX_TEMP:
 print("CPU TOO HOT!")

 send_notification(temp)
 print("No more notifications for: " +
str(MIN_T_BETWEEN_WARNINGS)
 + " mins")
 time.sleep(MIN_T_BETWEEN_WARNINGS * 60)
 time.sleep(1)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
As with Recipe 17.4, you need to paste your key from Figure 17-12 into the
code before you run the program. Run and test the program in the same way
you did in Recipe 17.4.

Discussion
The code is very similar to Recipe 17.4. The main difference is in the
function send_notification, which constructs the tweet and then
sends the web request with the message as the parameter status.

See Also
More information is available in the full documentation of the ThingSpeak
service.
In Recipe 17.6, you use the popular CheerLights, implemented in
ThingSpeak; in Recipe 17.7, you learn how to use ThingSpeak to collect
sensor data.

17.6 Changing LED Color Using CheerLights

Problem
You want to hook your Raspberry Pi up to an RGB LED and participate in
the popular CheerLights project.
CheerLights is a web service that, when anyone sends a tweet to
@cheerlights containing the name of a color, will record that color as being

https://oreil.ly/pVyhG

the CheerLights color. Around the world, many people have CheerLights
projects that use a web service to request the last color and set their lighting
to that color. So when anyone tweets, everyone’s lights change color.

Solution
Use a Raspberry Squid RGB LED connected to your Raspberry Pi
(Figure 17-13) and run the test program called ch_17_cheerlights.py
(shown after Figure 17-13):

Figure 17-13. A CheerLights display

from gpiozero import RGBLED
from colorzero import Color
import time, requests

led = RGBLED(18, 23, 24)
cheerlights_url =
"http://api.thingspeak.com/channels/1417/field/2/last.txt"

while True:
 try:
 cheerlights = requests.get(cheerlights_url)
 c = cheerlights.content
 print(c)
 led.color = Color(c)
 except Exception as e:
 print(e)
 time.sleep(2)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
When you run the program, your LED should immediately set itself to a
color. It will probably change color after a while when someone tweets; if it
doesn’t, try tweeting a message such as “@cheerlights red,” and the color of
your LED and the rest of the world’s LEDs should change. Valid color
names for CheerLights are red, green, blue, cyan, white, oldlace, purple,
magenta, yellow, orange, and pink.

Discussion
The code just sends a web request to ThingSpeak, which returns a string of
colors as a six-digit hexadecimal number. This is then used to set the LED
color.
The try/except code is used to ensure that the program doesn’t crash if a
temporary network outage occurs.

See Also
CheerLights uses ThingSpeak to store the last color in a channel. In Recipe
17.7, a channel is used to record sensor data.

If you don’t have a Squid, you can use an RGB on a breadboard (see Recipe
11.11), or you can even adapt Recipe 15.5 to control an entire LED strip.

17.7 Sending Sensor Data to ThingSpeak

Problem
You want to log sensor data to ThingSpeak and then see charts of the data
over time.

Solution
Log in to ThingSpeak and, from the Channels drop-down, select My
Channels. Next, create a new channel by completing the top of the form, as
shown in Figure 17-14.
You can leave the rest of the form blank. When you have finished editing,
click Save Channel at the bottom of the page. Click the API Keys tab to
find a summary of the web requests that you can use, along with keys for
the channel you just created (Figure 17-15).

Figure 17-14. Creating a channel in ThingSpeak

Figure 17-15. Specifying a ThingSpeak channel

You will need to copy your API key (api_key in Update Channel Feed -
POST as shown in Figure 17-15) as the value for KEY in the program that
follows.
To send data to the channel, you must send a web request. The Python
program to send the web request is called ch_17_thingspeak_data.py:

import time
from gpiozero import CPUTemperature
import requests

PERIOD = 60 # seconds
BASE_URL = 'https://api.thingspeak.com/update.json'
KEY = 'your key goes here'

def send_data(temp):

 data = {'api_key' : KEY, 'field1' : temp}
 response = requests.post(BASE_URL, json=data)

def cpu_temp():
 cpu_temp = CPUTemperature().temperature
 return cpu_temp

while True:
 temp = cpu_temp()
 print("CPU Temp (C): " + str(temp))
 send_data(temp)
 time.sleep(PERIOD)

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
Run the program. On the ThingSpeak channel page, on the Private View
tab, you should see a graph like the one shown in Figure 17-16.

Figure 17-16. Charting the sensor data in ThingSpeak

This will update every minute as each new reading arrives.

Discussion

The variable PERIOD is used to determine the time interval in seconds after
each sending of the temperature.
The send_data function constructs the web request, supplying the
temperature in a parameter called field1.

If your data might be something of public interest—say, accurate
environmental readings—you might want to make the channel public so
that anyone can make use of it. This probably isn’t the case for your Pi’s
CPU temperature.

See Also
For an explanation of the code that reads the CPU temperature, see Recipe
14.11.
For an example of exporting sensor data into a spreadsheet, see Recipe
14.24.

17.8 Responding to Tweets Using Dweet and
IFTTT

Problem
You want your Raspberry Pi to perform some action in response to a certain
hashtag or mention in a tweet.
Recipe 17.6 does this, but it does it very inefficiently because it relies on
you continually polling with web requests to see whether the color has
changed.

Solution
An efficient mechanism for monitoring tweets that does not rely on polling
is to use IFTTT (see Recipe 17.4) to spot tweets of interest and then send a
web request to a service called Dweet that can push notifications to a
Python program running on your Raspberry Pi (Figure 17-17).

For example, you could flash an LED for 10 seconds every time your
username is mentioned on Twitter by using a Raspberry Squid or an LED
attached to a breadboard.
As far as the hardware goes, this recipe just requires some electronics that
do something noticeable when GPIO 18 goes high. This could be one
channel of a Raspberry Squid (see Recipe 10.10) or a single LED attached
to breadboard (see Recipe 11.1) or, for ultimate flexibility, a relay (see
Recipe 11.5). Using a relay would allow you to create a project like
Bubblino, the bubble-blowing Arduino bot.

Figure 17-17. IFTTT, Dweet, and Python, working together

http://bubblino.com/

The first step is to log in to IFTTT (see Recipe 17.4) and then create a new
applet. Choose an action channel of “New Mention of You” and then click
“Create trigger.” For the recipe’s action channel, select Webhooks, and then
select the action “Make a web request” and complete the fields, as shown in
Figure 17-18.
The URL includes a request parameter with the ingredient of “text.” This
will contain the body of the tweet. Although this will not be used other than
to print it in the console, you might have the message displayed on an LCD
screen for a more sophisticated project, so it is useful to know how to pass
data from a tweet to the Python program.
Finally, click “Create recipe” to take the IFTTT recipe live.
The dweet.io web service operates rather like Twitter for IoT things. It has a
web interface that allows you to both post and listen for dweets. Dweet
doesn’t require an account or any login details to use it; you can just have
one thing (IFTTT, in this case) send a message to Dweet and have another
thing (your Raspberry Pi Python program) wait for a notification from the
service that something you are interested in has happened. In this case, the
token that links the two is tweet_about_me. This is not very unique,
and if several people are trying out this example from the book at the same
time, you will all get one another’s messages. To avoid this, use a more
unique token (say, by adding a random string of letters and numbers to the
message).

Figure 17-18. Completing the “Make a web request” action channel in IFTTT

To access Dweet from your Python program, you need to install the
dweepy library using the following command:

$ sudo pip3 install dweepy

The program for this recipe is called ch_17_twitter_trigger.py:

import time
import dweepy
from gpiozero import LED

KEY = 'tweet_about_me'
led = LED(18)

while True:
 try:
 for dweet in dweepy.listen_for_dweets_from(KEY):
 print('Tweet: ' + dweet['content']['text'])
 led.on()
 time.sleep(10)
 led.off()
 except Exception:
 pass

As with all the program examples in this book, you can also download this
program (see Recipe 3.22).
After it’s running, try mentioning yourself in a tweet, and the LED should
light for 10 seconds.

Discussion
The program uses the listen_for_dweets_from method to leave an
open connection to the dweet.io server, listening for any push messages
from the server as a result of a dweet arriving from IFTTT in response to a
tweet. The try/except block ensures that, if any communication outage
occurs, the program will just start the listening process again.

See Also

For a similar project using a different approach, see Recipe 17.6.

Chapter 18. Home Automation

18.0 Introduction
As a low-cost and low-power device, a Raspberry Pi makes a great home
automation hub that you can leave running without fear of huge electricity
bills. For the recipes described in this chapter, you don’t need the power of
a Raspberry Pi 4 or 400. In fact, a Raspberry Pi 2 or 3 will be plenty fast
enough and will run cooler and use less electricity than a Raspberry Pi 4.
We start with Message Queuing Telemetry Transport (MQTT), the basic
communication mechanism for most home automation systems, and then
move on to look at using Node-RED (which you first met in Chapter 17) as
a basis for home automation.
Strictly speaking, home automation is all about making your home smarter
and more able to do things for itself—for example, to turn on a light for a
set amount of time when movement is detected, or to automatically turn
everything off at bedtime. But most people who are interested in home
automation are also interested in remote control of the parts of their home
that have been automated. We also look at remote control by smartphone in
this chapter.

18.1 Making a Raspberry Pi into a Message
Broker with Mosquitto

Problem
You want to make your Raspberry Pi a hub for your home automation
system capable of using the Mosquitto MQTT software.

Solution

Install the Mosquitto software so that your Raspberry Pi can act as an
MQTT broker.
Run the following commands to install Mosquitto and start it as a service so
that it automatically starts when your Raspberry Pi reboots:

$ sudo apt update
$ sudo apt install -y mosquitto mosquitto-clients
$ sudo systemctl enable mosquitto.service

You can check to see whether everything is working by running the
following command:

$ mosquitto -v
1656413574: mosquitto version 2.0.11 starting
1656413574: Using default config.
1656413574: Starting in local only mode. Connections will only be
possible
 from clients running on this machine.
1656413574: Create a configuration file which defines a listener
to allow
 remote access.
1656413574: For more details see
https://mosquitto.org/documentation
 /authentication-methods/
1656413574: Opening ipv4 listen socket on port 1883.
1656413574: Error: Address already in use
1656413574: Opening ipv6 listen socket on port 1883.
1656413574: Error: Address already in use
$

The error message is not really an error; it just means that Mosquitto is
already running because we started it as a service.

Discussion
MQTT is a way of passing messages between one program and another. It
has two parts:

Server

The central place where the passing of messages is controlled and
messages are routed to the right recipient.

Client
A program that sends and receives messages to and from the server.
Normally more than one client will be in a system.

Messages are passed using what is called a publish and subscribe model.
That is, a client that has something interesting to say (e.g., a sensor reading)
tells the server by publishing the reading. Every few seconds, the client
might take another reading and publish that, too.
Messages have a topic and a payload. In a system for automating lights, the
topic might be bedroom_light and the payload on or off.
You can try this out by opening two Terminals at the same time. One
Terminal will act as the publisher and the other as a subscriber. You can see
this in action in Figure 18-1.

Figure 18-1. Two clients communicating using MQTT

Let’s break this down. The Terminal on the left is the subscriber, and here
we issue the command:

$ mosquitto_sub -d -t pi_mqtt
Client mosqsub/2007-raspberryp sending CONNECT
Client mosqsub/2007-raspberryp received CONNACK
Client mosqsub/2007-raspberryp sending SUBSCRIBE (Mid: 1, Topic:
pi_mqtt, QoS: 0)
Client mosqsub/2007-raspberryp received SUBACK
Subscribed (mid: 1): 0

The mosquitto_sub command subscribes the client. The -d option
specifies debug mode, which just means you will see a lot more output
about what the client and server are doing; this is useful while you are
making sure everything is working. The -t pi_mqtt option specifies the
topic that the client is interested in as pi_mqtt.

The debug trace shows that the client is connecting to the server without
problems and that the client has requested to subscribe and the server has
acknowledged the subscription.
Leave this Terminal session running and open a second Terminal session to
act as a client that’s going to publish something on the topic pi_mqtt.
Enter the following command in this new Terminal window:

$ mosquitto_pub -d -t pi_mqtt -m "publishing hello"
Client mosqpub/2199-raspberryp sending CONNECT
Client mosqpub/2199-raspberryp received CONNACK
Client mosqpub/2199-raspberryp sending PUBLISH (d0, q0, r0, m1,
'pi_mqtt',
 ... (16 bytes))
Client mosqpub/2199-raspberryp sending DISCONNECT

Again, the -d and -t options specify debug mode and the topic, but this
time there is an extra option of -m, which specifies a message to include in
the publication. If the publisher were a sensor, the message might be the
sensor reading.

As soon as the mosquitto_pub command is sent, text like the following
will appear in the first Terminal window (the subscriber):

Client mosqsub/5170-raspberryp received PUBLISH (d0, q0, r0, m0,
'pi_mqtt',
 ... (16 bytes))
publishing hello

See Also
For information on Mosquitto, see https://mosquitto.org.
For other MQTT recipes in this chapter, see Recipes 18.2 and 18.5.

18.2 Using Node-RED with an MQTT Server

Problem
You want to combine Node-RED with an MQTT server to be able, for
instance, to control a general-purpose input/output (GPIO) pin in response
to MQTT message publications.

Solution
Use a Node-RED “mqtt” node and an “rpi gpio” node in a Node-RED flow
like the one shown in Figure 18-2.
If you have not installed Node-RED, you can find instructions in Recipe
17.3.
After you deploy this, you will be able to turn GPIO 18 on and off by
sending mosquitto_pub commands. For testing purposes, attach an
LED or Raspberry Squid LED to pin 18 (Recipe 11.1).
The flow refers to kitchen lights, as this example pretends that GPIO 18 is
being used with something like a PowerSwitch Tail (Recipe 11.7) to switch
lighting on and off.

https://mosquitto.org/

Let’s build the example up one node at a time.

Figure 18-2. A Node-RED MQTT and GPIO workflow

Start by adding an “mqtt” node from the “input” category of Node-RED.
Double-click the node to edit it (Figure 18-3).

Figure 18-3. Editing the “mqtt” node

Notice that the Server field just has the option to “Add new mqtt-broker.”
We will return to this in a moment. For now, specify a topic (kitchen_lights)
and give the node a meaningful name. The QoS field allows you to set the
quality of service and determines how persistent the MQTT server is at
getting messages to their intended destination. Level 2 means guaranteed
delivery.
We now need to define an MQTT server for Node-RED, so click the edit
(pencil) button next to the Server field. This opens the window shown in
Figure 18-4.

Figure 18-4. Adding an MQTT server to Node-RED

Give the server a name and enter localhost in the Server field. We can
do this because Node-RED and the MQTT server are running on the same
Raspberry Pi.
Now we can add the “rpi-gpio out” node. You will find this in the
Raspberry Pi section. After you have added it to the flow, open it
(Figure 18-5).

Figure 18-5. Editing the GPIO output node

Select “12 - GPIO 18” and give the node a name before clicking Done.
Drag the connector from the “mqtt in” node to the Raspberry Pi GPIO node
so that the flow looks like Figure 18-2.
Click the Deploy button and then open a Terminal session on the Raspberry
Pi to test the flow.
Type the following command in the Terminal window to publish a request
to turn on the light:

$ mosquitto_pub -d -t kitchen_lights -m 1

The LED on pin 18 should light. Then, to turn off the LED, send:

$ mosquitto_pub -d -t kitchen_lights -m 0

Discussion
This recipe works only if the Raspberry Pi happens to be right next to the
thing you want to control. In reality, you are more likely to want to use a
wireless switch.
It is, however, useful to know how to control GPIO pins through MQTT
and Node-RED.
Node-RED has the ability to import and export flows as JSON text. All the
flows used in this chapter are available on the book’s GitHub pages.
To import one of these flows into Node-RED, visit the GitHub page and
then click the recipe number corresponding to the flow that you want to
import. For example, in Figure 18-6 I have clicked recipe_18_10.json.

Figure 18-6. Selecting the JSON for a flow from GitHub

https://oreil.ly/nmDtR

Select the entire line in the code area and copy it to your clipboard.
(Clicking the Raw button just above the code can make it easier to select all
of the code for copying.) Then switch back to your Node-RED web page
and select Import, and then Clipboard from the Node-RED menu, as shown
in Figure 18-7.
Then paste the code you copied from GitHub into the window shown in
Figure 18-8 and select “new flow.”

Figure 18-7. Selecting the “Import from Clipboard” option

Figure 18-8. Pasting the flow code into the “Import nodes” dialog box

When you click Import, the flow appears in a new tab (Figure 18-9).

Figure 18-9. A newly imported flow

See Also
To see how you can control a WiFi switch using MQTT, see Recipe 18.5.
To see a similar recipe that uses Node-RED instead, see Recipe 18.6.
Read more about MQTT QoS levels.
For more information, see the full documentation on Node-RED.

18.3 Flashing a Sonoff WiFi Smart Switch for
MQTT Use

Problem
You want to use a WiFi smart switch with MQTT so that you can control
domestic accessories directly from your Raspberry Pi.

Solution

https://oreil.ly/cBK4F
https://nodered.org/docs

Flash (install) new firmware (Tasmota) onto a low-cost Sonoff WiFi switch,
configure the switch through a web interface, and then control it using
MQTT.
The Sonoff web switches (shown in Figure 18-10) offer an extremely low-
cost way of turning lighting and other appliances on and off wirelessly.

Figure 18-10. The Sonoff WiFi switch

However, the firmware pre-installed on the Sonoff switches is proprietary
and relies on servers in China for communication to the internet. If you
would prefer to have local control of your device and actually improve over
the original firmware, you should follow this recipe to flash new open
source firmware onto your Sonoff.
You can do all of this from your Raspberry Pi, but you’ll need a few things:

A Sonoff Basic web switch (see “Modules”)
A row of four header pins (see “Miscellaneous”)

Four female-to-female jumper wires (see “Prototyping Equipment and
Kits”)
Soldering equipment and solder (see “Prototyping Equipment and Kits”)

You will also need a Raspberry Pi 2 or later because earlier Raspberry Pis
are not able to provide enough current at 3.3V to power the Sonoff.

Danger: High Voltage
Switching alternating current (AC) using a Sonoff requires the connection of live wires to the
Sonoff’s screw terminals. This is electrician’s work and should be done only by someone qualified
to do so.

Flash the Sonoff fresh out of its box, before it is wired into your household electricity. You can
configure it without connecting it to an AC supply. The Raspberry Pi will power it.

Before you connect your Sonoff to AC, take it apart, because you are going
to need to solder a strip of four header pins into the holes supplied on the
Sonoff’s circuit board. Figure 18-11 shows the position of the holes and
also marks off the roles of the four header pins we are interested in. In fact,
they are a serial port of the Sonoff.

Figure 18-11. Inside a Sonoff WiFi switch

Note that different versions of the Sonoff have the serial interface in slightly
different places. You may have to look on the underside of the board for
pads marked 3V, RX, TX, and GND to find the serial interface.
Once the header pins are soldered in place, your Sonoff will look something
like Figure 18-12.

Figure 18-12. A Sonoff with header pins attached to its serial port

You now need to connect the header pins on the Sonoff to the GPIO pins on
your Raspberry Pi as follows (use Figure 18-13 as a reference).

Sonoff 3.3V to Raspberry Pi 3.3V
Sonoff RX to Raspberry Pi TXD
Sonoff TX to Raspberry Pi RXD
Sonoff GND to Raspberry Pi GND

Figure 18-13 shows a Raspberry Pi 400 connected to the Sonoff using a
GPIO adapter.

Figure 18-13. Flashing a Sonoff with a Raspberry Pi 400

Changing the firmware (flashing) the Sonoff requires a piece of Python
software called esptool. To download it onto your Raspberry Pi, run the
following command:

$ git clone https://github.com/espressif/esptool.git
$ cd esptool

Having downloaded the software, we also need to get the replacement
Tasmota firmware to flash onto the Sonoff. To do this, run the following
command from within the esptool directory.

$ wget https://github.com/arendst/Sonoff-
Tasmota/releases/download/v6.6.0/
 sonoff-basic.bin

This will fetch a file called sonoff-basic.bin into the esptools directory.
The remainder of the process is as follows:

1. Put the Sonoff into flash mode.

At the moment, the LED on your Sonoff will probably be happily
flashing away. To put the Sonoff into flash mode, disconnect the GND
lead, press the Sonoff’s push switch (Figure 18-11) and reconnect the
GND lead to power up the Sonoff from your Raspberry Pi. Once the
Sonoff is powered up, release the push switch after a few seconds.
The Sonoff’s LED should no longer be blinking. It’s now in flash
mode, ready to receive a new program.

2. Erase the Sonoff.
Make sure that you are still in the esptools directory and run the
command to erase the Sonoff. You should see messages in the
Terminal like those shown here:

$ cd ~/esptools
$ python3 esptool.py --port /dev/serial0 erase_flash
esptool.py v4.3-dev
Serial port /dev/serial0
Connecting...
Failed to get PID of a device on /dev/ttyS0, using standard
reset
 sequence.
......
Detecting chip type... Unsupported detection protocol,
switching and
 trying again...
Connecting...
Failed to get PID of a device on /dev/ttyS0, using standard
reset
 sequence.

Detecting chip type... ESP8266
Chip is ESP8285N08
Features: WiFi, Embedded Flash
Crystal is 26MHz
MAC: c4:4f:33:eb:0f:73
Uploading stub...
Running stub...
Stub running...
Erasing flash (this may take a while)...
Chip erase completed successfully in 1.4s
Hard resetting via RTS pin...

3. Flash the Tasmota software onto the Sonoff.
Run the command to flash the sonoff-basic.bin file that you fetched
earlier onto the Sonoff:

$ python3 esptool.py --port /dev/serial0 write_flash -fs 1MB
-fm dout
 0x0 sonoff-basic.bin
esptool.py v4.3-dev
Serial port /dev/serial0
Connecting...
Failed to get PID of a device on /dev/ttyS0, using standard
reset
 sequence.
......
Detecting chip type... Unsupported detection protocol,
switching and
 trying again...
Connecting...
Failed to get PID of a device on /dev/ttyS0, using standard
reset
 sequence.

Detecting chip type... ESP8266
Chip is ESP8285N08
Features: WiFi, Embedded Flash
Crystal is 26MHz
MAC: c4:4f:33:eb:0f:73
Uploading stub...
Running stub...
Stub running...
Configuring flash size...
Flash will be erased from 0x00000000 to 0x00069fff...
Compressed 432432 bytes to 300963...
Wrote 432432 bytes (300963 compressed) at 0x00000000 in 27.0
seconds
 (effective 128.0 kbit/s)...
Hash of data verified.

Leaving...
Hard resetting via RTS pin...

Discussion
When all of this is complete, you can disconnect the jumper wires and get a
qualified person to install your Sonoff so that it is supplied from AC and

ready to switch whatever you have in mind for it to switch.
However, it might be wise to do a bit more testing of the newly flashed
Sonoff before connecting it to the AC or putting it somewhere inaccessible.
So you can, if you prefer, continue to power the Sonoff from your
Raspberry Pi by leaving the 3.3V and GND jumpers in place. The LED will
light when the Sonoff is switched on.
In addition to the Sonoff model that I used here, many other models are
available, including some that look like regular light switches but contain a
WiFi module.

See Also
For more information on Tasmota, see https://oreil.ly/aevZD.
Having flashed your Sonoff, follow the next recipe (Recipe 18.4) to
configure it.

18.4 Configuring a Sonoff WiFi Smart Switch

Problem
You need to join your Sonoff WiFi switch to your home WiFi network.

Solution
First, flash the Tasmota firmware onto your Sonoff using Recipe 18.4. If
you have the Tasmota firmware on your Sonoff and it’s powered up, either
using the 3.3V supply of your Raspberry Pi (Pi 2 or later) or in situ with an
AC supply, you can now configure the Sonoff by connecting to the wireless
access point that it will be running. At the time of writing, you won’t be
able to do this with your Raspberry Pi because, after you join it, the
wireless access point does not trigger the welcome page for the access point
to be opened in the same way as it does if you connect using a Mac or
Windows PC. Instead, you’ll need to connect to the WiFi access point

https://oreil.ly/aevZD

called something like Sonoff-2500 on your PC or Mac, or even on your
smartphone (Figure 18-14).

Figure 18-14. Joining a Sonoff to a WiFi network

You have the option to enter credentials for two wireless access points. But
assuming you have just one, either use the “Scan for wifi networks” link at
the top of the page or else just enter your access point name in the AP1
SSID field and your password in the AP1 Password field and then click
Save.
The Sonoff will reboot and, if you entered the access point credentials
correctly, it will reboot connecting to your network.
Now you have the problem of finding the Sonoff’s IP address. A tool like
Fing for Android phones or Discovery for iOS will do this. As you can see

from Figure 18-15, in my case the Sonoff has been assigned the IP address
192.168.1.84.

Figure 18-15. Finding the Sonoff’s IP address

Discussion
Now that the Sonoff is connected to your network, it will change mode, and
rather than run an entire access point, it will instead run a web server on
your network from which you can manage the device. To connect to this
web page, enter the IP address of the Sonoff into a browser on any machine
connected to the network. You should see something like Figure 18-16.

Figure 18-16. The Sonoff’s web page

Click the Toggle button to turn the Sonoff’s LED on and off. If the Sonoff
is actually wired into your house, rather than being powered from your
Raspberry Pi, it will turn whatever it was connected to on and off.

See Also
To see how you can configure these switches to work with MQTT and
Node-RED, see Recipe 18.5.

18.5 Using Sonoff Web Switches with MQTT

Problem
You want to be able to control your newly flashed Sonoff web switch using
MQTT.

Solution
First make sure that you have followed Recipes 18.3 and 18.4 to flash new
firmware onto your Sonoff device and configure it to connect to your WiFi
network.
To control the Sonoff switch using MQTT, you need to configure the Sonoff
using its web interface. Enter the IP address of your Sonoff (see Recipe
18.4) into your browser and click the Configuration button. This opens the
menu shown in Figure 18-17.

Figure 18-17. The Sonoff Tasmota configuration menu

Click the Configure MQTT option to open the MQTT configuration page,
shown in Figure 18-18.

Figure 18-18. The Sonoff Tasmota MQTT configuration menu

This is where we configure the Sonoff as a client to an MQTT server (see
Recipe 18.1) and specify how it will subscribe, so that when we publish a
command (say, to turn on), it understands the command.
To do this, you need to change some of the fields in the configuration form:

Change the Host field to the IP address of your Raspberry Pi running the
MQTT server.
Change the Client field to “sonoff_1”. We’ve added a “_1” in case we
end up with multiple Sonoff devices that we need to distinguish. You can
also use a more meaningful name here if you like—perhaps
“bedroom_1_sonoff” if that’s where the Sonoff is going to be installed.
The User and Password fields are not used because our MQTT server
doesn’t have any security configured. This is not as reckless as it sounds,
as no one can do anything unless they are already inside your network.
So it doesn’t matter what you put in these fields.
Change the Topic to “sonoff_1” again because you might end up with
multiple Sonoff switches.
Leave the Full Topic field unchanged.

Click Save, and the Sonoff will reboot itself for the changes to take effect.

Discussion
You can test this MQTT interface from a Terminal. Enter the following
command, and the Sonoff’s LED should light:

$ mosquitto_pub -t cmnd/sonoff_1/power -m 1

Enter this command to turn the switch off again:

$ mosquitto_pub -t cmnd/sonoff_1/power -m 0

If this doesn’t work, add the -d option to the commands to check that the
Mosquitto client commands are connecting to the MQTT server.

See Also
We build on the work of this recipe in Recipe 18.6 to control the switch
using Node-RED.

18.6 Using Flashed Sonoff Switches with
Node-RED

Problem
You want to use a flashed Sonoff web switch with Node-RED.

Solution
Follow Recipe 18.5 to get your Sonoff working with MQTT, and then use a
Node-RED MQTT node in a flow like that shown in Figure 18-19.
If you want, you can import the flow rather than build it up from scratch.
Follow the instructions in the Discussion section of Recipe 18.2 to import
the flow.

https://oreil.ly/vdZSb

Figure 18-19. A Node-RED flow for a delay timer

This flow assumes that a push button is attached to the Raspberry Pi’s GPIO
25, and that, when it’s pressed, the Sonoff will be switched on for 10
seconds before being switched off again.
The push button is set up the same way as the button we used in Recipe
17.3 and needs a hardware switch connected to GPIO 25 (see Recipe 13.1).
You will find the Trigger nodes in the Function section of Node-RED. We
need two of these, so drag them out to the flow. Figure 18-20 shows the
settings for the “On trigger” node.

Figure 18-20. Configuring the “On trigger” node

This Trigger node is configured to send a 1 when triggered, wait for a
quarter of a second (for debouncing), and then do nothing further. It’s given
the name “On trigger.”
The “Off trigger” is different from the “On trigger” because we need it to
delay for 10 seconds before sending a 0 to the Sonoff. Figure 18-21 shows
the settings for this.

Figure 18-21. Configuring the “Off trigger” node

Finally, add an “mqtt” node from the Output section. Open this to configure
it (Figure 18-22).
When clicked on, the Server field will prompt you to add a new MQTT
server and enter its details, including its name (I used
MyHomeAutomation), IP address (localhost), and port (1880).
Change the Topic and Name fields, as shown in Figure 18-22. You can now
connect everything as shown in Figure 18-19 and deploy the flow.
When you press the button, the Sonoff should turn on and then turn itself
off again after 10 seconds.

Figure 18-22. Configuring the “mqtt out” node

Discussion
This recipe shows just how far you can go with Node-RED without having
to write any actual code. By thinking of the automation as a flow of
messages, Node-RED provides a really nice way of programming.
To use a motion sensor to switch the lights on for a predetermined period of
time, you could replace the switch with a passive infrared (PIR) motion
sensor (see Recipe 13.9).

See Also
More information is available in the full Node-RED documentation.

https://nodered.org/docs

18.7 Turning Things On and Off Using the
Node-RED Dashboard

Problem
You want to be able to turn lighting and other appliances on and off from
your smartphone.

Solution
Install the Node-RED Dashboard extension, add some user interface (UI)
controls to a flow, and then visit the Dashboard from your phone’s browser.
To install the Node-RED Dashboard, run the following commands:

$ sudo systemctl stop nodered.service
$ apt update
$ cd ~/.node-red
$ sudo apt install npm
$ npm install node-red-dashboard
$ sudo systemctl start nodered.service

When you’ve finished installing the Dashboard, you will end up with a new
section of control nodes in Node-RED (Figure 18-23).

Figure 18-23. Node-RED Dashboard nodes

We can use the button node to replace the physical button that we used in
Recipe 18.6 with a button on a web page. The flow for this is shown in
Figure 18-24. If you want, you can import the flow rather than build it up

https://oreil.ly/0YSDh

from scratch. Follow the instructions in the Discussion section of Recipe
18.2 to import the flow.

Figure 18-24. A flow for a push-button timer

The trigger button is the same as the “Off trigger” in Recipe 18.6, and the
“Sonoff_1” node is the same as the same node in Recipe 18.6. However, the
Raspberry Pi GPIO node is replaced by a Dashboard button node.
Because you might need quite a few controls to remotely control your home
automation system, Dashboard controls are collected into a group, and
groups are themselves collected into tabs. You can define your own groups
and tabs when you add a new node from the Dashboard category. This
happens when you edit the node (Figure 18-25).
In Figure 18-25 you can see that the Group is set to Lights in the tab
[Home]. To get to this point, I had to click on “Add new UI group.” This in
turn asked me to “Add a new tab.” Once you have created a tab and group,
these will become defaults. You don’t have to create them every time.
Note that in Figure 18-25 the Payload is set to 1 to turn the light on, and it’s
connected directly to the “mqtt” node.

Figure 18-25. Configuring the Lights On Button node

You can now deploy the workflow.
To try out the new flow, open a browser on your phone (or any computer on
your network) and enter your Raspberry Pi’s IP address with :1880/ui on

the end. For my Raspberry Pi, the full URL is http://192.168.1.77:1880/ui.
The screen should look something like Figure 18-26.

Figure 18-26. A push button on the Node-RED Dashboard

When you click the button on your phone, the Sonoff should turn on for 10
seconds.

Discussion
Even though it’s quite useful to be able to turn the light on for a preset
timed period, it would also be useful to have an override on/off switch. In
Figure 18-27, a switch has been added. This flow is also available on
GitHub.

https://oreil.ly/G6m8e

Figure 18-27. Adding an on/off switch to the flow

You also can connect this to the “Sonoff_1” MQTT node so that it, as well
as the push button, can be used to turn the light on and off. Figure 18-28
shows the settings for the Lights On/Off switch.

Figure 18-28. The settings for the Lights On/Off switch

When the flow is deployed, the UI will display the extra switch (Figure 18-
29) automatically when you go back to the ui web page on your phone
(something like http://192.168.1.77:1880/ui, but with your Node-RED
server’s IP address).

Figure 18-29. A web interface for controlling lights

See Also
More information is available in the full Node-RED documentation.

18.8 Scheduling Events with Node-RED

Problem
You want to use Node-RED to do something at a certain time—for
example, to turn out all the lights at 1 a.m. every night.

Solution
Use the Node-RED inject node.

https://nodered.org/docs

The flow shown in Figure 18-30 is based on the flows of Recipe 18.6. If
you want, you can import the flow rather than build it up from scratch.
Follow the instructions in the Discussion section of Recipe 18.2 to import
the flow.

Figure 18-30. Using an inject node to schedule actions

A dashboard switch is used to turn the Sonoff (assumed to be switching a
light) on and off but, in addition, there is an inject node (Auto Off) that is
configured to inject a message of 0 to the “Sonoff_1” MQTT node.
Figure 18-31 shows the configuration for the inject node.

https://oreil.ly/EVCiX

Figure 18-31. Configuring a Node-RED inject node as a timed event

Discussion
If you had a number of Sonoff switches connected to appliances all around
your house, one inject node could turn them all off by fanning out the
message, as shown in Figure 18-32.

Figure 18-32. Switching off multiple devices

See Also
More information is available in the full Node-RED documentation.

18.9 Publishing MQTT Messages from a
Wemos D1

Problem
You want to be able to publish MQTT messages using a low-cost
programmable WiFi board, perhaps in response to a button being pressed.

Solution

https://nodered.org/docs

Use a low-cost ESP8266-based board like the Wemos D1 with customized
software. Figure 18-33 shows a Wemos D1 with a Squid Button attached to
one of its GPIO pins, powered by a USB power bank.
When the button is pressed, a message will be published to an MQTT
server.

Figure 18-33. A Wemos D1 and Squid Button

To make this recipe, you will need the following:
A Wemos D1 mini (see “Modules”)
A Raspberry Squid Button (see “Modules”)
A USB power bank or other means of powering the Wemos D1

To be able to program the Wemos D1 from your Raspberry Pi, you need to
first install the Arduino integrated development environment (IDE). Then
you’ll need to add support for the ESP8266.
Connect the Squid Button or other switch between the Wemos pin named
D6 and GND.
Before you can use the sketch (the name for Arduino programs), you need
to install an MQTT library into the Arduino IDE, so download the library as

https://oreil.ly/ERqLM
https://oreil.ly/zGOpK

a ZIP file using the following commands:

$ cd ~
$ wget
https://github.com/knolleary/pubsubclient/archive/master.zip

Next, open the Arduino IDE. From the Sketch menu, select Include Library,
and then select Add ZIP Library. Navigate to the file master.zip that you just
downloaded, and the library will be installed.
The Arduino program for this is available as part of the downloads for the
book (see Recipe 3.22). You will find it in the folder called
ch_17_web_switch, inside a folder at the same level as the Python folder
called arduino.
Open the sketch in the Arduino IDE by clicking ch_17_web_switch.ino. Set
the board type to Wemos D1 and the serial port to /dev/ttyUSB0.

Before uploading the sketch to the Arduino, you need to make a few
changes to the code. Look for these lines near the top of the sketch:

const char* ssid = "your wifi access point name";
const char* password = "your wifi password";
const char* mqtt_server = "your MQTT IP address";

Replace the placeholder text for ssid, password, and mqtt_server
with the appropriate values for your setup.
Then click the upload button in the Arduino IDE.
After you’ve programmed it, the Wemos doesn’t need to be connected to
your Raspberry Pi so, if you want, you can power it by some other means,
such as a USB power bank. However, the sketch prints out useful debug
information, so it’s worth staying tethered to your Raspberry Pi until you
know everything is working. To see this information, open the Arduino
IDE’s serial monitor, which should look something like Figure 18-34.

Figure 18-34. Using the Arduino serial monitor to view the Wemos output

To test the recipe, start a Terminal session on your Raspberry Pi and run the
following command to subscribe to button presses:

$ mosquitto_sub -d -t button_1
Client mosqsub/5007-raspberryp sending CONNECT
Client mosqsub/5007-raspberryp received CONNACK
Client mosqsub/5007-raspberryp sending SUBSCRIBE (Mid: 1, Topic:
button_1,
 QoS: 0)
Client mosqsub/5007-raspberryp received SUBACK
Subscribed (mid: 1): 0
Client mosqsub/5007-raspberryp received PUBLISH (d0, q0, r0, m0,
'button_1', ...
 (16 bytes))
Button 1 pressed

Now every time you press the button, the message “Button 1 pressed”
should appear in the Terminal.

Discussion
This is a book about Raspberry Pi, not Arduino, so we won’t go through the
Arduino C code in any detail.

The code is based on the example sketch called mqtt_basic in the
library PubSubClient. As well as the constants at the top of the file for
your WiFi credentials, these lines:

const char* topic = "button_1";
const char* message = "Button 1 pressed";

might also be of interest. They determine the MQTT topic to be used and
the message to accompany published events. You could program an entire
series of Wemos buttons with different topics and messages.

See Also
To use your newly configured Wemos with Node-RED, see Recipe 18.10.
You will learn much more about devices like the Wemos in Chapter 19.

18.10 Using a Wemos D1 with Node-RED

Problem
You want to include a Wemos D1, with a button attached, in a Node-RED
flow.

Solution
As an example, we can use the Wemos WiFi button from Recipe 18.9 in a
Node-RED flow to toggle a Sonoff web switch (Recipe 18.4) on and off.
Figure 18-35 shows the Node-RED flow for this. If you want, you can
import the flow rather than build it up from scratch. Follow the instructions
in the Discussion section of Recipe 18.2 to import the flow.

https://oreil.ly/aIdtv

Figure 18-35. A Node-RED flow for a WiFi light switch

To make this recipe, you will benefit from having already tried all the
previous recipes in this chapter.
The Button 1 MQTT node subscribes to messages from the Wemos D1.
Figure 18-36 shows the settings for this node.

Figure 18-36. Configuring the Button 1 node

The important thing here is that the Topic is set to “button_1.” The Trigger
node works in the same way as in Recipe 18.6. The Trigger node is more
interesting because this node remembers a value, which can be a 1 or a 0,
and flips this value each time a message passes through it. This has to be
done as a general function with a little bit of JavaScript code that
remembers the state and toggles it. Figure 18-37 shows the node’s
configuration including the code. This is a useful function that you will
probably find yourself reusing in other projects.

Figure 18-37. The Toggle function

Discussion
Node-RED is a powerful way to quickly put together a home automation
system. If you are used to a conventional programming language, this way
of doing things takes a little getting used to; however, when you’ve
mastered it, you won’t want to go back to writing reams of code.
Node-RED’s palette has lots of other interesting nodes, so take some time to
explore them. Hovering over a node will display details about what it does,
and you can follow this up by dragging the node onto a flow and trying it
out.

See Also
More information is available in the full Node-RED documentation.

https://nodered.org/docs

Chapter 19. Raspberry Pi Pico
and Pico W

19.0 Introduction
Although a regular Raspberry Pi is ideal for projects that need a network
connection or a graphical user interface (GUI), its power consumption and
lack of any analog inputs puts it at a disadvantage to a simpler
microcontroller board such as the Arduino or Raspberry Pi Pico.
The Raspberry Pi Pico is very different from any other Raspberry Pi in
several ways:

It doesn’t have any interface to keyboard, mouse, or screen.
It has a relatively small 2M of flash memory for storing programs (no
microSD slot) and 264k of RAM.
Its processor runs at just 133 MHz, compared with the Raspberry Pi 4’s
1.2 GHz.
It doesn’t have an operating system. In effect, MicroPython is its
operating system, and you just get what you see when you’re on the
Python command line.

This might lead you to wonder why you would use such an apparently
feeble board rather than, say, a Raspberry Pi Zero.
The answer is that the Pico (Figure 19-1) is even lower cost than a Pi Zero
and better than a Raspberry Pi 4 at interfacing with external electronics in
several ways. For example:

Three analog inputs makes connecting analog sensors much easier than
with a regular Raspberry Pi.
Six pulse-width modulation (PWM) outputs. These outputs are
hardware-timed and produce a much more accurate PWM signal than

http://arduino.cc/

can be achieved with the Raspberry Pi, making them a lot better for
controlling servomotors.
Built-in power supply that allows the Pico to be powered from 1.8 to
5.5V, and low power consumption so you can run it from a pair of AA
batteries for hours.

Figure 19-1. A Raspberry Pi Pico board

The Raspberry Pi Pico W (Figure 19-2) shares the same pinout as the Pico,
but the metal rectangle that you see on the right of the board is a WiFi and
Bluetooth module. This makes the Pico W suitable for connected projects.
The Pico W is still a good value, but considerably more expensive than the
Pico.

Figure 19-2. A Raspberry Pi Pico W

In the remainder of this chapter, I will refer to the Raspberry Pi Pico and
Pico W as just “Pico" (except when the difference matters) and refer to a
regular Raspberry Pi 4 or 400, etc. as just a “Raspberry Pi.”

19.1 Connecting a Pico or Pico W to a
Computer

Problem
You want to connect your Pico or Pico W to your Raspberry Pi or a Mac or
Windows PC so that you can program it.

Solution
The Thonny Python editor has support for the Pico and Pico W and is pre-
installed with Raspberry Pi OS. If you have not used Thonny, open it from
the Programming section of the Raspberry Menu.
To configure Thonny for Pico use, you need to set it into Normal mode
(Recipe 5.3), so that you have access to the menu, and then select Options
from the Tools menu and go to the Interpreter tab (Figure 19-3).

Figure 19-3. Selecting the Pico interpreter

On the drop-down list, select MicroPython (Raspberry Pi Pico) as the
interpreter to use, and then click OK. This will take you to a screen offering
to install MicroPython onto your Pico (Figure 19-4). To do this, you need to
use a micro-USB lead to connect the Pico to one of your Raspberry Pi’s
USB ports. Hold down the BOOTSEL button on the top of the Pico while
you plug it in. This will put the Pico into a boot mode that will allow
Thonny to install MicroPython onto it.

Figure 19-4. Installing MicroPython onto a Pico

Click on Install and MicroPython will be flashed onto the Pico. You
shouldn’t need to perform this step again for that Pico.

INSTALLING FIRMWARE BY DOWNLOAD
Occasionally, you might find that your Pico gets itself in a zombie state and appears to be
broken. Often this can be fixed by manually replacing the firmware. Think of this as a factory
reset.

If you have a Pico W, you’ll need to download a specific version of the firmware for it.

To manually install new firmware onto your Pico or Pico W, start by unplugging it from your
Raspberry Pi or other computer.

If you have a Pico W, go to https://rpf.io/pico-w-firmware. This will immediately start the
download of a .uf2 firmware file for the Pico W.

If, on the other hand, you have a regular Pico, download the file.

Next, hold down the BOOTSEL button (Figure 19-5), and with the button held down, connect
the Pico with your USB lead.

Figure 19-5. The BOOTSEL button

https://rpf.io/pico-w-firmware
https://oreil.ly/q0n4e

Release the BOOTSEL button and your Pico or Pico W will mount itself as USB flash storage
on your Raspberry Pi (Figure 19-6, right).

Drag or copy the .uf2 file that you downloaded earlier onto the Pico or Pico W’s filesystem.

Figure 19-6. Dragging new firmware onto a Pico or Pico W

Once the file is copied, the Pico or Pico W will unmount itself and be ready to receive your
MicroPython programs via Thonny.

If you find that installing the firmware here doesn’t work on a Raspberry Pi,
you can also install Thonny on a Mac or Windows PC and then install the
firmware onto the Pico.

Discussion
When you choose to install MicroPython onto your Pico or Pico W, what
happens is that a cut-down version of Python 3 called MicroPython is
installed onto the Pico’s flash memory. As you will see in Recipe 19.2 this
allows you to interact with a Python Shell on the Pico and also copy Python
programs to be run onto the Pico’s flash memory.
Although MicroPython is a cut-down version of Python 3, you will find that
most of the material covered in Chapters 5, 6, and 7 will also work in
MicroPython. In addition, other hardware-specific libraries are available to
use the Pico’s GPIO pins (among other things).

See Also

For more information on Thonny, see Recipe 5.3.

19.2 Using the Python Shell on a Pico

Problem
Having set up Thonny for the Pico and installed MicroPython onto your
Pico or Pico W, you want to interact with it using the Python Shell.

Solution
As soon as Thonny has uploaded MicroPython onto your Pico, you should
see the shell area appear on the bottom half of the Thonny window
(Figure 19-7).
As the >>> prompt implies, this is a Python command line, where you can
type any Python you like and it will run. The important point is that it will
run on the Pico, not on your regular Raspberry Pi.

Figure 19-7. Using the Python Shell on a Pico

The Pico has a built-in LED connected to GPIO pin 25. We can turn this on
and off using the Python commands shown in Figure 19-7. First we must
import the Pin class from the machine module. We can then create a new
instance of Pin assigned to pin 25 and specify that it’s an output
(Pin.OUT). Finally, we can use the methods on and off to control the
LED.

Discussion
The machine module is a MicroPython module that contains the interface
to the actual hardware of the Pico. This looks a little different from
gpiozero, the module use to control the pins of a regular Raspberry Pi.

For comparison, Table 19-1 shows the code we have just written for the
Pico, next to the equivalent in gpiozero taken from Recipe 11.1.

Table 19-1. MicroPython on Pico vs. gpiozero on
Raspberry Pi

MicroPython GPIOZero
from machine import Pin from gpiozero import LED

led = Pin(25, Pin.OUT) led = LED(18)

led.on() led.on()

led.off() led.off()

As you can see, the approach is very similar. The main difference is that
gpiozero uses LED to represent the pin and the direction of the pin
(output) is inferred rather than having to be explicitly stated when the pin is
declared, which you have to do for the MicroPython code for the Pico.
Since the code for this chapter is MicroPython rather than the normal
Python that we have used everywhere else in this book, you will find it in a
separate directory called pico in the book’s code download (see Recipe
3.22). This is where you’ll find MicroPython programs to open in Thonny
and run.

See Also
More information is available in the MicroPython documentation.

19.3 Using a Pico with a Breadboard

Problem
You want to use your Pico with a solderless breadboard.

Solution

https://oreil.ly/eb0Dv

Buy a breadboard kit such as the MonkMakes Electronics Kit 1 for Pico or
the Kitronik Discovery Kit. These kits both include a solderless breadboard,
jumper wires, and some components to get you started. The breadboard
included in the MonkMakes kit is labeled with the Pico’s pin names (see
Figure 19-8), making it easier to connect things.

https://oreil.ly/5gav8
https://oreil.ly/vP23M

Figure 19-8. Custom breadboard with the Pico pins labeled

Discussion
Buying a breadboard kit will save you time and probably money over
buying separate components. Buying a breadboard with the Pico’s pin
names written on it is particularly helpful.
Figure 19-9 shows the pinout of the Raspberry Pi Pico. This is the same for
the Pico W.
The GPIO pins are labeled “GP” followed by a number. Many of the pins
have secondary functions, such as interfacing to serial connections of
various types (UART, I2C, and SPI). In addition, some of the pins are also
capable of being used as analog inputs (Recipe 19.7). So, when connecting
simple electronics like LEDs and switches, I tend to start with the otherwise
unused pins GPs 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, and 22.

Figure 19-9. The Raspberry Pi Pico and Pico W pinout

See Also
For using a breadboard with a regular Raspberry Pi, see Recipe 10.9.
Many of the recipes from Chapters 9 to 14 are also possible using a Pico, so
you may find it useful to refer back to these chapters.

19.4 Using Digital Outputs on a Pico

Problem
You want to use a digital output, perhaps to drive an LED, on the Raspberry
Pi Pico or Pico W.

Solution
Use the Pin class in the machine module of MicroPython and don’t draw
more current than the total budget of 50mA for all pins. 1mA (milliamp) is
one-thousandth of an ampere, the unit of current.
Referring back to Figure 19-9, all of the GPIO pins can be used as digital
outputs, although pins 12, 13, 14, 15, and 16 have the advantage of being
near the end of the breadboard with more free rows nearby if the Pico is
positioned at the top of the breadboard.
We are going to attach an LED to pin 16 of the Pico (see Figure 19-10). The
G (ground or GND) pin of the Pico is connected to the negative supply rail
of the breadboard, which is also connected to the negative shorter lead of
the LED. The positive end of the LED is connected to a 470Ω resistor that
limits the current back to pin 16.

Figure 19-10. Connecting an LED to a Pico with a series resistor

As you saw in Recipe 19.2, the Pin class contains the methods that you
need both to set a pin to be a digital output and to switch it on and off. So
the following code that you will find as ch_19_blink.py in the pico folder
should be familiar:

from machine import Pin
from utime import sleep
led = Pin(16, Pin.OUT)
while True:
 led.on()
 sleep(0.5) # pause
 led.off()
 sleep(0.5)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
In MicroPython, the sleep function is in the utime module rather than
the time module used in regular Python. However, it does the same job
here of pausing for half a second.

Discussion
The total current budget for all GPIO pins is 50mA. That is, when you add
up all the currents used by things connected to the GPIO pins, it should not
exceed 50mA. LEDs should not be connected to a GPIO pin without a
series resistor that sets the current that the LEDs will draw. Without such a
resistor, an LED might draw too much current and destroy the Pico, or at
least that GPIO pin. Most indicator LEDs are designed to shine at close to
their maximum brightness at around 15mA. So you could connect three
LEDs drawing 15mA (for a total of 45mA) and still have a little current
budget to spare. However, modern high-brightness LEDs work just fine at
5mA and even passably well at 1mA.
The current I, drawn by an LED connected with a series resistor as shown
in Figure 19-10, is determined by the formula:

I =
3.3−Vf

R

Where Vf is the forward voltage of the LED. This depends mostly on the
color of the LED, with a red LED typically having a Vf of about 2V. R is the
value of the resistor in Ω (ohms).
For example, if you use a red LED with a Vf of 2V and a resistor of 470Ω,
the current will be:
(3.3 - 2) / 470 = 0.00276 A = 2.76mA
Resistors come in standard values, with common ones being 100Ω, 270Ω,
470Ω, and 1kΩ (1,000Ω). To complicate things further, Vf is usually the Vf
at 20mA and this actually decreases a little at lower currents. Table 19-2
will provide you with a useful reference for choosing series resistors
without having to do the math.

Table 19-2. LED series resistor selector

LED color Series resistor value Approximate current
Red (Vf = 1.8) 100Ω 15mA

Red (Vf = 1.8) 270Ω 6mA

 470Ω 3mA

Red, Orange (Vf = 2.0) 100Ω 13mA

 270Ω 5mA

 470Ω 3mA

Yellow, Green (Vf = 2.2) 100Ω 11mA

 270Ω 4mA

Blue, White (Vf = 3.5)a 100Ω 4mAa

Although theoretically a lower supply voltage than forward voltage means that you could use
the LED without a resistor, this could still draw too much current, so say a 100Ω resistor is a
good idea even with blue and white LEDs.

See Also
For more information on connecting an LED to GPIO pins, see Recipe 11.1.

a

Many online calculators are available for working our values of series
resistor. This is a good one.
Resistors like the ones used here with the breadboard have colored stripes
that indicate their resistance value.

19.5 Using Digital Inputs on a Pico

Problem
You want to be able to connect a switch, or other digital input, to a
Raspberry Pi Pico or Pico W.

Solution
Connect your switch (or other source as a digital input) to your Pico and use
the Pin class to set the pin to act as an input and to read its value.

Let’s start by connecting a switch between one of the Pico’s GND pins and
pin 16. We can do this on a breadboard, as shown in Figure 19-11.

https://oreil.ly/3zv6j
https://oreil.ly/NDwXk

Figure 19-11. Connecting a switch to a Pico

Note that the tactile push switch shown in Figure 19-11 is a two-pin
version. If your switch has four pins, then it can go on the same row, but
will need to span the two halves of the breadboard.
The program ch_19_digital_input.py repeatedly reads the digital input of
pin 16, displaying either 1 or 0, depending on whether the switch is pressed
or not. Open it in Thonny and try running it:

from machine import Pin
from utime import sleep

switch = Pin(16, Pin.IN, Pin.PULL_UP)

while True:
 print(switch.value())
 sleep(0.1)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).

Discussion
In the preceding example, when the variable switch is assigned an
instance of Pin, the call to create a new instance of Pin has three
parameters:

the pin number
the direction
Pin.PULL_UP

The last parameter does something clever inside the circuitry of the Pico’s
GPIO pin. It turns on a transistor that connects an internal pull-up resistor
(Figure 19-12). This resistor, which has a value of about 20kΩ, pulls the
GPIO pin up to about 3.3V. Without this resistor, the GPIO pin would be
said to be floating. This means that the pin will act like an antenna picking
up electrical noise, and will flip between on and off more or less at
random, which is not behavior you want in a switch. There is nothing
special about GP16—all of the Pico’s GPIO pins have this feature.

When the switch is pressed, GP16 is connected to GND (0V). This
massively overrides the week pull-up resistor, taking GP16 from high to
low. That is why program ch_19_digital_input.py, rather counterintuitively,
displays a 0 when the switch button is pressed and a 1 when it is released.

Figure 19-12. Internal pull-up resistors

See Also
To connect a switch to the GPIO pin of a regular Raspberry Pi, see Recipe
13.1.

19.6 Using Analog (PWM) Outputs on a Pico

Problem
You want to vary the brightness of an LED from a Python program on your
Pico or Pico W.

Solution
Use the PWM (pulse-width modulation) capability of the Pico to control the
average power supplied to the LED.

To try this out, you can connect an external LED to the Pico as described
in Recipe 19.4 or, if you prefer, use the Pico’s built-in LED. If you decide to
use the built-in LED, remember to change the pin from 16 to 25 in the
following example program, which you will find in the file ch_19_pwm.py:

from machine import Pin, PWM
from utime import sleep

led = PWM(Pin(16))

while True:
 brightness_str = input("brightness (0-65534):")
 brightness = int(brightness_str)
 led.duty_u16(brightness)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
Run the program in Thonny. In the Python console, you will be prompted to
enter a value of brightness between 0 (off) and 65534 (maximum
brightness).

Discussion
PWM provides pulses of varying duration to the LED to control its apparent
brightness. You will find a proper explanation of this in Recipe 11.3.
To make an output pin into a PWM output pin, you just wrap it in the PWM
class with PWM(Pin(16)). You can then change the duty cycle of the
output by calling the rather unfriendly sounding duty_u16 method. The
u16 part means an unsigned 16-bit number. The maximum value of an
unsigned 16-bit number is 65535, not 65534, but the Pico’s official
documentation states that the maximum duty value should be the latter, so
that’s what we use here.
If you have used PWM on a regular Raspberry Pi, you may have noticed
that the LED brightness might change a little. This unreliability is because
PWM on a regular Raspberry Pi is implemented in software and, every so
often, Raspberry Pi OS will stop generating pulses for PWM and go off and

do other operating system things. The great advantage of PWM on a Pico is
that the Pico implements PWM in hardware dedicated just to generating the
pulses and is therefore rock-solid.

See Also
PWM on a regular Raspberry Pi is described in Recipe 11.3.

19.7 Using Analog Inputs on a Pico

Problem
You want to read an analog voltage using MicroPython on your Pico or Pico
W.

Solution
Connect a voltage source of between 0 and the 3.3V supply to one of the
analog-capable GPIO pins (26, 27, and 28) and use the Pico’s ADC
(analog-to-digital converter) to measure the voltage.
To illustrate this recipe, we’ll use a trimpot (a potentiometer or variable
resistor) to provide a voltage between 0 and 3.3V to pin 26, depending on
the position of its knob. Figure 19-13 shows how this can be wired-up on a
breadboard. Any value of pot between 1kΩ and 100kΩ will work just fine.
A small trimpot, such as the one supplied in the MonkMakes Electronics
Kit 1 for Pico, will fit nicely on the breadboard.

Figure 19-13. Measuring voltage with a Pico

Load the program ch_19_voltmeter.py into Thonny and run it. You should
see a series of voltage readings. Try rotating the knob of the pot and you
should see the voltage change:

from machine import ADC, Pin
from utime import sleep

analog = ADC(26)

def volts_from_reading(reading):
 min_reading = 336
 max_reading = 65534
 reading_span = max_reading - min_reading
 volts_per_reading = 3.3 / reading_span
 volts = (reading - min_reading) * volts_per_reading
 return volts

while True:
 reading = analog.read_u16()
 print(volts_from_reading(reading))
 sleep(0.5)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).

Discussion
To read analog inputs rather than the digital inputs of Recipe 19.5, you have
to wrap the pin in the ADC class. You can then use read_u16 to get an
analog value between 0 and 65534 for the pin in question.
Even though the value returned is an unsigned 16-bit number, the resolution
of the ADC is only 12 bits, providing 4096 different possible values. The
function volts_from_reading converts the raw analog reading into a
voltage. The ADC does not quite measure from 0 all the way to 3.3V. There
are dead zones. So, even if the analog input is connected to GND (0V), the
ADC will read a value of roughly 336. In the function
volts_from_reading, this is taken to be the min_reading, and the
max_reading is taken to be 65534 (as discussed earlier). The span of
readings is therefore max_reading - min_reading, and so the

number of volts_per_reading can be calculated. From this, the
voltage at the input can be calculated.
You can’t use all of the GPIO pins for analog inputs; this feature is
available only on pins 26, 27, and 28. However, analog channel 4 is
connected internally on the RP2040 chip to an analog temperature sensor,
which will tell you the temperature of the chip after applying a bit of math
to the analog reading. You can try this out with the program
ch_19_thermometer.py:

from machine import Pin, ADC
from utime import sleep

temp_sensor = ADC(4)
points_per_volt = 3.3 / 65535

def read_temp_c():
 reading = temp_sensor.read_u16() * points_per_volt
 temp_c = 27 - (reading - 0.706)/0.001721
 return temp_c

while True:
 temp_c = read_temp_c()
 print(temp_c)
 sleep(0.5)

Note that this is analog channel 4—not pin 4—so you can still use pin 4 as
normal.
The function read_temp_c takes an analog reading using read_u16
from the temperature sensor and then applies a bit of math to it, resulting in
the temperature in degrees C. The numeric constants are taken from the
datasheet for the Pico’s RP2040 processor.
This sensor reports the temperature of the processor rather than the
environment, but, even so, if you place your finger on the processor chip it
will warm it, and the readings should rise.
The presence of analog inputs opens up the possibility of attaching all sorts
of analog sensors to your Pico, including sensors for light, temperature,

mechanical stress, and even gas sensors. Many of the recipes
in Chapter 14 can be easily adapted to work with the Pico.

See Also
To add analog inputs to a Raspberry Pi, see Recipe 14.7.
Take a look at the datasheet for the RP2040.

19.8 Controlling a Servomotor from a Pico

Problem
You want to control servomotors using your Pico or Pico W.

Solution
Connect power to the servomotor from the Pico’s 5V supply and connect
one of the GPIO pins to the servomotor’s control pin. Then use the PWM
class to generate pulses to set the servomotor’s angle.
Connect the servomotor using male-to-male jumper wires as shown
in Figure 19-14. Servomotors have different color schemes used to identify
the leads. In Figure 19-14, black is ground, red is 5V, and yellow is the
control pin. Another typical color scheme is brown for ground, red for 5V,
and orange for the control wire. Check the datasheet for your servomotor to
find the right pins.

https://oreil.ly/gSLxk

Figure 19-14. Connecting a servomotor to a Pico

Open ch_19_servo.py in Thonny and run it. The shell will prompt you to
enter an angle between 0 and 180 (Figure 19-15). When you press Enter, the
servomotor’s arm should move to the new position.

Figure 19-15. A program to set the angle of a servo

Discussion
The code listing for ch_19_servo.py is:

from machine import Pin, PWM
from utime import sleep

servo = PWM(Pin(16))
servo.freq(50) # pulse every 20ms

def set_angle(angle, min_pulse_us=500, max_pulse_us=2500):
 us_per_degree = (max_pulse_us - min_pulse_us) / 180
 pulse_us = us_per_degree * angle + min_pulse_us
 # duty 0 to 1023. At 50Hz, each duty_point is 20000/65535 =
0.305
 µs/duty_point
 duty = int(pulse_us / 0.305)

 # print("angle=" + str(angle) + " pulse_us=" + str(pulse_us)
+ " duty="
 + str(duty))
 # print(angle)
 servo.duty_u16(duty)

angle = 90
set_angle(90)
min_angle = 10
max_angle = 160

while True:
 angle_str = input("Enter angle 0 to 180:")
 angle = int(angle_str)
 if (angle >= 0 and angle <=180):
 set_angle(angle)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
Servomotors are controlled by changing the duration of pulses on a control
connection of the servo. You might need to read through the Discussion
of Recipe 12.1, which explains how servomotors work.
The default PWM frequency is too high for servomotors, which expect a
new pulse every 20 milliseconds (50 times a second), so after specifying
PWM on pin 16, the PWM frequency is then set to 50 Hz using
servo.freq(50).

All the code for calculating the PWM duty is contained in the function
set_angle. As you would expect, this takes a parameter of the angle
itself, but also two optional parameters, min_pulse_us and
max_pulse_us, that set the minimum and maximum pulse lengths in
microseconds (hence _us). These can be tweaked to match your
servomotor to either give it maximum angular range or to prevent judder at
either end of its travel. This kind of juddering can occur if the pulses are too
short or too long.
The set_angle function first finds the number of microseconds per
degree from the range of pulse lengths. It then calculates the length of the

pulse needed in microseconds and finally converts this into a value of
duty.

Using a Pico to control a servo works a lot better than using a regular
Raspberry Pi. The precise timing of the Pico’s PWM output means that you
shouldn’t see any twitchiness.

See Also
For controlling servomotors on a regular Raspberry Pi, and more about
servomotors in general, see Recipe 12.1.

19.9 Using the Pico and Pico W’s Filesystem

Problem
You want to store and retrieve data from the Pico’s filesystem.

Solution
Use the MicroPython’s file commands to read, write, and create files that
are stored on the Pico and can be copied over to your Raspberry Pi.
As an example, the code in ch_19_temp_logger.py will read the RP2040’s
temperature in degrees C and log it to a file every 10 seconds.
When you run the program, a new temperature reading appears in the Shell.
When you have recorded enough, press the Stop button or press Ctrl-C to
finish the logging, close the file, and exit the program.
To see the file that has been written (temp_reading.txt), you need to go to
the View menu of Thonny and select Files (Figure 19-16). This will open a
column on the left of the Thonny window listing any files on the Pico. You
can double-click on temp_readings.txt to open it in the Thonny editor,
where you could, if you wanted, edit the file and then save it back to the
Pico. You can also transfer the file to your Raspberry Pi by right-clicking on

the filename on the left and selecting the pop-up menu option “Download to
/home/pi.”

Figure 19-16. Browsing the Pico’s filesystem

Discussion
The code for the data logger program (ch_19_temp_logger.py) is:

from machine import Pin, ADC
from utime import sleep

log_file = 'temp_readings.txt'
temp_sensor = ADC(4)
points_per_volt = 3.3 / 65535

def read_temp_c():
 reading = temp_sensor.read_u16() * points_per_volt
 temp_c = 27 - (reading - 0.706)/0.001721
 return temp_c

def log_data(reading):
 print(temp_c)
 file.write(str(reading)+'\n')

file = open(log_file, "w")
try:
 while True:
 temp_c = read_temp_c()
 log_data(temp_c)
 sleep(10)
except:
 print('Logging Ended')
 file.close()

As with all the program examples in this book, you can also download this
code (see Recipe 3.22). This example is built around the code used in the
Discussion of Recipe 19.7, with added code to write the temperature
readings to a file.
You don’t have to import any modules to use the filesystem; it’s part of
MicroPython and is essentially a cut-down version of the Python 3
filesystem described in Chapter 7. The file is opened for writing using the
command open, which takes the filename as its first parameter and the
mode (w for write) as its second. This will replace any existing file with the
same name.
The log_data function prints out the supplied reading and then appends
it to the file after converting it to a string and adding the newline (\n)
character to the end.
The main while loop is surrounded by a try/ except so that when you
do Ctrl-C in the Shell, this will be caught and the file closed.
When it comes to reading a file, you need to open the file in read (r) mode,
and then you can read the contents of the file as a string using the read
function. You can find an example of this in the program

ch_19_file_read.py. This program will just print out the contents of a file in
the Shell:

f = open("temp_readings.txt", "r")
print(f.read())
f.close()

The capacity of the filesystem of the Pico is limited to just 1.6 MB, so you
are not going to be storing video on it, or even any large sound samples.
The other aspect of the filesystem to be aware of is that if you have to
reinstall your Pico’s firmware as you did in Recipe 19.1, you will lose the
contents of the filesystem.

See Also
For writing to a file with a regular Raspberry Pi, see Recipe 7.7, and for
reading from a file, see Recipe 7.8.

19.10 Making Use of the Second Core

Problem
You want to use the Pico or Pico W’s second core (processor) to do more
than one thing at a time.

Solution
Use the MicroPython thread mechanism to run code in parallel with the
main thread of execution. You will find an example of this in the program
ch_19_multicore.py:

from utime import sleep
import _thread
from random import randint

def core0():

 while True:
 print("core 0 says hello")
 sleep(randint(1, 3))

def core1():
 while True:
 print("core 1 says hello")
 sleep(randint(1, 3))

_thread.start_new_thread(core1, ())
core0()

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
When you run this program, you’ll see output something like this in the
Shell:

core 1 says hello
core 1 says hello
core 0 says hello
core 1 says hello
core 0 says hello
core 1 says hello
core 0 says hello

Each of the two threads displays a message and then waits for a random
period between one and three seconds. Every so often, you might see the
messages appear on the same line. This happens when both are competing
for access to the USB port.

Discussion
A good way to structure your code to handle two threads is to put the code
for each thread in a function of its own. In the preceding example, I have
called these functions core0 and core1. Both functions contain a while
True loop: core1 is allocated to one physical processor core by calling
start_new_thread, and then core0 is started on the other processor
core just by calling the core0 function.

In regular Python 3 on a Raspberry Pi, you can create as many threads of
execution as you like but, on the Pico, you are limited to just two threads.

See Also
For information on running multiple threads in regular Python 3, see Recipe
7.19.

19.11 Running a WiFi Web Server on the Pico
W

Problem
You want to make use of the Pico’s WiFi capabilities, and what better way
to demonstrate that than by running a web server on the Pico W?

Solution
Use the microdot web server module and the mm_wlan WiFi connection
modules.
For convenience, these modules are included with the test programs in the
Pico section of the downloads for the book in a folder called
ch_19_webserver.
Copy the files pmon.py, microdot.py, and mm_wlan.py onto your Pico, by
using the SaveAs menu option in Thonny and then selecting Raspberry Pi
Pico for the destination. Give each file the same filename as the original
file. You can see the files listed as on the filesystem in Figure 19-17.

Figure 19-17. Using Thonny to access files on the Pico

Open the file hello.py and change ssid and password to match the name
of your WiFi network and the password, then run hello.py from Thonny
(see Figure 19-18).

Figure 19-18. Thonny showing the program hello.py

In the Shell area of Figure 19-18 you can see that the Pico W has
successfully connected to WiFi and has the IP address of 192.168.1.132. If
you now navigate to this address in a browser window, either on your
Raspberry Pi or any other machine connected to the network, you will see
something like Figure 19-19.

Figure 19-19. A web page served by a Pico W

Discussion
The entire program for hello.py is shown in Figure 19-18, and, as you can
see, there is not much to it.
The @app.route('/') specifies the handler for the root page that the
Pico W is serving, and all this function does is to return the text “Hello,
from Pico” to be shown on the web page.
The command app.run(port=80) starts the web server running on port
80, the standard web serving port.
We could expand this example to report readings from a remote sensor
attached to a Pico W. As an example of this, we can use the Plant Monitor
from Recipe 14.6, but attach it to a Pico W rather than a regular Raspberry
Pi.
Connect the Pico to the Plant Monitor as follows:

GND to GND
3V to 3V
TX on the Plant Monitor to RX on the Pico W
RX on the Plant Monitor to TX on the Pico W

You can either connect the two devices directly using female-to-female
headers, or, as shown in Figure 19-20 using a breadboard and male-to-

female jumper wires.

Figure 19-20. Connecting a Plant Monitor to a Pico W

Run the example pico_w_server.py and then refresh the browser window.
You should see something that looks like Figure 19-21.

Figure 19-21. Sensor readings from a web page served by Thonny

See Also
More information is available on the microdot module, and on
mm_wlan.

If the syntax of the microdot module looks familiar, then that might be
because it is much the same as for the Bottle library used in Recipe 7.17.
Find out about the Plant Monitor at https://oreil.ly/2OBHW.

19.12 Using Pico-Compatible Boards

Problem
You’d like to make use of one of the many Pico-compatible boards.

Solution

https://oreil.ly/5CdED
https://oreil.ly/NvxMA
https://oreil.ly/2OBHW

One purpose of the Raspberry Pi Pico is to show off the features of the
RP2040 processor that it uses. Many other boards use the RP2040 and can
be programmed in MicroPython using Thonny in just the same way.
Table 19-3 lists a selection of interesting RP2040 boards available at the
time of writing. An internet search will, I’m sure, reveal other RP2040
boards.

Table 19-3. RP2040 boards

Name Manufacturer Notes
QTPy
RP2040

Adafruit A tiny board, with reduced number of I/O pins and a USB-C
connector.

Feather
RP2040

Adafruit In Adafruit’s Feather format, a Pico with added LiPo battery
charger and USB-C connector. Also available in pink.

PicoLiPo Pimoroni Very similar spec to the Feather RP2040.

Badger Pimoroni Minimal pins, but 5 push buttons and a large E Ink display.

Discussion
The Pimoroni Badger is one of the most interesting RP2040 boards. It can
be used as an ID badge, displaying graphics and text on its E Ink display,
which will still display even when the power goes off. But it also has the
full processing power of the Pico available for you to use in MicroPython.
The Badger comes with a MicroPython image installed and running an
example program. To interact with it or put your own programs on it,
connect it to your Raspberry Pi using a USB-C lead (not the micro USB of
the Pico), and you can then interact with it as if it were a Pico.
To make it easy to access the E Ink display, Pimoroni has included a Python
module to draw graphics and text on the E Ink display.
The example program in ch_19_badger.py, and shown in Figure 19-22, uses
the RP2040’s temperature sensor to display a rudimentary thermometer.

Figure 19-22. The Pimoroni Badger RP2040 board

If you prefer your temperatures in degrees Fahrenheit, use the program
ch_19_badger_f.py. The temperature is likely to always be shown a few
degrees higher than the room temperature, as this is the temperature of the
chip, not the environment:

import badger2040
from machine import ADC
from utime import sleep

badger = badger2040.Badger2040()
temp_sensor = ADC(4)
points_per_volt = 3.3 / 65535

def read_temp_c():
 reading = temp_sensor.read_u16() * points_per_volt
 temp_c = 27 - (reading - 0.706)/0.001721
 return temp_c

badger.font("bitmap8")

old_t = 0

while True:
 t = round(read_temp_c())
 if t != old_t:
 old_t = t
 badger.pen(255)
 badger.clear()
 badger.pen(0)
 badger.text(str(t), 20, 10, scale=16)
 badger.text("o", 220, 5, scale=8)
 badger.text("C", 255, 20, scale=8)
 badger.update()
 sleep(5)

As with all the program examples in this book, you can also download this
code (see Recipe 3.22).
The program is based on ch_19_temp_logger.py, with the addition of code
to display the temperature. The module badger2040 contains the
interface to the E Ink display. Having created an instance of the
Badger2040 class, the default font is set to bitmap8, which is quite a
blocky font, but looks good as a thermometer.
The main while loop reads the temperature, and if it has changed, then it
redisplays the new temperature. Unlike other displays, E Ink displays
refresh slowly and with a fair amount of blinking. So the display would
look quite distracting if it refreshed every time through the while loop.

Writing to the display is similar to using an OLED display (see Recipe
15.4). The things to be displayed are written to a buffer before the display is
told to update using the update method. In this case, the display is first
cleared by setting the ink color to white (255) and then calling clear().
The pen color is then set to 0 (black), the temperature is converted to text,
and then it is drawn at coordinates x = 20, y = 10. Some smaller text is then
displayed for the units of degrees. Finally, there is a sleep of five seconds
to stop the display from constantly refreshing when the measured
temperature is at the threshold between two values.

See Also

For more information on using the Pimoroni Badger,
see https://oreil.ly/EyxoP.
Check out a reference on the badger2040 module.

19.13 Using the Pico on Batteries

Problem
You want to run your Pico or Pico W from batteries.

Solution
A really good balance of long battery life and low cost can be achieved by
using a battery pack containing two AA batteries.
This can easily be connected using a Pico on a breadboard as shown
in Figure 19-23.

Figure 19-23. Powering a Pico with a pair of AA batteries

Discussion
The Pico is pretty easy to power from batteries by virtue of its buck/boost
voltage regulator. This takes an input voltage to pin Vsys (marked Vs on the

https://oreil.ly/EyxoP
https://oreil.ly/tZK0O

MonkMakes Breadboard for Pico) that can be anything from 1.8V to 5.5V
and converts that voltage to the 3.3V that the RP2040 needs.
A Raspberry Pi 4 can use several amps of current, making it poorly suited
for low-power battery applications. In contrast, the Pico uses only about
25mA. An AA battery can typically hold at least 2,000mAh, which means
that a pair of AA batteries could last for 80 hours or more.
Some of the Pico-compatible boards, such as Adafruit’s Feather RP2040
and Pimoroni’s PicoLiPo, allow a 3.7V rechargeable LiPo battery to be
attached. This will charge while the board is connected to USB, and then
provide power to the Pico when you unplug it.

See Also
Find out more about the Feather RP2040 and the PicoLiPo.

https://oreil.ly/qGOMR
https://oreil.ly/SzA2J

Appendix A. Parts and
Suppliers

Parts
The following tables will help you find the parts used in this book. Where
possible, I have listed product codes for a few suppliers.
Many electronic component manufacturers and suppliers now cater to the
maker and electronics hobbyist. Some of the most popular are listed in
Table A-1.

Table A-1. Parts suppliers

Supplier Website Notes

Adafruit http://www.adafruit.com Good for modules

Cool
Components

https://coolcomponents.co.uk Wide range of accessories for Raspberry Pi

CPC http://cpc.farnell.com UK-based; wide range of components

Digi-Key http://www.digikey.com Wide range of components

Farnell http://www.farnell.com International; wide range of components

MonkMakes http://www.monkmakes.com Electronics kits for Raspberry Pis, etc.

Mouser http://www.mouser.com Wide range of components

Pimoroni https://shop.pimoroni.com UK-based retailer and manufacturer of
interesting HATs

Pololu https://www.pololu.com Great for motor controllers and robots

Seeed Studio http://www.seeedstudio.com Interesting low-cost modules

SparkFun http://www.sparkfun.com Good for modules

http://www.adafruit.com/
https://coolcomponents.co.uk/
http://cpc.farnell.com/
http://www.digikey.com/
http://www.farnell.com/
http://www.monkmakes.com/
http://www.mouser.com/
https://shop.pimoroni.com/
https://www.pololu.com/
http://www.seeedstudio.com/
http://www.sparkfun.com/

The other great source of components is eBay.
Searching for components can be time consuming and difficult. The
Octopart component search engine can be very helpful in tracking down
parts. MonkMakes, Adafruit, and SparkFun all have packs of components
to get you started.

Prototyping Equipment and Kits
Many of the hardware projects in this book use jumper wires of various
sorts. Male-to-female leads (to connect the Raspberry Pi GPIO connector to
a breadboard) and male-to-male (to make connections on the breadboard)
are particularly useful. Female-to-female are occasionally useful for
connecting modules directly to GPIO pins. You rarely need leads longer
than 3 inches (75 mm). Table A-2 lists some jumper wire and breadboard
specifications, along with their suppliers.
A handy way to get started with a breadboard, jumper wires, and some
basic components is to buy a starter kit, like the Project Box 1 kit for
Raspberry Pi from MonkMakes. This kit was developed, at least partly,
with this book in mind.

Table A-2. Prototyping equipment and kits

Description Suppliers

M-M jumper wires SparkFun: PRT-08431; Adafruit: 759

M-F jumper wires SparkFun: PRT-09140; Adafruit: 825

F-F jumper wires SparkFun: PRT-08430; Adafruit: 794

Half-size breadboard SparkFun: PRT-09567; Adafruit: 64

Pi Cobbler Adafruit: 1105

Raspberry Leaf (26-pin) Adafruit: 1772

Raspberry Leaf (40-pin) Cool Components: 3408

Electronics Starter Kit for Raspberry Pi Amazon; MonkMakes

Adafruit Perma-Proto for Pi (half breadboard) Adafruit: 1148

http://www.octopart.com/
https://oreil.ly/0RI4J
http://monkmakes.com/

Description Suppliers
Adafruit Perma-Proto for Pi (full breadboard) Adafruit: 1135

Adafruit Perma-Proto HAT Adafruit: 2314

DC barrel jack-to-screw terminal adapter (female) Adafruit: 368

Pimoroni Breakout Garden HAT Pimoroni

Basic soldering kit Adafruit: 136

Resistors and Capacitors
Table A-3 shows resistors and capacitors used in this cookbook and some
suppliers.

Table A-3. Resistors and capacitors

Part Suppliers

270Ω 0.25W resistor Mouser: 293-270-RC

470Ω 0.25W resistor Mouser: 293-470-RC

1kΩ 0.25W resistor Mouser: 293-1K-RC

3.3kΩ 0.25W resistor Mouser: 293-3.3K-RC

4.7kΩ 0.25W resistor Mouser: 293-4.7K-RC

10kΩ trimpot Adafruit: 356; SparkFun: COM-09806; Mouser: 652-3362F-
1-103LF

Photoresistor Adafruit: 161; SparkFun: SEN-09088

330 nF capacitor Mouser: 80-C330C334K5R

Thermistor T0 of 1k Beta 3800
NTC

Mouser: 871-B57164K102J (Note: Beta is 3730)

Transistors and Diodes
Table A-4 lists transistors and diodes used in this cookbook and some
suppliers.

Table A-4. Transistors and diodes

Part Suppliers

FQP30N06L N-Channel logic level
MOSFET transistor

Mouser: 512-FQP30N06L; Sparkfun: COM-
10213

2N3904 NPN bipolar transistor SparkFun: COM-00521; Adafruit: 756

1N4001 diode Mouser: 512-1N4001; SparkFun: COM-08589;
Adafruit: 755

TIP120 Darlington transistor Adafruit: 976; CPC: SC10999

2N7000 MOSFET transistor Mouser: 512-2N7000; CPC: SC06951

Integrated Circuits
Table A-5 lists integrated circuits used in this cookbook and some suppliers.

Table A-5. Integrated circuits

Part Suppliers

L293D motor driver SparkFun: COM-00315; Adafruit: 807; Mouser: 511-L293D;
CPC: SC10241

ULN2803 Darlington
driver IC

SparkFun: COM-00312; Adafruit: 970; Mouser: 511-ULN2803A;
CPC: SC08607

DS18B20 temperature
sensor

SparkFun: SEN-00245; Adafruit: 374; Mouser: 700-DS18B20;
CPC: SC10426

MCP3008 eight-channel
ADC IC

Adafruit: 856; Mouser: 579-MCP3008-I/P; CPC: SC12789

TMP36 temperature
sensor

SparkFun: SEN-10988; Adafruit: 165; Mouser: 584-
TMP36GT9Z; CPC: SC10437

OptoElectronics
Table A-6 lists optoelectronic components used in this cookbook and some
suppliers.

Table A-6. Optoelectronics

Part Suppliers

5 mm red LED SparkFun: COM-09590; Adafruit: 299

RGB common cathode LED SparkFun: COM-11120; eBay

TSOP38238 IR sensor SparkFun: SEN-10266; Adafruit: 157

Modules
Table A-7 lists modules used in this cookbook and some suppliers.

Table A-7. Modules

Part Suppliers

Raspberry Pi Camera Module Adafruit: 3099; Cool Components: 1932

Level converter, four-way SparkFun: BOB-12009; Adafruit: 757

Level converter, eight-way Adafruit: 395

LiPo boost converter/charger SparkFun: PRT-14411

PowerSwitch Tail Amazon

16-channel servo controller Adafruit: 815

Motor driver 1A dual SparkFun: ROB-14451

PIR motion detector Adafruit: 189

Ultimate GPS Adafruit: 746

Methane sensor SparkFun: SEN-09404

Gas sensor breakout board SparkFun: BOB-08891

ADXL335 triple-axis accelerometer Adafruit: 163

4x7-segment LED with I2C backpack Adafruit: 878

Part Suppliers

Bicolor LED square-pixel matrix with I2C
backpack

Adafruit: 902

RTC module Adafruit: 3296

16x2 HD44780 compatible LCD module SparkFun: LCD-00255; Adafruit: 181

Sense HAT Adafruit: 2738

Adafruit Capacitive Touch HAT Adafruit: 2340

Stepper Motor HAT Adafruit: 2348

16-channel PWM HAT Adafruit: 2327

Pimoroni Explorer HAT Pro Pimoroni; Adafruit: 2427

Squid Button MonkMakes; Amazon

Raspberry Squid RGB LED MonkMakes; Amazon

I2C OLED display 128x64 pixels eBay—search for: I2C OLED Arduino

MMA8452Q triple-axis accelerometer breakout SparkFun: SEN-12756

MH-Z14A CO2 sensor module eBay—search for: MH-Z14A

RC-522 RFID module eBay—search for: RC-522

Pimoroni VL53L1X distance sensor breakout Pimoroni or eBay—search for:
VL53L1X

Sonoff Basic WiFi Switch ITEAD

Raspberry Pi Zero Camera Adapter Adafruit: 3157

Wemos D1 Mini eBay—search for: Wemos D1 Mini

Pimoroni Audio DAC Shim (line-out) Pimoroni

Pimoroni Badger 2040 Pimoroni

Miscellaneous
Table A-8 lists miscellaneous tools and components used in this cookbook
and some suppliers.

Table A-8. Miscellaneous

Part Suppliers

1200mAh LiPo battery Adafruit: 258

Part Suppliers

5V relay SparkFun: COM-00100

5V panel meter SparkFun: TOL-10285

Standard servomotor SparkFun: ROB-09065; Adafruit: 1449

9g mini servomotor Adafruit: 169

5V 2A power supply Adafruit: 276

Low-power 6V DC motor Adafruit: 711

0.1-inch header pins SparkFun: PRT-00116; Adafruit: 392

5V, 5-pin unipolar stepper motor Adafruit: 858

12V, 4-pin bipolar stepper motor Adafruit: 324

Tactile push switch SparkFun: COM-00097; Adafruit: 504

Miniature slide switch SparkFun: COM-09609; Adafruit: 805

Rotary encoder Adafruit: 377

4×3 keypad SparkFun: COM-14662

Piezo buzzer SparkFun: COM-07950; Adafruit: 160

Reed switch Adafruit: 375

Console lead Adafruit: 954

Appendix B. Raspberry Pi
Pinouts

Raspberry Pi 400/4/3/2 Model B, B+, A+, Zero
Figure B-1 shows the pinout for the current 40-pin general-purpose
input/output (GPIO) Raspberry Pi.

Figure B-1. 40-pin Raspberry Pi GPIO pinout

Raspberry Pi Model B revision 2, A
If you bought one of the early 26-pin Raspberry Pis, then it is most likely to
be a model B revision 2 board, as shown in Figure B-2. (If you have one of
these first editions of the Raspberry Pi, hang on to it; it might be valuable
one day.)

Figure B-2. Raspberry Pi model B revision 2 and model A GPIO pinout

Raspberry Pi Model B revision 1
The very first released version of the Raspberry Pi model B (revision 1) has
some minor pinout differences to the revision 2 that followed. This is the

only version of the Raspberry Pi that is not compatible with later pinouts.
The incompatible pins that changed are highlighted in bold in Figure B-3.

Figure B-3. Raspberry Pi model B revision 1 GPIO pinout

Raspberry Pi Pico

Although the Raspberry Pi Pico also has a 40-pin connector, the
connections are entirely different, as shown in Figure B-4.

Figure B-4. Raspberry Pi Pico GPIO pinout

Index

Symbols

! (running command from history), Discussion
!= (not equal to), Discussion
(prompt), Discussion
#! (shebang), Discussion
$ (prompt), Discussion
$ (regex end of string), Solution
& (file run in background), Problem

autorun files, Solution

''' ''' (documentation strings in Python), Solution
reading contents of, Solution

* (regex zero or more), Solution
* (wildcard)

crontab for executing scripts, Discussion
finding files, Discussion
listing files, Discussion
removing files, Solution

+ (regex one or more), Solution
. (period)

hidden files, Discussion
listing directories, Discussion
regex single character match, Solution

.. (two periods)
listing directories, Discussion

moving through directories, Discussion

/ (in paths), Discussion
< (less than), Discussion
< (redirecting input), Discussion
<= (less than or equal), Discussion
<> (not equal to), Discussion
= (assignment operator), Problem, Solution
== (equal to), Discussion
> (greater than), Discussion
> (redirecting output), Problem, Problem

/dev/null, Discussion, Problem

>= (greater than or equal), Discussion
>>> (prompt), Discussion

MicroPython for Pico, Solution

[:] (slice)
lists, Problem
strings, Solution

[] (lists), Solution, Solution, Discussion
dictionary entry access, Solution

[] (regex characters matched), Solution
\ (escape characters), Discussion
\d (regex digit), Solution
\s (regex whitespace), Solution
\w (regex alphanumeric), Solution
^ (regex beginning of string), Solution
__ (double underscores)

class definition constructor method, Solution
reading documentation string, Solution

version of computer vision, Solution

{} (dictionaries), Solution
{} (formatting string), Discussion, Solution
| (pipe), Problem

history piped to grep, Discussion
ps piped to grep, Discussion

~ (home directory), Discussion

A

AC devices with PowerSwitch Tail II, Problem
acceleration measurement

Inertial Measurement Unit and, Problem-See Also
MMA8452Q module for, Problem-See Also

account creation on first boot, Solution
changing password, Problem

Adafruit
Air Quality board, Discussion
bonnets for Pi 400, Discussion
Capacitive Touch HAT, Solution-See Also
CircuitPython boards, Discussion
CircuitPython libraries, Discussion
Feather RP2040 Pico-compatible, Discussion
I2C devices, Discussion
NeoPixels guide online, See Also
NeoPixels RGB LED matrix, Problem-See Also
NeoPixels RGB LED strip, Problem-See Also
servo control, See Also
servomotor HAT, Solution-Discussion

servomotor HAT alternative, See Also
Stepper Motor HAT, Problem

ADC chip (see analog-to-digital converter (ADC) chip)
Add/Remove Software tool, Discussion
addressable RGB LED matrix, Problem-See Also
addressable RGB LED strips, Problem-See Also
Air Quality board (Adafruit), Discussion
aliases, Problem
amperage maximum for Raspberry Pi, Solution
analog inputs lacking, See Also, Introduction, Solution

(see also analog-to-digital converter (ADC) chip; sensors)

analog inputs on Pico boards, Introduction, Discussion
analog temperature sensor, Discussion, Problem-See Also
Pimoroni Badger temperature sensor, Discussion
voltage measurement, Problem-Discussion

analog outputs on Pico boards, Problem-See Also
analog voltmeters, Problem-See Also, Problem-Discussion
analog-to-digital converter (ADC) chip

analog inputs lacking, See Also, Introduction, Solution
resistive sensors with, Problem-See Also
temperature measurement with, Problem-See Also
voltage measurement, Problem-See Also, Problem-Discussion

and logical operator, Problem
Android for controlling hardware, Problem-See Also
AngularServo class (gpiozero), Solution
aplay command, Discussion, Solution

documentation online, See Also

append function (Python), Solution

apt for installing software, Problem
removing installed software, Problem
searching for software to install, Discussion
updating, Discussion
updating operating system, Solution

Arduino
converting 5V signals to 3.3V with two resistors, Problem
integrated development environment, Solution
Wemos D1 programming, Solution-Discussion

arecord command, Solution
argv variable for command-line arguments, Solution
arithmetic in Python, Problem
ASCII value of string characters, Discussion
assignment (=) operator (Python), Problem, Solution
Atari 2600 emulator, Solution-See Also
atmospheric pressure measurement, Problem-See Also
audio (see sound)
autocomplete via Tab key, Discussion
automation (see home automation)
autorunning programs or scripts

as a service, Problem-See Also
command-line arguments for, Discussion
Node-RED visual programming tool, Discussion
on startup, Problem
regular intervals, Problem

B

background processes, Solution, Problem

LED blinking, Discussion

Badger Pico-compatible board (Pimoroni), Discussion-See Also
information online, See Also

badger2040 library for E Ink display (MicroPython), Discussion
reference online, See Also

batteries
AA powering Pico boards, Problem
LiPo battery powering Pico-compatible boards, Discussion
LiPo battery powering Raspberry Pi, Problem

BBC micro:bit boards, Discussion
binary–base 10 conversions

number formatting, Discussion
string-to-number conversion, Discussion

bipolar stepper motors, Problem-See Also
Stepper Motor HAT to drive, Problem

bitmap image editor, Problem-See Also
blinking an LED, Discussion
Blue Dot (Android app), Solution-See Also

Blue Dot library for remote (Python), See Also

bluedot library for Android and Bluetooth control, Solution
Bluetooth

controlling hardware with, Problem-See Also
making Raspberry Pi discoverable, Solution
Raspberry Pi Pico W, Introduction
setup, Problem-See Also

bonnets (add-on boards; Adafruit), Discussion
Bookshelf software, Problem
boost regulator module, Solution

booting up
after shutdown, Solution
date and time set, Discussion
first time, Problem
hard disk or USB flash drive, Problem-See Also
Raspberry Pi 400, Solution
rebooting, Problem
running program as service, Problem-See Also
running program on startup, Problem

bottle library (Python), Solution, Solution, Solution-Discussion
documentation online, See Also, See Also

breadboard
jumper leads to GPIO, Problem-See Also
Pico breadboard kits, Problem-See Also
power supply leads, Solution
sources for, Prototyping Equipment and Kits

break statement (Python), Solution
browser (see web interface)
Button class (gpiozero), Solution, Solution

documentation online, See Also

button click running function, Solution
Blue Dot app for Android, Problem-See Also
push switch connection, Problem-See Also
user interface for, Problem

buzzer, Problem-See Also

C

camera

Raspberry Pi Camera Module, Problem-See Also
Raspberry Pi Camera Module for computer vision, Problem

(see also computer vision)

Raspberry Pi Camera Module for machine learning, Introduction
USB webcam for computer vision, Problem-See Also

(see also computer vision)

USB webcam for machine learning, Introduction

capacitive touch sensing, Problem-See Also
capacitors, Discussion

sources for, Resistors and Capacitors

carbon dioxide concentration measured, Problem-See Also
case sensitivity

Python, Discussion
string functions, Discussion
Terminal, Discussion

cases (enclosures), Problem-See Also
cat command

concatenating files, Solution
version of operating system displayed, Solution
view file contents, Problem

cd command, Solution
Celsius–Fahrenheit conversion (Python), Discussion

f-string for, Discussion
more than one return value, Solution
number formatting, Discussion

center-off toggle switch, Problem-See Also
central processing unit (see CPU)
check_output function (Python), Discussion

CheerLights, Problem-See Also
chmod command, Solution

file executable for owner, Discussion
octal calculator, See Also

choice command (Python), Discussion
chown command, Solution
classes (Python)

about classes, Solution
defining, Problem-See Also
documentation strings, Solution
inheritance, Problem
methods defined, Problem
multiple inheritance, See Also

closing a file, Solution, Solution, Discussion, Discussion
coins counted via computer vision, Problem-See Also
Color class (colorzero), Solution
colorzero library for Color class, Solution
comma-separated value (CSV) file written to USB flash drive, Problem
command history

Python console command history, Discussion
Terminal command-line history, Problem

command line, Problem-See Also
(see also Terminal)

common cathode LED, Solution
Common Unix Printing System (CUPS), Problem-See Also
comparing values (Python), Problem-See Also
compass for magnetic north, Problem
composite video connection, Problem-See Also

comprehensions to build new lists, Problem
compressed files, Problem
computer vision (CV), Introduction-See Also

counting coins, Problem-See Also
face detection, Problem-See Also
installing OpenCV, Problem
motion detection, Problem-See Also
OCR, Problem
Raspberry Pi Camera Module for, Problem
USB camera for, Problem-See Also

concatenation
files, Problem
strings, Problem

conditional expressions (Python), Problem
console cable connection, Problem-See Also

connecting, Solution
Pi Zero WiFi connection, Discussion
purchasing, Solution, See Also

console in Python, Problem-See Also
copy command for lists (Python), Discussion
copy library (Python), Discussion
copying files or folders, Problem-See Also
counting coins via computer vision, Problem-See Also
cp command, Solution

parameter information online, See Also

CPU (central processing unit)
displaying temperature readings on web page, Problem-See Also
monitoring usage of, Problem-See Also

sleep function reducing load, Discussion
temperature measured, Problem
temperature notification emailed via IFTTT, Solution-See Also
temperature sensor of Pico board, Discussion
writing temperature readings to USB flash drive, Solution

crontab command, Solution
CSV file format written to USB flash drive, Problem
Ctrl-C to stop execution, Discussion, Solution

bottle web server, Solution
computer vision coin counting, Discussion
does not always work, Solution
sound playback stopped, Solution
spoken command recognition, Discussion

CUPS (Common Unix Printing System), Problem-See Also
CV (see computer vision)
Cyberdeck Bonnet (Adafruit), Discussion

D

Darlington transistor, Discussion
dashboard for Node-RED

devices on and off, Problem-See Also
scheduling events, Problem-See Also

data entry validated via regex, Problem
data structure pickled, Problem
date

formatting output of, Problem
setting, Problem

datetime command (Python), Solution

datetime library (Python), Solution
DC motor

speed and direction controller, Problem-See Also
speed controller, Problem

debouncing a button press, Problem-See Also
debugging in Python, Discussion
/dev devices

/dev/null, Problem
serial port, Discussion, Solution
SPI, Discussion

df command, Solution
DHCP (Dynamic Host Configuration Protocol), Discussion, Solution-
Discussion

lease time, Solution
reservation, Solution

dictionaries in Python, Problem-See Also
creating, Problem
finding and changing entries, Problem
internal order essentially random, Discussion, Solution
iterating over, Problem
removing entries from, Problem
saved as JSON files, Problem

digital inputs, Introduction-See Also
debouncing a button press, Problem-See Also
external pull-up resistors, Problem
GPS, Problem-See Also
keypad, Problem-See Also
keypresses intercepted, Problem

mouse movements intercepted, Problem
movement detector, Problem
Pico boards, Problem-See Also
push switch connection, Problem-See Also
push switch toggling, Problem-See Also
reset button, Problem-See Also
rotary (quadrature) encoder, Problem-See Also
three-position (center-off) toggle or slide switch, Problem-See Also
two-position toggle or slide switch, Problem

digital outputs on Pico boards, Problem-See Also
digital temperature sensor, Problem-See Also
diodes, sources for, Transistors and Diodes
directories (folders)

copying, Problem-See Also
creating, Problem
current directory via pwd, Solution
deleting, Problem
ownership, Problem
permissions, Problem-See Also
permissions changed, Problem
renaming, Problem

displays, Introduction-See Also
addressable RGB LED matrix, Problem-See Also
addressable RGB LED strips, Problem-See Also
analog voltmeter, Problem-See Also, Problem-Discussion
E Ink on Pimoroni Badger, Discussion-See Also
ePaper display, Problem-See Also
four-digit LED, Problem

I2C LED matrix display, Problem-See Also
monitor attached to board (see monitor)
OLED graphical display, Problem-See Also
Pimoroni Unicorn HAT, Problem-See Also
Sense HAT LED matrix display, Problem-See Also
sensor values displayed, Problem

dist-upgrade command, Discussion
distance measurement

time-of-flight sensor for, Problem-See Also
ultrasound for, Problem-See Also

DistanceSensor class (gpiozero), Solution, Discussion
documentation online, See Also

documentation strings (Python), Solution
reading contents of, Solution

double buffering, Discussion
DS18B20 digital temperature sensor, Solution-Discussion

datasheet online, See Also

dump function (json), Solution
DVI monitor connected, Problem
dweepy library for Dweet (Python), Solution
Dweet to respond to tweets, Problem-See Also

about dweet.io web service, Solution

Dynamic Host Configuration Protocol (see DHCP)
dynamic overclocking, Solution

E

E Ink display on Pimoroni Badger, Discussion-See Also
badger2040 library, Discussion, See Also

echo command, Solution
Edge Impulse platform for machine learning

about, Introduction
AudioImpulseRunner, Solution
Dashboard, Discussion
information online, See Also, See Also
installing and using, Problem
Linux information online, See Also
Linux runner for local performance, Problem-See Also
spoken command recognized, Problem-See Also

editing a file, Problem-See Also
editors

Mu, Problem-See Also
Python, Problem
Thonny, Problem
Visual Studio Code, Solution-See Also

EEPROM chip on HAT board, Solution-Discussion
reading data from, Discussion
writing data to, Discussion

email
address validation via regex, Solution
IFTTT for sending, Problem-See Also
motion detector sending, See Also
sending from Python, Problem-See Also

embedding
Raspberry Pi Zero, See Also
Raspberry Pi Zero W, Solution, See Also

enclosures (cases), Problem-See Also

enumerate command (Python), Solution
enumerating a list, Problem
ePaper display, Problem-See Also
error handling (Python), Discussion, Problem
escape characters (Python), Discussion
ESP8266-based WiFi board publishing MQTT messages, Problem-See Also
esptool for flashing firmware, Solution
/etc/hostname file for network name, Setting the network name using the
command line (the hard way)
/etc/hosts file for network name, Setting the network name using the
command line (the hard way)
/etc/init.d/ folder for scripts as services, Solution
/etc/os-release file, Solution
/etc/rc.local file for running files on startup, Solution
exception handling (Python), Discussion, Problem
Explorer HAT Pro (Pimoroni), Problem-See Also, Discussion

ADC chip, See Also

extend function (Python), Discussion
extracting ZIP file, Solution, Discussion

F

f-strings for evaluating code in strings, Discussion
face detection via computer vision, Problem-See Also
Facebook notifications, Problem-See Also
Fahrenheit–Celsius conversion (Python), Discussion

f-string for, Discussion
more than one return value, Solution
number formatting, Discussion

fg command, Solution
file archives, uncompressing, Problem
File Manager utility for GUI browsing, Solution

copying files onto a USB flash drive, Problem-See Also

files
browsing in GUI, Problem-See Also
concatenating, Problem
copying, Problem-See Also
copying onto a USB flash drive, Problem-See Also
creating without using editor, Problem
deleting, Problem
editing, Problem-See Also
errors caught by try/except, Discussion, Problem
fetching code files for this book, Problem
fetching from command line, Problem
finding, Problem
hidden via period prefix, Discussion
JSON files from dictionaries, Problem
JSON files read and parsed, Problem-See Also
navigating with Terminal, Problem-See Also
ownership changed, Problem
permissions, Problem-See Also
permissions changed, Problem
pickling data into, Problem
Pico and Pico W boards, Problem-See Also
Pico files transferred to Raspberry Pi, Solution
Python file extension .py, Solution, Discussion
reading from, Problem, Problem

reading Pico files, Solution, Discussion
redirecting command line output to a file, Problem
renaming, Problem
uncompressing, Solution, Problem
viewing contents of, Problem, Solution, Discussion
writing to, Problem
writing to on Pico board, Problem-See Also
ZIP file extracted, Solution, Discussion

filesystem navigation, Problem-See Also
finding a file, Problem
Pico and Pico W boards, Problem-See Also

find command, Solution
find function (Python), Solution
firmware (Tasmota) flashed, Problem-See Also

Tasmota information online, See Also

firmware installed by download for Pico, Solution-Solution
filesystem contents lost, Discussion

flash drive (see USB flash drive)
flashing Sonoff WiFi Smart Switch, Problem-See Also
float function (Python), Solution
FM radio transmitter, Problem-See Also
folders (directories)

copying, Problem-See Also
creating, Problem
current directory via pwd, Solution
deleting, Problem
ownership, Problem
permissions, Problem-See Also

permissions changed, Problem
renaming, Problem

for command (Python), Solution
enumerating a list, Solution, Solution
iterating over a list, Solution
repeating a command, Solution

format method (Python), Solution, Solution
formatting

dates and times, Problem
numbers, Problem-See Also

four-digit LED display, Problem
FQP30N06L MOSFET, Solution-See Also, Solution
functions (Python)

button click running, Solution
command-line arguments, Problem
creating, Problem
methods in classes, Problem
more than one running at a time, Problem-See Also, Problem
parameters, Discussion
return value, Discussion
returning more than one value, Problem

G

game console emulator, Problem-See Also
gas detection/measurement

carbon dioxide concentration, Problem-See Also
methane detection, Problem-See Also

general-purpose input/output connector (see GPIO)

GIMP (GNU image manipulation program), Problem-See Also
Git

fetching source code, Problem-See Also
git clone command, Solution
GitHub versus, Discussion
information online, See Also
version control with, Discussion
your GitHub repository, Discussion

GitHub
about code in book, Preface to the Fourth Edition
creating a repository on, Discussion
fetching code files for this book, Problem
Git versus, Discussion
information online, See Also
Node-RED flows from book, Discussion
this book’s page, Solution

GitLab, See Also
GNU image manipulation program (GIMP), Problem-See Also
Google Gmail example, Solution
GPIO (general-purpose input/output) connector

3.3V for inputs and outputs, Solution, Solution
amperage maximum, Solution, Solution, Discussion
analog inputs on Pico boards, Introduction, Discussion
analog inputs via ADC chip, See Also
basics, Introduction-See Also
breadboard with jumper leads, Problem-See Also
controlling hardware through, Introduction-See Also
converting 5V signals to 3.3V with level converter module, Problem

converting 5V signals to 3.3V with two resistors, Problem
digital inputs (see digital inputs)
digital outputs on Pico boards, Problem-See Also
external electronics safely connected to Raspberry Pi, Problem
high-power LEDs needing transistor, Problem-See Also
LEDs connected to Pico boards, Problem-See Also
LEDs connected to Raspberry Pi, Problem-See Also
MQTT messages controlling, Problem-See Also
output capabilities, See Also
output control via web interface, Problem-See Also
pinouts, Problem-See Also, Raspberry Pi 400/4/3/2 Model B, B+, A+,
Zero-Raspberry Pi Pico
pinouts template, Discussion
pins left in safe state, Problem
pins “floating”, Discussion
power supply, Discussion

(see also power supply)

pull-up resistors, Solution, Discussion
Raspberry Pi 400, Problem-See Also
solid-state relay for switching, Problem

gpiozero library (Python)
about, Solution
Button class documentation online, See Also
buzzer sound, Solution
CheerLights RGB color, Solution
CPU temperature measured, Solution
debouncing a button press, Solution
distance measurement with ultrasound, Solution

GPIO controlled via web interface, Solution
GPIO pins left in safe state, Solution
LED notification of tweets, Solution
LED on and off, Solution, Solution
machine library versus, Discussion
motion sensor, Solution
on/off switch via user interface, Solution
push switch, Solution-See Also
PWM feature, Solution-See Also
PWM via user interface, Solution
Raspberry Squid Button, Solution
Raspberry Squid RGB LED, Solution
rotary (quadrature) encoder, Solution
servo positioning, Solution, Problem
speed and direction of DC motor, Solution
stepper motor control, Discussion
temperature measurement with ADC, Solution
temperature notifications via IFTTT, Solution
temperature notifications via ThingSpeak, Solution, Solution
three-position (center-off) switch, Solution
voltage measurement with ADC, Solution, Solution

GPS, Problem-See Also
meaning of fields online, See Also
tutorial on tracking using Python, See Also

graphical user interface (GUI)
browsing files, Problem-See Also
creating user interfaces, Problem-See Also

(see also user interface)

VNC for remote access to Pi, Problem-See Also

grep
history piped to, Discussion
ps piped to, Discussion

grounding against static, Solution
GUI (see graphical user interface)
guizero library (Python)

displaying values, Solution
documentation online, See Also
GUI design with, Solution-See Also
soil moisture measurement, Solution
user interface for on/off switch, Solution
user interface for PWM, Solution

gunzip command, Solution
.gz compressed files, Solution
gzip command, Discussion

H

H-bridge chip, Solution-Discussion, Solution
HAAR (High Altitude Aerial Reconnaissance), Solution
hard disk, booting from, Problem-See Also
hardware

analog voltmeters, Problem-See Also, Problem-Discussion
basics, Introduction-See Also
breadboard with jumper leads, Problem-See Also
breadboard with Pico board, Problem-See Also
controlling, Introduction-See Also
controlling with Android and Bluetooth, Problem-See Also

converting 5V signals to 3.3V with level converter module, Problem
converting 5V signals to 3.3V with two resistors, Problem
digital inputs (see digital inputs)
digital outputs of Pico boards, Problem-See Also
Explorer HAT Pro basics, Problem-See Also
external electronics safely connected to Raspberry Pi, Problem
GPIO pinouts, Problem-See Also, Raspberry Pi 400/4/3/2 Model B, B+,
A+, Zero-Raspberry Pi Pico

(see also GPIO)

GPIO pins left in safe state, Problem
I2C setup, Problem-See Also
i2c-tools, Problem-See Also
LED brightness control, Problem-See Also, Problem-See Also
LED connections, Problem-See Also, Problem-See Also
LiPo battery powering Pico-compatible boards, Discussion
LiPo battery powering Raspberry Pi, Problem
Minicom installation, Problem
Perma-Proto Pi HAT, Problem-See Also
Pico boards (see Raspberry Pi Pico; Raspberry Pi Pico W)
pinouts for GPIO, Problem-See Also, Raspberry Pi 400/4/3/2 Model B,
B+, A+, Zero-Raspberry Pi Pico
pySerial installation, Problem
Raspberry Pi Zero 2/Pi Zero 2 W, Problem
Raspberry Squid Button, Problem, Solution
Raspberry Squid RGB LED, Problem-See Also, Solution, Problem-See
Also
Sense HAT basics, Problem

(see also Sense HAT)

servomotors (see servomotors)
SPI setup, Problem-See Also
switching a high-power DC device using a transistor, Problem-See Also
switching a high-power device using a relay, Problem-See Also
switching high-voltage AC devices, Problem
switching using a solid-state relay, Problem
user interface for RGB LED color, Problem-See Also
user interface to control PWM, Problem-See Also
user interface to turn things on and off, Problem

Hardware Attached on Top (HAT) standard (see HAT (Hardware Attached
on Top) standard)
hash table, Discussion
hashtags responded to via Dweet and IFTTT, Problem-See Also
HAT (Hardware Attached on Top) standard, Discussion, Solution

design guide online, See Also
Raspberry Pi 400 adapter, Discussion
ready-made HATs on the market, See Also

HDMI
HDMI to DVI adapters, Solution
monitor connected, Problem-See Also
ServoBlaster and no audio, Solution, Solution
sound from Raspberry Pi, Discussion

headless Raspberry Pi installation, Problem-See Also
console cables for headless Pi, Solution
remote connection for, Introduction

(see also networking)

sound output options, Discussion

headphones connected, Discussion

help
manpages for OS, See Also
Python console help command, Discussion

hexadecimal notation, Solution
hexadecimal–base 10 conversions

number formatting, Discussion
string-to-number conversion, Discussion

High Altitude Aerial Reconnaissance (HAAR), Solution
high-voltage AC devices

connecting Sonoff to, Solution
switching with PowerSwitch Tail II, Problem

history command, Solution
! running command, Discussion
piped to grep, Discussion

home automation, Introduction-See Also
about, Introduction
flashing a Sonoff WiFi Smart Switch for MQTT, Problem-See Also
Mosquitto message broker, Problem-See Also
Node-RED dashboard for, Problem-See Also
Node-RED scheduled events, Problem-See Also
Node-RED with an MQTT server, Problem-See Also
Sonoff switches with Node-RED, Problem-See Also
Sonoff web switches with MQTT, Problem-See Also
Sonoff WiFi Smart Switch configuration, Problem-See Also
Wemos D1 publishing MQTT messages, Problem-See Also
Wemos D1 with Node-RED, Problem-See Also

home directory, Solution, Discussion
~ shorthand for, Discussion

hostname command, Solution
hostname of Raspberry Pi

$ prompt, Discussion
changing, Problem-See Also
default raspberrypi, Problem
more than one Pi on network, Solution, Discussion
network-attached storage name, See Also

HTML parsed with regex, Problem
htop command, Discussion
HTTP requests, Problem

CPU too hot, Solution
GPIO controlled via web interface, Problem-See Also
IFTTT trigger, Solution
sensor data sent to ThingSpeak, Solution-See Also
tweet via ThingSpeak, Solution
tweets responded to via Dweet and IFTTT, Problem-See Also
web server in Python, Problem

humidity measurement, Problem-See Also

I

I2C (Inter-Integrated Circuit)
HAT EEPROM, Discussion
i2c-tools, Problem-See Also
LED matrix display, Problem-See Also
LED module, Solution
setup, Problem-See Also

i2c-tools, Problem-See Also
HAT EEPROM, Discussion

if command (Python), Problem
elif conditions, Discussion
else statements, Discussion
logical operators, Problem

ifconfig command, Discussion
IFTTT (If This Then That)

account sign-up, Solution
responding to tweets with, Problem-See Also
sending email and other notifications, Problem-See Also

Imager (see Raspberry Pi Imager)
import command (Python), Solution
in keyword for lists (Python), Solution
indentation in Python code, Discussion
Inertial Measurement Unit (IMU), Problem-See Also
infrared (IR) remote, See Also
inheritance of classes, Problem

multiple inheritance, See Also

Inkscape vector image editor, Problem
Inky pHAT or wHAT (Pimoroni), Solution-See Also

documentation online, See Also

input command (Python 3), Solution
example of use, Solution
Python 2 raw_input command, Discussion
validation via regex, Problem

inputs, digital (see digital inputs)
insert command (Python), Discussion
int function (Python), Solution
integrated circuits, sources for, Integrated Circuits

Inter-Integrated Circuit (see I2C)
interface board (Perma-Proto Pi HAT), Problem-See Also
internet connection

first boot, Solution
networking, Introduction

(see also networking)

Internet of Things (IoT), Introduction-See Also
CheerLights, Problem-See Also
displaying sensor readings on web page, Problem-See Also
GPIO control via web interface, Problem-See Also
home automation (see home automation)
IFTTT for email and other notifications, Problem-See Also
Node-RED visual programming tool, Problem-See Also

(see also Node-RED)

Raspberry Pi Zero 2 W for, Solution
responding to tweets using Dweet and IFTTT, Problem-See Also
sensor data sent to ThingSpeak, Problem-See Also
ThingSpeak for sending tweets, Problem-See Also

internet radio, Problem-See Also
interrupts driving code execution, Solution
IP address

DHCP allocating, Discussion, Solution-Discussion
finding, Discussion, Problem
finding for Sonoff Smart Switch, Solution
information online, See Also
IPv4 address, Solution
setting static address, Problem-See Also

IR (infrared) remote, See Also

iterating
over a dictionary, Problem
over a list, Problem
over a list via comprehension, Solution

J

JavaScript function in HTML, Discussion, Solution, Discussion
join function (Python), Discussion
JSON files

dictionary saved as, Problem
JSON data parsed, Problem-See Also
pickling versus, Discussion

json library (Python)
dictionary saved as JSON file, Solution
parsing JSON data, Solution

jumper wires, sources for, Prototyping Equipment and Kits
justgage library for sensor values (Python), Discussion

K

K40 Whisperer software, Solution
keyboard connected, Problem-See Also

headless Raspberry Pi instead, Problem-See Also

keypad for input, Problem-See Also
keypresses intercepted, Problem
kill command, Discussion
killall command, Discussion
Kitronik Discover Kit, Solution
Kodi media center software, Solution-See Also

L

L293D H-bridge chip, Solution-Discussion, Solution
datasheet online, See Also

laser cutter controller, Problem-See Also
lease time for DHCP, Solution
LEDs

addressable RGB LED matrix, Problem-See Also
addressable RGB LED strips, Problem-See Also
amperage maximum, Solution
blinking an LED, Discussion, Problem-See Also
CheerLights, Problem-See Also
connecting to Raspberry Pi, Problem-See Also
connecting to Raspberry Pi Pico, Problem-See Also
controlling brightness of, Problem-See Also, Problem-See Also
four-digit display, Problem
matrix display, Problem-See Also
matrix display of RGB, Problem-See Also
opto-isolator using, Discussion
power supply, Solution, Discussion
Raspberry Squid RGB, Problem-See Also, Solution, Problem-See Also
resistor needed for connecting, Discussion, Discussion
resistor selection, Discussion, Discussion
switching high-power LEDs using a transistor, Problem-See Also
toggling with a push switch, Solution-See Also
user interface for RGB LED color, Problem-See Also
user interface to control PWM, Problem-See Also

len function (Python), Solution, Solution

less command, See Also
level converter module, Problem
libraries (MicroPython)

badger2040 for E Ink display, Discussion
machine for Pico hardware support, Discussion
microdot for web server, Solution, See Also
mm_wlan for WiFi connection, Solution, See Also
_thread for threads, Solution
utime for sleep function, Solution

libraries (Python), Problem
Blue Dot for remote, See Also
bluedot for Android and Bluetooth control, Solution
bottle for HTTP requests, Solution, Solution
colorzero for Color class, Solution
copy for copy command, Discussion
datetime, Solution
dweepy for Dweet, Solution
gpiozero for GPIO support, Solution

(see also gpiozero library)

guizero for GUI, See Also
(see also guizero library)

I2C, Solution
json, Solution, Solution
justgage for sensor values, Discussion
NumPy, Solution, Solution, Solution, Solution
OS for system command, Solution
PiAnalog for using analog sensors, Solution, Solution, Solution
PyAudio, Solution

pygame for keypress detection, Solution
pygame for mouse movement detection, Solution
pyserial, Solution
Python Image Library, Solution
Python Standard Library, See Also
random, Solution
re for regular expressions, Solution, Solution
RFID card reader/writer, Solution-See Also
smtplib for email, Solution
subprocess for Linux commands, Discussion, Solution, Solution
sys for command-line arguments, Solution, Solution, Solution
threading for threads, Solution
time for sleep function, Solution
urllib for HTTP requests, Solution
using libraries in programs, Problem

LibreELEC media center software, Solution
LibreOffice software, Problem-See Also
light box for computer vision, Solution
light, measuring, Problem-See Also
lightweight processes, Discussion
Linux

network-attached storage connection, Discussion
operating system, Introduction

(see also operating system)

running commands from Python, Problem
SSH remote connection to Pi, Solution
VNC remote connection to Pi, Problem-See Also

LiPo (lithium-ion polymer) battery, Problem

Pico-compatible boards, Discussion

lists in Python, Introduction-See Also
accessing elements, Problem
adding elements to, Problem
command-line arguments, Solution
comprehensions to build new lists, Problem
creating, Problem
creating by parsing a string, Problem
creating sublists, Problem
dump function to save as JSON, Discussion
enumerating, Problem, Solution
iterating over a list, Problem
length of, Problem
random selection of element, Discussion
removing elements from, Problem
sorting, Problem
testing for certain element in list, Problem

logging
sensor data sent to ThingSpeak, Problem-See Also
sensor data to file on Pico, Problem-See Also
to USB flash drive, Problem

logging out, Problem
logical operators, Problem
looping to repeat instructions (Python)

exiting loop, Problem
for so many times, Problem
loop variable, Discussion
while some condition, Problem

loudspeaker connected, Problem-See Also
lower function (Python), Solution
ls command, Discussion-Discussion

file permissions, Solution
output piped to grep, Solution
SPI check, Discussion

lsusb command, Solution

M

machine learning (ML), Introduction-See Also
about, Introduction
classification, Introduction
Edge Impulse platform, Introduction, Problem
identifying objects in video, Problem-See Also
reacting to a whistle, Problem-See Also
reacting to objects in video, Problem-See Also
sound identification, Problem-See Also
spoken command recognized in Python, Problem-See Also
spoken command recognized locally, Problem-See Also
spoken command recognized via cloud, Problem-See Also

machine library for Pico hardware support, Discussion
gpiozero library versus, Discussion

macOS
console cable connection, Solution
network-attached storage connection, Discussion
SSH remote connection to Pi, Solution
VNC remote connection to Pi, Problem-See Also

magazines on Raspberry Pi, Problem

magnetic north detected, Problem
magnets

sensing with reed switch, Problem
sensing with Sense HAT, Problem, Problem

MagPi magazine, Problem
manpages (manual pages), See Also
math in Python, Problem
MCP3008 ADC chip

analog voltage measurement, Solution-Discussion
datasheet online, See Also
resistive sensors with, Problem-See Also
voltages reduced for measurement, Problem-See Also

media center software, Problem-See Also
/media/pi folder for USB flash drive, Solution, Solution, Discussion
member variables (Python), Discussion
Message Queuing Telemetry Transport (see MQTT)
metal-oxide-semiconductor field-effect transistor (see MOSFET)
methane detection, Problem-See Also

sensor datasheet online, See Also

methods in Python classes, Problem
microdot web server library (MicroPython), Solution

information online, See Also

microphone, Problem-See Also
MicroPython for Raspberry Pi Pico, Introduction

about, Discussion
digital outputs, Solution-See Also
documentation online, See Also
installing with Thonny editor, Solution

Pimoroni Badger Pico-compatible board, Discussion
sleep function in utime module, Solution
threads, Problem

microSD card
booting for the first time, Problem
booting from hard disk or USB flash drive, Problem-See Also
installing operating system onto, Problem-See Also
networking, Discussion
selecting, Discussion
shutting down properly, Discussion
test utility, Discussion
trying different operating systems, Discussion

Minicom
GPS raw data, Solution
serial port test, Problem

mkdir command, Solution
ML (see machine learning)
MMA8452Q accelerometer module, Problem-See Also

datasheet online, See Also

mm_wlan WiFi connection library (MicroPython), Solution
information online, See Also

models of Raspberry Pi, Problem-See Also
differences between models, Discussion
recommended models, Preface to the Fourth Edition
selection based on usage, Solution, Discussion

modules (Python)
level converter module, Problem
picamera module, See Also

Raspberry Pi Camera Module, Problem-See Also, Problem
sources for, Modules
using modules in programs, Problem

(see also libraries (Python))

monitor
adjusting picture size, Problem-See Also
connecting DVI or VGA, Problem
connecting HDMI, Problem-See Also
connecting TV or composite video, Problem-See Also
displaying output from board (see displays)
headless Raspberry Pi instead, Problem-See Also
modifying resolution, Problem-See Also
sound from Raspberry Pi, Discussion
VNC virtual monitor, Solution

MonkMakes
breadboard kit for Pico, Solution
GPIO Adapter for Pi 400, Solution
Plant Monitor board, Problem-See Also, Discussion-See Also
Project Box 1 kit for Raspberry Pi, Solution, Solution, Prototyping
Equipment and Kits
Servo Six board, Discussion, Discussion
Servo Six board documentation online, See Also
solid-state relay, Solution
Speaker Kit for Raspberry Pi, Solution, See Also
Squid RGB LED, Solution

Mopidy music player daemon, See Also
more command, Discussion

MOSFET (metal-oxide-semiconductor field-effect transistor), Solution-See
Also

datasheet online, See Also
logic-level MOSFET, Discussion
resistor with, Discussion

Mosquitto, Problem-See Also
(see also MQTT)
information online, See Also

motion detection
computer vision for, Problem-See Also
passive infrared module, Problem

Motor class (gpiozero), Solution, Discussion
motors, Introduction-See Also

about, Introduction
bipolar stepper motors, Problem-See Also
motor controller modules, Discussion
multiple servomotors precisely controlled, Problem-See Also
servomotor position control, Problem-See Also, Problem-See Also

(see also servomotors)

single servomotor precisely controlled, Problem-See Also
speed and direction of DC motor controlled, Problem-See Also
speed of DC motor controlled, Problem
stepper motor control with Stepper Motor HAT, Problem
stepper motors explained, Solution, Discussion
unipolar stepper motors, Problem-See Also
user interface to control PWM, Problem-See Also

mouse connected, Problem-See Also
headless Raspberry Pi instead, Problem-See Also

mouse movements intercepted, Problem
MPD (Music Player Daemon), See Also
MQTT (Message Queuing Telemetry Transport)

basics, Discussion-Discussion
flashing a Sonoff WiFi Smart Switch for use with, Problem-See Also
Mosquitto message broker, Problem-See Also
Node-RED with an MQTT server, Problem-See Also
QoS level information online, See Also
Sonoff web switches with, Problem-See Also
Wemos D1 publishing MQTT messages, Problem-See Also

Mu editor, Problem-See Also
REPL button for console, Solution

Music Player Daemon (MPD), See Also
mv command, Solution

N

nano editor, Solution-See Also
alternatives to, See Also

NeoPixels
Adafruit guide online, See Also
RGB LED matrix, Problem-See Also
RGB LED strip, Problem-See Also

network name for Raspberry Pi, Problem-See Also
$ prompt, Discussion
network-attached storage name, See Also

network-attached storage (NAS), Problem-See Also
networking, Introduction-See Also

all network connections shown, Discussion

connecting to a wired network, Problem-See Also
connecting via WiFi wireless, Problem
connecting with a console cable, Problem-See Also
controlling Pi remotely with VNC, Problem-See Also
DHCP, Discussion
finding IP address, Problem
headless Raspberry Pi, Problem-See Also
network name for network-attached storage, See Also
network name for Raspberry Pi, Problem-See Also
network-attached storage, Problem-See Also
printing, Problem-See Also
setting a static IP address, Problem-See Also
setup on first boot, Solution
SSH for remote access, Problem-See Also

neural network machine learning, Introduction
spoken language recognition, Solution-See Also

(see also machine learning)

Node-RED
about visual programming, Problem-See Also
autorunning on reboot, Discussion
basics, Solution
dashboard for home automation, Problem-See Also
documentation online, See Also, See Also, See Also, See Also, See Also,
See Also
flows from book on GitHub, Discussion
flows imported and exported as JSON, Discussion
inject node for scheduled events, Problem-See Also
MQTT server with, Problem-See Also

Sonoff switches with, Problem-See Also
videos that introduce, See Also
Wemos D1 with, Problem-See Also

not logical operator, Problem
notifications sent by IFTTT, Problem-See Also
numbers

comparing values, Problem
converting strings to, Problem
converting to different base, Discussion, Discussion
converting to strings, Problem
formatting, Problem-See Also
random number generation, Problem

NumPy library, Solution
Edge Impulse installation, Solution
motion detector, Solution
OpenCV installation, Solution
updating, Solution, Solution

O

objects identified via machine learning, Problem-See Also
objects reacted to via machine learning, Problem-See Also
OCR (optical character recognition), Problem
octal calculator, See Also
Octopart component search engine, Parts
OLED graphical display, Problem-See Also
one-wire interface for device data, Solution

enabling, Solution

open source code in book, Preface to the Fourth Edition

OpenCV, Problem
(see also computer vision)

opening a file
file modes, Discussion
for reading, Solution, Discussion
for reading a pickled file, Discussion
for writing, Solution, Discussion
for writing a pickled file, Discussion

operating system, Introduction-See Also
browsing files in GUI, Problem-See Also
command aliases, Problem
command-line history, Problem
concatenating files, Problem
copying file or folder, Problem-See Also
copying files onto a USB flash drive, Problem-See Also
creating a folder, Problem
creating file without using editor, Problem
deleting file or directory, Problem
devices available for recording from, Solution
editing a file, Problem-See Also
fetching code files for this book, Problem-See Also
fetching files from command line, Problem
fetching source code with git, Problem-See Also
file ownership, Problem
file permissions, Problem-See Also
filesystem navigation with Terminal, Problem-See Also
finding files, Problem
hiding output to the Terminal, Problem

installation guide online, See Also
installing onto microSD card, Problem-See Also
MicroPython for Raspberry Pi Pico, Introduction

(see also MicroPython for Raspberry Pi Pico)

microSD card test utility, Discussion
monitoring processor activity, Problem-See Also
pipe command, Problem
Python packages installed with pip, Problem
redirecting command line output to a file, Problem
renaming file or folder, Problem
running a program or script automatically as a service, Problem-See Also
running a program or script automatically at regular intervals, Problem
running a program or script automatically on startup, Problem
running programs in the background, Problem
screen captures, Problem
SD card free space determination, Problem
selecting, Problem
setting date and time, Problem
software installed with apt, Problem
software removed with apt, Problem
superuser privileges, Problem
Terminal session started, Problem-See Also
uncompressing files, Solution, Problem
updating, Problem
USB devices listed, Problem
version displayed, Problem
viewing contents of file, Problem
WiFi setup, Setting up WiFi from the desktop

optical character recognition (OCR), Problem
opto-isolator, Discussion
optoelectronics, sources for, OptoElectronics
or logical operator, Problem
organic LED (OLED) graphical display, Problem-See Also
orientation sensing, Problem-See Also
OS library for system command, Solution

documentation online, See Also

OSMC media center software, See Also
overclocking, Problem-See Also
ownership of files or folders, Problem

P

parameters for functions, Discussion
command-line arguments, Problem

parts, sources for, Parts-Miscellaneous
Octopart component search engine, Parts

passive infrared (PIR) motion detector, Solution
passwd command, Discussion
password

caution about including in code, Solution
changing, Problem
default, Solution
strong with username pi, Solution

period (.)
hidden files, Discussion
listing directories, Discussion
moving through directories, Discussion

regex single character match, Solution

Perma-Proto Pi HAT, Problem-See Also
permissions for files or folders, Problem-See Also

changing permissions, Problem
execute permissions, Discussion
file executable for owner, Discussion

photoresistors, Problem-See Also
about, Discussion
resistance converted to voltage, Problem-See Also

phototransistors, Solution
about, Discussion

Pi-View, Discussion
PiAnalog library for using analog sensors, Solution, Solution, Solution
Pibow Coupé enclosure, Solution
PiCade arcade machine kit, Discussion
picamera module, See Also
pickling data into files, Problem

JSON file format versus, Discussion

Pico-compatible boards, Solution-See Also
(see also Raspberry Pi Pico; Raspberry Pi Pico W)
Adafruit Feather RP2040, Discussion
LiPo battery attachments for, Discussion
Pimoroni Badger, Discussion-See Also
Pimoroni PicoLiPo, Discussion

piezo-electric buzzer, Problem-See Also
PIL (Python Image Library), Solution
Pimoroni

Audio DAC Shim, Solution

Badger Pico-compatible board, Discussion-See Also
Breakout Garden for Pi 400, Discussion
Breakout Garden with time-of-flight sensor, Solution
Explorer HAT Pro, Problem-See Also, See Also, Discussion
Inky pHAT or wHAT, Solution-See Also
PicoLiPo Pico-compatible, Discussion
Unicorn HAT, Problem-See Also

pinouts for GPIO, Problem-See Also, Raspberry Pi 400/4/3/2 Model B, B+,
A+, Zero-Raspberry Pi Pico

template for, Discussion

pip Python package manager, Problem
pipe command (|), Problem

history piped to grep, Discussion
ps piped to grep, Discussion

PIR (passive infrared) motion detector, Solution
pitch (orientation), Solution
plant soil moisture measured, Problem-See Also, Discussion-See Also
playing back recorded sound, Solution
Pololu motor controller boards, Discussion
pop function (Python)

dictionaries, Solution
lists, Solution

potential divider, Discussion
(see also voltage divider)

power supply
AA four-cell battery holder, Solution
batteries for Pico boards, Problem
breadboard holding leads, Solution

console cable connection, Solution
converting 5V to 3.3V with level converter module, Problem
converting 5V to 3.3V with two resistors, Problem
current draw maximum, Solution
current used by Pi, Discussion
devices 5V, Solution
GPIO 3V, Solution, Solution, Problem
GPIO-connected devices, Discussion
LEDs, Solution, Discussion
LiPo battery powering Picos, Discussion
LiPo battery powering Raspberry Pi, Problem
low-power mode of shutdown, Discussion
Pico boards, Introduction
selecting, Problem-See Also
servomotors, Discussion
WiFi power usage, Discussion

power up after shutdown, Solution
reset button for, Problem-See Also
Start button for Raspberry Pi, See Also

PowerSwitch Tail II for AC-devices, Problem
pressure of atmosphere measured, Problem-See Also
print command (MicroPython), Discussion, Discussion
print command (Python), Solution

formatting dates and times, Solution
formatting numbers, Problem-See Also

printing over the network, Problem-See Also
privileges of superuser, Problem
processor usage monitoring, Problem-See Also

prompts
prompt, Discussion
$ prompt, Discussion
>>> prompt, Discussion, Solution

prototyping board
about which to buy, Preface to the Fourth Edition
breadboard with jumper leads, Problem-See Also
Perma-Proto Pi HAT, Problem-See Also
sources for, Prototyping Equipment and Kits

prototyping equipment and kits, Preface to the Fourth Edition, Prototyping
Equipment and Kits
ps command, Discussion
pseudorandom number sequence, Discussion
publish and subscribe model of MQTT, Discussion
pull-up resistors, Problem

Pico boards, Discussion

pulse-width modulation (PWM)
about, Discussion
analog outputs on Pico boards, Introduction, Problem-See Also
analog voltmeter display, Problem-See Also
information online, See Also
LED brightness control, Solution-See Also, Problem-See Also
relays damaged by, Solution
servomotor position controlled with, Problem-See Also, Problem-See
Also
user interface for RGB LED color, Problem-See Also
user interface to control power for LEDs and motors, Problem-See Also

push switches

connecting, Problem-See Also
debouncing a button press, Problem-See Also
keypad for input, Problem-See Also
reset button, Problem-See Also
Squid Button, Problem
switch bounce, Discussion
toggling with, Problem-See Also

PuTTY terminal software for Windows, Solution
pwd command, Solution
PWM (see pulse-width modulation)
PyAudio library (Python), Solution
pygame library (Python)

documentation for mouse online, See Also
keypress detection with, Solution
mouse motion detection with, Solution
sounds played with, Discussion

pyserial library, Solution
pySerial to use serial port, Problem
Python

about code in book, Preface to the Fourth Edition
advanced concepts, Introduction-See Also
arithmetic, Problem
basics, Introduction-See Also
case sensitivity, Discussion
class inheritance, Problem
command-line arguments for programs, Problem
comparing values, Problem-See Also
conditional expressions, Problem

console, Problem-See Also
converting numbers to strings, Problem
converting strings to numbers, Problem
defining a class, Problem-See Also
defining a function, Problem
defining a method, Problem
dictionaries, Problem-See Also
displaying output, Problem
doing more than one thing at a time, Problem-See Also
editing programs with Mu, Problem-See Also
editing with Thonny, Problem
editor for, Problem
exception handling, Discussion, Problem
f-strings for evaluating code in strings, Discussion
file extension .py, Solution, Discussion
formatting dates and times, Problem
formatting language link, See Also
formatting numbers, Problem-See Also
function returning more than one value, Problem
help command, Discussion
indentation, Discussion
installing Python 2, Solution
JSON data parsed, Problem-See Also
libraries, Problem

(see also libraries (Python))

lists, Introduction-See Also
logical constants True and False, Discussion
logical operators, Problem

looping broken out of, Problem
looping for so many times, Problem
looping while some condition, Problem
MicroPython explained, Discussion
modules, Problem

(see also libraries (Python))

pickling data into files, Problem
pip package manager, Problem
playing sound file from, Problem
Python Shell for Pico, Problem-See Also
random number generation, Problem
reading from a file, Problem
reading user input, Problem
Reference Manual online, See Also
regular expressions for data entry validation, Problem
regular expressions for pattern searches, Problem-See Also
regular expressions for web scraping, Problem
running Linux commands from, Problem
running programs in Terminal, Problem
running programs with shebang, Discussion
SDK installation, Solution
searches using regular expressions, Problem-See Also
sending email from, Problem-See Also
serial port access via pySerial, Problem
sleep function, Problem
spoken language recognized, Problem-See Also
string concatenation, Problem
string extraction from another string, Problem

string holding Python code, Discussion
string length, Problem
string position within another, Problem
string replacement within another string, Problem
string variable created, Problem
strings converted to uppercase or lowercase, Problem
threading, Problem-See Also
user interfaces for, Problem-See Also
variables, Problem
version 2 versus version 3, Problem
web requests, Problem
web server, Problem
writing to a file, Problem

Python Image Library (PIL), Solution
python-smbus I2C library, Solution

Q

quadrature encoder, Problem-See Also

R

radio transmitter, Problem-See Also
radio, internet, Problem-See Also
radio-frequency identification (RFID) reader/writer, Problem-See Also
random library (Python), Solution
random number generation (Python), Problem

pseudorandom actually, Discussion
random package information online, See Also

Raspberry Pi (generally)

about, Preface to the Fourth Edition
Arduino and (see Arduino)
Bluetooth setup, Problem-See Also
booting for the first time, Problem
booting from hard disk or USB flash drive, Problem-See Also
Camera Module installation, Problem-See Also
cases for, Problem-See Also
connecting a DVI or VGA monitor, Problem
connecting the monitor, keyboard, mouse, Problem-See Also
CPU temperature measured, Problem
enclosures for, Problem-See Also
GPIO connector (see GPIO)
maximizing performance, Problem-See Also
model differences summarized, Discussion
model selection, Preface to the Fourth Edition, Problem-See Also
models based on usage, Solution, Discussion
monitor picture size adjustment, Problem-See Also
operating system (see operating system)
password change, Problem
pinouts, Raspberry Pi 400/4/3/2 Model B, B+, A+, Zero-Raspberry Pi
Pico
power supply, Problem-See Also
setup and management, Introduction

(see also setup)

shutting down, Problem

Raspberry Pi 1
overclocked, Problem-See Also
servomotor power supply, Solution

Raspberry Pi 2
overclocked, Problem-See Also
pinout, Raspberry Pi 400/4/3/2 Model B, B+, A+, Zero

Raspberry Pi 3 model B+
pinout, Raspberry Pi 400/4/3/2 Model B, B+, A+, Zero
recommendation, Solution

Raspberry Pi 4
about, Preface to the Fourth Edition
fan for, Discussion
power supply, Solution

Raspberry Pi 4 model A+ pinout, Raspberry Pi 400/4/3/2 Model B, B+, A+,
Zero
Raspberry Pi 4 model B

basics, Solution
pinout, Raspberry Pi 400/4/3/2 Model B, B+, A+, Zero

Raspberry Pi 4 model B+ pinout, Raspberry Pi 400/4/3/2 Model B, B+, A+,
Zero
Raspberry Pi 4 model Zero pinout, Raspberry Pi 400/4/3/2 Model B, B+,
A+, Zero
Raspberry Pi 400

about, Preface to the Fourth Edition
basics, Solution
F10 key to turn on, Solution, Discussion
GPIO connector, Problem-See Also
HAT adapter, Discussion
MonkMakes GPIO Adapter, Solution
pinout, Raspberry Pi 400/4/3/2 Model B, B+, A+, Zero

Raspberry Pi A+, Discussion

Raspberry Pi Camera Module
computer vision, Problem
installing, Problem-See Also
machine learning object recognition, Introduction

Raspberry Pi Compute 4, Discussion
Raspberry Pi Configuration tool

I2C setup, Solution
monitor underscan, Solution
network name changed, Setting the network name using the Raspberry Pi
Configuration tool
one-wire interface, Solution
password change, Solution
serial interface enabled, Solution
SPI enabled, Solution
SSH enabled, Solution
VNC enabled, Solution
VNC virtual monitor, Solution

Raspberry Pi Imager, Problem-See Also
booting from hard disk or USB flash drive, Problem-See Also
documentation online, See Also
headless Raspberry Pi, Problem-See Also
media center software, Solution
SSH enabled, Solution, Solution

Raspberry Pi model B rev. 1 pinout, Raspberry Pi Model B revision 1
Raspberry Pi model B rev. 2 pinout, Raspberry Pi Model B revision 2, A
Raspberry Pi OS (see operating system)
Raspberry Pi Pico, Introduction-See Also

about, Introduction-Introduction

analog (PWM) outputs, Problem-See Also
analog inputs, Introduction, Introduction, Problem-See Also
battery power, Problem
breadboard with, Problem-See Also
connecting to a computer, Problem-See Also
digital inputs, Problem-See Also
digital outputs, Problem-See Also
filesystem, Problem-See Also
firmware installed by download, Solution-Solution
firmware installed losing filesystem contents, Discussion
MicroPython installation, Solution
Pico-compatible boards, Solution-See Also
pinout, Raspberry Pi Pico
pull-up resistor on board, Discussion
Python shell, Problem-See Also
RP2040 chip datasheet online, See Also
second core (processor) use, Problem
servomotor control, Problem-See Also
Thonny support for, Solution-See Also

Raspberry Pi Pico W, Introduction-See Also
about, Introduction-Introduction
analog (PWM) outputs, Problem-See Also
analog inputs, Introduction, Introduction, Problem-Discussion
battery power, Problem
breadboard with, Problem-See Also
connecting to a computer, Problem-See Also
digital inputs, Problem-See Also
digital outputs, Problem-See Also

filesystem, Problem-See Also
firmware installed by download, Solution-Solution
firmware installed losing filesystem contents, Discussion
MicroPython installation, Solution
Pico-compatible boards, Solution-See Also
pinout, Raspberry Pi Pico
pull-up resistor on board, Discussion
RP2040 chip datasheet online, See Also
second core (processor) use, Problem
servomotor control, Problem-See Also
Thonny support for, Solution-See Also
WiFi and Bluetooth, Introduction
WiFi web server, Problem-See Also

Raspberry Pi Sense HAT (see Sense HAT)
Raspberry Pi Zero, Solution, See Also
Raspberry Pi Zero 2, Problem
Raspberry Pi Zero 2 W, Problem
Raspberry Pi Zero W

basics, Discussion
embedding, Solution, See Also

Raspberry Squid Button, Problem, Solution
Raspberry Squid RGB LED, Problem-See Also, Solution, Problem-See
Also
Raspbian version of OS, Problem

updating, Problem
version of OS displayed, Problem

raspi-config utility
camera configuration, Solution

changing password, See Also
I2C setup, Solution
information online, See Also
overclocking, Problem
serial interface enabled, Solution
setting hostname, Setting the network name using the command line (the
easy way)
sound output options, Discussion
SPI enabled, Solution
SSH enabled, Solution
underscanning, See Also
WiFi setup, Setting up WiFi using the command line

raw_input command (Python 2), Discussion
RC-522 RFID card reader/writer, Solution-See Also
re library for regular expressions (Python), Solution, Solution
read function (Python)

computer vision camera, Discussion, Solution
file, Solution
keypresses, Solution
serial port, Discussion
webpage, Solution

read function for files (MicroPython), Discussion
reading from a file, Problem

JSON file, Problem-See Also
Pico files, Discussion
Pico files in Thonny, Solution

readline function (Python), Discussion
RealVNC client software, Solution

reboot command, Discussion
rebooting Raspberry Pi, Problem
Recommended Software tool, Problem-See Also
recording and playing back sound, Solution
redirecting input (<), Discussion
redirecting output (>)

creating file without editor, Problem
/dev/null, Discussion, Problem
to a file, Problem

reed switch sensing magnet, Problem
regular expressions (regex)

for data entry validation, Problem
for pattern searches, Problem-See Also
for web scraping, Problem
information online, Solution, See Also
tester online, Discussion

relays
about, Discussion
electromechanical for high-power switching, Problem-See Also
PWM damaging, Solution
solid-state for low-voltage switching, Problem

remote access to Raspberry Pi, Solution
console cable connection, Problem-See Also
networking, Introduction

(see also networking)

SSH for command line access, Problem-See Also
VNC for graphical access, Problem-See Also

remove function (Python), Discussion

renaming files or folders, Problem
replace function (Python), See Also, Solution
reset button, Problem-See Also
resistive sensors, Problem-See Also, Problem-See Also
resistors

calculator online for series resistor values, See Also
calculator online for voltage divider, See Also
chart online for colored stripe values, See Also
converting 5V signals to 3.3V with, Problem
LED connection resistor selection, Discussion, Discussion
LED connections requiring, Discussion, Discussion
measuring resistance, Solution
methane gas sensor, Discussion
MOSFET needing, Discussion
photoresistors, Problem-See Also
pull-up resistors, Problem
pull-up resistors on Pico boards, Discussion
rotary encoders for variable resistors, Discussion
sources for, Resistors and Capacitors
thermistors, Problem-See Also
variable resistor step response, Discussion
variable resistors as sensors, Problem-See Also
voltage divider, Solution-See Also
voltage divider resistor calculator online, See Also

resolution, monitor, Problem-See Also
RetroPie software, Solution
return value

function return value, Discussion

list sort modifies original list, Discussion
returning more than one, Problem
string functions returning modified copies, Discussion

RFID reader/writer, Problem-See Also
RGB LEDs

CheerLights, Problem-See Also
matrix display, Problem-See Also
Raspberry Squid, Problem-See Also
strip display, Problem-See Also
user interface for changing color, Problem-See Also

rm command, Solution
alias requiring confirmation, Discussion

roll (orientation), Solution
rotary (quadrature) encoder, Problem-See Also
RP2040 chip datasheet online, See Also

(see also Raspberry Pi Pico; Raspberry Pi Pico W)
Pico-compatible boards, Solution-See Also

rptix project, Problem-See Also

S

Samba for network-attached storage, Problem-See Also
Scalable Vector Graphics (SVG) drawings via Inkscape, Problem
screen captures, Problem
scrot command, Solution
SD card

booting for the first time, Problem
booting from hard disk or USB flash drive, Problem-See Also
determining free space on, Problem

installing operating system onto, Problem-See Also
selecting, Discussion
shutting down properly, Discussion
test utility, Discussion
trying different operating systems, Discussion

SDK (software development kit) for Python installation, Solution
searches using regular expressions, Problem-See Also
Secure Shell (see SSH)
self variable (Python), Discussion
Sense HAT

acceleration measurement with inertial measurement, Problem-See Also
basics, Problem
documentation online, See Also, See Also, See Also
IMU information online, See Also
LED matrix display, Problem-See Also
magnet sensing with, Problem, Problem
magnetic north detected, Problem
programming reference online, See Also
Raspberry Pi 400 adapter for, Discussion
temperature/humidity/pressure measurement with, Problem-See Also

sensors, Introduction-See Also
acceleration measurement with MMA8452Q module, Problem-See Also
carbon dioxide concentration, Problem-See Also
CPU temperature measured, Problem
displaying readings on web page, Problem-See Also, Discussion-See
Also
displaying values, Problem
distance measurement with time-of-flight sensor, Problem-See Also

distance measurement with ultrasound, Problem-See Also
Inertial Measurement Unit, Problem-See Also
light measurement, Problem-See Also
logging to USB flash drive, Problem
magnet sensing with reed switch, Problem
magnet sensing with Sense HAT, Problem, Problem
magnetic north detection with Sense HAT, Problem
methane detection, Problem-See Also
Pico analog temperature sensor, Discussion
Pico writing temperatures to file, Problem-See Also
Pimoroni Badger analog temperature sensor, Discussion
resistive, Problem-See Also
resistive sensors with ADC, Problem-See Also
sending data to ThingSpeak, Problem-See Also
Sense HAT, Solution

(see also Sense HAT)

smartcard and RFID reader/writer, Problem-See Also
soil moisture, Problem-See Also, Discussion-See Also
temperature measurement, Problem-See Also

(see also temperature measurement)

temperature/humidity/pressure measurement with Sense HAT, Problem-
See Also
touch interface with capacitive touch sensing, Problem-See Also
voltage measured higher than 3.3V, Problem-See Also
voltage measurement, Problem-See Also, Problem-Discussion

serial interface for console cable connection, Solution-See Also
tutorial online, See Also

Serial Peripheral Interface (SPI), Problem-See Also

serial port
GPS raw data, Solution
pySerial installation for access to, Problem
testing with Minicom, Problem

ServoBlaster, Solution-See Also
disabling, Solution
documentation online, See Also
no audio, Solution, Solution

servomotors
about, Discussion
Adafruit servomotor HAT, Problem-See Also
continuous, Discussion
MonkMakes Servo Six board, Discussion, Discussion
MonkMakes Servo Six board documentation, See Also
multiple motors precisely controlled, Problem-See Also
Pico or Pico W controlling, Problem-See Also
position controlled with PWM, Problem-See Also
power supply, Discussion
ServoBlaster, Problem-See Also
single motor precisely controlled, Problem-See Also

setup, Raspberry Pi, Introduction-See Also
Bluetooth, Problem-See Also
booting for the first time, Problem
booting from hard disk or USB flash drive, Problem-See Also
Camera Module installation, Problem-See Also
connecting a DVI or VGA monitor, Problem
connecting the monitor, keyboard, mouse, Problem-See Also
enclosure, Problem-See Also

headless Raspberry Pi, Problem-See Also
maximizing performance, Problem-See Also
model selection, Preface to the Fourth Edition, Problem-See Also
models based on usage, Solution, Discussion
monitor picture size adjustment, Problem-See Also
operating system installation guide online, See Also
operating system onto microSD card, Problem-See Also
operating systems, Problem
password change, Problem
power supply, Problem-See Also
shutting down, Problem
time zone, Discussion

seven-segment LED display, Problem-See Also
shebang for running Python files, Discussion
Shell (Python) for Pico boards, Problem-See Also
shutting down Raspberry Pi, Problem

low-power mode of shutdown, Discussion
reset button for power up, Problem-See Also

signal conversion
with level converter module, Problem
with two resistors, Problem

Simple Mail Transfer Protocol (SMTP), Solution
SimpleMFRC522 library (Python), Solution-See Also

documentation online, See Also

Slack notifications via IFTTT, Problem-See Also
sleep function (MicroPython), Solution
sleep function (Python), Problem
slide switch

three-position (center-off), Problem-See Also
two-position, Problem

smartcard and RFID reader/writer, Problem-See Also
SMTP (Simple Mail Transfer Protocol), Solution
smtplib library (Python), Solution

documentation online, See Also

software (generally)
installing with apt, Problem
removing with apt, Problem

software (ready-made for Raspberry Pi), Introduction-See Also
Add/Remove Software tool, Discussion
bitmap image editor, Problem-See Also
Bookshelf for books and magazines, Problem
game console emulator, Problem-See Also
internet radio, Problem-See Also
laser cutter controller, Problem-See Also
media center, Problem-See Also
office software, Problem-See Also
radio transmitter, Problem-See Also
Recommended Software tool, Problem-See Also
vector image editor, Problem
Visual Studio Code, Solution-See Also

software development kit (SDK) for Python installation, Solution
soil moisture measured, Problem-See Also, Discussion-See Also
Sonoff WiFi Smart Switch

about, Solution
configuring, Problem-See Also
controlling with MQTT, Problem-See Also

flashing for MQTT use, Problem-See Also
Node-RED with, Problem-See Also

sort command (Python), Solution
sorting a list, Problem
sound, Introduction-See Also

audio output without audio jack, Problem-See Also
buzzer, Problem-See Also
headphones connected, Discussion
loudspeaker connected, Problem-See Also
output options, Problem
playing sound file from command line, Problem
playing sound file from Python, Problem
recording and playing back, Solution
ServoBlaster and no audio, Solution, Solution
speaker test Terminal command, Solution
USB microphone, Problem-See Also

sounds identified via machine learning, Problem-See Also
spoken language in Python, Problem-See Also
spoken language locally, Problem-See Also
spoken language via cloud service, Problem-See Also

source code fetched with git, Problem-See Also
SparkFun

boost regulator module, Solution
gas sensor breakout board, Solution
I2C devices, Discussion
Motor Driver module product page, See Also
sensors offered, See Also

speakers connected, Problem-See Also

SPI (Serial Peripheral Interface), Problem-See Also
split function (Python), Solution
spoken command recognized via ML

Edge Impulse cloud service, Problem-See Also
locally, Problem-See Also
Python, Problem-See Also

spreadsheet software, Problem-See Also
Squid Button, Problem, Solution
Squid RGB LEDs, Problem-See Also, Solution

CheerLights, Problem-See Also

SSD1306 driver chip for OLED display, Solution
SSH (Secure Shell)

enabled, Solution, Solution
remote access to Raspberry Pi, Problem-See Also

Start button for Raspberry Pi, See Also
static IP address set, Problem-See Also
static-sensitive devices, Solution
Steinhart-Hart equation, Discussion
Stepper Motor HAT, Problem
stepper motors

about, Solution, Discussion
bipolar, Problem-See Also
information online, See Also, See Also
Stepper Motor HAT to control, Problem-See Also
unipolar, Problem-See Also

str function (Python), Solution
strings

array of substrings from, Problem

case sensitivity of functions, Discussion
comparing, Discussion
concatenation, Problem
converting numbers to, Problem
converting to numbers, Problem
converting to uppercase or lowercase, Problem
creating, Problem
escape characters, Discussion
extracting part of, Problem
f-strings for evaluating code in strings, Discussion
functions returning modified copies, Discussion
length of, Problem
list created by parsing, Problem
list elements joined into, Discussion
position within another string, Problem
replacing characters within a string, Problem

sublists from lists, Problem
subprocess library (Python)

check_output, Discussion
documentation online, See Also
IP address fetch, Solution
playing sound file from Python, Solution

sudo command, Solution
superuser privileges, Problem
suppliers for parts, Parts-Miscellaneous

Octopart component search engine, Parts

SVG (Scalable Vector Graphics) drawings via Inkscape, Problem
switches

debouncing, Problem-See Also
long wire requiring pull-up resistor, Problem
Pico board digital inputs, Solution-See Also
push switch connection, Problem-See Also
push switch toggling, Problem-See Also
reset button, Problem-See Also
rotary (quadrature) encoder, Problem-See Also
switch bounce, Discussion, Solution
three-position (center-off) toggle or slide switch, Problem-See Also
two-position toggle or slide switch, Problem
user interface to turn things on and off, Problem

sys library for command-line arguments (Python), Solution, Solution,
Solution
system command (Python), Solution

T

Tab key to autocomplete, Discussion
tar command, Solution
tarballs, Discussion
Task Manager utility, Solution
Tasmota firmware flashed, Problem-See Also

information online, See Also

temperature measurement
CPU notification emailed via IFTTT, Solution-See Also
digital sensor for, Problem-See Also
Pico analog temperature sensor, Discussion
Pico writing to file, Problem-See Also
Pimoroni Badger using RP2040 sensor, Discussion

Raspberry Pi CPU, Problem
Sense HAT, Problem-See Also
thermistor for, Problem-See Also
TMP36 and ADC for, Problem-See Also
writing data to USB flash drive, Solution

TensorFlow for machine learning, Introduction
(see also machine learning)
information online, See Also, See Also

Terminal
case sensitivity, Discussion
command aliases, Problem
command-line history, Problem
console cable serial connection, Solution
copying files onto a USB flash drive, Discussion
copying files or folders, Problem-See Also
CUPS installation, Solution
deleting file or directory, Problem
devices available for recording from, Solution
directory created, Problem
fetching files, Problem
filesystem navigation, Problem-See Also
help via manpages, See Also
hiding output to, Problem
installing software with apt, Problem
IP address display, Solution
Python 3 console, Discussion
Python programs run from, Problem
Python Shell for Pico, Problem-See Also

raspi-config utility (see raspi-config utility)
rebooting Raspberry Pi, Solution
redirecting output to a file, Problem
renaming files or folders, Problem
running Python programs from, Problem
setting hostname, Setting the network name using the command line (the
easy way)
sound file played from, Problem
speaker test command, Solution
SSH remote connection to Pi, Solution
starting a session, Problem-See Also
superuser privileges, Problem
updating operating system, Solution
WiFi setup, Setting up WiFi using the command line
Windows PuTTY terminal software, Solution

Tesseract (OCR software), Problem
testing

breadboard power supply leads, Solution
breadboard with jumper leads, Problem-See Also
debugging in Python, Discussion
measuring resistance, Solution
microSD card test utility, Discussion
Python console, Problem-See Also
Python console command help, Discussion
Squid Button, Discussion

text commands, Problem-See Also
(see also Terminal)

text editors (see editors)

text extracted from image, Problem
thermistors, Problem-See Also
ThingSpeak

about, Solution
documentation online, See Also
sensor data sent to, Problem-See Also
tweets sent with, Problem-See Also

Thonny editor
MicroPython installation onto Pico, Solution
MicroPython interpreter, Solution
Pico and Pico W support, Solution-See Also
Python program editing, Problem
reading files written by Pico boards, Solution

_thread library (MicroPython), Solution
threading library (Python), Solution-See Also
threads in MicroPython, Problem
threads in Python, Problem-See Also
three-position (center-off) switch, Problem-See Also
throttling, Solution
time

device on and off times scheduled, Problem-See Also
formatting output of, Problem
setting, Problem

time library for sleep function (Python), Solution
time zone, Discussion
time-delaying sleep function (Python), Problem
time-of-flight (ToF) sensor

displaying values, Problem

distance measurement, Problem-See Also

time.sleep function (Python), Discussion
TMP36 temperature sensor, Problem-See Also

datasheet online, See Also

toggle switches
information online, See Also
three-position (center-off), Problem-See Also
two-position, Problem
types of, Discussion

toggling with a push switch, Problem-See Also
top command, Discussion

htop command for more information, Discussion

touch command, Discussion
touch sensors, Problem-See Also
transistors

MOSFET, Solution-See Also
MOSFET datasheet online, See Also
MOSFET logic-level version, Discussion
MOSFET resistor, Discussion
phototransistors, Solution, Discussion
relay for switching a high-power device, Problem-See Also
sources for, Transistors and Diodes
switching high-power LEDs with, Problem-See Also

trimpot as variable resistor, Solution
(see also variable resistors)

try/except construct (Python), Discussion, Solution
tuples (Python), Solution

machine learning events, Discussion

TV connection, Problem-See Also
Twitter

CheerLights project, Problem
IFTTT for sending notifications, Problem-See Also
responding using Dweet and IFTTT, Problem-See Also
tweets sent using ThingSpeak, Problem-See Also

U

ULN2803 Darlington driver chip, Solution
ultrasonic rangefinder, Problem-See Also
unipolar stepper motors, Problem-See Also
updates

apt available software list, Discussion
network connection on first boot, Solution
NumPy library, Solution, Solution
operating system, Problem

upper function (Python), Solution
urllib library for HTTP requests (Python), Solution
USB camera for computer vision, Problem-See Also

(see also computer vision)

USB devices listed, Problem
USB flash drive

booting from, Problem-See Also
copying files onto, Problem-See Also
formatting, Solution
logging to, Problem
/media/pi folder, Discussion

USB hard drive for network-attached storage, Problem-See Also

USB hub for additional connectors, Discussion
USB keyboard keypresses intercepted, Problem
USB microphone, Problem-See Also
USB sound card, Discussion
user account

caution about username in code, Solution
changing password, Problem
creating, Solution
logging out, Problem

user interface
Adafruit servomotor HAT, Solution
browsing files in GUI, Problem-See Also
creating, Problem-See Also
Node-RED visual programming tool, Problem-See Also
PWM power for LEDs and motors, Problem-See Also
RGB LED color, Problem-See Also
sensor readings on a web page, Discussion
servomotor position control, Solution
speed control of DC motor, Solution
turning things on and off, Problem
VNC for remote access to Pi, Problem-See Also

username “pi”, Solution
$ prompt, Discussion

utime library for sleep (MicroPython), Solution

V

variable resistors
rotary (quadrature) encoders instead, Discussion

sensors, Problem-See Also
step response, Discussion-See Also

variables
argv for command-line arguments, Solution
arithmetic operators with, Problem
assigning values to, Problem
comparing values, Problem-See Also
displaying value of, Problem
evaluated while inside a string, Discussion
lists, Problem

(see also lists in Python)

loop variable, Discussion
member variables of class definitions, Discussion
self for class methods, Discussion
strings, Problem

(see also strings)

vector image editor, Problem
VGA monitor, connecting, Problem
Vim editor, See Also
vision (see computer vision)
Visual Studio Code (VS Code; Microsoft), Solution-See Also
VL53L1X I2C ToF sensor, Solution-See Also
VLC media player, Problem-See Also

playing sound file from Python, Solution
sound played from command line, Solution

VNC (Virtual Network Computing) for remote control of Pi, Problem-See
Also

RealVNC client software, Solution

voltage conversion
converting 5V signals to 3.3V with two resistors, Problem
with level converter module, Problem

voltage divider, Solution-See Also
about, Discussion
resistance converted to voltage, Problem-See Also
resistor calculator online, See Also

voltage measurement
using an ADC, Problem-See Also
voltage higher than 3.3V, Problem-See Also

voltmeters
analog meter as display, Problem-See Also
analog meter in MicroPython on Pico, Problem-Discussion

VS Code (Visual Studio Code; Microsoft), Solution-See Also

W

WAV files played via aplay command, Discussion
web interface

about, Discussion
displaying sensor readings on web page, Problem-See Also, Discussion-
See Also
GPIO output control with, Problem-See Also
Node-RED visual programming tool, Problem-See Also

(see also Node-RED)

reloading page via JavaScript, Discussion

web page for this book, Solution
web requests from Python, Problem

CPU too hot, Solution

IFTTT trigger, Solution
sensor data sent to ThingSpeak, Solution-See Also
tweet via ThingSpeak, Solution
tweets responded to via Dweet and IFTTT, Problem-See Also

web scraping, Problem
web server in Python, Problem
web server on Pico W, Problem-See Also
web server on Sonoff Smart Switch, Discussion
webcam

computer vision, Problem-See Also
(see also computer vision)

machine learning object recognition, Introduction

Wemos D1 WiFi board
Node-RED with, Problem-See Also
publishing MQTT messages, Problem-See Also

wget command, Solution
while statement (Python), Solution
whistling detected via machine learning, Problem-See Also
WiFi board

Node-Red with, Problem-See Also
publishing MQTT messages, Problem-See Also

WiFi connection setup, Solution, Problem
adapters compatible with Raspberry Pi, See Also
power supply, Discussion

WiFi module in Raspberry Pi Pico W, Introduction
WiFi web server, Problem-See Also

WiFi Smart Switch
configuring, Problem-See Also

MQTT with, Problem-See Also

wildcard * character
crontab for executing scripts, Discussion
finding files, Discussion
listing files, Discussion
removing files, Solution

Windows
console cable connection, Solution
network-attached storage connection, Discussion
PuTTY terminal software, Solution
SSH remote connection to Pi, Solution
VNC remote connection to Pi, Problem-See Also

wired networks, connecting to, Problem-See Also
word processing software, Problem-See Also
write function (Python)

file, Solution
serial port, Discussion

write function for files (MicroPython), Discussion
writing to a file (MicroPython), Problem-See Also
writing to a file (Python), Problem

CSV format to USB flash drive, Problem

X

Xarchiver tool, Solution, Discussion

Y

yaw (orientation), Solution

Z

ZIP file extracted, Solution, Discussion

About the Author
Dr. Simon Monk (Preston, UK) has a degree in cybernetics and computer
science and a PhD in software engineering. Simon spent several years as an
academic before he returned to the industry, cofounding the mobile
software company Momote Ltd. Simon divides his time between writing
books and designing products for MonkMakes (the company his wife Linda
runs). You can find out more about his books at http://www.simonmonk.org
or follow him on Twitter @simonmonk2.

http://www.simonmonk.org/
https://twitter.com/simonmonk2

Colophon
The animal on the cover of Raspberry Pi Cookbook is a Eurasian
sparrowhawk (Accipiter nisus), which also goes by the name northern
sparrowhawk, or simply sparrowhawk. This small bird of prey is found
throughout the Old World. Adult males have bluish-gray upper plumage
and orange-barred underparts; females and younger birds are all brown with
brown-barred underparts. Females are up to 25% larger than males.
The sparrowhawk specializes in preying on woodland birds but can be
found in many habitats, hunting garden birds in towns or cities. Males favor
hunting smaller birds—finches and sparrows, for example—while females
tend to catch thrushes and starlings and are capable of killing birds
weighing up to 18 ounces or more.
Eurasian sparrowhawks breed in nests that are built with twigs and can
measure up to two feet across. Afterward, four or five pale blue, brown-
spotted eggs are laid. Success of breeding relies on females maintaining a
high weight; it’s the male’s duty to deliver food to its mate during the
nesting period. After 33 days, the chicks hatch, and they fledge after 24 to
28 days.
A juvenile sparrowhawk has a 34% chance of surviving its first year. After
that, its chance of survival more than doubles, with 69% of adults surviving
from one year to the next. The typical lifespan of these birds is four years,
with mortality being greater for young males than for young females. The
use of organochlorine insecticides to treat seeds before sowing has been
known to incapacitate or kill sparrowhawks; those affected lay fragile-
shelled eggs that break during incubation. Despite a sharp population
decline after WWII, the sparrowhawk has become the most common bird of
prey in Europe, due to the banning of such chemicals.
Its conservation status is currently classified as of Least Concern. Many of
the animals on O’Reilly covers are endangered; all of them are important to
the world.
The cover illustration is by Karen Montgomery, based on a black-and-white
engraving from Cassell’s Natural History. The cover fonts are Gilroy

Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface to the Fourth Edition
	Using This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Setup and Management
	1.0. Introduction
	1.1. Selecting a Model of Raspberry Pi
	1.2. Connecting the System
	1.3. Enclosing a Raspberry Pi
	1.4. Selecting a Power Supply
	1.5. Selecting an Operating System
	1.6. Installing an Operating System Using Raspberry Pi Imager
	1.7. Booting Up Your Raspberry Pi for the First Time
	1.8. Setting Up a Headless Raspberry Pi
	1.9. Booting from a Real Hard Disk or USB Flash Drive
	1.10. Connecting a DVI or VGA Monitor
	1.11. Using a Composite Video Monitor/TV
	1.12. Adjusting the Picture Size on Your Monitor
	1.13. Maximizing Performance
	1.14. Changing Your Password
	1.15. Shutting Down Your Raspberry Pi
	1.16. Installing the Raspberry Pi Camera Module
	1.17. Using Bluetooth

	2. Networking
	2.0. Introduction
	2.1. Connecting to a Wired Network
	2.2. Finding Your IP Address
	2.3. Setting a Static IP Address
	2.4. Setting the Network Name of a Raspberry Pi
	2.5. Setting Up a Wireless Connection
	2.6. Connecting with a Console Lead
	2.7. Controlling the Pi Remotely with SSH
	2.8. Controlling the Pi Remotely with VNC
	2.9. Using a Raspberry Pi for Network-Attached Storage
	2.10. Setting Up a Network Printer

	3. Operating System
	3.0. Introduction
	3.1. Browsing Files Graphically
	3.2. Copying Files onto a USB Flash Drive
	3.3. Starting a Terminal Session
	3.4. Navigating the Filesystem Using a Terminal
	3.5. Copying a File or Folder
	3.6. Renaming a File or Folder
	3.7. Editing a File
	3.8. Viewing the Contents of a File
	3.9. Creating a File Without Using an Editor
	3.10. Creating a Directory
	3.11. Deleting a File or Directory
	3.12. Performing Tasks with Superuser Privileges
	3.13. Understanding File Permissions
	3.14. Changing File Permissions
	3.15. Changing File Ownership
	3.16. Making a Screen Capture
	3.17. Installing Software with apt
	3.18. Removing Software Installed with apt
	3.19. Installing Python Packages with pip3
	3.20. Fetching Files from the Command Line
	3.21. Fetching Source Code with Git
	3.22. Fetching This Book’s Accompanying Code
	3.23. Running a Program Automatically on Startup
	3.24. Running a Program Automatically as a Service
	3.25. Running a Program Automatically at Regular Intervals
	3.26. Finding a File
	3.27. Using the Command-Line History
	3.28. Monitoring Processor Activity
	3.29. Working with File Archives
	3.30. Listing Connected USB Devices
	3.31. Redirecting Output from the Command Line to a File
	3.32. Concatenating Files
	3.33. Using Pipes
	3.34. Hiding Output to the Terminal
	3.35. Running Programs in the Background
	3.36. Creating Command Aliases
	3.37. Setting the Date and Time
	3.38. Finding Out How Much Room You Have on the SD Card
	3.39. Finding Out What Operating System Version You Are Running
	3.40. Updating Raspberry Pi OS

	4. Using Ready-Made Software
	4.0. Introduction
	4.1. Making a Media Center
	4.2. Installing Recommended Software
	4.3. Using Office Software
	4.4. Running a Vintage Game Console Emulator
	4.5. Turning Your Raspberry Pi into a Radio Transmitter
	4.6. Editing Bitmap Images
	4.7. Editing Vector Images
	4.8. Using Bookshelf
	4.9. Playing Internet Radio
	4.10. Using Visual Studio Code
	4.11. Controlling a Laser Cutter

	5. Python Basics
	5.0. Introduction
	5.1. Deciding Between Python 2 and Python 3
	5.2. Choosing a Python Editor
	5.3. Editing Python Programs with Thonny
	5.4. Editing Python Programs with Mu
	5.5. Using the Python Console
	5.6. Running Python Programs from the Terminal
	5.7. Assigning Names to Values (Variables)
	5.8. Displaying Output
	5.9. Reading User Input
	5.10. Using Arithmetic Operators
	5.11. Creating Strings
	5.12. Concatenating (Joining) Strings
	5.13. Converting Numbers into Strings
	5.14. Converting Strings into Numbers
	5.15. Finding the Length of a String
	5.16. Finding the Position of One String Within Another
	5.17. Extracting Part of a String
	5.18. Replacing One String of Characters with Another Within a String
	5.19. Converting a String to Uppercase or Lowercase
	5.20. Running Commands Conditionally (if)
	5.21. Comparing Values
	5.22. Using Logical Operators
	5.23. Repeating Instructions an Exact Number of Times
	5.24. Repeating Instructions Until Some Condition Changes
	5.25. Breaking Out of a Loop
	5.26. Defining a Function in Python

	6. Python Lists and Dictionaries
	6.0. Introduction
	6.1. Creating a List
	6.2. Accessing Elements of a List
	6.3. Finding the Length of a List
	6.4. Adding Elements to a List
	6.5. Removing Elements from a List
	6.6. Creating a List by Parsing a String
	6.7. Iterating Over a List
	6.8. Enumerating a List
	6.9. Testing if Something Is in a List
	6.10. Sorting a List
	6.11. Cutting Up a List
	6.12. Using Comprehensions
	6.13. Creating a Dictionary
	6.14. Accessing a Dictionary
	6.15. Removing Entries from a Dictionary
	6.16. Iterating Over Dictionaries

	7. Advanced Python
	7.0. Introduction
	7.1. Formatting Numbers
	7.2. Formatting Dates and Times
	7.3. Returning More Than One Value
	7.4. Defining a Class
	7.5. Defining a Method
	7.6. Inheritance
	7.7. Writing to a File
	7.8. Reading from a File
	7.9. Using Pickling to Save and Load Data in a File
	7.10. Handling Exceptions
	7.11. Using Modules
	7.12. Generating Random Numbers
	7.13. Making Web Requests from Python
	7.14. Specifying Command-Line Arguments in Python
	7.15. Running Linux Commands from Python
	7.16. Sending Email from Python
	7.17. Writing a Simple Web Server in Python
	7.18. Doing Nothing in Python
	7.19. Doing More Than One Thing at a Time
	7.20. Parsing JSON Data
	7.21. Saving Dictionaries as JSON Files
	7.22. Creating User Interfaces
	7.23. Using Regular Expressions to Search for Patterns in Text
	7.24. Using Regular Expressions to Validate Data Entry
	7.25. Using Regular Expressions for Web Scraping

	8. Computer Vision
	8.0. Introduction
	8.1. Installing OpenCV
	8.2. Setting Up a USB Camera for Computer Vision
	8.3. Using a Raspberry Pi Camera Module for Computer Vision
	8.4. Counting Coins
	8.5. Face Detection
	8.6. Motion Detection
	8.7. Extracting Text from an Image

	9. Machine Learning
	9.0. Introduction
	9.1. Identifying Objects in Video with TensorFlow Lite
	9.2. Reacting to Objects in Video with TensorFlow Lite
	9.3. Identifying Sounds with TensorFlow Lite
	9.4. Reacting to a Whistle with TensorFlow Lite
	9.5. Installing Edge Impulse
	9.6. Recognizing a Spoken Command (in the Cloud)
	9.7. Recognizing a Spoken Command (Locally)
	9.8. Responding to a Spoken Command in Python

	10. Hardware Basics
	10.0. Introduction
	10.1. Finding Your Way Around the GPIO Connector
	10.2. Using the GPIO Connector on a Raspberry Pi 400
	10.3. Keeping Your Raspberry Pi Safe When Using the GPIO Connector
	10.4. Setting Up I2C
	10.5. Using I2C Tools
	10.6. Setting Up SPI
	10.7. Installing pySerial for Access to the Serial Port from Python
	10.8. Installing Minicom to Test the Serial Port
	10.9. Using a Breadboard with Jumper Leads
	10.10. Using a Raspberry Squid
	10.11. Using a Raspberry Squid Button
	10.12. Converting 5V Signals to 3.3V with Two Resistors
	10.13. Converting 5V Signals to 3.3V with a Level Converter Module
	10.14. Powering a Raspberry Pi with a LiPo Battery
	10.15. Getting Started with the Sense HAT
	10.16. Getting Started with the Explorer HAT Pro
	10.17. Making a HAT
	10.18. Using the Raspberry Pi Zero 2 and Pi Zero 2 W

	11. Controlling Hardware
	11.0. Introduction
	11.1. Connecting an LED
	11.2. Leaving the GPIO Pins in a Safe State
	11.3. Controlling the Brightness of an LED
	11.4. Switching a High-Power DC Device Using a Transistor
	11.5. Switching a High-Power Device Using a Relay
	11.6. Switching Using a Solid-State Relay
	11.7. Controlling High-Voltage AC Devices
	11.8. Controlling Hardware with Android and Bluetooth
	11.9. Making a User Interface to Turn Things On and Off
	11.10. Making a User Interface to Control PWM Power for LEDs and Motors
	11.11. Making a User Interface to Change the Color of an RGB LED
	11.12. Using an Analog Meter as a Display

	12. Motors
	12.0. Introduction
	12.1. Controlling Servomotors
	12.2. Controlling Servomotors Precisely
	12.3. Controlling Multiple Servomotors Precisely
	12.4. Controlling the Speed of a DC Motor
	12.5. Controlling the Direction of a DC Motor
	12.6. Using a Unipolar Stepper Motor
	12.7. Using a Bipolar Stepper Motor
	12.8. Using a Stepper Motor HAT to Drive a Bipolar Stepper Motor

	13. Digital Inputs
	13.0. Introduction
	13.1. Connecting a Push Switch
	13.2. Toggling with a Push Switch
	13.3. Using a Two-Position Toggle or Slide Switch
	13.4. Using a Center-Off Toggle or Slide Switch
	13.5. Debouncing a Button Press
	13.6. Using an External Pull-Up Resistor
	13.7. Using a Rotary (Quadrature) Encoder
	13.8. Using a Keypad
	13.9. Detecting Movement
	13.10. Adding GPS to the Raspberry Pi
	13.11. Intercepting Keypresses
	13.12. Intercepting Mouse Movements
	13.13. Giving the Raspberry Pi a Reset Button

	14. Sensors
	14.0. Introduction
	14.1. Using Resistive Sensors
	14.2. Measuring Light
	14.3. Measuring Temperature with a Thermistor
	14.4. Detecting Methane
	14.5. Measuring Air Quality (CO2)
	14.6. Measuring Soil Moisture
	14.7. Measuring a Voltage
	14.8. Reducing Voltages for Measurement
	14.9. Using Resistive Sensors with an ADC
	14.10. Measuring Temperature with an ADC
	14.11. Measuring the Raspberry Pi CPU Temperature
	14.12. Measuring Temperature, Humidity, and Pressure with a Sense HAT
	14.13. Measuring Temperature Using a Digital Sensor
	14.14. Measuring Acceleration with an MMA8452Q Module
	14.15. Finding Magnetic North with the Sense HAT
	14.16. Using the Inertial Measurement Unit of the Sense HAT
	14.17. Sensing a Magnet with a Reed Switch
	14.18. Sensing a Magnet with the Sense HAT
	14.19. Measuring Distance Using Ultrasound
	14.20. Measuring Distance Using a Time-of-Flight Sensor
	14.21. Adding Touch Sensing to Your Raspberry Pi
	14.22. Reading Smart Cards with an RFID Reader/Writer
	14.23. Displaying Sensor Values
	14.24. Logging to a USB Flash Drive

	15. Displays
	15.0. Introduction
	15.1. Using a Four-Digit LED Display
	15.2. Displaying Graphics on an I2C LED Matrix
	15.3. Using the Sense HAT LED Matrix Display
	15.4. Using an OLED Graphical Display
	15.5. Using Addressable RGB LED Strips
	15.6. Using the Pimoroni Unicorn HAT
	15.7. Using an ePaper Display

	16. Sound
	16.0. Introduction
	16.1. Connecting a Loudspeaker
	16.2. Controlling Where Sound Is Output
	16.3. Playing Audio on a Raspberry Pi Without an Audio Socket
	16.4. Playing Sound from the Command Line
	16.5. Playing Sound from Python
	16.6. Using a USB Microphone
	16.7. Making a Buzzing Sound

	17. The Internet of Things
	17.0. Introduction
	17.1. Controlling GPIO Outputs Using a Web Interface
	17.2. Displaying Sensor Readings on a Web Page
	17.3. Getting Started with Node-RED
	17.4. Sending Email and Other Notifications with IFTTT
	17.5. Sending Tweets Using ThingSpeak
	17.6. Changing LED Color Using CheerLights
	17.7. Sending Sensor Data to ThingSpeak
	17.8. Responding to Tweets Using Dweet and IFTTT

	18. Home Automation
	18.0. Introduction
	18.1. Making a Raspberry Pi into a Message Broker with Mosquitto
	18.2. Using Node-RED with an MQTT Server
	18.3. Flashing a Sonoff WiFi Smart Switch for MQTT Use
	18.4. Configuring a Sonoff WiFi Smart Switch
	18.5. Using Sonoff Web Switches with MQTT
	18.6. Using Flashed Sonoff Switches with Node-RED
	18.7. Turning Things On and Off Using the Node-RED Dashboard
	18.8. Scheduling Events with Node-RED
	18.9. Publishing MQTT Messages from a Wemos D1
	18.10. Using a Wemos D1 with Node-RED

	19. Raspberry Pi Pico and Pico W
	19.0. Introduction
	19.1. Connecting a Pico or Pico W to a Computer
	19.2. Using the Python Shell on a Pico
	19.3. Using a Pico with a Breadboard
	19.4. Using Digital Outputs on a Pico
	19.5. Using Digital Inputs on a Pico
	19.6. Using Analog (PWM) Outputs on a Pico
	19.7. Using Analog Inputs on a Pico
	19.8. Controlling a Servomotor from a Pico
	19.9. Using the Pico and Pico W’s Filesystem
	19.10. Making Use of the Second Core
	19.11. Running a WiFi Web Server on the Pico W
	19.12. Using Pico-Compatible Boards
	19.13. Using the Pico on Batteries

	A. Parts and Suppliers
	Parts
	Prototyping Equipment and Kits
	Resistors and Capacitors
	Transistors and Diodes
	Integrated Circuits
	OptoElectronics
	Modules
	Miscellaneous

	B. Raspberry Pi Pinouts
	Raspberry Pi 400/4/3/2 Model B, B+, A+, Zero
	Raspberry Pi Model B revision 2, A
	Raspberry Pi Model B revision 1
	Raspberry Pi Pico

	Index

