

Artificial Intelligence,

IOT and machine Learning

AI programs using Python

A Beginners book

Praveen K Donepudi

Table of Contents

Preface:

About the author:

Chapter 1 Introduction to the Digital World

1.1.
 Common smart applications in use today:

1.2.
 Components of a digital system:

Chapter 2 A gentle introduction to Artificial Intelligence and its applications in the Digital world

2.1.
 What is Artificial intelligence:

2.1.1.
 Example (Image classification):

2.1.2.
 Another Example (Google Maps):

2.2.
 Types of Artificial intelligence (AI):

2.2.1.
 Strong AI:

2.2.2.
 Weak AI:

Chapter 3 Machine learning and its examples in technologies found today

3.1.
 What is Machine learning:

3.2.
 Types of machine learning:

3.2.1.
 Supervised learning:

3.2.2.
 Regression:

3.3.
 Unsupervised learning:

3.3.1.

 Recommendation systems:

3.3.2.
 Anomaly detection:

3.4.
 Reinforcement learning:

Chapter 4 Deep neural networks and its applications in the real world

4.1.
 What is Deep learning:

4.2.
 What are artificial neural networks (ANNs) and how do they resemble the human brain:

4.2.1.
 In Biological context:

4.3.
 Popular Algorithms:

4.3.1.
 Convolution neural networks (CNN) and its major components:

4.3.2.
 Recurrent neural networks (RNN):

4.4.
 Interesting Applications:

Chapter 5 Project: Cats versus dogs classifier

5.1.
 Download Anaconda:

5.1.1.
 Website:

5.2.
 Setup our deep learning environment:

5.3.
 Step by step code of our Deep learning classifier:

5.3.1.
 Download Dataset:

5.3.2.
 Opening up our environment:

5.3.3.
 Network Architecture:

5.4.
 Test the model:

5.4.1.
 Complete code:

5.4.2.

 Visualize Data:

5.4.3.
 Results:

5.4.4.
 Correlations in testing results of our classifier:

5.5.
 Deploy the web application (Internet of things):

5.5.1.
 Code for generating predictions for our server:

5.5.2.
 Deploy the Application:

5.5.3.
 Further Recommendations:

Preface:

The world we live in is an ocean of digital technology, from our handheld smart devices to YouTube, Instagram and Snapchat are examples of technological advancements found today but what makes them so addicting? How do they work and what is their purpose in our daily lives? This book aims to cover all the answers to these questions by introducing you to the intelligent digital world in which we live in specifically artificial intelligence, machine learning and deep learning will be discussed in terms of their applications in commonly used devices.

Python is an easy and user-friendly computer programming language which anyone can learn and Keras is an open-source deep learning framework with its backend known as Tenorflow to support deep learning applications, interestingly we’ll create our intelligent application with the help of Artificial intelligence (AI) tools and techniques moreover we will deploy our created application as a web application so that your family and friends can see the power of AI.

After completing this book, you will be able to create your deep learning applications and deploy them on webservers in commonly found problems and will have a solid intuitive background on the working of these algorithms.

About the author:

[image:]

As a child, Praveen Donepudi dreamed of becoming a great athlete, but instead became well-known in the communications and information tech industries,
 particularly as an enterprise architect in the IT industry, and he is also a portfolio entrepreneur with interests in multiple small independent businesses. Praveen is also a devoted husband, a loving father, and, of course, a writer.

All of the above keep Praveen’s life busy and fulfilling, but that has not stopped him from penning not only the stories that he used to make up to send his daughters off to sleep at bedtime, but also any number of articles, e-books and books, both fiction and non-fiction.

Praveen’s work has appeared in such notable international publications as Forbes India, Yahoo Finance, Thrive Global and many more, most often dealing with technology and enterprise architecture based topics, such as the Internet of Things (in which deals with the connectedness of everyday physical objects that form internet-based networks, such as smart homes and similar items), Artificial Intelligence (in which machines work at high rates of cognitive thinking that resemble human logic), machine learning, and neural networks, as well as on finance and marketing. He is also associated with several middleware practices which help applications and operating systems work seamlessly despite differences in age and coding.

Many of Praveen’s articles are to be found in Scopus Indexed Journals – a large database of academically solid journals and publications that appear in the form of both ISSN publications (serial publications like journals, magazines and annuals) and IBSN (standalone publications such as books, monographs and the like.) Significant conference papers and seminar presentation papers may also be included – indicating that Praveen’s writing is academically rigorous and informatively important.

Not content to sit on his laurels as an author, Praveen gives back too, sitting on the board of a number of journals and providing peer review feedback on submitted pieces.

Away from the office, Praveen loves to travel with his family, seeing all the beauties of nature and the best of mankind and seeing the world not only as it should be, but as it is. He writes for children all over the world in order to impart not only specific knowledge but a love of learning in his readership that will encourage them to ask questions and learn about the world and what they can do to improve on it as well as living out their own dreams.

Praveen’s family consists of his beautiful wife, Lakshmi, and his two lively daughters, Shivika and
 Shanvika, who were his direct inspiration for writing for children. Making up on-the-spot stories for his girls boosted his creativity and Praveen began to jot the stories down with a view to publishing them: yet another goal he has achieved very successfully!

Praveen’s stories always hide a moral or message of being positive and enduring the bad times in order to enjoy the good, but they are often so skillfully woven into the tale that the reader is hardly aware that they are receiving an education at the same time as enjoying an entertaining yarn!

Chapter 1

Introduction to the Digital World

We are living in a world of technology where everything is accessible and easy to reach, want to watch a movie? Hop on to Netflix, stuck in the middle of a city, just open Google Maps to navigate your way or if you want to make a purchase thousands of miles away, just use your credit card and it’ll come right at your doorstep or even better if you don’t want to drive yourself buy a self-driving car and doze off in your car while the car will take you to your desired location. So you see, we are surrounded by digital technology. The goal of this chapter is to get you familiarized with the applications of smart digital technology commonly used these days; specifically we will be looking at:

	
Common smart applications in use today.

	
Components to make up a digital system.

[image:]

1.1. Common smart applications in use today:

We are constantly bombarded with “intelligent” applications in use today if you look at a common household having access to the Internet you may find:

	
Computer games such as Mario super bros in which as you progress further, Mario speeds up, the monsters get tougher and tougher, and you have to be very careful while playing the game so
 that you are not caught up and lose your life, fortunately, a smart computer program can play for you without taking up your efforts, exciting!

[image:]

Intelligent application that plays Mariobros itself

	
YouTube and Netflix, which gives you your favourite TV shows, movies and
 music based on your taste only.

[image:]

	
Weather forecast, which tells you the weather of the next seven days or even more, based on the data from previous days.

[image:]

Weather forecast

	
Social Media which lets you interact with your friends, allows you to edit your pictures based on the wide variety of filters they have such as to put a hat on your head and glasses on your nose
 artificially also news feed on social media is shown based on your interests such as if you click on “Naruto” series which is an “Anime” you will get posts based on Anime only, this is the beauty or the danger of social media which lets you consume most of your daily hours daily on social media.

[image:]

Human and machine interaction

	
Suppose your Dad or Mum is driving alone and they need to call you but they are too much busy on the road all they would need to do is to press the “home” button in their smartphone long enough to open their Digital Assistants
 such as Alexa or Siri and tell it to call you, Alexa or Siri will automatically search your name in the phone book and call your or even text you converting your mum’s or dad’s voice speech of your name into text and you’ll be called without worrying about traffic at all.

[image:]

Dad calls son using Digital Assistant

	
The most common use of digital technology can be found in the auto-correction application of your smartphone when you type a wrong text and the application automatically corrects it for you.

1.2.
 Components of a digital system:

Have a look at the block diagram:

[image:]

	

User Input:
 This is the input by you or your friends or parents to an application such as Instagram or YouTube, you search for the content you want to see.

	

Digital processing:
 This is the usage of the application, for example, you edit your pictures or videos before posting them, making them look “cooler” or the “search engine” on YouTube gives you content based on your interests only by somehow reading your mind, so you see there is a system which is doing all this for you and we’ll discuss these systems in later chapters.

	

Output:
 This is the output, in this case, the edited photo with the perfect colour
 blend or the videos, which you love to see, or the posts which you want to check on your news feed.

[image:]

Working of a Snapchat filter to edit photos

	
Conclusion:

In this chapter, we looked at the wide applications of the smart digital technology in use today, which has made yours and your loved ones life easier and comfortable. We looked at the components of digital systems and ways these algorithms work, next you will be introduced to the detailed working of these smart
 devices in use today, see you in the next tutorial.

Chapter 2

A gentle introduction to Artificial Intelligence and its applications in the Digital world

We are living in an age of smart digital technology where robots can play football, a robot such as Sophia can understand and analyze your speech to tell you what you like only without breaking your heart and robotic agents are getting smarter at playing video games better than humans play. This chapter aims at introducing you to the capacious world of Artificial intelligence, which is commonly used in almost all the daily applications you use, specifically we will look at:

	
What is Artificial intelligence or AI and some examples?

	
Types of AI.

[image:]

Types of
 Artificial intelligence

2.1.
 What is Artificial intelligence:

“Artificial intelligence” as the name suggests is giving “intelligence” to something similar to humans to perform tasks close to or even better than humans. Summed up in a few words we can say that:

“The science of making machines intelligent is called artificial intelligence.”

Now the question is how do you define intelligence? And the answer will be the way a person reacts, responds to his/her environment and makes decisions to solve a particular set of problems is called an individual’s intelligence now let’s see by an example the way a machine exhibits almost the same human properties.

[image:]

Artificial intelligence interacting with humans

2.1.1.
 Example (Image classification):

Suppose a child sees a car for the first time he’ll ask his parents about it and they’ll tell him that it is a car, so based on its shape and metallic coloured surfaces, the child will know that is a car and the next time the child sees that particular shaped object of metallic colour, it’ll know that it is a car but how can a machine tell that it is a car? Let us see.

	
A “system” or in computer words a “computer program” is written in a computer programming
 language, the language can be either python or C++ and R etc.

	
The program will be given some images to be trained on, based on the programming analogy these are called training images similar to a child that sees the cars for the first time, the program will also look at the images for the first time when it is trained on training images.

	
When the child sees the car for the next time it’ll know that it is a car because his parents told him that the particular shaped object is a car, similarly, in a computer artificial intelligence program, the distinctive features will be extracted from the cars data that it is trained on features such as streamlined shape, polished colour, rear and front lights and shape of tires etc. Based on what it has seen before when the program is prompted for the result on unseen images it will output most likely a “car” if training parameters are tuned properly which we will discuss in
 subsequent chapters.

	
Similarly, if you have many images to classify from the algorithm will look at the features of images from each class such as “car”, “motorbike” and “truck” etc. Based on features such as size, shape and colour it will tell the respective class when prompted for the output based on what it has seen before.

[image:]

Car versus motorbike prediction

2.1.2.
 Another Example (Google Maps):

Suppose you have lost your way in the midst of a city and you are trying to navigate your way with Google Maps
 , this is how the algorithm works:

	
The algorithm records continuous traffic data from different times of the day such as 7 am-8 am or 9 pm-10 pm, each hour’s data is recorded and stored.

	
The recorded data gives information of traffic on different times of the day in a particular area, the “system” or “program” analyses the traffic congestion of future based on previous time of the day as well as the current time.

	
The Google maps algorithm works out the shortest path for you based on your current location by analyzing the traffic conditions around as well as the road quality conditions such as whether it is paved or unpaved to then find out the shortest path for you.

	
So summed up:

If you have lost your way in a city and want to get to your desired location Google maps
 will predict path based on previous and current values of traffic as well as road quality conditions. This is the beauty of artificial intelligence that it finds patterns in data and generates results on those specific patterns.

[image:]

Working of Google maps

2.2. Types of Artificial intelligence
 (AI):

2.2.1.
 Strong AI:

A strong AI can think and perform tasks just like a human without any human interference.

	
Example:

An example can be of Alpha go game
 where the board is trained to play on its own to break the blocks, it uses “positive points” as a good reward and negative points as an “obstructive” reward. Whenever the board breaks the blocks it gets rewards and the algorithm “learns” that by placing the board on the ball and breaking the blocks will tweak it to earn scores but if it misses the ball, it won’t get anything so the AI program forces the board to place itself in such a way that it only gets rewards only.

	
Technology’s Status of strong AI:

We are still at the very low level of strong AI although some algorithms such as “Reinforcement learning” found in video games such as Mario
 Bros and Alpha go
 have been developed which can learn based on scores but it is still yet to be developed however as research progresses on daily basis we may see some strong AI applications being developed.

2.2.2.
 Weak AI:

A weak AI can only solve a particular problem but it is not better than humans rather it is focused on speeding up daily tasks with some margins of errors.

	
Examples:

An example would be a chess game in which a computer know as Deep Blue could generate and evaluate with approximately 200 million possible moves played by humans at that time and it beat the world champion Garry Kasparov (in 1997).

Siri, Cortana and Google Assistants are examples of weak AI as well which can only take in keywords from your speech such as “Siri, can you call Mum?”, here “call” and “Mum” are two keywords so based on these keywords the algorithm will search Mum from your
 phone book and call her but there is no complete automated process that understands complete human speech, the system has to be given keywords or sentiments and based on that it generates output.

Image classification algorithms are also not human-like although they have achieved massive success in “automated image classification” with very high accuracy rates such as found in self-driving cars but still they are not better than humans moreover they are reliable resources when you have a massive amount of data to classify from with some margin of errors.

[image:]

Many classes prediction by an AI program

	
Conclusion:

In this chapter we have learned that artificial intelligence is simply giving human-like capabilities to machines to speed up daily tasks with some margins of error, we have also seen the way artificial intelligence algorithms
 work such as found in image classification and Google maps and we have also seen some examples of strong AI and weak AI to determine the progress of Artificial intelligence in the technological world. In the next tutorial you’ll be introduced to the state of the art algorithms which are used in Artificial intelligence.

Chapter 3

Machine learning and its examples in technologies found today

Artificial intelligence is a very broad field consisting of many sub fields and one of them is known as Machine learning which is most commonly found today in applications such as in image classification, face detection, email spam detection, property cost prediction over time and many more but what makes it so robust that it has now become a part of our daily lives? So in this chapter we will learn:

	
What is Machine learning.

	
Types of Machine learning.

	
Some common examples found today.

	
Correlations in data.

3.1.
 What is Machine learning
 :

If you want to make a toy car from blocks, you need to have some specific tools to build one such as some Lego blocks, a drill for making holes, a battery to power it and maybe a soldering iron for fixing joints to make a beautiful toy car similarly artificial intelligence needs some tools to be deployed as well and one of the tools is “Machine learning” which is a subset of Artificial intelligence or we can say that it is one of the major fields found in artificial intelligence, it consists of various algorithms and approaches to solve different kinds of problems and is defined as:

“The process of automating tasks without any human interference is known as machine learning”

[image:]

A car made with various tools

Its features are:

	
Highly accurate.

	
Does not need human involvement after being programmed.

	
Learns from data.

	
Accuracy improves with more data.

	
Finds hidden patterns in data.

	
Long lasting.

[image:]

Deep learning is a subset of machine learning which is a subset of artificial intelligence

3.2.
 Types of machine learning:

As explained before machine learning consists of various algorithms
 and approaches to solve different problems which means that for a specific problem a programmer needs to have information of the type of problem and the algorithm needed to solve that problem so different algorithms can be found in the types of machine learning which are:

	
Supervised learning

	
Unsupervised learning

	
Reinforcement learning

[image:]

Many Types of machine learning

Let us see each of them in detail.

3.2.1.
 Supervised learning
 :

As the names suggests it means supervising a particular output just like your class mathematics teacher who teaches you the counting of number or makes you apply certain formulas on some examples so that you can do that task on unseen problems found in examinations and based on each and every person’s understanding he or she scores marks, similarly supervised learning consists of specific known classes and its target known labels which are fed manually and the algorithm learns the target labels given the data for each target and when tested on unseen data produces some results.

Some of its algorithms can be found in problems like:

	
Classification:

This means that you separate data into two or more categories based on the data’s similarity and differences an example would be:

Iris flower classifier:

[image:]

Flowers, you may consider any three as Iris1, Iris2 and Iris 3

Suppose that we are building a classifier to distinguish a flower known as “Iris” which has many types but let’s take three types as an example, here’s what the algorithm will do:

	
First, we have to define the training and test folders to place our subcategories,
 which are the photos of different types of flowers.

	
Then we’ll have to manually create subcategories for separation of flower photos into training and testing folders for example in the training folder we can have three classes named as Iris 1, Iris 2 and Iris 3 and each subcategory has photos which are different from other subcategory other yet each sub folder has similar photos for example Iris 1 will contain photos of Iris 1 only but it will be different from Iris 2 and Iris 3.

	
An algorithm will be used to encode each folder in integer format; the encoded integer is its “label” and can be placed at random.

	
Then we’ll have to train the training images with its “labels” or “targets “using an algorithm let’s say RandomForestClassifier
 in python, in this case the algorithm will learn the specific group of photos let’s say Iris 1 flowers are assigned integer 0, Iris 2
 flowers assigned 1 and Iris 3 flowers assigned 2.

	
Once trained test the trained model on test folder to see the way it performs on test photos for example when presented with an unseen image of Iris 1, the model will output 0 which means that it has learned the target “label” based on its features.

	
Names of different supervised algorithm:

Classification models include logistic regression, decision tree, random forest, gradient-boosted tree, multilayer perceptron, one-vs.-rest, and Naive Bayes.

3.2.2.
 Regression:

This means continuous values over time and regression is specialized for forecasting values based on features from previous values over time to depict the mean value in future, let us clear this approach with some examples:

[image:]

A bot showing forecast of stock market

	
Traffic data:

In your home city , town or village there are some “busy” hours and some “not so busy” hours on different places during the day and the data is collected in applications like “Google maps” or “telecommunications” to calculate the shortest path for you from busy traffic and to make lots of antennas and receptors available in busy places for telecommunication purposes such as to make calls or use Internet during the busy hours when the “network is down” because lots of people use Internet or making phone calls during the “busy” hours, this helps to evaluate rush hours so that we can make necessary changes in the algorithm and hardware available to make life easier for us from the hustle and bustle of the day and we do our daily tasks without wasting time.

[image:]

Continuous values fed to machine to predict next move

	
Weather forecast:

One of the best examples of regression is weather forecast which takes in continuous data from previous “time frame”, it maybe days, weeks, months or even
 years and predicts precise forecast for us in the future so that we schedule our daily tasks according, it may take in recorded continuous “parameters” like air temperature, atmospheric pressure, humidity and wind direction etc, all the values are included when determining temperature and based on the past parameters of temperature helps to determine the temperature values in future.

3.3.
 Unsupervised learning:

This term refers to finding patterns in a given data without any labels, the items that are similar are grouped together. By far the most common applications can be found in “clustering” which means grouping things together based on the data’s features,

[image:]

AI learns by observing

Let’s clear this concept with some examples:

3.3.1.
 Recommendation systems:

This works by showing or recommending contents based on the specific group of user’s previous searches such as a person who is interested in “Trap music” would be recommended that kind of music based on a cluster of users who viewed the same content and viewed contents similar to it as well. The recommended items would typically be in your home page so that you can view the items based on your interest, your interest may vary over time and thus the today’s algorithms are robust enough to adapt to that as well.

[image:]

Similar content recommended based on previous searches

3.3.2.
 Anomaly detection
 :

It is possible to determine anomalies
 or abnormalities
 in data from banks or stores to formulate anti-theft strategies, take an example of a supermarket which gained a huge profit from normal, the mountainous margin is an “anomaly” because it is different than usual similarly if a bank suffered huge loss that is an “anomaly” as well because that is not normal thus these kind of errors can be detected instantaneously and inquired to not let businesses suffer in the future and it prevents money laundering.

[image:]

Robber (Anomaly) and fake news detection (Anomaly)

3.4.
 Reinforcement learning:

This algorithm works by maximizing a reward for a positive or negative behavior based on the “agent’s” environment in which it is deployed.

[image:]

Rewards based on actions

Example in the real word:

A similar behavior can be exhibited by a child based on the environment where he/she is, for example you “reward” the child with candies if it completes its homework (action) on time and you “punish” the child if it plays (action) during its time of homework so the
 child remembers that by completing his homework on time will result in “positive” rewards and by delaying homework will result in “negative” rewards. In this way a child “learns” from his mistakes and only does things that reward him in the future, this technique is often referred as “trial and error”.

[image:]

Human learning from previous memories

	
In machine’s context:

A similar strategy based on trial and error are found in machines as well where an “agent” observes the environment and makes a decision based on that, if the decision is “positive”, it will receive rewards and if the results are “negative”, the algorithm will adjust itself or its “weights” to receive positive reward next time. Rewards can be winning a game, earning more money, learning to walk and climb or simply beating other opponents. , we shall discuss on these weights in the next chapter.

	
Example (Google DeepMind's Deep Q-learning plays Atari Breakout):

Google DeepMind’s team trained an agent that plays “Atari Breakout
 ” , it played in such a way that at first it was clumsy but after some time it learned to play like a professional after some time and the interesting part was that it “learned that by digging a tunnel through the wall” will earn it maximum rewards which is very intelligent behavior. The screenshot below explains the particular behavior that is quite interesting.

[image:]

Reinforcement agent playing Atari Breakout

	
Conclusion:

In this chapter, we have learned about the definition of machine learning and about the types of machine learning. We have also learned about the way these examples work in real life and we explored various algorithms that solves complex problems that save our time and energy. In the next chapter we will discuss on the most powerful way of learning patterns
 and by far the most powerful algorithm know as deep learning
 to solve very complex problems.

Chapter 4

Deep neural networks and its applications in the real world

The world we live in is a capacious oil field where the data is the new oil or “demand” in other context and the companies that work with data are the oil digging firms or “data-mining firms” which are constantly in search for ways to dig new oil or in other words make “meaningful applications from data” and the greatest tool that is in demand to manipulate data and use it in automated processes is known as deep learning which comprises the most powerful algorithms in use today to assist humans and we are all interacting with it on daily basis so in this chapter, we will specifically be looking at:

	
What is Deep learning

	
Deep learning and the human brain

	
Popular Algorithms

	
Applications

4.1.
 What is Deep learning:

Deep learning is a method to automatically extract features and patterns from data without any manual human intervention; it does this with the help of a hierarchical stack of layers, which store information in them in the form of “weights”. The results of deep learning are so astounding that we can commonly find it in many daily applications such as YouTube, Snapchat, recommendation systems, digital assistants such as google translate to translate text from any language to your native language, playing video games, medical image diagnosing which is performing better than humans, robotics for automated complex mechanical tasks and most interestingly self-driving cars which can now be seen commonly assisting humans in driving, let’s see the detailed working of the way it does this.

[image:]

Output prediction by the deep learning model

4.2. What are artificial neural networks (ANNs) and how do they resemble the human brain:

4.2.1.
 In Biological context:

How does a child learn to recognize things? It does it with the help of its brain which learns based on experience for example from the previous chapter’s discussions and conclusions we have seen the way a child learns based on experience but in terms of biological context a child learns based on the network of neurons that transmits sensory information in the form of synapses
 , these are stored in the short term memory. Once processed in the short term memory they are compared with the existing memories and thus new memories are formed. In other words, if a child performs a certain task repeatedly such as doing his/her homework daily it’ll become his routine to do that thing repeatedly but at first, it will be hard because the neurons that never communicated repeatedly have to communicate on daily basis and thus with time they become used to of doing that on daily basis.

	
The resemblance of ANNs with the human brain:

Artificial neural networks(ANNs) replicate the biological neurons conceptually which learns based on the “deep stack of layers”, each layer has a specific number of neurons that increase with deeper layers,
 each neuron takes inputs from previous neurons and only passes information when the “result” of a mathematical function (activation) exceeds a certain threshold. Thus, a result would be achieved if it surpasses a certain threshold and then it is passed on to the next layer.

[image:]

Biological neuron versus ANNs

	
Example:

Taking an example of cats versus dogs classifier, if the artificial neural network model finds that features of an input image of a dog compared to its existing trained database, it will output that the result is a dog otherwise it’ll output cat if the input image is a cat so an input image is compared to its existing database just like in biological neurons, new information is
 compared to the previous ones to formulate new results.

	
What is “deep” in deep learning?

“Deep” in deep learning means the stack of layers, the more the number of layers in your network, the deeper your network and if there are very less number of layers, it means that it is a shallow (simple) neural network. When there are more layers it requires a very long time to train.

[image:]

Simple versus deep neural network

4.3.
 Popular Algorithms:

There are many popular algorithms for deep learning but we’ll be discussing Convolution neural networks (CNN) and Recurrent neural networks (RNN) mainly because a practical hand-on project awaits you in the next chapter which will cover mainly CNN so let’s see the detailed working of these two powerful algorithms.

4.3.1. Convolution neural networks (CNN) and its major components:

Convolutional neural networks are one of the most powerful algorithms in use today and they mainly deal with image and video data where the task is to learn the “features” of the image for various applications like image classification, semantic segmentation and many more. Let us say that we are making a system that classifies between different species of birds, let us see the components involved in it.

[image:]

A typical CNN architecture with layers

	
Collection of data:

The first task is to collect the data, the data can be in image or video format and we need to typically collect more than a thousand images for each class so take an example of sparrow, crow and eagle, we need to collect around a thousand images for each of the class, the more images the better model will be.

	
Defining the number of layers:

In a convolutional neural network, we would be defining the convolution layers which are stacked on top of each other and as defined earlier the number of neurons increases as we move from input layer to the output layer and the number of layers defines the depth
 of the network yet we have to choose the layers carefully to avoid “overfitting”.

	
Training the network:

Then the network is trained with all the images set to an equal standard size. “Unequal” size of images cannot be trained. The network takes input images in “batches”. The network is trained for a specific number of passes or “epochs” and a “loss” is calculated at the end of each epoch, the loss defines the parameter values to optimize in a neural network model and the lower it is the better the model. Initially, the loss will be high but then the network adjusts itself to lower the loss via a technique known as “backpropagation”. The lower layers capture low-level features such as edges or curves but the higher layers capture high-level features such as eyes, ears, nose and the face structures. The concept is that low-level features combine to form higher-level features and thus CNN formulates its results based on the analogy of looking at individual features such as sparrows have small claws and eagles have large claws also sparrows have smaller beaks while eagles have larger beaks moreover sparrows have small eyes while eagles have large eyes.

	
Testing the network:

Once trained
 the network is tested on unseen images and the results are compared if the model is accurately making predictions that means we have successfully trained with the right parameters but if the model is lacking accuracy then we might need to experiment with the parameters like the number of layers or the learning rate or maybe add more data.

4.3.2.
 Recurrent neural networks (RNN):

They are indefinably one of the most powerful deep learning algorithms as well because they store information of previous data as well as the current data to perform predictions for the result most likely to happen in the future. Another way to think about them is that they have a “memory” as they store the events happening in the past to predict the most likely events for the future, this makes them more powerful as they capture the “state” of the input as well as the “essence” of input, their input is either numerical or text data and they are used for natural language processing applications such as:

	
Example (Learning books):

Let us suppose you want a system to learn a book, the
 algorithm used to learn it would be powered by recurrent neural networks that will capture the “essence” of the text by keeping a memory of the words found in the text. RNN continuously looks at previous words and outputs the most likely sequence of words given an input sequence of text. Thus, in this way, a whole book can be learned and output can be generated anywhere given the input.

[image:]

Machine finding patterns in the book to generate predictions

	
Example (Google assistants):

Since recurrent neural networks keep a memory of what they have seen so far, a large corpus of text has been trained to utilize RNNs in the state of the art Google assistant, which outputs a suitable answer given
 an input sequence of a voice message. The algorithm works by taking in a voice note from a user and an “audio to text converter” convert it into text and “keywords” are taken out by the RNN model which searches for a suitable answer from the database from which it was trained on and then directs the answer to the user also it can communicate as well as translate from one language to another. So you see how powerful these algorithms are to almost human-level intelligence.

[image:]

Google Assistant for your assistance

4.4.
 Interesting Applications:

Some of the best deep learning applications, which are now becoming more and more common are:

[image:]

Artificial intelligence applications

	
Self-Driving Cars:

The future will be autonomous mainly because due to hardware complexity, computation power, sophisticated cameras, precise and robust sensors, it is possible to train the autonomous system
 with billions of data collected from cameras and sensors to accurately determine the location of the car on the road and also to determine the precise location and classification of objects on the road using convolution neural networks as well so that the system can decide on its own without any interference. This system has yet to be developed as more data is collected; more real-world examples are also being considered.

	
Healthcare

Thanks to Convolution neural networks(CNNs), deep learning has become very successful in the identification of very complex diseases which has made the doctors and physicians at ease, Electronic health record(EHR) systems store patients data such medical reports and laboratory test results for identification of different diseases found in patients, currently, it is used for identification of Coronavirus disease (COVID-19) taken directly from lungs samples so that quick remedies can be given to patients for a swift recovery, nowadays it is also used for:

	
Analyze blood samples

	
Detection of tumours via image analysis

	
Detect cancer cells

	
Detect tumours

	
Analyze lung conditions(especially for Coronavirus)

	
Automatic Machine Translation

Thanks to convolution neural networks and recurrent neural networks it is possible to extract the features of any handwriting and thanks to recurrent neural networks the features of a visible text can be converted to text and recreated for any other purposes such as convert it into another language. Deep learning is achieving top results in two specific areas:

	
Automatic Translation of Text.

	
Automatic Translation of Images

[image:]

Machine translation used for detection and captioning face

	
Conclusion:

It is therefore concluded that deep learning is the most powerful technique to learn data and automate tasks because it does this using a deep stack of layers with each layer consisting of many neurons to learn distinctive features from data also we have learned about the working of two powerful algorithms
 found in deep learning, in the next chapter we’ll have a hands-on experience on deep learning to build your image classification system and deploy it on the web.

Chapter 5

Project: Cats versus dogs classifier

In the previous chapters, we had an intuitive understanding on the detailed working of some of the deep learning algorithms commonly used today and in this chapter, we will add fuel to our concepts by coding a Convolution neural network (CNN) classifier to distinguish between cats and dogs and deploying our image classification code in Heroku
 to make an app which you can show to your friends and family. In this last chapter we will cover:

	
Download Anaconda

	
Setup our deep learning environment

	
Step by step code of our Deep learning classifier

	
Test our neural network

	
Deploy the app in Heroku

5.1.
 Download Anaconda:

Anaconda is a distribution of Python
 and R
 programming languages that supports scientific computing moreover it is easy to work in it as it automatically downloads the right dependencies for
 your desired packages so it is uncomplicated to maintain without you having to worry about package management furthermore it hosts jupyter notebook
 which allows you to create your code in a web interface so let’s commence by downloading Anaconda first.

5.1.1.
 Website:

Go to https://www.anaconda.com/products/individual

[image:]

	
Press the download button

	
Download the specific version according to your operating system’s (OS) specifications

[image:]

	
Once downloaded, run the setup file and install in any directory you like.

5.2.
 Setup our deep learning environment:

Now that we have downloaded anaconda, let’s set up our deep learning environment.

	
If you’re on windows machine search for “anaconda navigator” just like in the screenshot below.

	
If you are on a Linux system open up a terminal and type “anaconda-navigator”.

[image:]

	
Once opened, go to the environments section, here you will be able to see a list of environments in my laptop.

[image:]

	
Click on create, name the environment as you like and also make sure that the python environment is less than 3.8 which means it can be either 3.7 or 3.6.

[image:]

	
Click on “create”.

	
In the drop-down list search for “not installed” and then search for “Keras”, “Tensorflow”, “OpenCv”, “pillow” and most importantly “jupyter notebook” as per screenshots, make sure that you’re in the environment you created and not
 is the (base(root) environment.

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

5.3.
 Step by step code of our Deep learning classifier:

If you have successfully downloaded according to screenshots above, we are now ready to code a Convolution neural network (CNN) model that classifies between dogs and cats. So let’s commence by downloading the dataset first.

5.3.1. Download Dataset:

Go to: https://www.kaggle.com/c/dogs-vs-cats/data
 and download the dataset there, you will also need to log in from your Gmail or Facebook account or create one. The download section would be something like the screenshot below, click on download all:

[image:]

	
Once downloaded, extract the zip file(dogs-vs-cats.zip
) and place the training as well as the testing folders in a single folder, in this case a dogs-vs-cats
 folder will contain all the subdirectories named as show below, each of these folders has pictures of dogs and cats.

[image:]

[image:]

*

This is the directory structure which we will be following for our project, let’s start coding our (CNN) classifier.

5.3.2. Opening up our environment:

Keras and Tensorflow are deep learning libraries which provide a Python interface, python is the programming language which we’ll use just like you have native languages in your home countries for example English, French, Urdu and Spanish etc similarly Python is a language which the computer understands. So let’s start by first opening our environment in which we have downloaded all our modules (note that I'll be using a different environment but you can use the same environment in which you have downloaded all modules).

	
Activate your environment first by going to anaconda prompt.

[image:]

	
Then type the following lines:

	

conda activate environment name
 or in my case conda activate ml
 to activate the environment note that base will be replaced with your environment name.

	
Inside the activated environment type jupyter notebook,
 you'll be directed to a web page automatically after this.

[image:]

	
Now open the dogs-vs-cats
 directory from the web page and open up a new python 3 notebook according to the screenshot below.

[image:]

[image:]

	
Now let's start importing the libraries and modules which we'll need.

5.3.3. Network Architecture:

The architecture which we will follow will consist of:

	

Input images
 from the training folder standardized to a specific shape.

	
Three convolution layers with a relu
 activation function.

	
Three Maxpooling layers.

	
Two dense
 layers

[image:]

CNN architecture with convolution and final layer

	
Input Layer:

The input layer will consist of images found in the training folder, each image will be standardized to a shape of 150x150x3 where 150x150 are height and width of image respectively. This will be the size of images expected by the model.

	
Convolution Layers:

They are used for extraction of distinguishing feature from data of cats and dogs images such as differences in the shape of claws, nose and ears etc, this will later form the basis for discriminating cats and dogs based on the features seen in the input image.

	
Maxpooling layers:

These layers are used to extract maximum features
 from data in the input image and makes the model translation invariant
 which means that no matter where the position of cat or dog is in the image, it'll still be able to perform correct prediction, this is needed because convolution layers are sensitive in nature but maxpool layers make them robust to changes in position of object of interest.

	
Import Libraries:

Let us start by importing the libraries we require as discussed we will be needing convolution layers, maxpooling layers, flatten and dense layers moreover we will also need stochastic gradient descent optimizer and ImageDataGenerator for generating artificial data. In Python code this will look as follows.

	
Code:

from matplotlib import pyplot

from keras.models import Sequential

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Dense

from keras.layers import Flatten

from keras.optimizers import SGD

from keras.preprocessing.image import ImageDataGenerator

	
Defining our model:

As depicted from our figure above we'll first have to define the model so first we have to define the type of model which we are using, in this case we will be using a linear stack of layers which means each layer will be followed by another and in Keras it is known as a Sequential
 model, in terms of code this will look as:

	
Code:

model = Sequential()

	
Defining Convolution and Maxpooling layer:

Now we have to define our convolution and Maxpooling layer:

	
The first layer will always expect the input shape as an input, in this case we will be using a shape of 150x150x3.

	
To add a convolution or maxpool layer use model.add(parameters)
 and define the parameters inside such as the activation function, number of hidden units, the weights initializing strategy and the type of layer.

	
We'll use three convolution and three maxpooling layers, in terms of code this will look as follows:

	
Code:

#add first convolution layer with the input shape

model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same', input_shape=(150, 150, 3)))

#add a Maxpooling layer

model.add(MaxPooling2D((2, 2)))

#add another convolution layer with more hidden units

model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same'))

model.add(MaxPooling2D((2, 2)))

#add another convolution layer with more hidden units

model.add(Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same'))

model.add(MaxPooling2D((2, 2)))

	
Defining the dense layers:

Next we need to flatten the layers; we cannot use convolution layers directly as they are too large and have two dimensions so we need to flatten them to one dimension so that the features are easy to be classified in the final layer.

	
Flatten the layers.

	
A large dense layer is to be used for getting all the features from the flattening operation.

	
A final layer is used for classification since we are classifying one class from another so we will use the sigmoid activation with only one hidden unit because our output will be either cat or dog.

	
Code:

model.add(Flatten())

model.add(Dense(128,activation='relu',kernel_initializer='he_uniform'))

model.add(Dense(1, activation='sigmoid'))

	
Compiling the model:

Now that we have defined our model's architecture we need to
 compile our model and the way to do that is to:

	
*

	
Setup the optimizer which updates its weights based on the loss and its goal is to lower the loss, it takes in parameters such as learning rate and momentum which defines the speed of learning, we don't want it to be very high but at the same time we don't want it to be low as well.

	
*

	
We also need to specify the type of loss since it is a simple dog versus cats or one versus another classifier so this would be a binary classification problem. If we were to classify between many classes (three or more), this would have been a multiclass classification problem.

	
*

	
Finally we need to describe the metrics of the model, the metrics are used to measure the performance of the model, in this case we are mainly concerned with the accuracy of the model on unseen data so our metrics would be accuracy
 .

In terms of code this looks as follows:

	
Code:

model.compile(optimizer=opt,loss='binary_crossentropy', metrics=['accuracy'])

	
Prepare training and testing generators and iterators:

Next we need to define training and testing generator which enables to create artificial examples from current data note that we need artificial data for training only, the more data we have the better the model will perform. We also need to prepare iterators which will be used for training data in batches. In this case we will have sixty four images in a single batch. The reason for using this is that if we train all at once it'll consume immense amount of memory and thus this enables us to save memory. Note that we need augmented data for training images only because we want our model to perform well on training so that it performs well on test (unseen) images as well.
 The parameters for the generator as well as iterator are:

	
Define the image data generator and divide the input image by 255 to scale values between 0 and 1 so that it is easy to learn, we apply 10 percent horizontal and vertical shift and we also allow horizontal flipping.

	
We only apply scaling and do not apply image data augmentation for testing image as we want to test the way data augmentation affects the unseen images.

	
The iterator takes in arguments such as the directory of training and testing images, the method of classification(binary in our case), the batch size as well as expected image shape which is 150x150 (height and width)

	
Code:

create data generators

train_datagen=ImageDataGenerator(rescale=1.0/255.0, width_shift_range=0.1,height_shift_range=0.1, horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1.0/255.0)

prepare iterators

train_it=train_datagen.flow_from_directory('dataset_dogs_vs_cats/train/',class_mode='binary', batch_size=64, target_size=(150, 150))

test_it=test_datagen.flow_from_directory('dataset_dogs_vs_cats/test/',class_mode='binary', batch_size=64, target_size=(150, 150))

	
Training the model:

Next, we train the model using the fit_generator()
 function by passing it:

	
Training iterator which returns batches of samples.

	
We also define the steps per epoch which describes the batches of samples in a single epoch, its formula is total images in training folders/batch size
 .

	
We validate our training results to our test data so that the model converges in the right direction.

	
We also define validation_steps which describe the number of examples to evaluate its formula is total images in testing folders/batch size
 .

	
Lastly we define the number of epoch or passes in which the network trains. A single epoch will have multiple batches trained

	
Code:

history=model.fit_generator(train_it,steps_per_epoch=len(train_it),validation_data=test_it,validation_steps=len(test_it),epochs=20)

	
The model will start to train as shown in the figure below:

[image:]

	
To save the model use:

 model.save('cats-vs-dogs.h5')

5.4. Test the model:

To test the model on unseen images use the following lines of code:

_, acc = model.evaluate_generator(test_it, steps=len(test_it), verbose=0)

print('> %.3f' % (acc * 100.0))

This will print the total accuracy of the model on unseen images, congratulations now you are able to train any convolution neural networks problem given a dataset. The complete code is given below:

5.4.1. Complete code:

import sys

import keras

from keras.models import Sequential

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Dense

from keras.layers import Flatten

from keras.optimizers import SGD

from keras.preprocessing.image import ImageDataGenerator

define cnn model

model = Sequential()

model.add(Conv2D(32(3,3),activation='relu',kernel_initializer='he_uniform',paddin
 g='same', input_shape=(150, 150, 3)))

model.add(MaxPooling2D((2, 2)))

model.add(Conv2D(64(3,3),activation='relu',kernel_initializer='he_uniform', padding='same'))

model.add(MaxPooling2D((2, 2)))

model.add(Conv2D(128(3,3),activation='relu',kernel_initializer='he_uniform', padding='same'))

model.add(MaxPooling2D((2, 2)))

model.add(Flatten())

model.add(Dense(128,activation='relu',kernel_initializer='he_uniform'))

model.add(Dense(1, activation='sigmoid'))

compile model

opt = SGD(lr=0.001, momentum=0.9)

model.compile(optimizer=opt,loss='binary_crossentropy',

metrics=['accuracy'])

#prepare generator and iterator

datagen = ImageDataGenerator(rescale=1.0/255.0)

train_it=datagen.flow_from_directory('dataset_dogs_vs_cats/train/',class_mode='binary', batch_size=64, target_size=(150, 150))

test_it=datagen.flow_from_directory('dataset_dogs_vs_cats/test/',class_mode='binary', batch_size=64, target_size=(150, 150))

train model

history=model.fit_generator(train_it,steps_per_epoch=len(train_it),validation_data=test_it, validation_steps=len(test_it), epochs=20)

#save model

model.save('cats-vs-dogs.h5')

test model

_,acc=model.evaluate_generator(test_it, steps=len(test_it), verbose=0)

print('> %.3f' % (acc * 100.0))

5.4.2. Visualize Data:

To visualize the data such as the accuracy and the loss values we need to use Matplotlib,
 which is a plotting library in python to
 create and visualize plots, to plot the data use the following steps:

	
Import the library.

	
Get the values of accuracy and loss from the history object.

	
Plot the data using matplotlib.

In code, this would look as follows:

from matplotlib import pyplot

pyplot.subplot(211)

pyplot.title('Cross Entropy Loss')

pyplot.plot(history.history['loss'], color='blue', label='train')

pyplot.plot(history.history['val_loss'], color='orange', label='test')

plot accuracy

pyplot.subplot(212)

pyplot.title('Classification Accuracy')

pyplot.plot(history.history['accuracy'], color='blue', label='train')

pyplot.plot(history.history['val_accuracy'], color='orange', label='test')

save plot to file

filename = sys.argv[0].split('/')[-1]

pyplot.savefig(filename + '_plot.png')

pyplot.close()

The output would look as follows:

[image:]

Plot of loss (upper) and accuracy lower

5.4.3. Results:

The results suggest that:

	
The training accuracy has increased and the accuracy on validation data has reached a maximum of around 97.5%.

	
The training loss has decreased to its minimum and the loss on validation data has decreased we want it to be as minimum as possible to avoid any errors or false predictions.

5.4.4. Correlations in testing results of our classifier:

Correlations in machine learning means the relationship between the input and output elements. There are three types of correlations positive, negative and neutral correlations.

	
Example of correlations:

Suppose if the price of oil goes up over time then automatically the cost of fuel would elevate as well so in this case time
 is the input element whereas the cost is the output.

	
In deep neural networks:

Take the example of the our cats versus dogs classification analogy, if the result of the training accuracy increases over time then we have a positive correlation, in this coding example we have a positive correlation
 as depicted by the learning curve of accuracy.

The results of the loss show that it has a negative correlation
 as
 the loss decreases over time.

If the results had remain unchanged then it would have been neutral correlation.

[image:]

Upper (negative) correlation, lower (positive) correlation

Thus, correlation expresses relationship between two or more quantities.

5.5. Deploy the web application (Internet of things):

Once the model’s weights are saved, we can deploy it in the Heroku
 , which enables the users to create Internet of things
 (IOT) web application according to their needs; however, we would need some additional files for this specifically:

	
A procfile, which will run our code in the server as a backend.

	
Requirements.txt, which will install the necessary libraries, involved for our application.

	
Setup.sh, which configures necessary commands for starting the application.

	
Code for testing the model.

	
Create your account:

First, create your account by visiting this link: https://www.heroku.com/

	
Deploy your Machine learning model with Heroku Git:

	
Open your windows or Linux command terminal.

	
Type: heroku login
 and you will be directed to a web page to sign in, keep your terminal open because you will login from your terminal.

	
To create you application type in your terminal: heroku create your_app_name
 .

	
Now we are ready to make code for classification of cats and dogs on test images to run in our Heroku server, copy and paste following lines of code.

5.5.1. Code for generating predictions for our server:

import numpy as np

import streamlit as st

import tensorflow as tf

from PIL import Image, ImageOps

#import cv2

def import_and_predict(image_data, model):

size = (150,150)

image = ImageOps.fit(image_data, size, Image.ANTIALIAS)

image = image.convert('RGB')

image = np.asarray(image)

image = (image.astype(np.float32) / 255.0)

img_reshape = image[np.newaxis,...]

prediction = model.predict_classes(img_reshape)

return prediction

model = tf.keras.models.load_model('model_name.h5')

st.write("""

Cats-vs-dogs prediction

"""

)

st.write("This is an image classification web app to detect Cats-vs-dogs prediction")

file = st.file_uploader("Please upload an image file", type=["jpg", "png"])

#

if file is None:

st.text("You haven't uploaded an image file")

else:

image = Image.open(file)

st.image(image, use_column_width=True)

prediction = import_and_predict(image, model)

if (prediction) == 0:

st.write("cat")

st.write("percentage:",(np.max(prediction)*100))

if (prediction) == 1:

st.write('dog')

st.write("percentage:",(np.max(prediction)*100))

st.text("Probability (0: cat, 1: dog)")

st.write(prediction)

	
In place of
 model = tf.keras.models.load_model('model_name.h5') write your trained model’s filename.

5.5.2. Deploy the Application:

	
To deploy the application your directory structure and they should all be in a single folder as follows:

[image:]

	
Navigate to the folder where you have placed these files and open command terminal from there, make sure that you are in the exact same location as the project files.

Type the following commands from the terminal:

	git init

	git add .

	git commit -m "your message"

	heroku git:remote -a app_name

	git push heroku master

This will deploy your app to the server now open any image of cats or dog from testing folders and test it as per screenshots below, my deployed app can be found at the following link: https://cats-vs-dogs1.herokuapp.com/
 . Sometimes the servers are done consideration running the app a few times to launch it.

[image:]

Deployed application

[image:]

Output

5.5.3. Further Recommendations:

	
Consider training for more epochs.

	
Add more convolution layers.

	
Experiment with dropout.

	
Consider adding more hidden units.

	
Experiment with multiclass-classification by changing binary
 to categorical.

Final Conclusion:

In the final chapter we saw a practical artificial intelligence web application by understanding the way convolution neural networks learn, we also saw the way data is prepared and a machine learning model is deployed, note this is not the end but the book aims to introduce you to the way Artificial intelligence algorithms work. Here’s what we have learned:

	
•

	
Working of deep learning algorithms in real time.

	
•

	
Differences between Artificial intelligence, machine learning and deep learning.

	
Various machine learning algorithms.

	
•

	
Coding a deep learning classifier in python with Keras.

	
•

	
Deploying the classifier as a web application.

[image:]

OEBPS/Image00059.jpg
10:08 Wl % (38)

8 cats-vs-dogs1.herokuapp.com

OEBPS/Image00060.jpg
ARTIFICIAL INTELLIGENCE

iificial intelligence has astonishingly produced
miraculous results in digital applications found
today, we find ourselves wmmeued [igoans
shoretest routers using Google

translate, edit photos. usmg sn.pchm fiters, instruct a
igtal cesitantiocp mponent in our
housenoiducgHEEE R o ot
drive on their own without collsions.

“This book introduces you to the working of the algorithms
that ek ese SRR]
s of future pedictc s data analysis,

oo olfera a2
and banks and most importantly we will depioy an image.
dlassification website application in Heroku using the.
python programming language.

THE BOOK CONTAINS

@ Working of various artfiial inteligence
aigoritims.

@ Digtal applications commonly used foday
@ Seting up our deep learning environment

® Coding an image dlassifier in the python
programming languge

@ Deploy an image dlassifier in Heroku

OEBPS/Image00058.jpg
10:05 .l & (39

8 cats-vs-dogs1.herokuapp.com Cc H

dogs versus cats
classification

This is an image classification web app
classify cats and dogs

Please upload an image file

Drag and drop file here
Limit 200MB per file » IPG, PNG

Browse files

You haven't uploaded an image file

OEBPS/Image00012.jpg

OEBPS/Image00056.jpg
06

04

02

00

1.00
0.99
0.98
0.97
0.96
0.95

Cross Entropy Loss

°

2

Classifichtion Accurdty

°

OEBPS/Image00013.jpg

OEBPS/Image00057.jpg
cats-vs-dogs.hs

Procfile

requirements.txt

setup.sh

OEBPS/Image00010.jpg

OEBPS/Image00054.jpg
A Neural Network is a function that can learn

@\

o
]

—

unu-
muu

DOG

OEBPS/Image00011.jpg
Artificial Intelligence ~ Cybernetics Problem Solving Deep Learning Machine learning Robotics Neural networks

OEBPS/Image00055.jpg
<

Found 12697 images belonging to 2 classes.
Found 6303 images belonging to 2 classes.
Epoch 1/20
293/293 [=

Epoch 2/20
293/293
val_accuracy: 0.7193
Epoch 3/20

293/293
val_accuracy: 0.7412
Epoch 4/20

293/293
val_accuracy: 0.7546
Epoch 5/20

293/293
val_accurac
Epoch 6/20
33/293

0.7598

3408

5178

ETA: 4:20 - loss:

1s/step

1s/step

1s/step

1s/step

1s/step

loss:

loss:

loss:

loss:

loss:

L6362

L5573

L

Rz

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

7185

7391

758

7787

0.4408 - accuracy: 0.7950

L5440

L5163

REE

REER)

OEBPS/Image00008.jpg

OEBPS/Image00052.jpg
Z Jupyter

Files

Running ~ Clusters

Select items to perform actions on them.

o |~ ®/ Documents/ dogsvs-cats

ooooao

3

O testt

0 train

[sampleSubmission.csv
D test1 zip

O3 train.zip

Name ¥

Quit | Logout

Uploaa | [New

)

Python 3

Text File
Folder

Terminal -
ayearago 284 MB

ayearago STOMB

OEBPS/Image00009.jpg

OEBPS/Image00053.jpg
"~ Jupyter Untitled Last Checkpoint: a few seconds ago (unsaved changes) é Logout

File Edt View Inset Cell Kemel Help

|Python3 O

+ 5 A B A% PR B C B coe v =

m || ‘

OEBPS/Image00050.jpg
T Anaconda Promp (anaconda3)

(base) C:\Users\HOME>

OEBPS/Image00051.jpg
1™ Anaconda Prompt (anaconda3) - jupyter notebook - o

(base) C:\Users\HOME>conda activate ml

(M) C:\Users\HOME>jupyter notebook
[T 11:65:16.748 NotebookApp] Serving notebooks from local directory: C:\Users\HOME

[T 11:65:16.740 NotebookApp] Jupyter Notebook 6.1.4 is running at:

[T 11:65:16.755 NotebookApp] http://localhost :8888/token-689d4df583002693d0adba1f72f5acd791Fdes2d8cd74321

[T 11:65:16.755 NotebookApp] or http://127.6.8.1:8888/ token=689d4df583062693d0adbalf72f54cd791Fdes2d8cd74321

[T 11:65:16.755 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 11:65:16.824 NotebookApp]

OEBPS/Image00016.jpg

OEBPS/Image00017.jpg
Artificial Intelligence

OEBPS/Image00014.jpg

OEBPS/Image00015.jpg

OEBPS/Image00048.jpg
dogs-vs-cats

OEBPS/Image00049.jpg
test1 train samplesubmission. test1.zip train.zip
csv

OEBPS/Image00001.jpg
Artifcial Intelligence,
IOT and machine Learning

Al programs using Python
A Beginners book

Praveen K Donepudi

OEBPS/Image00045.jpg
Not installed -~

base (foot)

aPu

Test

gputest.

myenviron

opency

xeus-cling

Create Clone

Import

Remove

Channels Update index.

Name ¥ T Description

pillow

Version

@ piloy Q Fillow

he friendly pil fork by al

rkand

801

1 package available matching "pillow”

3 packages selected

OEBPS/Image00002.jpg

OEBPS/Image00046.jpg
base (root)

aPu

Test

gputest.

myenviron

opency

xeus<ling

~

Notmtled <] [cromnets | | Updateinden | [ernor %
Name e version
0 Fenaresec O o1
[it (0) st 001
= U © WMultusersever for oyt notebooks 121
B B o115
O rbeonert O Comverting pyter nebooks cor
1l e ol s0s
O e O N qenertionsices or e notebooks 502
B notebook) e o1s
e — 090
O pestabiesaigop | O Pvotablys negraion o eyterathon otebook 270
O wne O Pandes casframe viwe oyt otebook 11

OEBPS/Image00043.jpg
Search Environments, a Not installed Chennels Updateindex.. | tensorflow X
base (root) Neme ¥ T Description Version A
104
Gru o o
002
Test > (=))
0O keras QO Deep learning library for theano and tensorflow 243
gputest
O kerasgpu QO Deep learning library for theano and tensorflow 243
myenviron
O tibtensorflow Q 1140
opency
O libtensorflow.cc O 1140
O rtensorflow Q 220
reus-ling i
O ereoemcotaver O 2]
sagemaker
O tensorflow: [s] 170
container
B tensorflow O Tensorflow s a machine learning library. 230
O tensorflowbase) Tensorflow is @ machine learning library, base package contains only tensorflow: 230
tensorflow-datasets O 120
tensorflow-cigen |) Metapackage for selecting a tensorflow variant. 220

Creste Clone

Import

Remove

22 packages auailable matching "tensorflow” 1 package selected

OEBPS/Image00000.jpg
Artifcial Intelligence,
IOT and machine Learning

Al programs using Python
A Beginners book

Praveen K Donepudi

OEBPS/Image00044.jpg
Q Not installed v| Channels Update index. opency
— Name v T oesrpten verson
bogency O Computersionad machine esming sotre a0
= o wos o .
e B opency QO Computer vision and machine learning software library 450
py-opency Q' Computer vision and machine learning software library. 450
souest
r-opency (o] o1
-
ey
xeusang

Create Clone.

import

Remove

4 packages auailable matching "opency’ 2 packages selected

OEBPS/Image00041.jpg
v| chennets

¥ T Description

Search Envronments Not installed

base (root) —
- O 2temfast o
O 2dfatmic o

Test

Update index.

Search Packages @

OEBPS/Image00042.jpg
A Home
® crvironments

Learning

&% Community

Documentation

Developer Blog

Yy & ?

') ANACONDA NAVIGATOR

O vorseron T

Search Environments. Q Not installed ~v| chennels Updateindex.. | kewss x
bese (root) Name v T Deseription veson &
= O evolutionary_keras QO 20
= > B keras QO Deep learning library for theano and tensorflow 243
. O keras-spplications Q) Applications module of the keras deep learning library. 108
myenviron O kerasbase (s} 243
opency O kerasapu QO Deep learning library for theano and tensorflow 243
- O kerasocr (o] 085
e O keraspreprocessing) Data preprocessing and data augmentation module of the keras deep learning library 110
O kerasradam o] 0150
O kerasresnet (o] 020
O kerastuner o] 101
O quiver_engine Q Interactive per-layer visualization for convents in keras 01414
O reras o] 2300
O reerssformula [o)

Create Clone Import

Remove

14 packages auailable matching "keras” 1 package selected

N |

OEBPS/Image00039.jpg
£ ANACONDA NAVIGATOR

A Home

@ upgrade Now

Search Environments. Installed ~| Channels Update index.. Search Packages @
© tviownens e foe O e P
= ® _ipyw_ilab_nb_ext... {) A configuration metapackage for enabling anaconda-bundled jupyter extensions 010
N Learning
& _libgec_mutex o] 01
gputest
Community ® _tflow_select Q 2210
myenviron
@ absipy O Abseil python common libraries, see https://github.com/abseil/abseil-py. 2 090
opency
& slabaster O Configurable, python 2+3 compatible sphinx theme. 0712
2 altair e 410
xeuscling
@ snaconds QO simplifies package management and deployment of anaconda 2 202002
@ anaconda-client O Anaconda.org command line client library 172
@ anaconda-project () Tool for encapsulating, running, and reproducing data science projects 084
& aroh o] 0262
Dottt Y— O python asn.1 lbrarywith o Focuson performance and a ytharic i 2130
@ astor O Read, rewrite, and write python asts nicely 2 080
Developer Blog
@ astroid O Asbstract syntax tree for python with inference support. 2233
¥y & @ -] e Pl L 20

import

410 packages available.

OEBPS/Image00040.jpg
i mon e

base (root) S Name ¥ T Description

® _ipyw jlab_nb_ext...) A configuration metapackage for enabling anaconda-bundlet

Pu
oputest
myensiron Name: [Tesd
Location: AP | see hittps://github.com/abse
opency
Packages: @ python | 37 N sible sphims therme.
= N
xeus<ing
et [o oo anecon
— . ntlibrary
 snacondsproject O Toolfor encapulting, running, snd reproducing data scienc

o -~

OEBPS/Image00007.jpg

OEBPS/Image00005.jpg
NETFLIX

Unlimited:movies, TV
shows, and more.

Watch anywhere. Cancel anytime.

Ready to watch? Enter your email to creaté or restart your membership.

OEBPS/Image00006.jpg
s (o

CITY NAME < [April 30| >

MONDAY

2 I o -
‘ Wind: 6km/h

Party Cloudy Feels Like 22° 072%

TUE 20° weo @)23° ﬁ19°

OEBPS/Image00003.jpg

OEBPS/Image00047.jpg
kaggle

@ Home
Q compete
B oata

¢> Notebooks
B communities
© Courses
v More

Recety Viewsd

M Dogsvs.Cats

Dogs vs Cats.

L]

M 5 Celebrity Faces Dat.
S Rice disease data set
o

Rice Diseases Image

@ View Actve Events

Q searcn

Overview Data Notebooks

Data Explorer
s14.4MB

m sampleSubmission.csv
O testizip
O wainzip

‘Summary
» D 3fies

» m 2coumns

P

Discussion Leaderboard Rules Team

< sampleSubmission.csv (86.82 KB) &
Detail Compact Column 20f 2columns v
e sabel

OEBPS/Image00004.jpg
MARIO WORLD TIME
1=-1 351

002500 x01

> iy

OEBPS/Image00038.jpg
©© © arsalan@ubuntu-hp-pavilion-dvé-notebook-pc: ~
buntu:@ubuntu-hp-pavilion-dvé-notebook-pc:~$ anaconda-navigator

OEBPS/Image00034.jpg
Ai Heavy
Industries

Smart Home
System

Autonomous
Vehicles

Robotic Process
‘Automation

Technology
Business

Security and
Protection system

Speech Recognition
and Synthesis

Virtual Agents.

Artificial Intelligence

OEBPS/Image00035.jpg
3
_I

¢

i
X

OEBPS/Image00032.jpg

OEBPS/Image00033.jpg

OEBPS/Image00030.jpg
Deep Learning Neural network

Input Layer Hidden Layer Output Layer

Simple Neural network

OEBPS/Image00031.jpg
Pixels of image fed as input

Input Layer

H}\'lh 4\\'11 H\\\

\\’:7
I h'.

N

A'/'.\ b
‘0’ n"
,’)‘\\ /I ‘

‘el e’

Input Layer

Output Layer

OEBPS/Image00028.jpg

OEBPS/Image00029.jpg
impulses carried
toward cell body

branches

\ B2 e
terminals

_
impulses carried
away from cell body

Inputs

OEBPS/Image00036.jpg
Q

Individual Edition

Your data science
toolkit

With over 20 million users worldwide, the open-source Individual
Edition (Distribution) is the easiest way to perform Python/R data
science and machine learning on a single machine. Developed
for solo practitioners, it is the toolkit that equips you to work with

thousands of open-source packages and libraries.

OEBPS/Image00037.jpg
Windows 58

64-Bit Graphical Installer (457 MB)

32-Bit Graphical Installer (403 MB)

Anaconda Installers

MacOS &

64-Bit Graphical Installer (435 MB)

64-Bit Command Line Installer (428 MB)

Linux &

64-Bit (x86) Installer (529 MB)

64-Bit (Power8 and Power9) Installer (279
MB)

OEBPS/Image00023.jpg
Similar
aritcles

e

Recommended
to user

OEBPS/Image00024.jpg
Stock Trading Fake News
Advisors Detectors

OEBPS/Image00021.jpg
010011
100101
@) 111010

0101
1001

©|©

N -k

-+

-

aalN
o

OEBPS/Image00022.jpg

OEBPS/Image00019.jpg

OEBPS/Image00020.jpg

OEBPS/Image00018.jpg
MACHINE‘fLEARNING

OEBPS/Image00027.jpg

OEBPS/Image00025.jpg
AGTION

|
AGENT ENVIRONMENT

t |

EXPLORATION| NEURAL
POLICY | NETWORKS

=

STATE, REWARD

OEBPS/Image00026.jpg

