
LEE DONAHOE AND MICHAEL HARTL
TUTORIAL BY

TO BE DANGEROUS

BASIC DEVELOPMENT 03

RUBY ON RAILS

LEARN ENOUGH

2

Ruby on Rails Tutorial
Learn Web Development with Rails

Michael Hartl

ii

Contents

1 From zero to deploy 1
1.1 Up and running . 7

1.1.1 Development environment 8
1.1.2 Installing Rails . 16

1.2 The first application . 17
1.2.1 Bundler . 20
1.2.2 rails server . 27
1.2.3 Model-View-Controller (MVC) 34
1.2.4 Hello, world! . 35

1.3 Version control with Git . 39
1.3.1 Installation and setup 42
1.3.2 What good does Git do you? 46
1.3.3 GitHub . 47
1.3.4 Branch, edit, commit, merge 52

1.4 Deploying . 60
1.4.1 Heroku setup and deployment 60
1.4.2 Heroku commands 66

1.5 Conclusion . 67
1.5.1 What we learned in this chapter 67

1.6 Conventions used in this book 68

2 A toy app 71
2.1 Planning the application . 72

2.1.1 A toy model for users 76

iii

iv CONTENTS

2.1.2 A toy model for microposts 77
2.2 The Users resource . 78

2.2.1 A user tour . 81
2.2.2 MVC in action . 89
2.2.3 Weaknesses of this Users resource 97

2.3 The Microposts resource . 97
2.3.1 A micropost microtour 98
2.3.2 Putting the micro in microposts 104
2.3.3 A user has_many microposts 106
2.3.4 Inheritance hierarchies 109
2.3.5 Deploying the toy app 115

2.4 Conclusion . 117
2.4.1 What we learned in this chapter 120

3 Mostly static pages 121
3.1 Sample app setup . 122
3.2 Static pages . 129

3.2.1 Generated static pages 131
3.2.2 Custom static pages 140

3.3 Getting started with testing 141
3.3.1 Our first test . 146
3.3.2 Red . 148
3.3.3 Green . 149
3.3.4 Refactor . 152

3.4 Slightly dynamic pages . 154
3.4.1 Testing titles (Red) 155
3.4.2 Adding page titles (Green) 156
3.4.3 Layouts and embedded Ruby (Refactor) 161
3.4.4 Setting the root route 168

3.5 Conclusion . 171
3.5.1 What we learned in this chapter 173

3.6 Advanced testing setup . 173
3.6.1 minitest reporters . 174
3.6.2 Automated tests with Guard 174

CONTENTS v

4 Rails-flavored Ruby 179
4.1 Motivation . 179

4.1.1 Built-in helpers . 180
4.1.2 Custom helpers . 181

4.2 Strings and methods . 185
4.2.1 Strings . 187
4.2.2 Objects and message passing 191
4.2.3 Method definitions 195
4.2.4 Back to the title helper 197

4.3 Other data structures . 198
4.3.1 Arrays and ranges 198
4.3.2 Blocks . 203
4.3.3 Hashes and symbols 207
4.3.4 CSS revisited . 212

4.4 Ruby classes . 214
4.4.1 Constructors . 215
4.4.2 Class inheritance . 216
4.4.3 Modifying built-in classes 221
4.4.4 A controller class . 223
4.4.5 A user class . 226

4.5 Conclusion . 229
4.5.1 What we learned in this chapter 230

5 Filling in the layout 231
5.1 Adding some structure . 232

5.1.1 Site navigation . 234
5.1.2 Bootstrap and custom CSS 244
5.1.3 Partials . 253

5.2 Sass and the asset pipeline 259
5.2.1 The asset pipeline . 260
5.2.2 Syntactically awesome stylesheets 263

5.3 Layout links . 270
5.3.1 Contact page . 271
5.3.2 Rails routes . 273

vi CONTENTS

5.3.3 Using named routes 277
5.3.4 Layout link tests . 278

5.4 User signup: A first step . 284
5.4.1 Users controller . 284
5.4.2 Signup URL . 286

5.5 Conclusion . 289
5.5.1 What we learned in this chapter 291

6 Modeling users 293
6.1 User model . 294

6.1.1 Database migrations 296
6.1.2 The model file . 303
6.1.3 Creating user objects 304
6.1.4 Finding user objects 308
6.1.5 Updating user objects 310

6.2 User validations . 312
6.2.1 A validity test . 313
6.2.2 Validating presence 316
6.2.3 Length validation . 320
6.2.4 Format validation . 322
6.2.5 Uniqueness validation 329

6.3 Adding a secure password 339
6.3.1 A hashed password 339
6.3.2 User has secure password 342
6.3.3 Minimum password standards 344
6.3.4 Creating and authenticating a user 347

6.4 Conclusion . 350
6.4.1 What we learned in this chapter 351

7 Sign up 353
7.1 Showing users . 354

7.1.1 Debug and Rails environments 354
7.1.2 A Users resource . 362
7.1.3 Debugger . 368

CONTENTS vii

7.1.4 A Gravatar image and a sidebar 372
7.2 Signup form . 380

7.2.1 Using form_with 382
7.2.2 Signup form HTML 385

7.3 Unsuccessful signups . 390
7.3.1 A working form . 390
7.3.2 Strong parameters 395
7.3.3 Signup error messages 398
7.3.4 A test for invalid submission 404

7.4 Successful signups . 407
7.4.1 The finished signup form 409
7.4.2 The flash . 411
7.4.3 The first signup . 415
7.4.4 A test for valid submission 419

7.5 Professional-grade deployment 422
7.5.1 SSL in production 422
7.5.2 Production webserver 424
7.5.3 Production database configuration 425
7.5.4 Production deployment 426

7.6 Conclusion . 429
7.6.1 What we learned in this chapter 429

8 Basic login 431
8.1 Sessions . 432

8.1.1 Sessions controller 433
8.1.2 Login form . 436
8.1.3 Finding and authenticating a user 441
8.1.4 Rendering with a flash message 446
8.1.5 A flash test . 449

8.2 Logging in . 451
8.2.1 The log_in method 452
8.2.2 Current user . 455
8.2.3 Changing the layout links 460
8.2.4 Testing layout changes 477

viii CONTENTS

8.2.5 Login upon signup 484
8.3 Logging out . 487
8.4 Conclusion . 490

8.4.1 What we learned in this chapter 491

9 Advanced login 493
9.1 Remember me . 493

9.1.1 Remember token and digest 494
9.1.2 Login with remembering 501
9.1.3 Forgetting users . 511
9.1.4 Two subtle bugs . 514

9.2 “Remember me” checkbox 519
9.3 Remember tests . 526

9.3.1 Testing the “remember me” box 527
9.3.2 Testing the remember branch 533

9.4 Conclusion . 537
9.4.1 What we learned in this chapter 537

10 Updating, showing, and deleting users 541
10.1 Updating users . 541

10.1.1 Edit form . 542
10.1.2 Unsuccessful edits 550
10.1.3 Testing unsuccessful edits 553
10.1.4 Successful edits (with TDD) 554

10.2 Authorization . 558
10.2.1 Requiring logged-in users 560
10.2.2 Requiring the right user 566
10.2.3 Friendly forwarding 572

10.3 Showing all users . 577
10.3.1 Users index . 577
10.3.2 Sample users . 584
10.3.3 Pagination . 587
10.3.4 Users index test . 592
10.3.5 Partial refactoring . 594

CONTENTS ix

10.4 Deleting users . 596
10.4.1 Administrative users 597
10.4.2 The destroy action 602
10.4.3 User destroy tests . 605

10.5 Conclusion . 609
10.5.1 What we learned in this chapter 611

11 Account activation 613
11.1 Account activations resource 615

11.1.1 Account activations controller 615
11.1.2 Account activation data model 617

11.2 Account activation emails . 624
11.2.1 Mailer templates . 624
11.2.2 Email previews . 630
11.2.3 Email tests . 632
11.2.4 Updating the Users create action 637

11.3 Activating the account . 642
11.3.1 Generalizing the authenticated? method 642
11.3.2 Activation edit action 648
11.3.3 Activation test and refactoring 651

11.4 Email in production . 659
11.5 Conclusion . 663

11.5.1 What we learned in this chapter 663

12 Password reset 665
12.1 Password resets resource . 669

12.1.1 Password resets controller 670
12.1.2 New password resets 673
12.1.3 Password reset create action 676

12.2 Password reset emails . 681
12.2.1 Password reset mailer and templates 681
12.2.2 Email tests . 688

12.3 Resetting the password . 689
12.3.1 Reset edit action 690

x CONTENTS

12.3.2 Updating the reset 694
12.3.3 Password reset test 700

12.4 Email in production (take two) 706
12.5 Conclusion . 708

12.5.1 What we learned in this chapter 710
12.6 Proof of expiration comparison 710

13 User microposts 713
13.1 A Micropost model . 713

13.1.1 The basic model . 714
13.1.2 Micropost validations 717
13.1.3 User/Micropost associations 720
13.1.4 Micropost refinements 725

13.2 Showing microposts . 731
13.2.1 Rendering microposts 731
13.2.2 Sample microposts 737
13.2.3 Profile micropost tests 744

13.3 Manipulating microposts . 747
13.3.1 Micropost access control 748
13.3.2 Creating microposts 752
13.3.3 A proto-feed . 762
13.3.4 Destroying microposts 773
13.3.5 Micropost tests . 780

13.4 Micropost images . 784
13.4.1 Basic image upload 784
13.4.2 Image validation . 792
13.4.3 Image resizing . 799
13.4.4 Image upload in production 804

13.5 Conclusion . 812
13.5.1 What we learned in this chapter 815

14 Following users 817
14.1 The Relationship model . 818

14.1.1 A problem with the data model (and a solution) 818

CONTENTS xi

14.1.2 User/relationship associations 828
14.1.3 Relationship validations 831
14.1.4 Followed users . 833
14.1.5 Followers . 837

14.2 A web interface for following users 840
14.2.1 Sample following data 840
14.2.2 Stats and a follow form 842
14.2.3 Following and followers pages 854
14.2.4 A working follow button the standard way 865
14.2.5 A working follow button with Ajax 870
14.2.6 Following tests . 875

14.3 The status feed . 877
14.3.1 Motivation and strategy 879
14.3.2 A first feed implementation 881
14.3.3 Subselects . 885

14.4 Conclusion . 891
14.4.1 Guide to further resources 891
14.4.2 What we learned in this chapter 893

xii CONTENTS

Foreword
My former company (CD Baby) was one of the first to loudly switch to Ruby
on Rails, and then even more loudly switch back to PHP (Google me to read
about the drama). This book by Michael Hartl came so highly recommended
that I had to try it, and the Ruby on Rails Tutorial is what I used to switch back
to Rails again.

Though I’ve worked my way through many Rails books, this is the one that
finally made me “get” it. Everything is done very much “the Rails way”—a
way that felt very unnatural to me before, but now after doing this book finally
feels natural. This is also the only Rails book that does test-driven development
the entire time, an approach highly recommended by the experts but which has
never been so clearly demonstrated before. Finally, by including Git, GitHub,
and Heroku in the demo examples, the author really gives you a feel for what it’s
like to do a real-world project. The tutorial’s code examples are not in isolation.

The linear narrative is such a great format. Personally, I powered through
the Rails Tutorial in three long days doing all the examples and challenges at
the end of each chapter. [This is not typical! Most readers take much longer
to finish the tutorial. —Michael] Do it from start to finish, without jumping
around, and you’ll get the ultimate benefit.

Enjoy!
Derek Sivers (sivers.org)
Founder, CD Baby

xiii

https://sivers.org/
https://sivers.org/

xiv CONTENTS

Acknowledgments
The Ruby on Rails Tutorial owes a lot to my previous Rails book, RailsSpace,
and hence to my coauthor Aurelius Prochazka. I’d like to thank Aure both for
the work he did on that book and for his support of this one. I’d also like to thank
Debra Williams Cauley, my editor on both RailsSpace and the Ruby on Rails
Tutorial; as long as she keeps taking me to baseball games, I’ll keep writing
books for her.

I’d like to acknowledge a long list of Rubyists who have taught and
inspired me over the years: David Heinemeier Hansson, Yehuda Katz, Carl
Lerche, Jeremy Kemper, Xavier Noria, Ryan Bates, Geoffrey Grosenbach, Pe-
ter Cooper, Matt Aimonetti, Mark Bates, Gregg Pollack, Wayne E. Seguin,
Amy Hoy, Dave Chelimsky, Pat Maddox, Tom Preston-Werner, Chris Wan-
strath, Chad Fowler, Josh Susser, Obie Fernandez, Ian McFarland, Steph Bris-
tol, Pratik Naik, Sarah Mei, Sarah Allen, Wolfram Arnold, Alex Chaffee, Giles
Bowkett, Evan Dorn, Long Nguyen, James Lindenbaum, AdamWiggins, Tikh-
on Bernstam, Ron Evans, Wyatt Greene, Miles Forrest, Sandi Metz, Ryan
Davis, Aaron Patterson, Aja Hammerly, Richard “Schneems” Schneeman, the
good people at Pivotal Labs, the Heroku gang, the thoughtbot folks, and the
GitHub crew.

I’d like to thank technical reviewer Andrew Thai for his careful reading of
the original manuscript and for his helpful suggestions. I’d also like to thank
my cofounders at Learn Enough, Nick Merwin and Lee Donahoe, for all their
help in preparing this tutorial.

Finally, many, many readers—far too many to list—have contributed a huge
number of bug reports and suggestions during the writing of this book, and I
gratefully acknowledge their help in making it as good as it can be.

xv

http://aure.com/
https://www.learnenough.com/

xvi CONTENTS

About the author
Michael Hartl is the creator of the Ruby on Rails Tutorial, one of the lead-
ing introductions to web development, and is cofounder and principal author
at LearnEnough.com. Previously, he was a physics instructor at the California
Institute of Technology (Caltech), where he received a Lifetime Achievement
Award for Excellence in Teaching. He is a graduate of Harvard College, has
a Ph.D. in Physics from Caltech, and is an alumnus of the Y Combinator en-
trepreneur program.

xvii

https://www.michaelhartl.com/
https://www.railstutorial.org/
https://www.learnenough.com/
https://www.caltech.edu/
https://www.caltech.edu/
https://www.michaelhartl.com/ascit/awards2000.html
https://www.michaelhartl.com/ascit/awards2000.html
https://college.harvard.edu/
https://thesis.library.caltech.edu/1940/
https://www.caltech.edu/
https://www.ycombinator.com/

xviii CONTENTS

Copyright and license
Ruby on Rails Tutorial: Learn Web Development with Rails. Copyright © 2016
by Michael Hartl. Last updated 2020/01/27 19:05 PT.

All source code in the Ruby on Rails Tutorial is available jointly under the
MIT License and the Beerware License. Note that this means that either license
is valid; if you wish to use the software under the terms of theMIT license, there
is no need to buy me a beer as well.

The MIT License

Copyright (c) 2016 Michael Hartl

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

THE BEERWARE LICENSE (Revision 42)

Michael Hartl wrote this code. As long as you retain this notice you can do

xix

https://opensource.org/licenses/MIT
https://people.freebsd.org/~phk/

xx CONTENTS

whatever you want with this stuff. If we meet some day, and you think this

stuff is worth it, you can buy me a beer in return.

Chapter 1

From zero to deploy
Welcome to the Ruby on Rails Tutorial! The purpose of this tutorial is to teach
you how to develop customweb applications. The resulting skillset will put you
in a great position to get a job as a web developer, start a career as a freelancer,
or found a company of your own. If you already know how to develop web
applications, this tutorial will quickly get you up to speed with Ruby on Rails.

The focus throughout the Ruby on Rails Tutorial is on general skills that are
useful no matter which specific technology you end up using. Once you under-
stand how web apps work, learning another framework can be done with much
less effort. That being said, the framework of choice in this tutorial—namely,
Ruby on Rails—has never been a better choice for learning web development
(Box 1.1).

Box 1.1. The many advantages of Rails

Ruby on Rails (or just “Rails” for short) is a free and open-source web devel-
opment framework written in the Ruby programming language. Upon its debut,
Ruby on Rails rapidly became one of the most popular tools for building dynamic
web applications. Rails is used by companies as varied as Airbnb, SoundCloud,
Disney, Hulu, GitHub, and Shopify, as well as by innumerable freelancers, inde-
pendent development shops, and startups.

1

https://www.railstutorial.org/
https://rubyonrails.org/
https://www.ruby-lang.org/en/
https://airbnb.com/
https://soundcloud.com
https://disney.com/
https://hulu.com/
https://github.com/
https://shopify.com/

2 CHAPTER 1. FROM ZERO TO DEPLOY

Although there are many choices in web development, Rails stands apart for its
elegance, power, and integrated approach to web applications. Using Rails, even
novice developers can build a full-stack web application without ever leaving the
framework—a huge boon for people learning web development for the first time.
Rails also gives you flexibility going forward—for example, serving as a great back
end if you want to build a single-page application or mobile app sometime down
the line.

One big advantage is that Rails is not prone to the “new hotness” problem that
plagues some development communities (notably JavaScript/Node.js), in which
a dizzyingly complex set of technologies seems to change every six months. As
Rails creator David Heinemeier Hansson once noted:

Back then the complexity merchant of choice was J2EE, but the com-
plaints are uncannily similar to those leveled against JavaScript to-
day… The core premise of Rails remains in many ways as controver-
sial today as it was when it premiered. That by formalizing conven-
tions, eliminating valueless choices, and offering a full-stack frame-
work that provides great defaults for anyone who wants to create a
complete application, we can make dramatic strides of productivity.

Due in part to this philosophy, Rails has remained so stable at its core much of this
tutorial has been the same since the third edition, launched in 2014. The things you
learn here won’t go out of date soon.

And yet, Rails continues to innovate. For example, the Rails 6 release includes
major new features for email routing, text formatting, parallel testing, andmultiple-
database support. A big part of Rails 6 is being “scalable by default”, which means
that Rails scales no matter how big your app gets. All this while maintaining rock-
solid dependability—indeed, the wildly popular developer platform GitHub, the
hugely successful online store-builder Shopify, and the collaboration tool (and very
first Rails app) Basecamp all run their sites on the pre-release versions of Rails.
This means that new versions of Rails are immediately tested by some of the largest,
most successful web apps in existence.

https://en.wikipedia.org/wiki/Front_and_back_ends
https://en.wikipedia.org/wiki/Front_and_back_ends
https://en.wikipedia.org/wiki/Single-page_application
https://dhh.dk
https://www.quora.com/What-makes-Rails-a-framework-worth-learning-in-2017
https://weblog.rubyonrails.org/2019/8/15/Rails-6-0-final-release/
https://youtu.be/8evXWvM4oXM
https://github.com/
https://shopify.com/
https://basecamp.com

3

Not bad for a little side project cooked up by a freelance Danish web developer
way back in 2004. What was an edgy choice then is an easy choice now: with
its proven track-record, productive feature-set, and helpful community, Rails is a
fantastic framework for building modern web applications.

There are no formal prerequisites for this book, which contains integrated
tutorials for the Ruby programming language, the Unix command line, HTML,
CSS, a small amount of JavaScript, and even a little SQL. That’s a lot of mate-
rial to absorb, though, and if you’re new to software development I recommend
starting with the tutorials at Learn Enough, especially Learn Enough Command
Line to Be Dangerous and Learn Enough Ruby to Be Dangerous.1 On the other
hand, a surprising number of complete beginners have gotten through this tuto-
rial, so don’t let me stop you if you’re excited to build web apps.

The principal teaching method of this tutorial is building real working soft-
ware through a series of example applications of increasing sophistication, start-
ing with a minimal hello app (Figure 1.1, Section 1.2), a slightly more capable
toy app (Figure 1.2, Chapter 2), and a real sample app (Figure 1.3, Chapter 3
through Chapter 14). As implied by their generic names, these applications fo-
cus on general principles, which are applicable to practically any kind of web
application. In particular, the full sample application includes all the major fea-
tures needed by professional-grade web apps, including user signup, login, and
account management. The final version of the sample app, developed in Chap-
ter 14, also bears more than a passing resemblance to Twitter—awebsite which,
coincidentally, was also originally written in Rails.

Let’s get started!

1Adding the rest of the Learn Enough sequence would certainly provide excellent preparation for this tutorial,
but if you’re in a hurry you can probably get by with just Command Line and Ruby. Learn Enough Ruby to Be
Dangerous in particular has a chapter on building a simple web application using Sinatra, a Ruby-based micro-
framework that serves as excellent preparation for Rails. If you get stuck in the present tutorial, I suggest giving
Learn Enough Ruby to Be Dangerous and its prerequisites a try, then loop back here to see how it goes the second
time.

https://www.ruby-lang.org/en/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/SQL
https://www.learnenough.com/
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line
https://www.learnenough.com/ruby
http://twitter.com/
https://www.learnenough.com/#full_sequence
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby

4 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.1: The beginning hello app.

5

Figure 1.2: An intermediate toy app.

6 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.3: The final sample app.

1.1. UP AND RUNNING 7

1.1 Up and running
One advantage of using this tutorial is that you can get up and running fast. In
particular, the Rails Tutorial has a long-running partnership with AWS Cloud9,
a development environment that runs in your browser. The result is a complete
system for developing all the software in this tutorial.

This is important because, even for experienced developers, installing Ruby,
Rails, and all the associated supporting software can be quite challenging. Com-
pounding the problem is the multiplicity of environments: different operating
systems, version numbers, preferences in text editors, etc.

This is why the recommended solution, especially for newer users, is to
sidestep most installation and configuration issues by using a cloud integrated
development environment, or cloud IDE (Section 1.1.1). The cloud IDE used
in this tutorial runs inside an ordinary web browser, and hence works the same
across different platforms. It also maintains the current state of your work, so
you can take a break from the tutorial and come back to the system just as you
left it.

A second possibility is to set up your native system (Windows, macOS, or
Linux) for Rails development. It is definitely recommended that you do this
eventually, but it can represent significant overhead, and is likely to require a
healthy amount of technical sophistication (Box 1.2). Instructions for setting
up your native system can be found in the “Native OS setup” section of Learn
Enough Dev Environment to Be Dangerous. (Note in particular that you’ll need
Ruby 2.6 or greater to run Rails 6.) If you go this route, be sure to complete the
configuration and Rails installation steps in Section 1.1.2 as well.

Box 1.2. Technical sophistication

The Ruby on Rails Tutorial is part of the Learn Enough family of tutorials,
which develop the theme of technical sophistication: the combination of hard and
soft skills that make it seem like you can magically solve any technical problem
(as illustrated in “Tech Support Cheat Sheet” from xkcd).

https://aws.amazon.com/cloud9/
https://www.learnenough.com/dev-environment-tutorial#sec-native_os_setup
https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment
https://www.railstutorial.org/
https://www.learnenough.com/
https://m.xkcd.com/627/
https://xkcd.com/

8 CHAPTER 1. FROM ZERO TO DEPLOY

Knowing how to code is an important component of technical sophistication,
but there’s more to it than that—you also have to know how to click around menu
items to learn the capabilities of a particular application, how to clarify a confusing
error message by googling it, or when to give up and just reboot the darn thing.

Because web applications have so many moving parts, they offer ample op-
portunities to develop your technical sophistication. In the context of Rails web
development, some specific examples of technical sophistication include making
sure you’re using the right Ruby gem versions, running bundle install or
bundle update, and restarting the local webserver if something doesn’t work.
(Don’t worry if all this sounds like gibberish; we’ll cover everything mentioned
here in the course of completing this tutorial.)

As you proceed through this tutorial, in all likelihood you will occasionally be
tripped up by things not immediately working as expected. Although some partic-
ularly tricky steps are explicitly highlighted in the text, it is impossible to anticipate
all the things that can go wrong. I recommend you embrace these inevitable stum-
bling blocks as opportunities to work on improving your technical sophistication.
Or, as we say in geek speak: It’s not a bug, it’s a feature!

1.1.1 Development environment
Considering various idiosyncratic customizations, there are probably as many
development environments as there are Rails programmers. To avoid this com-
plexity, the Ruby on Rails Tutorial standardizes on the excellent cloud develop-
ment environment Cloud9, part of AmazonWeb Services (AWS). The resulting
workspace environment comes preconfigured with most of the software needed
for Ruby on Rails web development, including Ruby, RubyGems, and Git. (In-
deed, the only big piece of software we’ll install separately is Rails itself, and
this is intentional (Section 1.1.2).)

The cloud IDE includes the three essential components needed to develop
web applications: a command-line terminal, a filesystem navigator, and a text
editor (Figure 1.4). Among other features, the cloud IDE’s text editor supports

https://www.google.com/
https://www.learnenough.com/r/learn_enough_command_line/manipulating_files#aside-speak_geek
https://aws.amazon.com/cloud9/

1.1. UP AND RUNNING 9

Figure 1.4: The anatomy of the cloud IDE.

the “Find in Files” global search that I consider essential to navigating any large
Ruby or Rails project. Finally, even if you decide not to use the cloud IDE
exclusively in real life (and I certainly recommend learning other tools as well),
it provides an excellent introduction to the general capabilities of command-line
terminals, text editor, and other development tools.

Here are the steps for getting started with the cloud development environ-
ment:2

1. Because Cloud9 is part of Amazon Web Services (AWS), if you already
2Due to the constantly evolving nature of sites like AWS, details may vary; use your technical sophistication

(Box 1.2) to resolve any discrepancies.

10 CHAPTER 1. FROM ZERO TO DEPLOY

have an AWS account you can just sign in.3 To create a new Cloud9
workspace environment, go to the AWS console and type “Cloud9” in
the search box.

2. If you don’t already have an AWS account, you should sign up for a free
account at AWS Cloud9.4 In order to prevent abuse, AWS requires a
valid credit card for signup, but the workspace is 100% free (for a year
as of this writing), and your card will not be charged. You might have to
wait up to 24 hours for the account to be activated, but in my case it was
ready in about ten minutes.

3. Once you’ve successfully gotten to the Cloud9 administrative page (Fig-
ure 1.5), clicking on “Create environment” and fill in the information
as shown in Figure 1.6, including the name “rails-tutorial”.5 fill in the
description as shown in Figure 1.6. On the next page, choose Ubuntu
Server (not Amazon Linux) (Figure 1.7), and then click “Next step”.
clicking the confirmation buttons to accept the default settings until AWS
starts provisioning the IDE (Figure 1.9). You may run into a warning
message about being a “root” user, which you can safely ignore at this
early stage. (We’ll discuss the preferred but more complicated prac-
tice, called an Identity and Access Management (IAM) user, in Sec-
tion 13.4.4.)

Because using two spaces for indentation is a near-universal convention in
Ruby, I also recommend changing the editor to use two spaces instead of the
default four. As shown in Figure 1.10, you can do this by clicking the gear icon
in the upper right and then clicking the minus sign in the “Soft Tabs” setting
until it reaches 2. (Note that this takes effect immediately; you don’t need to
click a “Save” button.)

3https://aws.amazon.com/
4https://www.railstutorial.org/cloud9-signup
5If you’ve previously done this tutorial, you may want to use a fresh environment, with a name like “rails-

tutorial-6”.

https://aws.amazon.com/
https://console.aws.amazon.com/
https://www.railstutorial.org/cloud9-signup
https://www.railstutorial.org/cloud9-signup

1.1. UP AND RUNNING 11

Figure 1.5: Creating an environment on AWS Cloud9.

Figure 1.6: Naming a new work environment at AWS Cloud9.

12 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.7: Selecting Ubuntu Server.

1.1. UP AND RUNNING 13

Figure 1.8: The final step before provisioning the IDE.

14 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.9: The default cloud IDE.

1.1. UP AND RUNNING 15

Figure 1.10: Setting Cloud9 to use two spaces for indentation.

16 CHAPTER 1. FROM ZERO TO DEPLOY

1.1.2 Installing Rails
The development environment from Section 1.1.1 includes all the software we
need to get started except for Rails itself. This is by design, as installing the
exact version of Rails used in this tutorial is important for getting predictable
results.

First, we’ll do a little preparation by adding configuration settings to pre-
vent the time-consuming installation of local Ruby documentation, as shown in
Listing 1.1.6 Note that this step needs to be done only once per system. (For
more information on the command-line and other conventions in this book, see
Section 1.6.)

Listing 1.1: Configuring the .gemrc file to skip the installation of Ruby doc-
umentation.
$ echo "gem: --no-document" >> ~/.gemrc

To install Rails, we’ll use the gem command provided by the RubyGems
package manager, which involves typing the command shown in Listing 1.2
into your command-line terminal. (If developing on your local system, this
means using a regular terminal window; if using the cloud IDE, this means
using the command-line area shown in Figure 1.4.)

Listing 1.2: Installing Rails with a specific version number.
$ gem install rails -v 6.0.2.1

Here the -v flag ensures that the specified version of Rails gets installed. You
can confirm that the installation succeeded by passing the -v flag to the rails
command itself:

6This uses the echo and >> (append) commands covered in Section 1.3 and Section 2.1 of Learn Enough
Command Line to Be Dangerous. Note that if the file being appended to doesn’t exist, >> is smart enough to
create it.

https://rubygems.org
https://www.learnenough.com/r/learn_enough_command_line/basics/our_first_command#sec-our_first_command
https://www.learnenough.com/r/learn_enough_command_line/manipulating_files/redirecting_and_appending
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line

1.2. THE FIRST APPLICATION 17

$ rails -v

Rails 6.0.2.1

The version number output by this command should match the version installed
in Listing 1.2.

There’s one more configuration step, which is to install Yarn, a program to
manage software dependencies. If you’re using your native OS, you should fol-
low the Yarn installation instructions for your platform. If you’re on the cloud
IDE, you can run this command, which downloads and executes the necessary
commands from the Learn Enough CDN:

$ source <(curl -sL https://cdn.learnenough.com/yarn_install)

From time to time, you’ll probably get a warning message that looks like this:

==

Your Yarn packages are out of date!

Please run `yarn install --check-files` to update.

==

All you need to do if this happens is execute the suggested yarn command:

$ yarn install --check-files

That’s it! You’ve now got a system fully configured for Ruby on Rails web
development.

1.2 The first application
Following a long tradition in computer programming, our goal for the first appli-
cation is to write a “hello, world” program. In particular, we will create a simple
application that displays the string “hello, world!” on a web page, both on our
development environment (Section 1.2.4) and on the live web (Section 1.4).

https://yarnpkg.com/
https://yarnpkg.com/lang/en/docs/install/
https://en.wikipedia.org/wiki/Content_delivery_network
http://www.catb.org/jargon/html/H/hello-world.html

18 CHAPTER 1. FROM ZERO TO DEPLOY

Virtually all Rails applications start the same way, by running the rails
new command. This handy command creates a skeleton Rails application in a
directory of your choice. To get started, users not using the Cloud9 IDE rec-
ommended in Section 1.1.1 should make a environment directory for your
Rails projects if it doesn’t already exist (Listing 1.3) and then change into the
directory.7

Listing 1.3: Making an environment directory for Rails projects.
These steps are not needed on the cloud IDE.

$ cd # Change to the home directory.

$ mkdir environment # Make an environment directory.

$ cd environment/ # Change into the environment directory.

Listing 1.3 uses the Unix commands cd and mkdir; see Box 1.3 if you are not
already familiar with these commands.

Box 1.3. A crash course on the Unix command line

For readers coming from Windows or macOS, the Unix command line may
be unfamiliar. Luckily, if you are using the recommended cloud environment, you
automatically have access to a Unix (Linux) command line running a standard shell
(command-line interface) known as Bash.

The basic idea of the command line is simple: by issuing short commands, users
can perform a large number of operations, such as creating directories (mkdir),
moving and copying files (mv and cp), and navigating the filesystem by chang-
ing directories (cd). Although the command line may seem primitive to users
mainly familiar with graphical user interfaces (GUIs), appearances are deceiving:
the command line is one of the most powerful tools in the developer’s toolbox. In-
deed, you will rarely see the desktop of an experienced developer without several
open terminal windows running command-line shells.

7This step is designed to unify the treatment of native systems and the cloud IDE by using identical directory
structures. If you are confident in your technical sophistication, feel free to omit this step, and use a directory of
your choice.

https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

1.2. THE FIRST APPLICATION 19

Description Command Example
list contents ls $ ls -l

make directory mkdir <dirname> $ mkdir environment

change directory cd <dirname> $ cd environment/

cd one directory up $ cd ..

cd to home directory $ cd ~ or just $ cd

cd to path incl. home dir $ cd ~/environment/

move file (rename) mv <source> <target> $ mv foo bar

copy file cp <source> <target> $ cp foo bar

remove file rm <file> $ rm foo

remove empty directory rmdir <directory> $ rmdir environment/

remove nonempty directory rm -rf <directory> $ rm -rf tmp/

concatenate & display file contents cat <file> $ cat ~/.ssh/id_rsa.pub

Table 1.1: Some common Unix commands.

The general subject is deep, but for the purposes of this tutorial we will need
only a few of the most common Unix command-line commands, as summarized in
Table 1.1. For a more thorough introduction to the basics of the command line, see
the first Learn Enough tutorial, Learn Enough Command Line to Be Dangerous.

The next step on both local systems and the cloud IDE is to create the first
application using the command in Listing 1.4. Note that Listing 1.4 explicitly
includes the Rails version number as part of the command. This ensures that
the same version of Rails we installed in Listing 1.2 is used to create the first
application’s file structure.

Listing 1.4: Running rails new (with a specific version number).
$ cd ~/environment

$ rails _6.0.2.1_ new hello_app

create

create README.md

create Rakefile

create .ruby-version

create config.ru

create .gitignore

create Gemfile

run git init from "."

https://www.learnenough.com/
https://www.learnenough.com/command-line

20 CHAPTER 1. FROM ZERO TO DEPLOY

Initialized empty Git repository in /home/ubuntu/environment/hello_app/.git/

create package.json

create app

create app/assets/config/manifest.js

create app/assets/stylesheets/application.css

create app/channels/application_cable/channel.rb

create app/channels/application_cable/connection.rb

create app/controllers/application_controller.rb

create app/helpers/application_helper.rb

.

.

.

Notice how many files and directories the rails command creates. This
standard directory and file structure (Figure 1.11) is one of the many advan-
tages of Rails: it immediately gets you from zero to a functional (if minimal)
application. Moreover, since the structure is common to all Rails apps, you can
immediately get your bearings when looking at someone else’s code.

A summary of the default Rails files appears in Table 1.2. We’ll learn about
most of these files and directories throughout the rest of this book. In particular,
starting in Section 5.2.1 we’ll discuss the app/assets directory, part of the
asset pipeline that makes it easy to organize and deploy assets such as Cascading
Style Sheets and image files.

1.2.1 Bundler
After creating a new Rails application, the next step is to use Bundler to install
and include the gems needed by the app. Bundler is run automatically (via
bundle install) by the rails command in Listing 1.4, but in this section
we’ll make some changes to the default application gems and run Bundler again.
This involves opening the Gemfile with a text editor. (With the cloud IDE,
this involves clicking the arrow in the file navigator to open the sample app
directory and double-clicking the Gemfile icon.) Although the exact version
numbers and details may differ slightly, the results should look something like
Figure 1.12 and Listing 1.5. (The code in this file is Ruby, but don’t worry at
this point about the syntax; Chapter 4 will cover Ruby in more depth.)

If the files and directories don’t appear as shown in Figure 1.12, click on

1.2. THE FIRST APPLICATION 21

Figure 1.11: The directory structure for a newly created Rails app.

22 CHAPTER 1. FROM ZERO TO DEPLOY

File/Directory Purpose
app/ Core application (app) code, including models, views, controllers, and helpers
app/assets Applications assets such as Cascading Style Sheets (CSS) and images
bin/ Binary executable files
config/ Application configuration
db/ Database files
doc/ Documentation for the application
lib/ Library modules
log/ Application log files
public/ Data accessible to the public (e.g., via web browsers), such as error pages
bin/rails A program for generating code, opening console sessions, or starting a local server
test/ Application tests
tmp/ Temporary files
README.md A brief description of the application
Gemfile Gem requirements for this app
Gemfile.lock A list of gems used to ensure that all copies of the app use the same gem versions
config.ru A configuration file for Rack middleware
.gitignore Patterns for files that should be ignored by Git

Table 1.2: A summary of the default Rails directory structure.

the file navigator’s gear icon and select “Refresh File Tree”. (As a general
rule, you should refresh the file tree any time files or directories don’t appear as
expected.)8

Listing 1.5: The default Gemfile in the hello_app directory.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

ruby '2.6.3'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'

gem 'rails', '~> 6.0.2.1'

Use sqlite3 as the database for Active Record

gem 'sqlite3', '~> 1.4'

Use Puma as the app server

gem 'puma', '~> 3.11'

Use SCSS for stylesheets

gem 'sass-rails', '~> 5'

Transpile app-like JavaScript. Read more: https://github.com/rails/webpacker

gem 'webpacker', '~> 4.0'

Turbolinks makes navigating your web application faster.

8This is a typical example of technical sophistication (Box 1.2).

https://rack.github.io/

1.2. THE FIRST APPLICATION 23

Figure 1.12: The default Gemfile open in a text editor.

24 CHAPTER 1. FROM ZERO TO DEPLOY

Read more: https://github.com/turbolinks/turbolinks

gem 'turbolinks', '~> 5'

Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder

gem 'jbuilder', '~> 2.7'

Use Redis adapter to run Action Cable in production

gem 'redis', '~> 4.0'

Use Active Model has_secure_password

gem 'bcrypt', '~> 3.1.7'

Use Active Storage variant

gem 'image_processing', '~> 1.2'

Reduces boot times through caching; required in config/boot.rb

gem 'bootsnap', '>= 1.4.2', require: false

group :development, :test do

Call 'byebug' anywhere in the code to stop execution and get a

debugger console

gem 'byebug', platforms: [:mri, :mingw, :x64_mingw]

end

group :development do

Access an interactive console on exception pages or by calling 'console'

anywhere in the code.

gem 'web-console', '>= 3.3.0'

gem 'listen', '>= 3.0.5', '< 3.2'

Spring speeds up development by keeping your application running in the

background. Read more: https://github.com/rails/spring

gem 'spring'

gem 'spring-watcher-listen', '~> 2.0.0'

end

group :test do

Adds support for Capybara system testing and selenium driver

gem 'capybara', '>= 2.15'

gem 'selenium-webdriver'

Easy installation and use of web drivers to run system tests with browsers

gem 'webdrivers'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

Many of these lines are commented out with the hash symbol # (Section 4.2);
they are there to show you some commonly needed gems and to give examples
of the Bundler syntax. For now, wewon’t need any gems other than the defaults.

Unless you specify a version number to the gem command, Bundler will
automatically install the latest requested version of the gem. This is the case,

1.2. THE FIRST APPLICATION 25

for example, in the code

gem 'sqlite3'

There are also two common ways to specify a gem version range, which allows
us to exert some control over the version used by Rails. The first looks like this:

gem 'capybara', '>= 2.15'

This installs the latest version of the capybara gem (which is used in test-
ing) as long as it’s greater than or equal to version 2.15—even if it’s, say,
version 7.2.

The second method looks like this:

gem 'rails', '~> 6.0.2.1'

This installs the gem rails as long as it’s version 6.0.2.1 or newer but
not 6.1 or newer. In other words, the >= notation always installs the latest
gem, whereas the ~> 6.0.2.1 notation will install 6.0.2 (if available) but
not 6.1.0.9

Unfortunately, experience shows that even minor point releases can break
Rails applications, so for the Ruby on Rails Tutorial we’ll err on the side of
caution by including exact version numbers for all gems. You are welcome to
use the most up-to-date version of any gem, including using the ~> construction
in the Gemfile (which I generally recommend for more advanced users), but
be warned that this may cause the tutorial to act unpredictably.

Converting the Gemfile in Listing 1.5 to use exact gem versions results in
the code shown in Listing 1.6.10 Note that we’ve also taken this opportunity to

9Similarly, ~> 6.0 would install version 6.9 of a gem but not 7.0. This is especially useful if the project in
question uses semantic versioning (also called “semver”), which is a convention for numbering releases designed
to minimize the chances of breaking software dependencies.

10You can determine the exact version number for each gem by running gem list <gem name> at the com-
mand line, but Listing 1.6 saves you the trouble.

https://semver.org/

26 CHAPTER 1. FROM ZERO TO DEPLOY

arrange for the sqlite3 gem to be included only in a development or test en-
vironment (Section 7.1.1), which prevents potential conflicts with the database
used by Heroku (Section 1.4). Finally, we’ve removed the line from Listing 1.5
specifying the exact Ruby version number; as noted in Section 7.5.4, it’s rec-
ommended to keep this line in a mission-critical app, but keeping it in a tutorial
of this nature introduces potential errors and complexity. (That said, if your app
fails to work without that line, you should definitely restore it.)

Important note: For all the Gemfiles in this book, you should use the
version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the
ones listed below (although they should be identical if you are reading this
online).

Listing 1.6: A Gemfile with an explicit version for each Ruby gem.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.2.1'

gem 'puma', '3.12.2'

gem 'sass-rails', '5.1.0'

gem 'webpacker', '4.0.7'

gem 'turbolinks', '5.2.0'

gem 'jbuilder', '2.9.1'

gem 'bootsnap', '1.4.5', require: false

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

end

group :development do

gem 'web-console', '4.0.1'

gem 'listen', '3.1.5'

gem 'spring', '2.1.0'

gem 'spring-watcher-listen', '2.0.1'

end

group :test do

gem 'capybara', '3.28.0'

gem 'selenium-webdriver', '3.142.4'

gem 'webdrivers', '4.1.2'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

https://gemfiles-6th-ed.railstutorial.org/

1.2. THE FIRST APPLICATION 27

Once you’ve placed the contents of Listing 1.6 into the application’s Gem-
file, install the gems using bundle install:11

$ cd hello_app/

$ bundle install

Fetching source index for https://rubygems.org/

.

.

.

The bundle install command might take a few moments, but when it’s
done our application will be ready to run.

By the way, when you run bundle install it’s possible that you’ll get
a message saying you need to run bundle update first. In this case you
should… run bundle update first! (Learning not to panic when things don’t
go exactly as planned is a key part of technical sophistication, and you’ll be
amazed at how often the “error” message contains the exact instructions you
need to fix the problem at hand.)

1.2.2 rails server

Thanks to running rails new in Section 1.2 and bundle install in Sec-
tion 1.2.1, we already have an application we can run—but how? Happily, Rails
comes with a command-line program, or script, that runs a local webserver to
assist us in developing our application: rails server.

Before running rails server, it’s necessary on some systems (including
the cloud IDE) to allow connections to the local web server. To enable this, you
should navigate to the file config/environments/development.rb and
paste in the two extra lines shown in Listing 1.7 and Figure 1.13.

Listing 1.7: Allowing connections to the local web server.
config/environments/development.rb

11As noted in Table 3.1, you can even leave off install, as the bundle command by itself is an alias for
bundle install.

28 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.13: Allowing Cloud9 to connect to the Rails server.

Rails.application.configure do

.

.

.

Allow connections to local server.

config.hosts.clear

end

The rails server command appears in Listing 1.8, which I recommend
you run in a second terminal tab so that you can still issue commands in the first
tab, as shown in Figure 1.14 and Figure 1.15. Note from Listing 1.8 that you

1.2. THE FIRST APPLICATION 29

Figure 1.14: Opening a new terminal tab.

can shut the server down using Ctrl-C.12

Listing 1.8: Running the Rails server.
$ cd ~/environment/hello_app/

$ rails server

=> Booting Puma

=> Ctrl-C to shutdown server

12Here “C” refers to the character on the keyboard, not the capital letter, so there’s no need to hold down the
Shift key to get a capital “C”.

30 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.15: Running the Rails server in a separate tab.

1.2. THE FIRST APPLICATION 31

Figure 1.16: Sharing the local server running on the cloud workspace.

To view the result of rails server on a native OS, paste the URL
http://localhost:3000 into the address bar of your browser. On the cloud IDE,
go to Preview and click on Preview Running Application (Figure 1.16), and
then open it in a full browser window or tab (Figure 1.17). In either case, the
result should look something like Figure 1.18.

Exercises

The Ruby on Rails Tutorial contains a large number of exercises. Solving them
as you proceed through the tutorial is strongly recommended.

In order to keep the main discussion independent of the exercises, the so-

http://localhost:3000
https://www.railstutorial.org/

32 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.17: Opening the running app in a full browser window or tab.

1.2. THE FIRST APPLICATION 33

Figure 1.18: The default Rails page served by rails server.

34 CHAPTER 1. FROM ZERO TO DEPLOY

lutions are not generally incorporated into subsequent code listings. (In the
rare circumstance that an exercise solution is used subsequently, it is explic-
itly solved in the main text.) This means that over time your code may diverge
from the code shown in the tutorial due to differences introduced in the ex-
ercises. Learning how to resolve such discrepancies is a valuable exercise in
technical sophistication (Box 1.2).

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.
Many of the exercises are challenging, but we’ll start out with some easy

ones just to get warmed up:

1. According to the default Rails page, what is the version of Ruby on your
system? Confirm by running ruby -v at the command line.

2. What is the version of Rails? Confirm that it matches the version installed
in Listing 1.2.

1.2.3 Model-View-Controller (MVC)
Even at this early stage, it’s helpful to get a high-level overview of how Rails
applications work, as illustrated in Figure 1.19. You might have noticed that the
standard Rails application structure (Figure 1.11) has an application directory
called app/, which includes subdirectories called models, views, and con-
trollers (among others). This is a hint that Rails follows the model-view-
controller (MVC) architectural pattern, which enforces a separation between the
data in the application (such as user information) and the code used to display
it, which is a common way of structuring a graphical user interface (GUI).

When interacting with a Rails application, a browser sends a request, which
is received by awebserver and passed on to a Rails controller, which is in charge
of what to do next. In some cases, the controller will immediately render a view,
which is a template that gets converted to HTML and sent back to the browser.
More commonly for dynamic sites, the controller interacts with a model, which
is a Ruby object that represents an element of the site (such as a user) and is in

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Model-view-controller

1.2. THE FIRST APPLICATION 35

charge of communicating with the database. After invoking the model, the con-
troller then renders the view and returns the complete web page to the browser
as HTML.

If this discussion seems a bit abstract right now, don’t worry; we’ll cover
these ideas in more detail later in this book. In particular, Section 1.2.4 shows a
first tentative application of MVC, while Section 2.2.2 includes a more detailed
discussion of MVC in the context of the toy app. Finally, the full sample app
will use all aspects of MVC: we’ll cover controllers and views starting in Sec-
tion 3.2, models starting in Section 6.1, and we’ll see all three working together
in Section 7.1.2.

1.2.4 Hello, world!
As a first application of the MVC framework, we’ll make a wafer-thin change
to the first app by adding a controller action to render the string “hello, world!”
to replace the default Rails page from Figure 1.18. (We’ll learn more about
controller actions starting in Section 2.2.2.)

As implied by their name, controller actions are defined inside controllers.
We’ll call our action hello and place it in the Application controller. Indeed,
at this point the Application controller is the only controller we have, which
you can verify by running

$ ls app/controllers/*_controller.rb

to view the current controllers. (We’ll start creating our own controllers in
Chapter 2.) Listing 1.9 shows the resulting definition of hello, which uses the
render function to return the HTML text “hello, world!”. (Don’t worry about
the Ruby syntax right now; it will be covered in more depth in Chapter 4.)

Listing 1.9: Adding a hello action to the Application controller.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

https://en.wikipedia.org/wiki/Mr_Creosote

36 CHAPTER 1. FROM ZERO TO DEPLOY

Controller Model

View

Database

Figure 1.19: A schematic representation of the model-view-controller (MVC)
architecture.

1.2. THE FIRST APPLICATION 37

def hello

render html: "hello, world!"

end

end

Having defined an action that returns the desired string, we need to tell Rails
to use that action instead of the default page in Figure 1.18. To do this, we’ll edit
the Rails router, which sits in front of the controller in Figure 1.19 and deter-
mines where to send requests that come in from the browser. (I’ve omitted the
router from Figure 1.19 for simplicity, but we’ll discuss it in more detail start-
ing in Section 2.2.2.) In particular, we want to change the default page, the root
route, which determines the page that is served on the root URL. Because it’s
the URL for an address like http://www.example.com/ (where nothing comes
after the final forward slash), the root URL is often referred to as / (“slash”) for
short.

As seen in Listing 1.10, the Rails routes file (config/routes.rb) in-
cludes a comment directing us to the Rails Guide on Routing, which includes
instructions on how to define the root route. The syntax looks like this:

root 'controller_name#action_name'

In the present case, the controller name is application and the action name
is hello, which results in the code shown in Listing 1.11.

Listing 1.10: The default routing file (formatted to fit).
config/routes.rb

Rails.application.routes.draw do

For details on the DSL available within this file,

see https://guides.rubyonrails.org/routing.html

end

Listing 1.11: Setting the root route.
config/routes.rb

https://guides.rubyonrails.org/routing.html

38 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.20: Viewing “hello, world!” in the browser.

Rails.application.routes.draw do

root 'application#hello'

end

With the code from Listing 1.9 and Listing 1.11, the root route returns
“hello, world!” as required (Figure 1.20).13 Hello, world!

13The base URL for the Rails Tutorial Cloud9 shared URLs has changed from rails-tutorial-c9-mhartl.c9.io to
one on Amazon Web Services, but in many cases the screenshots are identical, so the browser address bar will
show old-style URLs in some figures (such as Figure 1.20). This is the sort of minor discrepancy you can resolve
using your technical sophistication (Box 1.2).

1.3. VERSION CONTROL WITH GIT 39

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Change the content of the hello action in Listing 1.9 to read “hola,
mundo!” instead of “hello, world!”.

2. Show that Rails supports non-ASCII characters by including an inverted
exclamation point, as in “¡Hola, mundo!” (Figure 1.21).14 To get a ¡
character on a Mac, you can use Option-1; otherwise, you can always
copy-and-paste the character into your editor.

3. By following the example of the hello action in Listing 1.9, add a sec-
ond action called goodbye that renders the text “goodbye, world!”. Edit
the routes file from Listing 1.11 so that the root route goes to goodbye
instead of to hello (Figure 1.22).

1.3 Version control with Git
Now that we have a working “hello, world” application, we’ll take a moment
for a step that, while technically optional, would be viewed by many expe-
rienced software developers as practically essential: placing our application
source code under version control. Version control systems allow us to track
changes to our project’s code, collaborate more easily, and roll back any in-
advertent errors (such as accidentally deleting files). Knowing how to use a
version control system is a required skill for every professional-grade software
developer.

There are many options for version control, but the software development
community has largely standardized on Git, a distributed version control sys-
tem originally developed by Linus Torvalds to host the Linux kernel. Git is a

14Your editor may display a message like “invalid multibyte character”, but this is not a cause for concern. You
can Google the error message if you want to learn how to make it go away.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/ASCII
https://git-scm.com/
https://en.wikipedia.org/wiki/Linux_kernel
https://www.google.com/search?q=invalid+multibyte+character

40 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.21: Changing the root route to return “¡Hola, mundo!”.

1.3. VERSION CONTROL WITH GIT 41

Figure 1.22: Changing the root route to return “goodbye, world!”.

42 CHAPTER 1. FROM ZERO TO DEPLOY

large subject, and we’ll only be scratching the surface in this book; for a more
thorough introduction to the basics, see Learn Enough Git to Be Dangerous.

Putting your source code under version control with Git is strongly recom-
mended, not only because it’s nearly a universal practice in the Rails world,
but also because it will allow you to back up and share your code more eas-
ily (Section 1.3.3) and deploy your application right here in the first chapter
(Section 1.4).

1.3.1 Installation and setup
The cloud IDE recommended in Section 1.1.1 includes Git by default, so no
installation is necessary in this case. Otherwise, Learn Enough Git to Be Dan-
gerous includes instructions for installing Git on your system.

First-time system setup

Before using Git, you should perform a few one-time setup steps. These are
system setups, meaning you have to do them only once per computer.

The first (and required) step is to configure your name and email address,
as shown in Listing 1.12.

Listing 1.12: Configuring the name and email fields for Git.
$ git config --global user.name "Your Name"

$ git config --global user.email your.email@example.com

Note that the name and email address you use in your Git configuration will be
available in any repositories you make public.

If you’re using the cloud IDE, the next step is to configure a default editor
for the times when Git needs one (such as editing, or “amending” changes to
projects). We’ll use the nano editor, which is relatively friendly to beginners
and is the default on the cloud IDE. As of this writing, the default editor gets
reset on logout, and the path is also incorrect, so we need to execute Listing 1.13,
which creates a symbolic link (or “symlink”) to the correct location of the nano

https://www.learnenough.com/git
https://www.learnenough.com/git
https://www.learnenough.com/git
https://www.learnenough.com/r/learn_enough_git/getting_started/installation_and_setup#sec-installation_and_setup
https://help.github.com/en/articles/changing-a-commit-message

1.3. VERSION CONTROL WITH GIT 43

executable.15 (The command in Listing 1.13 is a little advanced, so certainly
don’t worry about understanding it if it looks confusing.)

Listing 1.13: Configuring the default editor on the cloud IDE.
$ sudo ln -sf `which nano` /usr/bin

Next, we’ll take an optional but convenient step and set up an alias, or syn-
onym, for the commonly used checkout command, as shown in Listing 1.14.

Listing 1.14: Setting up git co as a checkout alias.
$ git config --global alias.co checkout

In this tutorial, I’ll always use the full git checkout command for maximum
compatibility, but in practice I almost always use git co for short.

The final step is to prevent Git from asking for your password every time you
want to use commands like push or pull (Section 1.3.4). The options for doing
this are system-dependent; see the article “Caching your GitHub password in
Git” if you’re using anything other than Linux (including the cloud IDE). If you
are using Linux (including of course the cloud IDE), you can simply set a cache
timeout as shown in Listing 1.15.

Listing 1.15: Configuring Git to remember passwords for a set length of time.
$ git config --global credential.helper "cache --timeout=86400"

Listing 1.15 configures Git to remember any passwords you use for 86,400 sec-
onds (one day).16 If you’re highly security-conscious, you can use a shorter
timeout, such as the default 900 seconds, or 15 minutes.

15Vim is actually my Git preferred editor in this context, and is recommended for people who have Minimum
Viable Vim™ or better (as described in Learn Enough Text Editor to Be Dangerous). To use vim in Listing 1.13,
just replace `which nano` with `which vim`

16In theory, you could use a longer timeout, but on the cloud IDE the timer seems to gets reset every day or so,
so entering a timeout of more than 86,400 seconds appears to have little effect in this case.

https://help.github.com/en/articles/caching-your-github-password-in-git
https://help.github.com/en/articles/caching-your-github-password-in-git
https://www.learnenough.com/r/learn_enough_text_editor/vim/mvv#sec-mvv
https://www.learnenough.com/text-editor

44 CHAPTER 1. FROM ZERO TO DEPLOY

First-time repository setup
Now we come to some steps that are necessary each time you create a new
repository (sometimes called a repo for short). The first step is to navigate to
the root directory of the hello app and initialize a new repository:

$ cd ~/environment/hello_app # Just in case you weren't already there

$ git init

Reinitialized existing Git repository in

/home/ubuntu/environment/hello_app/.git/

Note that Git outputs a message that the repository has been reinitialized. This
is because, as of Rails 6, running rails new (Listing 1.4) automatically ini-
tializes a Git repository (a strong indication of how ubiquitous Git’s use is in
tech). Thus, the git init step isn’t technically necessary in our case, but this
won’t hold for general Git repositories, so always running git init is a good
habit to cultivate.

The next step is to add all the project files to the repository using git add

-A:17

$ git add -A

This command adds all the files in the current directory apart from those that
match the patterns in a special file called .gitignore. The rails new com-
mand automatically generates a .gitignore file appropriate to a Rails project,
but you can add additional patterns as well.18

The added files are initially placed in a staging area, which contains pending
changes to our project. We can see which files are in the staging area using the
status command:

17Many developers use the nearly equivalent git add ., where . (“dot”) represents the current directory. In
the rare cases where the two differ, what you usually want is git add -A, and this is what’s used in the official
Git documentation, so that’s what we go with here.

18Although we’ll never need to edit it in the main tutorial, an example of adding a rule to the .gitignore file
appears in Section 3.6.2, which is part of the optional advanced testing setup in Section 3.6.

https://stackoverflow.com/questions/572549/difference-between-git-add-a-and-git-add
https://git-scm.com/docs/git-add
https://git-scm.com/docs/git-add

1.3. VERSION CONTROL WITH GIT 45

$ git status

On branch master

No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

new file: .browserslistrc

new file: .gitignore

new file: .ruby-version

new file: Gemfile

new file: Gemfile.lock

.

.

.

To tell Git we want to keep the changes, we use the commit command:

$ git commit -m "Initialize repository"

[master (root-commit) df0a62f] Initialize repository

.

.

.

The -m flag lets us add a message for the commit; if we omit -m, Git will open
the system’s default editor and have us enter the message there. (All the exam-
ples in this tutorial will use the -m flag.)

It is important to note that Git commits are local, recorded only on the ma-
chine on which the commits occur. We’ll see how to push the changes up to a
remote repository (using git push) in Section 1.3.4.

By the way, we can see a list of the commit messages using the log com-
mand:

$ git log

commit b981e5714e4d4a4f518aeca90270843c178b714e (HEAD -> master)

Author: Michael Hartl <michael@michaelhartl.com>

Date: Sun Aug 18 17:57:06 2019 +0000

Initialize repository

46 CHAPTER 1. FROM ZERO TO DEPLOY

Depending on the length of the repository’s log history, you may have to type
q to quit. (As explained in Learn Enough Git to Be Dangerous, git log uses
the less interface covered in Learn Enough Command Line to Be Dangerous.)

1.3.2 What good does Git do you?
If you’ve never used version control before, it may not be entirely clear at
this point what good it does you, so let’s look at just one example. Suppose
you’ve made some accidental changes, such as (D’oh!) deleting the critical
app/controllers/ directory.

$ ls app/controllers/

application_controller.rb concerns/

$ rm -rf app/controllers/

$ ls app/controllers/

ls: app/controllers/: No such file or directory

Here we’re using the Unix ls command to list the contents of the app/con-
trollers/ directory and the rm command to remove it (Table 1.1). As noted
in Learn Enough Command Line to Be Dangerous, the -rf flag means “recur-
sive force”, which recursively removes all files, directories, subdirectories, and
so on, without asking for explicit confirmation of each deletion.

Let’s check the status to see what changed:

$ git status

On branch master

Changes not staged for commit:

(use "git add/rm <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

deleted: app/controllers/application_controller.rb

deleted: app/controllers/concerns/.keep

no changes added to commit (use "git add" and/or "git commit -a")

We see here that a file has been deleted, but the changes are only on the “work-
ing tree”; they haven’t been committed yet. This means we can still undo the

https://www.learnenough.com/git
https://www.learnenough.com/r/learn_enough_command_line/inspecting_files/less_is_more#sec-less_is_more
https://www.learnenough.com/command-line
https://youtu.be/H22t-tiWiLw
https://www.learnenough.com/r/learn_enough_command_line/directories/removing_directories#sec-removing_directories
https://www.learnenough.com/command-line

1.3. VERSION CONTROL WITH GIT 47

changes using the checkout command with the -f flag to force overwriting
the current changes:

$ git checkout -f

$ git status

On branch master

nothing to commit, working tree clean

$ ls app/controllers/

application_controller.rb concerns/

The missing files and directories are back. That’s a relief!

1.3.3 GitHub
Now that we’ve put our project under version control with Git, it’s time to push
our code up to GitHub, a site optimized for hosting and sharing Git reposito-
ries.19 Putting a copy of your Git repository at GitHub serves two purposes: it’s
a full backup of your code (including the full history of commits), and it makes
any future collaboration much easier.

Getting started with GitHub is straightforward: just sign up for a GitHub
account if you don’t already have one (Figure 1.23).

Once you’ve signed up or signed in, click on the + sign dropdown menu
and select “New repository” (Figure 1.24).

On the new repository page, fill the fields with the repository name
(hello_app) and optional description, and take special care to select the “Pri-
vate” option, as shown in Figure 1.25. Although Rails apps are in principle
safe to expose as public repositories, so many things can go wrong (such as ac-
cidentally exposing passwords or private keys) that making all such repositories
private is a prudent default.20

After clicking the “Create repository” button, you should see something
like Figure 1.26, with commands for adding an existing repository to GitHub.

19Bitbucket and GitLab are also excellent choices. Like GitHub, GitLab is written in Rails.
20GitHub allows unlimited public and private repositories.

https://github.com/
https://github.com/join
https://github.com/join
https://en.wikipedia.org/wiki/Public-key_cryptography
https://bitbucket.org/
https://gitlab.com

48 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.23: Signing up for GitHub.

1.3. VERSION CONTROL WITH GIT 49

Figure 1.24: Selecting the “New repository” option.

50 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.25: Creating a private repository at GitHub.

1.3. VERSION CONTROL WITH GIT 51

Figure 1.26: Code for adding an existing repository.

Click on the HTTPS option,21 and then copy the commands in the section for
an existing repository. I suggest clicking the small icon on the right side of the
screen, which automatically copies the commands shown in Listing 1.16 to your
pasteboard buffer, allowing you to paste them into the command-line terminal.

Finally, run the commands in Listing 1.16. You will have to type your
GitHub password, but you won’t the next time (as long as it’s within the cache
timeout period) due to the configuration in Listing 1.15.

21The SSH option shown in Figure 1.26 is excellent for more advanced users, so feel free to use it if you’re
comfortable with generating and configuring SSH keys. Among other things, this option allows your system to
cache your password automatically, rendering the setup step in Listing 1.15 unnecessary.

https://help.github.com/en/articles/connecting-to-github-with-ssh

52 CHAPTER 1. FROM ZERO TO DEPLOY

Listing 1.16: AddingGitHub as a remote origin and pushing up the repository.
$ git remote add origin https://github.com/<username>/hello_app.git

$ git push -u origin master

The commands in Listing 1.16 first tell Git that you want to add GitHub as the
origin for your repository, and then push your repository up to the remote origin.
(Don’t worry about what the -u flag does; if you’re curious, do a web search for
“git set upstream”.) Of course, you should replace <username> in Listing 1.16
with your actual username. For example, the command I ran looked like this:

$ git remote add origin https://github.com/mhartl/hello_app.git

The result is a page at GitHub for the hello_app repository, with file browsing,
full commit history, and lots of other features (Figure 1.27).

1.3.4 Branch, edit, commit, merge
If you’ve followed the steps in Section 1.3.3, you might notice that GitHub au-
tomatically rendered the repository’s README file, as shown in Figure 1.28.
This file, called README.md, was generated automatically by the command in
Listing 1.4. As indicated by the filename extension .md, it is written in Mark-
down,22 a human-readable markup language designed to be easy to convert to
HTML—which is exactly what GitHub has done.

This automatic rendering of the README is convenient, but of course it
would be better if we tailored the contents of the file to the project at hand.
In this section, we’ll customize the README by adding some Rails Tutorial–
specific content. In the process, we’ll see a first example of the branch, edit,
commit, merge workflow that I recommend using with Git.23

22See Learn Enough Text Editor to Be Dangerous and Learn Enough Git to Be Dangerous for more information
about Markdown.

23For a convenient way to visualize Git repositories, take a look at Atlassian’s SourceTree app.

https://www.google.com/search?q=git+set+upstream
https://www.learnenough.com/text-editor
https://www.learnenough.com/git
https://www.sourcetreeapp.com/

1.3. VERSION CONTROL WITH GIT 53

Figure 1.27: A GitHub repository page.

54 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.28: GitHub’s rendering of the default Rails README.

1.3. VERSION CONTROL WITH GIT 55

Branch

Git is incredibly good at making branches, which are effectively copies of a
repository where we can make (possibly experimental) changes without modi-
fying the parent files. In most cases, the parent repository is the master branch,
and we can create a new topic branch by using checkout with the -b flag:

$ git checkout -b modify-README

Switched to a new branch 'modify-README'

$ git branch

master

* modify-README

Here the second command, git branch, just lists all the local branches, and
the asterisk * identifies which branch we’re currently on. Note that git
checkout -b modify-README both creates a new branch and switches to
it, as indicated by the asterisk in front of the modify-README branch.

The full value of branching only becomes clear when working on a project
with multiple developers,24 but branches are helpful even for a single-developer
tutorial such as this one. In particular, because the master branch is insulated
from any changes we make to the topic branch, even if we really mess things
up we can always abandon the changes by checking out the master branch and
deleting the topic branch. We’ll see how to do this at the end of the section.

By the way, for a change as small as this one I wouldn’t normally bother
with a new branch (opting instead to work directly on the master branch), but
in the present context it’s a prime opportunity to start practicing good habits.

Edit

After creating the topic branch, we’ll edit the README to add custom content,
as shown in Listing 1.17 and Figure 1.29.

24See, for example, the section on Collaborating in Learn Enough Git to Be Dangerous.

https://www.learnenough.com/r/learn_enough_git/collaborating
https://www.learnenough.com/git

56 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.29: Editing the README file.

Listing 1.17: The new README file.
README.md

Ruby on Rails Tutorial

"hello, world!"

This is the first application for the

[*Ruby on Rails Tutorial*](https://www.railstutorial.org/)

by [Michael Hartl](https://www.michaelhartl.com/). Hello, world!

1.3. VERSION CONTROL WITH GIT 57

Commit
With the changes made, we can take a look at the status of our branch:

$ git status

On branch modify-README

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

At this point, we could use git add -A as in Section 1.3.1, but git commit

provides the -a flag as a shortcut for the (very common) case of committing all
modifications to existing files:

$ git commit -a -m "Improve the README file"

[modify-README 34bb6a5] Improve the README file

1 file changed, 5 insertions(+), 22 deletions(-)

Be careful about using the -a flag improperly; if you have added any new files
to the project since the last commit, you still have to tell Git about them using
git add -A first.

Note that wewrite the commit message in the present tense (and, technically
speaking, the imperative mood). Git models commits as a series of patches,
and in this context it makes sense to describe what each commit does, rather
than what it did. Moreover, this usage matches up with the commit messages
generated by Git commands themselves. See Committing to Git from Learn
Enough Git to Be Dangerous for more information.

Merge
Now that we’ve finished making our changes, we’re ready to merge the results
back into our master branch:

https://en.wikipedia.org/wiki/Imperative_mood
https://www.learnenough.com/r/learn_enough_git/getting_started/our_first_commit#aside-commit_messages
https://www.learnenough.com/git
https://www.learnenough.com/git

58 CHAPTER 1. FROM ZERO TO DEPLOY

$ git checkout master

Switched to branch 'master'

$ git merge modify-README

Updating b981e57..015008c

Fast-forward

README.md | 27 +++++----------------------

1 file changed, 5 insertions(+), 22 deletions(-)

Note that the Git output frequently includes things like 34f06b7, which are
related to Git’s internal representation of repositories. Your exact results will
differ in these details, but otherwise should essentially match the output shown
above.

After you’ve merged in the changes, you can tidy up your branches by delet-
ing the topic branch using git branch -d if you’re done with it:

$ git branch -d modify-README

Deleted branch modify-README (was 015008c).

This step is optional, and in fact it’s quite common to leave the topic branch
intact. This way you can switch back and forth between the topic and master
branches, merging in changes every time you reach a natural stopping point.

As mentioned above, it’s also possible to abandon your topic branch
changes, in this case with git branch -D:

For illustration only; don't do this unless you mess up a branch

$ git checkout -b topic-branch

$ <really mess up the branch>

$ git add -A

$ git commit -a -m "Make major mistake"

$ git checkout master

$ git branch -D topic-branch

Unlike the -d flag, the -D flag will delete the branch even though we haven’t
merged in the changes.

1.3. VERSION CONTROL WITH GIT 59

Figure 1.30: The improved README file at GitHub.

Push

Now that we’ve updated the README, we can push the changes up to GitHub to
see the result. Since we have already done one push (Section 1.3.3), on most
systems we can omit origin master, and simply run git push:

$ git push

As with the default README, GitHub nicely converts the Markdown in our up-
dated README to HTML (Figure 1.30).

60 CHAPTER 1. FROM ZERO TO DEPLOY

1.4 Deploying
Even though this is only the first chapter, we’re already going to deploy our
Rails application to production! As with the version control setup in Sec-
tion 1.3, this step is technically optional, but deploying early and often allows
us to catch any deployment problems early in our development cycle. The
alternative—deploying only after laborious effort sealed away in a develop-
ment environment—often leads to terrible integration headaches when launch
time comes.25

Deploying Rails applications used to be a pain, but the Rails deployment
ecosystem has matured rapidly in the past few years, and now there are several
great options. These include shared hosts or virtual private servers running
Phusion Passenger (a module for the Apache and Nginx26 webservers), full-
service deployment companies such as Engine Yard and Rails Machine, and
cloud deployment services such as Engine Yard Cloud and Heroku.

My favorite Rails deployment option is Heroku, which is a hosted platform
built specifically for deploying Rails and other web applications. (As you might
guess, Heroku itself is written in Rails.) Herokumakes deploying Rails applica-
tions ridiculously easy, as long as your source code is under version control with
Git—which is yet another reason to follow the Git setup steps in Section 1.3 if
you haven’t already. In addition, for many purposes, including for this tutorial,
Heroku’s free tier is more than sufficient.

The rest of this section is dedicated to deploying our first application to
Heroku. Some of the ideas are fairly advanced, so don’t worry about under-
standing all the details; what’s important is that by the end of the process we’ll
have deployed our application to the live web.

1.4.1 Heroku setup and deployment
Heroku uses the PostgreSQL database (pronounced “post-gres-cue-ell”, and of-
ten called “Postgres” for short), which means that we need to add the pg gem

25Though it shouldn’t matter for the example applications in the Rails Tutorial, if you’re worried about acci-
dentally making your app public too soon there are several options; see Section 1.4.2 for one.

26Pronounced “Engine X”.

https://www.phusionpassenger.com/
https://www.engineyard.com/
https://railsmachine.com/
https://www.engineyard.com/features
https://www.heroku.com/
https://www.postgresql.org/

1.4. DEPLOYING 61

in the production environment to allow Rails to talk to Postgres:

group :production do

gem 'pg', '1.1.4'

end

Also be sure to incorporate the changes made in Listing 1.6 preventing the
sqlite3 gem from being included in a production environment, since the
SQLite database isn’t supported at Heroku:27

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

end

The resulting Gemfile appears as in Listing 1.18.
Important note: For all the Gemfiles in this book, you should use the

version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the
ones listed below (although they should be identical if you are reading this
online).

Listing 1.18: A Gemfile with added and rearranged gems.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.2.1'

gem 'puma', '3.12.2'

gem 'sass-rails', '5.1.0'

gem 'webpacker', '4.0.7'

gem 'turbolinks', '5.2.0'

gem 'jbuilder', '2.9.1'

gem 'bootsnap', '1.4.5', require: false

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

27SQLite is widely used as an embedded database—for instance, it’s ubiquitous in mobile phones—and Rails
uses it locally by default because it’s so easy to set up, but it isn’t designed for database-backed web applications.
See Section 3.1 for more information.

https://en.wikipedia.org/wiki/SQLite
https://gemfiles-6th-ed.railstutorial.org/

62 CHAPTER 1. FROM ZERO TO DEPLOY

end

group :development do

gem 'web-console', '4.0.1'

gem 'listen', '3.1.5'

gem 'spring', '2.1.0'

gem 'spring-watcher-listen', '2.0.1'

end

group :test do

gem 'capybara', '3.28.0'

gem 'selenium-webdriver', '3.142.4'

gem 'webdrivers', '4.1.2'

end

group :production do

gem 'pg', '1.1.4'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

To prepare the system for deployment to production, we run bundle install

with a special flag to prevent the local installation of any production gems
(which in this case consists of the pg gem), as shown in Listing 1.19.

Listing 1.19: Bundling without production gems.
$ bundle install --without production

Because the only gem added in Listing 1.18 is restricted to a production envi-
ronment, right now the command in Listing 1.19 doesn’t actually install any ad-
ditional local gems, but it’s needed to update Gemfile.lockwith the pg gem.
We can commit the resulting change as follows:

$ git commit -a -m "Update Gemfile for Heroku"

Next we have to create and configure a newHeroku account. The first step is
to sign up for Heroku. Then check to see if your system already has the Heroku
command-line client installed:

https://signup.heroku.com/

1.4. DEPLOYING 63

$ heroku --version

This will display the current version number if the heroku command-line in-
terface (CLI) is available, but on most systems it will be necessary to install the
Heroku CLI by hand.28 In particular, if you’re working on the cloud IDE, you
can install Heroku using the command shown in Listing 1.20.

Listing 1.20: The command to install Heroku on the cloud IDE.
$ source <(curl -sL https://cdn.learnenough.com/heroku_install)

After running the command in Listing 1.20, you should now be able to verify
the installation by displaying the current version number (details may vary):

$ heroku --version

heroku/7.27.1 linux-x64 node-v11.14.0

Once you’ve verified that the Heroku command-line interface is installed,
use the heroku command to log in with themail address and password you used
when signing up (the --interactive option prevents heroku from trying to
spawn a browser):

$ heroku login --interactive

Finally, use the heroku create command to create a place on the Heroku
servers for the sample app to live (Listing 1.21).

Listing 1.21: Creating a new application at Heroku.
$ heroku create

Creating app... done, � blooming-bayou-75897

https://blooming-bayou-75897.herokuapp.com/ |

https://git.heroku.com/blooming-bayou-75897.git

28toolbelt.heroku.com

https://toolbelt.heroku.com/

64 CHAPTER 1. FROM ZERO TO DEPLOY

The heroku command creates a new subdomain just for our application, avail-
able for immediate viewing. There’s nothing there yet, though, so let’s get busy
deploying.

Heroku deployment, step 1
The first step is to use Git to push the master branch up to Heroku:

$ git push heroku master

(You may see some warning messages, which you should ignore for now. We’ll
discuss them further in Section 7.5.)

Heroku deployment, step 2
There is no step two! We’re already done. To see your newly deployed ap-
plication, visit the address that you saw when you ran heroku create (i.e.,
Listing 1.21).29 The result appears in Figure 1.31. The page is identical to Fig-
ure 1.20, but now it’s running in a production environment on the live web.30

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By making the same change as in Section 1.2.4, arrange for your produc-
tion app to display “hola, mundo!”.

2. As in Section 1.2.4, arrange for the root route to display the result of the
goodbye action. When deploying, confirm that you can omit master in
the Git push, as in git push heroku.

29If you’re working on your local machine instead of the cloud IDE, you can use heroku open to open the
site automatically in a web browser.

30Your results may differ if you completed the exercises in Section 1.2.4.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

1.4. DEPLOYING 65

Figure 1.31: The first Rails Tutorial application running on Heroku.

66 CHAPTER 1. FROM ZERO TO DEPLOY

1.4.2 Heroku commands
There are many Heroku commands, and we’ll barely scratch the surface in this
book. Let’s take a minute to show just one of them by renaming the application
as follows:

$ heroku rename rails-tutorial-hello

Don’t use this name yourself; it’s already taken by me! In fact, you probably
shouldn’t bother with this step right now; using the default address supplied by
Heroku is fine. But if you do want to rename your application, you can arrange
for it to be reasonably secure by using a random or obscure subdomain, such as
the following:
hwpcbmze.herokuapp.com

seyjhflo.herokuapp.com

jhyicevg.herokuapp.com

With a random subdomain like this, someone could visit your site only if you
gave them the address.31 (By the way, as a preview of Ruby’s compact awe-
someness, here’s the code I used to generate the random subdomains:

('a'..'z').to_a.shuffle[0..7].join

We’ll return to this bit of code in Chapter 4.)32
In addition to supporting subdomains, Heroku also supports custom do-

mains. (In fact, the Ruby on Rails Tutorial site lives at Heroku; if you’re read-
ing this book online, you’re looking at a Heroku-hosted site right now!) See the
Heroku documentation for more information about custom domains and other
Heroku topics.

31This solution, known as “security through obscurity”, is fine for hobby projects, but for sites that require
greater initial security I recommend using Rails HTTP basic authentication. This is a much more advanced tech-
nique, though, and requires significantly more technical sophistication (Box 1.2) to implement. (Thanks to Alfie
Pates for raising this issue.)

32As is often the case, this code can be made even more compact using a built-in part of Ruby, in this case
something called sample: ('a'..'z').to_a.sample(8).join. Thanks to alert reader Stefan Pochmann for
pointing this out—I didn’t even know about sample until he told me!

https://devcenter.heroku.com/articles/heroku-cli
https://www.railstutorial.org
https://devcenter.heroku.com/
https://www.google.com/search?q=HTTP+basic+authentication

1.5. CONCLUSION 67

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Run heroku help to see a list of Heroku commands. What is the com-
mand to display logs for an app?

2. Use the command identified in the previous exercise to inspect the activ-
ity on your application. What was the most recent event? (This command
is often useful when debugging production apps.)

1.5 Conclusion
We’ve come a long way in this chapter: development environment setup, in-
stallation, version control, and deployment. In the next chapter, we’ll build on
the foundation from Chapter 1 to make a database-backed toy app, which will
give us our first real taste of what Rails can do.

If you’d like to share your progress at this point, feel free to send a tweet or
Facebook status update with something like this:

I’m learning Ruby on Rails with the @railstutorial!
https://www.railstutorial.org/

I also recommend signing up for the Rails Tutorial email list33, which will en-
sure that you receive priority updates (and exclusive coupon codes) regarding
the Ruby on Rails Tutorial.

1.5.1 What we learned in this chapter
• Ruby on Rails is a web development framework written in the Ruby pro-
gramming language.

33railstutorial.org/email

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://twitter.com/?status=I'm%20learning%20Ruby%20on%20Rails%20with%20the%20@railstutorial!%20https://www.railstutorial.org/
https://twitter.com/?status=I'm%20learning%20Ruby%20on%20Rails%20with%20the%20@railstutorial!%20https://www.railstutorial.org/
https://www.railstutorial.org/#email

68 CHAPTER 1. FROM ZERO TO DEPLOY

• Installing Rails, generating an application, and editing the resulting files
is easy using a preconfigured cloud environment.

• Rails comes with a command-line command called rails that can gen-
erate new applications (rails new) and run local servers (rails ser-

ver).

• We added a controller action andmodified the root route to create a “hello,
world” application.

• We protected against data loss while enabling collaboration by placing
our application source code under version control with Git and pushing
the resulting code to a private repository at GitHub.

• We deployed our application to a production environment using Heroku.

1.6 Conventions used in this book
The conventions used in this book are mostly self-explanatory. In this section,
we’ll go over some that may not be.

This tutorial makes frequent use of command-line commands. For simplic-
ity, all command line examples use a Unix-style command-line prompt (a dollar
sign), as follows:

$ echo "hello, world"

hello, world

Rails comes with many commands that can be run at the command line. For
example, in Section 1.2.2 we’ll run a local development webserver with the
rails server command:

$ rails server

https://www.learnenough.com/command-line

1.6. CONVENTIONS USED IN THIS BOOK 69

As with the command-line prompt, the Rails Tutorial uses the Unix conven-
tion for directory separators (i.e., a forward slash /). For example, the sample
application production.rb configuration file appears as follows:

config/environments/production.rb

This file path should be understood as being relative to the application’s root
directory, which will vary by system. For example, on the cloud IDE (Sec-
tion 1.1.1) it looks like this:

/home/ubuntu/environment/sample_app/

Thus, the full path to production.rb is

/home/ubuntu/environment/sample_app/config/environments/production.rb

I will typically omit the application path and write just config/environ-
ments/production.rb for short.

The Rails Tutorial often shows output from various programs. Because of
the innumerable small differences between different computer systems, the out-
put you see may not always agree exactly with what is shown in the text, but this
is not cause for concern. In addition, some commands may produce errors de-
pending on your system; rather than attempt the Sisyphean task of documenting
all such errors in this tutorial, I will delegate to the “Google the error message”
algorithm, which among other things is good practice for real-life software de-
velopment (Box 1.2). If you run into any problems while following the tutorial,
I suggest consulting the resources listed at the Rails Tutorial Help page.34

Because the Rails Tutorial covers testing of Rails applications, it is often
helpful to know if a particular piece of code causes the test suite to fail (indicated
by the color red) or pass (indicated by the color green). For convenience, code

34https://www.railstutorial.org/help

https://en.wikipedia.org/wiki/Sisyphus
https://www.railstutorial.org/help

70 CHAPTER 1. FROM ZERO TO DEPLOY

resulting in a failing test is thus indicated with red, while code resulting in a
passing test is indicated with green.

Finally, for convenience the Ruby on Rails Tutorial adopts two conventions
designed to make the many code samples easier to understand. First, some code
listings include one or more highlighted lines, as seen below:

class User < ApplicationRecord

validates :name, presence: true

validates :email, presence: true

end

Such highlighted lines typically indicate the most important new code in the
given sample, and often (though not always) represent the difference between
the present code listing and previous listings. Second, for brevity and simplicity
many of the book’s code listings include vertical dots, as follows:

class User < ApplicationRecord

.

.

.

has_secure_password

end

These dots represent omitted code and should not be copied literally.

Chapter 2

A toy app
In this chapter, we’ll develop a toy demo application to show off some of the
power of Rails. The purpose is to get a high-level overview of Ruby on Rails
programming (and web development in general) by rapidly generating an appli-
cation using scaffold generators, which create a large amount of functionality
automatically. As discussed in Box 2.1, the rest of the book will take the oppo-
site approach, developing a full sample application incrementally and explain-
ing each new concept as it arises, but for a quick overview (and some instant
gratification) there is no substitute for scaffolding. The resulting toy app will
allow us to interact with it through its URLs, giving us insight into the struc-
ture of a Rails application, including a first example of the REST architecture
favored by Rails.

As with the forthcoming sample application, the toy app will consist of
users and their associated microposts (thus constituting a minimalist Twitter-
style app). The functionality will be utterly under-developed, and many of the
steps will seem like magic, but worry not: the full sample app will develop a
similar application from the ground up starting in Chapter 3, and I will provide
plentiful forward-references to later material. In the meantime, have patience
and a little faith—the whole point of this tutorial is to take you beyond this su-
perficial, scaffold-driven approach to achieve a deeper understanding of Rails.

71

72 CHAPTER 2. A TOY APP

Box 2.1. Scaffolding: Quicker, easier, more seductive

From the beginning, Rails has benefited from a palpable sense of excitement,
starting with the famous 15-minute weblog video by Rails creator David Heine-
meier Hansson. That video and its successors are a great way to get a taste of
Rails’ power, and I recommend watching them. But be warned: they accomplish
their amazing fifteen-minute feat using a feature called scaffolding, which relies
heavily on generated code, magically created by the Rails generate scaffold

command.
When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffold-

ing approach—it’s quicker, easier, more seductive. But the complexity and sheer
amount of code in the scaffolding can be utterly overwhelming to a beginning Rails
developer; you may be able to use it, but you probably won’t understand it. Fol-
lowing the scaffolding approach risks turning you into a virtuoso script generator
with little (and brittle) actual knowledge of Rails.

In the Ruby on Rails Tutorial, we’ll take the (nearly) polar opposite approach:
although this chapter will develop a small toy app using scaffolding, the core of the
Rails Tutorial is the sample app, which we’ll start writing in Chapter 3. At each
stage of developing the sample application, we will write small, bite-sized pieces
of code—simple enough to understand, yet novel enough to be challenging. The
cumulative effect will be a deeper, more flexible knowledge of Rails, giving you a
good background for writing nearly any type of web application.

2.1 Planning the application
In this section, we’ll outline our plans for the toy application. As in Section 1.2,
we’ll start by generating the application skeleton using the rails new com-
mand with a specific Rails version number:

https://youtu.be/Gzj723LkRJY
https://youtu.be/y1hCMKav3LE

2.1. PLANNING THE APPLICATION 73

$ cd ~/environment

$ rails _6.0.2.1_ new toy_app

$ cd toy_app/

If you’re using the cloud IDE as recommended in Section 1.1.1, note that this
second app can be created in the same environment as the first. It is not neces-
sary to create a new environment. In order to get the files to appear, you may
need to click the gear icon in the file navigator area and select “Refresh File
Tree”.

Next, we’ll use a text editor to update the Gemfile needed by Bundler with
the contents of Listing 2.1.

Important note: For all the Gemfiles in this book, you should use the
version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the
ones listed below (although they should be identical if you are reading this
online).

Listing 2.1: A Gemfile for the toy app.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.2.1'

gem 'puma', '3.12.2'

gem 'sass-rails', '5.1.0'

gem 'webpacker', '4.0.7'

gem 'turbolinks', '5.2.0'

gem 'jbuilder', '2.9.1'

gem 'bootsnap', '1.4.5', require: false

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

end

group :development do

gem 'web-console', '4.0.1'

gem 'listen', '3.1.5'

gem 'spring', '2.1.0'

gem 'spring-watcher-listen', '2.0.1'

end

group :test do

https://gemfiles-6th-ed.railstutorial.org/

74 CHAPTER 2. A TOY APP

gem 'capybara', '3.28.0'

gem 'selenium-webdriver', '3.142.4'

gem 'webdrivers', '4.1.2'

end

group :production do

gem 'pg', '1.1.4'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

Note that Listing 2.1 is identical to Listing 1.18.
As in Section 1.4.1, we’ll install the local gems while preventing the instal-

lation of production gems using the --without production option:

$ bundle install --without production

As noted in Section 1.2.1, you may need to run bundle update as well
(Box 1.2).

Finally, we’ll put the toy app under version control with Git:

$ git init

$ git add -A

$ git commit -m "Initialize repository"

You should also create a new repository at GitHub by following the same steps
as in Section 1.3.3 (taking care to make it private as in Figure 2.1), and then
push up to the remote repository:

$ git remote add origin https://github.com/<username>/toy_app.git

$ git push -u origin master

Finally, it’s never too early to deploy, which I suggest doing by following
the same “hello, world!” steps from Section 1.2.4, as shown in Listing 2.2 and
Listing 2.3.

https://github.com/new

2.1. PLANNING THE APPLICATION 75

Figure 2.1: Creating the toy app repository at GitHub.

76 CHAPTER 2. A TOY APP

Listing 2.2: Adding a hello action to the Application controller.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

def hello

render html: "hello, world!"

end

end

Listing 2.3: Setting the root route.
config/routes.rb

Rails.application.routes.draw do

root 'application#hello'

end

Then commit the changes and push up to Heroku, and, at the same time,
GitHub—it’s a good idea to keep the two copies in sync:

$ git commit -am "Add hello"

$ heroku create

$ git push && git push heroku master

Here we’ve used the double ampersand operator && (read “and”) to combine
the pushes to GitHub and Heroku; the second command will execute only if the
first one succeeds.1

As in Section 1.4, you may see some warning messages, which you should
ignore for now. We’ll deal with them in Section 7.5. Apart from the URL of
the Heroku app, the result should be the same as in Figure 1.31.

2.1.1 A toy model for users
Now we’re ready to start making the app itself. The typical first step when
making a web application is to create a data model, which is a representation

1The && operator is described in Chapter 4 of Learn Enough Command Line to Be Dangerous.

https://en.wikipedia.org/wiki/Data_model
https://www.learnenough.com/r/learn_enough_command_line/directories/navigating_directories/combining_commands#aside-combining_commands
https://www.learnenough.com/r/learn_enough_command_line/directories
https://www.learnenough.com/command-line

2.1. PLANNING THE APPLICATION 77

email string

id
name string

integer
users

Figure 2.2: The data model for users.

of the structures needed by our application, including the relationships between
them. In our case, the toy app will be a Twitter-style microblog, with only users
and short (micro)posts. Thus, we’ll begin with a model for users of the app in
this section, and then we’ll add a model for microposts (Section 2.1.2).

There are as many choices for a user data model as there are different reg-
istration forms on the web; for simplicity, we’ll go with a distinctly minimalist
approach. Users of our toy app will have a unique identifier called id (of type
integer), a publicly viewable name (of type string), and an email address
(also of type string) that will double as a unique username. (Note that there
is no password attribute at this point, which is part of what makes this app a
“toy”. We’ll cover passwords starting in Chapter 6.) A summary of the data
model for users appears in Figure 2.2.

As we’ll see starting in Section 6.1.1, the label users in Figure 2.2 cor-
responds to a table in a database, and the id, name, and email attributes are
columns in that table.

2.1.2 A toy model for microposts

Recall from the introduction that a micropost is simply a short post, essentially
a generic term for the brand-specific “tweet” (with the prefix “micro” motivated
by Twitter’s original description as a “micro-blog”). The core of the micropost
data model is even simpler than the one for users: a micropost has only an

78 CHAPTER 2. A TOY APP

user_id integer

id
content text

integer
microposts

Figure 2.3: The data model for microposts.

id and a content field for the micropost’s text (of type text).2 There’s an
additional complication, though: we want to associate each micropost with a
particular user. We’ll accomplish this by recording the user_id of the owner
of the post. The results are shown in Figure 2.3.

We’ll see in Section 2.3.3 (and more fully in Chapter 13) how this user_id
attribute allows us to succinctly express the notion that a user potentially has
many associated microposts.

2.2 The Users resource
In this section, we’ll implement the users data model in Section 2.1.1, along
with a web interface to that model. The combination will constitute a Users
resource, which will allow us to think of users as objects that can be created,
read, updated, and deleted through the web via the HTTP protocol. As promised
in the introduction, our Users resource will be created by a scaffold generator
program, which comes standard with each Rails project. I urge you not to look
too closely at the generated code; at this stage, it will only serve to confuse you.

Rails scaffolding is generated by passing the scaffold command to the
2Because microposts are short by design, the string type might actually be big enough to contain them, but

using text better expresses our intent, while also giving us greater flexibility should we ever wish to relax the
length constraint. Indeed, Twitter’s change from allowing 140 to 280 characters in English-language tweets is a
perfect example of why such flexibility is important: a string typically allows 255 (28 − 1) characters, which
is big enough for 140-character tweets but not for 280-character ones. Using text allows a unified treatment of
both cases.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

2.2. THE USERS RESOURCE 79

rails generate script. The argument of the scaffold command is the sin-
gular version of the resource name (in this case, User), together with optional
parameters for the data model’s attributes:3

$ rails generate scaffold User name:string email:string

invoke active_record

create db/migrate/<timestamp>_create_users.rb

create app/models/user.rb

invoke test_unit

create test/models/user_test.rb

create test/fixtures/users.yml

invoke resource_route

route resources :users

invoke scaffold_controller

create app/controllers/users_controller.rb

invoke erb

create app/views/users

create app/views/users/index.html.erb

create app/views/users/edit.html.erb

create app/views/users/show.html.erb

create app/views/users/new.html.erb

create app/views/users/_form.html.erb

invoke test_unit

create test/controllers/users_controller_test.rb

create test/system/users_test.rb

invoke helper

create app/helpers/users_helper.rb

invoke test_unit

invoke jbuilder

create app/views/users/index.json.jbuilder

create app/views/users/show.json.jbuilder

create app/views/users/_user.json.jbuilder

invoke assets

invoke scss

create app/assets/stylesheets/users.scss

invoke scss

create app/assets/stylesheets/scaffolds.scss

By including name:string and email:string, we have arranged for the
User model to have the form shown in Figure 2.2. (Note that there is no need
to include a parameter for id; it is created automatically by Rails for use as the
primary key in the database.)

3The name of the scaffold follows the convention of models, which are singular, rather than resources and
controllers, which are plural. Thus, we have User instead of Users.

80 CHAPTER 2. A TOY APP

To proceed with the toy application, we first need to migrate the database
using rails db:migrate, as shown in Listing 2.4.

Listing 2.4: Migrating the database.
$ rails db:migrate

== CreateUsers: migrating ======================================

-- create_table(:users)

-> 0.0027s

== CreateUsers: migrated (0.0036s) =============================

The effect of Listing 2.4 is to update the database with our new users data
model. (We’ll learn more about database migrations starting in Section 6.1.1.)

Having run the migration in Listing 2.4, we can run the local webserver in
a separate tab (Figure 1.15). Users of the cloud IDE should first add the same
configuration as in Section 1.2.2 to allow the toy app to be served (Listing 2.5).

Listing 2.5: Allowing connections to the local web server.
config/environments/development.rb

Rails.application.configure do

.

.

.

Allow Cloud9 connections.

config.hosts.clear

end

Then run the Rails server as in Section 1.2.2:

$ rails server

Now the toy application should be available on the local server as described in
Section 1.2.2. In particular, if we visit the root URL at / (read “slash”, as noted
in Section 1.2.4), we get the same “hello, world!” page shown in Figure 1.20.

2.2. THE USERS RESOURCE 81

URL Action Purpose
/users index page to list all users
/users/1 show page to show user with id 1
/users/new new page to make a new user
/users/1/edit edit page to edit user with id 1

Table 2.1: The correspondence between pages andURLs for the Users resource.

2.2.1 A user tour
In generating the Users resource scaffolding in Section 2.2, Rails created a large
number of pages for manipulating users. For example, the page for listing all
users is at /users, and the page for making a new user is at /users/new. The rest of
this section is dedicated to taking a whirlwind tour through these user pages. As
we proceed, it may help to refer to Table 2.1, which shows the correspondence
between pages and URLs.

We start with the page to show all the users in our application, called index
and located at /users. As you might expect, initially there are no users at all
(Figure 2.4).

To make a new user, we can click on the New User link in Figure 2.4 to
visit the new page at /users/new, as shown in Figure 2.5. In Chapter 7, this will
become the user signup page.
We can create a user by entering name and email values in the text fields and then
clicking the Create User button. The result is the user show page at /users/1,
as seen in Figure 2.6. (The green welcome message is accomplished using the
flash, which we’ll learn about in Section 7.4.2.) Note that the URL is /users/1;
as you might suspect, the number 1 is simply the user’s id attribute from Fig-
ure 2.2. In Section 7.1, this page will become the user’s profile page.

To change a user’s information, we click the Edit link to visit the edit page
at /users/1/edit (Figure 2.7). Bymodifying the user information and clicking the
Update User button, we arrange to change the information for the user in the toy
application (Figure 2.8). (As we’ll see in detail starting in Chapter 6, this user
data is stored in a database back-end.) We’ll add user edit/update functionality
to the sample application in Section 10.1.

Now we’ll create a second user by revisiting the new page at /users/new and

82 CHAPTER 2. A TOY APP

Figure 2.4: The initial index page for the Users resource (/users).

2.2. THE USERS RESOURCE 83

Figure 2.5: The new user page (/users/new).

84 CHAPTER 2. A TOY APP

Figure 2.6: The page to show a user (/users/1).

2.2. THE USERS RESOURCE 85

Figure 2.7: The user edit page (/users/1/edit).

86 CHAPTER 2. A TOY APP

Figure 2.8: A user with updated information.

2.2. THE USERS RESOURCE 87

Figure 2.9: The user index page (/users) with a second user.

submitting a second set of user information. The resulting user index is shown
in Figure 2.9. Section 7.1 will develop the user index into a more polished page
for showing all users.

Having shown how to create, show, and edit users, we come finally to de-
stroying them (Figure 2.10). You should verify that clicking on the link in Fig-
ure 2.10 destroys the second user, yielding an index page with only one user. (If
it doesn’t work, be sure that JavaScript is enabled in your browser; Rails uses
JavaScript to issue the request needed to destroy a user.) Section 10.4 adds user
deletion to the sample app, taking care to restrict its use to a special class of
administrative users.

88 CHAPTER 2. A TOY APP

Figure 2.10: Destroying a user.

2.2. THE USERS RESOURCE 89

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. (For readers who know CSS) Create a new user, then use your browser’s
HTML inspector to determine the CSS id for the text “User was success-
fully created.” What happens when you refresh your browser?

2. What happens if you try to create a user with a name but no email address?

3. What happens if you try create a user with an invalid email address, like
“@example.com”?

4. Destroy each of the users created in the previous exercises. Does Rails
display a message by default when a user is destroyed?

2.2.2 MVC in action
Now that we’ve completed a quick overview of the Users resource, let’s exam-
ine one particular part of it in the context of the Model-View-Controller (MVC)
pattern introduced in Section 1.2.3. Our strategy will be to describe the results
of a typical browser hit—a visit to the user index page at /users—in terms of
MVC (Figure 2.11).

Here is a summary of the steps shown in Figure 2.11:

1. The browser issues a request for the /users URL.

2. Rails routes /users to the index action in the Users controller.

3. The index action asks the User model to retrieve all users (User.all).

4. The User model pulls all the users from the database.

5. The User model returns the list of users to the controller.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

90 CHAPTER 2. A TOY APP

Controller
(users_controller.rb)

Rails
router

Model
(user.rb)

View
(index.html.erb)

index

@users HTML

HTML

User.all

/users1

2

7

4
3

6

5

Database8

Figure 2.11: A detailed diagram of MVC in Rails.

2.2. THE USERS RESOURCE 91

6. The controller captures the users in the @users variable, which is passed
to the index view.

7. The view uses embedded Ruby to render the page as HTML.

8. The controller passes the HTML back to the browser.4

Now let’s take a look at the above steps in more detail. We start with a
request issued from the browser—i.e., the result of typing a URL in the address
bar or clicking on a link (Step 1 in Figure 2.11). This request hits the Rails
router (Step 2), which dispatches the request to the proper controller action
based on the URL (and, as we’ll see in Box 3.2, the type of request). The code
to create the mapping of user URLs to controller actions for the Users resource
appears in Listing 2.6. This code effectively sets up the table of URL/action
pairs seen in Table 2.1. (The strange notation :users is a symbol, which we’ll
learn about in Section 4.3.3.)

Listing 2.6: The Rails routes, with a rule for the Users resource.
config/routes.rb

Rails.application.routes.draw do

resources :users

root 'application#hello'

end

While we’re looking at the routes file, let’s take a moment to associate the
root route with the users index, so that “slash” goes to /users. Recall from
Listing 2.3 that we added the root route

root 'application#hello'

so that the root route went to the hello action in the Application controller. In
the present case, we want to use the index action in the Users controller, which
we can arrange using the code shown in Listing 2.7.

4Some references indicate that the view returns the HTML directly to the browser (via a webserver such as
Apache or Nginx). Regardless of the implementation details, I find it helpful to think of the controller as a central
hub through which all the application’s information flows.

92 CHAPTER 2. A TOY APP

Listing 2.7: Adding a root route for users.
config/routes.rb

Rails.application.routes.draw do

resources :users

root 'users#index'

end

A controller contains a collection of related actions, and the pages from the
tour in Section 2.2.1 correspond to actions in the Users controller. The con-
troller generated by the scaffolding is shown schematically in Listing 2.8. Note
the code class UsersController < ApplicationController, which
is an example of a Ruby class with inheritance. (We’ll discuss inheritance
briefly in Section 2.3.4 and cover both subjects in more detail in Section 4.4.)

Listing 2.8: The Users controller in schematic form.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def index

.

.

.

end

def show

.

.

.

end

def new

.

.

.

end

def edit

.

.

.

2.2. THE USERS RESOURCE 93

end

def create

.

.

.

end

def update

.

.

.

end

def destroy

.

.

.

end

end

You might notice that there are more actions than there are pages; the index,
show, new, and edit actions all correspond to pages from Section 2.2.1, but
there are additional create, update, and destroy actions as well. These
actions don’t typically render pages (although they can); instead, their main
purpose is to modify information about users in the database.

This full suite of controller actions, summarized in Table 2.2, represents the
implementation of the REST architecture in Rails (Box 2.2), which is based on
the ideas of representational state transfer identified and named by computer
scientist Roy Fielding.5 Note from Table 2.2 that there is some overlap in the
URLs; for example, both the user show action and the update action corre-
spond to the URL /users/1. The difference between them is the HTTP request
method they respond to. We’ll learn more about HTTP request methods starting
in Section 3.3.

Box 2.2. REpresentational State Transfer (REST)

5Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doc-
toral dissertation, University of California, Irvine, 2000.

https://en.wikipedia.org/wiki/Roy_Fielding
https://en.wikipedia.org/wiki/HTTP_request#Request_methods
https://en.wikipedia.org/wiki/HTTP_request#Request_methods

94 CHAPTER 2. A TOY APP

HTTP request URL Action Purpose
GET /users index page to list all users
GET /users/1 show page to show user with id 1
GET /users/new new page to make a new user
POST /users create create a new user
GET /users/1/edit edit page to edit user with id 1
PATCH /users/1 update update user with id 1
DELETE /users/1 destroy delete user with id 1

Table 2.2: RESTful routes provided by the Users resource in Listing 2.6.

If you read much about Ruby on Rails web development, you’ll see a lot of
references to “REST”, which is an acronym for REpresentational State Transfer.
REST is an architectural style for developing distributed, networked systems and
software applications such as theWorldWideWeb and web applications. Although
REST theory is rather abstract, in the context of Rails applications REST means
that most application components (such as users and microposts) are modeled as
resources that can be created, read, updated, and deleted—operations that corre-
spond both to the CRUD operations of relational databases and to the four funda-
mental HTTP request methods: POST, GET, PATCH, and DELETE. (We’ll learn
more about HTTP requests in Section 3.3 and especially Box 3.2.)

As a Rails application developer, the RESTful style of development helps you
make choices about which controllers and actions to write: you simply structure the
application using resources that get created, read, updated, and deleted. In the case
of users and microposts, this process is straightforward, since they are naturally
resources in their own right. In Chapter 14, we’ll see an example where REST
principles allow us to model a subtler problem, “following users”, in a natural and
convenient way.

To examine the relationship between the Users controller and the User mo-
del, let’s focus on the index action, shown in Listing 2.9. (Learning how to
read code even when you don’t fully understand it is an important aspect of
technical sophistication (Box 1.2).)

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/HTTP_request#Request_methods

2.2. THE USERS RESOURCE 95

Listing 2.9: The simplified user index action for the toy application.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def index

@users = User.all

end

.

.

.

end

This index action has the line @users = User.all (Step 3 in Figure 2.11),
which asks the User model to retrieve a list of all the users from the database
(Step 4), and then places them in the variable @users (pronounced “at-users”)
(Step 5).

The User model itself appears in Listing 2.10. Although it is rather plain,
it comes equipped with a large amount of functionality because of inheritance
(Section 2.3.4 and Section 4.4). In particular, by using the Rails library called
Active Record, the code in Listing 2.10 arranges for User.all to return all the
users in the database.

Listing 2.10: The User model for the toy application.
app/models/user.rb

class User < ApplicationRecord

end

Once the @users variable is defined, the controller calls the view (Step 6),
shown in Listing 2.11. Variables that start with the @ sign, called instance vari-
ables, are automatically available in the views; in this case, the index.html.-
erb view in Listing 2.11 iterates through the @users list and outputs a line of
HTML for each one. (Remember, you aren’t supposed to understand this code
right now. It is shown only for purposes of illustration.)

96 CHAPTER 2. A TOY APP

Listing 2.11: The view for the users index.
app/views/users/index.html.erb

<p id="notice"><%= notice %></p>

<h1>Users</h1>

<table>

<thead>

<tr>

<th>Name</th>

<th>Email</th>

<th colspan="3"></th>

</tr>

</thead>

<tbody>

<% @users.each do |user| %>

<tr>

<td><%= user.name %></td>

<td><%= user.email %></td>

<td><%= link_to 'Show', user %></td>

<td><%= link_to 'Edit', edit_user_path(user) %></td>

<td><%= link_to 'Destroy', user, method: :delete,

data: { confirm: 'Are you sure?' } %></td>

</tr>

<% end %>

</tbody>

</table>

<%= link_to 'New User', new_user_path %>

The view converts its contents to HTML (Step 7), which is then returned by the
controller to the browser for display (Step 8).

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By referring to Figure 2.11, write out the analogous steps for visiting the
URL /users/1/edit.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

2.3. THE MICROPOSTS RESOURCE 97

2. Find the line in the scaffolding code that retrieves the user from the data-
base in the previous exercise. Hint: It’s in a special location called set_-
user.

3. What is the name of the view file for the user edit page?

2.2.3 Weaknesses of this Users resource
Though good for getting a general overview of Rails, the scaffold Users re-
source suffers from a number of severe weaknesses.

• No data validations. Our User model accepts data such as blank names
and invalid email addresses without complaint.

• No authentication. We have no notion of logging in or out, and no way
to prevent any user from performing any operation.

• No tests. This isn’t technically true—the scaffolding includes rudimen-
tary tests—but the generated tests don’t test for data validation, authen-
tication, or any other custom requirements.

• No style or layout. There is no consistent site styling or navigation.

• No real understanding. If you understand the scaffold code, you prob-
ably shouldn’t be reading this book.

2.3 The Microposts resource
Having generated and explored the Users resource, we turn now to the asso-
ciated Microposts resource. Throughout this section, I recommend comparing
the elements of the Microposts resource with the analogous user elements from
Section 2.2; you should see that the two resources parallel each other in many
ways. The RESTful structure of Rails applications is best absorbed by this sort
of repetition of form—indeed, seeing the parallel structure of Users and Micro-
posts even at this early stage is one of the prime motivations for this chapter.

98 CHAPTER 2. A TOY APP

2.3.1 A micropost microtour
As with the Users resource, we’ll generate scaffold code for the Microposts
resource using rails generate scaffold, in this case implementing the
data model from Figure 2.3:6

$ rails generate scaffold Micropost content:text user_id:integer

invoke active_record

create db/migrate/<timestamp>_create_microposts.rb

create app/models/micropost.rb

invoke test_unit

create test/models/micropost_test.rb

create test/fixtures/microposts.yml

invoke resource_route

route resources :microposts

invoke scaffold_controller

create app/controllers/microposts_controller.rb

invoke erb

create app/views/microposts

create app/views/microposts/index.html.erb

create app/views/microposts/edit.html.erb

create app/views/microposts/show.html.erb

create app/views/microposts/new.html.erb

create app/views/microposts/_form.html.erb

invoke test_unit

create test/controllers/microposts_controller_test.rb

create test/system/microposts_test.rb

invoke helper

create app/helpers/microposts_helper.rb

invoke test_unit

invoke jbuilder

create app/views/microposts/index.json.jbuilder

create app/views/microposts/show.json.jbuilder

create app/views/microposts/_micropost.json.jbuilder

invoke assets

invoke scss

create app/assets/stylesheets/microposts.scss

invoke scss

identical app/assets/stylesheets/scaffolds.scss

To update our database with the new data model, we need to run a migration as
in Section 2.2:

6As with the User scaffold, the scaffold generator for microposts follows the singular convention of Rails
models; thus, we have generate Micropost.

2.3. THE MICROPOSTS RESOURCE 99

HTTP request URL Action Purpose
GET /microposts index page to list all microposts
GET /microposts/1 show page to show micropost with id 1
GET /microposts/new new page to make a new micropost
POST /microposts create create a new micropost
GET /microposts/1/edit edit page to edit micropost with id 1
PATCH /microposts/1 update update micropost with id 1
DELETE /microposts/1 destroy delete micropost with id 1

Table 2.3: RESTful routes provided by the Microposts resource in Listing 2.12.

$ rails db:migrate

== CreateMicroposts: migrating ===

-- create_table(:microposts)

-> 0.0023s

== CreateMicroposts: migrated (0.0026s) ======================================

Now we are in a position to create microposts in the same way we created
users in Section 2.2.1. As you might guess, the scaffold generator has updated
the Rails routes file with a rule for Microposts resource, as seen in Listing 2.12.7
As with users, the resources :microposts routing rule maps micropost
URLs to actions in the Microposts controller, as seen in Table 2.3.

Listing 2.12: The Rails routes, with a new rule for Microposts resources.
config/routes.rb

Rails.application.routes.draw do

resources :microposts

resources :users

root 'users#index'

end

The Microposts controller itself appears in schematic form in Listing 2.13.
Note that, apart from having MicropostsController in place of Users-
Controller, Listing 2.13 is identical to the code in Listing 2.8. This is a
reflection of the REST architecture common to both resources.

7The scaffold code may have extra blank lines compared to Listing 2.12. This is not a cause for concern, as
Ruby ignores such extra space.

100 CHAPTER 2. A TOY APP

Listing 2.13: The Microposts controller in schematic form.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

.

.

.

def index

.

.

.

end

def show

.

.

.

end

def new

.

.

.

end

def edit

.

.

.

end

def create

.

.

.

end

def update

.

.

.

end

def destroy

.

.

.

end

end

2.3. THE MICROPOSTS RESOURCE 101

Figure 2.12: The micropost index page (/microposts).

To make some actual microposts, we click on New Micropost on the mi-
cropost index page (Figure 2.12) and enter information at the new microposts
page, /microposts/new, as seen in Figure 2.13.

At this point, go ahead and create a micropost or two, taking care to make
sure that at least one has a user_id of 1 to match the id of the first user created
in Section 2.2.1. The result should look something like Figure 2.14.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads

102 CHAPTER 2. A TOY APP

Figure 2.13: The new micropost page (/microposts/new).

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads

2.3. THE MICROPOSTS RESOURCE 103

Figure 2.14: The micropost index page with a couple of posts.

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads

104 CHAPTER 2. A TOY APP

Tutorial course or to the Learn Enough All Access Bundle.

1. (For readers who know CSS) Create a new micropost, then use your
browser’s HTML inspector to determine the CSS id for the text “Mi-
cropost was successfully created.” What happens when you refresh your
browser?

2. Try to create a micropost with empty content and no user id.

3. Try to create a micropost with over 140 characters of content (say, the
first paragraph from the Wikipedia article on Ruby).

4. Destroy the microposts from the previous exercises.

2.3.2 Putting the micro in microposts
Any micropost worthy of the name should have some means of enforcing the
length of the post. Implementing this constraint in Rails is easy with valida-
tions; to accept microposts with at most 140 characters (à la the original design
of Twitter), we use a length validation. At this point, you should open the file
app/models/micropost.rb in your text editor or IDE and fill it with the
contents of Listing 2.14.

Listing 2.14: Constraining microposts to be at most 140 characters.
app/models/micropost.rb

class Micropost < ApplicationRecord

validates :content, length: { maximum: 140 }

end

The code in Listing 2.14 may look rather mysterious—we’ll cover valida-
tions more thoroughly starting in Section 6.2—but its effects are readily appar-
ent if we go to the new micropost page and enter more than 140 characters for
the content of the post. As seen in Figure 2.15, Rails renders error messages in-
dicating that the micropost’s content is too long. (We’ll learn more about error
messages in Section 7.3.3.)

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Ruby_(programming_language)

2.3. THE MICROPOSTS RESOURCE 105

Figure 2.15: Error messages for a failed micropost creation.

106 CHAPTER 2. A TOY APP

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Try to create a micropost with the same long content used in a previous
exercise (Section 2.3.1). How has the behavior changed?

2. (For readers who know CSS) Use your browser’s HTML inspector to
determine the CSS id of the error message produced by the previous ex-
ercise.

2.3.3 A user has_many microposts
One of the most powerful features of Rails is the ability to form associations
between different data models. In the case of our User model, each user poten-
tially has many microposts. We can express this in code by updating the User
and Micropost models as in Listing 2.15 and Listing 2.16.

Listing 2.15: A user has many microposts.
app/models/user.rb

class User < ApplicationRecord

has_many :microposts

end

Listing 2.16: A micropost belongs to a user.
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

validates :content, length: { maximum: 140 }

end

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

2.3. THE MICROPOSTS RESOURCE 107

foo@bar.com

email
mhartl@example.com

2 Foo Bar

id
1 Michael Hartl

name
users

2Another post3
1

user_id
1

2 Second post

id
1 First post!

content
microposts

Figure 2.16: The association between microposts and users.

We can visualize the result of this association in Figure 2.16. Because of
the user_id column in the microposts table, Rails (using Active Record)
can infer the microposts associated with each user.

In Chapter 13 and Chapter 14, we will use the association of users and mi-
croposts both to display all of a user’s microposts and to construct a Twitter-
like micropost feed. For now, we can examine the implications of the user–
micropost association by using the console, which is a useful tool for interact-
ing with Rails applications. We first invoke the console with rails console

at the command line, and then retrieve the first user from the database using
User.first (putting the results in the variable first_user), as shown in
Listing 2.17.8 (I include exit in the last line just to demonstrate how to exit
the console. On most systems, you can also use Ctrl-D for the same purpose.)9

Listing 2.17: Investigating the state of the application using the Rails console.
$ rails console

>> first_user = User.first

(0.5ms) SELECT sqlite_version(*)

User Load (0.2ms) SELECT "users".* FROM "users" ORDER BY "users"."id" ASC

LIMIT ? [["LIMIT", 1]]

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.org",

created_at: "2019-08-20 00:39:14", updated_at: "2019-08-20 00:41:24">

>> first_user.microposts

Micropost Load (3.2ms) SELECT "microposts".* FROM "microposts" WHERE

"microposts"."user_id" = ? LIMIT ? [["user_id", 1], ["LIMIT", 11]]

=> #<ActiveRecord::Associations::CollectionProxy [#<Micropost id: 1, content:

8Your console prompt might be something like 2.6.3 :001 >, but the examples use >> since Ruby versions
will vary.

9As in the case of Ctrl-C, the capital “D” refers to the key on the keyboard, not the capital letter, so you don’t
have to hold down the Shift key along with the Ctrl key.

108 CHAPTER 2. A TOY APP

"First micropost!", user_id: 1, created_at: "2019-08-20 02:04:13", updated_at:

"2019-08-20 02:04:13">, #<Micropost id: 2, content: "Second micropost",

user_id: 1, created_at: "2019-08-20 02:04:30", updated_at: "2019-08-20

02:04:30">]>

>> micropost = first_user.microposts.first

Micropost Load (0.2ms) SELECT "microposts".* FROM "microposts" WHERE

"microposts"."user_id" = ? ORDER BY "microposts"."id" ASC LIMIT ?

[["user_id", 1], ["LIMIT", 1]]

=> #<Micropost id: 1, content: "First micropost!", user_id: 1, created_at:

"2019-08-20 02:04:13", updated_at: "2019-08-20 02:04:13">

>> micropost.user

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.org",

created_at: "2019-08-20 00:39:14", updated_at: "2019-08-20 00:41:24"

>> exit

There’s a lot going on in Listing 2.17, and teasing out the relevant parts is a good
exercise in technical sophistication (Box 1.2). The output includes the actual
return values, which are raw Ruby objects, as well as the Structured Query
Language (SQL) code that produced them.

In addition to retrieving the first user with User.first, Listing 2.17 shows
two other things: (1) how to access the first user’s microposts using the code
first_user.microposts, which automatically returns all the microposts
with user_id equal to the id of first_user (in this case, 1); and (2) how
to return the user corresponding to a particular post using micropost.user.
We’ll learn much more about the Ruby involved in Listing 2.17 in Chapter 4,
and more about the association facilities in Active Record in Chapter 13 and
Chapter 14.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Edit the user show page to display the content of the user’s first micropost.
(Use your technical sophistication (Box 1.2) to guess the syntax based on
the other content in the file.) Confirm by visiting /users/1 that it worked.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

2.3. THE MICROPOSTS RESOURCE 109

2. The code in Listing 2.18 shows how to add a validation for the presence
of micropost content in order to ensure that microposts can’t be blank.
Verify that you get the behavior shown in Figure 2.17.

3. Update Listing 2.19 by replacing FILL_IN with the appropriate code to
validate the presence of name and email attributes in the User model (Fig-
ure 2.18).

Listing 2.18: Code to validate the presence of micropost content.
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

validates :content, length: { maximum: 140 },

presence: true

end

Listing 2.19: Adding presence validations to the User model.
app/models/user.rb

class User < ApplicationRecord

has_many :microposts

validates FILL_IN, presence: true # Replace FILL_IN with the right code.

validates FILL_IN, presence: true # Replace FILL_IN with the right code.

end

2.3.4 Inheritance hierarchies
We end our discussion of the toy application with a brief description of the
controller and model class hierarchies in Rails. This discussion will only make
much sense if you have some experience with object-oriented programming
(OOP), particularly classes. Don’t worry if it’s confusing for now; we’ll discuss
these ideas more thoroughly in Section 4.4.

We start with the inheritance structure for models. Comparing Listing 2.20
and Listing 2.21, we see that both the User model and the Micropost model in-
herit (via the left angle bracket <) from ApplicationRecord, which in turn

110 CHAPTER 2. A TOY APP

Figure 2.17: The effect of a micropost presence validation.

2.3. THE MICROPOSTS RESOURCE 111

Figure 2.18: The effect of presence validations on the User model.

112 CHAPTER 2. A TOY APP

inherits from ActiveRecord::Base, which is the base class for models pro-
vided by Active Record; a diagram summarizing this relationship appears in
Figure 2.19. It is by inheriting from ActiveRecord::Base that our model
objects gain the ability to communicate with the database, treat the database
columns as Ruby attributes, and so on.

Listing 2.20: The User class, highlighting inheritance.
app/models/user.rb

class User < ApplicationRecord

.

.

.

end

Listing 2.21: The Micropost class, highlighting inheritance.
app/models/micropost.rb

class Micropost < ApplicationRecord

.

.

.

end

The inheritance structure for controllers is essentially the same as that for
models. Comparing Listing 2.22 and Listing 2.23, we see that both the Users
controller and the Microposts controller inherit from the Application controller.
Examining Listing 2.24, we see that ApplicationController itself inherits
from ActionController::Base, which is the base class for controllers pro-
vided by the Rails library Action Pack. The relationships between these classes
is illustrated in Figure 2.20.

Listing 2.22: The UsersController class, highlighting inheritance.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

end

2.3. THE MICROPOSTS RESOURCE 113

ActiveRecord::Base

User Micropost

ApplicationRecord

Figure 2.19: The inheritance hierarchy for the User and Micropost models.

Listing 2.23: The MicropostsController class, highlighting inheritance.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

.

.

.

end

Listing 2.24: The ApplicationController class, highlighting inheri-
tance.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

.

.

.

end

As with model inheritance, both the Users and Microposts controllers gain
a large amount of functionality by inheriting from a base class (in this case,
ActionController::Base), including the ability to manipulate model ob-

114 CHAPTER 2. A TOY APP

ActionController::Base

UsersController MicropostsController

ApplicationController

Figure 2.20: The inheritance hierarchy for theUsers andMicroposts controllers.

jects, filter inbound HTTP requests, and render views as HTML. Since all Rails
controllers inherit from ApplicationController, rules defined in the Ap-
plication controller automatically apply to every action in the application. For
example, in Section 9.1 we’ll see how to include helpers for logging in and
logging out of all of the sample application’s controllers.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By examining the contents of the Application controller file, find the
line that causes ApplicationController to inherit from Action-

Controller::Base.

2. Is there an analogous file containing a line where ApplicationRecord
inherits from ActiveRecord::Base? Hint: It would probably be a file
called something like application_record.rb in the app/models
directory.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

2.3. THE MICROPOSTS RESOURCE 115

2.3.5 Deploying the toy app
With the completion of the Microposts resource, now is a good time to push the
repository up to GitHub:

$ git status # It's a good habit to check the status before adding

$ git add -A

$ git commit -m "Finish toy app"

$ git push

Ordinarily, you should make smaller, more frequent commits, but for the pur-
poses of this chapter a single big commit at the end is fine.

At this point, you can also deploy the toy app to Heroku as in Section 1.4:

$ git push heroku

(This assumes you created the Heroku app in Section 2.1. Otherwise, you
should run heroku create and then git push heroku master.)

At this point, visiting the page at Heroku yields an error message, as shown
in Figure 2.21.

We can track down the problem by inspecting the Heroku logs:

$ heroku logs

Scrolling up in the logs, you should see a line that includes something like this:

ActionView::Template::Error (PG::UndefinedTable: ERROR: relation "users" does

not exist

This a big hint that there is a missing users table. Luckily, we learned how
to handle that way back in Listing 2.4: all we need to do is run the database
migrations (which will create the microposts table as well).

The way to execute this sort of command at Heroku is to prefix the usual
Rails command with heroku run, like this:

116 CHAPTER 2. A TOY APP

Figure 2.21: An error page at Heroku.

2.4. CONCLUSION 117

$ heroku run rails db:migrate

This updates the database at Heroku with the user and micropost data models
as required. After running the migration, you should be able to use the toy app
in production, with a real PostgreSQL database back-end (Figure 2.22).10

Finally, if you completed the exercises in Section 2.3.3, you will have to
remove the code to display the first user’s micropost in order to get the app
to load properly. In this case, simply delete the offending code, make another
commit, and push again to Heroku.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Create a few users on the production app.

2. Create a few production microposts for the first user.

3. By trying to create a micropost with content over 140 characters, confirm
that the validation from Listing 2.14 works on the production app.

2.4 Conclusion
We’ve come now to the end of the high-level overview of a Rails application.
The toy app developed in this chapter has several strengths and a host of weak-
nesses.

Strengths

• High-level overview of Rails
10The production database should work without any additional configuration, but in fact some configuration is

recommended by the official Heroku documentation. We’ll take care of this detail in Section 7.5.3.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://devcenter.heroku.com/articles/getting-started-with-rails5

118 CHAPTER 2. A TOY APP

Figure 2.22: Running the toy app in production.

2.4. CONCLUSION 119

• Introduction to MVC

• First taste of the REST architecture

• Beginning data modeling

• A live, database-backed web application in production

Weaknesses

• No custom layout or styling

• No static pages (such as “Home” or “About”)

• No user passwords

• No user images

• No logging in

• No security

• No automatic user/micropost association

• No notion of “following” or “followed”

• No micropost feed

• No meaningful tests

• No real understanding

The rest of this tutorial is dedicated to building on the strengths and eliminating
the weaknesses.

120 CHAPTER 2. A TOY APP

2.4.1 What we learned in this chapter
• Scaffolding automatically creates code to model data and interact with it
through the web.

• Scaffolding is good for getting started quickly but is bad for understand-
ing.

• Rails uses theModel-View-Controller (MVC) pattern for structuring web
applications.

• As interpreted by Rails, the REST architecture includes a standard set of
URLs and controller actions for interacting with data models.

• Rails supports data validations to place constraints on the values of data
model attributes.

• Rails comes with built-in functions for defining associations between dif-
ferent data models.

• We can interact with Rails applications at the command line using the
Rails console.

Chapter 3

Mostly static pages

In this chapter, we will begin developing the professional-grade sample applica-
tion that will serve as our example throughout the rest of this tutorial. Although
the sample app will eventually have users, microposts, and a full login and au-
thentication framework, we will begin with a seemingly limited topic: the cre-
ation of static pages. Despite its apparent simplicity, making static pages is a
highly instructive exercise, rich in implications—a perfect start for our nascent
application.

Although Rails is designed for making database-backed dynamic websites,
it also excels at making the kind of static pages we might create using raw
HTML files. In fact, using Rails even for static pages yields a distinct advan-
tage: we can easily add just a small amount of dynamic content. In this chapter
we’ll learn how. Along the way, we’ll get our first taste of automated testing,
which will help us be more confident that our code is correct. Moreover, having
a good test suite will allow us to refactor our code with confidence, changing
its form without changing its function.

121

122 CHAPTER 3. MOSTLY STATIC PAGES

3.1 Sample app setup
As in Chapter 2, before getting started we need to create a new Rails project,
this time called sample_app, as shown in Listing 3.1.1

Listing 3.1: Generating a new sample app.
$ cd ~/environment

$ rails _6.0.2.1_ new sample_app

$ cd sample_app/

(As in Section 2.1, note that users of the cloud IDE can create this project in the
same environment as the applications from the previous two chapters. It is not
necessary to create a new environment.)

Note: For convenience, a reference implementation of the sample app is
available at GitHub,2 with a separate branch for each chapter in the tutorial.

As in Section 2.1, our next step is to use a text editor to update the Gemfile
with the gems needed by our application. Listing 3.2 is identical to Listing 1.6
and Listing 2.1 apart from the gems in the test group, which are needed for
the optional advanced testing setup (Section 3.6) and integration testing starting
in Section 5.3.4. Note: If you would like to install all the gems needed for the
sample application, you should use the code in Listing 13.75 at this time.

Important note: For all the Gemfiles in this book, you should use the
version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the
ones listed below (although they should be identical if you are reading this
online).

1If you’re using the cloud IDE, it’s often useful to use the “Go to Anything” command (under the “Go” menu),
which makes it easy to navigate the filesystem by typing in partial filenames. In this context, having the hello,
toy, and sample apps present in the same project can be inconvenient due to the many common filenames. For
example, when searching for a file called “Gemfile”, six possibilities will show up, because each project has
matching files called Gemfile and Gemfile.lock. Thus, you may want to consider removing the first two
apps before proceeding, which you can do by navigating to the environment directory and running rm -rf

hello_app/ toy_app/ (Table 1.1). (As long as you pushed the corresponding repositories up to GitHub, you
can always recover them later.)

2https://github.com/mhartl/sample_app_6th_ed

https://github.com/mhartl/sample_app_6th_ed
https://gemfiles-6th-ed.railstutorial.org/

3.1. SAMPLE APP SETUP 123

Listing 3.2: A Gemfile for the sample app.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.2.1'

gem 'puma', '3.12.2'

gem 'sass-rails', '5.1.0'

gem 'webpacker', '4.0.7'

gem 'turbolinks', '5.2.0'

gem 'jbuilder', '2.9.1'

gem 'bootsnap', '1.4.5', require: false

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

end

group :development do

gem 'web-console', '4.0.1'

gem 'listen', '3.1.5'

gem 'spring', '2.1.0'

gem 'spring-watcher-listen', '2.0.1'

end

group :test do

gem 'capybara', '3.28.0'

gem 'selenium-webdriver', '3.142.4'

gem 'webdrivers', '4.1.2'

gem 'rails-controller-testing', '1.0.4'

gem 'minitest', '5.11.3'

gem 'minitest-reporters', '1.3.8'

gem 'guard', '2.15.0'

gem 'guard-minitest', '2.4.6'

end

group :production do

gem 'pg', '1.1.4'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

As in the previous two chapters, we run bundle install to install and
include the gems specified in the Gemfile, while skipping the installation of
production gems using the option --without production:3

3It’s worth noting that --without production is a “remembered option”, which means it will be included

124 CHAPTER 3. MOSTLY STATIC PAGES

$ bundle install --without production

This arranges to skip the pg gem for PostgreSQL in development and use
SQLite for development and testing. Heroku recommends against using dif-
ferent databases in development and production, but for the sample application
it won’t make any difference, and SQLite is much easier than PostgreSQL to
install and configure locally.4 In case you’ve previously installed a version of
a gem (such as Rails itself) other than the one specified by the Gemfile, it’s a
good idea to update the gems with bundle update to make sure the versions
match:

$ bundle update

With that, all we have left is to initialize the Git repository:

$ git init

$ git add -A

$ git commit -m "Initialize repository"

As with the first application, I suggest updating the README file to be
more helpful and descriptive by replacing the default contents of README.md
with the Markdown shown in Listing 3.3. The README includes instructions
for getting started with the application.5 (We won’t actually need to run rails
db:migrate until Chapter 6, but it does no harm to include it now.)

Note: For convenience, the full reference app README contains additional
advanced information not present in Listing 3.3.
automatically the next time we run bundle install.

4Generally speaking, it’s a good idea for the development and production environments to match as closely as
possible, which includes using the same database, so I recommend eventually learning how to install and configure
PostgreSQL in development—but now is not that time. When the time comes, Google “install configure postgresql
<your system>” and “rails postgresql setup”, and prepare for a challenge. (On the cloud IDE, <your system> is
Linux.)

5The README also makes reference to a LICENSE file, which I’ve added by hand to the official reference
implementation, but it isn’t present by default. You can download a copy from the reference implementation repo
if you want it for completeness, but it’s not necessary for completing the tutorial.

https://github.com/mhartl/sample_app_6th_ed/blob/master/README.md
https://github.com/railstutorial/sample_app_6th_ed
https://github.com/railstutorial/sample_app_6th_ed
https://github.com/mhartl/sample_app_6th_ed/blob/master/LICENSE.md

3.1. SAMPLE APP SETUP 125

Listing 3.3: An improved README file for the sample app.
README.md

Ruby on Rails Tutorial sample application

This is the sample application for

[*Ruby on Rails Tutorial:

Learn Web Development with Rails*](https://www.railstutorial.org/)

(6th Edition)

by [Michael Hartl](https://www.michaelhartl.com/).

License

All source code in the [Ruby on Rails Tutorial](https://www.railstutorial.org/)

is available jointly under the MIT License and the Beerware License. See

LICENSE.md for details.

Getting started

To get started with the app, clone the repo and then install the needed gems:

```

$ bundle install --without production

```

Next, migrate the database:

```

$ rails db:migrate

```

Finally, run the test suite to verify that everything is working correctly:

```

$ rails test

```

If the test suite passes, you'll be ready to run the app in a local server:

```

$ rails server

```

For more information, see the

[*Ruby on Rails Tutorial* book](https://www.railstutorial.org/book).

Then commit the changes as follows:

126 CHAPTER 3. MOSTLY STATIC PAGES

$ git commit -am "Improve the README"

You may recall from Section 1.3.4 that we used the Git command git commit

-a -m "Message", with flags for “all changes” (-a) and a message (-m). As
shown in the second command above, Git also lets us roll the two flags into one
using git commit -am "Message".

You should also create a new repository at GitHub by following the same
steps as in Section 1.3.3 (taking care to make it private as in Figure 3.1), and
then push up to the remote repository:

$ git remote add origin https://github.com/<username>/sample_app.git

$ git push -u origin master

If you’re using the cloud IDE, you’ll need to prepare the application to be
served locally by editing the development.rb file as in the previous two chap-
ters (Listing 3.4).

Listing 3.4: Allowing connections to the local web server.
config/environments/development.rb

Rails.application.configure do

.

.

.

Allow connections to local server.

config.hosts.clear

end

To avoid integration headaches later on, it’s also a good idea to deploy the
app to Heroku even at this early stage. As in Chapter 1 and Chapter 2, I suggest
following the “hello, world!” steps in Listing 3.5 and Listing 3.6. (The main
reason for this is that the default Rails page typically breaks at Heroku, which
makes it hard to tell if the deployment was successful or not.)

https://github.com/new

3.1. SAMPLE APP SETUP 127

Figure 3.1: Creating the main sample app repository at GitHub.

128 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.5: Adding a hello action to the Application controller.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

def hello

render html: "hello, world!"

end

end

Listing 3.6: Setting the root route.
config/routes.rb

Rails.application.routes.draw do

root 'application#hello'

end

Then commit the changes and push up to GitHub and Heroku:

$ git commit -am "Add hello"

$ git push

$ heroku create

$ git push heroku master

As in Section 1.4, you may see some warning messages, which you should
ignore for now. We’ll deal with them in Section 7.5. Apart from the address of
the Heroku app, the result should be the same as in Figure 1.31.

As you proceed through the rest of the book, I recommend pushing and
deploying the application regularly, which automaticallymakes remote backups
and lets you catch any production errors as soon as possible. If you run into
problems at Heroku, make sure to take a look at the production logs to try to
diagnose the problem:

$ heroku logs # to see the most recent events

$ heroku logs --tail # to see events as they happen, Ctrl-C to quit

Note: If you do end up using Heroku for a real-life application, be sure to follow
the production webserver configuration in Section 7.5.

3.2. STATIC PAGES 129

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that GitHub renders the Markdown for the README in List-
ing 3.3 as HTML (Figure 3.2).

2. By visiting the root route on the production server, verify that the deploy-
ment to Heroku succeeded.

3.2 Static pages
With all the preparation from Section 3.1 finished, we’re ready to get started
developing the sample application. In this section, we’ll take a first step toward
making dynamic pages by creating a set of Rails actions and views contain-
ing only static HTML.6 Rails actions come bundled together inside controllers
(the C in MVC from Section 1.2.3), which contain sets of actions related by a
common purpose. We got a glimpse of controllers in Chapter 2, and will come
to a deeper understanding once we explore the REST architecture more fully
(starting in Chapter 6). In order to get our bearings, it’s helpful to recall the
Rails directory structure from Section 1.2 (Figure 1.11). In this section, we’ll
be working mainly in the app/controllers and app/views directories.

Recall from Section 1.3.4 that, when using Git, it’s a good practice to do our
work on a separate topic branch rather than the master branch. If you’re using
Git for version control, you should run the following command to check out a
topic branch for static pages:

6Our method for making static pages is probably the simplest, but it’s not the only way. The optimal method
really depends on your needs; if you expect a large number of static pages, using a Static Pages controller can get
quite cumbersome, but in our sample app we’ll only need a few. If you do need a lot of static pages, take a look at
the high_voltage gem from thoughtbot.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Representational_State_Transfer
https://github.com/thoughtbot/high_voltage
https://thoughtbot.com/

130 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.2: The sample app README at GitHub.

3.2. STATIC PAGES 131

$ git checkout -b static-pages

3.2.1 Generated static pages
To get started with static pages, we’ll first generate a controller using the same
Rails generate script we used in Chapter 2 to generate scaffolding. Since
we’ll be making a controller to handle static pages, we’ll call it the Static Pages
controller, designated by the CamelCase name StaticPages. We’ll also plan
to make actions for a Home page, a Help page, and an About page, designated
by the lower-case action names home, help, and about. The generate script
takes an optional list of actions, so we’ll include actions for the Home and Help
pages directly on the command line, while intentionally leaving off the action
for the About page so that we can see how to add it (Section 3.3). The resulting
command to generate the Static Pages controller appears in Listing 3.7.

Listing 3.7: Generating a Static Pages controller.
$ rails generate controller StaticPages home help

create app/controllers/static_pages_controller.rb

route get 'static_pages/home'

get 'static_pages/help'

invoke erb

create app/views/static_pages

create app/views/static_pages/home.html.erb

create app/views/static_pages/help.html.erb

invoke test_unit

create test/controllers/static_pages_controller_test.rb

invoke helper

create app/helpers/static_pages_helper.rb

invoke test_unit

invoke assets

invoke scss

create app/assets/stylesheets/static_pages.scss

Incidentally, it’s worth noting that rails g is a shortcut for rails gener-

ate, which is only one of several shortcuts supported by Rails (Table 3.1). For
clarity, this tutorial always uses the full command, but in real life most Rails

https://en.wikipedia.org/wiki/CamelCase

132 CHAPTER 3. MOSTLY STATIC PAGES

Full command Shortcut
$ rails server $ rails s

$ rails console $ rails c

$ rails generate $ rails g

$ rails test $ rails t

$ bundle install $ bundle

Table 3.1: Some Rails shortcuts.

developers use one or more of the shortcuts shown in Table 3.1.7
Before moving on, if you’re using Git it’s a good idea to add the files for

the Static Pages controller to the remote repository:

$ git add -A

$ git commit -m "Add a Static Pages controller"

$ git push -u origin static-pages

The final command here arranges to push the static-pages topic branch up
to GitHub. Subsequent pushes can omit the other arguments and write simply

$ git push

The commit and push sequence above represents the kind of pattern I would
ordinarily follow in real-life development, but for simplicity I’ll typically omit
such intermediate commits from now on. (When following this tutorial, a good
rule of thumb is to make a Git commit at the end of each section.)

In Listing 3.7, note that we have passed the controller name as CamelCase
(so called because it resembles the humps of a Bactrian camel), which leads
to the creation of a controller file written in snake case, so that a controller
called StaticPages yields a file called static_pages_controller.rb. This
is merely a convention, and in fact using snake case at the command line also
works: the command

7In fact, many Rails developers also add an alias (as described in Learn Enough Text Editor to Be Dangerous)
for the rails command, typically shortening it to just r. This allows us to run, e.g., a Rails server using the
compact command r s.

https://en.wikipedia.org/wiki/Bactrian_camel
https://en.wikipedia.org/wiki/Snake_case
https://www.learnenough.com/r/learn_enough_text_editor/vim/saving_and_quitting_files#sec-saving_and_quitting_files
https://www.learnenough.com/text-editor

3.2. STATIC PAGES 133

$ rails generate controller static_pages ...

also generates a controller called static_pages_controller.rb. Because
Ruby uses CamelCase for class names (Section 4.4), my preference is to refer
to controllers using their CamelCase names, but this is a matter of taste. (Since
Ruby filenames typically use snake case, the Rails generator converts Camel-
Case to snake case using the underscore method.)

By the way, if you ever make a mistake when generating code, it’s useful to
know how to reverse the process. See Box 3.1 for some techniques on how to
undo things in Rails.

Box 3.1. Undoing things

Even when you’re very careful, things can sometimes go wrong when devel-
oping Rails applications. Happily, Rails has some facilities to help you recover.

One common scenario is wanting to undo code generation—for example, when
you change your mind on the name of a controller and want to eliminate the gener-
ated files. Because Rails creates a substantial number of auxiliary files along with
the controller (as seen in Listing 3.7), this isn’t as easy as removing the controller
file itself; undoing the generation means removing not only the principal generated
file, but all the ancillary files as well. (In fact, as we saw in Section 2.2 and Sec-
tion 2.3, rails generate can make automatic edits to the routes.rb file,
which we also want to undo automatically.) In Rails, this can be accomplished with
rails destroy followed by the name of the generated element. In particular,
these two commands cancel each other out:

$ rails generate controller StaticPages home help

$ rails destroy controller StaticPages home help

Similarly, in Chapter 6 we’ll generate a model as follows:

$ rails generate model User name:string email:string

https://api.rubyonrails.org/classes/ActiveSupport/Inflector.html#method-i-underscore

134 CHAPTER 3. MOSTLY STATIC PAGES

This can be undone using

$ rails destroy model User

(In this case, it turns out we can omit the other command-line arguments. When
you get to Chapter 6, see if you can figure out why.)

Another technique related to models involves undoing migrations, which we
saw briefly in Chapter 2 and will see much more of starting in Chapter 6. Migra-
tions change the state of the database using the command

$ rails db:migrate

We can undo a single migration step using

$ rails db:rollback

To go all the way back to the beginning, we can use

$ rails db:migrate VERSION=0

As you might guess, substituting any other number for 0 migrates to that version
number, where the version numbers come from listing the migrations sequentially.

With these techniques in hand, we are well-equipped to recover from the in-
evitable development snafus.

The Static Pages controller generation in Listing 3.7 automatically updates
the routes file (config/routes.rb), which we first saw in Section 1.2.4 when
we edited the root route for the hello app (Listing 1.11), and which we most
recently saw in Listing 3.6. The routes file is responsible for implementing
the router (seen in Figure 2.11) that defines the correspondence between URLs
and web pages. The routes file is located in the config directory, where Rails
collects files needed for the application configuration (Figure 3.3).

Since we included the home and help actions in Listing 3.7, the routes file

https://en.wiktionary.org/wiki/SNAFU

3.2. STATIC PAGES 135

Figure 3.3: Contents of the sample app’s config directory.

136 CHAPTER 3. MOSTLY STATIC PAGES

already has a rule for each one, as seen in Listing 3.8.

Listing 3.8: The routes for the home and help actions in the Static Pages
controller.
config/routes.rb

Rails.application.routes.draw do

get 'static_pages/home'

get 'static_pages/help'

root 'application#hello'

end

Here the rule

get 'static_pages/home'

maps requests for the URL /static_pages/home to the home action in the Static
Pages controller. Moreover, by using get we arrange for the route to respond
to a GET request, which is one of the fundamental HTTP verbs supported by
the Hypertext Transfer Protocol (Box 3.2). In our case, this means that when
we generate a home action inside the Static Pages controller we automatically
get a page at the address /static_pages/home. To see the result, start a Rails
development server as described in Section 1.2.2:

$ rails server

Then navigate to /static_pages/home (Figure 3.4).

Box 3.2. GET, et cet.

The Hypertext Transfer Protocol (HTTP) defines the basic operations GET,
POST, PATCH, and DELETE. These refer to operations between a client com-
puter (typically running a web browser such as Chrome, Firefox, or Safari) and a

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

3.2. STATIC PAGES 137

Figure 3.4: The raw home view (/static_pages/home).

138 CHAPTER 3. MOSTLY STATIC PAGES

server (typically running a webserver such as Apache or Nginx). (It’s important
to understand that, when developing Rails applications on a local computer, the
client and server are the same physical machine, but in general they are different.)
An emphasis on HTTP verbs is typical of web frameworks (including Rails) influ-
enced by the REST architecture, which we saw briefly in Chapter 2 and will start
learning more about in Chapter 7.

GET is the most common HTTP operation, used for reading data on the web;
it just means “get a page”, and every time you visit a site like https://www.
google.com/ or https://www.wikipedia.org/ your browser is sub-
mitting a GET request. POST is the next most common operation; it is the request
sent by your browser when you submit a form. In Rails applications, POST re-
quests are typically used for creating things (although HTTP also allows POST to
perform updates). For example, the POST request sent when you submit a registra-
tion form creates a new user on the remote site. The other two verbs, PATCH and
DELETE, are designed for updating and destroying things on the remote server.
These requests are less common than GET and POST since browsers are inca-
pable of sending them natively, but some web frameworks (including Ruby on
Rails) have clever ways of making it seem like browsers are issuing such requests.
As a result, Rails supports all four of the request types GET, POST, PATCH, and
DELETE.

To understand where this page comes from, let’s start by taking a look at the
Static Pages controller in a text editor, which should look something like List-
ing 3.9. You may note that, unlike the demo Users and Microposts controllers
from Chapter 2, the Static Pages controller does not use the standard REST ac-
tions. This is normal for a collection of static pages: the REST architecture
isn’t the best solution to every problem.

Listing 3.9: The Static Pages controller made by Listing 3.7.
app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

https://www.google.com/
https://www.google.com/
https://www.wikipedia.org/

3.2. STATIC PAGES 139

end

def help

end

end

We see from the class keyword in Listing 3.9 that static_pages_con-
troller.rb defines a class, in this case called StaticPagesController.
Classes are simply a convenient way to organize functions (also called meth-
ods) like the home and help actions, which are defined using the def key-
word. As discussed in Section 2.3.4, the angle bracket < indicates that Static-
PagesController inherits from the Rails class ApplicationController;
as we’ll see in a moment, this means that our pages come equipped with a large
amount of Rails-specific functionality. (We’ll learn more about both classes
and inheritance in Section 4.4.)

In the case of the Static Pages controller, both of its methods are initially
empty:

def home

end

def help

end

In plain Ruby, these methods would simply do nothing. In Rails, the situation
is different—StaticPagesController is a Ruby class, but because it in-
herits from ApplicationController the behavior of its methods is specific
to Rails: when visiting the URL /static_pages/home, Rails looks in the Static
Pages controller and executes the code in the home action, and then renders the
view (the V in MVC from Section 1.2.3) corresponding to the action. In the
present case, the home action is empty, so all visiting /static_pages/home does
is render the view. So, what does a view look like, and how do we find it?

If you take another look at the output in Listing 3.7, you might be able to
guess the correspondence between actions and views: an action like home has
a corresponding view called home.html.erb. We’ll learn in Section 3.4 what
the .erb part means; from the .html part you probably won’t be surprised that
it basically looks like HTML (Listing 3.10).

140 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.10: The generated view for the Home page.
app/views/static_pages/home.html.erb

<h1>StaticPages#home</h1>

<p>Find me in app/views/static_pages/home.html.erb</p>

The view for the help action is analogous (Listing 3.11).

Listing 3.11: The generated view for the Help page.
app/views/static_pages/help.html.erb

<h1>StaticPages#help</h1>

<p>Find me in app/views/static_pages/help.html.erb</p>

Both of these views are just placeholders: they have a top-level heading (inside
the h1 tag) and a paragraph (p tag) with the full path to the corresponding file.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Generate a controller called Foo with actions bar and baz.

2. By applying the techniques described in Box 3.1, destroy the Foo con-
troller and its associated actions.

3.2.2 Custom static pages
We’ll add some (very slightly) dynamic content starting in Section 3.4, but as
they stand the files shown in Listing 3.10 and Listing 3.11 underscore an im-
portant point: Rails views can simply contain static HTML. This means we can
begin customizing the Home and Help pages even with no knowledge of Rails,
as shown in Listing 3.12 and Listing 3.13.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

3.3. GETTING STARTED WITH TESTING 141

Listing 3.12: Custom HTML for the Home page.
app/views/static_pages/home.html.erb

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

Listing 3.13: Custom HTML for the Help page.
app/views/static_pages/help.html.erb

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial Help page.

To get help on this sample app, see the

Ruby on Rails Tutorial

book.

</p>

The results of Listing 3.12 and Listing 3.13 are shown in Figure 3.5 and
Figure 3.6.

3.3 Getting started with testing
Having created and filled in the Home and Help pages for our sample app (Sec-
tion 3.2.2), now we’re going to add an About page as well. When making a
change of this nature, it’s a good practice to write an automated test to verify
that the feature is implemented correctly. Developed over the course of building
an application, the resulting test suite serves as a safety net and as executable
documentation of the application source code. When done right, writing tests
also allows us to develop faster despite requiring extra code, because we’ll end
up wasting less time trying to track down bugs. This is true only once we get
good at writing tests, though, which is one reason it’s important to start practic-
ing as early as possible.

142 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.5: A custom Home page.

3.3. GETTING STARTED WITH TESTING 143

Figure 3.6: A custom Help page.

144 CHAPTER 3. MOSTLY STATIC PAGES

Although virtually all Rails developers agree that testing is a good idea,
there is a diversity of opinion on the details. There is an especially lively debate
over the use of test-driven development (TDD),8 a testing technique in which
the programmer writes failing tests first, and then writes the application code to
get the tests to pass. The Ruby on Rails Tutorial takes a lightweight, intuitive
approach to testing, employing TDD when convenient without being dogmatic
about it (Box 3.3).

Box 3.3. When to test

When deciding when and how to test, it’s helpful to understand why to test. In
my view, writing automated tests has three main benefits:

1. Tests protect against regressions, where a functioning feature stops working
for some reason.

2. Tests allow code to be refactored (i.e., changing its form without changing
its function) with greater confidence.

3. Tests act as a client for the application code, thereby helping determine its
design and its interface with other parts of the system.

Although none of the above benefits require that tests be written first, there are
many circumstances where test-driven development (TDD) is a valuable tool to
have in your kit. Deciding when and how to test depends in part on how comfort-
able you are writing tests; many developers find that, as they get better at writing
tests, they are more inclined to write them first. It also depends on how difficult
the test is relative to the application code, how precisely the desired features are
known, and how likely the feature is to break in the future.

In this context, it’s helpful to have a set of guidelines on when we should test
first (or test at all). Here are some suggestions based on my own experience:

8See, e.g., “TDD is dead. Long live testing.” by Rails creator David Heinemeier Hansson.

https://dhh.dk/2014/tdd-is-dead-long-live-testing.html

3.3. GETTING STARTED WITH TESTING 145

• When a test is especially short or simple compared to the application code it
tests, lean toward writing the test first.

• When the desired behavior isn’t yet crystal clear, lean toward writing the
application code first, then write a test to codify the result.

• Because security is a top priority, err on the side of writing tests of the secu-
rity model first.

• Whenever a bug is found, write a test to reproduce it and protect against
regressions, then write the application code to fix it.

• Lean against writing tests for code (such as detailed HTML structure) likely
to change in the future.

• Write tests before refactoring code, focusing on testing error-prone code
that’s especially likely to break.

In practice, the guidelines above mean that we’ll usually write controller and
model tests first and integration tests (which test functionality across models,
views, and controllers) second. And when we’re writing application code that isn’t
particularly brittle or error-prone, or is likely to change (as is often the case with
views), we’ll often skip testing altogether.

Ourmain testing tools will be controller tests (starting in this section),model
tests (starting in Chapter 6), and integration tests (starting in Chapter 7). Inte-
gration tests are especially powerful, as they allow us to simulate the actions of
a user interacting with our application using a web browser. Integration tests
will eventually be our primary testing technique, but controller tests give us an
easier place to start.

146 CHAPTER 3. MOSTLY STATIC PAGES

3.3.1 Our first test
Now it’s time to add an About page to our application. As we’ll see, the test is
short and simple, so we’ll follow the guidelines from Box 3.3 and write the test
first. We’ll then use the failing test to drive the writing of the application code.

Getting started with testing can be challenging, requiring extensive knowl-
edge of both Rails and Ruby. At this early stage, writing tests might thus seem
hopelessly intimidating. Luckily, Rails has already done the hardest part for
us, because rails generate controller (Listing 3.7) automatically gen-
erated a test file to get us started:

$ ls test/controllers/

static_pages_controller_test.rb

Let’s take a look at it (Listing 3.14).

Listing 3.14: The default tests for the StaticPages controller. green
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

end

test "should get help" do

get static_pages_help_url

assert_response :success

end

end

It’s not important at this point to understand the syntax in Listing 3.14 in de-
tail, but we can see that there are two tests, one for each controller action we
included on the command line in Listing 3.7. Each test simply gets a URL and
verifies (via an assertion) that the result is a success. Here the use of get indi-
cates that our tests expect the Home and Help pages to be ordinary web pages,

3.3. GETTING STARTED WITH TESTING 147

accessed using a GET request (Box 3.2). The response :success is an abstract
representation of the underlying HTTP status code (in this case, 200 OK). In
other words, a test like

test "should get home" do

get static_pages_home_url

assert_response :success

end

says “Let’s test the Home page by issuing a GET request to the Static Pages
home URL and then making sure we receive a ‘success’ status code in re-
sponse.”

To begin our testing cycle, we need to run our test suite to verify that the
tests currently pass. We can do this with the rails command as follows:

Listing 3.15: green
$ rails db:migrate # Necessary on some systems

$ rails test

2 tests, 2 assertions, 0 failures, 0 errors, 0 skips

As required, initially our test suite is passing (green). (Some systems won’t
actually display the color green unless you add the minitest reporters from the
optional Section 3.6.1, but the terminology is common even when literal colors
aren’t involved.) Note that here and throughout this tutorial, I’ll generally omit
some lines from the test output in order to highlight only the most imporant
parts.

By the way, on some systems you may see generated files of the form

/db/test.sqlite3-0

show up in the db directory. To prevent these generated files from being added
to the repository, I suggest adding a rule to the .gitignore file (Section 1.3.1)
to ignore them, as shown in Listing 3.16.

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#2xx_Success

148 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.16: Ignoring generated database files.
.gitignore

.

.

.

Ignore db test files.

db/test.*

3.3.2 Red
As noted in Box 3.3, test-driven development involves writing a failing test
first, writing the application code needed to get it to pass, and then refactoring
the code if necessary. Because many testing tools represent failing tests with
the color red and passing tests with the color green, this sequence is sometimes
known as the “Red, Green, Refactor” cycle. In this section, we’ll complete the
first step in this cycle, getting to red by writing a failing test. Then we’ll get to
green in Section 3.3.3, and refactor in Section 3.4.3.9

Our first step is to write a failing test for the About page. By following the
models from Listing 3.14, can you guess what it should be? The answer appears
in Listing 3.17.

Listing 3.17: A test for the About page. red
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

end

test "should get help" do

get static_pages_help_url

assert_response :success

9On some systems, rails test shows red when the tests fail but doesn’t show green when the tests pass. To
arrange for a true Red–Green cycle, see Section 3.6.1.

3.3. GETTING STARTED WITH TESTING 149

end

test "should get about" do

get static_pages_about_url

assert_response :success

end

end

We see from the highlighted lines in Listing 3.17 that the test for the About
page is the same as the Home and Help tests with the word “about” in place of
“home” or “help”.

As required, the test initially fails:

Listing 3.18: red
$ rails test

3 tests, 2 assertions, 0 failures, 1 errors, 0 skips

3.3.3 Green
Now that we have a failing test (red), we’ll use the failing test’s error messages
to guide us to a passing test (green), thereby implementing a working About
page.

We can get started by examining the error message output by the failing test:

Listing 3.19: red
$ rails test

NameError: undefined local variable or method `static_pages_about_url'

The error message here says that the Rails code for the About page URL is
undefined, which is a hint that we need to add a line to the routes file. We can
accomplish this by following the pattern in Listing 3.8, as shown in Listing 3.20.

150 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.20: Adding the about route. red
config/routes.rb

Rails.application.routes.draw do

get 'static_pages/home'

get 'static_pages/help'

get 'static_pages/about'

root 'application#hello'

end

The highlighted line in Listing 3.20 tells Rails to route a GET request for the
URL /static_pages/about to the about action in the Static Pages controller. This
automatically creates a helper called

static_pages_about_url

Running our test suite again, we see that it is still red, but now the error
message has changed:

Listing 3.21: red
$ rails test

AbstractController::ActionNotFound:

The action 'about' could not be found for StaticPagesController

The error message now indicates a missing about action in the Static Pages
controller, which we can add by following the model provided by home and
help in Listing 3.9, as shown in Listing 3.22.

Listing 3.22: The Static Pages controller with added about action. red
app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

end

3.3. GETTING STARTED WITH TESTING 151

def help

end

def about

end

end

As before, our test suite is still red, but the error message has changed again:

$ rails test

ActionController::UnknownFormat: StaticPagesController#about is missing

a template for this request format and variant.

This indicates a missing template, which in the context of Rails is essentially
the same thing as a view. As described in Section 3.2.1, an action called home
is associated with a view called home.html.erb located in the app/views/-
static_pages directory, which means that we need to create a new file called
about.html.erb in the same directory.

The way to create a file varies by system setup, but most text editors will
let you control-click inside the directory where you want to create the file to
bring up a menu with a “New File” menu item. Alternately, you can use the
File menu to create a new file and then pick the proper directory when saving
it. Finally, you can use my favorite trick by applying the Unix touch command
as follows:

$ touch app/views/static_pages/about.html.erb

As mentioned in Learn Enough Command Line to Be Dangerous, touch is
designed to update the modification timestamp of a file or directory without
otherwise affecting it, but as a side-effect it creates a new (blank) file if one
doesn’t already exist. (If using the cloud IDE, you may have to refresh the
file tree as described in Section 1.2.1. This is a good example of technical
sophistication (Box 1.2).)

Once you’ve created the about.html.erb file in the right directory, you
should fill it with the contents shown in Listing 3.23.

https://en.wikipedia.org/wiki/Touch_(Unix)
https://www.learnenough.com/r/learn_enough_command_line/manipulating_files/listing#sec-listing
https://www.learnenough.com/command-line

152 CHAPTER 3. MOSTLY STATIC PAGES

Listing 3.23: Code for the About page. green
app/views/static_pages/about.html.erb

<h1>About</h1>

<p>

The Ruby on Rails

Tutorial, part of the

Learn Enough family of

tutorials, is a

book and

screencast series

to teach web development with

Ruby on Rails.

This is the sample app for the tutorial.

</p>

At this point, running rails test should get us back to green:

Listing 3.24: green
$ rails test

3 tests, 3 assertions, 0 failures, 0 errors, 0 skips

Of course, it’s never a bad idea to take a look at the page in a browser to make
sure our tests aren’t leading us astray (Figure 3.7).

3.3.4 Refactor
Now that we’ve gotten to green, we are free to refactor our code with confi-
dence. When developing an application, often code will start to “smell”, mean-
ing that it gets ugly, bloated, or filled with repetition. The computer doesn’t
care what the code looks like, of course, but humans do, so it is important to
keep the code base clean by refactoring frequently. Although our sample app is
a little too small to refactor right now, code smell seeps in at every crack, and
we’ll get started refactoring in Section 3.4.3.

https://en.wikipedia.org/wiki/Code_smell

3.3. GETTING STARTED WITH TESTING 153

Figure 3.7: The new About page (/static_pages/about).

154 CHAPTER 3. MOSTLY STATIC PAGES

Page URL Base title Variable title
Home /static_pages/home "Ruby on Rails Tutorial Sample App" "Home"

Help /static_pages/help "Ruby on Rails Tutorial Sample App" "Help"

About /static_pages/about "Ruby on Rails Tutorial Sample App" "About"

Table 3.2: The (mostly) static pages for the sample app.

3.4 Slightly dynamic pages

Now that we’ve created the actions and views for some static pages, we’ll make
them slightly dynamic by adding some content that changes on a per-page ba-
sis: we’ll have the title of each page change to reflect its content. Whether a
changing title represents truly dynamic content is debatable, but in any case it
lays the necessary foundation for unambiguously dynamic content in Chapter 7.

Our plan is to edit the Home, Help, and About pages to make page titles
that change on each page. This will involve using the <title> tag in our
page views. Most browsers display the contents of the title tag at the top of the
browser window, and it is also important for search-engine optimization. We’ll
be using the full “Red, Green, Refactor” cycle: first by adding simple tests for
our page titles (red), then by adding titles to each of our three pages (green),
and finally using a layout file to eliminate duplication (Refactor). By the end
of this section, all three of our static pages will have titles of the form “<page
name> | Ruby on Rails Tutorial Sample App”, where the first part of the title
will vary depending on the page (Table 3.2).

The rails new command (Listing 3.1) creates a layout file by default, but
it’s instructive to ignore it initially, which we can do by changing its name:

$ mv app/views/layouts/application.html.erb layout_file # temporary change

You wouldn’t normally do this in a real application, but it’s easier to understand
the purpose of the layout file if we start by disabling it.

3.4. SLIGHTLY DYNAMIC PAGES 155

3.4.1 Testing titles (Red)
To add page titles, we need to learn (or review) the structure of a typical web
page, which takes the form shown in Listing 3.25. (This is covered in much
more depth in Learn Enough HTML to Be Dangerous.)

Listing 3.25: The HTML structure of a typical web page.
<!DOCTYPE html>

<html>

<head>

<title>Greeting</title>

</head>

<body>

<p>Hello, world!</p>

</body>

</html>

The structure in Listing 3.25 includes a document type, or doctype, declaration
at the top to tell browsers which version of HTML we’re using (in this case,
HTML5);10 a head section, in this case with “Greeting” inside a title tag;
and a body section, in this case with “Hello, world!” inside a p (paragraph)
tag. (The indentation is optional—HTML is not sensitive to whitespace, and
ignores both tabs and spaces—but it makes the document’s structure easier to
see.)

We’ll write simple tests for each of the titles in Table 3.2 by combining the
tests in Listing 3.17 with the assert_select method, which lets us test for
the presence of a particular HTML tag (sometimes called a “selector”, hence
the name):11

assert_select "title", "Home | Ruby on Rails Tutorial Sample App"

In particular, the code above checks for the presence of a <title> tag con-
taining the string “Home | Ruby on Rails Tutorial Sample App”. Applying this

10HTML changes with time; by explicitly making a doctype declaration we make it likelier that browsers will
render our pages properly in the future. The simple doctype <!DOCTYPE html> is characteristic of the latest
HTML standard, HTML5.

11For a list of commonminitest assertions, see the table of available assertions in the Rails Guides testing article.

https://www.learnenough.com/html
https://en.wikipedia.org/wiki/HTML5
https://guides.rubyonrails.org/testing.html#available-assertions

156 CHAPTER 3. MOSTLY STATIC PAGES

idea to all three static pages gives the tests shown in Listing 3.26.

Listing 3.26: The Static Pages controller test with title tests. red
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Home | Ruby on Rails Tutorial Sample App"

end

test "should get help" do

get static_pages_help_url

assert_response :success

assert_select "title", "Help | Ruby on Rails Tutorial Sample App"

end

test "should get about" do

get static_pages_about_url

assert_response :success

assert_select "title", "About | Ruby on Rails Tutorial Sample App"

end

end

With the tests from Listing 3.26 in place, you should verify that the test suite
is currently red:

Listing 3.27: red
$ rails test

3 tests, 6 assertions, 3 failures, 0 errors, 0 skips

3.4.2 Adding page titles (Green)
Now we’ll add a title to each page, getting the tests from Section 3.4.1 to pass
in the process. Applying the basic HTML structure from Listing 3.25 to the
custom Home page from Listing 3.12 yields Listing 3.28.

3.4. SLIGHTLY DYNAMIC PAGES 157

Listing 3.28: The view for the Home page with full HTML structure. red
app/views/static_pages/home.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Home | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

</body>

</html>

The corresponding web page appears in Figure 3.8. Note that the browser used
in the screenshots (Safari) displays the page title only if you include an addi-
tional tab, which explains the second tab shown in Figure 3.8.

Following this model for the Help page (Listing 3.13) and the About page
(Listing 3.23) yields the code in Listing 3.29 and Listing 3.30.

Listing 3.29: The view for the Help page with full HTML structure. red
app/views/static_pages/help.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Help | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial help

page.

To get help on this sample app, see the

Ruby on Rails

Tutorial book.

</p>

</body>

</html>

158 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.8: The Home page with a title.

3.4. SLIGHTLY DYNAMIC PAGES 159

Listing 3.30: The view for the About page with full HTML structure. green
app/views/static_pages/about.html.erb

<!DOCTYPE html>

<html>

<head>

<title>About | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>About</h1>

<p>

The Ruby on Rails

Tutorial, part of the

Learn Enough family of

tutorials, is a

book and

screencast series

to teach web development with

Ruby on Rails.

This is the sample app for the tutorial.

</p>

</body>

</html>

At this point, the test suite should be back to green:

Listing 3.31: green
$ rails test

3 tests, 6 assertions, 0 failures, 0 errors, 0 skips

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.
Beginning in this section, we’ll start making modifications to the applica-

tions in the exercises that won’t generally be reflected in future code listings.
The reason is so that the text makes sense to readers who don’t complete the
exercises, but as a result your code will diverge from the main text if you do

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

160 CHAPTER 3. MOSTLY STATIC PAGES

solve them. Learning to resolve small discrepancies like this is an excellent
example of technical sophistication (Box 1.2).

1. You may have noticed some repetition in the Static Pages controller test
(Listing 3.26). In particular, the base title, “Ruby on Rails Tutorial Sam-
ple App”, is the same for every title test. Using the special function
setup, which is automatically run before every test, verify that the tests
in Listing 3.32 are still green. (Listing 3.32 uses an instance variable,
seen briefly in Section 2.2.2 and covered further in Section 4.4.5, com-
binedwith string interpolation, which is covered further in Section 4.2.1.)

Listing 3.32: The Static Pages controller test with a base title. green
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

def setup

@base_title = "Ruby on Rails Tutorial Sample App"

end

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Home | #{@base_title}"

end

test "should get help" do

get static_pages_help_url

assert_response :success

assert_select "title", "Help | #{@base_title}"

end

test "should get about" do

get static_pages_about_url

assert_response :success

assert_select "title", "About | #{@base_title}"

end

end

3.4. SLIGHTLY DYNAMIC PAGES 161

3.4.3 Layouts and embedded Ruby (Refactor)
We’ve achieved a lot already in this section, generating three valid pages using
Rails controllers and actions, but they are purely static HTML and hence don’t
show off the power of Rails. Moreover, they suffer from terrible duplication:

• The page titles are almost (but not quite) exactly the same.

• “Ruby on Rails Tutorial Sample App” is common to all three titles.

• The entire HTML skeleton structure is repeated on each page.

This repeated code is a violation of the important “Don’t Repeat Yourself”
(DRY) principle; in this section we’ll “DRY out our code” by removing the
repetition. At the end, we’ll re-run the tests from Section 3.4.2 to verify that the
titles are still correct.

Paradoxically, we’ll take the first step toward eliminating duplication by
first adding some more: we’ll make the titles of the pages, which are currently
quite similar, match exactly. This will make it much simpler to remove all the
repetition at a stroke.

The technique involves using embedded Ruby in our views. Since the
Home, Help, and About page titles have a variable component, we’ll use a spe-
cial Rails function called provide to set a different title on each page. We can
see how this works by replacing the literal title “Home” in the home.html.erb
view with the code in Listing 3.33.

Listing 3.33: The view for the Home pagewith an embedded Ruby title. green
app/views/static_pages/home.html.erb

<% provide(:title, "Home") %>

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>Sample App</h1>

<p>

162 CHAPTER 3. MOSTLY STATIC PAGES

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

</body>

</html>

Listing 3.33 is our first example of embedded Ruby, also called ERb (or ERB).
(Now you know why HTML views have the file extension .html.erb.) ERb
is the primary template system for including dynamic content in web pages.12
The code

<% provide(:title, "Home") %>

indicates using <% ... %> that Rails should call the provide function and
associate the string "Home" with the label :title.13 Then, in the title, we
use the closely related notation <%= ... %> to insert the title into the template
using Ruby’s yield function:14

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

(The distinction between the two types of embedded Ruby is that <% ... %>

executes the code inside, while <%= ... %> executes it and inserts the result
into the template.) The resulting page is exactly the same as before, only now
the variable part of the title is generated dynamically by ERb.

We can verify that all this works by running the tests from Section 3.4.2 and
see that they are still green:

12There is a second popular template system called Haml (note: not “HAML”), which I personally love, but it’s
not quite standard enough for use in an introductory tutorial.

13Experienced Rails developers might have expected the use of content_for at this point, but it doesn’t work
well with the asset pipeline. The provide function is its replacement.

14If you’ve studied Ruby before, you might suspect that Rails is yielding the contents to a block, and your
suspicion would be correct. But you don’t need to know this to develop applications with Rails.

http://haml.info/

3.4. SLIGHTLY DYNAMIC PAGES 163

Listing 3.34: green
$ rails test

3 tests, 6 assertions, 0 failures, 0 errors, 0 skips

Then we can make the corresponding replacements for the Help and About
pages (Listing 3.35 and Listing 3.36).

Listing 3.35: The view for the Help page with an embedded Ruby title. green
app/views/static_pages/help.html.erb

<% provide(:title, "Help") %>

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial help

section.

To get help on this sample app, see the

Ruby on Rails

Tutorial book.

</p>

</body>

</html>

Listing 3.36: The view for the About page with an embedded Ruby title.
green
app/views/static_pages/about.html.erb

<% provide(:title, "About") %>

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

<h1>About</h1>

<p>

164 CHAPTER 3. MOSTLY STATIC PAGES

The Ruby on Rails

Tutorial, part of the

Learn Enough family of

tutorials, is a

book and

screencast series

to teach web development with

Ruby on Rails.

This is the sample app for the tutorial.

</p>

</body>

</html>

Now that we’ve replaced the variable part of the page titles with ERb, each
of our pages looks something like this:

<% provide(:title, "Page Title") %>

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

</head>

<body>

Contents

</body>

</html>

In other words, all the pages are identical in structure, including the contents of
the title tag, with the sole exception of the material inside the body tag.

In order to factor out this common structure, Rails comes with a special lay-
out file called application.html.erb, which we renamed in the beginning
of this section (Section 3.4) and which we’ll now restore:

$ mv layout_file app/views/layouts/application.html.erb

To get the layout to work, we have to replace the default title with the em-
bedded Ruby from the examples above:

3.4. SLIGHTLY DYNAMIC PAGES 165

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

The resulting layout appears in Listing 3.37.

Listing 3.37: The sample application site layout. green
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

<meta charset="utf-8">

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

</head>

<body>

<%= yield %>

</body>

</html>

Note here the special line

<%= yield %>

This code is responsible for inserting the contents of each page into the layout.
It’s not important to know exactly how this works; what matters is that using this
layout ensures that, for example, visiting the page /static_pages/home converts
the contents of home.html.erb to HTML and then inserts it in place of <%=
yield %>.

Listing 3.37 also includes the “character set”, which in this case is utf-8 for
displaying Unicode.

Finally, it’s worth noting that the default Rails layout includes several addi-
tional lines:

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Unicode

166 CHAPTER 3. MOSTLY STATIC PAGES

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag ... %>

<%= javascript_pack_tag "application", ... %>

This code arranges to include the application stylesheet and JavaScript, which
are part of the asset pipeline (Section 5.2.1), together with the Rails method
csp_meta_tag, which implements Content Security Policy (CSP) to miti-
gate cross-site scripting (XSS) attacks, and csrf_meta_tags, whichmitigates
cross-site request forgery (CSRF) attacks. (One huge advantage of using a ma-
ture framework like Rails is that it worries about such things so that we don’t
have to.)

Even though the tests are passing, there one detail left to deal with: the
views in Listing 3.33, Listing 3.35, and Listing 3.36 are still filled with all the
HTML structure included in the layout. Since it’s redundant (and indeed leads
to invalid HTML markup) we should remove it and leave only the interior con-
tents. The resulting cleaned-up views appear in Listing 3.38, Listing 3.39, and
Listing 3.40.

Listing 3.38: The Home page with HTML structure removed. green
app/views/static_pages/home.html.erb

<% provide(:title, "Home") %>

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

Listing 3.39: The Help page with HTML structure removed. green
app/views/static_pages/help.html.erb

<% provide(:title, "Help") %>

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_request_forgery

3.4. SLIGHTLY DYNAMIC PAGES 167

Rails Tutorial Help page.

To get help on this sample app, see the

Ruby on Rails Tutorial

book.

</p>

Listing 3.40: The About page with HTML structure removed. green
app/views/static_pages/about.html.erb

<% provide(:title, "About") %>

<h1>About</h1>

<p>

The Ruby on Rails

Tutorial, part of the

Learn Enough family of

tutorials, is a

book and

screencast series

to teach web development with

Ruby on Rails.

This is the sample app for the tutorial.

</p>

With these views defined, the Home, Help, and About pages are the same as
before, but they have much less duplication.

Experience shows that even fairly simple refactoring is error-prone and can
easily go awry. This is one reason why having a good test suite is so valuable.
Rather than double-checking every page for correctness—a procedure that isn’t
too hard early on but rapidly becomes unwieldy as an application grows—we
can simply verify that the test suite is still green:

Listing 3.41: green
$ rails test

3 tests, 6 assertions, 0 failures, 0 errors, 0 skips

This isn’t a proof that our code is still correct, but it greatly increases the prob-
ability, thereby providing a safety net to protect us against future bugs.

168 CHAPTER 3. MOSTLY STATIC PAGES

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Make a Contact page for the sample app.15 Following the model in List-
ing 3.17, first write a test for the existence of a page at the URL /static_-
pages/contact by testing for the title “Contact | Ruby on Rails Tutorial
Sample App”. Get your test to pass by following the same steps as when
making the About page in Section 3.3.3, including filling the Contact
page with the content from Listing 3.42.

Listing 3.42: Code for a proposed Contact page.
app/views/static_pages/contact.html.erb

<% provide(:title, "Contact") %>

<h1>Contact</h1>

<p>

Contact the Ruby on Rails Tutorial about the sample app at the

contact page.

</p>

3.4.4 Setting the root route
Now that we’ve customized our site’s pages and gotten a good start on the test
suite, let’s set the application’s root route before moving on. As in Section 1.2.4
and Section 2.2.2, this involves editing the routes.rb file to connect / to a
page of our choice, which in this case will be the Home page. (At this point,
I also recommend removing the hello action from the Application controller
if you added it in Section 3.1.) As shown in Listing 3.43, this means changing
the root route from

15This exercise is solved in Section 5.3.1.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

3.4. SLIGHTLY DYNAMIC PAGES 169

root 'application#hello'

to

root 'static_pages#home'

This arranges for requests for / to be routed to the home action in the Static
Pages controller. The resulting routes file is shown in Figure 3.9.

Listing 3.43: Setting the root route to the Home page.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get 'static_pages/home'

get 'static_pages/help'

get 'static_pages/about'

end

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Adding the root route in Listing 3.43 leads to the creation of a Rails helper
called root_url (in analogywith helpers like static_pages_home_-
url). By filling in the code marked FILL_IN in Listing 3.44, write a test
for the root route.

2. Due to the code in Listing 3.43, the test in the previous exercise is al-
ready green. In such a case, it’s harder to be confident that we’re actually
testing what we think we’re testing, so modify the code in Listing 3.43
by commenting out the root route to get to red (Listing 3.45). (We’ll talk
more about Ruby comments in Section 4.2.) Then uncomment it (thereby
restoring the original Listing 3.43) and verify that you get back to green.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

170 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.9: The Home page at the root route.

3.5. CONCLUSION 171

Listing 3.44: A test for the root route. green
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get root" do

get FILL_IN

assert_response FILL_IN

end

test "should get home" do

get static_pages_home_url

assert_response :success

end

test "should get help" do

get static_pages_help_url

assert_response :success

end

test "should get about" do

get static_pages_about_url

assert_response :success

end

end

Listing 3.45: Commenting out the root route to get a failing test. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get 'static_pages/home'

get 'static_pages/help'

get 'static_pages/about'

end

3.5 Conclusion
Seen from the outside, this chapter hardly accomplished anything: we started
with static pages, and ended with… mostly static pages. But appearances are

172 CHAPTER 3. MOSTLY STATIC PAGES

deceiving: by developing in terms of Rails controllers, actions, and views, we
are now in a position to add arbitrary amounts of dynamic content to our site.
Seeing exactly how this plays out is the task for the rest of this tutorial.

Before moving on, let’s take a minute to commit the changes on our topic
branch and merge them into the master branch. Back in Section 3.2 we created
a Git branch for the development of static pages. If you haven’t been making
commits as we’ve beenmoving along, first make a commit indicating that we’ve
reached a stopping point:

$ git add -A

$ git commit -m "Finish static pages"

Then merge the changes back into the master branch using the same technique
as in Section 1.3.4:16

$ git checkout master

$ git merge static-pages

Once you reach a stopping point like this, it’s usually a good idea to push
your code up to a remote repository (which, if you followed the steps in Sec-
tion 1.3.3, will be GitHub):

$ git push

I also recommend deploying the application to Heroku:

$ rails test

$ git push heroku

Here we’ve taken care to run the test suite before deploying, which is a good
habit to develop.

16If you get an error message saying that the Spring process id (pid) file would be overwritten by the merge,
just remove the file using rm -f *.pid at the command line.

3.6. ADVANCED TESTING SETUP 173

3.5.1 What we learned in this chapter
• For a third time, we went through the full procedure of creating a new
Rails application from scratch, installing the necessary gems, pushing it
up to a remote repository, and deploying it to production.

• The rails script generates a new controller with rails generate

controller ControllerName <optional action names>.

• New routes are defined in the file config/routes.rb.

• Rails views can contain static HTML or embedded Ruby (ERb).

• Automated testing allows us to write test suites that drive the develop-
ment of new features, allow for confident refactoring, and catch regres-
sions.

• Test-driven development uses a “Red, Green, Refactor” cycle.

• Rails layouts allow the use of a common template for pages in our appli-
cation, thereby eliminating duplication.

3.6 Advanced testing setup
This optional section describes the testing setup used in the Ruby on Rails Tu-
torial screencast series. There are two main elements: an enhanced pass/fail
reporter (Section 3.6.1), and an automated test runner that detects file changes
and automatically runs the corresponding tests (Section 3.6.2). The code in this
section is advanced and is presented for convenience only; you are not expected
to understand it at this time.

The changes in this section should be made on the master branch:

$ git checkout master

https://screencasts.railstutorial.org/
https://screencasts.railstutorial.org/

174 CHAPTER 3. MOSTLY STATIC PAGES

3.6.1 minitest reporters
Although many systems, including the cloud IDE, will show the appropriate
colors for red and green test suites, adding minitest reporters lends a degree
of pleasant polish to the test outputs, so I recommend adding the code in List-
ing 3.46 to your test helper file,17 thereby making use of the minitest-re-
porters gem included in Listing 3.2.

Listing 3.46: Configuring the tests to show red and green.
test/test_helper.rb

ENV['RAILS_ENV'] ||= 'test'

require_relative '../config/environment'

require 'rails/test_help'

require "minitest/reporters"

Minitest::Reporters.use!

class ActiveSupport::TestCase

Run tests in parallel with specified workers

parallelize(workers: :number_of_processors)

Setup all fixtures in test/fixtures/*.yml for all tests in alphabetical order.

fixtures :all

Add more helper methods to be used by all tests here...

end

The resulting transition from red to green in the cloud IDE appears as in Fig-
ure 3.10.

3.6.2 Automated tests with Guard
One annoyance associated with using the rails test command is having
to switch to the command line and run the tests by hand. To avoid this in-
convenience, we can use Guard to automate the running of the tests. Guard
monitors changes in the filesystem so that, for example, when we change the

17The code in Listing 3.46 mixes single- and double-quoted strings. This is because rails new generates
single-quoted strings, whereas the minitest reporters documentation uses double-quoted strings. This mixing of
the two string types is common in Ruby; see Section 4.2.1 for more information.

https://github.com/kern/minitest-reporters
https://github.com/kern/minitest-reporters
https://github.com/guard/guard
https://github.com/kern/minitest-reporters

3.6. ADVANCED TESTING SETUP 175

Figure 3.10: Going from red to green in the cloud IDE.

static_pages_controller_test.rb file, only those tests get run. Even
better, we can configure Guard so that when, say, the home.html.erb file is
modified, the static_pages_controller_test.rb automatically runs.

The Gemfile in Listing 3.2 has already included the guard gem in our
application, so to get started we just need to initialize it:

$ bundle exec guard init

Writing new Guardfile to /home/ec2-user/environment/sample_app/Guardfile

00:51:32 - INFO - minitest guard added to Guardfile, feel free to edit it

We then edit the resulting Guardfile so that Guard will run the right tests
when the integration tests and views are updated, which will look something
like Listing 3.47. For maximum flexibility, I recommend using the version of
the Guardfile listed in the reference application, which if you’re reading this
online should be identical to Listing 3.47:

• Reference Guardfile at railstutorial.org/guardfile

Listing 3.47: A custom Guardfile.
Defines the matching rules for Guard.

guard :minitest, spring: "bin/rails test", all_on_start: false do

https://www.railstutorial.org/guardfile

176 CHAPTER 3. MOSTLY STATIC PAGES

watch(%r{^test/(.*)/?(.*)_test\.rb$})

watch('test/test_helper.rb') { 'test' }

watch('config/routes.rb') { interface_tests }

watch(%r{app/views/layouts/*}) { interface_tests }

watch(%r{^app/models/(.*?)\.rb$}) do |matches|

"test/models/#{matches[1]}_test.rb"

end

watch(%r{^app/controllers/(.*?)_controller\.rb$}) do |matches|

resource_tests(matches[1])

end

watch(%r{^app/views/([^/]*?)/.*\.html\.erb$}) do |matches|

["test/controllers/#{matches[1]}_controller_test.rb"] +

integration_tests(matches[1])

end

watch(%r{^app/helpers/(.*?)_helper\.rb$}) do |matches|

integration_tests(matches[1])

end

watch('app/views/layouts/application.html.erb') do

'test/integration/site_layout_test.rb'

end

watch('app/helpers/sessions_helper.rb') do

integration_tests << 'test/helpers/sessions_helper_test.rb'

end

watch('app/controllers/sessions_controller.rb') do

['test/controllers/sessions_controller_test.rb',

'test/integration/users_login_test.rb']

end

watch('app/controllers/account_activations_controller.rb') do

'test/integration/users_signup_test.rb'

end

watch(%r{app/views/users/*}) do

resource_tests('users') +

['test/integration/microposts_interface_test.rb']

end

end

Returns the integration tests corresponding to the given resource.

def integration_tests(resource = :all)

if resource == :all

Dir["test/integration/*"]

else

Dir["test/integration/#{resource}_*.rb"]

end

end

Returns all tests that hit the interface.

def interface_tests

integration_tests << "test/controllers/"

end

Returns the controller tests corresponding to the given resource.

3.6. ADVANCED TESTING SETUP 177

def controller_test(resource)

"test/controllers/#{resource}_controller_test.rb"

end

Returns all tests for the given resource.

def resource_tests(resource)

integration_tests(resource) << controller_test(resource)

end

On the cloud IDE, there’s one additional step, which is to run the following
rather obscure commands to allow Guard to monitor all the files in the project:

$ echo fs.inotify.max_user_watches=524288 | sudo tee -a /etc/sysctl.conf

$ sudo sysctl -p

OnceGuard is configured, you should open a new terminal (as with the Rails
server in Section 1.2.2) and run it at the command line as follows (Figure 3.11):

$ bundle exec guard

The rules in Listing 3.47 are optimized for this tutorial, automatically running
(for example) the integration tests when a controller is changed. To run all the
tests, simply hit return at the guard> prompt.

To exit Guard, press Ctrl-D. To add additional matchers to Guard, refer to
the examples in Listing 3.47, the Guard README, and the Guard wiki.

If the test suite fails without apparent cause, try exiting Guard, stopping
Spring (which Rails uses to preload information to help speed up tests), and
restarting:

$ bin/spring stop # Try this if the tests mysteriously start failing.

$ bundle exec guard

Before proceeding, you should add your changes and make a commit:

https://github.com/guard/listen/wiki/Increasing-the-amount-of-inotify-watchers
https://github.com/guard/guard
https://github.com/guard/guard/wiki

178 CHAPTER 3. MOSTLY STATIC PAGES

Figure 3.11: Using Guard on the cloud IDE.

$ git add -A

$ git commit -m "Complete advanced testing setup"

Chapter 4

Rails-flavored Ruby
Grounded in examples from Chapter 3, this chapter explores some elements of
the Ruby programming language that are important for Rails. Ruby is a big lan-
guage, but fortunately the subset needed to be productive as a Rails developer is
relatively small. It also differs somewhat from the usual material covered in an
introduction to Ruby. This chapter is designed to give you a solid foundation in
Rails-flavored Ruby, whether or not you have prior experience in the language.
It covers a lot of material, and it’s OK not to get it all on the first pass. We’ll
refer back to it frequently in future chapters.1

4.1 Motivation
As we saw in the last chapter, it’s possible to develop the skeleton of a Rails
application, and even start testing it, with essentially no knowledge of the un-
derlying Ruby language. We did this by relying on the test code provided by the
tutorial and addressing each error message until the test suite was passing. This
situation can’t last forever, though, and we’ll open this chapter with an addition
to the site that brings us face-to-face with our Ruby limitations.

As in Section 3.2, we’ll use a separate topic branch to keep our changes
self-contained:

1For a more systematic introduction to Ruby, see Learn Enough Ruby to Be Dangerous.

179

https://www.learnenough.com/ruby

180 CHAPTER 4. RAILS-FLAVORED RUBY

$ git checkout -b rails-flavored-ruby

We’ll merge our changes into master in Section 4.5.

4.1.1 Built-in helpers
When we last saw our new application, we had just updated our mostly static
pages to use Rails layouts to eliminate duplication in our views, as shown in
Listing 4.1 (which is the same as Listing 3.37).

Listing 4.1: The sample application site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

<meta charset="utf-8">

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

</head>

<body>

<%= yield %>

</body>

</html>

Let’s focus on one particular line in Listing 4.1:

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

This uses the built-in Rails function stylesheet_link_tag (which you can

4.1. MOTIVATION 181

read more about at the Rails API)2 to include application.css for all media
types (including computer screens and printers). To an experienced Rails de-
veloper, this line looks simple, but there are at least four potentially confusing
Ruby ideas: built-in Rails methods, method invocation with missing parenthe-
ses, symbols, and hashes. We’ll cover all of these ideas in this chapter.

4.1.2 Custom helpers
In addition to coming equipped with a large number of built-in functions for
use in the views, Rails also allows the creation of new ones. Such functions are
called helpers; to see how to make a custom helper, let’s start by examining the
title line from Listing 4.1:

<%= yield(:title) %> | Ruby on Rails Tutorial Sample App

This relies on the definition of a page title (using provide) in each view, as in

<% provide(:title, "Home") %>

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

But what if we don’t provide a title? It’s a good convention to have a base title
we use on every page, with an optional page title if we want to be more specific.
We’ve almost achieved that with our current layout, with one wrinkle: as you
can see if you delete the provide call in one of the views, in the absence of a
page-specific title the full title appears as follows:

2An “API” is an Application Programming Interface, which is a set of methods and other conventions that
serves as an abstraction layer for interacting with a software system. The practical effect is that we as developers
don’t need to understand the program internals; we need only be famliar with the public-facing API. In the present
case, this means that, rather than be concerned with how stylesheet_link_tag is implemented, we need only
know how it behaves.

https://api.rubyonrails.org/classes/ActionView/Helpers/AssetTagHelper.html#method-i-stylesheet_link_tag
https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Abstraction_layer

182 CHAPTER 4. RAILS-FLAVORED RUBY

| Ruby on Rails Tutorial Sample App

In other words, there’s a suitable base title, but there’s also a leading vertical
bar character | at the beginning.

To solve the problem of a missing page title, we’ll define a custom helper
called full_title. The full_title helper returns a base title, “Ruby on
Rails Tutorial Sample App”, if no page title is defined, and adds a vertical bar
preceded by the page title if one is defined (Listing 4.2).3

Listing 4.2: Defining a full_title helper.
app/helpers/application_helper.rb

module ApplicationHelper

Returns the full title on a per-page basis.

def full_title(page_title = '')

base_title = "Ruby on Rails Tutorial Sample App"

if page_title.empty?

base_title

else

page_title + " | " + base_title

end

end

end

Now that we have a helper, we can use it to simplify our layout by replacing

<title><%= yield(:title) %> | Ruby on Rails Tutorial Sample App</title>

with

3If a helper is specific to a particular controller, you should put it in the corresponding helper file; for example,
helpers for the Static Pages controller generally go in app/helpers/static_pages_helper.rb. In our case,
we expect the full_title helper to be used on all the site’s pages, and Rails has a special helper file for this
case: app/helpers/application_helper.rb.

4.1. MOTIVATION 183

<title><%= full_title(yield(:title)) %></title>

as seen in Listing 4.3.

Listing 4.3: The site layout with the full_title helper. green
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<meta charset="utf-8">

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

</head>

<body>

<%= yield %>

</body>

</html>

To put our helper to work, we can eliminate the unnecessary word “Home”
from the Home page, allowing it to revert to the base title. We do this by first
updating our test with the code in Listing 4.4, which updates the previous title
test and adds one to test for the absence of the custom "Home" string in the title.

Listing 4.4: An updated test for the Home page’s title. red
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Ruby on Rails Tutorial Sample App"

end

184 CHAPTER 4. RAILS-FLAVORED RUBY

test "should get help" do

get static_pages_help_url

assert_response :success

assert_select "title", "Help | Ruby on Rails Tutorial Sample App"

end

test "should get about" do

get static_pages_about_url

assert_response :success

assert_select "title", "About | Ruby on Rails Tutorial Sample App"

end

end

Let’s run the test suite to verify that one test fails:4

Listing 4.5: red
$ rails test

3 tests, 6 assertions, 1 failures, 0 errors, 0 skips

To get the test suite to pass, we’ll remove the provide line from the Home
page’s view, as seen in Listing 4.6.

Listing 4.6: The Home page with no custom page title. green
app/views/static_pages/home.html.erb

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

At this point the tests should pass:

4I’ll generally run the test suite explicitly for completeness, but in practice I usually just use Guard as described
in Section 3.6.2.

4.2. STRINGS AND METHODS 185

Listing 4.7: green
$ rails test

(Previous examples have included partial output of running rails test, in-
cluding the number of passing and failing tests, but for brevity these will usually
be omitted from now on.)

As with the line to include the application stylesheet in Section 4.1.1, the
code in Listing 4.2 may look simple to the eyes of an experienced Rails de-
veloper, but it’s full of important Ruby ideas: modules, method definition, op-
tional method arguments, comments, local variable assignment, booleans, con-
trol flow, string concatenation, and return values. This chapter will cover all of
these ideas as well.

4.2 Strings and methods
Our principal tool for learning Ruby will be the Rails console, a command-line
program for interacting with Rails applications first seen in Section 2.3.3. The
console itself is built on top of interactive Ruby (irb), and thus has access to
the full power of the Ruby language. (As we’ll see in Section 4.4.4, the console
also has access to the Rails environment.)

If you’re using the cloud IDE, there are a couple of irb configuration pa-
rameters I recommend including. Using the simple nano text editor, open a file
called .irbrc in the home directory:5

$ nano ~/.irbrc

Then fill it with the contents of Listing 4.8, which arranges to simplify the irb
prompt and suppress some annoying auto-indent behavior.

5The nano editor is easier for beginners, but for this sort of short edit I would almost always use Vim instead.
To learn Minimum Viable Vim™, see Learn Enough Text Editor to Be Dangerous.

https://www.learnenough.com/text-editor

186 CHAPTER 4. RAILS-FLAVORED RUBY

Listing 4.8: Adding some irb configuration.
~/.irbrc

IRB.conf[:PROMPT_MODE] = :SIMPLE

IRB.conf[:AUTO_INDENT_MODE] = false

Finally, exit nano with Ctrl-X and save ~/.irbrc by typing y to confirm.
We can now start the console at the command line as follows:

$ rails console

Loading development environment

>>

By default, the console starts in a development environment, which is one of
three separate environments defined by Rails (the others are test and produc-
tion). This distinction won’t be important in this chapter, but it will in the future,
and we’ll learn more about environments in Section 7.1.1.

The console is a great learning tool, and you should feel free to explore.
Don’t worry—you (probably) won’t break anything. When using the console,
type Ctrl-C if you get stuck, or type Ctrl-D to exit the console altogether. As
with a regular terminal shell, you can also use up-arrow to retrieve previous
commands, which can be a significant time-saver.

Throughout the rest of this chapter, you might find it helpful to consult the
Ruby API. It’s packed (perhaps even too packed) with information; for exam-
ple, to learn more about Ruby strings you can look at the Ruby API entry for
the String class.

During this discussion, we’ll sometimes use Ruby comments, which start
with the pound sign # (also called the “hash mark” or (more poetically) the
“octothorpe”) and extend to the end of the line. Ruby ignores comments, but
they are useful for human readers (including, often, the original author!). In the
code

https://www.learnenough.com/r/learn_enough_command_line/basics/our_first_command#aside-getting_out_of_trouble
https://ruby-doc.org

4.2. STRINGS AND METHODS 187

Returns the full title on a per-page basis.

def full_title(page_title = '')

.

.

.

end

the first line is a comment indicating the purpose of the subsequent function
definition.

You don’t ordinarily include comments in console sessions, but for instruc-
tional purposes I’ll include some comments in what follows, like this:

$ rails console

>> 17 + 42 # Integer addition

=> 59

If you follow along in this section by typing or copying-and-pasting commands
into your own console, you can of course omit the comments if you like; the
console will ignore them in any case.

4.2.1 Strings
Strings are probably the most important data structure for web applications,
since web pages ultimately consist of strings of characters sent from the server
to the browser. Let’s start exploring strings with the console:

$ rails console

>> "" # An empty string

=> ""

>> "foo" # A nonempty string

=> "foo"

These are string literals (also called literal strings), created using the double
quote character ". The console prints the result of evaluating each line, which
in the case of a string literal is just the string itself.

We can also concatenate strings with the + operator:

188 CHAPTER 4. RAILS-FLAVORED RUBY

>> "foo" + "bar" # String concatenation

=> "foobar"

Here the result of evaluating "foo" plus "bar" is the string "foobar".6
Another way to build up strings is via interpolation using the special syntax

#{}:7

>> first_name = "Michael" # Variable assignment

=> "Michael"

>> "#{first_name} Hartl" # String interpolation

=> "Michael Hartl"

Here we’ve assigned the value "Michael" to the variable first_name and
then interpolated it into the string "#{first_name} Hartl". We could also
assign both strings a variable name:

>> first_name = "Michael"

=> "Michael"

>> last_name = "Hartl"

=> "Hartl"

>> first_name + " " + last_name # Concatenation, with a space in between

=> "Michael Hartl"

>> "#{first_name} #{last_name}" # The equivalent interpolation

=> "Michael Hartl"

Note that the final two expressions are equivalent, but I prefer the interpolated
version; having to add the single space " " seems a bit awkward.

Printing
To print a string to the screen, the most commonly used Ruby function is puts
(pronounced “put ess”, for “put string”, though some people do pronounce it
like the word “puts” instead):

6For more on the origins of “foo” and “bar”—and, in particular, the possible non-relation of “foobar” to
“FUBAR”—see the Jargon File entry on “foo”.

7Programmers familiar with Perl or PHP should compare this to the automatic interpolation of dollar sign
variables in expressions like "foo $bar".

http://www.catb.org/jargon/html/F/foo.html

4.2. STRINGS AND METHODS 189

>> puts "foo" # put string

foo

=> nil

The putsmethod operates as a side-effect: the expression puts "foo" prints
the string to the screen and then returns literally nothing: nil is a special Ruby
value for “nothing at all”. (In what follows, I’ll sometimes suppress the =>
nil part for simplicity.)

As seen in the examples above, using puts automatically includes a new
line after the string gets printed (the same as the behavior of the echo command
covered in Learn Enough Command Line to Be Dangerous). The closely related
print command prints the raw string without the extra line:

>> print "foo" # print string without extra line

foo=> nil

You can see here that the output foo bumps right up against the prompt in the
second line.

The technical name for an extra line of blank space is a newline, typically
represented by “backslash n” \n. We can arrange for print to replicate the
behavior of puts by including an explicit newline character in the string:

>> print "foo\n" # Same as puts "foo"

foo

=> nil

Single-quoted strings

All the examples so far have used double-quoted strings, but Ruby also supports
single-quoted strings. For many uses, the two types of strings are effectively
identical:

https://en.wiktionary.org/wiki/nil
https://www.learnenough.com/r/learn_enough_command_line/basics/our_first_command#sec-our_first_command
https://www.learnenough.com/command-line

190 CHAPTER 4. RAILS-FLAVORED RUBY

>> 'foo' # A single-quoted string

=> "foo"

>> 'foo' + 'bar'

=> "foobar"

There’s an important difference, though; Ruby won’t interpolate into
single-quoted strings:

>> '#{foo} bar' # Single-quoted strings don't allow interpolation

=> "\#{foo} bar"

Note how the console returns values using double-quoted strings, which re-
quires a backslash to escape special character combinations such as #{.

If double-quoted strings can do everything that single-quoted strings can
do, and interpolate to boot, what’s the point of single-quoted strings? They are
often useful because they are truly literal, containing exactly the characters you
type. For example, the “backslash” character is special on most systems, as
in the literal newline \n. If you want a variable to contain a literal backslash,
single quotes make it easier:

>> '\n' # A literal 'backslash n' combination

=> "\\n"

As with the #{ combination in our previous example, Ruby needs to escape the
backslash with an additional backslash; inside double-quoted strings, a literal
backslash is represented with two backslashes. For a small example like this,
there’s not much savings, but if there are lots of things to escape it can be a real
help:

>> 'Newlines (\n) and tabs (\t) both use the backslash character \.'

=> "Newlines (\\n) and tabs (\\t) both use the backslash character \\."

Finally, it’s worth noting that, in the common case that both single and dou-
ble quotes work just fine, you’ll often find that the source code switches between
the two without any apparent pattern. There’s really nothing to be done about
this, except to say, “Welcome to Ruby! You’ll get used to it soon enough.”

4.2. STRINGS AND METHODS 191

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Assign variables city and state to your current city and state of resi-
dence. (If residing outside the U.S., substitute the analogous quantities.)

2. Using interpolation, print (using puts) a string consisting of the city and
state separated by a comma and a space, as in “Los Angeles, CA”.

3. Repeat the previous exercise but with the city and state separated by a tab
character.

4. What is the result if you replace double quotes with single quotes in the
previous exercise?

4.2.2 Objects and message passing
Everything in Ruby, including strings and even nil, is an object. We’ll see
the technical meaning of this in Section 4.4.2, but I don’t think anyone ever
understood objects by reading the definition in a book; you have to build up
your intuition for objects by seeing lots of examples.

It’s easier to describe what objects do, which is respond to messages. An
object like a string, for example, can respond to the message length, which
returns the number of characters in the string:

>> "foobar".length # Passing the "length" message to a string

=> 6

Typically, the messages that get passed to objects are methods, which are func-
tions defined on those objects.8 Strings also respond to the empty? method:

8Apologies in advance for switching haphazardly between function and method throughout this chapter; in
Ruby, they’re the same thing: all methods are functions, and all functions are methods, because everything is an
object.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

192 CHAPTER 4. RAILS-FLAVORED RUBY

>> "foobar".empty?

=> false

>> "".empty?

=> true

Note the question mark at the end of the empty? method. This is a Ruby con-
vention indicating that the return value is boolean: true or false. Booleans
are especially useful for control flow:

>> s = "foobar"

>> if s.empty?

>> "The string is empty"

>> else

>> "The string is nonempty"

>> end

=> "The string is nonempty"

To include more than one clause, we can use elsif (else + if):

>> if s.nil?

>> "The variable is nil"

>> elsif s.empty?

>> "The string is empty"

>> elsif s.include?("foo")

>> "The string includes 'foo'"

>> end

=> "The string includes 'foo'"

Booleans can also be combined using the && (“and”), || (“or”), and ! (“not”)
operators:

>> x = "foo"

=> "foo"

>> y = ""

=> ""

>> puts "Both strings are empty" if x.empty? && y.empty?

=> nil

>> puts "One of the strings is empty" if x.empty? || y.empty?

"One of the strings is empty"

=> nil

>> puts "x is not empty" if !x.empty?

"x is not empty"

=> nil

4.2. STRINGS AND METHODS 193

Since everything in Ruby is an object, it follows that nil is an object, so it
too can respond to methods. One example is the to_s method that can convert
virtually any object to a string:

>> nil.to_s

=> ""

This certainly appears to be an empty string, as we can verify by passing mul-
tiple methods to nil, a technique known as method chaining:

>> nil.empty?

NoMethodError: undefined method `empty?' for nil:NilClass

>> nil.to_s.empty? # Message chaining

=> true

We see here that the nil object doesn’t itself respond to the empty? method,
but nil.to_s does.

There’s a special method for testing for nil-ness, which you might be able
to guess:

>> "foo".nil?

=> false

>> "".nil?

=> false

>> nil.nil?

=> true

The code

puts "x is not empty" if !x.empty?

also shows an alternate use of the if keyword: Ruby allows you to write a
statement that is evaluated only if the statement following if is true. There’s a
complementary unless keyword that works the same way:

194 CHAPTER 4. RAILS-FLAVORED RUBY

>> string = "foobar"

>> puts "The string '#{string}' is nonempty." unless string.empty?

The string 'foobar' is nonempty.

=> nil

It’s worth noting that the nil object is special, in that it is the only Ruby
object that is false in a boolean context, apart from false itself. We can see this
using !! (read “bang bang”), which negates an object twice, thereby coercing
it to its boolean value:

>> !!nil

=> false

In particular, all other Ruby objects are true, even 0:

>> !!0

=> true

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. What is the length of the string “racecar”?

2. Confirm using the reverse method that the string in the previous exer-
cise is the same when its letters are reversed.

3. Assign the string “racecar” to the variable s. Confirm using the compar-
ison operator == that s and s.reverse are equal.

4. What is the result of running the code shown in Listing 4.9? How does it
change if you reassign the variable s to the string “onomatopoeia”? Hint:
Use up-arrow to retrieve and edit previous commands

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wiktionary.org/wiki/onomatopoeia#English

4.2. STRINGS AND METHODS 195

Listing 4.9: A simple palindrome test.
>> puts "It's a palindrome!" if s == s.reverse

4.2.3 Method definitions
The console allows us to define methods the same way we did with the home
action from Listing 3.9 or the full_title helper from Listing 4.2. (Defining
methods in the console is a bit cumbersome, and ordinarily you would use a
file, but it’s convenient for demonstration purposes.) For example, let’s define a
function string_message that takes a single argument and returns a message
based on whether the argument is empty or not:

>> def string_message(str = '')

>> if str.empty?

>> "It's an empty string!"

>> else

>> "The string is nonempty."

>> end

>> end

=> :string_message

>> puts string_message("foobar")

The string is nonempty.

>> puts string_message("")

It's an empty string!

>> puts string_message

It's an empty string!

As seen in the final example, it’s possible to leave out the argument entirely (in
which case we can also omit the parentheses). This is because the code

def string_message(str = '')

contains a default argument, which in this case is the empty string. This makes
the str argument optional, and if we leave it off it automatically takes the given
default value.

196 CHAPTER 4. RAILS-FLAVORED RUBY

Note that Ruby functions have an implicit return, meaning they return the
last statement evaluated—in this case, one of the two message strings, depend-
ing on whether the method’s argument str is empty or not. Ruby also has an
explicit return option; the following function is equivalent to the one above:

>> def string_message(str = '')

>> return "It's an empty string!" if str.empty?

>> return "The string is nonempty."

>> end

(The alert reader might notice at this point that the second return here is ac-
tually unnecessary—being the last expression in the function, the string "The
string is nonempty."will be returned regardless of the return keyword,
but using return in both places has a pleasing symmetry to it.)

It’s also important to understand that the name of the function argument
is irrelevant as far as the caller is concerned. In other words, the first ex-
ample above could replace str with any other valid variable name, such as
the_function_argument, and it would work just the same:

>> def string_message(the_function_argument = '')

>> if the_function_argument.empty?

>> "It's an empty string!"

>> else

>> "The string is nonempty."

>> end

>> end

=> nil

>> puts string_message("")

It's an empty string!

>> puts string_message("foobar")

The string is nonempty.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.2. STRINGS AND METHODS 197

1. By replacing FILL_IN with the appropriate comparison test shown in
Listing 4.10, define a method for testing palindromes. Hint: Use the
comparison shown in Listing 4.9.

2. By running your palindrome tester on “racecar” and “onomatopoeia”,
confirm that the first is a palindrome and the second isn’t.

3. By calling the nil? method on palindrome_tester("racecar"),
confirm that its return value is nil (i.e., calling nil? on the result of the
method should return true). This is because the code in Listing 4.10
prints its responses instead of returning them.

Listing 4.10: A simple tester for palindromes.
>> def palindrome_tester(s)

>> if FILL_IN

>> puts "It's a palindrome!"

>> else

>> puts "It's not a palindrome."

>> end

>> end

4.2.4 Back to the title helper
We are now in a position to understand the full_title helper from List-
ing 4.2,9 which appears with commented annotations in Listing 4.11.

Listing 4.11: An annotated title_helper.
app/helpers/application_helper.rb

module ApplicationHelper

Returns the full title on a per-page basis. # Documentation comment

def full_title(page_title = '') # Method def, optional arg

9Well, there will still be one thing left that we don’t understand, which is how Rails ties this all together:
mapping URLs to actions, making the full_title helper available in views, etc. This is an interesting subject,
and I encourage you to investigate it further, but knowing exactly how Rails works is not necessary when using
Rails.

198 CHAPTER 4. RAILS-FLAVORED RUBY

base_title = "Ruby on Rails Tutorial Sample App" # Variable assignment

if page_title.empty? # Boolean test

base_title # Implicit return

else

page_title + " | " + base_title # String concatenation

end

end

end

These elements—function definition (with an optional argument), variable
assignment, boolean tests, control flow, and string concatenation10—come to-
gether to make a compact helper method for use in our site layout. The final
element is module ApplicationHelper: modules give us a way to pack-
age together related methods, which can then bemixed in to Ruby classes using
include. When writing ordinary Ruby, you often write modules and include
them explicitly yourself, but in the case of a helper module Rails handles the
inclusion for us. The result is that the full_title method is automagically
available in all our views.

4.3 Other data structures
Although web apps are ultimately about strings, actually making those strings
requires using other data structures as well. In this section, we’ll learn about
some Ruby data structures important for writing Rails applications.

4.3.1 Arrays and ranges
An array is just a list of elements in a particular order. We haven’t discussed
arrays yet in the Rails Tutorial, but understanding them gives a good foundation
for understanding hashes (Section 4.3.3) and for aspects of Rails data modeling

10It’s tempting to use string interpolation instead—indeed, this was the technique used in all previous versions
of the tutorial—but in fact the call to provide converts the string into a so-called SafeBuffer object instead of
an ordinary string. Interpolating and inserting into a view template then over-escapes any inserted HTML, so a
title such as “Help’s on the way” would be converted to “Help&#39;s on the way”. (Thanks to reader Jeremy
Fleischman for pointing out this subtle issue.)

http://catb.org/jargon/html/A/automagically.html

4.3. OTHER DATA STRUCTURES 199

(such as the has_many association seen in Section 2.3.3 and covered more in
Section 13.1.3).

So far we’ve spent a lot of time understanding strings, and there’s a natural
way to get from strings to arrays using the split method:

>> "foo bar baz".split # Split a string into a three-element array.

=> ["foo", "bar", "baz"]

The result of this operation is an array of three strings. By default, split
divides a string into an array by splitting on whitespace, but you can split on
nearly anything else as well:

>> "fooxbarxbaz".split('x')

=> ["foo", "bar", "baz"]

As is conventional in most computer languages, Ruby arrays are zero-offset,
which means that the first element in the array has index 0, the second has
index 1, and so on:

>> a = [42, 8, 17]

=> [42, 8, 17]

>> a[0] # Ruby uses square brackets for array access.

=> 42

>> a[1]

=> 8

>> a[2]

=> 17

>> a[-1] # Indices can even be negative!

=> 17

We see here that Ruby uses square brackets to access array elements. In addition
to this bracket notation, Ruby offers synonyms for some commonly accessed
elements:11

11The secondmethod used here isn’t currently part of Ruby itself, but rather is added by Rails. It works in this
case because the Rails console automatically includes the Rails extensions to Ruby.

200 CHAPTER 4. RAILS-FLAVORED RUBY

>> a # Just a reminder of what 'a' is

=> [42, 8, 17]

>> a.first

=> 42

>> a.second

=> 8

>> a.last

=> 17

>> a.last == a[-1] # Comparison using ==

=> true

This last line introduces the equality comparison operator ==, which Ruby
shares with many other languages, along with the associated != (“not equal”),
etc.:

>> x = a.length # Like strings, arrays respond to the 'length' method.

=> 3

>> x == 3

=> true

>> x == 1

=> false

>> x != 1

=> true

>> x >= 1

=> true

>> x < 1

=> false

In addition to length (seen in the first line above), arrays respond to a
wealth of other methods:

>> a

=> [42, 8, 17]

>> a.empty?

=> false

>> a.include?(42)

=> true

>> a.sort

=> [8, 17, 42]

>> a.reverse

=> [17, 8, 42]

>> a.shuffle

=> [17, 42, 8]

>> a

=> [42, 8, 17]

4.3. OTHER DATA STRUCTURES 201

Note that none of the methods above changes a itself. To mutate the array, use
the corresponding “bang” methods (so-called because the exclamation point is
usually pronounced “bang” in this context):

>> a

=> [42, 8, 17]

>> a.sort!

=> [8, 17, 42]

>> a

=> [8, 17, 42]

You can also add to arrays with the pushmethod or its equivalent operator,
<<, called the “shovel operator”:

>> a.push(6) # Pushing 6 onto an array

=> [42, 8, 17, 6]

>> a << 7 # Pushing 7 onto an array

=> [42, 8, 17, 6, 7]

>> a << "foo" << "bar" # Chaining array pushes

=> [42, 8, 17, 6, 7, "foo", "bar"]

This last example shows that you can chain pushes together, and also that, unlike
arrays in many other languages, Ruby arrays can contain a mixture of different
types (in this case, integers and strings).

Before we saw split convert a string to an array. We can also go the other
way with the join method:

>> a

=> [42, 8, 17, 6, 7, "foo", "bar"]

>> a.join # Join on nothing.

=> "4281767foobar"

>> a.join(', ') # Join on comma-space.

=> "42, 8, 17, 6, 7, foo, bar"

Closely related to arrays are ranges, which can probably most easily be
understood by converting them to arrays using the to_a method:

202 CHAPTER 4. RAILS-FLAVORED RUBY

>> 0..9

=> 0..9

>> 0..9.to_a # Oops, call to_a on 9.

NoMethodError: undefined method `to_a' for 9:Fixnum

>> (0..9).to_a # Use parentheses to call to_a on the range.

=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Though 0..9 is a valid range, the second expression above shows that we need
to add parentheses to call a method on it.

Ranges are useful for pulling out array elements:

>> a = %w[foo bar baz quux] # Use %w to make a string array.

=> ["foo", "bar", "baz", "quux"]

>> a[0..2]

=> ["foo", "bar", "baz"]

A particularly useful trick is to use the index -1 at the end of the range to select
every element from the starting point to the end of the array without explicitly
having to use the array’s length:

>> a = (0..9).to_a

=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>> a[2..(a.length-1)] # Explicitly use the array's length.

=> [2, 3, 4, 5, 6, 7, 8, 9]

>> a[2..-1] # Use the index -1 trick.

=> [2, 3, 4, 5, 6, 7, 8, 9]

Ranges also work with characters:

>> ('a'..'e').to_a

=> ["a", "b", "c", "d", "e"]

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.3. OTHER DATA STRUCTURES 203

1. Assign a to be to the result of splitting the string “A man, a plan, a canal,
Panama” on comma-space.

2. Assign s to the string resulting from joining a on nothing.

3. Split s on whitespace and rejoin on nothing. Use the palindrome test
from Listing 4.10 to confirm that the resulting string s is not a palin-
drome by the current definition. Using the downcasemethod, show that
s.downcase is a palindrome.

4. What is the result of selecting element 7 from the range of letters a
through z? What about the same range reversed? Hint: In both cases
you will have to convert the range to an array.

4.3.2 Blocks
Both arrays and ranges respond to a host of methods that accept blocks, which
are simultaneously one of Ruby’s most powerful and most confusing features:

>> (1..5).each { |i| puts 2 * i }

2

4

6

8

10

=> 1..5

This code calls the eachmethod on the range (1..5) and passes it the block {
|i| puts 2 * i }. The vertical bars around the variable name in |i| are
Ruby syntax for a block variable, and it’s up to the method to know what to do
with the block. In this case, the range’s each method can handle a block with
a single local variable, which we’ve called i, and it just executes the block for
each value in the range.

Curly braces are one way to indicate a block, but there is a second way as
well:

204 CHAPTER 4. RAILS-FLAVORED RUBY

>> (1..5).each do |i|

?> puts 2 * i

>> end

2

4

6

8

10

=> 1..5

Blocks can be more than one line, and often are. In the Rails Tutorial we’ll
follow the common convention of using curly braces only for short one-line
blocks and the do..end syntax for longer one-liners and for multi-line blocks:

>> (1..5).each do |number|

?> puts 2 * number

>> puts '--'

>> end

2

--

4

--

6

--

8

--

10

--

=> 1..5

Here I’ve used number in place of i just to emphasize that any variable name
will do.

Unless you already have a substantial programming background, there is no
shortcut to understanding blocks; you just have to see them a lot, and eventually
you’ll get used to them.12 Luckily, humans are quite good at making general-
izations from concrete examples; here are a few more, including a couple using
the map method:

12Programming experts, on the other hand, might benefit from knowing that blocks are closures, which are
one-shot anonymous functions with data attached.

4.3. OTHER DATA STRUCTURES 205

>> 3.times { puts "Betelgeuse!" } # 3.times takes a block with no variables.

"Betelgeuse!"

"Betelgeuse!"

"Betelgeuse!"

=> 3

>> (1..5).map { |i| i**2 } # The ** notation is for 'power'.

=> [1, 4, 9, 16, 25]

>> %w[a b c] # Recall that %w makes string arrays.

=> ["a", "b", "c"]

>> %w[a b c].map { |char| char.upcase }

=> ["A", "B", "C"]

>> %w[A B C].map { |char| char.downcase }

=> ["a", "b", "c"]

As you can see, the mapmethod returns the result of applying the given block to
each element in the array or range. In the final two examples, the block inside
map involves calling a particular method on the block variable, and in this case
there’s a commonly used shorthand called “symbol-to-proc”:

>> %w[A B C].map { |char| char.downcase }

=> ["a", "b", "c"]

>> %w[A B C].map(&:downcase)

=> ["a", "b", "c"]

(This strange-looking but compact code uses a symbol, which we’ll discuss in
Section 4.3.3.) One interesting thing about this construction is that it was orig-
inally added to Ruby on Rails, and people liked it so much that it has now been
incorporated into core Ruby.

As one final example of blocks, we can take a look at an individual test from
the file in Listing 4.4:

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Ruby on Rails Tutorial Sample App"

end

It’s not important to understand the details (and in fact I don’t know the details
offhand), but we can infer from the presence of the do keyword that the body of

206 CHAPTER 4. RAILS-FLAVORED RUBY

the test is a block. The testmethod takes in a string argument (the description)
and a block, and then executes the body of the block as part of running the test
suite.

By the way, we’re now in a position to understand the line of Ruby I threw
into Section 1.4.2 to generate random subdomains:13

('a'..'z').to_a.shuffle[0..7].join

Let’s build it up step-by-step:

>> ('a'..'z').to_a # An alphabet array

=> ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o",

"p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]

>> ('a'..'z').to_a.shuffle # Shuffle it.

=> ["c", "g", "l", "k", "h", "z", "s", "i", "n", "d", "y", "u", "t", "j", "q",

"b", "r", "o", "f", "e", "w", "v", "m", "a", "x", "p"]

>> ('a'..'z').to_a.shuffle[0..7] # Pull out the first eight elements.

=> ["f", "w", "i", "a", "h", "p", "c", "x"]

>> ('a'..'z').to_a.shuffle[0..7].join # Join them together to make one string.

=> "mznpybuj"

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the range 0..16, print out the first 17 powers of 2.

2. Define a method called yeller that takes in an array of characters and
returns a string with an ALLCAPS version of the input. Verify that yel-
ler(['o', 'l', 'd']) returns "OLD". Hint: Combine map, up-
case, and join.

13As noted in Chapter 1, in this case the code ('a'..'z').to_a.sample(8).join is an even more compact
way of getting the same result.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.3. OTHER DATA STRUCTURES 207

3. Define a method called random_subdomain that returns a randomly
generated string of eight letters.

4. By replacing the question marks in Listing 4.12 with the appropriate
methods, combine split, shuffle, and join to write a function that
shuffles the letters in a given string.

Listing 4.12: Skeleton for a string shuffle function.
>> def string_shuffle(s)

>> s.?('').?.?

>> end

>> string_shuffle("foobar")

=> "oobfra"

4.3.3 Hashes and symbols
Hashes are essentially arrays that aren’t limited to integer indices. (In fact, some
languages, especially Perl, sometimes call hashes associative arrays for this
reason.) Instead, hash indices, or keys, can be almost any object. For example,
we can use strings as keys:

>> user = {} # {} is an empty hash.

=> {}

>> user["first_name"] = "Michael" # Key "first_name", value "Michael"

=> "Michael"

>> user["last_name"] = "Hartl" # Key "last_name", value "Hartl"

=> "Hartl"

>> user["first_name"] # Element access is like arrays.

=> "Michael"

>> user # A literal representation of the hash

=> {"last_name"=>"Hartl", "first_name"=>"Michael"}

Hashes are indicated with curly braces containing key-value pairs; a pair of
braces with no key-value pairs—i.e., {}—is an empty hash. It’s important to
note that the curly braces for hashes have nothing to do with the curly braces
for blocks. (Yes, this can be confusing.) Although hashes resemble arrays,

208 CHAPTER 4. RAILS-FLAVORED RUBY

one important difference is that hashes don’t generally guarantee keeping their
elements in a particular order.14 If order matters, use an array.

Instead of defining hashes one item at a time using square brackets, it’s
easy to use a literal representation with keys and values separated by =>, called
a “hashrocket”:

>> user = { "first_name" => "Michael", "last_name" => "Hartl" }

=> {"last_name"=>"Hartl", "first_name"=>"Michael"}

Here I’ve used the usual Ruby convention of putting an extra space at the two
ends of the hash—a convention ignored by the console output. (Don’t ask me
why the spaces are conventional; probably some early influential Ruby pro-
grammer liked the look of the extra spaces, and the convention stuck.)

So far we’ve used strings as hash keys, but in Rails it is much more common
to use symbols instead. Symbols look kind of like strings, but prefixed with a
colon instead of surrounded by quotes. For example, :name is a symbol. You
can think of symbols as basically strings without all the extra baggage:15

>> "name".split('')

=> ["n", "a", "m", "e"]

>> :name.split('')

NoMethodError: undefined method `split' for :name:Symbol

>> "foobar".reverse

=> "raboof"

>> :foobar.reverse

NoMethodError: undefined method `reverse' for :foobar:Symbol

Symbols are a special Ruby data type shared with very few other languages, so
they may seem weird at first, but Rails uses them a lot, so you’ll get used to
them fast. Unlike strings, not all characters are valid:

14Ruby versions 1.9 and later actually guarantee that hashes keep their elements in the same order entered, but
it would be unwise ever to count on a particular ordering.

15As a result of having less baggage, symbols are easier to compare to each other; strings need to be compared
character by character, while symbols can be compared all in one go. This makes them ideal for use as hash keys.

4.3. OTHER DATA STRUCTURES 209

>> :foo-bar

NameError: undefined local variable or method `bar' for main:Object

>> :2foo

SyntaxError

As long as you start your symbols with a letter and stick to normal word char-
acters, you should be fine.

In terms of symbols as hash keys, we can define a user hash as follows:

>> user = { :name => "Michael Hartl", :email => "michael@example.com" }

=> {:name=>"Michael Hartl", :email=>"michael@example.com"}

>> user[:name] # Access the value corresponding to :name.

=> "Michael Hartl"

>> user[:password] # Access the value of an undefined key.

=> nil

We see here from the last example that the hash value for an undefined key is
simply nil.

Because it’s so common for hashes to use symbols as keys, as of version
1.9 Ruby supports a new syntax just for this special case:

>> h1 = { :name => "Michael Hartl", :email => "michael@example.com" }

=> {:name=>"Michael Hartl", :email=>"michael@example.com"}

>> h2 = { name: "Michael Hartl", email: "michael@example.com" }

=> {:name=>"Michael Hartl", :email=>"michael@example.com"}

>> h1 == h2

=> true

The second syntax replaces the symbol/hashrocket combination with the name
of the key followed by a colon and a value:

{ name: "Michael Hartl", email: "michael@example.com" }

This construction more closely follows the hash notation in other languages
(such as JavaScript) and enjoys growing popularity in the Rails community.
Because both hash syntaxes are still in common use, it’s essential to be able to

210 CHAPTER 4. RAILS-FLAVORED RUBY

recognize both of them. Unfortunately, this can be confusing, especially since
:name is valid on its own (as a standalone symbol) but name: has no meaning
by itself. The bottom line is that :name => and name: are effectively the same
only inside literal hashes, so that

{ :name => "Michael Hartl" }

and

{ name: "Michael Hartl" }

are equivalent, but otherwise you need to use :name (with the colon coming
first) to denote a symbol.

Hash values can be virtually anything, even other hashes, as seen in List-
ing 4.13.

Listing 4.13: Nested hashes.
>> params = {} # Define a hash called 'params' (short for 'parameters').

=> {}

>> params[:user] = { name: "Michael Hartl", email: "mhartl@example.com" }

=> {:name=>"Michael Hartl", :email=>"mhartl@example.com"}

>> params

=> {:user=>{:name=>"Michael Hartl", :email=>"mhartl@example.com"}}

>> params[:user][:email]

=> "mhartl@example.com"

These sorts of hashes-of-hashes, or nested hashes, are heavily used by Rails, as
we’ll see starting in Section 7.3.

As with arrays and ranges, hashes respond to the each method. For ex-
ample, consider a hash named flash with keys for two conditions, :success
and :danger:

4.3. OTHER DATA STRUCTURES 211

>> flash = { success: "It worked!", danger: "It failed." }

=> {:success=>"It worked!", :danger=>"It failed."}

>> flash.each do |key, value|

?> puts "Key #{key.inspect} has value #{value.inspect}"

>> end

Key :success has value "It worked!"

Key :danger has value "It failed."

Note that, while the each method for arrays takes a block with only one vari-
able, each for hashes takes two, a key and a value. Thus, the each method for
a hash iterates through the hash one key-value pair at a time.

The last example uses the useful inspect method, which returns a string
with a literal representation of the object it’s called on:

>> puts (1..5).to_a # Put an array as a string.

1

2

3

4

5

>> puts (1..5).to_a.inspect # Put a literal array.

[1, 2, 3, 4, 5]

>> puts :name, :name.inspect

name

:name

>> puts "It worked!", "It worked!".inspect

It worked!

"It worked!"

By the way, using inspect to print an object is common enough that there’s a
shortcut for it, the p function:16

>> p :name # Same output as 'puts :name.inspect'

:name

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

16There’s actually a subtle difference, which is that p returns the object being printed while puts always returns
nil. (Thanks to reader Katarzyna Siwek for pointing this out.)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

212 CHAPTER 4. RAILS-FLAVORED RUBY

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Define a hash with the keys 'one', 'two', and 'three', and the val-
ues 'uno', 'dos', and 'tres'. Iterate over the hash, and for each
key/value pair print out "'#{key}' in Spanish is '#{value}'".

2. Create three hashes called person1, person2, and person3, with first
and last names under the keys :first and :last. Then create a
params hash so that params[:father] is person1,
params[:mother] is person2, and params[:child] is person3.
Verify that, for example, params[:father][:first] has the right
value.

3. Define a hash with symbol keys corresponding to name, email, and a
“password digest”, and values equal to your name, your email address,
and a random string of 16 lower-case letters.

4. Find an online version of the Ruby API and read about the Hash method
merge. What is the value of the following expression?

{ "a" => 100, "b" => 200 }.merge({ "b" => 300 })

4.3.4 CSS revisited
It’s time now to revisit the line from Listing 4.1 used in the layout to include
the Cascading Style Sheets:

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

We are now nearly in a position to understand this. As mentioned briefly in
Section 4.1, Rails defines a special function to include stylesheets, and

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.3. OTHER DATA STRUCTURES 213

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

is a call to this function. But there are several mysteries. First, where are the
parentheses? In Ruby, they are optional, so these two are equivalent:

Parentheses on function calls are optional.

This:

stylesheet_link_tag('application', media: 'all',

'data-turbolinks-track': 'reload')

is the same as this:

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

Second, the media argument sure looks like a hash, but where are the curly
braces? When hashes are the last argument in a function call, the curly braces
are optional, so these two are equivalent:

Curly braces on final hash arguments are optional.

This:

stylesheet_link_tag 'application', { media: 'all',

'data-turbolinks-track': 'reload' }

is the same as this:

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

Finally, why does Ruby correctly interpret the lines

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

even with a line break between the final elements? The answer is that Ruby
doesn’t distinguish between newlines and other whitespace in this context.17

17A newline is what comes at the end of a line, thereby starting a new line. As noted in Section 4.2.1, it is
typically represented by the character \n.

214 CHAPTER 4. RAILS-FLAVORED RUBY

The reason I chose to break the code into pieces is that I prefer to keep lines of
source code under 80 characters for legibility.18

So, we see now that the line

stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload'

calls the stylesheet_link_tag function with two arguments: a string, in-
dicating the path to the stylesheet, and a hash with two elements, indicating the
media type and telling Rails to use the turbolinks feature added in Rails 4.0.
Because of the <%= ... %> brackets, the results are inserted into the template
by ERb, and if you view the source of the page in your browser you should
see the HTML needed to include a stylesheet (Listing 4.14). (The extra stuff
in Listing 4.14, like ?body=1 and the long string of hexadecimal digits are,
inserted by Rails to ensure that browsers reload the CSS when it changes on
the server. Because the hex string is by design unique, your exact version of
Listing 4.14 will differ.)

Listing 4.14: The HTML source produced by the CSS includes.
<link rel="stylesheet" media="all" href="/assets/application.self-

f0d704deea029cf000697e2c0181ec173a1b474645466ed843eb5ee7bb215794.css?body=1"

data-turbolinks-track="reload" />

4.4 Ruby classes
We’ve said before that everything in Ruby is an object, and in this section we’ll
finally get to define some of our own. Ruby, like many object-oriented lan-
guages, uses classes to organize methods; these classes are then instantiated to

18Constantly having to check the column number is rather inconvenient, so many text editors have a visual aid
to help you. For example, if you take a look back at Figure 1.12, you may be able to make out the small vertical
line on the right side of the screen, which is designed to help keep code under 80 characters. (It’s very subtle, so
you may not be able to see it in the screenshot.) The cloud IDE (Section 1.1.1) includes such a line by default. In
Sublime Text, you can use View > Ruler > 78 or View > Ruler > 80.

https://github.com/rails/turbolinks
https://en.wikipedia.org/wiki/Hexadecimal

4.4. RUBY CLASSES 215

create objects. If you’re new to object-oriented programming, this may sound
like gibberish, so let’s look at some concrete examples.

4.4.1 Constructors
We’ve seen lots of examples of using classes to instantiate objects, but we have
yet to do so explicitly. For example, we instantiated a string using the double
quote characters, which is a literal constructor for strings:

>> s = "foobar" # A literal constructor for strings using double quotes

=> "foobar"

>> s.class

=> String

We see here that strings respond to the method class, and simply return the
class they belong to.

Instead of using a literal constructor, we can use the equivalent named con-
structor, which involves calling the new method on the class name:19

>> s = String.new("foobar") # A named constructor for a string

=> "foobar"

>> s.class

=> String

>> s == "foobar"

=> true

This is equivalent to the literal constructor, but it’s more explicit about what
we’re doing.

Arrays work the same way as strings:

>> a = Array.new([1, 3, 2])

=> [1, 3, 2]

19These results will vary based on the version of Ruby you are using. This example assumes you are using
Ruby 1.9.3 or later.

216 CHAPTER 4. RAILS-FLAVORED RUBY

Hashes, in contrast, are different. While the array constructor Array.new takes
an initial value for the array, Hash.new takes a default value for the hash, which
is the value of the hash for a nonexistent key:

>> h = Hash.new

=> {}

>> h[:foo] # Try to access the value for the nonexistent key :foo.

=> nil

>> h = Hash.new(0) # Arrange for nonexistent keys to return 0 instead of nil.

=> {}

>> h[:foo]

=> 0

When a method gets called on the class itself, as in the case of new, it’s
called a class method. The result of calling new on a class is an object of that
class, also called an instance of the class. A method called on an instance, such
as length, is called an instance method.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. What is the literal constructor for the range of integers from 1 to 10?

2. What is the constructor using the Range class and the newmethod? Hint:
new takes two arguments in this context.

3. Confirm using the == operator that the literal and named constructors
from the previous two exercises are identical.

4.4.2 Class inheritance
When learning about classes, it’s useful to find out the class hierarchy using the
superclass method:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.4. RUBY CLASSES 217

Object

String

BasicObject

Figure 4.1: The inheritance hierarchy for the String class.

>> s = String.new("foobar")

=> "foobar"

>> s.class # Find the class of s.

=> String

>> s.class.superclass # Find the superclass of String.

=> Object

>> s.class.superclass.superclass # Ruby has a BasicObject base class as of 1.9

=> BasicObject

>> s.class.superclass.superclass.superclass

=> nil

A diagram of this inheritance hierarchy appears in Figure 4.1. We see here that
the superclass of String is Object and the superclass of Object is Basic-
Object, but BasicObject has no superclass. This pattern is true of every
Ruby object: trace back the class hierarchy far enough and every class in Ruby
ultimately inherits from BasicObject, which has no superclass itself. This is
the technical meaning of “everything in Ruby is an object”.

To understand classes a little more deeply, there’s no substitute for making
one of our own. Let’s make a Word class with a palindrome? method that
returns true if the word is the same spelled forward and backward:

218 CHAPTER 4. RAILS-FLAVORED RUBY

>> class Word

>> def palindrome?(string)

>> string == string.reverse

>> end

>> end

=> :palindrome?

We can use it as follows:

>> w = Word.new # Make a new Word object.

=> #<Word:0x22d0b20>

>> w.palindrome?("foobar")

=> false

>> w.palindrome?("level")

=> true

If this example strikes you as a bit contrived, good—this is by design. It’s
odd to create a new class just to create a method that takes a string as an argu-
ment. Since a word is a string, it’s more natural to have our Word class inherit
from String, as seen in Listing 4.15. (You should exit the console and re-enter
it to clear out the old definition of Word.)

Listing 4.15: Defining a Word class in the console.
>> class Word < String # Word inherits from String.

>> # Returns true if the string is its own reverse.

>> def palindrome?

>> self == self.reverse # self is the string itself.

>> end

>> end

=> nil

Here Word < String is the Ruby syntax for inheritance (discussed briefly in
Section 3.2), which ensures that, in addition to the new palindrome?method,
words also have all the same methods as strings:

>> s = Word.new("level") # Make a new Word, initialized with "level".

=> "level"

>> s.palindrome? # Words have the palindrome? method.

4.4. RUBY CLASSES 219

=> true

>> s.length # Words also inherit all the normal string methods.

=> 5

Since the Word class inherits from String, we can use the console to see the
class hierarchy explicitly:

>> s.class

=> Word

>> s.class.superclass

=> String

>> s.class.superclass.superclass

=> Object

This hierarchy is illustrated in Figure 4.2.
In Listing 4.15, note that checking that the word is its own reverse involves

accessing the word inside the Word class. Ruby allows us to do this using the
self keyword: inside the Word class, self is the object itself, which means
we can use

self == self.reverse

to check if the word is a palindrome. In fact, inside the String class the use
of self. is optional on a method or attribute (unless we’re making an assign-
ment), so

self == reverse

would work as well.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

220 CHAPTER 4. RAILS-FLAVORED RUBY

Object

Word

String

BasicObject

Figure 4.2: The inheritance hierarchy for the (non-built-in) Word class from
Listing 4.15.

4.4. RUBY CLASSES 221

1. What is the class hierarchy for a range? For a hash? For a symbol?

2. Confirm that the method shown in Listing 4.15 works even if we replace
self.reverse with just reverse.

4.4.3 Modifying built-in classes
While inheritance is a powerful idea, in the case of palindromes it might be even
more natural to add the palindrome? method to the String class itself, so
that (among other things) we can call palindrome? on a string literal, which
we currently can’t do:

>> "level".palindrome?

NoMethodError: undefined method `palindrome?' for "level":String

Amazingly, Ruby lets you do just this; Ruby classes can be opened and modi-
fied, allowing ordinary mortals such as ourselves to add methods to them:

>> class String

>> # Returns true if the string is its own reverse.

>> def palindrome?

>> self == self.reverse

>> end

>> end

=> nil

>> "deified".palindrome?

=> true

(I don’t know which is cooler: that Ruby lets you add methods to built-in
classes, or that "deified" is a palindrome.)

Modifying built-in classes is a powerful technique, but with great power
comes great responsibility, and it’s considered bad form to addmethods to built-
in classes without having a really good reason for doing so. Rails does have
some good reasons; for example, in web applications we often want to prevent
variables from being blank—e.g., a user’s name should be something other than
spaces and other whitespace—so Rails adds a blank? method to Ruby. Since

https://en.wikipedia.org/wiki/Whitespace_(computer_science)

222 CHAPTER 4. RAILS-FLAVORED RUBY

the Rails console automatically includes the Rails extensions, we can see an
example here (this won’t work in plain irb):

>> "".blank?

=> true

>> " ".empty?

=> false

>> " ".blank?

=> true

>> nil.blank?

=> true

We see that a string of spaces is not empty, but it is blank. Note also that nil is
blank; since nil isn’t a string, this is a hint that Rails actually adds blank?
to String’s base class, which (as we saw at the beginning of this section)
is Object itself. We’ll see some other examples of Rails additions to Ruby
classes in Section 9.1.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that “racecar” is a palindrome and “onomatopoeia” is not. What
about the name of the South Indian language “Malayalam”? Hint: Down-
case it first.

2. Using Listing 4.16 as a guide, add a shuffle method to the String
class. Hint: Refer to Listing 4.12.

3. Verify that Listing 4.16 works even if you remove self..

Listing 4.16: Skeleton for a shuffle method attached to the String class.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.4. RUBY CLASSES 223

>> class String

>> def shuffle

>> self.?('').?.?

>> end

>> end

>> "foobar".shuffle

=> "borafo"

4.4.4 A controller class
All this talk about classes and inheritance may have triggered a flash of recog-
nition, because we have seen both before, in the Static Pages controller (List-
ing 3.22):

class StaticPagesController < ApplicationController

def home

end

def help

end

def about

end

end

You’re now in a position to appreciate, at least vaguely, what this code means:
StaticPagesController is a class that inherits from ApplicationCon-

troller, and comes equipped with home, help, and about methods. Since
each Rails console session loads the local Rails environment, we can even create
a controller explicitly and examine its class hierarchy:20

>> controller = StaticPagesController.new

=> #<StaticPagesController:0x22855d0>

>> controller.class

=> StaticPagesController

20You don’t have to know what each class in this hierarchy does. I don’t know what they all do, and I’ve been
programming in Ruby on Rails since 2005. This means either that (a) I’m grossly incompetent or (b) you can be
a skilled Rails developer without knowing all its innards. I hope for both our sakes that it’s the latter.

224 CHAPTER 4. RAILS-FLAVORED RUBY

>> controller.class.superclass

=> ApplicationController

>> controller.class.superclass.superclass

=> ActionController::Base

>> controller.class.superclass.superclass.superclass

=> ActionController::Metal

>> controller.class.superclass.superclass.superclass.superclass

=> AbstractController::Base

>> controller.class.superclass.superclass.superclass.superclass.superclass

=> Object

A diagram of this hierarchy appears in Figure 4.3.
We can even call the controller actions inside the console, which are just

methods:

>> controller.home

=> nil

Here the return value is nil because the home action is blank.
But wait—actions don’t have return values, at least not ones that matter.

The point of the home action, as we saw in Chapter 3, is to render a web page,
not to return a value. And I sure don’t remember ever calling StaticPages-
Controller.new anywhere. What’s going on?

What’s going on is that Rails is written in Ruby, but Rails isn’t Ruby. Some
Rails classes are used like ordinary Ruby objects, but some are just grist for
Rails’ magic mill. Rails is sui generis, and should be studied and understood
separately from Ruby.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By running the Rails console in the toy app’s directory from Chapter 2,
confirm that you can create a user object using User.new.

2. Determine the class hierarchy of the user object.

https://en.wiktionary.org/wiki/grist#English
https://en.wikipedia.org/wiki/Sui_generis
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.4. RUBY CLASSES 225

ActionController::Base

StaticPagesController

ApplicationController

Object

ActionController::Metal

AbstractController::Base

BasicObject

Figure 4.3: The inheritance hierarchy for the Static Pages.

226 CHAPTER 4. RAILS-FLAVORED RUBY

4.4.5 A user class
We end our tour of Ruby with a complete class of our own, a User class that
anticipates the User model coming up in Chapter 6.

So far we’ve entered class definitions at the console, but this quickly be-
comes tiresome; instead, create the file example_user.rb in your application
root directory and fill it with the contents of Listing 4.17.

Listing 4.17: Code for an example user.
example_user.rb

class User

attr_accessor :name, :email

def initialize(attributes = {})

@name = attributes[:name]

@email = attributes[:email]

end

def formatted_email

"#{@name} <#{@email}>"

end

end

There’s quite a bit going on here, so let’s take it step by step. The first line,

attr_accessor :name, :email

creates attribute accessors corresponding to a user’s name and email address.
This creates “getter” and “setter” methods that allow us to retrieve (get) and as-
sign (set) @name and @email instance variables, which were mentioned briefly
in Section 2.2.2 and Section 3.4.2. In Rails, the principal importance of instance
variables is that they are automatically available in the views, but in general they
are used for variables that need to be available throughout a Ruby class. (We’ll
have more to say about this in a moment.) Instance variables always begin with
an @ sign, and are nil when undefined.

The first method, initialize, is special in Ruby: it’s the method called
whenwe execute User.new. This particular initialize takes one argument,
attributes:

4.4. RUBY CLASSES 227

def initialize(attributes = {})

@name = attributes[:name]

@email = attributes[:email]

end

Here the attributes variable has a default value equal to the empty hash,
so that we can define a user with no name or email address. (Recall from
Section 4.3.3 that hashes return nil for nonexistent keys, so attributes-

[:name]will be nil if there is no :name key, and similarly for attributes-
[:email].)

Finally, our class defines a method called formatted_email that uses the
values of the assigned @name and @email variables to build up a nicely format-
ted version of the user’s email address using string interpolation (Section 4.2.1):

def formatted_email

"#{@name} <#{@email}>"

end

Because @name and @email are both instance variables (as indicated with the @
sign), they are automatically available in the formatted_email method.

Let’s fire up the console, require the example user code, and take our User
class out for a spin:

>> require './example_user' # This is how you load the example_user code.

=> true

>> example = User.new

=> #<User:0x224ceec @email=nil, @name=nil>

>> example.name # nil since attributes[:name] is nil

=> nil

>> example.name = "Example User" # Assign a non-nil name

=> "Example User"

>> example.email = "user@example.com" # and a non-nil email address

=> "user@example.com"

>> example.formatted_email

=> "Example User <user@example.com>"

Here the '.' is Unix for “current directory”, and './example_user' tells
Ruby to look for an example user file relative to that location. The subsequent

228 CHAPTER 4. RAILS-FLAVORED RUBY

code creates an empty example user and then fills in the name and email ad-
dress by assigning directly to the corresponding attributes (assignments made
possible by the attr_accessor line in Listing 4.17). When we write

example.name = "Example User"

Ruby is setting the @name variable to "Example User" (and similarly for the
email attribute), which we then use in the formatted_email method.

Recalling from Section 4.3.4 we can omit the curly braces for final hash
arguments, we can create another user by passing a hash to the initialize
method to create a user with pre-defined attributes:

>> user = User.new(name: "Michael Hartl", email: "mhartl@example.com")

=> #<User:0x225167c @email="mhartl@example.com", @name="Michael Hartl">

>> user.formatted_email

=> "Michael Hartl <mhartl@example.com>"

Wewill see starting in Chapter 7 that initializing objects using a hash argument,
a technique known as mass assignment, is common in Rails applications.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In the example User class, change from name to separate first and last
name attributes, and then add a method called full_name that returns
the first and last names separated by a space. Use it to replace the use of
name in the formatted email method.

2. Add a method called alphabetical_name that returns the last name
and first name separated by comma-space.

3. Verify that full_name.split is the same as alphabetical_name.-
split(', ').reverse.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

4.5. CONCLUSION 229

4.5 Conclusion
This concludes our overview of the Ruby language. In Chapter 5, we’ll start
putting it to good use in developing the sample application.

We won’t be using the example_user.rb file from Section 4.4.5, so I
suggest removing it:

$ rm example_user.rb

Then commit the other changes to the main source code repository and merge
into the master branch, push up to GitHub, and deploy to Heroku:

$ git commit -am "Add a full_title helper"

$ git checkout master

$ git merge rails-flavored-ruby

As a reality check, it’s a good practice to run the test suite before pushing or
deploying:

$ rails test

Then push up to GitHub:

$ git push

Finally, deploy to Heroku:

$ git push heroku

230 CHAPTER 4. RAILS-FLAVORED RUBY

4.5.1 What we learned in this chapter
• Ruby has a large number of methods for manipulating strings of charac-
ters.

• Everything in Ruby is an object.

• Ruby supports method definition via the def keyword.

• Ruby supports class definition via the class keyword.

• Rails views can contain static HTML or embedded Ruby (ERb).

• Built-in Ruby data structures include arrays, ranges, and hashes.

• Ruby blocks are a flexible construct that (among other things) allow nat-
ural iteration over enumerable data structures.

• Symbols are labels, like strings without any additional structure.

• Ruby supports object inheritance.

• It is possible to open up and modify built-in Ruby classes.

• The word “deified” is a palindrome.

Chapter 5

Filling in the layout
In the process of taking a brief tour of Ruby in Chapter 4, we learned about
including the application stylesheet into the sample application (Section 4.1),
but (as noted in Section 4.3.4) the stylesheet doesn’t yet contain any CSS. In
this chapter, we’ll start filling in the custom stylesheet by incorporating a CSS
framework into our application, and then we’ll add some custom styles of our
own.1 We’ll also start filling in the layout with links to the pages (such as Home
and About) that we’ve created so far (Section 5.1). Along the way, we’ll learn
about partials, Rails routes, and the asset pipeline, including an introduction
to Sass (Section 5.2). We’ll end by taking a first important step toward letting
users sign up to our site (Section 5.4).

Most of the changes in this chapter involve adding and editing markup in
the sample application’s site layout, which (based on the guidelines in Box 3.3)
is exactly the kind of work that we wouldn’t ordinarily test-drive, or even test
at all. As a result, we’ll spend most of our time in our text editor and browser,
using TDD only to add a Contact page (Section 5.3.1). Wewill add an important
new test, though, writing our first integration test to check that the links on the
final layout are correct (Section 5.3.4).

1Thanks to reader Colm Tuite for his excellent work in helping to convert the sample application over to the
Bootstrap CSS framework.

231

https://twitter.com/colmtuite

232 CHAPTER 5. FILLING IN THE LAYOUT

5.1 Adding some structure

The Ruby on Rails Tutorial is a book on web development, not web design,
but it would be depressing to work on an application that looks like complete
garbage, so in this sectionwe’ll add some structure to the layout and give it some
minimal styling with CSS. In addition to using some custom CSS rules, we’ll
make use of Bootstrap, an open-source web design framework from Twitter.2
(This design will initially be optimized for desktop/laptop computers, but we’ll
include some additional some rules for mobile devices in Section 8.2.3.) We’ll
also give our code some styling, so to speak, using partials to tidy up the layout
once it gets a little cluttered.

When building web applications, it is often useful to get a high-level over-
view of the user interface as early as possible. Throughout the rest of this book,
we will thus often considermockups (in a web context often calledwireframes),
which are rough sketches of what the eventual application will look like.3 In
this chapter, we will principally be developing the static pages introduced in
Section 3.2, including a site logo, a navigation header, and a site footer. A
mockup for the most important of these pages, the Home page, appears in Fig-
ure 5.1. You can see the final result in Figure 5.9. You’ll note that it differs in
some details—for example, we’ll end up adding a Rails logo on the page—but
that’s fine, since a mockup need not be exact.

As usual, if you’re using Git for version control, now would be a good time
to make a new branch:

$ git checkout -b filling-in-layout

2Although more recent versions of Bootstrap are now available, this tutorial standardizes on Bootstrap 3 in
order to retain compatibility with the design and HTML structure from previous editions. The latest version of
Bootstrap is similar, so the skills you learn here are highly transferable.

3The mockups in the Ruby on Rails Tutorial are made with an excellent online mockup application called
Mockingbird.

https://getbootstrap.com/docs/3.4/
https://gomockingbird.com/

5.1. ADDING SOME STRUCTURE 233

Figure 5.1: A mockup of the sample application’s Home page.

234 CHAPTER 5. FILLING IN THE LAYOUT

5.1.1 Site navigation
As a first step toward adding links and styles to the sample application, we’ll up-
date the site layout file application.html.erb (last seen in Listing 4.3) with
additional HTML structure. This includes some additional divisions, some CSS
classes, and the start of our site navigation. The full file is in Listing 5.1; ex-
planations for the various pieces follow immediately thereafter. If you’d rather
not delay gratification, you can see the results in Figure 5.2. (Note: it’s not (yet)
very gratifying.)

Listing 5.1: The site layout with added structure.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<meta charset="utf-8">

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

<!--[if lt IE 9]>

<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/r29/html5.min.js">

</script>

<![endif]-->

</head>

<body>

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

</div>

</header>

<div class="container">

<%= yield %>

</div>

</body>

</html>

5.1. ADDING SOME STRUCTURE 235

Let’s look at the new elements in Listing 5.1 from top to bottom. As alluded
to briefly in Section 3.4.1, Rails uses HTML5 by default (as indicated by the
doctype <!DOCTYPE html>) which at this point most browsers support, but we
can make our site more accessible to older browsers by adding some JavaScript
code, known as an “HTML5 shim (or shiv)”:4

<!--[if lt IE 9]>

<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/r29/html5.min.js">

</script>

<![endif]-->

The somewhat odd syntax

<!--[if lt IE 9]>

includes the enclosed line only if the version ofMicrosoft Internet Explorer (IE)
is less than 9 (if lt IE 9). The weird [if lt IE 9] syntax is not part
of Rails; it’s actually a conditional comment supported by Internet Explorer
browsers for just this sort of situation. It’s a good thing, too, because it meanswe
can include the HTML5 shim only for IE browsers less than version 9, leaving
other browsers such as Firefox, Chrome, and Safari unaffected.

The next section includes a header for the site’s (plain-text) logo, a couple
of divisions (using the div tag), and a list of elements with navigation links:

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

4The words shim and shiv are used interchangably in this context; the former is the proper term, based on the
English word whose meaning is “a washer or thin strip of material used to align parts, make them fit, or reduce
wear”, while the latter (meaning “a knife or razor used as a weapon”) is apparently a play on the name of the
shim’s original author, Sjoerd Visscher.

https://github.com/aFarkas/html5shiv
https://en.wikipedia.org/wiki/Conditional_comment

236 CHAPTER 5. FILLING IN THE LAYOUT

</nav>

</div>

</header>

Here the header tag indicates elements that should go at the top of the page.
We’ve given the header tag three CSS classes,5 called navbar, navbar-
fixed-top, and navbar-inverse, separated by spaces:

<header class="navbar navbar-fixed-top navbar-inverse">

All HTML elements can be assigned both classes and ids;6 these are merely
labels, and are useful for styling with CSS (Section 5.1.2). The main difference
between classes and ids is that classes can be used multiple times on a page,
but ids can be used only once. In the present case, all the navbar classes have
special meaning to the Bootstrap framework, which we’ll install and use in
Section 5.1.2.

Inside the header tag, we see a div tag:

<div class="container">

The div tag is a generic division; it doesn’t do anything apart from divide the
document into distinct parts. In older-style HTML, div tags are used for nearly
all site divisions, but HTML5 adds the header, nav, and section elements
for divisions common to many applications. In this case, the div has a CSS
class as well (container). As with the header tag’s classes, this class has
special meaning to Bootstrap.

After the div, we encounter some embedded Ruby:

5These are completely unrelated to Ruby classes.
6Short for “identification” and pronounced as the separate letters “I D”. The usual convention in English is to

use all-caps (“ID”), reserving “id” for a term in Freudian psychoanalysis. Because HTML is usually typed in all
lower-case letters, though, it’s more common in this context to write “id” instead.

https://en.wiktionary.org/wiki/id#English

5.1. ADDING SOME STRUCTURE 237

<%= link_to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

This uses the Rails helper link_to to create links (which we created directly
with the anchor tag a in Section 3.2.2); the first argument to link_to is the link
text, while the second is the URL. We’ll fill in the URLs with named routes in
Section 5.3.3, but for now we use the stub URL '#' commonly used in web
design (i.e., '#' is just a “stub”, or placeholder, for the real URL). The third
argument is an options hash, in this case adding the CSS id logo to the sample
app link. (The other three links have no options hash, which is fine since it’s
optional.) Rails helpers often take options hashes in this way, giving us the
flexibility to add arbitrary HTML options without ever leaving Rails.

The second element inside the divs is a list of navigation links, made using
the unordered list tag ul, together with the list item tag li:

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

The <nav> tag, though formally unnecessary here, is used to more clearly com-
municate the purpose of the navigation links. Meanwhile, the nav,
navbar-nav, and navbar-right classes on the ul tag have special mean-
ing to Bootstrap and will be styled automatically when we include the Boot-
strap CSS in Section 5.1.2. As you can verify by inspecting the navigation in
your browser,7 once Rails has processed the layout and evaluated the embedded

7All modern browsers have the capability to inspect the HTML source of a page. If you’ve never used a web
inspector before, do a web search for something like “web inspector <name of browser>” to learn more.

238 CHAPTER 5. FILLING IN THE LAYOUT

Ruby the list looks like this:8

<nav>

<ul class="nav navbar-nav navbar-right">

Home

Help

Log in

</nav>

This is the text that will be returned to the browser.
The final part of the layout is a div for the main content:

<div class="container">

<%= yield %>

</div>

As before, the container class has special meaning to Bootstrap. As we
learned in Section 3.4.3, the yield method inserts the contents of each page
into the site layout.

Apart from the site footer, which we’ll add in Section 5.1.3, our layout is
now complete, and we can look at the results by visiting the Home page. To
take advantage of the upcoming style elements, we’ll add some extra elements
to the home.html.erb view (Listing 5.2).

Listing 5.2: The Home page with a link to the signup page.
app/views/static_pages/home.html.erb

<div class="center jumbotron">

<h1>Welcome to the Sample App</h1>

<h2>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</h2>

8The spacingmight look slightly different, which is fine because (as noted in Section 3.4.1) HTML is insensitive
to whitespace.

5.1. ADDING SOME STRUCTURE 239

<%= link_to "Sign up now!", '#', class: "btn btn-lg btn-primary" %>

</div>

<%= link_to image_tag("rails.svg", alt: "Rails logo", width: "200"),

"https://rubyonrails.org/" %>

In preparation for adding users to our site in Chapter 7, the first link_to creates
a stub link of the form

Sign up now!

In the div tag, the jumbotron CSS class has a special meaning to Bootstrap,
as do the btn, btn-lg, and btn-primary classes in the signup button.

The second link_to shows off the image_tag helper, which takes as ar-
guments the path to an image and an optional options hash, in this case setting
the alt and width attributes of the image tag using symbols. For this to work,
there needs to be an image called rails.svg, which you should download
from the Learn Enough website at https://cdn.learnenough.com/rails.svg and
place in the app/assets/images/ directory.

If you’re using the cloud IDE or another Unix-like system, you can accom-
plish this with the curl utility, as shown in Listing 5.3.9

Listing 5.3: Downloading an image.
$ curl -o app/assets/images/rails.svg -OL https://cdn.learnenough.com/rails.svg

Because we used the image_tag helper in Listing 5.2, Rails will automati-
cally find any images in the app/assets/images/ directory using the asset
pipeline (Section 5.2).

Now we’re finally ready to see the fruits of our labors. You may have to
restart the Rails server to see the changes (Box 1.2), and the results should
appear as shown in Figure 5.2.

9See Learn Enough Command Line to Be Dangerous for more information about curl.

https://cdn.learnenough.com/rails.svg
https://www.learnenough.com/command-line
https://www.learnenough.com/r/learn_enough_command_line/inspecting_files/downloading_a_file#sec-downloading_a_file

240 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.2: The Home page with no custom CSS.

5.1. ADDING SOME STRUCTURE 241

To make the effects of image_tag clearer, let’s look at the HTML it pro-
duces by inspecting the image in our browser:10

<img alt="Rails logo" width="200px" src="/assets/rails-<long string>.svg">

Here the <long string> is a random value added by Rails to ensure that the
filename is unique, which causes browsers to load images properly when they
have been updated (instead of retrieving them from the browser cache). Note
that the src attribute doesn’t include images, instead using an assets direc-
tory common to all assets (images, JavaScript, CSS, etc.). On the server, Rails
associates images in the assets directory with the proper app/assets/-
images directory, but as far as the browser is concerned all the assets look like
they are in the same directory, which allows them to be served faster. Mean-
while, the alt attribute is what will be displayed if the page is accessed by a
program that can’t display images (such as screen readers for the visually im-
paired).

As for the result shown in Figure 5.2, it might look a little underwhelming.
Happily, though, we’ve done a good job of giving our HTML elements sensible
classes, which puts us in a great position to add style to the site with CSS.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. It’s well-known that no web page is complete without a cat image. Using
the command in Listing 5.4, arrange to download the kitten pic shown in
Figure 5.3.11

10You might notice that the img tag, rather than looking like ..., instead looks like
. Tags that follow this form are known as self-closing tags.

11Image retrieved from https://www.flickr.com/photos/deborah_s_perspective/14144861329 on 2016-01-09.
Copyright © 2009 by Deborah and used unaltered under the terms of the Creative Commons Attribution 2.0
Generic license.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.flickr.com/photos/deborah_s_perspective/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

242 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.3: An obligatory kitten pic.

2. Using the mv command, move kitten.jpg to the correct asset directory
for images (Section 5.2.1).

3. Using image_tag, add kitten.jpg to the Home page, as shown in
Figure 5.4.

Listing 5.4: Downloading a cat picture from the Internet.
$ curl -OL https://cdn.learnenough.com/kitten.jpg

5.1. ADDING SOME STRUCTURE 243

Figure 5.4: The result of adding a kitten image to the Home page.

244 CHAPTER 5. FILLING IN THE LAYOUT

5.1.2 Bootstrap and custom CSS
In Section 5.1.1, we associated many of the HTML elements with CSS classes,
which gives us considerable flexibility in constructing a layout based on CSS.
As noted in Section 5.1.1, many of these classes are specific to Bootstrap, a CSS
framework that makes it easy to add nice web design and user interface elements
to an HTML5 application. In this section, we’ll combine Bootstrap with some
custom CSS rules to start adding some style to the sample application. It’s
worth noting that using Bootstrap automatically makes our application’s design
responsive, ensuring that it looks sensible across a wide range of devices.

Our first step is to add Bootstrap, which in Rails applications can be ac-
complished with the bootstrap-sass gem, as shown in Listing 5.5.12 The
Bootstrap framework natively uses the Less CSS language for making dynamic
stylesheets, but the Rails asset pipeline supports the (very similar) Sass lan-
guage by default (Section 5.2), so bootstrap-sass converts Less to Sass
and makes all the necessary Bootstrap files available to the current application.

Listing 5.5: Adding the bootstrap-sass gem to the Gemfile.
source 'https://rubygems.org'

gem 'rails', '6.0.2.1'

gem 'bootstrap-sass', '3.4.1'

gem 'puma', '3.12.2'

.

.

.

To install Bootstrap, we run bundle install as usual:

$ bundle install

Although rails generate automatically creates a separate CSS file for
each controller, it’s surprisingly hard to include them all properly and in the

12As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://getbootstrap.com/docs/3.4/
https://en.wikipedia.org/wiki/Responsive_web_design
http://lesscss.org/
https://gemfiles-6th-ed.railstutorial.org/

5.1. ADDING SOME STRUCTURE 245

right order, so for simplicity we’ll put all of the CSS needed for this tutorial in
a single file. The first step toward getting custom CSS to work is to create such
a custom CSS file:

$ touch app/assets/stylesheets/custom.scss

(This uses the touch trick from Section 3.3.3 en route, but you can create the
file however you like.) Here both the directory name and filename extension
are important. The directory

app/assets/stylesheets/

is part of the asset pipeline (Section 5.2), and any stylesheets in this directory
will automatically be included as part of the application.css file included
in the site layout. Furthermore, the filename custom.scss includes the .scss
extension, which indicates a “Sassy CSS” file and arranges for the asset pipeline
to process the file using Sass. (We won’t be using Sass until Section 5.2.2, but
it’s needed now for the bootstrap-sass gem to work its magic.)

Inside the file for the custom CSS, we can use the @import function to
include Bootstrap (together with the associated Sprockets utility), as shown in
Listing 5.6.13

Listing 5.6: Adding Bootstrap CSS.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

The two lines in Listing 5.6 include the entire Bootstrap CSS framework. Af-
ter restarting the webserver to incorporate the changes into the development
application (by pressing Ctrl-C and then running rails server as in Sec-
tion 1.2.2), the results appear as in Figure 5.5. The placement of the text isn’t

13If these steps seem mysterious, take heart: I’m just following the instructions from the bootstrap-sass
README file.

https://github.com/twbs/bootstrap-sass#bootstrap-for-sass---
https://github.com/twbs/bootstrap-sass#bootstrap-for-sass---

246 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.5: The sample application with Bootstrap CSS.

good and the logo doesn’t have any style, but the colors and signup button look
promising.

Next we’ll add some CSS that will be used site-wide for styling the layout
and each individual page, as shown in Listing 5.7. The result is shown in Fig-
ure 5.6. (There are quite a few rules in Listing 5.7; to get a sense of what a
CSS rule does, it’s often helpful to comment it out using CSS comments, i.e.,
by putting it inside /* … */, and seeing what changes.)

Listing 5.7: Adding CSS for some universal styling applying to all pages.
app/assets/stylesheets/custom.scss

5.1. ADDING SOME STRUCTURE 247

@import "bootstrap-sprockets";

@import "bootstrap";

/* universal */

body {

padding-top: 60px;

}

section {

overflow: auto;

}

textarea {

resize: vertical;

}

.center {

text-align: center;

}

.center h1 {

margin-bottom: 10px;

}

Note that the CSS in Listing 5.7 has a consistent form. In general, CSS
rules refer either to a class, an id, an HTML tag, or some combination thereof,
followed by a list of styling commands. For example,

body {

padding-top: 60px;

}

puts 60 pixels of padding at the top of the page. Because of the
navbar-fixed-top class in the header tag, Bootstrap fixes the navigation
bar to the top of the page, so the padding serves to separate the main text from
the navigation. (Because the default navbar color changed after Bootstrap 2.0,
we need the navbar-inverse class to make it dark instead of light.) Mean-
while, the CSS in the rule

248 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.6: Adding some spacing and other universal styling.

5.1. ADDING SOME STRUCTURE 249

.center {

text-align: center;

}

associates the center class with the text-align: center property. In
other words, the dot . in .center indicates that the rule styles a class. (As
we’ll see in Listing 5.9, the pound sign # identifies a rule to style a CSS id.)
This means that elements inside any tag (such as a div) with class centerwill
be centered on the page. (We saw an example of this class in Listing 5.2.)

Although Bootstrap comes with CSS rules for nice typography, we’ll also
add some custom rules for the appearance of the text on our site, as shown in
Listing 5.8. (Not all of these rules apply to the Home page, but each rule here
will be used at some point in the sample application.) The result of Listing 5.8
is shown in Figure 5.7.

Listing 5.8: Adding CSS for nice typography.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

.

.

.

/* typography */

h1, h2, h3, h4, h5, h6 {

line-height: 1;

}

h1 {

font-size: 3em;

letter-spacing: -2px;

margin-bottom: 30px;

text-align: center;

}

h2 {

font-size: 1.2em;

letter-spacing: -1px;

margin-bottom: 30px;

text-align: center;

font-weight: normal;

color: #777;

250 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.7: Adding some typographic styling.

}

p {

font-size: 1.1em;

line-height: 1.7em;

}

Finally, we’ll add some rules to style the site’s logo, which simply consists
of the text “sample app”. The CSS in Listing 5.9 converts the text to uppercase
and modifies its size, color, and placement. (We’ve used a CSS id because we
expect the site logo to appear on the page only once, but you could use a class
instead.)

5.1. ADDING SOME STRUCTURE 251

Listing 5.9: Adding CSS for the site logo.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

.

.

.

/* header */

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: #fff;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

}

#logo:hover {

color: #fff;

text-decoration: none;

}

Here color: #fff changes the color of the logo to white. HTML colors can
be coded with three pairs of base-16 (hexadecimal) numbers, one each for the
primary colors red, green, and blue (in that order). The code #ffffff maxes
out all three colors, yielding pure white, and #fff is a shorthand for the full
#ffffff. The CSS standard also defines a large number of synonyms for com-
mon HTML colors, including white for #fff. The result of the CSS in List-
ing 5.9 is shown in Figure 5.8.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using code like that shown in Listing 5.10, comment out the cat image

https://www.w3schools.com/colors/colors_names.asp
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

252 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.8: The sample app with nicely styled logo.

5.1. ADDING SOME STRUCTURE 253

from Section 5.1.1. Verify using a web inspector that the HTML for the
image no longer appears in the page source.

2. By adding the CSS in Listing 5.11 to custom.scss, hide all images in
the application—currently just the Rails logo on the Home page). Verify
with a web inspector that, although the image doesn’t appear, the HTML
source is still present.

Listing 5.10: Code to comment out embedded Ruby.
<%#= image_tag("kitten.jpg", alt: "Kitten") %>

Listing 5.11: CSS to hide all images.
img {

display: none;

}

5.1.3 Partials
Although the layout in Listing 5.1 serves its purpose, it’s getting a little clut-
tered. The HTML shim takes up three lines and uses weird IE-specific syntax,
so it would be nice to tuck it away somewhere on its own. In addition, the header
HTML forms a logical unit, so it should all be packaged up in one place. The
way to achieve this in Rails is to use a facility called partials. Let’s first take a
look at what the layout looks like after the partials are defined (Listing 5.12).

Listing 5.12: The site layout with partials for the stylesheets and header.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<meta charset="utf-8">

<%= csrf_meta_tags %>

254 CHAPTER 5. FILLING IN THE LAYOUT

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

<%= render 'layouts/shim' %>

</head>

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

</div>

</body>

</html>

In Listing 5.12, we’ve replaced the HTML shim stylesheet lines with a sin-
gle call to a Rails helper called render:

<%= render 'layouts/shim' %>

The effect of this line is to look for a file called app/views/layouts/-

_shim.html.erb, evaluate its contents, and insert the results into the view.14
(Recall that <%= ... %> is the embedded Ruby syntax needed to evaluate a
Ruby expression and then insert the results into the template.) Note the leading
underscore on the filename _shim.html.erb; this underscore is the universal
convention for naming partials, and among other things makes it possible to
identify all the partials in a directory at a glance.

To get the partial to work, we have to create the corresponding file and fill
it with some content. In the case of the shim partial, this is just the three lines
of shim code from Listing 5.1. The result appears in Listing 5.13.

Listing 5.13: A partial for the HTML shim.
app/views/layouts/_shim.html.erb

14Many Rails developers use a shared directory for partials shared across different views. I prefer to use the
shared folder for utility partials that are useful on multiple views, while putting partials that are literally on every
page (as part of the site layout) in the layouts directory. (We’ll create the shared directory starting in Chapter 7.)
That seems to me a logical division, but putting them all in the shared folder certainly works fine, too.

5.1. ADDING SOME STRUCTURE 255

<!--[if lt IE 9]>

<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/r29/html5.min.js">

</script>

<![endif]-->

Similarly, we can move the header material into the partial shown in List-
ing 5.14 and insert it into the layout with another call to render. (As usual
with partials, you will have to create the file by hand using your text editor.)

Listing 5.14: A partial for the site header.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", '#' %>

<%= link_to "Help", '#' %>

<%= link_to "Log in", '#' %>

</nav>

</div>

</header>

Now that we know how to make partials, let’s add a site footer to go along
with the header. By now you can probably guess that we’ll call it _footer.-
html.erb and put it in the layouts directory (Listing 5.15).15

Listing 5.15: A partial for the site footer.
app/views/layouts/_footer.html.erb

<footer class="footer">

<small>

The Ruby on Rails Tutorial

by Michael Hartl

</small>

15You may wonder why we use both the footer tag and .footer class. The answer is that the tag has a clear
meaning to human readers, and the class is used by Bootstrap. Using a div tag in place of footer would work
as well.

256 CHAPTER 5. FILLING IN THE LAYOUT

<nav>

<%= link_to "About", '#' %>

<%= link_to "Contact", '#' %>

News

</nav>

</footer>

As with the header, in the footer we’ve used link_to for the internal links to
the About and Contact pages and stubbed out the URLs with '#' for now. (As
with header, the footer tag is new in HTML5.)

We can render the footer partial in the layout by following the same pattern
as the stylesheets and header partials (Listing 5.16).

Listing 5.16: The site layout with a footer partial.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<meta charset="utf-8">

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

<%= stylesheet_link_tag 'application', media: 'all',

'data-turbolinks-track': 'reload' %>

<%= javascript_pack_tag 'application', 'data-turbolinks-track': 'reload' %>

<%= render 'layouts/shim' %>

</head>

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

<%= render 'layouts/footer' %>

</div>

</body>

</html>

Next, we’ll add some styling for the footer, as shown in Listing 5.17. The
results appear in Figure 5.9.

5.1. ADDING SOME STRUCTURE 257

Listing 5.17: Adding the CSS for the site footer.
app/assets/stylesheets/custom.scss

.

.

.

/* footer */

footer {

margin-top: 45px;

padding-top: 5px;

border-top: 1px solid #eaeaea;

color: #777;

}

footer a {

color: #555;

}

footer a:hover {

color: #222;

}

footer small {

float: left;

}

footer ul {

float: right;

list-style: none;

}

footer ul li {

float: left;

margin-left: 15px;

}

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Replace the default Rails head with the call to render shown in List-
ing 5.18. Hint: For convenience, cut the default header rather than just

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

258 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.9: The Home page with an added footer.

5.2. SASS AND THE ASSET PIPELINE 259

deleting it.

2. Because we haven’t yet created the partial needed by Listing 5.18, the
tests should be red. Confirm that this is the case.

3. Create the necessary partial in the layouts directory, paste in the con-
tents, and verify that the tests are now green again.

Listing 5.18: Replacing the default Rails head with a call to render.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<meta charset="utf-8">

<%= render 'layouts/rails_default' %>

<%= render 'layouts/shim' %>

</head>

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

<%= render 'layouts/footer' %>

</div>

</body>

</html>

5.2 Sass and the asset pipeline
One of the most useful features of Rails is the asset pipeline, which significantly
simplifies the production and management of static assets such as CSS and im-
ages. The asset pipline also works well in parallel with Webpack (a JavaScript
asset bundler) and Yarn (a dependency manager mentioned in Section 1.1.2),
both of which are supported by default in Rails. This section first gives a high-
level overview of the asset pipeline, and then shows how to use Sass, a powerful
tool for writing CSS.

https://webpack.js.org

260 CHAPTER 5. FILLING IN THE LAYOUT

5.2.1 The asset pipeline
From the perspective of a typical Rails developer, there are three main features
to understand about the asset pipeline: asset directories, manifest files, and pre-
processor engines.16 Let’s consider each in turn.

Asset directories
The Rails asset pipeline uses three standard directories for static assets, each
with its own purpose:

• app/assets: assets specific to the present application

• lib/assets: assets for libraries written by your dev team

• vendor/assets: assets from third-party vendors (not present by de-
fault)

Each of these directories has a subdirectory for each of two asset classes—
images and Cascading Style Sheets:

$ ls app/assets/

config images stylesheets

At this point, we’re in a position to understand the motivation behind the
location of the custom CSS file in Section 5.1.2: custom.scss is specific to
the sample application, so it goes in app/assets/stylesheets.

Manifest files
Once you’ve placed your assets in their logical locations, you can use manifest
files to tell Rails (via the Sprockets gem) how to combine them to form single
files. (This applies to CSS and JavaScript but not to images.) As an example,
let’s take a look at the default manifest file for app stylesheets (Listing 5.19).

16The original structure of this section was based on the excellent blog post “The Rails 3 Asset Pipeline in
(about) 5 Minutes” by Michael Erasmus.

https://github.com/rails/sprockets

5.2. SASS AND THE ASSET PIPELINE 261

Listing 5.19: The manifest file for app-specific CSS.
app/assets/stylesheets/application.css

/*

* This is a manifest file that'll be compiled into application.css, which will

* include all the files listed below.

*

* Any CSS and SCSS file within this directory, lib/assets/stylesheets, or any

* plugin's vendor/assets/stylesheets directory can be referenced here using a

* relative path.

*

* You're free to add application-wide styles to this file and they'll appear at

* the bottom of the compiled file so the styles you add here take precedence

* over styles defined in any other CSS/SCSS files in this directory. Styles in

* this file should be added after the last require_* statement.

* It is generally better to create a new file per style scope.

*

*= require_tree .

*= require_self

*/

The key lines here are actually CSS comments, but they are used by Sprockets
to include the proper files:

/*

.

.

.

*= require_tree .

*= require_self

*/

Here

*= require_tree .

ensures that all CSS files in the app/assets/stylesheets directory (includ-
ing the tree subdirectories) are included into the application CSS. The line

262 CHAPTER 5. FILLING IN THE LAYOUT

*= require_self

specifies where in the loading sequence the CSS in application.css itself
gets included.

Rails comes with sensible default manifest files, and in the Rails Tutorial
we won’t need to make any changes, but the Rails Guides entry on the asset
pipeline has more detail if you need it.

Preprocessor engines

After you’ve assembled your assets, Rails prepares them for the site template by
running them through several preprocessing engines and using themanifest files
to combine them for delivery to the browser. We tell Rails which processor to
use using filename extensions; the two most common cases are .scss for Sass
and .erb for embedded Ruby (ERb). We first covered ERb in Section 3.4.3
and cover Sass in Section 5.2.2.

Efficiency in production

One of the best things about the asset pipeline is that it automatically results in
assets that are optimized to be efficient in a production application. Traditional
methods for organizing CSS involves splitting functionality into separate files
and using nice formatting (with lots of indentation). While convenient for the
programmer, this is inefficient in production. In particular, including multiple
full-sized files can significantly slow page-load times, which is one of the most
important factors affecting the quality of the user experience.

With the asset pipeline, we don’t have to choose between speed and con-
venience: we can work with multiple nicely formatted files in development,
and then use the asset pipeline to make efficient files in production. In partic-
ular, the asset pipeline combines all the application stylesheets into one CSS
file (application.css) and then minifies it to remove the unnecessary spac-
ing and indentation that bloats file size. The result is the best of both worlds:
convenience in development and efficiency in production.

http://guides.rubyonrails.org/asset_pipeline.html
http://guides.rubyonrails.org/asset_pipeline.html

5.2. SASS AND THE ASSET PIPELINE 263

5.2.2 Syntactically awesome stylesheets
Sass is a language for writing stylesheets that improves on CSS in many ways.
In this section, we cover two of the most important improvements, nesting and
variables. (A third technique, mixins, is introduced in Section 7.1.1.)

As noted briefly in Section 5.1.2, Sass supports a format called SCSS (in-
dicated with a .scss filename extension), which is a strict superset of CSS
itself; that is, SCSS only adds features to CSS, rather than defining an entirely
new syntax.17 This means that every valid CSS file is also a valid SCSS file,
which is convenient for projects with existing style rules. In our case, we used
SCSS from the start in order to take advantage of Bootstrap. Since the Rails as-
set pipeline automatically uses Sass to process files with the .scss extension,
the custom.scss file will be run through the Sass preprocessor before being
packaged up for delivery to the browser.

Nesting
A common pattern in stylesheets is having rules that apply to nested elements.
For example, in Listing 5.7 we have rules both for .center and for .center
h1:

.center {

text-align: center;

}

.center h1 {

margin-bottom: 10px;

}

We can replace this in Sass with

.center {

text-align: center;

h1 {

margin-bottom: 10px;

17Sass also supports an alternate syntax that does define a new language, which is less verbose (and has fewer
curly braces) but is less convenient for existing projects and is harder to learn for those already familiar with CSS.

264 CHAPTER 5. FILLING IN THE LAYOUT

}

}

Here the nested h1 rule automatically inherits the .center context.
There’s a second candidate for nesting that requires a slightly different syn-

tax. In Listing 5.9, we have the code

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: #fff;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

}

#logo:hover {

color: #fff;

text-decoration: none;

}

Here the logo id #logo appears twice, once by itself and once with the hover
attribute (which controls its appearance when the mouse pointer hovers over
the element in question). In order to nest the second rule, we need to reference
the parent element #logo; in SCSS, this is accomplished with the ampersand
character & as follows:

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: #fff;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

&:hover {

color: #fff;

text-decoration: none;

}

}

5.2. SASS AND THE ASSET PIPELINE 265

Sass changes &:hover into #logo:hover as part of converting from SCSS to
CSS.

Both of these nesting techniques apply to the footer CSS in Listing 5.17,
which can be transformed into the following:

footer {

margin-top: 45px;

padding-top: 5px;

border-top: 1px solid #eaeaea;

color: #777;

a {

color: #555;

&:hover {

color: #222;

}

}

small {

float: left;

}

ul {

float: right;

list-style: none;

li {

float: left;

margin-left: 15px;

}

}

}

Converting Listing 5.17 by hand is a good exercise (Section 5.2.2), and you
should verify that the CSS still works properly after the conversion.

Variables

Sass allows us to define variables to eliminate duplication and write more ex-
pressive code. For example, looking at Listing 5.8 and Listing 5.17, we see that
there are repeated references to the same color:

h2 {

.

.

.

266 CHAPTER 5. FILLING IN THE LAYOUT

color: #777;

}

.

.

.

footer {

.

.

.

color: #777;

}

In this case, #777 is a light gray, andwe can give it a name by defining a variable
as follows:

$light-gray: #777;

This allows us to rewrite our SCSS like this:

$light-gray: #777;

.

.

.

h2 {

.

.

.

color: $light-gray;

}

.

.

.

footer {

.

.

.

color: $light-gray;

}

Because variable names such as $light-gray are more descriptive than
#777, it’s often useful to define variables even for values that aren’t repeated.
Indeed, the Bootstrap framework defines a large number of variables for colors,

5.2. SASS AND THE ASSET PIPELINE 267

available online on the Bootstrap page of Less variables. That page defines
variables using Less, not Sass, but the bootstrap-sass gem provides the
Sass equivalents. It is not difficult to guess the correspondence; where Less uses
an “at” sign @, Sass uses a dollar sign $. For example, looking at the Bootstrap
variable page, we see that there is a variable for light gray:

@gray-light: #777;

This means that, via the bootstrap-sass gem, there should be a corre-
sponding SCSS variable $gray-light. We can use this to replace our custom
variable, $light-gray, which gives

h2 {

.

.

.

color: $gray-light;

}

.

.

.

footer {

.

.

.

color: $gray-light;

}

Applying the Sass nesting and variable definition features to the full SCSS
file gives the file in Listing 5.20. This uses both Sass variables (as inferred
from the Bootstrap Less variable page) and built-in named colors (i.e., white
for #fff). Note in particular the dramatic improvement in the rules for the
footer tag.

Listing 5.20: The initial SCSS file converted to use nesting and variables.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

https://getbootstrap.com/docs/3.4/customize/#less-variables

268 CHAPTER 5. FILLING IN THE LAYOUT

/* mixins, variables, etc. */

$gray-medium-light: #eaeaea;

/* universal */

body {

padding-top: 60px;

}

section {

overflow: auto;

}

textarea {

resize: vertical;

}

.center {

text-align: center;

h1 {

margin-bottom: 10px;

}

}

/* typography */

h1, h2, h3, h4, h5, h6 {

line-height: 1;

}

h1 {

font-size: 3em;

letter-spacing: -2px;

margin-bottom: 30px;

text-align: center;

}

h2 {

font-size: 1.2em;

letter-spacing: -1px;

margin-bottom: 30px;

text-align: center;

font-weight: normal;

color: $gray-light;

}

p {

font-size: 1.1em;

line-height: 1.7em;

}

5.2. SASS AND THE ASSET PIPELINE 269

/* header */

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: white;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

&:hover {

color: white;

text-decoration: none;

}

}

/* footer */

footer {

margin-top: 45px;

padding-top: 5px;

border-top: 1px solid $gray-medium-light;

color: $gray-light;

a {

color: $gray;

&:hover {

color: $gray-darker;

}

}

small {

float: left;

}

ul {

float: right;

list-style: none;

li {

float: left;

margin-left: 15px;

}

}

}

Sass gives us even more ways to simplify our stylesheets, but the code in
Listing 5.20 uses the most important features and gives us a great start. See the
Sass website for more details.

http://sass-lang.com/

270 CHAPTER 5. FILLING IN THE LAYOUT

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. As suggested in Section 5.2.2, go through the steps to convert the footer
CSS from Listing 5.17 to Listing 5.20 to SCSS by hand.

5.3 Layout links
Now that we’ve finished a site layout with decent styling, it’s time to start filling
in the links we’ve stubbed out with '#'. Because plain HTML is valid in Rails
ERb templates, we could hard-code links like

About

but that isn’t the Rails Way™. For one, it would be nice if the URL for the
about page were /about rather than /static_pages/about. Moreover, Rails con-
ventionally uses named routes, which involves code like

<%= link_to "About", about_path %>

This way the code has a more transparent meaning, and it’s also more flexible
since we can change the definition of about_path and have the URL change
everywhere about_path is used.

The full list of our planned links appears in Table 5.1, along with their map-
ping to URLs and routes. We took care of the first route in Section 3.4.4, and
we’ll have implemented all but the last one by the end of this chapter. (We’ll
make the last one in Chapter 8.)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

5.3. LAYOUT LINKS 271

Page URL Named route
Home / root_path

About /about about_path

Help /help help_path

Contact /contact contact_path

Sign up /signup signup_path

Log in /login login_path

Table 5.1: Route and URL mapping for site links.

5.3.1 Contact page
For completeness, we’ll add the Contact page, which was left as an exercise in
Chapter 3. The test appears as in Listing 5.21, which simply follows the model
last seen in Listing 3.26.

Listing 5.21: A test for the Contact page. red
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get static_pages_home_url

assert_response :success

assert_select "title", "Ruby on Rails Tutorial Sample App"

end

test "should get help" do

get static_pages_help_url

assert_response :success

assert_select "title", "Help | Ruby on Rails Tutorial Sample App"

end

test "should get about" do

get static_pages_about_url

assert_response :success

assert_select "title", "About | Ruby on Rails Tutorial Sample App"

end

test "should get contact" do

get static_pages_contact_url

assert_response :success

assert_select "title", "Contact | Ruby on Rails Tutorial Sample App"

272 CHAPTER 5. FILLING IN THE LAYOUT

end

end

At this point, the tests in Listing 5.21 should be red:

Listing 5.22: red
$ rails test

The application code parallels the addition of the About page in Section 3.3:
first we update the routes (Listing 5.23), then we add a contact action to the
Static Pages controller (Listing 5.24), and finally we create a Contact view (List-
ing 5.25).

Listing 5.23: Adding a route for the Contact page. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get 'static_pages/home'

get 'static_pages/help'

get 'static_pages/about'

get 'static_pages/contact'

end

Listing 5.24: Adding an action for the Contact page. red
app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

.

.

.

def contact

end

end

5.3. LAYOUT LINKS 273

Listing 5.25: The view for the Contact page. green
app/views/static_pages/contact.html.erb

<% provide(:title, 'Contact') %>

<h1>Contact</h1>

<p>

Contact the Ruby on Rails Tutorial about the sample app at the

contact page.

</p>

Now make sure that the tests are green:

Listing 5.26: green
$ rails test

5.3.2 Rails routes
To add the named routes for the sample app’s static pages, we’ll edit the routes
file, config/routes.rb, that Rails uses to define URL mappings. We’ll be-
gin by reviewing the route for the Home page (defined in Section 3.4.4), which
is a special case, and then define a set of routes for the remaining static pages.

So far, we’ve seen three examples of how to define a root route, starting
with the code

root 'application#hello'

in the hello app (Listing 1.11), the code

root 'users#index'

in the toy app (Listing 2.7), and the code

274 CHAPTER 5. FILLING IN THE LAYOUT

root 'static_pages#home'

in the sample app (Listing 3.43). In each case, the root method arranges for
the root path / to be routed to a controller and action of our choice. Defining the
root route in this way has a second important effect, which is to create named
routes that allow us to refer to routes by a name rather than by the raw URL. In
this case, these routes are root_path and root_url, with the only difference
being that the latter includes the full URL:

root_path -> '/'

root_url -> 'http://www.example.com/'

In the Rails Tutorial, we’ll follow the common convention of using the _path
form except when doing redirects, where we’ll use the _url form. (This is be-
cause the HTTP standard technically requires a full URL after redirects, though
in most browsers it will work either way.)

Because the default routes used in, e.g., Listing 5.21 are rather verbose,
we’ll also take this opportunity to define shorter named routes for the Help,
About, and Contact pages. To do this, we need to make changes to the get
rules from Listing 5.23, transforming lines like

get 'static_pages/help'

to

get '/help', to: 'static_pages#help'

This new pattern routes a GET request for the URL /help to the help action in
the Static Pages controller. As with the rule for the root route, this creates two
named routes, help_path and help_url:

5.3. LAYOUT LINKS 275

help_path -> '/help'

help_url -> 'http://www.example.com/help'

Applying this rule change to the remaining static page routes from Listing 5.23
gives Listing 5.27.

Listing 5.27: Routes for static pages. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

end

Note that Listing 5.27 also removes the route for 'static_pages/home', as
we’ll always use root_path or root_url instead.

Because the tests in Listing 5.21 used the old routes, they are now red. To
get them green again, we need to update the routes as shown in Listing 5.28.
Note that we’ve taken this opportunity to update to the (optional) convention
of using the *_path form of each named route.

Listing 5.28: The static pages tests with the new named routes. green
test/controllers/static_pages_controller_test.rb

require 'test_helper'

class StaticPagesControllerTest < ActionDispatch::IntegrationTest

test "should get home" do

get root_path

assert_response :success

assert_select "title", "Ruby on Rails Tutorial Sample App"

end

test "should get help" do

get help_path

assert_response :success

assert_select "title", "Help | Ruby on Rails Tutorial Sample App"

276 CHAPTER 5. FILLING IN THE LAYOUT

end

test "should get about" do

get about_path

assert_response :success

assert_select "title", "About | Ruby on Rails Tutorial Sample App"

end

test "should get contact" do

get contact_path

assert_response :success

assert_select "title", "Contact | Ruby on Rails Tutorial Sample App"

end

end

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. It’s possible to use a named route other than the default using the as: op-
tion. Drawing inspiration from this famous Far Side comic strip, change
the route for the Help page to use helf (Listing 5.29).

2. Confirm that the tests are now red. Get them to green by updating the
route in Listing 5.28.

3. Revert the changes from these exercises using Undo.

Listing 5.29: Changing ‘help’ to ‘helf’.
Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help', as: 'helf'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

end

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.google.com/search?q=far+side+helf

5.3. LAYOUT LINKS 277

5.3.3 Using named routes
With the routes defined in Listing 5.27, we’re now in a position to use the result-
ing named routes in the site layout. This simply involves filling in the second
arguments of the link_to functions with the proper named routes. For exam-
ple, we’ll convert

<%= link_to "About", '#' %>

to

<%= link_to "About", about_path %>

and so on.
We’ll start in the header partial, _header.html.erb (Listing 5.30), which

has links to the Home and Help pages. While we’re at it, we’ll follow a common
web convention and link the logo to the Home page as well.

Listing 5.30: Header partial with links.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", root_path, id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", root_path %>

<%= link_to "Help", help_path %>

<%= link_to "Log in", '#' %>

</nav>

</div>

</header>

We won’t have a named route for the “Log in” link until Chapter 8, so we’ve
left it as '#' for now.

The other place with links is the footer partial, _footer.html.erb,
which has links for the About and Contact pages (Listing 5.31).

278 CHAPTER 5. FILLING IN THE LAYOUT

Listing 5.31: Footer partial with links.
app/views/layouts/_footer.html.erb

<footer class="footer">

<small>

The Ruby on Rails Tutorial

by Michael Hartl

</small>

<nav>

<%= link_to "About", about_path %>

<%= link_to "Contact", contact_path %>

News

</nav>

</footer>

With that, our layout has links to all the static pages created in Chapter 3,
so that, for example, /about goes to the About page (Figure 5.10).

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Update the layout links to use the helf route from Listing 5.29.

2. Revert the changes using Undo.

5.3.4 Layout link tests
Now that we’ve filled in several of the layout links, it’s a good idea to test
them to make sure they’re working correctly. We could do this by hand with
a browser, first visiting the root path and then checking the links by hand, but
this quickly becomes cumbersome. Instead, we’ll simulate the same series of
steps using an integration test, which allows us to write an end-to-end test of
our application’s behavior. We can get started by generating a template test,
which we’ll call site_layout:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

5.3. LAYOUT LINKS 279

Figure 5.10: The About page at /about.

280 CHAPTER 5. FILLING IN THE LAYOUT

$ rails generate integration_test site_layout

invoke test_unit

create test/integration/site_layout_test.rb

Note that the Rails generator automatically appends _test to the name of the
test file.

Our plan for testing the layout links involves checking the HTML structure
of our site:

1. Get the root path (Home page).

2. Verify that the right page template is rendered.

3. Check for the correct links to the Home, Help, About, and Contact pages.

Listing 5.32 shows how we can use Rails integration tests to translate these
steps into code, beginning with the assert_template method to verify that
the Home page is rendered using the correct view.18

Listing 5.32: A test for the links on the layout. green
test/integration/site_layout_test.rb

require 'test_helper'

class SiteLayoutTest < ActionDispatch::IntegrationTest

test "layout links" do

get root_path

assert_template 'static_pages/home'

assert_select "a[href=?]", root_path, count: 2

assert_select "a[href=?]", help_path

assert_select "a[href=?]", about_path

assert_select "a[href=?]", contact_path

end

end

18Some developers insist that a single test shouldn’t contain multiple assertions. I find this practice to be unnec-
essarily complicated, while also incurring an extra overhead if there are common setup tasks needed before each
test. In addition, a well-written test tells a coherent story, and breaking it up into individual pieces disrupts the
narrative. I thus have a strong preference for including multiple assertions in a test, relying on Ruby (via minitest)
to tell me the exact lines of any failed assertions.

5.3. LAYOUT LINKS 281

Listing 5.32 uses some of the more advanced options of the assert_select
method, seen before in Listing 3.26 and Listing 5.21. In this case, we use a syn-
tax that allows us to test for the presence of a particular link–URL combination
by specifying the tag name a and attribute href, as in

assert_select "a[href=?]", about_path

Here Rails automatically inserts the value of about_path in place of the ques-
tion mark (escaping any special characters if necessary), thereby checking for
an HTML tag of the form

...

Note that the assertion for the root path verifies that there are two such links
(one each for the logo and navigation menu element):

assert_select "a[href=?]", root_path, count: 2

This ensures that both links to theHome page defined in Listing 5.30 are present.
Somemore uses of assert_select appear in Table 5.2. While assert_-

select is flexible and powerful (having many more options than the ones
shown here), experience shows that it’s wise to take a lightweight approach
by testing only HTML elements (such as site layout links) that are unlikely to
change much over time.

To check that the new test in Listing 5.32 passes, we can run just the inte-
gration tests using the following Rake task:

Listing 5.33: green
$ rails test:integration

If all went well, you should run the full test suite to verify that all the tests are
green:

282 CHAPTER 5. FILLING IN THE LAYOUT

Code Matching HTML
assert_select "div" <div>foobar</div>

assert_select "div", "foobar" <div>foobar</div>

assert_select "div.nav" <div class="nav">foobar</div>

assert_select "div#profile" <div id="profile">foobar</div>

assert_select "div[name=yo]" <div name="yo">hey</div>

assert_select "a[href=?]", '/', count: 1 foo

assert_select "a[href=?]", '/', text: "foo" foo

Table 5.2: Some uses of assert_select.

Listing 5.34: green
$ rails test

With the added integration test for layout links, we are now in a good position
to catch regressions quickly using our test suite.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. In the footer partial, change about_path to contact_path and verify
that the tests catch the error.

2. It’s convenient to use the full_title helper in the tests by including
the Application helper into the test helper, as shown in Listing 5.35. We
can then test for the right title using code like Listing 5.36. This is brit-
tle, though, because now any typo in the base title (such as “Ruby on
Rails Tutoial”) won’t be caught by the test suite. Fix this problem by
writing a direct test of the full_title helper, which involves creat-
ing a file to test the application helper and then filling in the code indi-
cated with FILL_IN in Listing 5.37. (Listing 5.37 uses assert_equal

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

5.3. LAYOUT LINKS 283

<expected>, <actual>, which verifies that the expected result
matches the actual value when compared with the == operator.)

Listing 5.35: Including the Application helper in tests.
test/test_helper.rb

ENV['RAILS_ENV'] ||= 'test'

.

.

.

class ActiveSupport::TestCase

fixtures :all

include ApplicationHelper

.

.

.

end

Listing 5.36: Using the full_title helper in a test. green
test/integration/site_layout_test.rb

require 'test_helper'

class SiteLayoutTest < ActionDispatch::IntegrationTest

test "layout links" do

get root_path

assert_template 'static_pages/home'

assert_select "a[href=?]", root_path, count: 2

assert_select "a[href=?]", help_path

assert_select "a[href=?]", about_path

assert_select "a[href=?]", contact_path

get contact_path

assert_select "title", full_title("Contact")

end

end

Listing 5.37: A direct test of the full_title helper.
test/helpers/application_helper_test.rb

require 'test_helper'

class ApplicationHelperTest < ActionView::TestCase

284 CHAPTER 5. FILLING IN THE LAYOUT

test "full title helper" do

assert_equal full_title, FILL_IN

assert_equal full_title("Help"), FILL_IN

end

end

5.4 User signup: A first step
As a capstone to our work on the layout and routing, in this section we’ll make
a route for the signup page, which will mean creating a second controller along
the way. This is a first important step toward allowing users to register for our
site; we’ll take the next step, modeling users, in Chapter 6, and we’ll finish the
job in Chapter 7.

5.4.1 Users controller
We created our first controller, the Static Pages controller, in Section 3.2. It’s
time to create a second one, the Users controller. As before, we’ll use gener-
ate to make the simplest controller that meets our present needs, namely, one
with a stub signup page for new users. Following the conventional REST archi-
tecture favored by Rails, we’ll call the action for new users new, which we can
arrange to create automatically by passing new as an argument to generate.
The result is shown in Listing 5.38.

Listing 5.38: Generating a Users controller (with a new action).
$ rails generate controller Users new

create app/controllers/users_controller.rb

route get 'users/new'

invoke erb

create app/views/users

create app/views/users/new.html.erb

invoke test_unit

create test/controllers/users_controller_test.rb

invoke helper

create app/helpers/users_helper.rb

invoke test_unit

invoke assets

https://en.wikipedia.org/wiki/Representational_State_Transfer
https://en.wikipedia.org/wiki/Representational_State_Transfer

5.4. USER SIGNUP: A FIRST STEP 285

invoke scss

create app/assets/stylesheets/users.scss

As required, Listing 5.38 creates a Users controller with a new action (List-
ing 5.39) and a stub user view (Listing 5.40). It also creates a minimal test for
the new user page (Listing 5.41).

Listing 5.39: The initial Users controller, with a new action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def new

end

end

Listing 5.40: The initial new view for Users.
app/views/users/new.html.erb

<h1>Users#new</h1>

<p>Find me in app/views/users/new.html.erb</p>

Listing 5.41: The generated test for the new user page. green
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

test "should get new" do

get users_new_url

assert_response :success

end

end

At this point, the tests should be green:

286 CHAPTER 5. FILLING IN THE LAYOUT

Listing 5.42: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Per Table 5.1, change the route in Listing 5.41 to use signup_path in-
stead of users_new_url.

2. The route in the previous exercise doesn’t yet exist, so confirm that the
tests are now red. (This is intended to help us get comfortable with the
red/green flow of Test Driven Development (TDD, Box 3.3); we’ll get
the tests back to green in Section 5.4.2.)

5.4.2 Signup URL
With the code from Section 5.4.1, we already have a working page for new users
at /users/new, but recall from Table 5.1 that we want the URL to be /signup in-
stead. We’ll follow the examples from Listing 5.27 and add a get '/signup'

rule for the signup URL, as shown in Listing 5.43.

Listing 5.43: A route for the signup page. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

end

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

5.4. USER SIGNUP: A FIRST STEP 287

With the routes in Listing 5.43, we also need to update the test generated in
Listing 5.38 with the new signup route, as shown in Listing 5.44.

Listing 5.44: Updating the Users controller test to use the signup route. green
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

test "should get new" do

get signup_path

assert_response :success

end

end

Next, we’ll use the newly defined named route to add the proper link to the
button on the Home page. As with the other routes, get 'signup' automat-
ically gives us the named route signup_path, which we put to use in List-
ing 5.45. Adding a test for the signup page is left as an exercise (Section 5.3.2.)

Listing 5.45: Linking the button to the signup page.
app/views/static_pages/home.html.erb

<div class="center jumbotron">

<h1>Welcome to the Sample App</h1>

<h2>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</h2>

<%= link_to "Sign up now!", signup_path, class: "btn btn-lg btn-primary" %>

</div>

<%= link_to image_tag("rails.svg", alt: "Rails logo", width: "200"),

"https://rubyonrails.org/" %>

Finally, we’ll add a custom stub view for the signup page (Listing 5.46).

288 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.11: The new signup page at /signup.

Listing 5.46: The initial (stub) signup page.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

<p>This will be a signup page for new users.</p>

With that, we’re done with the links and named routes, at least until we add
a route for logging in (Chapter 8). The resulting new user page (at the URL
/signup) appears in Figure 5.11.

5.5. CONCLUSION 289

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. If you didn’t solve the exercise in Section 5.4.1, change the test in List-
ing 5.41 to use the named route signup_path. Because of the route
defined in Listing 5.43, this test should initially be green.

2. In order to verify the correctness of the test in the previous exercise, com-
ment out the signup route to get to red, then uncomment to get to green.

3. In the integration test from Listing 5.32, add code to visit the signup page
using the get method and verify that the resulting page title is correct.
Hint: Use the full_title helper as in Listing 5.36.

5.5 Conclusion
In this chapter, we’ve hammered our application layout into shape and polished
up the routes. The rest of the book is dedicated to fleshing out the sample ap-
plication: first, by adding users who can sign up, log in, and log out; next, by
adding user microposts; and, finally, by adding the ability to follow other users.

At this point, if you are using Git, you should merge your changes back into
the master branch:

$ git add -A

$ git commit -m "Finish layout and routes"

$ git checkout master

$ git merge filling-in-layout

Then push up to GitHub (running the test suite first for safety):

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

290 CHAPTER 5. FILLING IN THE LAYOUT

Figure 5.12: The sample application in production.

$ rails test

$ git push

Finally, deploy to Heroku:

$ git push heroku

The result of the deployment should be a working sample application on the
production server (Figure 5.12).

5.5. CONCLUSION 291

5.5.1 What we learned in this chapter
• Using HTML5, we can define a site layout with logo, header, footer, and
main body content.

• Rails partials are used to place markup in a separate file for convenience.

• CSS allows us to style the site layout based on CSS classes and ids.

• The Bootstrap framework makes it easy to make a nicely designed site
quickly.

• Sass and the asset pipeline allow us to eliminate duplication in our CSS
while packaging up the results efficiently for production.

• Rails allows us to define custom routing rules, thereby providing named
routes.

• Integration tests effectively simulate a browser clicking from page to
page.

292 CHAPTER 5. FILLING IN THE LAYOUT

Chapter 6

Modeling users
In Chapter 5, we ended with a stub page for creating new users (Section 5.4).
Over the course of the next six chapters, we’ll fulfill the promise implicit in
this incipient signup page. In this chapter, we’ll take the first critical step by
creating a data model for users of our site, together with a way to store that data.
In Chapter 7, we’ll give users the ability to sign up for our site and create a user
profile page. Once users can sign up, we’ll let them log in and log out as well
(Chapter 8 and Chapter 9), and in Chapter 10 (Section 10.2.1) we’ll learn how
to protect pages from improper access. Finally, in Chapter 11 and Chapter 12
we’ll add account activations (thereby confirming a valid email address) and
password resets. Taken together, the material in Chapter 6 through Chapter 12
develops a full Rails login and authentication system. As you may know, there
are various pre-built authentication solutions for Rails; Box 6.1 explains why,
at least at first, it’s probably a better idea to roll your own.

Box 6.1. Rolling your own authentication system

Virtually all web applications require a login and authentication system of some
sort. As a result, most web frameworks end up with one or more standardized
libraries for doing so, and Rails is no exception. In particular, the Devise gem has
emerged as a robust solution for a wide variety of uses, and represents a strong
choice for professional-grade applications.

293

https://github.com/plataformatec/devise

294 CHAPTER 6. MODELING USERS

Nevertheless, I believe it is a mistake to use a pre-built system like Devise in a
tutorial like this one. Off-the-shelf systems can be “black boxes” with potentially
mysterious innards, and the complicated data models used by such systems would
be utterly overwhelming for beginners (or even for experienced developers not
familiar with data modeling). For learning purposes, it’s essential to introduce the
subject more gradually.

Happily, Rails makes it possible to take such a gradual approach while still
developing an industrial-strength login and authentication system suitable for pro-
duction applications. This way, even if you do end up using a third-party system
later on, you’ll be in a much better position to understand and modify it to meet
your particular needs.

6.1 User model
Although the ultimate goal of the next three chapters is to make a signup page
for our site (as mocked up in Figure 6.1), it would do little good now to accept
information for new users: we don’t currently have any place to put it. Thus,
the first step in signing up users is to make a data structure to capture and store
their information.

In Rails, the default data structure for a data model is called, naturally
enough, amodel (theM inMVC from Section 1.2.3). The default Rails solution
to the problem of persistence is to use a database for long-term data storage,
and the default library for interacting with the database is called Active Record.1
Active Record comes with a host of methods for creating, saving, and finding
data objects, all without having to use the Structured Query Language (SQL)2
used by relational databases. Moreover, Rails has a feature called migrations

1The name comes from the “active record pattern”, identified and named in Patterns of Enterprise Application
Architecture by Martin Fowler.

2Officially pronounced “ess-cue-ell”, though the alternate pronunciation “sequel” is also common. You can
differentiate an individual author’s preference by the choice of indefinite article: those whowrite “a SQL database”
prefer “sequel”, whereas those who write “an SQL database” prefer “ess-cue-ell”. As you’ll soon see, I prefer the
latter.

https://en.wikipedia.org/wiki/Black_box
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Active_record_pattern

6.1. USER MODEL 295

Figure 6.1: A mockup of the user signup page.

296 CHAPTER 6. MODELING USERS

to allow data definitions to be written in pure Ruby, without having to learn
an SQL data definition language (DDL). The effect is that Rails insulates you
almost entirely from the details of the database. In this book, by using SQLite
for development and PostgreSQL (via Heroku) for deployment (Section 1.4),
we have developed this theme even further, to the point where we barely ever
have to think about how Rails stores data, even for production applications.

As usual, if you’re following along using Git for version control, nowwould
be a good time to make a topic branch for modeling users:

$ git checkout -b modeling-users

6.1.1 Database migrations
You may recall from Section 4.4.5 that we have already encountered, via a
custom-built User class, user objects with name and email attributes. That
class served as a useful example, but it lacked the critical property of persis-
tence: when we created a User object at the Rails console, it disappeared as
soon as we exited. Our goal in this section is to create a model for users that
won’t disappear quite so easily.

As with the User class in Section 4.4.5, we’ll start by modeling a user with
two attributes, a name and an email address, the latter of which we’ll use as
a unique username.3 (We’ll add an attribute for passwords in Section 6.3.) In
Listing 4.17, we did this with Ruby’s attr_accessor method:

class User

attr_accessor :name, :email

.

.

.

end

In contrast, when using Rails to model users we don’t need to identify the
attributes explicitly. As noted briefly above, to store data Rails uses a relational

3By using an email address as the username, we open the possibility of communicating with our users at a
future date (Chapter 11 and Chapter 12).

6.1. USER MODEL 297

users

Mallory Archer4
Lana Kane3
Sterling Archer2

id
1 Michael Hartl

name email
mhartl@example.com
archer@example.gov
lana@example.gov
boss@example.gov

Figure 6.2: A diagram of sample data in a users table.

email string

id
name string

integer
users

Figure 6.3: A sketch of the User data model.

database by default, which consists of tables composed of data rows, where each
row has columns of data attributes. For example, to store users with names and
email addresses, we’ll create a users table with name and email columns
(with each row corresponding to one user). An example of such a table appears
in Figure 6.2, corresponding to the data model shown in Figure 6.3. (Figure 6.3
is just a sketch; the full data model appears in Figure 6.4.) By naming the
columns name and email, we’ll let Active Record figure out the User object
attributes for us.

You may recall from Listing 5.38 that we created a Users controller (along
with a new action) using the command

298 CHAPTER 6. MODELING USERS

$ rails generate controller Users new

The analogous command for making a model is generate model, which we
can use to generate a User model with name and email attributes, as shown in
Listing 6.1.

Listing 6.1: Generating a User model.
$ rails generate model User name:string email:string

invoke active_record

create db/migrate/<timestamp>_create_users.rb

create app/models/user.rb

invoke test_unit

create test/models/user_test.rb

create test/fixtures/users.yml

(Note that, in contrast to the plural convention for controller names, model
names are singular: a Users controller, but a User model.) By passing the op-
tional parameters name:string and email:string, we tell Rails about the
two attributes we want, along with which types those attributes should be (in
this case, string). Compare this with including the action names in Listing 3.7
and Listing 5.38.

One of the results of the generate command in Listing 6.1 is a new file
called a migration. Migrations provide a way to alter the structure of the data-
base incrementally, so that our data model can adapt to changing requirements.
In the case of the User model, the migration is created automatically by the
model generation script; it creates a users table with two columns, name and
email, as shown in Listing 6.2. (We’ll see starting in Section 6.2.5 how to
make a migration from scratch.)

Listing 6.2: Migration for the User model (to create a users table).
db/migrate/[timestamp]_create_users.rb

class CreateUsers < ActiveRecord::Migration[6.0]

def change

create_table :users do |t|

6.1. USER MODEL 299

t.string :name

t.string :email

t.timestamps

end

end

end

Note that the name of the migration file is prefixed by a timestamp based on
when the migration was generated. In the early days of migrations, the file-
names were prefixed with incrementing integers, which caused conflicts for col-
laborating teams if multiple programmers had migrations with the same num-
ber. Barring the improbable scenario of migrations generated the same second,
using timestamps conveniently avoids such collisions.

The migration itself consists of a change method that determines the
change to be made to the database. In the case of Listing 6.2, change uses
a Rails method called create_table to create a table in the database for stor-
ing users. The create_table method accepts a block (Section 4.3.2) with
one block variable, in this case called t (for “table”). Inside the block, the
create_table method uses the t object to create name and email columns
in the database, both of type string.4 Here the table name is plural (users)
even though the model name is singular (User), which reflects a linguistic con-
vention followed by Rails: a model represents a single user, whereas a database
table consists of many users. The final line in the block, t.timestamps, is
a special command that creates two magic columns called created_at and
updated_at, which are timestamps that automatically record when a given
user is created and updated. (We’ll see concrete examples of the magic columns
starting in Section 6.1.3.) The full data model represented by the migration in
Listing 6.2 is shown in Figure 6.4. (Note the addition of the magic columns,
which weren’t present in the sketch shown in Figure 6.3.)

We can run the migration, known as “migrating up”, using the db:migrate
command as follows:

4Don’t worry about exactly how the t object manages to do this; the beauty of abstraction layers is that we
don’t have to know. We can just trust the t object to do its job.

300 CHAPTER 6. MODELING USERS

updated_at datetime
datetimecreated_at

email string

id
name string

integer
users

Figure 6.4: The User data model produced by Listing 6.2.

$ rails db:migrate

(You may recall that we ran this command in a similar context in Section 2.2.)
The first time db:migrate is run, it creates a file called db/development.-
sqlite3, which is an SQLite5 database. We can see the structure of the data-
base by opening development.sqlite3 with DB Browser for SQLite. (If
you’re using the cloud IDE, you should first download the database file to the
local disk, as shown in Figure 6.5.) The result appears in Figure 6.6; compare
with the diagram in Figure 6.4. You might note that there’s one column in
Figure 6.6 not accounted for in the migration: the id column. As noted briefly
in Section 2.2, this column is created automatically, and is used by Rails to
identify each row uniquely.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.
5Officially pronounced “ess-cue-ell-ite”, although the (mis)pronunciation “sequel-ite” is also common.

https://sqlite.org/
https://sqlitebrowser.org/
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.1. USER MODEL 301

Figure 6.5: Downloading a file from the cloud IDE.

302 CHAPTER 6. MODELING USERS

Figure 6.6: DB Browser with our new users table.

6.1. USER MODEL 303

1. Rails uses a file called schema.rb in the db/ directory to keep track
of the structure of the database (called the schema, hence the filename).
Examine your local copy of db/schema.rb and compare its contents to
the migration code in Listing 6.2.

2. Most migrations (including all the ones in this tutorial) are reversible,
which means we can “migrate down” and undo them with a single com-
mand, called db:rollback:

$ rails db:rollback

After running this command, examine db/schema.rb to confirm that
the rollback was successful. (See Box 3.1 for another technique useful
for reversing migrations.) Under the hood, this command executes the
drop_table command to remove the users table from the database. The
reason this works is that the changemethod knows that drop_table is
the inverse of create_table, which means that the rollback migration
can be easily inferred. In the case of an irreversible migration, such as
one to remove a database column, it is necessary to define separate up
and down methods in place of the single change method. Read about
migrations in the Rails Guides for more information.

3. Re-run the migration by executing rails db:migrate again. Confirm
that the contents of db/schema.rb have been restored.

6.1.2 The model file
We’ve seen how the User model generation in Listing 6.1 generated a migration
file (Listing 6.2), and we saw in Figure 6.6 the results of running this migration:
it updated a file called development.sqlite3 by creating a table userswith
columns id, name, email, created_at, and updated_at. Listing 6.1 also
created the model itself. The rest of this section is dedicated to understanding
it.

https://guides.rubyonrails.org/migrations.html

304 CHAPTER 6. MODELING USERS

We begin by looking at the code for the User model, which lives in the
file user.rb inside the app/models/ directory. It is, to put it mildly, very
compact (Listing 6.3).

Listing 6.3: The brand new User model.
app/models/user.rb

class User < ApplicationRecord

end

Recall from Section 4.4.2 that the syntax class User < Application-

Record means that the User class inherits from the ApplicationRecord
class, which in turn inherits from ActiveRecord::Base (Figure 2.19), so
that the User model automatically has all the functionality of the ActiveRe-
cord::Base class. Of course, this knowledge doesn’t do us any good unless
we know what ActiveRecord::Base contains, so let’s get started with some
concrete examples.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In a Rails console, use the technique from Section 4.4.4 to confirm that
User.new is of class User and inherits from ApplicationRecord.

2. Confirm that ApplicationRecord inherits from ActiveRecord::-

Base.

6.1.3 Creating user objects
As in Chapter 4, our tool of choice for exploring data models is the Rails con-
sole. Since we don’t (yet) want to make any changes to our database, we’ll start
the console in a sandbox:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.1. USER MODEL 305

$ rails console --sandbox

Loading development environment in sandbox

Any modifications you make will be rolled back on exit

>>

As indicated by the helpful message “Anymodifications youmakewill be rolled
back on exit”, when started in a sandbox the console will “roll back” (i.e., undo)
any database changes introduced during the session.

In the console session in Section 4.4.5, we created a new user object with
User.new, which we had access to only after requiring the example user file in
Listing 4.17. Withmodels, the situation is different; as youmay recall fromSec-
tion 4.4.4, the Rails console automatically loads the Rails environment, which
includes the models. This means that we can make a new user object without
any further work:

>> User.new

=> #<User id: nil, name: nil, email: nil, created_at: nil, updated_at: nil>

We see here the default console representation of a user object.
When called with no arguments, User.new returns an object with all nil

attributes. In Section 4.4.5, we designed the example User class to take an
initialization hash to set the object attributes; that design choice was motivated
by Active Record, which allows objects to be initialized in the same way:

>> user = User.new(name: "Michael Hartl", email: "michael@example.com")

=> #<User id: nil, name: "Michael Hartl", email: "michael@example.com",

created_at: nil, updated_at: nil>

Here we see that the name and email attributes have been set as expected.
The notion of validity is important for understanding Active Record model

objects. We’ll explore this subject in more depth in Section 6.2, but for now
it’s worth noting that our initial user object is valid, which we can verify by
calling the boolean valid? method on it:

306 CHAPTER 6. MODELING USERS

>> user.valid?

true

So far, we haven’t touched the database: User.new only creates an object
in memory, while user.valid? merely checks to see if the object is valid. In
order to save the User object to the database, we need to call the save method
on the user variable:

>> user.save

(0.1ms) SAVEPOINT active_record_1

SQL (0.8ms) INSERT INTO "users" ("name", "email", "created_at",

"updated_at") VALUES (?, ?, ?, ?) [["name", "Michael Hartl"],

["email", "michael@example.com"], ["created_at", "2019-08-22 01:51:03.453035"],

["updated_at", "2019-08-22 01:51:03.453035"]]

(0.1ms) RELEASE SAVEPOINT active_record_1

=> true

The save method returns true if it succeeds and false otherwise. (Cur-
rently, all saves should succeed because there are as yet no validations; we’ll
see cases in Section 6.2 when some will fail.) For reference, the Rails console
also shows the SQL command corresponding to user.save (namely, INSERT
INTO "users"…). We’ll hardly ever need raw SQL in this book,6 and I’ll
omit discussion of the SQL commands from now on, but you can learn a lot by
reading the SQL corresponding to Active Record commands.

You may have noticed that the new user object had nil values for the id
and the magic columns created_at and updated_at attributes. Let’s see if
our save changed anything:

>> user

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

We see that the id has been assigned a value of 1, while the magic columns have
6The only exception is in Section 14.3.3.

6.1. USER MODEL 307

been assigned the current time and date.7 Currently, the created and updated
timestamps are identical; we’ll see them differ in Section 6.1.5.

As with the User class in Section 4.4.5, instances of the User model allow
access to their attributes using a dot notation:

>> user.name

=> "Michael Hartl"

>> user.email

=> "michael@example.com"

>> user.updated_at

=> Thu, 22 Aug 2019 01:51:03 UTC +00:00

As we’ll see in Chapter 7, it’s often convenient to make and save a model
in two steps as we have above, but Active Record also lets you combine them
into one step with User.create:

>> User.create(name: "A Nother", email: "another@example.org")

#<User id: 2, name: "A Nother", email: "another@example.org", created_at:

"2019-08-22 01:53:22", updated_at: "2019-08-22 01:53:22">

>> foo = User.create(name: "Foo", email: "foo@bar.com")

#<User id: 3, name: "Foo", email: "foo@bar.com", created_at: "2019-08-22

01:54:03", updated_at: "2019-08-22 01:54:03">

Note that User.create, rather than returning true or false, returns the User
object itself, which we can optionally assign to a variable (such as foo in the
second command above).

The inverse of create is destroy:

>> foo.destroy

(0.1ms) SAVEPOINT active_record_1

SQL (0.2ms) DELETE FROM "users" WHERE "users"."id" = ? [["id", 3]]

7The timestamps are recorded in Coordinated Universal Time (UTC), which for most practical purposes is the
same as Greenwich Mean Time. But why call it UTC? From the NIST Time and Frequency FAQ:Q:Why is UTC
used as the acronym for Coordinated Universal Time instead of CUT?A: In 1970 the Coordinated Universal Time
system was devised by an international advisory group of technical experts within the International Telecommu-
nication Union (ITU). The ITU felt it was best to designate a single abbreviation for use in all languages in order
to minimize confusion. Since unanimous agreement could not be achieved on using either the English word order,
CUT, or the French word order, TUC, the acronym UTC was chosen as a compromise.

https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Greenwich_Mean_Time
https://www.nist.gov/pml/time-and-frequency-division/nist-time-frequently-asked-questions-faq#cut

308 CHAPTER 6. MODELING USERS

(0.1ms) RELEASE SAVEPOINT active_record_1

=> #<User id: 3, name: "Foo", email: "foo@bar.com", created_at: "2019-08-22

01:54:03", updated_at: "2019-08-22 01:54:03">

Like create, destroy returns the object in question, though I can’t recall ever
having used the return value of destroy. In addition, the destroyed object still
exists in memory:

>> foo

=> #<User id: 3, name: "Foo", email: "foo@bar.com", created_at: "2019-08-22

01:54:03", updated_at: "2019-08-22 01:54:03">

So how do we know if we really destroyed an object? And for saved and non-
destroyed objects, how can we retrieve users from the database? To answer
these questions, we need to learn how to use Active Record to find user objects.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that user.name and user.email are of class String.

2. Of what class are the created_at and updated_at attributes?

6.1.4 Finding user objects
Active Record provides several options for finding objects. Let’s use them to
find the first user we created while verifying that the third user (foo) has been
destroyed. We’ll start with the existing user:

>> User.find(1)

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.1. USER MODEL 309

Here we’ve passed the id of the user to User.find; Active Record returns the
user with that id.

Let’s see if the user with an id of 3 still exists in the database:

>> User.find(3)

ActiveRecord::RecordNotFound: Couldn't find User with ID=3

Since we destroyed our third user in Section 6.1.3, Active Record can’t find it in
the database. Instead, find raises an exception, which is a way of indicating an
exceptional event in the execution of a program—in this case, a nonexistent Ac-
tive Record id, leading find to raise an ActiveRecord::RecordNotFound
exception.8

In addition to the generic find, Active Record also allows us to find users
by specific attributes:

>> User.find_by(email: "michael@example.com")

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

Since we will be using email addresses as usernames, this sort of find will be
useful when we learn how to let users log in to our site (Chapter 7). If you’re
worried that find_by will be inefficient if there are a large number of users,
you’re ahead of the game; we’ll cover this issue, and its solution via database
indices, in Section 6.2.5.

We’ll end with a couple of more general ways of finding users. First, there’s
first:

>> User.first

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

Naturally, first just returns the first user in the database. There’s also all:
8Exceptions and exception handling are somewhat advanced Ruby subjects, and we won’t need them much in

this book. They are important, though, and I suggest learning about them using one of the Ruby books recom-
mended in Section 14.4.1.

310 CHAPTER 6. MODELING USERS

>> User.all

=> #<ActiveRecord::Relation [#<User id: 1, name: "Michael Hartl", email:

"michael@example.com", created_at: "2019-08-22 01:51:03", updated_at:

"2019-08-22 01:51:03">, #<User id: 2, name: "A Nother", email:

"another@example.org", created_at: "2019-08-22 01:53:22", updated_at:

"2019-08-22 01:53:22">]>

As you can see from the console output, User.all returns all the users in the
database as an object of class ActiveRecord::Relation, which is effec-
tively an array (Section 4.3.1).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Find the user by name. Confirm that find_by_name works as well.
(You will often encounter this older style of find_by in legacy Rails
applications.)

2. For most practical purposes, User.all acts like an array, but confirm
that in fact it’s of class User::ActiveRecord_Relation.

3. Confirm that you can find the length of User.all by passing it the
length method (Section 4.2.2). Ruby’s ability to manipulate objects
based on how they act rather than on their formal class type is called
duck typing, based on the aphorism that “If it looks like a duck, and it
quacks like a duck, it’s probably a duck.”

6.1.5 Updating user objects
Once we’ve created objects, we often want to update them. There are two ba-
sic ways to do this. First, we can assign attributes individually, as we did in
Section 4.4.5:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.1. USER MODEL 311

>> user # Just a reminder about our user's attributes

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 01:51:03", updated_at: "2019-08-22 01:51:03">

>> user.email = "mhartl@example.net"

=> "mhartl@example.net"

>> user.save

=> true

Note that the final step is necessary to write the changes to the database. We
can see what happens without a save by using reload, which reloads the object
based on the database information:

>> user.email

=> "mhartl@example.net"

>> user.email = "foo@bar.com"

=> "foo@bar.com"

>> user.reload.email

=> "mhartl@example.net"

Now that we’ve updated the user by running user.save, the magic col-
umns differ, as promised in Section 6.1.3:

>> user.created_at

=> Thu, 22 Aug 2019 01:51:03 UTC +00:00

>> user.updated_at

=> Thu, 22 Aug 2019 01:58:08 UTC +00:00

The second main way to update multiple attributes is to use update:9

>> user.update(name: "The Dude", email: "dude@abides.org")

=> true

>> user.name

=> "The Dude"

>> user.email

=> "dude@abides.org"

9Formerly update_attributes.

312 CHAPTER 6. MODELING USERS

The updatemethod accepts a hash of attributes, and on success performs both
the update and the save in one step (returning true to indicate that the save
went through). Note that if any of the validations fail, such as when a pass-
word is required to save a record (as implemented in Section 6.3), the call to
updatewill fail. If we need to update only a single attribute, using the singular
update_attribute bypasses this restriction by skipping the validations:

>> user.update_attribute(:name, "El Duderino")

=> true

>> user.name

=> "El Duderino"

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Update the user’s name using assignment and a call to save.

2. Update the user’s email address using a call to update.

3. Confirm that you can change the magic columns directly by updating
the created_at column using assignment and a save. Use the value
1.year.ago, which is a Rails way to create a timestamp one year before
the present time.

6.2 User validations
The User model we created in Section 6.1 now has working name and email
attributes, but they are completely generic: any string (including an empty one)
is currently valid in either case. And yet, names and email addresses are more
specific than this. For example, name should be non-blank, and email should
match the specific format characteristic of email addresses. Moreover, since

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.2. USER VALIDATIONS 313

we’ll be using email addresses as unique usernames when users log in, we
shouldn’t allow email duplicates in the database.

In short, we shouldn’t allow name and email to be just any strings; we
should enforce certain constraints on their values. Active Record allows us to
impose such constraints using validations (seen briefly before in Section 2.3.2).
In this section, we’ll cover several of the most common cases, validating pres-
ence, length, format and uniqueness. In Section 6.3.2 we’ll add a final common
validation, confirmation. And we’ll see in Section 7.3 how validations give us
convenient error messages when users make submissions that violate them.

6.2.1 A validity test
As noted in Box 3.3, test-driven development isn’t always the right tool for the
job, but model validations are exactly the kind of features for which TDD is a
perfect fit. It’s difficult to be confident that a given validation is doing exactly
what we expect it to without writing a failing test and then getting it to pass.

Our method will be to start with a validmodel object, set one of its attributes
to something we want to be invalid, and then test that it in fact is invalid. As a
safety net, we’ll first write a test to make sure the initial model object is valid.
This way, when the validation tests fail we’ll know it’s for the right reason (and
not because the initial object was invalid in the first place).

In what follows, and when doing TDD generally, it’s convenenient to work
with your editor split into two panes, with test code on the left and application
code on the right. My preferred setup with the cloud IDE is shown in Figure 6.7.

To get us started, the command in Listing 6.1 produced an initial test for
testing users, though in this case it’s practically blank (Listing 6.4).

Listing 6.4: The practically blank default User test.
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

test "the truth" do

assert true

end

end

314 CHAPTER 6. MODELING USERS

Figure 6.7: TDD with a split pane.

6.2. USER VALIDATIONS 315

To write a test for a valid object, we’ll create an initially valid User model
object @user using the special setup method (discussed briefly in the Chap-
ter 3 exercises), which automatically gets run before each test. Because @user
is an instance variable, it’s automatically available in all the tests, and we can
test its validity using the valid?method (Section 6.1.3). The result appears in
Listing 6.5.

Listing 6.5: A test for an initially valid user. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

test "should be valid" do

assert @user.valid?

end

end

Listing 6.5 uses the plain assert method, which in this case succeeds if
@user.valid? returns true and fails if it returns false.

Because our User model doesn’t currently have any validations, the initial
test should pass:

Listing 6.6: green
$ rails test:models

Here we’ve used rails test:models to run just the model tests (compare
to rails test:integration from Section 5.3.4).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

316 CHAPTER 6. MODELING USERS

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In the console, confirm that a new user is currently valid.

2. Confirm that the user created in Section 6.1.3 is also valid.

6.2.2 Validating presence
Perhaps the most elementary validation is presence, which simply verifies that
a given attribute is present. For example, in this section we’ll ensure that both
the name and email fields are present before a user gets saved to the database.
In Section 7.3.3, we’ll see how to propagate this requirement up to the signup
form for creating new users.

We’ll start with a test for the presence of a name attribute by building on
the test in Listing 6.5. As seen in Listing 6.7, all we need to do is set the @user
variable’s name attribute to a blank string (in this case, a string of spaces) and
then check (using the assert_not method) that the resulting User object is
not valid.

Listing 6.7: A test for validation of the name attribute. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

test "should be valid" do

assert @user.valid?

end

test "name should be present" do

@user.name = " "

assert_not @user.valid?

end

end

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.2. USER VALIDATIONS 317

At this point, the model tests should be red:

Listing 6.8: red
$ rails test:models

As we saw briefly before in the Chapter 2 exercises, the way to validate the
presence of the name attribute is to use the validates method with argument
presence: true, as shown in Listing 6.9. The presence: true argument
is a one-element options hash; recall from Section 4.3.4 that curly braces are
optional when passing hashes as the final argument in a method. (As noted in
Section 5.1.1, the use of options hashes is a recurring theme in Rails.)

Listing 6.9: Validating the presence of a name attribute. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true

end

Listing 6.9 may look like magic, but validates is just a method. An
equivalent formulation of Listing 6.9 using parentheses is as follows:

class User < ApplicationRecord

validates(:name, presence: true)

end

Let’s drop into the console to see the effects of adding a validation to our
User model:10

$ rails console --sandbox

>> user = User.new(name: "", email: "michael@example.com")

>> user.valid?

=> false

10I’ll omit the output of console commands when they are not particularly instructive—for example, the results
of User.new.

318 CHAPTER 6. MODELING USERS

Here we check the validity of the user variable using the valid? method,
which returns false when the object fails one or more validations, and true
when all validations pass. In this case, we only have one validation, so we know
which one failed, but it can still be helpful to check using the errors object
generated on failure:

>> user.errors.full_messages

=> ["Name can't be blank"]

(The error message is a hint that Rails validates the presence of an attribute
using the blank? method, which we saw at the end of Section 4.4.3.)

Because the user isn’t valid, an attempt to save the user to the database
automatically fails:

>> user.save

=> false

As a result, the test in Listing 6.7 should now be green:

Listing 6.10: green
$ rails test:models

Following the model in Listing 6.7, writing a test for email attribute pres-
ence is easy (Listing 6.11), as is the application code to get it to pass (List-
ing 6.12).

Listing 6.11: A test for validation of the email attribute. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

6.2. USER VALIDATIONS 319

end

test "should be valid" do

assert @user.valid?

end

test "name should be present" do

@user.name = ""

assert_not @user.valid?

end

test "email should be present" do

@user.email = " "

assert_not @user.valid?

end

end

Listing 6.12: Validating the presence of an email attribute. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true

validates :email, presence: true

end

At this point, the presence validations are complete, and the test suite should
be green:

Listing 6.13: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Make a new user called u and confirm that it’s initially invalid. What are
the full error messages?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

320 CHAPTER 6. MODELING USERS

2. Confirm that u.errors.messages is a hash of errors. How would you
access just the email errors?

6.2.3 Length validation
We’ve constrained our User model to require a name for each user, but we
should go further: the user’s names will be displayed on the sample site, so we
should enforce some limit on their length. With all the work we did in Sec-
tion 6.2.2, this step is easy.

There’s no science to picking a maximum length; we’ll just pull 50 out of
thin air as a reasonable upper bound, which means verifying that names of 51
characters are too long. In addition, although it’s unlikely ever to be a problem,
there’s a chance that a user’s email address could overrun the maximum length
of strings, which for many databases is 255. Because the format validation in
Section 6.2.4 won’t enforce such a constraint, we’ll add one in this section for
completeness. Listing 6.14 shows the resulting tests.

Listing 6.14: Tests for name and email length validations. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "name should not be too long" do

@user.name = "a" * 51

assert_not @user.valid?

end

test "email should not be too long" do

@user.email = "a" * 244 + "@example.com"

assert_not @user.valid?

end

end

6.2. USER VALIDATIONS 321

For convenience, we’ve used “string multiplication” in Listing 6.14 to make a
string 51 characters long. We can see how this works using the console:

>> "a" * 51

=> "aaa"

>> ("a" * 51).length

=> 51

The email length validation arranges to make a valid email address that’s one
character too long:

>> "a" * 244 + "@example.com"

=> "aaa

aaa

aaa

aaaaaaaaaaa@example.com"

>> ("a" * 244 + "@example.com").length

=> 256

At this point, the tests in Listing 6.14 should be red:

Listing 6.15: red
$ rails test

To get them to pass, we need to use the validation argument to constrain
length, which is just length, along with the maximum parameter to enforce
the upper bound (Listing 6.16).

Listing 6.16: Adding a length validation for the name attribute. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

validates :email, presence: true, length: { maximum: 255 }

end

Now the tests should be green:

322 CHAPTER 6. MODELING USERS

Listing 6.17: green
$ rails test

With our test suite passing again, we can move on to a more challenging vali-
dation: email format.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Make a new user with too-long name and email and confirm that it’s not
valid.

2. What are the error messages generated by the length validation?

6.2.4 Format validation
Our validations for the name attribute enforce only minimal constraints—any
non-blank name under 51 characters will do—but of course the email attribute
must satisfy the more stringent requirement of being a valid email address. So
far we’ve only rejected blank email addresses; in this section, we’ll require
email addresses to conform to the familiar pattern user@example.com.

Neither the tests nor the validation will be exhaustive, just good enough
to accept most valid email addresses and reject most invalid ones. We’ll start
with a couple of tests involving collections of valid and invalid addresses. To
make these collections, it’s worth knowing about the useful %w[] technique for
making arrays of strings, as seen in this console session:

>> %w[foo bar baz]

=> ["foo", "bar", "baz"]

>> addresses = %w[USER@foo.COM THE_US-ER@foo.bar.org first.last@foo.jp]

=> ["USER@foo.COM", "THE_US-ER@foo.bar.org", "first.last@foo.jp"]

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.2. USER VALIDATIONS 323

>> addresses.each do |address|

?> puts address

>> end

USER@foo.COM

THE_US-ER@foo.bar.org

first.last@foo.jp

Here we’ve iterated over the elements of the addresses array using the each
method (Section 4.3.2). With this technique in hand, we’re ready to write some
basic email format validation tests.

Because email format validation is tricky and error-prone, we’ll start with
some passing tests for valid email addresses to catch any errors in the vali-
dation. In other words, we want to make sure not just that invalid email ad-
dresses like user@example,com are rejected, but also that valid addresses like
user@example.com are accepted, even after we impose the validation
constraint. (Right now they’ll be accepted because all non-blank email ad-
dresses are currently valid.) The result for a representative sample of valid
email addresses appears in Listing 6.18.

Listing 6.18: Tests for valid email formats. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email validation should accept valid addresses" do

valid_addresses = %w[user@example.com USER@foo.COM A_US-ER@foo.bar.org

first.last@foo.jp alice+bob@baz.cn]

valid_addresses.each do |valid_address|

@user.email = valid_address

assert @user.valid?, "#{valid_address.inspect} should be valid"

end

end

end

324 CHAPTER 6. MODELING USERS

Note that we’ve included an optional second argument to the assertion with a
custom error message, which in this case identifies the address causing the test
to fail:

assert @user.valid?, "#{valid_address.inspect} should be valid"

(This uses the interpolated inspect method mentioned in Section 4.3.3.) In-
cluding the specific address that causes any failure is especially useful in a test
with an each loop like Listing 6.18; otherwise, any failure would merely iden-
tify the line number, which is the same for all the email addresses, and which
wouldn’t be sufficient to identify the source of the problem.

Next we’ll add tests for the invalidity of a variety of invalid email addresses,
such as user@example,com (comma in place of dot) and user_at_foo.org (miss-
ing the ‘@’ sign). As in Listing 6.18, Listing 6.19 includes a custom error mes-
sage to identify the exact address causing any failure.

Listing 6.19: Tests for email format validation. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email validation should reject invalid addresses" do

invalid_addresses = %w[user@example,com user_at_foo.org user.name@example.

foo@bar_baz.com foo@bar+baz.com]

invalid_addresses.each do |invalid_address|

@user.email = invalid_address

assert_not @user.valid?, "#{invalid_address.inspect} should be invalid"

end

end

end

At this point, the tests should be red:

6.2. USER VALIDATIONS 325

Listing 6.20: red
$ rails test

The application code for email format validation uses the format valida-
tion, which works like this:

validates :email, format: { with: /<regular expression>/ }

This validates the attribute with the given regular expression (or regex), which
is a powerful (and often cryptic) language for matching patterns in strings. This
means we need to construct a regular expression to match valid email addresses
while not matching invalid ones.

There actually exists a full regex for matching email addresses according
to the official email standard, but it’s enormous, obscure, and quite possibly
counter-productive.11 In this tutorial, we’ll adopt a more pragmatic regex that
has proven to be robust in practice. Here’s what it looks like:

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

To help understand where this comes from, Table 6.1 breaks it into bite-sized
pieces.12

Although you can learn a lot by studying Table 6.1, to really understand
regular expressions I consider using an interactive regular expression matcher
like Rubular to be essential (Figure 6.8).13 The Rubular website has a beautiful
interactive interface for making regular expressions, along with a handy regex
quick reference. I encourage you to study Table 6.1 with a browser window

11For example, did you know that "Michael Hartl"@example.com, with quotation marks and a space in
the middle, is a valid email address according to the standard? Incredibly, it is—but it’s absurd.

12Note that, in Table 6.1, “letter” really means “lower-case letter”, but the i at the end of the regex enforces
case-insensitive matching.

13If you find it as useful as I do, I encourage you to donate to Rubular to reward developer Michael Lovitt for
his wonderful work.

https://www.rubular.com/
https://bit.ly/donate-to-rubular
https://lovitt.net/

326 CHAPTER 6. MODELING USERS

Expression Meaning
/\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i full regex
/ start of regex
\A match start of a string
[\w+\-.]+ at least one word character, plus, hyphen, or dot
@ literal “at sign”
[a-z\d\-.]+ at least one letter, digit, hyphen, or dot
\. literal dot
[a-z]+ at least one letter
\z match end of a string
/ end of regex
i case-insensitive

Table 6.1: Breaking down the valid email regex.

open to Rubular—no amount of reading about regular expressions can replace
playing with them interactively. (Note: If you use the regex from Table 6.1 in
Rubular, I recommend leaving off the \A and \z characters so that you can
match more than one email address at a time in the given test string. Also note
that the regex consists of the characters inside the slashes /.../, so you should
omit those when using Rubular.)

Applying the regular expression from Table 6.1 to the email format vali-
dation yields the code in Listing 6.21.

Listing 6.21: Validating the email format with a regular expression. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX }

end

Here the regex VALID_EMAIL_REGEX is a constant, indicated in Ruby by a
name starting with a capital letter. The code

6.2. USER VALIDATIONS 327

Figure 6.8: The awesome Rubular regular expression editor.

328 CHAPTER 6. MODELING USERS

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX }

ensures that only email addresses thatmatch the patternwill be considered valid.
(The expression above has one minor weakness: it allows invalid addresses
that contain consecutive dots, such as foo@bar..com. Updating the regex in
Listing 6.21 to fix this blemish is left as an exercise (Section 6.2.4).)

At this point, the tests should be green:

Listing 6.22: green
$ rails test:models

This means that there’s only one constraint left: enforcing email uniqueness.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By pasting in the valid addresses from Listing 6.18 and invalid addresses
from Listing 6.19 into the test string area at Rubular, confirm that the
regex from Listing 6.21 matches all of the valid addresses and none of
the invalid ones.

2. As noted above, the email regex in Listing 6.21 allows invalid email ad-
dresses with consecutive dots in the domain name, i.e., addresses of the
form foo@bar..com. Add this address to the list of invalid addresses in
Listing 6.19 to get a failing test, and then use the more complicated regex
shown in Listing 6.23 to get the test to pass.

3. Add foo@bar..com to the list of addresses at Rubular, and confirm that
the regex shown in Listing 6.23 matches all the valid addresses and none
of the invalid ones.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.2. USER VALIDATIONS 329

Listing 6.23: Disallowing double dots in email domain names. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-]+(\.[a-z\d\-]+)*\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX }

end

6.2.5 Uniqueness validation
To enforce uniqueness of email addresses (so that we can use them as user-
names), we’ll be using the :uniqueness option to the validates method.
But be warned: there’s a major caveat, so don’t just skim this section—read it
carefully.

We’ll start with some short tests. In our previous model tests, we’ve mainly
used User.new, which just creates a Ruby object in memory, but for unique-
ness tests we actually need to put a record into the database.14 The initial du-
plicate email test appears in Listing 6.24.

Listing 6.24: A test for the rejection of duplicate email addresses. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email addresses should be unique" do

duplicate_user = @user.dup

@user.save

assert_not duplicate_user.valid?

14As noted briefly in the introduction to this section, there is a dedicated test database, db/test.sqlite3, for
this purpose.

330 CHAPTER 6. MODELING USERS

end

end

The method here is to make a user with the same email address as @user using
@user.dup, which creates a duplicate user with the same attributes. Since we
then save @user, the duplicate user has an email address that already exists in
the database, and hence should not be valid.

We can get the new test in Listing 6.24 to pass by adding uniqueness:
true to the email validation, as shown in Listing 6.25.

Listing 6.25: Validating the uniqueness of email addresses. green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

end

We’re not quite done, though. Email addresses are typically processed
as if they were case-insensitive—i.e., foo@bar.com is treated the same as
FOO@BAR.COM or FoO@BAr.coM—so our validation should incorporate this
as well.15 It’s thus important to test for case-insensitivity, which we do with the
code in Listing 6.26.

Listing 6.26: Testing case-insensitive email uniqueness. red
test/models/user_test.rb

require 'test_helper'

15Technically, only the domain part of the email address is case-insensitive: foo@bar.com is actually different
from Foo@bar.com. In practice, though, it is a bad idea to rely on this fact; as noted at about.com, “Since the case
sensitivity of email addresses can create a lot of confusion, interoperability problems and widespread headaches,
it would be foolish to require email addresses to be typed with the correct case. Hardly any email service or ISP
does enforce case sensitive email addresses, returning messages whose recipient’s email address was not typed
correctly (in all upper case, for example).” Thanks to reader Riley Moses for pointing this out.

https://www.lifewire.com/are-email-addresses-case-sensitive-1171111

6.2. USER VALIDATIONS 331

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email addresses should be unique" do

duplicate_user = @user.dup

duplicate_user.email = @user.email.upcase

@user.save

assert_not duplicate_user.valid?

end

end

Here we are using the upcasemethod on strings (seen briefly in Section 4.3.2).
This test does the same thing as the initial duplicate email test, but with an upper-
case email address instead. If this test feels a little abstract, go ahead and fire
up the console:

$ rails console --sandbox

>> user = User.create(name: "Example User", email: "user@example.com")

>> user.email.upcase

=> "USER@EXAMPLE.COM"

>> duplicate_user = user.dup

>> duplicate_user.email = user.email.upcase

>> duplicate_user.valid?

=> true

Of course, duplicate_user.valid? is currently true because the u-
niqueness validation is case-sensitive, but we want it to be false. Fortunately,
:uniqueness accepts an option, :case_sensitive, for just this purpose
(Listing 6.27).

Listing 6.27: Validating the uniqueness of email addresses, ignoring case.
green
app/models/user.rb

class User < ApplicationRecord

validates :name, presence: true, length: { maximum: 50 }

332 CHAPTER 6. MODELING USERS

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: { case_sensitive: false }

end

Note that we have simply replaced true in Listing 6.25 with case_sensi-
tive: false in Listing 6.27. (Rails infers that uniqueness should be true
as well.)

At this point, our application—with an important caveat—enforces email
uniqueness, and our test suite should pass:

Listing 6.28: green
$ rails test

There’s just one small problem, which is that the Active Record uniqueness
validation does not guarantee uniqueness at the database level. Here’s a sce-
nario that explains why:

1. Alice signs up for the sample app, with address alice@wonderland.com.

2. Alice accidentally clicks on “Submit” twice, sending two requests in
quick succession.

3. The following sequence occurs: request 1 creates a user in memory that
passes validation, request 2 does the same, request 1’s user gets saved,
request 2’s user gets saved.

4. Result: two user records with the exact same email address, despite the
uniqueness validation

If the above sequence seems implausible, believe me, it isn’t: it can happen on
any Rails website with significant traffic (which I once learned the hard way).
Luckily, the solution is straightforward to implement: we just need to enforce
uniqueness at the database level as well as at the model level. Our method is

6.2. USER VALIDATIONS 333

to create a database index on the email column (Box 6.2), and then require that
the index be unique.

Box 6.2. Database indices

When creating a column in a database, it is important to consider whether we
will need to find records by that column. Consider, for example, the email at-
tribute created by the migration in Listing 6.2. When we allow users to log in to the
sample app starting in Chapter 7, we will need to find the user record correspond-
ing to the submitted email address. Unfortunately, based on the naïve data model,
the only way to find a user by email address is to look through each user row in
the database and compare its email attribute to the given email—which means we
might have to examine every row (since the user could be the last one in the da-
tabase). This is known in the database business as a full-table scan, and for a real
site with thousands of users it is a Bad Thing.

Putting an index on the email column fixes the problem. To understand a da-
tabase index, it’s helpful to consider the analogy of a book index. In a book, to
find all the occurrences of a given string, say “foobar”, you would have to scan
each page for “foobar”—the paper version of a full-table scan. With a book index,
on the other hand, you can just look up “foobar” in the index to see all the pages
containing “foobar”. A database index works essentially the same way.

The email index represents an update to our data modeling requirements,
which (as discussed in Section 6.1.1) is handled in Rails using migrations. We
saw in Section 6.1.1 that generating the User model automatically created a
new migration (Listing 6.2); in the present case, we are adding structure to an
existing model, so we need to create a migration directly using the migration
generator:

$ rails generate migration add_index_to_users_email

http://catb.org/jargon/html/B/Bad-Thing.html

334 CHAPTER 6. MODELING USERS

Unlike the migration for users, the email uniqueness migration is not pre-
defined, so we need to fill in its contents with Listing 6.29.16

Listing 6.29: The migration for enforcing email uniqueness.
db/migrate/[timestamp]_add_index_to_users_email.rb

class AddIndexToUsersEmail < ActiveRecord::Migration[6.0]

def change

add_index :users, :email, unique: true

end

end

This uses a Rails method called add_index to add an index on the email
column of the users table. The index by itself doesn’t enforce uniqueness, but
the option unique: true does.

The final step is to migrate the database:

$ rails db:migrate

(If the migration fails, make sure to exit any running sandbox console sessions,
which can lock the database and prevent migrations.)

At this point, the test suite should be red due to a violation of the unique-
ness constraint in the fixtures, which contain sample data for the test database.
User fixtures were generated automatically in Listing 6.1, and as shown in List-
ing 6.30 the email addresses are not unique. (They’re not valid either, but fixture
data doesn’t get run through the validations.)

Listing 6.30: The default user fixtures. red
test/fixtures/users.yml

Read about fixtures at https://api.rubyonrails.org/classes/ActiveRecord/

FixtureSet.html

16Of course, we could just edit the migration file for the users table in Listing 6.2, but that would require
rolling back and then migrating back up. The Rails Way™ is to use migrations every time we discover that our
data model needs to change.

6.2. USER VALIDATIONS 335

one:

name: MyString

email: MyString

two:

name: MyString

email: MyString

Because wewon’t need fixtures until Chapter 8, for nowwe’ll just remove them,
leaving an empty fixtures file (Listing 6.31).

Listing 6.31: An empty fixtures file. green
test/fixtures/users.yml

empty

Having addressed the uniqueness caveat, there’s one more change we need
to make to be assured of email uniqueness. Some database adapters use case-
sensitive indices, considering the strings “Foo@ExAMPle.CoM” and “foo@-
example.com” to be distinct, but our application treats those addresses as the
same. To avoid this incompatibility, we’ll standardize on all lower-case ad-
dresses, converting “Foo@ExAMPle.CoM” to “foo@example.com” before
saving it to the database. The way to do this is with a callback, which is
a method that gets invoked at a particular point in the lifecycle of an Active
Record object.

In the present case, that point is before the object is saved, so we’ll use
a before_save callback to downcase the email attribute before saving the
user.17 The result appears in Listing 6.32. (This is just a first implementation;
we’ll discuss this subject again in Section 11.1, where we’ll use the preferred
method reference convention for defining callbacks.)

Listing 6.32: Ensuring email uniqueness by downcasing the email attribute.
red
app/models/user.rb

17See the Rails API entry on callbacks for more information on which callbacks Rails supports.

https://en.wikipedia.org/wiki/Callback_(computer_science)
https://api.rubyonrails.org/v6.0.2.1/classes/ActiveRecord/Callbacks.html

336 CHAPTER 6. MODELING USERS

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

end

The code in Listing 6.32 passes a block to the before_save callback and sets
the user’s email address to a lower-case version of its current value using the
downcase string method. Note also that Listing 6.32 reverts the uniqueness
constraint back to true, since case-sensitive matching works fine if all of the
emails are lower-case. Indeed, this practice prevents problems applying the
database index from Listing 6.29, since many databases have difficulty using
an index when combined with a case-insensitive match.18

Restoring the original constraint does break the test in Listing 6.26, but
that’s easy to fix by reverting the test to its previous form from Listing 6.24, as
shown again in Listing 6.33.

Listing 6.33: Restoring the original email uniqueness test. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email addresses should be unique" do

duplicate_user = @user.dup

@user.save

assert_not duplicate_user.valid?

end

end

18Thanks to reader Alex Friedman for pointing this out.

6.2. USER VALIDATIONS 337

By the way, in Listing 6.32 we could have written the assignment as

self.email = self.email.downcase

(where self refers to the current user), but inside the User model the self
keyword is optional on the right-hand side:

self.email = email.downcase

We encountered this idea briefly in the context of reverse in the palindrome
method (Section 4.4.2), which also noted that self is not optional in an assign-
ment, so

email = email.downcase

wouldn’t work. (We’ll discuss this subject in more depth in Section 9.1.)
At this point, the Alice scenario above will work fine: the database will save

a user record based on the first request, and it will reject the second save because
the duplicate email address violates the uniqueness constraint. (An error will
appear in the Rails log, but that doesn’t do any harm.) Moreover, adding this
index on the email attribute accomplishes a second goal, alluded to briefly in
Section 6.1.4: as noted in Box 6.2, the index on the email attribute fixes a
potential efficiency problem by preventing a full-table scan when finding users
by email address.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Add a test for the email downcasing from Listing 6.32, as shown in List-
ing 6.34. This test uses the reloadmethod for reloading a value from the

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

338 CHAPTER 6. MODELING USERS

database and the assert_equal method for testing equality. To verify
that Listing 6.34 tests the right thing, comment out the before_save
line to get to red, then uncomment it to get to green.

2. By running the test suite, verify that the before_save callback can
be written using the “bang” method email.downcase! to modify the
email attribute directly, as shown in Listing 6.35.

Listing 6.34: A test for the email downcasing from Listing 6.32.
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

test "email addresses should be unique" do

duplicate_user = @user.dup

@user.save

assert_not duplicate_user.valid?

end

test "email addresses should be saved as lower-case" do

mixed_case_email = "Foo@ExAMPle.CoM"

@user.email = mixed_case_email

@user.save

assert_equal mixed_case_email.downcase, @user.reload.email

end

end

Listing 6.35: An alternate callback implementation. green
app/models/user.rb

class User < ApplicationRecord

before_save { email.downcase! }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

6.3. ADDING A SECURE PASSWORD 339

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

end

6.3 Adding a secure password
Now that we’ve defined validations for the name and email fields, we’re ready
to add the last of the basic User attributes: a secure password. The method is to
require each user to have a password (with a password confirmation), and then
store a hashed version of the password in the database. (There is some potential
for confusion here. In the present context, a hash refers not to the Ruby data
structure from Section 4.3.3 but rather to the result of applying an irreversible
hash function to input data.) We’ll also add a way to authenticate a user based
on a given password, a method we’ll use in Chapter 8 to allow users to log in
to the site.

The method for authenticating users will be to take a submitted password,
hash it, and compare the result to the hashed value stored in the database. If
the two match, then the submitted password is correct and the user is authenti-
cated. By comparing hashed values instead of raw passwords, we will be able to
authenticate users without storing the passwords themselves. This means that,
even if our database is compromised, our users’ passwords will still be secure.

6.3.1 A hashed password
Most of the secure password machinery will be implemented using a single
Rails method called has_secure_password, which we’ll include in the User
model as follows:

class User < ApplicationRecord

.

.

.

has_secure_password

end

https://en.wikipedia.org/wiki/Hash_function

340 CHAPTER 6. MODELING USERS

When included in a model as above, this one method adds the following func-
tionality:

• The ability to save a securely hashed password_digest attribute to the
database

• A pair of virtual attributes19 (password and password_confirma-

tion), including presence validations upon object creation and a vali-
dation requiring that they match

• An authenticate method that returns the user when the password is
correct (and false otherwise)

The only requirement for has_secure_password to work its magic is for
the corresponding model to have an attribute called password_digest. (The
name digest comes from the terminology of cryptographic hash functions. In
this context, hashed password and password digest are synonyms.)20 In the
case of the User model, this leads to the data model shown in Figure 6.9.

To implement the data model in Figure 6.9 , we first generate an appropriate
migration for the password_digest column. We can choose any migration
name we want, but it’s convenient to end the name with to_users, since in this
case Rails automatically constructs a migration to add columns to the users
table. The result, with migration name add_password_digest_to_users,
appears as follows:

$ rails generate migration add_password_digest_to_users password_digest:string

19In this context, virtual means that the attributes exist on the model object but do not correspond to columns
in the database.

20Hashed password digests are often erroneously referred to as encrypted passwords. For example, the source
code of has_secure_passwordmakes this mistake, as did the first two editions of this tutorial. This terminology
is wrong because by design encryption is reversible—the ability to encrypt implies the ability to decrypt as well. In
contrast, the whole point of calculating a password’s hash digest is to be irreversible, so that it is computationally
intractable to infer the original password from the digest. (Thanks to reader Andy Philips for pointing out this
issue and for encouraging me to fix the broken terminology.)

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb
https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb

6.3. ADDING A SECURE PASSWORD 341

password_digest string
updated_at datetime
created_at datetime
email string

id
name string

integer
users

Figure 6.9: The User data model with an added password_digest attribute.

Here we’ve also supplied the argument password_digest:string with the
name and type of attribute we want to create. (Compare this to the original gen-
eration of the users table in Listing 6.1, which included the arguments name:-
string and email:string.) By including password_digest:string,
we’ve given Rails enough information to construct the entire migration for us,
as seen in Listing 6.36.

Listing 6.36: The migration to add a password_digest column.
db/migrate/[timestamp]_add_password_digest_to_users.rb

class AddPasswordDigestToUsers < ActiveRecord::Migration[6.0]

def change

add_column :users, :password_digest, :string

end

end

Listing 6.36 uses the add_column method to add a password_digest col-
umn to the users table. To apply it, we just migrate the database:

$ rails db:migrate

342 CHAPTER 6. MODELING USERS

Tomake the password digest, has_secure_password uses a state-of-the-
art hash function called bcrypt. By hashing the password with bcrypt, we ensure
that an attacker won’t be able to log in to the site even if they manage to obtain
a copy of the database. To use bcrypt in the sample application, we need to add
the bcrypt gem to our Gemfile (Listing 6.37).21

Listing 6.37: Adding bcrypt to the Gemfile.
source 'https://rubygems.org'

gem 'rails', '6.0.2.1'

gem 'bcrypt', '3.1.13'

gem 'bootstrap-sass', '3.4.1'

.

.

.

Then run bundle install as usual:

$ bundle install

6.3.2 User has secure password
Now that we’ve supplied the User model with the required password_digest
attribute and installed bcrypt, we’re ready to add has_secure_password to
the User model, as shown in Listing 6.38.

Listing 6.38: Adding has_secure_password to the User model. red
app/models/user.rb

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

21As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://en.wikipedia.org/wiki/Bcrypt
https://gemfiles-6th-ed.railstutorial.org/

6.3. ADDING A SECURE PASSWORD 343

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

end

As indicated by the red indicator in Listing 6.38, the tests are now failing,
as you can confirm at the command line:

Listing 6.39: red
$ rails test

The reason is that, as noted in Section 6.3.1, has_secure_password en-
forces validations on the virtual password and password_confirmation

attributes, but the tests in Listing 6.26 create an @user variable without these
attributes:

def setup

@user = User.new(name: "Example User", email: "user@example.com")

end

So, to get the test suite passing again, we just need to add a password and its
confirmation, as shown in Listing 6.40.

Listing 6.40: Adding a password and its confirmation. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

end

344 CHAPTER 6. MODELING USERS

Note that the first line inside the setupmethod includes an additional comma at
the end, as required by Ruby’s hash syntax (Section 4.3.3). Leaving this comma
off will produce a syntax error, and you should use your technical sophistication
(Box 1.2) to identify and resolve such errors if (or, more realistically, when) they
occur.

At this point the tests should be green:

Listing 6.41: green
$ rails test

We’ll see in just a moment the benefits of adding has_secure_password to
the User model (Section 6.3.4), but first we’ll add a minimal requirement on
password security.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that a user with valid name and email still isn’t valid overall.

2. What are the error messages for a user with no password?

6.3.3 Minimum password standards
It’s good practice in general to enforce some minimum standards on passwords
to make them harder to guess. There are many options for enforcing password
strength in Rails, but for simplicity we’ll just enforce a minimum length and
the requirement that the password not be blank. Picking a length of 6 as a
reasonable minimum leads to the validation test shown in Listing 6.42.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.google.com/search?q=rails+enforce+password+strength
https://www.google.com/search?q=rails+enforce+password+strength

6.3. ADDING A SECURE PASSWORD 345

Listing 6.42: Testing for a minimum password length. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

test "password should be present (nonblank)" do

@user.password = @user.password_confirmation = " " * 6

assert_not @user.valid?

end

test "password should have a minimum length" do

@user.password = @user.password_confirmation = "a" * 5

assert_not @user.valid?

end

end

Note the use of the compact multiple assignment

@user.password = @user.password_confirmation = "a" * 5

in Listing 6.42. This arranges to assign a particular value to the password and
its confirmation at the same time (in this case, a string of length 5, constructed
using string multiplication as in Listing 6.14).

You may be able to guess the code for enforcing a minimum length con-
straint by referring to the corresponding maximum validation for the user’s name
(Listing 6.16):

validates :password, length: { minimum: 6 }

Combining this with a presence validation (Section 6.2.2) to ensure nonblank
passwords, this leads to the User model shown in Listing 6.43. (It turns out the

346 CHAPTER 6. MODELING USERS

has_secure_password method includes a presence validation, but unfortu-
nately it applies only to records with empty passwords, which allows users to
create invalid passwords like ' ' (six spaces).)

Listing 6.43: The complete implementation for secure passwords. green
app/models/user.rb

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

end

At this point, the tests should be green:

Listing 6.44: green
$ rails test:models

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm that a user with valid name and email but a too-short password
isn’t valid.

2. What are the associated error messages?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.3. ADDING A SECURE PASSWORD 347

6.3.4 Creating and authenticating a user
Now that the basic User model is complete, we’ll create a user in the database
as preparation for making a page to show the user’s information in Section 7.1.
We’ll also take a more concrete look at the effects of adding has_secure_-
password to the User model, including an examination of the important au-
thenticate method.

Since users can’t yet sign up for the sample application through the web—
that’s the goal of Chapter 7—we’ll use the Rails console to create a new user
by hand. For convenience, we’ll use the create method discussed in Sec-
tion 6.1.3, but in the present case we’ll take care not to start in a sandbox so that
the resulting user will be saved to the database. This means starting an ordinary
rails console session and then creating a user with a valid name and email
address together with a valid password and matching confirmation:

$ rails console

>> User.create(name: "Michael Hartl", email: "michael@example.com",

?> password: "foobar", password_confirmation: "foobar")

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 03:15:38", updated_at: "2019-08-22 03:15:38",

password_digest: [FILTERED]>

To check that this worked, let’s look at the resulting users table in the devel-
opment database using DB Browser for SQLite, as shown in Figure 6.10.22 (If
you’re using the cloud IDE, you should download the database file as in Fig-
ure 6.5.) Note that the columns correspond to the attributes of the data model
defined in Figure 6.9.

Returning to the console, we can see the effect of has_secure_password
from Listing 6.43 by looking at the password_digest attribute:

22If for any reason something went wrong, you can always reset the database as follows:
1. Quit the console.
2. Run $ rm -f development.sqlite3 at the command line to remove the database. (We’ll learn a

more elegant method for doing this in Chapter 7.)
3. Re-run the migrations using $ rails db:migrate.
4. Restart the console.

348 CHAPTER 6. MODELING USERS

Figure 6.10: A user row in the SQLite database db/development.sqlite3.

6.3. ADDING A SECURE PASSWORD 349

>> user = User.find_by(email: "michael@example.com")

>> user.password_digest

=> "$2a$12$WgjER5ovLFjC2hmCItmbTe6nAXzT3bO66GiAQ83Ev03eVp32zyNYG"

This is the hashed version of the password ("foobar") used to initialize the
user object. Because it’s constructed using bcrypt, it is computationally im-
practical to use the digest to discover the original password.23

As noted in Section 6.3.1, has_secure_password automatically adds an
authenticate method to the corresponding model objects. This method de-
termines if a given password is valid for a particular user by computing its digest
and comparing the result to password_digest in the database. In the case of
the user we just created, we can try a couple of invalid passwords as follows:

>> user.authenticate("not_the_right_password")

false

>> user.authenticate("foobaz")

false

Here user.authenticate returns false for invalid password. If we instead
authenticate with the correct password, authenticate returns the user itself:

>> user.authenticate("foobar")

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 03:15:38", updated_at: "2019-08-22 03:15:38",

password_digest: [FILTERED]>

In Chapter 8, we’ll use the authenticatemethod to sign registered users into
our site. In fact, it will turn out not to be important to us that authenticate
returns the user itself; all that will matter is that it returns a value that is true
in a boolean context. Recalling from Section 4.2.2 that !! converts an object to
its corresponding boolean value, we can see that user.authenticate does
the job nicely:

23By design, the bcrypt algorithm produces a salted hash, which protects against two important classes of attacks
(dictionary attacks and rainbow table attacks).

https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Dictionary_attack
https://en.wikipedia.org/wiki/Rainbow_table

350 CHAPTER 6. MODELING USERS

>> !!user.authenticate("foobar")

=> true

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Quit and restart the console, and then find the user created in this section.

2. Try changing the name by assigning a new name and calling save. Why
didn’t it work?

3. Update user’s name to use your name. Hint: The necessary technique
is covered in Section 6.1.5.

6.4 Conclusion
Starting from scratch, in this chapter we created a working User model with
name, email, and password attributes, together with validations enforcing sev-
eral important constraints on their values. In addition, we have the ability to se-
curely authenticate users using a given password. This is a remarkable amount
of functionality for only twelve lines of code.

In Chapter 7, we’ll make a working signup form to create new users, to-
gether with a page to display each user’s information. In Chapter 8, we’ll then
use the authentication machinery from Section 6.3 to let users log into the site.

If you’re using Git, now would be a good time to commit if you haven’t
done so in a while:

$ rails test

$ git add -A

$ git commit -m "Make a basic User model (including secure passwords)"

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

6.4. CONCLUSION 351

Then merge back into the master branch and push to the remote repository:

$ git checkout master

$ git merge modeling-users

$ git push

To get the User model working in production, we need to run the migrations
at Heroku, which we can do with heroku run:

$ rails test

$ git push heroku

$ heroku run rails db:migrate

We can verify that this worked by running a console in production:

$ heroku run rails console --sandbox

>> User.create(name: "Michael Hartl", email: "michael@example.com",

?> password: "foobar", password_confirmation: "foobar")

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.com",

created_at: "2019-08-22 03:20:06", updated_at: "2019-08-22 03:20:06",

password_digest: [FILTERED]>

6.4.1 What we learned in this chapter
• Migrations allow us to modify our application’s data model.

• Active Record comes with a large number of methods for creating and
manipulating data models.

• Active Record validations allow us to place constraints on the data in our
models.

• Common validations include presence, length, and format.

• Regular expressions are cryptic but powerful.

352 CHAPTER 6. MODELING USERS

• Defining a database index improves lookup efficiency while allowing en-
forcement of uniqueness at the database level.

• We can add a secure password to a model using the built-in has_se-

cure_password method.

Chapter 7

Sign up
Now that we have a working User model, it’s time to add an ability fewwebsites
can live without: letting users sign up. We’ll use an HTML form to submit user
signup information to our application (Section 7.2), which will then be used to
create a new user and save its attributes to the database (Section 7.4). At the
end of the signup process, it’s important to render a profile page with the newly
created user’s information, so we’ll begin by making a page for showing users,
which will serve as the first step toward implementing the REST architecture for
users (Section 2.2.2). Along the way, we’ll build on our work in Section 5.3.4
to write succinct and expressive integration tests.

In this chapter, we’ll rely on the User model validations from Chapter 6 to
increase the odds of new users having valid email addresses. In Chapter 11,
we’ll make sure of email validity by adding a separate account activation step
to user signup.

Although this tutorial is designed to be as simple as possible while still being
professional-grade, web development is a complicated subject, and Chapter 7
necessarily marks a significant increase in the difficulty of the exposition. I
recommend taking your time with the material and reviewing it as necessary.
(Some readers have reported simply doing the chapter twice is a helpful exer-
cise.) You might also consider subscribing to the courses at Learn Enough to
gain additional assistance, both with this tutorial and with its relevant prerequi-
sites (especially Learn Enough Ruby to Be Dangerous).

353

https://www.learnenough.com/
https://www.learnenough.com/ruby

354 CHAPTER 7. SIGN UP

7.1 Showing users
In this section, we’ll take the first steps toward the final profile bymaking a page
to display a user’s name and profile photo, as indicated by the mockup in Fig-
ure 7.1.1 Our eventual goal for the user profile pages is to show the user’s profile
image, basic user data, and a list of microposts, as mocked up in Figure 7.2.2
(Figure 7.2 includes an example of lorem ipsum text, which has a fascinating
story that you should definitely read about some time.) We’ll complete this
task, and with it the sample application, in Chapter 14.

If you’re following alongwith version control, make a topic branch as usual:

$ git checkout -b sign-up

7.1.1 Debug and Rails environments
The profiles in this section will be the first truly dynamic pages in our applica-
tion. Although the view will exist as a single page of code, each profile will
be customized using information retrieved from the application’s database. As
preparation for adding dynamic pages to our sample application, now is a good
time to add some debug information to our site layout (Listing 7.1). This dis-
plays some useful information about each page using the built-in debugmethod
and params variable (which we’ll learn more about in Section 7.1.2).

Listing 7.1: Adding some debug information to the site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

.

1Mockingbird doesn’t support custom images like the profile photo in Figure 7.1; I put that in by hand using
GIMP.

2Image retrieved from https://www.flickr.com/photos/43803060@N00/24308857/ on 2014-06-16. Copyright
© 2002 by Shaun Wallin and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic
license.

http://www.straightdope.com/columns/read/2290/what-does-the-filler-text-lorem-ipsum-mean
http://www.straightdope.com/columns/read/2290/what-does-the-filler-text-lorem-ipsum-mean
https://gomockingbird.com/
https://www.gimp.org/
https://creativecommons.org/licenses/by/2.0/

7.1. SHOWING USERS 355

Figure 7.1: A mockup of the user profile made in this section.

356 CHAPTER 7. SIGN UP

Figure 7.2: A mockup of our best guess at the final profile page.

7.1. SHOWING USERS 357

.

.

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

<%= render 'layouts/footer' %>

<%= debug(params) if Rails.env.development? %>

</div>

</body>

</html>

Since we don’t want to display debug information to users of a deployed
application, Listing 7.1 uses

if Rails.env.development?

to restrict the debug information to the development environment, which is one
of three environments defined by default in Rails (Box 7.1).3 In particular,
Rails.env.development? is true only in a development environment, so
the embedded Ruby

<%= debug(params) if Rails.env.development? %>

won’t be inserted into production applications or tests. (Inserting the debug
information into tests probably wouldn’t do any harm, but it probably wouldn’t
do any good, either, so it’s best to restrict the debug display to development
only.)

Box 7.1. Rails environments

Rails comes equipped with three environments: test, development, and
production. The default environment for the Rails console is development:

3You can define your own custom environments as well; see the RailsCast on adding an environment for details.

http://railscasts.com/episodes/72-adding-an-environment

358 CHAPTER 7. SIGN UP

$ rails console

Loading development environment

>> Rails.env

=> "development"

>> Rails.env.development?

=> true

>> Rails.env.test?

=> false

As you can see, Rails provides aRails object with anenv attribute and associated
environment boolean methods, so that, for example, Rails.env.test? returns
true in a test environment and false otherwise.

If you ever need to run a console in a different environment (to debug a test, for
example), you can pass the environment as a parameter to the console script:

$ rails console test

Loading test environment

>> Rails.env

=> "test"

>> Rails.env.test?

=> true

As with the console, development is the default environment for the Rails
server, but you can also run it in a different environment:

$ rails server --environment production

If you view your app running in production, it won’t work without a production
database, which we can create by running rails db:migrate in production:

$ rails db:migrate RAILS_ENV=production

7.1. SHOWING USERS 359

(I find it confusing that the idiomatic commands to run the console, server, and mi-
grate commands in non-default environments use different syntax, which is why I
bothered showing all three. It’s worth noting, though, that preceding any of them
with RAILS_ENV=<env> will also work, as in RAILS_ENV=production

rails server).
By the way, if you have deployed your sample app to Heroku, you can see its

environment using heroku run rails console:

$ heroku run rails console

>> Rails.env

=> "production"

>> Rails.env.production?

=> true

Naturally, since Heroku is a platform for production sites, it runs each application
in a production environment.

To make the debug output look nice, we’ll add some rules to the custom
stylesheet created in Chapter 5, as shown in Listing 7.2.

Listing 7.2: Adding code for a pretty debug box, including a Sass mixin.
app/assets/stylesheets/custom.scss

@import "bootstrap-sprockets";

@import "bootstrap";

/* mixins, variables, etc. */

$gray-medium-light: #eaeaea;

@mixin box_sizing {

-moz-box-sizing: border-box;

-webkit-box-sizing: border-box;

box-sizing: border-box;

}

.

.

360 CHAPTER 7. SIGN UP

.

/* miscellaneous */

.debug_dump {

clear: both;

float: left;

width: 100%;

margin-top: 45px;

@include box_sizing;

}

This introduces the Sass mixin facility, in this case called box_sizing. A
mixin allows a group of CSS rules to be packaged up and used for multiple
elements, converting

.debug_dump {

.

.

.

@include box_sizing;

}

to

.debug_dump {

.

.

.

-moz-box-sizing: border-box;

-webkit-box-sizing: border-box;

box-sizing: border-box;

}

We’ll put this mixin to use again in Section 7.2.1. The result in the case of the
debug box is shown in Figure 7.3.4

The debug output in Figure 7.3 gives potentially useful information about
the page being rendered:

4The exact appearance of the Rails debug information is slightly version-dependent. For example, as of Rails 5
the debug information shows the permitted status of the information, a subject we’ll cover in Section 7.3.2. Use
your technical sophistication (Box 1.2) to resolve such minor discrepancies.

7.1. SHOWING USERS 361

Figure 7.3: The sample application Home page with debug information.

362 CHAPTER 7. SIGN UP

controller: static_pages

action: home

This is a YAML5 representation of params, which is basically a hash, and in
this case identifies the controller and action for the page. We’ll see another
example in Section 7.1.2.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Visit /about in your browser and use the debug information to determine
the controller and action of the params hash.

2. In the Rails console, pull the first user out of the database and assign it to
the variable user. What is the output of puts user.attributes.-

to_yaml? Compare this to using the y method via y user.attri-

butes.

7.1.2 A Users resource
In order to make a user profile page, we need to have a user in the database,
which introduces a chicken-and-egg problem: how can the site have a user be-
fore there is a working signup page? Happily, this problem has already been
solved: in Section 6.3.4, we created a User record by hand using the Rails con-
sole, so there should be one user in the database:

5The Rails debug information is shown as YAML (a recursive acronym standing for “YAML Ain’t Markup
Language”), which is a friendly data format designed to be both machine- and human-readable.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
http://www.yaml.org/
http://catb.org/jargon/html/R/recursive-acronym.html

7.1. SHOWING USERS 363

$ rails console

>> User.count

=> 1

>> User.first

=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",

created_at: "2019-08-22 03:15:38", updated_at: "2019-08-22 03:15:38",

password_digest: [FILTERED]>

(If you don’t currently have a user in your database, you should visit Sec-
tion 6.3.4 now and complete it before proceeding.) We see from the console
output above that the user has id 1, and our goal now is to make a page to
display this user’s information. We’ll follow the conventions of the REST ar-
chitecture favored in Rails applications (Box 2.2), which means representing
data as resources that can be created, shown, updated, or destroyed—four ac-
tions corresponding to the four fundamental operations POST, GET, PATCH,
and DELETE defined by the HTTP standard (Box 3.2).

When following REST principles, resources are typically referenced using
the resource name and a unique identifier. What this means in the context of
users—which we’re now thinking of as a Users resource—is that we should
view the user with id 1 by issuing a GET request to the URL /users/1. Here the
show action is implicit in the type of request—when Rails’ REST features are
activated, GET requests are automatically handled by the show action.

We saw in Section 2.2.1 that the page for a user with id 1 has URL /users/1.
Unfortunately, visiting that URL right now just gives an error (Figure 7.4).

We can get the routing for /users/1 to work by adding a single line to our
routes file (config/routes.rb):

resources :users

The result appears in Listing 7.3.

Listing 7.3: Adding a Users resource to the routes file.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

364 CHAPTER 7. SIGN UP

Figure 7.4: The current state of /users/1.

7.1. SHOWING USERS 365

HTTP request URL Action Named route Purpose
GET /users index users_path page to list all users
GET /users/1 show user_path(user) page to show user
GET /users/new new new_user_path page to make a new user (signup)
POST /users create users_path create a new user
GET /users/1/edit edit edit_user_path(user) page to edit user with id 1
PATCH /users/1 update user_path(user) update user
DELETE /users/1 destroy user_path(user) delete user

Table 7.1: RESTful routes provided by the Users resource in Listing 7.3.

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

resources :users

end

Although our immediate motivation is making a page to show users, the
single line resources :users doesn’t just add a working /users/1 URL; it
endows our sample application with all the actions needed for a RESTful Users
resource,6 along with a large number of named routes (Section 5.3.3) for gen-
erating user URLs. The resulting correspondence of URLs, actions, and named
routes is shown in Table 7.1. (Compare to Table 2.2.) Over the course of the
next three chapters, we’ll cover all of the other entries in Table 7.1 as we fill in
all the actions necessary to make Users a fully RESTful resource.

With the code in Listing 7.3, the routing works, but there’s still no page
there (Figure 7.5). To fix this, we’ll begin with a minimalist version of the
profile page, which we’ll flesh out in Section 7.1.4.

We’ll use the standard Rails location for showing a user, which is app/-
views/users/show.html.erb. Unlike the new.html.erb view, whichwe
created with the generator in Listing 5.38, the show.html.erb file doesn’t
currently exist, so you’ll have to create it by hand,7 and then fill it with the

6This means that the routing works, but the corresponding pages don’t necessarily work at this point. For
example, /users/1/edit gets routed properly to the edit action of the Users controller, but since the edit action
doesn’t exist yet actually hitting that URL will return an error.

7Using, e.g., touch app/views/users/show.html.erb.

366 CHAPTER 7. SIGN UP

Figure 7.5: The URL /users/1 with routing but no page.

7.1. SHOWING USERS 367

content shown in Listing 7.4.

Listing 7.4: A stub view for showing user information.
app/views/users/show.html.erb

<%= @user.name %>, <%= @user.email %>

This view uses embedded Ruby to display the user’s name and email address,
assuming the existence of an instance variable called @user. Of course, even-
tually the real user show page will look very different (and won’t display the
email address publicly).

In order to get the user show view to work, we need to define an @user

variable in the corresponding show action in the Users controller. As you might
expect, we use the find method on the User model (Section 6.1.4) to retrieve
the user from the database, as shown in Listing 7.5.

Listing 7.5: The Users controller with a show action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

end

end

Here we’ve used params to retrieve the user id. When wemake the appropriate
request to the Users controller, params[:id] will be the user id 1, so the ef-
fect is the same as the find method User.find(1) we saw in Section 6.1.4.
(Technically, params[:id] is the string "1", but find is smart enough to
convert this to an integer.)

With the user view and action defined, the URL /users/1 works perfectly,
as seen in Figure 7.6. (If you haven’t restarted the Rails server since adding

368 CHAPTER 7. SIGN UP

bcrypt, you may have to do so at this time. This sort of thing is a good applica-
tion of technical sophistication (Box 1.2).) Note that the debug information in
Figure 7.6 confirms the value of params[:id]:

action: show

controller: users

id: '1'

This is why the code

User.find(params[:id])

in Listing 7.5 finds the user with id 1.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Using embedded Ruby, add the created_at and updated_at “magic
column” attributes to the user show page from Listing 7.4.

2. Using embedded Ruby, add Time.now to the user show page. What
happens when you refresh the browser?

7.1.3 Debugger
We saw in Section 7.1.2 how the information in the debug could help us un-
derstand what’s going on in our application, but there’s also a more direct way
to get debugging information using the byebug gem (Listing 3.2). To see how
it works, we just need to add a line consisting of debugger to our application,
as shown in Listing 7.6.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.1. SHOWING USERS 369

Figure 7.6: The user show page after adding a Users resource.

370 CHAPTER 7. SIGN UP

Figure 7.7: The byebug prompt in the Rails server.

Listing 7.6: The Users controller with a debugger.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

debugger

end

def new

end

end

Now, when we visit /users/1, the Rails server shows a byebug prompt (Fig-
ure 7.7):

(byebug)

We can treat byebug like a Rails console, issuing commands to figure out
the state of the application:

7.1. SHOWING USERS 371

(byebug) @user.name

"Michael Hartl"

(byebug) @user.email

"michael@example.com"

(byebug) params[:id]

"1"

To release the prompt and continue execution of the application, press Ctrl-D,
then remove the debugger line from the show action (Listing 7.7).

Listing 7.7: The Users controller with the debugger line removed.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

end

end

Whenever you’re confused about something in a Rails application, it’s a
good practice to put debugger close to the code you think might be causing
the trouble. Inspecting the state of the system using byebug is a powerful
method for tracking down application errors and interactively debugging your
application.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. With the debugger in the show action as in Listing 7.6, hit /users/1. Use
puts to display the value of the YAML form of the params hash. Hint:
Refer to the relevant exercise in Section 7.1.1. How does it compare to
the debug information shown by the debug method in the site template?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

372 CHAPTER 7. SIGN UP

2. Put the debugger in the User new action and hit /users/new. What is the
value of @user?

7.1.4 A Gravatar image and a sidebar
Having defined a basic user page in the previous section, we’ll now flesh it
out a little with a profile image for each user and the first cut of the user side-
bar. We’ll start by adding a “globally recognized avatar”, or Gravatar, to the
user profile.8 Gravatar is a free service that allows users to upload images and
associate them with email addresses they control. As a result, Gravatars are a
convenient way to include user profile images without going through the trouble
of managing image upload, cropping, and storage; all we need to do is construct
the proper Gravatar image URL using the user’s email address and the corre-
sponding Gravatar image will automatically appear. (We’ll learn how to handle
custom image upload in Section 13.4.)

Our plan is to define a gravatar_for helper function to return a Gravatar
image for a given user, as shown in Listing 7.8.

Listing 7.8: The user show view with name and Gravatar.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<h1>

<%= gravatar_for @user %>

<%= @user.name %>

</h1>

By default, methods defined in any helper file are automatically available
in any view, but for convenience we’ll put the gravatar_for method in the
file for helpers associated with the Users controller. As noted in the Gravatar
documentation, Gravatar URLs are based on an MD5 hash of the user’s email

8In Hinduism, an avatar is the manifestation of a deity in human or animal form. By extension, the term avatar
is commonly used to mean some kind of personal representation, especially in a virtual environment. (In the
context of Twitter and other social media, the term avi has gained currency, which is likely a mutated form of
avatar.)

https://gravatar.com/
http://en.gravatar.com/site/implement/hash/
http://en.gravatar.com/site/implement/hash/
https://en.wikipedia.org/wiki/MD5

7.1. SHOWING USERS 373

address. In Ruby, the MD5 hashing algorithm is implemented using the hex-
digest method, which is part of the Digest library:

>> email = "MHARTL@example.COM"

>> Digest::MD5::hexdigest(email.downcase)

=> "1fda4469bcbec3badf5418269ffc5968"

Since email addresses are case-insensitive (Section 6.2.4) but MD5 hashes are
not, we’ve used the downcase method to ensure that the argument to hex-

digest is all lower-case. (Because of the email downcasing callback in List-
ing 6.32, this will never make a difference in this tutorial, but it’s a good prac-
tice in case the gravatar_for ever gets used on email addresses from other
sources.) The resulting gravatar_for helper appears in Listing 7.9.

Listing 7.9: Defining a gravatar_for helper method.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.

def gravatar_for(user)

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)

gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}"

image_tag(gravatar_url, alt: user.name, class: "gravatar")

end

end

The code in Listing 7.9 returns an image tag for the Gravatar with a gravatar
CSS class and alt text equal to the user’s name (which is especially convenient
for visually impaired users using a screen reader).

The profile page appears as in Figure 7.8, which shows the default Gravatar
image, which appears because michael@example.com isn’t a real email ad-
dress. (In fact, as you can see by visiting it, the example.com domain is reserved
for examples like this one.)

To get our application to display a custom Gravatar, we’ll use update_-
attributes (Section 6.1.5) to change the user’s email to something I control:9

9The password confirmation isn’t technically necessary here because has_secure_password (Section 6.3.1)

https://www.example.com/

374 CHAPTER 7. SIGN UP

Figure 7.8: The user profile page with the default Gravatar.

7.1. SHOWING USERS 375

$ rails console

>> user = User.first

>> user.update(name: "Example User",

?> email: "example@railstutorial.org",

?> password: "foobar",

?> password_confirmation: "foobar")

=> true

Here we’ve assigned the user the email address example@railstutorial-
.org, which I’ve associated with the Rails Tutorial logo, as seen in Figure 7.9.

The last element needed to complete the mockup from Figure 7.1 is the
initial version of the user sidebar. We’ll implement it using the aside tag,
which is used for content (such as sidebars) that complements the rest of the
page but can also stand alone. We include row and col-md-4 classes, which
are both part of Bootstrap. The code for the modified user show page appears
in Listing 7.10.

Listing 7.10: Adding a sidebar to the user show view.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<h1>

<%= gravatar_for @user %>

<%= @user.name %>

</h1>

</section>

</aside>

</div>

With the HTML elements and CSS classes in place, we can style the profile
page (including the sidebar and the Gravatar) with the SCSS shown in List-
ing 7.11.10 (Note the nesting of the table CSS rules, which works only because
of the Sass engine used by the asset pipeline.) The resulting page is shown in
Figure 7.10.
actually allows the confirmation to be nil. The reason is so that apps that don’t need password confirmation can
simply omit the confirmation field. We do want a confirmation, though, so we’ll include such a field in Listing 7.15.

10Listing 7.11 includes the .gravatar_edit class, which we’ll put to work in Chapter 10.

376 CHAPTER 7. SIGN UP

Figure 7.9: The user show page with a custom Gravatar.

7.1. SHOWING USERS 377

Listing 7.11: SCSS for styling the user show page, including the sidebar.
app/assets/stylesheets/custom.scss

.

.

.

/* sidebar */

aside {

section.user_info {

margin-top: 20px;

}

section {

padding: 10px 0;

margin-top: 20px;

&:first-child {

border: 0;

padding-top: 0;

}

span {

display: block;

margin-bottom: 3px;

line-height: 1;

}

h1 {

font-size: 1.4em;

text-align: left;

letter-spacing: -1px;

margin-bottom: 3px;

margin-top: 0px;

}

}

}

.gravatar {

float: left;

margin-right: 10px;

}

.gravatar_edit {

margin-top: 15px;

}

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

378 CHAPTER 7. SIGN UP

Figure 7.10: The user show page with a sidebar and CSS.

7.1. SHOWING USERS 379

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Associate a Gravatar with your primary email address if you haven’t al-
ready. What is the MD5 hash associated with the image?

2. Verify that the code in Listing 7.12 allows the gravatar_for helper
defined in Section 7.1.4 to take an optional size parameter, allowing
code like gravatar_for user, size: 50 in the view. (We’ll put
this improved helper to use in Section 10.3.1.)

3. The options hash used in the previous exercise is still commonly used,
but as of Ruby 2.0 we can use keyword arguments instead. Confirm that
the code in Listing 7.13 can be used in place of Listing 7.12. What are
the diffs between the two?

Listing 7.12: Adding an options hash in the gravatar_for helper.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.

def gravatar_for(user, options = { size: 80 })

size = options[:size]

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)

gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}?s=#{size}"

image_tag(gravatar_url, alt: user.name, class: "gravatar")

end

end

Listing 7.13: Using keyword arguments in the gravatar_for helper.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.

def gravatar_for(user, size: 80)

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)

gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}?s=#{size}"

image_tag(gravatar_url, alt: user.name, class: "gravatar")

end

end

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

380 CHAPTER 7. SIGN UP

Figure 7.11: The current state of the signup page /signup.

7.2 Signup form

Now that we have a working (though not yet complete) user profile page, we’re
ready to make a signup form for our site. We saw in Figure 5.11 (shown again
in Figure 7.11) that the signup page is currently blank: useless for signing up
new users. The goal of this section is to start changing this sad state of affairs
by producing the signup form mocked up in Figure 7.12.

7.2. SIGNUP FORM 381

Figure 7.12: A mockup of the user signup page.

382 CHAPTER 7. SIGN UP

7.2.1 Using form_with
The heart of the signup page is a form for submitting the relevant signup in-
formation (name, email, password, confirmation). We can accomplish this in
Rails with the form_with helper method, which uses an Active Record object
to build a form using the object’s attributes.

Recalling that the signup page /signup is routed to the new action in the
Users controller (Listing 5.43), our first step is to create the User object required
as an argument to form_with. The resulting @user variable definition appears
in Listing 7.14.

Listing 7.14: Adding an @user variable to the new action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

end

The form itself appears as in Listing 7.15. We’ll discuss it in detail in Sec-
tion 7.2.2, but first let’s style it a little with the SCSS in Listing 7.16. (Note the
reuse of the box_sizing mixin from Listing 7.2.) Once these CSS rules have
been applied, the signup page appears as in Figure 7.13.

Listing 7.15: A form to sign up new users.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= f.label :name %>

7.2. SIGNUP FORM 383

<%= f.text_field :name %>

<%= f.label :email %>

<%= f.email_field :email %>

<%= f.label :password %>

<%= f.password_field :password %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation %>

<%= f.submit "Create my account", class: "btn btn-primary" %>

<% end %>

</div>

</div>

Listing 7.16: CSS for the signup form.
app/assets/stylesheets/custom.scss

.

.

.

/* forms */

input, textarea, select, .uneditable-input {

border: 1px solid #bbb;

width: 100%;

margin-bottom: 15px;

@include box_sizing;

}

input {

height: auto !important;

}

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm by replacing all occurrences of f with foobar that the name
of the block variable is irrelevant as far as the result is concerned. Why
might foobar nevertheless be a bad choice?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

384 CHAPTER 7. SIGN UP

Figure 7.13: The user signup form.

7.2. SIGNUP FORM 385

7.2.2 Signup form HTML
To understand the form defined in Listing 7.15, it’s helpful to break it into
smaller pieces. We’ll first look at the outer structure, which consists of em-
bedded Ruby opening with a call to form_with and closing with end:

<%= form_with(model: @user, local: true) do |f| %>

.

.

.

<% end %>

The presence of the do keyword indicates that form_with takes a block with
one variable, which we’ve called f (for “form”). Note the presence of the hash
argument local: true; by default, form_with sends a “remote” XHR re-
quest, whereas we want a regular “local” form request, mostly so that our error
messages will render properly (Section 7.3.3).

As is usually the case with Rails helpers, we don’t need to know any details
about the implementation, but what we do need to know is what the f object
does: when called with a method corresponding to an HTML form element—
such as a text field, radio button, or password field—f returns code for that
element specifically designed to set an attribute of the @user object. In other
words,

<%= f.label :name %>

<%= f.text_field :name %>

creates the HTML needed to make a labeled text field element appropriate for
setting the name attribute of a User model.

If you look at the HTML for the generated form by Ctrl-clicking and using
the “inspect element” function of your browser, the page’s source should look
something like Listing 7.17. Let’s take a moment to discuss its structure.

https://en.wikipedia.org/wiki/XMLHttpRequest
https://en.wikipedia.org/wiki/XMLHttpRequest
http://www.w3schools.com/html/html_forms.asp

386 CHAPTER 7. SIGN UP

Listing 7.17: The HTML for the form in Figure 7.13.
<form accept-charset="UTF-8" action="/users" class="new_user"

id="new_user" method="post">

<input name="authenticity_token" type="hidden"

value="NNb6+J/j46LcrgYUC60wQ2titMuJQ5lLqyAbnbAUkdo=" />

<label for="user_name">Name</label>

<input id="user_name" name="user[name]" type="text" />

<label for="user_email">Email</label>

<input id="user_email" name="user[email]" type="email" />

<label for="user_password">Password</label>

<input id="user_password" name="user[password]"

type="password" />

<label for="user_password_confirmation">Confirmation</label>

<input id="user_password_confirmation"

name="user[password_confirmation]" type="password" />

<input class="btn btn-primary" name="commit" type="submit"

value="Create my account" />

</form>

We’ll start with the internal structure of the document. Comparing List-
ing 7.15 with Listing 7.17, we see that the embedded Ruby

<%= f.label :name %>

<%= f.text_field :name %>

produces the HTML

<label for="user_name">Name</label>

<input id="user_name" name="user[name]" type="text" />

while

<%= f.label :email %>

<%= f.email_field :email %>

produces the HTML

7.2. SIGNUP FORM 387

<label for="user_email">Email</label>

<input id="user_email" name="user[email]" type="email" />

and

<%= f.label :password %>

<%= f.password_field :password %>

produces the HTML

<label for="user_password">Password</label>

<input id="user_password" name="user[password]" type="password" />

As seen in Figure 7.14, text and email fields (type="text" and
type="email") simply display their contents, whereas password fields
(type="password") obscure the input for security purposes, as seen in Fig-
ure 7.14. (The benefit of using an email field is that some systems treat it differ-
ently from a text field; for example, the code type="email" will cause some
mobile devices to display a special keyboard optimized for entering email ad-
dresses.)

As we’ll see in Section 7.4, the key to creating a user is the special name
attribute in each input:

<input id="user_name" name="user[name]" - - - />

.

.

.

<input id="user_password" name="user[password]" - - - />

These name values allow Rails to construct an initialization hash (via the pa-
rams variable) for creating users using the values entered by the user, as we’ll
see in Section 7.3.

The second important element is the form tag itself. Rails creates the form
tag using the @user object: because every Ruby object knows its own class

388 CHAPTER 7. SIGN UP

Figure 7.14: A filled-in form with text and password fields.

7.2. SIGNUP FORM 389

(Section 4.4.1), Rails figures out that @user is of class User; moreover, since
@user is a new user, Rails knows to construct a form with the post method,
which is the proper verb for creating a new object (Box 3.2):

<form action="/users" class="new_user" id="new_user" method="post">

Here the class and id attributes are largely irrelevant; what’s important is
action="/users" and method="post". Together, these constitute instruc-
tions to issue an HTTP POST request to the /users URL. We’ll see in the next
two sections what effects this has.

(You may also have noticed the code that appears just inside the form tag:

<input name="authenticity_token" type="hidden"

value="NNb6+J/j46LcrgYUC60wQ2titMuJQ5lLqyAbnbAUkdo=" />

This code, which isn’t displayed in the browser, is used internally by Rails, so
it’s not important for us to understand what it does. Briefly, it includes an au-
thenticity token, which Rails uses to thwart an attack called a cross-site request
forgery (CSRF). Knowing when it’s OK to ignore details like this is a good
mark of technical sophistication (Box 1.2).)11

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Learn Enough HTML to Be Dangerous, in which all HTML is written by
hand, doesn’t cover the form tag. Why not?

11See the Stack Overflow entry on the Rails authenticity token if you’re interested in the details of how this
works.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.learnenough.com/html
https://stackoverflow.com/questions/941594/understand-rails-authenticity-token

390 CHAPTER 7. SIGN UP

7.3 Unsuccessful signups
Although we’ve briefly examined the HTML for the form in Figure 7.13 (shown
in Listing 7.17), we haven’t yet covered any details, and the form is best un-
derstood in the context of signup failure. In this section, we’ll create a signup
form that accepts an invalid submission and re-renders the signup page with a
list of errors, as mocked up in Figure 7.15.

7.3.1 A working form
Recall from Section 7.1.2 that adding resources :users to the routes.rb
file (Listing 7.3) automatically ensures that our Rails application responds to the
RESTful URLs from Table 7.1. In particular, it ensures that a POST request to
/users is handled by the create action. Our strategy for the create action is
to use the form submission to make a new user object using User.new, try (and
fail) to save that user, and then render the signup page for possible resubmission.
Let’s get started by reviewing the code for the signup form:

<form action="/users" class="new_user" id="new_user" method="post">

As noted in Section 7.2.2, this HTML issues a POST request to the /users URL.
Our first step toward a working signup form is adding the code in List-

ing 7.18. This listing includes a second use of the render method, which we
first saw in the context of partials (Section 5.1.3); as you can see, renderworks
in controller actions as well. Note that we’ve taken this opportunity to intro-
duce an if-else branching structure, which allows us to handle the cases of
failure and success separately based on the value of @user.save, which (as
we saw in Section 6.1.3) is either true or false depending on whether or not
the save succeeds.

Listing 7.18: A create action that can handle signup failure.
app/controllers/users_controller.rb

7.3. UNSUCCESSFUL SIGNUPS 391

Figure 7.15: A mockup of the signup failure page.

392 CHAPTER 7. SIGN UP

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

def create

@user = User.new(params[:user]) # Not the final implementation!

if @user.save

Handle a successful save.

else

render 'new'

end

end

end

Note the comment: this is not the final implementation. But it’s enough to get
us started, and we’ll finish the implementation in Section 7.3.2.

The best way to understand how the code in Listing 7.18 works is to submit
the form with some invalid signup data. The result appears in Figure 7.16, and
the full debug information appears in Figure 7.17.

To get a better picture of how Rails handles the submission, let’s take a
closer look at the user part of the parameters hash from the debug information
(Figure 7.17):

"user" => { "name" => "Foo Bar",

"email" => "foo@invalid",

"password" => "[FILTERED]",

"password_confirmation" => "[FILTERED]"

}

This hash gets passed to the Users controller as part of params, and we saw
starting in Section 7.1.2 that the params hash contains information about each
request. In the case of a URL like /users/1, the value of params[:id] is the
id of the corresponding user (1 in this example). In the case of posting to the
signup form, params instead contains a hash of hashes, a construction we first

7.3. UNSUCCESSFUL SIGNUPS 393

Figure 7.16: Signup failure upon submitting invalid data.

Figure 7.17: Signup failure debug information.

394 CHAPTER 7. SIGN UP

saw in Section 4.3.3, which introduced the strategically named params vari-
able in a console session. The debug information above shows that submitting
the form results in a user hash with attributes corresponding to the submitted
values, where the keys come from the name attributes of the input tags seen
in Listing 7.17. For example, the value of

<input id="user_email" name="user[email]" type="email" />

with name "user[email]" is precisely the email attribute of the user hash.
Although the hash keys appear as strings in the debug output, we can ac-

cess them in the Users controller as symbols, so that params[:user] is the
hash of user attributes—in fact, exactly the attributes needed as an argument to
User.new, as first seen in Section 4.4.5 and appearing in Listing 7.18. This
means that the line

@user = User.new(params[:user])

is mostly equivalent to

@user = User.new(name: "Foo Bar", email: "foo@invalid",

password: "foo", password_confirmation: "bar")

In previous versions of Rails, using

@user = User.new(params[:user])

actually worked, but it was insecure by default and required a careful and error-
prone procedure to prevent malicious users from potentially modifying the ap-
plication database. In Rails version later than 4.0, this code raises an error (as
seen in Figure 7.16 and Figure 7.17 above), which means it is secure by default.

7.3. UNSUCCESSFUL SIGNUPS 395

7.3.2 Strong parameters
We mentioned briefly in Section 4.4.5 the idea of mass assignment, which in-
volves initializing a Ruby variable using a hash of values, as in

@user = User.new(params[:user]) # Not the final implementation!

The comment included in Listing 7.18 and reproduced above indicates that this
is not the final implementation. The reason is that initializing the entire params
hash is extremely dangerous—it arranges to pass to User.new all data submit-
ted by a user. In particular, suppose that, in addition to the current attributes, the
User model included an admin attribute used to identify administrative users
of the site. (We will implement just such an attribute in Section 10.4.1.) The
way to set such an attribute to true is to pass the value admin='1' as part
of params[:user], a task that is easy to accomplish using a command-line
HTTP client such as curl. The result would be that, by passing in the en-
tire params hash to User.new, we would allow any user of the site to gain
administrative access by including admin='1' in the web request.

Previous versions of Rails used a method called attr_accessible in the
model layer to solve this problem, and you may still see that method in legacy
Rails applications, but as of Rails 4.0 the preferred technique is to use so-called
strong parameters in the controller layer. This allows us to specify which pa-
rameters are required and which ones are permitted. In addition, passing in a
raw params hash as above will cause an error to be raised, so that Rails appli-
cations are now immune to mass assignment vulnerabilities by default.

In the present instance, wewant to require the params hash to have a :user
attribute, and we want to permit the name, email, password, and password con-
firmation attributes (but no others). We can accomplish this as follows:

params.require(:user).permit(:name, :email, :password, :password_confirmation)

This code returns a version of the params hash with only the permitted at-
tributes (while raising an error if the :user attribute is missing).

396 CHAPTER 7. SIGN UP

To facilitate the use of these parameters, it’s conventional to introduce an
auxiliary method called user_params (which returns an appropriate initial-
ization hash) and use it in place of params[:user]:

@user = User.new(user_params)

Since user_params will only be used internally by the Users controller and
need not be exposed to external users via the web, we’ll make it private using
Ruby’s private keyword, as shown in Listing 7.19. (We’ll discuss private
in more detail in Section 9.1.)

Listing 7.19: Using strong parameters in the create action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

Handle a successful save.

else

render 'new'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

By the way, the extra level of indentation on the user_params method is de-
signed to make it visually apparent which methods are defined after private.
(Experience shows that this is a wise practice; in classes with a large number of
methods, it is easy to define a private method accidentally, which leads to con-
siderable confusion when it isn’t available to call on the corresponding object.)

7.3. UNSUCCESSFUL SIGNUPS 397

Figure 7.18: The signup form submitted with invalid information.

At this point, the signup form is working, at least in the sense that it no
longer produces an error upon submission. On the other hand, as seen in Fig-
ure 7.18, it doesn’t display any feedback on invalid submissions (apart from the
development-only debug area), which is potentially confusing. It also doesn’t
actually create a new user. We’ll fix the first issue in Section 7.3.3 and the
second in Section 7.4.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads

398 CHAPTER 7. SIGN UP

Tutorial course or to the Learn Enough All Access Bundle.

1. By hitting the URL /signup?admin=1, confirm that the admin attribute
appears in the params debug information.

7.3.3 Signup error messages
As a final step in handling failed user creation, we’ll add helpful error messages
to indicate the problems that prevented successful signup. Conveniently, Rails
automatically provides suchmessages based on the User model validations. For
example, consider trying to save a user with an invalid email address and with
a password that’s too short:

$ rails console

>> user = User.new(name: "Foo Bar", email: "foo@invalid",

?> password: "dude", password_confirmation: "dude")

>> user.save

=> false

>> user.errors.full_messages

=> ["Email is invalid", "Password is too short (minimum is 6 characters)"]

Here the errors.full_messages object (which we saw briefly before in
Section 6.2.2) contains an array of error messages.

As in the console session above, the failed save in Listing 7.18 generates a
list of error messages associated with the @user object. To display the mes-
sages in the browser, we’ll render an error-messages partial on the user new
page while adding the CSS class form-control (which has special meaning
to Bootstrap) to each entry field, as shown in Listing 7.20. It’s worth noting
that this error-messages partial is only a first attempt; the final version appears
in Section 13.3.2.

Listing 7.20: Code to display error messages on the signup form.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.3. UNSUCCESSFUL SIGNUPS 399

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages' %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Create my account", class: "btn btn-primary" %>

<% end %>

</div>

</div>

Notice here that we render a partial called 'shared/error_messages';
this reflects the common Rails convention of using a dedicated shared/ direc-
tory for partials expected to be used in views across multiple controllers. (We’ll
see this expectation fulfilled in Section 10.1.1.)

This means that we have to create a new app/views/shared directory
using mkdir and an error messages partial using (Table 1.1):

$ mkdir app/views/shared

We then need to create the _error_messages.html.erb partial file using
touch or the text editor as usual. The contents of the partial appear in List-
ing 7.21.

Listing 7.21: A partial for displaying form submission error messages.
app/views/shared/_error_messages.html.erb

<% if @user.errors.any? %>

<div id="error_explanation">

400 CHAPTER 7. SIGN UP

<div class="alert alert-danger">

The form contains <%= pluralize(@user.errors.count, "error") %>.

</div>

<% @user.errors.full_messages.each do |msg| %>

<%= msg %>

<% end %>

</div>

<% end %>

This partial introduces several new Rails and Ruby constructs, including two
methods for Rails error objects. The first method is count, which simply re-
turns the number of errors:

>> user.errors.count

=> 2

The other new method is any?, which (together with empty?) is one of a pair
of complementary methods:

>> user.errors.empty?

=> false

>> user.errors.any?

=> true

We see here that the empty? method, which we first saw in Section 4.2.2 in
the context of strings, also works on Rails error objects, returning true for an
empty object and false otherwise. The any? method is just the opposite of
empty?, returning true if there are any elements present and false otherwise.
(By the way, all of these methods—count, empty?, and any?—work on Ruby
arrays as well. We’ll put this fact to good use starting in Section 13.2.)

The other new idea is the pluralize text helper, which is available in the
console via the helper object:

7.3. UNSUCCESSFUL SIGNUPS 401

>> helper.pluralize(1, "error")

=> "1 error"

>> helper.pluralize(5, "error")

=> "5 errors"

We see here that pluralize takes an integer argument and then returns the
number with a properly pluralized version of its second argument. Underlying
this method is a powerful inflector that knows how to pluralize a large number
of words, including many with irregular plurals:

>> helper.pluralize(2, "woman")

=> "2 women"

>> helper.pluralize(3, "erratum")

=> "3 errata"

As a result of its use of pluralize, the code

<%= pluralize(@user.errors.count, "error") %>

returns "0 errors", "1 error", "2 errors", and so on, depending on
how many errors there are, thereby avoiding ungrammatical phrases such as
"1 errors" (a distressingly common mistake in both web and desktop appli-
cations).

Note that Listing 7.21 includes the CSS id error_explanation for use in
styling the error messages. (Recall from Section 5.1.2 that CSS uses the pound
sign # to style ids.) In addition, after an invalid submission Rails automatically
wraps the fields with errors in divs with the CSS class field_with_errors.
These labels then allow us to style the error messages with the SCSS shown
in Listing 7.22, which makes use of Sass’s @extend function to include the
functionality of the Bootstrap class has-error.

Listing 7.22: CSS for styling error messages.
app/assets/stylesheets/custom.scss

402 CHAPTER 7. SIGN UP

.

.

.

/* forms */

.

.

.

#error_explanation {

color: red;

ul {

color: red;

margin: 0 0 30px 0;

}

}

.field_with_errors {

@extend .has-error;

.form-control {

color: $state-danger-text;

}

}

With the code in Listing 7.20 and Listing 7.21 and the SCSS from List-
ing 7.22, helpful error messages now appear when submitting invalid signup
information, as seen in Figure 7.19. Because the messages are generated by the
model validations, they will automatically change if you ever change your mind
about, say, the format of email addresses, or the minimum length of passwords.
(Note: Because both the presence validation and the has_secure_password
validation catch the case of empty (nil) passwords, the signup form currently
produces duplicate error messages when the user submits empty passwords. We
could manipulate the error messages directly to eliminate duplicates, but luck-
ily this issue will be fixed automatically by the addition of allow_nil: true

in Section 10.1.4.)

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm by changing the minimum length of passwords to 5 that the error
message updates automatically as well.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.3. UNSUCCESSFUL SIGNUPS 403

Figure 7.19: Failed signup with error messages.

404 CHAPTER 7. SIGN UP

2. How does the URL on the unsubmitted signup form (Figure 7.13) com-
pare to the URL for a submitted signup form (Figure 7.19)? Why don’t
they match?

7.3.4 A test for invalid submission
In the days before powerful web frameworks with automated testing capabili-
ties, developers had to test forms by hand. For example, to test a signup page
manually, we would have to visit the page in a browser and then submit alter-
nately invalid and valid data, verifying in each case that the application’s behav-
ior was correct. Moreover, we would have to remember to repeat the process
any time the application changed. This process was painful and error-prone.

Happily, with Rails we can write tests to automate the testing of forms. In
this section, we’ll write one such test to verify the correct behavior upon invalid
form submission; in Section 7.4.4, we’ll write a corresponding test for valid
submission.

To get started, we first generate an integration test file for signing up users,
which we’ll call users_signup (adopting the controller convention of a plural
resource name):

$ rails generate integration_test users_signup

invoke test_unit

create test/integration/users_signup_test.rb

(We’ll use this same file in Section 7.4.4 to test a valid signup.)
The main purpose of our test is to verify that clicking the signup button

results in not creating a new user when the submitted information is invalid.
(Writing a test for the error messages is left as an exercise (Section 7.3.4).) The
way to do this is to check the count of users, and under the hood our tests will
use the countmethod available on every Active Record class, including User:

$ rails console

>> User.count

=> 1

7.3. UNSUCCESSFUL SIGNUPS 405

(Here User.count is 1 because of the user created in Section 6.3.4, though
it may differ if you’ve added or deleted any users in the interim.) As in Sec-
tion 5.3.4, we’ll use assert_select to test HTML elements of the relevant
pages, taking care to check only elements unlikely to change in the future.

We’ll start by visiting the signup path using get:

get signup_path

In order to test the form submission, we need to issue a POST request to the
users_path (Table 7.1), which we can do with the post function:

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

Here we’ve included the params[:user] hash expected by User.new in the
create action (Listing 7.27). (In versions of Rails before 5, params was im-
plicit, and only the user hash would be passed. This practice was deprecated
in Rails 5.0, and now the recommended method is to include the full params
hash explicitly.)

By wrapping the post in the assert_no_difference method with the
string argument 'User.count', we arrange for a comparison between Us-

er.count before and after the contents inside the assert_no_difference
block. This is equivalent to recording the user count, posting the data, and
verifying that the count is the same:

before_count = User.count

post users_path, ...

after_count = User.count

assert_equal before_count, after_count

Although the two are equivalent, using assert_no_difference is cleaner
and is more idiomatically correct Ruby.

406 CHAPTER 7. SIGN UP

It’s worth noting that the get and post steps above are technically unre-
lated, and it’s actually not necessary to get the signup path before posting to the
users path. I prefer to include both steps, though, both for conceptual clarity
and to double-check that the signup form renders without error.

Putting the above ideas together leads to the test in Listing 7.23. We’ve
also included a call to assert_template to check that a failed submission
re-renders the new action. Adding lines to check for the appearance of error
messages is left as an exercise (Section 7.3.4).

Listing 7.23: A test for an invalid signup. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

end

end

Because we wrote the application code before the integration test, the test suite
should be green:

Listing 7.24: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.4. SUCCESSFUL SIGNUPS 407

1. Write a test for the error messages implemented in Listing 7.20. How
detailed you want to make your tests is up to you; a suggested template
appears in Listing 7.25.

Listing 7.25: A template for tests of the error messages.
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

assert_select 'div#<CSS id for error explanation>'

assert_select 'div.<CSS class for field with error>'

end

.

.

.

end

7.4 Successful signups

Having handled invalid form submissions, now it’s time to complete the signup
form by actually saving a new user (if valid) to the database. First, we try to
save the user; if the save succeeds, the user’s information gets written to the
database automatically, and we then redirect the browser to show the user’s
profile (together with a friendly greeting), as mocked up in Figure 7.20. If it
fails, we simply fall back on the behavior developed in Section 7.3.

408 CHAPTER 7. SIGN UP

Figure 7.20: A mockup of successful signup.

7.4. SUCCESSFUL SIGNUPS 409

Figure 7.21: The frozen page on valid signup submission.

7.4.1 The finished signup form
To complete a working signup form, we need to fill in the commented-out sec-
tion in Listing 7.19 with the appropriate behavior. Currently, the form simply
freezes on valid submission, as indicated by the subtle color change in the sub-
mission button (Figure 7.21), although this behavior may be system-dependent.
This is because the default behavior for a Rails action is to render the corre-
sponding view, and there isn’t a view template corresponding to the create
action (Figure 7.22).

Although it’s possible to render a template for the create action, the usual
practice is to redirect to a different page instead when the creation is successful.

410 CHAPTER 7. SIGN UP

Figure 7.22: The create template error in the server log.

In particular, we’ll follow the common convention of redirecting to the newly
created user’s profile, although the root path would also work. The application
code, which introduces the redirect_to method, appears in Listing 7.26.

Listing 7.26: The user create action with a save and a redirect.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

redirect_to @user

else

render 'new'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

Note that we’ve written

redirect_to @user

where we could have used the equivalent

7.4. SUCCESSFUL SIGNUPS 411

redirect_to user_url(@user)

This is because Rails automatically infers from redirect_to @user that we
want to redirect to user_url(@user).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the Rails console, verify that a user is in fact created when submit-
ting valid information.

2. Confirm by updating Listing 7.26 and submitting a valid user that re-
direct_to user_url(@user) has the same effect as redirect_to
@user.

7.4.2 The flash
With the code in Listing 7.26, our signup form is actually working, but before
submitting a valid registration in a browser we’re going to add a bit of polish
common in web applications: a message that appears on the subsequent page
(in this case, welcoming our new user to the application) and then disappears
upon visiting a second page or on page reload.

The Rails way to display a temporary message is to use a special method
called the flash, which we can treat like a hash. Rails adopts the convention of
a :success key for a message indicating a successful result (Listing 7.27).

Listing 7.27: Adding a flash message to user signup.
app/controllers/users_controller.rb

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

412 CHAPTER 7. SIGN UP

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

flash[:success] = "Welcome to the Sample App!"

redirect_to @user

else

render 'new'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

By assigning a message to the flash, we are now in a position to display
the message on the first page after the redirect. Our method is to iterate through
the flash and insert all relevant messages into the site layout. You may recall
the console example in Section 4.3.3, where we saw how to iterate through a
hash using the strategically named flash variable (Listing 7.28).

Listing 7.28: Iterating through a flash hash in the console.
$ rails console

>> flash = { success: "It worked!", danger: "It failed." }

=> {:success=>"It worked!", danger: "It failed."}

>> flash.each do |key, value|

?> puts "#{key}"

?> puts "#{value}"

>> end

success

It worked!

danger

It failed.

By following this pattern, we can arrange to display the contents of the flash
site-wide using code like this:

7.4. SUCCESSFUL SIGNUPS 413

<% flash.each do |message_type, message| %>

<div class="alert alert-<%= message_type %>"><%= message %></div>

<% end %>

(This code is a particularly ugly and difficult-to-read combination of HTML
and ERb; making it prettier is left as an exercise (Section 7.4.4).) Here the
embedded Ruby

alert-<%= message_type %>

makes a CSS class corresponding to the type of message, so that for a :suc-
cess message the class is

alert-success

(The key :success is a symbol, but embedded Ruby automatically converts it
to the string "success" before inserting it into the template.) Using a different
class for each key allows us to apply different styles to different kinds of mes-
sages. For example, in Section 8.1.4 we’ll use flash[:danger] to indicate
a failed login attempt.12 (In fact, we’ve already used alert-danger once, to
style the error message div in Listing 7.21.) Bootstrap CSS supports styling
for four such flash classes for increasingly urgent message types (success,
info, warning, and danger), and we’ll find occasion to use all of them in the
course of developing the sample application (info in Section 11.2, warning
in Section 11.3, and danger for the first time in Section 8.1.4).

Because the message is also inserted into the template, the full HTML result
for

flash[:success] = "Welcome to the Sample App!"

appears as follows:
12Actually, we’ll use the closely related flash.now, but we’ll defer that subtlety until we need it.

414 CHAPTER 7. SIGN UP

<div class="alert alert-success">Welcome to the Sample App!</div>

Putting the embedded Ruby discussed above into the site layout leads to the
code in Listing 7.29.

Listing 7.29: Adding the contents of the flash variable to the site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

.

.

.

<body>

<%= render 'layouts/header' %>

<div class="container">

<% flash.each do |message_type, message| %>

<div class="alert alert-<%= message_type %>"><%= message %></div>

<% end %>

<%= yield %>

<%= render 'layouts/footer' %>

<%= debug(params) if Rails.env.development? %>

</div>

.

.

.

</body>

</html>

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In the console, confirm that you can use interpolation (Section 4.2.1)
to interpolate a raw symbol. For example, what is the return value of
"#{:success}"?

2. How does the previous exercise relate to the flash iteration shown in List-
ing 7.28?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.4. SUCCESSFUL SIGNUPS 415

7.4.3 The first signup
We can see the result of all this work by signing up the first user for the sam-
ple app. Even though previous submissions didn’t work properly (as shown in
Figure 7.21), the user.save line in the Users controller still works, so users
might still have been created. To clear them out, we’ll reset the database as
follows:

$ rails db:migrate:reset

On some systems you might have to restart the webserver (using Ctrl-C) for the
changes to take effect (Box 1.2).

We’ll create the first user with the name “Rails Tutorial” and email address
“example@railstutorial.org”, as shown in Figure 7.23). The resulting page
(Figure 7.24) shows a friendly flash message upon successful signup, including
nice green styling for the success class, which comes included with the Boot-
strap CSS framework from Section 5.1.2. Then, upon reloading the user show
page, the flash message disappears as promised (Figure 7.25).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the Rails console, find by the email address to double-check that
the new user was actually created. The result should look something like
Listing 7.30.

2. Create a new user with your primary email address. Verify that the Gra-
vatar correctly appears.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

416 CHAPTER 7. SIGN UP

Figure 7.23: Filling in the information for the first signup.

7.4. SUCCESSFUL SIGNUPS 417

Figure 7.24: The results of a successful user signup, with flash message.

418 CHAPTER 7. SIGN UP

Figure 7.25: The flash-less profile page after a browser reload.

7.4. SUCCESSFUL SIGNUPS 419

Listing 7.30: Finding the newly created user in the database.
$ rails console

>> User.find_by(email: "example@railstutorial.org")

=> #<User id: 1, name: "Rails Tutorial", email: "example@railstutorial.

org", created_at: "2016-05-31 17:17:33", updated_at: "2016-05-31 17:17:33",

password_digest: "$2a$10$8MaeHdnOhZvMk3GmFdmpPOeG6a7u7/k2Z9TMjOanC9G...">

7.4.4 A test for valid submission
Before moving on, we’ll write a test for valid submission to verify our applica-
tion’s behavior and catch regressions. As with the test for invalid submission
in Section 7.3.4, our main purpose is to verify the contents of the database. In
this case, we want to submit valid information and then confirm that a user was
created. In analogy with Listing 7.23, which used

assert_no_difference 'User.count' do

post users_path, ...

end

here we’ll use the corresponding assert_difference method:

assert_difference 'User.count', 1 do

post users_path, ...

end

As with assert_no_difference, the first argument is the string 'User.-
count', which arranges for a comparison between User.count before and
after the contents of the assert_difference block. The second (optional)
argument specifies the size of the difference (in this case, 1).

Incorporating assert_difference into the file from Listing 7.23 yields
the test shown in Listing 7.31. Note that we’ve used the follow_redirect!
method after posting to the users path. This simply arranges to follow the redi-
rect after submission, resulting in a rendering of the 'users/show' template.
(It’s probably a good idea to write a test for the flash as well, which is left as an
exercise (Section 7.4.4).)

420 CHAPTER 7. SIGN UP

Listing 7.31: A test for a valid signup. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

.

.

.

test "valid signup information" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

follow_redirect!

assert_template 'users/show'

end

end

Note that Listing 7.31 also verifies that the user show template renders fol-
lowing successful signup. For this test to work, it’s necessary for the Users
routes (Listing 7.3), the Users show action (Listing 7.5), and the show.html.-
erb view (Listing 7.8) to work correctly. As a result, the one line

assert_template 'users/show'

is a sensitive test for almost everything related to a user’s profile page. This sort
of end-to-end coverage of important application features illustrates one reason
why integration tests are so useful.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.4. SUCCESSFUL SIGNUPS 421

1. Write a test for the flash implemented in Section 7.4.2. How detailed
you want to make your tests is up to you; a suggested ultra-minimalist
template appears in Listing 7.32, which you should complete by replacing
FILL_INwith the appropriate code. (Even testing for the right key, much
less the text, is likely to be brittle, so I prefer to test only that the flash
isn’t empty.)

2. As noted above, the flashHTML in Listing 7.29 is ugly. Verify by running
the test suite that the cleaner code in Listing 7.33, which uses the Rails
content_tag helper, also works.

3. Verify that the test fails if you comment out the redirect line in List-
ing 7.26.

4. Suppose we changed @user.save to false in Listing 7.26. How does
this change verify that the assert_difference block is testing the
right thing?

Listing 7.32: A template for a test of the flash.
test/integration/users_signup_test.rb

require 'test_helper'

.

.

.

test "valid signup information" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

follow_redirect!

assert_template 'users/show'

assert_not flash.FILL_IN

end

end

422 CHAPTER 7. SIGN UP

Listing 7.33: The flash ERb in the site layout using content_tag.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

.

.

.

<% flash.each do |message_type, message| %>

<%= content_tag(:div, message, class: "alert alert-#{message_type}") %>

<% end %>

.

.

.

</html>

7.5 Professional-grade deployment
Now that we have a working signup page, it’s time to deploy our application and
get it working in production. Although we started deploying our application in
Chapter 3, this is the first time it will actually do something, so we’ll take this
opportunity to make the deployment professional-grade. In particular, we’ll add
an important feature to the production application to make signup secure, we’ll
replace the default webserver with one suitable for real-world use, and we’ll
add some configuration for our production database.

As preparation for the deployment, you should merge your changes into the
master branch at this point:

$ git add -A

$ git commit -m "Finish user signup"

$ git checkout master

$ git merge sign-up

7.5.1 SSL in production
When submitting the signup form developed in this chapter, the name, email
address, and password get sent over the network, and hence are vulnerable to

7.5. PROFESSIONAL-GRADE DEPLOYMENT 423

Figure 7.26: The result of using an insecure http URL in production.

being intercepted by malicious users. This is a potentially serious security flaw
in our application, and the way to fix it is to use Secure Sockets Layer (SSL)13 to
encrypt all relevant information before it leaves the local browser. Although we
could use SSL on just the signup page, it’s actually easier to implement it site-
wide, which has the additional benefits of securing user login (Chapter 8) and
making our application immune to the critical session hijacking vulnerability
discussed in Section 9.1.

Although Heroku uses SSL by default, it doesn’t force browsers to use it, so
any users hitting our application using regular http will be interacting insecurely
with the site. You can see how this works by editing the URL in the address bar
to change “https” to “http”; the result appears in Figure 7.26.

Luckily, forcing browsers to use SSL is as easy as uncommenting a single
line in production.rb, the configuration file for production applications. As
shown in Listing 7.34, all we need to do is set config.force_ssl to true.

Listing 7.34: Configuring the application to use SSL in production.
config/environments/production.rb

Rails.application.configure do

.

13Technically, SSL is now TLS, for Transport Layer Security, but everyone I know still says “SSL”.

https://en.wikipedia.org/wiki/Transport_Layer_Security

424 CHAPTER 7. SIGN UP

.

.

Force all access to the app over SSL, use Strict-Transport-Security,

and use secure cookies.

config.force_ssl = true

.

.

.

end

At this stage, we need to set up SSL on the remote server. Setting up a pro-
duction site to use SSL involves purchasing and configuring an SSL certificate
for your domain. That’s a lot of work, though, and luckily we won’t need it
here: for an application running on a Heroku domain (such as the sample appli-
cation), we can piggyback on Heroku’s SSL certificate. As a result, when we
deploy the application in Section 7.5.2, SSL will automatically be enabled. (If
you want to run SSL on a custom domain, such as www.example.com, refer to
Heroku’s documentation on SSL.)

7.5.2 Production webserver
Having added SSL, we now need to configure our application to use a web-
server suitable for production applications. By default, Heroku uses a pure-
Ruby webserver called WEBrick, which is easy to set up and run but isn’t good
at handling significant traffic. As a result, WEBrick isn’t suitable for produc-
tion use, so we’ll replace WEBrick with Puma, an HTTP server that is capable
of handling a large number of incoming requests.

To add the new webserver, we simply follow the Heroku Puma documen-
tation. The first step is to include the puma gem in our Gemfile, but as of
Rails 5 Puma is included by default (Listing 3.2). This means we can skip
right to the second step, which is to replace the default contents of the file
config/puma.rb with the configuration shown in Listing 7.35. The code in
Listing 7.35 comes straight from the Heroku documentation,14 and there is no
need to understand it (Box 1.2).

14Listing 7.35 changes the formatting slightly so that the code fits in the standard 80 columns.

http://devcenter.heroku.com/articles/ssl
https://devcenter.heroku.com/articles/ruby-default-web-server
https://devcenter.heroku.com/articles/ruby-default-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server

7.5. PROFESSIONAL-GRADE DEPLOYMENT 425

Listing 7.35: The configuration file for the production webserver.
config/puma.rb

Puma configuration file.

max_threads_count = ENV.fetch("RAILS_MAX_THREADS") { 5 }

min_threads_count = ENV.fetch("RAILS_MIN_THREADS") { max_threads_count }

threads min_threads_count, max_threads_count

port ENV.fetch("PORT") { 3000 }

environment ENV.fetch("RAILS_ENV") { ENV['RACK_ENV'] || "development" }

pidfile ENV.fetch("PIDFILE") { "tmp/pids/server.pid" }

workers ENV.fetch("WEB_CONCURRENCY") { 2 }

preload_app!

plugin :tmp_restart

We also need to make a so-called Procfile to tell Heroku to run a Puma
process in production, as shown in Listing 7.36. The Procfile should be
created in your application’s root directory (i.e., in the same directory as the
Gemfile).

Listing 7.36: Defining a Procfile for Puma.
./Procfile

web: bundle exec puma -C config/puma.rb

7.5.3 Production database configuration
The final step in our production deployment is properly configuring the pro-
duction database, which (as mentioned briefly in Section 2.3.5) is PostgreSQL.
My testing indicates that PostgreSQL actually works on Heroku without any
configuration, but the official Heroku documentation recommends explicit con-
figuration nonetheless, so we’ll err on the side of caution and include it.

The actual change is easy: all we have to do is update the production
section of the database configuration file, config/database.yml. The result,
which I adapted from the Heroku docs, is shown in Listing 7.37.

https://www.postgresql.org/
https://devcenter.heroku.com/articles/getting-started-with-rails5

426 CHAPTER 7. SIGN UP

Listing 7.37: Configuring the database for production.
config/database.yml

SQLite version 3.x

gem install sqlite3

#

Ensure the SQLite 3 gem is defined in your Gemfile

gem 'sqlite3'

#

default: &default

adapter: sqlite3

pool: 5

timeout: 5000

development:

<<: *default

database: db/development.sqlite3

Warning: The database defined as "test" will be erased and

re-generated from your development database when you run "rake".

Do not set this db to the same as development or production.

test:

<<: *default

database: db/test.sqlite3

production:

adapter: postgresql

encoding: unicode

For details on connection pooling, see Rails configuration guide

https://guides.rubyonrails.org/configuring.html#database-pooling

pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>

database: sample_app_production

username: sample_app

password: <%= ENV['SAMPLE_APP_DATABASE_PASSWORD'] %>

7.5.4 Production deployment

With the production webserver and database configuration completed, we’re
ready to commit and deploy:15

15We haven’t changed the data model in this chapter, so running the migration at Heroku shouldn’t be necessary,
but only if you followed the steps in Section 6.4. Because several readers reported having trouble, I’ve added
heroku run rails db:migrate as a final step just to be safe.

7.5. PROFESSIONAL-GRADE DEPLOYMENT 427

Figure 7.27: Signing up on the live Web.

$ rails test

$ git add -A

$ git commit -m "Use SSL and the Puma webserver in production"

$ git push && git push heroku

The signup form is now live, and the result of a successful signup is shown in
Figure 7.27. Note the presence of a lock icon in the address bar of Figure 7.27,
which indicate that SSL is working.

428 CHAPTER 7. SIGN UP

Ruby version number

When deploying to Heroku, you may get a warning message like this one:

WARNING:

You have not declared a Ruby version in your Gemfile.

To set your Ruby version add this line to your Gemfile:

ruby '2.6.3'

Experience shows that, at the level of this tutorial, the costs associated with
including such an explicit Ruby version number outweigh the (negligible) ben-
efits, so you should ignore this warning for now. The main issue is that keeping
your sample app and system in sync with the latest Ruby version can be a huge
inconvenience,16 and yet it almost never makes a difference which exact Ruby
version number you use. Nevertheless, you should bear in mind that, should
you ever end up running a mission-critical app on Heroku, specifying an exact
Ruby version in the Gemfile is recommended to ensure maximum compati-
bility between development and production environments.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm on your browser that the SSL lock and https appear.

2. Create a user on the production site using your primary email address.
Does your Gravatar appear correctly?

16For example, at one point Heroku required Ruby 2.1.4, so I spent several hours trying unsuccessfully to install
Ruby 2.1.4 on my local machine—only to discover that Ruby 2.1.5 had been released the previous day. (Attempts
to install Ruby 2.1.5 then also failed.)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

7.6. CONCLUSION 429

7.6 Conclusion
Being able to sign up users is a major milestone for our application. Although
the sample app has yet to accomplish anything useful, we have laid an essential
foundation for all future development. In Chapter 8 and Chapter 9, we will
complete our authentication machinery by allowing users to log in and out of
the application (with optional “remember me” functionality). In Chapter 10,
we will allow all users to update their account information, and we will allow
site administrators to delete users, thereby completing the full suite of Users
resource REST actions from Table 7.1.

7.6.1 What we learned in this chapter
• Rails displays useful debug information via the debug method.

• Sass mixins allow a group of CSS rules to be bundled and reused in mul-
tiple places.

• Rails comes with three standard environments: development, test,
and production.

• We can interact with users as a resource through a standard set of REST
URLs.

• Gravatars provide a convenient way of displaying images to represent
users.

• The form_with helper is used to generate forms for interacting with
Active Record objects.

• Signup failure renders the new user page and displays error messages
automatically determined by Active Record.

• Rails provides the flash as a standard way to display temporary mes-
sages.

430 CHAPTER 7. SIGN UP

• Signup success creates a user in the database and redirects to the user
show page, and displays a welcome message.

• We can use integration tests to verify form submission behavior and catch
regressions.

• We can configure our production application to use SSL for secure com-
munications and Puma for high performance.

Chapter 8

Basic login
Now that new users can sign up for our site (Chapter 7), it’s time to give them
the ability to log in and log out. In this chapter, we’ll implement a basic but
still fully functional login system: the application will maintain the logged-in
state until the browser is closed by the user. The resulting authentication system
will allow us to customize the site and implement an authorization model based
on login status and identity of the current user. For example, we’ll be able to
update the site header with login/logout links and a profile link.

In Chapter 10, we’ll impose a security model in which only logged-in users
can visit the user index page, only the correct user can access the page for editing
their information, and only administrative users can delete other users from the
database. Finally, in Chapter 13, we’ll use the identity of a logged-in user to
create microposts associated with that user, and in Chapter 14 we’ll allow the
current user to follow other users of the application (thereby receiving a feed of
their microposts).

The authentication system from this chapter will also serve a foundation
for the more advanced login system developed in Chapter 9. Instead of “forget-
ting” users on browser close, Chapter 9 will start by automatically remembering
users, and will then optionally remember users based on the value of a “remem-
ber me” checkbox. As a result, taken together Chapter 8 and Chapter 9 develop
all three of the most common types of login systems on the Web.

431

432 CHAPTER 8. BASIC LOGIN

8.1 Sessions
HTTP is a stateless protocol, treating each request as an independent transaction
that is unable to use information from any previous requests. This means there
is no way within the Hypertext Transfer Protocol to remember a user’s identity
from page to page; instead, web applications requiring user login must use a
session, which is a semi-permanent connection between two computers (such
as a client computer running a web browser and a server running Rails).

The most common techniques for implementing sessions in Rails involve
using cookies, which are small pieces of text placed on the user’s browser. Be-
cause cookies persist from one page to the next, they can store information
(such as a user id) that can be used by the application to retrieve the logged-in
user from the database. In this section and in Section 8.2, we’ll use the Rails
method called session to make temporary sessions that expire automatically
on browser close.1 In Chapter 9, we’ll learn how to make longer-lived sessions
using the closely related cookies method.

It’s convenient to model sessions as a RESTful resource: visiting the lo-
gin page will render a form for new sessions, logging in will create a session,
and logging out will destroy it. Unlike the Users resource, which uses a data-
base back-end (via the User model) to persist data, the Sessions resource will
use cookies, and much of the work involved in login comes from building this
cookie-based authentication machinery. In this section and the next, we’ll pre-
pare for this work by constructing a Sessions controller, a login form, and the
relevant controller actions. We’ll then complete user login in Section 8.2 by
adding the necessary session-manipulation code.

As in previous chapters, we’ll do our work on a topic branch and merge in
the changes at the end:

$ git checkout -b basic-login

1Some browsers offer an option to restore such sessions via a “continue where you left off” feature, but Rails
has no control over this behavior. In such cases, the session cookie may persist even after logging out of the
application.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Stateless_protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#HTTP_session_state
https://en.wikipedia.org/wiki/Session_(computer_science)
https://en.wikipedia.org/wiki/HTTP_cookie

8.1. SESSIONS 433

8.1.1 Sessions controller
The elements of logging in and out correspond to particular REST actions of
the Sessions controller: the login form is handled by the new action (covered
in this section), actually logging in is handled by sending a POST request to the
create action (Section 8.2), and logging out is handled by sending a DELETE
request to the destroy action (Section 8.3). (Recall the association of HTTP
verbs with REST actions from Table 7.1.)

To get started, we’ll generate a Sessions controller with a new action (List-
ing 8.1).

Listing 8.1: Generating the Sessions controller.
$ rails generate controller Sessions new

(Including new actually generates views as well, which is why we don’t include
actions like create and destroy that don’t correspond to views.) Following
the model from Section 7.2 for the signup page, our plan is to create a login
form for creating new sessions, as mocked up in Figure 8.1.

Unlike the Users resource, which used the special resources method to
obtain a full suite of RESTful routes automatically (Listing 7.3), the Sessions
resource will use only named routes, handling GET and POST requests with
the login route and DELETE requests with the logout route. The result ap-
pears in Listing 8.2 (which also deletes the unneeded routes generated by rails
generate controller).

Listing 8.2: Adding a resource to get the standard RESTful actions for ses-
sions. red
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

get '/login', to: 'sessions#new'

434 CHAPTER 8. BASIC LOGIN

Figure 8.1: A mockup of the login form.

8.1. SESSIONS 435

HTTP request URL Named route Action Purpose
GET /login login_path new page for a new session (login)
POST /login login_path create create a new session (login)
DELETE /logout logout_path destroy delete a session (log out)

Table 8.1: Routes provided by the sessions rules in Listing 8.2.

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users

end

With the routes in Listing 8.2, we also need to update the test generated in
Listing 8.1 with the new login route, as shown in Listing 8.3.

Listing 8.3: Updating the Sessions controller test to use the login route. green
test/controllers/sessions_controller_test.rb

require 'test_helper'

class SessionsControllerTest < ActionDispatch::IntegrationTest

test "should get new" do

get login_path

assert_response :success

end

end

The routes defined in Listing 8.2 correspond to URLs and actions similar to
those for users (Table 7.1), as shown in Table 8.1.

Since we’ve now added several custom named routes, it’s useful to look at
the complete list of the routes for our application, which we can generate using
rails routes:

$ rails routes

Prefix Verb URI Pattern Controller#Action

root GET / static_pages#home

help GET /help(.:format) static_pages#help

about GET /about(.:format) static_pages#about

436 CHAPTER 8. BASIC LOGIN

contact GET /contact(.:format) static_pages#contact

signup GET /signup(.:format) users#new

login GET /login(.:format) sessions#new

POST /login(.:format) sessions#create

logout DELETE /logout(.:format) sessions#destroy

users GET /users(.:format) users#index

POST /users(.:format) users#create

new_user GET /users/new(.:format) users#new

edit_user GET /users/:id/edit(.:format) users#edit

user GET /users/:id(.:format) users#show

PATCH /users/:id(.:format) users#update

PUT /users/:id(.:format) users#update

DELETE /users/:id(.:format) users#destroy

It’s not necessary to understand the results in detail, but viewing the routes
in this manner gives us a high-level overview of the actions supported by our
application.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. What is the difference between GET login_path and POST login_-

path?

2. By piping the results of rails routes to grep, list all the routes as-
sociated with the Users resource. Do the same for Sessions. How many
routes does each resource have? Hint: Refer to the section on grep in
Learn Enough Command Line to Be Dangerous.

8.1.2 Login form
Having defined the relevant controller and route, now we’ll fill in the view for
new sessions, i.e., the login form. Comparing Figure 8.1 with Figure 7.12, we
see that the login form is similar in appearance to the signup form, except with
two fields (email and password) in place of four.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.learnenough.com/r/learn_enough_command_line/inspecting_files/grepping#sec-grepping
https://www.learnenough.com/command-line

8.1. SESSIONS 437

As seen in Figure 8.2, when the login information is invalid we want to re-
render the login page and display an error message. In Section 7.3.3, we used an
error-messages partial to display error messages, but we saw in that section that
those messages are provided automatically by Active Record. This won’t work
for session creation errors because the session isn’t an Active Record object, so
we’ll render the error as a flash message instead.

Recall from Listing 7.15 that the signup form uses the form_with helper,
taking as an argument the user instance variable @user:

<%= form_with(model: @user, local: true) do |f| %>

.

.

.

<% end %>

The main difference between the session form and the signup form is that we
have no Session model, and hence no analogue for the @user variable. This
means that, in constructing the new session form, we have to give form_with
slightly different information; in particular, whereas

form_with(model: @user, local: true)

allows Rails to infer that the action of the form should be to POST to the URL
/users, in the case of sessions we need to indicate the corresponding URL, along
with the scope (in this case, the session):

form_with(url: login_path, scope: :session, local: true)

With the proper form_with in hand, it’s easy to make a login form tomatch
the mockup in Figure 8.1 using the signup form (Listing 7.15) as a model, as
shown in Listing 8.4.

438 CHAPTER 8. BASIC LOGIN

Figure 8.2: A mockup of login failure.

8.1. SESSIONS 439

Listing 8.4: Code for the login form.
app/views/sessions/new.html.erb

<% provide(:title, "Log in") %>

<h1>Log in</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: login_path, scope: :session, local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.submit "Log in", class: "btn btn-primary" %>

<% end %>

<p>New user? <%= link_to "Sign up now!", signup_path %></p>

</div>

</div>

Note that we’ve added a link to the signup page for convenience. With the code
in Listing 8.4, the login form appears as in Figure 8.3. (Because the “Log in”
navigation link hasn’t yet been filled in, you’ll have to type the /login URL
directly into your address bar. We’ll fix this blemish in Section 8.2.3.)

The generated form HTML appears in Listing 8.5.

Listing 8.5: HTML for the login form produced by Listing 8.4.
<form accept-charset="UTF-8" action="/login" method="post">

<input name="authenticity_token" type="hidden"

value="NNb6+J/j46LcrgYUC60wQ2titMuJQ5lLqyAbnbAUkdo=" />

<label for="session_email">Email</label>

<input class="form-control" id="session_email"

name="session[email]" type="email" />

<label for="session_password">Password</label>

<input id="session_password" name="session[password]"

type="password" />

<input class="btn btn-primary" name="commit" type="submit"

value="Log in" />

</form>

440 CHAPTER 8. BASIC LOGIN

Figure 8.3: The login form.

8.1. SESSIONS 441

Comparing Listing 8.5 with Listing 7.17, you might be able to guess that sub-
mitting this form will result in a params hash where params[:session]-
[:email] and params[:session][:password] correspond to the email
and password fields.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Submissions from the form defined in Listing 8.4 will be routed to the
Session controller’s create action. How does Rails know to do this?
Hint: Refer to Table 8.1 and the first line of Listing 8.5.

8.1.3 Finding and authenticating a user
As in the case of creating users (signup), the first step in creating sessions (login)
is to handle invalid input. We’ll start by reviewing what happens when a form
gets submitted, and then arrange for helpful error messages to appear in the case
of login failure (as mocked up in Figure 8.2.) Then we’ll lay the foundation for
successful login (Section 8.2) by evaluating each login submission based on the
validity of its email/password combination.

Let’s start by defining a minimalist create action for the Sessions con-
troller, along with empty new and destroy actions (Listing 8.6). The create
action in Listing 8.6 does nothing but render the new view, but it’s enough to
get us started. Submitting the /sessions/new form then yields the result shown
in Figure 8.4 and Figure 8.5.

Listing 8.6: A preliminary version of the Sessions create action.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

442 CHAPTER 8. BASIC LOGIN

Figure 8.4: The initial failed login, with create as in Listing 8.6.

end

def create

render 'new'

end

def destroy

end

end

Carefully inspecting the debug information in Figure 8.5 shows that, as
hinted at the end of Section 8.1.2, the submission results in a params hash
containing the email and password under the key session, which (omitting

8.1. SESSIONS 443

Figure 8.5: A closer look at the debug information from Figure 8.4.

some irrelevant details used internally by Rails) appears as follows:

session:

email: 'user@example.com'

password: 'foobar'

commit: Log in

action: create

controller: sessions

As with the case of user signup (Figure 7.16), these parameters form a nested
hash like the one we saw in Listing 4.13. In particular, params contains a
nested hash of the form

{ session: { password: "foobar", email: "user@example.com" } }

This means that

params[:session]

is itself a hash:

444 CHAPTER 8. BASIC LOGIN

{ password: "foobar", email: "user@example.com" }

As a result,

params[:session][:email]

is the submitted email address and

params[:session][:password]

is the submitted password.
In other words, inside the create action the params hash has all the in-

formation needed to authenticate users by email and password. Not coinci-
dentally, we already have exactly the methods we need: the User.find_by
method provided by Active Record (Section 6.1.4) and the authenticate
method provided by has_secure_password (Section 6.3.4). Recalling that
authenticate returns false for an invalid authentication (Section 6.3.4),
our strategy for user login can be summarized as shown in Listing 8.7.

Listing 8.7: Finding and authenticating a user.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

Log the user in and redirect to the user's show page.

else

Create an error message.

render 'new'

end

end

def destroy

end

end

8.1. SESSIONS 445

User Password a && b
nonexistent anything (nil && [anything]) == false

valid user wrong password (true && false) == false

valid user right password (true && true) == true

Table 8.2: Possible results of user && user.authenticate(…).

The first highlighted line in Listing 8.7 pulls the user out of the database using
the submitted email address. (Recall from Section 6.2.5 that email addresses
are saved as all lower-case, so here we use the downcase method to ensure a
match when the submitted address is valid.) The next line can be a bit confusing
but is fairly common in idiomatic Rails programming:

user && user.authenticate(params[:session][:password])

This uses && (logical and) to determine if the resulting user is valid. Taking into
account that any object other than nil and false itself is true in a boolean
context (Section 4.2.2), the possibilities appear as in Table 8.2. We see from
Table 8.2 that the if statement is true only if a user with the given email both
exists in the database and has the given password, exactly as required.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the Rails console, confirm each of the values in Table 8.2. Start
with user = nil, and then use user = User.first. Hint: To co-
erce the result to a boolean value, use the bang-bang trick from Sec-
tion 4.2.2, as in !!(user && user.authenticate('foobar')).

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

446 CHAPTER 8. BASIC LOGIN

8.1.4 Rendering with a flash message
Recall from Section 7.3.3 that we displayed signup errors using the User model
error messages. These errors are associated with a particular Active Record
object, but this strategy won’t work here because the session isn’t an Active
Record model. Instead, we’ll put a message in the flash to be displayed upon
failed login. A first, slightly incorrect, attempt appears in Listing 8.8.

Listing 8.8: An (unsuccessful) attempt at handling failed login.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

Log the user in and redirect to the user's show page.

else

flash[:danger] = 'Invalid email/password combination' # Not quite right!

render 'new'

end

end

def destroy

end

end

Because of the flash message display in the site layout (Listing 7.29), the
flash[:danger]message automatically gets displayed; because of the Boot-
strap CSS, it automatically gets nice styling (Figure 8.6).

Unfortunately, as noted in the text and in the comment in Listing 8.8, this
code isn’t quite right. The page looks fine, though, so what’s the problem?
The issue is that the contents of the flash persist for one request, but—unlike a
redirect, which we used in Listing 7.27—re-rendering a template with render
doesn’t count as a request. The result is that the flash message persists one
request longer than we want. For example, if we submit invalid login informa-
tion and then click on the Home page, the flash gets displayed a second time
(Figure 8.7). Fixing this blemish is the task of Section 8.1.5.

8.1. SESSIONS 447

Figure 8.6: The flash message for a failed login.

448 CHAPTER 8. BASIC LOGIN

Figure 8.7: An example of flash persistence.

8.1. SESSIONS 449

8.1.5 A flash test
The incorrect flash behavior is a minor bug in our application. According to
the testing guidelines from Box 3.3, this is exactly the sort of situation where
we should write a test to catch the error so that it doesn’t recur. We’ll thus
write a short integration test for the login form submission before proceeding.
In addition to documenting the bug and preventing a regression, this will also
give us a good foundation for further integration tests of login and logout.

We start by generating an integration test for our application’s login behav-
ior:

$ rails generate integration_test users_login

invoke test_unit

create test/integration/users_login_test.rb

Next, we need a test to capture the sequence shown in Figure 8.6 and Figure 8.7.
The basic steps appear as follows:

1. Visit the login path.

2. Verify that the new sessions form renders properly.

3. Post to the sessions path with an invalid params hash.

4. Verify that the new sessions form gets re-rendered and that a flash mes-
sage appears.

5. Visit another page (such as the Home page).

6. Verify that the flash message doesn’t appear on the new page.

A test implementing the above steps appears in Listing 8.9.

Listing 8.9: A test to catch unwanted flash persistence. red
test/integration/users_login_test.rb

450 CHAPTER 8. BASIC LOGIN

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

test "login with invalid information" do

get login_path

assert_template 'sessions/new'

post login_path, params: { session: { email: "", password: "" } }

assert_template 'sessions/new'

assert_not flash.empty?

get root_path

assert flash.empty?

end

end

After adding the test in Listing 8.9, the login test should be red:

Listing 8.10: red
$ rails test test/integration/users_login_test.rb

This shows how to run one (and only one) test file using rails test and the
full path to the file.

The way to get the failing test in Listing 8.9 to pass is to replace flashwith
the special variant flash.now, which is specifically designed for displaying
flash messages on rendered pages. Unlike the contents of flash, the contents
of flash.now disappear as soon as there is an additional request, which is
exactly the behavior we’ve tested in Listing 8.9. With this substitution, the
corrected application code appears as in Listing 8.11.

Listing 8.11: Correct code for failed login. green
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

8.2. LOGGING IN 451

Log the user in and redirect to the user's show page.

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

end

end

We can then verify that both the login integration test and the full test suite
are green:

Listing 8.12: green
$ rails test test/integration/users_login_test.rb

$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify in your browser that the sequence from Section 8.1.4 works cor-
rectly, i.e., that the flash message disappears when you click on a second
page.

8.2 Logging in
Now that our login form can handle invalid submissions, the next step is to
handle valid submissions correctly by actually logging a user in. In this section,
we’ll log the user in with a temporary session cookie that expires automatically
upon browser close. In Section 9.1, we’ll add sessions that persist even after
closing the browser.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

452 CHAPTER 8. BASIC LOGIN

Implementing sessions will involve defining a large number of related func-
tions for use across multiple controllers and views. You may recall from Sec-
tion 4.2.4 that Ruby provides a module facility for packaging such functions
in one place. Conveniently, a Sessions helper module was generated automati-
cally when generating the Sessions controller (Section 8.1.1). Moreover, such
helpers are automatically included in Rails views; by including the module into
the base class of all controllers (the Application controller), we arrange to make
them available in our controllers as well (Listing 8.13).2

Listing 8.13: Including the Sessions helper module into the Application con-
troller.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

include SessionsHelper

end

With this configuration complete, we’re now ready to write the code to log users
in.

8.2.1 The log_in method
Logging a user in is simple with the help of the session method defined by
Rails. (This method is separate and distinct from the Sessions controller gen-
erated in Section 8.1.1.) We can treat session as if it were a hash, and assign
to it as follows:

session[:user_id] = user.id

This places a temporary cookie on the user’s browser containing an encrypted
version of the user’s id, which allows us to retrieve the id on subsequent pages

2I like this technique because it connects to the pure Ruby way of including modules, but Rails 4 introduced
a technique called concerns that can also be used for this purpose. To learn how to use concerns, run a search for
“how to use concerns in Rails”.

https://www.google.com/search?q=how+to+use+concerns+in+rails

8.2. LOGGING IN 453

using session[:user_id]. In contrast to the persistent cookie created by the
cookies method (Section 9.1), the temporary cookie created by the session
method expires immediately when the browser is closed.

Because we’ll want to use the same login technique in a couple of different
places, we’ll define a method called log_in in the Sessions helper, as shown
in Listing 8.14.

Listing 8.14: The log_in function.
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

end

Because temporary cookies created using the session method are auto-
matically encrypted, the code in Listing 8.14 is secure, and there is no way for
an attacker to use the session information to log in as the user. This applies only
to temporary sessions initiated with the session method, though, and is not
the case for persistent sessions created using the cookies method. Permanent
cookies are vulnerable to a session hijacking attack, so in Chapter 9 we’ll have
to be much more careful about the information we place on the user’s browser.

With the log_in method defined in Listing 8.14, we’re now ready to com-
plete the session create action by logging the user in and redirecting to the
user’s profile page. The result appears in Listing 8.15.3

Listing 8.15: Logging in a user.
app/controllers/sessions_controller.rb

1 class SessionsController < ApplicationController

2
3 def new

4 end

3The log_in method is available in the Sessions controller because of the module inclusion in Listing 8.13.

454 CHAPTER 8. BASIC LOGIN

5
6 def create

7 user = User.find_by(email: params[:session][:email].downcase)

8 if user && user.authenticate(params[:session][:password])

9 log_in user

10 redirect_to user

11 else

12 flash.now[:danger] = 'Invalid email/password combination'

13 render 'new'

14 end

15 end

16
17 def destroy

18 end

19 end

Note the compact redirect

redirect_to user

which we saw before in Section 7.4.1. Rails automatically converts this to the
route for the user’s profile page:

user_url(user)

With the create action defined in Listing 8.15, the login form defined in
Listing 8.4 should now be working. It doesn’t have any effects on the applica-
tion display, though, so short of inspecting the browser session directly there’s
no way to tell that you’re logged in. As a first step toward enabling more visible
changes, in Section 8.2.2 we’ll retrieve the current user from the database using
the id in the session. In Section 8.2.3, we’ll change the links on the application
layout, including a URL to the current user’s profile.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

8.2. LOGGING IN 455

1. Log in with a valid user and inspect your browser’s cookies. What is the
value of the session content? Hint: If you don’t know how to view your
browser’s cookies, Google for it (Box 1.2).

2. What is the value of the Expires attribute from the previous exercise?

8.2.2 Current user
Having placed the user’s id securely in the temporary session, we are now in
a position to retrieve it on subsequent pages, which we’ll do by defining a
current_user method to find the user in the database corresponding to the
session id. The purpose of current_user is to allow constructions such as

<%= current_user.name %>

and

redirect_to current_user

To find the current user, one possibility is to use the findmethod, as on the
user profile page (Listing 7.5):

User.find(session[:user_id])

But recall from Section 6.1.4 that find raises an exception if the user id doesn’t
exist. This behavior is appropriate on the user profile page because it will only
happen if the id is invalid, but in the present case session[:user_id] will
often be nil (i.e., for non-logged-in users). To handle this possibility, we’ll
use the same find_by method used to find by email address in the create
method, with id in place of email:

456 CHAPTER 8. BASIC LOGIN

User.find_by(id: session[:user_id])

Rather than raising an exception, this method returns nil (indicating no such
user) if the id is invalid.

We could now define the current_user method as follows:

def current_user

if session[:user_id]

User.find_by(id: session[:user_id])

end

end

(If the session user id doesn’t exist, the function just falls off the end and returns
nil automatically, which is exactly what we want.) This would work fine, but
it would hit the database multiple times if, e.g., current_user appeared mul-
tiple times on a page. Instead, we’ll follow a common Ruby convention by
storing the result of User.find_by in an instance variable, which hits the da-
tabase the first time but returns the instance variable immediately on subsequent
invocations:4

if @current_user.nil?

@current_user = User.find_by(id: session[:user_id])

else

@current_user

end

Recalling the or operator || seen in Section 4.2.2, we can rewrite this as fol-
lows:

@current_user = @current_user || User.find_by(id: session[:user_id])

4This practice of remembering variable assignments from one method invocation to the next is known as
memoization. (Note that this is a technical term; in particular, it’s not a misspelling of “memorization”—a subtlety
lost on the hapless copyeditor of a previous edition of this book.)

https://en.wikipedia.org/wiki/Memoization

8.2. LOGGING IN 457

Because a User object is true in a boolean context, the call to find_by only
gets executed if @current_user hasn’t yet been assigned.

Although the preceding code would work, it’s not idiomatically correct
Ruby; instead, the proper way to write the assignment to @current_user is
like this:

@current_user ||= User.find_by(id: session[:user_id])

This uses the potentially confusing but frequently used ||= (“or equals”) oper-
ator (Box 8.1).

Box 8.1. What the *$@! is ||= ?

The ||= (“or equals”) assignment operator is a common Ruby idiom and is
thus important for aspiring Rails developers to recognize. Although at first it may
seem mysterious, or equals is easy to understand by analogy.

We start by noting the common pattern of incrementing a variable:

x = x + 1

Many languages provide a syntactic shortcut for this operation; in Ruby (and in C,
C++, Perl, Python, Java, etc.), it can also appear as follows:

x += 1

Analogous constructs exist for other operators as well:

$ rails console

>> x = 1

=> 1

>> x += 1

=> 2

>> x *= 3

458 CHAPTER 8. BASIC LOGIN

=> 6

>> x -= 8

=> -2

>> x /= 2

=> -1

In each case, the pattern is that x = x O y and x O= y are equivalent for any
operator O.

Another common Ruby pattern is assigning to a variable if it’s nil but other-
wise leaving it alone. Recalling the or operator || seen in Section 4.2.2, we can
write this as follows:

>> @foo

=> nil

>> @foo = @foo || "bar"

=> "bar"

>> @foo = @foo || "baz"

=> "bar"

Since nil is false in a boolean context, the first assignment to @foo is nil ||

"bar", which evaluates to "bar". Similarly, the second assignment is @foo
|| "baz", i.e., "bar" || "baz", which also evaluates to "bar". This is
because anything other than nil or false is true in a boolean context, and
the series of || expressions terminates after the first true expression is evaluated.
(This practice of evaluating || expressions from left to right and stopping on the
first true value is known as short-circuit evaluation. The same principle applies to
&& statements, except in this case evaluation stops on the first false value.)

Comparing the console sessions for the various operators, we see that @foo =

@foo || "bar" follows the x = x O y pattern with || in the place of O:

x = x + 1 -> x += 1

x = x * 3 -> x *= 3

x = x - 8 -> x -= 8

8.2. LOGGING IN 459

x = x / 2 -> x /= 2

@foo = @foo || "bar" -> @foo ||= "bar"

Thus we see that @foo = @foo || "bar" and @foo ||= "bar" are
equivalent. In the context of the current user, this suggests the following con-
struction:

@current_user ||= User.find_by(id: session[:user_id])

Voilà !
(Technically, Ruby evaluates the expression @foo || @foo = "bar",

which avoids an unnecessary assignment when @foo is not nil or false. But
this expression doesn’t explain the ||= notation as well, so the above discussion
uses the nearly equivalent @foo = @foo || "bar".)

Applying the results of the above discussion yields the succinct
current_user method shown in Listing 8.16. (There’s a slight amount of
repetition in the use of session[:user_id], which we’ll eliminate in Sec-
tion 9.1.2.)

Listing 8.16: Finding the current user in the session.
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

Returns the current logged-in user (if any).

def current_user

if session[:user_id]

@current_user ||= User.find_by(id: session[:user_id])

end

end

end

https://m.xkcd.com/1475/

460 CHAPTER 8. BASIC LOGIN

With the working current_user method in Listing 8.16, we’re now in a po-
sition to make changes to our application based on user login status.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm at the console that User.find_by(id: ...) returns nil
when the corresponding user doesn’t exist.

2. In a Rails console, create a session hash with key :user_id. By fol-
lowing the steps in Listing 8.17, confirm that the ||= operator works as
required.

Listing 8.17: Simulating session in the console.
>> session = {}

>> session[:user_id] = nil

>> @current_user ||= User.find_by(id: session[:user_id])

<What happens here?>

>> session[:user_id]= User.first.id

>> @current_user ||= User.find_by(id: session[:user_id])

<What happens here?>

>> @current_user ||= User.find_by(id: session[:user_id])

<What happens here?>

8.2.3 Changing the layout links
The first practical application of logging in involves changing the layout links
based on login status. In particular, as seen in the Figure 8.8 mockup,5 we’ll add
links for logging out, for user settings, for listing all users, and for the current
user’s profile page. Note in Figure 8.8 that the logout and profile links appear
in a dropdown “Account” menu; we’ll see in Listing 8.19 how to make such a
menu with Bootstrap.

5Image retrieved from https://www.flickr.com/photos/elevy/14730820387 on 2016-06-03. Copyright © 2014
by Elias Levy and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic license.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://creativecommons.org/licenses/by/2.0/

8.2. LOGGING IN 461

Figure 8.8: A mockup of the user profile after a successful login.

462 CHAPTER 8. BASIC LOGIN

At this point, in real life I would consider writing an integration test to cap-
ture the behavior described above. As noted in Box 3.3, as you become more
familiar with the testing tools in Rails you may find yourself more inclined to
write tests first. In this case, though, such a test involves several new ideas, so
for now it’s best deferred to its own section (Section 8.2.4).

The way to change the links in the site layout involves using an if-else state-
ment inside embedded Ruby to show one set of links if the user is logged in and
another set of links otherwise:

<% if logged_in? %>

Links for logged-in users

<% else %>

Links for non-logged-in-users

<% end %>

This kind of code requires the existence of a logged_in? boolean method,
which we’ll now define.

A user is logged in if there is a current user in the session, i.e., if
current_user is not nil. Checking for this requires the use of the “not”
operator (Section 4.2.2), written using an exclamation point ! and usually read
as “bang”. The resulting logged_in? method appears in Listing 8.18.

Listing 8.18: The logged_in? helper method.
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

Returns the current logged-in user (if any).

def current_user

if session[:user_id]

@current_user ||= User.find_by(id: session[:user_id])

end

end

Returns true if the user is logged in, false otherwise.

8.2. LOGGING IN 463

def logged_in?

!current_user.nil?

end

end

With the addition in Listing 8.18, we’re now ready to change the layout
links if a user is logged in. There are four new links, two of which are stubbed
out (to be completed in Chapter 10):

<%= link_to "Users", '#' %>

<%= link_to "Settings", '#' %>

The logout link, meanwhile, uses the logout path defined in Listing 8.2:

<%= link_to "Log out", logout_path, method: :delete %>

Notice that the logout link passes a hash argument indicating that it should sub-
mit with an HTTP DELETE request.6 We’ll also add a profile link as follows:

<%= link_to "Profile", current_user %>

Here we could write

<%= link_to "Profile", user_path(current_user) %>

but as usual Rails allows us to link directly to the user by automatically convert-
ing current_user into user_path(current_user) in this context. Fi-
nally, when users aren’t logged in, we’ll use the login path defined in Listing 8.2
to make a link to the login form:

6Web browsers can’t actually issue DELETE requests; Rails fakes it with JavaScript.

464 CHAPTER 8. BASIC LOGIN

<%= link_to "Log in", login_path %>

Putting everything together gives the updated header partial shown in List-
ing 8.19.

Listing 8.19: Changing the layout links for logged-in users.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", root_path, id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", root_path %>

<%= link_to "Help", help_path %>

<% if logged_in? %>

<%= link_to "Users", '#' %>

<li class="dropdown">

Account <b class="caret">

<ul class="dropdown-menu">

<%= link_to "Profile", current_user %>

<%= link_to "Settings", '#' %>

<li class="divider">

<%= link_to "Log out", logout_path, method: :delete %>

<% else %>

<%= link_to "Log in", login_path %>

<% end %>

</nav>

</div>

</header>

As part of including the new links into the layout, Listing 8.19 takes ad-
vantage of Bootstrap’s ability to make dropdown menus.7 Note in particular
the inclusion of the special Bootstrap CSS classes such as dropdown, drop-
down-menu, etc. To activate the dropdown menu, we need to include Boot-
strap’s custom JavaScript library into our application (which is not included

7See the Bootstrap components page for more information.

https://getbootstrap.com/docs/3.4/components/

8.2. LOGGING IN 465

automatically as part of the bootstrap-sass gem in Listing 5.5), as well
as the jQuery library.

Section 5.2 mentioned briefly that the Rails asset pipeline works in parallel
with Webpack and Yarn, and we need to put both to work in order to include the
above JavaScript. The first step is to install both jQuery and Bootstrap’s Java-
Script library in our application, which coincidentally needs the same version
number for each:

$ yarn add jquery@3.4.1 bootstrap@3.4.1

In order to make jQuery available in our application, we need to edit Web-
pack’s environment file and add the content shown in Listing 8.20.

Listing 8.20: Adding jQuery configuration to Webpack.
config/webpack/environment.js

const { environment } = require('@rails/webpacker')

const webpack = require('webpack')

environment.plugins.prepend('Provide',

new webpack.ProvidePlugin({

$: 'jquery/src/jquery',

jQuery: 'jquery/src/jquery'

})

)

module.exports = environment

Finally, we need to require jQuery and import Bootstrap in our applica-
tion.js file, as shown in Listing 8.21.8

Listing 8.21: Requiring and importing the necessary JavaScript libraries.
app/javascript/packs/application.js

require("@rails/ujs").start()

require("turbolinks").start()

8For what it’s worth, I don’t know offhand why one uses require and the other uses import.

https://jquery.com/

466 CHAPTER 8. BASIC LOGIN

require("@rails/activestorage").start()

require("channels")

require("jquery")

import "bootstrap"

At this point, you should visit the login path and log in as a valid user (user-
name example@railstutorial.org, password foobar), which effectively
tests the code in the previous three sections.9 With the code in Listing 8.19 and
Listing 8.21, you should see the dropdown menu and links for logged-in users,
as shown in Figure 8.9.

If you quit your browser completely, you should also be able to verify that
the application forgets your login status, requiring you to log in again to see the
changes described above.10

Mobile styling

Now that we’ve got the dropdown menu working, we’re going to take an op-
portunity to add a few design tweaks for mobile devices, thereby fulfilling a
promise made in Section 5.1.11 As noted in that section, this is not a tutorial on
web design, so we’ll be making the minimum set of changes needed to make
the mobile app look nice, but you can find a much more detailed treatment of
mobile styling in Learn Enough CSS & Layout to Be Dangerous, especially
Chapter 9, “Mobile media queries”.

Our first step in applying some mobile-friendly design is to view our cur-
rent app as it appears in a mobile device. One possibility is simply using a
smartphone to view the site, but this can be inconvenient, especially if the de-
velopment app is running behind a cloud IDE login wall or on a local network
(which is often inaccessible to outside devices). A more convenient alterna-
tive is to use a feature of the Safari web browser known as “Responsive Design
Mode”, which can be activated as shown in Figure 8.10.12 This mode gives us

9You may have to restart the webserver to get this to work (Box 1.2).
10If you’re using the cloud IDE, I recommend using a different browser to test the login behavior so that you

don’t have to close down the browser running the IDE.
11Several of these changes were based on or inspired by the excellent work of Rails Tutorial reader Craig Zeise.
12See “Mobile viewport” in Learn Enough CSS & Layout to Be Dangerous for yet another alternative.

https://www.learnenough.com/css-and-layout
https://www.learnenough.com/r/css_and_layout/mobile
https://github.com/czeise/
https://www.learnenough.com/r/css_and_layout/mobile/mobile-viewport#sec-mobile-viewport
https://www.learnenough.com/css-and-layout

8.2. LOGGING IN 467

Figure 8.9: A logged-in user with new links and a dropdown menu.

468 CHAPTER 8. BASIC LOGIN

the ability to view the app as it appears in any of a number of different mobile
devices, as seen in Figure 8.11.13

Now let’s take a look at the profile page from Figure 8.9 as it appears in a
mobile device. As seen in Figure 8.12, the menu items currently aren’t nicely
aligned, and the menu itself takes over a large part of the top of the screen.
Meanwhile, the footer navigation links appear in an awkward location, squished
up against the other link in the footer. These are the onlymajor issues we need to
address, and we’ll be able to fix both of them with a surprisingly small amount
of code.

Our first step is to add a special meta tag called the viewport, which lets
developers switch between desktop and mobile modes.14 The result, which
goes in the application template, appears in Listing 8.22.

Listing 8.22: Adding the viewport meta tag.
app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full_title(yield(:title)) %></title>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<%= csrf_meta_tags %>

<%= csp_meta_tag %>

.

.

.

To fix the menu, we’ll use a so-called “hamburger menu” (named for its un-
intentional resemblance to a hamburger) when in mobile mode. This involves
adding some markup to the header file from Listing 8.19, as shown in List-
ing 8.23.15

13To change the aspect ratio from portrait to landscape for any of the devices, simply double-click on the cor-
responding icon. Back when we were making Learn Enough CSS & Layout to Be Dangerous, it took me and my
coauthor Lee Donahoe a surprisingly long time to figure this out.

14See “Mobile viewport” in Learn Enough CSS & Layout to Be Dangerous for more details.
15I might never have figured this out on my own. Thanks again to Craig Zeise for his fantastic volunteer effort.

https://en.wikipedia.org/wiki/Hamburger_button
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/r/css_and_layout/mobile/mobile-viewport#sec-mobile-viewport
https://www.learnenough.com/css-and-layout
https://github.com/czeise/

8.2. LOGGING IN 469

Figure 8.10: The menu item to enter Safari’s Responsive Design Mode.

470 CHAPTER 8. BASIC LOGIN

Figure 8.11: Safari’s Responsive Design Mode.

8.2. LOGGING IN 471

Figure 8.12: The current mobile view of a user profile.

472 CHAPTER 8. BASIC LOGIN

Listing 8.23: Adding the markup for a hamburger menu.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", root_path, id: "logo" %>

<nav>

<div class="navbar-header">

<button type="button" class="navbar-toggle collapsed"

data-toggle="collapse"

data-target="#bs-example-navbar-collapse-1"

aria-expanded="false">

Toggle navigation

</button>

</div>

<ul class="nav navbar-nav navbar-right collapse navbar-collapse"

id="bs-example-navbar-collapse-1">

.

.

.

</nav>

</div>

</header>

The result of Listing 8.23 appears in Figure 8.13. Pressing or clicking the
hamburger icon then opens the menu, as shown in Figure 8.14. Note what a
significant improvement this is compared to the default menu shown in Fig-
ure 8.12.

As a final step, we’ll add a little CSS to fix the footer issue. The trick is to
use a media query to apply different CSS for mobile devices than for desktop
computers. The result, obtained after some trial-and-error in a web inspector,
appears in Listing 8.24.16 Note that the new styles will be applied when the
width of the device is less than 800 pixels, which is a common threshold (known
as a “breakpoint”) for mobile devices. After refreshing the browser to apply the
style in Listing 8.24, our app appears as shown in Figure 8.15.

16Thanks to Learn Enough cofounder and Learn Enough CSS & Layout to Be Dangerous coauthor Lee Donahoe
for his assistance.

https://www.learnenough.com/css-and-layout

8.2. LOGGING IN 473

Figure 8.13: Using a hamburger menu for mobile.

474 CHAPTER 8. BASIC LOGIN

Figure 8.14: The view after clicking the hamburger menu.

8.2. LOGGING IN 475

Listing 8.24: Updating the footer CSS.
app/assets/stylesheets/custom.scss

.

.

.

/* footer */

footer {

.

.

.

}

@media (max-width: 800px) {

footer {

small {

display: block;

float: none;

margin-bottom: 1em;

}

ul {

float: none;

padding: 0;

li {

float: none;

margin-left: 0;

}

}

}

}

With that, our mobile styling is done, and we’re ready to add some tests for
the layout links added in this section.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the cookie inspector in your browser (Section 8.2.1), remove the
session cookie and confirm that the layout links revert to the non-logged-
in state.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

476 CHAPTER 8. BASIC LOGIN

Figure 8.15: The footer styled for mobile.

8.2. LOGGING IN 477

2. Log in again, confirming that the layout links change correctly. Then quit
your browser and start it again to confirm that the layout links revert to
the non-logged-in state. (If your browser has a “remember where I left
off” feature that automatically restores the session, be sure to disable it
in this step (Box 1.2).)

8.2.4 Testing layout changes
Having verified by hand that the application is behaving properly upon suc-
cessful login, before moving on we’ll write an integration test to capture that
behavior and catch regressions. We’ll build on the test from Listing 8.9 and
write a series of steps to verify the following sequence of actions:

1. Visit the login path.

2. Post valid information to the sessions path.

3. Verify that the login link disappears.

4. Verify that a logout link appears

5. Verify that a profile link appears.

In order to see these changes, our test needs to log in as a previously reg-
istered user, which means that such a user must already exist in the database.
The default Rails way to do this is to use fixtures, which are a way of orga-
nizing data to be loaded into the test database. We discovered in Section 6.2.5
that we needed to delete the default fixtures so that our email uniqueness tests
would pass (Listing 6.31). Now we’re ready to start filling in that empty file
with custom fixtures of our own.

In the present case, we need only one user, whose information should con-
sist of a valid name and email address. Because we’ll need to log the user in,
we also have to include a valid password to compare with the password submit-
ted to the Sessions controller’s create action. Referring to the data model in
Figure 6.9, we see that this means creating a password_digest attribute for

478 CHAPTER 8. BASIC LOGIN

the user fixture, which we’ll accomplish by defining a digest method of our
own.

As discussed in Section 6.3.1, the password digest is created using bcrypt
(via has_secure_password), so we’ll need to create the fixture password
using the same method. By inspecting the secure password source code, we
find that this method is

BCrypt::Password.create(string, cost: cost)

where string is the string to be hashed and cost is the cost parameter that de-
termines the computational cost to calculate the hash. Using a high cost makes
it computationally intractable to use the hash to determine the original pass-
word, which is an important security precaution in a production environment,
but in tests we want the digest method to be as fast as possible. The secure
password source code has a line for this as well:

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

This rather obscure code, which you don’t need to understand in detail, arranges
for precisely the behavior described above: it uses the minimum cost parameter
in tests and a normal (high) cost parameter in production. (We’ll learn more
about the strange ?-: notation in Section 9.2.)

There are several places we could put the resulting digest method, but
we’ll have an opportunity in Section 9.1.1 to reuse digest in the User model.
This suggests placing the method in user.rb. Because we won’t necessarily
have access to a user object when calculating the digest (as will be the case in
the fixtures file), we’ll attach the digestmethod to the User class itself, which
(as we saw briefly in Section 4.4.1) makes it a class method. The result appears
in Listing 8.25.

https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb

8.2. LOGGING IN 479

Listing 8.25: Adding a digest method for use in fixtures.
app/models/user.rb

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

Returns the hash digest of the given string.

def User.digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

end

With the digest method from Listing 8.25, we are now ready to create a
user fixture for a valid user, as shown in Listing 8.26.17

Listing 8.26: A fixture for testing user login.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

Note in particular that fixtures support embedded Ruby, which allows us to use

<%= User.digest('password') %>

to create the valid password digest for the test user.
17It’s worth noting that indentation in fixture files must take the form of spaces, not tabs, so take care when

copying code like that shown in Listing 8.26.

480 CHAPTER 8. BASIC LOGIN

Although we’ve defined the password_digest attribute required by
has_secure_password, sometimes it’s convenient to refer to the plain (vir-
tual) password as well. Unfortunately, this is impossible to arrange with fix-
tures, and adding a password attribute to Listing 8.26 causes Rails to com-
plain that there is no such column in the database (which is true). We’ll make
do by adopting the convention that all fixture users have the same password
('password').

Having created a fixture with a valid user, we can retrieve it inside a test as
follows:

user = users(:michael)

Here users corresponds to the fixture filename users.yml, while the symbol
:michael references user with the key shown in Listing 8.26.

With the fixture user as above, we can nowwrite a test for the layout links by
converting the sequence enumerated at the beginning of this section into code,
as shown in Listing 8.27.

Listing 8.27: A test for user logging in with valid information. green
test/integration/users_login_test.rb

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "login with valid information" do

get login_path

post login_path, params: { session: { email: @user.email,

password: 'password' } }

assert_redirected_to @user

follow_redirect!

assert_template 'users/show'

assert_select "a[href=?]", login_path, count: 0

assert_select "a[href=?]", logout_path

assert_select "a[href=?]", user_path(@user)

end

end

8.2. LOGGING IN 481

Here we’ve used

assert_redirected_to @user

to check the right redirect target and

follow_redirect!

to actually visit the target page. Listing 8.27 also verifies that the login link
disappears by verifying that there are zero login path links on the page:

assert_select "a[href=?]", login_path, count: 0

By including the extra count: 0 option, we tell assert_select that we ex-
pect there to be zero links matching the given pattern. (Compare this to count:
2 in Listing 5.32, which checks for exactly two matching links.)

Because the application code was already working, this test should be
green:

Listing 8.28: green
$ rails test test/integration/users_login_test.rb

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm by commenting out everything after if user in Line 8 of List-
ing 8.15 that the tests still pass even if we don’t authenticate the user by
email and password, as shown in Listing 8.29. This is because Listing 8.9

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

482 CHAPTER 8. BASIC LOGIN

doesn’t test the case of a correct user email but incorrect password. Fix
this serious omission in our test suite by adding a valid email to the Users
login test (Listing 8.30). Verify that the tests are red, then remove the
Line 8 comment to get back to green. (Because it’s so important, we’ll
add this test to the main code in Section 8.3.)

2. Use the “safe navigation” operator &. to simplify the boolean test in
Line 8 of Listing 8.15, as shown in Line 8 of Listing 8.31.18 This Ruby
feature allows us to condense the common pattern of obj && obj.-

method into obj&.method. Confirm that the tests in Listing 8.30 still
pass after the change.

Listing 8.29: Commenting out the authentication code, but tests still green.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user # && user.authenticate(params[:session][:password])

log_in user

redirect_to user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

end

end

Listing 8.30: Testing the case of valid user email, invalid password.
test/integration/users_login_test.rb

require 'test_helper'

18Thanks to reader Aviv Levinsky for suggesting this addition.

http://mitrev.net/ruby/2015/11/13/the-operator-in-ruby/

8.2. LOGGING IN 483

class UsersLoginTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "login with valid email/invalid password" do

get login_path

assert_template 'sessions/new'

post login_path, params: { session: { email: FILL_IN,

password: "invalid" } }

assert_template 'sessions/new'

assert_not flash.empty?

get root_path

assert flash.empty?

end

.

.

.

end

Listing 8.31: Using the “safe navigation” operator &. to simplify the login
code.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user&.authenticate(params[:session][:password])

log_in user

redirect_to user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

log_out

redirect_to root_url

end

end

484 CHAPTER 8. BASIC LOGIN

8.2.5 Login upon signup
Although our authentication system is now working, newly registered users
might be confused, as they are not logged in by default. Because it would be
strange to force users to log in immediately after signing up, we’ll log in new
users automatically as part of the signup process. To arrange this behavior, all
we need to do is add a call to log_in in the Users controller create action,
as shown in Listing 8.32.19

Listing 8.32: Logging in the user upon signup.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

def create

@user = User.new(user_params)

if @user.save

log_in @user

flash[:success] = "Welcome to the Sample App!"

redirect_to @user

else

render 'new'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

To test the behavior fromListing 8.32, we can add a line to the test fromList-
19As with the Sessions controller, the log_inmethod is available in the Users controller because of the module

inclusion in Listing 8.13.

8.2. LOGGING IN 485

ing 7.31 to check that the user is logged in. It’s helpful in this context to define
an is_logged_in? helper method to parallel the logged_in? helper defined
in Listing 8.18, which returns true if there’s a user id in the (test) session and
false otherwise (Listing 8.33). (Because helpermethods aren’t available in tests,
we can’t use the current_user as in Listing 8.18, but the session method
is available, so we use that instead.) Here we use is_logged_in? instead of
logged_in? so that the test helper and Sessions helper methods have differ-
ent names, which prevents them from being mistaken for each other.20 (In this
case we could actually just include the Sessions helper and use logged_in?
directly, but this technique would fail in Chapter 9 due to details of how cookies
are handled in tests, so instead we define a test-specific method that will work
in all cases.)

Listing 8.33: A boolean method for login status inside tests.
test/test_helper.rb

ENV['RAILS_ENV'] ||= 'test'

.

.

.

class ActiveSupport::TestCase

fixtures :all

Returns true if a test user is logged in.

def is_logged_in?

!session[:user_id].nil?

end

end

With the code in Listing 8.33, we can assert that the user is logged in after
signup using the line shown in Listing 8.34.

Listing 8.34: A test of login after signup. green
test/integration/users_signup_test.rb

20For example, I once had a test suite that was green even after I accidentally deleted the main log_in method
in the Sessions helper. The reason is that the tests were happily using a test helper with the same name, thereby
passing even though the application was completely broken. As with is_logged_in?, we’ll avoid this issue by
defining the test helper log_in_as in Listing 9.24.

486 CHAPTER 8. BASIC LOGIN

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

.

.

.

test "valid signup information" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

follow_redirect!

assert_template 'users/show'

assert is_logged_in?

end

end

At this point, the test suite should still be green:

Listing 8.35: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Is the test suite red or green if you comment out the log_in line in List-
ing 8.32?

2. By using your text editor’s ability to comment out code, toggle back and
forth between commenting out code in Listing 8.32 and confirm that the
test suite toggles between red and green. (You will need to save the file
between toggles.)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.learnenough.com/text-editor
https://www.learnenough.com/r/learn_enough_text_editor/advanced_text_editing/writing_source_code#sec-commenting_out

8.3. LOGGING OUT 487

8.3 Logging out
As discussed in Section 8.1, our authentication model is to keep users logged
in until they log out explicitly. In this section, we’ll add this necessary logout
capability. Because the “Log out” link has already been defined (Listing 8.19),
all we need is to write a valid controller action to destroy user sessions.

So far, the Sessions controller actions have followed the RESTful conven-
tion of using new for a login page and create to complete the login. We’ll
continue this theme by using a destroy action to delete sessions, i.e., to log
out. Unlike with the login functionality, which we use in both Listing 8.15 and
Listing 8.32, we’ll be logging out only in one place, so we’ll put the relevant
code directly in the destroy action. As we’ll see in Section 9.3, this design
(with a little refactoring) will also make the authentication machinery easier to
test.

Logging out involves undoing the effects of the log_inmethod from List-
ing 8.14, which involves deleting the user id from the session.21 To do this, we
use the delete method as follows:

session.delete(:user_id)

We’ll also set the current user to nil, although in the present case this won’t
matter because of an immediate redirect to the root URL.22 Aswith log_in and
associated methods, we’ll put the resulting log_out method in the Sessions
helper module, as shown in Listing 8.36.

Listing 8.36: The log_out method.
app/helpers/sessions_helper.rb

21Some browsers offer a “remember where I left off” feature, which restores the session automatically, so be
sure to disable any such feature before trying to log out.

22Setting @current_user to nil would matter only if @current_user were created before the destroy
action (which it isn’t) and if we didn’t issue an immediate redirect (which we do). This is an unlikely combination
of events, and with the application as presently constructed it isn’t necessary, but because it’s security-related I
include it for completeness.

https://stackoverflow.com/questions/20449641/rails-4-session-value-never-expires-or-dies-when-browser-closes

488 CHAPTER 8. BASIC LOGIN

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

.

.

.

Logs out the current user.

def log_out

session.delete(:user_id)

@current_user = nil

end

end

We can put the log_out method to use in the Sessions controller’s de-
stroy action, as shown in Listing 8.37.

Listing 8.37: Destroying a session (user logout).
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

log_in user

redirect_to user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

log_out

redirect_to root_url

end

end

To test the logout machinery, we can add some steps to the user login test
from Listing 8.27. After logging in, we use delete to issue a DELETE request

8.3. LOGGING OUT 489

to the logout path (Table 8.1) and verify that the user is logged out and redirected
to the root URL. We also check that the login link reappears and that the logout
and profile links disappear. The new steps appear in Listing 8.38.

Listing 8.38: A test for user logout (and an improved test for invalid login).
green
test/integration/users_login_test.rb

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "login with valid email/invalid password" do

get login_path

assert_template 'sessions/new'

post login_path, params: { session: { email: @user.email,

password: "invalid" } }

assert_not is_logged_in?

assert_template 'sessions/new'

assert_not flash.empty?

get root_path

assert flash.empty?

end

test "login with valid information followed by logout" do

get login_path

post login_path, params: { session: { email: @user.email,

password: 'password' } }

assert is_logged_in?

assert_redirected_to @user

follow_redirect!

assert_template 'users/show'

assert_select "a[href=?]", login_path, count: 0

assert_select "a[href=?]", logout_path

assert_select "a[href=?]", user_path(@user)

delete logout_path

assert_not is_logged_in?

assert_redirected_to root_url

follow_redirect!

assert_select "a[href=?]", login_path

assert_select "a[href=?]", logout_path, count: 0

assert_select "a[href=?]", user_path(@user), count: 0

end

end

490 CHAPTER 8. BASIC LOGIN

(Now that we have is_logged_in? available in tests, we’ve also thrown in a
bonus assert is_logged_in? immediately after posting valid information
to the sessions path. We’ve also added a similar assertion and the solution to
the exercise from Section 8.2.4 by adding the results of Listing 8.30.)

With the session destroy action thus defined and tested, the initial sign-
up/login/logout triumvirate is complete, and the test suite should be green:

Listing 8.39: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm in a browser that the “Log out” link causes the correct changes
in the site layout. What is the correspondence between these changes and
the final three steps in Listing 8.38?

2. By checking the site cookies, confirm that the session is correctly re-
moved after logging out.

8.4 Conclusion
With the material in this chapter, our sample application has a fully functional
login and authentication system. In the next chapter, we’ll take our app to
the next level by adding the ability to remember users for longer than a sin-
gle browser session.

Before moving on, merge your changes back into the master branch:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

8.4. CONCLUSION 491

$ rails test

$ git add -A

$ git commit -m "Implement basic login"

$ git checkout master

$ git merge basic-login

Then push up to the remote repository:

$ rails test

$ git push

Finally, deploy to Heroku as usual:

$ git push heroku

8.4.1 What we learned in this chapter
• Rails can maintain state from one page to the next using temporary cook-
ies via the session method.

• The login form is designed to create a new session to log a user in.

• The flash.now method is used for flash messages on rendered pages.

• Test-driven development is useful when debugging by reproducing the
bug in a test.

• Using the sessionmethod, we can securely place a user id on the brow-
ser to create a temporary session.

• We can change features such as links on the layouts based on login status.

• Integration tests can verify correct routes, database updates, and proper
changes to the layout.

492 CHAPTER 8. BASIC LOGIN

Chapter 9

Advanced login
The basic login system developed in Chapter 8 is fully functional, but most
modern websites include the ability to “remember” users when they visit the site
again even if they’ve closed their browsers in the interim. In this chapter, we
use permanent cookies to implement this behavior. We’ll start by automatically
remembering users when they log in (Section 9.1), a common model used by
sites such as Bitbucket and GitHub. We’ll then add the ability to optionally
remember users using a “remember me” checkbox, a model used by sites such
as Twitter and Facebook.

Because the Chapter 8 login system is complete by itself, the core of the
sample application will work fine without it, and if desired you can skip right to
Chapter 10 (and from there to Chapter 13). On the other hand, learning how to
implement the “remember me” feature is both highly instructive by itself and
lays an essential foundation for account activation (Chapter 11) and password
reset (Chapter 12). Moreover, the result is an outstanding example of computer
magic: You’ve seen a billion of these “remember me” login forms on the Web,
and now’s your chance to learn how to make one.

9.1 Remember me
In this section, we’ll add the ability to remember our users’ login state even
after they close and reopen their browsers. This “remember me” behavior will

493

https://www.learnenough.com/r/learn_enough_command_line/basics#aside-computer_magic
https://www.learnenough.com/r/learn_enough_command_line/basics#aside-computer_magic

494 CHAPTER 9. ADVANCED LOGIN

happen automatically, and users will automatically stay logged in until they
explicitly log out. As we’ll see, the resulting machinery will make it easy to
add an optional “remember me” checkbox as well (Section 9.2).

As usual, I suggest switching to a topic branch before proceeding:

$ git checkout -b advanced-login

9.1.1 Remember token and digest
In Section 8.2, we used the Rails session method to store the user’s id, but
this information disappears when the user closes their browser. In this section,
we’ll take the first step toward persistent sessions by generating a remember
token appropriate for creating permanent cookies using the cookies method,
together with a secure remember digest for authenticating those tokens.

As noted in Section 8.2.1, information stored using session is automat-
ically secure, but this is not the case with information stored using cookies.
In particular, persistent cookies are vulnerable to session hijacking, in which
an attacker uses a stolen remember token to log in as a particular user. There
are four main ways to steal cookies: (1) using a packet sniffer to detect cookies
being passed over insecure networks,1 (2) compromising a database containing
remember tokens, (3) using cross-site scripting (XSS), and (4) gaining physical
access to a machine with a logged-in user.

We prevented the first problem in Section 7.5 by using Secure Sockets Layer
(SSL) site-wide, which protects network data from packet sniffers. We’ll pre-
vent the second problem by storing a hash digest of the remember tokens instead
of the token itself, inmuch the sameway that we stored password digests instead
of raw passwords in Section 6.3.2 Rails automatically prevents the third prob-
lem by escaping any content inserted into view templates. Finally, although
there’s no iron-clad way to stop attackers who have physical access to a logged-
in computer, we’ll minimize the fourth problem by changing tokens every time

1Session hijacking was widely publicized by the Firesheep application, which showed that remember tokens
at many high-profile sites were visible from devices connected to public Wi-Fi networks.

2Rails 5 introduced a has_secure_token method that automatically generates random tokens, but it stores
the unhashed values in the database, and hence is unsuitable for our present purposes.

https://en.wikipedia.org/wiki/Session_hijacking
https://en.wikipedia.org/wiki/Packet_analyzer
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://codebutler.com/2010/10/24/firesheep/

9.1. REMEMBER ME 495

a user logs out and by taking care to cryptographically sign any potentially
sensitive information we place on the browser.

With these design and security considerations in mind, our plan for creating
persistent sessions appears as follows:

1. Create a random string of digits for use as a remember token.

2. Place the token in the browser cookies with an expiration date far in the
future.

3. Save the hash digest of the token to the database.

4. Place an encrypted version of the user’s id in the browser cookies.

5. When presented with a cookie containing a persistent user id, find the
user in the database using the given id, and verify that the remember
token cookie matches the associated hash digest from the database.

Note how similar the final step is to logging a user in, where we retrieve the
user by email address and then verify (using the authenticate method) that
the submitted password matches the password digest (Listing 8.7). As a result,
our implementation will parallel aspects of has_secure_password.

We’ll start by adding the required remember_digest attribute to the User
model, as shown in Figure 9.1.
To add the data model from Figure 9.1 to our application, we’ll generate a mi-
gration:

$ rails generate migration add_remember_digest_to_users remember_digest:string

(Compare to the password digest migration in Section 6.3.1.) As in previous
migrations, we’ve used a migration name that ends in _to_users to tell Rails
that the migration is designed to alter the users table in the database. Because
we also included the attribute (remember_digest) and type (string), Rails
generates a default migration for us, as shown in Listing 9.1.

https://en.wikipedia.org/wiki/Digital_signature

496 CHAPTER 9. ADVANCED LOGIN

updated_at datetime
datetimecreated_at

remember_digest string
stringpassword_digest

email string

id
name string

integer
users

Figure 9.1: The User model with an added remember_digest attribute.

Listing 9.1: The generated migration for the remember digest.
db/migrate/[timestamp]_add_remember_digest_to_users.rb

class AddRememberDigestToUsers < ActiveRecord::Migration[6.0]

def change

add_column :users, :remember_digest, :string

end

end

Because we don’t expect to retrieve users by remember digest, there’s no
need to put an index on the remember_digest column, and we can use the
default migration as generated above:

$ rails db:migrate

Now we have to decide what to use as a remember token. There are many
mostly equivalent possibilities—essentially, any long random string will do.
The urlsafe_base64 method from the SecureRandom module in the Ruby
standard library fits the bill:3 it returns a random string of length 22 composed

3This choice is based on the RailsCast on remember me.

http://railscasts.com/episodes/274-remember-me-reset-password

9.1. REMEMBER ME 497

of the characters A–Z, a–z, 0–9, “-”, and “_” (for a total of 64 possibilities, thus
“base64”). A typical base64 string appears as follows:

$ rails console

>> SecureRandom.urlsafe_base64

=> "brl_446-8bqHv87AQzUj_Q"

Just as it’s perfectly fine if two users have the same password,4 there’s no
need for remember tokens to be unique, but it’s more secure if they are.5 In the
case of the base64 string above, each of the 22 characters has 64 possibilities, so
the probability of two remember tokens colliding is a negligibly small 1/6422 =
2−132 ≈ 10−40.6 As a bonus, by using base64 strings specifically designed to
be safe in URLs (as indicated by the name urlsafe_base64), we’ll be able
to use the same token generator to make account activation and password reset
links in Chapter 12.

Remembering users involves creating a remember token and saving the di-
gest of the token to the database. We’ve already defined a digest method
for use in the test fixtures (Listing 8.25), and we can use the results of the dis-
cussion above to create a new_token method to create a new token. As with
digest, the new token method doesn’t need a user object, so we’ll make it a
class method.7 The result is the User model shown in Listing 9.2.

Listing 9.2: Adding a method for generating tokens.
app/models/user.rb

class User < ApplicationRecord

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

4In any case, with bcrypt’s salted hashes there’s no way for us to tell if two users’ passwords match.
5With unique remember tokens, an attacker always needs both the user id and the remember token cookies to

hijack the session.
6This hasn’t stopped some developers from adding a check to verify that no collision has occurred, but such

efforts result from failing to grasp just how small 10−40 is. For example, if we generated a billion tokens a second
for the entire age of the Universe (4.4 × 107 s), the expected number of collisions would still be on the order of
2× 10−23, which is zero in any operational sense of the word.

7As a general rule, if a method doesn’t need an instance of an object, it should be a class method. Indeed, this
decision will prove to be wise in Section 11.2.

https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Salt_%28cryptography%29

498 CHAPTER 9. ADVANCED LOGIN

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

Returns the hash digest of the given string.

def User.digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

Returns a random token.

def User.new_token

SecureRandom.urlsafe_base64

end

end

Our plan for the implementation is to make a user.remembermethod that
associates a remember token with the user and saves the corresponding remem-
ber digest to the database. Because of the migration in Listing 9.1, the User
model already has a remember_digest attribute, but it doesn’t yet have a
remember_token attribute. We need a way to make a token available via
user.remember_token (for storage in the cookies) without storing it in the
database. We solved a similar issue with secure passwords in Section 6.3, which
paired a virtual password attribute with a secure password_digest attribute
in the database. In that case, the virtual password attribute was created auto-
matically by has_secure_password, but we’ll have to write the code for a
remember_token ourselves. The way to do this is to use attr_accessor to
create an accessible attribute, which we saw before in Section 4.4.5:

class User < ApplicationRecord

attr_accessor :remember_token

.

.

.

def remember

self.remember_token = ...

update_attribute(:remember_digest, ...)

end

end

9.1. REMEMBER ME 499

Note the form of the assignment in the first line of the remember method. Be-
cause of the way Ruby handles assignments inside objects, without self the
assignment would create a local variable called remember_token, which isn’t
what we want. Using self ensures that assignment sets the user’s remem-
ber_token attribute. (Now you know why the before_save callback from
Listing 6.32 uses self.email instead of just email.) Meanwhile, the second
line of remember uses the update_attributemethod to update the remem-
ber digest. (As noted in Section 6.1.5, this method bypasses the validations,
which is necessary in this case because we don’t have access to the user’s pass-
word or confirmation.)

With these considerations in mind, we can create a valid token and associ-
ated digest by first making a new remember token using User.new_token,
and then updating the remember digest with the result of applying User.-

digest. This procedure gives the remember method shown in Listing 9.3.

Listing 9.3: Adding a remember method to the User model. green
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

Returns the hash digest of the given string.

def User.digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

Returns a random token.

def User.new_token

SecureRandom.urlsafe_base64

end

Remembers a user in the database for use in persistent sessions.

def remember

500 CHAPTER 9. ADVANCED LOGIN

self.remember_token = User.new_token

update_attribute(:remember_digest, User.digest(remember_token))

end

end

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In the console, assign user to the first user in the database, and ver-
ify by calling it directly that the remember method works. How do
remember_token and remember_digest compare?

2. In Listing 9.3, we defined the new token and digest class methods by ex-
plicitly prefixing them with User. This works fine and, because they are
actually called using User.new_token and User.digest, it is prob-
ably the clearest way to define them. But there are two perhaps more
idiomatically correct ways to define class methods, one slightly confus-
ing and one extremely confusing. By running the test suite, verify that the
implementations in Listing 9.4 (slightly confusing) and Listing 9.5 (ex-
tremely confusing) are correct. (Note that, in the context of Listing 9.4
and Listing 9.5, self is the User class, whereas the other uses of self
in the User model refer to a user object instance. This is part of what
makes them confusing.)

Listing 9.4: Defining the new token and digest methods using self. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns the hash digest of the given string.

def self.digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

9.1. REMEMBER ME 501

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

Returns a random token.

def self.new_token

SecureRandom.urlsafe_base64

end

.

.

.

end

Listing 9.5: Defining the new token and digest methods using class <<

self. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

class << self

Returns the hash digest of the given string.

def digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

Returns a random token.

def new_token

SecureRandom.urlsafe_base64

end

end

.

.

.

9.1.2 Login with remembering
Having created a working user.remember method, we can now create a per-
sistent session by storing a user’s (encrypted) id and remember token as perma-
nent cookies on the browser. The way to do this is with the cookies method,

502 CHAPTER 9. ADVANCED LOGIN

which (as with session) we can treat as a hash. A cookie consists of two
pieces of information, a value and an optional expires date. For example,
we could make a persistent session by creating a cookie with value equal to the
remember token that expires 20 years from now:

cookies[:remember_token] = { value: remember_token,

expires: 20.years.from_now.utc }

(This uses one of the convenient Rails time helpers, as discussed in Box 9.1.)
This pattern of setting a cookie that expires 20 years in the future is so common
that Rails has a special permanent method to implement it, so that we can
simply write

cookies.permanent[:remember_token] = remember_token

This causes Rails to set the expiration to 20.years.from_now automatically.

Box 9.1. Cookies expire 20.years.from_now
You may recall from Section 4.4.2 that Ruby lets you add methods to any

class, even built-in ones. In that section, we added a palindrome? method
to the String class (and discovered as a result that "deified" is a palin-
drome), and we also saw how Rails adds a blank? method to class Object
(so that "".blank?, " ".blank?, and nil.blank? are all true). The
cookies.permanent method, which creates “permanent” cookies with an
expiration 20.years.from_now, gives yet another example of this practice
through one of Rails’ time helpers, which are methods added to Fixnum (the base
class for integers):

$ rails console

>> 1.year.from_now

=> Wed, 21 Jun 2017 19:36:29 UTC +00:00

>> 10.weeks.ago

=> Tue, 12 Apr 2016 19:36:44 UTC +00:00

9.1. REMEMBER ME 503

Rails adds other helpers, too:

>> 1.kilobyte

=> 1024

>> 5.megabytes

=> 5242880

These are useful for upload validations, making it easy to restrict, say, image up-
loads to 5.megabytes.

Although it should be used with caution, the flexibility to add methods to built-
in classes allows for extraordinarily natural additions to plain Ruby. Indeed, much
of the elegance of Rails ultimately derives from the malleability of the underlying
Ruby language.

To store the user’s id in the cookies, we could follow the pattern used with
the session method (Listing 8.14) using something like

cookies[:user_id] = user.id

Because it places the id as plain text, this method exposes the form of the ap-
plication’s cookies and makes it easier for an attacker to compromise user ac-
counts. To avoid this problem, we’ll use an encrypted cookie, which securely
encrypts the cookie before placing it on the browser:

cookies.encrypted[:user_id] = user.id

Because we want the user id to be paired with the permanent remember to-
ken, we should make it permanent as well, which we can do by chaining the
encrypted and permanent methods:

504 CHAPTER 9. ADVANCED LOGIN

cookies.permanent.encrypted[:user_id] = user.id

After the cookies are set, on subsequent page views we can retrieve the user
with code like

User.find_by(id: cookies.encrypted[:user_id])

where cookies.encrypted[:user_id] automatically decrypts the user id
cookie. We can then use bcrypt to verify that cookies[:remember_token]
matches the remember_digest generated in Listing 9.3. (In case you’re won-
dering whywe don’t just use the encrypted user id, without the remember token,
this would allow an attacker with possession of the encrypted id to log in as the
user in perpetuity. In the present design, an attacker with both cookies can log
in as the user only until the user logs out.)

The final piece of the puzzle is to verify that a given remember token
matches the user’s remember digest, and in this context there are a couple of
equivalent ways to use bcrypt to verify a match. If you look at the secure pass-
word source code, you’ll find a comparison like this:8

BCrypt::Password.new(password_digest) == unencrypted_password

In our case, the analogous code would look like this:

BCrypt::Password.new(remember_digest) == remember_token

If you think about it, this code is really strange: it appears to be comparing a
bcrypt password digest directly with a token, which would imply decrypting
the digest in order to compare using ==. But the whole point of using bcrypt
is for hashing to be irreversible, so this can’t be right. Indeed, digging into

8As noted in Section 6.3.1, “unencrypted password” is a misnomer, as the secure password is hashed, not
encrypted.

https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb
https://github.com/rails/rails/blob/master/activemodel/lib/active_model/secure_password.rb

9.1. REMEMBER ME 505

the source code of the bcrypt gem verifies that the comparison operator == is
being redefined, and under the hood the comparison above is equivalent to the
following:

BCrypt::Password.new(remember_digest).is_password?(remember_token)

Instead of ==, this uses the boolean method is_password? to perform the
comparison. Because its meaning is a little clearer, we’ll prefer this second
comparison form in the application code.

The above discussion suggests putting the digest–token comparison into an
authenticated? method in the User model, which plays a role similar to
that of the authenticate method provided by has_secure_password for
authenticating a user (Listing 8.15). The implementation appears in Listing 9.6.
(Although the authenticated? method in Listing 9.6 is tied specifically to
the remember digest, it will turn out to be useful in other contexts as well, and
we’ll generalize it in Chapter 11.)

Listing 9.6: Adding an authenticated? method to the User model.
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

Returns the hash digest of the given string.

def User.digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

Returns a random token.

def User.new_token

SecureRandom.urlsafe_base64

https://github.com/codahale/bcrypt-ruby/blob/master/lib/bcrypt/password.rb

506 CHAPTER 9. ADVANCED LOGIN

end

Remembers a user in the database for use in persistent sessions.

def remember

self.remember_token = User.new_token

update_attribute(:remember_digest, User.digest(remember_token))

end

Returns true if the given token matches the digest.

def authenticated?(remember_token)

BCrypt::Password.new(remember_digest).is_password?(remember_token)

end

end

Note that the remember_token argument in the authenticated?

method defined in Listing 9.6 is not the same as the accessor that we defined in
Listing 9.3 using attr_accessor :remember_token; instead, it is a vari-
able local to the method. (Because the argument refers to the remember to-
ken, it is not uncommon to use a method argument that has the same name.)
Also note the use of the remember_digest attribute, which is the same as
self.remember_digest and, like name and email in Chapter 6, is created
automatically by Active Record based on the name of the corresponding data-
base column (Listing 9.1).

We’re now in a position to remember a logged-in user, which we’ll do by
adding a remember helper to go along with log_in, as shown in Listing 9.7.

Listing 9.7: Logging in and remembering a user. red
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

log_in user

remember user

redirect_to user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

9.1. REMEMBER ME 507

end

end

def destroy

log_out

redirect_to root_url

end

end

As with log_in, Listing 9.7 defers the real work to the Sessions helper, where
we define a remembermethod that calls user.remember, thereby generating
a remember token and saving its digest to the database. It then uses cookies
to create permanent cookies for the user id and remember token as described
above. The result appears in Listing 9.8.

Listing 9.8: Remembering the user. green
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

Remembers a user in a persistent session.

def remember(user)

user.remember

cookies.permanent.encrypted[:user_id] = user.id

cookies.permanent[:remember_token] = user.remember_token

end

Returns the current logged-in user (if any).

def current_user

if session[:user_id]

@current_user ||= User.find_by(id: session[:user_id])

end

end

Returns true if the user is logged in, false otherwise.

def logged_in?

!current_user.nil?

end

Logs out the current user.

def log_out

508 CHAPTER 9. ADVANCED LOGIN

session.delete(:user_id)

@current_user = nil

end

end

With the code in Listing 9.8, a user logging in will be remembered in the
sense that their browser will get a valid remember token, but it doesn’t yet do us
any good because the current_user method defined in Listing 8.16 knows
only about the temporary session:

@current_user ||= User.find_by(id: session[:user_id])

In the case of persistent sessions, we want to retrieve the user from the tem-
porary session if session[:user_id] exists, but otherwise we should look
for cookies[:user_id] to retrieve (and log in) the user corresponding to the
persistent session. We can accomplish this as follows:

if session[:user_id]

@current_user ||= User.find_by(id: session[:user_id])

elsif cookies.encrypted[:user_id]

user = User.find_by(id: cookies.encrypted[:user_id])

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

(This follows the same user && user.authenticated pattern we saw in
Listing 8.7.) The code above will work, but note the repeated use of both
session and cookies. We can eliminate this duplication as follows:

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.encrypted[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

9.1. REMEMBER ME 509

This uses the common but potentially confusing construction

if (user_id = session[:user_id])

Despite appearances, this is not a comparison (which would use double-equals
==), but rather is an assignment. If you were to read it in words, you wouldn’t
say “If user id equals session of user id…”, but rather something like “If session
of user id exists (while setting user id to session of user id)…”.9

Defining the current_user helper as discussed above leads to the imple-
mentation shown in Listing 9.9.

Listing 9.9: Updating current_user for persistent sessions. red
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

Remembers a user in a persistent session.

def remember(user)

user.remember

cookies.permanent.encrypted[:user_id] = user.id

cookies.permanent[:remember_token] = user.remember_token

end

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.encrypted[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

9I generally use the convention of putting such assignments in parentheses, which is a visual reminder that it’s
not a comparison.

510 CHAPTER 9. ADVANCED LOGIN

Returns true if the user is logged in, false otherwise.

def logged_in?

!current_user.nil?

end

Logs out the current user.

def log_out

session.delete(:user_id)

@current_user = nil

end

end

With the code as in Listing 9.9, newly logged in users are correctly remem-
bered, as you can verify by logging in, closing the browser, and checking that
you’re still logged in when you restart the sample application and revisit the
sample application.10 If you want, you can even inspect the browser cookies to
see the result directly (Figure 9.2).11

There’s only one problem with our application as it stands: short of clearing
their browser cookies (or waiting 20 years), there’s no way for users to log out.
This is exactly the sort of thing our test suite should catch, and indeed the tests
should currently be red:

10Alert reader Jack Fahnestock has noted that there is an edge case that isn’t covered by the current design:

1. Log in with “remember me” checked in browser A (saving hashed remember token A to
remember_digest).

2. Log in with “remember me” checked in browser B (saving hashed remember_token B to
remember_digest, overwriting remember token A saved in browser A).

3. Close browser A (now relying on permanent cookies for login—second conditional in current_user
method).

4. Reopen browser A (logged_in? returns false, even though permanent cookies are on the browser).

Although this is arguably a more secure design than remembering the user in multiple places, it violates the
expectation that users can be permanently remembered on more than one browser. The solution, which is sub-
stantially more complicated than the present design, is to factor the remember digest into a separate table, where
each row has a user id and a digest. Checking for the current user would then look through the table for a digest
corresponding to a particular remember token. Furthermore, the forget in Listing 9.11 method would delete only
the row corresponding to the digest of the current browser. For security purposes, logging out would remove all
digests for that user.

11Google “<your browser name> inspect cookies” to learn how to inspect the cookies on your system.

https://en.wikipedia.org/wiki/Edge_case

9.1. REMEMBER ME 511

Figure 9.2: The remember token cookie in the local browser.

Listing 9.10: red
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By finding the cookie in your local browser, verify that a remember token
and encrypted user id are present after logging in.

2. At the console, verify directly that the authenticated?method defined
in Listing 9.6 works correctly.

9.1.3 Forgetting users
To allow users to log out, we’ll define methods to forget users in analogy with
the ones to remember them. The resulting user.forget method just undoes

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

512 CHAPTER 9. ADVANCED LOGIN

user.remember by updating the remember digest with nil, as shown in List-
ing 9.11.

Listing 9.11: Adding a forget method to the User model. red
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }

Returns the hash digest of the given string.

def User.digest(string)

cost = ActiveModel::SecurePassword.min_cost ? BCrypt::Engine::MIN_COST :

BCrypt::Engine.cost

BCrypt::Password.create(string, cost: cost)

end

Returns a random token.

def User.new_token

SecureRandom.urlsafe_base64

end

Remembers a user in the database for use in persistent sessions.

def remember

self.remember_token = User.new_token

update_attribute(:remember_digest, User.digest(remember_token))

end

Returns true if the given token matches the digest.

def authenticated?(remember_token)

BCrypt::Password.new(remember_digest).is_password?(remember_token)

end

Forgets a user.

def forget

update_attribute(:remember_digest, nil)

end

end

With the code in Listing 9.11, we’re now ready to forget a permanent ses-
sion by adding a forget helper and calling it from the log_out helper (List-

9.1. REMEMBER ME 513

ing 9.12). As seen in Listing 9.12, the forget helper calls user.forget and
then deletes the user_id and remember_token cookies.

Listing 9.12: Logging out from a persistent session. green
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

.

.

.

Forgets a persistent session.

def forget(user)

user.forget

cookies.delete(:user_id)

cookies.delete(:remember_token)

end

Logs out the current user.

def log_out

forget(current_user)

session.delete(:user_id)

@current_user = nil

end

end

At this point, the tests suite should be green:

Listing 9.13: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

514 CHAPTER 9. ADVANCED LOGIN

1. After logging out, verify that the corresponding cookies have been re-
moved from your browser.

9.1.4 Two subtle bugs
There are two closely related subtleties left to address. The first subtlety is
that, even though the “Log out” link appears only when logged-in, a user could
potentially have multiple browser windows open to the site. If the user logged
out in one window, thereby setting current_user to nil, clicking the “Log
out” link in a second window would result in an error because of forget-
(current_user) in the log_outmethod (Listing 9.12).12 We can avoid this
by logging out only if the user is logged in.

The second subtlety is that a user could be logged in (and remembered) in
multiple browsers, such as Chrome and Firefox, which causes a problem if the
user logs out in the first browser but not the second, and then closes and re-
opens the second one.13 For example, suppose that the user logs out in Firefox,
thereby setting the remember digest to nil (via user.forget in Listing 9.11).
The application will still work in Firefox; because the log_outmethod in List-
ing 9.12 deletes the user’s id, both highlighted conditionals are false:

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.encrypted[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

As a result, evaluation falls off the end of the current_user method, thereby
returning nil as required.

12Thanks to reader Paulo Célio Júnior for pointing this out.
13Thanks to reader Niels de Ron for pointing this out.

9.1. REMEMBER ME 515

In contrast, if we close Chrome, we set session[:user_id] to nil (be-
cause all session variables expire automatically on browser close), but the
user_id cookie will still be present. This means that the corresponding user
will still be pulled out of the database when Chrome is relaunched:

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.encrypted[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

Consequently, the inner if conditional will be evaluated:

user && user.authenticated?(cookies[:remember_token])

In particular, because user isn’t nil, the second expression will be evaluated,
which raises an error. This is because the user’s remember digest was deleted as
part of logging out (Listing 9.11) in Firefox, so when we access the application
in Chrome we end up calling

BCrypt::Password.new(remember_digest).is_password?(remember_token)

with a nil remember digest, thereby raising an exception inside the bcrypt
library. To fix this, we want authenticated? to return false instead.

These are exactly the sorts of subtleties that benefit from test-driven devel-
opment, so we’ll write tests to catch the two errors before correcting them. We
first get the integration test from Listing 8.38 to red, as shown in Listing 9.14.

516 CHAPTER 9. ADVANCED LOGIN

Listing 9.14: A test for logging out in a second window. red
test/integration/users_login_test.rb

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

.

.

.

test "login with valid information followed by logout" do

get login_path

post login_path, params: { session: { email: @user.email,

password: 'password' } }

assert is_logged_in?

assert_redirected_to @user

follow_redirect!

assert_template 'users/show'

assert_select "a[href=?]", login_path, count: 0

assert_select "a[href=?]", logout_path

assert_select "a[href=?]", user_path(@user)

delete logout_path

assert_not is_logged_in?

assert_redirected_to root_url

Simulate a user clicking logout in a second window.

delete logout_path

follow_redirect!

assert_select "a[href=?]", login_path

assert_select "a[href=?]", logout_path, count: 0

assert_select "a[href=?]", user_path(@user), count: 0

end

end

The second call to delete logout_path in Listing 9.14 should raise an error
due to the missing current_user, leading to a red test suite:

Listing 9.15: red
$ rails test

The application code simply involves calling log_out only if logged_-
in? is true, as shown in Listing 9.16.

9.1. REMEMBER ME 517

Listing 9.16: Only logging out if logged in. green
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

.

.

.

def destroy

log_out if logged_in?

redirect_to root_url

end

end

The second case, involving a scenario with two different browsers, is harder
to simulate with an integration test, but it’s easy to check in the User model
test directly. All we need is to start with a user that has no remember digest
(which is true for the @user variable defined in the setup method) and then
call authenticated?, as shown in Listing 9.17. (Note that we’ve just left
the remember token blank; it doesn’t matter what its value is, because the error
occurs before it ever gets used.)

Listing 9.17: A test of authenticated? with a nonexistent digest. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

test "authenticated? should return false for a user with nil digest" do

assert_not @user.authenticated?('')

end

end

Because BCrypt::Password.new(nil) raises an error, the test suite
should now be red:

518 CHAPTER 9. ADVANCED LOGIN

Listing 9.18: red
$ rails test

To fix the error and get to green, all we need to do is return false if the
remember digest is nil, as shown in Listing 9.19.

Listing 9.19: Updating authenticated? to handle a nonexistent digest.
green
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns true if the given token matches the digest.

def authenticated?(remember_token)

return false if remember_digest.nil?

BCrypt::Password.new(remember_digest).is_password?(remember_token)

end

Forgets a user.

def forget

update_attribute(:remember_digest, nil)

end

end

This uses the return keyword to return immediately if the remember digest
is nil, which is a common way to emphasize that the rest of the method gets
ignored in that case. The equivalent code

if remember_digest.nil?

false

else

BCrypt::Password.new(remember_digest).is_password?(remember_token)

end

would also work fine, but I prefer the explicitness of the version in Listing 9.19
(which also happens to be slightly shorter).

With the code in Listing 9.19, our full test suite should be green, and both
subtleties should now be addressed:

9.2. “REMEMBER ME” CHECKBOX 519

Listing 9.20: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Comment out the fix in Listing 9.16 and then verify that the first subtle
bug is present by opening two logged-in tabs, logging out in one, and
then clicking “Log out” link in the other.

2. Comment out the fix in Listing 9.19 and verify that the second subtle
bug is present by logging out in one browser and closing and opening the
second browser.

3. Uncomment the fixes and confirm that the test suite goes from red to
green.

9.2 “Remember me” checkbox
With the code in Section 9.1.3, our application has a complete, professional-
grade authentication system. As a final step, we’ll see how to make staying
logged in optional using a “remember me” checkbox. A mockup of the login
form with such a checkbox appears in Figure 9.3.

To write the implementation, we start by adding a checkbox to the login
form from Listing 8.4. As with labels, text fields, password fields, and submit
buttons, checkboxes can be created with a Rails helper method. In order to
get the styling right, though, we have to nest the checkbox inside the label, as
follows:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

520 CHAPTER 9. ADVANCED LOGIN

Figure 9.3: A mockup of a “remember me” checkbox.

9.2. “REMEMBER ME” CHECKBOX 521

<%= f.label :remember_me, class: "checkbox inline" do %>

<%= f.check_box :remember_me %>

Remember me on this computer

<% end %>

Putting this into the login form gives the code shown in Listing 9.21.

Listing 9.21: Adding a “remember me” checkbox to the login form.
app/views/sessions/new.html.erb

<% provide(:title, "Log in") %>

<h1>Log in</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: login_path, scope: :session, local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :remember_me, class: "checkbox inline" do %>

<%= f.check_box :remember_me %>

Remember me on this computer

<% end %>

<%= f.submit "Log in", class: "btn btn-primary" %>

<% end %>

<p>New user? <%= link_to "Sign up now!", signup_path %></p>

</div>

</div>

In Listing 9.21, we’ve included the CSS classes checkbox and inline,
which Bootstrap uses to put the checkbox and the text (“Remember me on this
computer”) in the same line. In order to complete the styling, we need just a
fewmore CSS rules, as shown in Listing 9.22. The resulting login form appears
in Figure 9.4.

522 CHAPTER 9. ADVANCED LOGIN

Listing 9.22: CSS for the “remember me” checkbox.
app/assets/stylesheets/custom.scss

.

.

.

/* forms */

.

.

.

.checkbox {

margin-top: -10px;

margin-bottom: 10px;

span {

margin-left: 20px;

font-weight: normal;

}

}

#session_remember_me {

width: auto;

margin-left: 0;

}

Having edited the login form, we’re now ready to remember users if they
check the checkbox and forget them otherwise. Incredibly, because of all our
work in the previous sections, the implementation can be reduced to one line.
We start by noting that the params hash for submitted login forms now includes
a value based on the checkbox (as you can verify by submitting the form in
Listing 9.21 with invalid information and inspecting the values in the debug
section of the page). In particular, the value of

params[:session][:remember_me]

is '1' if the box is checked and '0' if it isn’t.
By testing the relevant value of the params hash, we can now remember or

forget the user based on the value of the submission:14
14Note that this means unchecking the box will log out the user on all browsers on all computers. The alternate

design of remembering user login sessions on each browser independently is potentially more convenient for users,
but it’s less secure, and is also more complicated to implement. Ambitious readers are invited to try their hand at
implementing it.

9.2. “REMEMBER ME” CHECKBOX 523

Figure 9.4: The login form with an added “remember me” checkbox.

524 CHAPTER 9. ADVANCED LOGIN

if params[:session][:remember_me] == '1'

remember(user)

else

forget(user)

end

As explained in Box 9.2, this sort of if-then branching structure can be con-
verted to one line using the ternary operator as follows:15

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

Using this to replace remember user in the Sessions controller’s create
method (Listing 9.7) leads to the amazingly compact code shown in
Listing 9.23. (Now you’re in a position to understand the code in Listing 8.25,
which uses the ternary operator to define the bcrypt cost variable.)

Listing 9.23: Handling the submission of the “remember me” checkbox.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

log_in user

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

redirect_to user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

log_out if logged_in?

redirect_to root_url

end

end

15Before we wrote remember user without parentheses, but when used with the ternary operator omitting
them results in a syntax error.

9.2. “REMEMBER ME” CHECKBOX 525

With the implementation in Listing 9.23, our login system is complete, as you
can verify by checking or unchecking the box in your browser.

Box 9.2. 10 types of people

There’s an old joke that there are 10 kinds of people in the world: those who
understand binary and those who don’t (10, of course, being 2 in binary). In this
spirit, we can say that there are 10 kinds of people in the world: those who like the
ternary operator, those who don’t, and those who don’t yet know about it. (If you
happen to be in the third category, soon you won’t be any longer.)

When you do a lot of programming, you quickly learn that one of the most
common bits of control flow goes something like this:

if boolean?

do_one_thing

else

do_something_else

end

Ruby, like many other languages (including C/C++, Perl, PHP, and Java), allows
you to replace this with a much more compact expression using the ternary oper-
ator (so called because it consists of three parts):

boolean? ? do_one_thing : do_something_else

You can also use the ternary operator to replace assignment, so that

if boolean?

var = foo

else

var = bar

end

becomes

526 CHAPTER 9. ADVANCED LOGIN

var = boolean? ? foo : bar

Finally, it’s often convenient to use the ternary operator in a function’s return value:

def foo

do_stuff

boolean? ? "bar" : "baz"

end

Since Ruby implicitly returns the value of the last expression in a function, here
the foo method returns "bar" or "baz" depending on whether boolean? is
true or false.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By inspecting your browser’s cookies directly, verify that the “remember
me” checkbox is having its intended effect.

2. At the console, invent examples showing both possible behaviors of the
ternary operator (Box 9.2).

9.3 Remember tests
Although our “remember me” functionality is now working, it’s important to
write some tests to verify its behavior. One reason is to catch implementation
errors, as discussed in a moment. Even more important, though, is that the core
user persistence code is in fact completely untested at present. Fixing these

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

9.3. REMEMBER TESTS 527

issues will require some trickery, but the result will be a far more powerful test
suite.

9.3.1 Testing the “remember me” box
When I originally implemented the checkbox handling in Listing 9.23, instead
of the correct

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

I actually used

params[:session][:remember_me] ? remember(user) : forget(user)

In this context, params[:session][:remember_me] is either '0' or '1',
both of which are true in a boolean context, so the resulting expression is
always true, and the application acts as if the checkbox is always checked. This
is exactly the kind of error a test should catch.

Because remembering users requires that they be logged in, our first step is
to define a helper to log users in inside tests. In Listing 8.27, we logged a user
in using the post method and a valid session hash, but it’s cumbersome to
do this every time. To avoid needless repetition, we’ll write a helper method
called log_in_as to log in for us.

Our method for logging a user in depends on the type of test. Inside con-
troller tests, we can manipulate the session method directly, assigning
user.id to the :user_id key (as first seen in Listing 8.14):

def log_in_as(user)

session[:user_id] = user.id

end

We call the method log_in_as to avoid any confusion with the application
code’s log_inmethod as defined in Listing 8.14. Its location is in the Active-
Support::TestCase class inside the test_helper file, the same location
as the is_logged_in? helper from Listing 8.33:

528 CHAPTER 9. ADVANCED LOGIN

class ActiveSupport::TestCase

fixtures :all

Returns true if a test user is logged in.

def is_logged_in?

!session[:user_id].nil?

end

Log in as a particular user.

def log_in_as(user)

session[:user_id] = user.id

end

end

We won’t actually need this version of the method in this chapter, but we’ll put
it to use in Chapter 10.

Inside integration tests, we can’t manipulate session directly, but we can
post to the sessions path as in Listing 8.27, which leads to the log_in_as
method shown here:

class ActionDispatch::IntegrationTest

Log in as a particular user.

def log_in_as(user, password: 'password', remember_me: '1')

post login_path, params: { session: { email: user.email,

password: password,

remember_me: remember_me } }

end

end

Because it’s located inside the ActionDispatch::IntegrationTest class,
this is the version of log_in_as that will be called inside integration tests. We
use the same method name in both cases because it lets us do things like use
code from a controller test in an integration without making any changes to the
login method.

Putting these two methods together yields the parallel log_in_as helpers
shown in Listing 9.24.

9.3. REMEMBER TESTS 529

Listing 9.24: Adding a log_in_as helper.
test/test_helper.rb

ENV['RAILS_ENV'] ||= 'test'

.

.

.

class ActiveSupport::TestCase

fixtures :all

Returns true if a test user is logged in.

def is_logged_in?

!session[:user_id].nil?

end

Log in as a particular user.

def log_in_as(user)

session[:user_id] = user.id

end

end

class ActionDispatch::IntegrationTest

Log in as a particular user.

def log_in_as(user, password: 'password', remember_me: '1')

post login_path, params: { session: { email: user.email,

password: password,

remember_me: remember_me } }

end

end

Note that, for maximum flexibility, the second log_in_as method in List-
ing 9.24 accepts keyword arguments (as in Listing 7.13), with default values
for the password and for the “remember me” checkbox set to 'password' and
'1', respectively.

To verify the behavior of the “remember me” checkbox, we’ll write two
tests, one each for submitting with and without the checkbox checked. This is
easy using the login helper defined in Listing 9.24, with the two cases appearing
as

log_in_as(@user, remember_me: '1')

and

530 CHAPTER 9. ADVANCED LOGIN

log_in_as(@user, remember_me: '0')

(Because '1' is the default value of remember_me, we could omit the corre-
sponding option in the first case above, but I’ve included it to make the parallel
structure more apparent.)

After logging in, we can check if the user has been remembered by looking
for the remember_token key in the cookies. Ideally, we would check that
the cookie’s value is equal to the user’s remember token, but as currently de-
signed there’s no way for the test to get access to it: the user variable in the
controller has a remember token attribute, but (because remember_token is
virtual) the @user variable in the test doesn’t. Fixing this minor blemish is left
as an exercise (Section 9.3.1), but for now we can just test to see if the relevant
cookie is nil or not. The results appear in Listing 9.25. (Recall from List-
ing 8.27 that users(:michael) references the fixture user from Listing 8.26.)

Listing 9.25: A test of the “remember me” checkbox. green
test/integration/users_login_test.rb

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "login with remembering" do

log_in_as(@user, remember_me: '1')

assert_not_empty cookies[:remember_token]

end

test "login without remembering" do

Log in to set the cookie.

log_in_as(@user, remember_me: '1')

Log in again and verify that the cookie is deleted.

log_in_as(@user, remember_me: '0')

assert_empty cookies[:remember_token]

end

end

9.3. REMEMBER TESTS 531

Assuming you didn’t make the same implementation mistake I did, the tests
should be green:

Listing 9.26: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. As mentioned above, the application currently doesn’t have any way to
access the virtual remember_token attribute in the integration test in
Listing 9.25. It is possible, though, using a special test method called
assigns. Inside a test, you can access instance variables defined in the
controller by using assigns with the corresponding symbol. For exam-
ple, if the create action defines an @user variable, we can access it
in the test using assigns(:user). Right now, the Sessions controller
create action defines a normal (non-instance) variable called user, but
if we change it to an instance variable we can test that cookies correctly
contains the user’s remember token. By filling in the missing elements
in Listing 9.27 and Listing 9.28 (indicated with question marks ? and
FILL_IN), complete this improved test of the “remember me” checkbox.

Listing 9.27: A template for using an instance variable in the create action.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

?user = User.find_by(email: params[:session][:email].downcase)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

532 CHAPTER 9. ADVANCED LOGIN

if ?user && ?user.authenticate(params[:session][:password])

log_in ?user

params[:session][:remember_me] == '1' ? remember(?user) : forget(?user)

redirect_to ?user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

log_out if logged_in?

redirect_to root_url

end

end

Listing 9.28: A template for an improved “remember me” test. green
test/integration/users_login_test.rb

require 'test_helper'

class UsersLoginTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "login with remembering" do

log_in_as(@user, remember_me: '1')

assert_equal FILL_IN, assigns(:user).FILL_IN

end

test "login without remembering" do

Log in to set the cookie.

log_in_as(@user, remember_me: '1')

Log in again and verify that the cookie is deleted.

log_in_as(@user, remember_me: '0')

assert_empty cookies[:remember_token]

end

.

.

.

end

9.3. REMEMBER TESTS 533

9.3.2 Testing the remember branch
In Section 9.1.2, we verified by hand that the persistent session implemented
in the preceding sections is working, but in fact the relevant branch in the
current_user method is currently completely untested. My favorite way to
handle this kind of situation is to raise an exception in the suspected untested
block of code: if the code isn’t covered, the tests will still pass; if it is covered,
the resulting error will identify the relevant test. The result in the present case
appears in Listing 9.29.

Listing 9.29: Raising an exception in an untested branch. green
app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.encrypted[:user_id])

raise # The tests still pass, so this branch is currently untested.

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

.

.

.

end

At this point, the tests are green:

Listing 9.30: green
$ rails test

This is a problem, of course, because the code in Listing 9.29 is broken. More-
over, persistent sessions are cumbersome to check by hand, so if we ever want

534 CHAPTER 9. ADVANCED LOGIN

to refactor the current_usermethod (as we will in Chapter 11) it’s important
to test it.

Because both versions of the log_in_as helper method defined in List-
ing 9.24 automatically set session[:user_id] (either explicitly or by post-
ing to the login path), testing the “remember” branch of the current_user
method is difficult in an integration test. Luckily, we can bypass this restriction
by testing the current_usermethod directly in a Sessions helper test, whose
file we have to create:

$ touch test/helpers/sessions_helper_test.rb

The test sequence is simple:

1. Define a user variable using the fixtures.

2. Call the remember method to remember the given user.

3. Verify that current_user is equal to the given user.

Because the remembermethod doesn’t set session[:user_id], this proce-
dure will test the desired “remember” branch. The result appears in Listing 9.31.

Listing 9.31: A test for persistent sessions. red
test/helpers/sessions_helper_test.rb

require 'test_helper'

class SessionsHelperTest < ActionView::TestCase

def setup

@user = users(:michael)

remember(@user)

end

test "current_user returns right user when session is nil" do

assert_equal @user, current_user

assert is_logged_in?

end

9.3. REMEMBER TESTS 535

test "current_user returns nil when remember digest is wrong" do

@user.update_attribute(:remember_digest, User.digest(User.new_token))

assert_nil current_user

end

end

Note that we’ve added a second test, which checks that the current user is nil if
the user’s remember digest doesn’t correspond correctly to the remember token,
thereby testing the authenticated? expression in the nested if statement:

if user && user.authenticated?(cookies[:remember_token])

Incidentally, in Listing 9.31 we could write

assert_equal current_user, @user

instead, and it would work just the same, but (as mentioned briefly in Sec-
tion 5.3.4) the conventional order for the arguments to assert_equal is ex-
pected, actual:

assert_equal <expected>, <actual>

which in the case of Listing 9.31 gives

assert_equal @user, current_user

With the code as in Listing 9.31, the test is red as required:

Listing 9.32: red
$ rails test test/helpers/sessions_helper_test.rb

We can get the tests in Listing 9.31 to pass by removing the raise and
restoring the original current_user method, as shown in Listing 9.33.

536 CHAPTER 9. ADVANCED LOGIN

Listing 9.33: Removing the raised exception. green
app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.encrypted[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

.

.

.

end

At this point, the test suite should be green:

Listing 9.34: green
$ rails test

Now that the “remember” branch of current_user is tested, we can be con-
fident of catching regressions without having to check by hand.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify by removing the authenticated? expression in Listing 9.33 that
the second test in Listing 9.31 fails, thereby confirming that it tests the
right thing.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

9.4. CONCLUSION 537

9.4 Conclusion
We’ve covered a lot of ground in the last three chapters, transforming our
promising but unformed application into a site capable of the full suite of signup
and login behaviors. All that is needed to complete the authentication function-
ality is to restrict access to pages based on login status and user identity. We’ll
accomplish this task en route to giving users the ability to edit their information,
which is the main goal of Chapter 10.

Before moving on, merge your changes back into the master branch:

$ rails test

$ git add -A

$ git commit -m "Implement advanced login"

$ git checkout master

$ git merge advanced-login

$ git push

Before deploying to Heroku, it’s worth noting that the application will
briefly be in an invalid state after pushing but before the migration is finished.
On a production site with significant traffic, it’s a good idea to turnmaintenance
mode on before making the changes:

$ heroku maintenance:on

$ git push heroku

$ heroku run rails db:migrate

$ heroku maintenance:off

This arranges to show a standard error page during the deployment and migra-
tion (Figure 9.5). (We won’t bother with this step again, but it’s good to see it
at least once.) For more information, see the Heroku documentation on error
pages.

9.4.1 What we learned in this chapter
• Rails canmaintain state from one page to the next using persistent cookies
via the cookies method.

https://devcenter.heroku.com/articles/maintenance-mode
https://devcenter.heroku.com/articles/maintenance-mode
https://devcenter.heroku.com/articles/error-pages
https://devcenter.heroku.com/articles/error-pages

538 CHAPTER 9. ADVANCED LOGIN

Figure 9.5: The production app in maintenance mode.

9.4. CONCLUSION 539

• We associate to each user a remember token and a corresponding remem-
ber digest for use in persistent sessions.

• Using the cookies method, we create a persistent session by placing a
permanent remember token cookie on the browser.

• Login status is determined by the presence of a current user based on the
temporary session’s user id or the permanent session’s unique remember
token.

• The application signs users out by deleting the session’s user id and re-
moving the permanent cookie from the browser.

• The ternary operator is a compact way to write simple if-then statements.

540 CHAPTER 9. ADVANCED LOGIN

Chapter 10

Updating, showing, and
deleting users
In this chapter, we will complete the REST actions for the Users resource (Ta-
ble 7.1) by adding edit, update, index, and destroy actions. We’ll start by
giving users the ability to update their profiles, which will also provide a natural
opportunity to enforce an authorization model (made possible by the authenti-
cation code in Chapter 8). Then we’ll make a listing of all users (also requiring
authentication), which will motivate the introduction of sample data and pagi-
nation. Finally, we’ll add the ability to destroy users, wiping them clear from
the database. Since we can’t allow just any user to have such dangerous powers,
we’ll take care to create a privileged class of administrative users authorized to
delete other users.

10.1 Updating users
The pattern for editing user information closely parallels that for creating new
users (Chapter 7). Instead of a new action rendering a view for new users, we
have an edit action rendering a view to edit users; instead of create respond-
ing to a POST request, we have an update action responding to a PATCH re-
quest (Box 3.2). The biggest difference is that, while anyone can sign up, only
the current user should be able to update their information. The authentication

541

542 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

machinery from Chapter 8 will allow us to use a before filter to ensure that this
is the case.

To get started, let’s start work on an updating-users topic branch:

$ git checkout -b updating-users

10.1.1 Edit form
We start with the edit form, whose mockup appears in Figure 10.1.1 To turn the
mockup in Figure 10.1 into a working page, we need to fill in both the Users
controller edit action and the user edit view. We start with the edit action,
which requires pulling the relevant user out of the database. Note fromTable 7.1
that the proper URL for a user’s edit page is /users/1/edit (assuming the user’s
id is 1). Recall that the id of the user is available in the params[:id] variable,
which means that we can find the user with the code in Listing 10.1.

Listing 10.1: The user edit action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

def create

@user = User.new(user_params)

if @user.save

log_in @user

flash[:success] = "Welcome to the Sample App!"

redirect_to @user

else

render 'new'

1Image retrieved from https://www.flickr.com/photos/sashawolff/4598355045/ on 2014-08-25. Copyright ©
2010 by SashaWolff and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic license.

https://creativecommons.org/licenses/by/2.0/

10.1. UPDATING USERS 543

Figure 10.1: A mockup of the user edit page.

544 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

end

end

def edit

@user = User.find(params[:id])

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

The corresponding user edit view (which you will have to create by hand)
is shown in Listing 10.2. Note how closely this resembles the new user view
from Listing 7.15; the large overlap suggests factoring the repeated code into a
partial, which is left as an exercise (Section 10.1.1).

Listing 10.2: The user edit view.
app/views/users/edit.html.erb

<% provide(:title, "Edit user") %>

<h1>Update your profile</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages' %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Save changes", class: "btn btn-primary" %>

<% end %>

10.1. UPDATING USERS 545

<div class="gravatar_edit">

<%= gravatar_for @user %>

change

</div>

</div>

</div>

Here we have reused the shared error_messages partial introduced in Sec-
tion 7.3.3. By the way, the use of target="_blank" in the Gravatar link is
a neat trick to get the browser to open the page in a new window or tab, which
is sometimes convenient behavior when linking to third-party sites. (There’s
a minor security issue associated with target="_blank"; dealing with this
detail is left as an exercise (Section 10.1.1).)

With the @user instance variable from Listing 10.1, the edit page should
render properly, as shown in Figure 10.2. The “Name” and “Email” fields in
Figure 10.2 also shows how Rails automatically pre-fills the Name and Email
fields using the attributes of the existing @user variable.

Looking at the HTML source for Figure 10.2, we see a form tag as expected,
as in Listing 10.3 (slight details may differ).

Listing 10.3: HTML for the edit form defined in Listing 10.2 and shown in
Figure 10.2.
<form accept-charset="UTF-8" action="/users/1" class="edit_user"

id="edit_user_1" method="post">

<input name="_method" type="hidden" value="patch" />

.

.

.

</form>

Note here the hidden input field:

<input name="_method" type="hidden" value="patch" />

Since web browsers can’t natively send PATCH requests (as required by the
REST conventions from Table 7.1), Rails fakes it with a POST request and a

546 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.2: The initial user edit page with pre-filled name and email.

10.1. UPDATING USERS 547

hidden input field.2
There’s another subtlety to address here: the code form_with(@user) in

Listing 10.2 is exactly the same as the code in Listing 7.15—so how does Rails
know to use a POST request for new users and a PATCH for editing users? The
answer is that it is possible to tell whether a user is new or already exists in the
database via Active Record’s new_record? boolean method:

$ rails console

>> User.new.new_record?

=> true

>> User.first.new_record?

=> false

When constructing a form using form_with(@user), Rails uses POST if
@user.new_record? is true and PATCH if it is false.

As a final touch, we’ll fill in the URL of the settings link in the site navi-
gation. This is easy using the named route edit_user_path from Table 7.1,
together with the handy current_user helper method defined in Listing 9.9:

<%= link_to "Settings", edit_user_path(current_user) %>

The full application code appears in Listing 10.4).

Listing 10.4: Adding a URL to the “Settings” link in the site layout.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

<%= link_to "sample app", root_path, id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", root_path %>

<%= link_to "Help", help_path %>

<% if logged_in? %>

<%= link_to "Users", '#' %>

2Don’t worry about how this works; the details are of interest to developers of the Rails framework itself, and
by design are not important for Rails application developers.

548 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<li class="dropdown">

Account <b class="caret">

<ul class="dropdown-menu">

<%= link_to "Profile", current_user %>

<%= link_to "Settings", edit_user_path(current_user) %>

<li class="divider">

<%= link_to "Log out", logout_path, method: :delete %>

<% else %>

<%= link_to "Log in", login_path %>

<% end %>

</nav>

</div>

</header>

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. As noted above, there’s a minor security issue associated with using
target="_blank" to openURLs, which is that the target site gains con-
trol of what’s known as the “window object” associated with the HTML
document. The result is that the target site could potentially introduce
malicious content, such as a phishing page. This is extremely unlikely
to happen when linking to a reputable site like Gravatar, but it turns out
that we can eliminate the risk entirely by setting the rel attribute (“re-
lationship”) to "noopener" in the origin link. Add this attribute to the
Gravatar edit link in Listing 10.2.

2. Remove the duplicated form code by refactoring the new.html.erb and
edit.html.erb views to use the partial in Listing 10.5, as shown in
Listing 10.6 and Listing 10.7. Note the use of the provide method,

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Phishing
https://www.google.com/search?q=target+_blank+security

10.1. UPDATING USERS 549

which we used before in Section 3.4.3 to eliminate duplication in the
layout.3

Listing 10.5: A partial for the new and edit form.
app/views/users/_form.html.erb

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages', object: @user %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit yield(:button_text), class: "btn btn-primary" %>

<% end %>

Listing 10.6: The signup view with partial.
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<% provide(:button_text, 'Create my account') %>

<h1>Sign up</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= render 'form' %>

</div>

</div>

Listing 10.7: The edit view with partial.
app/views/users/edit.html.erb

3Thanks to Jose Carlos Montero Gómez for a suggestion that further reduced duplication in the new and edit
partials.

550 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<% provide(:title, 'Edit user') %>

<% provide(:button_text, 'Save changes') %>

<h1>Update your profile</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= render 'form' %>

<div class="gravatar_edit">

<%= gravatar_for @user %>

Change

</div>

</div>

</div>

10.1.2 Unsuccessful edits
In this section we’ll handle unsuccessful edits, following similar ideas to un-
successful signups (Section 7.3). We start by creating an update action, which
uses update (Section 6.1.5) to update the user based on the submitted params
hash, as shown in Listing 10.8. With invalid information, the update attempt
returns false, so the else branch renders the edit page. We’ve seen this pat-
tern before; the structure closely parallels the first version of the create action
(Listing 7.18).

Listing 10.8: The initial user update action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

@user = User.new

end

def create

@user = User.new(user_params)

if @user.save

log_in @user

flash[:success] = "Welcome to the Sample App!"

redirect_to @user

else

10.1. UPDATING USERS 551

render 'new'

end

end

def edit

@user = User.find(params[:id])

end

def update

@user = User.find(params[:id])

if @user.update(user_params)

Handle a successful update.

else

render 'edit'

end

end

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

end

Note the use of user_params in the call to update, which uses strong param-
eters to prevent mass assignment vulnerability (as described in Section 7.3.2).

Because of the existing User model validations and the error-messages par-
tial in Listing 10.2, submission of invalid information results in helpful error
messages (Figure 10.3).

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm by submitting various invalid combinations of username, email,
and password that the edit form won’t accept invalid submissions.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

552 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.3: Error messages from submitting the update form.

10.1. UPDATING USERS 553

10.1.3 Testing unsuccessful edits
We left Section 10.1.2 with a working edit form. Following the testing guide-
lines from Box 3.3, we’ll now write an integration test to catch any regressions.
Our first step is to generate an integration test as usual:

$ rails generate integration_test users_edit

invoke test_unit

create test/integration/users_edit_test.rb

Then we’ll write a simple test of an unsuccessful edit, as shown in Listing 10.9.
The test in Listing 10.9 checks for the correct behavior by verifying that the edit
template is rendered after getting the edit page and re-rendered upon submission
of invalid information. Note the use of the patch method to issue a PATCH
request, which follows the same pattern as get, post, and delete.

Listing 10.9: A test for an unsuccessful edit. green
test/integration/users_edit_test.rb

require 'test_helper'

class UsersEditTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "unsuccessful edit" do

get edit_user_path(@user)

assert_template 'users/edit'

patch user_path(@user), params: { user: { name: "",

email: "foo@invalid",

password: "foo",

password_confirmation: "bar" } }

assert_template 'users/edit'

end

end

At this point, the test suite should still be green:

554 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.10: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Add a line in Listing 10.9 to test for the correct number of error messages.
Hint: Use an assert_select (Table 5.2) that tests for a div with class
alert containing the text “The form contains 4 errors.”

10.1.4 Successful edits (with TDD)
Now it’s time to get the edit form to work. Editing the profile images is already
functional since we’ve outsourced image upload to the Gravatar website: we
can edit a Gravatar by clicking on the “change” link in Figure 10.2, which opens
the Gravatar site in a new tab (due to target="_blank" in Listing 10.2), as
shown in Figure 10.4. Let’s get the rest of the user edit functionality working
as well.

As you get more comfortable with testing, you might find that it’s useful
to write integration tests before writing the application code instead of after.
In this context, such tests are sometimes known as acceptance tests, since they
determine when a particular feature should be accepted as complete. To see how
this works, we’ll complete the user edit feature using test-driven development.

We’ll test for the correct behavior of updating users by writing a test similar
to the one shown in Listing 10.9, only this time we’ll submit valid informa-
tion. Then we’ll check for a nonempty flash message and a successful redirect
to the profile page, while also verifying that the user’s information correctly
changed in the database. The result appears in Listing 10.11. Note that the
password and confirmation in Listing 10.11 are blank, which is convenient for

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.1. UPDATING USERS 555

Figure 10.4: The Gravatar image-editing interface.

https://gravatar.com/

556 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

users who don’t want to update their passwords every time they update their
names or email addresses. Note also the use of @user.reload (first seen in
Section 6.1.5) to reload the user’s values from the database and confirm that
they were successfully updated. (This is the kind of detail you could easily
forget initially, which is why acceptance testing (and TDD generally) require a
certain level of experience to be effective.)

Listing 10.11: A test of a successful edit. red
test/integration/users_edit_test.rb

require 'test_helper'

class UsersEditTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "successful edit" do

get edit_user_path(@user)

assert_template 'users/edit'

name = "Foo Bar"

email = "foo@bar.com"

patch user_path(@user), params: { user: { name: name,

email: email,

password: "",

password_confirmation: "" } }

assert_not flash.empty?

assert_redirected_to @user

@user.reload

assert_equal name, @user.name

assert_equal email, @user.email

end

end

The update action needed to get the tests in Listing 10.11 to pass is similar
to the final form of the create action (Listing 8.32), as seen in Listing 10.12.

Listing 10.12: The user update action. red
app/controllers/users_controller.rb

10.1. UPDATING USERS 557

class UsersController < ApplicationController

.

.

.

def update

@user = User.find(params[:id])

if @user.update(user_params)

flash[:success] = "Profile updated"

redirect_to @user

else

render 'edit'

end

end

.

.

.

end

As indicated in the caption to Listing 10.12, the test suite is still red, which
is the result of the password length validation (Listing 6.43) failing due to the
empty password and confirmation in Listing 10.11. To get the tests to green, we
need to make an exception to the password validation if the password is empty.
We can do this by passing the allow_nil: true option to validates, as
seen in Listing 10.13.

Listing 10.13: Allowing empty passwords on update. green
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token

before_save { self.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, length: { maximum: 255 },

format: { with: VALID_EMAIL_REGEX },

uniqueness: true

has_secure_password

validates :password, presence: true, length: { minimum: 6 }, allow_nil: true

.

.

.

end

In case you’re worried that Listing 10.13 might allow new users to sign up
with empty passwords, recall from Section 6.3.3 that has_secure_password

558 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

includes a separate presence validation that specifically catches nil passwords.
(Because nil passwords now bypass the main presence validation but are still
caught by has_secure_password, this also fixes the duplicate error message
mentioned in Section 7.3.3.)

With the code in this section, the user edit page should be working (Fig-
ure 10.5), as you can double-check by re-running the test suite, which should
now be green:

Listing 10.14: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Double-check that you can now make edits by making a few changes on
the development version of the application.

2. What happens when you change the email address to one without an as-
sociated Gravatar?

10.2 Authorization
In the context of web applications, authentication allows us to identify users of
our site, while authorization lets us control what they can do. One nice effect
of building the authentication machinery in Chapter 8 is that we are now in a
position to implement authorization as well.

Although the edit and update actions from Section 10.1 are functionally
complete, they suffer from a ridiculous security flaw: they allow anyone (even
non-logged-in users) to access either action and update the information for any

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.2. AUTHORIZATION 559

Figure 10.5: The result of a successful edit.

560 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

user. In this section, we’ll implement a security model that requires users to
be logged in and prevents them from updating any information other than their
own.

In Section 10.2.1, we’ll handle the case of non-logged-in users who try to
access a protected page to which they might normally have access. Because this
could easily happen in the normal course of using the application, such users
will be forwarded to the login page with a helpful message, as mocked up in
Figure 10.6. On the other hand, users who try to access a page for which they
would never be authorized (such as a logged-in user trying to access a different
user’s edit page) will be redirected to the root URL (Section 10.2.2).

10.2.1 Requiring logged-in users
To implement the forwarding behavior shown in Figure 10.6, we’ll use a before
filter in the Users controller. Before filters use the before_action command
to arrange for a particular method to be called before the given actions.4 To
require users to be logged in, we define a logged_in_usermethod and invoke
it using before_action :logged_in_user, as shown in Listing 10.15.

Listing 10.15: Adding a logged_in_user before filter. red
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Before filters

Confirms a logged-in user.

4The command for before filters used to be called before_filter, but the Rails core team decided to rename
it to emphasize that the filter takes place before particular controller actions.

10.2. AUTHORIZATION 561

Figure 10.6: A mockup of the result of visiting a protected page

562 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

def logged_in_user

unless logged_in?

flash[:danger] = "Please log in."

redirect_to login_url

end

end

end

By default, before filters apply to every action in a controller, so here we re-
strict the filter to act only on the :edit and :update actions by passing the
appropriate only: options hash.

We can see the result of the before filter in Listing 10.15 by logging out and
attempting to access the user edit page /users/1/edit, as seen in Figure 10.7.

As indicated in the caption of Listing 10.15, our test suite is currently red:

Listing 10.16: red
$ rails test

The reason is that the edit and update actions now require a logged-in user, but
no user is logged in inside the corresponding tests.

We’ll fix our test suite by logging the user in before hitting the edit or update
actions. This is easy using the log_in_as helper developed in Section 9.3
(Listing 9.24), as shown in Listing 10.17.

Listing 10.17: Logging in a test user. green
test/integration/users_edit_test.rb

require 'test_helper'

class UsersEditTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "unsuccessful edit" do

log_in_as(@user)

get edit_user_path(@user)

.

10.2. AUTHORIZATION 563

Figure 10.7: The login form after trying to access a protected page.

564 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

.

.

end

test "successful edit" do

log_in_as(@user)

get edit_user_path(@user)

.

.

.

end

end

(We could eliminate some duplication by putting the test login in the setup
method of Listing 10.17, but in Section 10.2.3 we’ll change one of the tests
to visit the edit page before logging in, which isn’t possible if the login step
happens during the test setup.)

At this point, our test suite should be green:

Listing 10.18: green
$ rails test

Even though our test suite is now passing, we’re not finished with the before
filter, because the suite is still green even if we remove our security model, as
you can verify by commenting it out (Listing 10.19). This is a Bad Thing—of
all the regressions we’d like our test suite to catch, a massive security hole is
probably #1, so the code in Listing 10.19 should definitely be red. Let’s write
tests to arrange that.

Listing 10.19: Commenting out the before filter to test our security model.
green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

.

.

.

end

http://catb.org/jargon/html/B/Bad-Thing.html

10.2. AUTHORIZATION 565

Because the before filter operates on a per-action basis, we’ll put the cor-
responding tests in the Users controller test. The plan is to hit the edit and
update actions with the right kinds of requests and verify that the flash is set
and that the user is redirected to the login path. From Table 7.1, we see that
the proper requests are GET and PATCH, respectively, which means using the
get and patch methods inside the tests. The results (which include adding a
setup method to define an @user variable) appear in Listing 10.20.

Listing 10.20: Testing that edit and update are protected. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "should redirect edit when not logged in" do

get edit_user_path(@user)

assert_not flash.empty?

assert_redirected_to login_url

end

test "should redirect update when not logged in" do

patch user_path(@user), params: { user: { name: @user.name,

email: @user.email } }

assert_not flash.empty?

assert_redirected_to login_url

end

end

Note that the second test shown in Listing 10.20 involves using the patch

method to send a PATCH request to user_path(@user). According to Ta-
ble 7.1, such a request gets routed to the update action in the Users controller,
as required.

The test suite should now be red, as required. To get it to green, just un-
comment the before filter (Listing 10.21).

566 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.21: Uncommenting the before filter. green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

.

.

.

end

With that, our test suite should be green:

Listing 10.22: green
$ rails test

Any accidental exposure of the edit methods to unauthorized users will now be
caught immediately by our test suite.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. As noted above, by default before filters apply to every action in a con-
troller, which in our cases is an error (requiring, e.g., that users log in
to hit the signup page, which is absurd). By commenting out the only:
hash in Listing 10.15, confirm that the test suite catches this error.

10.2.2 Requiring the right user
Of course, requiring users to log in isn’t quite enough; users should only be
allowed to edit their own information. As we saw in Section 10.2.1, it’s easy
to have a test suite that misses an essential security flaw, so we’ll proceed us-
ing test-driven development to be sure our code implements the security model

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.2. AUTHORIZATION 567

correctly. To do this, we’ll add tests to the Users controller test to complement
the ones shown in Listing 10.20.

In order to make sure users can’t edit other users’ information, we need to
be able to log in as a second user. This means adding a second user to our users
fixture file, as shown in Listing 10.23.

Listing 10.23: Adding a second user to the fixture file.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

archer:

name: Sterling Archer

email: duchess@example.gov

password_digest: <%= User.digest('password') %>

By using the log_in_as method defined in Listing 9.24, we can test the
edit and update actions as in Listing 10.24. Note that we expect to redirect
users to the root path instead of the login path because a user trying to edit a
different user would already be logged in.

Listing 10.24: Tests for trying to edit as the wrong user. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

.

.

.

test "should redirect edit when logged in as wrong user" do

log_in_as(@other_user)

get edit_user_path(@user)

assert flash.empty?

568 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

assert_redirected_to root_url

end

test "should redirect update when logged in as wrong user" do

log_in_as(@other_user)

patch user_path(@user), params: { user: { name: @user.name,

email: @user.email } }

assert flash.empty?

assert_redirected_to root_url

end

end

To redirect users trying to edit another user’s profile, we’ll add a second
method called correct_user, together with a before filter to call it (List-
ing 10.25). Note that the correct_user before filter defines the @user vari-
able, so Listing 10.25 also shows that we can eliminate the @user assignments
in the edit and update actions.

Listing 10.25: A before filter to protect the edit/update pages. green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

before_action :correct_user, only: [:edit, :update]

.

.

.

def edit

end

def update

if @user.update(user_params)

flash[:success] = "Profile updated"

redirect_to @user

else

render 'edit'

end

end

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

10.2. AUTHORIZATION 569

end

Before filters

Confirms a logged-in user.

def logged_in_user

unless logged_in?

flash[:danger] = "Please log in."

redirect_to login_url

end

end

Confirms the correct user.

def correct_user

@user = User.find(params[:id])

redirect_to(root_url) unless @user == current_user

end

end

At this point, our test suite should be green:

Listing 10.26: green
$ rails test

As a final refactoring, we’ll adopt a common convention and define a cur-
rent_user? booleanmethod for use in the correct_user before filter. We’ll
use this method to replace code like

unless @user == current_user

with the more expressive

unless current_user?(@user)

The result appears in Listing 10.27. Note that by writing user && user ==

current_user, we also catch the edge case where user is nil.5
5Thanks to reader Andrew Moor for pointing this out. Andrew also noted that we can use the safe navigation

operator introduced in Section 8.2.4 to write this as user&. == current_user.

570 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.27: The current_user? method.
app/helpers/sessions_helper.rb

module SessionsHelper

Logs in the given user.

def log_in(user)

session[:user_id] = user.id

end

Remembers a user in a persistent session.

def remember(user)

user.remember

cookies.permanent.encrypted[:user_id] = user.id

cookies.permanent[:remember_token] = user.remember_token

end

Returns the user corresponding to the remember token cookie.

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.encrypted[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(cookies[:remember_token])

log_in user

@current_user = user

end

end

end

Returns true if the given user is the current user.

def current_user?(user)

user && user == current_user

end

.

.

.

end

Replacing the direct comparison with the boolean method gives the code shown
in Listing 10.28.

Listing 10.28: The final correct_user before filter. green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

10.2. AUTHORIZATION 571

before_action :correct_user, only: [:edit, :update]

.

.

.

def edit

end

def update

if @user.update(user_params)

flash[:success] = "Profile updated"

redirect_to @user

else

render 'edit'

end

end

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Before filters

Confirms a logged-in user.

def logged_in_user

unless logged_in?

flash[:danger] = "Please log in."

redirect_to login_url

end

end

Confirms the correct user.

def correct_user

@user = User.find(params[:id])

redirect_to(root_url) unless current_user?(@user)

end

end

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

572 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

1. Why is it important to protect both the edit and update actions?

2. Which action could you more easily test in a browser?

10.2.3 Friendly forwarding
Our site authorization is complete as written, but there is one minor blemish:
when users try to access a protected page, they are currently redirected to their
profile pages regardless of where they were trying to go. In other words, if a
non-logged-in user tries to visit the edit page, after logging in the user will be
redirected to /users/1 instead of /users/1/edit. It would be much friendlier to
redirect them to their intended destination instead.

The application code will turn out to be relatively complicated, but we can
write a ridiculously simple test for friendly forwarding just by reversing the
order of logging in and visiting the edit page in Listing 10.17. As seen in List-
ing 10.29, the resulting test tries to visit the edit page, then logs in, and then
checks that the user is redirected to the edit page instead of the default profile
page. (Listing 10.29 also removes the test for rendering the edit template since
that’s no longer the expected behavior.)

Listing 10.29: A test for friendly forwarding. red
test/integration/users_edit_test.rb

require 'test_helper'

class UsersEditTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "successful edit with friendly forwarding" do

get edit_user_path(@user)

log_in_as(@user)

assert_redirected_to edit_user_url(@user)

name = "Foo Bar"

email = "foo@bar.com"

patch user_path(@user), params: { user: { name: name,

10.2. AUTHORIZATION 573

email: email,

password: "",

password_confirmation: "" } }

assert_not flash.empty?

assert_redirected_to @user

@user.reload

assert_equal name, @user.name

assert_equal email, @user.email

end

end

Now that we have a failing test, we’re ready to implement friendly for-
warding.6 In order to forward users to their intended destination, we need to
store the location of the requested page somewhere, and then redirect to that
location instead of to the default. We accomplish this with a pair of meth-
ods, store_location and redirect_back_or, both defined in the Sessions
helper (Listing 10.30).

Listing 10.30: Code to implement friendly forwarding. red
app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

Redirects to stored location (or to the default).

def redirect_back_or(default)

redirect_to(session[:forwarding_url] || default)

session.delete(:forwarding_url)

end

Stores the URL trying to be accessed.

def store_location

session[:forwarding_url] = request.original_url if request.get?

end

end

Here the storage mechanism for the forwarding URL is the same session
facility we used in Section 8.2.1 to log the user in. Listing 10.30 also uses
the request object (via request.original_url) to get the URL of the re-
quested page.

6The code in this section is adapted from the Clearance gem by thoughtbot.

https://github.com/thoughtbot/clearance
https://thoughtbot.com/

574 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

The store_locationmethod in Listing 10.30 puts the requested URL in
the session variable under the key :forwarding_url, but only for a GET
request. This prevents storing the forwarding URL if a user, say, submits a
form when not logged in (which is an edge case but could happen if, e.g., a
user deleted the session cookies by hand before submitting the form). In such a
case, the resulting redirect would issue a GET request to a URL expecting POST,
PATCH, or DELETE, thereby causing an error. Including if request.get?

prevents this from happening.7
To make use of store_location, we need to add it to the logged_in_-

user before filter, as shown in Listing 10.31.

Listing 10.31: Adding store_location to the logged-in user before filter.
red
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:edit, :update]

before_action :correct_user, only: [:edit, :update]

.

.

.

def edit

end

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Before filters

Confirms a logged-in user.

def logged_in_user

unless logged_in?

store_location

flash[:danger] = "Please log in."

redirect_to login_url

end

7Thanks to reader Yoel Adler for pointing out this subtle issue, and for discovering the solution.

10.2. AUTHORIZATION 575

end

Confirms the correct user.

def correct_user

@user = User.find(params[:id])

redirect_to(root_url) unless current_user?(@user)

end

end

To implement the forwarding itself, we use the redirect_back_or

method to redirect to the requested URL if it exists, or some default URL oth-
erwise, which we add to the Sessions controller create action to redirect after
successful login (Listing 10.32). The redirect_back_ormethod uses the or
operator || through

session[:forwarding_url] || default

This evaluates to session[:forwarding_url] unless it’s nil, in which
case it evaluates to the given default URL. Note that Listing 10.30 is care-
ful to remove the forwarding URL (via session.delete(:forwarding-
_url)); otherwise, subsequent login attempts would forward to the protected
page until the user closed their browser. (Testing for this is left as an exer-
cise (Section 10.2.3).) Also note that the session deletion occurs even though
the line with the redirect appears first; redirects don’t happen until an explicit
return or the end of the method, so any code appearing after the redirect is
still executed.

Listing 10.32: The Sessions create action with friendly forwarding. green
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

.

.

.

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

log_in user

576 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

redirect_back_or user

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

.

.

.

end

With that, the friendly forwarding integration test in Listing 10.29 should
pass, and the basic user authentication and page protection implementation is
complete. As usual, it’s a good idea to verify that the test suite is green before
proceeding:

Listing 10.33: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Write a test to make sure that friendly forwarding only forwards to the
given URL the first time. On subsequent login attempts, the forwarding
URL should revert to the default (i.e., the profile page). Hint: Add to
the test in Listing 10.29 by checking for the right value of session-
[:forwarding_url].

2. Put a debugger (Section 7.1.3) in the Sessions controller’s new action,
then log out and try to visit /users/1/edit. Confirm in the debugger that the
value of session[:forwarding_url] is correct. What is the value of
request.get? for the new action? (Sometimes the terminal can freeze

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 577

up or act strangely when you’re using the debugger; use your technical
sophistication (Box 1.2) to resolve any issues.)

10.3 Showing all users
In this section, we’ll add the penultimate user action, the index action, which is
designed to display all the users instead of just one. Along the way, we’ll learn
how to seed the database with sample users and how to paginate the user out-
put so that the index page can scale up to display a potentially large number of
users. A mockup of the result—users, pagination links, and a “Users” naviga-
tion link—appears in Figure 10.8.8 In Section 10.4, we’ll add an administrative
interface to the users index so that users can also be destroyed.

10.3.1 Users index
To get started with the users index, we’ll first implement a security model. Al-
though we’ll keep individual user show pages visible to all site visitors, the user
index will be restricted to logged-in users so that there’s a limit to how much
unregistered users can see by default.9

To protect the index page from unauthorized access, we’ll first add a short
test to verify that the index action is redirected properly (Listing 10.34).

Listing 10.34: Testing the index action redirect. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

8Image retrieved from https://www.flickr.com/photos/glasgows/338937124/ on 2014-08-25. Copyright © 2008
by M&R Glasgow and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic license.

9This is the same authorization model used by Twitter.

https://en.wiktionary.org/wiki/penultimate#English
https://creativecommons.org/licenses/by/2.0/

578 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.8: A mockup of the users index page.

10.3. SHOWING ALL USERS 579

test "should get new" do

get signup_path

assert_response :success

end

test "should redirect index when not logged in" do

get users_path

assert_redirected_to login_url

end

.

.

.

end

Then we just need to add an index action and include it in the list of actions
protected by the logged_in_user before filter (Listing 10.35).

Listing 10.35: Requiring a logged-in user for the index action. green
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update]

before_action :correct_user, only: [:edit, :update]

def index

end

def show

@user = User.find(params[:id])

end

.

.

.

end

To display the users themselves, we need to make a variable containing
all the site’s users and then render each one by iterating through them in the
index view. As you may recall from the corresponding action in the toy app
(Listing 2.9), we can use User.all to pull all the users out of the database,
assigning them to an @users instance variable for use in the view, as seen in
Listing 10.36. (If displaying all the users at once seems like a bad idea, you’re
right, and we’ll remove this blemish in Section 10.3.3.)

580 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.36: The user index action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update]

.

.

.

def index

@users = User.all

end

.

.

.

end

To make the actual index page, we’ll make a view (which you’ll have to
create) that iterates through the users and wraps each one in an li tag. We do
this with the each method, displaying each user’s Gravatar and name, while
wrapping the whole thing in a ul tag (Listing 10.37).

Listing 10.37: The users index view.
app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<ul class="users">

<% @users.each do |user| %>

<%= gravatar_for user, size: 50 %>

<%= link_to user.name, user %>

<% end %>

The code in Listing 10.37 uses the result of Listing 10.38 from Section 7.1.4,
which allows us to pass an option to the Gravatar helper specifying a size other
than the default. If you didn’t do that exercise, update your Users helper file
with the contents of Listing 10.38 before proceeding. (You are also welcome
to use the Ruby 2.0–style version from Listing 7.13 instead.)

10.3. SHOWING ALL USERS 581

Listing 10.38: Adding an options hash in the gravatar_for helper.
app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar for the given user.

def gravatar_for(user, options = { size: 80 })

size = options[:size]

gravatar_id = Digest::MD5::hexdigest(user.email.downcase)

gravatar_url = "https://secure.gravatar.com/avatar/#{gravatar_id}?s=#{size}"

image_tag(gravatar_url, alt: user.name, class: "gravatar")

end

end

Let’s also add a little CSS (or, rather, SCSS) for style (Listing 10.39).

Listing 10.39: CSS for the users index.
app/assets/stylesheets/custom.scss

.

.

.

/* Users index */

.users {

list-style: none;

margin: 0;

li {

overflow: auto;

padding: 10px 0;

border-bottom: 1px solid $gray-lighter;

}

}

Finally, we’ll add the URL to the users link in the site’s navigation header
using users_path, thereby using the last of the unused named routes in Ta-
ble 7.1. The result appears in Listing 10.40.

Listing 10.40: Adding the URL to the users link.
app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top navbar-inverse">

<div class="container">

582 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<%= link_to "sample app", root_path, id: "logo" %>

<nav>

<ul class="nav navbar-nav navbar-right">

<%= link_to "Home", root_path %>

<%= link_to "Help", help_path %>

<% if logged_in? %>

<%= link_to "Users", users_path %>

<li class="dropdown">

Account <b class="caret">

<ul class="dropdown-menu">

<%= link_to "Profile", current_user %>

<%= link_to "Settings", edit_user_path(current_user) %>

<li class="divider">

<%= link_to "Log out", logout_path, method: :delete %>

<% else %>

<%= link_to "Log in", login_path %>

<% end %>

</nav>

</div>

</header>

With that, the users index is fully functional, with all tests green:

Listing 10.41: green
$ rails test

On the other hand, as seen in Figure 10.9, it is a bit… lonely. Let’s remedy this
sad situation.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 583

Figure 10.9: The users index page with only one user.

584 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

1. We’ve now filled in all the links in the site layout. Write an integration
test for all the layout links, including the proper behavior for logged-in
and non-logged-in users. Hint: Use the log_in_as helper and add to
the steps shown in Listing 5.32.

10.3.2 Sample users
In this section, we’ll give our lonely sample user some company. Of course,
to create enough users to make a decent users index, we could use our web
browser to visit the signup page and make the new users one by one, but a far
better solution is to use Ruby to make the users for us.

First, we’ll add the Faker gem to the Gemfile, which will allow us to make
sample users with semi-realistic names and email addresses (Listing 10.42).10
(Ordinarily, you’d probably want to restrict the faker gem to a development
environment, but in the case of the sample app we’ll be using it on our produc-
tion site as well (Section 10.5).)

Listing 10.42: Adding the Faker gem to the Gemfile.
source 'https://rubygems.org'

gem 'rails', '6.0.2.1'

gem 'bcrypt', '3.1.13'

gem 'faker', '2.1.2'

gem 'bootstrap-sass', '3.4.1'

.

.

.

Then install as usual:

$ bundle install

Next, we’ll add a Ruby program to seed the database with sample users,
for which Rails uses the standard file db/seeds.rb. The result appears in

10As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://gemfiles-6th-ed.railstutorial.org/

10.3. SHOWING ALL USERS 585

Listing 10.43. (The code in Listing 10.43 is a bit advanced, so don’t worry too
much about the details.)

Listing 10.43: A program for seeding the database with sample users.
db/seeds.rb

Create a main sample user.

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password_confirmation: "foobar")

Generate a bunch of additional users.

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

email: email,

password: password,

password_confirmation: password)

end

The code in Listing 10.43 creates an example user with name and email address
replicating our previous one, and then makes 99 more. The create! method
is just like the createmethod, except it raises an exception (Section 6.1.4) for
an invalid user rather than returning false. This behavior makes debugging
easier by avoiding silent errors.

With the code as in Listing 10.43, we can reset the database and then invoke
the Rake task using db:seed:11

$ rails db:migrate:reset

$ rails db:seed

Seeding the database can be slow, and on some systems could take up to a few
minutes. Also, some readers have reported that they are unable to run the reset
command if the Rails server is running, so you may have to stop the server first
before proceeding (Box 1.2).

11In principle, these two tasks can be combined in rails db:reset, but as of this writing this command
doesn’t work with the latest version of Rails.

586 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.10: The users index page with 100 sample users.

After running the db:seedRake task, our application should have 100 sam-
ple users. As seen in Figure 10.10, I’ve taken the liberty of associating the first
few sample addresses with Gravatars so that they’re not all the default Gravatar
image.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 587

1. Verify that trying to visit the edit page of another user results in a redirect
as required by Section 10.2.2.

10.3.3 Pagination
Our original user doesn’t suffer from loneliness any more, but now we have the
opposite problem: our user has too many companions, and they all appear on the
same page. Right now there are a hundred, which is already a reasonably large
number, and on a real site it could be thousands. The solution is to paginate the
users, so that (for example) only 30 show up on a page at any one time.

There are several pagination methods available in Rails; we’ll use one of
the simplest and most robust, called will_paginate. To use it, we need to in-
clude both the will_paginate gem and bootstrap-will_paginate,
which configures will_paginate to use Bootstrap’s pagination styles. The up-
dated Gemfile appears in Listing 10.44.12

Listing 10.44: Including will_paginate in the Gemfile.
source 'https://rubygems.org'

gem 'rails', '6.0.2.1'

gem 'bcrypt', '3.1.13'

gem 'faker', '2.1.2'

gem 'will_paginate', '3.1.8'

gem 'bootstrap-will_paginate', '1.0.0'

.

.

.

Then run bundle install:

$ bundle install

You should also restart the webserver to ensure that the new gems are loaded
properly.

12As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://github.com/mislav/will_paginate/wiki
https://gemfiles-6th-ed.railstutorial.org/

588 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

To get pagination working, we need to add some code to the index view
telling Rails to paginate the users, and we need to replace User.all in the
index action with an object that knows about pagination. We’ll start by adding
the special will_paginatemethod in the view (Listing 10.45); we’ll see in a
moment why the code appears both above and below the user list.

Listing 10.45: The users index with pagination.
app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<%= will_paginate %>

<ul class="users">

<% @users.each do |user| %>

<%= gravatar_for user, size: 50 %>

<%= link_to user.name, user %>

<% end %>

<%= will_paginate %>

The will_paginate method is a little magical; inside a users view, it
automatically looks for an @users object, and then displays pagination links
to access other pages. The view in Listing 10.45 doesn’t work yet, though,
because currently @users contains the results of User.all (Listing 10.36),
whereas will_paginate requires that we paginate the results explicitly using
the paginate method:

$ rails console

>> User.paginate(page: 1)

User Load (1.5ms) SELECT "users".* FROM "users" LIMIT 11 OFFSET 0

(1.7ms) SELECT COUNT(*) FROM "users"

=> #<ActiveRecord::Relation [#<User id: 1,...

>> User.paginate(page: 1).length

User Load (3.0ms) SELECT "users".* FROM "users" LIMIT ? OFFSET ? [["LIMIT", 30],

["OFFSET", 0]]

=> 30

10.3. SHOWING ALL USERS 589

Note that paginate takes a hash argument with key :page and value equal to
the page requested. User.paginate pulls the users out of the database one
chunk at a time (30 by default), based on the :page parameter. So, for example,
page 1 is users 1–30, page 2 is users 31–60, etc. If page is nil, paginate
simply returns the first page. (The console result above shows 11 results rather
than 30 due to a console limit in Active Record itself, but calling the length
method bypasses this restriction.)

Using the paginatemethod, we can paginate the users in the sample appli-
cation by using paginate in place of all in the index action (Listing 10.46).
Here the page parameter comes from params[:page], which is generated
automatically by will_paginate.

Listing 10.46: Paginating the users in the index action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update]

.

.

.

def index

@users = User.paginate(page: params[:page])

end

.

.

.

end

The users index page should now be working, appearing as in Figure 10.11.
(On some systems, you may have to restart the Rails server at this point.) Be-
cause we included will_paginate both above and below the user list, the
pagination links appear in both places.

If you now click on either the 2 link or Next link, you’ll get the second page
of results, as shown in Figure 10.12.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://stackoverflow.com/questions/53059021/rails-model-querying-returns-11-records-but-no-limit-is-set
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

590 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.11: The users index page with pagination.

10.3. SHOWING ALL USERS 591

Figure 10.12: Page 2 of the users index.

592 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Confirm at the console that setting the page to nil pulls out the first page
of users.

2. What is the Ruby class of the pagination object? How does it compare to
the class of User.all?

10.3.4 Users index test
Now that our users index page is working, we’ll write a lightweight test for it,
including a minimal test for the pagination from Section 10.3.3. The idea is to
log in, visit the index path, verify the first page of users is present, and then
confirm that pagination is present on the page. For these last two steps to work,
we need to have enough users in the test database to invoke pagination, i.e.,
more than 30.

We created a second user in the fixtures in Listing 10.23, but 30 or so
more users is a lot to create by hand. Luckily, as we’ve seen with the user
fixture’s password_digest attribute, fixture files support embedded Ruby,
which
means we can create 30 additional users as shown in Listing 10.47. (List-
ing 10.47 also creates a couple of other named users for future reference.)

Listing 10.47: Adding 30 extra users to the fixture.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

archer:

name: Sterling Archer

email: duchess@example.gov

password_digest: <%= User.digest('password') %>

lana:

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 593

name: Lana Kane

email: hands@example.gov

password_digest: <%= User.digest('password') %>

malory:

name: Malory Archer

email: boss@example.gov

password_digest: <%= User.digest('password') %>

<% 30.times do |n| %>

user_<%= n %>:

name: <%= "User #{n}" %>

email: <%= "user-#{n}@example.com" %>

password_digest: <%= User.digest('password') %>

<% end %>

With the fixtures defined in Listing 10.47, we’re ready to write a test of the
users index. First we generate the relevant test:

$ rails generate integration_test users_index

invoke test_unit

create test/integration/users_index_test.rb

The test itself involves checking for a divwith the required pagination class
and verifying that the first page of users is present. The result appears in List-
ing 10.48.

Listing 10.48: A test of the users index, including pagination. green
test/integration/users_index_test.rb

require 'test_helper'

class UsersIndexTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "index including pagination" do

log_in_as(@user)

get users_path

assert_template 'users/index'

assert_select 'div.pagination'

594 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

User.paginate(page: 1).each do |user|

assert_select 'a[href=?]', user_path(user), text: user.name

end

end

end

The result should be a green test suite:

Listing 10.49: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By commenting out the pagination links in Listing 10.45, confirm that
the test in Listing 10.48 goes red.

2. Confirm that commenting out only one of the calls to will_paginate
leaves the tests green. How would you test for the presence of both sets
of will_paginate links? Hint: Use a count from Table 5.2.

10.3.5 Partial refactoring
The paginated users index is now complete, but there’s one improvement I
can’t resist including: Rails has some incredibly slick tools for making compact
views, and in this section we’ll refactor the index page to use them. Because
our code is well-tested, we can refactor with confidence, assured that we are
unlikely to break our site’s functionality.

The first step in our refactoring is to replace the user li from Listing 10.45
with a render call (Listing 10.50).

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.3. SHOWING ALL USERS 595

Listing 10.50: The first refactoring attempt in the index view. red
app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<%= will_paginate %>

<ul class="users">

<% @users.each do |user| %>

<%= render user %>

<% end %>

<%= will_paginate %>

Here we call render not on a string with the name of a partial, but rather on a
user variable of class User;13 in this context, Rails automatically looks for a
partial called _user.html.erb, which we must create (Listing 10.51).

Listing 10.51: A partial to render a single user. green
app/views/users/_user.html.erb

<%= gravatar_for user, size: 50 %>

<%= link_to user.name, user %>

This is a definite improvement, but we can do even better: we can call
render directly on the @users variable (Listing 10.52).

Listing 10.52: The fully refactored users index. green
app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

13The name user is immaterial—we could have written @users.each do |foobar| and then used render
foobar. The key is the class of the object—in this case, User.

596 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

<%= will_paginate %>

<ul class="users">

<%= render @users %>

<%= will_paginate %>

Here Rails infers that @users is a list of User objects; moreover, when called
with a collection of users, Rails automatically iterates through them and renders
each one with the _user.html.erb partial (inferring the name of the partial
from the name of the class). The result is the impressively compact code in
Listing 10.52.

As with any refactoring, you should verify that the test suite is still green
after changing the application code:

Listing 10.53: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Comment out the render line in Listing 10.52 and confirm that the re-
sulting tests are red.

10.4 Deleting users
Now that the users index is complete, there’s only one canonical REST action
left: destroy. In this section, we’ll add links to delete users, as mocked up
in Figure 10.13, and define the destroy action necessary to accomplish the

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

10.4. DELETING USERS 597

deletion. But first, we’ll create the class of administrative users, or admins, au-
thorized to do so. In the context of authorization, such a set of special privileges
is known as a role.

10.4.1 Administrative users
Wewill identify privileged administrative users with a boolean admin attribute
in the User model, which will lead automatically to an admin? boolean method
to test for admin status. The resulting data model appears in Figure 10.14.

As usual, we add the admin attribute with a migration, indicating the
boolean type on the command line:

$ rails generate migration add_admin_to_users admin:boolean

The migration adds the admin column to the users table, as shown in List-
ing 10.54. Note that we’ve added the argument default: false to add_-
column in Listing 10.54, which means that users will not be administrators
by default. (Without the default: false argument, admin will be nil by
default, which is still false, so this step is not strictly necessary. It is more
explicit, though, and communicates our intentions more clearly both to Rails
and to readers of our code.)

Listing 10.54: The migration to add a boolean admin attribute to users.
db/migrate/[timestamp]_add_admin_to_users.rb

class AddAdminToUsers < ActiveRecord::Migration[6.0]

def change

add_column :users, :admin, :boolean, default: false

end

end

Next, we migrate as usual:

https://en.wikipedia.org/wiki/Role-based_access_control

598 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.13: A mockup of the users index with delete links.

10.4. DELETING USERS 599

updated_at datetime
created_at datetime

admin boolean
remember_digest string

stringpassword_digest

email string

id
name string

integer
users

Figure 10.14: The User model with an added admin boolean attribute.

$ rails db:migrate

As expected, Rails figures out the boolean nature of the admin attribute and
automatically adds the question-mark method admin?:

$ rails console --sandbox

>> user = User.first

>> user.admin?

=> false

>> user.toggle!(:admin)

=> true

>> user.admin?

=> true

Here we’ve used the toggle! method to flip the admin attribute from false

to true.
As a final step, let’s update our seed data to make the first user an admin by

default (Listing 10.55).

600 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Listing 10.55: The seed data code with an admin user.
db/seeds.rb

Create a main sample user.

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password_confirmation: "foobar",

admin: true)

Generate a bunch of additional users.

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

email: email,

password: password,

password_confirmation: password)

end

Then reset and reseed the database:

$ rails db:migrate:reset

$ rails db:seed

Revisiting strong parameters
Youmight have noticed that Listing 10.55makes the user an admin by including
admin: true in the initialization hash. This underscores the danger of expos-
ing our objects to the wild Web—if we simply passed an initialization hash in
from an arbitrary web request, a malicious user could send a PATCH request as
follows:14

patch /users/17?admin=1

This request wouldmake user 17 an admin, whichwould be a potentially serious
security breach.

14Command-line tools such as curl can issue PATCH requests of this form.

10.4. DELETING USERS 601

Because of this danger, it is essential that we only update attributes that are
safe to edit through the web. As noted in Section 7.3.2, this is accomplished
using strong parameters by calling require and permit on the params hash:

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Note in particular that admin is not in the list of permitted attributes. This is
what prevents arbitrary users from granting themselves administrative access
to our application. Because of its importance, it’s a good idea to write a test for
any attribute that isn’t editable, and writing such a test for the admin attribute
is left as an exercise (Section 10.4.1).

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By issuing a PATCH request directly to the user path as shown in List-
ing 10.56, verify that the admin attribute isn’t editable through the web.
To be sure your test is covering the right thing, your first step should be to
add admin to the list of permitted parameters in user_params so that
the initial test is red. For the final line, make sure to load the updated
user information from the database (Section 6.1.5).

Listing 10.56: Testing that the admin attribute is forbidden.
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

602 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

@other_user = users(:archer)

end

.

.

.

test "should redirect update when not logged in" do

patch user_path(@user), params: { user: { name: @user.name,

email: @user.email } }

assert_not flash.empty?

assert_redirected_to login_url

end

test "should not allow the admin attribute to be edited via the web" do

log_in_as(@other_user)

assert_not @other_user.admin?

patch user_path(@other_user), params: {

user: { password: "password",

password_confirmation: "password",

admin: FILL_IN } }

assert_not @other_user.FILL_IN.admin?

end

.

.

.

end

10.4.2 The destroy action
The final step needed to complete the Users resource is to add delete links and
a destroy action. We’ll start by adding a delete link for each user on the users
index page, restricting access to administrative users. The resulting "delete"
links will be displayed only if the current user is an admin (Listing 10.57).

Listing 10.57: User delete links (viewable only by admins).
app/views/users/_user.html.erb

<%= gravatar_for user, size: 50 %>

<%= link_to user.name, user %>

<% if current_user.admin? && !current_user?(user) %>

| <%= link_to "delete", user, method: :delete,

data: { confirm: "You sure?" } %>

<% end %>

10.4. DELETING USERS 603

Figure 10.15: The users index with delete links.

Note the method: :delete argument, which arranges for the link to issue
the necessary DELETE request. We’ve also wrapped each link inside an if

statement so that only admins can see them. The result for our admin user
appears in Figure 10.15.

Web browsers can’t send DELETE requests natively, so Rails fakes them
with JavaScript. This means that the delete links won’t work if the user has
JavaScript disabled. If you must support non-JavaScript-enabled browsers you
can fake a DELETE request using a form and a POST request, which works
even without JavaScript.15

15See the RailsCast on “Destroy Without JavaScript” for details.

http://railscasts.com/episodes/77-destroy-without-javascript

604 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

To get the delete links to work, we need to add a destroy action (Ta-
ble 7.1), which finds the corresponding user and destroys it with the Active
Record destroymethod, finally redirecting to the users index, as seen in List-
ing 10.58. Because users have to be logged in to delete users, Listing 10.58 also
adds :destroy to the logged_in_user before filter.

Listing 10.58: Adding a working destroy action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update, :destroy]

before_action :correct_user, only: [:edit, :update]

.

.

.

def destroy

User.find(params[:id]).destroy

flash[:success] = "User deleted"

redirect_to users_url

end

private

.

.

.

end

As constructed, only admins can destroy users through the web since only
they can see the delete links, but there’s still a terrible security hole: any suf-
ficiently sophisticated attacker could simply issue a DELETE request directly
from the command line to delete any user on the site. To secure the site prop-
erly, we also need access control on the destroy action, so that only admins
can delete users.

As in Section 10.2.1 and Section 10.2.2, we’ll enforce access control using
a before filter, this time to restrict access to the destroy action to admins. The
resulting admin_user before filter appears in Listing 10.59.

Listing 10.59: A before filter restricting the destroy action to admins.
app/controllers/users_controller.rb

10.4. DELETING USERS 605

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update, :destroy]

before_action :correct_user, only: [:edit, :update]

before_action :admin_user, only: :destroy

.

.

.

private

.

.

.

Confirms an admin user.

def admin_user

redirect_to(root_url) unless current_user.admin?

end

end

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. As the admin user, destroy a few sample users through the web interface.
What are the corresponding entries in the server log?

10.4.3 User destroy tests
With something as dangerous as destroying users, it’s important to have good
tests for the expected behavior. We start by arranging for one of our fixture
users to be an admin, as shown in Listing 10.60.

Listing 10.60: Making one of the fixture users an admin.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

admin: true

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

606 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

archer:

name: Sterling Archer

email: duchess@example.gov

password_digest: <%= User.digest('password') %>

lana:

name: Lana Kane

email: hands@example.gov

password_digest: <%= User.digest('password') %>

malory:

name: Malory Archer

email: boss@example.gov

password_digest: <%= User.digest('password') %>

<% 30.times do |n| %>

user_<%= n %>:

name: <%= "User #{n}" %>

email: <%= "user-#{n}@example.com" %>

password_digest: <%= User.digest('password') %>

<% end %>

Following the practice from Section 10.2.1, we’ll put action-level tests of
access control in the Users controller test file. As with the logout test in List-
ing 8.38, we’ll use delete to issue a DELETE request directly to the destroy
action. We need to check two cases: first, users who aren’t logged in should
be redirected to the login page; second, users who are logged in but who aren’t
admins should be redirected to the Home page. The result appears in List-
ing 10.61.

Listing 10.61: Action-level tests for admin access control. green
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

.

.

.

10.4. DELETING USERS 607

test "should redirect destroy when not logged in" do

assert_no_difference 'User.count' do

delete user_path(@user)

end

assert_redirected_to login_url

end

test "should redirect destroy when logged in as a non-admin" do

log_in_as(@other_user)

assert_no_difference 'User.count' do

delete user_path(@user)

end

assert_redirected_to root_url

end

end

Note that Listing 10.61 also makes sure that the user count doesn’t change using
the assert_no_difference method (seen before in Listing 7.23).

The tests in Listing 10.61 verify the behavior in the case of an unauthorized
(non-admin) user, but we also want to check that an admin can use a delete link
to successfully destroy a user. Since the delete links appear on the users index,
we’ll add these tests to the users index test from Listing 10.48. The only really
tricky part is verifying that a user gets deleted when an admin clicks on a delete
link, which we’ll accomplish as follows:

assert_difference 'User.count', -1 do

delete user_path(@other_user)

end

This uses the assert_difference method first seen in Listing 7.31 when
creating a user, this time verifying that a user is destroyed by checking that
User.count changes by−1when issuing a delete request to the correspond-
ing user path.

Putting everything together gives the pagination and delete test in List-
ing 10.62, which includes tests for both admins and non-admins.

Listing 10.62: An integration test for delete links and destroying users. green
test/integration/users_index_test.rb

608 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

require 'test_helper'

class UsersIndexTest < ActionDispatch::IntegrationTest

def setup

@admin = users(:michael)

@non_admin = users(:archer)

end

test "index as admin including pagination and delete links" do

log_in_as(@admin)

get users_path

assert_template 'users/index'

assert_select 'div.pagination'

first_page_of_users = User.paginate(page: 1)

first_page_of_users.each do |user|

assert_select 'a[href=?]', user_path(user), text: user.name

unless user == @admin

assert_select 'a[href=?]', user_path(user), text: 'delete'

end

end

assert_difference 'User.count', -1 do

delete user_path(@non_admin)

end

end

test "index as non-admin" do

log_in_as(@non_admin)

get users_path

assert_select 'a', text: 'delete', count: 0

end

end

Note that Listing 10.62 checks for the right delete links, including skipping
the test if the user happens to be the admin (which lacks a delete link due to
Listing 10.57).

At this point, our deletion code is well-tested, and the test suite should be
green:

Listing 10.63: green
$ rails test

10.5. CONCLUSION 609

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By commenting out the admin user before filter in Listing 10.59, confirm
that the tests go red.

10.5 Conclusion
We’ve come a long way since introducing the Users controller way back in
Section 5.4. Those users couldn’t even sign up; now users can sign up, log in,
log out, view their profiles, edit their settings, and see an index of all users—and
some can even destroy other users.

As it presently stands, the sample application forms a solid foundation for
any website requiring users with authentication and authorization. In Chap-
ter 11 and Chapter 12, we’ll add two additional refinements: an account acti-
vation link for newly registered users (verifying a valid email address in the
process) and password resets to help users who forget their passwords.

Before moving on, be sure to merge all the changes into the master branch:

$ git add -A

$ git commit -m "Finish user edit, update, index, and destroy actions"

$ git checkout master

$ git merge updating-users

$ git push

You can also deploy the application and even populate the production database
with sample users (using the pg:reset task to reset the production database):

$ rails test

$ git push heroku

$ heroku pg:reset DATABASE

$ heroku run rails db:migrate

$ heroku run rails db:seed

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

610 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Figure 10.16: The sample users in production.

Of course, on a real site you probably wouldn’t want to seed it with sample data,
but I include it here for purposes of illustration (Figure 10.16). Incidentally, the
order of the sample users in Figure 10.16 may vary, and on my system doesn’t
match the local version from Figure 10.11; this is because we haven’t specified
a default ordering for users when retrieved from the database, so the current
order is database-dependent. This doesn’t matter much for users, but it will for
microposts, and we’ll address this issue further in Section 13.1.4.

10.5. CONCLUSION 611

10.5.1 What we learned in this chapter
• Users can be updated using an edit form, which sends a PATCH request
to the update action.

• Safe updating through the web is enforced using strong parameters.

• Before filters give a standard way to run methods before particular con-
troller actions.

• We implement an authorization using before filters.

• Authorization tests use both low-level commands to submit particular
HTTP requests directly to controller actions and high-level integration
tests.

• Friendly forwarding redirects users where they wanted to go after logging
in.

• The users index page shows all users, one page at a time.

• Rails uses the standard file db/seeds.rb to seed the database with sam-
ple data using rails db:seed.

• Running render @users automatically calls the _user.html.erb

partial on each user in the collection.

• A boolean attribute called admin on theUsermodel automatically creates
an admin? boolean method on user objects.

• Admins can delete users through the web by clicking on delete links that
issue DELETE requests to the Users controller destroy action.

• We can create a large number of test users using embedded Ruby inside
fixtures.

612 CHAPTER 10. UPDATING, SHOWING, AND DELETING USERS

Chapter 11

Account activation
At present, newly registered users immediately have full access to their accounts
(Chapter 7); in this chapter, we’ll implement an account activation step to verify
that the user controls the email address they used to sign up.1 This will involve
associating an activation token and digest with a user, sending the user an email
with a link including the token, and activating the user upon clicking the link.
In Chapter 12, we’ll apply similar ideas to allow users to reset their passwords
if they forget them. Each of these two features will involve creating a new
resource, thereby giving us a chance to see further examples of controllers,
routing, and database migrations. In the process, we’ll also have a chance to
learn how to send email in Rails, both in development and in production.

Our strategy for handling account activation parallels user login
(Section 8.2) and especially remembering users (Section 9.1). The basic se-
quence appears as follows:2

1. Start users in an “unactivated” state.

2. When a user signs up, generate an activation token and corresponding
1This chapter is independent of the others, apart from the mailer generation in Listing 11.6, which is used in

Chapter 12. Readers can skip to Chapter 12 or to Chapter 13 with minimal discontinuity, although the former will
be substantially more challenging due to substantial overlap with this chapter.

2In addition to this basic sequence, another nice feature to have is the ability to resend account activation
emails in case the initial confirmation gets lost, marked as spam, etc. Adding such a feature should be within your
capabilities by the time you finish this tutorial. You might also consider using a solution such as Devise, already
includes the ability to resend confirmation emails.

613

https://github.com/plataformatec/devise

614 CHAPTER 11. ACCOUNT ACTIVATION

find by string digest authentication
email password password_digest authenticate(password)

id remember_token remember_digest authenticated?(:remember, token)

email activation_token activation_digest authenticated?(:activation, token)

email reset_token reset_digest authenticated?(:reset, token)

Table 11.1: The analogy between login, remembering, account activation, and
password reset.

activation digest.

3. Save the activation digest to the database, and then send an email to the
user with a link containing the activation token and user’s email address.3

4. When the user clicks the link, find the user by email address, and then
authenticate the token by comparing with the activation digest.

5. If the user is authenticated, change the status from “unactivated” to “ac-
tivated”.

Because of the similarity with passwords and remember tokens, we will be able
to reuse many of the same ideas for account activation (as well as password re-
set), including the User.digest and User.new_tokenmethods and a modi-
fied version of the user.authenticated? method. Table 11.1 illustrates the
analogy (including the password reset from Chapter 12).

In Section 11.1, we’ll make a resource and data model for account activa-
tions (Section 11.1), and in Section 11.2 we’ll add a mailer for sending account
activation emails (Section 11.2). We’ll implement the actual account activa-
tion, including a generalized version of the authenticated? method from
Table 11.1, in Section 11.3.

3We could use the user’s id instead, since it’s already exposed in the URLs of our application, but using email
addresses is more future-proof in case we want to obfuscate user ids for any reason (such as to prevent competitors
from knowing how many users our application has, for example).

11.1. ACCOUNT ACTIVATIONS RESOURCE 615

11.1 Account activations resource
As with sessions (Section 8.1), we’ll model account activations as a resource
even though they won’t be associated with an Active Record model. Instead,
we’ll include the relevant data (including the activation token and activation
status) in the User model itself.

Because we’ll be treating account activations as a resource, we’ll interact
with them via a standard REST URL. The activation link will be modifying
the user’s activation status, and for such modifications the standard REST prac-
tice is to issue a PATCH request to the update action (Table 7.1). The activa-
tion link needs to be sent in an email, though, and hence will involve a regular
browser click, which issues a GET request instead of PATCH. This design con-
straint means that we can’t use the update action, but we’ll do the next-best
thing and use the edit action instead, which does respond to GET requests.

As usual, we’ll make a topic branch for the new feature:

$ git checkout -b account-activation

11.1.1 Account activations controller
As with Users and Sessions, the actions (or, in this case, the sole action) for
the Account Activations resource will live inside an Account Activations con-
troller, which we can generate as follows:4

$ rails generate controller AccountActivations

As we’ll see in Section 11.2.1, the activation email will involve a URL of
the form

4Because we’ll be using an edit action, we could include edit on the command line, but this would also
generate both an edit view and a test, neither of which we’ll turn out to need.

616 CHAPTER 11. ACCOUNT ACTIVATION

HTTP request URL Action Named route
GET /account_activation/<token>/edit edit edit_account_activation_url(token)

Table 11.2: RESTful route provided by the Account Activations resource in
Listing 11.1.

edit_account_activation_url(activation_token, ...)

which means we’ll need a named route for the edit action. We can arrange for
this with the resources line shown in Listing 11.1, which gives the RESTful
route shown in Table 11.2.

Listing 11.1: Adding a route for the Account Activations edit action.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

get '/login', to: 'sessions#new'

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users

resources :account_activations, only: [:edit]

end

We’ll define the edit action itself in Section 11.3.2, after we’ve finished
the Account Activations data model and mailers.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that the test suite is still green.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

11.1. ACCOUNT ACTIVATIONS RESOURCE 617

2. Why does Table 11.2 list the _url form of the named route instead of the
_path form? Hint: We’re going to use it in an email.

11.1.2 Account activation data model
As discussed in the introduction, we need a unique activation token for use in
the activation email. One possibility would be to use a string that’s stored both
in the database and included in the activation URL, but this raises security con-
cerns if our database is compromised. For example, an attacker with access to
the database could immediately activate newly created accounts (thereby log-
ging in as the user), and could then change the password to gain control.5

To prevent such scenarios, we’ll follow the example of passwords (Chap-
ter 6) and remember tokens (Chapter 9) by pairing a publicly exposed virtual
attribute with a secure hash digest saved to the database. This way we can ac-
cess the activation token using

user.activation_token

and authenticate the user with code like

user.authenticated?(:activation, token)

(This will require a modification of the authenticated? method defined in
Listing 9.6.)

We’ll also add a boolean attribute called activated to the User model,
which will allow us to test if a user is activated using the same kind of auto-
generated boolean method we saw in Section 10.4.1:

if user.activated? ...

5It’s mainly for this reason that we won’t be using the (perhaps slightly misnamed) has_secure_token
facility added in Rails 5, which stores the corresponding token in the database as unhashed cleartext.

https://en.wikipedia.org/wiki/Cleartext

618 CHAPTER 11. ACCOUNT ACTIVATION

password_digest string

created_at datetime

admin boolean

datetimeactivated_at
booleanactivated
stringactivation_digest

remember_digest string

datetimeupdated_at

email string

id
name string

integer
users

Figure 11.1: The User model with added account activation attributes.

Finally, although we won’t use it in this tutorial, we’ll record the time and date
of the activation in case we want it for future reference. The full data model
appears in Figure 11.1.

The migration to add the data model from Figure 11.1 adds all three at-
tributes at the command line:

$ rails generate migration add_activation_to_users \

> activation_digest:string activated:boolean activated_at:datetime

(Here the > on the second line is a “line continuation” character inserted auto-
matically by the shell, and should not be typed literally.) As with the admin
attribute (Listing 10.54), we’ll add a default boolean value of false to the
activated attribute, as shown in Listing 11.2.

11.1. ACCOUNT ACTIVATIONS RESOURCE 619

Listing 11.2: A migration for account activation (with added index).
db/migrate/[timestamp]_add_activation_to_users.rb

class AddActivationToUsers < ActiveRecord::Migration[6.0]

def change

add_column :users, :activation_digest, :string

add_column :users, :activated, :boolean, default: false

add_column :users, :activated_at, :datetime

end

end

We then apply the migration as usual:

$ rails db:migrate

Activation token callback

Because every newly signed-up user will require activation, we should assign
an activation token and digest to each user object before it’s created. We saw
a similar idea in Section 6.2.5, where we needed to convert an email address
to lower-case before saving a user to the database. In that case, we used a
before_save callback combined with the downcase method (Listing 6.32).
A before_save callback is automatically called before the object is saved,
which includes both object creation and updates, but in the case of the activation
digest we only want the callback to fire when the user is created. This requires
a before_create callback, which we’ll define as follows:

before_create :create_activation_digest

This code, called a method reference, arranges for Rails to look for a method
called create_activation_digest and run it before creating the user. (In
Listing 6.32, we passed before_save an explicit block, but the method refer-
ence technique is generally preferred.) Because the create_activation_-
digest method itself is only used internally by the User model, there’s no

620 CHAPTER 11. ACCOUNT ACTIVATION

need to expose it to outside users; as we saw in Section 7.3.2, the Ruby way to
accomplish this is to use the private keyword:

private

def create_activation_digest

Create the token and digest.

end

All methods defined in a class after private are automatically hidden, as seen
in this console session:

$ rails console

>> User.first.create_activation_digest

NoMethodError: private method `create_activation_digest' called for #<User>

The purpose of the before_create callback is to assign the token and
corresponding digest, which we can accomplish as follows:

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

This code simply reuses the token and digest methods used for the remember
token, as we can see by comparing it with the remember method from List-
ing 9.3:

Remembers a user in the database for use in persistent sessions.

def remember

self.remember_token = User.new_token

update_attribute(:remember_digest, User.digest(remember_token))

end

The main difference is the use of update_attribute in the latter case. The
reason for the difference is that remember tokens and digests are created for
users that already exist in the database, whereas the before_create callback
happens before the user has been created, so there’s not yet any attribute to

11.1. ACCOUNT ACTIVATIONS RESOURCE 621

update. As a result of the callback, when a new user is defined with User.new
(as in user signup, Listing 7.19), it will automatically get both activation_-
token and activation_digest attributes; because the latter is associated
with a column in the database (Figure 11.1), it will be written to the database
automatically when the user is saved.

Putting together the discussion above yields the User model shown in List-
ing 11.3. As required by the virtual nature of the activation token, we’ve added
a second attr_accessor to our model. Note that we’ve taken the opportu-
nity to replace the email downcasing callback from Listing 6.32 with a method
reference.

Listing 11.3: Adding account activation code to the User model. green
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token, :activation_token

before_save :downcase_email

before_create :create_activation_digest

validates :name, presence: true, length: { maximum: 50 }

.

.

.

private

Converts email to all lower-case.

def downcase_email

self.email = email.downcase

end

Creates and assigns the activation token and digest.

def create_activation_digest

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

end

end

Seed and fixture users

Before moving on, we should also update our seed data and fixtures so that our
sample and test users are initially activated, as shown in Listing 11.4 and List-
ing 11.5. (The Time.zone.now method is a built-in Rails helper that returns

622 CHAPTER 11. ACCOUNT ACTIVATION

the current timestamp, taking into account the time zone on the server.)

Listing 11.4: Activating seed users by default.
db/seeds.rb

Create a main sample user.

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password_confirmation: "foobar",

admin: true,

activated: true,

activated_at: Time.zone.now)

Generate a bunch of additional users.

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

email: email,

password: password,

password_confirmation: password,

activated: true,

activated_at: Time.zone.now)

end

Listing 11.5: Activating fixture users.
test/fixtures/users.yml

michael:

name: Michael Example

email: michael@example.com

password_digest: <%= User.digest('password') %>

admin: true

activated: true

activated_at: <%= Time.zone.now %>

archer:

name: Sterling Archer

email: duchess@example.gov

password_digest: <%= User.digest('password') %>

activated: true

activated_at: <%= Time.zone.now %>

lana:

name: Lana Kane

11.1. ACCOUNT ACTIVATIONS RESOURCE 623

email: hands@example.gov

password_digest: <%= User.digest('password') %>

activated: true

activated_at: <%= Time.zone.now %>

malory:

name: Malory Archer

email: boss@example.gov

password_digest: <%= User.digest('password') %>

activated: true

activated_at: <%= Time.zone.now %>

<% 30.times do |n| %>

user_<%= n %>:

name: <%= "User #{n}" %>

email: <%= "user-#{n}@example.com" %>

password_digest: <%= User.digest('password') %>

activated: true

activated_at: <%= Time.zone.now %>

<% end %>

To apply the changes in Listing 11.4, reset the database to reseed the data
as usual:

$ rails db:migrate:reset

$ rails db:seed

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that the test suite is still green after the changes made in this sec-
tion.

2. By instantiating a User object in the console, confirm that calling the
create_activation_digest method raises a NoMethodError due
to its being a private method. What is the value of the user’s activation
digest?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

624 CHAPTER 11. ACCOUNT ACTIVATION

3. In Listing 6.35, we saw that email downcasing can bewrittenmore simply
as email.downcase! (without any assignment). Make this change to
the downcase_email method in Listing 11.3 and verify by running the
test suite that it works.

11.2 Account activation emails
With the data modeling complete, we’re now ready to add the code needed to
send an account activation email. The method is to add a User mailer using
the Action Mailer library, which we’ll use in the Users controller create ac-
tion to send an email with an activation link. Mailers are structured much like
controller actions, with email templates defined as views. These templates will
include links with the activation token and email address associated with the
account to be activated.

11.2.1 Mailer templates
As with models and controllers, we can generate a mailer using rails gen-

erate, as shown in Listing 11.6.

Listing 11.6: Generating the User mailer.
$ rails generate mailer UserMailer account_activation password_reset

In addition to the necessary account_activationmethod, Listing 11.6 gen-
erates the password_reset method we’ll need in Chapter 12.

The command in Listing 11.6 also generates two view templates for each
mailer, one for plain-text email and one for HTML email. For the account
activationmailer method, they appear as in Listing 11.7 and Listing 11.8. (We’ll
take care of the corresponding password reset templates in Chapter 12.)

11.2. ACCOUNT ACTIVATION EMAILS 625

Listing 11.7: The generated account activation text view.
app/views/user_mailer/account_activation.text.erb

UserMailer#account_activation

<%= @greeting %>, find me in app/views/user_mailer/account_activation.text.erb

Listing 11.8: The generated account activation HTML view.
app/views/user_mailer/account_activation.html.erb

<h1>UserMailer#account_activation</h1>

<p>

<%= @greeting %>, find me in app/views/user_mailer/account_activation.html.erb

</p>

Let’s take a look at the generated mailers to get a sense of how they work
(Listing 11.9 and Listing 11.10). We see in Listing 11.9 that there is a de-
fault from address common to all mailers in the application, and each method
in Listing 11.10 has a recipient’s address as well. (Listing 11.9 also uses a
mailer layout corresponding to the email format; although it won’t ever matter
in this tutorial, the resulting HTML and plain-text mailer layouts can be found
in app/views/layouts.) The generated code also includes an instance vari-
able (@greeting), which is available in the mailer views in much the same
way that instance variables in controllers are available in ordinary views.

Listing 11.9: The generated application mailer.
app/mailers/application_mailer.rb

class ApplicationMailer < ActionMailer::Base

default from: "from@example.com"

layout 'mailer'

end

626 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.10: The generated User mailer.
app/mailers/user_mailer.rb

class UserMailer < ApplicationMailer

Subject can be set in your I18n file at config/locales/en.yml

with the following lookup:

#

en.user_mailer.account_activation.subject

#

def account_activation

@greeting = "Hi"

mail to: "to@example.org"

end

Subject can be set in your I18n file at config/locales/en.yml

with the following lookup:

#

en.user_mailer.password_reset.subject

#

def password_reset

@greeting = "Hi"

mail to: "to@example.org"

end

end

To make a working activation email, we’ll first customize the generated
template as shown in Listing 11.11. Next, we’ll create an instance variable con-
taining the user (for use in the view), and then mail the result to user.email
(Listing 11.12). As seen in Listing 11.12, the mail method also takes a sub-
ject key, whose value is used as the email’s subject line.

Listing 11.11: The application mailer with a new default from address.
app/mailers/application_mailer.rb

class ApplicationMailer < ActionMailer::Base

default from: "noreply@example.com"

layout 'mailer'

end

11.2. ACCOUNT ACTIVATION EMAILS 627

Listing 11.12: Mailing the account activation link. red
app/mailers/user_mailer.rb

class UserMailer < ApplicationMailer

def account_activation(user)

@user = user

mail to: user.email, subject: "Account activation"

end

def password_reset

@greeting = "Hi"

mail to: "to@example.org"

end

end

As indicated in the Listing 11.12 caption, the tests are currently red (due to
our changing account_activation to take an argument); we’ll get them to
green in Section 11.2.3.

As with ordinary views, we can use embedded Ruby to customize the tem-
plate views, in this case greeting the user by name and including a link to a
custom activation link. Our plan is to find the user by email address and then
authenticate the activation token, so the link needs to include both the email and
the token. Because we’re modeling activations using an Account Activations
resource, the token itself can appear as the argument of the named route defined
in Listing 11.1:

edit_account_activation_url(@user.activation_token, ...)

Recalling that

edit_user_url(user)

produces a URL of the form

628 CHAPTER 11. ACCOUNT ACTIVATION

http://www.example.com/users/1/edit

the corresponding account activation link’s base URL will look like this:

http://www.example.com/account_activations/q5lt38hQDc_959PVoo6b7A/edit

Here q5lt38hQDc_959PVoo6b7A is a URL-safe base64 string generated by
the new_tokenmethod (Listing 9.2), and it plays the same role as the user id in
/users/1/edit. In particular, in the Activations controller edit action, the token
will be available in the params hash as params[:id].

In order to include the email as well, we need to use a query parameter,
which in a URL appears as a key-value pair located after a question mark:6

account_activations/q5lt38hQDc_959PVoo6b7A/edit?email=foo%40example.com

Notice that the ‘@’ in the email address appears as %40, i.e., it’s “escaped out”
to guarantee a valid URL. Theway to set a query parameter in Rails is to include
a hash in the named route:

edit_account_activation_url(@user.activation_token, email: @user.email)

When using named routes in this way to define query parameters, Rails au-
tomatically escapes out any special characters. The resulting email address
will also be unescaped automatically in the controller, and will be available
via params[:email].

With the @user instance variable as defined in Listing 11.12, we can create
the necessary links using the named edit route and embedded Ruby, as shown in
Listing 11.13 and Listing 11.14. Note that the HTML template in Listing 11.14
uses the link_to method to construct a valid link.

6URLs can contain multiple query parameters, consisting of multiple key-value pairs separated by the amper-
sand character &, as in /edit?name=Foo%20Bar&email=foo%40example.com.

11.2. ACCOUNT ACTIVATION EMAILS 629

Listing 11.13: The account activation text view.
app/views/user_mailer/account_activation.text.erb

Hi <%= @user.name %>,

Welcome to the Sample App! Click on the link below to activate your account:

<%= edit_account_activation_url(@user.activation_token, email: @user.email) %>

Listing 11.14: The account activation HTML view.
app/views/user_mailer/account_activation.html.erb

<h1>Sample App</h1>

<p>Hi <%= @user.name %>,</p>

<p>

Welcome to the Sample App! Click on the link below to activate your account:

</p>

<%= link_to "Activate", edit_account_activation_url(@user.activation_token,

email: @user.email) %>

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. At the console, verify that the escapemethod in the CGImodule escapes
out the email address as shown in Listing 11.15. What is the escaped
value of the string "Don't panic!"?

Listing 11.15: Escaping an email with CGI.escape.
>> CGI.escape('foo@example.com')

=> "foo%40example.com"

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

630 CHAPTER 11. ACCOUNT ACTIVATION

11.2.2 Email previews
To see the results of the templates defined in Listing 11.13 and Listing 11.14, we
can use email previews, which are special URLs exposed by Rails to let us see
what our email messages look like. First, we need to add some configuration to
our application’s development environment, as shown in Listing 11.16.

Listing 11.16: Email settings in development.
config/environments/development.rb

Rails.application.configure do

.

.

.

config.action_mailer.raise_delivery_errors = false

host = 'example.com' # Don't use this literally; use your local dev host instead

Use this on the cloud IDE.

config.action_mailer.default_url_options = { host: host, protocol: 'https' }

Use this if developing on localhost.

config.action_mailer.default_url_options = { host: host, protocol: 'http' }

.

.

.

end

Listing 11.16 uses a host name of 'example.com', but as indicated in the
comment you should use the actual host of your development environment. For
example, on the cloud IDE you should use

host = '<hex string>.vfs.cloud9.us-east-2.amazonaws.com' # Cloud IDE

config.action_mailer.default_url_options = { host: host, protocol: 'https' }

where the exact URL is based on what you see in your browser (Figure 11.2).
On a local system, you should use this instead:

host = 'localhost:3000' # Local server

config.action_mailer.default_url_options = { host: host, protocol: 'http' }

11.2. ACCOUNT ACTIVATION EMAILS 631

Figure 11.2: The host URL for the cloud IDE.

Note especially in this second example that https has changed to plain http.
After restarting the development server to activate the configuration in List-

ing 11.16, we next need to update the User mailer preview file, which was au-
tomatically generated in Section 11.2, as shown in Listing 11.17.

Listing 11.17: The generated User mailer previews.
test/mailers/previews/user_mailer_preview.rb

Preview all emails at http://localhost:3000/rails/mailers/user_mailer

class UserMailerPreview < ActionMailer::Preview

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/account_activation

def account_activation

UserMailer.account_activation

end

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/password_reset

def password_reset

UserMailer.password_reset

end

end

Because the account_activation method defined in Listing 11.12 re-
quires a valid user object as an argument, the code in Listing 11.17 won’t work
as written. To fix it, we define a user variable equal to the first user in the devel-
opment database, and then pass it as an argument to UserMailer.account_-
activation (Listing 11.18). Note that Listing 11.18 also assigns a value to
user.activation_token, which is necessary because the account activa-
tion templates in Listing 11.13 and Listing 11.14 need an account activation
token. (Because activation_token is a virtual attribute (Section 11.1), the
user from the database doesn’t have one.)

632 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.18: A working preview method for account activation.
test/mailers/previews/user_mailer_preview.rb

Preview all emails at http://localhost:3000/rails/mailers/user_mailer

class UserMailerPreview < ActionMailer::Preview

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/account_activation

def account_activation

user = User.first

user.activation_token = User.new_token

UserMailer.account_activation(user)

end

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/password_reset

def password_reset

UserMailer.password_reset

end

end

With the preview code as in Listing 11.18, we can visit the suggested URLs
to preview the account activation emails. (If you are using the cloud IDE, you
should replace localhost:3000 with the corresponding base URL.) The re-
sulting HTML and text emails appear as in Figure 11.3 and Figure 11.4.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Preview the email templates in your browser. What do the Date fields
read for your previews?

11.2.3 Email tests
As a final step, we’ll write a couple of tests to double-check the results shown in
the email previews. This isn’t as hard as it sounds, because Rails has generated
useful example tests for us (Listing 11.19).

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

11.2. ACCOUNT ACTIVATION EMAILS 633

Figure 11.3: A preview of the HTML version of the account activation email.

634 CHAPTER 11. ACCOUNT ACTIVATION

Figure 11.4: A preview of the text version of the account activation email.

11.2. ACCOUNT ACTIVATION EMAILS 635

Listing 11.19: The User mailer test generated by Rails. red
test/mailers/user_mailer_test.rb

require 'test_helper'

class UserMailerTest < ActionMailer::TestCase

test "account_activation" do

mail = UserMailer.account_activation

assert_equal "Account activation", mail.subject

assert_equal ["to@example.org"], mail.to

assert_equal ["from@example.com"], mail.from

assert_match "Hi", mail.body.encoded

end

test "password_reset" do

mail = UserMailer.password_reset

assert_equal "Password reset", mail.subject

assert_equal ["to@example.org"], mail.to

assert_equal ["from@example.com"], mail.from

assert_match "Hi", mail.body.encoded

end

end

As mentioned in Section 11.2.1, the tests in Listing 11.19 are currently red.
The tests in Listing 11.19 use the powerful assert_matchmethod, which

can be used with either a string or a regular expression:

assert_match 'foo', 'foobar' # true

assert_match 'baz', 'foobar' # false

assert_match /\w+/, 'foobar' # true

assert_match /\w+/, '$#!*+@' # false

The test in Listing 11.20 uses assert_match to check that the name, activation
token, and escaped email appear in the email’s body. For the last of these, note
the use of

CGI.escape(user.email)

to escape the test user’s email, which we met briefly in Section 11.2.1.7
7When I originally wrote this chapter, I couldn’t recall offhand how to escape URLs in Rails, and figuring it

636 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.20: A test of the current email implementation. red
test/mailers/user_mailer_test.rb

require 'test_helper'

class UserMailerTest < ActionMailer::TestCase

test "account_activation" do

user = users(:michael)

user.activation_token = User.new_token

mail = UserMailer.account_activation(user)

assert_equal "Account activation", mail.subject

assert_equal [user.email], mail.to

assert_equal ["noreply@example.com"], mail.from

assert_match user.name, mail.body.encoded

assert_match user.activation_token, mail.body.encoded

assert_match CGI.escape(user.email), mail.body.encoded

end

end

Note that Listing 11.20 takes care to add an activation token to the fixture user,
which would otherwise be blank. (Listing 11.20 also removes the generated
password reset test, which we’ll add back (in modified form) in Section 12.2.2.)

To get the test in Listing 11.20 to pass, we have to configure our test file
with the proper domain host, as shown in Listing 11.21.

Listing 11.21: Setting the test domain host. green
config/environments/test.rb

Rails.application.configure do

.

.

.

config.action_mailer.delivery_method = :test

config.action_mailer.default_url_options = { host: 'example.com' }

.

.

.

end

out was pure technical sophistication (Box 1.2). What I did was Google “ruby rails escape url”, which led me
to find two main possibilities, URI.encode(str) and CGI.escape(str). Trying them both revealed that the
latter works. (It turns out there’s a third possibility: the ERB::Util library supplies a url_encode method that has
the same effect.)

https://www.google.com/search?q=ruby+rails+escape+url
https://stackoverflow.com/questions/6714196/ruby-url-encoding-string
http://apidock.com/ruby/ERB/Util/url_encode

11.2. ACCOUNT ACTIVATION EMAILS 637

With the code as above, the mailer test should be green:

Listing 11.22: green
$ rails test:mailers

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that the full test suite is still green.

2. Confirm that the test goes red if you remove the call to CGI.escape in
Listing 11.20.

11.2.4 Updating the Users create action
To use the mailer in our application, we just need to add a couple of lines to
the create action used to sign users up, as shown in Listing 11.23. Note that
Listing 11.23 has changed the redirect behavior upon signing up. Before, we
redirected to the user’s profile page (Section 7.4), but that doesn’t make sense
now that we’re requiring account activation. Instead, we now redirect to the
root URL.

Listing 11.23: Adding account activation to user signup. red
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

UserMailer.account_activation(@user).deliver_now

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

638 CHAPTER 11. ACCOUNT ACTIVATION

flash[:info] = "Please check your email to activate your account."

redirect_to root_url

else

render 'new'

end

end

.

.

.

end

Because Listing 11.23 redirects to the root URL instead of to the profile
page and doesn’t log the user in as before, the test suite is currently red, even
though the application is working as designed. We’ll fix this by temporarily
commenting out the failing lines, as shown in Listing 11.24. We’ll uncomment
these lines and write passing tests for account activation in Section 11.3.3.

Listing 11.24: Temporarily commenting out failing tests. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

assert_select 'div#error_explanation'

assert_select 'div.field_with_errors'

end

test "valid signup information" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

follow_redirect!

11.2. ACCOUNT ACTIVATION EMAILS 639

assert_template 'users/show'

assert is_logged_in?

end

end

If you now try signing up as a new user, you should be redirected as shown
in Figure 11.5, and an email like the one shown in Listing 11.25 should be
generated. Note that you will not receive an actual email in a development
environment, but it will show up in your server logs. (You may have to scroll up
a bit to see it.) Section 11.4 discusses how to send email for real in a production
environment.

Listing 11.25: A sample account activation email from the server log.
UserMailer#account_activation: processed outbound mail in 5.1ms

Delivered mail 5d606e97b7a44_28872b106582df988776a@ip-172-31-25-202.mail (3.2ms)

Date: Fri, 23 Aug 2019 22:54:15 +0000

From: noreply@example.com

To: michael@michaelhartl.com

Message-ID: <5d606e97b7a44_28872b106582df988776a@ip-172-31-25-202.mail>

Subject: Account activation

Mime-Version: 1.0

Content-Type: multipart/alternative;

boundary="--==_mimepart_5d606e97b6f16_28872b106582df98876dd";

charset=UTF-8

Content-Transfer-Encoding: 7bit

----==_mimepart_5d606e97b6f16_28872b106582df98876dd

Content-Type: text/plain;

charset=UTF-8

Content-Transfer-Encoding: 7bit

Hi Michael Hartl,

Welcome to the Sample App! Click on the link below to activate your account:

https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/account_activations/zdqs6sF7BMiDfXBaC7-6vA/

edit?email=michael%40michaelhartl.com

----==_mimepart_5d606e97b6f16_28872b106582df98876dd

Content-Type: text/html;

charset=UTF-8

Content-Transfer-Encoding: 7bit

640 CHAPTER 11. ACCOUNT ACTIVATION

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<style>

/* Email styles need to be inline */

</style>

</head>

<body>

<h1>Sample App</h1>

<p>Hi Michael Hartl,</p>

<p>

Welcome to the Sample App! Click on the link below to activate your account:

</p>

<a href="https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/account_activations/zdqs6sF7BMiDfXBaC7-6vA/

edit?email=michael%40michaelhartl.com">Activate

</body>

</html>

----==_mimepart_5d606e97b6f16_28872b106582df98876dd--

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Sign up as a new user and verify that you’re properly redirected. What is
the content of the generated email in the server log? What is the value of
the activation token?

2. Verify at the console that the new user has been created but that it is not
yet activated.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

11.2. ACCOUNT ACTIVATION EMAILS 641

Figure 11.5: The Home page with an activation message after signup.

642 CHAPTER 11. ACCOUNT ACTIVATION

11.3 Activating the account
Now that we have a correctly generated email as in Listing 11.25, we need
to write the edit action in the Account Activations controller that actually
activates the user. As usual, we’ll write a test for this action, and once the
code is tested we’ll refactor it to move some functionality out of the Account
Activations controller and into the User model.

11.3.1 Generalizing the authenticated? method
Recall from the discussion in Section 11.2.1 that the activation token and email
are available as params[:id] and params[:email], respectively. Follow-
ing the model of passwords (Listing 8.7) and remember tokens (Listing 9.9),
we plan to find and authenticate the user with code something like this:

user = User.find_by(email: params[:email])

if user && user.authenticated?(:activation, params[:id])

(As we’ll see in a moment, there will be one extra boolean in the expression
above. See if you can guess what it will be.)

The above code uses the authenticated? method to test if the account
activation digest matches the given token, but at present this won’t work be-
cause that method is specialized to the remember token (Listing 9.6):

Returns true if the given token matches the digest.

def authenticated?(remember_token)

return false if remember_digest.nil?

BCrypt::Password.new(remember_digest).is_password?(remember_token)

end

Here remember_digest is an attribute on the User model, and inside the
model we can rewrite it as follows:

11.3. ACTIVATING THE ACCOUNT 643

self.remember_digest

Somehow, we want to be able to make this variable, so we can call

self.activation_digest

instead by passing in the appropriate parameter to the authenticated?meth-
od.

The solution involves our first example of metaprogramming, which is es-
sentially a program that writes a program. (Metaprogramming is one of Ruby’s
strongest suits, and many of the “magic” features of Rails are due to its use of
Ruby metaprogramming.) The key in this case is the powerful send method,
which lets us call a method with a name of our choice by “sending a message”
to a given object. For example, in this console session we use send on a native
Ruby object to find the length of an array:

$ rails console

>> a = [1, 2, 3]

>> a.length

=> 3

>> a.send(:length)

=> 3

>> a.send("length")

=> 3

Here we see that passing the symbol :length or string "length" to send

is equivalent to calling the length method on the given object. As a second
example, we’ll access the activation_digest attribute of the first user in
the database:

>> user = User.first

>> user.activation_digest

=> "$2a$10$4e6TFzEJAVNyjLv8Q5u22ensMt28qEkx0roaZvtRcp6UZKRM6N9Ae"

>> user.send(:activation_digest)

=> "$2a$10$4e6TFzEJAVNyjLv8Q5u22ensMt28qEkx0roaZvtRcp6UZKRM6N9Ae"

>> user.send("activation_digest")

644 CHAPTER 11. ACCOUNT ACTIVATION

=> "$2a$10$4e6TFzEJAVNyjLv8Q5u22ensMt28qEkx0roaZvtRcp6UZKRM6N9Ae"

>> attribute = :activation

>> user.send("#{attribute}_digest")

=> "$2a$10$4e6TFzEJAVNyjLv8Q5u22ensMt28qEkx0roaZvtRcp6UZKRM6N9Ae"

Note in the last example that we’ve defined an attribute variable equal to
the symbol :activation and used string interpolation to build up the proper
argument to send. This would work also with the string 'activation', but
using a symbol is more conventional, and in either case

"#{attribute}_digest"

becomes

"activation_digest"

once the string is interpolated. (We saw how symbols are interpolated as strings
in Section 7.4.2.)

Based on this discussion of send, we can rewrite the current authenti-
cated? method as follows:

def authenticated?(remember_token)

digest = self.send("remember_digest")

return false if digest.nil?

BCrypt::Password.new(digest).is_password?(remember_token)

end

With this template in place, we can generalize the method by adding a function
argument with the name of the digest, and then use string interpolation as above:

def authenticated?(attribute, token)

digest = self.send("#{attribute}_digest")

return false if digest.nil?

BCrypt::Password.new(digest).is_password?(token)

end

11.3. ACTIVATING THE ACCOUNT 645

(Here we have renamed the second argument token to emphasize that it’s now
generic.) Because we’re inside the user model, we can also omit self, yielding
the most idiomatically correct version:

def authenticated?(attribute, token)

digest = send("#{attribute}_digest")

return false if digest.nil?

BCrypt::Password.new(digest).is_password?(token)

end

We can now reproduce the previous behavior of authenticated? by invoking
it like this:

user.authenticated?(:remember, remember_token)

Applying this discussion to the User model yields the generalized auth-
enticated? method shown in Listing 11.26.

Listing 11.26: A generalized authenticated? method. red
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns true if the given token matches the digest.

def authenticated?(attribute, token)

digest = send("#{attribute}_digest")

return false if digest.nil?

BCrypt::Password.new(digest).is_password?(token)

end

.

.

.

end

The Listing 11.26 caption indicates a red test suite:

646 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.27: red
$ rails test

The reason for the failure is that the current_user method (Listing 9.9) and
the test for nil digests (Listing 9.17) both use the old version of authenti-
cated?, which expects one argument instead of two. Note that this is exactly
the kind of error a test suite is supposed to catch.

To fix the issue, we simply update the two cases to use the generalized
method, as shown in Listing 11.28 and Listing 11.29.

Listing 11.28: Using the generalized authenticated? method in
current_user. red
app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

Returns the current logged-in user (if any).

def current_user

if (user_id = session[:user_id])

@current_user ||= User.find_by(id: user_id)

elsif (user_id = cookies.encrypted[:user_id])

user = User.find_by(id: user_id)

if user && user.authenticated?(:remember, cookies[:remember_token])

log_in user

@current_user = user

end

end

end

.

.

.

end

Listing 11.29: Using the generalized authenticated? method in the User
test. green
test/models/user_test.rb

11.3. ACTIVATING THE ACCOUNT 647

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

test "authenticated? should return false for a user with nil digest" do

assert_not @user.authenticated?(:remember, '')

end

end

At this point, the tests should be green:

Listing 11.30: green
$ rails test

Refactoring the code as above is incredibly more error-prone without a solid test
suite, which is why we went to such trouble to write good tests in Section 9.1.2
and Section 9.3.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Create and remember a new user at the console. What are the user’s
remember and activation tokens? What are the corresponding digests?

2. Using the generalized authenticated? method from Listing 11.26,
verify that the user is authenticated according to both the remember token
and the activation token.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

648 CHAPTER 11. ACCOUNT ACTIVATION

11.3.2 Activation edit action
With the authenticated? method as in Listing 11.26, we’re now ready to
write an edit action that authenticates the user corresponding to the email ad-
dress in the params hash. Our test for validity will look like this:

if user && !user.activated? && user.authenticated?(:activation, params[:id])

Note the presence of !user.activated?, which is the extra boolean alluded
to above. This prevents our code from activating users who have already been
activated, which is important because we’ll be logging in users upon confirma-
tion, and we don’t want to allow attackers who manage to obtain the activation
link to log in as the user.

If the user is authenticated according to the booleans above, we need to
activate the user and update the activated_at timestamp:8

user.update_attribute(:activated, true)

user.update_attribute(:activated_at, Time.zone.now)

This leads to the edit action shown in Listing 11.31. Note also that List-
ing 11.31 handles the case of an invalid activation token; this should rarely
happen, but it’s easy enough to redirect in this case to the root URL.

Listing 11.31: An edit action to activate accounts.
app/controllers/account_activations_controller.rb

class AccountActivationsController < ApplicationController

def edit

user = User.find_by(email: params[:email])

if user && !user.activated? && user.authenticated?(:activation, params[:id])

user.update_attribute(:activated, true)

user.update_attribute(:activated_at, Time.zone.now)

8Here we use two calls to update_attribute rather than a single call to update_attributes because
(per Section 6.1.5) the latter would run the validations. Lacking in this case the user password, these validations
would fail.

11.3. ACTIVATING THE ACCOUNT 649

log_in user

flash[:success] = "Account activated!"

redirect_to user

else

flash[:danger] = "Invalid activation link"

redirect_to root_url

end

end

end

With the code in Listing 11.31, you should now be able to paste in the URL
from Listing 11.25 to activate the relevant user. For example, on my system I
visited the URL

https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/account_activations/zdqs6sF7BMiDfXBaC7-6vA/

edit?email=michael%40michaelhartl.com

and got the result shown in Figure 11.6.
Of course, currently user activation doesn’t actually do anything, because

we haven’t changed how users log in. In order to have account activation
mean something, we need to allow users to log in only if they are activated.
As shown in Listing 11.32, the way to do this is to log the user in as usual
if user.activated? is true; otherwise, we redirect to the root URL with a
warning message (Figure 11.7).

Listing 11.32: Preventing unactivated users from logging in.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find_by(email: params[:session][:email].downcase)

if user && user.authenticate(params[:session][:password])

if user.activated?

log_in user

params[:session][:remember_me] == '1' ? remember(user) : forget(user)

redirect_back_or user

650 CHAPTER 11. ACCOUNT ACTIVATION

Figure 11.6: The profile page after a successful activation.

11.3. ACTIVATING THE ACCOUNT 651

else

message = "Account not activated. "

message += "Check your email for the activation link."

flash[:warning] = message

redirect_to root_url

end

else

flash.now[:danger] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

log_out if logged_in?

redirect_to root_url

end

end

With that, apart from one refinement, the basic functionality of user ac-
tivation is done. (That refinement is preventing unactivated users from being
displayed, which is left as an exercise (Section 11.3.3).) In Section 11.3.3, we’ll
complete the process by adding some tests and then doing a little refactoring.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Paste in the URL from the email generated in Section 11.2.4. What is the
activation token?

2. Verify at the console that the user is authenticated according to the ac-
tivation token in the URL from the previous exercise. Is the user now
activated?

11.3.3 Activation test and refactoring
In this section, we’ll add an integration test for account activation. Because we
already have a test for signing up with valid information, we’ll add the steps to

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

652 CHAPTER 11. ACCOUNT ACTIVATION

Figure 11.7: The warning message for a not-yet-activated user.

11.3. ACTIVATING THE ACCOUNT 653

the test developed in Section 7.4.4 (Listing 7.31). There are quite a few steps,
but they aremostly straightforward; see if you can follow along in Listing 11.33.
(The highlights in Listing 11.33 indicate lines that are especially important or
easy to miss, but there are other new lines as well, so take care to add them all.)

Listing 11.33: Adding account activation to the user signup test. green
test/integration/users_signup_test.rb

require 'test_helper'

class UsersSignupTest < ActionDispatch::IntegrationTest

def setup

ActionMailer::Base.deliveries.clear

end

test "invalid signup information" do

get signup_path

assert_no_difference 'User.count' do

post users_path, params: { user: { name: "",

email: "user@invalid",

password: "foo",

password_confirmation: "bar" } }

end

assert_template 'users/new'

assert_select 'div#error_explanation'

assert_select 'div.field_with_errors'

end

test "valid signup information with account activation" do

get signup_path

assert_difference 'User.count', 1 do

post users_path, params: { user: { name: "Example User",

email: "user@example.com",

password: "password",

password_confirmation: "password" } }

end

assert_equal 1, ActionMailer::Base.deliveries.size

user = assigns(:user)

assert_not user.activated?

Try to log in before activation.

log_in_as(user)

assert_not is_logged_in?

Invalid activation token

get edit_account_activation_path("invalid token", email: user.email)

assert_not is_logged_in?

Valid token, wrong email

get edit_account_activation_path(user.activation_token, email: 'wrong')

654 CHAPTER 11. ACCOUNT ACTIVATION

assert_not is_logged_in?

Valid activation token

get edit_account_activation_path(user.activation_token, email: user.email)

assert user.reload.activated?

follow_redirect!

assert_template 'users/show'

assert is_logged_in?

end

end

There’s a lot of code in Listing 11.33, but the only completely novel code
is in the line

assert_equal 1, ActionMailer::Base.deliveries.size

This code verifies that exactly 1messagewas delivered. Because the deliver-
ies array is global, we have to reset it in the setupmethod to prevent our code
from breaking if any other tests deliver email (as will be the case in Chapter 12).

Listing 11.33 also uses the assigns method for the first time in the main
tutorial; as explained in a Chapter 9 exercise (Section 9.3.1), assigns lets us
access instance variables in the corresponding action. For example, the Users
controller’s create action defines an @user variable (Listing 11.23), so we
can access it in the test using assigns(:user). The assigns method is
deprecated in default Rails tests as of Rails 5, but I still find it useful in many
contexts, and it’s available via the rails-controller-testing gem we
included in Listing 3.2.

Finally, note that Listing 11.33 restores the lines we commented out in List-
ing 11.24.

At this point, the test suite should be green:

Listing 11.34: green
$ rails test

With the test in Listing 11.33, we’re ready to refactor a little bymoving some
of the user manipulation out of the controller and into the model. In particular,

11.3. ACTIVATING THE ACCOUNT 655

we’ll make an activate method to update the user’s activation attributes and
a send_activation_email to send the activation email. The extra methods
appear in Listing 11.35, and the refactored application code appears in List-
ing 11.36 and Listing 11.37.

Listing 11.35: Adding user activation methods to the User model.
app/models/user.rb

class User < ApplicationRecord

.

.

.

Activates an account.

def activate

update_attribute(:activated, true)

update_attribute(:activated_at, Time.zone.now)

end

Sends activation email.

def send_activation_email

UserMailer.account_activation(self).deliver_now

end

private

.

.

.

end

Listing 11.36: Sending email via the user model object.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(user_params)

if @user.save

@user.send_activation_email

flash[:info] = "Please check your email to activate your account."

redirect_to root_url

else

render 'new'

end

656 CHAPTER 11. ACCOUNT ACTIVATION

end

.

.

.

end

Listing 11.37: Account activation via the user model object.
app/controllers/account_activations_controller.rb

class AccountActivationsController < ApplicationController

def edit

user = User.find_by(email: params[:email])

if user && !user.activated? && user.authenticated?(:activation, params[:id])

user.activate

log_in user

flash[:success] = "Account activated!"

redirect_to user

else

flash[:danger] = "Invalid activation link"

redirect_to root_url

end

end

end

Note that Listing 11.35 eliminates the use of user., which would break
inside the User model because there is no such variable:

-user.update_attribute(:activated, true)

-user.update_attribute(:activated_at, Time.zone.now)

+update_attribute(:activated, true)

+update_attribute(:activated_at, Time.zone.now)

(We could have switched from user to self, but recall from Section 6.2.5 that
self is optional inside the model.) It also changes @user to self in the call
to the User mailer:

-UserMailer.account_activation(@user).deliver_now

+UserMailer.account_activation(self).deliver_now

11.3. ACTIVATING THE ACCOUNT 657

These are exactly the kinds of details that are easy to miss during even a simple
refactoring but will be caught by a good test suite. Speaking of which, the test
suite should still be green:

Listing 11.38: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. In Listing 11.35, the activatemethodmakes two calls to the update_-
attribute, each of which requires a separate database transaction. By
filling in the template shown in Listing 11.39, replace the two update_-
attribute calls with a single call to update_columns, which hits the
database only once. (Note that, like update_attribute, update_-
columns doesn’t run the model callbacks or validations.) After making
the changes, verify that the test suite is still green.

2. Right now all users are displayed on the user index page at /users and
are visible via the URL /users/:id, but it makes sense to show users only
if they are activated. Arrange for this behavior by filling in the template
shown in Listing 11.40.9 (This template uses the Active Record where
method, which we’ll learn more about in Section 13.3.3.)

3. To test the code in the previous exercise, write integration tests for both
/users and /users/:id.

9Note that Listing 11.40 uses and in place of &&. The two are nearly identical, but the latter operator has
a higher precedence, which binds too tightly to root_url in this case. We could fix the problem by putting
root_url in parentheses, but the idiomatically correct way to do it is to use and instead.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Order_of_operations#Programming_languages

658 CHAPTER 11. ACCOUNT ACTIVATION

Listing 11.39: A template for using update_columns.
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token, :activation_token

before_save :downcase_email

before_create :create_activation_digest

.

.

.

Activates an account.

def activate

update_columns(activated: FILL_IN, activated_at: FILL_IN)

end

Sends activation email.

def send_activation_email

UserMailer.account_activation(self).deliver_now

end

private

Converts email to all lower-case.

def downcase_email

self.email = email.downcase

end

Creates and assigns the activation token and digest.

def create_activation_digest

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

end

end

Listing 11.40: A template for code to show only active users.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def index

@users = User.where(activated: FILL_IN).paginate(page: params[:page])

end

def show

@user = User.find(params[:id])

11.4. EMAIL IN PRODUCTION 659

redirect_to root_url and return unless FILL_IN

end

.

.

.

end

11.4 Email in production
Now that we’ve got account activations working in development, in this section
we’ll configure our application so that it can actually send email in production.
We’ll first get set up with a free service to send email, and then configure and
deploy our application.

To send email in production, we’ll use SendGrid, which is available as an
add-on at Heroku for verified accounts. (This requires adding credit card in-
formation to your Heroku account, but there is no charge when verifying an
account.) For our purposes, the “starter” tier (which as of this writing is limited
to 400 emails a day but costs nothing) is the best fit. We can add it to our app
as follows:

$ heroku addons:create sendgrid:starter

(This might fail on systems with an older version of Heroku’s command-line
interface. In this case, either upgrade to the latest Heroku toolbelt or try the
older syntax heroku addons:add sendgrid:starter.)

To configure our application to use SendGrid, we need to fill out the SMTP
settings for our production environment. As shown in Listing 11.41, you will
also have to define a host variable with the address of your production website.

Listing 11.41: Configuring Rails to use SendGrid in production.
config/environments/production.rb

Rails.application.configure do

.

https://toolbelt.heroku.com/
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

660 CHAPTER 11. ACCOUNT ACTIVATION

.

.

config.action_mailer.raise_delivery_errors = true

config.action_mailer.delivery_method = :smtp

host = '<your heroku app>.herokuapp.com'

config.action_mailer.default_url_options = { host: host }

ActionMailer::Base.smtp_settings = {

:address => 'smtp.sendgrid.net',

:port => '587',

:authentication => :plain,

:user_name => ENV['SENDGRID_USERNAME'],

:password => ENV['SENDGRID_PASSWORD'],

:domain => 'heroku.com',

:enable_starttls_auto => true

}

.

.

.

end

The email configuration in Listing 11.41 includes the user_name and
password of the SendGrid account, but note that they are accessed via the ENV
environment variable instead of being hard-coded. This is a best practice for
production applications, which for security reasons should never expose sen-
sitive information such as raw passwords in source code. In the present case,
these variables are configured automatically via the SendGrid add-on, but we’ll
see an example in Section 13.4.4 where we’ll have to define them ourselves.
In case you’re curious, you can view the environment variables used in List-
ing 11.41 as follows:

$ heroku config:get SENDGRID_USERNAME

$ heroku config:get SENDGRID_PASSWORD

At this point, you should merge the topic branch into master:

$ rails test

$ git add -A

$ git commit -m "Add account activation"

$ git checkout master

$ git merge account-activation

11.4. EMAIL IN PRODUCTION 661

Figure 11.8: An account activation email sent in production.

Then push up to the remote repository and deploy to Heroku:

$ rails test

$ git push && git push heroku

$ heroku run rails db:migrate

Once the Heroku deploy has finished, try signing up for the sample applica-
tion in production using an email address you control. You should get an acti-
vation email as implemented in Section 11.2, as shown in Figure 11.8. Clicking
on the link should activate the account as promised, as shown in Figure 11.9.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Sign up for a new account in production. Did you get the email?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

662 CHAPTER 11. ACCOUNT ACTIVATION

Figure 11.9: Successful account activation in production.

11.5. CONCLUSION 663

2. Click on the link in the activation email to confirm that it works. What is
the corresponding entry in the server log? Hint: Run heroku logs at
the command line.

11.5 Conclusion
With the added account activation, our sample application’s sign up, log in,
and log out machinery is nearly complete. The only significant feature left is
allowing users to reset their passwords if they forget them. As we’ll see in
Chapter 12, password reset shares many features with account activation, which
means that we’ll be able to put the knowledge we’ve gained in this chapter to
good use.

11.5.1 What we learned in this chapter
• Like sessions, account activations can be modeled as a resource despite
not being Active Record objects.

• Rails can generate Action Mailer actions and views to send email.

• Action Mailer supports both plain-text and HTML mail.

• As with ordinary actions and views, instance variables defined in mailer
actions are available in mailer views.

• Account activations use a generated token to create a unique URL for
activating users.

• Account activations use a hashed activation digest to securely identify
valid activation requests.

• Both mailer tests and integration tests are useful for verifying the behav-
ior of the User mailer.

• We can send email in production using SendGrid.

664 CHAPTER 11. ACCOUNT ACTIVATION

Chapter 12

Password reset
Having completed account activation (and thereby verified the user’s email ad-
dress) in Chapter 11, we’re now in a good position to implement password reset,
and thereby handle the common case of users forgetting their passwords.1 As
we’ll see, many of the steps are similar to those for account activation, and we
will have several opportunities to apply the lessons learned in Chapter 11. The
beginning is different, though; unlike account activation, implementing pass-
word resets requires both a change to one of our views and two new forms (to
handle email and new password submission).

Before writing any code, let’s mock up the expected sequence for resetting
passwords. We’ll start by adding a “forgot password” link to the sample ap-
plication’s login form (Figure 12.1). The “forgot password” link will go to a
page with a form that takes in an email address and sends an email containing a
password reset link (Figure 12.2). The reset link will go to a form for resetting
the user’s password (with confirmation), as shown in Figure 12.3.

If you followed Chapter 11, you already have a mailer for password re-
sets, which was generated in Section 11.2 (Listing 11.6). In this section, we’ll
complete the necessary preliminaries by adding a resource and data model for
password resets (Section 12.1) to go along with the mailer. We’ll implement
the actual password reset in Section 12.3.

In analogy with account activations, our general plan is to make a Pass-
1This chapter is independent of the others apart from using the mailer generation in Listing 11.6, but it closely

parallels Chapter 11, so it’s much easier if you’ve followed that chapter first.

665

666 CHAPTER 12. PASSWORD RESET

Figure 12.1: A mockup of a “forgot password” link.

667

Figure 12.2: A mockup of the “forgot password” form.

668 CHAPTER 12. PASSWORD RESET

Figure 12.3: A mockup of the reset password form.

12.1. PASSWORD RESETS RESOURCE 669

word Resets resource, with each password reset consisting of a reset token and
corresponding reset digest. The primary sequence goes like this:

1. When a user requests a password reset, find the user by the submitted
email address.

2. If the email address exists in the database, generate a reset token and
corresponding reset digest.

3. Save the reset digest to the database, and then send an email to the user
with a link containing the reset token and user’s email address.

4. When the user clicks the link, find the user by email address, and then
authenticate the token by comparing it to the reset digest.

5. If authenticated, present the user with the form for changing the pass-
word.

12.1 Password resets resource
As with sessions (Section 8.1) and account activations (Chapter 11), we’ll
model password resets as a resource even though they won’t be associated with
an Active Record model. Instead, we’ll include the relevant data (including the
reset token) in the User model itself.

Because we’ll be treating password resets as a resource, we’ll interact with
them via the standard REST URLs. Unlike the activation link, which required
only an edit action, in this case we’ll be rendering both new and edit forms
for manipulating password resets, as well as creating and updating them, so
we’ll end up using four RESTful routes in total.

As usual, we’ll make a topic branch for the new feature:

$ git checkout -b password-reset

670 CHAPTER 12. PASSWORD RESET

12.1.1 Password resets controller
Our first step is to generate a controller for the Password Resets resource, in
this case making both new and edit actions per the discussion above:

$ rails generate controller PasswordResets new edit --no-test-framework

Note that we’ve included a flag to skip generating tests. This is because we
don’t need the controller tests, preferring instead to build on the integration test
from Section 11.3.3.

Because we’ll need forms both for creating new password resets (Figure
12.2) and for updating them by changing the password in the User model (Fig-
ure 12.3), we need routes for new, create, edit, and update. We can arrange
this with the resources line shown in Listing 12.1.

Listing 12.1: Adding a resource for password resets.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

get '/login', to: 'sessions#new'

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users

resources :account_activations, only: [:edit]

resources :password_resets, only: [:new, :create, :edit, :update]

end

The code in Listing 12.1 arranges for the RESTful routes shown in Table 12.1.
In particular, the first route in Table 12.1 gives a link to the “forgot password”
form via

12.1. PASSWORD RESETS RESOURCE 671

HTTP request URL Action Named route
GET /password_resets/new new new_password_reset_path

POST /password_resets create password_resets_path

GET /password_resets/<token>/edit edit edit_password_reset_url(token)

PATCH /password_resets/<token> update password_reset_path(token)

Table 12.1: RESTful routes provided by the Password Resets resource in List-
ing 12.1.

new_password_reset_path

as seen in Listing 12.2 and Figure 12.4.

Listing 12.2: Adding a link to password resets.
app/views/sessions/new.html.erb

<% provide(:title, "Log in") %>

<h1>Log in</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: login_path, scope: :session, local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= link_to "(forgot password)", new_password_reset_path %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :remember_me, class: "checkbox inline" do %>

<%= f.check_box :remember_me %>

Remember me on this computer

<% end %>

<%= f.submit "Log in", class: "btn btn-primary" %>

<% end %>

<p>New user? <%= link_to "Sign up now!", signup_path %></p>

</div>

</div>

672 CHAPTER 12. PASSWORD RESET

Figure 12.4: The login page with a “forgot password” link.

12.1. PASSWORD RESETS RESOURCE 673

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that the test suite is still green.

2. Why does Table 12.1 list the _url form of the edit named route instead
of the _path form? Hint: The answer is the same as for the similar
account activations exercise (Section 11.1.1).

12.1.2 New password resets
To create new password resets, we first need to define the data model, which is
similar to the one used for account activation (Figure 11.1). Following the pat-
tern set by remember tokens (Chapter 9) and account activation tokens (Chap-
ter 11), password resets will pair a virtual reset token for use in the reset email
with a corresponding reset digest for retrieving the user. If we instead stored an
unhashed token, an attacker with access to the database could send a reset re-
quest to the user’s email address and then use the token and email to visit the cor-
responding password reset link, thereby gaining control of the account. Using a
digest for password resets is thus essential. As an additional security precaution,
we’ll also plan to expire the reset link after a couple of hours, which requires
recording the time when the reset gets sent. The resulting reset_digest and
reset_sent_at attributes appear in Figure 12.5.

The migration to add the attributes from Figure 12.5 appears as follows:

$ rails generate migration add_reset_to_users reset_digest:string \

> reset_sent_at:datetime

(As in Section 11.1.2, the > on the second line is a “line continuation” character
inserted automatically by the shell, and should not be typed literally.) We then
migrate as usual:

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

674 CHAPTER 12. PASSWORD RESET

updated_at datetime
datetimecreated_at

admin boolean

datetimeactivated_at
booleanactivated
stringactivation_digest

reset_sent_at datetime
stringreset_digest

remember_digest string
stringpassword_digest

email string

id
name string

integer
users

Figure 12.5: The User model with added password reset attributes.

12.1. PASSWORD RESETS RESOURCE 675

$ rails db:migrate

To make the view for new password resets, we’ll work in analogy with the
previous form for making a new non–Active Record resource, namely, the login
form (Listing 8.4) for creating a new session, shown again in Listing 12.3 for
reference.

Listing 12.3: Reviewing the code for the login form.
app/views/sessions/new.html.erb

<% provide(:title, "Log in") %>

<h1>Log in</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: login_path, scope: :session, local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= link_to "(forgot password)", new_password_reset_path %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :remember_me, class: "checkbox inline" do %>

<%= f.check_box :remember_me %>

Remember me on this computer

<% end %>

<%= f.submit "Log in", class: "btn btn-primary" %>

<% end %>

<p>New user? <%= link_to "Sign up now!", signup_path %></p>

</div>

</div>

The new password resets form has a lot in common with Listing 12.3; the
most important differences are the use of a different resource andURL in the call
to form_with and the omission of the password attribute. The result appears
in Listing 12.4 and Figure 12.6.

676 CHAPTER 12. PASSWORD RESET

Listing 12.4: A new password reset view.
app/views/password_resets/new.html.erb

<% provide(:title, "Forgot password") %>

<h1>Forgot password</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(url: password_resets_path, scope: :password_reset,

local: true) do |f| %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.submit "Submit", class: "btn btn-primary" %>

<% end %>

</div>

</div>

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Why does the form_with in Listing 12.4 use :password_reset in-
stead of @password_reset?

12.1.3 Password reset create action
Upon submitting the form in Figure 12.6, we need to find the user by email ad-
dress and update its attributes with the password reset token and sent-at times-
tamp. We then redirect to the root URL with an informative flash message. As
with login (Listing 8.11), in the case of an invalid submission we re-render the
new page with a flash.now message.2 The results appear in Listing 12.5.

2Security concerns about revealing the absence of the given email address are commonly misplaced. The
reason is that this property is already present in every website that won’t let you sign up with an email address
that’s already in use, which is practically all of them. Thus, indicating that a given email address isn’t available
for password resets gives potential attackers no additional information.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.1. PASSWORD RESETS RESOURCE 677

Figure 12.6: The “forgot password” form.

678 CHAPTER 12. PASSWORD RESET

Listing 12.5: A create action for password resets.
app/controllers/password_resets_controller.rb

class PasswordResetsController < ApplicationController

def new

end

def create

@user = User.find_by(email: params[:password_reset][:email].downcase)

if @user

@user.create_reset_digest

@user.send_password_reset_email

flash[:info] = "Email sent with password reset instructions"

redirect_to root_url

else

flash.now[:danger] = "Email address not found"

render 'new'

end

end

def edit

end

end

The code in the User model parallels the create_activation_digest
method used in the before_create callback (Listing 11.3), as seen in List-
ing 12.6.

Listing 12.6: Adding password reset methods to the User model.
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token, :activation_token, :reset_token

before_save :downcase_email

before_create :create_activation_digest

.

.

.

Activates an account.

def activate

update_attribute(:activated, true)

update_attribute(:activated_at, Time.zone.now)

end

Sends activation email.

12.1. PASSWORD RESETS RESOURCE 679

def send_activation_email

UserMailer.account_activation(self).deliver_now

end

Sets the password reset attributes.

def create_reset_digest

self.reset_token = User.new_token

update_attribute(:reset_digest, User.digest(reset_token))

update_attribute(:reset_sent_at, Time.zone.now)

end

Sends password reset email.

def send_password_reset_email

UserMailer.password_reset(self).deliver_now

end

private

Converts email to all lower-case.

def downcase_email

self.email = email.downcase

end

Creates and assigns the activation token and digest.

def create_activation_digest

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

end

end

As shown in Figure 12.7, at this point the application’s behavior for invalid
email addresses is already working. To get the application working upon sub-
mission of a valid email address as well, we need to define a password reset
mailer method.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Submit a valid email address to the form shown in Figure 12.6. What
error message do you get?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

680 CHAPTER 12. PASSWORD RESET

Figure 12.7: The “forgot password” form for an invalid email address.

12.2. PASSWORD RESET EMAILS 681

2. Confirm at the console that the user in the previous exercise has valid
reset_digest and reset_sent_at attributes, despite the error. What
are the attribute values?

12.2 Password reset emails
We left Section 12.1 with a nearly working create action in the Password Re-
sets controller. The only thing missing is the method to deliver valid password
reset emails.

If you followed Section 11.1, you already have a default password_reset
method in app/mailers/user_mailer.rb as a result of the User mailer
generation in Listing 11.6. If you skipped Chapter 11, you can just copy the
code below (omitting the account_activation and related methods) and
create the missing files as necessary.

12.2.1 Password reset mailer and templates
In Listing 12.6, we applied the design pattern implemented as a refactoring in
Section 11.3.3 by putting the User mailer directly in the model (Listing 12.6):

UserMailer.password_reset(self).deliver_now

The password reset mailer method needed to get this working is nearly iden-
tical to the mailer for account activation developed in Section 11.2. We first
create a password_reset method in the user mailer (Listing 12.7), and then
define view templates for plain-text email (Listing 12.8) and HTML email (List-
ing 12.9).

Listing 12.7: Mailing the password reset link.
app/mailers/user_mailer.rb

class UserMailer < ApplicationMailer

682 CHAPTER 12. PASSWORD RESET

def account_activation(user)

@user = user

mail to: user.email, subject: "Account activation"

end

def password_reset(user)

@user = user

mail to: user.email, subject: "Password reset"

end

end

Listing 12.8: The password reset plain-text email template.
app/views/user_mailer/password_reset.text.erb

To reset your password click the link below:

<%= edit_password_reset_url(@user.reset_token, email: @user.email) %>

This link will expire in two hours.

If you did not request your password to be reset, please ignore this email and

your password will stay as it is.

Listing 12.9: The password reset HTML email template.
app/views/user_mailer/password_reset.html.erb

<h1>Password reset</h1>

<p>To reset your password click the link below:</p>

<%= link_to "Reset password", edit_password_reset_url(@user.reset_token,

email: @user.email) %>

<p>This link will expire in two hours.</p>

<p>

If you did not request your password to be reset, please ignore this email and

your password will stay as it is.

</p>

As with account activation emails (Section 11.2), we can preview password
reset emails using the Rails email previewer. The code is exactly analogous to
Listing 11.18, as shown in Listing 12.10.

12.2. PASSWORD RESET EMAILS 683

Listing 12.10: A working preview method for password reset.
test/mailers/previews/user_mailer_preview.rb

Preview all emails at http://localhost:3000/rails/mailers/user_mailer

class UserMailerPreview < ActionMailer::Preview

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/account_activation

def account_activation

user = User.first

user.activation_token = User.new_token

UserMailer.account_activation(user)

end

Preview this email at

http://localhost:3000/rails/mailers/user_mailer/password_reset

def password_reset

user = User.first

user.reset_token = User.new_token

UserMailer.password_reset(user)

end

end

With the code in Listing 12.10, the HTML and text email previews appear as in
Figure 12.8 and Figure 12.9.

With the code in Listing 12.7, Listing 12.8, and Listing 12.9, submission
of a valid email address appears as shown in Figure 12.10. The corresponding
email appears in the server log and should look something like Listing 12.11.

Listing 12.11: A sample password reset email from the server log.
UserMailer#password_reset: processed outbound mail in 6.0ms

Delivered mail 5d609328d5d29_28872b106582ddf4886d8@ip-172-31-25-202.mail (2.8ms)

Date: Sat, 24 Aug 2019 01:30:16 +0000

From: noreply@example.com

To: michael@michaelhartl.com

Message-ID: <5d609328d5d29_28872b106582ddf4886d8@ip-172-31-25-202.mail>

Subject: Password reset

Mime-Version: 1.0

Content-Type: multipart/alternative;

boundary="--==_mimepart_5d609328d5404_28872b106582ddf488531";

charset=UTF-8

Content-Transfer-Encoding: 7bit

684 CHAPTER 12. PASSWORD RESET

Figure 12.8: A preview of the HTML version of the password reset email.

12.2. PASSWORD RESET EMAILS 685

Figure 12.9: A preview of the text version of the password reset email.

686 CHAPTER 12. PASSWORD RESET

Figure 12.10: The result of submitting a valid email address.

12.2. PASSWORD RESET EMAILS 687

----==_mimepart_5d609328d5404_28872b106582ddf488531

Content-Type: text/plain;

charset=UTF-8

Content-Transfer-Encoding: 7bit

To reset your password click the link below:

https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/password_resets/cT3mB4pwu7o-hrg6qEDfKg/

edit?email=michael%40michaelhartl.com

This link will expire in two hours.

If you did not request your password to be reset, please ignore this email and

your password will stay as it is.

----==_mimepart_5d609328d5404_28872b106582ddf488531

Content-Type: text/html;

charset=UTF-8

Content-Transfer-Encoding: 7bit

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<style>

/* Email styles need to be inline */

</style>

</head>

<body>

<h1>Password reset</h1>

<p>To reset your password click the link below:</p>

<a href="https://0ebe1dc6d40e4a4bb06e0ca7fe138127.vfs.cloud9.us-east-2.

amazonaws.com/password_resets/cT3mB4pwu7o-hrg6qEDfKg/

edit?email=michael%40michaelhartl.com">Reset password

<p>This link will expire in two hours.</p>

<p>

If you did not request your password to be reset, please ignore this email and

your password will stay as it is.

</p>

</body>

</html>

----==_mimepart_5d609328d5404_28872b106582ddf488531--

688 CHAPTER 12. PASSWORD RESET

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Preview the email templates in your browser. What do the Date fields
read for your previews?

2. Submit a valid email address to the new password reset form. What is
the content of the generated email in the server log?

3. At the console, find the user object corresponding to the email address
from the previous exercise and verify that it has valid reset_digest
and reset_sent_at attributes.

12.2.2 Email tests
In analogy with the account activation mailer method test (Listing 11.20), we’ll
write a test of the password reset mailer method, as shown in Listing 12.12.

Listing 12.12: Adding a test of the password reset mailer method. green
test/mailers/user_mailer_test.rb

require 'test_helper'

class UserMailerTest < ActionMailer::TestCase

test "account_activation" do

user = users(:michael)

user.activation_token = User.new_token

mail = UserMailer.account_activation(user)

assert_equal "Account activation", mail.subject

assert_equal [user.email], mail.to

assert_equal ["noreply@example.com"], mail.from

assert_match user.name, mail.body.encoded

assert_match user.activation_token, mail.body.encoded

assert_match CGI.escape(user.email), mail.body.encoded

end

test "password_reset" do

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.3. RESETTING THE PASSWORD 689

user = users(:michael)

user.reset_token = User.new_token

mail = UserMailer.password_reset(user)

assert_equal "Password reset", mail.subject

assert_equal [user.email], mail.to

assert_equal ["noreply@example.com"], mail.from

assert_match user.reset_token, mail.body.encoded

assert_match CGI.escape(user.email), mail.body.encoded

end

end

At this point, the test suite should be green:

Listing 12.13: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Run just the mailer tests. Are they green?

2. Confirm that the test goes red if you remove the second call to CGI.es-
cape in Listing 12.12.

12.3 Resetting the password
Now that we have a correctly generated email as in Listing 12.11, we need to
write the edit action in the Password Resets controller that actually resets the
user’s password. As in Section 11.3.3, we’ll write a thorough integration test
as well.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

690 CHAPTER 12. PASSWORD RESET

12.3.1 Reset edit action
Password reset emails such as that shown in Listing 12.11 contain links of the
following form:

https://example.com/password_resets/3BdBrXeQZSWqFIDRN8cxHA/edit?email=fu%40bar.com

To get these links to work, we need a form for resetting passwords. The task is
similar to updating users via the user edit view (Listing 10.2), but in this case
with only password and confirmation fields.

There’s an additional complication, though: we expect to find the user by
email address, which means we need its value in both the edit and update
actions. The email will automatically be available in the edit action because
of its presence in the link above, but after we submit the form its value will be
lost. The solution is to use a hidden field to place (but not display) the email on
the page, and then submit it along with the rest of the form’s information. The
result appears in Listing 12.14.

Listing 12.14: The form to reset a password.
app/views/password_resets/edit.html.erb

<% provide(:title, 'Reset password') %>

<h1>Reset password</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, url: password_reset_path(params[:id]),

local: true) do |f| %>

<%= render 'shared/error_messages' %>

<%= hidden_field_tag :email, @user.email %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Update password", class: "btn btn-primary" %>

<% end %>

</div>

</div>

12.3. RESETTING THE PASSWORD 691

Note that Listing 12.14 uses the form tag helper

hidden_field_tag :email, @user.email

instead of

f.hidden_field :email, @user.email

because the reset link puts the email in params[:email], whereas the latter
would put it in params[:user][:email].

To get the form to render, we need to define an @user variable in the
Password Resets controller’s edit action. As with account activation (List-
ing 11.31), this involves finding the user corresponding to the email address
in params[:email]. We then need to verify that the user is valid, i.e., that
it exists, is activated, and is authenticated according to the reset token from
params[:id] (using the generalized authenticated? method defined in
Listing 11.26). Because the existence of a valid @user is needed in both the
edit and update actions, we’ll put the code to find and validate it in a couple
of before filters, as shown in Listing 12.15.

Listing 12.15: The edit action for password reset.
app/controllers/password_resets_controller.rb

class PasswordResetsController < ApplicationController

before_action :get_user, only: [:edit, :update]

before_action :valid_user, only: [:edit, :update]

.

.

.

def edit

end

private

def get_user

@user = User.find_by(email: params[:email])

end

692 CHAPTER 12. PASSWORD RESET

Confirms a valid user.

def valid_user

unless (@user && @user.activated? &&

@user.authenticated?(:reset, params[:id]))

redirect_to root_url

end

end

end

In Listing 12.15, compare the use of

authenticated?(:reset, params[:id])

to

authenticated?(:remember, cookies[:remember_token])

in Listing 11.28 and

authenticated?(:activation, params[:id])

in Listing 11.31. Together, these three uses complete the authenticationmethods
shown in Table 11.1.

With the code as above, following the link from Listing 12.11 should render
a password reset form. The result of pasting the link from the log (Listing 12.11)
appears in Figure 12.11.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Follow the link in the email from the server log in Section 12.2.1. Does
it properly render the form as shown in Figure 12.11?

2. What happens if you submit the form from the previous exercise?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.3. RESETTING THE PASSWORD 693

Figure 12.11: The password reset form.

694 CHAPTER 12. PASSWORD RESET

12.3.2 Updating the reset
Unlike the Account Activations edit method, which simply toggles the user
from “inactive” to “active”, the edit method for Password Resets is a form,
which must therefore submit to a corresponding update action. To define this
update action, we need to consider four cases:

1. An expired password reset

2. A failed update due to an invalid password

3. A failed update (which initially looks “successful”) due to an empty pass-
word and confirmation

4. A successful update
Cases (1), (2), and (4) are fairly straightforward, but Case (3) is non-obvious
and is explained in more detail below.

Case (1) applies to both the edit and update actions, and so logically
belongs in a before filter:

before_action :check_expiration, only: [:edit, :update] # Case (1)

This requires defining a private check_expiration method:

Checks expiration of reset token.

def check_expiration

if @user.password_reset_expired?

flash[:danger] = "Password reset has expired."

redirect_to new_password_reset_url

end

end

In the check_expirationmethod, we’ve deferred the expiration check to the
instancemethod password_reset_expired?, which is a little tricky andwill
be defined in a moment.

Listing 12.16 shows the implementation of these filters, together with the
update action that implements Cases (2)–(4). Case (2) gets handled by a failed

12.3. RESETTING THE PASSWORD 695

update, with the error messages from the shared partial in Listing 12.14 display-
ing automatically when the edit form is re-rendered. Case (4) corresponds to a
successful change, and the result is similar to a successful login (Listing 8.32).

The only failure case not handled by Case (2) is when the password is empty,
which is currently allowed by our User model (Listing 10.13) and so needs
to be caught and handled explicitly.3 This is Case (3) above. Our method in
this case is to add an error directly to the @user object’s error messages using
errors.add:

@user.errors.add(:password, :blank)

This arranges to use the default message for blank content when the password
is empty.4

The result of putting Cases (1)–(4) together is the update action shown in
Listing 12.16.

Listing 12.16: The update action for password reset.
app/controllers/password_resets_controller.rb

class PasswordResetsController < ApplicationController

before_action :get_user, only: [:edit, :update]

before_action :valid_user, only: [:edit, :update]

before_action :check_expiration, only: [:edit, :update] # Case (1)

def new

end

def create

@user = User.find_by(email: params[:password_reset][:email].downcase)

if @user

@user.create_reset_digest

@user.send_password_reset_email

flash[:info] = "Email sent with password reset instructions"

redirect_to root_url

3We need only handle the case where the password is empty because if the confirmation is empty, the confir-
mation validation (which is skipped if the password is empty) will catch the problem and supply a relevant error
message.

4Alert reader Khaled Teilab has noted that one advantage of using errors.add(:password, :blank) is
that the resulting message is automatically rendered in the correct language when using the rails-i18n gem.

696 CHAPTER 12. PASSWORD RESET

else

flash.now[:danger] = "Email address not found"

render 'new'

end

end

def edit

end

def update

if params[:user][:password].empty? # Case (3)

@user.errors.add(:password, "can't be empty")

render 'edit'

elsif @user.update(user_params) # Case (4)

log_in @user

flash[:success] = "Password has been reset."

redirect_to @user

else

render 'edit' # Case (2)

end

end

private

def user_params

params.require(:user).permit(:password, :password_confirmation)

end

Before filters

def get_user

@user = User.find_by(email: params[:email])

end

Confirms a valid user.

def valid_user

unless (@user && @user.activated? &&

@user.authenticated?(:reset, params[:id]))

redirect_to root_url

end

end

Checks expiration of reset token.

def check_expiration

if @user.password_reset_expired?

flash[:danger] = "Password reset has expired."

redirect_to new_password_reset_url

end

end

end

12.3. RESETTING THE PASSWORD 697

Note that we’ve added a user_params method permitting both the password
and password confirmation attributes (Section 7.3.2).

As noted above, the implementation in Listing 12.16 delegates the boolean
test for password reset expiration to the User model via the code

@user.password_reset_expired?

To get this to work, we need to define the password_reset_expired?meth-
od. As indicated in the email templates from Section 12.2.1, we’ll consider a
password reset to be expired if it was sent more than two hours ago, which we
can express in Ruby as follows:

reset_sent_at < 2.hours.ago

This can be confusing if you read < as “less than”, because then it sounds like
“Password reset sent less than two hours ago”, which is the opposite of what
we want. In this context, it’s better to read < as “earlier than”, which gives
something like “Password reset sent earlier than two hours ago.” That is what
we want, and it leads to the password_reset_expired? method in List-
ing 12.17. (For a formal demonstration that the comparison is correct, see the
proof in Section 12.6.)

Listing 12.17: Adding password reset methods to the User model.
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns true if a password reset has expired.

def password_reset_expired?

reset_sent_at < 2.hours.ago

end

private

.

.

.

end

698 CHAPTER 12. PASSWORD RESET

Figure 12.12: A failed password reset.

With the code in Listing 12.17, the update action in Listing 12.16 should
be working. The results for invalid and valid submissions are shown in Fig-
ure 12.12 and Figure 12.13, respectively. (Lacking the patience to wait two
hours, we’ll cover the third branch in a test, which is left as an exercise (Sec-
tion 12.3.3).)

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.3. RESETTING THE PASSWORD 699

Figure 12.13: A successful password reset.

700 CHAPTER 12. PASSWORD RESET

1. Follow the email link from Section 12.2.1 again and submit mismatched
passwords to the form. What is the error message?

2. In the console, find the user belonging to the email link, and retrieve the
value of the password_digest attribute. Now submit valid matching
passwords to the form shown in Figure 12.12. Did the submission appear
to work? How did it affect the value of password_digest? Hint: Use
user.reload to retrieve the new value.

12.3.3 Password reset test
In this section, we’ll write an integration test covering two of the three branches
in Listing 12.16, invalid and valid submission. (As noted above, testing the third
branch is left as an exercise (Section 12.3.3).) We’ll get started by generating a
test file for password resets:

$ rails generate integration_test password_resets

invoke test_unit

create test/integration/password_resets_test.rb

The steps to test password resets broadly parallel the test for account activa-
tion from Listing 11.33, though there is a difference at the outset: we first visit
the “forgot password” form and submit invalid and then valid email addresses,
the latter of which creates a password reset token and sends the reset email. We
then visit the link from the email and again submit invalid and valid informa-
tion, verifying the correct behavior in each case. The resulting test, shown in
Listing 12.18, is an excellent exercise in reading code.

Listing 12.18: An integration test for password resets.
test/integration/password_resets_test.rb

require 'test_helper'

class PasswordResetsTest < ActionDispatch::IntegrationTest

def setup

12.3. RESETTING THE PASSWORD 701

ActionMailer::Base.deliveries.clear

@user = users(:michael)

end

test "password resets" do

get new_password_reset_path

assert_template 'password_resets/new'

assert_select 'input[name=?]', 'password_reset[email]'

Invalid email

post password_resets_path, params: { password_reset: { email: "" } }

assert_not flash.empty?

assert_template 'password_resets/new'

Valid email

post password_resets_path,

params: { password_reset: { email: @user.email } }

assert_not_equal @user.reset_digest, @user.reload.reset_digest

assert_equal 1, ActionMailer::Base.deliveries.size

assert_not flash.empty?

assert_redirected_to root_url

Password reset form

user = assigns(:user)

Wrong email

get edit_password_reset_path(user.reset_token, email: "")

assert_redirected_to root_url

Inactive user

user.toggle!(:activated)

get edit_password_reset_path(user.reset_token, email: user.email)

assert_redirected_to root_url

user.toggle!(:activated)

Right email, wrong token

get edit_password_reset_path('wrong token', email: user.email)

assert_redirected_to root_url

Right email, right token

get edit_password_reset_path(user.reset_token, email: user.email)

assert_template 'password_resets/edit'

assert_select "input[name=email][type=hidden][value=?]", user.email

Invalid password & confirmation

patch password_reset_path(user.reset_token),

params: { email: user.email,

user: { password: "foobaz",

password_confirmation: "barquux" } }

assert_select 'div#error_explanation'

Empty password

patch password_reset_path(user.reset_token),

params: { email: user.email,

user: { password: "",

password_confirmation: "" } }

assert_select 'div#error_explanation'

Valid password & confirmation

patch password_reset_path(user.reset_token),

params: { email: user.email,

702 CHAPTER 12. PASSWORD RESET

user: { password: "foobaz",

password_confirmation: "foobaz" } }

assert is_logged_in?

assert_not flash.empty?

assert_redirected_to user

end

end

Most of the ideas in Listing 12.18 have appeared previously in this tutorial; the
only really novel element is the test of the input tag:

assert_select "input[name=email][type=hidden][value=?]", user.email

This makes sure that there is an input tag with the right name, (hidden) type,
and email address:

<input id="email" name="email" type="hidden" value="michael@example.com" />

With the code as in Listing 12.18, our test suite should be green:

Listing 12.19: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. In Listing 12.6, the create_reset_digest method makes two calls
to update_attribute, each of which requires a separate database op-
eration. By filling in the template shown in Listing 12.20, replace the
two update_attribute calls with a single call to update_columns,

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.3. RESETTING THE PASSWORD 703

which hits the database only once. After making the changes, verify that
the test suite is still green. (For convenience, Listing 12.20 includes the
results of solving the exercise in Listing 11.39.)

2. Write an integration test for the expired password reset branch in List-
ing 12.16 by filling in the template shown in Listing 12.21. (This code
introduces response.body, which returns the full HTML body of the
page.) There are many ways to test for the result of an expiration, but the
method suggested by Listing 12.21 is to (case-insensitively) check that
the response body includes the word “expired”.

3. Expiring password resets after a couple of hours is a nice security precau-
tion, but there is an even more secure solution for cases where a public
computer is used. The reason is that the password reset link remains ac-
tive for 2 hours and can be used even if logged out. If a user reset their
password from a public machine, anyone could press the back button and
change the password (and get logged in to the site). To fix this, add the
code shown in Listing 12.22 to clear the reset digest on successful pass-
word update.5

4. Add a line to Listing 12.18 to test for the clearing of the reset digest in
the previous exercise. Hint: Combine assert_nil (first seen in List-
ing 9.25) with user.reload (Listing 11.33) to test the reset_digest
attribute directly.

Listing 12.20: A template for using update_columns.
app/models/user.rb

class User < ApplicationRecord

attr_accessor :remember_token, :activation_token, :reset_token

before_save :downcase_email

before_create :create_activation_digest

.

.

.

5Thanks to reader Tristan Ludowyk for suggesting this feature and for providing both a detailed description
and a suggested implementation.

704 CHAPTER 12. PASSWORD RESET

Activates an account.

def activate

update_columns(activated: true, activated_at: Time.zone.now)

end

Sends activation email.

def send_activation_email

UserMailer.account_activation(self).deliver_now

end

Sets the password reset attributes.

def create_reset_digest

self.reset_token = User.new_token

update_columns(reset_digest: FILL_IN, reset_sent_at: FILL_IN)

end

Sends password reset email.

def send_password_reset_email

UserMailer.password_reset(self).deliver_now

end

private

Converts email to all lower-case.

def downcase_email

self.email = email.downcase

end

Creates and assigns the activation token and digest.

def create_activation_digest

self.activation_token = User.new_token

self.activation_digest = User.digest(activation_token)

end

end

Listing 12.21: A test for an expired password reset. green
test/integration/password_resets_test.rb

require 'test_helper'

class PasswordResetsTest < ActionDispatch::IntegrationTest

def setup

ActionMailer::Base.deliveries.clear

@user = users(:michael)

end

.

.

.

12.3. RESETTING THE PASSWORD 705

test "expired token" do

get new_password_reset_path

post password_resets_path,

params: { password_reset: { email: @user.email } }

@user = assigns(:user)

@user.update_attribute(:reset_sent_at, 3.hours.ago)

patch password_reset_path(@user.reset_token),

params: { email: @user.email,

user: { password: "foobar",

password_confirmation: "foobar" } }

assert_response :redirect

follow_redirect!

assert_match /FILL_IN/i, response.body

end

end

Listing 12.22: Clearing the reset digest on successful password reset.
app/controllers/password_resets_controller.rb

class PasswordResetsController < ApplicationController

.

.

.

def update

if params[:user][:password].empty?

@user.errors.add(:password, "can't be empty")

render 'edit'

elsif @user.update(user_params)

log_in @user

@user.update_attribute(:reset_digest, nil)

flash[:success] = "Password has been reset."

redirect_to @user

else

render 'edit'

end

end

.

.

.

end

706 CHAPTER 12. PASSWORD RESET

12.4 Email in production (take two)
Now that we’ve got password resets working in development, in this section
we’ll get them working in production as well. The steps are exactly the same
as for account activations, so if you already followed Section 11.4 you can skip
right to Listing 12.24.

To send email in production, we’ll use SendGrid, which is available as an
add-on at Heroku for verified accounts. (This requires adding credit card in-
formation to your Heroku account, but there is no charge when verifying an
account.) For our purposes, the “starter” tier (which as of this writing is limited
to 400 emails a day but costs nothing) is the best fit. We can add it to our app
as follows:

$ heroku addons:create sendgrid:starter

(This might fail on systems with older version of Heroku’s command-line in-
terface. In this case, either upgrade to the latest Heroku toolbelt or try the older
syntax heroku addons:add sendgrid:starter.)

To configure our application to use SendGrid, we need to fill out the SMTP
settings for our production environment. As shown in Listing 12.23, you will
also have to define a host variable with the address of your production website.

Listing 12.23: Configuring Rails to use SendGrid in production.
config/environments/production.rb

Rails.application.configure do

.

.

.

config.action_mailer.raise_delivery_errors = true

config.action_mailer.delivery_method = :smtp

host = '<your heroku app>.herokuapp.com'

config.action_mailer.default_url_options = { host: host }

ActionMailer::Base.smtp_settings = {

:address => 'smtp.sendgrid.net',

:port => '587',

:authentication => :plain,

:user_name => ENV['SENDGRID_USERNAME'],

https://toolbelt.heroku.com/
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

12.4. EMAIL IN PRODUCTION (TAKE TWO) 707

:password => ENV['SENDGRID_PASSWORD'],

:domain => 'heroku.com',

:enable_starttls_auto => true

}

.

.

.

end

The email configuration in Listing 11.41 includes the user_name and
password of the SendGrid account, but note that they are accessed via the ENV
environment variable instead of being hard-coded. This is a best practice for
production applications, which for security reasons should never expose sen-
sitive information such as raw passwords in source code. In the present case,
these variables are configured automatically via the SendGrid add-on, but we’ll
see an example in Section 13.4.4 where we’ll have to define them ourselves.

At this point, you should merge the topic branch into master (Listing 12.24).

Listing 12.24: Merging the password-reset branch into master.
$ rails test

$ git add -A

$ git commit -m "Add password reset"

$ git checkout master

$ git merge password-reset

Then push up to the remote repository and deploy to Heroku:

$ rails test

$ git push && git push heroku

$ heroku run rails db:migrate

Once the Heroku deploy has finished, you can reset your password by click-
ing the “(forgot password)” link (Figure 12.4). The result should be a reset email
as shown in Figure 12.14. Following the link and making invalid or valid sub-
missions should work as it did in development (Figure 12.12 and Figure 12.13).
Likewise, upon successfully changing the password, the user should be redi-
rected to the profile page (Figure 12.15).

708 CHAPTER 12. PASSWORD RESET

Figure 12.14: A password reset email sent in production.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Sign up for a new account in production. Did you get the email?

2. Click on the link in the activation email to confirm that it works. What is
the corresponding entry in the server log? Hint: Run heroku logs at
the command line.

3. Are you able to successfully update your password?

12.5 Conclusion
With the added password resets, our sample application’s sign up, log in, and
log out machinery is complete and professional-grade. The rest of the Ruby on
Rails Tutorial builds on this foundation to make a site with Twitter-like micro-
posts (Chapter 13) and a status feed of posts from followed users (Chapter 14).

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

12.5. CONCLUSION 709

Figure 12.15: The result of a successful password reset in production.

710 CHAPTER 12. PASSWORD RESET

In the process, we’ll learn about some of the most powerful features of Rails,
including image upload, custom database queries, and advanced data modeling
with has_many and has_many :through.

12.5.1 What we learned in this chapter
• Like sessions and account activations, password resets can be modeled
as a resource despite not being Active Record objects.

• Rails can generate Action Mailer actions and views to send email.

• Action Mailer supports both plain-text and HTML mail.

• As with ordinary actions and views, instance variables defined in mailer
actions are available in mailer views.

• Password resets use a generated token to create a unique URL for reset-
ting passwords.

• Password resets use a hashed reset digest to securely identify valid reset
requests.

• Both mailer tests and integration tests are useful for verifying the behav-
ior of the User mailer.

• We can send email in production using SendGrid.

12.6 Proof of expiration comparison
We saw in Section 12.3 that the comparison test for determining when a pass-
word reset has expired is

reset_sent_at < 2.hours.ago

12.6. PROOF OF EXPIRATION COMPARISON 711

as seen in Listing 12.17. This looks likes it might be read as “reset sent less
than two hours ago”, which is the opposite of what we want. In this section,
we’ll prove that the above comparison is correct.6

We start by defining two time intervals. Let ∆tr be the time interval since
sending the password reset and∆te be the expiration time limit (e.g., two hours).
A password reset has expired if the time interval since the reset was sent is
greater than the expiration limit:

∆tr > ∆te. (12.1)
If we write the time now as tN , the password reset sending time as tr, and the
expiration time as te (e.g., two hours ago), then we have

∆tr = tN − tr (12.2)
and

∆te = tN − te. (12.3)
Plugging Eq. (12.2) and Eq. (12.3) into (12.1) then gives

∆tr > ∆te
tN − tr > tN − te

−tr > −te,

which upon multiplying through by −1 yields
tr < te. (12.4)

Converting (12.4) to code with the value te = 2 hours ago gives the pass-
word_reset_expired? method shown in Listing 12.17:

def password_reset_expired?

reset_sent_at < 2.hours.ago

end

As noted in Section 12.3, if we read < as “earlier than” instead of “less than”,
this code makes sense as the English sentence “The password reset was sent
earlier than two hours ago.”

6This proof is the price you pay for reading a web development tutorial written by a Ph.D. physicist. Just be
grateful I couldn’t find a way to work

(
− ℏ2

2m∇2 + V
)
ψ = Eψ or Gµν = 8πTµν(= 4τTµν) into the exposition.

712 CHAPTER 12. PASSWORD RESET

Chapter 13

User microposts
In the course of developing the core sample application, we’ve now encountered
four resources—users, sessions, account activations, and password
resets—but only the first of these is backed by an Active Record model with
a table in the database. The time has finally come to add a second such re-
source: user microposts, which are short messages associated with a particular
user.1 We first saw microposts in larval form in Chapter 2, and in this chap-
ter we will make a full-strength version of the sketch from Section 2.3 by con-
structing theMicropost data model, associating it with the User model using the
has_many and belongs_to methods, and then making the forms and partials
needed to manipulate and display the results (including, in Section 13.4, up-
loaded images). In Chapter 14, we’ll complete our tiny Twitter clone by adding
the notion of following users in order to receive a feed of their microposts.

13.1 A Micropost model
We begin the Microposts resource by creating a Micropost model, which cap-
tures the essential characteristics of microposts. What follows builds on the
work from Section 2.3; as with the model in that section, our new Micropost
model will include data validations and an association with the User model. Un-

1The name is motivated by the common description of Twitter as a microblog; since blogs have posts, mi-
croblogs should have microposts, which can be thought of as the generic equivalent of “tweets”.

713

https://en.wikipedia.org/wiki/Microblogging

714 CHAPTER 13. USER MICROPOSTS

datetimeupdated_at
datetimecreated_at

user_id integer

id
content text

integer
microposts

Figure 13.1: The Micropost data model.

like that model, the present Micropost model will be fully tested, and will also
have a default ordering and automatic destruction if its parent user is destroyed.

If you’re using Git for version control, I suggest making a topic branch at
this time:

$ git checkout -b user-microposts

13.1.1 The basic model
TheMicropost model needs only two attributes: a content attribute to hold the
micropost’s content and a user_id to associate a micropost with a particular
user. The result is a Micropost model with the structure shown in Figure 13.1.

It’s worth noting that the model in Figure 13.1 uses the text data type for
micropost content (instead of string), which is capable of storing an arbi-
trary amount of text. Even though the content will be restricted to fewer than
140 characters (Section 13.1.2) and hence would fit inside the 255-character
string type, using text better expresses the nature of microposts, which are
more naturally thought of as blocks of text. Indeed, in Section 13.3.2 we’ll use
a text area instead of a text field for submitting microposts. In addition, using
text gives us greater flexibility should we wish to increase the length limit at

13.1. A MICROPOST MODEL 715

a future date (as part of internationalization, for example). Finally, using the
text type results in no performance difference in production,2 so it costs us
nothing to use it here.

As with the case of the User model (Listing 6.1), we generate the Micropost
model using generate model (Listing 13.1).

Listing 13.1: Generating the Micropost model.
$ rails generate model Micropost content:text user:references

This migration leads to the creation of the Micropost model shown in List-
ing 13.2. In addition to inheriting from ApplicationRecord as usual (Sec-
tion 6.1.2), the generated model includes a line indicating that a micropost
belongs_to a user, which is included as a result of the user:references
argument in Listing 13.1. We’ll explore the implications of this line in Sec-
tion 13.1.3.

Listing 13.2: The generated Micropost model.
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

end

The generate command in Listing 13.1 also produces amigration to create
a microposts table in the database (Listing 13.3); compare it to the analogous
migration for the users table from Listing 6.2. The biggest difference is the
use of references, which automatically adds a user_id column (along with
an index and a foreign key reference)3 for use in the user/micropost association.
As with the User model, the Micropost model migration automatically includes

2www.postgresql.org/docs/9.1/static/datatype-character.html
3The foreign key reference is a database-level constraint indicating that the user id in the microposts table

refers to the id column in the users table. This detail will never be important in this tutorial, and the foreign key
constraint isn’t even supported by all databases. (It’s supported by PostgreSQL, which we use in production, but
not by the development SQLite database adapter.) We’ll learn more about foreign keys in Section 14.1.2.

https://www.postgresql.org/docs/9.1/static/datatype-character.html

716 CHAPTER 13. USER MICROPOSTS

the t.timestamps line, which (as mentioned in Section 6.1.1) adds the magic
created_at and updated_at columns shown in Figure 13.1. (We’ll put the
created_at column to work starting in Section 13.1.4.)

Listing 13.3: The Micropost migration with added index.
db/migrate/[timestamp]_create_microposts.rb

class CreateMicroposts < ActiveRecord::Migration[6.0]

def change

create_table :microposts do |t|

t.text :content

t.references :user, null: false, foreign_key: true

t.timestamps

end

add_index :microposts, [:user_id, :created_at]

end

end

Because we expect to retrieve all the microposts associated with a given user id
in reverse order of creation, Listing 13.3 adds an index (Box 6.2) on the user_-
id and created_at columns:

add_index :microposts, [:user_id, :created_at]

By including both the user_id and created_at columns as an array, we
arrange for Rails to create amultiple key index, which means that Active Record
uses both keys at the same time.

With the migration in Listing 13.3, we can update the database as usual:

$ rails db:migrate

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

13.1. A MICROPOST MODEL 717

1. Using Micropost.new in the console, instantiate a new Micropost ob-
ject called micropost with content “Lorem ipsum” and user id equal to
the id of the first user in the database. What are the values of the magic
columns created_at and updated_at?

2. What is micropost.user for the micropost in the previous exercise?
What about micropost.user.name?

3. Save the micropost to the database. What are the values of the magic
columns now?

13.1.2 Micropost validations
Now that we’ve created the basic model, we’ll add some validations to enforce
the desired design constraints. One of the necessary aspects of the Micropost
model is the presence of a user id to indicate which user made the microp-
ost. The idiomatically correct way to do this is to use Active Record associ-
ations, which we’ll implement in Section 13.1.3, but for now we’ll work with
the Micropost model directly.

The initial micropost tests parallel those for the User model (Listing 6.7). In
the setup step, we create a newmicropost while associating it with a valid user
from the fixtures, and then check that the result is valid. Because every micro-
post should have a user id, we’ll add a test for a user_id presence validation.
Putting these elements together yields the test in Listing 13.4.

Listing 13.4: Tests for the validity of a new micropost. green
test/models/micropost_test.rb

require 'test_helper'

class MicropostTest < ActiveSupport::TestCase

def setup

@user = users(:michael)

This code is not idiomatically correct.

@micropost = Micropost.new(content: "Lorem ipsum", user_id: @user.id)

end

718 CHAPTER 13. USER MICROPOSTS

test "should be valid" do

assert @micropost.valid?

end

test "user id should be present" do

@micropost.user_id = nil

assert_not @micropost.valid?

end

end

As indicated by the comment in the setup method, the code to create the mi-
cropost is not idiomatically correct, which we’ll fix in Section 13.1.3.

As with the original User model test (Listing 6.5), the first test in List-
ing 13.4 is just a reality check, but the second is a test of the presence of the
user id, for which we’ll add the presence validation shown in Listing 13.5.

Listing 13.5: A validation for the micropost’s user_id. green
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

validates :user_id, presence: true

end

By the way, as of Rails 5 the tests in Listing 13.4 actually pass without the
validation in Listing 13.5, but only when using the idiomatically incorrect line
highlighted in Listing 13.4. The user id presence validation is necessary after
switching to the idiomatically correct code in Listing 13.12, so we include it
here for convenience.

With the code in Listing 13.5 the tests should (still) be green:

Listing 13.6: green
$ rails test:models

Next, we’ll add validations for the micropost’s content attribute (follow-
ing the example from Section 2.3.2). As with the user_id, the content at-
tribute must be present, and it is further constrained to be no longer than 140
characters (which is what puts the micro in micropost).

13.1. A MICROPOST MODEL 719

As with the User model validations (Section 6.2), we’ll add the micropost
content validations using test-driven development. The resulting tests gener-
ally follow the examples from the User model validation tests, as shown in
Listing 13.7.

Listing 13.7: Tests for the Micropost model validations. red
test/models/micropost_test.rb

require 'test_helper'

class MicropostTest < ActiveSupport::TestCase

def setup

@user = users(:michael)

@micropost = Micropost.new(content: "Lorem ipsum", user_id: @user.id)

end

test "should be valid" do

assert @micropost.valid?

end

test "user id should be present" do

@micropost.user_id = nil

assert_not @micropost.valid?

end

test "content should be present" do

@micropost.content = " "

assert_not @micropost.valid?

end

test "content should be at most 140 characters" do

@micropost.content = "a" * 141

assert_not @micropost.valid?

end

end

As in Section 6.2, the code in Listing 13.7 uses string multiplication to test the
micropost length validation:

$ rails console

>> "a" * 10

=> "aaaaaaaaaa"

>> "a" * 141

=> "aaa

aa"

720 CHAPTER 13. USER MICROPOSTS

The corresponding application code is virtually identical to the name vali-
dation for users (Listing 6.16), as shown in Listing 13.8.

Listing 13.8: The Micropost model validations. green
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

validates :user_id, presence: true

validates :content, presence: true, length: { maximum: 140 }

end

At this point, the full test suite should be green:

Listing 13.9: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. At the console, instantiate a micropost with no user id and blank content.
Is it valid? What are the full error messages?

2. At the console, instantiate a second micropost with no user id and content
that’s too long. Is it valid? What are the full error messages?

13.1.3 User/Micropost associations
When constructing data models for web applications, it is essential to be able
to make associations between individual models. In the present case, each mi-
cropost is associated with one user, and each user is associated with (poten-
tially) many microposts—a relationship seen briefly in Section 2.3.3 and shown

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

13.1. A MICROPOST MODEL 721

micropost

user
micropost.user

be
lon
gs
_to

id
3 Lorem ipsum

content user_id
1

id
1 Michael Hartl

name email
mhartl@example.com

Figure 13.2: The belongs_to relationship between a micropost and its asso-
ciated user.

schematically in Figure 13.2 and Figure 13.3. As part of implementing these
associations, we’ll write tests for the Micropost model and add a couple of tests
to the User model.

Using the belongs_to/has_many association defined in this section,
Rails constructs the methods shown in Table 13.1. Note from Table 13.1 that
instead of

Micropost.create

Micropost.create!

Micropost.new

we have

user.microposts.create

user.microposts.create!

user.microposts.build

These latter methods constitute the idiomatically correct way to make a microp-
ost, namely, through its association with a user. When a new micropost is made
in this way, its user_id is automatically set to the right value. In particular,
we can replace the code

722 CHAPTER 13. USER MICROPOSTS

has_many

has_many

has_many

user.microposts

micropost
id
4 Dolor sit amet

content user_id
1

micropost
id
3 Lorem ipsum

content user_id
1

micropost
id
7 Consectetur

content user_id
1

user
id
1 Michael Hartl

name email
mhartl@example.com

Figure 13.3: The has_many relationship between a user and its microposts.

@user = users(:michael)

This code is not idiomatically correct.

@micropost = Micropost.new(content: "Lorem ipsum", user_id: @user.id)

from Listing 13.4 with this:

@user = users(:michael)

@micropost = @user.microposts.build(content: "Lorem ipsum")

(As with new, build returns an object in memory but doesn’t modify the da-
tabase.)4 Once we define the proper associations, the resulting @micropost
variable will automatically have a user_id attribute equal to its associated
user’s id.

To get code like @user.microposts.build to work, we need to update
the User and Micropost models with code to associate them. The first of these
was included automatically by the migration in Listing 13.3 via belongs_to
:user, as shown in Listing 13.10. The second half of the association, has_-
many :microposts, needs to be added by hand, as shown in (Listing 13.11).

4In fact, if you look at the source, you’ll see that build is actually just an alias for new. Thanks to reader
Abdullah Budri for pointing this out.

https://github.com/rails/rails/blob/master/activerecord/lib/active_record/relation.rb
https://www.rubyguides.com/2018/11/ruby-alias-keyword/

13.1. A MICROPOST MODEL 723

Method Purpose
micropost.user Returns the User object associated with the micropost
user.microposts Returns a collection of the user’s microposts
user.microposts.create(arg) Creates a micropost associated with user
user.microposts.create!(arg) Creates a micropost associated with user (exception on failure)
user.microposts.build(arg) Returns a new Micropost object associated with user
user.microposts.find_by(id: 1) Finds the micropost with id 1 and user_id equal to user.id

Table 13.1: A summary of user/micropost association methods.

Listing 13.10: A micropost belongs_to a user. green
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

validates :user_id, presence: true

validates :content, presence: true, length: { maximum: 140 }

end

Listing 13.11: A user has_many microposts. green
app/models/user.rb

class User < ApplicationRecord

has_many :microposts

.

.

.

end

With the association thus made, we can update the setup method in List-
ing 13.4 with the idiomatically correct way to build a new micropost, as shown
in Listing 13.12.

Listing 13.12: Using idiomatically correct code to build a micropost. green
test/models/micropost_test.rb

require 'test_helper'

class MicropostTest < ActiveSupport::TestCase

724 CHAPTER 13. USER MICROPOSTS

def setup

@user = users(:michael)

@micropost = @user.microposts.build(content: "Lorem ipsum")

end

test "should be valid" do

assert @micropost.valid?

end

test "user id should be present" do

@micropost.user_id = nil

assert_not @micropost.valid?

end

.

.

.

end

Of course, after this minor refactoring the test suite should still be green:

Listing 13.13: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Set user to the first user in the database. What happens when you exe-
cute the command micropost = user.microposts.create(con-

tent: "Lorem ipsum")?

2. The previous exercise should have created a micropost in the database.
Confirm this by running user.microposts.find(micropost.id).
What if you write micropost instead of micropost.id?

3. What is the value of user == micropost.user? How about user.-
microposts.first == micropost?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

13.1. A MICROPOST MODEL 725

13.1.4 Micropost refinements
In this section, we’ll add a couple of refinements to the user/micropost associ-
ation. In particular, we’ll arrange for a user’s microposts to be retrieved in a
specific order, and we’ll also make microposts dependent on users so that they
will be automatically destroyed if their associated user is destroyed.

Default scope
By default, the user.microposts method makes no guarantees about the or-
der of the posts, but (following the convention of blogs and Twitter) we want
the microposts to come out in reverse order of when they were created so that
the most recent post is first.5 We’ll arrange for this to happen using a default
scope.

This is exactly the sort of feature that could easily lead to a spurious passing
test (i.e., a test that would pass even if the application code were wrong), so
we’ll proceed using test-driven development to be sure we’re testing the right
thing. In particular, let’s write a test to verify that the first micropost in the
database is the same as a fixture micropost we’ll call most_recent, as shown
in Listing 13.14.

Listing 13.14: Testing the micropost order. red
test/models/micropost_test.rb

require 'test_helper'

class MicropostTest < ActiveSupport::TestCase

.

.

.

test "order should be most recent first" do

assert_equal microposts(:most_recent), Micropost.first

end

end

Listing 13.14 relies on having somemicropost fixtures, which we can define
in analogy with the user fixtures, last seen in Listing 11.5. In addition to the

5We briefly encountered a similar issue in Section 10.5 in the context of the users index.

726 CHAPTER 13. USER MICROPOSTS

content attribute defined in Section 13.1.1, we also need define the associated
user. Conveniently, Rails includes a way to build associations in fixtures, like
this:

orange:

content: "I just ate an orange!"

created_at: <%= 10.minutes.ago %>

user: michael

By identifying the user as michael, we tell Rails to associate this micropost
with the corresponding user in the users fixture:

michael:

name: Michael Example

email: michael@example.com

.

.

.

The full micropost fixtures appear in Listing 13.15.

Listing 13.15: Micropost fixtures.
test/fixtures/microposts.yml

orange:

content: "I just ate an orange!"

created_at: <%= 10.minutes.ago %>

user: michael

tau_manifesto:

content: "Check out the @tauday site by @mhartl: https://tauday.com"

created_at: <%= 3.years.ago %>

user: michael

cat_video:

content: "Sad cats are sad: https://youtu.be/PKffm2uI4dk"

created_at: <%= 2.hours.ago %>

user: michael

most_recent:

content: "Writing a short test"

created_at: <%= Time.zone.now %>

user: michael

13.1. A MICROPOST MODEL 727

Note that Listing 13.15 explicitly sets the created_at column using embed-
ded Ruby. Because it’s a “magic” column automatically updated by Rails, set-
ting created_at by hand isn’t ordinarily possible, but it is possible in fix-
tures.6

With the code in Listing 13.14 and Listing 13.15, the test suite should be
red:

Listing 13.16: red
$ rails test test/models/micropost_test.rb

We’ll get the test to pass using a Rails method called default_scope,
which among other things can be used to set the default order in which elements
are retrieved from the database. To enforce a particular order, we’ll include the
order argument in default_scope, which lets us order by the created_at
column as follows:

order(:created_at)

Unfortunately, this orders the results in ascending order from smallest to big-
gest, which means that the oldest microposts come out first. To pull them out
in reverse order, we can push down one level deeper and include a string with
some raw SQL:

order('created_at DESC')

Here DESC is SQL for “descending”, i.e., in descending order from newest to
oldest.7 In older versions of Rails, using this raw SQL used to be the only
option to get the desired behavior, but as of Rails 4.0 we can use a more natural
pure-Ruby syntax as well:

6In practice this might not be necessary, and in fact on many systems the fixtures are created in the order in
which they appear in the file. In this case, the final fixture in the file is created last (and hence is most recent), but
it would be foolish to rely on this behavior, which is brittle and probably system-dependent.

7SQL is case-insensitive, but it is conventional to write SQL keywords (such as DESC) in all-caps.

728 CHAPTER 13. USER MICROPOSTS

order(created_at: :desc)

Adding this in a default scope for the Micropost model gives Listing 13.17.

Listing 13.17: Ordering the microposts with default_scope. green
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

default_scope -> { order(created_at: :desc) }

validates :user_id, presence: true

validates :content, presence: true, length: { maximum: 140 }

end

Listing 13.17 introduces the “stabby lambda” syntax for an object called a
Proc (procedure) or lambda, which is an anonymous function (a function cre-
ated without a name). The stabby lambda -> takes in a block (Section 4.3.2)
and returns a Proc, which can then be evaluated with the callmethod. We can
see how it works at the console:

>> -> { puts "foo" }

=> #<Proc:0x007fab938d0108@(irb):1 (lambda)>

>> -> { puts "foo" }.call

foo

=> nil

(This is a somewhat advanced Ruby topic, so don’t worry if it doesn’t make
sense right away.)

With the code in Listing 13.17, the tests should be green:

Listing 13.18: green
$ rails test

13.1. A MICROPOST MODEL 729

Dependent: destroy
Apart from proper ordering, there is a second refinement we’d like to add to
microposts. Recall from Section 10.4 that site administrators have the power to
destroy users. It stands to reason that, if a user is destroyed, the user’s microp-
osts should be destroyed as well.

We can arrange for this behavior by passing an option to the has_many
association method, as shown in Listing 13.19.

Listing 13.19: Ensuring that a user’s microposts are destroyed along with the
user.
app/models/user.rb

class User < ApplicationRecord

has_many :microposts, dependent: :destroy

.

.

.

end

Here the option dependent: :destroy arranges for the dependent microp-
osts to be destroyed when the user itself is destroyed. This prevents userless
microposts from being stranded in the database when admins choose to remove
users from the system.

We can verify that Listing 13.19 is working with a test for the User model.
All we need to do is save the user (so it gets an id) and create an associated
micropost. Then we check that destroying the user reduces the micropost count
by 1. The result appears in Listing 13.20. (Compare to the integration test for
“delete” links in Listing 10.62.)

Listing 13.20: A test of dependent: :destroy. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

def setup

730 CHAPTER 13. USER MICROPOSTS

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password_confirmation: "foobar")

end

.

.

.

test "associated microposts should be destroyed" do

@user.save

@user.microposts.create!(content: "Lorem ipsum")

assert_difference 'Micropost.count', -1 do

@user.destroy

end

end

end

If the code in Listing 13.19 is working correctly, the test suite should still
be green:

Listing 13.21: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. How does the value of Micropost.first.created_at compare to
Micropost.last.created_at?

2. What are the SQL queries for Micropost.first and Micropost.last? Hint:
They are printed out by the console.

3. Let user be the first user in the database. What is the id of its first micro-
post? Destroy the first user in the database using the destroy method,
then confirm using Micropost.find that the user’s first micropost was
also destroyed.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

13.2. SHOWING MICROPOSTS 731

13.2 Showing microposts
Although we don’t yet have a way to create microposts through the web—that
comes in Section 13.3.2—this won’t stop us from displaying them (and testing
that display). Following Twitter’s lead, we’ll plan to display a user’s microposts
not on a separate microposts index page but rather directly on the user show
page itself, as mocked up in Figure 13.4. We’ll start with fairly simple ERb
templates for adding a micropost display to the user profile, and then we’ll add
microposts to the seed data from Section 10.3.2 so that we have something to
display.

13.2.1 Rendering microposts
Our plan is to display the microposts for each user on their respective profile
page (show.html.erb), together with a running count of how many microp-
osts they’ve made. As we’ll see, many of the ideas are similar to our work in
Section 10.3 on showing all users.

In case you’ve added some microposts in the exercises, it’s a good idea to
reset and reseed the database at this time:

$ rails db:migrate:reset

$ rails db:seed

Although we won’t need the Microposts controller until Section 13.3, we
will need the views directory in just a moment, so let’s generate the controller
now:

$ rails generate controller Microposts

Our primary purpose in this section is to render all the microposts for each
user. We saw in Section 10.3.5 that the code

732 CHAPTER 13. USER MICROPOSTS

Figure 13.4: A mockup of a profile page with microposts.

13.2. SHOWING MICROPOSTS 733

<ul class="users">

<%= render @users %>

automatically renders each of the users in the @users variable using the _us-
er.html.erb partial. We’ll define an analogous _micropost.html.erb
partial so that we can use the same technique on a collection of microposts as
follows:

<ol class="microposts">

<%= render @microposts %>

Note that we’ve used the ordered list tag ol (as opposed to an unordered list ul)
because microposts are listed in a particular order (reverse-chronological). The
corresponding partial appears in Listing 13.22.

Listing 13.22: A partial for showing a single micropost.
app/views/microposts/_micropost.html.erb

<li id="micropost-<%= micropost.id %>">

<%= link_to gravatar_for(micropost.user, size: 50), micropost.user %>

<%= link_to micropost.user.name, micropost.user %>

<%= micropost.content %>

Posted <%= time_ago_in_words(micropost.created_at) %> ago.

This uses the awesome time_ago_in_words helper method, whose meaning
is probably clear and whose effect we will see in Section 13.2.2. Listing 13.22
also adds a CSS id for each micropost using

<li id="micropost-<%= micropost.id %>">

This is a generally good practice, as it opens up the possibility of manipulating
individual microposts at a future date (using JavaScript, for example).

734 CHAPTER 13. USER MICROPOSTS

The next step is to address the difficulty of displaying a potentially large
number of microposts. We’ll solve this problem the same way we solved it
for users in Section 10.3.3, namely, using pagination. As before, we’ll use the
will_paginate method:

<%= will_paginate @microposts %>

If you compare this with the analogous line on the user index page,
Listing 10.45, you’ll see that before we had just

<%= will_paginate %>

This worked because, in the context of the Users controller, will_paginate
assumes the existence of an instance variable called @users (which, as we
saw in Section 10.3.3, should be of class ActiveRecord::Relation). In
the present case, since we are still in the Users controller but want to paginate
microposts instead, we’ll pass an explicit @microposts variable to will_pa-
ginate. Of course, this means that we will have to define such a variable in
the user show action (Listing 13.23).

Listing 13.23: Adding an @microposts instance variable to the user show
action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def show

@user = User.find(params[:id])

@microposts = @user.microposts.paginate(page: params[:page])

end

.

.

.

end

13.2. SHOWING MICROPOSTS 735

Notice here how clever paginate is—it even works through the microposts
association, reaching into the microposts table and pulling out the desired
page of microposts.

Our final task is to display the number of microposts for each user, which
we can do with the count method:

user.microposts.count

As with paginate, we can use the count method through the association.
In particular, count does not pull all the microposts out of the database and
then call length on the resulting array, as this would become inefficient as the
number of microposts grew. Instead, it performs the calculation directly in the
database, asking the database to count the microposts with the given user_id
(an operation for which all databases are highly optimized). (In the unlikely
event that finding the count is still a bottleneck in your application, you can
make it even faster using a counter cache.)

Putting all the elements above together, we are now in a position to add
microposts to the profile page, as shown in Listing 13.24. Note the use of if
@user.microposts.any? (a construction we saw before in Listing 7.21),
which makes sure that an empty list won’t be displayed when the user has no
microposts.

Listing 13.24: Adding microposts to the user show page.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<h1>

<%= gravatar_for @user %>

<%= @user.name %>

</h1>

</section>

</aside>

<div class="col-md-8">

<% if @user.microposts.any? %>

<h3>Microposts (<%= @user.microposts.count %>)</h3>

http://railscasts.com/episodes/23-counter-cache-column

736 CHAPTER 13. USER MICROPOSTS

Figure 13.5: The user profile page with code for microposts—but no microp-
osts.

<ol class="microposts">

<%= render @microposts %>

<%= will_paginate @microposts %>

<% end %>

</div>

</div>

At this point, we can get a look at our updated user profile page in Fig-
ure 13.5. It’s rather…disappointing. Of course, this is because there are not
currently any microposts. It’s time to change that.

13.2. SHOWING MICROPOSTS 737

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. As mentioned briefly in Section 7.3.3, helper methods like time_ago_-
in_words are available in the Rails console via the helper object. Us-
ing helper, apply time_ago_in_words to 3.weeks.ago and 6.-

months.ago.

2. What is the result of helper.time_ago_in_words(1.year.ago)?

3. What is the Ruby class for a page of microposts? Hint: Use the code in
Listing 13.23 as your model, and call the class method on paginate
with the argument page: nil.

13.2.2 Sample microposts
With all the work making templates for user microposts in Section 13.2.1, the
ending was rather anticlimactic. We can rectify this sad situation by adding
microposts to the seed data from Section 10.3.2.

Adding sample microposts for all the users actually takes a rather long time,
so first we’ll select just the first six users (i.e., the five users with custom Gra-
vatars, and one with the default Gravatar) using the take method:

User.order(:created_at).take(6)

The call to order ensures that we find the first six users that were created.
For each of the selected users, we’ll make 50 microposts (plenty to overflow

the pagination limit of 30). To generate sample content for each micropost,
we’ll use the Faker gem’s handy Lorem.sentence method.8 The result is

8Faker::Lorem.sentence returns lorem ipsum text; as noted in Chapter 6, lorem ipsum has a fascinating
back story.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://rubydoc.info/gems/faker/1.3.0/Faker/Lorem
http://www.straightdope.com/columns/read/2290/what-does-the-filler-text-lorem-ipsum-mean
http://www.straightdope.com/columns/read/2290/what-does-the-filler-text-lorem-ipsum-mean

738 CHAPTER 13. USER MICROPOSTS

the new seed data method shown in Listing 13.25. (The reason for the order
of the loops in Listing 13.25 is to intermix the microposts for use in the status
feed (Section 14.3). Looping over the users first gives feeds with big runs of
microposts from the same user, which is visually unappealing.)

Listing 13.25: Adding microposts to the sample data.
db/seeds.rb

.

.

.

Generate microposts for a subset of users.

users = User.order(:created_at).take(6)

50.times do

content = Faker::Lorem.sentence(word_count: 5)

users.each { |user| user.microposts.create!(content: content) }

end

At this point, we can reseed the development database as usual:

$ rails db:migrate:reset

$ rails db:seed

You should also quit and restart the Rails development server.
With that, we are in a position to enjoy the fruits of our Section 13.2.1 labors

by displaying information for each micropost.9 The preliminary results appear
in Figure 13.6.

The page shown in Figure 13.6 has no micropost-specific styling, so let’s
add some (Listing 13.26) and take a look at the resulting pages.10

Listing 13.26: The CSS for microposts (including all the CSS for this chap-
ter).
app/assets/stylesheets/custom.scss

9By design, the Faker gem’s lorem ipsum text is randomized, so the contents of your sample microposts will
differ.

10For convenience, Listing 13.26 actually has all the CSS needed for this chapter.

13.2. SHOWING MICROPOSTS 739

Figure 13.6: The user profile with unstyled microposts.

740 CHAPTER 13. USER MICROPOSTS

.

.

.

/* microposts */

.microposts {

list-style: none;

padding: 0;

li {

padding: 10px 0;

border-top: 1px solid #e8e8e8;

}

.user {

margin-top: 5em;

padding-top: 0;

}

.content {

display: block;

margin-left: 60px;

img {

display: block;

padding: 5px 0;

}

}

.timestamp {

color: $gray-light;

display: block;

margin-left: 60px;

}

.gravatar {

float: left;

margin-right: 10px;

margin-top: 5px;

}

}

aside {

textarea {

height: 100px;

margin-bottom: 5px;

}

}

span.image {

margin-top: 10px;

input {

border: 0;

}

}

Figure 13.7 shows the user profile page for the first user, while Figure 13.8

13.2. SHOWING MICROPOSTS 741

Figure 13.7: The user profile with microposts (/users/1).

shows the profile for a second user. Finally, Figure 13.9 shows the second page
of microposts for the first user, along with the pagination links at the bottom
of the display. In all three cases, observe that each micropost display indicates
the time since it was created (e.g., “Posted 1 minute ago.”); this is the work of
the time_ago_in_words method from Listing 13.22. If you wait a couple of
minutes and reload the pages, you’ll see how the text gets automatically updated
based on the new time.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

742 CHAPTER 13. USER MICROPOSTS

Figure 13.8: The profile of a different user, also with microposts (/users/5).

13.2. SHOWING MICROPOSTS 743

Figure 13.9: Micropost pagination links (/users/1?page=2).

744 CHAPTER 13. USER MICROPOSTS

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. See if you can guess the result of running (1..10).to_a.take(6).
Check at the console to see if your guess is right.

2. Is the to_a method in the previous exercise necessary?

3. Faker has a huge number of occasionally amusing applications. By con-
sulting the Faker documentation, learn how to print out a fake university
name, a fake phone number, a fake Hipster Ipsum sentence, and a fake
Chuck Norris fact.

13.2.3 Profile micropost tests
Because newly activated users get redirected to their profile pages, we already
have a test that the profile page renders correctly (Listing 11.33). In this sec-
tion, we’ll write a short integration test for some of the other elements on the
profile page, including the work from this section. We’ll start by generating an
integration test for the profiles of our site’s users:

$ rails generate integration_test users_profile

invoke test_unit

create test/integration/users_profile_test.rb

To test micropost pagination, we’ll also generate some additional micropost
fixtures using the same embedded Ruby technique we used to make additional
users in Listing 10.47:

<% 30.times do |n| %>

micropost_<%= n %>:

content: <%= Faker::Lorem.sentence(5) %>

created_at: <%= 42.days.ago %>

user: michael

<% end %>

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://github.com/stympy/faker
https://github.com/faker-ruby/faker/blob/master/doc/default/university.md
https://github.com/faker-ruby/faker/blob/master/doc/default/university.md
https://github.com/faker-ruby/faker/blob/master/doc/default/phone_number.md
https://github.com/faker-ruby/faker/blob/master/doc/default/hipster.md
https://github.com/faker-ruby/faker/blob/master/doc/default/chuck_norris.md

13.2. SHOWING MICROPOSTS 745

Adding this to the code from Listing 13.15 gives the updated micropost fixtures
in Listing 13.27.

Listing 13.27: Micropost fixtures with generated micropsts.
test/fixtures/microposts.yml

orange:

content: "I just ate an orange!"

created_at: <%= 10.minutes.ago %>

user: michael

tau_manifesto:

content: "Check out the @tauday site by @mhartl: https://tauday.com"

created_at: <%= 3.years.ago %>

user: michael

cat_video:

content: "Sad cats are sad: https://youtu.be/PKffm2uI4dk"

created_at: <%= 2.hours.ago %>

user: michael

most_recent:

content: "Writing a short test"

created_at: <%= Time.zone.now %>

user: michael

<% 30.times do |n| %>

micropost_<%= n %>:

content: <%= Faker::Lorem.sentence(word_count: 5) %>

created_at: <%= 42.days.ago %>

user: michael

<% end %>

With the test data thus prepared, the test itself is fairly straightforward: we
visit the user profile page and check for the page title and the user’s name,
Gravatar, micropost count, and paginated microposts. The result appears in
Listing 13.28. Note the use of the full_title helper from Listing 4.2 to test
the page’s title, which we gain access to by including the Application Helper
module into the test.11

11If you’d like to refactor other tests to use full_title (such as those in Listing 3.32), you should include the
Application Helper in test_helper.rb instead.

746 CHAPTER 13. USER MICROPOSTS

Listing 13.28: A test for the user profile. green
test/integration/users_profile_test.rb

require 'test_helper'

class UsersProfileTest < ActionDispatch::IntegrationTest

include ApplicationHelper

def setup

@user = users(:michael)

end

test "profile display" do

get user_path(@user)

assert_template 'users/show'

assert_select 'title', full_title(@user.name)

assert_select 'h1', text: @user.name

assert_select 'h1>img.gravatar'

assert_match @user.microposts.count.to_s, response.body

assert_select 'div.pagination'

@user.microposts.paginate(page: 1).each do |micropost|

assert_match micropost.content, response.body

end

end

end

The micropost count assertion in Listing 13.28 uses response.body, which
we saw briefly in the Chapter 12 exercises (Section 12.3.3). Despite its name,
response.body contains the full HTML source of the page (and not just the
page’s body). This means that if all we care about is that the number of micro-
posts appears somewhere on the page, we can look for a match as follows:

assert_match @user.microposts.count.to_s, response.body

This is a much less specific assertion than assert_select; in particular, un-
like assert_select, using assert_match in this context doesn’t require us
to indicate which HTML tag we’re looking for.

Listing 13.28 also introduces the nesting syntax for assert_select:

13.3. MANIPULATING MICROPOSTS 747

assert_select 'h1>img.gravatar'

This checks for an img tag with class gravatar inside a top-level heading tag
(h1).

Because the application code was working, the test suite should be green:

Listing 13.29: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Comment out the application code needed to change the two 'h1' lines
in Listing 13.28 from green to red.

2. Update Listing 13.28 to test that will_paginate appears only once.
Hint: Refer to Table 5.2.

13.3 Manipulating microposts
Having finished both the data modeling and display templates for microposts,
we now turn our attention to the interface for creating them through the web.
In this section, we’ll also see the first hint of a status feed—a notion brought
to full fruition in Chapter 14. Finally, as with users, we’ll make it possible to
destroy microposts through the web.

There is one break with past convention worth noting: the interface to the
Microposts resource will run principally through the Profile and Home pages,
so we won’t need actions like new or edit in the Microposts controller; we’ll
need only create and destroy. This leads to the routes for the Microposts

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

748 CHAPTER 13. USER MICROPOSTS

HTTP request URL Action Named route
POST /microposts create microposts_path

DELETE /microposts/1 destroy micropost_path(micropost)

Table 13.2: RESTful routes provided by the Microposts resource in List-
ing 13.30.

resource shown in Listing 13.30. The code in Listing 13.30 leads in turn to
the RESTful routes shown in Table 13.2, which is a small subset of the full set
of routes seen in Table 2.3. Of course, this simplicity is a sign of being more
advanced, not less—we’ve come a long way since our reliance on scaffolding
in Chapter 2, and we no longer need most of its complexity.

Listing 13.30: Routes for the Microposts resource.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

get '/login', to: 'sessions#new'

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users

resources :account_activations, only: [:edit]

resources :password_resets, only: [:new, :create, :edit, :update]

resources :microposts, only: [:create, :destroy]

end

13.3.1 Micropost access control
We begin our development of the Microposts resource with some access con-
trol in the Microposts controller. In particular, because we access microposts
through their associated users, both the create and destroy actions must
require users to be logged in.

13.3. MANIPULATING MICROPOSTS 749

Tests to enforce logged-in status mirror those for the Users controller (List-
ing 10.20 and Listing 10.61). We simply issue the correct request to each action
and confirm that the micropost count is unchanged and the result is redirected
to the login URL, as seen in Listing 13.31.

Listing 13.31: Authorization tests for the Microposts controller. red
test/controllers/microposts_controller_test.rb

require 'test_helper'

class MicropostsControllerTest < ActionDispatch::IntegrationTest

def setup

@micropost = microposts(:orange)

end

test "should redirect create when not logged in" do

assert_no_difference 'Micropost.count' do

post microposts_path, params: { micropost: { content: "Lorem ipsum" } }

end

assert_redirected_to login_url

end

test "should redirect destroy when not logged in" do

assert_no_difference 'Micropost.count' do

delete micropost_path(@micropost)

end

assert_redirected_to login_url

end

end

Writing the application code needed to get the tests in Listing 13.31 to pass
requires a little refactoring first. Recall from Section 10.2.1 that we enforced
the login requirement using a before filter that called the logged_in_user
method (Listing 10.15). At the time, we needed that method only in the Users
controller, but now we find that we need it in the Microposts controller as well,
so we’ll move it into the Application controller, which is the base class of all
controllers (Section 4.4.4).12 The result appears in Listing 13.32.

12Note that, unlike the behavior in languages like Java or C++, private methods in Ruby can be called from
derived classes. Thanks to reader Vishal Antony for bringing this difference to my attention.

https://stackoverflow.com/questions/3534449/why-does-ruby-have-both-private-and-protected-methods/3534581#3534581

750 CHAPTER 13. USER MICROPOSTS

Listing 13.32: Moving the logged_in_user method into the Application
controller. red
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

include SessionsHelper

private

Confirms a logged-in user.

def logged_in_user

unless logged_in?

store_location

flash[:danger] = "Please log in."

redirect_to login_url

end

end

end

To avoid code repetition, you should also remove logged_in_user from the
Users controller at this time (Listing 13.33).

Listing 13.33: The Users controller with the logged-in user filter removed.
red
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update, :destroy]

.

.

.

private

def user_params

params.require(:user).permit(:name, :email, :password,

:password_confirmation)

end

Before filters

Confirms the correct user.

def correct_user

@user = User.find(params[:id])

redirect_to(root_url) unless current_user?(@user)

end

13.3. MANIPULATING MICROPOSTS 751

Confirms an admin user.

def admin_user

redirect_to(root_url) unless current_user.admin?

end

end

With the code in Listing 13.32, the logged_in_usermethod is now avail-
able in the Microposts controller, which means that we can add create and
destroy actions and then restrict access to them using a before filter, as shown
in Listing 13.34.

Listing 13.34: Adding authorization to the Microposts controller actions.
green
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before_action :logged_in_user, only: [:create, :destroy]

def create

end

def destroy

end

end

At this point, the tests should pass:

Listing 13.35: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Why is it a bad idea to leave a copy of logged_in_user in the Users
controller?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

752 CHAPTER 13. USER MICROPOSTS

13.3.2 Creating microposts
In Chapter 7, we implemented user signup by making an HTML form that is-
sued an HTTP POST request to the create action in the Users controller. The
implementation of micropost creation is similar; the main difference is that,
rather than using a separate page at /microposts/new, we will put the form on
the Home page itself (i.e., the root path /), as mocked up in Figure 13.10.

When we last left the Home page, it appeared as in Figure 5.8—that is, it
had a “Sign up now!” button in the middle. Since a micropost creation form
makes sense only in the context of a particular logged-in user, one goal of this
section will be to serve different versions of the Home page depending on a
visitor’s login status. We’ll implement this in Listing 13.37 below.

We’ll start with the create action for microposts, which is similar to its
user analogue (Listing 7.26); the principal difference lies in using the user/mi-
cropost association to build the new micropost, as seen in Listing 13.36. Note
the use of strong parameters via micropost_params, which permits only the
micropost’s content attribute to be modified through the web.

Listing 13.36: The Microposts controller create action.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before_action :logged_in_user, only: [:create, :destroy]

def create

@micropost = current_user.microposts.build(micropost_params)

if @micropost.save

flash[:success] = "Micropost created!"

redirect_to root_url

else

render 'static_pages/home'

end

end

def destroy

end

private

def micropost_params

params.require(:micropost).permit(:content)

end

end

13.3. MANIPULATING MICROPOSTS 753

Figure 13.10: A mockup of the Home page with a form for creating microposts.

754 CHAPTER 13. USER MICROPOSTS

To build a form for creating microposts, we use the code in Listing 13.37,
which serves up different HTML based on whether the site visitor is logged in
or not.

Listing 13.37: Adding microposts creation to the Home page (/).
app/views/static_pages/home.html.erb

<% if logged_in? %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<%= render 'shared/user_info' %>

</section>

<section class="micropost_form">

<%= render 'shared/micropost_form' %>

</section>

</aside>

</div>

<% else %>

<div class="center jumbotron">

<h1>Welcome to the Sample App</h1>

<h2>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</h2>

<%= link_to "Sign up now!", signup_path, class: "btn btn-lg btn-primary" %>

</div>

<%= link_to image_tag("rails.svg", alt: "Rails logo", width: "200"),

"https://rubyonrails.org/" %>

<% end %>

(Having so much code in each branch of the if-else conditional is a bit messy,
and cleaning it up using partials is left as an exercise (Section 13.3.2).)

To get the page defined in Listing 13.37 working, we need to create and fill
in a couple of partials. The first is the new Home page sidebar, as shown in
Listing 13.38.

Listing 13.38: The partial for the user info sidebar.
app/views/shared/_user_info.html.erb

13.3. MANIPULATING MICROPOSTS 755

<%= link_to gravatar_for(current_user, size: 50), current_user %>

<h1><%= current_user.name %></h1>

<%= link_to "view my profile", current_user %>

<%= pluralize(current_user.microposts.count, "micropost") %>

Note that, as in the profile sidebar (Listing 13.24), the user info in List-
ing 13.38 displays the total number of microposts for the user. There’s a slight
difference in the display, though; in the profile sidebar, “Microposts” is a label,
and showing “Microposts (1)” makes sense. In the present case, though, saying
“1 microposts” is ungrammatical, so we arrange to display “1 micropost” and
“2 microposts” using the pluralize method we saw in Section 7.3.3.

We next define the form for creating microposts (Listing 13.39), which is
similar to the signup form in Listing 7.15.

Listing 13.39: The form partial for creating microposts.
app/views/shared/_micropost_form.html.erb

<%= form_with(model: @micropost, local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

<div class="field">

<%= f.text_area :content, placeholder: "Compose new micropost..." %>

</div>

<%= f.submit "Post", class: "btn btn-primary" %>

<% end %>

We need to make two changes before the form in Listing 13.39 will work.
First, we need to define @micropost, which (as before) we do through the
association:

@micropost = current_user.microposts.build

The result appears in Listing 13.40.

Listing 13.40: Adding a micropost instance variable to the home action.
app/controllers/static_pages_controller.rb

756 CHAPTER 13. USER MICROPOSTS

class StaticPagesController < ApplicationController

def home

@micropost = current_user.microposts.build if logged_in?

end

def help

end

def about

end

def contact

end

end

Of course, current_user exists only if the user is logged in, so the @micro-
post variable should only be defined in this case.

The second change needed to get Listing 13.39 to work is to redefine the
error-messages partial so the following code from Listing 13.39 works:

<%= render 'shared/error_messages', object: f.object %>

You may recall from Listing 7.20 that the error-messages partial references the
@user variable explicitly, but in the present case we have an @micropost

variable instead. To unify these cases, we can pass the form variable f to the
partial and access the associated object through f.object, so that in

form_with(model: @user, local: true) do |f|

f.object is @user, and in

form_with(model: @micropost, local: true) do |f|

f.object is @micropost, etc.
To pass the object to the partial, we use a hash with value equal to the ob-

ject and key equal to the desired name of the variable in the partial, which is

13.3. MANIPULATING MICROPOSTS 757

what the second line in Listing 13.39 accomplishes. In other words, object:
f.object creates a variable called object in the error_messages partial,
and we can use it to construct a customized error message, as shown in List-
ing 13.41.

Listing 13.41: Error messages that work with other objects. red
app/views/shared/_error_messages.html.erb

<% if object.errors.any? %>

<div id="error_explanation">

<div class="alert alert-danger">

The form contains <%= pluralize(object.errors.count, "error") %>.

</div>

<% object.errors.full_messages.each do |msg| %>

<%= msg %>

<% end %>

</div>

<% end %>

At this point, you should verify that the test suite is red:

Listing 13.42: red
$ rails test

This is a hint that we need to update the other occurrences of the error-messages
partial, which we used when signing up users (Listing 7.20), resetting pass-
words (Listing 12.14), and editing users (Listing 10.2). The updated versions
are shown in Listing 13.43, Listing 13.45, and Listing 13.44.

Listing 13.43: Updating the rendering of user signup errors. red
app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

<div class="row">

758 CHAPTER 13. USER MICROPOSTS

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Create my account", class: "btn btn-primary" %>

<% end %>

</div>

</div>

Listing 13.44: Updating the errors for editing users. red
app/views/users/edit.html.erb

<% provide(:title, "Edit user") %>

<h1>Update your profile</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

<%= f.label :name %>

<%= f.text_field :name, class: 'form-control' %>

<%= f.label :email %>

<%= f.email_field :email, class: 'form-control' %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Save changes", class: "btn btn-primary" %>

<% end %>

<div class="gravatar_edit">

<%= gravatar_for @user %>

13.3. MANIPULATING MICROPOSTS 759

change

</div>

</div>

</div>

Listing 13.45: Updating the errors for password resets. green
app/views/password_resets/edit.html.erb

<% provide(:title, 'Reset password') %>

<h1>Reset password</h1>

<div class="row">

<div class="col-md-6 col-md-offset-3">

<%= form_with(model: @user, url: password_reset_path(params[:id]),

local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

<%= hidden_field_tag :email, @user.email %>

<%= f.label :password %>

<%= f.password_field :password, class: 'form-control' %>

<%= f.label :password_confirmation, "Confirmation" %>

<%= f.password_field :password_confirmation, class: 'form-control' %>

<%= f.submit "Update password", class: "btn btn-primary" %>

<% end %>

</div>

</div>

At this point, all the tests should be green:

$ rails test

Additionally, all the HTML in this section should render properly, showing the
form as in Figure 13.11, and a form with a submission error as in Figure 13.12.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

760 CHAPTER 13. USER MICROPOSTS

Figure 13.11: The Home page with a new micropost form.

13.3. MANIPULATING MICROPOSTS 761

Figure 13.12: The Home page with a form error.

762 CHAPTER 13. USER MICROPOSTS

1. Refactor the Home page to use separate partials for the two branches of
the if-else statement.

13.3.3 A proto-feed
Although the micropost form is actually now working, users can’t immedi-
ately see the results of a successful submission because the current Home page
doesn’t display any microposts. If you like, you can verify that the form shown
in Figure 13.11 is working by submitting a valid entry and then navigating to the
profile page to see the post, but that’s rather cumbersome. It would be far bet-
ter to have a feed of microposts that includes the user’s own posts, as mocked
up in Figure 13.13. (In Chapter 14, we’ll generalize this feed to include the
microposts of users being followed by the current user, à la Twitter.)

Since each user should have a feed, we are led naturally to a feed method
in the User model, which will initially just select all the microposts belong-
ing to the current user. We’ll accomplish this using the where method on the
Micropost model (seen briefly before in Section 11.3.3), as shown in List-
ing 13.46.13

Listing 13.46: A preliminary implementation for the micropost status feed.
app/models/user.rb

class User < ApplicationRecord

.

.

.

Defines a proto-feed.

See "Following users" for the full implementation.

def feed

Micropost.where("user_id = ?", id)

end

private

.

.

.

end

13See the Rails Guide on the Active Record Query Interface for more on where and related methods.

https://guides.rubyonrails.org/active_record_querying.html

13.3. MANIPULATING MICROPOSTS 763

Figure 13.13: A mockup of the Home page with a proto-feed.

764 CHAPTER 13. USER MICROPOSTS

The question mark in

Micropost.where("user_id = ?", id)

ensures that id is properly escaped before being included in the underlying
SQL query, thereby avoiding a serious security hole called SQL injection. The
id attribute here is just an integer (i.e., self.id, the unique ID of the user), so
there is no danger of SQL injection in this case, but it does no harm, and always
escaping variables injected into SQL statements is a good habit to cultivate.

Alert readers might note at this point that the code in Listing 13.46 is essen-
tially equivalent to writing

def feed

microposts

end

We’ve used the code in Listing 13.46 instead because it generalizes much more
naturally to the full status feed needed in Chapter 14.

To use the feed in the sample application, we add an @feed_items instance
variable for the current user’s (paginated) feed, as in Listing 13.47, and then
add a status feed partial (Listing 13.48) to the Home page (Listing 13.49). Note
that, now that there are two lines that need to be run when the user is logged in,
Listing 13.47 changes

@micropost = current_user.microposts.build if logged_in?

from Listing 13.40 to

if logged_in?

@micropost = current_user.microposts.build

@feed_items = current_user.feed.paginate(page: params[:page])

end

thereby moving the conditional from the end of the line to an if-end statement.

https://en.wikipedia.org/wiki/SQL_injection

13.3. MANIPULATING MICROPOSTS 765

Listing 13.47: Adding a feed instance variable to the home action.
app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

if logged_in?

@micropost = current_user.microposts.build

@feed_items = current_user.feed.paginate(page: params[:page])

end

end

def help

end

def about

end

def contact

end

end

Listing 13.48: The status feed partial.
app/views/shared/_feed.html.erb

<% if @feed_items.any? %>

<ol class="microposts">

<%= render @feed_items %>

<%= will_paginate @feed_items %>

<% end %>

The status feed partial defers the rendering to the micropost partial defined
in Listing 13.22:

<%= render @feed_items %>

Here Rails knows to call the micropost partial because each element of
@feed_items has class Micropost. This causes Rails to look for a partial
with the corresponding name in the views directory of the given resource:

766 CHAPTER 13. USER MICROPOSTS

app/views/microposts/_micropost.html.erb

We can add the feed to the Home page by rendering the feed partial as usual
(Listing 13.49). The result is a display of the feed on the Home page, as required
(Figure 13.14).

Listing 13.49: Adding a status feed to the Home page.
app/views/static_pages/home.html.erb

<% if logged_in? %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<%= render 'shared/user_info' %>

</section>

<section class="micropost_form">

<%= render 'shared/micropost_form' %>

</section>

</aside>

<div class="col-md-8">

<h3>Micropost Feed</h3>

<%= render 'shared/feed' %>

</div>

</div>

<% else %>

.

.

.

<% end %>

At this point, creating a new micropost works as expected, as seen in Fig-
ure 13.15.

There is one subtlety, though: on failed micropost submission, the Home
page expects an @feed_items instance variable, so failed submissions cur-
rently break. The solution is to create the necessary feed variable in the branch
for failed submissions in the Microposts controller create action, as shown in
Listing 13.50.

13.3. MANIPULATING MICROPOSTS 767

Figure 13.14: The Home page with a proto-feed.

768 CHAPTER 13. USER MICROPOSTS

Figure 13.15: The Home page after creating a new micropost.

13.3. MANIPULATING MICROPOSTS 769

Listing 13.50: Adding an (empty) @feed_items instance variable to the
create action.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before_action :logged_in_user, only: [:create, :destroy]

def create

@micropost = current_user.microposts.build(micropost_params)

if @micropost.save

flash[:success] = "Micropost created!"

redirect_to root_url

else

@feed_items = current_user.feed.paginate(page: params[:page])

render 'static_pages/home'

end

end

def destroy

end

private

def micropost_params

params.require(:micropost).permit(:content)

end

end

Unfortunately, pagination still doesn’t quite work. We can see why by sub-
mitting an invalid micropost, say, one whose length is too long (Figure 13.16).

Scrolling down to the pagination links, we see links on both “2” and “Next”
pointing to the next page (Figure 13.17). Because the create action is in the
Microposts controller (Listing 13.50), the URL is /microposts?page=2, which
tries to go to the nonexistent Microposts index action. As a result, clicking on
either link gives a routing error (Figure 13.18).

We can solve this problem by giving will_paginate explicit control-
ler and action parameters corresponding to the Home page, i.e., the
static_pages controller and the home action.14 The result appears in List-
ing 13.51.

14Thanks to reader Martin Francl for pointing out this solution.

770 CHAPTER 13. USER MICROPOSTS

Figure 13.16: An invalid micropost on the Home page.

13.3. MANIPULATING MICROPOSTS 771

Figure 13.17: The next link on the Home page.

772 CHAPTER 13. USER MICROPOSTS

Figure 13.18: A routing error on page 2.

13.3. MANIPULATING MICROPOSTS 773

Listing 13.51: Setting an explicit controller and action.
app/views/shared/_feed.html.erb

<% if @feed_items.any? %>

<ol class="microposts">

<%= render @feed_items %>

<%= will_paginate @feed_items,

params: { controller: :static_pages, action: :home } %>

<% end %>

Now clicking on either of the pagination links in Figure 13.17 yields the
expected second page, as shown in Figure 13.19.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Use the newly created micropost UI to create the first real micropost.
What are the contents of the INSERT command in the server log?

2. In the console, set user to the first user in the database. Confirm that the
values of Micropost.where("user_id = ?", user.id),
user.microposts, and user.feed are all the same. Hint: It’s proba-
bly easiest to compare directly using ==.

13.3.4 Destroying microposts
The last piece of functionality to add to the Microposts resource is the ability to
destroy posts. As with user deletion (Section 10.4.2), we accomplish this with
“delete” links, as mocked up in Figure 13.20. Unlike that case, which restricted
user destruction to admin users, the delete links will work only for microposts
created by the current user.

Our first step is to add a delete link to the micropost partial as in List-
ing 13.22. The result appears in Listing 13.52.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

774 CHAPTER 13. USER MICROPOSTS

Figure 13.19: The result of a working pagination link to the second page.

13.3. MANIPULATING MICROPOSTS 775

Figure 13.20: A mockup of the proto-feed with micropost delete links.

776 CHAPTER 13. USER MICROPOSTS

Listing 13.52: Adding a delete link to the micropost partial.
app/views/microposts/_micropost.html.erb

<li id="micropost-<%= micropost.id %>">

<%= link_to gravatar_for(micropost.user, size: 50), micropost.user %>

<%= link_to micropost.user.name, micropost.user %>

<%= micropost.content %>

Posted <%= time_ago_in_words(micropost.created_at) %> ago.

<% if current_user?(micropost.user) %>

<%= link_to "delete", micropost, method: :delete,

data: { confirm: "You sure?" } %>

<% end %>

The next step is to define a destroy action in the Microposts controller,
which is analogous to the user case in Listing 10.59. Themain difference is that,
rather than using an @user variable with an admin_user before filter, we’ll
find themicropost through the association, whichwill automatically fail if a user
tries to delete another user’s micropost. We’ll put the resulting find inside a
correct_user before filter, which checks that the current user actually has a
micropost with the given id. The result appears in Listing 13.53.

Listing 13.53: The Microposts controller destroy action.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before_action :logged_in_user, only: [:create, :destroy]

before_action :correct_user, only: :destroy

.

.

.

def destroy

@micropost.destroy

flash[:success] = "Micropost deleted"

redirect_to request.referrer || root_url

end

private

def micropost_params

params.require(:micropost).permit(:content)

13.3. MANIPULATING MICROPOSTS 777

end

def correct_user

@micropost = current_user.microposts.find_by(id: params[:id])

redirect_to root_url if @micropost.nil?

end

end

Note that the destroy method in Listing 13.53 redirects to the URL

request.referrer || root_url

This uses the request.referrer method,15 which is related to the
request.original_url variable used in friendly forwarding
(Section 10.2.3), and is just the previous URL (in this case, the Home page).16
This is convenient because microposts appear on both the Home page and on
the user’s profile page, so by using request.referrerwe arrange to redirect
back to the page issuing the delete request in both cases. If the referring URL
is nil (as is the case inside some tests), Listing 13.53 sets the root_url as
the default using the || operator. (Compare to the default options defined in
Listing 9.24.)

With the code as above, the Home page has working delete links (Fig-
ure 13.21), which you can verify by deleting, e.g., the second post (Figure
13.22).

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Create a new micropost and then delete it. What are the contents of the
DELETE command in the server log?

15This corresponds to HTTP_REFERER, as defined by the specification for HTTP. Note that “referer” is not a
typo—the word is actually misspelled in the spec. Rails corrects this error by writing “referrer” instead.

16I didn’t remember offhand how to get this URL inside a Rails application, so I Googled “rails request previous
url” and found a Stack Overflow thread with the answer.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://stackoverflow.com/questions/4652084/ruby-on-rails-how-do-you-get-the-previous-url

778 CHAPTER 13. USER MICROPOSTS

Figure 13.21: The Home page with delete links.

13.3. MANIPULATING MICROPOSTS 779

Figure 13.22: The result of deleting the second post.

780 CHAPTER 13. USER MICROPOSTS

2. Confirm directly in the browser that the line redirect_to request.-

referrer || root_url can be replaced with the line redirect_-
back(fallback_location: root_url). (This method was added
in Rails 5.)

13.3.5 Micropost tests
With the code in Section 13.3.4, the Micropost model and interface are com-
plete. All that’s left is writing a short Microposts controller test to check autho-
rization and a micropost integration test to tie it all together.

We’ll start by adding a few microposts with different owners to the micro-
post fixtures, as shown in Listing 13.54. (We’ll be using only one for now, but
we’ve put in the others for future reference.)

Listing 13.54: Adding a micropost with a different owner.
test/fixtures/microposts.yml

.

.

.

ants:

content: "Oh, is that what you want? Because that's how you get ants!"

created_at: <%= 2.years.ago %>

user: archer

zone:

content: "Danger zone!"

created_at: <%= 3.days.ago %>

user: archer

tone:

content: "I'm sorry. Your words made sense, but your sarcastic tone did not."

created_at: <%= 10.minutes.ago %>

user: lana

van:

content: "Dude, this van's, like, rolling probable cause."

created_at: <%= 4.hours.ago %>

user: lana

We next write a short test to make sure one user can’t delete the microp-
osts of a different user, and we also check for the proper redirect, as seen in

13.3. MANIPULATING MICROPOSTS 781

Listing 13.55.

Listing 13.55: Testing micropost deletion with a user mismatch. green
test/controllers/microposts_controller_test.rb

require 'test_helper'

class MicropostsControllerTest < ActionDispatch::IntegrationTest

def setup

@micropost = microposts(:orange)

end

test "should redirect create when not logged in" do

assert_no_difference 'Micropost.count' do

post microposts_path, params: { micropost: { content: "Lorem ipsum" } }

end

assert_redirected_to login_url

end

test "should redirect destroy when not logged in" do

assert_no_difference 'Micropost.count' do

delete micropost_path(@micropost)

end

assert_redirected_to login_url

end

test "should redirect destroy for wrong micropost" do

log_in_as(users(:michael))

micropost = microposts(:ants)

assert_no_difference 'Micropost.count' do

delete micropost_path(micropost)

end

assert_redirected_to root_url

end

end

Finally, we’ll write an integration test to log in, check the micropost pag-
ination, make an invalid submission, make a valid submission, delete a post,
and then visit a second user’s page to make sure there are no “delete” links. We
start by generating a test as usual:

$ rails generate integration_test microposts_interface

invoke test_unit

create test/integration/microposts_interface_test.rb

782 CHAPTER 13. USER MICROPOSTS

The test appears in Listing 13.56. See if you can connect the lines in List-
ing 13.12 to the steps mentioned above.

Listing 13.56: An integration test for the micropost interface. green
test/integration/microposts_interface_test.rb

require 'test_helper'

class MicropostsInterfaceTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "micropost interface" do

log_in_as(@user)

get root_path

assert_select 'div.pagination'

Invalid submission

assert_no_difference 'Micropost.count' do

post microposts_path, params: { micropost: { content: "" } }

end

assert_select 'div#error_explanation'

assert_select 'a[href=?]', '/?page=2' # Correct pagination link

Valid submission

content = "This micropost really ties the room together"

assert_difference 'Micropost.count', 1 do

post microposts_path, params: { micropost: { content: content } }

end

assert_redirected_to root_url

follow_redirect!

assert_match content, response.body

Delete post

assert_select 'a', text: 'delete'

first_micropost = @user.microposts.paginate(page: 1).first

assert_difference 'Micropost.count', -1 do

delete micropost_path(first_micropost)

end

Visit different user (no delete links)

get user_path(users(:archer))

assert_select 'a', text: 'delete', count: 0

end

end

Because we wrote working application code first, the test suite should be
green:

13.3. MANIPULATING MICROPOSTS 783

Listing 13.57: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. For each of the four scenarios indicated by comments in Listing 13.56
(starting with “Invalid submission”), comment out application code to
get the corresponding test to red, then uncomment to get back to green.

2. Add tests for the sidebarmicropost count (including proper pluralization).
Listing 13.58 will help get you started.

Listing 13.58: A template for the sidebar micropost count test.
test/integration/microposts_interface_test.rb

require 'test_helper'

class MicropostInterfaceTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

.

.

.

test "micropost sidebar count" do

log_in_as(@user)

get root_path

assert_match "#{FILL_IN} microposts", response.body

User with zero microposts

other_user = users(:malory)

log_in_as(other_user)

get root_path

assert_match "0 microposts", response.body

other_user.microposts.create!(content: "A micropost")

get root_path

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

784 CHAPTER 13. USER MICROPOSTS

assert_match FILL_IN, response.body

end

end

13.4 Micropost images
Now that we’ve added support for all relevant micropost actions, in this section
we’ll make it possible for microposts to include images as well as text. We’ll
start with a basic version good enough for development use, and then add a
series of enhancements to make image upload production-ready.

Adding image upload involves two main visible elements: a form field for
uploading an image and the micropost images themselves. A mockup of the re-
sulting “Upload image” button and micropost photo appears in Figure 13.23.17

13.4.1 Basic image upload
The most convenient way to upload files in Rails is to use a built-in feature
called Active Storage.18 Active Storage makes it easy to handle an uploaded
image and associate it with a model of our choice (e.g., the Micropost model).
Although we’ll be using it only for uploading images, Active Storage is actually
quite general, and can handle plain text and multiple kinds of binary files (such
as PDF documents or recorded audio).

As described in the Active Storage documentation, adding Active Storage
to our application is as easy as running a single command:

$ rails active_storage:install

This command generates a database migration that creates a data model for stor-
ing attached files. You’re welcome to take a look at it, but this is an excellent

17Image retrieved from https://www.flickr.com/photos/grungepunk/14026922186 on 2014-09-19. Copyright ©
2014 by Jussie D. Brito and used unaltered under the terms of the Creative Commons Attribution-ShareAlike 2.0
Generic license.

18Active Storage was added in Rails 5.2.

https://en.wikipedia.org/wiki/Binary_file
https://edgeguides.rubyonrails.org/active_storage_overview.html
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/

13.4. MICROPOST IMAGES 785

Figure 13.23: A mockup of micropost image upload (with an uploaded image).

786 CHAPTER 13. USER MICROPOSTS

example of applying technical sophistication to know which details matter and
which don’t. In this case, what matters is the API for interacting with Active
Storage, which we’ll start covering in a moment; for our purposes, the imple-
mentation details are safe to ignore. All we need to do to set it up is run the
migration:

$ rails db:migrate

The first part of the Active Storage API that we need is the has_one_-
attached method, which allows us to associate an uploaded file with a given
model. In our case, we’ll call it image and associate it with the Micropost
model, as shown in Listing 13.59.

Listing 13.59: Adding an image to the Micropost model.
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

has_one_attached :image

default_scope -> { order(created_at: :desc) }

validates :user_id, presence: true

validates :content, presence: true, length: { maximum: 140 }

end

We’ll adopt a design of one image per micropost for our application, but Active
Storage also offers a second option, has_many_attached, which allows for
the attachment of multiple files to a single Active Record object.

To include image upload on the Home page as in Figure 13.23, we need to
include a file_field tag in the micropost form, as shown in Listing 13.60
and Figure 13.24.

Listing 13.60: Adding image upload to the micropost create form.
app/views/shared/_micropost_form.html.erb

<%= form_with(model: @micropost, local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

https://en.wikipedia.org/wiki/Application_programming_interface

13.4. MICROPOST IMAGES 787

Figure 13.24: Adding an image upload field.

<div class="field">

<%= f.text_area :content, placeholder: "Compose new micropost..." %>

</div>

<%= f.submit "Post", class: "btn btn-primary" %>

<%= f.file_field :image %>

<% end %>

Finally, we need to update the Microposts controller to add the image to
the newly created micropost object. We can do this using the attach method
provided by the Active Storage API, which attaches the uploaded image to the
@micropost object in the Microposts controller’s create action. To allow

788 CHAPTER 13. USER MICROPOSTS

the upload to go through, we also need to update micropost_paramsmethod
to add :image to the list of attributes permitted to be modified through the web.
The result appears in Listing 13.61.

Listing 13.61: Adding image to the list of permitted attributes.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before_action :logged_in_user, only: [:create, :destroy]

before_action :correct_user, only: :destroy

def create

@micropost = current_user.microposts.build(micropost_params)

@micropost.image.attach(params[:micropost][:image])

if @micropost.save

flash[:success] = "Micropost created!"

redirect_to root_url

else

@feed_items = current_user.feed.paginate(page: params[:page])

render 'static_pages/home'

end

end

def destroy

@micropost.destroy

flash[:success] = "Micropost deleted"

redirect_to request.referrer || root_url

end

private

def micropost_params

params.require(:micropost).permit(:content, :image)

end

def correct_user

@micropost = current_user.microposts.find_by(id: params[:id])

redirect_to root_url if @micropost.nil?

end

end

Once the image has been uploaded, we can render the associated micro-
post.image using the image_tag helper in the micropost partial, as shown
in Listing 13.62. Notice the use of the attached? boolean method to prevent
displaying an image tag when there isn’t an image.

13.4. MICROPOST IMAGES 789

Listing 13.62: Adding image display to microposts.
app/views/microposts/_micropost.html.erb

<li id="micropost-<%= micropost.id %>">

<%= link_to gravatar_for(micropost.user, size: 50), micropost.user %>

<%= link_to micropost.user.name, micropost.user %>

<%= micropost.content %>

<%= image_tag micropost.image if micropost.image.attached? %>

Posted <%= time_ago_in_words(micropost.created_at) %> ago.

<% if current_user?(micropost.user) %>

<%= link_to "delete", micropost, method: :delete,

data: { confirm: "You sure?" } %>

<% end %>

The result of making a micropost with an image appears in Figure 13.25.
I’m always amazed when things like this actually work, but there’s the proof!
(It’s also a good idea to write at least a basic automated test for image upload,
which is left as an exercise (Section 13.4.1).)

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Upload a micropost with attached image. Does the result look too big?
(If so, don’t worry; we’ll fix it in Section 13.4.3.)

2. Following the template in Listing 13.64, write a test of the image uploader
in Section 13.4. As preparation, you should add an image to the fixtures
directory using Listing 13.63. The additional assertions in Listing 13.64
check both for a file upload field on the Home page and for a valid image
attribute on the micropost resulting from valid submission. Note the use
of the special fixture_file_upload method for uploading files as

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

790 CHAPTER 13. USER MICROPOSTS

Figure 13.25: The result of submitting a micropost with an image.

13.4. MICROPOST IMAGES 791

fixtures inside tests.19 Hint: To check for a valid image attribute, use the
assignsmethod mentioned in Section 11.3.3 to access the micropost in
the create action after valid submission.

Listing 13.63: Downloading a fixture image for use in the tests.
$ curl -o test/fixtures/kitten.jpg -OL https://cdn.learnenough.com/kitten.jpg

Listing 13.64: A template for testing image upload.
test/integration/microposts_interface_test.rb

require 'test_helper'

class MicropostInterfaceTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

end

test "micropost interface" do

log_in_as(@user)

get root_path

assert_select 'div.pagination'

assert_select 'input[type=FILL_IN]'

Invalid submission

assert_no_difference 'Micropost.count' do

post microposts_path, params: { micropost: { content: "" } }

end

assert_select 'div#error_explanation'

assert_select 'a[href=?]', '/?page=2' # Correct pagination link

Valid submission

content = "This micropost really ties the room together"

image = fixture_file_upload('test/fixtures/kitten.jpg', 'image/jpeg')

assert_difference 'Micropost.count', 1 do

post microposts_path, params: { micropost:

{ content: content, image: image } }

end

assert FILL_IN.image.attached?

follow_redirect!

assert_match content, response.body

Delete a post.

assert_select 'a', text: 'delete'

first_micropost = @user.microposts.paginate(page: 1).first

19Windows users should add a :binary parameter: fixture_file_upload(file, type, :binary).

792 CHAPTER 13. USER MICROPOSTS

assert_difference 'Micropost.count', -1 do

delete micropost_path(first_micropost)

end

Visit a different user.

get user_path(users(:archer))

assert_select 'a', { text: 'delete', count: 0 }

end

.

.

.

end

13.4.2 Image validation
The image upload code in Section 13.4.1 is a good start, but it has significant
limitations. Among other things, it doesn’t enforce any constraints on the up-
loaded file, which can cause problems if users try to upload large files or invalid
file types. To remedy this defect, we’ll add validations for the image size and
format.

As of this writing, Active Storage (somewhat surprisingly) doesn’t offer
native support for things like format and size validations, but as is so often the
case there is a gem that adds it for us (Listing 13.65).

Listing 13.65: Adding a gem for Active Storage validations.
Gemfile

source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.2.1'

gem 'active_storage_validations', '0.8.2'

gem 'bcrypt', '3.1.13'

.

.

.

Then bundle install:

13.4. MICROPOST IMAGES 793

$ bundle install

Following the gem documentation, we see that we can validate the image
format by examining the content_type as follows:

content_type: { in: %w[image/jpeg image/gif image/png],

message: "must be a valid image format" }

This checks that the MIME type of the image corresponds to a supported image
format. (Recall the %w[] array-building syntax from Section 6.2.4.)

Similarly, we can validate the file size like this:

size: { less_than: 5.megabytes,

message: "should be less than 5MB" }

This sets a limit of 5 megabytes using a syntax we saw before in the context of
time helpers (Box 9.1).

Adding these validations to the Micropost model gives the code in List-
ing 13.66.

Listing 13.66: Adding validations to images.
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

has_one_attached :image

default_scope -> { order(created_at: :desc) }

validates :user_id, presence: true

validates :content, presence: true, length: { maximum: 140 }

validates :image, content_type: { in: %w[image/jpeg image/gif image/png],

message: "must be a valid image format" },

size: { less_than: 5.megabytes,

message: "should be less than 5MB" }

end

The result of trying to upload a large, invalid image then appears as in Fig-
ure 13.26. (You may have to restart the Rails server first.)

https://github.com/igorkasyanchuk/active_storage_validations
https://en.wikipedia.org/wiki/Internet_media_type

794 CHAPTER 13. USER MICROPOSTS

Figure 13.26: Trying to upload a large, invalid image.

13.4. MICROPOST IMAGES 795

To go along with the validations in Listing 13.66, we’ll add client-side (in-
browser) checks on the uploaded image size and format. We’ll start by including
a little JavaScript (or, more specifically, jQuery) to issue an alert if a user tries to
upload an image that’s too big (which prevents accidental time-consuming up-
loads and lightens the load on the server). The result appears in Listing 13.67.20

Listing 13.67: Checking the file size with jQuery.
app/views/shared/_micropost_form.html.erb

<%= form_with(model: @micropost, local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

<div class="field">

<%= f.text_area :content, placeholder: "Compose new micropost..." %>

</div>

<%= f.submit "Post", class: "btn btn-primary" %>

<%= f.file_field :image %>

<% end %>

<script type="text/javascript">

$("#micropost_image").bind("change", function() {

const size_in_megabytes = this.files[0].size/1024/1024;

if (size_in_megabytes > 5) {

alert("Maximum file size is 5MB. Please choose a smaller file.");

$("#micropost_image").val("");

}

});

</script>

Although JavaScript isn’t the focus of this book, you might be able to figure
out that Listing 13.67 monitors the page element containing the CSS id micro-
post_image (as indicated by the hash mark #), which is the id of the micropost
form in Listing 13.60. (The way to figure this out is to Ctrl-click and use your
browser’s web inspector.) When the element with that CSS id changes, the
jQuery function fires and issues the alert method if the file is too big, as seen
in Figure 13.27.21

20More advanced users of JavaScript would probably put the size check in its own function, but since this isn’t
a JavaScript tutorial the code in Listing 13.67 is fine for our purposes.

21To learn how to do things like this, you can do what I did: Google for things like “javascript maximum file
size” until you find something on Stack Overflow.

https://jquery.com/

796 CHAPTER 13. USER MICROPOSTS

Figure 13.27: A JavaScript alert for a large file.

13.4. MICROPOST IMAGES 797

Finally, by using the accept parameter in the file_field input tag, we
can specify that only valid formats should be allowed (Listing 13.68).

Listing 13.68: Allowing only valid image formats.
app/views/shared/_micropost_form.html.erb

<%= form_with(model: @micropost, local: true) do |f| %>

<%= render 'shared/error_messages', object: f.object %>

<div class="field">

<%= f.text_area :content, placeholder: "Compose new micropost..." %>

</div>

<%= f.submit "Post", class: "btn btn-primary" %>

<%= f.file_field :image, accept: "image/jpeg,image/gif,image/png" %>

<% end %>

<script type="text/javascript">

$("#micropost_image").bind("change", function() {

var size_in_megabytes = this.files[0].size/1024/1024;

if (size_in_megabytes > 5) {

alert("Maximum file size is 5MB. Please choose a smaller file.");

$("#micropost_image").val("");

}

});

</script>

Listing 13.68 arranges to allow only valid image types to be selected in the first
place, graying out any other file types (Figure 13.28).

Preventing invalid images from being uploaded in a browser is a nice touch,
but it’s important to understand that this sort of code can only make it difficult
to upload an invalid format or large file; a user determined to upload an invalid
file can always issue a direct POST request using, e.g., curl. It is thus essential
to include server-side validations of the type shown in Listing 13.66.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. What happens if you try uploading an image bigger than 5 megabytes?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

798 CHAPTER 13. USER MICROPOSTS

Figure 13.28: Grayed-out invalid file types.

13.4. MICROPOST IMAGES 799

2. What happens if you try uploading a file with an invalid extension?

13.4.3 Image resizing
The image size validations in Section 13.4.2 are a good start, but they still allow
the uploading of images large enough to break our site’s layout, sometimes with
frightening results (Figure 13.29). Thus, while it’s convenient to allow users to
select fairly large images from their local disk, it’s also a good idea to resize the
images before displaying them.22

We’ll be resizing images using the imagemanipulation program ImageMag-
ick, which we need to install on the development environment. (As we’ll see in
Section 13.4.4, when using Heroku for deployment ImageMagick comes pre-
installed in production.) On the cloud IDE, we can do this as follows:

$ sudo apt-get -y install imagemagick

(If you’re not using the cloud IDE or an equivalent Linux system, do a Google
search for “imagemagick <your platform>”. On macOS, brew install

imagemagick should work if you have Homebrew installed. Use your techni-
cal sophistication (Box 1.2) if you get stuck.)

Next, we need to add a couple of gems for image processing, including the
aptly named image_processing gem and mini_magick, a Ruby proces-
sor for ImageMagick (Listing 13.69).

Listing 13.69: Adding gems for image processing.
Gemfile

source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.2.1'

gem 'image_processing', '1.9.3'

22It’s possible to constrain the display size with CSS, but this doesn’t change the image size. In particular, large
images would still take a while to load. (You’ve probably visited websites where “small” images seemingly take
forever to load. This is why.)

https://www.imagemagick.org/
https://www.imagemagick.org/
https://brew.sh/

800 CHAPTER 13. USER MICROPOSTS

Figure 13.29: A frighteningly large uploaded image.

13.4. MICROPOST IMAGES 801

gem 'mini_magick', '4.9.5'

gem 'active_storage_validations', '0.8.2'

.

.

.

Then install as usual:

$ bundle install

You will probably need to restart the Rails server as well.
With the necessary software installed, we’re now ready to use the variant

method supplied by Active Storage for creating transformed images. In partic-
ular, we’ll use the resize_to_limit option to ensure that neither the width
nor the height of the image is greater than 500 pixels, as follows:

image.variant(resize_to_limit: [500, 500])

For convenience, we’ll put this code in a separate display_imagemethod, as
shown in Listing 13.70.

Listing 13.70: Adding a resized display image.
app/models/micropost.rb

class Micropost < ApplicationRecord

belongs_to :user

has_one_attached :image

default_scope -> { order(created_at: :desc) }

validates :user_id, presence: true

validates :content, presence: true, length: { maximum: 140 }

validates :image, content_type: { in: %w[image/jpeg image/gif image/png],

message: "must be a valid image format" },

size: { less_than: 5.megabytes,

message: "should be less than 5MB" }

Returns a resized image for display.

def display_image

image.variant(resize_to_limit: [500, 500])

end

end

https://edgeguides.rubyonrails.org/active_storage_overview.html#transforming-images

802 CHAPTER 13. USER MICROPOSTS

Finally, we can use display_image in the micropost partial, as shown in
Listing 13.71.

Listing 13.71: Using the resized display_image.
app/views/microposts/_micropost.html.erb

<li id="micropost-<%= micropost.id %>">

<%= link_to gravatar_for(micropost.user, size: 50), micropost.user %>

<%= link_to micropost.user.name, micropost.user %>

<%= micropost.content %>

<%= image_tag micropost.display_image if micropost.image.attached? %>

Posted <%= time_ago_in_words(micropost.created_at) %> ago.

<% if current_user?(micropost.user) %>

<%= link_to "delete", micropost, method: :delete,

data: { confirm: "You sure?" } %>

<% end %>

The variant resizing in Listing 13.70 will happen on demand when the
method is first called in Listing 13.71, and will be cached for efficiency in
subsequent uses.23 The result is a properly resized display image, as seen in
Figure 13.30.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Upload a large image and confirm directly that the resizing is working.
Does the resizing work even if the image isn’t square?

23For larger sites, it’s probably better to defer such processing to a background process; this method is beyond
the scope of this tutorial, but investigating Active Job will get you started if you need to go this route.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Background_process
https://guides.rubyonrails.org/active_job_basics.html

13.4. MICROPOST IMAGES 803

Figure 13.30: A nicely resized image.

804 CHAPTER 13. USER MICROPOSTS

13.4.4 Image upload in production
The image uploading developed in Section 13.4.3 is good enough for devel-
opment, but (as seen below in Listing 13.73) it uses the local disk for storing
the images, which isn’t a good practice in production. (Among other things,
file storage on Heroku is temporary, so uploaded images will be deleted every
time you deploy.) Instead, we’ll use a cloud storage service to store images
separately from our application.

There are many choices for cloud storage, but we’ll use one of the most
popular and well-supported, Amazon.com’s Simple Storage Service (S3), part
of Amazon Web Services (AWS).24

To configure our application to use cloud storage in production, we’ll add
the aws-sdk-s3 gem to the :production environment, as shown in List-
ing 13.72.

Listing 13.72: Adding a gem for Amazon Web Services (AWS).
Gemfile

source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.2.1'

gem 'image_processing', '1.9.3'

gem 'mini_magick', '4.9.5'

gem 'active_storage_validations', '0.8.2'

.

.

.

group :production do

gem 'pg', '1.1.4'

gem 'aws-sdk-s3', '1.46.0', require: false

end

.

.

.

Then bundle one more time:
24S3 is a paid service, but the storage needed to set up and test the Rails Tutorial sample application costs less

than a cent per month.

https://aws.amazon.com/s3/
https://aws.amazon.com

13.4. MICROPOST IMAGES 805

$ bundle install

AWS configuration

At this point, you’ll need to configure your AWS system to use S3. Here are
the basic steps:25

1. Sign up for an Amazon Web Services account if you don’t have one
already (Figure 13.31). (If you signed up for the Cloud9 IDE in Sec-
tion 1.1.1, you already have an AWS account and can skip this step.)

2. Create a user via AWS Identity and Access Management (IAM). This
involves using the IAM users interface (Figure 13.32) to navigate to the
“Add user” page (Figure 13.33), where you should create a user while
enabling “programmatic access” (Figure 13.34), grant the user adminis-
trator access (Figure 13.35), and then skip the optional user tags (Fig-
ure 13.36).

3. After clicking “Create user”, you should see the name of the user together
with the access key ID and the secret access key (Figure 13.37). Copy
these keys and store them some place safe.

4. Create an S3 bucket using the AWS Console (Figure 13.38). S3 buckets
exist in a global namespace, so the name has to be unique, but otherwise
the default bucket settings should be fine.

You may find setting up S3 to be a challenging exercise in technical so-
phistication (Box 1.2); for further details on the steps above, consult the S3
documentation, the article “Setting up Rails 5 [or higher] with Active Storage
with Amazon S3”, and, if necessary, Google or Stack Overflow.

25The steps are current as of this writing, but services like AWS are constantly evolving, so the user interface
may have changed in the interim. Use your technical sophistication to resolve any discrepancies.

https://aws.amazon.com/
https://aws.amazon.com/iam/
https://console.aws.amazon.com/iam/home?#/users
https://console.aws.amazon.com/s3
https://en.wikipedia.org/wiki/Namespace
https://aws.amazon.com/documentation/s3/
https://aws.amazon.com/documentation/s3/
https://medium.com/alturasoluciones/setting-up-rails-5-active-storage-with-amazon-s3-3d158cf021ff
https://medium.com/alturasoluciones/setting-up-rails-5-active-storage-with-amazon-s3-3d158cf021ff

806 CHAPTER 13. USER MICROPOSTS

Figure 13.31: Signing up for AWS.

Figure 13.32: The AWS IAM interface.

13.4. MICROPOST IMAGES 807

Figure 13.33: Navigating to the “Add user” page.

808 CHAPTER 13. USER MICROPOSTS

Figure 13.34: Creating a user with “programmatic access”.

Figure 13.35: Granting the user administrator access.

13.4. MICROPOST IMAGES 809

Figure 13.36: Skipping optional user tags.

Figure 13.37: Displaying the access key ID and the secret access key.

810 CHAPTER 13. USER MICROPOSTS

Figure 13.38: Creating an AWS bucket.

Figure 13.39: Getting the AWS region from the S3 console URL.

Production AWS

As with production email configuration (Listing 11.41), we’ll be using Heroku
ENV variables to avoid hard-coding sensitive information like AWS keys. In
Section 11.4 and Section 12.4, these variables were defined automatically via
the SendGrid add-on, but in this case we need to define them explicitly. Per the
gem configuration documentation, these variables should be named using the
prefix AWS, which we can accomplish using heroku config:set as follows:

$ heroku config:set AWS_ACCESS_KEY_ID=<access key>

$ heroku config:set AWS_SECRET_ACCESS_KEY=<secret key>

$ heroku config:set AWS_REGION=<region>

$ heroku config:set AWS_BUCKET=<bucket name>

You should paste in the values for your configuration in place of the placeholder
values above. To get the region, you can inspect the URL on the S3 console page
(Figure 13.39).

https://github.com/aws/aws-sdk-ruby#configuration

13.4. MICROPOST IMAGES 811

Once the Heroku variables are set, the next step is to use them in a special
YAMLfile for configuring storage options called storage.yml. We can create
a storage option for Amazon using the code in Listing 13.73.

Listing 13.73: Adding Amazon AWS as a storage option.
config/storage.yml

test:

service: Disk

root: <%= Rails.root.join("tmp/storage") %>

local:

service: Disk

root: <%= Rails.root.join("storage") %>

amazon:

service: S3

access_key_id: <%= ENV['AWS_ACCESS_KEY_ID'] %>

secret_access_key: <%= ENV['AWS_SECRET_ACCESS_KEY'] %>

region: <%= ENV['AWS_REGION'] %>

bucket: <%= ENV['AWS_BUCKET'] %>

Finally, we can put the option defined in Listing 13.73 to use in a production
environment by adding the Active Storage service configuration parameter in
production.rb. The result appears in Listing 13.74.

Listing 13.74: Configuring the production environment to use Amazon AWS
(S3).
config/environments/production.rb

Rails.application.configure do

.

.

.

Store uploaded files on Amazon AWS.

config.active_storage.service = :amazon

.

.

.

end

With the configuration above, we are ready to commit our changes and de-
ploy:

812 CHAPTER 13. USER MICROPOSTS

$ rails test

$ git add -A

$ git commit -m "Add user microposts"

Because so many things can go wrong with the configuration, we’ll deploy the
app directly from our current topic branch, making sure it’s working before
merging into master. We can do this by including the branch name in the push
to Heroku as follows:

$ git push heroku user-microposts:master

As usual, we then reset the database and reseed the sample data:

$ heroku pg:reset DATABASE

$ heroku run rails db:migrate

$ heroku run rails db:seed

Because Heroku comes with an installation of ImageMagick, the result is suc-
cessful image resizing and upload in production, as seen in Figure 13.40.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Upload a large image and confirm directly that the resizing is working in
production. Does the resizing work even if the image isn’t square?

13.5 Conclusion
With the addition of the Microposts resource, we are nearly finished with our
sample application. All that remains is to add a social layer by letting users

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

13.5. CONCLUSION 813

Figure 13.40: An uploaded image in production.

814 CHAPTER 13. USER MICROPOSTS

follow each other. We’ll learn how to model such user relationships, and see
the implications for the microposts feed, in Chapter 14.

If you skipped Section 13.4.4, be sure to commit your changes:

$ rails test

$ git add -A

$ git commit -m "Add user microposts"

Then merge into master:

$ git checkout master

$ git merge user-microposts

$ git push

And finally deploy to production:

$ git push heroku

$ heroku pg:reset DATABASE

$ heroku run rails db:migrate

$ heroku run rails db:seed

It’s worth noting that this chapter saw the last of the necessary gem instal-
lations. For reference, the final Gemfile is shown in Listing 13.75.26

Listing 13.75: The final Gemfile for the sample application.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.2.1'

gem 'image_processing', '1.9.3'

gem 'mini_magick', '4.9.5'

gem 'active_storage_validations', '0.8.2'

gem 'bcrypt', '3.1.13'

gem 'faker', '2.1.2'

gem 'will_paginate', '3.1.8'

26As always, you should use the version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the ones
listed here.

https://gemfiles-6th-ed.railstutorial.org/

13.5. CONCLUSION 815

gem 'bootstrap-will_paginate', '1.0.0'

gem 'bootstrap-sass', '3.4.1'

gem 'puma', '3.12.2'

gem 'sass-rails', '5.1.0'

gem 'webpacker', '4.0.7'

gem 'turbolinks', '5.2.0'

gem 'jbuilder', '2.9.1'

gem 'bootsnap', '1.4.5', require: false

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

end

group :development do

gem 'web-console', '4.0.1'

gem 'listen', '3.1.5'

gem 'spring', '2.1.0'

gem 'spring-watcher-listen', '2.0.1'

end

group :test do

gem 'capybara', '3.28.0'

gem 'selenium-webdriver', '3.142.4'

gem 'webdrivers', '4.1.2'

gem 'rails-controller-testing', '1.0.4'

gem 'minitest', '5.11.3'

gem 'minitest-reporters', '1.3.8'

gem 'guard', '2.15.0'

gem 'guard-minitest', '2.4.6'

end

group :production do

gem 'pg', '1.1.4'

gem 'aws-sdk-s3', '1.46.0', require: false

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

13.5.1 What we learned in this chapter
• Microposts, like Users, are modeled as a resource backed by an Active
Record model.

• Rails supports multiple-key indices.

816 CHAPTER 13. USER MICROPOSTS

• We can model a user having many microposts using the has_many and
belongs_to methods in the User and Micropost models, respectively.

• The has_many/belongs_to combination gives rise to methods that
work through the association.

• The code user.microposts.build(...) returns a new Micropost
object automatically associated with the given user.

• Rails supports default ordering via default_scope.

• Scopes take anonymous functions as arguments.

• The dependent: :destroy option causes objects to be destroyed at
the same time as associated objects.

• Pagination and object counts can both be performed through associations,
leading to automatically efficient code.

• Fixtures support the creation of associations.

• It is possible to pass variables to Rails partials.

• The where method can be used to perform Active Record selections.

• We can enforce secure operations by always creating and destroying de-
pendent objects through their association.

• We can upload images using Active Storage.

Chapter 14

Following users
In this chapter, wewill complete the Rails Tutorial sample application by adding
a social layer that allows users to follow (and unfollow) other users, resulting
in each user’s Home page displaying a status feed of the followed users’ mi-
croposts. We’ll start by learning how to model relationships between users in
Section 14.1, and we’ll build the corresponding web interface in Section 14.2
(including an introduction to Ajax). We’ll end by developing a fully functional
status feed in Section 14.3.

This final chapter contains some of the most challenging material in the tu-
torial, including some Ruby/SQL trickery to make the status feed. Through
these examples, you will see how Rails can handle even rather intricate data
models, which should serve you well as you go on to develop your own appli-
cations with their own specific requirements. To help with the transition from
tutorial to independent development, Section 14.4 offers some pointers to more
advanced resources.

Because the material in this chapter is particularly challenging, before writ-
ing any code we’ll pause for a moment and take a tour of the interface. As
in previous chapters, at this early stage we’ll represent pages using mockups.1
The full page flow runs as follows: a user (John Calvin) starts at his profile page

1Image of child retrieved from https://www.flickr.com/photos/john_lustig/2518452221/ on 2013-12-16. Copy-
right © 2008 by John Lustig and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic
license. Image of tiger retrieved from https://www.flickr.com/photos/renemensen/9187111340 on 2014-08-15.
Copyright © 2013 by Rene Mesen and used unaltered under the terms of the Creative Commons Attribution 2.0
Generic license.

817

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

818 CHAPTER 14. FOLLOWING USERS

(Figure 14.1) and navigates to the Users page (Figure 14.2) to select a user to
follow. Calvin navigates to the profile of a second user, Thomas Hobbes (Fig-
ure 14.3), clicking on the “Follow” button to follow that user. This changes
the “Follow” button to “Unfollow” and increments Hobbes’s “followers” count
by one (Figure 14.4). Navigating to his home page, Calvin now sees an in-
cremented “following” count and finds Hobbes’s microposts in his status feed
(Figure 14.5). The rest of this chapter is dedicated to making this page flow
actually work.

14.1 The Relationship model
Our first step in implementing following users is to construct a data model,
which is not as straightforward as it seems. Naïvely, it seems that a has_many
relationship would do: a user has_many followed users and has_many fol-
lowers. As we will see, there is a problem with this approach, and we’ll learn
how to fix it using has_many :through.

As usual, Git users should create a new topic branch:

$ git checkout -b following-users

14.1.1 A problem with the data model (and a solution)
As a first step toward constructing a data model for following users, let’s ex-
amine a typical case. For instance, consider a user who follows a second user:
we could say that, e.g., Calvin is following Hobbes, and Hobbes is followed by
Calvin, so that Calvin is the follower and Hobbes is followed. Using Rails’ de-
fault pluralization convention, the set of all users following a given user is that
user’s followers, and hobbes.followers is an array of those users. Unfortu-
nately, the reverse doesn’t work: by default, the set of all followed users would
be called the followeds, which is ungrammatical and clumsy. We’ll adopt Twit-
ter’s convention and call them following (as in “50 following, 75 followers”),
with a corresponding calvin.following array.

14.1. THE RELATIONSHIP MODEL 819

Figure 14.1: A current user’s profile.

820 CHAPTER 14. FOLLOWING USERS

Figure 14.2: Finding a user to follow.

14.1. THE RELATIONSHIP MODEL 821

Figure 14.3: The profile of a user to follow, with a follow button.

822 CHAPTER 14. FOLLOWING USERS

Figure 14.4: A profile with an unfollow button and incremented followers
count.

14.1. THE RELATIONSHIP MODEL 823

Figure 14.5: The Home page with status feed and incremented following count.

824 CHAPTER 14. FOLLOWING USERS

user
id
1 Michael Hartl

name email
mhartl@example.com

...
email

10
...
...

7

1

2
follower_id

...

...

...1

...
1

namefollowed_id

8

...
1

following
has_many

Figure 14.6: A naïve implementation of user following.

This discussion suggests modeling the followed users as in Figure 14.6,
with a following table and a has_many association. Since user.follow-
ing should be a collection of users, each row of the following table would
need to be a user, as identified by the followed_id, together with the fol-
lower_id to establish the association.2 In addition, since each row is a user,
we would need to include the user’s other attributes, including the name, email,
password, etc.

The problem with the data model in Figure 14.6 is that it is terribly re-
dundant: each row contains not only each followed user’s id, but all their other
information as well—all of which is already in the users table. Even worse, to
model user followers we would need a separate, similarly redundant
followers table. Finally, this data model is a maintainability nightmare: each
time a user changed (say) their name, wewould need to update not just the user’s
record in the users table but also every row containing that user in both the
following and followers tables.

The problem here is that we are missing an underlying abstraction. One
way to find the proper model is to consider how we might implement the act
of following in a web application. Recall from Section 7.1.2 that the REST ar-
chitecture involves resources that are created and destroyed. This leads us to

2For simplicity, Figure 14.6 omits the following table’s id column.

14.1. THE RELATIONSHIP MODEL 825

ask two questions: When a user follows another user, what is being created?
When a user unfollows another user, what is being destroyed? Upon reflection,
we see that in these cases the application should either create or destroy a rela-
tionship between two users. A user then has many relationships, and has many
following (or followers) through these relationships.

There’s an additional detail we need to address regarding our application’s
data model: unlike symmetric Facebook-style friendships, which are always
reciprocal (at least at the data-model level), Twitter-style following relation-
ships are potentially asymmetric—Calvin can follow Hobbes without Hobbes
following Calvin. To distinguish between these two cases, we’ll adopt the ter-
minology of active and passive relationships: if Calvin is following Hobbes but
not vice versa, Calvin has an active relationship with Hobbes and Hobbes has
a passive relationship with Calvin.3

We’ll focus now on using active relationships to generate a list of followed
users, and consider the passive case in Section 14.1.5. Figure 14.6 suggests how
to implement it: since each followed user is uniquely identified by follow-
ed_id, we could convert following to an active_relationships table,
omit the user details, and use followed_id to retrieve the followed user from
the users table. A diagram of the data model appears in Figure 14.7.

Because we’ll end up using the same database table for both active and pas-
sive relationships, we’ll use the generic term relationship for the table name,
with a corresponding Relationship model. The result is the Relationship data
model shown in Figure 14.8. We’ll see starting in Section 14.1.4 how to use the
Relationship model to simulate both Active Relationship and Passive Relation-
ship models.

To get started with the implementation, we first generate a migration corre-
sponding to Figure 14.8:

$ rails generate model Relationship follower_id:integer followed_id:integer

Because we will be finding relationships by follower_id and by fol-

lowed_id, we should add an index on each column for efficiency, as shown in
3Thanks to reader Paul Fioravanti for suggesting this terminology.

826 CHAPTER 14. FOLLOWING USERS

user
id
1 Michael Hartl

name email
mhartl@example.com

user
id
2 ...

name email
...

3
7

1
9

8

10

1

1

1
2

7

follower_id

2

1

1
1

followed_id
2

active_relationships

user
id
7 ...

name email
...

user
id
10 ...

name email
...

user
id
8 ...

name email
...

has_manythrough

has_many

has_many

has_many

user.following

Figure 14.7: A model of followed users through active relationships.

datetimeupdated_at
datetimecreated_at

followed_id integer

id
follower_id integer

integer
relationships

Figure 14.8: The Relationship data model.

14.1. THE RELATIONSHIP MODEL 827

Listing 14.1.

Listing 14.1: Adding indices for the relationships table.
db/migrate/[timestamp]_create_relationships.rb

class CreateRelationships < ActiveRecord::Migration[6.0]

def change

create_table :relationships do |t|

t.integer :follower_id

t.integer :followed_id

t.timestamps

end

add_index :relationships, :follower_id

add_index :relationships, :followed_id

add_index :relationships, [:follower_id, :followed_id], unique: true

end

end

Listing 14.1 also includes a multiple-key index that enforces uniqueness on
(follower_id, followed_id) pairs, so that a user can’t follow another user
more than once. (Compare to the email uniqueness index from Listing 6.29 and
the multiple-key index in Listing 13.3.) As we’ll see starting in Section 14.1.4,
our user interfacewon’t allow this to happen, but adding a unique index arranges
to raise an error if a user tries to create duplicate relationships anyway (for
example, by using a command-line tool such as curl).

To create the relationships table, we migrate the database as usual:

$ rails db:migrate

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. For the user with id equal to 1 from Figure 14.7, what would the value
of user.following.map(&:id) be? (Recall the map(&:method_-

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

828 CHAPTER 14. FOLLOWING USERS

name) pattern from Section 4.3.2; user.following.map(&:id) just
returns the array of ids.)

2. By referring again to Figure 14.7, determine the ids of user.following
for the user with id equal to 2. What would the value of user.follow-
ing.map(&:id) be for this user?

14.1.2 User/relationship associations
Before implementing user following and followers, we first need to establish the
association between users and relationships. A user has_many relationships,
and—since relationships involve two users—a relationship belongs_to both
a follower and a followed user.

As with microposts in Section 13.1.3, we will create new relationships using
the user association, with code such as

user.active_relationships.build(followed_id: ...)

At this point, you might expect application code as in Section 13.1.3, and it’s
similar, but there are two key differences.

First, in the case of the user/micropost association we could write

class User < ApplicationRecord

has_many :microposts

.

.

.

end

This works because by convention Rails looks for a Micropost model corre-
sponding to the :microposts symbol.4 In the present case, though, we want
to write

4Technically, Rails converts the argument of has_many to a class name using the classify method, which
converts "foo_bars" to "FooBar".

14.1. THE RELATIONSHIP MODEL 829

has_many :active_relationships

even though the underlying model is called Relationship. We will thus have to
tell Rails the model class name to look for.

Second, before we wrote

class Micropost < ApplicationRecord

belongs_to :user

.

.

.

end

in the Micropost model. This works because the microposts table has a
user_id attribute to identify the user (Section 13.1.1). An id used in this man-
ner to connect two database tables is known as a foreign key, and when the
foreign key for a User model object is user_id, Rails infers the association au-
tomatically: by default, Rails expects a foreign key of the form <class>_id,
where <class> is the lower-case version of the class name.5 In the present
case, although we are still dealing with users, the user following another user
is now identified with the foreign key follower_id, so we have to tell that to
Rails.

The result of the above discussion is the user/relationship association shown
in Listing 14.2 and Listing 14.3. As noted in the captions, the tests are currently
red (Why?);6 we’ll fix this issue in Section 14.1.3.

Listing 14.2: Implementing the active relationships has_many association.
red
app/models/user.rb

class User < ApplicationRecord

has_many :microposts, dependent: :destroy

5Technically, Rails uses the underscore method to convert the class name to an id. For example,
"FooBar".underscore is "foo_bar", so the foreign key for a FooBar object would be foo_bar_id.

6Answer: As in Listing 6.30, the generated fixtures don’t satisfy the validations, which causes the tests to fail.

830 CHAPTER 14. FOLLOWING USERS

Method Purpose
active_relationship.follower Returns the follower
active_relationship.followed Returns the followed user
user.active_relationships.create(followed_id: other_user.id)

Creates an active relation-
ship associated with user

user.active_relationships.create!(followed_id: other_user.id)

Creates an active relation-
ship associated with user

(exception on failure)
user.active_relationships.build(followed_id: other_user.id)

Returns a new Relationship
object associated with user

Table 14.1: A summary of user/active relationship association methods.

has_many :active_relationships, class_name: "Relationship",

foreign_key: "follower_id",

dependent: :destroy

.

.

.

end

(Since destroying a user should also destroy that user’s relationships, we’ve
added dependent: :destroy to the association.)

Listing 14.3: Adding the follower belongs_to association to the Relation-
ship model. red
app/models/relationship.rb

class Relationship < ApplicationRecord

belongs_to :follower, class_name: "User"

belongs_to :followed, class_name: "User"

end

The followed association isn’t actually needed until Section 14.1.4, but the
parallel follower/followed structure is clearer if we implement them both at the
same time.

The relationships in Listing 14.2 and Listing 14.3 give rise to methods anal-
ogous to the ones we saw in Table 13.1, as shown in Table 14.1.

14.1. THE RELATIONSHIP MODEL 831

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Using the createmethod fromTable 14.1 in the console, create an active
relationship for the first user in the database where the followed id is the
second user.

2. Confirm that the values for active_relationship.followed and
active_relationship.follower are correct.

14.1.3 Relationship validations
Before moving on, we’ll add a couple of Relationship model validations for
completeness. The tests (Listing 14.4) and application code (Listing 14.5) are
straightforward. As with the generated user fixture from Listing 6.30, the gen-
erated relationship fixture also violates the uniqueness constraint imposed by
the corresponding migration (Listing 14.1). The solution—removing the fix-
ture contents as in Listing 6.31—is also the same, as seen in Listing 14.6.

Listing 14.4: Testing the Relationship model validations. red
test/models/relationship_test.rb

require 'test_helper'

class RelationshipTest < ActiveSupport::TestCase

def setup

@relationship = Relationship.new(follower_id: users(:michael).id,

followed_id: users(:archer).id)

end

test "should be valid" do

assert @relationship.valid?

end

test "should require a follower_id" do

@relationship.follower_id = nil

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

832 CHAPTER 14. FOLLOWING USERS

assert_not @relationship.valid?

end

test "should require a followed_id" do

@relationship.followed_id = nil

assert_not @relationship.valid?

end

end

Listing 14.5: Adding the Relationship model validations. red
app/models/relationship.rb

class Relationship < ApplicationRecord

belongs_to :follower, class_name: "User"

belongs_to :followed, class_name: "User"

validates :follower_id, presence: true

validates :followed_id, presence: true

end

Listing 14.6: Removing the contents of the relationship fixture. green
test/fixtures/relationships.yml

empty

At this point, the tests should be green:

Listing 14.7: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify by commenting out the validations in Listing 14.5 that the tests still
pass. (This is a change as of Rails 5, and in previous versions of Rails the

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

14.1. THE RELATIONSHIP MODEL 833

validations are required. We’ll plan to leave them in for completeness,
but it’s worth bearing in mind that you may see these validations omitted
in other people’s code.)

14.1.4 Followed users
We come now to the heart of the Relationship associations: following and
followers. Here we will use has_many :through for the first time: a user
has many following through relationships, as illustrated in Figure 14.7. By
default, in a has_many :through association Rails looks for a foreign key
corresponding to the singular version of the association. In other words, with
code like

has_many :followeds, through: :active_relationships

Rails would see “followeds” and use the singular “followed”, assembling a col-
lection using the followed_id in the relationships table. But, as noted in
Section 14.1.1, user.followeds is rather awkward, so we’ll write user.-
following instead. Naturally, Rails allows us to override the default, in this
case using the source parameter (as shown in Listing 14.8), which explicitly
tells Rails that the source of the following array is the set of followed ids.

Listing 14.8: Adding the User model following association.
app/models/user.rb

class User < ApplicationRecord

has_many :microposts, dependent: :destroy

has_many :active_relationships, class_name: "Relationship",

foreign_key: "follower_id",

dependent: :destroy

has_many :following, through: :active_relationships, source: :followed

.

.

.

end

834 CHAPTER 14. FOLLOWING USERS

The association defined in Listing 14.8 leads to a powerful combination of
Active Record and array-like behavior. For example, we can check if the fol-
lowed users collection includes another user with the include? method (Sec-
tion 4.3.1), or find objects through the association:

user.following.include?(other_user)

user.following.find(other_user)

We can also add and delete elements just as with arrays:

user.following << other_user

user.following.delete(other_user)

(Recall from Section 4.3.1 that the shovel operator << appends to the end of an
array.)

Although in many contexts we can effectively treat following as an array,
Rails is smart about how it handles things under the hood. For example, code
like

following.include?(other_user)

looks like it might have to pull all the followed users out of the database to apply
the include?method, but in fact for efficiency Rails arranges for the compar-
ison to happen directly in the database. (Compare to the code in Section 13.2.1,
where we saw that

user.microposts.count

performs the count directly in the database.)
To manipulate following relationships, we’ll introduce follow and un-

follow utility methods so that we can write, e.g., user.follow(other_-

14.1. THE RELATIONSHIP MODEL 835

user). We’ll also add an associated following? boolean method to test if
one user is following another.7

This is exactly the kind of situation where I like to write some tests first.
The reason is that we are quite far from writing a working web interface for
following users, but it’s hard to proceed without some sort of client for the
code we’re developing. In this case, it’s easy to write a short test for the User
model, in which we use following? to make sure the user isn’t following the
other user, use follow to follow another user, use following? to verify that
the operation succeeded, and finally unfollow and verify that it worked. The
result appears in Listing 14.9.

Listing 14.9: Tests for some “following” utility methods. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

.

.

.

test "should follow and unfollow a user" do

michael = users(:michael)

archer = users(:archer)

assert_not michael.following?(archer)

michael.follow(archer)

assert michael.following?(archer)

michael.unfollow(archer)

assert_not michael.following?(archer)

end

end

By treating the following association as an array, we can write the fol-
low, unfollow, and following? methods as shown in Listing 14.10. (Note
that we have omitted the user self variable whenever possible.)

7Once you have a lot of experience modeling a particular domain, you can often guess such utility methods
in advance, and even when you can’t you’ll often find yourself writing them to make the tests cleaner. In this
case, though, it’s OK if you wouldn’t have guessed them. Software development is usually an iterative process—
you write code until it starts getting ugly, and then you refactor it—but for brevity the tutorial presentation is
streamlined a bit.

836 CHAPTER 14. FOLLOWING USERS

Listing 14.10: Utility methods for following. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

def feed

.

.

.

end

Follows a user.

def follow(other_user)

following << other_user

end

Unfollows a user.

def unfollow(other_user)

following.delete(other_user)

end

Returns true if the current user is following the other user.

def following?(other_user)

following.include?(other_user)

end

private

.

.

.

end

With the code in Listing 14.10, the tests should be green:

Listing 14.11: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

14.1. THE RELATIONSHIP MODEL 837

user
id
1 Michael Hartl

name email
mhartl@example.com

1
1

8
1

1

1

2

9

10
1

2

followed_id

7

2

3
7

follower_id
1

passive_relationships user
id
3 ...

name email
...

user
id
2 ...

name email
...

user
id
9 ...

name email
...

through has_many

has_many

has_many

user.followers

Figure 14.9: A model for user followers through passive relationships.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. At the console, replicate the steps shown in Listing 14.9.

2. What is the SQL for each of the commands in the previous exercise?

14.1.5 Followers
The final piece of the relationships puzzle is to add a user.followers

method to go with user.following. You may have noticed from Figure 14.7
that all the information needed to extract an array of followers is already present
in the relationships table (which we are treating as the active_rela-
tionships table via the code in Listing 14.2). Indeed, the technique is ex-
actly the same as for followed users, with the roles of follower_id and fol-
lowed_id reversed, and with passive_relationships in place of ac-
tive_relationships. The data model then appears as in Figure 14.9.

The implementation of the data model in Figure 14.9 parallels Listing 14.8
exactly, as seen in Listing 14.12.

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

838 CHAPTER 14. FOLLOWING USERS

Listing 14.12: Implementing user.followers using passive relationships.
app/models/user.rb

class User < ApplicationRecord

has_many :microposts, dependent: :destroy

has_many :active_relationships, class_name: "Relationship",

foreign_key: "follower_id",

dependent: :destroy

has_many :passive_relationships, class_name: "Relationship",

foreign_key: "followed_id",

dependent: :destroy

has_many :following, through: :active_relationships, source: :followed

has_many :followers, through: :passive_relationships, source: :follower

.

.

.

end

It’s worth noting that we could actually omit the :source key for fol-
lowers in Listing 14.12, using simply

has_many :followers, through: :passive_relationships

This is because, in the case of a :followers attribute, Rails will singularize
“followers” and automatically look for the foreign key follower_id in this
case. Listing 14.12 keeps the :source key to emphasize the parallel structure
with the has_many :following association.

We can conveniently test the data model above using the followers.in-
clude? method, as shown in Listing 14.13. (Listing 14.13 might have used a
followed_by? method to complement the following? method, but it turns
out we won’t need it in our application.)

Listing 14.13: A test for followers. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

.

14.1. THE RELATIONSHIP MODEL 839

.

.

test "should follow and unfollow a user" do

michael = users(:michael)

archer = users(:archer)

assert_not michael.following?(archer)

michael.follow(archer)

assert michael.following?(archer)

assert archer.followers.include?(michael)

michael.unfollow(archer)

assert_not michael.following?(archer)

end

end

Listing 14.13 adds only one line to the test from Listing 14.9, but so many
things have to go right to get it to pass that it’s a very sensitive test of the code
in Listing 14.12.

At this point, the full test suite should be green:

$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. At the console, create several followers for the first user in the database
(which you should call user). What is the value of user.followers.-
map(&:id)?

2. Confirm that user.followers.count matches the number of follow-
ers you created in the previous exercise.

3. What is the SQL used by user.followers.count? How is this dif-
ferent from user.followers.to_a.count? Hint: Suppose that the
user had a million followers.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

840 CHAPTER 14. FOLLOWING USERS

14.2 A web interface for following users
Section 14.1 placed some rather heavy demands on our datamodeling skills, and
it’s fine if it takes a while to soak in. In fact, one of the best ways to understand
the associations is to use them in the web interface.

In the introduction to this chapter, we saw a preview of the page flow for
user following. In this section, we will implement the basic interface and fol-
lowing/unfollowing functionality shown in those mockups. We will also make
separate pages to show the user following and followers arrays. In Section 14.3,
we’ll complete our sample application by adding the user’s status feed.

14.2.1 Sample following data
As in previous chapters, we will find it convenient to use rails db:seed to
fill the database with sample relationships. This will allow us to design the look
and feel of the web pages first, deferring the back-end functionality until later
in this section.

Code to seed the following relationships appears in Listing 14.14. Here we
somewhat arbitrarily arrange for the first user to follow users 3 through 51, and
then have users 4 through 41 follow that user back. The resulting relationships
will be sufficient for developing the application interface.

Listing 14.14: Adding following/follower relationships to the sample data.
db/seeds.rb

Users

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password_confirmation: "foobar",

admin: true,

activated: true,

activated_at: Time.zone.now)

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

14.2. A WEB INTERFACE FOR FOLLOWING USERS 841

email: email,

password: password,

password_confirmation: password,

activated: true,

activated_at: Time.zone.now)

end

Microposts

users = User.order(:created_at).take(6)

50.times do

content = Faker::Lorem.sentence(5)

users.each { |user| user.microposts.create!(content: content) }

end

Create following relationships.

users = User.all

user = users.first

following = users[2..50]

followers = users[3..40]

following.each { |followed| user.follow(followed) }

followers.each { |follower| follower.follow(user) }

To execute the code in Listing 14.14, we reset and reseed the database as
usual:

$ rails db:migrate:reset

$ rails db:seed

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the console, confirm that User.first.followers.count

matches the value expected from Listing 14.14.

2. Confirm that User.first.following.count is correct as well.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

842 CHAPTER 14. FOLLOWING USERS

Figure 14.10: A mockup of the stats partial.

14.2.2 Stats and a follow form
Now that our sample users have both followed users and followers, we need to
update the profile page and Home page to reflect this. We’ll start by making a
partial to display the following and follower statistics on the profile and home
pages. We’ll next add a follow/unfollow form, and then make dedicated pages
for showing “following” (followed users) and “followers”.

As noted in Section 14.1.1, we’ll adopt Twitter’s convention of using “fol-
lowing” as a label for followed users, as in “50 following”. This usage is re-
flected in the mockup sequence starting in Figure 14.1 and shown in close-up
in Figure 14.10.

The stats in Figure 14.10 consist of the number of users the current user
is following and the number of followers, each of which should be a link to its
respective dedicated display page. In Chapter 5, we stubbed out such links with
the dummy text '#', but that was before we had much experience with routes.
This time, although we’ll defer the actual pages to Section 14.2.3, we’ll make
the routes now, as seen in Listing 14.15. This code uses the :member method
inside a resources block, which we haven’t seen before, but see if you can
guess what it does.

Listing 14.15: Adding following and followers actions to the Users con-
troller.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

14.2. A WEB INTERFACE FOR FOLLOWING USERS 843

get '/login', to: 'sessions#new'

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users do

member do

get :following, :followers

end

end

resources :account_activations, only: [:edit]

resources :password_resets, only: [:new, :create, :edit, :update]

resources :microposts, only: [:create, :destroy]

end

You might suspect that the URLs for following and followers will look like
/users/1/following and /users/1/followers, and that is exactly what the code in
Listing 14.15 arranges. Since both pages will be showing data, the proper HTTP
verb is a GET request, so we use the get method to arrange for the URLs to
respond appropriately. Meanwhile, the member method arranges for the routes
to respond to URLs containing the user id. The other possibility, collection,
works without the id, so that

resources :users do

collection do

get :tigers

end

end

would respond to the URL /users/tigers (presumably to display all the tigers in
our application).8

A table of the routes generated by Listing 14.15 appears in Table 14.2. Note
the named routes for the followed user and followers pages, which we’ll put to
use shortly.

With the routes defined, we are now in a position to define the stats partial,
which involves a couple of links inside a div, as shown in Listing 14.16.

8For more details on such routing options, see the Rails Guides article on “Rails Routing from the Outside In”.

https://guides.rubyonrails.org/routing.html

844 CHAPTER 14. FOLLOWING USERS

HTTP request URL Action Named route
GET /users/1/following following following_user_path(1)

GET /users/1/followers followers followers_user_path(1)

Table 14.2: RESTful routes provided by the custom rules in resource in List-
ing 14.15.

Listing 14.16: A partial for displaying follower stats.
app/views/shared/_stats.html.erb

<% @user ||= current_user %>

<div class="stats">

<a href="<%= following_user_path(@user) %>">

<strong id="following" class="stat">

<%= @user.following.count %>

following

<a href="<%= followers_user_path(@user) %>">

<strong id="followers" class="stat">

<%= @user.followers.count %>

followers

</div>

Since we will be including the stats on both the user show pages and the
home page, the first line of Listing 14.16 picks the right one using

<% @user ||= current_user %>

As discussed in Box 8.1, this does nothing when @user is not nil (as on a
profile page), but when it is (as on the Home page) it sets @user to the current
user. Note also that the following/follower counts are calculated through the
associations using

14.2. A WEB INTERFACE FOR FOLLOWING USERS 845

@user.following.count

and

@user.followers.count

Compare these to the microposts count from Listing 13.24, where we wrote

@user.microposts.count

to count the microposts. As in that case, Rails calculates the count directly in
the database for efficiency.

One final detail worth noting is the presence of CSS ids on some elements,
as in

<strong id="following" class="stat">

...

This is for the benefit of the Ajax implementation in Section 14.2.5, which ac-
cesses elements on the page using their unique ids.

With the partial in hand, including the stats on the Home page is easy, as
shown in Listing 14.17.

Listing 14.17: Adding follower stats to the Home page.
app/views/static_pages/home.html.erb

<% if logged_in? %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<%= render 'shared/user_info' %>

</section>

<section class="stats">

<%= render 'shared/stats' %>

846 CHAPTER 14. FOLLOWING USERS

</section>

<section class="micropost_form">

<%= render 'shared/micropost_form' %>

</section>

</aside>

<div class="col-md-8">

<h3>Micropost Feed</h3>

<%= render 'shared/feed' %>

</div>

</div>

<% else %>

.

.

.

<% end %>

To style the stats, we’ll add some SCSS, as shown in Listing 14.18 (which
contains all the stylesheet code needed in this chapter). The resulting Home
page appears in Figure 14.11.

Listing 14.18: SCSS for the Home page sidebar.
app/assets/stylesheets/custom.scss

.

.

.

/* sidebar */

.

.

.

.gravatar {

float: left;

margin-right: 10px;

}

.gravatar_edit {

margin-top: 15px;

}

.stats {

overflow: auto;

margin-top: 0;

padding: 0;

a {

float: left;

padding: 0 10px;

border-left: 1px solid $gray-lighter;

14.2. A WEB INTERFACE FOR FOLLOWING USERS 847

color: gray;

&:first-child {

padding-left: 0;

border: 0;

}

&:hover {

text-decoration: none;

color: blue;

}

}

strong {

display: block;

}

}

.user_avatars {

overflow: auto;

margin-top: 10px;

.gravatar {

margin: 1px 1px;

}

a {

padding: 0;

}

}

.users.follow {

padding: 0;

}

/* forms */

.

.

.

We’ll render the stats partial on the profile page in a moment, but first let’s
make a partial for the follow/unfollow button, as shown in Listing 14.19.

Listing 14.19: A partial for a follow/unfollow form.
app/views/users/_follow_form.html.erb

<% unless current_user?(@user) %>

<div id="follow_form">

<% if current_user.following?(@user) %>

<%= render 'unfollow' %>

<% else %>

<%= render 'follow' %>

848 CHAPTER 14. FOLLOWING USERS

Figure 14.11: The Home page with follow stats.

14.2. A WEB INTERFACE FOR FOLLOWING USERS 849

<% end %>

</div>

<% end %>

This does nothing but defer the real work to follow and unfollow partials,
which need new routes for the Relationships resource, which follows the Mi-
croposts resource example (Listing 13.30), as seen in Listing 14.20.

Listing 14.20: Adding the routes for user relationships.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get 'help' => 'static_pages#help'

get 'about' => 'static_pages#about'

get 'contact' => 'static_pages#contact'

get 'signup' => 'users#new'

get 'login' => 'sessions#new'

post 'login' => 'sessions#create'

delete 'logout' => 'sessions#destroy'

resources :users do

member do

get :following, :followers

end

end

resources :account_activations, only: [:edit]

resources :password_resets, only: [:new, :create, :edit, :update]

resources :microposts, only: [:create, :destroy]

resources :relationships, only: [:create, :destroy]

end

The follow/unfollow partials themselves are shown in Listing 14.21 and List-
ing 14.22.

Listing 14.21: A form for following a user.
app/views/users/_follow.html.erb

<%= form_with(model: current_user.active_relationships.build, local: true) do |f| %>

<div><%= hidden_field_tag :followed_id, @user.id %></div>

<%= f.submit "Follow", class: "btn btn-primary" %>

<% end %>

850 CHAPTER 14. FOLLOWING USERS

Listing 14.22: A form for unfollowing a user.
app/views/users/_unfollow.html.erb

<%= form_with(model: current_user.active_relationships.find_by(followed_id: @user.id),

html: { method: :delete }, local: true) do |f| %>

<%= f.submit "Unfollow", class: "btn" %>

<% end %>

These two forms both use form_with to manipulate a Relationship model
object; the main difference between the two is that Listing 14.21 builds a new
relationship, whereas Listing 14.22 finds the existing relationship. Naturally,
the former sends a POST request to the Relationships controller to create

a relationship, while the latter sends a DELETE request to destroy a rela-
tionship. (We’ll write these actions in Section 14.2.4.) Finally, you’ll note
that the follow form doesn’t have any content other than the button, but it still
needs to send the followed_id to the controller. We accomplish this with the
hidden_field_tag method in Listing 14.21, which produces HTML of the
form

<input id="followed_id" name="followed_id" type="hidden" value="3" />

As we saw in Section 12.3 (Listing 12.14), the hidden input tag puts the rele-
vant information on the page without displaying it in the browser.

We can now include the follow form and the following statistics on the user
profile page simply by rendering the partials, as shown in Listing 14.23. Pro-
files with follow and unfollow buttons, respectively, appear in Figure 14.12 and
Figure 14.13.

Listing 14.23: Adding the follow form and follower stats to the user profile
page.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<div class="row">

<aside class="col-md-4">

14.2. A WEB INTERFACE FOR FOLLOWING USERS 851

<section>

<h1>

<%= gravatar_for @user %>

<%= @user.name %>

</h1>

</section>

<section class="stats">

<%= render 'shared/stats' %>

</section>

</aside>

<div class="col-md-8">

<%= render 'follow_form' if logged_in? %>

<% if @user.microposts.any? %>

<h3>Microposts (<%= @user.microposts.count %>)</h3>

<ol class="microposts">

<%= render @microposts %>

<%= will_paginate @microposts %>

<% end %>

</div>

</div>

We’ll get these buttons working soon enough—in fact, we’ll do it two ways,
the standard way (Section 14.2.4) and using Ajax (Section 14.2.5)—but first
we’ll finish the HTML interface by making the following and followers pages.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that /users/2 has a follow form and that /users/5 has an unfollow
form. Is there a follow form on /users/1?

2. Confirm in the browser that the stats appear correctly on the Home page
and on the profile page.

3. Write tests for the stats on the Home page. Hint: Add to the test in List-
ing 13.28. Why don’t we also have to test the stats on the profile page?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

852 CHAPTER 14. FOLLOWING USERS

Figure 14.12: A user profile with a follow button (/users/2).

14.2. A WEB INTERFACE FOR FOLLOWING USERS 853

Figure 14.13: A user profile with an unfollow button (/users/5).

854 CHAPTER 14. FOLLOWING USERS

14.2.3 Following and followers pages
Pages to display followed users and followers will resemble a hybrid of the
user profile page and the user index page (Section 10.3.1), with a sidebar of
user information (including the following stats) and a list of users. In addi-
tion, we’ll include a raster of smaller user profile image links in the sidebar.
Mockups matching these requirements appear in Figure 14.14 (following) and
Figure 14.15 (followers).

Our first step is to get the following and followers links to work. We’ll
follow Twitter’s lead and have both pages require user login. As with most
previous examples of access control, we’ll write the tests first, as shown in
Listing 14.24. Note that Listing 14.24 uses the named routes from Table 14.2.

Listing 14.24: Tests for the authorization of the following and followers
pages. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

.

.

.

test "should redirect following when not logged in" do

get following_user_path(@user)

assert_redirected_to login_url

end

test "should redirect followers when not logged in" do

get followers_user_path(@user)

assert_redirected_to login_url

end

end

The only tricky part of the implementation is realizing that we need to add
two new actions to the Users controller. Based on the routes defined in List-
ing 14.15, we need to call them following and followers. Each action

14.2. A WEB INTERFACE FOR FOLLOWING USERS 855

Figure 14.14: A mockup of the user following page.

856 CHAPTER 14. FOLLOWING USERS

Figure 14.15: A mockup of the user followers page.

14.2. A WEB INTERFACE FOR FOLLOWING USERS 857

needs to set a title, find the user, retrieve either @user.following

or @user.followers (in paginated form), and then render the page. The re-
sult appears in Listing 14.25.

Listing 14.25: The following and followers actions. red
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update, :destroy,

:following, :followers]

.

.

.

def following

@title = "Following"

@user = User.find(params[:id])

@users = @user.following.paginate(page: params[:page])

render 'show_follow'

end

def followers

@title = "Followers"

@user = User.find(params[:id])

@users = @user.followers.paginate(page: params[:page])

render 'show_follow'

end

private

.

.

.

end

As we’ve seen throughout this tutorial, the usual Rails convention is to implic-
itly render the template corresponding to an action, such as rendering show.-
html.erb at the end of the show action. In contrast, both actions in List-
ing 14.25 make an explicit call to render, in this case rendering a view called
show_follow, which we must create. The reason for the common view is that
the ERb is nearly identical for the two cases, and Listing 14.26 covers them
both.

858 CHAPTER 14. FOLLOWING USERS

Listing 14.26: The show_follow view used to render following and follow-
ers. green
app/views/users/show_follow.html.erb

<% provide(:title, @title) %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<%= gravatar_for @user %>

<h1><%= @user.name %></h1>

<%= link_to "view my profile", @user %>

Microposts: <%= @user.microposts.count %>

</section>

<section class="stats">

<%= render 'shared/stats' %>

<% if @users.any? %>

<div class="user_avatars">

<% @users.each do |user| %>

<%= link_to gravatar_for(user, size: 30), user %>

<% end %>

</div>

<% end %>

</section>

</aside>

<div class="col-md-8">

<h3><%= @title %></h3>

<% if @users.any? %>

<ul class="users follow">

<%= render @users %>

<%= will_paginate %>

<% end %>

</div>

</div>

The actions in Listing 14.25 render the view from Listing 14.26 in two con-
texts, “following” and “followers”, with the results shown in Figure 14.16 and
Figure 14.17. Note that nothing in the above code uses the current user, so the
same links work for other users, as shown in Figure 14.18.

At this point, the tests in Listing 14.24 should be green due to the before
filter in Listing 14.25:

14.2. A WEB INTERFACE FOR FOLLOWING USERS 859

Figure 14.16: Showing the users the given user is following.

860 CHAPTER 14. FOLLOWING USERS

Figure 14.17: Showing the given user’s followers.

14.2. A WEB INTERFACE FOR FOLLOWING USERS 861

Figure 14.18: Showing a different user’s followers.

862 CHAPTER 14. FOLLOWING USERS

Listing 14.27: green
$ rails test

To test the show_follow rendering, we’ll write a couple of short integra-
tion tests that verify the presence of working following and followers pages.
They are designed to be a reality check, not to be comprehensive; indeed, as
noted in Section 5.3.4, comprehensive tests of things like HTML structure are
likely to be brittle and thus counter-productive. Our plan in the case of follow-
ing/followers pages is to check the number is correctly displayed and that links
with the right URLs appear on the page.

To get started, we’ll generate an integration test as usual:

$ rails generate integration_test following

invoke test_unit

create test/integration/following_test.rb

Next, we need to assemble some test data, which we can do by adding some
relationships fixtures to create following/follower relationships. Recall from
Section 13.2.3 that we can use code like

orange:

content: "I just ate an orange!"

created_at: <%= 10.minutes.ago %>

user: michael

to associate a micropost with a given user. In particular, we can write

user: michael

instead of

14.2. A WEB INTERFACE FOR FOLLOWING USERS 863

user_id: 1

Applying this idea to the relationships fixtures gives the associations in List-
ing 14.28.

Listing 14.28: Relationships fixtures for use in following/follower tests.
test/fixtures/relationships.yml

one:

follower: michael

followed: lana

two:

follower: michael

followed: malory

three:

follower: lana

followed: michael

four:

follower: archer

followed: michael

The fixtures in Listing 14.28 first arrange for Michael to follow Lana and
Malory, and then arrange for Michael to be followed by Lana and Archer. To
test for the right count, we can use the same assert_match method we used
in Listing 13.28 to test for the display of the number of microposts on the user
profile page. Adding in assertions for the right links yields the tests shown in
Listing 14.29.

Listing 14.29: Tests for following/follower pages. green
test/integration/following_test.rb

require 'test_helper'

class FollowingTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

864 CHAPTER 14. FOLLOWING USERS

log_in_as(@user)

end

test "following page" do

get following_user_path(@user)

assert_not @user.following.empty?

assert_match @user.following.count.to_s, response.body

@user.following.each do |user|

assert_select "a[href=?]", user_path(user)

end

end

test "followers page" do

get followers_user_path(@user)

assert_not @user.followers.empty?

assert_match @user.followers.count.to_s, response.body

@user.followers.each do |user|

assert_select "a[href=?]", user_path(user)

end

end

end

In Listing 14.29, note that we include the assertion

assert_not @user.following.empty?

which is included to make sure that

@user.following.each do |user|

assert_select "a[href=?]", user_path(user)

end

isn’t vacuously true (and similarly for followers). In other words, if @us-
er.following.empty? were true, not a single assert_select would ex-
ecute in the loop, leading the tests to pass and thereby give us a false sense of
security.

The test suite should now be green:

https://en.wikipedia.org/wiki/Vacuous_truth

14.2. A WEB INTERFACE FOR FOLLOWING USERS 865

Listing 14.30: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify in a browser that /users/1/followers and /users/1/following work.
Do the image links in the sidebar work as well?

2. Comment out the application code needed to turn the assert_select
tests in Listing 14.29 red to confirm they’re testing the right thing.

14.2.4 A working follow button the standard way
Now that our views are in order, it’s time to get the follow/unfollow buttons
working. Because following and unfollowing involve creating and destroying
relationships, we need a Relationships controller, which we generate as usual

$ rails generate controller Relationships

As we’ll see in Listing 14.32, enforcing access control on the Relationships
controller actions won’t muchmatter, but we’ll still follow our previous practice
of enforcing the security model as early as possible. In particular, we’ll check
that attempts to access actions in the Relationships controller require a logged-
in user (and thus get redirected to the login page), while also not changing the
Relationship count, as shown in Listing 14.31.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

866 CHAPTER 14. FOLLOWING USERS

Listing 14.31: Basic access control tests for relationships. red
test/controllers/relationships_controller_test.rb

require 'test_helper'

class RelationshipsControllerTest < ActionDispatch::IntegrationTest

test "create should require logged-in user" do

assert_no_difference 'Relationship.count' do

post relationships_path

end

assert_redirected_to login_url

end

test "destroy should require logged-in user" do

assert_no_difference 'Relationship.count' do

delete relationship_path(relationships(:one))

end

assert_redirected_to login_url

end

end

We can get the tests in Listing 14.31 to pass by adding the logged_in_user
before filter (Listing 14.32).

Listing 14.32: Access control for relationships. green
app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController

before_action :logged_in_user

def create

end

def destroy

end

end

To get the follow and unfollow buttons to work, all we need to do is find the
user associated with the followed_id in the corresponding form (i.e., List-
ing 14.21 or Listing 14.22), and then use the appropriate follow or unfollow
method from Listing 14.10. The full implementation appears in Listing 14.33.

14.2. A WEB INTERFACE FOR FOLLOWING USERS 867

Listing 14.33: The Relationships controller. green
app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController

before_action :logged_in_user

def create

user = User.find(params[:followed_id])

current_user.follow(user)

redirect_to user

end

def destroy

user = Relationship.find(params[:id]).followed

current_user.unfollow(user)

redirect_to user

end

end

We can see fromListing 14.33 why the security issuementioned above is minor:
if an unlogged-in user were to hit either action directly (e.g., using a command-
line tool like curl), current_user would be nil, and in both cases the ac-
tion’s second line would raise an exception, resulting in an error but no harm to
the application or its data. It’s best not to rely on that, though, so we’ve taken
the extra step and added an additional layer of security.

With that, the core follow/unfollow functionality is complete, and any user
can follow or unfollow any other user, as you can verify by clicking the corre-
sponding buttons in your browser. (We’ll write integration tests to verify this
behavior in Section 14.2.6.) The result of following user #2 is shown in Fig-
ure 14.19 and Figure 14.20.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Follow and unfollow /users/2 through the web. Did it work?

2. According to the server log, which templates are rendered in each case?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

868 CHAPTER 14. FOLLOWING USERS

Figure 14.19: An unfollowed user.

14.2. A WEB INTERFACE FOR FOLLOWING USERS 869

Figure 14.20: The result of following an unfollowed user.

870 CHAPTER 14. FOLLOWING USERS

14.2.5 A working follow button with Ajax
Although our user following implementation is complete as it stands, we have
one bit of polish left to add before starting work on the status feed. You may
have noticed in Section 14.2.4 that both the create and destroy actions in
the Relationships controller simply redirect back to the original profile. In other
words, a user starts on another user’s profile page, follows the other user, and
is immediately redirected back to the original page. It is reasonable to ask why
the user needs to leave that page at all.

This is exactly the problem solved by Ajax, which allows web pages to
send requests asynchronously to the server without leaving the page.9 Because
adding Ajax to web forms is a common practice, Rails makes Ajax easy to
implement. Indeed, updating the follow/unfollow form partials is trivial: just
change

form_with(model: ..., local: true)

to

form_with(model: ..., remote: true)

and Rails automagically uses Ajax.10 The updated partials appear in Listing
14.34 and Listing 14.35.

Listing 14.34: A form for following a user using Ajax.
app/views/users/_follow.html.erb

<%= form_with(model: current_user.active_relationships.build, remote: true) do |f| %>

<div><%= hidden_field_tag :followed_id, @user.id %></div>

<%= f.submit "Follow", class: "btn btn-primary" %>

<% end %>

9Because it is nominally an acronym for asynchronous JavaScript and XML, Ajax is sometimes misspelled
“AJAX”, even though the original Ajax article spells it as “Ajax” throughout.

10In fact, the default behavior for form_with is to make remote submissions, but at least when starting out I
prefer to be explicit.

http://catb.org/jargon/html/A/automagically.html
http://www.adaptivepath.org/ideas/ajax-new-approach-web-applications/

14.2. A WEB INTERFACE FOR FOLLOWING USERS 871

Listing 14.35: A form for unfollowing a user using Ajax.
app/views/users/_unfollow.html.erb

<%= form_with(model: current_user.active_relationships.find_by(followed_id: @user.id),

html: { method: :delete }, remote: true) do |f| %>

<%= f.submit "Unfollow", class: "btn" %>

<% end %>

The actual HTML generated by this ERb isn’t particularly relevant, but you
might be curious, so here’s a peek at a schematic view (details may differ):

<form action="/relationships/117" class="edit_relationship" data-remote="true"

id="edit_relationship_117" method="post">

.

.

.

</form>

This sets the variable data-remote="true" inside the form tag, which tells
Rails to allow the form to be handled by JavaScript. By using a simple HTML
property instead of inserting the full JavaScript code (as in previous versions of
Rails), Rails follows the philosophy of unobtrusive JavaScript.

Having updated the form, we now need to arrange for the Relationships
controller to respond to Ajax requests. We can do this using the respond_to
method, responding appropriately depending on the type of request. The gen-
eral pattern looks like this:

respond_to do |format|

format.html { redirect_to user }

format.js

end

The syntax is potentially confusing, and it’s important to understand that in the
code above only one of the lines gets executed. (In this sense, respond_to is
more like an if-then-else statement than a series of sequential lines.) Adapting
the Relationships controller to respond to Ajax involves adding respond_to
as above to the create and destroy actions from Listing 14.33. The result

http://railscasts.com/episodes/205-unobtrusive-javascript

872 CHAPTER 14. FOLLOWING USERS

appears as in Listing 14.36. Note the change from the local variable user to
the instance variable @user; in Listing 14.33 there was no need for an instance
variable, but now such a variable is necessary for use in Listing 14.34 and List-
ing 14.35.

Listing 14.36: Responding to Ajax requests in the Relationships controller.
app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController

before_action :logged_in_user

def create

@user = User.find(params[:followed_id])

current_user.follow(@user)

respond_to do |format|

format.html { redirect_to @user }

format.js

end

end

def destroy

@user = Relationship.find(params[:id]).followed

current_user.unfollow(@user)

respond_to do |format|

format.html { redirect_to @user }

format.js

end

end

end

The actions in Listing 14.36 degrade gracefully, whichmeans that they work
fine in browsers that have JavaScript disabled (although a small amount of con-
figuration is necessary, as shown in Listing 14.37).

Listing 14.37: Configuration needed for graceful degradation of form sub-
mission.
config/application.rb

require_relative 'boot'

.

.

.

module SampleApp

14.2. A WEB INTERFACE FOR FOLLOWING USERS 873

class Application < Rails::Application

.

.

.

Include the authenticity token in remote forms.

config.action_view.embed_authenticity_token_in_remote_forms = true

end

end

On the other hand, we have yet to respond properly when JavaScript is enabled.
In the case of an Ajax request, Rails automatically calls a JavaScript embedded
Ruby (.js.erb) file with the same name as the action, i.e., create.js.erb or
destroy.js.erb. As you might guess, such files allow us to mix JavaScript
and embedded Ruby to perform actions on the current page. It is these files that
we need to create and edit in order to update the user profile page upon being
followed or unfollowed.

Inside a JS-ERb file, Rails automatically provides the jQuery JavaScript
helpers to manipulate the page using the Document Object Model (DOM). The
jQuery library (which we saw briefly in Section 13.4.2) provides a large number
of methods for manipulating the DOM, but here we will need only two. First,
we will need to know about the dollar-sign syntax to access a DOM element
based on its unique CSS id. For example, to manipulate the follow_form
element, we will use the syntax

$("#follow_form")

(Recall from Listing 14.19 that this is a div that wraps the form, not the form
itself.) This syntax, inspired by CSS, uses the # symbol to indicate a CSS id.
As you might guess, jQuery, like CSS, uses a dot . to manipulate CSS classes.

The second method we’ll need is html, which updates the HTML inside
the relevant element with the contents of its argument. For example, to replace
the entire follow form with the string "foobar", we would write

$("#follow_form").html("foobar")

http://jquery.com/
http://www.w3.org/DOM/

874 CHAPTER 14. FOLLOWING USERS

Unlike plain JavaScript files, JS-ERb files also allow the use of embedded
Ruby, which we apply in the create.js.erb file to update the follow form
with the unfollow partial (which is what should show after a successful fol-
lowing) and update the follower count. The result is shown in Listing 14.38.
This uses the escape_javascriptmethod, which is needed to escape out the
result when inserting HTML in a JavaScript file.

Listing 14.38: The JavaScript embedded Ruby to create a following relation-
ship.
app/views/relationships/create.js.erb

$("#follow_form").html("<%= escape_javascript(render('users/unfollow')) %>");

$("#followers").html('<%= @user.followers.count %>');

Note the presence of line-ending semicolons, which are characteristic of lan-
guages with syntax descended from ALGOL.

The destroy.js.erb file is analogous (Listing 14.39).

Listing 14.39: The Ruby JavaScript (RJS) to destroy a following relationship.
app/views/relationships/destroy.js.erb

$("#follow_form").html("<%= escape_javascript(render('users/follow')) %>");

$("#followers").html('<%= @user.followers.count %>');

With that, you should navigate to a user profile page and verify that you can
follow and unfollow without a page refresh.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Unfollow and refollow /users/2 through the web. Did it work?

2. According to the server log, which templates are rendered in each case?

https://en.wikipedia.org/wiki/ALGOL
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

14.2. A WEB INTERFACE FOR FOLLOWING USERS 875

14.2.6 Following tests
Now that the follow buttons are working, we’ll write some simple tests to pre-
vent regressions. To follow a user, we post to the relationships path and verify
that the number of followed users increases by 1:

assert_difference '@user.following.count', 1 do

post relationships_path, params: { followed_id: @other.id }

end

This tests the standard implementation, but testing the Ajax version is almost
exactly the same; the only difference is the addition of the option xhr: true:

assert_difference '@user.following.count', 1 do

post relationships_path, params: { followed_id: @other.id }, xhr: true

end

Here xhr stands for XmlHttpRequest; setting the xhr option to true issues an
Ajax request in the test, which causes the respond_to block in Listing 14.36
to execute the proper JavaScript method.

The same parallel structure applies to deleting users, with delete instead of
post. Here we check that the followed user count goes down by 1 and include
the relationship and followed user’s id:

assert_difference '@user.following.count', -1 do

delete relationship_path(relationship)

end

and

assert_difference '@user.following.count', -1 do

delete relationship_path(relationship), xhr: true

end

Putting the two cases together gives the tests in Listing 14.40.

876 CHAPTER 14. FOLLOWING USERS

Listing 14.40: Tests for the follow and unfollow buttons. green
test/integration/following_test.rb

require 'test_helper'

class FollowingTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other = users(:archer)

log_in_as(@user)

end

.

.

.

test "should follow a user the standard way" do

assert_difference '@user.following.count', 1 do

post relationships_path, params: { followed_id: @other.id }

end

end

test "should follow a user with Ajax" do

assert_difference '@user.following.count', 1 do

post relationships_path, xhr: true, params: { followed_id: @other.id }

end

end

test "should unfollow a user the standard way" do

@user.follow(@other)

relationship = @user.active_relationships.find_by(followed_id: @other.id)

assert_difference '@user.following.count', -1 do

delete relationship_path(relationship)

end

end

test "should unfollow a user with Ajax" do

@user.follow(@other)

relationship = @user.active_relationships.find_by(followed_id: @other.id)

assert_difference '@user.following.count', -1 do

delete relationship_path(relationship), xhr: true

end

end

end

At this point, the tests should be green:

14.3. THE STATUS FEED 877

Listing 14.41: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By commenting and uncommenting each of the lines in the respond_to
blocks (Listing 14.36), verify that the tests are testing the right things.
Which test fails in each case?

2. What happens if you delete one of the occurrences of xhr: true in
Listing 14.40? Explain why this is a problem, and why the procedure in
the previous exercise would catch it.

14.3 The status feed
We come now to the pinnacle of our sample application: the status feed of
microposts. Appropriately, this section contains some of the most advanced
material in the entire tutorial. The full status feed builds on the proto-feed from
Section 13.3.3 by assembling an array of the microposts from the users being
followed by the current user, along with the current user’s own microposts.
Throughout this section, we’ll proceed through a series of feed implementa-
tions of increasing sophistication. To accomplish this, we will need some fairly
advanced Rails, Ruby, and even SQL programming techniques.

Because of the heavy lifting ahead, it’s especially important to reviewwhere
we’re going. A recap of the final status feed, shown in Figure 14.5, appears
again in Figure 14.21.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

878 CHAPTER 14. FOLLOWING USERS

Figure 14.21: A mockup of a user’s Home page with a status feed.

14.3. THE STATUS FEED 879

8

user_id
1

9

7

10
2

2

18
1

4

...

content

10

...

...

...

...

6
5

8

1

...

2

7

...

...

...

3

id

9

...
4

microposts

8

1

7

10
2

2

1
...

10

...

...

...

5

1

...

2

7

...

...

9

4

user.feed

Figure 14.22: The feed for a user (id 1) following users with ids 2, 7, 8, and 10.

14.3.1 Motivation and strategy
The basic idea behind the feed is simple. Figure 14.22 shows a sample micro-
posts database table and the resulting feed. The purpose of a feed is to pull
out the microposts whose user ids correspond to the users being followed by
the current user (and the current user itself), as indicated by the arrows in the
diagram.

Although we don’t yet know how to implement the feed, the tests are rela-
tively straightforward, so (following the guidelines in Box 3.3) we’ll write them
first. The key is to check all three requirements for the feed: microposts for both
followed users and the user itself should be included in the feed, but a post from
an unfollowed user should not be included.

As we’ll see in Listing 14.28, we’ll be arranging for Michael to follow Lana
but not Archer; based on the fixtures in Listing 10.47 and Listing 13.54, this
means that Michael should see Lana’s posts and his own posts, but not Archer’s
posts. Converting these requirements to assertions and recalling that the feed
is in the User model (Listing 13.46) gives the updated User model test shown
in Listing 14.42.

880 CHAPTER 14. FOLLOWING USERS

Listing 14.42: A test for the status feed. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

.

.

.

test "feed should have the right posts" do

michael = users(:michael)

archer = users(:archer)

lana = users(:lana)

Posts from followed user

lana.microposts.each do |post_following|

assert michael.feed.include?(post_following)

end

Posts from self

michael.microposts.each do |post_self|

assert michael.feed.include?(post_self)

end

Posts from unfollowed user

archer.microposts.each do |post_unfollowed|

assert_not michael.feed.include?(post_unfollowed)

end

end

end

Of course, the current implementation is just a proto-feed, so the new test
is initially red:

Listing 14.43: red
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Assuming the micropost’s ids are numbered sequentially, with larger
numbers being more recent, what would user.feed.map(&:id) re-

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

14.3. THE STATUS FEED 881

turn for the feed shown in Figure 14.22? Hint: Recall the default scope
from Section 13.1.4.

14.3.2 A first feed implementation
With the status feed design requirements captured in the test from Listing 14.42,
we’re ready to start writing the feed. Since the final feed implementation is
rather intricate, we’ll build up to it by introducing one piece at a time. The first
step is to think of the kind of query we’ll need. We need to select all the mi-
croposts from the microposts table with ids corresponding to the users being
followed by a given user (or the user itself). We might write this schematically
as follows:

SELECT * FROM microposts

WHERE user_id IN (<list of ids>) OR user_id = <user id>

In writing this code, we’ve guessed that SQL supports an IN keyword that al-
lows us to test for set inclusion. (Happily, it does.)

Recall from the proto-feed in Section 13.3.3 that Active Record uses the
where method to accomplish the kind of select shown above, as illustrated in
Listing 13.46. There, our select was very simple; we just picked out all the
microposts with user id corresponding to the current user:

Micropost.where("user_id = ?", id)

Here, we expect it to be more complicated, something like this:

Micropost.where("user_id IN (?) OR user_id = ?", following_ids, id)

We see from these conditions that we’ll need an array of ids corresponding
to the users being followed. One way to do this is to use Ruby’s map method,
available on any “enumerable” object, i.e., any object (such as an Array or a

882 CHAPTER 14. FOLLOWING USERS

Hash) that consists of a collection of elements.11 We saw an example of this
method in Section 4.3.2; as another example, we’ll use map to convert an array
of integers to an array of strings:

$ rails console

>> [1, 2, 3, 4].map { |i| i.to_s }

=> ["1", "2", "3", "4"]

Situations like the one illustrated above, where the same method gets called
on each element in the collection, are common enough that there’s a shorthand
notation for it (seen briefly in Section 4.3.2) that uses an ampersand & and a
symbol corresponding to the method:

>> [1, 2, 3, 4].map(&:to_s)

=> ["1", "2", "3", "4"]

Using the joinmethod (Section 4.3.1), we can create a string composed of the
ids by joining them on comma-space :

>> [1, 2, 3, 4].map(&:to_s).join(', ')

=> "1, 2, 3, 4"

We can use the above method to construct the necessary array of followed
user ids by calling id on each element in user.following. For example, for
the first user in the database this array appears as follows:

>> User.first.following.map(&:id)

=> [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51]

In fact, because this sort of construction is so useful, Active Record provides it
by default:

11The main requirement is that enumerable objects must implement an each method to iterate through the
collection.

14.3. THE STATUS FEED 883

>> User.first.following_ids

=> [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51]

Here the following_ids method is synthesized by Active Record based on
the has_many :following association (Listing 14.8); the result is that we
need only append _ids to the association name to get the ids corresponding to
the user.following collection. A string of followed user ids then appears as
follows:

>> User.first.following_ids.join(', ')

=> "3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51"

When inserting into an SQL string, though, you don’t need to do this; the
? interpolation takes care of it for you (and in fact eliminates some database-
dependent incompatibilities). This means we can use following_ids by it-
self. As a result, the initial guess of

Micropost.where("user_id IN (?) OR user_id = ?", following_ids, id)

actually works! The result appears in Listing 14.44.

Listing 14.44: The initial working feed. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns true if a password reset has expired.

def password_reset_expired?

reset_sent_at < 2.hours.ago

end

884 CHAPTER 14. FOLLOWING USERS

Returns a user's status feed.

def feed

Micropost.where("user_id IN (?) OR user_id = ?", following_ids, id)

end

Follows a user.

def follow(other_user)

following << other_user

end

.

.

.

end

The test suite should be green:

Listing 14.45: green
$ rails test

In some applications, this initial implementationmight be good enough for most
practical purposes, but Listing 14.44 isn’t the final implementation; see if you
can make a guess about why not before moving on to the next section. (Hint:
What if a user is following 5000 other users?)

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In Listing 14.44, remove the part of the query that finds the user’s own
posts. Which test in Listing 14.42 breaks?

2. In Listing 14.44, remove the part of the query that finds the followed
users’ posts. Which test in Listing 14.42 breaks?

3. How could you change the query in Listing 14.44 to have the feed er-
roneously return microposts of unfollowed users, thereby breaking the

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

14.3. THE STATUS FEED 885

third test in Listing 14.42? Hint: Returning all the microposts would do
the trick.

14.3.3 Subselects
As hinted at in the last section, the feed implementation in Section 14.3.2
doesn’t scale well when the number of microposts in the feed is large, as would
likely happen if a user were following, say, 5000 other users. In this section,
we’ll reimplement the status feed in a way that scales better with the number of
followed users.

The problem with the code in Section 14.3.2 is that following_ids pulls
all the followed users’ ids into memory, and creates an array the full length
of the followed users array. Since the condition in Listing 14.44 actually just
checks inclusion in a set, there must be a more efficient way to do this, and
indeed SQL is optimized for just such set operations. The solution involves
pushing the finding of followed user ids into the database using a subselect.

We’ll start by refactoring the feed with the slightly modified code in List-
ing 14.46.

Listing 14.46: Using key-value pairs in the feed’s where method. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns a user's status feed.

def feed

Micropost.where("user_id IN (:following_ids) OR user_id = :user_id",

following_ids: following_ids, user_id: id)

end

.

.

.

end

As preparation for the next step, we have replaced

886 CHAPTER 14. FOLLOWING USERS

Micropost.where("user_id IN (?) OR user_id = ?", following_ids, id)

with the equivalent

Micropost.where("user_id IN (:following_ids) OR user_id = :user_id",

following_ids: following_ids, user_id: id)

The question mark syntax is fine, but when we want the same variable inserted
in more than one place, the second syntax is more convenient.

The above discussion implies that we will be adding a second occurrence
of user_id in the SQL query. In particular, we can replace the Ruby code

following_ids

with the SQL snippet

following_ids = "SELECT followed_id FROM relationships

WHERE follower_id = :user_id"

This code contains an SQL subselect, and internally the entire select for user 1
would look something like this:

SELECT * FROM microposts

WHERE user_id IN (SELECT followed_id FROM relationships

WHERE follower_id = 1)

OR user_id = 1

This subselect arranges for all the set logic to be pushed into the database, which
is more efficient.

With this foundation, we are ready for a more efficient feed implemen-
tation, as seen in Listing 14.47. Note that, because it is now raw SQL, the
following_ids string is interpolated, not escaped.

14.3. THE STATUS FEED 887

Listing 14.47: The final implementation of the feed. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns a user's status feed.

def feed

following_ids = "SELECT followed_id FROM relationships

WHERE follower_id = :user_id"

Micropost.where("user_id IN (#{following_ids})

OR user_id = :user_id", user_id: id)

end

.

.

.

end

This code has a formidable combination of Rails, Ruby, and SQL, but it does
the job, and does it well:

Listing 14.48: green
$ rails test

Of course, even the subselect won’t scale forever. For bigger sites, you would
probably need to generate the feed asynchronously using a background job, but
such scaling subtleties are beyond the scope of this tutorial.

With the code in Listing 14.47, our status feed is now complete. Recall from
Section 13.3.3 that the Home page already includes the feed. In Chapter 13, the
result was only a proto-feed (Figure 13.14), but with the implementation in
Listing 14.47 as seen in Figure 14.23 the Home page now shows the full feed.

At this point, we’re ready to merge our changes into the master branch:

$ rails test

$ git add -A

$ git commit -m "Add user following"

$ git checkout master

$ git merge following-users

888 CHAPTER 14. FOLLOWING USERS

Figure 14.23: The Home page with a working status feed.

14.3. THE STATUS FEED 889

Figure 14.24: A working status feed on the live Web.

We can then push the code to the remote repository and deploy the application
to production:

$ git push

$ git push heroku

$ heroku pg:reset DATABASE

$ heroku run rails db:migrate

$ heroku run rails db:seed

The result is a working status feed on the live Web (Figure 14.24).

890 CHAPTER 14. FOLLOWING USERS

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Write an integration test to verify that the first page of the feed appears
on the Home page as required. A template appears in Listing 14.49.

2. Note that Listing 14.49 escapes the expected HTML using
CGI.escapeHTML (which is closely related to the CGI.escapemethod
we used in Section 11.2.3 to escape URLs). Why is escaping the HTML
necessary in this case? Hint: Try removing the escaping and carefully
inspect the page source for the micropost content that doesn’t match. Us-
ing the search feature of your terminal shell (Cmd-F on Ctrl-F on most
systems) to find the word “sorry” may prove particularly helpful.

3. The code in Listing 14.47 can be expressed directly in Rails using a so-
called inner join using the joinmethod. By running the tests, show that
the code in Listing 14.50 returns a valid feed.12 What is the SQL query
generated by this code? (Hint: Run User.first.feed in the console.)

Listing 14.49: Testing the feed HTML. green
test/integration/following_test.rb

require 'test_helper'

class FollowingTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

log_in_as(@user)

end

.

.

.

test "feed on Home page" do

get root_path

12Thanks to reader Anna for suggesting this version.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.guru99.com/sqlite-join.html

14.4. CONCLUSION 891

@user.feed.paginate(page: 1).each do |micropost|

assert_match CGI.escapeHTML(FILL_IN), FILL_IN

end

end

end

Listing 14.50: Using a join to make the feed.
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns a user's status feed.

def feed

part_of_feed = "relationships.follower_id = :id or microposts.user_id = :id"

Micropost.joins(user: :followers).where(part_of_feed, { id: id })

end

.

.

.

end

14.4 Conclusion
With the addition of the status feed, we’ve finished the sample application
for the Ruby on Rails Tutorial. This application includes examples of all the
major features of Rails, including models, views, controllers, templates, par-
tials, filters, validations, callbacks, has_many/belongs_to and has_many

:through associations, security, testing, and deployment.
Despite this impressive list, there is still much to learn about web develop-

ment. As a first step in this process, this section contains some suggestions for
further learning.

14.4.1 Guide to further resources
There is a wealth of Rails resources in stores and on the web—indeed, the sup-
ply is so rich that it can be overwhelming. The good news is that, having gotten

892 CHAPTER 14. FOLLOWING USERS

this far, you’re ready for almost anything else out there. Here are some sugges-
tions for further learning:

• Learn Enough All Access Bundle: Premium subscription service that in-
cludes a special enhanced version of the Ruby on Rails Tutorial book and
15+ hours of streaming screencast lessons filled with the kind of tips,
tricks, and live demos that you can’t get from reading a book. Also in-
cludes text and videos for the other Learn Enough tutorials. Scholarship
discounts are available.

• Launch School: Lots of in-person developer bootcamps have sprung up
in recent years, and I recommend looking for one in your area, but Launch
School is available online and so can be taken from anywhere. Launch
School is an especially good choice if you want instructor feedback with-
in the context of a structured curriculum.

• The Turing School of Software & Design: a full-time, 27-week Ruby/-
Rails/JavaScript training program in Denver, Colorado. Most of their
students start with limited programming experience but have the deter-
mination and drive needed to pick it up quickly. Turing guarantees its
students will find a job after graduating or they’ll refund the cost of tu-
ition.

• Bloc: An online bootcamp with a structured curriculum, personalized
mentorship, and a focus on learning through concrete projects. Use the
coupon code BLOCLOVESHARTL to get $500 off the enrollment fee.

• Thinkful: An online class that pairs you with a professional engineer as
you work through a project-based curriculum. Subjects include Ruby on
Rails, front-end development, web design, and data science.

• Pragmatic Studio: Online Ruby and Rails courses from Mike and Nicole
Clark.

• RailsApps: Instructive sample Rails apps

https://www.learnenough.com/all-access
https://www.learnenough.com/
https://launchschool.com/railstutorial
http://launchschool.com/railstutorial
http://launchschool.com/railstutorial
https://turing.io/
https://bloc.io/
https://www.thinkful.com/a/railstutorial
https://pragmaticstudio.com/refs/railstutorial
https://tutorials.railsapps.org/hartl

14.4. CONCLUSION 893

• Lambda School: Innovative full-time online program that you pay for
only if you land a high-paying job.

14.4.2 What we learned in this chapter
• Rails’ has_many :through allows the modeling of complicated data
relationships.

• The has_many method takes several optional arguments, including the
object class name and the foreign key.

• Using has_many and has_many :throughwith properly chosen class
names and foreign keys, we can model both active (following) and pas-
sive (being followed) relationships.

• Rails routing supports nested routes.

• The where method is a flexible and powerful way to create database
queries.

• Rails supports issuing lower-level SQL queries if needed.

• By putting together everything we’ve learned in this book, we’ve suc-
cessfully implemented user following with a status feed of microposts
from followed users.

https://lambdaschool.com

	From zero to deploy
	Up and running
	Development environment
	Installing Rails

	The first application
	Bundler
	rails server
	Model-View-Controller (MVC)
	Hello, world!

	Version control with Git
	Installation and setup
	What good does Git do you?
	GitHub
	Branch, edit, commit, merge

	Deploying
	Heroku setup and deployment
	Heroku commands

	Conclusion
	What we learned in this chapter

	Conventions used in this book

	A toy app
	Planning the application
	A toy model for users
	A toy model for microposts

	The Users resource
	A user tour
	MVC in action
	Weaknesses of this Users resource

	The Microposts resource
	A micropost microtour
	Putting the micro in microposts
	A user has_many microposts
	Inheritance hierarchies
	Deploying the toy app

	Conclusion
	What we learned in this chapter

	Mostly static pages
	Sample app setup
	Static pages
	Generated static pages
	Custom static pages

	Getting started with testing
	Our first test
	Red
	Green
	Refactor

	Slightly dynamic pages
	Testing titles (Red)
	Adding page titles (Green)
	Layouts and embedded Ruby (Refactor)
	Setting the root route

	Conclusion
	What we learned in this chapter

	Advanced testing setup
	minitest reporters
	Automated tests with Guard

	Rails-flavored Ruby
	Motivation
	Built-in helpers
	Custom helpers

	Strings and methods
	Strings
	Objects and message passing
	Method definitions
	Back to the title helper

	Other data structures
	Arrays and ranges
	Blocks
	Hashes and symbols
	CSS revisited

	Ruby classes
	Constructors
	Class inheritance
	Modifying built-in classes
	A controller class
	A user class

	Conclusion
	What we learned in this chapter

	Filling in the layout
	Adding some structure
	Site navigation
	Bootstrap and custom CSS
	Partials

	Sass and the asset pipeline
	The asset pipeline
	Syntactically awesome stylesheets

	Layout links
	Contact page
	Rails routes
	Using named routes
	Layout link tests

	User signup: A first step
	Users controller
	Signup URL

	Conclusion
	What we learned in this chapter

	Modeling users
	User model
	Database migrations
	The model file
	Creating user objects
	Finding user objects
	Updating user objects

	User validations
	A validity test
	Validating presence
	Length validation
	Format validation
	Uniqueness validation

	Adding a secure password
	A hashed password
	User has secure password
	Minimum password standards
	Creating and authenticating a user

	Conclusion
	What we learned in this chapter

	Sign up
	Showing users
	Debug and Rails environments
	A Users resource
	Debugger
	A Gravatar image and a sidebar

	Signup form
	Using form_with
	Signup form HTML

	Unsuccessful signups
	A working form
	Strong parameters
	Signup error messages
	A test for invalid submission

	Successful signups
	The finished signup form
	The flash
	The first signup
	A test for valid submission

	Professional-grade deployment
	SSL in production
	Production webserver
	Production database configuration
	Production deployment

	Conclusion
	What we learned in this chapter

	Basic login
	Sessions
	Sessions controller
	Login form
	Finding and authenticating a user
	Rendering with a flash message
	A flash test

	Logging in
	The log_in method
	Current user
	Changing the layout links
	Testing layout changes
	Login upon signup

	Logging out
	Conclusion
	What we learned in this chapter

	Advanced login
	Remember me
	Remember token and digest
	Login with remembering
	Forgetting users
	Two subtle bugs

	``Remember me'' checkbox
	Remember tests
	Testing the ``remember me'' box
	Testing the remember branch

	Conclusion
	What we learned in this chapter

	Updating, showing, and deleting users
	Updating users
	Edit form
	Unsuccessful edits
	Testing unsuccessful edits
	Successful edits (with TDD)

	Authorization
	Requiring logged-in users
	Requiring the right user
	Friendly forwarding

	Showing all users
	Users index
	Sample users
	Pagination
	Users index test
	Partial refactoring

	Deleting users
	Administrative users
	The destroy action
	User destroy tests

	Conclusion
	What we learned in this chapter

	Account activation
	Account activations resource
	Account activations controller
	Account activation data model

	Account activation emails
	Mailer templates
	Email previews
	Email tests
	Updating the Users create action

	Activating the account
	Generalizing the authenticated? method
	Activation edit action
	Activation test and refactoring

	Email in production
	Conclusion
	What we learned in this chapter

	Password reset
	Password resets resource
	Password resets controller
	New password resets
	Password reset create action

	Password reset emails
	Password reset mailer and templates
	Email tests

	Resetting the password
	Reset edit action
	Updating the reset
	Password reset test

	Email in production (take two)
	Conclusion
	What we learned in this chapter

	Proof of expiration comparison

	User microposts
	A Micropost model
	The basic model
	Micropost validations
	User/Micropost associations
	Micropost refinements

	Showing microposts
	Rendering microposts
	Sample microposts
	Profile micropost tests

	Manipulating microposts
	Micropost access control
	Creating microposts
	A proto-feed
	Destroying microposts
	Micropost tests

	Micropost images
	Basic image upload
	Image validation
	Image resizing
	Image upload in production

	Conclusion
	What we learned in this chapter

	Following users
	The Relationship model
	A problem with the data model (and a solution)
	User/relationship associations
	Relationship validations
	Followed users
	Followers

	A web interface for following users
	Sample following data
	Stats and a follow form
	Following and followers pages
	A working follow button the standard way
	A working follow button with Ajax
	Following tests

	The status feed
	Motivation and strategy
	A first feed implementation
	Subselects

	Conclusion
	Guide to further resources
	What we learned in this chapter

