

Early praise for Agile Web Development with Rails 5.1

The best book to get started in the Rails world. A comprehensive, coherent, and

concise overview of the Ruby on Rails framework. It treats learning in a gradual

way, creating an application from scratch using the latest technologies.

➤ Luis Miguel Cabezas Granado

Ruby on Rails and PHP developer at Junta de Extremadura (Spain) and PHP

book writer at Anaya Multimedia,

I liked how the book guided me through each step of the tasks. This book gives

a thorough introduction to Rails, and I’d suggest it to anyone who wants to start

development with Rails.

➤ Gábor László Hajba

Software Developer, EBCONT Enterprise Technologies

The book was really pleasant to read; I liked how it creates a foundational under-

standing of Rails with a realistic scenario and then builds upon it for the more

advanced topics.

➤ Alessandro Bahgat

Software Engineer, Google

We've left this page blank to

make the page numbers the

same in the electronic and

paper books.

We tried just leaving it out,

but then people wrote us to

ask about the missing pages.

Anyway, Eddy the Gerbil

wanted to say “hello.”

Agile Web Development with Rails 5.1

Sam Ruby

David Bryant Copeland

with Dave Thomas

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create

better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow

Development Editor: Susannah Davidson Pfalzer

Indexing: Potomac Indexing, LLC

Copy Editor: Molly McBeath

Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-251-0

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—November 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Foreword to the Rails 5 Edition xi

Preface to the Rails 5.1 Edition xiii

Acknowledgments xv

Introduction xvii

Part I — Getting Started

1. Installing Rails 3

Installing on Cloud9 4

Installing on a Virtual Machine 7

Installing on Windows 9

Installing on Mac OS X 12

Installing on Linux 14

Choosing a Rails Version 16

Setting Up Your Development Environment 16

Rails and Databases 20

2. Instant Gratification 23

Creating a New Application 23

Hello, Rails! 26

Linking Pages Together 32

When Things Go Wrong 35

3. The Architecture of Rails Applications 39

Models, Views, and Controllers 39

Rails Model Support 42

Action Pack: The View and Controller 44

4. Introduction to Ruby 47

Ruby Is an Object-Oriented Language 47

Data Types 49

Logic 53

Organizing Structures 56

Marshaling Objects 59

Pulling It All Together 59

Ruby Idioms 60

Part II — Building an Application

5. The Depot Application 65

Incremental Development 65

What Depot Does 66

Let’s Code 70

6. Task A: Creating the Application 71

Iteration A1: Creating the Product Maintenance Application 71

Iteration A2: Making Prettier Listings 78

7. Task B: Validation and Unit Testing 87

Iteration B1: Validating! 87

Iteration B2: Unit Testing of Models 91

8. Task C: Catalog Display 103

Iteration C1: Creating the Catalog Listing 103

Iteration C2: Adding a Page Layout 107

Iteration C3: Using a Helper to Format the Price 112

Iteration C4: Functional Testing of Controllers 114

Iteration C5: Caching of Partial Results 116

9. Task D: Cart Creation 121

Iteration D1: Finding a Cart 121

Iteration D2: Connecting Products to Carts 122

Iteration D3: Adding a Button 125

10. Task E: A Smarter Cart 133

Iteration E1: Creating a Smarter Cart 133

Iteration E2: Handling Errors 138

Iteration E3: Finishing the Cart 143

11. Task F: Add a Dash of Ajax 151

Iteration F1: Moving the Cart 152

Iteration F2: Creating an Ajax-Based Cart 159

Contents • vi

Iteration F3: Highlighting Changes 164

Iteration F4: Hiding an Empty Cart with a Custom Helper 167

Iteration F5: Broadcasting Updates with Action Cable 169

12. Task G: Check Out! 175

Iteration G1: Capturing an Order 175

Iteration G2: Atom Feeds 189

13. Task H: Entering Additional Payment Details 195

Iteration H1: Adding Fields Dynamically to a Form 195

Iteration H2: Testing Our JavaScript Functionality 214

14. Task I: Processing Emails and Payments Efficiently . . . 217

Iteration I1: Sending Confirmation Emails 217

Iteration I2: Connecting to a Slow Payment Processor

with Active Job 225

15. Task J: Logging In 235

Iteration J1: Adding Users 235

Iteration J2: Authenticating Users 239

Iteration J3: Limiting Access 245

Iteration J4: Adding a Sidebar, More Administration 247

16. Task K: Internationalization 253

Iteration K1: Selecting the Locale 254

Iteration K2: Translating the Storefront 257

Iteration K3: Translating Checkout 265

Iteration K4: Adding a Locale Switcher 276

17. Task L: Deployment and Production 279

Iteration L1: Deploying with Phusion Passenger and MySQL 281

Iteration L2: Deploying Remotely with Capistrano 288

Iteration L3: Checking Up on a Deployed Application 294

Iteration L4: Deploying with Fewer Steps on Heroku 295

18. Depot Retrospective 301

Rails Concepts 301

Documenting What We’ve Done 304

Contents • vii

Part III — Rails in Depth

19. Finding Your Way Around Rails 307

Where Things Go 307

Naming Conventions 315

20. Active Record 319

Defining Your Data 319

Locating and Traversing Records 324

Creating, Reading, Updating, and Deleting (CRUD) 328

Participating in the Monitoring Process 342

Transactions 348

21. Action Dispatch and Action Controller 353

Dispatching Requests to Controllers 354

Processing of Requests 363

Objects and Operations That Span Requests 375

22. Action View 385

Using Templates 385

Generating Forms 387

Processing Forms 390

Uploading Files to Rails Applications 391

Using Helpers 395

Reducing Maintenance with Layouts and Partials 402

23. Migrations 411

Creating and Running Migrations 411

Anatomy of a Migration 414

Managing Tables 418

Advanced Migrations 423

When Migrations Go Bad 424

Schema Manipulation Outside Migrations 425

24. Customizing and Extending Rails 427

Testing with RSpec 427

Creating HTML Templates with Slim 433

Serving CSS via Webpack 435

Customizing Rails in Other Ways 437

Where to Go from Here 438

Contents • viii

Bibliography 441

Index 443

Contents • ix

Foreword to the Rails 5 Edition

You’ve made a great decision to learn Ruby on Rails. The language, framework,

and community have never been in better shape, and the community has

never been easier to join than it is today. The early days of the frontier are

gone, and while some of the cowboy excitement went with it, what we have

instead is a sophisticated, modern, and functional state.

The spoils of such progress will hopefully become apparent as you work your

way through this book. Ruby on Rails takes care of an inordinate amount of

what most developers need most of the time. In the world of web development,

that’s an awful lot! An overwhelming lot at times.

But don’t be intimidated. You don’t need to understand every fine point and

every minutia before you can begin to make progress. Ruby on Rails has been

designed to flatten the learning curve as much as possible while at the same

time encouraging you to level up over time.

Becoming an expert in full-stack web development won’t happen overnight.

Even Ruby on Rails can’t replace the inherent depth of knowledge required

to understand every facet, from HTTP to databases to JavaScript to object-

oriented best practices to testing methodologies. One day you’ll be able to

converse fluently about all that, but don’t worry or expect that to be “twenty-

one days from now” (or whatever snake-oil sales speak some publishers might

try to push on you).

The journey from here to there is half the fun. You’ve arrived in a community

that cares an extraordinary amount about the craft of writing great software

for the web. This might seem a little strange at first: is it really possible to

care that much whether an if-statement is at the beginning of a conditional

or if it’s an unless-statement at the end? Yes, yes it is. Helping more program-

mers develop an eye for such details is a big part of our mission here.

Because Ruby on Rails isn’t just about getting stuff done quickly. That’s part

of it, but it’s the lesser one. The greater appeal is in making software for the

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

web fun, rewarding, and inspiring. To make learning all the nooks and cran-

nies of our crazy craft an adventure.

Every new version of Rails expands the scope of what we try to tackle

together. This is unapologetically not a minimalist framework. And Rails 5 is

no different. With this major new version we’ve opened the door to a major

new domain: the real-time web. You’re in for a real treat here as well.

But let’s not get ahead of ourselves. You have much to learn, and I can’t wait

to see what you do with it. I’ve been programming in Ruby and working on

Rails for the past thirteen years. It never ceases to inspire and motivate me

to see new developers discover our wonderful language and framework for

the first time. In some ways, I’m even jealous.

Welcome to Ruby on Rails!

David Heinemeier Hansson

Foreword to the Rails 5 Edition • xii

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Preface to the Rails 5.1 Edition

Rails 1.0 was released in December 2005. In the years since, it has gone from

a relatively unknown leading-edge tool to a successful and stable foundation

with a large set of associated libraries that others benchmark themselves

against.

The book you’re about to read was there from the start, and it has evolved

with Rails. It began as a full reference to a small framework when online

documentation was scarce and inconsistent. It’s now an introduction to the

entire Rails ecosystem—one that leaves you with many pointers to more

information that you can explore based on your needs and desires.

This book didn’t just evolve along with Rails: Rails evolved with it. The content

in this book has been developed in consultation with the Rails core team. Not

only is the code you’ll see in this book tested against each release of Rails,

but the converse is also true: Rails itself is tested against the code in this

book and won’t be released until those tests pass.

So read this book with confidence that the scenarios not only work but also

describe how the Rails developers themselves feel about how best to use Rails.

We hope you get as much pleasure out of reading this book as we had in

developing it.

This book covers Rails 5.1.1. While some of the commands you’ll be using

are new, the underlying development model remains the same. Even when

new major features are added, such as direct support for Webpack, the

changes are evolutionary, not revolutionary.

Rails 5.1 introduced two major new features and a lot of small improve-

ments. Before Rails 5.1, using modern JavaScript and front-end tools like

Webpack, PostCSS, or React was difficult. These tools were designed very

differently from the way Rails manages front-end assets. Rails 5.1 brings

Webpacker, a preset configuration for Webpack, which allows simple inte-

gration between Rails and the entire JavaScript ecosystem. This was no

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

small feat, yet for you as a developer it’s nothing more than a few new

command-line invocations away.

Rails 5.1 also provides direct support for something every Rails developer has

been doing for years: executing system tests in a real live web browser. When

you use a lot of JavaScript, it’s hard to test your app without running it in a

browser, and Rails now provides a definitive way to do that, fully integrated

with the rest of Rails’ awesome testing support.

We’ve also added some coverage of Active Job, Rails’ built-in background job

queueing library, as well as an update on how you can change or extend Rails.

Here you’ll learn how to use RSpec as an alternative to Rails’ testing library

and Slim as an alternative to ERB for writing HTML templates. You’ll also

learn how to use cssnext for translating CSS that’s not supported by browsers

to CSS that is. Rails is accurately described as “opinionated software,” but

it’s much more malleable to differing opinions than it might seem. As Rails’

creator David Heinemeier Hansson says, Rails should “push up a big tent.”1

1. http://rubyonrails.org/doctrine/#big-tent

Preface to the Rails 5.1 Edition • xiv

report erratum • discuss

http://rubyonrails.org/doctrine/#big-tent
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Acknowledgments

Rails is constantly evolving and, as it has, so has this book. Parts of the Depot

application were rewritten several times, and all of the text and code was

updated. The avoidance of features as they become deprecated has repeatedly

changed the structure of the book, as what was once hot became just lukewarm.

So, this book would not exist without a massive amount of assistance from

the Ruby and Rails communities. We had many helpful reviewers of drafts of

this edition:

Nick WattsNigel LowryAlessandro Bahgat

Luis Miguel Cabezas GranadoPeter PerlepesJacob Chae

Craig RussellGábor László Hajba

Of course, none of this would exist without the developers contributing to

Ruby on Rails every day. In particular, the Rails core team has been incredibly

helpful, answering questions, checking out code fragments, and fixing bugs—

even to the point where part of the release process includes verifying that

new releases of Rails don’t break the examples provided in this book.

Sam Ruby and David Bryant Copeland

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Introduction

Ruby on Rails is a framework that makes it easier to develop, deploy, and

maintain web applications. During the 12+ years since its initial release, Rails

went from being an unknown toy to a worldwide phenomenon. More impor-

tantly, it has become the framework of choice for the implementation of a

wide range of applications.

Why is that?

Rails Simply Feels Right

A large number of developers were frustrated with the technologies they were

using to create web applications. It didn’t seem to matter whether they used

Java, PHP, or .NET—there was a growing sense that their jobs were just too

damn hard. And then, suddenly, along came Rails, and Rails was easier.

But easy on its own doesn’t cut it. We’re talking about professional developers

writing real-world websites. They wanted to feel that the applications they

were developing would stand the test of time—that they were designed and

implemented using modern, professional techniques. So, these developers

dug into Rails and discovered it wasn’t just a tool for hacking out sites.

For example, all Rails applications are implemented using the Model-View-

Controller (MVC) architecture. MVC is not a new concept for web development

—the earliest Java-based web frameworks (like Struts) base their design on

it. But Rails takes MVC further: when you develop in Rails, you start with a

working application, each piece of code has its place, and all the pieces of

your application interact in a standard way.

Professional programmers write tests. And again, Rails delivers. All Rails

applications have testing support baked right in. As you add functionality to

the code, Rails automatically creates test stubs for that functionality. The

framework makes it easy to test applications, and, as a result, Rails applica-

tions tend to get tested.

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Rails applications are written in Ruby, a modern, object-oriented language.

Ruby is concise without being unintelligibly terse. You can express ideas

naturally and cleanly in Ruby code. This leads to programs that are easy to

write and (just as important) easy to read months later.

Rails takes Ruby to the limit, extending it in novel ways that make our pro-

gramming lives easier. Using Rails makes our programs shorter and more

readable. It also allows us to perform tasks that would normally be done in

external configuration files inside the codebase instead. This makes it far

easier to see what’s happening. The following code defines the model class

for a project. Don’t worry about the details for now. Instead, think about how

much information is being expressed in a few lines of code:

class Project < ApplicationRecord
belongs_to :portfolio

has_one :project_manager
has_many :milestones
has_many :deliverables, through: milestones

validates :name, :description, presence: true
validates :non_disclosure_agreement, acceptance: true
validates :short_name, uniqueness: true

end

A major philosophical underpinning of Rails that keeps code short and read-

able is the DRY principle, which stands for Don’t Repeat Yourself (see The

Pragmatic Programmer [HT99]). Every piece of knowledge in a system should

be expressed in one place. Rails uses the power of Ruby to bring that to life.

You’ll find little duplication in a Rails application; you say what you need to

say in one place—a place often suggested by the conventions of the MVC

architecture—and then move on. For programmers used to other web frame-

works, where a simple change to the database schema could involve a dozen

or more code changes, this was a revelation—and it still is.

From that principle, Rails is founded on the Rails Doctrine,1 which is a set of

nine pillars that explain why Rails works the way it does and how you can

be most successful in using it. Not every pillar is relevant when just starting

out with Rails, but one pillar in particular is most important: convention over

configuration.

Convention over configuration means that Rails has sensible defaults for just

about every aspect of knitting together your application. Follow the conven-

tions, and you can write a Rails application using less code than a typical

1. http://rubyonrails.org/doctrine/

Introduction • xviii

report erratum • discuss

http://rubyonrails.org/doctrine/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

JavaScript application uses in JSON configuration. If you need to override

the conventions, Rails makes that easy, too.

Developers coming to Rails find something else, too. Rails doesn’t merely play

catch-up with the de facto web standards: it helps define them. And Rails

makes it easy for developers to integrate features such as Ajax, modern

JavaScript frameworks, RESTful interfaces, and WebSockets into their code

because support is built in. (And if you’re not familiar with any of these terms,

never fear—you’ll learn what they mean as you proceed through the book).

Rails was extracted from a real-world, commercial application. It turns out

that the best way to create a framework is to find the central themes in a

specific application and then package them in a generic foundation of code.

When you’re developing your Rails application, you’re starting with half of a

really good application already in place.

But there’s something else to Rails—something that’s hard to describe.

Somehow, it feels right. Of course, you’ll have to take our word for that until

you write some Rails applications for yourself (which should be in the next

forty-five minutes or so…). That’s what this book is all about.

Rails Is Agile

The title of this book is Agile Web Development with Rails 5.1. You may be

surprised to discover that we don’t have explicit sections on applying agile

practices X, Y, and Z to Rails coding. In fact, you won’t find mention of many

agile practices, such as Scrum or Extreme Programming, at all.

Over the years since Rails was introduced, the term agile has gone from being

relatively unknown, to being overhyped, to being treated as a formal set of

practices, to receiving a well-deserved amount of pushback against formal

practices that were never meant to be treated as gospel, to a return back to

the original principles.

But it’s more than that. The reason is both simple and subtle. Agility is part

of the fabric of Rails.

Let’s look at the values expressed in the Agile Manifesto (Dave Thomas was

one of the seventeen authors of this document) as a set of four preferences:2

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

2. http://agilemanifesto.org/

report erratum • discuss

Rails Is Agile • xix

http://agilemanifesto.org/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Rails is all about individuals and interactions. It involves no heavy toolsets,

no complex configurations, and no elaborate processes, just small groups of

developers, their favorite editors, and chunks of Ruby code. This leads to

transparency; what the developers do is reflected immediately in what the

customer sees. It’s an intrinsically interactive process.

The Rails development process isn’t driven by documents. You won’t find

500-page specifications at the heart of a Rails project. Instead, you’ll find a

group of users and developers jointly exploring their need and the possible

ways of answering that need. You’ll find solutions that change as both the

developers and the users become more experienced with the problems they’re

trying to solve. You’ll find a framework that delivers working software early

in the development cycle. This software might be rough around the edges,

but it lets the users start to get a glimpse of what you’ll be delivering.

In this way, Rails encourages customer collaboration. When customers see

how quickly a Rails project can respond to change, they start to trust that

the team can deliver what’s required, not just what’s been requested. Con-

frontations are replaced by “What if?” sessions.

The agile way of working that Rails encourages is tied to the idea of being

able to respond to change. The strong, almost obsessive, way that Rails honors

the DRY principle means that changes to Rails applications impact a lot less

code than the same changes would in other frameworks. And since Rails

applications are written in Ruby, where concepts can be expressed accurately

and concisely, changes tend to be localized and easy to write. The deep

emphasis on both unit and system testing, along with support for test fixtures

and stubs during testing, gives developers the safety net they need when

making those changes. With a good set of tests in place, changes are less

nerve-racking.

Rather than constantly trying to link Rails processes to agile principles, we’ve

decided to let the framework speak for itself. As you read through the tutorial

chapters, try to imagine yourself developing web applications this way,

working alongside your customers and jointly determining priorities and

solutions to problems. Then, as you read the more advanced concepts that

follow in Part III, see how the underlying structure of Rails can enable you to

meet your customers’ needs faster and with less ceremony.

One last point about agility and Rails—although it’s probably unprofessional

to mention this—think how much fun the coding will be!

Introduction • xx

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Who This Book Is For

This book is for programmers looking to build and deploy web-based applica-

tions. This includes application programmers who are new to Rails (and

perhaps even new to Ruby) as well as those who are familiar with the basics

but want a more in-depth understanding of Rails.

We presume some familiarity with HTML, Cascading Style Sheets (CSS), and

JavaScript—in other words, the ability to view source on web pages. You

needn’t be an expert on these subjects; the most you’ll be expected to do is

copy and paste material from the book, all of which can be downloaded.

The focus of this book is on the features and choices made by the Rails core

team. More specifically, this book is for users of the Rails framework—people

who tend to be more concerned about what Rails does, as opposed to how it

does it or how to change Rails to suit their needs. Examples of topics not

covered in this book include the following:

• Introduced in Rails 4, Turbolinks is a way to load pages more quickly by

just loading markup.3 If you want to know more about how Rails makes

your pages load faster, follow that link. But should you instead be content

with the knowledge that Rails makes pages load fast and not need to know

more, that’s OK too.

• Rails itself is highly hackable and extensible, but this book doesn’t cover

the concept of how to create your own Rails engine.4 If that topic is of

interest to you, we highly recommend Crafting Rails 4 Applications [Val13]

as a follow-on to this book.

• The Rails team has chosen not to include plenty of features—such as user

authentication—in the Rails framework itself. That doesn’t mean that

these features aren’t important, but it generally does mean that no single

solution is the obvious default for Rails users.

How to Read This Book

The first part of this book makes sure you’re ready. By the time you’re done

with it, you’ll have been introduced to Ruby (the language), you’ll have been

exposed to an overview of Rails, you’ll have Ruby and Rails installed, and

you’ll have verified the installation with a simple example.

3. https://github.com/turbolinks/turbolinks/blob/master/README.md
4. http://guides.rubyonrails.org/engines.html

report erratum • discuss

Who This Book Is For • xxi

https://github.com/turbolinks/turbolinks/blob/master/README.md
http://guides.rubyonrails.org/engines.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The next part takes you through the concepts behind Rails via an extended

example: we build a simple online store. It doesn’t take you one by one through

each component of Rails (such as “here’s a chapter on models, here’s a

chapter on views,” and so forth). These components are designed to work

together, and each chapter in this section tackles a specific set of related

tasks that involve a number of these components working together.

Most folks seem to enjoy building the application along with the book. If you

don’t want to do all that typing, you can cheat and download the source code

(a compressed tar archive or a zip file).5

Be careful if you ever choose to copy files directly from the download into your

application: if the timestamps on the files are old, the server won’t know that

it needs to pick up these changes. You can update the timestamps using the

touch command on either Mac OS X or Linux, or you can edit the file and save

it. Alternatively, you can restart your Rails server.

Part III, Rails in Depth, on page 305, surveys the entire Rails ecosystem. This

starts with the functions and facilities of Rails that you’ll now be familiar

with. It then covers a number of key dependencies that the Rails framework

makes use of that contribute directly to the overall functionality that the Rails

framework delivers. Finally, we survey a number of popular plugins that

augment the Rails framework and make Rails an open ecosystem rather than

merely a framework.

Along the way, you’ll see various conventions we’ve adopted:

Live code

Most of the code snippets we show come from full-length, running exam-

ples that you can download.

To help you find your way, if a code listing can be found in the download,

you’ll see a bar before the snippet (like the one here):

rails51/demo1/app/controllers/say_controller.rb

class SayController < ApplicationController
def hello➤

end➤

def goodbye
end

end

5. http://pragprog.com/titles/rails51/source_code

Introduction • xxii

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/demo1/app/controllers/say_controller.rb
http://pragprog.com/titles/rails51/source_code
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The bar contains the path to the code within the download. If you’re

reading the ebook version of this book and your ebook viewer supports

hyperlinks, you can click the bar and the code should appear in a

browser window. Some browsers may mistakenly try to interpret some of

the HTML templates as HTML. If this happens, view the source of the

page to see the real source code.

And in some cases involving the modification of an existing file where the

lines to be changed may not be immediately obvious, you’ll also see some

helpful little triangles to the left of the lines that you’ll need to change.

Two such lines are indicated in the previous code.

David says

Every now and then you’ll come across a “David says” sidebar. Here’s

where David Heinemeier Hansson gives you the real scoop on some par-

ticular aspect of Rails—rationales, tricks, recommendations, and more.

Because he’s the fellow who invented Rails, these are the sections to read

if you want to become a Rails pro.

Joe asks

Joe, the mythical developer, sometimes pops up to ask questions about

stuff we talk about in the text. We answer these questions as we go along.

This book isn’t meant to be a reference manual for Rails. Our experience is

that reference manuals aren’t the way most people learn. Instead, we show

most of the modules and many of their methods, either by example or narra-

tively in the text, in the context of how these components are used and how

they fit together.

Nor do we have hundreds of pages of API listings. There’s a good reason for

this: you get that documentation whenever you install Rails, and it’s guaran-

teed to be more up-to-date than the material in this book. If you install Rails

using RubyGems (which we recommend), start the gem documentation server

(using the gem server command), and you can access all the Rails APIs by

pointing your browser at http://localhost:8808.

In addition, you’ll see that Rails helps you by producing responses that

clearly identify any error found, as well as traces that tell you not only the

point at which the error was found but also how you got there. You’ll see an

example on page 139. If you need additional information, peek ahead to Iteration

E2: Handling Errors, on page 138, to see how to insert logging statements.

report erratum • discuss

How to Read This Book • xxiii

http://localhost:8808
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

If you get really stuck, plenty of online resources can help. In addition to the

code listings mentioned, you can find more resources on the Pragmatic

Bookshelf site page for this book, including links to the book forum and

errata.6 The resources listed on these pages are shared resources. Feel free

to post not only questions and problems to the forum but also any suggestions

and answers you may have to questions that others have posted.

Let’s get started! The first steps are to install Ruby and Rails and to verify

the installation with a simple demonstration.

6. https://pragprog.com/book/rails51

Introduction • xxiv

report erratum • discuss

https://pragprog.com/book/rails51
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Part I

Getting Started

CHAPTER 1

In this chapter, you'll see:

• Installing Ruby, RubyGems, SQLite 3, and Rails

• Development environments and tools

Installing Rails

In Part I of this book, we’ll introduce you to both the Ruby language and the

Rails framework. But we can’t get anywhere until you’ve installed both and

verified that they’re operating correctly.

To get Rails running on your system, you need the following:

• A Ruby interpreter. Rails is written in Ruby, and you’ll be writing your

applications in Ruby too. Rails 5.1 recommends Ruby version 2.4 but will

run on Ruby version 2.3 and 2.2. It won’t work on prior versions of Ruby.

• Ruby on Rails. This book was written using Rails version 5.1 (specifically,

Rails 5.1.3).

• A JavaScript interpreter. Both Microsoft Windows and Mac OS X have

JavaScript interpreters built in, and Rails will use the version already on

your system. On other operating systems, you may need to install a

JavaScript interpreter separately.

• Some libraries, depending on the operating system.

• A database. We’re using both SQLite 3 and MySQL 5.5 in this book.

To be able to run and debug some of the more advanced JavaScript portions

of this book, you will need two additional things: Yarn, which is a package

manager for JavaScript, and ChromeDriver, which is a tool for automated

testing of web applications.

For a development machine, that’s about all you’ll need (apart from an editor,

and we’ll talk about editors separately). However, if you’re going to deploy your

application, you’ll also need to install a production web server (as a minimum)

along with some support code to let Rails run efficiently. We devote a whole

chapter to this, starting in Chapter 17, Task L: Deployment and Production,

on page 279, so we won’t talk about it more here.

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

These aren’t the only choices available to you. You can place your development

environment in a virtual machine or have it hosted in the cloud. The cloud is

an excellent choice if you’re impatient and have a high-speed Internet connec-

tion, as you’ll be up and running in minutes. A virtual machine takes more

disk space but is excellent for learning purposes, as nothing you’ll do will affect

the other uses you have for your desktop or laptop machine and vice versa.

So how do you get all this installed? It depends on your choice of development

environment.

Installing on Cloud9

Cloud9 provides you with a free development environment with everything

you need preinstalled.1 To sign up, all you need is an email address or a

GitHub account (see the following screenshot).

1. https://c9.io/

Chapter 1. Installing Rails • 4

report erratum • discuss

https://c9.io/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Next, you need to create a workspace. Be sure to click the Ruby template, as

shown in the following screenshot.

Cloud9 helpfully creates an initial Rails project for you. On the left is a list

of files and folders. If you click a file, you see its contents in the pane at the

top right. At the bottom is a window where you can enter commands.

Once you familiarize yourself with the IDE, start over by removing these files,

because we’ll be taking you through the steps to create a project. Do this by

entering the command rm -rf *, as shown in the screenshot on page 6. Don’t

be afraid as you are entering this command in the web browser window. This

will only delete files in the cloud; nothing on your machine will be touched.

Next, you need to install the version of Rails that we’ll use to develop our

application:

$ sudo gem install rails --version=5.1.3 --no-ri --no-rdoc

report erratum • discuss

Installing on Cloud9 • 5

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Finally, install Yarn and ChromeDriver, and ensure that ChromeDriver is in

your path:

$ sudo apt install yarn chromium-chromedriver
$ sudo ln -s /usr/lib/chromium-browser/chromedriver /usr/local/bin

More information on how to run Rails on Cloud9 can be found on the commu-

nity.c9.io website.2 Follow that link to check for any recent updates. At the

time of this writing, you need to be aware of only two things.

First, the command to start the Rails server needs two additional parameters.

So if at any point in the book you’re told to run bin/rails server, run bin/rails server
-b $IP -p $PORT instead.

Second, should you want to use MySQL (as we do in Using MySQL for the

Database, on page 285), you’ll need to specify the username, password and host to
be used to connect to the database server.

For many people, these two small accommodations are well worth the benefits

of writing software in the cloud.

At this point, you’re ready to go. Skip to Choosing a Rails Version, on page

16, to ensure that the version of Rails you have installed matches the version

described in this edition. See you there.

2. https://community.c9.io/t/running-a-rails-app/1615

Chapter 1. Installing Rails • 6

report erratum • discuss

https://community.c9.io/t/running-a-rails-app/1615
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Installing on a Virtual Machine

The Rails team helpfully provides a virtual machine definition for Ruby on

Rails development.3 If you have both Git and Vagrant installed, you can be

up and running with the three commands listed on that page (and repeated

below).

$ git clone https://github.com/rails/rails-dev-box.git
$ cd rails-dev-box
$ vagrant up

If you don’t have Git installed, you can download rails-dev-box as a zip file by

clicking the link at the top right of the page.

Fedora users may need to install libvirt.4

The important thing to note is that the rails-dev-box directory will be shared

with the virtual machine, where it’ll be mounted as /vagrant. Run the following

commands to see this in action:

$ vagrant ssh
vagrant@rails-dev-box:~$ ls /vagrant
bootstrap.sh MIT-LICENSE README.md Vagrantfile

Edit files using your favorite text editor and see them change on the virtual

machine. Once you’re comfortable with this, you have one last step before

you’re ready to go—installing Rails itself:

$ sudo gem install rails --version=5.1.3 --no-ri --no-rdoc

Finally, install Yarn and ChromeDriver, and ensure that ChromeDriver is in

your path:

$ sudo apt install yarn chromedriver
$ sudo ln -s /usr/lib/chromium-browser/chromedriver /usr/local/bin

You’re ready to go! Skip to Choosing a Rails Version, on page 16, to ensure

that the version of Rails you have installed matches the version described in

this edition. See you there.

3. https://github.com/rails/rails-dev-box#requirements
4. https://developer.fedoraproject.org/tools/vagrant/vagrant-libvirt.html

report erratum • discuss

Installing on a Virtual Machine • 7

https://github.com/rails/rails-dev-box#requirements
https://developer.fedoraproject.org/tools/vagrant/vagrant-libvirt.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Vagrant on Windows

If you’re not familiar with command windows and text editors, skip ahead to the next

section. Once you complete that section, you can either continue with the version of

Ruby on your machine or with the Rails Dev Box.

Although Vagrant will normally download and install Oracle’s VirtualBox for you,

this process might not work, and you’ll need to download it separately.a

Next, Windows might not recognize Oracle’s signature as valid. If you downloaded

VirtualBox from the virtualbox.org site, you can proceed anyway by clicking View

Downloads, right-clicking the name of the download, and selecting “Run anyway.” If

Windows stops this from proceeding, click “More info” and click “Run anyway” once

again. These steps are generally not recommended for downloading from disreputable

sites, so be sure that you’re downloading from virtualbox.org.

Once the installation wizard starts, read and accept the license terms and default

options and proceed (see the following screenshot).

a. https://www.virtualbox.org/wiki/Downloads

Chapter 1. Installing Rails • 8

report erratum • discuss

https://www.virtualbox.org/wiki/Downloads
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Installing on Windows

First, you need to install Ruby using the RubyInstaller for Windows package.5

At the time of this writing, the latest version of Ruby available via RubyInstaller

is Ruby 2.3.3. While Rails recommends Ruby version 2.4, this version will

work with Rails 5.

Installing Ruby takes a few steps: first you need to install the base language

and then the development kit.

Base installation is a snap. After you click Save/Download, click Run and

then click OK. Select “I accept the License” (after reading it carefully, of course)

and then click Next. Select “Add Ruby executables to your PATH,” click Install

(see the following screenshot), and then click Finish.

Download and extract the development kit for Ruby 2.0 and higher. Override

the extraction destination with C:\ruby\devkit, as in the following screenshot.

5. http://rubyinstaller.org/downloads

report erratum • discuss

Installing on Windows • 9

http://rubyinstaller.org/downloads
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Once that completes, find Start Command Prompt with Ruby in your Start

menu (see the following screenshot), and launch this program.

Within that window, enter the following commands:

> cd \ruby\devkit
> ruby dk.rb init
> ruby dk.rb install

Next, install Node.js.6 The LTS version is recommended for most users. After

you click Save/Download, click Run and then click Next. Again, read and then

accept the terms in the license agreement, click Next three more times, and

then click Install. If you’re prompted to do so, click Yes to allow the program

to be installed on your computer. Finally, click Finish.

This next step is optional but highly recommended: install Git.7 Git is widely

used in the Ruby and Rails ecosystem, and the more familiar you are with it,

6. http://nodejs.org/download/
7. http://git-scm.com/download

Chapter 1. Installing Rails • 10

report erratum • discuss

http://nodejs.org/download/
http://git-scm.com/download
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

the easier it will be interact with some of the more advanced tools and tech-

niques. It’s also a really great version control system! After you click

Save/Download, click Run. If you’re prompted to do so, click Yes to allow the

program to be installed on your computer. Click Next, read the license

agreement, click Next four more times, select Use Git from the Windows

Command Prompt (see the following screenshot), and then click Next five

more times. Click Finish, and then review and close the Release Notes window.

Next, install Yarn.8 The Installer version is recommended for most users. After

you click Save/Download, click Run and then click Next. Again, read and

then accept the terms in the license agreement, click Next two more times,

and then click Install. If you’re prompted to do so, click Yes to allow the pro-

gram to be installed on your computer. Finally, click Finish.

Lastly, install ChromeDriver.9 To do that, click on the latest release (currently

ChromeDriver 2.29) and then click on the win32.zip version of the file. After

it finishes downloading, click Open and then right-click on “chromedriver”

and select Copy. Next double-click “This PC” in the leftmost column of the

window, double-click C:\, double-click Windows, and then anywhere within

this window right-click and select Paste. Click Continue.

8. https://yarnpkg.com/en/docs/install#windows-tab
9. https://sites.google.com/a/chromium.org/chromedriver/downloads

report erratum • discuss

Installing on Windows • 11

https://yarnpkg.com/en/docs/install#windows-tab
https://sites.google.com/a/chromium.org/chromedriver/downloads
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Finally, open a command window by returning to your Windows Start screen,

typing the word command, and selecting Command Prompt. From here, first

enter these commands, as shown in the following screenshot, to verify that

Ruby, Node, and Git were installed correctly:

> ruby -v
> node -v
> git --version

Next, configure Git, adjusting the user.name and user.email as appropriate:

> git config --global user.name "John Doe"
> git config --global user.email johndoe@example.com

Finally, install Rails itself with the following command:

> gem install rails --version=5.1.3 --no-ri --no-rdoc

This will take a while. Once it completes, skip to Choosing a Rails Version,

on page 16, to ensure that the version of Rails you have installed matches

the version described in this edition. See you there.

Installing on Mac OS X

Since Mac OS X ships with Ruby 2.0.0, you need to download a newer version

of Ruby that works with Rails 5. The easiest way to do this is to use Homebrew.

Before you start, go to your Utilities folder and drag the Terminal application

onto your dock. You’ll be using this during the installation and then frequently

as a Rails developer. Open the terminal and run the following command:

Chapter 1. Installing Rails • 12

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

> ruby -e "$(curl -fsSL \
https://raw.githubusercontent.com/Homebrew/install/master/install)"

When it asks you to install the Xcode command line tools, say yes.

Next, you have a choice. You can let Homebrew update your version of Ruby

to the latest (currently Ruby 2.4.1). Or you can install rbenv and install a

parallel version of Ruby alongside the system version of Ruby.

Upgrading your version of Ruby is the most straightforward path and can be

done with a single command:

$ brew install ruby

Alternatively, you can install rbenv and use it to install Ruby 2.4.1:

$ brew install rbenv ruby-build
$ echo 'eval "$(rbenv init -)"' >> ~/.bash_profile
$ source ~/.bash_profile

$ rbenv install 2.4.1
$ rbenv global 2.4.1

If you had previously installed ruby-build and it can’t find the definition for Ruby

2.4.1, you might need to reinstall ruby-build and try again:

$ brew reinstall --HEAD ruby-build
$ rbenv install 2.4.1
$ rbenv global 2.4.1

These are the two most popular routes for Mac developers. RVM and chruby

are two other alternatives.10,11

Whichever path you take, run the following command to see which version

of Ruby you’re working with:

$ ruby -v

You should see the following type of result:

ruby 2.4.1p111 (2017-03-22 revision 58053) [x86_64-darwin16]

Next, run this command to update Rails to the version used by this book:

$ gem install rails --version=5.1.3 --no-ri --no-rdoc

Finally, install Yarn and ChromeDriver:

$ brew install yarn
$ brew install chromedriver

10. https://rvm.io/rvm/install
11. https://github.com/postmodern/chruby#readme

report erratum • discuss

Installing on Mac OS X • 13

https://rvm.io/rvm/install
https://github.com/postmodern/chruby#readme
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

OK, you OS X users are done. You can skip forward to join the Cloud, Vagrant,

and Windows users in Choosing a Rails Version, on page 16. See you there.

Installing on Linux

Start with your platform’s native package-management system, be it apt, dpkg,
portage, rpm, rug, synaptic, up2date, or yum.

The first step is to install the necessary dependencies. The following instruc-

tions are for Ubuntu 16.04 (Xenial Xerus); if you’re on a different operating

system, you may need to adjust both the command and the package names.

Run this command:

$ sudo apt install apache2 curl git libmysqlclient-dev mysql-server

Note that you may need to run sudo apt-get update to refresh your list of available

packages. Next, you’ll need to install Node, which requires a couple of steps:

$ curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -
$ sudo apt-get install -y nodejs

You’ll be prompted for a root password for your MySQL server. If you leave it

blank, you’ll be prompted multiple times. If you specify a password, you need

to use that password when you create a database in Iteration K1 on page 286.

Next, you need to install both Ruby and Rails:

$ sudo apt install ruby2.3 ruby2.3-dev
$ sudo gem install rails --version=5.1.3 --no-ri --no-rdoc

If this works for you, you’re done with the necessary installation steps and

can proceed to Choosing a Rails Version, on page 16.

Many people prefer instead to have a separate installation of Ruby on their

machine dedicated to support their application, and therefore they choose to

download and build Ruby. The easiest way we’ve found to do this is to use

RVM. Installing RVM is described on the RVM site.12 An overview of the steps

is included here.

First, install RVM:

$ curl -L https://get.rvm.io | bash -s stable

12. https://rvm.io/rvm/install

Chapter 1. Installing Rails • 14

report erratum • discuss

https://rvm.io/rvm/install
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Next, select the “Run command as login shell” check box in the Gnome Ter-

minal Profile Preference. Refer to the Integrating RVM with gnome-terminal

page for instructions.13

Exit your command window or Terminal application and open a new one.

This causes your .bash_login to be reloaded.

Execute the following command, which installs the prerequisites for your

specific operating system:

$ rvm requirements --autolibs=enable

Once this is complete, you can proceed to install the Ruby interpreter:

$ rvm install 2.4.1

This step will take a while as it downloads, configures, and compiles the

necessary executables. Once it completes, use that environment and install rails:

$ rvm use 2.4.1
$ gem install rails --version=5.1.3 --no-ri --no-rdoc

With the exception of the rvm use statement, each of the previous instructions

needs to be done only once. The rvm use statement must be repeated each time

you open a shell window. The use keyword is optional, so you can abbreviate

this to rvm 2.4.1. You can also choose to make it the default Ruby interpreter

for new Terminal sessions with the following command:

$ rvm --default 2.4.1

You can verify successful installation by using the following command:

$ rails -v

Finally, install Yarn and ChromeDriver,14,15 and ensure that ChromeDriver is

in your path:

$ curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | \
sudo apt-key add -

$ echo "deb https://dl.yarnpkg.com/debian/ stable main" | \
sudo tee /etc/apt/sources.list.d/yarn.list

$ sudo apt update
$ sudo apt install yarn chromium-chromedriver
$ sudo ln -s /usr/lib/chromium-browser/chromedriver /usr/local/bin

13. https://rvm.io/integration/gnome-terminal/
14. https://yarnpkg.com/lang/en/docs/install/#linux-tab
15. https://sites.google.com/a/chromium.org/chromedriver/

report erratum • discuss

Installing on Linux • 15

https://rvm.io/integration/gnome-terminal/
https://yarnpkg.com/lang/en/docs/install/#linux-tab
https://sites.google.com/a/chromium.org/chromedriver/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

If you have trouble, try the suggestions listed under the Troubleshooting Your

Install heading on the RVM site.16

At this point, we’ve covered Windows, Mac OS X, and Linux. Instructions

after this point are common to all three operating systems.

Choosing a Rails Version

The previous instructions helped you install the version of Rails used by the

examples in this book. But occasionally you might not want to run that

version. For example, a newer version with some fixes or new features might

become available. Or perhaps you’re developing on one machine but intending

to deploy on another machine that contains a version of Rails that you don’t

have any control over.

If either of these situations applies to you, you need to be aware of a few

things. For starters, you can use the gem command to find out all the versions

of Rails you have installed:

$ gem list --local rails

You can also verify which version of Rails you’re running as the default by

using the rails --version command. It should return 5.1.3.

If it doesn’t, insert the version of Rails surrounded by underscores before the

first parameter of any rails command. Here’s an example:

$ rails _5.1.3_ --version

This is particularly handy when you create a new application, because once

you create an application with a specific version of Rails, it’ll continue to use

that version of Rails—even if newer versions are installed on the system—

until you decide it’s time to upgrade. To upgrade, simply update the version

number in the Gemfile that’s in the root directory of your application and run

bundle install.

Setting Up Your Development Environment

The day-to-day business of writing Rails programs is pretty straightforward.

Everyone works differently; here’s how we work.

The Command Line

We do a lot of work at the command line. Although an increasing number of

GUI tools help generate and manage a Rails application, we find the command

16. https://rvm.io/rvm/install

Chapter 1. Installing Rails • 16

report erratum • discuss

https://rvm.io/rvm/install
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

line is still the most powerful place to be. It’s worth spending a little while

getting familiar with the command line on your operating system. Find out

how to use it to edit commands that you’re typing, how to search for and edit

previous commands, and how to complete the names of files and commands

as you type.

So-called tab completion is standard on Unix shells such as Bash and Zsh.

It allows you to type the first few characters of a filename, hit Tab , and have

the shell look for and complete the name based on matching files.

Version Control

We keep all our work in a version control system (currently Git). We make a

point of checking a new Rails project into Git when we create it and committing

changes once we’ve passed the tests. We normally commit to the repository

many times an hour.

If you’re not familiar with Git, don’t worry, because this book will introduce

you to the few commands that you’ll need to follow along with the application

being developed. If you ever need it, extensive documentation is available

online.17

If you’re working on a Rails project with other people, consider setting up a

continuous integration (CI) system. When anyone checks in changes, the CI

system will check out a fresh copy of the application and run all the tests.

It’s a common way to ensure that accidental breakages get immediate atten-

tion. You can also set up your CI system so that your customers can use it

to play with the bleeding-edge version of your application. This kind of

transparency is a great way to ensure that your project isn’t going off the

tracks.

Editors

We write our Rails programs using a programmer’s editor. We’ve found over

the years that different editors work best with different languages and envi-

ronments. For example, Dave originally wrote this chapter using Emacs

because he thinks that its Filladapt mode is unsurpassed when it comes to

neatly formatting XML as he types. Sam updated the chapter using Vim. But

many think that neither Emacs nor Vim is ideal for Rails development.

Although the choice of editor is a personal one, here are some suggestions

for features to look for in a Rails editor:

17. https://git-scm.com/book/en/v2

report erratum • discuss

Setting Up Your Development Environment • 17

https://git-scm.com/book/en/v2
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

• Support for syntax highlighting of Ruby and HTML—ideally, support for

.erb files (a Rails file format that embeds Ruby snippets within HTML).

• Support for automatic indentation and reindentation of Ruby source. This

is more than an aesthetic feature: having an editor indent your program as

you type is the best way to spot bad nesting in your code. Being able to

reindent is important when you refactor your code and move stuff. (TextMate’s

ability to reindent when it pastes code from the clipboard is convenient.)

• Support for insertion of common Ruby and Rails constructs. You’ll be

writing lots of short methods, and if the IDE creates method skeletons with

a keystroke or two, you can concentrate on the interesting stuff inside.

• Good file navigation. As you’ll see, Rails applications are spread across

many files; for example, a newly created Rails application enters the world

containing forty-six files spread across thirty-four directories. That’s before

you’ve written a thing.

You need an environment that helps you navigate quickly among these.

You’ll add a line to a controller to load a value, switch to the view to add a

line to display it, and then switch to the test to verify you did it all right.

Something like Notepad, where you traverse a File Open dialog box to select

each file to edit, won’t cut it. We prefer a combination of a tree view of files

in a sidebar, a small set of keystrokes that help us find a file (or files) in a

directory tree by name, and some built-in smarts that know how to navigate

(say) between a controller action and the corresponding view.

• Name completion. Names in Rails tend to be long. A nice editor will let

you type the first few characters and then suggest possible completions

to you at the touch of a key.

We hesitate to recommend specific editors, because we’ve used only a few in

earnest and we’ll undoubtedly leave someone’s favorite editor off the list.

Nevertheless, to help you get started with something other than Notepad,

here are some suggestions:

• Atom is a modern, full-featured, highly customizable cross-platform text

editor.18

• TextMate is the favorite of many programmers who prefer to do their

development on Mac OS X, including David Heinemeier Hansson.19

18. https://atom.io
19. http://macromates.com/

Chapter 1. Installing Rails • 18

report erratum • discuss

https://atom.io
http://macromates.com/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

• Sublime Text is a cross-platform alternative that some see as the de facto

successor to TextMate.20

• jEdit is a fully featured editor with support for Ruby.21 It has extensive

plugin support.

• Komodo is ActiveState’s IDE for dynamic languages, including Ruby.22

• RubyMine is a commercial IDE for Ruby and is available for free to quali-

fied educational and open source projects.23 It runs on Windows,

Mac OS X, and Linux.

• NetBeans Ruby and Rails plugin is an open source plugin for the popular

NetBeans IDE.24

Where’s My IDE?

If you’re coming to Ruby and Rails from languages such as C# and Java, you may

be wondering about IDEs. After all, we all know that it’s impossible to code modern

applications without at least 100 MB of IDE supporting our every keystroke. For you

enlightened ones, here’s the point in the book where we recommend you sit down—

ideally, propped up on each side by a pile of framework references and 1,000-page

Made Easy books.

It may surprise you to know that most Rails developers don’t use fully fledged IDEs

for Ruby or Rails (although some of the environments come close). Indeed, many Rails

developers use plain old editors. And it turns out that this isn’t as much of a problem

as you might think. With other, less expressive languages, programmers rely on IDEs

to do much of the grunt work for them, because IDEs do code generation, assist with

navigation, and compile incrementally to give early warning of errors.

With Ruby, however, much of this support isn’t necessary. Editors such as TextMate

and BBEdit give you 90 percent of what you’d get from an IDE but are far lighter

weight. About the only useful IDE facility that’s missing is refactoring support.

Ask experienced developers who use your kind of operating system which

editor they use. Spend a week or so trying alternatives before settling in.

20. http://www.sublimetext.com/
21. http://www.jedit.org/
22. http://www.activestate.com/komodo-ide
23. http://www.jetbrains.com/ruby/features/index.html
24. http://plugins.netbeans.org/plugin/38549

report erratum • discuss

Setting Up Your Development Environment • 19

http://www.sublimetext.com/
http://www.jedit.org/
http://www.activestate.com/komodo-ide
http://www.jetbrains.com/ruby/features/index.html
http://plugins.netbeans.org/plugin/38549
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The Desktop

We’re not going to tell you how to organize your desktop while working with

Rails, but we will describe what we do.

Most of the time, we’re writing code, running tests, and poking at an applica-

tion in a browser. So, our main development desktop has an editor window

and a browser window permanently open. We also want to keep an eye on

the logging that’s generated by the application, so we keep a terminal window

open. In it, we use tail -f to scroll the contents of the log file as it’s updated.

We normally run this window with a small font so it takes up less space. If

we see something interesting flash by, we increase the font size to investigate.

We also need access to the Rails API documentation, which we view in a

browser. In the Introduction, we talked about using the gem server command

to run a local web server containing the Rails documentation. This is

convenient, but it unfortunately splits the Rails documentation across a

number of separate documentation trees. If you’re online, you can see a

consolidated view of all the Rails documentation in one place.25

Rails and Databases

The examples in this book were written using SQLite 3 (version 3.7.4 or

thereabouts). If you want to follow along with our code, it’s probably simplest

if you use SQLite 3 as well. If you decide to use something else, it won’t be a

major problem. You may have to make minor adjustments to any explicit SQL

in our code, but Rails pretty much eliminates database-specific SQL from

applications.

If you want to connect to a database other than SQLite 3, Rails also works

with DB2, MySQL, Oracle Database, Postgres, Firebird, and SQL Server. For

all but SQLite 3, you’ll need to install a database driver—a library that Rails

can use to connect to and use with your database engine. This section contains

links to instructions to get that done.

The database drivers are all written in C and are primarily distributed in

source form. If you don’t want to bother building a driver from source, take

a careful look at the driver’s website. Many times you’ll find that the author

also distributes binary versions.

If you can’t find a binary version or if you’d rather build from source anyway,

you need a development environment on your machine to build the library.

25. http://api.rubyonrails.org/

Chapter 1. Installing Rails • 20

report erratum • discuss

http://api.rubyonrails.org/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

For Windows, you need a copy of Visual C++. For Linux, you need gcc and

friends (but these will likely already be installed).

On OS X, you need to install the developer tools (they come with the operating

system but aren’t installed by default). You also need to install your database

driver into the correct version of Ruby. If you installed your own copy of Ruby,

bypassing the built-in one, it’s important to have this version of Ruby first in

your path when building and installing the database driver. You can use the

which ruby command to make sure you’re not running Ruby from /usr/bin.

The following are the available database adapters and the links to their

respective home pages:

https://rubygems.org/gems/ibm_db/DB2

https://rubygems.org/gems/firerubyFirebird

https://rubygems.org/gems/mysql2MySQL

https://rubygems.org/gems/activerecord-oracle_enhanced-adapterOracle Database

https://rubygems.org/gems/pgPostgres

https://github.com/rails-sqlserverSQL Server

https://github.com/luislavena/sqlite3-rubySQLite

MySQL and SQLite adapters are also available for download as RubyGems

(mysql2 and sqlite3, respectively).

What We Just Did

• We installed (or upgraded) the Ruby language.

• We installed (or upgraded) the Rails framework.

• We installed a JavaScript package manager named Yarn.

• We installed a tool that provides support for automated testing of web

applications named ChromeDriver.

• We selected an editor.

• We installed (or upgraded) the SQLite 3 database.

Now that we have Rails installed, let’s use it. It’s time to move on to the next

chapter, where you’ll create your first application.

report erratum • discuss

Rails and Databases • 21

https://rubygems.org/gems/ibm_db/
https://rubygems.org/gems/fireruby
https://rubygems.org/gems/mysql2
https://rubygems.org/gems/activerecord-oracle_enhanced-adapter
https://rubygems.org/gems/pg
https://github.com/rails-sqlserver
https://github.com/luislavena/sqlite3-ruby
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 2

In this chapter, you'll see:

• Creating a new application

• Starting the server

• Accessing the server from a browser

• Producing dynamic content

• Adding hypertext links

• Passing data from the controller to the view

• Basic error recovery and debugging

Instant Gratification

Let’s write a simple application to verify that we have Rails snugly installed on

our machines. Along the way, you’ll get a peek at the way Rails applications work.

Creating a New Application

When you install the Rails framework, you also get a new command-line tool,

rails, that’s used to construct each new Rails application you write.

Why do we need a tool to do this? Why can’t we just hack away in our favorite

editor and create the source for our application from scratch? Well, we could

just hack. After all, a Rails application is just Ruby source code. But Rails

also does a lot of magic behind the curtain to get our applications to work

with a minimum of explicit configuration. To get this magic to work, Rails

needs to find all the various components of your application. As you’ll see

later (in Where Things Go, on page 307), this means we need to create a specific

directory structure, slotting the code we write into the appropriate places.

The rails command creates this directory structure for us and populates it

with some standard Rails code.

To create your first Rails application, pop open a shell window, and navigate

to a place in your filesystem where you want to create your application’s

directory structure. In our example, we’ll be creating our projects in a direc-

tory called work. In that directory, use the rails command to create an application

called demo. Be slightly careful here—if you have an existing directory called

demo, you’ll be asked if you want to overwrite any existing files. (Note: if you

want to specify which Rails version to use, as described in Choosing a Rails

Version, on page 16, now is the time to do so.)

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rubys> cd work
work> rails new demo
create
create README.md
create Rakefile
create config.ru

: : :
remove config/initializers/cors.rb
remove config/initializers/new_framework_defaults_5_1.rb

run bundle install
Fetching gem metadata from https://rubygems.org/...........

: : :
Bundle complete! 16 Gemfile dependencies, 70 gems now installed.
Use `bundle show [gemname]` to see where a bundled gem is installed.

run bundle exec spring binstub --all
* bin/rake: spring inserted
* bin/rails: spring inserted
work>

The command has created a directory named demo. Pop down into that

directory and list its contents (using ls on a Unix box or using dir on Windows).

You should see a bunch of files and subdirectories:

work> cd demo
demo> ls -p
Gemfile app/ db/ public/
Gemfile.lock bin/ lib/ test/
README.md config/ log/ tmp/
Rakefile config.ru package.json vendor/

All these directories (and the files they contain) can be intimidating to start

with, but you can ignore most of them for now. In this chapter, we’ll only use

two of them directly: the bin directory, where we’ll find the Rails executables;

and the app directory, where we’ll write our application.

Examine your installation using the following command:

demo> bin/rails about

Windows users need to prefix the command with ruby and use a backslash:

demo> ruby bin\rails about

If you get a Rails version other than 5.1.3, reread Choosing a Rails Version, on

page 16.

This command also detects common installation errors. For example, if it can’t

find a JavaScript runtime, it provides you with a link to available runtimes.

Chapter 2. Instant Gratification • 24

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

As you can see from the bin/ prefix, this is running the rails command from the

bin directory. This command is a wrapper, or binstub, for the Rails executable.

It serves two purposes: it ensures that you’re running with the correct version

of every dependency, and it speeds up the startup times of Rails commands

by preloading your application.

If you see a bunch of messages concerning already initialized constants or a

possible conflict with an extension, consider deleting the demo directory, cre-

ating a separate RVM gemset,1 and starting over. If that doesn’t work, use

bundle exec2 to run rails commands:

demo> bundle exec rails about

Once you get bin/rails about working, you have everything you need to start a

stand-alone web server that can run our newly created Rails application. So,

without further ado, let’s start our demo application:

demo> bin/rails server
=> Booting Puma
=> Rails 5.1.3 application starting in development on http://localhost:3000
=> Run `rails server -h` for more startup options
Puma starting in single mode...
* Version 3.9.1 (ruby 2.4.1-p111), codename: Private Caller
* Min threads: 5, max threads: 5
* Environment: development
* Listening on tcp://localhost:3000
Use Ctrl-C to stop

As the second line of the startup tracing indicates, we started a web server

on port 3000. The localhost part of the address means that the Puma web

server will only accept requests that originate from your machine. We can

access the application by pointing a browser at the URL http://localhost:3000. The

result is shown in the screenshot on page 26.

If you look at the window where you started the server, you can see tracing

showing that you started the application. We’re going to leave the server

running in this console window. Later, as we write application code and run

it via our browser, we’ll be able to use this console window to trace the

incoming requests. When the time comes to shut down your application, you

can press Ctrl-C in this window to stop the server. (Don’t do that yet—we’ll be

using this particular application in a minute.)

1. https://rvm.io/gemsets/basics/
2. http://gembundler.com/v1.3/bundle_exec.html

report erratum • discuss

Creating a New Application • 25

http://localhost:3000
https://rvm.io/gemsets/basics/
http://gembundler.com/v1.3/bundle_exec.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

If you want to enable this server to be accessed by other machines on your

network, you can specify 0.0.0.0 as the host to bind to:

demo> bin/rails server -b 0.0.0.0

At this point, we have a new application running, but it has none of our code

in it. Let’s rectify this situation.

Hello, Rails!

We can’t help it—we just have to write a Hello, World! program to try a new

system. Let’s start by creating a simple application that sends our cheery

greeting to a browser. After we get that working, we’ll embellish it with the

current time and links.

As you’ll explore further in Chapter 3, The Architecture of Rails Applications,

on page 39, Rails is a Model-View-Controller (MVC) framework. Rails accepts

incoming requests from a browser, decodes the request to find a controller,

and calls an action method in that controller. The controller then invokes a

particular view to display the results to the user. The good news is that Rails

takes care of most of the internal plumbing that links all these actions. To

write our Hello, World! application, we need code for a controller and a view,

and we need a route to connect the two. We don’t need code for a model,

because we’re not dealing with any data. Let’s start with the controller.

Chapter 2. Instant Gratification • 26

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

In the same way that we used the rails command to create a new Rails appli-

cation, we can also use a generator script to create a new controller for our

project. This command is rails generate. So, to create a controller called say, we

make sure we’re in the demo directory and run the command, passing in the

name of the controller we want to create and the names of the actions we

intend for this controller to support:

demo> bin/rails generate controller Say hello goodbye
create app/controllers/say_controller.rb
route get 'say/goodbye'
route get 'say/hello'
invoke erb
create app/views/say
create app/views/say/hello.html.erb
create app/views/say/goodbye.html.erb
invoke test_unit
create test/controllers/say_controller_test.rb
invoke helper
create app/helpers/say_helper.rb
invoke test_unit
invoke assets
invoke coffee
create app/assets/javascripts/say.coffee
invoke scss
create app/assets/stylesheets/say.scss

The rails generate command logs the files and directories it examines, noting

when it adds new Ruby scripts or directories to our application. For now,

we’re interested in one of these scripts and (in a minute) the .html.erb files.

The first source file we’ll be looking at is the controller. You can find it in the

app/controllers/say_controller.rb file. Let’s take a look at it:

rails51/demo1/app/controllers/say_controller.rb

class SayController < ApplicationController
def hello➤

end➤

def goodbye
end

end

Pretty minimal, eh? SayController is a class that inherits from ApplicationController,
so it automatically gets all the default controller behavior. What does this

code have to do? For now, it does nothing—we simply have empty action

methods named hello() and goodbye(). To understand why these methods are

named this way, you need to look at the way Rails handles requests.

report erratum • discuss

Hello, Rails! • 27

http://media.pragprog.com/titles/rails51/code/rails51/demo1/app/controllers/say_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Rails and Request URLs

Like any other web application, a Rails application appears to its users to be

associated with a URL. When you point your browser at that URL, you’re

talking to the application code, which generates a response to you.

Let’s try it now. Navigate to the URL http://localhost:3000/say/hello in a browser.

You’ll see something that looks like the following screenshot.

Say#hello

Find me in app/views/say/hello.html.erb

Our First Action

At this point, we can see not only that we’ve connected the URL to our con-

troller but also that Rails is pointing the way to our next step—namely, to tell

Rails what to display. That’s where views come in. Remember when we ran

the script to create the new controller? That command added several files

and a new directory to our application. That directory contains the template

files for the controller’s views. In our case, we created a controller named say,
so the views will be in the app/views/say directory.

By default, Rails looks for templates in a file with the same name as the action

it’s handling. In our case, that means we need to replace a file called

hello.html.erb in the app/views/say directory. (Why .html.erb? We’ll explain in a

minute.) For now, let’s put some basic HTML in there:

rails51/demo1/app/views/say/hello.html.erb

<h1>Hello from Rails!</h1>

Save the hello.html.erb file, and refresh your browser window. You should see

it display our friendly greeting, as in the following screenshot.

Hello from Rails!

In total, we’ve looked at two files in our Rails application tree. We looked at

the controller, and we modified a template to display a page in the browser.

Chapter 2. Instant Gratification • 28

report erratum • discuss

http://localhost:3000/say/hello
http://media.pragprog.com/titles/rails51/code/rails51/demo1/app/views/say/hello.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

These files live in standard locations in the Rails hierarchy: controllers go

into app/controllers, and views go into subdirectories of app/views. You can see

this structure in the following diagram.

class SayController < ApplicationController
 def hello
 end
end

<h1>Hello from Rails!</h1>

Making It Dynamic

So far, our Rails application is pretty boring—it just displays a static page.

To make it more dynamic, let’s have it show the current time each time it

displays the page.

To do this, we need to change the template file in the view—it now needs to

include the time as a string. That raises two questions. First, how do we add

dynamic content to a template? Second, where do we get the time from?

Dynamic Content

You can create dynamic templates in Rails in many ways. The most common

way, which we’ll use here, is to embed Ruby code in the template. That’s the

template file is named hello.html.erb; the .html.erb suffix tells Rails to expand the

content in the file using a system called ERB.

ERB is a filter, installed as part of the Rails installation, that takes an .erb file
and outputs a transformed version. The output file is often HTML in Rails,

but it can be anything. Normal content is passed through without being

changed. However, content between <%= and %> is interpreted as Ruby code

and executed. The result of that execution is converted into a string, and that

value is substituted in the file in place of the <%=…%> sequence. For example,

change hello.html.erb to display the current time:

rails51/demo2/app/views/say/hello.html.erb

<h1>Hello from Rails!</h1>
<p>➤

It is now <%= Time.now %>➤

</p>➤

report erratum • discuss

Hello, Rails! • 29

http://media.pragprog.com/titles/rails51/code/rails51/demo2/app/views/say/hello.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

When we refresh our browser window, we see the time displayed using Ruby’s

standard format, as shown in the following screenshot.

Hello from Rails!

It is now 2017-08-13 11:58:13 -0400

Notice that the time displayed updates each time the browser window is

refreshed. It looks as if we’re really generating dynamic content.

Making Development Easier

You might have noticed something about the development we’ve been doing so far.

As we’ve been adding code to our application, we haven’t had to restart the running

application. It’s been happily chugging away in the background. And yet each change

we make is available whenever we access the application through a browser. What

gives?

It turns out that the Rails dispatcher is pretty clever. In development mode (as opposed

to testing or production), it automatically reloads application source files when a new

request comes along. That way, when we edit our application, the dispatcher makes

sure it’s running the most recent changes. This is great for development.

However, this flexibility comes at a cost: it causes a short pause after you enter a

URL before the application responds. That’s caused by the dispatcher reloading stuff.

For development it’s a price worth paying, but in production it would be unacceptable.

For this reason, this feature is disabled for production deployment. See Chapter 17,

Task L: Deployment and Production, on page 279.

Adding the Time

Our original problem was to display the time to users of our application. We

now know how to make our application display dynamic data. The second

issue we have to address is working out where to get the time from.

We’ve shown that the approach of embedding a call to Ruby’s Time.now() method

in our hello.html.erb template works. Each time they access this page, users will

see the current time substituted into the body of the response. And for our

trivial application, that might be good enough. In general, though, we probably

want to do something slightly different. We’ll move the determination of the

time to be displayed into the controller and leave the view with the job of

Chapter 2. Instant Gratification • 30

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

displaying it. We’ll change our action method in the controller to set the time

value into an instance variable called @time:

rails51/demo3/app/controllers/say_controller.rb

class SayController < ApplicationController
def hello
@time = Time.now➤

end

def goodbye
end

end

In the .html.erb template, we’ll use this instance variable to substitute the time

into the output:

rails51/demo3/app/views/say/hello.html.erb

<h1>Hello from Rails!</h1>
<p>
It is now <%= @time %>➤

</p>

When we refresh our browser window, we again see the current time, showing

that the communication between the controller and the view was successful.

Why did we go to the extra trouble of setting the time to be displayed in the

controller and then using it in the view? Good question. In this application,

it doesn’t make much difference, but by putting the logic in the controller

instead, we buy ourselves some benefits. For example, we may want to extend

our application in the future to support users in many countries. In that case,

we’d want to localize the display of the time, choosing a time appropriate to

the user’s time zone. That would require a fair amount of application-level

code, and it would probably not be appropriate to embed it at the view level.

By setting the time to display in the controller, we make our application more

flexible: we can change the time zone in the controller without having to

update any view that uses that time object. The time is data, and it should

be supplied to the view by the controller. We’ll see a lot more of this when we

introduce models into the equation.

The Story So Far

Let’s briefly review how our current application works.

1. The user navigates to our application. In our case, we do that using a

local URL such as http://localhost:3000/say/hello.

2. Rails then matches the route pattern, which it previously split into two

parts and analyzed. The say part is taken to be the name of a controller,

report erratum • discuss

Hello, Rails! • 31

http://media.pragprog.com/titles/rails51/code/rails51/demo3/app/controllers/say_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/demo3/app/views/say/hello.html.erb
http://localhost:3000/say/hello
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

so Rails creates a new instance of the Ruby SayController class (which it

finds in app/controllers/say_controller.rb).

3. The next part of the pattern, hello, identifies an action. Rails invokes a method

of that name in the controller. This action method creates a new Time object

holding the current time and tucks it away in the @time instance variable.

4. Rails looks for a template to display the result. It searches the app/views
directory for a subdirectory with the same name as the controller (say) and

in that subdirectory for a file named after the action (hello.html.erb).

5. Rails processes this file through the ERB templating system, executing

any embedded Ruby and substituting in values set up by the controller.

6. The result is returned to the browser, and Rails finishes processing this

request.

This isn’t the whole story. Rails gives you lots of opportunities to override this

basic workflow (and we’ll be taking advantage of them shortly). As it stands,

our story illustrates convention over configuration, one of the fundamental

parts of the philosophy of Rails. Rails applications are typically written using

little or no external configuration. That’s because Rails provides convenient

defaults, and because you apply certain conventions to how a URL is construct-

ed, which file a controller definition is placed in, or which class name and

method names are used. Things knit themselves together in a natural way.

Linking Pages Together

It’s a rare web application that has just one page. Let’s see how we can add

another stunning example of web design to our Hello, World! application.

Normally, each page in our application will correspond to a separate view.

While we’ll also use a new action method to handle the new page, we’ll use

the same controller for both actions. This needn’t be the case, but we have

no compelling reason to use a new controller right now.

We already defined a goodbye action for this controller, so all that remains

is to update the scaffolding that was generated in the app/views/say directory.

This time the file we’ll be updating is called goodbye.html.erb, because by default

templates are named after their associated actions:

rails51/demo4/app/views/say/goodbye.html.erb

<h1>Goodbye!</h1>
<p>
It was nice having you here.

</p>

Chapter 2. Instant Gratification • 32

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/demo4/app/views/say/goodbye.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Fire up your trusty browser again, but this time point to our new view using

the URL http://localhost:3000/say/goodbye. You should see something like this

screenshot.

Goodbye!

It was nice having you here.

Now we need to link the two screens. We’ll put a link on the hello screen that

takes us to the goodbye screen, and vice versa. In a real application, we might

want to make these proper buttons, but for now we’ll use hyperlinks.

We already know that Rails uses a convention to parse the URL into a target

controller and an action within that controller. So, a simple approach would

be to adopt this URL convention for our links.

The hello.html.erb file would contain the following:

...
<p>

Say Goodbye!
</p>
...

And the goodbye.html.erb file would point the other way:

...
<p>

Say Hello!
</p>
...

This approach would certainly work, but it’s a bit fragile. If we were to move

our application to a different place on the web server, the URLs would no

longer be valid. It also encodes assumptions about the Rails URL format into

our code; it’s possible a future version of Rails could change that format.

Fortunately, these aren’t risks we have to take. Rails comes with a bunch of

helper methods that can be used in view templates. Here, we’ll use the link_to()
helper method, which creates a hyperlink to an action. (The link_to() method

can do a lot more than this, but let’s take it gently for now.) Using link_to(),
hello.html.erb becomes the following:

report erratum • discuss

Linking Pages Together • 33

http://localhost:3000/say/goodbye
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/demo5/app/views/say/hello.html.erb

<h1>Hello from Rails!</h1>
<p>
It is now <%= @time %>

</p>
<p>➤

Time to say➤

<%= link_to "Goodbye", say_goodbye_path %>!➤

</p>➤

There’s a link_to() call within an ERB <%=…%> sequence. This creates a link to

a URL that will invoke the goodbye() action. The first parameter in the call to

link_to() is the text to be displayed in the hyperlink, and the next parameter

tells Rails to generate the link to the goodbye() action.

Let’s stop for a minute to consider how we generated the link. We wrote this:

link_to "Goodbye", say_goodbye_path

First, link_to() is a method call. (In Rails, we call methods that make it easier

to write templates helpers.) If you come from a language such as Java, you

might be surprised that Ruby doesn’t insist on parentheses around method

parameters. You can always add them if you like.

say_goodbye_path is a precomputed value that Rails makes available to application

views. It evaluates to the /say/goodbye path. Over time, you’ll see that Rails

provides the ability to name all the routes that you use in your application.

Let’s get back to the application. If we point our browser at our hello page, it

now contains the link to the goodbye page, as shown in the following screenshot.

Hello from Rails!

It is now 2017-08-13 11:58:24 -0400

Time to say Goodbye!

We can make the corresponding change in goodbye.html.erb, linking it back to

the initial hello page:

rails51/demo5/app/views/say/goodbye.html.erb

<h1>Goodbye!</h1>
<p>
It was nice having you here.

</p>
<p>➤

Say <%= link_to "Hello", say_hello_path %> again.➤

</p>➤

Chapter 2. Instant Gratification • 34

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/demo5/app/views/say/hello.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/demo5/app/views/say/goodbye.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51
http://localhost:3000/say/goodbye

So far, we’ve just done things that should work, and—unsurprisingly—they’ve

worked. But the true test of the developer friendliness of a framework is how

it responds when things go wrong. As we’ve not invested much time into this

code yet, now is a perfect time to try to break things.

When Things Go Wrong

Let’s start by introducing a typo in the source code—one that perhaps is

introduced by a misfiring autocorrect function in your favorite editor:

rails51/demo5/app/controllers/say_controller.rb

class SayController < ApplicationController
def hello
@time = Time.know➤

end

def goodbye
end

end

Refresh the following page in your browser: http://localhost:3000/say/hello. You

should see something like the following screenshot.

NoMethodError in SayController#hello

undefined method `know' for Time:Class Did you mean? now

Extracted source (around line #4):

2

3

4

5

6

7

 def hello

#START_HIGHLIGHT

 @time = Time.know

#END_HIGHLIGHT

 end

Rails.root: /Users/davec/git/awdwr/edition4/work-51/demo1

Application Trace | Framework Trace | Full Trace

app/controllers/say_controller.rb:4:in `hello'

Request

Parameters:

None

Toggle session dump

Toggle env dump

Response

Headers:

None

>> x

report erratum • discuss

When Things Go Wrong • 35

http://media.pragprog.com/titles/rails51/code/rails51/demo5/app/controllers/say_controller.rb
http://localhost:3000/say/hello
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51
http://localhost:3000//say/hello#
http://localhost:3000//say/hello#
http://localhost:3000//say/hello#
http://localhost:3000//say/hello#
http://localhost:3000//say/hello#
http://localhost:3000//say/hello#

For security reasons, the web console is configured to only be shown when

accessed from the same machine as the web server is running on. If you are

running on a different machine (as you would be should you be running on

c9), you will need to adjust the configuration to see this. For example, to

enable the web console to be seen by all, add the following to config/environ-
ments/development.rb and restart your server:

config.web_console.whitelisted_ips = %w(0.0.0.0/0 ::/0)

What you see is that Ruby tells you about the error (“undefined method

‘know’”), and Rails shows you the extracted source where the code can be

found (Rails.root), the stack traceback, and request parameters (at the moment,

None). It also provides the ability to toggle the display of session and environ-

ment dumps.

If you’re running Ruby 2.3.0 or later, you’ll even see a suggestion: “Did you

mean? now.” What a nice touch.

At the bottom of the window you see an area consisting of white text on a

black background, looking much like a command-line prompt. This is the

Rails web console. You can use it to try out suggestions and evaluate

expressions. Let’s try it out, as shown in the following screenshot.

All in all, helpful stuff.

We’ve broken the code. Now, let’s break the other thing we’ve used so far: the

URL. Visit the following page in your browser: http://localhost:3000/say/hullo. You

should see something like the screenshot on page 37.

This is similar to what we saw before, but in place of source code we see a

list of possible routes, how they can be accessed, and the controller action

they’re associated with. We’ll explain this later in detail, but for now look at

the Path Match input field. If you enter a partial URL in there, you can see a

list of routes that match. That’s not needed right now, as we have only two

routes, but can be helpful later when we have many.

At this point, we’ve completed our toy application and in the process verified

that our installation of Rails is functioning properly and provides helpful

information when things go wrong. After a brief recap, it’s now time to move

on to building a real application.

Chapter 2. Instant Gratification • 36

report erratum • discuss

http://localhost:3000/say/hullo
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Routing Error

No route matches [GET] "/say/hullo"

Rails.root: /Users/davec/git/awdwr/edition4/work-51/demo1

Application Trace | Framework Trace | Full Trace

Routes

Routes match in priority from top to bottom

Helper HTTP Verb Path Controller#Action

Path / Url Path Match

say_hello_path GET /say/hello(.:format) say#hello

say_goodbye_path GET /say/goodbye(.:format) say#goodbye

Request

Parameters:

None

Toggle session dump

Toggle env dump

Response

Headers:

None

>> x

What We Just Did

We constructed a toy application that showed you the following:

• How to create a new Rails application and how to create a new controller

in that application

• How to create dynamic content in the controller and display it via the

view template

• How to link pages together

• How to debug problems in the code or the URL

This is a great foundation, and it didn’t take much time or effort. This experi-

ence will continue as we move on to the next chapter and build a much bigger

application.

report erratum • discuss

When Things Go Wrong • 37

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51
http://localhost:3000//say/hullo#
http://localhost:3000//say/hullo#
http://localhost:3000//say/hullo#
http://localhost:3000//say/hullo#
http://localhost:3000//say/hullo#
http://localhost:3000//say/hullo#
http://localhost:3000//say/hullo#

Playtime

Here’s some stuff to try on your own:

• Experiment with the following expressions:

– Addition: <%= 1+2 %>
– Concatenation: <%= "cow" + "boy" %>
– Time in one hour: <%= 1.hour.from_now.localtime %>

• A call to the following Ruby method returns a list of all the files in the

current directory:
@files = Dir.glob('*')

Use it to set an instance variable in a controller action, and then write

the corresponding template that displays the filenames in a list on the

browser.

Hint: you can iterate over a collection using something like this:
<% @files.each do |file| %>

file name is: <%= file %>
<% end %>

You might want to use a for the list.

Cleaning Up

Maybe you’ve been following along and writing the code in this chapter. If so,

chances are that the application is still running on your computer. When we

start coding our next application in Chapter 6, Task A: Creating the Application,

on page 71, we’ll get a conflict the first time we run it because it’ll also try to

use the computer’s port 3000 to talk with the browser. Now is a good time to

stop the current application by pressing Ctrl-C in the window you used to start

it. Microsoft Windows users may need to press Ctrl-Pause/Break instead.

Now let’s move on to an overview of Rails.

Chapter 2. Instant Gratification • 38

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 3

In this chapter, you'll see:

• Models

• Views

• Controllers

The Architecture of Rails Applications

One of the interesting features of Rails is that it imposes some fairly serious

constraints on how you structure your web applications. Surprisingly, these

constraints make it easier to create applications—a lot easier. Let’s see why.

Models, Views, and Controllers

Back in 1979, Trygve Reenskaug came up with a new architecture for devel-

oping interactive applications. In his design, applications were broken into

three types of components: models, views, and controllers.

The model is responsible for maintaining the state of the application. Some-

times this state is transient, lasting for just a couple of interactions with the

user. Sometimes the state is permanent and is stored outside the application,

often in a database.

A model is more than data; it enforces all the business rules that apply to

that data. For example, if a discount shouldn’t be applied to orders of less

than $20, the model enforces the constraint. This makes sense; by putting

the implementation of these business rules in the model, we make sure that

nothing else in the application can make our data invalid. The model acts as

both a gatekeeper and a data store.

The view is responsible for generating a user interface, normally based on data

in the model. For example, an online store has a list of products to be displayed

on a catalog screen. This list is accessible via the model, but it’s a view that

formats the list for the end user. Although the view might present the user with

various ways of inputting data, the view itself never handles incoming data.

The view’s work is done once the data is displayed. There may well be many

views that access the same model data, often for different purposes. The online

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

store has a view that displays product information on a catalog page, and

another set of views used by administrators to add and edit products.

Controllers orchestrate the application. Controllers receive events from the

outside world (normally, user input), interact with the model, and display an

appropriate view to the user.

This triumvirate—the model, view, and controller—together form an architec-

ture known as MVC. To learn how the three concepts fit together, see the

following figure.

Database

Controller

View Model

 Browser sends request

 Controller interacts with model

 Controller invokes view

 View renders next browser screen

The MVC architecture was originally intended for conventional GUI applica-

tions, where developers found that the separation of concerns led to far less

coupling, which in turn made the code easier to write and maintain. Each

concept or action was expressed in a single, well-known place. Using MVC

was like constructing a skyscraper with the girders already in place—it was

a lot easier to hang the rest of the pieces with a structure already there.

During the development of our application, we’ll make heavy use of Rails’s

ability to generate scaffolding for our application.

Ruby on Rails is an MVC framework, too. Rails enforces a structure for your

application: you develop models, views, and controllers as separate chunks

of functionality, and it knits them together as your program executes. One

of the joys of Rails is that this knitting process is based on the use of intelligent

defaults so that you typically don’t need to write any external configuration

metadata to make it all work. This is an example of the Rails philosophy of

favoring convention over configuration.

In a Rails application, an incoming request is first sent to a router, which

works out where in the application the request should be sent and how the

request should be parsed. Ultimately, this phase identifies a particular method

(called an action in Rails parlance) somewhere in the controller code. The

action might look at data in the request, it might interact with the model, and

Chapter 3. The Architecture of Rails Applications • 40

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

it might cause other actions to be invoked. Eventually the action prepares

information for the view, which renders something to the user.

Rails handles an incoming request as shown in the following figure. In this

example, the application has previously displayed a product catalog page,

and the user has just clicked the Add to Cart button next to one of the prod-

ucts. This button posts to http://localhost:3000/line_items?product_id=2, where line_items
is a resource in the application and 2 is the internal ID for the selected product.

Database

 http://my.url/line_items?product_id=2

 Controller interacts with model

 Controller invokes view

 View renders next browser screenLine Items

Controller

Routing

Active

Record

Model

Line Items

View

The routing component receives the incoming request and immediately picks

it apart. The request contains a path (/line_items?product_id=2) and a method (this

button does a POST operation; other common methods are GET, PUT, PATCH, and

DELETE). In this simple case, Rails takes the first part of the path, line_items, as

the name of the controller and the product_id as the ID of a product. By conven-

tion, POST methods are associated with create() actions. As a result of all this

analysis, the router knows it has to invoke the create() method in the LineItem-
sController controller class (we’ll talk about naming conventions in Naming

Conventions, on page 315).

The create() method handles user requests. In this case, it finds the current

user’s shopping cart (which is an object managed by the model). It also asks

the model to find the information for product 2. It then tells the shopping

cart to add that product to itself. (See how the model is being used to keep

track of all the business data? The controller tells it what to do, and the

model knows how to do it.)

Now that the cart includes the new product, we can show it to the user. The

controller invokes the view code, but before it does, it arranges things so that

the view has access to the cart object from the model. In Rails, this invocation

is often implicit; again, conventions help link a particular view with a given action.

report erratum • discuss

Models, Views, and Controllers • 41

http://localhost:3000/line_items?product_id=2
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

That’s all there is to an MVC web application. By following a set of conventions

and partitioning your functionality appropriately, you’ll discover that your

code becomes easier to work with and your application becomes easier to

extend and maintain. That seems like a good trade.

If MVC is simply a question of partitioning your code a particular way, you

might be wondering why you need a framework such as Ruby on Rails. The

answer is straightforward: Rails handles all of the low-level housekeeping for

you—all those messy details that take so long to handle by yourself—and lets

you concentrate on your application’s core functionality. Let’s see how.

Rails Model Support

In general, we want our web applications to keep their information in a

relational database. Order-entry systems will store orders, line items, and

customer details in database tables. Even applications that normally use

unstructured text, such as weblogs and news sites, often use databases as

their back-end data store.

Although it might not be immediately apparent from the database queries

you’ve seen so far, relational databases are designed around mathematical

set theory. This is good from a conceptual point of view, but it makes it difficult

to combine relational databases with object-oriented (OO) programming lan-

guages. Objects are all about data and operations, and databases are all

about sets of values. Operations that are easy to express in relational terms

are sometimes difficult to code in an OO system. The reverse is also true.

Over time, folks have worked out ways of reconciling the relational and OO

views of their corporate data. Let’s look at the way that Rails chooses to map

relational data onto objects.

Object-Relational Mapping

Object-relational mapping (ORM) libraries map database tables to classes. If

a database has a table called orders, our program will have a class named Order.
Rows in this table correspond to objects of the class—a particular order is

represented as an object of the Order class. Within that object, attributes are

used to get and set the individual columns. Our Order object has methods to

get and set the amount, the sales tax, and so on.

In addition, the Rails classes that wrap our database tables provide a set of

class-level methods that perform table-level operations. For example, we might

need to find the order with a particular ID. This is implemented as a class

Chapter 3. The Architecture of Rails Applications • 42

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

method that returns the corresponding Order object. In Ruby code, that might

look like this:

order = Order.find(1)
puts "Customer #{order.customer_id}, amount=$#{order.amount}"

Sometimes these class-level methods return collections of objects:

Order.where(name: 'dave').each do |order|
puts order.amount

end

Finally, the objects corresponding to individual rows in a table have methods

that operate on that row. Probably the most widely used is save(), the operation

that saves the row to the database:

Order.where(name: 'dave').each do |order|
order.pay_type = "Purchase order"
order.save

end

So, an ORM layer maps tables to classes, rows to objects, and columns to

attributes of those objects. Class methods are used to perform table-level

operations, and instance methods perform operations on the individual rows.

In a typical ORM library, you supply configuration data to specify the

mappings between entities in the database and entities in the program.

Programmers using these ORM tools often find themselves creating and

maintaining a boatload of XML configuration files.

Active Record

Active Record is the ORM layer supplied with Rails. It closely follows the

standard ORM model: tables map to classes, rows to objects, and columns

to object attributes. It differs from most other ORM libraries in the way it’s

configured. By relying on convention and starting with sensible defaults,

Active Record minimizes the amount of configuration that developers perform.

To show this, here’s a program that uses Active Record to wrap our orders table:

require 'active_record'

class Order < ApplicationRecord
end

order = Order.find(1)
order.pay_type = "Purchase order"
order.save

report erratum • discuss

Rails Model Support • 43

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

This code uses the new Order class to fetch the order with an id of 1 and modify

the pay_type. (For now, we’ve omitted the code that creates a database connec-

tion.) Active Record relieves us of the hassles of dealing with the underlying

database, leaving us free to work on business logic.

But Active Record does more than that. As you’ll see when we develop our

shopping cart application, starting in Chapter 5, The Depot Application, on

page 65, Active Record integrates seamlessly with the rest of the Rails

framework. If a web form sends the application data related to a business

object, Active Record can extract it into our model. Active Record supports

sophisticated validation of model data, and if the form data fails validations,

the Rails views can extract and format errors.

Active Record is the solid model foundation of the Rails MVC architecture.

Action Pack: The View and Controller

When you think about it, the view and controller parts of MVC are pretty

intimate. The controller supplies data to the view, and the controller receives

events from the pages generated by the views. Because of these interactions,

support for views and controllers in Rails is bundled into a single component,

Action Pack.

Don’t be fooled into thinking that your application’s view code and controller

code will be jumbled up because Action Pack is a single component. Quite

the contrary; Rails gives you the separation you need to write web applications

with clearly demarcated code for control and presentation logic.

View Support

In Rails, the view is responsible for creating all or part of a response to be

displayed in a browser, to be processed by an application, or to be sent as an

email. At its simplest, a view is a chunk of HTML code that displays some

fixed text. More typically, you’ll want to include dynamic content created by

the action method in the controller.

In Rails, dynamic content is generated by templates, which come in three

flavors. The most common templating scheme, called Embedded Ruby (ERB),

embeds snippets of Ruby code within a view document, in many ways similar

to the way it’s done in other web frameworks, such as PHP or JavaServer

Pages (JSP). Although this approach is flexible, some are concerned that it

violates the spirit of MVC. By embedding code in the view, we risk adding

logic that should be in the model or the controller. As with everything, while

Chapter 3. The Architecture of Rails Applications • 44

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

judicious use in moderation is healthy, overuse can become a problem.

Maintaining a clean separation of concerns is part of the developer’s job.

You can also use ERB to construct JavaScript fragments on the server that

are then executed on the browser. This is great for creating dynamic Ajax

interfaces. We talk about these starting in Iteration F2: Creating an Ajax-Based

Cart, on page 159.

Rails also provides libraries to construct XML or JSON documents using Ruby

code. The structure of the generated XML or JSON automatically follows the

structure of the code.

And the Controller!

The Rails controller is the logical center of your application. It coordinates

the interaction among the user, the views, and the model. However, Rails

handles most of this interaction behind the scenes; the code you write con-

centrates on application-level functionality. This makes Rails controller code

remarkably easy to develop and maintain.

The controller is also home to a number of important ancillary services:

• It’s responsible for routing external requests to internal actions. It handles

people-friendly URLs extremely well.

• It manages caching, which can give applications orders-of-magnitude

performance boosts.

• It manages helper modules, which extend the capabilities of the view

templates without bulking up their code.

• It manages sessions, giving users the impression of ongoing interaction

with our applications.

We’ve already seen and modified a controller in Hello, Rails!, on page 26 and

we will be seeing and modifying a number of controllers in the development

of a sample application, starting with the products controller in Iteration C1:

Creating the Catalog Listing, on page 103.

There’s a lot to Rails. But before going any further, let’s have a brief refresher

—and for some of you, a brief introduction—to the Ruby language.

report erratum • discuss

Action Pack: The View and Controller • 45

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 4

In this chapter, you'll see:

• Objects: names and methods

• Data: strings, arrays, hashes, and regular expressions

• Control: if, while, blocks, iterators, and exceptions

• Building blocks: classes and modules

• YAML and marshaling

• Common idioms that you’ll see used in this book

Introduction to Ruby

Many people who are new to Rails are also new to Ruby. If you’re familiar

with a language such as Java, JavaScript, PHP, Perl, or Python, you’ll find

Ruby pretty easy to pick up.

This chapter isn’t a complete introduction to Ruby. It doesn’t cover topics

such as precedence rules (as in most other programming languages, 1+2*3==7
in Ruby). It’s only meant to explain enough Ruby that the examples in the

book make sense.

This chapter draws heavily from material in Programming Ruby [FH13]. If you

think you need more background on the Ruby language (and at the risk of

being grossly self-serving), we’d like to suggest that the best way to learn

Ruby and the best reference for Ruby’s classes, modules, and libraries is

Programming Ruby [FH13] (also known as the PickAxe book). Welcome to the

Ruby community!

Ruby Is an Object-Oriented Language

Everything you manipulate in Ruby is an object, and the results of those

manipulations are themselves objects.

When you write object-oriented code, you’re normally looking to model con-

cepts from the real world. Typically, during this modeling process you discover

categories of things that need to be represented. In an online store, the concept

of a line item could be such a category. In Ruby, you’d define a class to rep-

resent each of these categories. You then use this class as a kind of factory

that generates objects—instances of that class. An object is a combination of

state (for example, the quantity and the product ID) and methods that use

that state (perhaps a method to calculate the line item’s total cost). We’ll show

how to create classes in Classes, on page 56.

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

You create objects by calling a constructor, a special method associated with

a class. The standard constructor is called new(). Given a class called LineItem,

you could create line item objects as follows:

line_item_one = LineItem.new
line_item_one.quantity = 1
line_item_one.sku = "AUTO_B_00"

You invoke methods by sending a message to an object. The message contains

the method’s name, along with any parameters the method may need. When

an object receives a message, it looks into its own class for a corresponding

method. Let’s look at some method calls:

"dave".length
line_item_one.quantity()
cart.add_line_item(next_purchase)
submit_tag "Add to Cart"

Parentheses are generally optional in method calls. In Rails applications,

you’ll find that most method calls involved in larger expressions have paren-

theses, while those that look more like commands or declarations tend not

to have them.

Methods have names, as do many other constructs in Ruby. Names in Ruby

have special rules—rules that you may not have seen if you come to Ruby

from another language.

Ruby Names

Local variables, method parameters, and method names should all start with

a lowercase letter or with an underscore: order, line_item, and xr2000 are all valid.

Instance variables begin with an at (@) sign—for example, @quantity and

@product_id. The Ruby convention is to use underscores to separate words in

a multiword method or variable name (so line_item is preferable to lineItem).

Class names, module names, and constants must start with an uppercase

letter. By convention they use capitalization, rather than underscores, to

distinguish the start of words within the name. Class names look like Object,
PurchaseOrder, and LineItem.

Rails uses symbols to identify things. In particular, it uses them as keys when

naming method parameters and looking things up in hashes. Here’s an example:

redirect_to :action => "edit", :id => params[:id]

As you can see, a symbol looks like a variable name, but it’s prefixed with a

colon. Examples of symbols include :action, :line_items, and :id. You can think of

Chapter 4. Introduction to Ruby • 48

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

symbols as string literals magically made into constants. Alternatively, you

can consider the colon to mean thing named, so :id is the thing named id.

Now that we’ve used a few methods, let’s move on to how they’re defined.

Methods

Let’s write a method that returns a cheery, personalized greeting. We’ll invoke

that method a couple of times:

def say_goodnight(name)
result = 'Good night, ' + name
return result

end

Time for bed...
puts say_goodnight('Mary-Ellen') # => 'Goodnight, Mary-Ellen'
puts say_goodnight('John-Boy') # => 'Goodnight, John-Boy'

Having defined the method, we call it twice. In both cases, we pass the result

to the puts() method, which outputs to the console its argument followed by a

newline (moving on to the next line of output).

You don’t need a semicolon at the end of a statement as long as you put each

statement on a separate line. Ruby comments start with a # character and

run to the end of the line. Indentation isn’t significant (but two-character

indentation is the de facto Ruby standard).

Ruby doesn’t use braces to delimit the bodies of compound statements and

definitions (such as methods and classes). Instead, you simply finish the body

with the end keyword. The return keyword is optional, and if it’s not present,

the results of the last expression evaluated are returned.

Data Types

While everything in Ruby is an object, some of the data types in Ruby have

special syntax support, in particular for defining literal values. In the preceding

examples, we used some simple strings and even string concatenation.

Strings

The previous example also showed some Ruby string objects. One way to create

a string object is to use string literals, which are sequences of characters between

single or double quotation marks. The difference between the two forms is the

amount of processing Ruby does on the string while constructing the literal.

In the single-quoted case, Ruby does very little. With only a few exceptions,

what you type into the single-quoted string literal becomes the string’s value.

report erratum • discuss

Data Types • 49

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

With double-quotes, Ruby does more work. It looks for substitutions—sequences

that start with a backslash character—and replaces them with a binary value.

The most common of these is \n, which is replaced with a newline character. When

you write a string containing a newline to the console, the \n forces a line break.

Then, Ruby performs expression interpolation in double-quoted strings. In

the string, the sequence #{expression} is replaced by the value of expression. We

could use this to rewrite our previous method:

def say_goodnight(name)
"Good night, #{name.capitalize}"

end
puts say_goodnight('pa')

When Ruby constructs this string object, it looks at the current value of name
and substitutes it into the string. Arbitrarily complex expressions are allowed

in the #{…} construct. Here we invoked the capitalize() method, defined for all

strings, to output our parameter with a leading uppercase letter.

Strings are a fairly primitive data type that contain an ordered collection of

bytes or characters. Ruby also provides means for defining collections of

arbitrary objects via arrays and hashes.

Arrays and Hashes

Ruby’s arrays and hashes are indexed collections. Both store collections of

objects, accessible using a key. With arrays, the key is an integer, whereas

hashes support any object as a key. Both arrays and hashes grow as needed

to hold new elements. It’s more efficient to access array elements, but hashes

provide more flexibility. Any particular array or hash can hold objects of dif-

fering types; you can have an array containing an integer, a string, and a

floating-point number, for example.

You can create and initialize a new array object by using an array literal—a

set of elements between square brackets. Given an array object, you can

access individual elements by supplying an index between square brackets,

as the next example shows. Ruby array indices start at zero:

a = [1, 'cat', 3.14] # array with three elements
a[0] # access the first element (1)
a[2] = nil # set the third element

array now [1, 'cat', nil]

You may have noticed that we used the special value nil in this example. In

many languages, the concept of nil (or null) means no object. In Ruby, that’s

not the case; nil is an object, like any other, that happens to represent nothing.

Chapter 4. Introduction to Ruby • 50

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The <<() method is often used with arrays. It appends a single value to its

receiver:

ages = []
for person in @people

ages << person.age
end

Ruby has a shortcut for creating an array of words:

a = ['ant', 'bee', 'cat', 'dog', 'elk']
this is the same:
a = %w{ ant bee cat dog elk }

Ruby hashes are similar to arrays. A hash literal uses braces rather than

square brackets. The literal must supply two objects for every entry: one for

the key, the other for the value. For example, you may want to map musical

instruments to their orchestral sections:

inst_section = {
:cello => 'string',
:clarinet => 'woodwind',
:drum => 'percussion',
:oboe => 'woodwind',
:trumpet => 'brass',
:violin => 'string'

}

The thing to the left of the => is the key, and that on the right is the corre-

sponding value. Keys in a particular hash must be unique; if you have two

entries for :drum, the last one will win. The keys and values in a hash can be

arbitrary objects: you can have hashes in which the values are arrays, other

hashes, and so on. In Rails, hashes typically use symbols as keys. Many Rails

hashes have been subtly modified so that you can use either a string or a

symbol interchangeably as a key when inserting and looking up values.

The use of symbols as hash keys is so commonplace that Ruby has a special

syntax for it, saving both keystrokes and eyestrain:

inst_section = {
cello: 'string',
clarinet: 'woodwind',
drum: 'percussion',
oboe: 'woodwind',
trumpet: 'brass',
violin: 'string'

}

Doesn’t that look much better?

report erratum • discuss

Data Types • 51

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Feel free to use whichever syntax you like. You can even intermix usages in

a single expression. Obviously, you’ll need to use the arrow syntax whenever

the key is not a symbol. One other thing to watch out for: if the value is a

symbol, you’ll need to have at least one space between the colons or else you’ll

get a syntax error:

inst_section = {
cello: :string,
clarinet: :woodwind,
drum: :percussion,
oboe: :woodwind,
trumpet: :brass,
violin: :string

}

Hashes are indexed using the same square bracket notation as arrays:

inst_section[:oboe] #=> 'woodwind'
inst_section[:cello] #=> 'string'
inst_section[:bassoon] #=> nil

As the preceding example shows, a hash returns nil when indexed by a key it

doesn’t contain. Normally this is convenient, because nil means false when

used in conditional expressions.

You can pass hashes as parameters on method calls. Ruby allows you to omit

the braces, but only if the hash is the last parameter of the call. Rails makes

extensive use of this feature. The following code fragment shows a two-element

hash being passed to the redirect_to() method. Note that this is the same syntax

that Ruby 2.0.0 and above use for keyword arguments, but it works with

Ruby 1.9.3:

redirect_to action: 'show', id: product.id

One more data type is worth mentioning: the regular expression.

Regular Expressions

A regular expression lets you specify a pattern of characters to be matched

in a string. In Ruby, you typically create a regular expression by writing /pattern/
or %r{pattern}.

For example, we can use the regular expression /Perl|Python/ to write a pattern

that matches a string containing the text Perl or the text Python.

The forward slashes delimit the pattern, which consists of the two things

we’re matching, separated by a vertical bar (|). The bar character means either

the thing on the left or the thing on the right—in this case, either Perl or

Chapter 4. Introduction to Ruby • 52

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Python. You can use parentheses within patterns, just as you can in arithmetic

expressions, so we could also write this pattern as /P(erl|ython)/. Programs typ-

ically use the =~ match operator to test strings against regular expressions:

if line =~ /P(erl|ython)/
puts "There seems to be another scripting language here"

end

You can specify repetition within patterns. /ab+c/ matches a string containing

an a followed by one or more bs, followed by a c. Change the plus to an

asterisk, and /ab*c/ creates a regular expression that matches one a, zero or

more bs, and one c.

Backward slashes start special sequences; most notably, \d matches any

digit, \s matches any whitespace character, and \w matches any alphanumeric

(word) character, \A matches the start of the string and \Z matches the end of

the string. A backslash before a wildcard character, for example \., causes

the character to be matched as is.

Ruby’s regular expressions are a deep and complex subject; this section

barely skims the surface. See the PickAxe book for a full discussion.

This book will make only light use of regular expressions.

With that brief introduction to data, let’s move on to logic.

Logic

Method calls are statements. Ruby also provides a number of ways to make

decisions that affect the repetition and order in which methods are invoked.

Control Structures

Ruby has all the usual control structures, such as if statements and while
loops. Java, C, and Perl programmers may well get caught by the lack of

braces around the bodies of these statements. Instead, Ruby uses the end
keyword to signify the end of a body:

if count > 10
puts "Try again"

elsif tries == 3
puts "You lose"

else
puts "Enter a number"

end

report erratum • discuss

Logic • 53

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Similarly, while statements are terminated with end:

while weight < 100 and num_pallets <= 30
pallet = next_pallet()
weight += pallet.weight
num_pallets += 1

end

Ruby also contains variants of these statements. unless is like if, except that

it checks for the condition to not be true. Similarly, until is like while, except

that the loop continues until the condition evaluates to be true.

Ruby statement modifiers are a useful shortcut if the body of an if, unless, while,
or until statement is a single expression. Simply write the expression, followed

by the modifier keyword and the condition:

puts "Danger, Will Robinson" if radiation > 3000
distance = distance * 1.2 while distance < 100

Although if statements are fairly common in Ruby applications, newcomers

to the Ruby language are often surprised to find that looping constructs are

rarely used. Blocks and iterators often take their place.

Blocks and Iterators

Code blocks are chunks of code between braces or between do…end. A common

convention is that people use braces for single-line blocks and do/end for

multiline blocks:

{ puts "Hello" } # this is a block

do ###
club.enroll(person) # and so is this
person.socialize #

end ###

To pass a block to a method, place the block after the parameters (if any) to

the method. In other words, put the start of the block at the end of the source

line containing the method call. For example, in the following code, the block

containing puts "Hi" is associated with the call to the greet() method:

greet { puts "Hi" }

If a method call has parameters, they appear before the block:

verbose_greet("Dave", "loyal customer") { puts "Hi" }

A method can invoke an associated block one or more times by using the

Ruby yield statement. You can think of yield as being something like a method

call that calls out to the block associated with the method containing the yield.

Chapter 4. Introduction to Ruby • 54

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

You can pass values to the block by giving parameters to yield. Within the

block, you list the names of the arguments to receive these parameters between

vertical bars (|).

Code blocks appear throughout Ruby applications. Often they’re used in

conjunction with iterators—methods that return successive elements from

some kind of collection, such as an array:

animals = %w(ant bee cat dog elk) # create an array
animals.each {|animal| puts animal } # iterate over the contents

Each integer N implements a times() method, which invokes an associated

block N times:

3.times { print "Ho! " } #=> Ho! Ho! Ho!

The & prefix operator allows a method to capture a passed block as a named

parameter:

def wrap &b
print "Santa says: "
3.times(&b)
print "\n"

end
wrap { print "Ho! " }

Within a block, or a method, control is sequential except when an exception

occurs.

Exceptions

Exceptions are objects of the Exception class or its subclasses. The raise method

causes an exception to be raised. This interrupts the normal flow through

the code. Instead, Ruby searches back through the call stack for code that

says it can handle this exception.

Both methods and blocks of code wrapped between begin and end keywords

intercept certain classes of exceptions using rescue clauses:

begin
content = load_blog_data(file_name)

rescue BlogDataNotFound
STDERR.puts "File #{file_name} not found"

rescue BlogDataFormatError
STDERR.puts "Invalid blog data in #{file_name}"

rescue Exception => exc
STDERR.puts "General error loading #{file_name}: #{exc.message}"

end

report erratum • discuss

Logic • 55

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rescue clauses can be directly placed on the outermost level of a method defi-

nition without needing to enclose the contents in a begin/end block.

That concludes our brief introduction to control flow, and at this point you

have the basic building blocks for creating larger structures.

Organizing Structures

Ruby has two basic concepts for organizing methods: classes and modules.

We cover each in turn.

Classes

Here’s a Ruby class definition:

class Order < ApplicationRecordLine 1

has_many :line_items-

def self.find_all_unpaid-

self.where('paid = 0')-

end5

def total-

sum = 0-

line_items.each {|li| sum += li.total}-

sum-

end10

end-

Class definitions start with the class keyword, followed by the class name

(which must start with an uppercase letter). This Order class is defined to be

a subclass of the ApplicationRecord class.

Rails makes heavy use of class-level declarations. Here, has_many is a method

that’s defined by Active Record. It’s called as the Order class is being defined.

Normally these kinds of methods make assertions about the class, so in this

book we call them declarations.

Within a class body, you can define class methods and instance methods.

Prefixing a method name with self. (as we do on line 3) makes it a class method;

it can be called on the class generally. In this case, we can make the following

call anywhere in our application:

to_collect = Order.find_all_unpaid

Objects of a class hold their state in instance variables. These variables, whose

names all start with @, are available to all the instance methods of a class.

Each object gets its own set of instance variables.

Chapter 4. Introduction to Ruby • 56

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Instance variables aren’t directly accessible outside the class. To make them

available, write methods that return their values:

class Greeter
def initialize(name)
@name = name

end

def name
@name

end

def name=(new_name)
@name = new_name

end
end

g = Greeter.new("Barney")
g.name # => Barney
g.name = "Betty"
g.name # => Betty

Ruby provides convenience methods that write these accessor methods for

you (which is great news for folks tired of writing all those getters and setters):

class Greeter
attr_accessor :name # create reader and writer methods
attr_reader :greeting # create reader only
attr_writer :age # create writer only

end

A class’s instance methods are public by default; anyone can call them. You’ll

probably want to override this for methods that are intended to be used only

by other instance methods:

class MyClass
def m1 # this method is public
end
protected
def m2 # this method is protected
end
private
def m3 # this method is private
end

end

The private directive is the strictest; private methods can be called only from

within the same instance. Protected methods can be called both in the same

instance and by other instances of the same class and its subclasses.

Classes aren’t the only organizing structure in Ruby. The other organizing

structure is a module.

report erratum • discuss

Organizing Structures • 57

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Modules

Modules are similar to classes in that they hold a collection of methods,

constants, and other module and class definitions. Unlike with classes, you

can’t create objects based on modules.

Modules serve two purposes. First, they act as a namespace, letting you define

methods whose names won’t clash with those defined elsewhere. Second,

they allow you to share functionality among classes. If a class mixes in a

module, that module’s methods become available as if they had been defined

in the class. Multiple classes can mix in the same module, sharing the mod-

ule’s functionality without using inheritance. You can also mix multiple

modules into a single class.

Helper methods are an example of where Rails uses modules. Rails automat-

ically mixes these helper modules into the appropriate view templates. For

example, if you wanted to write a helper method that’s callable from views

invoked by the store controller, you could define the following module in the

store_helper.rb file in the app/helpers directory:

module StoreHelper
def capitalize_words(string)
string.split(' ').map {|word| word.capitalize}.join(' ')

end
end

One module that’s part of the standard library of Ruby deserves special

mention, given its usage in Rails: YAML.

YAML

YAML1 is a recursive acronym that stands for YAML Ain’t Markup Language. In

the context of Rails, YAML is used as a convenient way to define the configuration

of things such as databases, test data, and translations. Here’s an example:

development:
adapter: sqlite3
database: db/development.sqlite3
pool: 5
timeout: 5000

In YAML, indentation is important, so this defines development as having a set

of four key-value pairs, separated by colons. While YAML is one way to repre-

sent data, particularly when interacting with humans, Ruby provides a more

general way for representing data for use by applications.

1. http://www.yaml.org/

Chapter 4. Introduction to Ruby • 58

report erratum • discuss

http://www.yaml.org/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Marshaling Objects

Ruby can take an object and convert it into a stream of bytes that can be stored

outside the application. This process is called marshaling. This saved object

can later be read by another instance of the application (or by a totally separate

application), and a copy of the originally saved object can be reconstituted.

Two potential issues arise when you use marshaling. First, some objects can’t

be dumped. If the objects to be dumped include bindings, procedure or method

objects, instances of the IO class, or singleton objects—or if you try to dump

anonymous classes or modules—a TypeError will be raised.

Second, when you load a marshaled object, Ruby needs to know the definition

of the class of that object (and of all the objects it contains).

Rails uses marshaling to store session data. If you rely on Rails to dynamically

load classes, it’s possible that a particular class may not have been defined

at the point it reconstitutes session data. For that reason, use the model dec-

laration in your controller to list all models that are marshaled. This preemp-

tively loads the necessary classes to make marshaling work.

Now that you have the Ruby basics down, let’s give what we learned a whirl

with a slightly larger, annotated example that pulls together a number of

concepts. We’ll follow that with a walk-through of special features that will

help you with your Rails coding.

Pulling It All Together

Let’s look at an example of how Rails applies a number of Ruby features

together to make the code you need to maintain more declarative. You’ll see

this example again in Generating the Scaffold, on page 72. For now, we’ll focus

on the Ruby-language aspects of the example:

class CreateProducts < ActiveRecord::Migration[5.1]
def change
create_table :products do |t|

t.string :title
t.text :description
t.string :image_url
t.decimal :price, precision: 8, scale: 2➤

t.timestamps
end

end
end

report erratum • discuss

Marshaling Objects • 59

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Even if you didn’t know any Ruby, you’d probably be able to decipher that

this code creates a table named products. The fields defined when this table is

created include title, description, image_url, and price, as well as a few timestamps

(we’ll describe these in Chapter 23, Migrations, on page 411).

Now let’s look at the same example from a Ruby perspective. We define a class

named CreateProducts, which inherits from the versioned2 Migration class from

the ActiveRecord module, specifying that compatibility with Rails 5.1 is desired.

We define one method, named change(). This method calls the create_table()
method (defined in ActiveRecord::Migration), passing it the name of the table in

the form of a symbol.

The call to create_table() also passes a block that is to be evaluated before the

table is created. This block, when called, is passed an object named t, which

is used to accumulate a list of fields. Rails defines a number of methods on

this object—methods named after common data types. These methods, when

called, simply add a field definition to the ever-accumulating set of names.

The definition of decimal also accepts a number of optional parameters,

expressed as a hash.

To someone new to Ruby, this is a lot of heavy machinery thrown at solving

such a simple problem. To someone familiar with Ruby, none of this

machinery is particularly heavy. In any case, Rails makes extensive use of

the facilities provided by Ruby to make defining operations (for example,

migration tasks) as simple and as declarative as possible. Even small features

of the language, such as optional parentheses and braces, contribute to the

overall readability and ease of authoring.

Finally, a number of small features—or, rather, idiomatic combinations of

features—are often not immediately obvious to people new to the Ruby lan-

guage. We close this chapter with them.

Ruby Idioms

A number of individual Ruby features can be combined in interesting ways,

and the meaning of such idiomatic usage is often not immediately obvious to

people new to the language. We use these common Ruby idioms in this book:

2. http://blog.bigbinary.com/2016/03/01/migrations-are-versioned-in-rails-5.html

Chapter 4. Introduction to Ruby • 60

report erratum • discuss

http://blog.bigbinary.com/2016/03/01/migrations-are-versioned-in-rails-5.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Methods such as empty! and empty?
Ruby method names can end with an exclamation mark (a bang method)

or a question mark (a predicate method). Bang methods normally do

something destructive to the receiver. Predicate methods return true or

false, depending on some condition.

a || b
The expression a || b evaluates a. If it isn’t false or nil, then evaluation stops,

and the expression returns a. Otherwise, the statement returns b. This is

a common way of returning a default value if the first value hasn’t been

set.

a ||= b
The assignment statement supports a set of shortcuts: a op= b is the same

as a = a op b. This works for most operators:

count += 1 # same as count = count + 1
price *= discount # price = price * discount
count ||= 0 # count = count || 0

So, count ||= 0 gives count the value 0 if count is nil or false.

obj = self.new
Sometimes a class method needs to create an instance of that class:

class Person < ApplicationRecord
def self.for_dave
Person.new(name: 'Dave')

end
end

This works fine, returning a new Person object. But later, someone might

subclass our class:

class Employee < Person
..

end

dave = Employee.for_dave # returns a Person

The for_dave() method was hardwired to return a Person object, so that’s

what’s returned by Employee.for_dave. Using self.new instead returns a new

object of the receiver’s class, Employee.

report erratum • discuss

Ruby Idioms • 61

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

lambda
The lambda operator converts a block into an object of type Proc. An alter-

native syntax, introduced in Ruby 1.9, is ->. As a matter of style, the Rails

team prefers the latter syntax. You can see example usages of this operator

in Scopes, on page 336:

require File.expand_path('../../config/environment', __FILE__)
Ruby’s require method loads an external source file into our application.

This is used to include library code and classes that our application relies

on. In normal use, Ruby finds these files by searching in a list of directo-

ries, the LOAD_PATH.

Sometimes we need to be specific about which file to include. We can do

that by giving require a full filesystem path. The problem is, we don’t know

what that path will be—our users could install our code anywhere.

Wherever our application ends up getting installed, the relative path

between the file doing the requiring and the target file will be the same.

Knowing this, we can construct the absolute path to the target by using

the File.expand_path() method, passing in the relative path to the target file,

as well as the absolute path to the file doing the requiring (available in

the special __FILE__ variable).

In addition, the web has many good resources that show Ruby idioms and

Ruby gotchas. Here are a few of them:

• http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/
• http://en.wikipedia.org/wiki/Ruby_programming_language
• http://www.zenspider.com/Languages/Ruby/QuickRef.html

By this point, you have a firm foundation to build on. You’ve installed Rails,

verified that you have things working with a simple application, read a brief

description of what Rails is, and reviewed (or for some of you, learned for the

first time) the basics of the Ruby language. Now it’s time to put this knowledge

in place to build a larger application.

Chapter 4. Introduction to Ruby • 62

report erratum • discuss

http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/
http://en.wikipedia.org/wiki/Ruby_programming_language
http://www.zenspider.com/Languages/Ruby/QuickRef.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Part II

Building an Application

CHAPTER 5

In this chapter, you'll see:

• Incremental development

• Use cases, page flow, and data

• Priorities

The Depot Application

We could mess around all day hacking together simple test applications, but

that won’t help us pay the bills. So, let’s sink our teeth into something

meatier. Let’s create a web-based shopping cart application called Depot.

Does the world need another shopping cart application? Nope, but that hasn’t

stopped hundreds of developers from writing one. Why should we be different?

More seriously, it turns out that our shopping cart will illustrate many of the

features of Rails development. You’ll see how to create maintenance pages,

link database tables, handle sessions, create forms, and wrangle modern

JavaScript. Over the next twelve chapters, we’ll also touch on peripheral

topics such as unit and system testing, security, and page layout.

Incremental Development

We’ll be developing this application incrementally. We won’t attempt to spec-

ify everything before we start coding. Instead, we’ll work out enough of a

specification to let us start and then immediately create some functionality.

We’ll try ideas, gather feedback, and continue with another cycle of minidesign

and development.

This style of coding isn’t always applicable. It requires close cooperation with

the application’s users, because we want to gather feedback as we go along.

We might make mistakes, or the client might ask for one thing at first and

later want something different. It doesn’t matter what the reason is. The ear-

lier we discover we’ve made a mistake, the less expensive it’ll be to fix that

mistake. All in all, with this style of development, there’s a lot of change as

we go along.

Because of this, we need to use a toolset that doesn’t penalize us for changing

our minds. If we decide we need to add a new column to a database table or

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

change the navigation among pages, we need to be able to get in there and

do it without a bunch of coding or configuration hassle. As you’ll see, Ruby

on Rails shines when it comes to dealing with change. It’s an ideal agile pro-

gramming environment.

Along the way, we’ll be building and maintaining a corpus of tests. These

tests will ensure that the application is always doing what we intend to do.

Not only does Rails enable the creation of such tests, but it even provides you

with an initial set of tests each time you define a new controller.

On with the application.

What Depot Does

Let’s start by jotting down an outline specification for the Depot application.

We’ll look at the high-level use cases and sketch out the flow through the web

pages. We’ll also try working out what data the application needs (acknowl-

edging that our initial guesses will likely be wrong).

Use Cases

A use case is simply a statement about how some entity uses a system.

Consultants invent these kinds of phrases to label things we’ve known all

along. (It’s a perversion of business life that fancy words always cost more

than plain ones, even though the plain ones are more valuable.)

Depot’s use cases are simple (some would say tragically so). We start off by

identifying two different roles or actors: the buyer and the seller.

The buyer uses Depot to browse the products we have to sell, select some to

purchase, and supply the information needed to create an order.

The seller uses Depot to maintain a list of products to sell, to determine the

orders that are awaiting shipment, and to mark orders as shipped. (The seller

also uses Depot to make scads of money and retire to a tropical island, but

that’s the subject of another book.)

For now, that’s all the detail we need. We could go into excruciating detail about

what it means to maintain products and what constitutes an order ready to

ship, but why bother? If some details aren’t obvious, we’ll discover them soon

enough as we reveal successive iterations of our work to the customer.

Speaking of getting feedback, let’s get some right now. Let’s make sure our

initial (admittedly sketchy) use cases are on the mark by asking our users.

Assuming the use cases pass muster, let’s work out how the application will

work from the perspectives of its various users.

Chapter 5. The Depot Application • 66

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Page Flow

We always like to have an idea of the main pages in our applications and to

understand roughly how users navigate among them. This early in the

development, these page flows are likely to be incomplete, but they still help

us focus on what needs doing and know how actions are sequenced.

Some folks like to use Photoshop, Word, or (shudder) HTML to mock up web

application page flows. We like using a pencil and paper. It’s quicker, and the

customer gets to play too, grabbing the pencil and scribbling alterations right

on the paper.

The first sketch of the buyer flow is shown in the following figure.

It’s pretty traditional. The buyer sees a catalog page, from which he selects

one product at a time. Each product selected gets added to the cart, and the

cart is displayed after each selection. The buyer can continue shopping using

the catalog pages or check out and buy the contents of the cart. During

checkout, we capture contact and payment details and then display a receipt

page. We don’t yet know how we’re going to handle payment, so those details

are fairly vague in the flow.

report erratum • discuss

What Depot Does • 67

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The seller flow, shown in the next figure, is also fairly basic. After logging in,

the seller sees a menu letting her create or view a product or ship existing

orders. When viewing a product, the seller can optionally edit the product

information or delete the product entirely.

The shipping option is simplistic. It displays each order that hasn’t yet been

shipped, one order per page. The seller can choose to skip to the next or can

ship the order, using the information from the page as appropriate.

The shipping function is clearly not going to survive long in the real world,

but shipping is also one of those areas where reality is often stranger than

you might think. Overspecify it up front, and we’re likely to get it wrong. For

now, let’s leave it as it is, confident that we can change it as the user gains

experience using our application.

Data

Finally, we need to think about the data we’re going to be working with.

Notice that we’re not using words such as schema or classes here. We’re also

not talking about databases, tables, keys, and the like. We’re talking about data.

At this stage in the development, we don’t know if we’ll even be using a database.

Based on the use cases and the flows, it seems likely that we’ll be working with

the data shown in the figure on page 69. Again, using pencil and paper seems

a whole lot easier than some fancy tool, but use whatever works for you.

Chapter 5. The Depot Application • 68

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Working on the data diagram raised a couple of questions. As the user buys

items, we’ll need somewhere to keep the list of products they bought, so we

added a cart. But apart from its use as a transient place to keep this product

list, the cart seems to be something of a ghost—we couldn’t find anything

meaningful to store in it. To reflect this uncertainty, we put a question mark

inside the cart’s box in the diagram. We’re assuming this uncertainty will get

resolved as we implement Depot.

Coming up with the high-level data also raised the question of what information

should go into an order. Again, we chose to leave this fairly open for now. We’ll

refine this further as we start showing our early iterations to the customer.

General Recovery Advice

Everything in this book has been tested. If you follow along with this scenario precisely,

using the recommended version of Rails and SQLite 3 on Linux, Mac OS X, or Win-

dows, everything should work as described. However, deviations from this path can

occur. Typos happen to the best of us, and not only are side explorations possible,

but they’re positively encouraged. Be aware that this might lead you to strange places.

Don’t be afraid: specific recovery actions for common problems appear in the specific

sections where such problems often occur. A few additional general suggestions are

included here.

You should only ever need to restart the server in the few places where doing so is

noted in the book. But if you ever get truly stumped, restarting the server might be

worth trying.

A “magic” command worth knowing, explained in detail in Part III, is bin/rails
db:migrate:redo. It’ll undo and reapply the last migration.

If your server won’t accept some input on a form, refresh the form on your browser

and resubmit it.

report erratum • discuss

What Depot Does • 69

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Finally, you might have noticed that we’ve duplicated the product’s price in

the line item data. Here we’re breaking the “initially, keep it simple” rule

slightly, but it’s a transgression based on experience. If the price of a product

changes, that price change shouldn’t be reflected in the line item price of

currently open orders, so each line item needs to reflect the price of the

product at the time the order was made.

Again, at this point we’ll double-check with the customer that we’re still on

the right track. (The customer was most likely sitting in the room with us

while we drew these three diagrams.)

Let’s Code

So, after sitting down with the customer and doing some preliminary analysis,

we’re ready to start using a computer for development! We’ll be working from

our original three diagrams, but the chances are pretty good that we’ll be

throwing them away fairly quickly—they’ll become outdated as we gather

feedback. Interestingly, that’s why we didn’t spend too long on them; it’s

easier to throw something away if you didn’t spend a long time creating it.

In the chapters that follow, we’ll start developing the application based on

our current understanding. However, before we turn that page, we have to

answer one more question: what should we do first?

We like to work with the customer so we can jointly agree on priorities. In

this case, we’d point out to her that it’s hard to develop anything else until

we have some basic products defined in the system, so we suggest spending

a couple of hours getting the initial version of the product maintenance

functionality up and running. And, of course, the client would agree.

Chapter 5. The Depot Application • 70

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 6

In this chapter, you'll see:

• Creating a new application

• Configuring the database

• Creating models and controllers

• Adding a stylesheet

• Updating a layout and a view

Task A: Creating the Application

Our first development task is to create the web interface that lets us maintain

our product information—create new products, edit existing products, delete

unwanted ones, and so on. We’ll develop this application in small iterations,

where “small” means measured in minutes. Typically, our iterations involve

multiple steps, as in iteration C, which has steps C1, C2, C3, and so on. In

this case, the iteration has two steps. Let’s get started.

Iteration A1: Creating the Product Maintenance

Application

At the heart of the Depot application is a database. Getting this installed and

configured and tested before proceeding will prevent a lot of headaches. If you

aren’t sure what you want, take the defaults, and it’ll go easily. If you know

what you want, Rails makes it easy for you to describe your configuration.

Creating a Rails Application

In Creating a New Application, on page 23, you saw how to create a new Rails

application. We’ll do the same thing here. Go to a command prompt and type

rails new followed by the name of our project. Here, our project is called depot, so

make sure you’re not inside an existing application directory, and type this:

work> rails new depot

We see a bunch of output scroll by. When it has finished, we find that a new

directory, depot, has been created. That’s where we’ll be doing our work:

work> cd depot
depot> ls -p
Gemfile Rakefile config/ lib/ public/ vendor/
Gemfile.lock app/ config.ru log/ test/
README.md bin/ db/ package.json tmp/

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Of course, Windows users need to use dir /w instead of ls -p.

Creating the Database

For this application, we’ll use the open source SQLite database (which you’ll

need if you’re following along with the code). We’re using SQLite version 3 here.

SQLite 3 is the default database for Rails development and was installed along

with Rails in Chapter 1, Installing Rails, on page 3. With SQLite 3, no steps

are required to create a database, and we have no special user accounts or

passwords to deal with. So, now you get to experience one of the benefits of

going with the flow (or, convention over configuration, as the Rails folks

say...ad nauseam).

If it’s important to you to use a database server other than SQLite 3, the

commands to create the database and grant permissions will be different.

You can find some helpful hints in the database configuration section of

Configuring Rails Applications in the Ruby on Rails Guides.1

Generating the Scaffold

Back in our initial guess at application data on page 69, we sketched out the

basic content of the products table. Now let’s turn that into reality. We need to

create a database table and a Rails model that lets our application use that

table, a number of views to make up the user interface, and a controller to

orchestrate the application.

So, let’s create the model, views, controller, and migration for our products
table. With Rails, you can do all that with one command by asking Rails to

generate a scaffold for a given model. Note that on the command line that

follows, we use the singular form, Product. In Rails, a model is automatically

mapped to a database table whose name is the plural form of the model’s

class. In our case, we ask for a model called Product, so Rails associates it with

the table called products. (And how will it find that table? The development entry

in config/database.yml tells Rails where to look for it. For SQLite 3 users, this’ll

be a file in the db directory.)

Note that that command is too wide to fit comfortably on the page. To enter

a command on multiple lines, put a backslash as the last character on all

but the last line, and you’ll be prompted for more input. Windows users need

to substitute a caret (^) for the backslash at the end of the first line and a

backslash for the forward slash in bin/rails:

1. http://guides.rubyonrails.org/configuring.html#configuring-a-database

Chapter 6. Task A: Creating the Application • 72

report erratum • discuss

http://guides.rubyonrails.org/configuring.html#configuring-a-database
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

depot> bin/rails generate scaffold Product \
title:string description:text image_url:string price:decimal

invoke active_record
create db/migrate/20170425000001_create_products.rb
create app/models/product.rb
invoke test_unit
create test/models/product_test.rb
create test/fixtures/products.yml
invoke resource_route
route resources :products
invoke scaffold_controller
create app/controllers/products_controller.rb
invoke erb
create app/views/products
create app/views/products/index.html.erb
create app/views/products/edit.html.erb
create app/views/products/show.html.erb
create app/views/products/new.html.erb
create app/views/products/_form.html.erb
invoke test_unit
create test/controllers/products_controller_test.rb
invoke helper
create app/helpers/products_helper.rb
invoke test_unit
invoke jbuilder
create app/views/products/index.json.jbuilder
create app/views/products/show.json.jbuilder
create app/views/products/_product.json.jbuilder
create test_unit
create test/system/products_test.rb
invoke assets
invoke coffee
create app/assets/javascripts/products.coffee
invoke scss
create app/assets/stylesheets/products.scss
invoke scss
create app/assets/stylesheets/scaffolds.scss

The generator creates a bunch of files. The one we’re interested in first is the

migration one, namely, 20170425000001_create_products.rb.

A migration represents a change we either want to make to a database as a

whole or to the data contained within the database, and it’s expressed in a

source file in database-independent terms. These changes can update both

the database schema and the data in the database tables. We apply these

migrations to update our database, and we can unapply them to roll our

database back. We have a whole section on migrations starting in Chapter

23, Migrations, on page 411. For now, we’ll just use them without too much

more comment.

report erratum • discuss

Iteration A1: Creating the Product Maintenance Application • 73

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The migration has a UTC-based timestamp prefix (20170425000001), a name

(create_products), and a file extension (.rb, because it’s Ruby code).

The timestamp prefix that you see will be different. In fact, the timestamps

used in this book are clearly fictitious. Typically, your timestamps won’t be

consecutive; instead, they’ll reflect the time the migration was created.

Applying the Migration

Although we’ve already told Rails about the basic data types of each property,

let’s refine the definition of the price to have eight digits of significance and

two digits after the decimal point:

rails51/depot_a/db/migrate/20170425000001_create_products.rb

class CreateProducts < ActiveRecord::Migration[5.1]
def change
create_table :products do |t|

t.string :title
t.text :description
t.string :image_url
t.decimal :price, precision: 8, scale: 2➤

t.timestamps
end

end
end

Now that we’re done with our changes, we need to get Rails to apply this

migration to our development database. We do this by using the bin/rails
db:migrate command:

depot> bin/rails db:migrate
== 20170425000001 CreateProducts: migrating ==================================
-- create_table(:products)

-> 0.0027s
== CreateProducts: migrated (0.0023s) ==

And that’s it. Rails looks for all the migrations not yet applied to the database

and applies them. In our case, the products table is added to the database

defined by the development section of the database.yml file.

OK, all the groundwork has been done. We set up our Depot application as a

Rails project. We created the development database and configured our appli-

cation to be able to connect to it. We created a products controller and a Product
model and used a migration to create the corresponding products table. And a

number of views have been created for us. It’s time to see all this in action.

Chapter 6. Task A: Creating the Application • 74

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_a/db/migrate/20170425000001_create_products.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Seeing the List of Products

With three commands, we’ve created an application and a database (or a table

inside an existing database, if you chose something besides SQLite 3). Before

we worry too much about what happened behind the scenes here, let’s try

our shiny new application.

First, we start a local server, supplied with Rails:

depot> bin/rails server
=> Booting Puma
=> Rails 5.1.3 application starting in development on http://localhost:3000
=> Run `rails server -h` for more startup options
Puma starting in single mode...
* Version 3.9.1 (ruby 2.4.1-p111), codename: Private Caller
* Min threads: 5, max threads: 5
* Environment: development
* Listening on tcp://localhost:3000
Use Ctrl-C to stop

As it did with our demo application on page 23, this command starts a web

server on our local host, port 3000. If you get an error saying Address already in
use when you try to run the server, that means you already have a Rails server

running on your machine. If you’ve been following along with the examples in

the book, that might well be the Hello, World! application from Chapter 4. Find

its console and kill the server using Ctrl-C. If you’re running on Windows, you

might see the prompt Terminate batch job (Y/N)?. If so, respond with y.

Let’s connect to our application. Remember, the URL we give to our browser

is http://localhost:3000/products, which has both the port number (3000) and the

name of the controller in lowercase (products). The application looks like the

following screenshot.

report erratum • discuss

Iteration A1: Creating the Product Maintenance Application • 75

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

That’s pretty boring. It’s showing us an empty list of products. Let’s add some.

Click the New Product link. A form should appear, as shown in the following

screenshot.

These forms are simply HTML templates, like the ones you created in Hello,

Rails!, on page 26. In fact, we can modify them. Let’s change the number of

rows and columns in the Description field:

rails51/depot_a/app/views/products/_form.html.erb

<%= form_with(model: product, local: true) do |form| %>
<% if product.errors.any? %>

<div id="error_explanation">
<h2><%= pluralize(product.errors.count, "error") %>
prohibited this product from being saved:</h2>

<% product.errors.full_messages.each do |message| %>

<%= message %>
<% end %>

</div>
<% end %>

<div class="field">
<%= form.label :title %>
<%= form.text_field :title, id: :product_title %>

</div>

Chapter 6. Task A: Creating the Application • 76

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_a/app/views/products/_form.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

<div class="field">
<%= form.label :description %>
<%= form.text_area :description, id: :product_description, rows: 10, cols: 60 %>➤

</div>

<div class="field">
<%= form.label :image_url %>
<%= form.text_field :image_url, id: :product_image_url %>

</div>

<div class="field">
<%= form.label :price %>
<%= form.text_field :price, id: :product_price %>

</div>

<div class="actions">
<%= form.submit %>

</div>
<% end %>

We’ll explore this more in Chapter 8, Task C: Catalog Display, on page 103.

But for now, we’ve adjusted one field to taste, so let’s fill it in, as shown in

the following screenshot (note the use of HTML tags in the description—–this

is intentional and will make more sense later).

Click the Create button, and you should see that the new product was suc-

cessfully created. If you now click the Back link, you should see the new

product in the list, as shown in the screenshot on page 78.

report erratum • discuss

Iteration A1: Creating the Product Maintenance Application • 77

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Perhaps it isn’t the prettiest interface, but it works, and we can show it to

our client for approval. She can play with the other links (showing details,

editing existing products, and so on). We explain to her that this is only a

first step—we know it’s rough, but we wanted to get her feedback early. (And

four commands probably count as early in anyone’s book.)

At this point, we’ve accomplished a lot with only four commands. Before we

move on, let’s try one more command:

bin/rails test

Included in the output should be a line that says 0 failures, 0 errors. This is for

the model and controller tests that Rails generates along with the scaffolding.

They’re minimal at this point, but simply knowing that they’re there and that

they pass should give you confidence. As you proceed through these chapters

in Part II, you’re encouraged to run this command frequently, because it’ll

help you spot and track down errors. We’ll cover this more in Iteration B2:

Unit Testing of Models, on page 91.

Note that if you’ve used a database other than SQLite 3, this step may have

failed. Check your database.yml file.

Iteration A2: Making Prettier Listings

Our customer has one more request. (Customers always seem to have one

more request, don’t they?) The listing of all the products is ugly. Can we

pretty it up a bit? And, while we’re in there, can we also display the product

image along with the image URL?

We’re faced with a dilemma here. As developers, we’re trained to respond to

these kinds of requests with a sharp intake of breath, a knowing shake of the

head, and a murmured, “You want what?” At the same time, we also like to

Chapter 6. Task A: Creating the Application • 78

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

show off a bit. In the end, the fact that it’s fun to make these kinds of changes

using Rails wins out, and we fire up our trusty editor.

Before we get too far, though, it would be nice if we had a consistent set of test

data to work with. We could use our scaffold-generated interface and type data

in from the browser. However, if we did this, future developers working on our

codebase would have to do the same. And if we were working as part of a team

on this project, each member of the team would have to enter his or her own

data. It would be nice if we could load the data into our table in a more con-

trolled way. It turns out that we can. Rails has the ability to import seed data.

To start, we simply modify the file in the db directory named seeds.rb.

We then add the code to populate the products table. This uses the create!()
method of the Product model. The following is an extract from that file. Rather

than type the file by hand, you might want to download the file from the

sample code available online.2

While you’re there, copy the images into the app/assets/images directory in your

application.3 Be warned: this seeds.rb script removes existing data from the

products table before loading the new data. You might not want to run it if

you’ve just spent several hours typing your own data into your application!

rails51/depot_a/db/seeds.rb

Product.delete_all
. . .
Product.create!(title: 'Seven Mobile Apps in Seven Weeks',

description:
%{<p>

Native Apps, Multiple Platforms
Answer the question “Can we build this for ALL the devices?” with a
resounding YES. This book will help you get there with a real-world
introduction to seven platforms, whether you’re new to mobile or an
experienced developer needing to expand your options. Plus, you’ll find
out which cross-platform solution makes the most sense for your needs.
</p>},

image_url: '7apps.jpg',
price: 26.00)

. . .

(Note that this code uses %{…}. This is an alternative syntax for double-

quoted string literals, convenient for use with long strings. Note also that

because it uses the Rails create!() method, it’ll raise an exception if records

can’t be inserted because of validation errors.)

2. https://media.pragprog.com/titles/rails51/code/rails51/depot_a/db/seeds.rb
3. https://media.pragprog.com/titles/rails51/code/rails51/depot_a/app/assets/images/

report erratum • discuss

Iteration A2: Making Prettier Listings • 79

http://media.pragprog.com/titles/rails51/code/rails51/depot_a/db/seeds.rb
https://media.pragprog.com/titles/rails51/code/rails51/depot_a/db/seeds.rb
https://media.pragprog.com/titles/rails51/code/rails51/depot_a/app/assets/images/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

To populate your products table with test data, run the following command:

depot> bin/rails db:seed

Now let’s get the product listing tidied up. This has three pieces: defining a set

of style rules, connecting these rules to the page by defining an HTML class
attribute on the page, and changing the HTML to make styling the page easier.

We need somewhere to put our style definitions. Rails has a convention for

this, and the generate scaffold command that we previously issued has already

laid all of the necessary groundwork. As such, we can proceed to fill in the

currently empty products.scss stylesheet in the app/assets/stylesheets directory:

rails51/depot_a/app/assets/stylesheets/products.scss

// Place all the styles related to the Products controller here.
// They will automatically be included in application.css.
// You can use Sass (SCSS) here: http://sass-lang.com/

.products {➤

margin: 0;➤

padding: 0.5em;➤

a {➤

padding: 0.354em 0.5em;➤

border-radius: 0.354em;➤

}➤

table {➤

border-collapse: collapse;➤

}➤

td {➤

padding: 0.5em;➤

margin: 0;➤

}➤

➤

tr.list_line_odd {➤

background-color: #effeef;➤

}➤

➤

td.image {➤

// Hide this on mobile devices➤

display: none;➤

➤

// Assume anything bigger than 30em➤

// is a non-mobile device and can➤

// fit the image.➤

@media (min-width: 30em) {➤

display: block;➤

img {➤

height: 11.3em;➤

}➤

}➤

}➤

Chapter 6. Task A: Creating the Application • 80

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_a/app/assets/stylesheets/products.scss
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

➤

td.description {➤

h1 {➤

font-size: 1.4em;➤

}➤

}➤

➤

td.actions {➤

ul {➤

padding: 0;➤

list-style: none;➤

li {➤

padding: 0.5em 0.5em;➤

}➤

}➤

}➤

➤

tfoot {➤

td {➤

padding: 0.5em 0;➤

}➤

}➤

}➤

If you choose to download this file, make sure that the timestamp on the

file is updated. If the timestamp isn’t updated, Rails won’t pick up the

changes until the server is restarted. You can update the timestamp by

going into your favorite editor and saving the file. On Mac OS X and Linux,

you can use the touch command.

Look closely at this stylesheet and you’ll see that CSS rules are nested, in

that the rule for li is defined inside the rule for ul, which is itself inside the

rule for td.actions. This tends to make rules less repetitive and therefore easier

to read, write, understand, and maintain.

At this point you’re familiar with files ending with .erb being preprocessed for

embedded Ruby expressions and statements. If you note that this file ends

with .scss, you might guess that the file is preprocessed as Sassy CSS before

being served as CSS.4 And you’d be right!

Again, like ERB, SCSS doesn’t interfere with writing correct CSS. What SCSS

does is provide additional syntax that makes your stylesheets easier to author

and easier to maintain. All of this is converted for you by SCSS to standard

CSS that your browser understands. You can find out more about SCSS in

Pragmatic Guide to Sass 3 [CC16].

4. http://sass-lang.com/

report erratum • discuss

Iteration A2: Making Prettier Listings • 81

http://sass-lang.com/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Finally, we need to define the products class used by this stylesheet. If you look

at the .html.erb files we’ve created so far, you won’t find any reference to

stylesheets. You won’t even find the HTML <head> section where such references

would normally live. Instead, Rails keeps a separate file that’s used to create

a standard page environment for the entire application. This file, called applica-
tion.html.erb, is a Rails layout and lives in the layouts directory:

rails51/depot_a/app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>

<head>
<title>Depot</title>
<%= csrf_meta_tags %>

<%= stylesheet_link_tag 'application', media: 'all',
'data-turbolinks-track': 'reload' %>
<%= javascript_include_tag 'application', 'data-turbolinks-track': 'reload' %>

</head>

<body>

<main class='<%= controller.controller_name %>'>➤

<%= yield %>➤

</main>➤

</body>
</html>

You’ll note we’ve wrapped the content in a <main> tag that has a CSS class of

the current controller. This means that when we are rendering a product

listing, it will have the CSS class products, and when we render an order, it’ll

have the class orders. This allows us to target our CSS, because Rails includes

all CSS in app/assets/stylesheets on every page, no matter what. If we want to

apply a style to, say, a table header only on order pages, we can write .orders
th { «css» } and—even though that CSS will be included on non-orders pages

—it won’t apply, because the top-level element won’t have the class orders.

Now that we have all the stylesheets in place, we’ll use a table-based template,

editing the index.html.erb file in app/views/products and replacing the scaffold-

generated view:

rails51/depot_a/app/views/products/index.html.erb

<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h1>Products</h1>

<table>
<tfoot>

<tr>

Chapter 6. Task A: Creating the Application • 82

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_a/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_a/app/views/products/index.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

<td colspan="3">
<%= link_to 'New product', new_product_path %>

</td>
</tr>

</tfoot>
<tbody>

<% @products.each do |product| %>
<tr class="<%= cycle('list_line_odd', 'list_line_even') %>">

<td class="image">
<%= image_tag(product.image_url, class: 'list_image') %>

</td>

<td class="description">
<h1><%= product.title %></h1>
<p>
<%= truncate(strip_tags(product.description),

length: 80) %>
</p>

</td>

<td class="actions">

<%= link_to 'Show', product %>
<%= link_to 'Edit', edit_product_path(product) %>

<%= link_to 'Destroy',
product,

method: :delete,
data: { confirm: 'Are you sure?' } %>

</td>
</tr>

<% end %>
</tbody>

</table>

This template uses a number of built-in Rails features:

• The rows in the listing have alternating background colors. The Rails

helper method called does this by setting the CSS class of each row to

either list_line_even or list_line_odd, automatically toggling between the two

style names on successive lines.

• The truncate() helper is used to display the first eighty characters of the

description. But before we call truncate(), we call strip_tags() to remove the

HTML tags from the description.

• Look at the link_to 'Destroy' line. See how it has the parameter data: { confirm:
'Are you sure?' }. If you click this link, Rails arranges for your browser to pop

report erratum • discuss

Iteration A2: Making Prettier Listings • 83

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

up a dialog box asking for confirmation before following the link and

deleting the product. (Also, see the sidebar on page 85 for an inside scoop

on this action.)

We loaded some test data into the database, we rewrote the index.html.erb file
that displays the listing of products, we filled in the products.scss stylesheet,

and that stylesheet was loaded into our page by the application.html.erb layout

file. Now let’s bring up a browser and point to http://localhost:3000/products. The

resulting product listing might look something like the following screenshot.

So we proudly show our customer her new product listing and she’s pleased.

Now it’s time to create the storefront.

What We Just Did

In this chapter, we laid the groundwork for our store application:

• We created a development database.

• We used a migration to create and modify the schema in our development

database.

• We created the products table and used the scaffold generator to write an

application to maintain it.

• We updated an application-wide layout as well as a controller-specific

view to show a list of products.

Chapter 6. Task A: Creating the Application • 84

report erratum • discuss

http://localhost:3000/products
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

What we’ve done didn’t require much effort, and it got us up and running

quickly. Databases are vital to this application but need not be scary. In fact,

in many cases we can defer the selection of the database and get started using

the default that Rails provides.

Getting the model right is more important at this stage. As you’ll see, selection

of data types doesn’t always fully capture the essence of all the properties of

the model, even in this small application, so that’s what we’ll tackle next.

What’s with method: :delete?

You may have noticed that the scaffold-generated Destroy link includes the method:
:delete parameter. This parameter determines which method is called in the ProductsCon-
troller class and also affects which HTTP method is used.

Browsers use HTTP to talk with servers. HTTP defines a set of verbs that browsers can

employ and defines when each can be used. A regular hyperlink, for example, uses an

HTTP GET request. A GET request is defined by HTTP as a means of retrieving data and

therefore isn’t supposed to have any side effects. Using the method parameter in this

way indicates that an HTTP DELETE method should be used for this hyperlink. Rails uses

this information to determine which action in the controller to route this request to.

Note that when used within a browser, Rails substitutes the HTTP POST method for

PUT, PATCH, and DELETE methods and in the process tacks on an additional parameter

so that the router can determine the original intent. Either way, the request isn’t

cached or triggered by web crawlers.

Playtime

Here’s some stuff to try on your own:

• We created tables in our database using a migration. Try examining the

tables directly by running bin/rails dbconsole. This will put you directly into

the SQLite database that the app uses. Type .help and hit Return to see

the commands you can run to examine the database. If you know SQL,

you can execute SQL in here as well.

• If you’re feeling frisky, you can experiment with rolling back the migration.

Type the following:

depot> bin/rails db:rollback

Your schema will be transported back in time, and the products table will

be gone. Calling bin/rails db:migrate again will re-create it. You’ll also want to

reload the seed data. More information can be found in Chapter 23,

Migrations, on page 411.

report erratum • discuss

Iteration A2: Making Prettier Listings • 85

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

• We mentioned version control in Version Control, on page 17, and now

would be a great point at which to save your work. Should you happen

to choose Git (highly recommended, by the way), you need to do a tiny

bit of configuration first; basically, all you need to do is provide your name

and email address:

depot> git config --global --add user.name "Sam Ruby"
depot> git config --global --add user.email rubys@intertwingly.net

You can verify the configuration with the following command:

depot> git config --global --list

Rails also provides a file named .gitignore, which tells Git which files are

not to be version-controlled:

rails51/depot_a/.gitignore

Ignore bundler config.
/.bundle

Ignore the default SQLite database.
/db/*.sqlite3
/db/*.sqlite3-journal

Ignore all logfiles and tempfiles.
/log/*
/tmp/*
!/log/.keep
!/tmp/.keep

/node_modules
/yarn-error.log

.byebug_history

Note that because this filename begins with a dot, Unix-based operating

systems won’t show it by default in directory listings. Use ls -a to see it.

At this point, you’re fully configured. The only tasks that remain are to

add all the files and commit them with a commit message (note that Rails

has initialized our repository with git init already):

depot> git add .
depot> git commit -m "Depot Scaffold"

Being fully configured may not seem very exciting, but it does mean you’re

free to experiment. If you overwrite or delete a file that you didn’t mean

to, you can always get back to this point by issuing a single command:

depot> git checkout .

Chapter 6. Task A: Creating the Application • 86

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_a/.gitignore
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 7

In this chapter, you'll see:

• Performing validation and error reporting

• Unit testing

Task B: Validation and Unit Testing

At this point, we have an initial model for a product, as well as a complete

maintenance application for this data provided for us by Rails scaffolding. In

this chapter, we’re going to focus on making the model more bulletproof—as

in, making sure that errors in the data provided never get committed to the

database—before we proceed to other aspects of the Depot application in

subsequent chapters.

Iteration B1: Validating!

While playing with the results of iteration A1, our client noticed something.

If she entered an invalid price or forgot to set up a product description, the

application happily accepted the form and added a line to the database. A

missing description is embarrassing, and a price of $0.00 costs her actual

money, so she asked that we add validation to the application. No product

should be allowed in the database if it has an empty title or description field,

an invalid URL for the image, or an invalid price.

So, where do we put the validation? The model layer is the gatekeeper between

the world of code and the database. Nothing to do with our application comes

out of the database or gets stored into the database that doesn’t first go

through the model. This makes models an ideal place to put validations; it

doesn’t matter whether the data comes from a form or from some program-

matic manipulation in our application. If a model checks it before writing to

the database, the database will be protected from bad data.

Let’s look at the source code of the model class (in app/models/product.rb):

class Product < ApplicationRecord
end

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Adding our validation should be fairly clean. Let’s start by validating that the

text fields all contain something before a row is written to the database. We

do this by adding some code to the existing model:

validates :title, :description, :image_url, presence: true

The validates() method is the standard Rails validator. It checks one or more

model fields against one or more conditions.

presence: true tells the validator to check that each of the named fields is present

and that its contents aren’t empty. The following screenshot shows what

happens if we try to submit a new product with none of the fields filled in.

Try it by visiting http://localhost:3000/products/new and submitting the form without

entering any data. It’s pretty impressive: the fields with errors are highlighted,

and the errors are summarized in a nice list at the top of the form. That’s not

bad for one line of code. You might also have noticed that after editing and

saving the product.rb file, you didn’t have to restart the application to test your

changes. The same reloading that caused Rails to notice the earlier change

to our schema also means it’ll always use the latest version of our code.

New	Product

3	errors	prohibited	this	product	from	being	saved:

Title	can't	be	blank

Description	can't	be	blank

Image	url	can't	be	blank

Title

Description

Image	url

Price

0.0

Create Product

Back

Chapter 7. Task B: Validation and Unit Testing • 88

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51
http://localhost:3000/products

We’d also like to validate that the price is a valid, positive number. We’ll use

the delightfully named numericality() option to verify that the price is a valid

number. We also pass the rather verbosely named :greater_than_or_equal_to option

a value of 0.01:

validates :price, numericality: { greater_than_or_equal_to: 0.01 }

Now, if we add a product with an invalid price, the appropriate message will

appear, as shown in the following screenshot.

New	Product

1	error	prohibited	this	product	from	being	saved:

Price	is	not	a	number

Title

Pragmatic	Unit	Testing

Description

A	true	masterwork.		Comparable	to	Kafka	at

his	funniest,	or	Marx	during	his	slapstick

period.		Move	over,	Tolstoy,	theres	a	new

funster	in	town.

Image	url

utj.jpg

Price

wibble

Create Product

Back

Why test against one cent, rather than zero? Well, it’s possible to enter a

number such as 0.001 into this field. Because the database stores just two

digits after the decimal point, this would end up being zero in the database,

even though it would pass the validation if we compared against zero.

Checking that the number is at least one cent ensures that only correct values

end up being stored.

We have two more items to validate. First, we want to make sure that each

product has a unique title. One more line in the Product model will do this. The

uniqueness validation will perform a check to ensure that no other row in

the products table has the same title as the row we’re about to save:

validates :title, uniqueness: true

report erratum • discuss

Iteration B1: Validating! • 89

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51
http://localhost:3000/products

Lastly, we need to validate that the URL entered for the image is valid. We’ll do

this by using the format option, which matches a field against a regular expres-

sion. For now, let’s just check that the URL ends with one of .gif, .jpg, or .png:

validates :image_url, allow_blank: true, format: {
with: %r{\.(gif|jpg|png)\Z}i,
message: 'must be a URL for GIF, JPG or PNG image.'

}

The regular expression matches the string against a literal dot, followed by

one of three choices, followed by the end of the string. Be sure to use vertical

bars to separate options, and backslashes before the dot and the uppercase

Z. If you need a refresher on regular expression syntax, see Regular Expressions,

on page 52.

Note that we use the allow_blank option to avoid getting multiple error messages

when the field is blank.

Later, we’d probably want to change this form to let the user select from a

list of available images, but we’d still want to keep the validation to prevent

malicious folks from submitting bad data directly.

So, in a couple of minutes we’ve added validations that check the following:

• The title, description, and image URL fields aren’t empty.

• The price is a valid number not less than $0.01.

• The title is unique among all products.

• The image URL looks reasonable.

Your updated Product model should look like this:

rails51/depot_b/app/models/product.rb

class Product < ApplicationRecord
validates :title, :description, :image_url, presence: true
validates :title, uniqueness: true
validates :image_url, allow_blank: true, format: {
with: %r{\.(gif|jpg|png)\Z}i,
message: 'must be a URL for GIF, JPG or PNG image.'

}
validates :price, numericality: { greater_than_or_equal_to: 0.01 }

end

Nearing the end of this cycle, we ask our customer to play with the application,

and she’s a lot happier. It took only a few minutes, but the simple act of adding

validation has made the product maintenance pages seem a lot more solid.

Chapter 7. Task B: Validation and Unit Testing • 90

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_b/app/models/product.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Iteration B2: Unit Testing of Models

One of the joys of the Rails framework is that it has support for testing baked

right in from the start of every project. As you’ve seen, from the moment you

create a new application using the rails command, Rails starts generating a

test infrastructure for you. Let’s take a peek inside the models subdirectory to

see what’s already there:

depot> ls test/models
product_test.rb

product_test.rb is the file that Rails created to hold the unit tests for the model

we created earlier with the generate script. This is a good start, but Rails can

help us only so much. Let’s see what kind of test goodies Rails generated

inside test/models/product_test.rb when we generated that model:

rails51/depot_a/test/models/product_test.rb

require 'test_helper'

class ProductTest < ActiveSupport::TestCase
test "the truth" do
assert true
end

end

The generated ProductTest is a subclass of ActiveSupport::TestCase1. The fact that

ActiveSupport::TestCase is a subclass of the MiniTest::Test class tells us that Rails

generates tests based on the MiniTest2 framework that comes preinstalled

with Ruby. This is good news, because it means if we’ve already been testing

our Ruby programs with MiniTest tests (and why wouldn’t we be?), we can

build on that knowledge to test Rails applications. If you’re new to MiniTest,

don’t worry. We’ll take it slow.

Inside this test case, Rails generated a single commented-out test called "the
truth". The test...do syntax may seem surprising at first, but here ActiveSup-

port::TestCase is combining a class method, optional parentheses, and a

block to make defining a test method the tiniest bit simpler for you. Sometimes

it’s the little things that make all the difference.

The assert line in this method is a test. It isn’t much of one, though—all it does

is test that true is true. Clearly, this is a placeholder, one that’s intended to

be replaced by your actual tests.

1. http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html
2. http://docs.seattlerb.org/minitest/

report erratum • discuss

Iteration B2: Unit Testing of Models • 91

http://media.pragprog.com/titles/rails51/code/rails51/depot_a/test/models/product_test.rb
http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html
http://docs.seattlerb.org/minitest/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

A Real Unit Test

Let’s get on to the business of testing validation. First, if we create a product

with no attributes set, we’ll expect it to be invalid and for an error to be

associated with each field. We can use the model’s errors() and invalid?() methods

to see if it validates, and we can use the any?() method of the error list to see

if an error is associated with a particular attribute.

Now that we know what to test, we need to know how to tell the test framework

whether our code passes or fails. We do that using assertions. An assertion

is a method call that tells the framework what we expect to be true. The

simplest assertion is the assert() method, which expects its argument to be

true. If it is, nothing special happens. However, if the argument to assert() is
false, the assertion fails. The framework will output a message and will stop

executing the test method containing the failure. In our case, we expect that

an empty Product model won’t pass validation, so we can express that expecta-

tion by asserting that it isn’t valid:

assert product.invalid?

Replace the test the truth with the following code:

rails51/depot_b/test/models/product_test.rb

test "product attributes must not be empty" do
product = Product.new
assert product.invalid?
assert product.errors[:title].any?
assert product.errors[:description].any?
assert product.errors[:price].any?
assert product.errors[:image_url].any?

end

We can rerun just the unit tests by issuing the rails test:models command. When

we do so, we now see the test execute successfully:

depot> bin/rails test:models
Run options: --seed 63304

Running:

.

Finished in 0.021068s, 47.4654 runs/s, 237.3268 assertions/s.
1 runs, 5 assertions, 0 failures, 0 errors, 0 skips

Sure enough, the validation kicked in, and all our assertions passed.

Clearly, at this point we can dig deeper and exercise individual validations.

Let’s look at three of the many possible tests.

Chapter 7. Task B: Validation and Unit Testing • 92

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_b/test/models/product_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

First, we’ll check that the validation of the price works the way we expect:

rails51/depot_c/test/models/product_test.rb

test "product price must be positive" do
product = Product.new(title: "My Book Title",

description: "yyy",
image_url: "zzz.jpg")

product.price = -1
assert product.invalid?
assert_equal ["must be greater than or equal to 0.01"],

product.errors[:price]

product.price = 0
assert product.invalid?
assert_equal ["must be greater than or equal to 0.01"],

product.errors[:price]

product.price = 1
assert product.valid?

end

In this code, we create a new product and then try setting its price to -1, 0,
and +1, validating the product each time. If our model is working, the first

two should be invalid, and we verify that the error message associated with

the price attribute is what we expect.

The last price is acceptable, so we assert that the model is now valid. (Some

folks would put these three tests into three separate test methods—that’s

perfectly reasonable.)

Next, we test that we’re validating that the image URL ends with one of .gif,
.jpg, or .png:

rails51/depot_c/test/models/product_test.rb

def new_product(image_url)
Product.new(title: "My Book Title",

description: "yyy",
price: 1,
image_url: image_url)

end

test "image url" do
ok = %w{ fred.gif fred.jpg fred.png FRED.JPG FRED.Jpg

http://a.b.c/x/y/z/fred.gif }
bad = %w{ fred.doc fred.gif/more fred.gif.more }

ok.each do |image_url|
assert new_product(image_url).valid?,

"#{image_url} shouldn't be invalid"
end

report erratum • discuss

Iteration B2: Unit Testing of Models • 93

http://media.pragprog.com/titles/rails51/code/rails51/depot_c/test/models/product_test.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_c/test/models/product_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

bad.each do |image_url|
assert new_product(image_url).invalid?,

"#{image_url} shouldn't be valid"
end

end

Here we’ve mixed things up a bit. Rather than write the nine separate tests,

we’ve used a couple of loops—one to check the cases we expect to pass vali-

dation and the second to try cases we expect to fail. At the same time, we

factored out the common code between the two loops.

You’ll notice that we also added an extra parameter to our assert method calls.

All of the testing assertions accept an optional trailing parameter containing

a string. This will be written along with the error message if the assertion

fails and can be useful for diagnosing what went wrong.

Finally, our model contains a validation that checks that all the product titles

in the database are unique. To test this one, we need to store product data

in the database.

One way to do this would be to have a test create a product, save it, then

create another product with the same title and try to save it too. This would

clearly work. But a much simpler way is to use Rails fixtures.

Test Fixtures

In the world of testing, a fixture is an environment in which you can run a

test. If you’re testing a circuit board, for example, you might mount it in a

test fixture that provides it with the power and inputs needed to drive the

function to be tested.

In the world of Rails, a test fixture is a specification of the initial contents of

a model (or models) under test. If, for example, we want to ensure that our

products table starts off with known data at the start of every unit test, we can

specify those contents in a fixture, and Rails takes care of the rest.

You specify fixture data in files in the test/fixtures directory. These files contain

test data in YAML format. Each fixture file contains the data for a single

model. The name of the fixture file is significant: the base name of the file

must match the name of a database table. Because we need some data for a

Product model, which is stored in the products table, we’ll add it to the file called

products.yml.

Rails already created this fixture file when we first created the model:

Chapter 7. Task B: Validation and Unit Testing • 94

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_a/test/fixtures/products.yml

Read about fixtures at
http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
title: MyString
description: MyText
image_url: MyString
price: 9.99

two:
title: MyString
description: MyText
image_url: MyString
price: 9.99

The fixture file contains an entry for each row that we want to insert into the

database. Each row is given a name. In the case of the Rails-generated fixture,

the rows are named one and two. This name has no significance as far as the

database is concerned—it isn’t inserted into the row data. Instead, as you’ll

see shortly, the name gives us a convenient way to reference test data inside

our test code. They also are the names used in the generated integration tests,

so for now, we’ll leave them alone.

David says:

Picking Good Fixture Names

As with the names of variables in general, you want to keep the names of fixtures as

self-explanatory as possible. This increases the readability of the tests when you’re

asserting that product(:valid_order_for_fred) is indeed Fred’s valid order. It also makes it a

lot easier to remember which fixture you’re supposed to test against, without having

to look up p1 or order4. The more fixtures you get, the more important it is to pick good

fixture names. So, starting early keeps you happy later.

But what do we do with fixtures that can’t easily get a self-explanatory name like

valid_order_for_fred? Pick natural names that you have an easier time associating to a

role. For example, instead of using order1, use christmas_order. Instead of customer1, use

fred. Once you get into the habit of natural names, you’ll soon be weaving a nice little

story about how fred is paying for his christmas_order with his invalid_credit_card first, then

paying with his valid_credit_card, and finally choosing to ship it all off to aunt_mary.

Association-based stories are key to remembering large worlds of fixtures with ease.

Inside each entry you can see an indented list of name-value pairs. As in your

config/database.yml, you must use spaces, not tabs, at the start of each of the

data lines, and all the lines for a row must have the same indentation. Be

careful as you make changes, because you need to make sure the names of

report erratum • discuss

Iteration B2: Unit Testing of Models • 95

http://media.pragprog.com/titles/rails51/code/rails51/depot_a/test/fixtures/products.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

the columns are correct in each entry; a mismatch with the database column

names can cause a hard-to-track-down exception.

This data is used in tests. In fact, if you rerun bin/rails test now you will see a

number of errors, including the following error:

Error:
ProductsControllerTest#test_should_get_index:
ActionView::Template::Error: The asset "MyString" is not present in
the asset pipeline.

The reason for the failure is that we recently added an image_tag to the product

index page and Rails can’t find an image by the name MyString (remember that

image_tag() is a Rails helper method that produces an HTML element).

Let’s correct that error and while we are here add some more data to the fixture

file with something we can use to test our Product model:

rails51/depot_c/test/fixtures/products.yml

Read about fixtures at
http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
title: MyString
description: MyText
image_url: lorem.jpg➤

price: 9.99

two:
title: MyString
description: MyText
image_url: lorem.jpg➤

price: 9.99

ruby:➤

title: Programming Ruby 1.9➤

description:➤

Ruby is the fastest growing and most exciting dynamic➤

language out there. If you need to get working programs➤

delivered fast, you should add Ruby to your toolbox.➤

price: 49.50➤

image_url: ruby.jpg➤

Note that the images referenced in image_url do need to exist for the tests to

succeed. It doesn’t matter what they are as long as they are in app/assets/images
when the tests run. You can either create some yourself, or use the ones

provided in the downloadable code.

Now that we have a fixture file, we want Rails to load the test data into the

products table when we run the unit test. And, in fact, Rails is already doing

Chapter 7. Task B: Validation and Unit Testing • 96

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_c/test/fixtures/products.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

this (convention over configuration for the win!), but you can control which

fixtures to load by specifying the following line in test/models/product_test.rb:

class ProductTest < ActiveSupport::TestCase
fixtures :products➤

#...
end

The fixtures() directive loads the fixture data corresponding to the given model

name into the corresponding database table before each test method in the

test case is run. The name of the fixture file determines the table that’s loaded,

so using :products will cause the products.yml fixture file to be used.

Let’s say that again another way. In the case of our ProductTest class, adding the

fixtures directive means that the products table will be emptied out and then popu-

lated with the three rows defined in the fixture before each test method is run.

Note that most of the scaffolding that Rails generates doesn’t contain calls to

the fixtures method. That’s because the default for tests is to load all fixtures

before running the test. Because that default is generally the one you want,

there usually isn’t any need to change it. Once again, conventions are used

to eliminate the need for unnecessary configuration.

So far, we’ve been doing all our work in the development database. Now that

we’re running tests, though, Rails needs to use a test database. If you look

in the database.yml file in the config directory, you’ll notice Rails actually created

a configuration for three separate databases.

• db/development.sqlite3 will be our development database. All of our program-

ming work will be done here.

• db/test.sqlite3 is a test database.

• db/production.sqlite3 is the production database. Our application will use this

when we put it online.

Each test method gets a freshly initialized table in the test database, loaded

from the fixtures we provide. This is automatically done by the bin/rails test
command but can be done separately via bin/rails db:test:prepare.

Using Fixture Data

Now that you know how to get fixture data into the database, we need to find

ways of using it in our tests.

Clearly, one way would be to use the finder methods in the model to read the

data. However, Rails makes it easier than that. For each fixture it loads into

a test, Rails defines a method with the same name as the fixture. You can

report erratum • discuss

Iteration B2: Unit Testing of Models • 97

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

use this method to access preloaded model objects containing the fixture

data: simply pass it the name of the row as defined in the YAML fixture file,

and it’ll return a model object containing that row’s data.

In the case of our product data, calling products(:ruby) returns a Product model

containing the data we defined in the fixture. Let’s use that to test the valida-

tion of unique product titles:

rails51/depot_c/test/models/product_test.rb

test "product is not valid without a unique title" do
product = Product.new(title: products(:ruby).title,

description: "yyy",
price: 1,
image_url: "fred.gif")

assert product.invalid?
assert_equal ["has already been taken"], product.errors[:title]

end

The test assumes that the database already includes a row for the Ruby book.

It gets the title of that existing row using this:

products(:ruby).title

It then creates a new Product model, setting its title to that existing title. It

asserts that attempting to save this model fails and that the title attribute has

the correct error associated with it.

If you want to avoid using a hardcoded string for the Active Record error, you

can compare the response against its built-in error message table:

rails51/depot_c/test/models/product_test.rb

test "product is not valid without a unique title - i18n" do
product = Product.new(title: products(:ruby).title,

description: "yyy",
price: 1,
image_url: "fred.gif")

assert product.invalid?
assert_equal [I18n.translate('errors.messages.taken')],

product.errors[:title]
end

We’ll cover the I18n functions in Chapter 16, Task K: Internationalization, on

page 253.

Before we move on, we once again try our tests:

$ bin/rails test

Chapter 7. Task B: Validation and Unit Testing • 98

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_c/test/models/product_test.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_c/test/models/product_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

This time we see two remaining failures, both in test/controllers/products_con-
trollertest.rb: one in should create product and the other in should update product.
Clearly, something we did caused something to do with the creation and

update of products to fail. Since we just added validations on how products

are created or updated, it’s likely this is the source of the problem, and our

test is out-of-date.

The specifics of the problem might not be obvious from the test failure mes-

sage, but the failure for “should create product” gives us a clue: “Product.count

didn’t change by 1.” Since we just added validations, it seems likely that our

attempts to create a product in the test are creating an invalid product, which

we can’t save to the database.

Let’s verify this assumption by adding a call to puts() in the controller’s create()
method:

def create
@product = Product.new(product_params)

respond_to do |format|
if @product.save

format.html { redirect_to @product,
notice: 'Product was successfully created.' }

format.json { render :show, status: :created,
location: @product }

else
puts @product.errors.full_messages➤

format.html { render :new }
format.json { render json: @product.errors,

status: :unprocessable_entity }
end

end
end

If we rerun just the test for creating a new product, we will see the problem:

> bin/rails test test/controllers/products_controller_test.rb:19
Running:

Title has already been taken
F

Failure:
ProductsControllerTest#test_should_create_product [«path to test»]
"Product.count" didn't change by 1.
Expected: 3

Actual: 2

bin/rails test test/controllers/products_controller_test.rb:18

Finished in 0.427810s, 2.3375 runs/s, 2.3375 assertions/s.
1 runs, 1 assertions, 1 failures, 0 errors, 0 skips

report erratum • discuss

Iteration B2: Unit Testing of Models • 99

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Our puts() is printing the validation error, which in this case is “Title has

already been taken.” In other words, we’re trying to create a product whose

title already exists. Instead, let’s create a random book title and use that

instead of the value coming out of the test fixture. First, we’ll create a random

title in the setup() block:

rails51/depot_b/test/controllers/products_controller_test.rb

require 'test_helper'

class ProductsControllerTest < ActionDispatch::IntegrationTest
setup do

@product = products(:one)
@title = "The Great Book #{rand(1000)}"➤

end

Next, we’ll use that instead of the default @product.title that the Rails generator

put into the test. The actual change is highlighted (the use of @title), but the

code had to be reformatted to fit the space, so this will look a bit different

for you:

rails51/depot_b/test/controllers/products_controller_test.rb

test "should create product" do
assert_difference('Product.count') do

post products_url, params: {
product: {

description: @product.description,
image_url: @product.image_url,
price: @product.price,
title: @title,➤

}
}

end

assert_redirected_to product_url(Product.last)
end

rails51/depot_b/test/controllers/products_controller_test.rb

test "should update product" do

patch product_url(@product), params: {
product: {

description: @product.description,
image_url: @product.image_url,
price: @product.price,
title: @title,➤

}
}

assert_redirected_to product_url(@product)
end

Chapter 7. Task B: Validation and Unit Testing • 100

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_b/test/controllers/products_controller_test.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_b/test/controllers/products_controller_test.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_b/test/controllers/products_controller_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

After making these changes, we rerun the tests, and they report that all

is well.

Now we can feel confident that our validation code not only works but will

continue to work. Our product now has a model, a set of views, a controller,

and a set of unit tests. It’ll serve as a good foundation on which to build the

rest of the application.

What We Just Did

In about a dozen lines of code, we augmented the generated code with validation:

• We ensured that required fields are present.

• We ensured that price fields are numeric and at least one cent.

• We ensured that titles are unique.

• We ensured that images match a given format.

• We updated the unit tests that Rails provided, both to conform to the con-

straints we’ve imposed on the model and to verify the new code we added.

We show this to our customer, and although she agrees that this is something

an administrator could use, she says that it certainly isn’t anything that she

would feel comfortable turning loose on her customers. Clearly, in the next

iteration we’re going to have to focus a bit on the user interface.

Playtime

Here’s some stuff to try on your own:

• If you’re using Git, now is a good time to commit your work. You can first

see which files we changed by using the git status command:

depot> git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: app/models/product.rb
modified: test/fixtures/products.yml
modified: test/controllers/products_controller_test.rb
modified: test/models/product_test.rb
no changes added to commit (use "git add" and/or "git commit -a")

Since we modified only some existing files and didn’t add any new ones,

you can combine the git add and git commit commands and simply issue a

single git commit command with the -a option:

depot> git commit -a -m 'Validation!'

report erratum • discuss

Iteration B2: Unit Testing of Models • 101

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

With this done, you can play with abandon, secure in the knowledge that

you can return to this state at any time by using a single git checkout .
command.

• The :length validation option checks the length of a model attribute. Add

validation to the Product model to check that the title is at least ten characters.

• Change the error message associated with one of your validations.

Chapter 7. Task B: Validation and Unit Testing • 102

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 8

In this chapter, you'll see:

• Writing our own views

• Using layouts to decorate pages

• Integrating CSS

• Using helpers

• Writing functional tests

Task C: Catalog Display

All in all, it’s been a successful set of iterations. We gathered the initial

requirements from our customer, documented a basic flow, worked out a first

pass at the data we’ll need, and put together the management page for the

Depot application’s products. It hasn’t even taken many lines of code. We

even have a small but growing test suite.

Thus emboldened, it’s on to our next task. We chatted about priorities with

our customer, and she said she’d like to start seeing what the application

looks like from the buyer’s point of view. Our next task is to create a catalog

display.

This also makes a lot of sense from our point of view. Once we have the

products safely tucked into the database, it should be fairly straightforward

to display them. It also gives us a basis from which to develop the shopping

cart portion of the code later.

We should also be able to draw on the work we just did in the product man-

agement task. The catalog display is really just a glorified product listing.

Finally, we’ll also need to complement our unit tests for the model with some

functional tests for the controller.

Iteration C1: Creating the Catalog Listing

We’ve already created the products controller, used by the seller to administer

the Depot application. Now it’s time to create a second controller, one that

interacts with the paying customers. Let’s call it Store:

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

depot> bin/rails generate controller Store index
create app/controllers/store_controller.rb
route get 'store/index'

invoke erb
create app/views/store
create app/views/store/index.html.erb
invoke test_unit
create test/controllers/store_controller_test.rb
invoke helper
create app/helpers/store_helper.rb
invoke test_unit
invoke assets
invoke coffee
create app/assets/javascripts/store.coffee
invoke scss
create app/assets/stylesheets/store.scss

As in the previous chapter, where we used the generate utility to create a con-

troller and associated scaffolding to administer the products, here we’ve asked

it to create a controller (the StoreController class in the store_controller.rb file) con-

taining a single action method, index().

While everything is already set up for this action to be accessed via http://local-
host:3000/store/index (feel free to try it!), we can do better. Let’s simplify things and

make this the root URL for the website. We do this by editing config/routes.rb:

rails51/depot_d/config/routes.rb

Rails.application.routes.draw do
root 'store#index', as: 'store_index'➤

resources :products
For details on the DSL available within this file, see
http://guides.rubyonrails.org/routing.html

end

We’ve replaced the get 'store/index' line with a call to define a root path, and in

the process we added an as: 'store_index' option. The latter tells Rails to create

store_index_path and store_index_url accessor methods, enabling existing code—

and tests!—to continue to work correctly. Let’s try it. Point a browser at

http://localhost:3000/, and up pops our web page. See the following screenshot.

Store#index

Find	me	in	app/views/store/index.html.erb

Chapter 8. Task C: Catalog Display • 104

report erratum • discuss

http://localhost:3000/store/index
http://localhost:3000/store/index
http://media.pragprog.com/titles/rails51/code/rails51/depot_d/config/routes.rb
http://localhost:3000/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

It might not make us rich, but at least we know everything is wired together

correctly. It even tells us where to find the template file that draws this page.

Let’s start by displaying a list of all the products in our database. We know

that eventually we’ll have to be more sophisticated, breaking them into cate-

gories, but this’ll get us going.

We need to get the list of products out of the database and make it available

to the code in the view that’ll display the table. This means we have to change

the index() method in store_controller.rb. We want to program at a decent level of

abstraction, so let’s assume we can ask the model for a list of the products:

rails51/depot_d/app/controllers/store_controller.rb

class StoreController < ApplicationController
def index
@products = Product.order(:title)➤

end
end

We asked our customer if she had a preference regarding the order things should

be listed in, and we jointly decided to see what happens if we display the products

in alphabetical order. We do this by adding an order(:title) call to the Product model.

Now we need to write our view template. To do this, edit the index.html.erb file
in app/views/store. (Remember that the path name to the view is built from the

name of the controller [store] and the name of the action [index]. The .html.erb
part signifies an ERB template that produces an HTML result.)

rails51/depot_d/app/views/store/index.html.erb

<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h1>Your Pragmatic Catalog</h1>

<ul class="catalog">
<% @products.each do |product| %>

<%= image_tag(product.image_url) %>
<h2><%= product.title %></h2>
<p>
<%= sanitize(product.description) %>

</p>
<div class="price">

<%= product.price %>
</div>

<% end %>

report erratum • discuss

Iteration C1: Creating the Catalog Listing • 105

http://media.pragprog.com/titles/rails51/code/rails51/depot_d/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_d/app/views/store/index.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Note the use of the sanitize() method for the description. This allows us to safely1

add HTML stylings to make the descriptions more interesting for our customers.

We also used the image_tag() helper method. This generates an HTML
tag using its argument as the image source.

Next we add a stylesheet, making use of the fact that in Iteration A2 on page

82 we set things up so that pages created by the StoreController will define an

HTML class by the name of store:

rails51/depot_d/app/assets/stylesheets/store.scss

// Place all the styles related to the Store controller here.
// They will automatically be included in application.css.
// You can use Sass (SCSS) here: http://sass-lang.com/

.store {
max-width: 80em;
ul.catalog {
border-top: solid 0.250em;
list-style: none;
padding: 0;
margin: 0;
li {

padding: 1em;
margin: 0;
border-bottom: solid thin #ddd;

// This makes sure our has enough height
// to hold the entire image, since it's floated
&::after {

clear: both;
content: " ";
display: block;

}
img {
float: left;
padding: 1em;
margin-right: 1em;
margin-bottom: 1em;
box-shadow: 0.176em 0.176em 0.354em 0px rgba(0,0,0,0.75);

}
.price {

font-size: 1.414em;
}

}
}

}

1. http://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

Chapter 8. Task C: Catalog Display • 106

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_d/app/assets/stylesheets/store.scss
http://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

A page refresh brings up the display shown in the following screenshot. It’s

still pretty basic, and it seems to be missing something. The customer happens

to be walking by as we ponder this, and she points out that she’d also like to

see a decent-looking banner and sidebar on public-facing pages.

At this point in the real world, we’d probably want to call in the design folks.

But, Pragmatic Web Designer is off getting inspiration on a beach somewhere

and won’t be back until later in the year, so let’s put a placeholder in for now.

It’s time for another iteration.

Iteration C2: Adding a Page Layout

The pages in a typical website often share a similar layout; the designer will

have created a standard template that’s used when content is placed. Our

job is to modify this page to add decoration to each of the store pages.

So far, we’ve made only minimal changes to application.html.erb—namely, to add

a class attribute in Iteration A2 on page 82. As this file is the layout used for

all views for all controllers that don’t otherwise provide a layout, we can

change the look and feel of the entire site by editing one file. This makes us

feel better about putting a placeholder page layout in for now; we can update

it when the designer eventually returns from the islands.

report erratum • discuss

Iteration C2: Adding a Page Layout • 107

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Let’s update this file to define a banner and a sidebar:

rails51/depot_e/app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>

<head>
<title>Pragprog Books Online Store</title>➤

<%= csrf_meta_tags %>

<%= stylesheet_link_tag 'application', media: 'all',
'data-turbolinks-track': 'reload' %>

<%= javascript_include_tag 'application',
'data-turbolinks-track': 'reload' %>

</head>

<body>
<header class="main">➤

<%= image_tag 'logo.svg', alt: 'The Pragmatic Bookshelf' %>➤

<h1><%= @page_title %></h1>➤

</header>➤

<section class="content">➤

<nav class="side_nav">➤

➤

Home➤

Questions➤

News➤

Contact➤

➤

</nav>➤

<main class='<%= controller.controller_name %>'>
<%= yield %>

</main>
</section>➤

</body>
</html>

Apart from the usual HTML gubbins, this layout has three Rails-specific items.

The Rails stylesheet_link_tag() helper method generates a <link> tag to our appli-

cation’s stylesheet and specifies an option to enable Turbolinks,2 which

transparently works behind the scenes to speed up page changes within an

application. Similarly, the javascript_include_tag() method generates a <script> to

load our application’s scripts.

Finally, the csrf_meta_tags() method sets up all the behind-the-scenes data

needed to prevent cross-site request forgery attacks, which will be important

once we add forms in Chapter 12, Task G: Check Out!, on page 175.

2. https://github.com/rails/turbolinks

Chapter 8. Task C: Catalog Display • 108

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_e/app/views/layouts/application.html.erb
https://github.com/rails/turbolinks
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Inside the body, we set the page heading to the value in the @page_title instance

variable. By default, this is blank, meaning there won’t be an H1 rendered,

but any controller that sets the variable @page_title can override this. The real

magic, however, takes place when we invoke yield. This causes Rails to substi-

tute in the page-specific content—the stuff generated by the view invoked by

this request. Here, this’ll be the catalog page generated by index.html.erb.

To make this all work, first rename the application.css file to application.scss. If you

didn’t opt to try Git as was suggested in Playtime, on page 85, now is a good

time to do so. The command to rename a file using Git is git mv. Once you’ve

renamed this file, either through Git or by using the underlying operating

system commands, add the following lines:

rails51/depot_e/app/assets/stylesheets/application.scss

/*
* This is a manifest file that'll be compiled into application.css, which will
* include all the files listed below.
*
* Any CSS and SCSS file within this directory, lib/assets/stylesheets, or any
* plugin's vendor/assets/stylesheets directory can be referenced here using a
* relative path.
*
* You're free to add application-wide styles to this file and they'll appear
* at the bottom of the compiled file so the styles you add here take
* precedence over styles defined in any other CSS/SCSS files in this
* directory. Styles in this file should be added after the last require_*
* statement. It is generally better to create a new file per style scope.
*
*= require_tree .
*= require_self
*/

body {
margin: 0;
padding: 0;

}
header.main {
text-align: center; // center on mobile
@media (min-width: 30em) {

text-align: left; // left align on desktop
}
background: #282;
margin: 0;
h1 {

display: none;
}

}

report erratum • discuss

Iteration C2: Adding a Page Layout • 109

http://media.pragprog.com/titles/rails51/code/rails51/depot_e/app/assets/stylesheets/application.scss
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

.content {
margin: 0;
padding: 0;

display: flex;
display: -webkit-flex;
flex-direction: column; // mobile is horizontally laid out
-webkit-box-orient: vertical;
-webkit-box-direction: normal;

@media (min-width: 30em) {
flex-direction: row; // desktop is vertically laid out
-webkit-box-orient: horizontal;

}

nav {
padding-bottom: 1em;
background: #141;
text-align: center; // mobile has centered nav
@media (min-width: 30em) {

text-align: left; // desktop nav is left-aligned
padding: 1em; // and needs more padding

}
ul {

list-style: none;
margin: 0;
padding: 0;
@media (min-width: 30em) {

padding-right: 1em; // give desktop some extra space
}
li {

margin: 0;
padding: 0.5em;
text-transform: uppercase;
letter-spacing: 0.354em;
a {

color: #bfb;
text-decoration: none;

}
a:hover {

background: none;
color: white;

}
}

}
}
main {

padding: 0.5em;
}

}

Chapter 8. Task C: Catalog Display • 110

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

As is explained in the comments, this manifest file will automatically include

all stylesheets available in this directory and in any subdirectory. This is

accomplished via the require_tree directive.

We could instead list the names of individual stylesheets that we want to be

linked in the stylesheet_link_tag(), but because we’re in the layout for the entire

application and because this layout is already set up to load all stylesheets,

let’s leave it alone for now.

The page design is fairly minimal, though we’ve added a lot of padding, mar-

gins, and other specing directives to ensure a decent layout for the side nav

and main content. Some of the sizes we’ve used might seem strange (e.g.,

0.354em), but everything should work out. Anytime we need padding, margin,

or any other size, we’ll use one of a few hand-picked sizes that ensure our

layout is always decent.

We’re also making heavy use of Sass, which is what the file rename enabled

us to do. Sass allows us to nest CSS rules, to constrain where they apply.

For example, we’ve specified that the ul inside a nav that’s inside content with

the CSS class content has list-style of none. Without Sass, we’d have to write this:

.content nav ul {
list-style: none;

}

For any reasonable amount of CSS, this can become hard to maintain and

understand. Sass allows nesting like so:

.content {
nav {

ul {
list-style: none;

}
}

}

Sass also allows media queries,3 which we’re using to account for differences

we’d like to see between mobile devices and desktop computers.

Refresh the page, and the browser window looks something like the screenshot

on page 112. It won’t win any design awards, but it’ll show our customer

roughly what the final page will look like.

3. https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries

report erratum • discuss

Iteration C2: Adding a Page Layout • 111

https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The stylesheet is designed using a mobile-first method, where the default

styles are designed to look great on a mobile device. Try shrinking your

browser window’s width (or enter its responsive design mode) to see the mobile

design. We’ve used media queries to tweak the layout for larger-than-mobile

devices.4 This might feel backward, but it’s likely more and more people will

use our site from a mobile device than from a desktop computer. And, most

mobile designs work great on desktops, too!

Looking at this page, we spot a minor problem with how prices are displayed.

The database stores the price as a number, but we’d like to show it as dollars

and cents. A price of 12.34 should be shown as $12.34, and 13 should display

as $13.00. We’ll tackle that next.

Iteration C3: Using a Helper to Format the Price

Ruby provides a sprintf() function that can be used to format prices. We could

place logic that makes use of this function directly in the view. For example,

we could say this:

<%= sprintf("$%0.02f", product.price) %>

4. https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries

Chapter 8. Task C: Catalog Display • 112

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

This would work, but it embeds knowledge of currency formatting into the

view. If we display prices of products in several places and want to interna-

tionalize the application later, this would be a maintenance problem.

Instead, let’s use a helper method to format the price as a currency. Rails

has an appropriate one built in, called number_to_currency().

Using our helper in the view is just a matter of invoking them as regular

methods; in the index template, we change this:

<%= product.price %>

to the following:

rails51/depot_e/app/views/store/index.html.erb

<div class="price">
<%= number_to_currency(product.price) %>

</div>

When we refresh, we see a nicely formatted price, as in the following screenshot.

Although it looks nice enough, we’re starting to get a nagging feeling that we

really should be running and writing tests for all this new functionality, par-

ticularly after our experience of adding logic to our model.

report erratum • discuss

Iteration C3: Using a Helper to Format the Price • 113

http://media.pragprog.com/titles/rails51/code/rails51/depot_e/app/views/store/index.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Iteration C4: Functional Testing of Controllers

Now for the moment of truth. Before we focus on writing new tests, we need to

determine if we’ve broken anything. Remembering our experience after we added

validation logic to our model, with some trepidation we run our tests again:

depot> bin/rails test

This time, all is well. We added a lot, but we didn’t break anything. That’s a

relief, but our work isn’t done yet; we still need tests for what we just added.

The unit testing of models that we did previously seemed straightforward

enough. We called a method and compared what it returned against what we

expected it to return. But now we’re dealing with a server that processes

requests and a user viewing responses in a browser. What we need is func-

tional tests that verify that the model, view, and controller work well together.

Never fear: Rails has you covered.

First, let’s take a look at what Rails generated for us:

rails51/depot_d/test/controllers/store_controller_test.rb

require 'test_helper'

class StoreControllerTest < ActionDispatch::IntegrationTest
test "should get index" do

get store_index_url
assert_response :success

end

end

The should get index test gets the index and asserts that a successful response

is expected. That certainly seems straightforward enough. That’s a reasonable

beginning, but we also want to verify that the response contains our layout,

our product information, and our number formatting. Let’s see what that

looks like in code:

rails51/depot_e/test/controllers/store_controller_test.rb

require 'test_helper'

class StoreControllerTest < ActionDispatch::IntegrationTest
test "should get index" do

get store_index_url
assert_response :success
assert_select 'nav.side_nav a', minimum: 4➤

assert_select 'main ul.catalog li', 3➤

assert_select 'h2', 'Programming Ruby 1.9'➤

assert_select '.price', /\$[,\d]+\.\d\d/➤

end

end

Chapter 8. Task C: Catalog Display • 114

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_d/test/controllers/store_controller_test.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_e/test/controllers/store_controller_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The four lines we added take a look into the HTML that’s returned, using CSS

selector notation. As a refresher, selectors that start with a number sign (#)

match on id attributes; selectors that start with a dot (.) match on class

attributes; and selectors that contain no prefix match on element names.

So the first select test looks for an element named a that’s contained in a nav
element that has the class side_nav. This test verifies that a minimum of four

such elements are present. Pretty powerful stuff, assert_select(), eh?

The next three lines verify that all of our products are displayed. The first

verifies that there are three li elements inside a ul with the class catalog, which

is itself inside the main element. The next line verifies that there’s an h2 element

with the title of the Ruby book that we’d entered previously. The fourth line

verifies that the price is formatted correctly. These assertions are based on

the test data that we put inside our fixtures:

rails51/depot_e/test/fixtures/products.yml

Read about fixtures at
http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
title: MyString
description: MyText
image_url: lorem.jpg
price: 9.99

two:
title: MyString
description: MyText
image_url: lorem.jpg
price: 9.99

ruby:
title: Programming Ruby 1.9
description:
Ruby is the fastest growing and most exciting dynamic
language out there. If you need to get working programs
delivered fast, you should add Ruby to your toolbox.

price: 49.50
image_url: ruby.jpg

Maybe you noticed that the type of test that assert_select() performs varies based

on the type of the second parameter. If it’s a number, it’s treated as a quantity.

If it’s a string, it’s treated as an expected result. Another useful type of test

is a regular expression, which is what we use in our final assertion. We verify

that there’s a price that has a value that contains a dollar sign followed by

any number (but at least one), commas, or digits; followed by a decimal point;

followed by two digits.

report erratum • discuss

Iteration C4: Functional Testing of Controllers • 115

http://media.pragprog.com/titles/rails51/code/rails51/depot_e/test/fixtures/products.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

One final point before we move on: both validation and functional tests will

test the behavior of controllers only; they won’t retroactively affect any objects

that already exist in the database or in fixtures. In the previous example, two

products contain the same title. Such data will cause no problems and will

go undetected up to the point when such records are modified and saved.

We’ve touched on only a few things that assert_select() can do. More information

can be found in the online documentation.5

That’s a lot of verification in a few lines of code. We can see that it works by

rerunning just the functional tests (after all, that’s all we changed):

depot> bin/rails test:controllers

Now not only do we have something recognizable as a storefront, but we also

have tests that ensure that all of the pieces—the model, view, and controller

—are all working together to produce the desired result. Although this sounds

like a lot, with Rails it wasn’t much at all. In fact, it was mostly HTML and

CSS and not much in the way of code or tests. Before moving on, let’s make

sure that it’ll stand up to the onslaught of customers we’re expecting.

Iteration C5: Caching of Partial Results

If everything goes as planned, this page will definitely be a high-traffic area

for the site. To respond to requests for this page, we’d need to fetch every

product from the database and render each one. We can do better than that.

After all, the catalog doesn’t change that often, so there’s no need to start

from scratch on each request.

So we can see what we’re doing, we’re first going to modify the configuration

for the development environment to turn on caching. To make this easy, Rails

provides a handy command to toggle caching on and off in the development

environment:

depot> bin/rails dev:cache

Note that this command will cause your server to automatically restart.

Next we need to plan our attack. Thinking about it, we only need to rerender

things if a product changed, and even then we need to render only the products

that actually changed. So we need to make two small changes to our template.

5. https://github.com/rails/rails-dom-testing

Chapter 8. Task C: Catalog Display • 116

report erratum • discuss

https://github.com/rails/rails-dom-testing
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

First, we mark the sections of our template that we need to update if any

product changes, and then inside that section we mark the subsection that

we need in order to update any specific product that changed:

rails51/depot_e/app/views/store/index.html.erb

<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h1>Your Pragmatic Catalog</h1>

<ul class="catalog">
<% cache @products do %>➤

<% @products.each do |product| %>
<% cache product do %>➤

<%= image_tag(product.image_url) %>
<h2><%= product.title %></h2>
<p>
<%= sanitize(product.description) %>

</p>
<div class="price">

<%= number_to_currency(product.price) %>
</div>

<% end %>➤

<% end %>
<% end %>➤

In addition to bracketing the sections, we identify the data to associate with

each: the complete set of products for the overall store and the individual

product we’re rendering with the entry. Whenever the specified data changes,

the section will be rerendered.

Bracketed sections can be nested to arbitrary depth, which is why those in

the Rails community have come to refer to this as “Russian doll” caching.6

With this, we’re done! Rails takes care of all of the rest, including managing

the storage and deciding when to invalidate old entries. If you’re interested,

you can turn all sorts of knobs and make choices as to which backing store

to use for the cache. It’s nothing you need to worry about now, but it might

be worth bookmarking the overview page of Caching with Rails in the Ruby

on Rails Guides.7

6. http://37signals.com/svn/posts/3113-how-key-based-cache-expiration-works
7. http://guides.rubyonrails.org/caching_with_rails.html

report erratum • discuss

Iteration C5: Caching of Partial Results • 117

http://media.pragprog.com/titles/rails51/code/rails51/depot_e/app/views/store/index.html.erb
http://37signals.com/svn/posts/3113-how-key-based-cache-expiration-works
http://guides.rubyonrails.org/caching_with_rails.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

As far as verifying that this works is concerned, you’re going to get some

insight into the work the server is doing behind the scenes. Go back to your

server window and watch what happens when you refresh the page. The first

time you load the page, you should see some SQL that is loading the products

like Product Load (0.2ms) SELECT "products".* FROM "products" ORDER BY "products"."title" ASC.
When you refresh the page again, it will still work, but you won’t see that

SQL run. You should see some SQL that Rails runs to check if its cache is

outdated, like so: SELECT COUNT(*) AS "size", MAX("products"."updated_at") AS timestamp
FROM "products".

If you still aren’t convinced, you can add a configuration option to config/envi-
ronments/development.rb called enable_fragment_cache_logging, like so:

Enable/disable caching. By default caching is disabled.
if Rails.root.join('tmp/caching-dev.txt').exist?

config.action_controller.enable_fragment_cache_logging = true➤

config.action_controller.perform_caching = true

config.cache_store = :memory_store

You’ll need to restart your server for this to take effect, but after doing that,

you should see log messages that look like this:

Read fragment views/products/1-20170611205537670088/cb43383298…
Write fragment views/products/1-20170611205537670088/cb4338329…
Read fragment views/products/3-20170611204944061952/cb43383298…
Write fragment views/products/3-20170611204944061952/cb4338329…
Read fragment views/products/2-20170611204944059695/cb43383298…

Once you’re satisfied that caching is working, turn caching off in development

so that further changes to the template will always be visible immediately:

depot> bin/rails dev:cache

Once again, wait for the server to restart, and verify that changes to the

template show up as quickly as you save them.

What We Just Did

We’ve put together the basis of the store’s catalog display. The steps were as

follows:

1. Create a new controller to handle customer-centric interactions.

2. Implement the default index() action.

3. Add a call to the order() method within the Store controller to control the

order in which the items on the website are listed.

Chapter 8. Task C: Catalog Display • 118

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

4. Implement a view (a .html.erb file) and a layout to contain it

(another .html.erb file).

5. Use a helper to format prices the way we want.

6. Make use of a CSS stylesheet.

7. Write functional tests for our controller.

8. Implement fragment caching for portions of the page.

It’s time to check it all in and move on to the next task—namely, making a

shopping cart!

Playtime

Here’s some stuff to try on your own:

• Add a date and time to the sidebar. It doesn’t have to update; just show

the value at the time the page was displayed.

• Experiment with setting various number_to_currency helper method options,

and see the effect on your catalog listing.

• Write some functional tests for the product management application using

assert_select. The tests will need to be placed into the test/controllers/products_con-
troller_test.rb file.

• A reminder: the end of an iteration is a good time to save your work using

Git. If you’ve been following along, you have the basics you need at this

point. You’ll explore more Git functionality in Prepping Your Deployment

Server, on page 288.

report erratum • discuss

What We Just Did • 119

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 9

In this chapter, you'll see:

• Sessions and session management

• Adding relationships among models

• Adding a button to add a product to a cart

Task D: Cart Creation

Now that we have the ability to display a catalog containing all our wonderful

products, it would be nice to be able to sell them. Our customer agrees, so

we’ve jointly decided to implement the shopping cart functionality next. This

is going to involve a number of new concepts, including sessions, relationships

among models, and adding a button to the view—so let’s get started.

Iteration D1: Finding a Cart

As users browse our online catalog, they will (we hope) select products to buy.

The convention is that each item selected will be added to a virtual shopping

cart, held in our store. At some point, our buyers will have everything they

need and will proceed to our site’s checkout, where they’ll pay for the stuff

in their carts.

This means that our application will need to keep track of all the items added

to the cart by the buyer. To do that, we’ll keep a cart in the database and

store its unique identifier, cart.id, in the session. Every time a request comes

in, we can recover that identifier from the session and use it to find the cart

in the database.

Let’s go ahead and create a cart:

depot> bin/rails generate scaffold Cart
...
depot> bin/rails db:migrate
== CreateCarts: migrating ==
-- create_table(:carts)

-> 0.0012s
== CreateCarts: migrated (0.0014s) ===

Rails makes the current session look like a hash to the controller, so we’ll

store the ID of the cart in the session by indexing it with the :cart_id symbol:

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_f/app/controllers/concerns/current_cart.rb

module CurrentCart

private

def set_cart
@cart = Cart.find(session[:cart_id])

rescue ActiveRecord::RecordNotFound
@cart = Cart.create
session[:cart_id] = @cart.id

end
end

The set_cart() method starts by getting the :cart_id from the session object and

then attempts to find a cart corresponding to this ID. If such a cart record

isn’t found (which will happen if the ID is nil or invalid for any reason), this

method will proceed to create a new Cart and then store the ID of the created

cart into the session.

Note that we place the set_cart() method in a CurrentCart module and place that

module in a new file in the app/controllers/concerns directory.1 This treatment

allows us to share common code (even as little as a single method!) among

controllers.

Additionally, we mark the method as private, which prevents Rails from ever

making it available as an action on the controller.

Iteration D2: Connecting Products to Carts

We’re looking at sessions because we need somewhere to keep our shopping

cart. We’ll cover sessions in more depth in Rails Sessions, on page 375, but

for now let’s move on to implement the cart.

Let’s keep things simple. A cart contains a set of products. Based on the Initial

guess at application data diagram on page 69, combined with a brief chat

with our customer, we can now generate the Rails models and populate the

migrations to create the corresponding tables:

depot> bin/rails generate scaffold LineItem product:references cart:belongs_to
...
depot> bin/rails db:migrate
== CreateLineItems: migrating ==
-- create_table(:line_items)

-> 0.0013s
== CreateLineItems: migrated (0.0014s) =======================================

1. https://signalvnoise.com/posts/3372-put-chubby-models-on-a-diet-with-concerns

Chapter 9. Task D: Cart Creation • 122

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_f/app/controllers/concerns/current_cart.rb
https://signalvnoise.com/posts/3372-put-chubby-models-on-a-diet-with-concerns
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The database now has a place to store the references among line items, carts,

and products. If you look at the generated definition of the LineItem class, you

can see the definitions of these relationships:

rails51/depot_f/app/models/line_item.rb

class LineItem < ApplicationRecord
belongs_to :product
belongs_to :cart

end

The belongs_to() method defines an accessor method—in this case, carts() and

products()—but more importantly it tells Rails that rows in line_items are the

children of rows in carts and products. No line item can exist unless the corre-

sponding cart and product rows exist. A great rule of thumb for where to put

belongs_to declarations is this: if a table has any columns whose values consist

of ID values for another table (this concept is known by database designers

as foreign keys), the corresponding model should have a belongs_to for each.

What do these various declarations do? Basically, they add navigation capa-

bilities to the model objects. Because Rails added the belongs_to declaration to

LineItem, we can now retrieve its Product and display the book’s title:

li = LineItem.find(...)
puts "This line item is for #{li.product.title}"

To be able to traverse these relationships in both directions, we need to add

some declarations to our model files that specify their inverse relations.

Open the cart.rb file in app/models, and add a call to has_many():

rails51/depot_f/app/models/cart.rb

class Cart < ApplicationRecord
has_many :line_items, dependent: :destroy➤

end

That has_many :line_items part of the directive is fairly self-explanatory: a cart

(potentially) has many associated line items. These are linked to the cart because

each line item contains a reference to its cart’s ID. The dependent: :destroy part

indicates that the existence of line items is dependent on the existence of the

cart. If we destroy a cart, deleting it from the database, we want Rails also to

destroy any line items that are associated with that cart.

Now that the Cart is declared to have many line items, we can reference them

(as a collection) from a cart object:

cart = Cart.find(...)
puts "This cart has #{cart.line_items.count} line items"

report erratum • discuss

Iteration D2: Connecting Products to Carts • 123

http://media.pragprog.com/titles/rails51/code/rails51/depot_f/app/models/line_item.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_f/app/models/cart.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Now, for completeness, we should add a has_many directive to our Product model.

After all, if we have lots of carts, each product might have many line items

referencing it. This time, we make use of validation code to prevent the removal

of products that are referenced by line items:

rails51/depot_f/app/models/product.rb

class Product < ApplicationRecord
has_many :line_items➤

before_destroy :ensure_not_referenced_by_any_line_item➤

#...

private➤

ensure that there are no line items referencing this product➤

def ensure_not_referenced_by_any_line_item➤

unless line_items.empty?➤

errors.add(:base, 'Line Items present')➤

throw :abort➤

end➤

end➤

end

Here we declare that a product has many line items and define a hook method

named ensure_not_referenced_by_any_line_item(). A hook method is a method that

Rails calls automatically at a given point in an object’s life. In this case, the

method will be called before Rails attempts to destroy a row in the database.

If the hook method throws :abort, the row isn’t destroyed.

Note that we have direct access to the errors object. This is the same place that

the validates() method stores error messages. Errors can be associated with indi-

vidual attributes, but in this case we associate the error with the base object.

Before moving on, add a test to ensure that a product in a cart can’t be deleted:

rails51/depot_f/test/controllers/products_controller_test.rb

test "can't delete product in cart" do➤

assert_difference('Product.count', 0) do➤

delete product_url(products(:two))➤

end➤

➤

assert_redirected_to products_url➤

end➤

test "should destroy product" do
assert_difference('Product.count', -1) do
delete product_url(@product)

end

assert_redirected_to products_url
end

Chapter 9. Task D: Cart Creation • 124

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_f/app/models/product.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_f/test/controllers/products_controller_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

And change the fixture to make sure that product two is in both carts:

rails51/depot_f/test/fixtures/line_items.yml

Read about fixtures at
http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
product: two➤

cart: one

two:
product: two
cart: two

We’ll have more to say about intermodel relationships starting in Specifying

Relationships in Models, on page 326.

Iteration D3: Adding a Button

Now that that’s done, it’s time to add an Add to Cart button for each product.

We don’t need to create a new controller or even a new action. Taking a look

at the actions provided by the scaffold generator, we find index(), show(), new(),
edit(), create(), update(), and destroy(). The one that matches this operation is create().
(new() may sound similar, but its use is to get a form that’s used to solicit

input for a subsequent create() action.)

Once this decision is made, the rest follows. What are we creating? Certainly

not a Cart or even a Product. What we’re creating is a LineItem. Looking at the

comment associated with the create() method in app/controllers/line_items_controller.rb,
you see that this choice also determines the URL to use (/line_items) and the

HTTP method (POST).

This choice even suggests the proper UI control to use. When we added links

before, we used link_to(), but links default to using HTTP GET. We want to use

POST, so we’ll add a button this time; this means we’ll be using the button_to()
method.

We could connect the button to the line item by specifying the URL, but again

we can let Rails take care of this for us by simply appending _path to the con-

troller’s name. In this case, we’ll use line_items_path.

However, there’s a problem with this: how will the line_items_path method know

which product to add to our cart? We’ll need to pass it the ID of the product

corresponding to the button. All we need to do is add the :product_id option to

the line_items_path() call. We can even pass in the product instance itself—Rails

knows to extract the ID from the record in circumstances such as these.

report erratum • discuss

Iteration D3: Adding a Button • 125

http://media.pragprog.com/titles/rails51/code/rails51/depot_f/test/fixtures/line_items.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

In all, the one line that we need to add to our index.html.erb looks like this:

rails51/depot_f/app/views/store/index.html.erb

<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h1>Your Pragmatic Catalog</h1>

<ul class="catalog">
<% cache @products do %>
<% @products.each do |product| %>

<% cache product do %>

<%= image_tag(product.image_url) %>
<h2><%= product.title %></h2>
<p>
<%= sanitize(product.description) %>

</p>
<div class="price">

<%= number_to_currency(product.price) %>
<%= button_to 'Add to Cart', line_items_path(product_id: product) %>➤

</div>

<% end %>
<% end %>

<% end %>

We also need to deal with two formatting issues. button_to creates an HTML

<form>, and that form contains an HTML <div>. Both of these are normally

block elements that appear on the next line. We’d like to place them next to

the price. While we’re fixing this we’d also like the button to look a bit nicer

and bigger—there’s nothing like a big juicy button to entice users to click it!

We’ll handle both with some CSS in store.scss:

rails51/depot_f/app/assets/stylesheets/store.scss

.price {
font-size: 1.414em;

}

form, div {➤

display: inline;➤

}➤

input[type="submit"] {➤

background-color: #282;➤

border-radius: 0.354em;➤

border: solid thin #141;➤

color: white;➤

font-size: 1em;➤

padding: 0.354em 1em;➤

Chapter 9. Task D: Cart Creation • 126

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_f/app/views/store/index.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_f/app/assets/stylesheets/store.scss
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

}➤

input[type="submit"]:hover {➤

background-color: #141;➤

}➤

}

Now our index page looks like the following screenshot. But before we push

the button, we need to modify the create() method in the line items controller

to expect a product ID as a form parameter. Here’s where we start to see how

important the id field is in our models. Rails identifies model objects (and the

corresponding database rows) by their id fields. If we pass an ID to create(),
we’re uniquely identifying the product to add.

Why the create() method? The default HTTP method for a link is a GET, and for

a button is a POST. Rails uses these conventions to determine which method

to call. Refer to the comments inside the app/controllers/line_items_controller.rb file
to see other conventions. We’ll be making extensive use of these conventions

inside the Depot application.

Now let’s modify the LineItemsController to find the shopping cart for the current

session (creating one if one isn’t there already), add the selected product to

that cart, and display the cart contents.

report erratum • discuss

Iteration D3: Adding a Button • 127

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We use the CurrentCart concern we implemented in Iteration D1 on page 122 to

find (or create) a cart in the session:

rails51/depot_f/app/controllers/line_items_controller.rb

class LineItemsController < ApplicationController
include CurrentCart➤

before_action :set_cart, only: [:create]➤

before_action :set_line_item, only: [:show, :edit, :update, :destroy]

GET /line_items
#...

end

We include the CurrentCart module and declare that the set_cart() method is to be

involved before the create() action. We explore action callbacks in depth in

Callbacks, on page 381, but for now all you need to know is that Rails provides

the ability to wire together methods that are to be called before, after, or even

around controller actions.

In fact, as you can see, the generated controller already uses this facility to

set the value of the @line_item instance variable before the show(), edit(), update(),
or destroy() actions are called.

Now that we know that the value of @cart is set to the value of the current

cart, all we need to modify is a few lines of code in the create() method in

app/controllers/line_items_controller.rb. to build the line item itself:

rails51/depot_f/app/controllers/line_items_controller.rb

def create
product = Product.find(params[:product_id])➤

@line_item = @cart.line_items.build(product: product)➤

respond_to do |format|
if @line_item.save

format.html { redirect_to @line_item.cart,➤

notice: 'Line item was successfully created.' }
format.json { render :show,
status: :created, location: @line_item }

else
format.html { render :new }
format.json { render json: @line_item.errors,
status: :unprocessable_entity }

end
end

end

We use the params object to get the :product_id parameter from the request. The

params object is important inside Rails applications. It holds all of the param-

eters passed in a browser request. We store the result in a local variable

because there’s no need to make this available to the view.

Chapter 9. Task D: Cart Creation • 128

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_f/app/controllers/line_items_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_f/app/controllers/line_items_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We then pass that product we found into @cart.line_items.build. This causes a

new line item relationship to be built between the @cart object and the product.
You can build the relationship from either end, and Rails takes care of

establishing the connections on both sides.

We save the resulting line item into an instance variable named @line_item.

The remainder of this method takes care of handling errors, which we’ll cover

in more detail in Iteration E2: Handling Errors, on page 138 (as well as handling

JSON requests, which we don’t need per se, but that were added by the Rails

generator). But for now, we want to modify only one more thing: once the line

item is created, we want to redirect users to the cart instead of back to the

line item. Since the line item object knows how to find the cart object, all we

need to do is add .cart to the method call.

Confident that the code works as intended, we try the Add to Cart buttons

in our browser.

And the following screenshot shows what we see.

This is a bit underwhelming. We have scaffolding for the cart, but when we

created it we didn’t provide any attributes, so the view doesn’t have anything

to show. For now, let’s write a trivial template (we’ll make it look nicer in a

minute). Create or replace the file views/carts/show.html.erb like so:

rails51/depot_f/app/views/carts/show.html.erb

<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h2>Your Pragmatic Cart</h2>

<% @cart.line_items.each do |item| %>
<%= item.product.title %>

<% end %>

report erratum • discuss

Iteration D3: Adding a Button • 129

http://media.pragprog.com/titles/rails51/code/rails51/depot_f/app/views/carts/show.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We also need to improve the visual appeal of the notice. When a user adds

an item to their cart, the notice will say something like “Item successfully

added to cart”. Rails’ default scaffolding styles will show that text in green,

but it looks out of place. Let’s put it in a green box with a bold font. Add this

following to app/assets/application.scss:

rails51/depot_f/app/assets/stylesheets/application.scss

.notice, #notice {
background: #ffb;
border-radius: 0.5em;
border: solid 0.177em #882;
color: #882;
font-weight: bold;
margin-bottom: 1em;
padding: 1em 1.414em;
text-align: center;

}

So, with everything plumbed together, let’s go back and click the Add to Cart

button again and see our view displayed, as in the next screenshot.

Go back to http://localhost:3000/, the main catalog page, and add a different

product to the cart. You’ll see the original two entries plus our new item in

your cart. It looks like we have sessions working.

We changed the function of our controller, so we know that we need to update

the corresponding functional test.

For starters, we only need to pass a product ID on the call to post. Next, we

have to deal with the fact that we’re no longer redirecting to the line items

page. We’re instead redirecting to the cart, where the cart ID is internal state

data residing a cookie. Because this is an integration test, instead of focusing

on how the code is implemented, we should focus on what users see after

Chapter 9. Task D: Cart Creation • 130

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_f/app/assets/stylesheets/application.scss
http://localhost:3000/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

following the redirect: a page with a heading identifying that they’re looking

at a cart, with a list item corresponding to the product they added.

We do this by updating test/controllers/line_items_controller_test.rb:

rails51/depot_g/test/controllers/line_items_controller_test.rb

test "should create line_item" do
assert_difference('LineItem.count') do

post line_items_url, params: { product_id: products(:ruby).id }➤

end

follow_redirect!➤

➤

assert_select 'h2', 'Your Pragmatic Cart'➤

assert_select 'li', 'Programming Ruby 1.9'➤

end

We now rerun this set of tests:

depot> bin/rails test test/controllers/line_items_controller_test.rb

It’s time to show our customer, so we call her over and proudly display our

handsome new cart. Somewhat to our dismay, she makes that tsk-tsk sound

that customers make just before telling you that you clearly don’t get

something.

Real shopping carts, she explains, don’t show separate lines for two of the

same product. Instead, they show the product line once with a quantity of 2.

It looks like we’re lined up for our next iteration.

What We Just Did

It’s been a busy, productive day so far. We added a shopping cart to our store,

and along the way we dipped our toes into some neat Rails features:

• We created a Cart object in one request and successfully located the same

cart in subsequent requests by using a session object.

• We added a private method and placed it in a concern, making it accessible

to all of our controllers.

• We created relationships between carts and line items and relationships

between line items and products, and we were able to navigate using

these relationships.

• We added a button that causes a product to be posted to a cart, causing

a new line item to be created.

report erratum • discuss

Iteration D3: Adding a Button • 131

http://media.pragprog.com/titles/rails51/code/rails51/depot_g/test/controllers/line_items_controller_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Playtime

Here’s some stuff to try on your own:

• Add a new variable to the session to record how many times the user has

accessed the store controller’s index action. Note that the first time this

page is accessed, your count won’t be in the session. You can test for this

with code like this:

if session[:counter].nil?
...

If the session variable isn’t there, you need to initialize it. Then you’ll be

able to increment it.

• Pass this counter to your template, and display it at the top of the catalog

page. Hint: the pluralize helper (definition on page 398) might be useful for

forming the message you display.

• Reset the counter to zero whenever the user adds something to the cart.

• Change the template to display the counter only if the count is greater

than five.

Chapter 9. Task D: Cart Creation • 132

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 10

In this chapter, you'll see:

• Modifying the schema and existing data

• Error diagnosis and handling

• The flash

• Logging

Task E: A Smarter Cart

Although we have rudimentary cart functionality implemented, we have much

to do. To start with, we need to recognize when customers add multiples of

the same item to the cart. Once that’s done, we’ll also have to make sure that

the cart can handle error cases and communicate problems encountered

along the way to the customer or system administrator, as appropriate.

Iteration E1: Creating a Smarter Cart

Associating a count with each product in our cart is going to require us to

modify the line_items table. We’ve used migrations before; for example, we used

a migration in Applying the Migration, on page 74 to update the schema of

the database. While that was as part of creating the initial scaffolding for a

model, the basic approach is the same:

depot> bin/rails generate migration add_quantity_to_line_items quantity:integer

Rails can tell from the name of the migration that you’re adding columns to the

line_items table and can pick up the names and data types for each column from

the last argument. The two patterns that Rails matches on are AddXXXToTABLE
and RemoveXXXFromTABLE, where the value of XXX is ignored; what matters is the

list of column names and types that appear after the migration name.

The only thing Rails can’t tell is what a reasonable default is for this column.

In many cases, a null value would do, but let’s make it the value 1 for existing

carts by modifying the migration before we apply it:

rails51/depot_g/db/migrate/20170425000004_add_quantity_to_line_items.rb

class AddQuantityToLineItems < ActiveRecord::Migration[5.1]
def change
add_column :line_items, :quantity, :integer, default: 1➤

end
end

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_g/db/migrate/20170425000004_add_quantity_to_line_items.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Once it’s complete, we run the migration:

depot> bin/rails db:migrate

Now we need a smart add_product() method in our Cart, one that checks if our

list of items already includes the product we’re adding; if it does, it bumps

the quantity, and if it doesn’t, it builds a new LineItem:

rails51/depot_g/app/models/cart.rb

def add_product(product)
current_item = line_items.find_by(product_id: product.id)
if current_item

current_item.quantity += 1
else
current_item = line_items.build(product_id: product.id)

end
current_item

end

The find_by() method is a streamlined version of the where() method. Instead of

returning an array of results, it returns either an existing LineItem or nil.

We also need to modify the line item controller to use this method:

rails51/depot_g/app/controllers/line_items_controller.rb

def create
product = Product.find(params[:product_id])
@line_item = @cart.add_product(product)➤

respond_to do |format|
if @line_item.save

format.html { redirect_to @line_item.cart,
notice: 'Line item was successfully created.' }

format.json { render :show,
status: :created, location: @line_item }

else
format.html { render :new }
format.json { render json: @line_item.errors,
status: :unprocessable_entity }

end
end

end

We make one last quick change to the show view to use this new information:

Chapter 10. Task E: A Smarter Cart • 134

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_g/app/models/cart.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_g/app/controllers/line_items_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_g/app/views/carts/show.html.erb

<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h2>Your Pragmatic Cart</h2>

<% @cart.line_items.each do |item| %>
<%= item.quantity %> × <%= item.product.title %>➤

<% end %>

Now that all the pieces are in place, we can go back to the store page and

click the Add to Cart button for a product that’s already in the cart. What

we’re likely to see is a mixture of individual products listed separately and a

single product listed with a quantity of two. This is because we added a

quantity of one to existing columns instead of collapsing multiple rows when

possible. What we need to do next is migrate the data.

We start by creating a migration:

depot> bin/rails generate migration combine_items_in_cart

This time, Rails can’t infer what we’re trying to do, so we can’t rely on the

generated change() method. What we need to do instead is to replace this

method with separate up() and down() methods. First, here’s the up() method:

rails51/depot_g/db/migrate/20170425000005_combine_items_in_cart.rb

def up
replace multiple items for a single product in a cart with a
single item
Cart.all.each do |cart|
count the number of each product in the cart
sums = cart.line_items.group(:product_id).sum(:quantity)

sums.each do |product_id, quantity|
if quantity > 1

remove individual items
cart.line_items.where(product_id: product_id).delete_all

replace with a single item
item = cart.line_items.build(product_id: product_id)
item.quantity = quantity
item.save!

end
end

end
end

report erratum • discuss

Iteration E1: Creating a Smarter Cart • 135

http://media.pragprog.com/titles/rails51/code/rails51/depot_g/app/views/carts/show.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_g/db/migrate/20170425000005_combine_items_in_cart.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

This is easily the most extensive code you’ve seen so far. Let’s look at it in

small pieces:

• We start by iterating over each cart.

• For each cart, we get a sum of the quantity fields for each of the line items

associated with this cart, grouped by product_id. The resulting sums will

be a list of ordered pairs of product_ids and quantity.

• We iterate over these sums, extracting the product_id and quantity from each.

• In cases where the quantity is greater than one, we delete all of the

individual line items associated with this cart and this product and replace

them with a single line item with the correct quantity.

Note how easily and elegantly Rails enables you to express this algorithm.

With this code in place, we apply this migration like any other migration:

depot> bin/rails db:migrate

We can see the results by looking at the cart, shown in the following

screenshot.

Although we have reason to be pleased with ourselves, we’re not done yet.

An important principle of migrations is that each step needs to be reversible,

so we implement a down() too. This method finds line items with a quantity of

greater than one; adds new line items for this cart and product, each with a

quantity of one; and, finally, deletes the line item:

Chapter 10. Task E: A Smarter Cart • 136

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_g/db/migrate/20170425000005_combine_items_in_cart.rb

def down
split items with quantity>1 into multiple items
LineItem.where("quantity>1").each do |line_item|
add individual items
line_item.quantity.times do

LineItem.create(
cart_id: line_item.cart_id,
product_id: line_item.product_id,
quantity: 1

)
end

remove original item
line_item.destroy

end
end

Now, we can just as easily roll back our migration with a single command:

depot> bin/rails db:rollback

Rails provides a Rake task to allow you to check the status of your migrations:

depot> bin/rails db:migrate:status
database: /home/rubys/work/depot/db/development.sqlite3

Status Migration ID Migration Name
--

up 20160407000001 Create products
up 20160407000002 Create carts
up 20160407000003 Create line items
up 20160407000004 Add quantity to line items
down 20160407000005 Combine items in cart

Now, we can modify and reapply the migration or even delete it entirely. To

inspect the results of the rollback, we have to move the migration file out of

the way so Rails doesn’t think it should apply it. You can do that via mv, for

example. If you do that, the cart should look like the following screenshot:

report erratum • discuss

Iteration E1: Creating a Smarter Cart • 137

http://media.pragprog.com/titles/rails51/code/rails51/depot_g/db/migrate/20170425000005_combine_items_in_cart.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Once we move the migration file back and reapply the migration (with the

bin/rails db:migrate command), we have a cart that maintains a count for each of

the products it holds, and we have a view that displays that count.

Since we changed the output the application produces, we need to update

the tests to match. Note that what the user sees isn’t the string × but

the Unicode character ×. If you can’t find a way to enter that character using

your keyboard and operating system combination, you can use the escape

sequence \u00D71 instead (also note the use of double quotes, as this is needed

in Ruby to enter the escape sequence):

rails51/depot_h/test/controllers/line_items_controller_test.rb

test "should create line_item" do
assert_difference('LineItem.count') do

post line_items_url, params: { product_id: products(:ruby).id }
end

follow_redirect!

assert_select 'h2', 'Your Pragmatic Cart'
assert_select 'li', "1 \u00D7 Programming Ruby 1.9"➤

end

Happy that we have something presentable, we call our customer over and

show her the result of our morning’s work. She’s pleased—she can see the

site starting to come together. However, she’s also troubled, having just read

an article in the trade press on the way ecommerce sites are being attacked

and compromised daily. She read that one kind of attack involves feeding

requests with bad parameters into web applications, hoping to expose bugs

and security flaws. She noticed that the link to the cart looks like carts/nnn,
where nnn is our internal cart ID. Feeling malicious, she manually types this

request into a browser, giving it a cart ID of wibble. She’s not impressed when

our application displays the page shown in the screenshot on page 139.

This seems fairly unprofessional. So, our next iteration will be spent making

the application more resilient.

Iteration E2: Handling Errors

It’s apparent from the page shown in the screenshot on page 139 that our

application raised an exception at line 67 of the carts controller. Your line

number might be different, as we have some book-related formatting stuff in

our source files. If you go to that line, you’ll find the following code:

@cart = Cart.find(params[:id])

1. http://www.fileformat.info/info/unicode/char/00d7/index.htm

Chapter 10. Task E: A Smarter Cart • 138

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_h/test/controllers/line_items_controller_test.rb
http://www.fileformat.info/info/unicode/char/00d7/index.htm
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

ActiveRecord::RecordNotFound in CartsController#show

Couldn't find Cart with 'id'=wibble

Extracted source (around line #67):

65

66

67

68

69

70

 # Use callbacks to share common setup or constraints between actions.

 def set_cart

 @cart = Cart.find(params[:id])

 end

 # Never trust parameters from the scary internet, only allow the white list through.

Rails.root: /Users/davec/git/awdwr/edition4/work-51/depot

Application Trace | Framework Trace | Full Trace

app/controllers/carts_controller.rb:67:in `set_cart'

Request

Parameters:

{"id"=>"wibble"}

Toggle session dump

Toggle env dump

Response

Headers:

None

>> x

If the cart can’t be found, Active Record raises a RecordNotFound exception, which

we clearly need to handle. The question arises—how?

We could silently ignore it. From a security standpoint, this is probably the

best move, because it gives no information to a potential attacker. However,

it also means that if we ever have a bug in our code that generates bad cart

IDs, our application will appear to the outside world to be unresponsive—no

one will know that an error occurred.

Instead, we’ll take two actions when an exception is raised. First, we’ll log the

fact to an internal log file using the Rails logger facility.2 Second, we’ll redisplay

the catalog page along with a short message (something along the lines of

“Invalid cart”) to the user, who can then continue to use our site.

Rails has a convenient way of dealing with errors and error reporting. It defines

a structure called a flash. A flash is a bucket (actually closer to a Hash) in which

you can store stuff as you process a request. The contents of the flash are

available to the next request in this session before being deleted automatically.

Typically, the flash is used to collect error messages. For example, when our

2. http://guides.rubyonrails.org/debugging_rails_applications.html#the-logger

report erratum • discuss

Iteration E2: Handling Errors • 139

http://guides.rubyonrails.org/debugging_rails_applications.html#the-logger
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51
http://localhost:3000//carts/wibble#
http://localhost:3000//carts/wibble#
http://localhost:3000//carts/wibble#
http://localhost:3000//carts/wibble#
http://localhost:3000//carts/wibble#
http://localhost:3000//carts/wibble#

show() method detects that it was passed an invalid cart ID, it can store that

error message in the flash area and redirect to the index() action to redisplay the

catalog. The view for the index action can extract the error and display it at the

top of the catalog page. The flash information is accessible within the views via

the flash accessor method.

Why can’t we store the error in any old instance variable? Remember that

after a redirect is sent by our application to the browser, the browser sends

a new request back to our application. By the time we receive that request,

our application has moved on; all the instance variables from previous requests

are long gone. The flash data is stored in the session to make it available

between requests.

Armed with this background about flash data, we can create an invalid_cart()
method to report on the problem:

rails51/depot_h/app/controllers/carts_controller.rb

class CartsController < ApplicationController
before_action :set_cart, only: [:show, :edit, :update, :destroy]
rescue_from ActiveRecord::RecordNotFound, with: :invalid_cart➤

GET /carts
...
private
...

def invalid_cart➤

logger.error "Attempt to access invalid cart #{params[:id]}"➤

redirect_to store_index_url, notice: 'Invalid cart'➤

end➤

end

The rescue_from clause intercepts the exception raised by Cart.find(). In the han-

dler, we do the following:

• Use the Rails logger to record the error. Every controller has a logger
attribute. Here we use it to record a message at the error logging level.

• Redirect to the catalog display by using the redirect_to() method. The :notice
parameter specifies a message to be stored in the flash as a notice. Why

redirect rather than display the catalog here? If we redirect, the user’s

browser will end up displaying the store URL, rather than http://.../cart/wibble.
We expose less of the application this way. We also prevent the user from

retriggering the error by clicking the Reload button.

With this code in place, we can rerun our customer’s problematic query by

entering the following URL:

http://localhost:3000/carts/wibble

Chapter 10. Task E: A Smarter Cart • 140

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_h/app/controllers/carts_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We don’t see a bunch of errors in the browser now. Instead, the catalog page

is displayed with the error message shown in the following screenshot.

If we look at the end of the log file (development.log in the log directory), we see

our message:

Started GET "/carts/wibble" for 127.0.0.1 at 2016-01-29 09:37:39 -0500
Processing by CartsController#show as HTML

Parameters: {"id"=>"wibble"}
^[[1m^[[35mCart Load (0.1ms)^[[0m SELECT "carts".* FROM "carts" WHERE

"carts"."id" = ? LIMIT 1 [["id", "wibble"]]
Attempt to access invalid cart wibble➤

Redirected to http://localhost:3000/
Completed 302 Found in 3ms (ActiveRecord: 0.4ms)

On Unix machines, we’d probably use a command such as tail or less to view this

file. On Windows, you can use your favorite editor. It’s often a good idea to keep

a window open to show new lines as they’re added to this file. In Unix, you’d

use tail -f. You can download a tail command for Windows3 or get a GUI-based

tool.4 Finally, some OS X users use Console.app to track log files. Just say

open development.log at the command line.

3. http://gnuwin32.sourceforge.net/packages/coreutils.htm
4. http://tailforwin32.sourceforge.net/

report erratum • discuss

Iteration E2: Handling Errors • 141

http://gnuwin32.sourceforge.net/packages/coreutils.htm
http://tailforwin32.sourceforge.net/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

This being the Internet, we can’t worry only about our published web forms;

we have to worry about every possible interface, because malicious crackers

can get underneath the HTML we provide and attempt to provide additional

parameters. Invalid carts aren’t our biggest problem here; we also want to

prevent access to other people’s carts.

As always, your controllers are your first line of defense. Let’s go ahead and

remove cart_id from the list of parameters that are permitted:

rails51/depot_h/app/controllers/line_items_controller.rb

Never trust parameters from the scary internet, only allow the white
list through.
def line_item_params
params.require(:line_item).permit(:product_id)➤

end

We can see this in action by rerunning our controller tests:

bin/rails test:controllers

No tests fail, but a peek into our log/test.log reveals a thwarted attempt to breach

security:

LineItemsControllerTest: test_should_update_line_item

(0.0ms) begin transaction
LineItem Load (0.1ms) SELECT "line_items".* FROM

"line_items" WHERE "line_items"."id" = ? LIMIT 1 [["id", 980190962]]
Processing by LineItemsController#update as HTML

Parameters: {"line_item"=>{"product_id"=>nil}, "id"=>"980190962"}
LineItem Load (0.1ms) SELECT "line_items".* FROM

"line_items" WHERE "line_items"."id" = ? LIMIT 1 [["id", "980190962"]]
Unpermitted parameter: cart_id➤

(0.0ms) SAVEPOINT active_record_1
(0.1ms) RELEASE SAVEPOINT active_record_1

Redirected to http://test.host/line_items/980190962
Completed 302 Found in 2ms (ActiveRecord: 0.2ms)

(0.0ms) rollback transaction

Let’s clean up that test case to make the problem go away:

rails51/depot_h/test/controllers/line_items_controller_test.rb

test "should update line_item" do
patch line_item_url(@line_item),➤

params: { line_item: { product_id: @line_item.product_id } }➤

assert_redirected_to line_item_url(@line_item)
end

Chapter 10. Task E: A Smarter Cart • 142

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_h/app/controllers/line_items_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_h/test/controllers/line_items_controller_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

At this point, we clear the test logs and rerun the tests:

bin/rails log:clear LOGS=test
bin/rails test:controllers

A final scan of the logs identifies no further problems.

It makes good sense to review log files periodically. They hold a lot of useful

information.

Sensing the end of an iteration, we call our customer over and show her that

the error is now properly handled. She’s delighted and continues to play with

the application. She notices a minor problem on our new cart display: there’s

no way to empty items out of a cart. This minor change will be our next iter-

ation. We should make it before heading home.

Iteration E3: Finishing the Cart

We know by now that to implement the empty-cart function, we have to add

a link to the cart and modify the destroy() method in the carts controller to

clean up the session.

David says:

Battle of the Routes:

product_path vs. product_url

It can seem hard in the beginning to know when to use product_path and when to use

product_url when you want to link or redirect to a given route. In reality, it’s simple.

When you use product_url, you’ll get the full enchilada with protocol and domain name,

like http://example.com/products/1. That’s the thing to use when you’re doing redirect_to,
because the HTTP spec requires a fully qualified URL when doing 302 Redirect and

friends. You also need the full URL if you’re redirecting from one domain to another,

like product_url(domain: "example2.com", product: product).

The rest of the time, you can happily use product_path. This will generate only the

/products/1 part, and that’s all you need when doing links or pointing forms, like link_to
"My lovely product", product_path(product).

The confusing part is that oftentimes the two are interchangeable because of lenient

browsers. You can do a redirect_to with a product_path and it’ll probably work, but it won’t

be valid according to spec. And you can link_to a product_url, but then you’re littering up

your HTML with needless characters, which is a bad idea too.

report erratum • discuss

Iteration E3: Finishing the Cart • 143

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Start with the template and use the button_to() method to add a button:

rails51/depot_h/app/views/carts/show.html.erb

<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h2>Your Pragmatic Cart</h2>

<% @cart.line_items.each do |item| %>
<%= item.quantity %> × <%= item.product.title %>

<% end %>

<%= button_to 'Empty cart', @cart, method: :delete,➤

data: { confirm: 'Are you sure?' } %>➤

In the controller, let’s modify the destroy() method to ensure that the user is

deleting his or her own cart (think about it!) and to remove the cart from the

session before redirecting to the index page with a notification message:

rails51/depot_h/app/controllers/carts_controller.rb

def destroy
@cart.destroy if @cart.id == session[:cart_id]➤

session[:cart_id] = nil➤

respond_to do |format|
format.html { redirect_to store_index_url,➤

notice: 'Your cart is currently empty' }➤

format.json { head :no_content }
end

end

And we update the corresponding test in test/controllers/carts_controller_test.rb:

rails51/depot_i/test/controllers/carts_controller_test.rb

test "should destroy cart" do
post line_items_url, params: { product_id: products(:ruby).id }➤

@cart = Cart.find(session[:cart_id])➤

➤

assert_difference('Cart.count', -1) do
delete cart_url(@cart)

end

assert_redirected_to store_index_url➤

end

Now when we view our cart and click the “Empty cart” button, we are taken

back to the catalog page and see the message shown in the screenshot on

page 145.

Chapter 10. Task E: A Smarter Cart • 144

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_h/app/views/carts/show.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_h/app/controllers/carts_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_i/test/controllers/carts_controller_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We can remove the flash message that’s autogenerated when a line item is

added:

rails51/depot_i/app/controllers/line_items_controller.rb

def create
product = Product.find(params[:product_id])
@line_item = @cart.add_product(product)

respond_to do |format|
if @line_item.save

format.html { redirect_to @line_item.cart }➤

format.json { render :show,
status: :created, location: @line_item }

else
format.html { render :new }
format.json { render json: @line_item.errors,
status: :unprocessable_entity }

end
end

end

report erratum • discuss

Iteration E3: Finishing the Cart • 145

http://media.pragprog.com/titles/rails51/code/rails51/depot_i/app/controllers/line_items_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Finally, we get around to tidying up the cart display. The -based approach

makes it hard to style. A table-based layout would be easier. Replace

app/views/carts/show.html.erb with the following:

rails51/depot_i/app/views/carts/show.html.erb

<article>
<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h2>Your Cart</h2>
<table>

<% @cart.line_items.each do |line_item| %>
<tr>

<td class="quantity"><%= line_item.quantity %></td>
<td><%= line_item.product.title %></td>
<td class="price"><%= number_to_currency(line_item.total_price) %></td>

</tr>
<% end %>
<tfoot>

<tr>
<th colspan="2">Total:</th>
<td class="price"><%= number_to_currency(@cart.total_price) %></td>

</tr>
</tfoot>

</table>
<%= button_to 'Empty cart', @cart,

method: :delete,
data: { confirm: 'Are you sure?' } %>

</article>

To make this work, we need to add a method to both the LineItem and Cart
models that returns the total price for the individual line item and entire

cart, respectively. Here is the line item, which involves only simple multi-

plication:

rails51/depot_i/app/models/line_item.rb

def total_price
product.price * quantity

end

We implement the Cart method using the nifty Array::sum() method to sum the

prices of each item in the collection:

rails51/depot_i/app/models/cart.rb

def total_price
line_items.to_a.sum { |item| item.total_price }

end

Chapter 10. Task E: A Smarter Cart • 146

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_i/app/views/carts/show.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_i/app/models/line_item.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_i/app/models/cart.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

With this in place, we’ll style the cart to look a bit nicer. This all gets inserted

into app/assets/stylesheet/carts.css.

rails51/depot_i/app/assets/stylesheets/carts.scss

// Place all the styles related to the Carts controller here.
// They will automatically be included in application.css.
// You can use Sass (SCSS) here: http://sass-lang.com/

.carts {
table {
border-collapse: collapse;

}
td {

padding: 0.5em;
}
td.quantity {
white-space: nowrap;

}
td.quantity::after {
content: " ×";

}
td.price {
font-weight: bold;
text-align: right;

}
tfoot {
th, td.price {
font-weight: bold;
padding-top: 1em;

}
th {

text-align: right;
}
td.price {
border-top: solid thin;

}
}
input[type="submit"] {

background-color: #881;
border-radius: 0.354em;
border: solid thin #441;
color: white;
font-size: 1em;
padding: 0.354em 1em;

}
input[type="submit"]:hover {

background-color: #992;
}

}

report erratum • discuss

Iteration E3: Finishing the Cart • 147

http://media.pragprog.com/titles/rails51/code/rails51/depot_i/app/assets/stylesheets/carts.scss
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The following screenshot shows a nicer-looking cart.

Finally, we update our test cases to match the current output:

rails51/depot_i/test/controllers/line_items_controller_test.rb

test "should create line_item" do
assert_difference('LineItem.count') do

post line_items_url, params: { product_id: products(:ruby).id }
end

follow_redirect!

assert_select 'h2', 'Your Cart'➤

assert_select 'td', "Programming Ruby 1.9"➤

end

What We Just Did

Our shopping cart is now something the client is happy with. Along the way,

we covered the following:

• Adding a column to an existing table, with a default value

• Migrating existing data into the new table format

• Providing a flash notice of an error that was detected

• Using the logger to log events

• Removing a parameter from the permitted list

• Deleting a record

• Adjusting the way a table is rendered, using CSS

But, just as we think we’ve wrapped up this functionality, our customer

wanders over with a copy of Information Technology and Golf Weekly. Appar-

ently, it has an article about the Ajax style of browser interface, where stuff

gets updated on the fly. Hmmm…let’s look at that tomorrow.

Chapter 10. Task E: A Smarter Cart • 148

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_i/test/controllers/line_items_controller_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Playtime

Here’s some stuff to try on your own:

• Create a migration that copies the product price into the line item, and

change the add_product() method in the Cart model to capture the price

whenever a new line item is created.

• Write unit tests that add both unique products and duplicate products

to a cart. Assert how many products should be in the cart in each instance.

Note that you’ll need to modify the fixture to refer to products and carts

by name—for example, product: ruby.

• Check products and line items for other places where a user-friendly error

message would be in order.

• Add the ability to delete individual line items from the cart. This will

require buttons on each line, and such buttons will need to be linked to

the destroy() action in the LineItemsController.

• We prevented accessing other user’s carts in the LineItemsController, but you

can still see other carts by navigating directly to a URL like http://local-
host/carts/3. See if you can prevent accessing any cart other than than one

currently stored in the session.

report erratum • discuss

Iteration E3: Finishing the Cart • 149

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 11

In this chapter, you'll see:

• Using partial templates

• Rendering into the page layout

• Updating pages dynamically with Ajax and CoffeeScript

• Highlighting changes with CSS Animations

• Hiding and revealing DOM elements

• Broadcasting changes with Action Cable

• Testing the Ajax updates

Task F: Add a Dash of Ajax

Our customer wants us to add Ajax support to the store. But what is Ajax?

Back in the old days (up until 2005 or so), browsers were treated as dumb

devices. When you wrote a browser-based application, you’d send stuff to the

browser and then forget about that session. At some point, the user would

fill in some form fields or click a hyperlink, and your application would get

woken up by an incoming request. It would render a complete page back to

the user, and the whole tedious process would start afresh. That’s exactly

how our Depot application behaves so far.

But it turns out that browsers aren’t really that dumb. (Who knew?) They can

run code. All modern browsers can run JavaScript. And it turns out that the

JavaScript in the browser can interact behind the scenes with the application

on the server, updating the stuff the user sees as a result. Jesse James Garrett

named this style of interaction Ajax (which once stood for Asynchronous Java-

Script and XML but now just means “making browsers suck less”).

Browsers can do so much more with JavaScript than interact with the server,

and we’ll learn about that in Iteration H1: Adding Fields Dynamically to a

Form, on page 195, but we can do a lot for our users by simply adding a bit of

Ajax to some of the user interactions in our application. And we can do it

with surprisingly little code.

So, let’s Ajaxify our shopping cart. Rather than having a separate shopping cart

page, let’s put the current cart display into the catalog’s sidebar. Then we’ll use

Ajax to update the cart in the sidebar without redisplaying the whole page.

Whenever you work with Ajax, it’s good to start with the non-Ajax version of

the application and then gradually introduce Ajax features. That’s what we’ll

do here. For starters, let’s move the cart from its own page and put it in the

sidebar.

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Iteration F1: Moving the Cart

Currently, our cart is rendered by the show action in the CartController and the

corresponding .html.erb template. We’d like to move that rendering into the sidebar.

This means it’ll no longer be in its own page. Instead, we’ll render it in the layout

that displays the overall catalog. You can do that using partial templates.

Partial Templates

Programming languages let you define methods. A method is a chunk of code

with a name: invoke the method by the name, and the corresponding chunk of

code gets run. And, of course, you can pass parameters to a method, which lets

you write a piece of code that can be used in many different circumstances.

Think of Rails partial templates (partials for short) like a method for views. A

partial is simply a chunk of a view in its own separate file. You can invoke (aka

render) a partial from another template or from a controller, and the partial

will render itself and return the results of that rendering. As with methods, you

can pass parameters to a partial, so the same partial can render different results.

We’ll use partials twice in this iteration. First let’s look at the cart display:

rails51/depot_i/app/views/carts/show.html.erb

<article>
<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h2>Your Cart</h2>
<table>

<% @cart.line_items.each do |line_item| %>
<tr>

<td class="quantity"><%= line_item.quantity %></td>
<td><%= line_item.product.title %></td>
<td class="price"><%= number_to_currency(line_item.total_price) %></td>

</tr>
<% end %>
<tfoot>

<tr>
<th colspan="2">Total:</th>
<td class="price"><%= number_to_currency(@cart.total_price) %></td>

</tr>
</tfoot>

</table>
<%= button_to 'Empty cart', @cart,

method: :delete,
data: { confirm: 'Are you sure?' } %>

</article>

Chapter 11. Task F: Add a Dash of Ajax • 152

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_i/app/views/carts/show.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

It creates a list of table rows, one for each item in the cart. Whenever you find

yourself iterating like this, you should stop and ask yourself, is this too much

logic in a template? It turns out we can abstract away the loop by using partials

(and, as you’ll see, this also sets the stage for some Ajax later). To do this, make

use of the fact that you can pass a collection to the method that renders partial

templates, and that method will automatically invoke the partial once for each

item in the collection. Let’s rewrite our cart view to use this feature:

rails51/depot_j/app/views/carts/show.html.erb

<article>
<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h2>Your Cart</h2>
<table>

<%= render(@cart.line_items) %>➤

<tfoot>
<tr>

<th colspan="2">Total:</th>
<td class="price"><%= number_to_currency(@cart.total_price) %></td>

</tr>
</tfoot>

</table>
<%= button_to 'Empty cart', @cart,

method: :delete,
data: { confirm: 'Are you sure?' } %>

</article>

That’s a lot simpler. The render() method will iterate over any collection that’s

passed to it. The partial template is simply another template file (by default

in the same directory as the object being rendered and with the name of the

table as the name). However, to keep the names of partials distinct from reg-

ular templates, Rails automatically prepends an underscore to the partial

name when looking for the file. That means we need to name our partial

_line_item.html.erb and place it in the app/views/line_items directory:

rails51/depot_j/app/views/line_items/_line_item.html.erb

<tr>
<td class="quantity"><%= line_item.quantity %></td>
<td><%= line_item.product.title %></td>
<td class="price"><%= number_to_currency(line_item.total_price) %></td>

</tr>

Something subtle is going on here. Inside the partial template, we refer to the

current object by using the variable name that matches the name of the

report erratum • discuss

Iteration F1: Moving the Cart • 153

http://media.pragprog.com/titles/rails51/code/rails51/depot_j/app/views/carts/show.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_j/app/views/line_items/_line_item.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

template. In this case, the partial is named line_item, so inside the partial we

expect to have a variable called line_item.

So now we’ve tidied up the cart display, but that hasn’t moved it into the sidebar.

To do that, let’s revisit our layout. If we had a partial template that could display

the cart, we could embed a call like this within the sidebar:

render("cart")

But how would the partial know where to find the cart object? One way is for it

to make an assumption. In the layout, we have access to the @cart instance

variable that was set by the controller. Turns out that this is also available inside

partials called from the layout. But this is like calling a method and passing it

a value in a global variable. It works, but it’s ugly coding, and it increases cou-

pling (which in turn makes your programs hard to maintain).

Now that we have a partial for a line item, let’s do the same for the cart. First

we’ll create the _cart.html.erb template. This is basically our carts/show.html.erb
template but using cart instead of @cart (Note that it’s OK for a partial to invoke

other partials).

rails51/depot_j/app/views/carts/_cart.html.erb

<article>
<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h2>Your Cart</h2>
<table>

<%= render(cart.line_items) %>➤

<tfoot>
<tr>

<th colspan="2">Total:</th>
<td class="price"><%= number_to_currency(cart.total_price) %></td>➤

</tr>
</tfoot>

</table>
<%= button_to 'Empty cart', cart,➤

method: :delete,
data: { confirm: 'Are you sure?' } %>

</article>

As the Rails mantra goes, don’t repeat yourself (DRY). But we’ve just done

that. At the moment, the two files are in sync, so there may not seem to be

much of a problem—but having one set of logic for the Ajax calls and another

set of logic to handle the case where JavaScript is disabled invites problems.

Chapter 11. Task F: Add a Dash of Ajax • 154

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_j/app/views/carts/_cart.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Let’s avoid all of that and replace the original template with code that causes

the partial to be rendered:

rails51/depot_k/app/views/carts/show.html.erb

<%= render @cart %>➤

Now change the application layout to include this new partial in the sidebar:

rails51/depot_k/app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>

<head>
<title>Pragprog Books Online Store</title>
<%= csrf_meta_tags %>

<%= stylesheet_link_tag 'application', media: 'all',
'data-turbolinks-track': 'reload' %>

<%= javascript_include_tag 'application',
'data-turbolinks-track': 'reload' %>

</head>

<body>
<header class="main">
<%= image_tag 'logo.svg', alt: 'The Pragmatic Bookshelf' %>
<h1><%= @page_title %></h1>

</header>
<section class="content">

<nav class="side_nav">
<div id="cart" class="carts">➤

<%= render @cart %>➤

</div>➤

Home
Questions
News
Contact

</nav>

<main class='<%= controller.controller_name %>'>
<%= yield %>

</main>
</section>

</body>
</html>

Note that we’ve given the <article> element that wraps the cart the CSS class

carts. This will allow it to pick up the styling we added in Iteration E3: Finishing

the Cart, on page 143.

report erratum • discuss

Iteration F1: Moving the Cart • 155

http://media.pragprog.com/titles/rails51/code/rails51/depot_k/app/views/carts/show.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_k/app/views/layouts/application.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Next. we have to make a small change to the store controller. We’re invoking

the layout while looking at the store’s index action, and that action doesn’t

currently set @cart. That’s a quick change:

rails51/depot_k/app/controllers/store_controller.rb

class StoreController < ApplicationController
include CurrentCart➤

before_action :set_cart➤

def index
@products = Product.order(:title)

end
end

The data for the cart is common no matter where it’s placed in the output,

but there’s no requirement that the presentation be identical independently

of where this content is placed. In fact, black lettering on a green background

is hard to read, so let’s provide additional rules for this table when it appears

in the sidebar:

rails51/depot_k/app/assets/stylesheets/application.scss

#cart {
article {
h2 {

margin-top: 0;
}
background: white;
border-radius: 0.5em;
margin: 1em;
padding: 1.414em;
@media (min-width: 30em) {

margin: 0; // desktop doesn't need this margin
}

}
}

If you display the catalog after adding something to your cart, you should see

something like the screenshot on page 157.

Let’s just wait for the Webby Award nomination.

Changing the Flow

Now that we’re displaying the cart in the sidebar, we can change the way that

the Add to Cart button works. Rather than display a separate cart page, all

it has to do is refresh the main index page.

The change is straightforward. At the end of the create action, we redirect the

browser back to the index:

Chapter 11. Task F: Add a Dash of Ajax • 156

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_k/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_k/app/assets/stylesheets/application.scss
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_k/app/controllers/line_items_controller.rb

def create
product = Product.find(params[:product_id])
@line_item = @cart.add_product(product)

respond_to do |format|
if @line_item.save

format.html { redirect_to store_index_url }➤

format.json { render :show,
status: :created, location: @line_item }

else
format.html { render :new }
format.json { render json: @line_item.errors,
status: :unprocessable_entity }

end
end

end

report erratum • discuss

Iteration F1: Moving the Cart • 157

http://media.pragprog.com/titles/rails51/code/rails51/depot_k/app/controllers/line_items_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

At this point, we rerun our tests and see a number of failures:

$ bin/rails test
Run options: --seed 57801

Running:

...E

Error:
ProductsControllerTest#test_should_show_product:
ActionView::Template::Error: 'nil' is not an ActiveModel-compatible
object. It must implement :to_partial_path.
app/views/layouts/application.html.erb:21:in
`_app_views_layouts_application_html_erb`

If we try to display the products index by visiting http://localhost:3000/products in
the browser, we see the error shown in the following screenshot.

This information is helpful. The message identifies the template file that was

being processed at the point where the error occurs (app/views/layouts/applica-
tion.html.erb), the line number where the error occurred, and an excerpt from

the template of lines around the error. From this, we see that the expression

being evaluated at the point of error is @cart.line_items, and the message pro-

duced is 'nil' is not an ActiveModel-compatible object.

Chapter 11. Task F: Add a Dash of Ajax • 158

report erratum • discuss

http://localhost:3000/products
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

So, @cart is apparently nil when we display an index of our products. That

makes sense, because it’s set only in the store controller. We can even verify

this using the web console provided at the bottom of the web page. Now that

we know what the problem is, the fix is to avoid displaying the cart at all

unless the value is set:

rails51/depot_l/app/views/layouts/application.html.erb

<nav class="side_nav">
<% if @cart %>➤

➤

<div id="cart" class="carts">➤

<%= render @cart %>➤

</div>➤

<% end %>➤

Home
Questions
News
Contact

</nav>

With this change in place, our tests now pass once again. Imagine what could

have happened. A change in one part of an application made to support a

new requirement breaks a function implemented in another part of the

application. If you are not careful, this can happen in a small application like

Depot. Even if you are careful, this will happen in a large application.

Keeping tests up-to-date is an important part of maintaining your application.

Rails makes this as easy as possible to do. Agile programmers make testing

an integral part of their development efforts. Many even go so far as to write

their tests first, before the first line of code is written.

So, now we have a store with a cart in the sidebar. When we click to add an

item to the cart, the page is redisplayed with an updated cart. However, if

our catalog is large, that redisplay might take a while. It uses bandwidth, and

it uses server resources. Fortunately, we can use Ajax to make this better.

Iteration F2: Creating an Ajax-Based Cart

Ajax lets us write code that runs in the browser and interacts with our server-

based application. In our case, we’d like to make the Add to Cart buttons

invoke the server create action on the LineItems controller in the background.

The server can then send down just the HTML for the cart, and we can replace

the cart in the sidebar with the server’s updates.

report erratum • discuss

Iteration F2: Creating an Ajax-Based Cart • 159

http://media.pragprog.com/titles/rails51/code/rails51/depot_l/app/views/layouts/application.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Now normally we’d do this by writing JavaScript that runs in the browser

and by writing server-side code that communicates with this JavaScript

(possibly using a technology such as JavaScript Object Notation [JSON]). The

good news is that, with Rails, all this is hidden from us. We can use Ruby to

do everything we need to do (and with a whole lot of support from some Rails

helper methods).

The trick when adding Ajax to an application is to take small steps. So let’s

start with the most basic one. Let’s change the catalog page to send an Ajax

request to our server application and have the application respond with the

HTML fragment containing the updated cart.

On the index page, we’re using button_to() to create the link to the create action.

We want to change this to send an Ajax request instead. To do this, we add

a remote: true parameter to the call:

rails51/depot_l/app/views/store/index.html.erb

<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h1>Your Pragmatic Catalog</h1>

<ul class="catalog">
<% cache @products do %>
<% @products.each do |product| %>

<% cache product do %>

<%= image_tag(product.image_url) %>
<h2><%= product.title %></h2>
<p>
<%= sanitize(product.description) %>

</p>
<div class="price">

<%= number_to_currency(product.price) %>
<%= button_to 'Add to Cart', line_items_path(product_id: product),➤

remote: true %>➤

</div>

<% end %>
<% end %>

<% end %>

So far, we’ve arranged for the browser to send an Ajax request to our applica-

tion. The next step is to have the application return a response. The plan is

to create the updated HTML fragment that represents the cart and to have

the browser stick that HTML into the browser’s internal representation of

the structure and content of the document being displayed—namely, the

Chapter 11. Task F: Add a Dash of Ajax • 160

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_l/app/views/store/index.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Document Object Model (DOM). By manipulating the DOM, we cause the

display to change in front of the user’s eyes.

The first change is to stop the create action from redirecting to the index display

if the request is for JavaScript. We do this by adding a call to respond_to() telling

it that we want to respond with a format of .js:

rails51/depot_l/app/controllers/line_items_controller.rb

def create
product = Product.find(params[:product_id])
@line_item = @cart.add_product(product)

respond_to do |format|
if @line_item.save

format.html { redirect_to store_index_url }
format.js➤

format.json { render :show,
status: :created, location: @line_item }

else
format.html { render :new }
format.json { render json: @line_item.errors,
status: :unprocessable_entity }

end
end

end

This syntax may seem surprising at first, but it’s just a method call. The other

method calls on format()—like html()—pass an optional block (blocks are described

in Blocks and Iterators, on page 54). The code you just added doesn’t pass a

block, which tells Rails to find a JavaScript template to render the response in

app/views/line_items called create.js.erb or create.js.coffee. We’ll cover the respond_to()
method in greater detail in Selecting a Data Representation, on page 362.

Both filenames are treated as a template, executed in Ruby, and sent to the

browser as JavaScript for execution. Using .js.erb means you want to write a

JavaScript template, and .js.coffee means you want to write a CoffeeScript template.

We’ll use CoffeeScript,1 which is a cleaner, more Ruby-like language that Rails

compiles down to JavaScript. We’ll learn a bit more about it later in the

chapter, but it’s most common to write client-side code in CoffeeScript, which

Rails made the default language in 3.1. Given all this, our template will be

in app/views/line_items/create.js.coffee.

rails51/depot_l/app/views/line_items/create.js.coffee

cart = document.getElementById("cart")
cart.innerHTML = "<%= j render(@cart) %>"

1. http://coffeescript.org

report erratum • discuss

Iteration F2: Creating an Ajax-Based Cart • 161

http://media.pragprog.com/titles/rails51/code/rails51/depot_l/app/controllers/line_items_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_l/app/views/line_items/create.js.coffee
http://coffeescript.org
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

This template tells the browser to replace the content of the element whose

id is cart with that HTML. Let’s analyze how it manages to do that.

The first line of code locates the element that has an id of cart using the built-

in JavaScript function getElementById() available on the document global variable.2,3

The next line of code renders the HTML into the cart element. This is where

we see that this file is a template and not just pure CoffeeScript. This content

is formed by a call to the render() method on the @cart object. The output of

this method is processed by an escape_javascript() helper method, using a

convenient alias named j(), that converts this Ruby string into a format

acceptable as input to JavaScript. This is assigned to the cart element’s

innerHTML property,4 which inserts the rendered HTML into the page.

Note that this script is executed in the browser. The only parts executed on

the server are the portions within the <%= and %> delimiters. The screenshot

on page 163 shows this somewhat circuitous flow.

Does it work? Well, it’s hard to show in a book, but it sure does. Make sure

you reload the index page to get the remote version of the form. Then click

one of the Add to Cart buttons. You should see the cart in the sidebar update.

And you shouldn’t see your browser show any indication of reloading the

page. You’ve just created an Ajax application.

Troubleshooting

Although Rails makes Ajax straightforward, it can’t make it foolproof. And

because you’re dealing with the loose integration of a number of technologies,

it can be hard to work out why your Ajax doesn’t work. That’s one of the

reasons you should always add Ajax functionality one step at a time.

Here are a few hints if your Depot application didn’t show any Ajax interactions:

• Does your browser have any special incantation to force it to reload

everything on a page? Sometimes browsers hold local cached versions of

page assets, and this can mess up testing. Now would be a good time to

do a full reload.

• Did you have any errors reported? Look in development.log in the logs direc-

tory. Also look in the Rails server window, because some errors are

reported there.

2. https://developer.mozilla.org/en-US/docs/Web/API/Document/getElementById
3. https://developer.mozilla.org/en-US/docs/Web/API/Document
4. https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML

Chapter 11. Task F: Add a Dash of Ajax • 162

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/API/Document/getElementById
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

class LineItemsController < ApplicationController

 def create

 # ...

 format.js

 # ...

 end

end

cart = document.getElementById("cart")

cart.innerHTML = "<%= j render(@cart) %>"

create.js.coffee

var cart;

cart = document.getElementById("cart");

cart.innerHTML = "<article>....</article>";

• Still looking at the log file, do you see incoming requests to the create action?

If not, it means your browser isn’t making Ajax requests. Perhaps your

browser has JavaScript execution disabled?

• Some readers have reported that they had to stop and start their applica-

tion to get the Ajax-based cart to work.

• If you’re using Internet Explorer, it may be running in what Microsoft calls

“quirks mode,” which is backward-compatible with old Internet Explorer

releases but is also broken. Internet Explorer switches into “standards

mode,” which works better with the Ajax stuff, if the first line of the down-

loaded page is an appropriate DOCTYPE header. Our layouts use this:

<!DOCTYPE html>

report erratum • discuss

Iteration F2: Creating an Ajax-Based Cart • 163

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The Customer Is Never Satisfied

We’re feeling pretty pleased with ourselves. We changed a handful of lines of

code, and our boring old Web 1.0 application now sports Web 2.0 Ajax speed

stripes. We breathlessly call the client over to come look. Without saying

anything, we proudly click Add to Cart and look at her, eager for the praise

we know will come. Instead, she looks surprised. “You called me over to show

me a bug?” she asks. “You click that button, and nothing happens.”

We patiently explain that, in fact, a lot happened. Just look at the cart in the

sidebar. See? When we add something, the quantity changes from 4 to 5.

“Oh,” she says, “I didn’t notice that.” And, if she didn’t notice the page update,

it’s likely that our users won’t either. It’s time for some user interface hacking.

Iteration F3: Highlighting Changes

A common way to highlight changes made to a page via Ajax is the (now)

infamous Yellow Fade Technique.5 It highlights an element in a browser: by

default it flashes the background yellow and then gradually fades it back to

white. The user clicks the Add to Cart button, and the count updates to two

as the line flares brighter. It then fades back to the background color over a

short period of time.

You can implement this with CSS animations.6 In CSS animations, a class

uses the animation attribute to reference a particular animation. The animation

itself is defined as a series of keyframes that describe the style of an element

at various points in the animation. The animation is executed by the browser

when the page loads or when the class is applied to an element. This sounds

complicated, but for our case we only need to define the starting and ending

states of the element.

Let’s see the CSS first. We’ll place it inside app/assets/stylesheets/line_items.scss,
which was created by the Rails generator you ran back in Iteration D2: Con-

necting Products to Carts, on page 122.

rails51/depot_m/app/assets/stylesheets/line_items.scss

// Place all the styles related to the LineItems controller here.
// They will automatically be included in application.css.
// You can use Sass (SCSS) here: http://sass-lang.com/

➤

@keyframes line-item-highlight {➤

0% {➤

5. https://signalvnoise.com/archives/000558.php
6. https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations

Chapter 11. Task F: Add a Dash of Ajax • 164

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_m/app/assets/stylesheets/line_items.scss
https://signalvnoise.com/archives/000558.php
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

background: #8f8;➤

}➤

100% {➤

background: none;➤

}➤

}➤

➤

.line-item-highlight {➤

animation: line-item-highlight 1s;➤

}➤

The @keyframes directive defines an animation, in this case named line-item-
highlight. Inside that declaration, we specify what the state of the DOM element

should be at various points in the animation. At the start of the animation

(0%), the element should have a background color of bright green, which is

the highlight color. At the end of the animation (100%), it should have no

background color.

Next we define a CSS class named line-item-highlight that uses the animation
attribute. It accepts the name of the animation (which we just defined) and

an animation time, which we’ve set at one second (note that you don’t have

to name the CSS class the same as the animation, but it can help keep it all

straight if you do).

The last step is to use this class on the recently added item. To do that, our

ERB template needs to know which item is the most recently added item. Set

that inside LineItemsController:

rails51/depot_m/app/controllers/line_items_controller.rb

def create
product = Product.find(params[:product_id])
@line_item = @cart.add_product(product)

respond_to do |format|
if @line_item.save

format.html { redirect_to store_index_url }
format.js { @current_item = @line_item }➤

format.json { render :show,
status: :created, location: @line_item }

else
format.html { render :new }
format.json { render json: @line_item.errors,
status: :unprocessable_entity }

end
end

end

In the _line_item.html.erb partial, we then check to see if the item we’re rendering

is the one that just changed. If so, we give it the animation class we just defined:

report erratum • discuss

Iteration F3: Highlighting Changes • 165

http://media.pragprog.com/titles/rails51/code/rails51/depot_m/app/controllers/line_items_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_m/app/views/line_items/_line_item.html.erb

<% if line_item == @current_item %>➤

<tr class="line-item-highlight">➤

<% else %>➤

<tr>➤

<% end %>➤

<td class="quantity"><%= line_item.quantity %></td>
<td><%= line_item.product.title %></td>
<td class="price"><%= number_to_currency(line_item.total_price) %></td>

</tr>

As a result of these two minor changes, the <tr> element of the most recently

changed item in the cart will be tagged with class="line-item-highlight". When the

browser receives this rendered HTML and inserts it into the DOM, the

browser will see that the most recently added line item has the class line-item-
highlight, which will trigger the animation. No JavaScript needed!

With that change in place, click any Add to Cart button, and you’ll see that

the changed item in the cart glows a light green before fading back to merge

with the background.

We’re not done yet. We haven’t tested any of our Ajax additions, such as what

happens when we click the Add to Cart button. Rails provides the help we need

to do that, too.

We already have a should create line_item test, so let’s add another one called should
create line_item via ajax:

rails51/depot_m/test/controllers/line_items_controller_test.rb

test "should create line_item via ajax" do
assert_difference('LineItem.count') do
post line_items_url, params: { product_id: products(:ruby).id },

xhr: true
end

assert_response :success
assert_match /<tr class=\\"line-item-highlight/, @response.body

end

This test differs in the name of the test, in the manner of invocation from

the create line item test (xhr :post vs. simply post, where xhr stands for the

XMLHttpRequest mouthful)—and in the expected results. Instead of a redirect,

we expect a successful response containing a call to replace the HTML for

the cart…sort of.

If you insert a call to puts @response.body and rerun your test, you can see how

Rails renders the response. It’s JavaScript that contains your code inside a

function that gets invoked. In short, this is how we can ask the browser to

Chapter 11. Task F: Add a Dash of Ajax • 166

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_m/app/views/line_items/_line_item.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_m/test/controllers/line_items_controller_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

run JavaScript for us safely, but we need to assert something about the

contents of the JavaScript. The simplest way to do that is to look in the

response for <tr class="line-item-highlight">. Parsing the JavaScript and introspect-

ing the rendered string is a bit tricky, so this simple assertion will do for now.

In Iteration H2: Testing Our JavaScript Functionality, on page 214, we’ll learn

a better way to test JavaScript-enabled features.

Iteration F4: Hiding an Empty Cart with a Custom Helper

The customer has one last request. Right now, even carts with nothing in

them are displayed in the sidebar. Can we arrange for the cart to appear only

when it has some content? But of course!

In fact, we have a number of options. The simplest is probably to include the

HTML for the cart only if the cart has something in it. We could do this

totally within the _cart partial:

<% unless cart.line_items.empty? %>➤

<h2>Your Cart</h2>
<table>

<%= render(cart.line_items) %>

<tr class="total_line">
<td colspan="2">Total</td>
<td class="total_cell"><%= number_to_currency(cart.total_price) %></td>

</tr>
</table>

<%= button_to 'Empty cart', cart, method: :delete,
confirm: 'Are you sure?' %>

<% end %>➤

Although this works, the code is a bit odd. Our application layout is rendering

a cart partial, which then turns around and avoids rendering anything if the

cart is empty. It would be cleaner if the application layout had the logic for

rendering the cart only when needed, while the cart partial continues to just

render itself when asked. While we could do this with a similar unless statement

inside the application layout, let’s create a more generic means of doing this

using a helper method.

A helper method is a function available to your views to handle generic view-

related logic or code. In Iteration C3: Using a Helper to Format the Price, on

page 112, we used the built-in helper number_to_currency(), but you can create

your own helpers, too. In fact, it’s a good practice to abstract any complex

processing into a custom helper method.

report erratum • discuss

Iteration F4: Hiding an Empty Cart with a Custom Helper • 167

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

If you look in the app directory, you’ll find eight subdirectories:

depot> ls -p app
assets/ controllers/ jobs/ models/
channels/ helpers/ mailers/ views/

Not surprisingly, our helper methods go in the helpers directory. If you look in

that directory, you’ll find it already contains some files:

depot> ls -p app/helpers
application_helper.rb line_items_helper.rb store_helper.rb
carts_helper.rb products_helper.rb

The Rails generators automatically created a helper file for each of our con-

trollers (products and store). The rails command itself (the one that created the

application initially) created the application_helper.rb file. If you like, you can organize

your methods into controller-specific helpers, but since this method will be

used in the application layout, let’s put it in the application helper.

Let’s write a helper method called render_if(). It takes a condition and an object

to render. If the condition is true, it uses the built-in render() method on the

object, like so:

rails51/depot_n/app/views/layouts/application.html.erb

<nav class="side_nav">

<div id="cart" class="carts">

<%= render_if @cart && @cart.line_items.any?, @cart %>➤

</div>

Home
Questions
News
Contact

</nav>

Since this helper is not specific to any particular controller, we’ll add it to

application_helper.rb in the app/helpers directory:

rails51/depot_n/app/helpers/application_helper.rb

module ApplicationHelper
def render_if(condition, record)➤

if condition➤

render record➤

end➤

end➤

end

This code uses an if to check the condition, calling render() if it holds.

Chapter 11. Task F: Add a Dash of Ajax • 168

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_n/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_n/app/helpers/application_helper.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

One other thing we need to deal with is the flash message. If you add an item

to your cart, then clear your cart, and then add an item, you’ll still see the

“Your cart is empty” message, even though your cart has an item in it. By

using Ajax to insert the cart into the page, we only redrew part of the screen,

so the flash message stays around. If you reload the page, the message goes

away, but we can hide it using CoffeeScript.

Since the code in app/views/line_items/create.js.coffee is executed when an item is

added, you can add code there to also hide the flash message. It’s rendered

in a <p> tag with the ID notice. Using getElementById(), you can locate that element

and, if it’s there, set its style’s display property to "none", which is a programmatic

way of setting the display CSS property.

rails51/depot_n/app/views/line_items/create.js.coffee

cart = document.getElementById("cart")
cart.innerHTML = "<%= j render(@cart) %>"

notice = document.getElementById("notice")➤

if notice➤

notice.style.display = "none"➤

This shows a bit more of CoffeeScript. Note that the if statement doesn’t need

parens around the test, doesn’t need braces, and doesn’t even need an ending

tag. The indentation alone lets CoffeeScript know what’s inside the if block.

Now that we’ve added all this Ajax goodness, go ahead and empty your cart

and add an item.

So far we’ve focused on being more responsive to changes initiated by the

user viewing the page. But what about changes made by others? It turns out

that that’s not as complex as it sounds, thanks to a powerful feature of Rails:

Action Cable.

Iteration F5: Broadcasting Updates with Action Cable

Up until now, our users’ web browsers have requested information from our

Rails app, either by going directly to a URL or by clicking a link or button. It’s

also possible to send information from our Rails app to our users’ browsers

without a direct request. The technology that enables this is called Web Sockets.7

Prior to Rails 5, setting this up was fairly involved, but Rails 5 introduced Action

Cable, which simplifies pushing data to all connected browsers.

We can use Action Cable and Web Sockets to broadcast price updates to the

users browsing the catalog. To see why we’d want to, bring up the Depot

7. https://www.w3.org/TR/websockets/

report erratum • discuss

Iteration F5: Broadcasting Updates with Action Cable • 169

http://media.pragprog.com/titles/rails51/code/rails51/depot_n/app/views/line_items/create.js.coffee
https://www.w3.org/TR/websockets/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

application in two browser windows or tabs. In the first window, display the

catalog. Then, in the second window, update the price of an item. Return to

the first window and add that item to the cart. At this point, the cart shows

the updated price, but the catalog shows the original price, as illustrated in

the following screenshot.

We discuss this with our customer. She agrees to honor the price at the time

the item was placed in the cart, but she wants the catalog being displayed to

be up-to-date. At this point, we’ve reached the limits of what Ajax can do for

us. So far, the server has only responded to requests and has no way to initiate

an update.

In 2011, the Internet Engineering Task Force (IETF) published a Standards

Track document describing a two-way WebSocket protocol.8 Action Cable

provides both a client-side JavaScript framework and a server-side Ruby

framework that together seamlessly integrate the WebSocket protocol into

the rest of your Rails application. This enables features like real-time updates

to be easily added to your Rails application in a manner that performs well

and is scalable.

Making use of Action Cable is a three-step process: create a channel, broadcast

some data, and receive the data. And by now, it should be no surprise that

Rails has a generator that does most of the work (for two out of the three

steps, anyway):

depot> bin/rails generate channel products
create app/channels/products_channel.rb

identical app/assets/javascripts/cable.js
create app/assets/javascripts/channels/products.coffee

The way to create a channel is by updating the file created in the app/channels/
directory:

8. https://tools.ietf.org/html/rfc6455

Chapter 11. Task F: Add a Dash of Ajax • 170

report erratum • discuss

https://tools.ietf.org/html/rfc6455
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_o/app/channels/products_channel.rb

class ProductsChannel < ApplicationCable::Channel
def subscribed
stream_from "products"➤

end

def unsubscribed
Any cleanup needed when channel is unsubscribed

end
end

What’s important here is the name of the class (ProductsChannel) and the name

of the stream (products). It’s possible for a channel to support multiple streams

(for example, a chat application can have multiple rooms), but we only need

one stream for now.

Channels can have security implications, so by default Rails only allows

access from the localhost when running in development mode. If you’re doing

development with multiple machines, you must disable this check. Do this

by adding the following line to config/environments/development.rb:

config.action_cable.disable_request_forgery_protection = true

We’ll be sending only data over this channel, and not processing commands,

so this is safe to do.

Next, we’re going to broadcast the entire catalog every time an update is made.

We could instead choose to send only portions of the catalog, or any other

data that we might want, but we already have a view for the catalog, so we

might as well use it:

rails51/depot_o/app/controllers/products_controller.rb

def update
respond_to do |format|

if @product.update(product_params)
format.html { redirect_to @product,
notice: 'Product was successfully updated.' }

format.json { render :show, status: :ok, location: @product }
➤

@products = Product.all➤

ActionCable.server.broadcast 'products',➤

html: render_to_string('store/index', layout: false)➤

else
format.html { render :edit }
format.json { render json: @product.errors,

status: :unprocessable_entity }
end

end
end

report erratum • discuss

Iteration F5: Broadcasting Updates with Action Cable • 171

http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/channels/products_channel.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/controllers/products_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We’re using the existing store/index view, which requires a list of products to

have been set into the @products instance variable. We call render_to_string() to
render the view as a string, passing layout: false, because we want only this

view and not the entire page. Broadcast messages typically consist of Ruby

hashes, which are converted to JSON to go across the wire and end up as

JavaScript objects. In this case, we use html as the hash key.

The final step is to receive the data on the client. This involves subscribing

to the channel and defining what’ll be done when data is received.

Since this happens in the browser, you’ll need to write some more CoffeeScript.

Fortunately, Rails generated an outline of what you need to do in

app/assets/javascripts/channels/products.coffee. It generated a class with three methods:

connected(), disconnected(), and received(). It’s received() that we care about, because

that’s called with the data that gets sent down the channel.

That data has an html attribute that contains the updated HTML. You can

then use getElementsByTagName() to locate all the main elements on the page. Since

our application only has one of these, we can safely grab the first one using

[0] and replace its HTML with the received HTML, like so:

rails51/depot_o/app/assets/javascripts/channels/products.coffee

App.products = App.cable.subscriptions.create "ProductsChannel",
connected: ->
Called when the subscription is ready for use on the server

disconnected: ->
Called when the subscription has been terminated by the server

received: (data) ->
document.getElementsByTagName("main")[0].innerHTML = data.html➤

The other two methods, connected() and disconnected(), are called when the

browser connects and disconnects to the channel, and generally you can

leave them empty.

This shows even more of the benefits of CoffeeScript. If you go to the Coffee-

Script site,9 click “Try CoffeeScript,” and paste this code, you can see the

equivalent in JavaScript. It’s a bit longer and more verbose. Of course, the

other benefit is that Rails generated most of this code for you, and you only

had to add one line. A good place to find out more on this subject is

CoffeeScript: Accelerated JavaScript Development [Bur15].

9. http://coffeescript.org

Chapter 11. Task F: Add a Dash of Ajax • 172

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/assets/javascripts/channels/products.coffee
http://coffeescript.org
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

To start the Action Cable process (and to pick up the configuration change if

that was done), we need to restart the server. The first time you visit the Depot

page you’ll see additional messages on the server window:

Started GET "/cable" for ::1 at 2016-03-13 11:02:42 -0400
Started GET "/cable/" [WebSocket] for ::1 at 2016-03-13 11:02:42 -0400
Successfully upgraded to WebSocket (REQUEST_METHOD: GET,
HTTP_CONNECTION: keep-alive, Upgrade, HTTP_UPGRADE: websocket)
ProductsChannel is transmitting the subscription confirmation
ProductsChannel is streaming from products

Again, update the price of a book in one browser window and watch the catalog

update instantly in any other browser window that shows the Depot store.

What We Just Did

In this iteration, we added Ajax support to our cart:

• We moved the shopping cart into the sidebar. We then arranged for the

create action to redisplay the catalog page.

• We used remote: true to invoke the LineItemsController.create() action using Ajax.

• We then used an ERB template to create CoffeeScript that’ll execute on

the client.

• We wrote a helper method that renders the cart only if it has anything in it.

• We used Action Cable and CoffeeScript to update the catalog display

whenever a product changes.

• We wrote a test that verifies not only the creation of a line item but also

the content of the response that’s returned from such a request.

The key point to take away is the incremental style of Ajax development. Start

with a conventional application and then add Ajax features, one by one. Ajax

can be hard to debug; by adding it slowly to an application, you make it eas-

ier to track down what changed if your application stops working. And, as

you saw, starting with a conventional application makes it easier to support

both Ajax and non-Ajax behavior in the same codebase.

Finally, here are a couple of hints. First, if you plan to do a lot of Ajax devel-

opment, you’ll probably need to get familiar with your browser’s JavaScript

debugging facilities and with its DOM inspectors, such as Firefox’s Firebug,

Internet Explorer’s Developer Tools, Google Chrome’s Developer Tools, Safari’s

Web Inspector, or Opera’s Dragonfly. And, second, the NoScript plugin for

Firefox makes checking JavaScript/no JavaScript a one-click breeze. Others

find it useful to run two different browsers when they’re developing—with

report erratum • discuss

Iteration F5: Broadcasting Updates with Action Cable • 173

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

JavaScript enabled in one and disabled in the other. Then, as new features

are added, poking at it with both browsers will ensure that your application

works regardless of the state of JavaScript.

Playtime

Here’s some stuff to try on your own:

• The cart is currently hidden when the user empties it by redrawing the

entire catalog. Can you change the application to remove it using an Ajax

request, so the page doesn’t reload?

• Add a button next to each item in the cart. When clicked, it should invoke

an action to decrement the quantity of the item, deleting it from the cart

when the quantity reaches zero. Get it working without using Ajax first

and then add the Ajax goodness.

• Make images clickable. In response to a click, add the associated product

to the cart.

• When a product changes, highlight the product that changed in response

to receiving a broadcast message.

Chapter 11. Task F: Add a Dash of Ajax • 174

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 12

In this chapter, you'll see:

• Linking tables with foreign keys

• Using belongs_to, has_many, and :through
• Creating forms based on models (form_with)

• Linking forms, models, and views

• Generating a feed using atom_helper on model objects

Task G: Check Out!

Let’s take stock. So far, we’ve put together a basic product administration

system, we’ve implemented a catalog, and we have a pretty spiffy-looking

shopping cart. So, now we need to let the buyer actually purchase the contents

of that cart. Let’s implement the checkout function.

We’re not going to go overboard here. For now, all we’ll do is capture the

customer’s contact information and payment details. Using these, we’ll con-

struct an order in the database. Along the way, we’ll be looking a bit more at

models, validation, and form handling.

Iteration G1: Capturing an Order

An order is a set of line items, along with details of the purchase transaction.

Our cart already contains line_items, so all we need to do is add an order_id col-

umn to the line_items table and create an orders table based on the Initial guess

at application data diagram on page 69, combined with a brief chat with our

customer.

First we create the order model and update the line_items table:

depot> bin/rails generate scaffold Order name address:text email \
pay_type:integer

depot> bin/rails generate migration add_order_to_line_item order:references

Note that we didn’t specify any data type for two of the four columns. This is

because the data type defaults to string. This is yet another small way in which

Rails makes things easier for you in the most common case without making

things any more cumbersome when you need to specify a data type.

Note that we defined pay_type as an integer. While this is an efficient way to

store data that can only store discrete values, storing data in this way requires

keeping track of which values are used for which payment type. Rails can do

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

this for you through the use of enum declarations placed in the model class.

Add this code to app/models/order.rb:

rails51/depot_o/app/models/order.rb

class Order < ApplicationRecord
enum pay_type: {➤

"Check" => 0,
"Credit card" => 1,
"Purchase order" => 2

}
end

Now that we’ve created the migrations, we can apply them:

depot> bin/rails db:migrate
== CreateOrders: migrating =======================================
-- create_table(:orders)

-> 0.0014s
== CreateOrders: migrated (0.0015s) ==============================

== AddOrderIdToLineItem: migrating ===============================
-- add_column(:line_items, :order_id, :integer)

-> 0.0008s
== AddOrderIdToLineItem: migrated (0.0009s) ======================

Because the database didn’t have entries for these two new migrations in the

schema_migrations table, the db:migrate task applied both migrations to the

database. We could, of course, have applied them separately by running the

migration task after creating the individual migrations.

Joe asks:

Where’s the Credit-Card Processing?

In the real world, we’d probably want our application to handle the commercial side

of checkout. We might even want to integrate credit-card processing. However, inte-

grating with back-end payment-processing systems requires a fair amount of paper-

work and jumping through hoops. And this would distract from looking at Rails, so

we’re going to punt on this particular detail for the moment.

Creating the Order Capture Form

Now that we have our tables and our models as we need them, we can start

the checkout process. First, we need to add a Checkout button to the shopping

cart. Because it’ll create a new order, we’ll link it back to a new action in our

order controller:

Chapter 12. Task G: Check Out! • 176

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/models/order.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_o/app/views/carts/_cart.html.erb

<article>
<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h2>Your Cart</h2>
<table>

<%= render(cart.line_items) %>
<tfoot>

<tr>
<th colspan="2">Total:</th>
<td class="price"><%= number_to_currency(cart.total_price) %></td>

</tr>
</tfoot>

</table>

<div class="actions">➤

<%= button_to 'Empty cart', cart,
method: :delete,
data: { confirm: 'Are you sure?' } %>

<%= button_to 'Checkout', new_order_path,➤

method: :get,➤

class: "checkout"%>➤

</div>➤

</article>

The first thing we want to do is check to make sure that there’s something

in the cart. This requires us to have access to the cart. Planning ahead, we’ll

also need this when we create an order:

rails51/depot_o/app/controllers/orders_controller.rb

class OrdersController < ApplicationController
include CurrentCart➤

before_action :set_cart, only: [:new, :create]➤

before_action :ensure_cart_isnt_empty, only: :new➤

before_action :set_order, only: [:show, :edit, :update, :destroy]

GET /orders
#...

➤

private➤

def ensure_cart_isnt_empty➤

if @cart.line_items.empty?➤

redirect_to store_index_url, notice: 'Your cart is empty'➤

end➤

end➤

end

report erratum • discuss

Iteration G1: Capturing an Order • 177

http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/views/carts/_cart.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/controllers/orders_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

If nothing is in the cart, we redirect the user back to the storefront, provide

a notice of what we did, and return immediately. This prevents people from

navigating directly to the checkout option and creating empty orders. Note

that we tucked this handling of an exception case into a before_action method.

This enables the main line processing logic to remain clean.

And we add a test for requires item in cart and modify the existing test for should
get new to ensure that the cart contains an item:

rails51/depot_o/test/controllers/orders_controller_test.rb

test "requires item in cart" do➤

get new_order_url➤

assert_redirected_to store_index_path➤

assert_equal flash[:notice], 'Your cart is empty'➤

end➤

test "should get new" do
post line_items_url, params: { product_id: products(:ruby).id }➤

➤

get new_order_url
assert_response :success

end

Now we want the new action to present users with a form, prompting them to

enter the information in the orders table: the user’s name, address, email

address, and payment type. This means we’ll need to display a Rails template

containing a form. The input fields on this form will have to link to the corre-

sponding attributes in a Rails model object, so we need to create an empty

model object in the new action to give these fields something to work with.

As always with HTML forms, the trick is populating any initial values into the

form fields and then extracting those values out into our application when

the user clicks the submit button.

In the controller, the @order instance variable is set to reference a new Order
model object. This is done because the view populates the form from the data

in this object. As it stands, that’s not particularly interesting. Because it’s a

new model object, all the fields will be empty. However, consider the general

case. Maybe we want to edit an existing order. Or maybe the user has tried

to enter an order but the data has failed validation. In these cases, we want

any existing data in the model shown to the user when the form is displayed.

Passing in the empty model object at this stage makes all these cases consis-

tent. The view can always assume it has a model object available. Then, when

the user clicks the submit button, we’d like the new data from the form to be

extracted into a model object back in the controller.

Chapter 12. Task G: Check Out! • 178

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_o/test/controllers/orders_controller_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Fortunately, Rails makes this relatively painless. It provides us with a bunch

of form helper methods. These helpers interact with the controller and with

the models to implement an integrated solution for form handling. Before we

start on our final form, let’s look at a small example:

<%= form_with(model: @order, local: true) do |form| %>
<p>
<%= form.label :name, "Name:" %>
<%= form.text_field :name, size: 40 %>

</p>
<% end %>

This code does two powerful things for us. First, the form_with() helper on the

first line sets up an HTML form that knows about Rails routes and models.

The first argument, module: @order tells the helper which instance variable to

use when naming fields and sending the form data back to the controller (the

second argument tells Rails not to post this form via Ajax, which became the

default in Rails 5.1).

The second powerful feature of the code is how it creates the form fields

themselves. You can see that form_with() sets up a Ruby block environment

(that ends on the last line of the listing with the end keyword). Within this

block, you can put normal template stuff (such as the <p> tag). But you can

also use the block’s parameter (form in this case) to reference a form context.

We use this context to add a text field with a label by calling text_field() and

label(), respectively. Because the text field is constructed in the context of

form_with, it’s automatically associated with the data in the @order object. This

association means that submitting the form will set the right names and

values in the data available to the controller, but it will also pre-populate the

form fields with any values already existing on the model.

All these relationships can be confusing. It’s important to remember that

Rails needs to know both the names and the values to use for the fields

associated with a model. The combination of form_with and the various field-

level helpers (such as text_field) gives it this information. You can see this pro-

cess in the figure on page 180.

Now we can update the template for the form that captures a customer’s

details for checkout. It’s invoked from the new action in the order controller,

so the template is called new.html.erb, found in the app/views/orders directory:

rails51/depot_o/app/views/orders/new.html.erb

<section class="depot_form">➤

<h1>Please Enter Your Details</h1>➤

<%= render 'form', order: @order %>➤

</section>➤

report erratum • discuss

Iteration G1: Capturing an Order • 179

http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/views/orders/new.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

<%= form_with(model: @order, local: true) do |form| %>
 <p>
 <%= form.label :name, "Name:" %>
 <%= form.text_field :name, size: 40 %>
 </p>
<% end %>

def hello
 @order = Order.find(...)
end

@order.name → "Pat"

Name: Pat

This template makes use of a partial named _form:

rails51/depot_o/app/views/orders/_form.html.erb

<%= form_with(model: order, local: true) do |form| %>
<% if order.errors.any? %>

<div id="error_explanation">
<h2><%= pluralize(order.errors.count, "error") %>
prohibited this order from being saved:</h2>

<% order.errors.full_messages.each do |message| %>

<%= message %>
<% end %>

</div>
<% end %>

<div class="field">
<%= form.label :name %>
<%= form.text_field :name, id: :order_name, size: 40 %>➤

</div>

<div class="field">
<%= form.label :address %>
<%= form.text_area :address, id: :order_address, rows: 3, cols: 40 %>➤

</div>

<div class="field">
<%= form.label :email %>
<%= form.email_field :email, id: :order_email, size: 40 %>➤

</div>

<div class="field">
<%= form.label :pay_type %>
<%= form.select :pay_type, Order.pay_types.keys, id: :order_pay_type,➤

prompt: 'Select a payment method' %>➤

</div>

<div class="actions">
<%= form.submit 'Place Order' %>➤

</div>
<% end %>

Chapter 12. Task G: Check Out! • 180

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/views/orders/_form.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Rails has form helpers for all the different HTML-level form elements. In the

previous code, we use text_field, email_field, and text_area helpers to capture the

customer’s name, email, and address. We’ll cover form helpers in more depth

in Generating Forms, on page 387.

The only tricky thing in there is the code associated with the selection list.

We use the keys defined for the pay_type enum for the list of available payment

options. We also pass the :prompt parameter, which adds a dummy selection

containing the prompt text.

Let’s also add some CSS to make the form work with our existing design.

While we’re doing this, we’ll also add some styling for the error states that

Rails renders (which we’ll learn about in a moment). You can add all of this

at the end of app/assets/stylesheets/application.scss:

rails51/depot_o/app/assets/stylesheets/application.scss

.depot_form {
padding: 0 1em;
h1 {

font-size: 1.99em;
line-height: 1.41em;
margin-bottom: 0.5em;
padding: 0;

}
.field, .actions {

margin-bottom: 0.5em;
padding: 0;

}
.actions {

text-align: right;
padding: 1em 0;

}
input, textarea, select, option {
border: solid thin #888;
box-sizing: border-box;
font-size: 1em;
padding: 0.5em;
width: 100%;

}
label {
padding: 0.5em 0;

}
input[type="submit"] {

background-color: #bfb;
border-radius: 0.354em;
border: solid thin #888;
color: black;
font-size: 1.41em;
font-weight: bold;

report erratum • discuss

Iteration G1: Capturing an Order • 181

http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/assets/stylesheets/application.scss
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

padding: 0.354em 1em;
}
input[type="submit"]:hover {

background-color: #9d9;
}
// Also, clean up the error styling
#error_explanation {

background-color: white;
border-radius: 1em;
border: solid thin red;
margin-bottom: 0.5em;
padding: 0.5em;
width: 100%;
h2 {

background: none;
color: red;
font-size: 1.41em;
line-height: 1.41em;
padding: 1em;

}
ul {

margin-top: 0;
li {

color: red;
font-size: 1em;

}
}

}
.field_with_errors {

background: none;
color: red;
width: 100%;
label {
font-weight: bold;

}
label::before {

content: "! ";
}
input,textarea {

background: pink;
}

}
}

We’re ready to play with our form. Add some stuff to your cart, then click the

Checkout button. You should see something like the screenshot on page 183.

Looking good! Before we move on, let’s finish the new action by adding some

validation. We’ll change the Order model to verify that the customer enters

Chapter 12. Task G: Check Out! • 182

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

data for all the input fields. We’ll also validate that the payment type is one

of the accepted values:

rails51/depot_o/app/models/order.rb

class Order < ApplicationRecord
...
validates :name, :address, :email, presence: true➤

validates :pay_type, inclusion: pay_types.keys➤

end

Some folks might be wondering why we bother to validate the payment type,

given that its value comes from a drop-down list that contains only valid values.

We do it because an application can’t assume that it’s being fed values from

the forms it creates. Nothing is stopping a malicious user from submitting form

data directly to the application, bypassing our form. If the user sets an unknown

payment type, that user might conceivably get our products for free.

Note that we already loop over the @order.errors at the top of the page. This’ll

report validation failures.

Since we modified validation rules, we need to modify our test fixture to match:

rails51/depot_o/test/fixtures/orders.yml

Read about fixtures at
http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
name: Dave Thomas➤

address: MyText
email: dave@example.org➤

pay_type: Check➤

report erratum • discuss

Iteration G1: Capturing an Order • 183

http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/models/order.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_o/test/fixtures/orders.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

two:
name: MyString
address: MyText
email: MyString
pay_type: 1

Furthermore, for an order to be created, a line item needs to be in the cart,

so we need to modify the line items test fixture too:

rails51/depot_o/test/fixtures/line_items.yml

Read about fixtures at
http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
product: two
cart: one

two:
product: ruby➤

order: one➤

Note that if you didn’t choose to do the optional exercises in Playtime, on page

149, you need to modify all of the references to products and carts at this time.

Feel free to make other changes, but only the first is currently used in the

functional tests. For these tests to pass, we’ll need to implement the model.

Capturing the Order Details

Let’s implement the create() action in the controller. This method has to do the

following:

1. Capture the values from the form to populate a new Order model object.

2. Add the line items from our cart to that order.

3. Validate and save the order. If this fails, display the appropriate messages,

and let the user correct any problems.

4. Once the order is successfully saved, delete the cart, redisplay the catalog

page, and display a message confirming that the order has been placed.

We define the relationships themselves, first from the line item to the order:

rails51/depot_o/app/models/line_item.rb

class LineItem < ApplicationRecord
belongs_to :order, optional: true➤

belongs_to :product, optional: true➤

belongs_to :cart

Chapter 12. Task G: Check Out! • 184

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_o/test/fixtures/line_items.yml
http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/models/line_item.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

def total_price
product.price * quantity

end
end

And then we define the relationship from the order to the line item, once again

indicating that all line items that belong to an order are to be destroyed

whenever the order is destroyed:

rails51/depot_o/app/models/order.rb

class Order < ApplicationRecord
has_many :line_items, dependent: :destroy➤

...
end

The method ends up looking something like this:

rails51/depot_o/app/controllers/orders_controller.rb

def create
@order = Order.new(order_params)
@order.add_line_items_from_cart(@cart)➤

respond_to do |format|
if @order.save

Cart.destroy(session[:cart_id])➤

session[:cart_id] = nil➤

format.html { redirect_to store_index_url, notice:➤

'Thank you for your order.' }➤

format.json { render :show, status: :created,
location: @order }

else
format.html { render :new }
format.json { render json: @order.errors,

status: :unprocessable_entity }
end

end
end

We start by creating a new Order object and initialize it from the form data.

The next line adds into this order the items that are already stored in the

cart; we’ll write the method to do that in a minute.

Next, we tell the order object to save itself (and its children, the line items) to

the database. Along the way, the order object will perform validation (but we’ll

get to that in a minute).

If the save succeeds, we do two things. First, we ready ourselves for this

customer’s next order by deleting the cart from the session. Then, we redisplay

report erratum • discuss

Iteration G1: Capturing an Order • 185

http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/models/order.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_o/app/controllers/orders_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Joe asks:

Aren’t You Creating Duplicate Orders?

Joe is concerned to see our controller creating Order model objects in two actions: new
and create. He’s wondering why this doesn’t lead to duplicate orders in the database.

The answer is that the new action creates an Order object in memory simply to give the

template code something to work with. Once the response is sent to the browser, that

particular object gets abandoned, and it’ll eventually be reaped by Ruby’s garbage

collector. It never gets close to the database.

The create action also creates an Order object, populating it from the form fields. This

object does get saved in the database. So, model objects perform two roles: they map

data into and out of the database, but they’re also regular objects that hold business

data. They affect the database only when you tell them to, typically by calling save().

the catalog, using the redirect_to() method to display a cheerful message. If,

instead, the save fails, we redisplay the checkout form with the current cart.

In the create action, we assumed that the order object contains the

add_line_items_from_cart() method, so let’s implement that method now:

rails51/depot_p/app/models/order.rb

class Order < ApplicationRecord
...
def add_line_items_from_cart(cart)➤

cart.line_items.each do |item|➤

item.cart_id = nil➤

line_items << item➤

end➤

end➤

end

For each item that we transfer from the cart to the order, we need to do two

things. First we set the cart_id to nil to prevent the item from going poof when

we destroy the cart.

Then we add the item itself to the line_items collection for the order. Notice

that we didn’t have to do anything special with the various foreign-key fields,

such as setting the order_id column in the line item rows to reference the

newly created order row. Rails does that knitting for us using the has_many()
and belongs_to() declarations we added to the Order and LineItem models.

Appending each new line item to the line_items collection hands the responsi-

bility for key management over to Rails. We also need to modify the test to

reflect the new redirect:

Chapter 12. Task G: Check Out! • 186

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_p/app/models/order.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_p/test/controllers/orders_controller_test.rb

test "should create order" do
assert_difference('Order.count') do

post orders_url, params: { order: { address: @order.address,
email: @order.email, name: @order.name,
pay_type: @order.pay_type } }

end

assert_redirected_to store_index_url➤

end

So, as a first test of all of this, click the Place Order button on the checkout

page without filling in any of the form fields. You should see the checkout

page redisplayed along with error messages complaining about the empty

fields, as shown in the following screenshot.

If we fill in data (as shown in the following screenshot) and click Place Order, we

should be taken back to the catalog, as shown in the screenshot on page 188.

report erratum • discuss

Iteration G1: Capturing an Order • 187

http://media.pragprog.com/titles/rails51/code/rails51/depot_p/test/controllers/orders_controller_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

But did it work? Let’s look in the database, using the Rails command dbconsole,
which tells Rails to open an interactive shell to whatever database we have

configured.

depot> bin/rails dbconsole
SQLite version 3.8.2
Enter ".help" for instructions
sqlite> .mode line
sqlite> select * from orders;

id = 1
name = Dave Thomas

address = 123 Main St
email = customer@example.com

pay_type = 0
created_at = 2016-05-29 02:31:04.964785
updated_at = 2016-05-29 02:31:04.964785

sqlite> select * from line_items;
id = 10

product_id = 2
cart_id =

created_at = 2016-05-29 02:30:26.188914
updated_at = 2016-05-29 02:31:04.966057

quantity = 1
price = 45

order_id = 1
sqlite> .quit

Although what you see will differ on details such as version numbers and

dates (and price will be present only if you completed the exercises defined in

Playtime, on page 149), you should see a single order and one or more line

items that match your selections.

Now that users can check out and purchase products, the customer needs

a way to view these orders. Going into the database directly is not acceptable.

We also don’t have time to build a full-fledged admin user interface right now,

so we’ll take advantage of the various Atom feed readers that exist and have

our app export all the orders as an Atom feed, so the customer can quickly

see what’s been purchased.

Chapter 12. Task G: Check Out! • 188

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Iteration G2: Atom Feeds

By using a standard feed format, such as Atom, you can immediately take

advantage of a wide variety of preexisting clients. Because Rails already knows

about IDs, dates, and links, it can free you from having to worry about these

pesky details and let you focus on producing a human-readable summary.

We start by adding a new action to the products controller:

rails51/depot_p/app/controllers/products_controller.rb

def who_bought
@product = Product.find(params[:id])
@latest_order = @product.orders.order(:updated_at).last
if stale?(@latest_order)

respond_to do |format|
format.atom

end
end

end

Joe asks:

Why Atom?

A number of different feed formats exit—most notably RSS 1.0, RSS 2.0, and Atom,

standardized in 2000, 2002, and 2005, respectively. These three are all widely sup-

ported. To aid with the transition, a number of sites provide multiple feeds for the

same site, but this is no longer necessary, increases user confusion, and generally

isn’t recommended.

The Ruby language provides a low-level library that can produce any of these formats

as well as a number of other less common versions of RSS. For best results, stick

with one of the three main versions.

The Rails framework is all about picking reasonable defaults, and it has chosen Atom

as the default for feed formats. It’s specified as an Internet standards–track protocol

for the Internet community by the IETF, and Rails provides a higher-level helper

named atom_feed that takes care of a number of details based on knowledge of Rails

naming conventions for things like IDs and dates.

In addition to fetching the product, we check to see if the request is stale.

Remember in Iteration C5: Caching of Partial Results, on page 116 when we

cached partial results of responses because the catalog display was expected

to be a high-traffic area? Well, feeds are like that, but with a different usage

pattern. Instead of a large number of different clients all requesting the same

page, we have a small number of clients repeatedly requesting the same page.

report erratum • discuss

Iteration G2: Atom Feeds • 189

http://media.pragprog.com/titles/rails51/code/rails51/depot_p/app/controllers/products_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

You might be familiar with the idea of browser caches; the same concept holds

true for feed aggregators.

The way this works is that the responses contain a bit of metadata that

identifies when the content was last modified and a hashed value called an

ETag. If a subsequent request provides this data back, this gives the server

the opportunity to respond with an empty response body and an indication

that the data hasn’t been modified.

As is usual with Rails, you don’t need to worry about the mechanics. You just

need to identify the source of the content, and Rails does the rest. In this

case, we use the last order. Inside the if statement, we process the request

normally.

By adding format.atom, we cause Rails to look for a template named

who_bought.atom.builder. Such a template can use the generic XML functionality

that Builder provides as well as use the knowledge of the Atom feed format

that the atom_feed helper provides:

rails51/depot_p/app/views/products/who_bought.atom.builder

atom_feed do |feed|
feed.title "Who bought #{@product.title}"

feed.updated @latest_order.try(:updated_at)

@product.orders.each do |order|
feed.entry(order) do |entry|

entry.title "Order #{order.id}"
entry.summary type: 'xhtml' do |xhtml|

xhtml.p "Shipped to #{order.address}"

xhtml.table do
xhtml.tr do

xhtml.th 'Product'
xhtml.th 'Quantity'
xhtml.th 'Total Price'

end
order.line_items.each do |item|

xhtml.tr do
xhtml.td item.product.title
xhtml.td item.quantity
xhtml.td number_to_currency item.total_price

end
end
xhtml.tr do

xhtml.th 'total', colspan: 2
xhtml.th number_to_currency \

order.line_items.map(&:total_price).sum
end

end

Chapter 12. Task G: Check Out! • 190

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_p/app/views/products/who_bought.atom.builder
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

xhtml.p "Paid by #{order.pay_type}"
end
entry.author do |author|

author.name order.name
author.email order.email

end
end

end
end

At the overall feed level, we need to provide only two pieces of information:

the title and the date of the latest update. If no orders exist, the updated_at
value is null, and Rails supplies the current time instead.

Then we iterate over each order associated with this product by calling @prod-
uct.orders. Products and orders have no direct relationship to each other, though

there is an indirect one via line items. A product’s orders would be the orders

associated with any of the product’s line items. We could implement that our-

selves by creating an orders() method, but Rails provides a way to do this for us,

since this indirect relationship is a common pattern. The has_many() method we

used to tell Rails that a product has many line items takes an optional argument

named through: that tells Rails to traverse the indirect relationship. In our case,

we’ll tell Rails that a product has many orders through its existing line items

relationship:

rails51/depot_p/app/models/product.rb

class Product < ApplicationRecord
has_many :line_items
has_many :orders, through: :line_items➤

#...
end

For each order, we provide a title, a summary, and an author. The summary

can be full XHTML, and we use this to produce a table of product titles,

quantity ordered, and total prices. We follow this table with a paragraph

containing the pay_type.

To make this work, we need to define a route. This action will respond to

HTTP GET requests and will operate on a member of the collection (in other

words, on an individual product) as opposed to the entire collection (which

in this case would mean all products):

rails51/depot_p/config/routes.rb

Rails.application.routes.draw do
resources :orders
resources :line_items
resources :carts
root 'store#index', as: 'store_index'

report erratum • discuss

Iteration G2: Atom Feeds • 191

http://media.pragprog.com/titles/rails51/code/rails51/depot_p/app/models/product.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_p/config/routes.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

resources :products do➤

get :who_bought, on: :member➤

end➤

For details on the DSL available within this file, see
http://guides.rubyonrails.org/routing.html

end

We can try it for ourselves:

depot> curl --silent http://localhost:3000/products/3/who_bought.atom
<?xml version="1.0" encoding="UTF-8"?>
<feed xml:lang="en-US" xmlns="http://www.w3.org/2005/Atom">

<id>tag:localhost,2005:/products/3/who_bought</id>
<link type="text/html" href="http://localhost:3000" rel="alternate"/>
<link type="application/atom+xml"

href="http://localhost:3000/info/who_bought/3.atom" rel="self"/>
<title>Who bought Programming Ruby 1.9</title>
<updated>2016-01-29T02:31:04Z</updated>
<entry>

<id>tag:localhost,2005:Order/1</id>
<published>2016-01-29T02:31:04Z</published>
<updated>2016-01-29T02:31:04Z</updated>
<link rel="alternate" type="text/html" href="http://localhost:3000/orders/1"/>
<title>Order 1</title>
<summary type="xhtml">

<div xmlns="http://www.w3.org/1999/xhtml">
<p>Shipped to 123 Main St</p>

<table>
...

</table>
<p>Paid by check</p>

</div>
</summary>
<author>

<name>Dave Thomas</name>
<email>customer@pragprog.com</email>

</author>
</entry>

</feed>

Looks good. Now we can subscribe to this in our favorite feed reader.

Best of all, the customer likes it. We’ve implemented product maintenance,

a basic catalog, and a shopping cart, and now we have a simple ordering

system. Obviously, we’ll also have to write some kind of fulfillment application,

but that can wait for a new iteration. (And that iteration is one that we’ll skip

in this book; it doesn’t have much new to say about Rails.)

Chapter 12. Task G: Check Out! • 192

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

What We Just Did

In a fairly short amount of time, we did the following:

• We created a form to capture details for the order and linked it to a new

order model.

• We added validation and used helper methods to display errors to the user.

• We provided a feed so the administrator can monitor incoming orders.

Playtime

Here’s some stuff to try on your own:

• Get HTML- and JSON-formatted views working for who_bought requests.

Experiment with including the order information in the JSON view by

rendering @product.to_json(include: :orders). Do the same thing for XML using

ActiveModel::Serializers::Xml.1

• What happens if you click the Checkout button in the sidebar while the

checkout screen is already displayed? Can you find a way to disable the

button in this circumstance?

• The list of possible payment types is currently stored as a constant in the

Order class. Can you move this list into a database table? Can you still

make validation work for the field?

1. https://github.com/rails/activemodel-serializers-xml#readme

report erratum • discuss

Iteration G2: Atom Feeds • 193

https://github.com/rails/activemodel-serializers-xml#readme
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 13

In this chapter, you'll see:

• Using Webpacker to manage app-like Javascript

• Setting up a development environment that

includes Webpack

• Using React to build a dynamic web form

• Using Capybara and ChromeDriver to test JavaScript-

powered features

Task H: Entering Additional

Payment Details

Our customer is enthusiastic about our progress, but after playing with the

new checkout feature for a few minutes, she has a question: how does a user

enter payment details? It’s a great question, since there isn’t a way to do that.

Making that possible is somewhat tricky, because each payment method

requires different details. If users want to pay with a credit card, they need

to enter a card number and expiration date. If they want to pay with a check,

we’ll need a routing number and an account number. And for purchase orders,

we need the purchase order number.

Although we could put all five fields on the screen at once, the customer

immediately balks at the poor user experience that would result. Can we show

the appropriate fields, depending on what payment type is chosen? Changing

elements of a user interface dynamically is certainly possible with some

JavaScript, but it’s quite a bit more complex than the JavaScript we’ve used

thus far. Rails calls JavaScript like this app-like JavaScript, and it includes

a tool named Webpacker that will help us manage it. Webpacker will handle

a lot of complex setup for us so that we can focus most of our efforts on giving

our customer—and our users—a great experience checking out. (Refer back

to Chapter 1, Installing Rails, on page 3, for installation instructions for the

tools used in this chapter.)

Iteration H1: Adding Fields Dynamically to a Form

We need a dynamic form that changes what fields are shown based on what

pay type the user has selected. While we could cobble something together

with jQuery, it would be a bit cleaner if we could use a more modern

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

JavaScript library like React.1 This will also form a solid base from which

we can easily add additional features later.

Using JavaScript libraries or frameworks can often be difficult, as the config-

uration burden they bear is far greater than what we’ve seen with Rails. To

help us manage this complexity, Rails includes Webpacker, which provides

configuration for Webpack.2 Webpack is a tool to manage the JavaScript files

that we write. Note the similar names. Webpacker is a gem that’s part of Rails

and sets up Webpack inside our Rails app.

Managing JavaScript is surprisingly complex. By using Webpack we can

easily put our JavaScript into several different files, bring in third-party

libraries (like React), and use more advanced features of JavaScript not sup-

ported by a browser (such as the ability to define classes). Webpack then

compiles all of our JavaScript, along with the third-party libraries we are

using, into a pack. Because this isn’t merely sprinkling small bits of JavaScript

in our view, Rails refers to this as app-like JavaScript.

While we could use Webpack directly with Rails, configuring Webpack is

extremely difficult. It’s highly customizable and not very opinionated, meaning

developers must make many decisions just to get something working. Web-

packer essentially is the decisions made by the Rails team and bundled up

into a gem. Almost everything Webpacker does is to provide a working config-

uration for Webpack and React so that we can focus on writing JavaScript

instead of configuring tools. But Webpack is the tool that manages our

JavaScript day-to-day.

React is a JavaScript view library designed to quickly create dynamic user

interfaces. We’ll use it to create a dynamic payment method details form, and

Webpacker will ensure that the configuration and setup for all this is as

simple as possible. That said, there’s a bit of setup we need to do.

First, we’ll configure Webpacker and install React. After that, we’ll replace

our existing payment-type drop-down with a React-rendered version, which

will demonstrate how all the moving parts fit together. With that in place,

we’ll enhance our React-powered payment type selector to show the dynamic

form elements we want.

1. https://facebook.github.io/react/
2. https://webpack.js.org

Chapter 13. Task H: Entering Additional Payment Details • 196

report erratum • discuss

https://facebook.github.io/react/
https://webpack.js.org
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Configuring Webpacker and Installing React

Webpacker is a separate gem that you must install in addition to Rails. Add

it to your Gemfile like so:

gem 'webpacker', '~> 3.0'

Install this with bundle install.

Next, set up Webpack by running bin/rails webpacker:install.

$ bin/rails webpacker:install
Creating javascript app source directory

create app/javascript
create app/javascript/packs/application.js

Copying binstubs
exist bin
create bin/webpack-dev-server
create bin/webpack

identical bin/yarn
Copying webpack core config and loaders

create config/webpack
create config/webpack/configuration.js
create config/webpack/development.js
create config/webpack/development.server.js
create config/webpack/development.server.yml
create config/webpack/paths.yml
create config/webpack/production.js
create config/webpack/shared.js
create config/webpack/test.js
create config/webpack/loaders
create config/webpack/loaders/assets.js
create config/webpack/loaders/babel.js
create config/webpack/loaders/coffee.js
create config/webpack/loaders/erb.js
create config/webpack/loaders/sass.js
create .postcssrc.yml
append .gitignore

Installing all JavaScript dependencies
run ./bin/yarn add webpack webpack-merge js-yaml…

yarn add v0.20.3
[1/4] Resolving packages...
[2/4] Fetching packages...
[3/4] Linking dependencies...
[4/4] Building fresh packages...

«lots of output»
Done in 24.95s.
Installing dev server for live reloading

run ./bin/yarn add --dev webpack-dev-server from "."
yarn add v0.20.3

report erratum • discuss

Iteration H1: Adding Fields Dynamically to a Form • 197

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

[1/4] Resolving packages...
[2/4] Fetching packages...
[3/4] Linking dependencies...
[4/4] Building fresh packages...
success Saved lockfile.
success Saved 82 new dependencies.

«lots more output»
Done in 5.11s.
Webpacker successfully installed

As you can see from the output, this created several configuration files in

config/webpack and installed various JavaScript libraries. The libraries that were

installed are listed in package.json. package.json is the JavaScript equivalent to

our Gemfile—–it lists all the necessary JavaScript libraries for our app to run.

The equivalent of Bundler is Yarn.

Just like bundle install downloads all the gems our app needs, yarn install downloads

all the JavaScript libraries we need. As a convenience, the webpacker:install task

ran yarn install for us.

Webpacker can also install and configure some common JavaScript frame-

works such as Angular, Vue, or React. We chose React because it’s the sim-

plest overall and is the best fit for solving our problem. To have Webpacker

set it all up for us, run the task webpacker:install:react:

$ bin/rails webpacker:install:react
Copying react loader to …config/webpack/loaders

create config/webpack/loaders/react.js
Copying .babelrc to app root directory

create .babelrc
Copying react example entry file to …app/javascript/packs

create app/javascript/packs/hello_react.jsx
Installing all react dependencies

run ./bin/yarn add react react-dom babel-preset-react from "."
yarn add v0.20.3
[1/4] Resolving packages...
[2/4] Fetching packages...
[3/4] Linking dependencies...
warning "react-dom@15.4.2" has unmet peer dependency "react@^15.4.2".
[4/4] Building fresh packages...
success Saved lockfile.
success Saved 26 new dependencies.

«lots of output»
Done in 7.17s.
Webpacker now supports react.js

Chapter 13. Task H: Entering Additional Payment Details • 198

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

If you’ve ever tried to set up Webpack and a JavaScript framework like React

before, you’ll appreciate how much work Webpacker has just done for us. If

you’ve never had the privilege, trust me, this saves a ton of time and aggravation.

Webpacker also created a rudimentary React component in app/javascript/packs/hel-
lo_react.jsx. Don’t worry about what that means for now. We’re going to use this

generated code to validate the installation and set up our development envi-

ronment. This generated code will append the string “Hello React!” to the end

of our page, but it’s not activated by default. Let’s find out why, configure it

to be included in our views, and set up our development environment to work

smoothly with Webpacker.

Updating Our Development Environment for Webpack

Webpacker includes a helper method called javascript_pack_tag() that takes as

an argument the name of the file in app/javascript/packs whose JavaScript should

be included on the page.

The reason Rails doesn’t simply include all JavaScript all the time is that you

might not want that to happen for performance reasons. Although our payment

details code won’t be terribly complex, it’ll still be a chunk of code our users

will have to download. Since it won’t be needed anywhere else in our app, we

can make the user experience faster and better by only downloading the code

when it’s needed.

Webpacker allows us to have any number of these separately managed packs.

We can include any that we like, wherever we like. To see how this works,

let’s add a call to javascript_pack_tag() to our app/views/orders/new.html.erb page to

bring in the sample React component that Webpacker created for us.

rails51/depot_pa/app/views/orders/new.html.erb

<section class="depot_form">
<h1>Please Enter Your Details</h1>
<%= render 'form', order: @order %>

</section>

<%= javascript_pack_tag("hello_react") %>➤

If you add some items to your cart and navigate to the checkout page, you

should see the string “Hello React!” at the bottom of the page, as shown in

the screenshot on page 200.

This validates that all the internals of Webpack are working with the app

(which is always a good practice before writing code so we can be sure what

might be the cause if something’s wrong). Now we can start building our fea-

ture. We need to replace the existing drop-down with one powered by React

report erratum • discuss

Iteration H1: Adding Fields Dynamically to a Form • 199

http://media.pragprog.com/titles/rails51/code/rails51/depot_pa/app/views/orders/new.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

and our Webpacker-managed JavaScript. Doing that requires a slight diversion

to learn about React.

Learning Just Enough React

We’ve validated our Webpack setup, but we still don’t have the full picture of

what is going on. What is a .jsx file, and what is the odd syntax inside

app/javascript/packs/hello_react.jsx? We can answer these questions by talking about

what React is and why we’re using it.

As mentioned above, React is a view library for JavaScript. Like the .erb files

we’ve been using, React dynamically renders HTML. Unlike ERB, React does

this in the browser, and it is optimized to do it fast. Because the selected pay

type will only affect a small part of our page, it will be a much better user

experience to have React rerender that part of our page than to have the

server rerender the entire thing.

React is more than just a library with some handy functions we can call. It’s

actually a mini-framework that includes extensions to JavaScript to make

our work easier—–once we understand how to use those extensions. When

we do, our job of creating a dynamic payment details form will result in easy-

to-understand code that’s also easy to manage, thanks to Webpacker.

The core concept in React is components. A component is a view, backed by

some sort of state. When the state changes, the view rerenders. The view can

Chapter 13. Task H: Entering Additional Payment Details • 200

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

behave differently depending on the current state inside the component. For

us, we’ll track the currently selected pay type as our state and have our view

render different input tags based on that.

We could certainly accomplish all of this using React’s JavaScript API. The

resulting code would be verbose, hard to follow, and hard to maintain. We

mentioned React’s extensions to JavaScript, and that extension is JSX.3 JSX

allows you to intermix JavaScript code and HTML-like markup in one file.

The result might look a bit odd at first, but it’s quite convenient for implement-

ing components.

React provides a compiler from JSX to JavaScript, and Webpack can use that

compiler as part of its build process. Let’s learn what JSX is actually like and

what it can do by replacing our existing pay type drop-down with a React

component that behaves the same way.

Creating a React-Powered Drop-Down

To get a sense of how to work with React and Webpack, we’ll replace the

existing pay type drop-down that’s being rendered by Rails with one that’s

rendered by React. Doing this requires three steps:

1. Create a new pack called pay_type that’ll be the root of our implementation.

2. Create the PayTypeSelector component that we’ll use to replace the existing

pay type selector drop-down.

3. Bring the component into our checkout view using javascript_pack_tag() and a

piece of markup that React can hook into in order to render the component.

This won’t change how our application behaves, but it will allow us to see all

the moving parts and understand what they do.

Creating a New Pack

As we mentioned, packs go in app/javascript/packs, so we’ll create our new pack

in app/javascript/packs/pay_type.jsx. This code is not a React component, but just a

few lines of code to bootstrap our React component and get it onto our page.

The most straightforward way to do that is to locate an element in the DOM

and use the React function React.render() to render our component into that

element. Let’s see the code, and then we’ll go through and explain what’s

happening, line by line.

3. https://facebook.github.io/react/docs/introducing-jsx.html

report erratum • discuss

Iteration H1: Adding Fields Dynamically to a Form • 201

https://facebook.github.io/react/docs/introducing-jsx.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_pb/app/javascript/packs/pay_type.jsx

import React from 'react'❶
import ReactDOM from 'react-dom'❷
import PayTypeSelector from 'PayTypeSelector'❸

document.addEventListener('turbolinks:load', function() {❹
var element = document.getElementById("pay-type-component");❺
ReactDOM.render(<PayTypeSelector />, element);❻

});

If you have not done much JavaScript, or have not kept up with recent

advances in the language, much of this file will look alien. Let’s break it

down line by line.

❶ This is how we get access to the main React library. import is like require()
in Ruby: it allows us to access code located in other files. Although it’s

formally part of the JavaScript standard, browsers don’t support it.

Webpack provides an implementation for us when it compiles our code.

When it processes this line, it’ll try to find a file named react.js in one of

the paths it’s configured to search (we’ll learn more about this in a bit).

❷ This brings in the ReactDOM object, which has the render() function we need

to bootstrap our React component.

❸ Here, we’re importing PayTypeSelector, which is the component we’ll make

next. When we actually build this component, we’ll explain how Webpack

knows where to find the code. The most important thing about this line

for now is the name PayTypeSelector, which we’ll reference later in the file.

❹ This uses the standard function addEventListener() available on document to
ensure that the code we’re about to execute only runs after the entire

DOM has loaded.4 Note that we aren’t using the more standard DOMContent-
Loaded event.

Due to how Turbolinks works, that event isn’t fired every time our page

is reloaded. Turbolinks manages the page-loading events for us and instead

fires the turbolinks:load event. If you were to use DOMContentLoaded, then navi-

gate away from the page, and then use the back button, the page would

not properly set up React and nothing would work. Using turbolinks:load
ensures that React is set up every time the page is rendered.

❺ This line is also vanilla JavaScript and is locating an element with the ID

pay-type-component. We’ll create that element in our Rails view later.

4. https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener

Chapter 13. Task H: Entering Additional Payment Details • 202

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_pb/app/javascript/packs/pay_type.jsx
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

❻ This is the weirdest line in this file. It doesn’t even look like JavaScript!

ReactDOM.render()’s job is to replace element with the React component PayType-
Selector. In a JSX file, the way to do that is via this odd HTML-like value

<PayTypeSelector />. We’ll see a more involved example of JSX when we build

PayTypeSelector, but part of what happens when Webpack compiles a JSX

file is to interpret this strange-looking syntax and produce JavaScript

that works in our browser. It works because we used PayTypeSelector in the

import line above.

That is a lot of new information for just six lines of code. While it looks a bit

weird, it makes some sense, and you’ll get used to it as you work with React

more. Now, let’s define PayTypeSelector.

Creating the PayTypeSelector Component

We talked about what import does, and now we need to know more about how

it does it. When Webpack is compiling our files into a bundle our browser

can understand, it’s configured with certain paths it will use to locate files

we ask to import. The first path is node_modules. This is where Yarn downloaded

all of our third-party JavaScript libraries, including React.

If you look inside node_modules, you’ll see many, many directories, but react and

react-dom are among them. Our code doesn’t go in node_modules but instead goes

in app/javascript. Webpacker has configured Webpack to also look there for files

to import.

Webpack isn’t just looking for files like app/javascript/PayTypeSelector.jsx. Rails and

Webpack both want us to organize our JavaScript into multiple files, so when

we ask to import 'PayTypeSelector', Webpack will load the file app/javascript/PayType-
Selector/index.jsx.

This might seem odd, but it’s consistent with how third-party JavaScript is

bundled, and it also allows us to organize files needed by PayTypeSelector into

one location—app/javascript/PayTypeSelector. We’ll do this later when we build our

payment details component in full.

For now, we’ll create the file app/javascript/PayTypeSelector/index.jsx. This file will

contain a React component that renders the exact same HTML for the pay

type drop-down as our current Rails view.

A React component doesn’t need much in order to work. It must be a class

that extends React.Component and must have a render() method that returns

markup for the component’s view.

report erratum • discuss

Iteration H1: Adding Fields Dynamically to a Form • 203

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Of course, regular JavaScript that runs in our browser doesn’t have classes

or methods. However, the latest version of the JavaScript specification does

support creating classes with methods,5 just like we do in Ruby. Webpack

will gladly translate this code into vanilla JavaScript our browser can execute.

The syntax for this is demonstrated in app/javascript/PayTypeSelector/index.jsx, which

you should create like so:

rails51/depot_pb/app/javascript/PayTypeSelector/index.jsx

import React from 'react'

class PayTypeSelector extends React.Component {
render() {

return (
<div className="field">
<label htmlFor="order_pay_type">Pay type</label>
<select id="pay_type" name="order[pay_type]">
<option value="">Select a payment method</option>
<option value="Check">Check</option>
<option value="Credit card">Credit card</option>
<option value="Purchase order">Purchase order</option>

</select>
</div>

);
}

}
export default PayTypeSelector

Inside render() we can see a more involved use of the markup-like syntax that

JSX allows. It might look like HTML, but it’s not. It’s usually referred to as

“JSX” and it has some subtle deviations from HTML.

First, it must be well-formed XML, meaning that each tag must either have

a closing tag (for example foo), or be self-closing (for example

<input/>). HTML does not require this, notably for input elements.

Second, JSX cannot use JavaScript keywords for attributes. You’ll notice

we’re using className and htmlFor. In normal HTML, we’d use class and for, but

these are reserved words in JavaScript. React’s documentation has more

details on the differences between this markup and HTML.6

Also note that we’ve judiciously chosen the name value for select in exactly the

same way a Rails form helper would. This allows our controller to find the

values, even though they are coming from a React-rendered component and

not a Rails-rendered view.

5. http://www.ecma-international.org/ecma-262/6.0/#sec-class-definitions
6. https://facebook.github.io/react/docs/dom-elements.html

Chapter 13. Task H: Entering Additional Payment Details • 204

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_pb/app/javascript/PayTypeSelector/index.jsx
http://www.ecma-international.org/ecma-262/6.0/#sec-class-definitions
https://facebook.github.io/react/docs/dom-elements.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The last line of the file contains something new: export. This is the other side

of import. In Ruby, a file that is required via require() is simply executed. Any

classes it creates are inserted into the global namespace. In JavaScript, you

must explicitly state what you are exporting from your file.

Although you could export several different classes or functions from a file,

in our case, we just need to export one—–PayTypeSelector. The syntax to do that

is export default «class».

Now that we’ve implemented our component and created the glue code in our

pack to hook it up, we need to modify our Rails views to use it.

Bringing the PayTypeSelector Component into the Rails View

Inside app/views/orders/new.html.erb we added javascript_pack_tag("hello_react") in order

to validate that Webpacker had installed and configured React and that our

development environment was working. Let’s replace that and bring in the

pay_type pack we just created.

rails51/depot_pb/app/views/orders/new.html.erb

<section class="depot_form">
<h1>Please Enter Your Details</h1>
<%= render 'form', order: @order %>

</section>

<%= javascript_pack_tag("pay_type") %>➤

The last thing to do is remove the Rails-rendered pay type drop-down and

add in a piece of markup with the ID pay-type-component so that the code inside

our pack file can tell React to render there.

rails51/depot_pb/app/views/orders/_form.html.erb

<div class="field">
<%= form.label :email %>
<%= form.email_field :email, id: :order_email, size: 40 %>

</div>

<div id='pay-type-component'></div>➤

<div class="actions">
<%= form.submit 'Place Order' %>

</div>
<% end %>

The type of element doesn’t matter, since React will replace it, but a div is
semantically appropriate.

With our new pay type component in place, you should be able to reload the

checkout page and see the pay type drop-down exactly as it was. You should

report erratum • discuss

Iteration H1: Adding Fields Dynamically to a Form • 205

http://media.pragprog.com/titles/rails51/code/rails51/depot_pb/app/views/orders/new.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_pb/app/views/orders/_form.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

also be able to select a pay type, check out, and see the correct data make it

into the database.

We are now ready to build the dynamic form we talked about with the cus-

tomer. React components render their views based on the state inside a

component. This means we need to capture the selected pay type as the

component’s state and render different form fields based on that state.

Dynamically Replacing Components Based on User Actions

To detect events in plain JavaScript, we’d add the onchange attribute to our

select element, setting its value to JavaScript code we’d like to execute. This

is exactly how it works in React as well, except that we use the attribute

onChange (note that capitalized “C”):

import React from 'react'

class PayTypeSelector extends React.Component {
render() {

return (
<div className="field">
<label htmlFor="order_pay_type">Pay type</label>
<select onChange={this.onPayTypeSelected} name="order[pay_type]">
<option value="">Select a payment method</option>
<option value="Check">Check</option>
<option value="Credit card">Credit card</option>
<option value="Purchase order">Purchase order</option>

</select>
</div>

);
}

}

Note that we aren’t quoting the value to onChange but instead using curly

braces. This is another feature of JSX and is part of making the view

dynamic. Curly braces allow us to interpolate JavaScript, much like how #{...}
does in Ruby or <%= ... %> does in ERB. React knows to put quotes in the

right places when the HTML is rendered.

We can now define the method onPayTypeSelected() like so:

import React from 'react'

class PayTypeSelector extends React.Component {
onPayTypeSelected(event) {➤

console.log(event.target.value);➤

}➤

Chapter 13. Task H: Entering Additional Payment Details • 206

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

This implementation demonstrates how we can access the user’s selection.

The event passed in is a synthetic event,
7 which has a property target that is a

DOMEventTarget, which itself has a property value that has the value of the

selected payment type.

If you reload the page in your browser, open the JavaScript console, and

select different payment types, you should see messages in the console. The

following screenshot shows this after selecting each pay type one at a time.

What do we do with this new method? If you recall, a React component is a

view and state; and when state changes, the view is rerendered by calling the

component’s render() method. We want the view to be rerendered when the

user changes payment types, so we need to get the currently selected payment

type into the component’s state.

We can do this via the method setState() provided by our superclass,

React.Component:

rails51/depot_pc/app/javascript/PayTypeSelector/index.jsx

onPayTypeSelected(event) {
this.setState({ selectedPayType: event.target.value });➤

}

7. https://facebook.github.io/react/docs/events.html

report erratum • discuss

Iteration H1: Adding Fields Dynamically to a Form • 207

http://media.pragprog.com/titles/rails51/code/rails51/depot_pc/app/javascript/PayTypeSelector/index.jsx
https://facebook.github.io/react/docs/events.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Surprisingly this doesn’t work, because this is undefined. It’s tempting to view

this in JavaScript the same way you would self in Ruby, because it often refers

to the current instance of the class, just as in Ruby. But “often” isn’t “always.”

Under the covers, JavaScript classes and methods are just functions. When

you call a function in JavaScript, it’s possible to control what the value of this
is inside that function. When we call a method on an object created from a

class, that method is really a function whose value for this is set to the

object…except when that method is called from an event handler.

To understand why this happens is outside the scope of this book, but the

short explanation is that because we are passing a function to our event

handler, when the event fires, the object that function is a part of—–which

we would very much like to be available as this—–is not remembered by

JavaScript (this is a complex concept in JavaScript8).

To ensure that this is remembered and thus set to the object, we call bind() on

the method itself and pass this when this is set to the instance of our class.

bind() returns a new function where this is always set how we’d expect.

this.onPayTypeSelected = this.onPayTypeSelected.bind(this);

The only trick is to make sure we execute this code before the event handler

fires and at a time when the value of this is correct. JavaScript classes have

constructors, just like Ruby classes, and that is the right location to execute

this code. We haven’t declared a constructor yet; and as it turns out, React

component constructors accept an argument called props that we must pass

up to the superclass. We should also initialize our state. This means our

constructor will look like so:

rails51/depot_pc/app/javascript/PayTypeSelector/index.jsx

class PayTypeSelector extends React.Component {
constructor(props) {➤

super(props);➤

this.onPayTypeSelected = this.onPayTypeSelected.bind(this);➤

this.state = { selectedPayType: null };➤

}➤

Inside render(), we can examine the value of state by accessing this.state.selected-
PayType, which will be the string from our select control.

We now want to render a custom component based on the value of

this.state.selectedPayType. We can’t easily put control logic inside the JSX, but we

can insert a dynamic component by declaring a variable that starts with an

8. https://www.smashingmagazine.com/2014/01/understanding-javascript-function-prototype-bind/

Chapter 13. Task H: Entering Additional Payment Details • 208

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_pc/app/javascript/PayTypeSelector/index.jsx
https://www.smashingmagazine.com/2014/01/understanding-javascript-function-prototype-bind/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

uppercase letter. This is another feature of JSX we can use. Our code will

look something like this:

let PayTypeCustomComponent = «to be determined»
return (

<div>
<div className="field">

<label htmlFor="order_pay_type">Pay type</label>
<select id="pay_type" onChange={this.onPayTypeSelected}

name="order[pay_type]">
<option value="">Select a payment method</option>
<option value="Check">Check</option>
<option value="Credit card">Credit card</option>
<option value="Purchase order">Purchase order</option>

</select>
</div>
<PayTypeCustomComponent />

</div>
);

This means we need to make the components we’ll use for each pay type,

along with a blank component for when no pay type is selected. We’ll import
those into PayTypeSelector and, based on the value of state, assign them to a

local variable named PayTypeCustomComponent.

First, let’s set up our imports for the files we’ll create in a moment:

rails51/depot_pc/app/javascript/PayTypeSelector/index.jsx

import React from 'react'

import NoPayType from './NoPayType';➤

import CreditCardPayType from './CreditCardPayType';➤

import CheckPayType from './CheckPayType';➤

import PurchaseOrderPayType from './PurchaseOrderPayType';➤

Note that each file we’re importing is preceded by a dot and a slash (./). This

tells Webpack to locate the file in the same directory as the file being pro-

cessed. Since the file being processed is app/javascript/PayTypeSelector/index.jsx,
Webpack will look in app/javascript/PayTypeSelector. Hopefully, you can see the

logic of Rails’s convention around using a directory with index.jsx in it. It means

that app/javascript/PayTypeSelector will have all the files needed for that component.

Next, we’ll enhance render() with the necessary logic to choose the right com-

ponent based on the value of this.state.selectedPayType:

rails51/depot_pc/app/javascript/PayTypeSelector/index.jsx

render() {
let PayTypeCustomComponent = NoPayType;➤

if (this.state.selectedPayType == "Credit card") {➤

PayTypeCustomComponent = CreditCardPayType;➤

report erratum • discuss

Iteration H1: Adding Fields Dynamically to a Form • 209

http://media.pragprog.com/titles/rails51/code/rails51/depot_pc/app/javascript/PayTypeSelector/index.jsx
http://media.pragprog.com/titles/rails51/code/rails51/depot_pc/app/javascript/PayTypeSelector/index.jsx
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

} else if (this.state.selectedPayType == "Check") {➤

PayTypeCustomComponent = CheckPayType;➤

} else if (this.state.selectedPayType == "Purchase order") {➤

PayTypeCustomComponent = PurchaseOrderPayType;➤

}➤

return (
<div>➤

<div className="field">➤

<label htmlFor="order_pay_type">Pay type</label>➤

<select id="pay_type" onChange={this.onPayTypeSelected}➤

name="order[pay_type]">➤

<option value="">Select a payment method</option>➤

<option value="Check">Check</option>➤

<option value="Credit card">Credit card</option>➤

<option value="Purchase order">Purchase order</option>➤

</select>➤

</div>➤

<PayTypeCustomComponent />➤

</div>➤

);
}

Note the change in the markup. In addition to adding <PayTypeCustomComponent />,

we’ve wrapped the entire thing in a div. React components must have a single,

top-level element; and due to the way our CSS works, each line of our form

must be inside a div with the CSS class field.

Now let’s see our components. The first is the simplest, NoPayType:

rails51/depot_pc/app/javascript/PayTypeSelector/NoPayType.jsx

import React from 'react'

class NoPayType extends React.Component {
render() {

return (<div></div>);
}

}
export default NoPayType

Even though this does nothing, it gives us a clear space to put UI later if we

wanted to (for example, a message prompting the user to select a pay type).

Next is CheckPayType:

rails51/depot_pc/app/javascript/PayTypeSelector/CheckPayType.jsx

import React from 'react'

class CheckPayType extends React.Component {
render() {

return (
<div>
<div className="field">

Chapter 13. Task H: Entering Additional Payment Details • 210

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_pc/app/javascript/PayTypeSelector/NoPayType.jsx
http://media.pragprog.com/titles/rails51/code/rails51/depot_pc/app/javascript/PayTypeSelector/CheckPayType.jsx
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

<label htmlFor="order_routing_number">Routing #</label>
<input type="password"

name="order[routing_number]"
id="order_routing_number" />

</div>
<div className="field">
<label htmlFor="order_account_number">Account #</label>
<input type="text"

name="order[account_number]"
id="order_account_number" />

</div>
</div>

);
}

}
export default CheckPayType

Note that we’re self-closing the input elements. This isn’t required in HTML

but is in JSX. The CreditCardPayType is similar:

rails51/depot_pc/app/javascript/PayTypeSelector/CreditCardPayType.jsx

import React from 'react'

class CreditCardPayType extends React.Component {
render() {

return (
<div>
<div className="field">

<label htmlFor="order_credit_card_number">CC #</label>
<input type="password"

name="order[credit_card_number]"
id="order_credit_card_number" />

</div>
<div className="field">
<label htmlFor="order_expiration_date">Expiry</label>
<input type="text"

name="order[expiration_date]"
id="order_expiration_date"
size="9"
placeholder="e.g. 03/19" />

</div>
</div>

);
}

}
export default CreditCardPayType

report erratum • discuss

Iteration H1: Adding Fields Dynamically to a Form • 211

http://media.pragprog.com/titles/rails51/code/rails51/depot_pc/app/javascript/PayTypeSelector/CreditCardPayType.jsx
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

And finally, the PurchaseOrderPayType:

rails51/depot_pc/app/javascript/PayTypeSelector/PurchaseOrderPayType.jsx

import React from 'react'

class PurchaseOrderPayType extends React.Component {
render() {

return (
<div>
<div className="field">

<label htmlFor="order_po_number">PO #</label>
<input type="password"

name="order[po_number]"
id="order_po_number" />

</div>
</div>

);
}

}
export default PurchaseOrderPayType

Note that we’ve judiciously chosen the fields’ name values to match Rails conven-

tions. When our React components use a name like "order[credit_card_number]", we’ll

be able to access that field’s value in Ruby using params[:order][:credit_card_number],
as we’ll see later.

If you reload the page and select different payment types, you’ll see that the

form dynamically switches to the right fields for the payment type! See the

screenshots on page 213.

For completeness, let’s access these values in the controller. We could add

the new parameters to order_params(), but let’s make it a bit more explicit by

creating a method called pay_type_params() that returns only the params relevant

to the chosen pay type:

rails51/depot_pc/app/controllers/orders_controller.rb

def pay_type_params
if order_params[:pay_type] == "Credit Card"
params.require(:order).permit(:credit_card_number, :expiration_date)

elsif order_params[:pay_type] == "Check"
params.require(:order).permit(:routing_number, :account_number)

elsif order_params[:pay_type] == "Purchase Order"
params.require(:order).permit(:po_number)

else
{}

end
end

Chapter 13. Task H: Entering Additional Payment Details • 212

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_pc/app/javascript/PayTypeSelector/PurchaseOrderPayType.jsx
http://media.pragprog.com/titles/rails51/code/rails51/depot_pc/app/controllers/orders_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We can use these params to submit the payment details to the customer’s

back-end payment processing system, which we’ll do in Iteration I2: Connecting

to a Slow Payment Processor with Active Job, on page 225.

Wrapping Up Webpack and React

This was quite a journey, and it might’ve felt complex. In a sense, this is

expected, because we tried to do something more complex than we have pre-

viously done. Webpacker exists exactly to help us with complex interactions

like the one we implemented. And if you think a lot of setup was needed to

get there, know that without Webpacker it would have been far more difficult

and would have required making many more decisions.

report erratum • discuss

Iteration H1: Adding Fields Dynamically to a Form • 213

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Do Not Store or Log Credit Card Numbers

I know we aren’t actually doing a payments integration, and you should read Take

My Money [Rap17] if you want to do it for real. If you decide to do a real integration

on your own, you should be very careful to never store credit card numbers in your

database, as this creates all sorts of problems for you and your customers.

More subtly, you should make sure Rails doesn’t log these parameters by adding

:credit_card_number to config.filter_parameters in config/application.rb:

rails51/depot_pc/config/application.rb

config.filter_parameters += [:credit_card_number]

Webpacker is a great demonstration of the best of Rails. It removes uninter-

esting decisions, such as where files should go, and provides a basic mecha-

nism that just works so we can spend our time on our problem, not on con-

figuration. Even if you didn’t know React before reading this, you now know

enough to build some fairly complex features. It’s just a matter of putting

code in the right place.

One thing that we can no longer do is completely test our application. Because

we now depend on JavaScript for a piece of functionality, we can’t really test

that functionality without executing our application in a web browser. Until

Rails 5.1, developers had to configure add-on libraries to be able to do this.

As of Rails 5.1, this is baked into the framework and ready for you to use.

Iteration H2: Testing Our JavaScript Functionality

Now that we have application-level functionality in JavaScript code, we are

going to need to have tests in place to ensure that the function not only works

as intended but continues to work as we make changes to the application.

Testing this functionality involves a lot of steps: visiting the store, selecting

an item, adding that item to the card, clicking checkout, filling in a few fields,

and selecting a payment type. And from a testing perspective, we are going

to need both a Rails server and a browser.

To accomplish this, Rails makes use of a version of the popular Google Chrome

web browser named ChromeDriver,9 which has been augmented to include

programming interfaces to enable automation, and Capybara,10 which is a

tool that drives this automation.

9. https://sites.google.com/a/chromium.org/chromedriver/
10. https://github.com/teamcapybara/capybara#readme

Chapter 13. Task H: Entering Additional Payment Details • 214

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_pc/config/application.rb
https://sites.google.com/a/chromium.org/chromedriver/
https://github.com/teamcapybara/capybara#readme
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Tests that pull together a complete and integrated version of the software are

called system tests, and that is exactly what we will be doing: we will be

testing a full end-to-end scenario with a web browser, web server, our appli-

cation, and a database.

We start by describing the actions and checks we want performed as a

system test:

rails51/depot_q/test/system/orders_test.rb

require "application_system_test_case"

class OrdersTest < ApplicationSystemTestCase
test "check routing number" do➤

visit store_index_url➤

➤

first('.catalog li').click_on 'Add to Cart'➤

➤

click_on 'Checkout'➤

➤

fill_in 'order_name', with: 'Dave Thomas'➤

fill_in 'order_address', with: '123 Main Street'➤

fill_in 'order_email', with: 'dave@example.com'➤

➤

assert_no_selector "#order_routing_number"➤

➤

select 'Check', from: 'pay_type'➤

➤

assert_selector "#order_routing_number"➤

end➤

end

As you can see, this is pretty straightforward; all it involves is a number of

discrete steps: visit() a URL, find the first() li inside the .catalog, click_on() two but-

tons in a given order, fill_in() three fields, assert that a given HTML element is

not present, select() a pay type, and finally ensure that the HTML element is

now present.

Capybara makes all of this possible using a compact, readable API that

requires very little code. For additional information and more methods, we

suggest that you familiarize yourself with the domain-specific language (DSL)

that Capybara provides.11

Now let’s run the test we just wrote:

$ bin/rails test:system
Run options: --seed 26203

Running:

11. https://github.com/teamcapybara/capybara#the-dsl

report erratum • discuss

Iteration H2: Testing Our JavaScript Functionality • 215

http://media.pragprog.com/titles/rails51/code/rails51/depot_q/test/system/orders_test.rb
https://github.com/teamcapybara/capybara#the-dsl
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Puma starting in single mode...
* Version 3.9.1 (ruby 2.4.1-p111), codename: Private Caller
* Min threads: 0, max threads: 1
* Environment: test
* Listening on tcp://0.0.0.0:59360
Use Ctrl-C to stop
.

Finished in 3.846935s, 0.2599 runs/s, 0.5199 assertions/s.

1 runs, 2 assertions, 0 failures, 0 errors, 0 skips

When you run this, you will note a number of things. First a web server is

started on your behalf, and then a browser is launched and the actions you

requested are performed. Once the test is complete, both are stopped and the

results of the test are reported back to you. All this based on your instructions

as to what actions and tests are to be performed, and expressed clearly and

succinctly as a system test.

Note that system tests tend to take a bit longer to execute than model or

controller tests and as such are not run as a part of bin/rails test.

What We Just Did

• We replaced a static form_select field with a dynamic list of form fields that

change instantly based on user selection.

• We used Webpacker to gather up and deliver all of the necessary Java-

Script dependencies just in time to the browser to make the dynamic

changes happen.

• We used Capybara and ChromeDriver to system-test this functionality.

Playtime

Here’s some stuff to try on your own:

• Check is not the only payment type, and routing number is not the only

field that is dynamically inserted or deleted based on the payment type.

Extend the system test to include other choices and other fields.

• Add a test to verify that the Add to Cart and Empty Cart buttons reveal

and hide the cart, respectively.

• Add a test of the highlight feature you added in Iteration F3: Highlighting

Changes, on page 164.

Chapter 13. Task H: Entering Additional Payment Details • 216

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 14

In this chapter, you'll see:

• Sending email

• Running background code with Active Job

• System testing background jobs and email

Task I: Processing Emails

and Payments Efficiently

At this point, we have a website that responds to requests and provides feeds

that allow sales of individual titles to be checked periodically. The customer

is happier but still not satisfied. The first bit of feedback is that users aren’t

getting confirmation emails of their purchases. The second is around payment

processing. The customer has arranged for us to integrate with a payment

processor that can handle all forms of payment we want to support, but the

processor’s API is very slow. The customer wants to know if that will slow

down the site.

Sending email is a common need for any web application, and Rails has you

covered via Action Mailer,1 which you’ll learn in this chapter. Dealing with

the slow payment-processing API requires learning about the library Action

Mailer is built on, Active Job.2 Active Job allows you to run code in a back-

ground process so that the user doesn’t have to wait for it to complete.

Sending email is slow, which is why Action Mailer uses Active Job to offload

the work. This is a common technique you’ll use often when developing web

applications. Let’s take it one step at a time and learn how to send email.

Iteration I1: Sending Confirmation Emails

Sending email in Rails has three basic parts: configuring how email is to be

sent, determining when to send the email, and specifying what you want to

say. We’ll cover each of these three in turn.

1. http://guides.rubyonrails.org/action_mailer_basics.html
2. http://guides.rubyonrails.org/active_job_basics.html

report erratum • discuss

http://guides.rubyonrails.org/action_mailer_basics.html
http://guides.rubyonrails.org/active_job_basics.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Configuring Email

Email configuration is part of a Rails application’s environment and involves

a Depot::Application.configure block. If you want to use the same configuration for

development, testing, and production, add the configuration to environment.rb
in the config directory; otherwise, add different configurations to the appropriate

files in the config/environments directory.

Inside the block, you need to have one or more statements. You first have to

decide how you want mail delivered:

config.action_mailer.delivery_method = :smtp

Alternatives to :smtp include :sendmail and :test.

The :smtp and :sendmail options are used when you want Action Mailer to attempt

to deliver email. You’ll clearly want to use one of these methods in production.

The :test setting is great for unit and functional testing, which we’ll make use

of in Testing Email, on page 224. Email won’t be delivered; instead, it’ll be

appended to an array (accessible via the ActionMailer::Base.deliveries attribute).

This is the default delivery method in the test environment. Interestingly,

though, the default in development mode is :smtp. If you want Rails to deliver

email during the development of your application, this is good. If you’d rather

disable email delivery in development mode, edit the development.rb file in the

config/environments directory and add the following lines:

Depot::Application.configure do
config.action_mailer.delivery_method = :test

end

The :sendmail setting delegates mail delivery to your local system’s sendmail
program, which is assumed to be in /usr/sbin. This delivery mechanism isn’t

particularly portable, because sendmail isn’t always installed in this directory

for every operating system. It also relies on your local sendmail supporting the

-i and -t command options.

You achieve more portability by leaving this option at its default value of :smtp.
If you do so, you’ll need also to specify some additional configuration to tell

Action Mailer where to find an SMTP server to handle your outgoing email.

This can be the machine running your web application, or it can be a separate

box (perhaps at your ISP if you’re running Rails in a noncorporate environ-

ment). Your system administrator will be able to give you the settings for

these parameters. You may also be able to determine them from your own

mail client’s configuration.

Chapter 14. Task I: Processing Emails and Payments Efficiently • 218

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The following are typical settings for Gmail: adapt them as you need.

Depot::Application.configure do
config.action_mailer.delivery_method = :smtp

config.action_mailer.smtp_settings = {
address: "smtp.gmail.com",
port: 587,
domain: "domain.of.sender.net",
authentication: "plain",
user_name: "dave",
password: "secret",
enable_starttls_auto: true

}
end

As with all configuration changes, you’ll need to restart your application if

you make changes to any of the environment files.

Sending Email

Now that we have everything configured, let’s write some code to send emails.

By now you shouldn’t be surprised that Rails has a generator script to create

mailers. In Rails, a mailer is a class that’s stored in the app/mailers directory.

It contains one or more methods, with each method corresponding to an email

template. To create the body of the email, these methods in turn use views

(in the same way that controller actions use views to create HTML and XML).

So, let’s create a mailer for our store application. We’ll use it to send two dif-

ferent types of email: one when an order is placed and a second when the

order ships. The rails generate mailer command takes the name of the mailer

class, along with the names of the email action methods:

depot> bin/rails generate mailer Order received shipped
create app/mailers/order.rb
create app/mailers/order_mailer.rb
invoke erb
create app/views/order_mailer

identical app/views/layouts/mailer.text.erb
identical app/views/layouts/mailer.html.erb

create app/views/order_mailer/received.text.erb
create app/views/order_mailer/received.html.erb
create app/views/order_mailer/shipped.text.erb
create app/views/order_mailer/shipped.html.erb
invoke test_unit
create test/mailers/order_mailer_test.rb
create test/mailers/previews/order_mailer_preview.rb

report erratum • discuss

Iteration I1: Sending Confirmation Emails • 219

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Notice that we create an OrderMailer class in app/mailers and two template files,

one for each email type, in app/views/order. (We also create a test file; we’ll look

into this in Testing Email, on page 224.)

Each method in the mailer class is responsible for setting up the environment

for sending an email. Let’s look at an example before going into detail. Here’s

the code that was generated for our OrderMailer class, with one default changed:

rails51/depot_q/app/mailers/order_mailer.rb

class OrderMailer < ApplicationMailer
default from: 'Sam Ruby <depot@example.com>'➤

Subject can be set in your I18n file at config/locales/en.yml
with the following lookup:
#
en.order_mailer.received.subject
#
def received
@greeting = "Hi"

mail to: "to@example.org"
end

Subject can be set in your I18n file at config/locales/en.yml
with the following lookup:
#
en.order_mailer.shipped.subject
#
def shipped
@greeting = "Hi"

mail to: "to@example.org"
end

end

If you’re thinking to yourself that this looks like a controller, that’s because

it does. It includes one method per action. Instead of a call to render(), there’s

a call to mail(). This method accepts a number of parameters including :to (as

shown), :cc, :from, and :subject, each of which does pretty much what you’d

expect it to do. Values that are common to all mail() calls in the mailer can be

set as defaults by simply calling default, as is done for :from at the top of this

class. Feel free to tailor this to your needs.

The comments in this class also indicate that subject lines are already enabled

for translation, a subject we’ll cover in Chapter 16, Task K: Internationalization,

on page 253. For now, we’ll simply use the :subject parameter.

As with controllers, templates contain the text to be sent, and controllers and

mailers can provide values to be inserted into those templates via instance

variables.

Chapter 14. Task I: Processing Emails and Payments Efficiently • 220

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_q/app/mailers/order_mailer.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Email Templates

The generate script created two email templates in app/views/order_mailer, one for

each action in the OrderMailer class. These are regular .erb files. We’ll use them

to create plain-text emails (you’ll see later how to create HTML email). As with

the templates we use to create our application’s web pages, the files contain

a combination of static text and dynamic content. We can customize the

template in received.text.erb; this is the email that’s sent to confirm an order:

rails51/depot_q/app/views/order_mailer/received.text.erb

Dear <%= @order.name %>

Thank you for your recent order from The Pragmatic Store.

You ordered the following items:

<%= render @order.line_items -%>

We'll send you a separate e-mail when your order ships.

The partial template that renders a line item formats a single line with the

item quantity and the title. Because we’re in a template, all the regular helper

methods, such as truncate(), are available:

rails51/depot_q/app/views/line_items/_line_item.text.erb

<%= sprintf("%2d x %s",
line_item.quantity,
truncate(line_item.product.title, length: 50)) %>

We now have to go back and fill in the received() method in the OrderMailer class:

rails51/depot_qa/app/mailers/order_mailer.rb

def received(order)
@order = order

mail to: order.email, subject: 'Pragmatic Store Order Confirmation'
end

What we did here is add order as an argument to the method-received call, add

code to copy the parameter passed into an instance variable, and update the

call to mail() specifying where to send the email and what subject line to use.

Generating Emails

Now that we have our template set up and our mailer method defined, we

can use them in our regular controllers to create and/or send emails. Note

that just calling the method we defined isn’t enough; we also need to tell Rails

to actually send the email. The reason this doesn’t happen automatically is

that Rails can’t be 100% sure if you want to deliver the email right this

moment, while the user waits, or later, in a background job.

report erratum • discuss

Iteration I1: Sending Confirmation Emails • 221

http://media.pragprog.com/titles/rails51/code/rails51/depot_q/app/views/order_mailer/received.text.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_q/app/views/line_items/_line_item.text.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_qa/app/mailers/order_mailer.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Generally, you don’t want the user to have to wait for emails to get sent,

because this can take a while. Instead, we’ll send it in a background job

(which we’ll learn more about later in the chapter) by calling deliver_later() (to
send the email right now, you’d use deliver_now().3)

rails51/depot_qa/app/controllers/orders_controller.rb

def create
@order = Order.new(order_params)
@order.add_line_items_from_cart(@cart)

respond_to do |format|
if @order.save

Cart.destroy(session[:cart_id])
session[:cart_id] = nil
OrderMailer.received(@order).deliver_later➤

format.html { redirect_to store_index_url, notice:
'Thank you for your order.' }

format.json { render :show, status: :created,
location: @order }

else
format.html { render :new }
format.json { render json: @order.errors,
status: :unprocessable_entity }

end
end

end

And we need to update shipped() as we did for received():

rails51/depot_qa/app/mailers/order_mailer.rb

def shipped(order)
@order = order

mail to: order.email, subject: 'Pragmatic Store Order Shipped'
end

Now, we have enough of the basics in place that you can place an order and

have a plain email sent to yourself, assuming you didn’t disable the sending

of email in development mode. Let’s spice up the email with a bit of formatting.

Delivering Multiple Content Types

Some people prefer to receive email in plain-text format, while others like the

look of an HTML email. Rails supports this directly, allowing you to send

email messages that contain alternative content formats, allowing users (or

their email clients) to decide which they’d prefer to view.

3. http://api.rubyonrails.org/classes/ActionMailer/MessageDelivery.html#method-i-deliver_now

Chapter 14. Task I: Processing Emails and Payments Efficiently • 222

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_qa/app/controllers/orders_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_qa/app/mailers/order_mailer.rb
http://api.rubyonrails.org/classes/ActionMailer/MessageDelivery.html#method-i-deliver_now
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Joe asks:

Can I Also Receive Email?

Action Mailer also supports writing Rails applications that handle incoming email.

Unfortunately, you need to find a way to retrieve appropriate emails from your server

environment and inject them into the application; this requires a bit more work.

The easy part is handling an email within your application. In your Action Mailer

class, write an instance method called receive() that takes a single parameter. This

parameter will be a Mail::Message object corresponding to the incoming email. You can

extract fields, the body text, and/or attachments and use them in your application.

All the normal techniques for intercepting incoming email end up running a command,

passing that command the content of the email as standard input. If we make the

Rails runner script the command that’s invoked whenever an email arrives, we can

arrange to pass that email into our application’s email-handling code. For example,

using procmail-based interception, we could write a rule that looks something like

the example that follows. Using the arcane syntax of procmail, this rule copies any

incoming email whose subject line contains Bug Report through our runner script:

RUBY=/opt/local/bin/ruby
TICKET_APP_DIR=/Users/dave/Work/depot
HANDLER='IncomingTicketHandler.receive(STDIN.read)'

:0 c
* ^Subject:.*Bug Report.*
| cd $TICKET_APP_DIR && $RUBY bin/rails runner $HANDLER

The receive() class method is available to all Action Mailer classes. It takes the email

text, parses it into a Mail object, creates a new instance of the receiver’s class, and

passes the Mail object to the receive() instance method in that class.

In the preceding section, we created a plain-text email. The view file for our

received action was called received.text.erb. This is the standard Rails naming

convention. We can also create HTML-formatted emails.

Let’s try this with the order-shipped notification. We don’t need to modify any

code—we simply need to create a new template:

rails51/depot_qa/app/views/order_mailer/shipped.html.erb

<h3>Pragmatic Order Shipped</h3>
<p>

This is just to let you know that we've shipped your recent order:
</p>

<table>
<tr><th colspan="2">Qty</th><th>Description</th></tr>

<%= render @order.line_items -%>
</table>

report erratum • discuss

Iteration I1: Sending Confirmation Emails • 223

http://media.pragprog.com/titles/rails51/code/rails51/depot_qa/app/views/order_mailer/shipped.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We don’t need to modify the partial, because the existing one will do just fine:

rails51/depot_qa/app/views/line_items/_line_item.html.erb

<% if line_item == @current_item %>
<tr class="line-item-highlight">
<% else %>
<tr>
<% end %>

<td class="quantity"><%= line_item.quantity %></td>
<td><%= line_item.product.title %></td>
<td class="price"><%= number_to_currency(line_item.total_price) %></td>

</tr>

But for email templates, Rails provides a bit more naming magic. If you create

multiple templates with the same name but with different content types

embedded in their filenames, Rails will send all of them in one email,

arranging the content so that the email client can distinguish each.

This means you’ll want to either update or delete the plain-text template that

Rails provided for the shipped notifier.

Testing Email

When we used the generate script to create our order mailer, it automatically

constructed a corresponding order_test.rb file in the application’s test/mailers
directory. It’s pretty straightforward; it simply calls each action and verifies

selected portions of the email produced. Because we’ve tailored the email,

let’s update the test case to match:

rails51/depot_qa/test/mailers/order_mailer_test.rb

require 'test_helper'

class OrderMailerTest < ActionMailer::TestCase
test "received" do

mail = OrderMailer.received(orders(:one))➤

assert_equal "Pragmatic Store Order Confirmation", mail.subject➤

assert_equal ["dave@example.org"], mail.to➤

assert_equal ["depot@example.com"], mail.from➤

assert_match /1 x Programming Ruby 1.9/, mail.body.encoded➤

end

test "shipped" do
mail = OrderMailer.shipped(orders(:one))➤

assert_equal "Pragmatic Store Order Shipped", mail.subject➤

assert_equal ["dave@example.org"], mail.to➤

assert_equal ["depot@example.com"], mail.from➤

assert_match /<td[^>]*>1<\/td>\s*<td>Programming Ruby 1.9<\/td>/,➤

mail.body.encoded➤

end

end

Chapter 14. Task I: Processing Emails and Payments Efficiently • 224

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_qa/app/views/line_items/_line_item.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_qa/test/mailers/order_mailer_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The test method instructs the mail class to create (but not to send) an email,

and we use assertions to verify that the dynamic content is what we expect.

Note the use of assert_match() to validate just part of the body content. Your results

may differ depending on how you tailored the default :from line in your OrderMailer.

Now that we’ve implemented our mailer and tested it, let’s move on to that

pesky slow payment processor. To deal with that, we’ll put our API calls into

a job that can be run in the background so the user doesn’t have to wait.

Iteration I2: Connecting to a Slow Payment Processor

with Active Job

The code inside the controllers is relatively fast and returns a response to the

user quickly. This means we can reliably give users feedback by checking

and validating their orders and the users won’t have to wait too long for a

response.

The more we add to the controller, the slower it will become. Slow controllers

create several problems. First, the user must wait a long time for a response,

even though the processing that’s going on might not be relevant to the user

experience. In the previous section, we set up sending email. The user certainly

needs to get that email but doesn’t need to wait for Rails to format and send

it just to show a confirmation in the browser.

The second problem caused by slow code is timeouts. A timeout is when Rails,

a web server, or a browser decides that a request has taken too long and

terminates it. This is jarring to the user and to the code, because it means

the code is interrupted at a potentially odd time. What if we’ve recorded the

order but haven’t sent the email? The customer won’t get a notification.

In the common case of sending email, Rails handles sending it in the back-

ground. We used deliver_later() to trigger sending an email, and Rails executes

that code in the background. This means that users don’t have to wait for

email to be sent before we render a response. This is a great hidden benefit

to Rails’ integrated approach to building a web app.

Rails achieves this using Active Job, which is a generic framework for running

code in the background. We’ll use this framework to connect to the slow

payment processor.

To make this change, you’ll implement the integration with the payment proces-

sor as a method inside Order, then have the controller use Active Job to execute

that method in a background job. Because the end result will be somewhat

complex, you’ll write a system test to ensure everything is working together.

report erratum • discuss

Iteration I2: Connecting to a Slow Payment Processor with Active Job • 225

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Moving Logic Into the Model

It’s way outside the scope of this book to integrate with an actual payment

processor, so we’ve cooked up a fake one named Pago, along with an imple-

mentation, which we’ll see in a bit. First, this is the API it provides and a

sketch of how you can use it:

payment_result = Pago.make_payment(
order_id: order.id,
payment_method: :check,
payment_details: { routing: xxx, account: yyy }

)

The fake implementation does some basic validations of the parameters, prints

out the payment details it received, pauses for a few seconds, and returns a

structure that responds to succeeded?().

rails51/depot_qb/lib/pago.rb

require 'ostruct'
class Pago

def self.make_payment(order_id:,
payment_method:,
payment_details:)

case payment_method
when :check

Rails.logger.info "Processing check: " +
payment_details.fetch(:routing).to_s + "/" +
payment_details.fetch(:account).to_s

when :credit_card
Rails.logger.info "Processing credit_card: " +

payment_details.fetch(:cc_num).to_s + "/" +
payment_details.fetch(:expiration_month).to_s + "/" +
payment_details.fetch(:expiration_year).to_s

when :po
Rails.logger.info "Processing purchase order: " +

payment_details.fetch(:po_num).to_s
else

raise "Unknown payment_method #{payment_method}"
end
sleep 3 unless Rails.env.test?
Rails.logger.info "Done Processing Payment"
OpenStruct.new(succeeded?: true)

end
end

If you aren’t familiar with OpenStruct, it’s part of Ruby’s standard library and

provides a quick-and-dirty way to make an object that responds to the

Chapter 14. Task I: Processing Emails and Payments Efficiently • 226

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_qb/lib/pago.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

methods given to its constructor.4 In this case, we can call succeeded?() on the

return value from make_payment(). OpenStruct is handy for creating realistic objects

from prototype or faked-out code like Pago.

With the payment API in hand, you need logic to adapt the payment details

that you added in Chapter 13, Task H: Entering Additional, on page 195, to

Pago’s API. You’ll also move the call to OrderMailer into this method, because

you don’t want to send the email if there was a problem collecting payment.

In a Rails app, when a bit of logic becomes more complex than a line or two

of code, you want to move that out of the controller and into a model. You’ll

create a new method in Order called charge!() that will handle all this logic.

The method will be somewhat long and has to do three things. First, it must

adapt pay_type_params (which you created in Dynamically Replacing Components

Based on User Actions, on page 206, but didn’t use) to the parameters that

Pago requires. Second, it should make the call to Pago to collect payment.

Finally, it must check to see if the payment succeeded and, if so, send the

confirmation email. Here’s what the method looks like:

rails51/depot_qb/app/models/order.rb

require 'active_model/serializers/xml'
require 'pago'➤

class Order < ApplicationRecord
include ActiveModel::Serializers::Xml
enum pay_type: {
"Check" => 0,
"Credit card" => 1,
"Purchase order" => 2

}
has_many :line_items, dependent: :destroy
...
validates :name, :address, :email, presence: true
validates :pay_type, inclusion: pay_types.keys
def add_line_items_from_cart(cart)
cart.line_items.each do |item|

item.cart_id = nil
line_items << item

end
end

def charge!(pay_type_params)➤

payment_details = {}➤

payment_method = nil➤

4. https://ruby-doc.org/stdlib-2.4.1/libdoc/ostruct/rdoc/OpenStruct.html

report erratum • discuss

Iteration I2: Connecting to a Slow Payment Processor with Active Job • 227

http://media.pragprog.com/titles/rails51/code/rails51/depot_qb/app/models/order.rb
https://ruby-doc.org/stdlib-2.4.1/libdoc/ostruct/rdoc/OpenStruct.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

case pay_type
when "Check"

payment_method = :check
payment_details[:routing] = pay_type_params[:routing_number]
payment_details[:account] = pay_type_params[:account_number]

when "Credit card"
payment_method = :credit_card
month,year = pay_type_params[:expiration_date].split(//)
payment_details[:cc_num] = pay_type_params[:credit_card_number]
payment_details[:expiration_month] = month
payment_details[:expiration_year] = year

when "Purchase order"
payment_method = :po
payment_details[:po_num] = pay_type_params[:po_number]

end

payment_result = Pago.make_payment(
order_id: id,
payment_method: payment_method,
payment_details: payment_details

)

if payment_result.succeeded?
OrderMailer.received(self).deliver_later

else
raise payment_result.error

end
end

end

If you weren’t concerned with how slow Pago’s API is, you’d change the code

in the create() method of OrdersController to call charge!():

if @order.save
Cart.destroy(session[:cart_id])
session[:cart_id] = nil
@order.charge!(pay_type_params) # do not do this➤

format.html { redirect_to store_index_url, notice:
'Thank you for your order.' }

Since you already know the call to Pago will be slow, you want it to happen

in a background job, so that users can see the confirmation message in their

browser immediately without having to wait for the charge to actually happen.

To do this, you must create an Active Job class, implement that class to call

charge!(), and then add code to the controller to execute this job. The flow looks

like the figure on page 229.

Chapter 14. Task I: Processing Emails and Payments Efficiently • 228

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Order

ChargeOrderJob

OrdersController

User

Save
Order

Render
“Thank You”

Start
Background

Job

Call Pago Send Email

Call
Order.charge!

Creating an Active Job Class

Rails provides a generator to create a shell of a job class for us. Create the

job using it like so:

> bin/rails generate job charge_order
invoke test_unit
create test/jobs/charge_order_job_test.rb
create app/jobs/charge_order_job.rb

The argument charge_order tells Rails that the job’s class name should be

ChargeOrderJob.

You’ve implemented the logic in the charge!() method of Order, so what goes in

the newly created ChargeOrderJob? The purpose of job classes like ChargeOrderJob
is to act as a glue between the controller—–which wants to run some logic

later—–and the actual logic in the models.

report erratum • discuss

Iteration I2: Connecting to a Slow Payment Processor with Active Job • 229

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Here’s the code that implements this:

rails51/depot_qb/app/jobs/charge_order_job.rb

class ChargeOrderJob < ApplicationJob
queue_as :default

def perform(order,pay_type_params)➤

➤

order.charge!(pay_type_params)➤

end
end

Next, you need to fire this job in the background from the controller.

Queuing a Background Job

Because background jobs run in parallel to the code in the controller, the

code you write to initiate the background job isn’t the same as calling a

method. When you call a method, you expect that method’s code to be executed

while you wait. Background jobs are different. They often go to a queue, where

they wait to be executed outside the controller. Thus, when we talk about

executing code in a background job, we often use the phrase “queue the job.”

To queue a job using Active Job, use the method perform_later() on the job class

and pass it the arguments you want to be given to the perform() method you

implemented above. Here’s where to do that in the controller (note that this

replaces the call to OrderMailer, since that’s now part of the charge!() method):

rails51/depot_qb/app/controllers/orders_controller.rb

def create
@order = Order.new(order_params)
@order.add_line_items_from_cart(@cart)

respond_to do |format|
if @order.save

Cart.destroy(session[:cart_id])
session[:cart_id] = nil
ChargeOrderJob.perform_later(@order,pay_type_params.to_h)➤

format.html { redirect_to store_index_url, notice:
'Thank you for your order.' }

format.json { render :show, status: :created,
location: @order }

else
format.html { render :new }
format.json { render json: @order.errors,
status: :unprocessable_entity }

end
end

end

Chapter 14. Task I: Processing Emails and Payments Efficiently • 230

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_qb/app/jobs/charge_order_job.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_qb/app/controllers/orders_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

With this in place, you can now add an item to the cart, check out, and see

everything working just as we did before, with the addition of seeing the calls

to Pago. If you look at the Rails log when you check out, you should see some

logging like so (formatted to fit the page):

[ActiveJob] Enqueued ChargeOrderJob (Job ID: 79da671e-865c-4d51-a1ff-400208c6dbd1)
to Async(default) with arguments:

#<GlobalID:0x007fa294a43ce0 @uri=#<URI::GID gid://depot/Order/9>>,
{"routing_number"=>"23412341234", "account_number"=>"345356345"}

[ActiveJob] [ChargeOrderJob] [79da671e-865c-4d51-a1ff-400208c6dbd1]
Performing ChargeOrderJob (Job ID: 79da671e-865c-4d51-a1ff-400208c6dbd1) from
Async(default) with arguments:
#<GlobalID:0x007fa294a01570 @uri=#<URI::GID gid://depot/Order/9>>,
{"routing_number"=>"23412341234", "account_number"=>"345356345"}

[ActiveJob] [ChargeOrderJob] [79da671e-865c-4d51-a1ff-400208c6dbd1]
Processing check: 23412341234/345356345

This shows the guts of how Active Job works and is useful for debugging if

things aren’t working right.

Speaking of debugging and possible failures, this interaction really should

have a test.

System Testing the Checkout Flow

In Iteration H2: Testing Our JavaScript Functionality, on page 214, you wrote a

system test that uses a real browser to simulate user interaction. In order to

test the entire flow of checking out, communicating with the payment proces-

sor, and sending an email, you’ll expand that test.

To test the full, end-to-end workflow, including execution of Active Jobs, you

want to do the following:

1. Add a book to the cart.

2. Fill in the checkout form completely (including selecting a pay type).

3. Submit the order.

4. Process all background jobs.

5. Check that the order was created properly.

6. Check that email was sent.

You should already be familiar with how to write most parts of this test. Pro-

cessing background jobs and checking mail, however, are new. Rails provides

helpers for us, so the test will be short and readable when you’re done. One

of those helpers is available by mixing in the ActiveJob::TestHelper module:

report erratum • discuss

Iteration I2: Connecting to a Slow Payment Processor with Active Job • 231

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_qb/test/system/orders_test.rb

class OrdersTest < ApplicationSystemTestCase
include ActiveJob::TestHelper➤

This provides the method perform_enqueued_jobs(), which you’ll see in a moment.

The current test just makes assertions about how the pay type selector

changes the DOM. Since you now need to submit the form and assert that

an order was created, you need to clear out any orders in the test database

that might be hanging around from previous test runs.

rails51/depot_qb/test/system/orders_test.rb

test "check routing number" do

LineItem.delete_all➤

Order.delete_all➤

visit store_index_url

Next, you’ll need to fill in the pay type details. Since the test currently selects

the Check pay type, you can use fill_in() to provide a routing number and an

account number:

rails51/depot_qb/test/system/orders_test.rb

assert_selector "#order_routing_number"

fill_in "Routing #", with: "123456"➤

fill_in "Account #", with: "987654"➤

Next, you need to submit the form. Capybara provides the method click_button()
that will do that; however it’s important to consider what will happen with

the background jobs. In a system test, Rails won’t process the background

jobs automatically. This allows you to have the chance to inspect them and

make assertions about them.

Since this test is about the user’s experience end-to-end, you don’t need to

look at the jobs that have been queued—instead we need to make sure they

are executed. It’s sufficient to assert the results of those jobs having been

executed. To that end, the method perform_enqueued_jobs() will perform any jobs

that get enqueued inside the block of code given to it:

rails51/depot_qb/test/system/orders_test.rb

perform_enqueued_jobs do➤

click_button "Place Order"➤

end➤

When the “Place Order” button is pressed, the controller executes its code,

including queuing a ChargeOrderJob. Because that was initiated inside the block

given to perform_enqueued_jobs(), Rails will process any and all jobs that get

queued.

Chapter 14. Task I: Processing Emails and Payments Efficiently • 232

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_qb/test/system/orders_test.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_qb/test/system/orders_test.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_qb/test/system/orders_test.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_qb/test/system/orders_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Joe asks:

How Are Background Jobs Run in Development

or Production?

When running the application locally, the background jobs are executed and emails

are sent by Rails. By default, Rails uses an in-memory queue to manage the jobs.

This is fine for development, but it could be a problem in production. If your app were

to crash before all background jobs were processed or before emails were sent, those

jobs would be lost and unrecoverable.

In production, you’d need to use a different back end, as detailed in the Active Job

Rails Guide.a Sidekiq is a popular open-source back end that works great.b Setting

it up is a bit tricky, since you must have access to a Redis database to store the

waiting jobs.c If you are using Postgres for your Active Records, Queue Classic is

another option for a back end that doesn’t require Redis—it uses your existing Postgres

database.d

a. http://guides.rubyonrails.org/active_job_basics.html#job-execution
b. http://sidekiq.org/
c. https://redis.io/
d. https://github.com/QueueClassic/queue_classic/tree/3-1-stable

Next, check that an order was created in the way you expect by locating the

created order and asserting that the values provided in the checkout form

were properly saved.

rails51/depot_qb/test/system/orders_test.rb

orders = Order.all➤

assert_equal 1, orders.size➤

➤

order = orders.first➤

➤

assert_equal "Dave Thomas", order.name➤

assert_equal "123 Main Street", order.address➤

assert_equal "dave@example.com", order.email➤

assert_equal "Check", order.pay_type➤

assert_equal 1, order.line_items.size➤

Lastly, you need to check that the mail was sent. In the test environment,

Rails doesn’t actually deliver mail but instead saves it in an array available

via ActionMailer::Base.deliveries(). The objects in there respond to various methods

that allow you to examine the email:

report erratum • discuss

Iteration I2: Connecting to a Slow Payment Processor with Active Job • 233

http://guides.rubyonrails.org/active_job_basics.html#job-execution
http://sidekiq.org/
https://redis.io/
https://github.com/QueueClassic/queue_classic/tree/3-1-stable
http://media.pragprog.com/titles/rails51/code/rails51/depot_qb/test/system/orders_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_qb/test/system/orders_test.rb

mail = ActionMailer::Base.deliveries.last➤

assert_equal ["dave@example.com"], mail.to➤

assert_equal 'Sam Ruby <depot@example.com>', mail[:from].value➤

assert_equal "Pragmatic Store Order Confirmation", mail.subject➤

end
end

Note that if you had not used perform_enqueued_jobs() around the call to click_button
"Place Order", the test would fail. This is because ChargeOrderJob would not have

executed, and therefore it would not have created and sent the email.

If you run this test via bin/rails test test/system/orders_test.rb, it should pass. You’ve

now tested a complex workflow using the browser, background jobs, and email.

What We Just Did

Without much code and with just a few templates, we’ve managed to pull off

the following:

• We configured our development, test, and production environments for

our Rails application to enable the sending of outbound emails.

• We created and tailored a mailer that can send confirmation emails in

both plain-text and HTML formats to people who order our products.

• We used Active Job to execute slow-running code in the background, so

the user doesn’t have to wait.

• We enhanced a system test to cover the entire end-to-end workflow,

including verifying that the background job executed and the email

was sent.

Playtime

Here’s some stuff to try on your own:

• Add a ship_date column to the orders table, and send a notification when

this value is updated by the OrdersController.

• Update the application to send an email to the system administrator—

namely, yourself—when an application failure occurs, such as the one

we handled in Iteration E2: Handling Errors, on page 138.

• Modify Pago to sometimes return a failure (OpenStruct.new(succeeded?: false)),
and handle that by sending a different email with the details of the failure.

• Add system tests for all of the above.

Chapter 14. Task I: Processing Emails and Payments Efficiently • 234

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_qb/test/system/orders_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 15

In this chapter, you'll see:

• Adding secure passwords to models

• Using more validations

• Adding authentication to a session

• Using rails console
• Using database transactions

• Writing an Active Record hook

Task J: Logging In

We have a happy customer: in a short time, we’ve jointly put together a basic

shopping cart that she can start showing to her users. She’d like to see just

one more change. Right now, anyone can access the administrative functions.

She’d like us to add a basic user administration system that would force you

to log in to get into the administration parts of the site.

Chatting with our customer, it seems as if we don’t need a particularly

sophisticated security system for our application. We just need to recognize

a number of people based on usernames and passwords. Once recognized,

these folks can use all of the administration functions.

Iteration J1: Adding Users

Let’s start by creating a model and database table to hold our administrators’

usernames and passwords. Rather than store passwords in plain text, we’ll

store a digest hash value of the password. By doing so, we ensure that even

if our database is compromised, the hash won’t reveal the original password,

so it can’t be used to log in as this user using the forms:

depot> bin/rails generate scaffold User name:string password:digest

We declare the password as a digest type, which is another one of the nice

extra touches that Rails provides. Now run the migration as usual:

depot> bin/rails db:migrate

Next we have to flesh out the user model:

rails51/depot_r/app/models/user.rb

class User < ApplicationRecord
validates :name, presence: true, uniqueness: true➤

has_secure_password
end

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/models/user.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We check that the name is present and unique (that is, no two users can have

the same name in the database).

Then there’s the mysterious has_secure_password().

You know those forms that prompt you to enter a password and then make

you reenter it in a separate field so they can validate that you typed what you

thought you typed? That’s exactly what has_secure_password() does for you: it

tells Rails to validate that the two passwords match. This line was added for

you because you specified password:digest when you generated your scaffold.

The next step is to uncomment the bcrypt-ruby gem in your Gemfile:

rails51/depot_r/Gemfile

Use ActiveModel has_secure_password
gem 'bcrypt', '~> 3.1.7'➤

Next, you need to install the gem:

depot> bundle install

Finally, you need to restart your server.

With this code in place, we have the ability to present both a password and

a password confirmation field in a form, as well as the ability to authenticate

a user, given a name and a password.

Administering Our Users

In addition to the model and table we set up, we already have some scaffolding

generated to administer the model. Let’s go through it and make some tweaks

as necessary.

We start with the controller. It defines the standard methods: index(), show(),
new(), edit(), create(), update(), and delete(). By default, Rails omits the unintelligible

password hash from the view. This means that in the case of users, there

isn’t much to show(), except a name. So, let’s avoid the redirect to showing the

user after a create operation. Instead, let’s redirect to the user’s index and

add the username to the flash notice:

rails51/depot_r/app/controllers/users_controller.rb

def create
@user = User.new(user_params)

respond_to do |format|
if @user.save

format.html { redirect_to users_url,➤

notice: "User #{@user.name} was successfully created." }➤

format.json { render :show, status: :created, location: @user }
else

Chapter 15. Task J: Logging In • 236

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/Gemfile
http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/controllers/users_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

format.html { render :new }
format.json { render json: @user.errors,
status: :unprocessable_entity }

end
end

end

Let’s do the same for an update operation:

def update
respond_to do |format|

if @user.update(user_params)
format.html { redirect_to users_url,➤

notice: "User #{@user.name} was successfully updated." }➤

format.json { render :show, status: :ok, location: @user }
else

format.html { render :edit }
format.json { render json: @user.errors,

status: :unprocessable_entity }
end

end
end

While we are here, let’s also order the users returned in the index by name:

def index
@users = User.order(:name)➤

end

Now that the controller changes are done, let’s attend to the view. We need to

update the form used both to create a new user and to update an existing user.

Note this form is already set up to show the password and password confirma-

tion fields. To improve the appearance of the page, we add <legend> and <fieldset>
tags. Next we tweak the labels and the size of the fields. Finally, we wrap the

output in a <div> tag with a class we previously defined in our stylesheet:

rails51/depot_r/app/views/users/_form.html.erb

<div class="depot_form">➤

➤

<%= form_with(model: user, local: true) do |form| %>
<% if user.errors.any? %>

<div id="error_explanation">
<h2><%= pluralize(user.errors.count, "error") %>

prohibited this user from being saved:</h2>

<% user.errors.full_messages.each do |message| %>

<%= message %>
<% end %>

</div>

report erratum • discuss

Iteration J1: Adding Users • 237

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/views/users/_form.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

<% end %>

<h2>Enter User Details</h2>➤

➤

<div class="field">
<%= form.label :name, 'Name:' %>➤

<%= form.text_field :name, id: :user_name, size: 40 %>➤

</div>

<div class="field">
<%= form.label :password, 'Password:' %>➤

<%= form.password_field :password, id: :user_password, size: 40 %>➤

</div>

<div class="field">
<%= form.label :password_confirmation, 'Confirm:' %>➤

<%= form.password_field :password_confirmation,➤

id: :user_password_confirmation,➤

size: 40 %>➤

</div>

<div class="actions">
<%= form.submit %>

</div>
<% end %>

➤

</div>➤

Let’s try it. Navigate to http://localhost:3000/users/new. For a stunning example of

page design, see the following screenshot.

After Create User is clicked, the index is redisplayed with a cheery flash notice.

If we look in our database, you’ll see that we’ve stored the user details:

depot> sqlite3 -line db/development.sqlite3 "select * from users"
id = 1

name = dave
password_digest = $2a$10$lki6/oAcOW4AWg4A0e0T8uxtri2Zx5g9taBXrd4mDSDVl3rQRWRNi

created_at = 2016-01-29 14:40:06.230622
updated_at = 2016-01-29 14:40:06.230622

Chapter 15. Task J: Logging In • 238

report erratum • discuss

http://localhost:3000/users/new
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

As we’ve done before, we need to update our tests to reflect the validation and

redirection changes we’ve made. First we update the test for the create() method:

rails51/depot_r/test/controllers/users_controller_test.rb

test "should create user" do
assert_difference('User.count') do

post users_url, params: { user: { name: 'sam',➤

password: 'secret', password_confirmation: 'secret' } }➤

end

assert_redirected_to users_url➤

end

Because the redirect on the update() method changed too, the update test also

needs to change:

test "should update user" do
patch user_url(@user), params: { user: { name: @user.name,

password: 'secret', password_confirmation: 'secret' } }
assert_redirected_to users_url➤

end

We need to update the test fixtures to ensure there are no duplicate names:

rails51/depot_r/test/fixtures/users.yml

Read about fixtures at
http://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
name: dave➤

password_digest: <%= BCrypt::Password.create('secret') %>

two:
name: susannah➤

password_digest: <%= BCrypt::Password.create('secret') %>

Note the use of dynamically computed values in the fixture, specifically for the

value of password_digest. This code was also inserted by the scaffolding command

and uses the same function that Rails uses to compute the password.1

At this point, we can administer our users; we need to first authenticate users

and then restrict administrative functions so they’ll be accessible only by

administrators.

Iteration J2: Authenticating Users

What does it mean to add login support for administrators of our store?

1. https://github.com/rails/rails/blob/5-1-stable/activemodel/lib/active_model/secure_password.rb

report erratum • discuss

Iteration J2: Authenticating Users • 239

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/test/controllers/users_controller_test.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_r/test/fixtures/users.yml
https://github.com/rails/rails/blob/5-1-stable/activemodel/lib/active_model/secure_password.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

• We need to provide a form that allows them to enter a username and

password.

• Once they’re logged in, we need to record that fact somehow for the rest

of the session (or until they log out).

• We need to restrict access to the administrative parts of the application,

allowing only people who are logged in to administer the store.

We could put all of the logic into a single controller, but it makes more sense

to split it into two: a session controller to support logging in and out and a

controller to welcome administrators:

depot> bin/rails generate controller Sessions new create destroy
depot> bin/rails generate controller Admin index

The SessionsController#create action will need to record something in session to say

that an administrator is logged in. Let’s have it store the ID of that person’s

User object using the key :user_id. The login code looks like this:

rails51/depot_r/app/controllers/sessions_controller.rb

def create
user = User.find_by(name: params[:name])➤

if user.try(:authenticate, params[:password])➤

session[:user_id] = user.id➤

redirect_to admin_url➤

else➤

redirect_to login_url, alert: "Invalid user/password combination"➤

end➤

end

This code makes use of the Rails try() method, which checks to see if a variable

has a value of nil before trying to call the method. If you’re using Ruby 2.3,

you can use the version of this that’s built into the language instead:

if user&.authenticate(params[:password])

We’re also doing something else new here: using a form that isn’t directly

associated with a model object. To see how that works, let’s look at the tem-

plate for the sessions#new action:

rails51/depot_r/app/views/sessions/new.html.erb

<section class="depot_form">
<% if flash[:alert] %>
<aside class="notice"><%= flash[:alert] %></aside>

<% end %>

<%= form_tag do %>
<h2>Please Log In</h2>

Chapter 15. Task J: Logging In • 240

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/controllers/sessions_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/views/sessions/new.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

<div class="field">
<%= label_tag :name, 'Name:' %>
<%= text_field_tag :name, params[:name] %>

</div>

<div class="field">
<%= label_tag :password, 'Password:' %>
<%= password_field_tag :password, params[:password] %>

</div>

<div class="actions">
<%= submit_tag "Login" %>

</div>
<% end %>

</section>

This form is different from ones you saw earlier. Rather than using form_with,
it uses form_tag, which simply builds a regular HTML <form>. Inside that form,

it uses text_field_tag and password_field_tag, two helpers that create HTML <input>
tags. Each helper takes two parameters. The first is the name to give to the

field, and the second is the value with which to populate the field. This style

of form allows us to associate values in the params structure directly with form

fields—no model object is required. In our case, we choose to use the params
object directly in the form. An alternative would be to have the controller set

instance variables.

We also make use of the label_tag helpers to create HTML <label> tags. This

helper also accepts two parameters. The first contains the name of the field,

and the second contains the label to be displayed.

See the figure on page 242. Note how the value of the form field is communi-

cated between the controller and the view via the params hash: the view gets

the value to display in the field from params[:name], and when the user submits

the form, the new field value is made available to the controller the same way.

If the user successfully logs in, we store the ID of the user record in the session

data. We’ll use the presence of that value in the session as a flag to indicate

that an administrative user is logged in.

As you might expect, the controller actions for logging out are much shorter:

rails51/depot_r/app/controllers/sessions_controller.rb

def destroy
session[:user_id] = nil➤

redirect_to store_index_url, notice: "Logged out"➤

end

report erratum • discuss

Iteration J2: Authenticating Users • 241

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/controllers/sessions_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

def login
 name = params[:name]
 ...
end

<%= form_tag do %>
 Name:
 <%= text_field_tag :name, params[:name] %>
 ...
<% end %>

Controller

Template

Finally, it’s about time to add the index page—the first screen that adminis-

trators see when they log in. Let’s make it useful. We’ll have it display the

total number of orders in our store. Create the template in the index.html.erb
file in the app/views/admin directory. (This template uses the pluralize() helper,

which in this case generates the order or orders string, depending on the cardi-

nality of its first parameter.)

rails51/depot_r/app/views/admin/index.html.erb

<h1>Welcome</h1>

<p>
It's <%= Time.now %>.
We have <%= pluralize(@total_orders, "order") %>.

</p>

The index() action sets up the count:

rails51/depot_r/app/controllers/admin_controller.rb

class AdminController < ApplicationController
def index
@total_orders = Order.count➤

end
end

Chapter 15. Task J: Logging In • 242

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/views/admin/index.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/controllers/admin_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We have one more task to do before we can use this. Whereas previously we

relied on the scaffolding generator to create our model and routes for us, this

time we simply generated a controller because there’s no database-backed

model for this controller. Unfortunately, without the scaffolding conventions

to guide it, Rails has no way of knowing which actions are to respond to GET
requests, which are to respond to POST requests, and so on, for this controller.

We need to provide this information by editing our config/routes.rb file:

rails51/depot_r/config/routes.rb

Rails.application.routes.draw do
get 'admin' => 'admin#index'➤

controller :sessions do➤

get 'login' => :new➤

post 'login' => :create➤

delete 'logout' => :destroy➤

end➤

resources :users
resources :orders
resources :line_items
resources :carts
root 'store#index', as: 'store_index'

resources :products do
get :who_bought, on: :member

end

For details on the DSL available within this file, see
http://guides.rubyonrails.org/routing.html

end

We’ve touched this before, when we added a root statement in Iteration C1:

Creating the Catalog Listing, on page 103. What the generate command will add

to this file are fairly generic get statements for each of the actions specified.

You can (and should) delete the routes provided for sessions/new, sessions/create,
and sessions/destroy.

In the case of admin, we’ll shorten the URL that the user has to enter (by

removing the /index part) and map it to the full action. In the case of session

actions, we’ll completely change the URL (replacing things like session/create
with simply login) as well as tailor the HTTP action that we’ll match. Note that

login is mapped to both the new and create actions, the difference being whether

the request was an HTTP GET or HTTP POST.

We also make use of a shortcut: wrapping the session route declarations in

a block and passing it to a controller() class method. This saves us a bit of typing

as well as makes the routes easier to read. We’ll describe all you can do in

this file in Dispatching Requests to Controllers, on page 354.

report erratum • discuss

Iteration J2: Authenticating Users • 243

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/config/routes.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

With these routes in place, we can experience the joy of logging in as an

administrator. See the following screenshot.

We need to replace the functional tests in the session controller to match what

was implemented. First, change the admin controller test to get the admin URL:

rails51/depot_r/test/controllers/admin_controller_test.rb

require 'test_helper'

class AdminControllerTest < ActionDispatch::IntegrationTest
test "should get index" do

get admin_url➤

assert_response :success
end

end

Then we implement several tests for both successful and failed login attempts:

rails51/depot_r/test/controllers/sessions_controller_test.rb

require 'test_helper'

class SessionsControllerTest < ActionDispatch::IntegrationTest
test "should prompt for login" do

get login_url
assert_response :success

end

test "should login" do
dave = users(:one)
post login_url, params: { name: dave.name, password: 'secret' }
assert_redirected_to admin_url
assert_equal dave.id, session[:user_id]

end

test "should fail login" do
dave = users(:one)
post login_url, params: { name: dave.name, password: 'wrong' }
assert_redirected_to login_url

end

test "should logout" do
delete logout_url
assert_redirected_to store_index_url

end

end

Chapter 15. Task J: Logging In • 244

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/test/controllers/admin_controller_test.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_r/test/controllers/sessions_controller_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We show our customer where we are, but she points out that we still haven’t

controlled access to the administrative pages (which was, after all, the point

of this exercise).

Iteration J3: Limiting Access

We want to prevent people without an administrative login from accessing

our site’s admin pages. It turns out that we can do it with very little code

using the Rails callback facility.

Rails callbacks allow you to intercept calls to action methods, adding your

own processing before they’re invoked, after they return, or both. In our case,

we’ll use a before action callback to intercept all calls to the actions in our

admin controller. The interceptor can check session[:user_id]. If it’s set and if it

corresponds to a user in the database, the application knows an administrator

is logged in, and the call can proceed. If it’s not set, the interceptor can issue

a redirect, in this case to our login page.

Where should we put this method? It could sit directly in the admin controller,

but—for reasons that’ll become apparent shortly—let’s put it instead in Appli-
cationController, the parent class of all our controllers. This is in the application_con-
troller.rb file in the app/controllers directory. Note too that we chose to restrict

access to this method. This prevents it from ever being exposed to end users

as an action:

rails51/depot_r/app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
before_action :authorize➤

...
➤

protected➤

➤

def authorize➤

unless User.find_by(id: session[:user_id])➤

redirect_to login_url, notice: "Please log in"➤

end➤

end➤

end

The before_action() line causes the authorize() method to be invoked before every

action in our application.

This is going too far. We’ve just limited access to the store itself to adminis-

trators. That’s not good.

We could go back and change things so that we mark only those methods

that specifically need authorization. Such an approach, called blacklisting,

report erratum • discuss

Iteration J3: Limiting Access • 245

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/controllers/application_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

is prone to errors of omission. A much better approach is to whitelist—list

methods or controllers for which authorization is not required. We do this by

inserting a skip_before_action() call within the StoreController:

rails51/depot_r/app/controllers/store_controller.rb

class StoreController < ApplicationController
skip_before_action :authorize➤

And we do it again for the SessionsController class:

rails51/depot_r/app/controllers/sessions_controller.rb

class SessionsController < ApplicationController
skip_before_action :authorize➤

We’re not done yet; we need to allow people to create, update, and delete carts:

rails51/depot_r/app/controllers/carts_controller.rb

class CartsController < ApplicationController
skip_before_action :authorize, only: [:create, :update, :destroy]➤

And we allow them to create line items:

rails51/depot_r/app/controllers/line_items_controller.rb

class LineItemsController < ApplicationController
skip_before_action :authorize, only: :create➤

We also allow them to create orders (which includes access to the new form):

rails51/depot_r/app/controllers/orders_controller.rb

class OrdersController < ApplicationController
skip_before_action :authorize, only: [:new, :create]➤

With the authorization logic in place, we can now navigate to http://localhost:3000/
products. The callback method intercepts us on the way to the product listing

and shows us the login screen instead.

Unfortunately, this change pretty much invalidates most of our functional

tests, because most operations will now redirect to the login screen instead

of doing the function desired. Fortunately, we can address this globally by

creating a setup() method in the test_helper. While we’re there, we also define

some helper methods to login_as() and logout() a user:

rails51/depot_r/test/test_helper.rb

class ActionDispatch::IntegrationTest
def login_as(user)
post login_url, params: { name: user.name, password: 'secret' }

end

def logout
delete logout_url

end

Chapter 15. Task J: Logging In • 246

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/controllers/sessions_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/controllers/carts_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/controllers/line_items_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/controllers/orders_controller.rb
http://localhost:3000/products
http://localhost:3000/products
http://media.pragprog.com/titles/rails51/code/rails51/depot_r/test/test_helper.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

def setup
login_as users(:one)

end
end

Note that the setup() method will call login_as() only if session is defined. This

prevents the login from being executed in tests that don’t involve a controller.

We show our customer and are rewarded with a big smile and a request:

could we add a sidebar and put links to the user and product administration

stuff in it? And while we’re there, could we add the ability to list and delete

administrative users? You betcha!

Iteration J4: Adding a Sidebar, More Administration

Let’s start with adding links to various administration functions to the sidebar

in the layout and have them show up only if a :user_id is in the session:

rails51/depot_r/app/views/layouts/application.html.erb

<html>
<head>

<title>Pragprog Books Online Store</title>
<%= csrf_meta_tags %>

<%= stylesheet_link_tag 'application', media: 'all',
'data-turbolinks-track': 'reload' %>

<%= javascript_include_tag 'application',
'data-turbolinks-track': 'reload' %>

</head>

<body>
<header class="main">
<%= image_tag 'logo.svg', alt: 'The Pragmatic Bookshelf' %>
<h1><%= @page_title %></h1>

</header>
<section class="content">

<nav class="side_nav">

<div id="cart" class="carts">

<%= render_if @cart && @cart.line_items.any?, @cart %>
</div>

Home
Questions
News
Contact

➤

<% if session[:user_id] %>➤

<nav class="logged_in_nav">➤

report erratum • discuss

Iteration J4: Adding a Sidebar, More Administration • 247

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/views/layouts/application.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

➤

<%= link_to 'Orders', orders_path %>➤

<%= link_to 'Products', products_path %>➤

<%= link_to 'Users', users_path %>➤

<%= button_to 'Logout', logout_path, method: :delete %>➤

➤

</nav>➤

<% end %>➤

</nav>
<main class='<%= controller.controller_name %>'>

<%= yield %>
</main>

</section>
</body>

</html>

We should also add some light styling. Let’s add this to the end of

app/assets/stylesheets/application.scss:

rails51/depot_r/app/assets/stylesheets/application.scss

nav.logged_in_nav {
border-top: solid thin #bfb;
padding: 0.354em 0;
margin-top: 0.354em;
input[type="submit"] {
// Make the logout button look like a
// link, so it matches the nav style
background: none;
border: none;
color: #bfb;
font-size: 1em;
letter-spacing: 0.354em;
margin: 0;
padding: 0;
text-transform: uppercase;

}
input[type="submit"]:hover {

color: white;
}

}

Now it’s all starting to come together. We can log in, and by clicking a link in

the sidebar, we can see a list of users. Let’s see if we can break something.

Would the Last Admin to Leave…

We bring up the user list screen that looks something like the screenshot on

page 249; then we click the Destroy link next to dave to delete that user. Sure

enough, our user is removed. But to our surprise, we’re then presented with

the login screen instead. We just deleted the only administrative user from

Chapter 15. Task J: Logging In • 248

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/assets/stylesheets/application.scss
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

the system. When the next request came in, the authentication failed, so the

application refused to let us in. We have to log in again before using any

administrative functions.

But now we have an embarrassing problem: there are no administrative users

in the database, so we can’t log in.

Fortunately, we can quickly add a user to the database from the command

line. If you invoke the rails console command, Rails invokes Ruby’s irb utility,

but it does so in the context of your Rails application. That means you can

interact with your application’s code by typing Ruby statements and looking

at the values they return.

We can use this to invoke our user model directly, having it add a user into

the database for us:

depot> bin/rails console
Loading development environment.
>> User.create(name: 'dave', password: 'secret', password_confirmation: 'secret')
=> #<User:0x2933060 @attributes={...} ... >
>> User.count
=> 1

The >> sequences are prompts. After the first, we call the User class to create

a new user, and after the second, we call it again to show that we do indeed

have a single user in our database. After each command we enter, rails console
displays the value returned by the code (in the first case, it’s the model object,

and in the second case, it’s the count).

Panic over. We can now log back in to the application. But how can we stop

this from happening again? We have several ways. For example, we could

write code that prevents you from deleting your own user. That doesn’t quite

work: in theory, A could delete B at just the same time that B deletes A. Let’s

try a different approach. We’ll delete the user inside a database transaction.

Transactions provide an all-or-nothing proposition, stating that each work

unit performed in a database must either complete in its entirety or none of

report erratum • discuss

Iteration J4: Adding a Sidebar, More Administration • 249

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

them will have any effect whatsoever. If no users are left after we’ve deleted

the user, we’ll roll the transaction back, restoring the user we just deleted.

To do this, we’ll use an Active Record hook method. We’ve already seen one

of these: the validate hook is called by Active Record to validate an object’s

state. It turns out that Active Record defines sixteen or so hook methods,

each called at a particular point in an object’s life cycle. We’ll use the

after_destroy() hook, which is called after the SQL delete is executed. If a method

by this name is publicly visible, it’ll conveniently be called in the same

transaction as the delete—so if it raises an exception, the transaction will be

rolled back. The hook method looks like this:

rails51/depot_t/app/models/user.rb

after_destroy :ensure_an_admin_remains

class Error < StandardError
end

private
def ensure_an_admin_remains
if User.count.zero?

raise Error.new "Can't delete last user"
end

end

The key concept is the use of an exception to indicate an error when the user is

deleted. This exception serves two purposes. First, because it’s raised inside a

transaction, it causes an automatic rollback. By raising the exception if the users
table is empty after the deletion, we undo the delete and restore that last user.

Second, the exception signals the error back to the controller, where we use

a rescue_from block to handle it and report the error to the user in the notice.

If you want only to abort the transaction but not otherwise signal an exception,

raise an ActiveRecord::Rollback exception instead, because this is the only exception

that won’t be passed on by ActiveRecord::Base.transaction:

rails51/depot_t/app/controllers/users_controller.rb

def destroy
@user.destroy
respond_to do |format|

format.html { redirect_to users_url,
notice: '"User #{@user.name} deleted"' }

format.json { head :no_content }
end

end

rescue_from 'User::Error' do |exception|➤

redirect_to users_url, notice: exception.message➤

end➤

Chapter 15. Task J: Logging In • 250

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/models/user.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/controllers/users_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

This code still has a potential timing issue: it’s still possible for two adminis-

trators each to delete the last two users if their timing is right. Fixing this

would require more database wizardry than we have space for here.

In fact, the login system described in this chapter is rudimentary. Most

applications these days use a plugin to do this.

A number of plugins are available that provide ready-made solutions that not

only are more comprehensive than the authentication logic shown here but

generally require less code and effort on your part to use. Devise2 is a common

and popular gem that does this.

What We Just Did

By the end of this iteration, we’ve done the following:

• We used has_secure_password to store an encrypted version of the password

into the database.

• We controlled access to the administration functions using before action

callbacks to invoke an authorize() method.

• We used rails console to interact directly with a model (and dig us out of a

hole after we deleted the last user).

• We used a transaction to help prevent deletion of the last user.

Playtime

Here’s some stuff to try on your own:

• Modify the user update function to require and validate the current

password before allowing a user’s password to be changed.

• When the system is freshly installed on a new machine, no administrators

are defined in the database, and hence no administrator can log on. But, if

no administrator can log on, then no one can create an administrative user.

Change the code so that if no administrator is defined in the database,

any username works to log on (allowing you to quickly create a real

administrator).

• Experiment with rails console. Try creating products, orders, and line items.

Watch for the return value when you save a model object—when validation

fails, you’ll see false returned. Find out why by examining the errors:

2. https://github.com/plataformatec/devise

report erratum • discuss

Iteration J4: Adding a Sidebar, More Administration • 251

https://github.com/plataformatec/devise
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

>> prd = Product.new
=> #<Product id: nil, title: nil, description: nil, image_url:
nil, created_at: nil, updated_at: nil, price:
#<BigDecimal:246aa1c,'0.0',4(8)>>
>> prd.save
=> false
>> prd.errors.full_messages
=> ["Image url must be a URL for a GIF, JPG, or PNG image",

"Image url can't be blank", "Price should be at least 0.01",
"Title can't be blank", "Description can't be blank"]

• Look up the authenticate_or_request_with_http_basic() method and utilize it in your

:authorize callback if the request.format is not Mime[:HTML]. Test that it works

by accessing an Atom feed:

curl --silent --user dave:secret \
http://localhost:3000/products/2/who_bought.atom

• We’ve gotten our tests working by performing a login, but we haven’t yet

written tests that verify that access to sensitive data requires login. Write

at least one test that verifies this by calling logout() and then attempting

to fetch or update some data that requires authentication.

Chapter 15. Task J: Logging In • 252

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 16

In this chapter, you'll see:

• Localizing templates

• Database design considerations for I18n

Task K: Internationalization

Now we have a basic cart working, and our customer starts to inquire about

languages other than English, noting that her company has a big push on

for expansion in emerging markets. Unless we can present something in a

language that visitors to our customer’s website will understand, our customer

will be leaving money on the table. We can’t have that.

The first problem is that none of us are professional translators. The customer

reassures us that this isn’t something we need to concern ourselves with

because that part of the effort will be outsourced. All we need to worry about

is enabling translation. Furthermore, we don’t have to worry about the

administration pages yet, because all the administrators speak English. What

we have to focus on is the store.

That’s a relief—but still a tall order. We’ll need to define a way to enable the user

to select a language, we’ll have to provide the translations themselves, and we’ll

have to change the views to use these translations. But we’re up to the task,

and—armed with a bit of remembered high-school Spanish—we set off to work.

Joe asks:

If We Stick to One Language,

Do We Need to Read This Chapter?

The short answer is no. In fact, many Rails applications are for a small or homogeneous

group and never need translating. That being said, pretty much everybody who does

find that they need translation agrees that it’s best if this is done early. So, unless you’re

sure that translation won’t ever be needed, it’s our recommendation that you at least

understand what would be involved so that you can make informed decisions.

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Iteration K1: Selecting the Locale

We start by creating a new configuration file that encapsulates our knowledge

of what locales are available and which one is to be used as the default:

rails51/depot_t/config/initializers/i18n.rb

#encoding: utf-8
I18n.default_locale = :en

LANGUAGES = [
['English', 'en'],
["Español".html_safe, 'es']

]

This code is doing two things.

The first thing it does is use the I18n module to set the default locale. I18n is
a funny name, but it sure beats typing out internationalization all the time.

Internationalization, after all, starts with an i, ends with an n, and has eighteen

letters in between.

Then the code defines a list of associations between display names and locale

names. Unfortunately, all we have available at the moment is a U.S. keyboard,

and Español has a character that can’t be directly entered via our keyboard.

Different operating systems have different ways of dealing with this, and

often the easiest way is to copy and paste the correct text from a website. If

you do this, make sure your editor is configured for UTF-8. Meanwhile,

we’ve opted to use the HTML equivalent of the n con tilde character in

Spanish. If we didn’t do anything else, the markup itself would be shown.

But by calling html_safe, we inform Rails that the string is safe to be interpret-

ed as containing HTML.

For Rails to pick up this configuration change, the server needs to be

restarted.

Since each page that’s translated will have an en and an es version (for now—

more will be added later), it makes sense to include this in the URL. Let’s

plan to put the locale up front, make it optional, and have it default to the

current locale, which in turn will default to English. To implement this cunning

plan, let’s start by modifying config/routes.rb:

Chapter 16. Task K: Internationalization • 254

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/initializers/i18n.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_t/config/routes.rb

Rails.application.routes.draw do
get 'admin' => 'admin#index'
controller :sessions do
get 'login' => :new
post 'login' => :create
delete 'logout' => :destroy

end

resources :users
resources :products do
get :who_bought, on: :member

end

scope '(:locale)' do➤

resources :orders
resources :line_items
resources :carts
root 'store#index', as: 'store_index', via: :all

end➤

end

We’ve nested our resources and root declarations inside a scope declaration

for :locale. Furthermore, :locale is in parentheses, which is the way to say that

it’s optional. Note that we didn’t choose to put the administrative and session

functions inside this scope, because it’s not our intent to translate them at

this time.

What this means is that http://localhost:3000/ will use the default locale (namely,

English) and therefore be routed exactly the same as http://localhost:3000/en.
http://localhost:3000/es will route to the same controller and action, but we’ll want

this to cause the locale to be set differently.

At this point, we’ve made a lot of changes to config.routes, and with the nesting

and all the optional parts to the path, the gestalt might be hard to visualize.

Never fear: when running a server in development mode, Rails provides a

visual aid. All you need to do is navigate to http://localhost:3000/rails/info/routes, and

you’ll see a list of all your routes. You can even filter the list, as shown in the

screenshot on page 256, to quickly find the route you’re interested in. More

information on the fields shown in this table can be found in the description

of rails routes on page 356.

report erratum • discuss

Iteration K1: Selecting the Locale • 255

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/routes.rb
http://localhost:3000/
http://localhost:3000/en
http://localhost:3000/es
http://localhost:3000/rails/info/routes
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

With the routing in place, we’re ready to extract the locale from the parameters

and make it available to the application. To do this, we need to create a

before_action callback. The logical place to do this is in the common base class

for all of our controllers, which is ApplicationController:

rails51/depot_t/app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
before_action :set_i18n_locale_from_params➤

...
protected

def set_i18n_locale_from_params➤

if params[:locale]➤

if I18n.available_locales.map(&:to_s).include?(params[:locale])➤

I18n.locale = params[:locale]➤

else➤

flash.now[:notice] =➤

"#{params[:locale]} translation not available"➤

logger.error flash.now[:notice]➤

end➤

end➤

end➤

end

Chapter 16. Task K: Internationalization • 256

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/controllers/application_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

This set_i18n_locale_from_params does pretty much what it says: it sets the locale

from the params, but only if there’s a locale in the params; otherwise, it leaves

the current locale alone. Care is taken to provide a message for both the user

and the administrator when a failure occurs.

With this in place, we can see the results in the following screenshot of navi-

gating to http://localhost:3000/en.

At this point, the English version of the page is available both at the root of

the website and at pages that start with /en. If you try another language code,

say “es” (or Spanish), you can see that an error message appears saying no

translations are available. The screenshot on page 258 shows what this might

look like when navigating to http://localhost:3000/es:

Iteration K2: Translating the Storefront

Now it’s time to begin providing the translated text. Let’s start with the layout,

because it’s pretty visible. We replace any text that needs to be translated

with calls to I18n.translate. Not only is this method conveniently aliased as I18n.t,
but a helper named t is provided.

The parameter to the translate function is a unique dot-qualified name. We

can choose any name we like, but if we use the t helper function provided,

names that start with a dot will first be expanded using the name of the

template. So, let’s do that:

report erratum • discuss

Iteration K2: Translating the Storefront • 257

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_t/app/views/layouts/application.html.erb

<nav class="side_nav">

<div id="cart" class="carts">

<%= render_if @cart && @cart.line_items.any?, @cart %>
</div>

<%= t('.home') %>➤

<%= t('.questions') %>➤

<%= t('.news') %>➤

<%= t('.contact') %>➤

<% if session[:user_id] %>
<nav class="logged_in_nav">

<%= link_to 'Orders', orders_path %>
<%= link_to 'Products', products_path %>
<%= link_to 'Users', users_path %>
<%= button_to 'Logout', logout_path, method: :delete %>

</nav>

<% end %>
</nav>

Chapter 16. Task K: Internationalization • 258

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/views/layouts/application.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Since this view is named layouts/application.html.erb, the English mappings will

expand to en.layouts.application. Here’s the corresponding locale file:

rails51/depot_t/config/locales/en.yml

en:

layouts:
application:

title: "The Pragmatic Bookshelf"
home: "Home"
questions: "Questions"
news: "News"
contact: "Contact"

Here it is in Spanish:

rails51/depot_t/config/locales/es.yml

es:

layouts:
application:

title: "Biblioteca de Pragmatic"
home: "Inicio"
questions: "Preguntas"
news: "Noticias"
contact: "Contacto"

The format is YAML, the same as the one used to configure the databases.

YAML consists of indented names and values, where the indentation in this

case matches the structure that we created in our names.

To get Rails to recognize new YAML files, the server needs to be restarted.

Navigating to http://localhost:3000/es now will show some translated text, as shown

in the screenshot on page 260.

Next to be updated is the main title as well as the Add to Cart button. Both

can be found in the store index template:

rails51/depot_s/app/views/store/index.html.erb

<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h1><%= t('.title_html') %></h1>➤

<ul class="catalog">
<% cache @products do %>
<% @products.each do |product| %>

<% cache product do %>

<%= image_tag(product.image_url) %>
<h2><%= product.title %></h2>

report erratum • discuss

Iteration K2: Translating the Storefront • 259

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/locales/en.yml
http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/locales/es.yml
http://media.pragprog.com/titles/rails51/code/rails51/depot_s/app/views/store/index.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

<p>
<%= sanitize(product.description) %>

</p>
<div class="price">

<%= number_to_currency(product.price) %>
<%= button_to t('.add_html'), line_items_path(product_id: product),➤

remote: true %>
</div>

<% end %>

<% end %>
<% end %>

And here’s the corresponding updates to the locales files, first in English:

rails51/depot_t/config/locales/en.yml

en:

store:
index:

title_html: "Your Pragmatic Catalog"
add_html: "Add to Cart"

Chapter 16. Task K: Internationalization • 260

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/locales/en.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

And then in Spanish:

rails51/depot_t/config/locales/es.yml

es:

store:
index:

title_html: "Su Catálogo de Pragmatic"
add_html: "Añadir al Carrito"

Note that since title_html and add_html end in the characters _html, we’re free to

use HTML entity names for characters that don’t appear on our keyboard. If

we didn’t name the translation key this way, what you’d end up seeing on

the page is the markup. This is yet another convention that Rails has adopted

to make your coding life easier. Rails will also treat names that contain html
as a component (in other words, the string .html.) as HTML key names.

By refreshing the page in the browser window, we see the results shown in

the following screenshot.

Feeling confident, we move on to the cart partial, replacing text that needs

translation as well as adding the locale to the new_order_path:

rails51/depot_t/app/views/carts/_cart.html.erb

<article>
<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

report erratum • discuss

Iteration K2: Translating the Storefront • 261

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/locales/es.yml
http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/views/carts/_cart.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

<h2><%= t('.title') %></h2>➤

<table>

<%= render(cart.line_items) %>
<tfoot>

<tr>
<th colspan="2">Total:</td>
<td class="price"><%= number_to_currency(cart.total_price) %></td>

</tr>
</tfoot>

</table>

<div class="actions">
<%= button_to t('.empty'), cart,➤

method: :delete,
data: { confirm: 'Are you sure?' } %>

<%= button_to t('.checkout'), new_order_path(locale: I18n.locale),➤

method: :get,
class: "checkout"%>

</div>
</article>

And again, here are the translations:

rails51/depot_t/config/locales/en.yml

en:

carts:
cart:

title: "Your Cart"
empty: "Empty cart"
checkout: "Checkout"

rails51/depot_t/config/locales/es.yml

es:

carts:
cart:

title: "Carrito de la Compra"
empty: "Vaciar Carrito"
checkout: "Comprar"

Refreshing the page, we see the cart title and buttons have been translated,

as shown in the screenshot on page 263.

We need to be careful here. The logic to render the cart is rendered in two

places: first in the storefront and second in response to pushing the Añadir

al Carrito (Add to Cart) button via Ajax. Sure enough, when we click that

button, we see the cart rendered in English. To fix this, we need to pass the

locale on the remote call:

Chapter 16. Task K: Internationalization • 262

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/locales/en.yml
http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/locales/es.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_t/app/views/store/index.html.erb

<div class="price">
<%= number_to_currency(product.price) %>
<%= button_to t('.add_html'),
line_items_path(product_id: product, locale: I18n.locale),➤

remote: true %>
</div>

We now notice our next problem. Languages are not the only thing that varies

from locale to locale; currencies do too. And the customary way that numbers

are presented varies too.

So first we check with our customer and we verify that we’re not worrying

about exchange rates at the moment (whew!), because that’ll be taken care

of by the credit card and/or wire companies, but we do need to display the

string USD or $US after the value when we’re showing the result in Spanish.

Another variation is the way that numbers themselves are displayed. Decimal

values are delimited by a comma, and separators for the thousands place are

indicated by a dot.

Currency is a lot more complicated than it first appears, and there are a lot

of decisions to be made. Fortunately, Rails knows to look in your translations

file for this information; all we need to do is supply it. Here it is for en:

rails51/depot_t/config/locales/en.yml

en:

number:
currency:

format:
unit: "$"
precision: 2
separator: "."
delimiter: ","
format: "%u%n"

report erratum • discuss

Iteration K2: Translating the Storefront • 263

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/views/store/index.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/locales/en.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Here it is for es:

rails51/depot_t/config/locales/es.yml

es:

number:
currency:

format:
unit: "$US"
precision: 2
separator: ","
delimiter: "."
format: "%n %u"

We’ve specified the unit, precision, separator, and delimiter for number.curren-
cy.format. That much is pretty self-explanatory. The format is a bit more

involved: %n is a placeholder for the number; is a nonbreaking space

character, preventing this value from being split across multiple lines; and

%u is a placeholder for the unit. See the following screenshot for the result.

Chapter 16. Task K: Internationalization • 264

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/locales/es.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Iteration K3: Translating Checkout

Now we’re entering the home stretch. The new order page is next:

rails51/depot_t/app/views/orders/new.html.erb

<section class="depot_form">
<h1><%= t('.legend') %></h1>➤

<%= render 'form', order: @order %>
</section>

<%= javascript_pack_tag("pay_type") %>

Here’s the form that’s used by this page:

rails51/depot_t/app/views/orders/_form.html.erb

<%= form_with(model: order, local: true) do |form| %>
<% if order.errors.any? %>

<div id="error_explanation">
<h2><%= pluralize(order.errors.count, "error") %>
prohibited this order from being saved:</h2>

<% order.errors.full_messages.each do |message| %>

<%= message %>
<% end %>

</div>
<% end %>

<div class="field">
<%= form.label :name, t('.name') %>➤

<%= form.text_field :name, id: :order_name, size: 40 %>
</div>

<div class="field">
<%= form.label :address, t('.address_html') %>➤

<%= form.text_area :address, id: :order_address, rows: 3, cols: 40 %>
</div>

<div class="field">
<%= form.label :email, t('.email') %>➤

<%= form.email_field :email, id: :order_email, size: 40 %>
</div>

<div id='pay-type-component'></div>

<div class="actions">
<%= form.submit t('.submit') %>➤

</div>
<% end %>

That covers the form elements that Rails is rendering, but what about the

React-rendered payment details we added in Iteration H1: Adding Fields

Dynamically to a Form, on page 195? If you recall, we had to create the HTML

report erratum • discuss

Iteration K3: Translating Checkout • 265

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/views/orders/new.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/views/orders/_form.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

form elements inside React components, mimicking what Rails form helpers

would do.

Since React is rendering our payment details components—–not Rails—–we

need to make our translations available to React, meaning they must be

available in JavaScript. The i18n-js library will do just that.1

This library will make a copy of our translations as a JavaScript object and

provide an object called I18n that allows us to access them. Our React compo-

nents will use that to provide localized strings for the dynamic form we created

earlier.

First, we’ll add it to our Gemfile.

rails51/depot_t/Gemfile

gem 'i18n-js'

Install it with bundle install. Getting i18n-js to work requires a bit of configura-

tion, so let’s do that before we start using it in our React components.

First, we’ll configure i18n-js to convert our translations. This is done by a

middleware that the gem provides.2 A middleware is a way to add behavior

to all requests served by a Rails app by manipulating an internal data struc-

ture. In the case of i18n-js, its middleware makes sure that the JavaScript

copy of our translations is in sync with those in config/locales.

We can set this up by adding a line of code to config/application.rb:

rails51/depot_t/config/application.rb

config.middleware.use I18n::JS::Middleware

This requires restarting our server, so if you are currently running it, go ahead

and restart it now.

Next, we need to tell Rails to serve up the translations that i18n-js provides.

We also need to make the I18n object available. We can do that by adding two

require directives to app/assets/javascripts/application.js. These directives tell Rails to

include the referenced JavaScript libraries when serving up pages. Since the

JavaScript files that come with i18n-js are inside a gem, we have to do this

explicitly.

rails51/depot_t/app/assets/javascripts/application.js

//= require i18n
//= require i18n/translations

1. https://github.com/fnando/i18n-js
2. http://guides.rubyonrails.org/rails_on_rack.html#configuring-middleware-stack

Chapter 16. Task K: Internationalization • 266

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/Gemfile
http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/application.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/assets/javascripts/application.js
https://github.com/fnando/i18n-js
http://guides.rubyonrails.org/rails_on_rack.html#configuring-middleware-stack
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The last bit of configuration we need for i18n-js is to tell it what the currently

chosen locale is. We can do that by rendering a dynamic script tag in our

application layout in app/views/layouts/application.html.erb.

rails51/depot_t/app/views/layouts/application.html.erb

<%= javascript_include_tag 'application',
'data-turbolinks-track': 'reload' %>

<script type="text/javascript">➤

I18n.defaultLocale = "<%= I18n.default_locale %>";➤

I18n.locale = "<%= I18n.locale %>";➤

</script>➤

Note that we want this tag to appear after the call to javascript_include_tag() so

that I18n will have been defined.

With this in place, we need to add calls to I18n.t() inside the JSX of our React

components. This is straightforward to do using the curly brace syntax we’ve

seen before. Let’s start with the main component in app/javascript/PayTypeSelec-
tor/index.jsx. Here’s the entire render() method, fully localized.

rails51/depot_t/app/javascript/PayTypeSelector/index.jsx

render() {
let PayTypeCustomComponent = NoPayType;
if (this.state.selectedPayType == "Credit card") {
PayTypeCustomComponent = CreditCardPayType;

} else if (this.state.selectedPayType == "Check") {
PayTypeCustomComponent = CheckPayType;

} else if (this.state.selectedPayType == "Purchase order") {
PayTypeCustomComponent = PurchaseOrderPayType;

}
return (

<div>
<div className="field">

<label htmlFor="order_pay_type">
{I18n.t("orders.form.pay_type")}

</label>

<select id="pay_type" onChange={this.onPayTypeSelected}
name="order[pay_type]">
<option value="">
{I18n.t("orders.form.pay_prompt_html")}

</option>

<option value="Check">
{I18n.t("orders.form.pay_types.check")}

</option>

<option value="Credit card">
{I18n.t("orders.form.pay_types.credit_card")}

</option>

report erratum • discuss

Iteration K3: Translating Checkout • 267

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/javascript/PayTypeSelector/index.jsx
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

<option value="Purchase order">
{I18n.t("orders.form.pay_types.purchase_order")}

</option>

</select>
</div>
<PayTypeCustomComponent />

</div>
);

}

Although I18n.t() is similar to Rails’s t(), note the subtle difference in the argu-

ment to the method. In our Rails view, we can simply use t(".pay_type") which,

as we learned in Iteration K2: Translating the Storefront, on page 257, allows

Rails to figure out from the template name where the strings are in the locale

YAML files. We can’t take advantage of this with i18n-js, so we must specify

the complete path to the translation in the YAML file.

Next, let’s do this to the three components that make up our payment details

view. First up is app/javascript/PayTypeSelector/CheckPayType.jsx:

rails51/depot_t/app/javascript/PayTypeSelector/CheckPayType.jsx

import React from 'react'

class CheckPayType extends React.Component {
render() {

return (
<div>
<div className="field">

<label htmlFor="order_routing_number">
{I18n.t("orders.form.check_pay_type.routing_number")}

</label>

<input type="password"
name="order[routing_number]"
id="order_routing_number" />

</div>
<div className="field">
<label htmlFor="order_acount_number">

{I18n.t("orders.form.check_pay_type.account_number")}
</label>

<input type="text"
name="order[account_number]"
id="order_account_number" />

</div>
</div>

);
}

}
export default CheckPayType

Chapter 16. Task K: Internationalization • 268

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/javascript/PayTypeSelector/CheckPayType.jsx
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Now, CreditCardPayType.jsx:

rails51/depot_t/app/javascript/PayTypeSelector/CreditCardPayType.jsx

import React from 'react'

class CreditCardPayType extends React.Component {
render() {

return (
<div>
<div className="field">

<label htmlFor="order_credit_card_number">
{I18n.t("orders.form.credit_card_pay_type.cc_number")}

</label>

<input type="password"
name="order[credit_card_number]"
id="order_credit_card_number" />

</div>
<div className="field">
<label htmlFor="order_expiration_date">

{I18n.t("orders.form.credit_card_pay_type.expiration_date")}
</label>

<input type="text"
name="order[expiration_date]"
id="order_expiration_date"
size="9"
placeholder="e.g. 03/19" />

</div>
</div>

);
}

}
export default CreditCardPayType

And finally PurchaseOrderPayType.jsx:

rails51/depot_t/app/javascript/PayTypeSelector/PurchaseOrderPayType.jsx

import React from 'react'

class PurchaseOrderPayType extends React.Component {
render() {

return (
<div>
<div className="field">

<label htmlFor="order_po_number">
{I18n.t("orders.form.purchase_order_pay_type.po_number")}

</label>

report erratum • discuss

Iteration K3: Translating Checkout • 269

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/javascript/PayTypeSelector/CreditCardPayType.jsx
http://media.pragprog.com/titles/rails51/code/rails51/depot_t/app/javascript/PayTypeSelector/PurchaseOrderPayType.jsx
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

<input type="password"
name="order[po_number]"
id="order_po_number" />

</div>
</div>

);
}

}
export default PurchaseOrderPayType

With those done, here are the corresponding locale definitions:

rails51/depot_t/config/locales/en.yml

en:

orders:
new:

legend: "Please Enter Your Details"
form:

name: "Name"
address_html: "Address"
email: "E-mail"
pay_type: "Pay with"
pay_prompt_html: "Select a payment method"
submit: "Place Order"
pay_types:

check: "Check"
credit_card: "Credit Card"
purchase_order: "Purchase Order"

check_pay_type:
routing_number: "Routing #"
account_number: "Account #"

credit_card_pay_type:
cc_number: "CC #"
expiration_date: "Expiry"

purchase_order_pay_type:
po_number: "PO #"

rails51/depot_t/config/locales/es.yml

es:

orders:
new:

legend: "Por favor, introduzca sus datos"
form:

name: "Nombre"
address_html: "Dirección"
email: "E-mail"
pay_type: "Forma de pago"
pay_prompt_html: "Seleccione un método de pago"
submit: "Realizar Pedido"
pay_types:

Chapter 16. Task K: Internationalization • 270

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/locales/en.yml
http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/locales/es.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

check: "Cheque"
credit_card: "Tarjeta de Crédito"
purchase_order: "Orden de Compra"

check_pay_type:
routing_number: "# de Enrutamiento"
account_number: "# de Cuenta"

credit_card_pay_type:
cc_number: "Número"
expiration_date: "Expiración"

purchase_order_pay_type:
po_number: "Número"

See the following screenshot for the completed form.

Carrito	de	la	Compra

1	× Rails,	Angular,	Postgres,	and	Bootstrap 45,00	$US

Total: 45,00	$US

Vaciar	Carrito 	 Comprar

I N I C I O

P R E G U N T A S

N O T I C I A S

C O N T A C T O

Por	favor,	introduzca	sus	datos

Nombre

Dirección

E-mail

Forma	de	pago

Seleccione	un	método	de	pago

Realizar	Pedido

All looks good until we click the Realizar Pedido button prematurely and see

the results shown in the screenshot on page 272. The error messages that

Active Record produces can also be translated; what we need to do is supply

the translations:

rails51/depot_t/config/locales/es.yml

es:

activerecord:
errors:

messages:
inclusion: "no está incluido en la lista"
blank: "no puede quedar en blanco"

errors:
template:

body: "Hay problemas con los siguientes campos:"
header:

one: "1 error ha impedido que este %{model} se guarde"
other: "%{count} errores han impedido que este %{model} se guarde"

report erratum • discuss

Iteration K3: Translating Checkout • 271

http://media.pragprog.com/titles/rails51/code/rails51/depot_t/config/locales/es.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51
http://localhost:3000/
http://localhost:3000/questions
http://localhost:3000/news
http://localhost:3000/contact

Although you can create these with many trips to Google Translate, the Rails

i18n gem’s GitHub repo contains a lot of translations for common strings in

many languages.3

Note that messages with counts typically have two forms: errors.template.header.one
is the message that’s produced when there’s one error, and errors.template.header.other
is produced otherwise. This gives the translators the opportunity to provide the

correct pluralization of nouns and to match verbs with the nouns.

Since we once again made use of HTML entities, we want these error messages

to be displayed as is (or in Rails parlance, raw). We also need to translate the

error messages. So again we modify the form:

rails51/depot_u/app/views/orders/_form.html.erb

<%= form_with(model: order, local: true) do |form| %>
<% if order.errors.any? %>

<div id="error_explanation">
<h2><%=raw t('errors.template.header', count: @order.errors.count,➤

model: t('activerecord.models.order')) %>.</h2>➤

<p><%= t('errors.template.body') %></p>➤

<% order.errors.full_messages.each do |message| %>

3. https://github.com/svenfuchs/rails-i18n/tree/master/rails/locale

Chapter 16. Task K: Internationalization • 272

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/app/views/orders/_form.html.erb
https://github.com/svenfuchs/rails-i18n/tree/master/rails/locale
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

<%=raw message %>➤

<% end %>

</div>
<% end %>

<!-- ... -->

Note that we’re passing the count and model name (which is, itself, enabled

for translation) on the translate call for the error template header. With these

changes in place, we try again and see improvement, as shown in the following

screenshot.

That’s better, but the names of the model and the attributes bleed through

the interface. This is OK in English, because the names we picked work for

English. We need to provide translations for each model. This, too, goes into

the YAML file:

rails51/depot_u/config/locales/es.yml

es:

activerecord:
models:

order: "pedido"
attributes:

order:
address: "Dirección"
name: "Nombre"
email: "E-mail"
pay_type: "Forma de pago"

report erratum • discuss

Iteration K3: Translating Checkout • 273

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/config/locales/es.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Note that there’s no need to provide English equivalents for this, because

those messages are built into Rails.

We’re pleased to see the model and attribute names translated in the following

screenshot; we fill out the form, we submit the order, and we get a “Thank

you for your order” message.

We need to update the flash messages and add the locale to the store_index_url:

rails51/depot_u/app/controllers/orders_controller.rb

def create
@order = Order.new(order_params)
@order.add_line_items_from_cart(@cart)

respond_to do |format|
if @order.save

Cart.destroy(session[:cart_id])
session[:cart_id] = nil
ChargeOrderJob.perform_later(@order,pay_type_params.to_h)
format.html { redirect_to store_index_url(locale: I18n.locale),➤

notice: I18n.t('.thanks') }➤

format.json { render :show, status: :created,
location: @order }

else
format.html { render :new }
format.json { render json: @order.errors,
status: :unprocessable_entity }

end
end

end

Chapter 16. Task K: Internationalization • 274

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/app/controllers/orders_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Next, we adjust the test to match:

rails51/depot_u/test/controllers/orders_controller_test.rb

test "should create order" do
assert_difference('Order.count') do

post orders_url, params: { order: { address: @order.address,
email: @order.email, name: @order.name,
pay_type: @order.pay_type } }

end

assert_redirected_to store_index_url(locale: 'en')➤

end

Finally, we provide the translations:

rails51/depot_u/config/locales/en.yml

en:

thanks: "Thank you for your order"

rails51/depot_u/config/locales/es.yml

es:

thanks: "Gracias por su pedido"

See the cheery message in the next screenshot.

report erratum • discuss

Iteration K3: Translating Checkout • 275

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/test/controllers/orders_controller_test.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_u/config/locales/en.yml
http://media.pragprog.com/titles/rails51/code/rails51/depot_u/config/locales/es.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Iteration K4: Adding a Locale Switcher

We’ve completed the task, but we need to advertise its availability more. We

spy some unused area in the top-right side of the layout, so we add a form

immediately before the image_tag:

rails51/depot_u/app/views/layouts/application.html.erb

<header class="main">
<aside>➤

<%= form_tag store_index_path, class: 'locale' do %>➤

<%= select_tag 'set_locale',➤

options_for_select(LANGUAGES, I18n.locale.to_s),➤

onchange: 'this.form.submit()' %>➤

<%= submit_tag 'submit', id: "submit_locale_change" %>➤

<% end %>➤

</aside>➤

<%= image_tag 'logo.svg', alt: 'The Pragmatic Bookshelf' %>
<h1><%= @page_title %></h1>

</header>

The form_tag specifies the path to the store as the page to be redisplayed when

the form is submitted. A class attribute lets us associate the form with some CSS.

The select_tag is used to define the input field for this form—namely, locale. It’s

an options list based on the LANGUAGES array we set up in the configuration file,

with the default being the current locale (also made available via the I18n module).

We also set up an onchange event handler, which submits this form whenever

the value changes. This works only if JavaScript is enabled, but it’s handy.

This means we don’t need to show the Submit button if JavaScript is enabled.

The simplest way to do that is to write some CoffeeScript to hide it. If Java-

Script is disabled, the CoffeeScript won’t execute, and the button remains to

allow those users to submit the form. We make this happen by adding an id
to the submit_tag() so we can locate the button and set its style.display to "none",
which is the programmatic way of setting the CSS display property to none. We’ll

add this code into a new file called app/assets/javascripts/locale_switcher.coffee, which

is automatically brought in by Rails and executed on the page:

rails51/depot_u/app/assets/javascripts/locale_switcher.coffee

document.addEventListener 'turbolinks:load', ->
document.getElementById('submit_locale_change').style.display='none'

Then we add a submit_tag for the cases when JavaScript isn’t available. To

handle the case in which JavaScript is available and the Submit button is

unnecessary, we add a tiny bit of JavaScript that hides each of the input tags

in the locale form, even though we know that there’s only one.

Chapter 16. Task K: Internationalization • 276

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_u/app/assets/javascripts/locale_switcher.coffee
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Next, we modify the store controller to redirect to the store path for a given

locale if the :set_locale form is used:

rails51/depot_u/app/controllers/store_controller.rb

def index
if params[:set_locale]➤

redirect_to store_index_url(locale: params[:set_locale])➤

else➤

@products = Product.order(:title)
end➤

end

Finally, we add a bit of CSS:

rails51/depot_u/app/assets/stylesheets/application.scss

.locale {
float: right;
margin: 1em;

}

For the actual selector, see the following screenshot. We can now switch back

and forth between languages with a single mouse click.

At this point, we can place orders in two languages, and our thoughts turn

to deployment. But because it’s been a busy day, it’s time to put down our

tools and relax. We’ll start on deployment in the morning.

report erratum • discuss

Iteration K4: Adding a Locale Switcher • 277

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_u/app/assets/stylesheets/application.scss
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

What We Just Did

By the end of this iteration, we’ve done the following:

• We set the default locale for our application and provided means for the

user to select an alternative locale.

• We created translation files for text fields, currency amounts, errors, and

model names.

• We altered layouts and views to call out to the I18n module by way of the

t() helper to translate textual portions of the interface.

Playtime

Here’s some stuff to try on your own:

• Add a locale column to the products database, and adjust the index view

to select only the products that match the locale. Adjust the products

view so that you can view, enter, and alter this new column. Enter a few

products in each locale, and test the resulting application.

• Determine the current exchange rate between U.S. dollars and euros, and

localize the currency display to display euros when ES_es is selected.

• Translate the Order::PAYMENT_TYPES shown in the drop-down. You’ll need to

keep the option value (which is sent to the server) the same. Change only

what’s displayed.

Chapter 16. Task K: Internationalization • 278

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 17

In this chapter, you'll see:

• Running our application in a production web server

• Configuring the database for MySQL

• Using Bundler and Git for version control

• Deploying our application using Capistrano or Heroku

Task L: Deployment and Production

Deployment is supposed to mark a happy point in the lifetime of our applica-

tion. It’s when we take the code that we’ve so carefully crafted and upload it

to a server so that other people can use it. It’s when the beer, champagne,

and hors d’oeuvres are supposed to flow. Shortly thereafter, our application

will be written about in Wired magazine, and we’ll be overnight names in the

geek community.

The reality, however, is that it often takes quite a bit of up-front planning to

pull off a smooth and repeatable deployment of your application.

By the time we’re through with this chapter, our setup will look like the fol-

lowing figure.

Gems Code

git

MySQL

Apache /

Passenger

git

Puma

User

SQLite3

At the moment, we’ve been doing all of our work on one machine, though

user interaction with our web server could be done on a separate machine.

In the figure, the user’s machine is in the center, and the Puma web server

is on the left. This server makes use of SQLite 3, various gems you have

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

installed, and your application code. Your code may or may not have also

been placed in Git by this point; either way, it will be by the end of the chapter,

as will be the gems you’re using.

This Git repository will be replicated on the production server, which again

could be another machine but need not be. This server will be running a

combination of Apache httpd and Phusion Passenger. This code will access

a MySQL database on what may be yet a fourth machine.

That’s a lot of moving parts! To help us keep track of them all, we’ll be using

Bundler to manage our dependencies, and Capistrano as the tool to update

the deployment server(s) remotely, safely, and repeatably from the comfort of

our development machine.

Instead of doing it all at once, we’ll do it in three iterations. Iteration L1 will

get the Depot application up and running with Apache, MySQL, and Passenger

—a truly production-quality web server environment.

Joe asks:

Can We Deploy to Microsoft Windows?

Although we can deploy applications to Windows environments, the overwhelming

amount of Rails tools and shared knowledge assumes a Unix-based operating system

such as Linux or Mac OS X. One such tool, Phusion Passenger, is highly recommended

by the Ruby on Rails development team and covered in this chapter.

The techniques described in this chapter can be used by those deploying to Linux or

Mac OS X.

We’ll leave Git, Bundler, and Capistrano to a second iteration. These tools

will enable us to separate our development activities from our deployment

environment. This means that by the time we’re done, we’ll be deploying twice;

but that’s only this first time and only to ensure that each part is working

independently. It also allows us to focus on a smaller set of variables at any

one time, which will simplify the process of untangling any problems that we

might encounter.

In a third iteration, we’ll cover various administrative and cleanup tasks. Let’s

get started!

Chapter 17. Task L: Deployment and Production • 280

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Iteration L1: Deploying with Phusion Passenger

and MySQL

So far, as we’ve been developing a Rails application on our local machine,

we’ve been using Puma when we run our server. For the most part, the server

used doesn’t matter; the rails server command sorts out the most appropriate

way to get our application running in development mode on port 3000, based

on the contents of our Gemfile. However, a deployed Rails application works a

bit differently. We can’t just fire up a single Rails server process and let it do

all the work. Well, we could, but it’s far from ideal.

The web is an extremely concurrent environment. Production web servers

such as Apache, nginx, and Lighttpd can work on several requests—even tens

or hundreds of requests—at the same time. A single-process, Ruby-based

web server can’t possibly keep up, and luckily it doesn’t have to. Instead, the

way we deploy a Rails application into production is to use a front-end server,

such as Apache, to handle requests from the client. Then, we use the HTTP

proxying of Passenger to send requests that should be handled by Rails to

one of any number of back-end application processes.

Configuring a Second Machine

If you have a second machine you can use, that’s great. If not, you can use

a virtual machine. Plenty of free software that you can use for this purpose

is available, such as VirtualBox1 and Ubuntu.2 If you go with Ubuntu, we

recommend 16.04 LTS.

Configure this machine using the instructions in Chapter 1, Installing Rails,

on page 3. If you like, you can skip the step of installing Rails and instead

install Bundler:

$ gem install bundler

Next, copy your entire directory containing the Depot application from your

first machine to your second machine. On the second machine, change into

that directory and use Bundler to install all of your application’s dependencies:

$ bundle install

Verify that your installation is working using any combination of the following

commands:

1. https://www.virtualbox.org/
2. http://www.ubuntu.com/download/desktop

report erratum • discuss

Iteration L1: Deploying with Phusion Passenger and MySQL • 281

https://www.virtualbox.org/
http://www.ubuntu.com/download/desktop
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

$ rails about
$ rails test
$ rails server

At this point, you should be able to launch a browser on either machine and

see your application. Once you’re satisfied that your application is running

correctly, stop the server.

These steps of copying directories and starting and stopping servers aren’t

generally something you want your application developers to be doing, and

by the time we’re done with this chapter this will all be automated. But for

now, knowing what the steps are and that the intermediate results are correct

has established the base upon which we can build our deployment.

Installing Passenger

The next step is to ensure that the Apache web server is installed and running

on our second machine. Linux users should have already installed Apache

in Installing on Linux, on page 14. For Mac OS X users, it’s already installed

with the operating system, but you’ll need to enable it. For Mac OS X releases

prior to 10.8, you can accomplish this by going into System Preferences >

Sharing and enabling Web Sharing. Starting with Mac OS X 10.8, this needs

to be done via the Terminal application:

$ sudo apachectl start
$ sudo launchctl load -w /System/Library/LaunchDaemons/org.apache.httpd.plist

The next step is to install Passenger:

$ gem install passenger --version 5.1.3
$ passenger-install-apache2-module

If the necessary dependencies aren’t met, the latter command will tell you what

you need to do. If this happens, follow the provided instructions, and try the

Passenger install command again. For example, on a Ubuntu 16.04 (Xenial

Xerus), you’ll find that you need to install libcurl4-openssl-dev, apache2-prefork-dev,
libapr1-dev, and libaprutil1-dev. Mac OS X users may need to run xcode-select --install to
(re)install the command-line tools.

Once the dependencies are satisfied, this command causes a number of sources

to be compiled and the configuration files to be updated. During the process,

it’ll ask you to update your Apache configuration. The first request will be to

enable your freshly built module, which involves adding lines such as the fol-

lowing to your Apache configuration. (Note: Passenger will tell you the exact

lines to copy and paste into this file, so use those, not these. Also, we’ve had

Chapter 17. Task L: Deployment and Production • 282

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

to elide parts of the path specification in the LoadModule line to make it fit the

page. Be sure to use the path specification that Passenger provided for you.)

PassengerDefaultRuby /usr/bin/passenger_free_ruby
LoadModule passenger_module /var/.../passenger-5.1.2/.../mod_passenger.so
PassengerRoot /var/lib/gems/2.4.1/gems/passenger-5.1.2
PassengerDefaultRuby /usr/bin/ruby2.3

To find out where your Apache configuration file is, try issuing the following

command:

$ apachectl -V | grep HTTPD_ROOT
$ apachectl -V | grep SERVER_CONFIG_FILE

On some systems, the command name is apache2ctl; on others, it’s httpd.
Experiment until you find the correct command.

Instead of modifying this file directly, most modern systems have conventions

that allow you to maintain your extensions separately. On Mac OS X, for

example, you may see the following line at the end of your httpd.conf file:

Include /private/etc/apache2/other/*.conf

If you see this line in your httpd.conf, you can put the lines that Passenger

provided into a passenger.conf file in that directory. On Ubuntu you can put

these lines into /etc/apache2/conf.d/passenger.

Deploying Our Application Locally

The next step is to deploy our application. Whereas the previous step needs

to be done only once per server, this step is actually once per application. In

your Apache configuration file, substitute your host’s name, your application’s

directory path, and a secret key in the following:

<VirtualHost *:80>
ServerName depot.yourhost.com
DocumentRoot /home/rubys/deploy/depot/public/
SetEnv SECRET_KEY_BASE "0123456789abcdef"
<Directory /home/rubys/deploy/depot/public>

AllowOverride all
Options -MultiViews
Require all granted

</Directory>
</VirtualHost>

bin/rails secret can be used to generate a suitable key to be used as the secret.

This key is used to encrypt cookies that are sent to the client. Note that this

secret is placed directly on the server and isn’t checked into the source-control

system, because otherwise it wouldn’t be very secret!

report erratum • discuss

Iteration L1: Deploying with Phusion Passenger and MySQL • 283

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Note that the DocumentRoot is set to the public directory in our Rails application

and that we mark the public directory as readable.

Again, your Apache installation may have conventions for the best place to

put these instructions. On Mac OS X, check your httpd.conf for the following

(possibly commented-out) line:

#Include /private/etc/apache2/extra/httpd-vhosts.conf

If this line is present, consider uncommenting the line and replacing the

dummy-host.example.com with your host.

On Ubuntu, the convention is to place these lines in a file in the /etc/apache2/sites-
available directory and then to separately enable the site. For example, if you

named the file depot, the site can be enabled using the following command:

sudo a2ensite depot

If you have multiple applications, repeat this VirtualHost block once per applica-

tion, adjusting the ServerName and DocumentRoot in each block. You’ll also need

to verify that the following line is present in the configuration files already:

NameVirtualHost *:80

If this line isn’t present, add it before a line that contains the text Listen 80.

The final step is to restart our Apache web server:

$ sudo apachectl restart

You now need to configure your client so that it maps the host name you

chose to the correct machine. This is done in a file named /etc/hosts. On

Windows machines, this file can be found in C:\windows\system32\drivers\etc\. To

edit this file, you will need to open the file as an administrator.

A typical /etc/hosts line will look like the following:

127.0.0.1 depot.yourhost.com

That’s it! You can now access our application using the host (or virtual host)

you specified. Unless you used a port number other than 80, you no longer

need to specify a port number on the URL.

You need to be aware of a few things:

• If when restarting your server you see a message that The address or port is
invalid, this means the NameVirtualHost line is already present, perhaps in

another configuration file in the same directory. If so, remove the line you

added, because this directive needs to be present only once.

Chapter 17. Task L: Deployment and Production • 284

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

• If we want to run in an environment other than production, we can include

a RailsEnv directive in each VirtualHost in our Apache configuration:

RailsEnv development

• We can restart our application without restarting Apache at any time by

updating or creating a file named restart.txt in the tmp directory of our

application:

$ touch tmp/restart.txt

• The output of the passenger-install-apache2-module command will tell us where

we can find additional documentation.

Using MySQL for the Database

The SQLite website3 is refreshingly honest when it comes to describing what

this database is good at and what it’s not good at. In particular, SQLite isn’t

recommended for high-volume, high-concurrency websites with large datasets.

And, of course, we want our website to be such a website.

Plenty of alternatives to SQLite, both free and commercial, are available. We’ll

go with MySQL. It’s available via your native packaging tool in Linux, and an

installer is provided for OS X on the MySQL website.4

Download the Mac OS X version that matches your operating system release.

If you don’t want to sign up, look for the "No thanks, just take me to the

downloads!" link at the bottom of the page.

In addition to installing the MySQL database, you’ll also need to add the mysql
gem to the Gemfile:

rails51/depot_u/Gemfile

group :production do
gem 'mysql2', '~> 0.4.0'

end

By putting this gem in the production group, we prevent it from being loaded

when running in development or test. If you like, you can put the sqlite3 gem

into (separate) development and test groups.

Install the gem using bundle install. You may need to locate and install the

MySQL database development files for your operating system first. On

Ubuntu, for example, you need to install libmysqlclient-dev.

3. http://www.sqlite.org/whentouse.html
4. http://dev.mysql.com/downloads/mysql/

report erratum • discuss

Iteration L1: Deploying with Phusion Passenger and MySQL • 285

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/Gemfile
http://www.sqlite.org/whentouse.html
http://dev.mysql.com/downloads/mysql/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

You can use the mysql command-line client to create your database. Or, if

you’re more comfortable with tools such as phpmyadmin or CocoaMySQL, go for it:

depot> mysql -u root
mysql> CREATE DATABASE depot_production DEFAULT CHARACTER SET utf8;
mysql> GRANT ALL PRIVILEGES ON depot_production.*

-> TO 'username'@'localhost' IDENTIFIED BY 'password';
mysql> EXIT;

If you picked a different database name, remember it, because you’ll need to

adjust the configuration file to match the name you picked. Let’s look at that

configuration file now.

The config/database.yml file contains information on database connections. It has

three sections—one each for the development, test, and production databases.

The current production section contains the following:

production:
adapter: sqlite3
database: db/production.sqlite3
pool: 5
timeout: 5000

Replace that section with the following, changing the username, password,

and database fields as necessary:

production:
adapter: mysql2
encoding: utf8
reconnect: false
database: depot_production
pool: 5
username: username
password: password
host: localhost

Loading the Database

Next, we apply our migrations:

depot> bin/rails db:setup RAILS_ENV="production"

One of two things will happen. If all is set up correctly, you’ll see output like

the following:

-- create_table("carts", {:force=>:cascade})
-> 0.0299s

-- create_table("line_items", {:force=>:cascade})
-> 0.0152s

-- create_table("orders", {:force=>:cascade})
-> 0.0130s

Chapter 17. Task L: Deployment and Production • 286

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

-- create_table("products", {:force=>:cascade})
-> 0.0134s

-- create_table("users", {:force=>:cascade})
-> 0.0137s

-- initialize_schema_migrations_table()
-> 0.0160s

If instead you see an error of some sort, don’t panic! It’s probably a small

configuration issue. Here are some things to try:

• Check the name you gave for the database in the production: section of

database.yml. It should be the same as the name of the database you created

(using mysqladmin or some other database administration tool).

• Check that the username and password in database.yml match what you

used when you created the database on page 286.

• Check that your database server is running.

• Check that you can connect to it from the command line. If you’re using

MySQL, run the following command:

depot> mysql depot_production
mysql>

• If you can connect from the command line, can you create a dummy table?

(This tests that the database user has sufficient access rights to the

database.)

mysql> create table dummy(i int);
mysql> drop table dummy;

• If you can create tables from the command line but bin/rails db:migrate fails,

double-check the database.yml file. If the file includes socket: directives, try

commenting them out by putting a hash character (#) in front of each.

• If you see an error saying No such file or directory… and the filename in the

error is mysql.sock, your Ruby MySQL libraries can’t find your MySQL

database. This might happen if you installed the libraries before you

installed the database or if you installed the libraries using a binary dis-

tribution and that distribution made the wrong assumption about the

location of the MySQL socket file. To fix this, the best idea is to reinstall

your Ruby MySQL libraries. If this isn’t an option, double-check that the

socket: line in your database.yml file contains the correct path to the MySQL

socket on your system.

• If you get the error Mysql not loaded, it means you’re running an old version

of the Ruby MySQL library. Rails needs at least version 2.5.

report erratum • discuss

Iteration L1: Deploying with Phusion Passenger and MySQL • 287

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

• Some readers also report getting the error message Client does not support
authentication protocol requested by server; consider upgrading MySQL client. To resolve

this incompatibility between the installed version of MySQL and the

libraries used to access it, follow the instructions at http://dev.mysql.com/doc/
mysql/en/old-client.html and issue a MySQL command such as:

set password for 'some_user'@'some_host'= OLD_PASSWORD('newpwd');

• If you’re using MySQL under Cygwin on Windows, you may have problems

if you specify a host of localhost. Try using 127.0.0.1 instead.

• Finally, you might have problems in the format of the database.yml file. The

YAML library that reads this file is strangely sensitive to tab characters.

If your file contains tab characters, you’ll have problems. (And you thought

you’d chosen Ruby over Python because you didn’t like Python’s significant

whitespace, eh?)

Rerun the bin/rails db:setup command as many times as necessary to correct any

configuration issues you may have.

If all this sounds scary, don’t worry. In reality, database connections work

like a charm most of the time. And once you have Rails talking to the database,

you don’t have to worry about it again.

At this point, you’re up and running. Nothing looks any different when you’re

running as a single user. The differences become apparent only when you

have a large number of concurrent users or a large database.

The next step is to split our development from our production machine.

Iteration L2: Deploying Remotely with Capistrano

If you’re a large shop, having a pool of dedicated servers that you administer

so that you can ensure that they’re running the same version of the necessary

software is the way to go. For more modest needs, a shared server will do,

but you’ll have to take additional care to deal with the fact that the versions

of software installed might not always match the version that you have

installed on your development machine.

Don’t worry, we’ll talk you through it.

Prepping Your Deployment Server

Although putting our software under version control is a really, really good idea

during development, not putting our software under version control when it

Chapter 17. Task L: Deployment and Production • 288

report erratum • discuss

http://dev.mysql.com/doc/mysql/en/old-client.html
http://dev.mysql.com/doc/mysql/en/old-client.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

comes to deployment is downright foolhardy—enough so that the software that

we’ve selected to manage our deployment, Capistrano, all but requires it.

Plenty of software configuration management (SCM) systems are available.

Subversion, for example, is a particularly good one. But if you haven’t yet

chosen one, go with Git, which is easy to set up and doesn’t require a separate

server process. The examples that follow will be based on Git, but if you picked

a different SCM system, don’t worry. Capistrano doesn’t much care which

one you pick, as long as you pick one that it supports (which includes Git,

Subversion, and Mercurial).

The first step is to create an empty repository on a machine accessible by

your deployment servers. In fact, if you have only one deployment server,

there’s no reason why it can’t do double duty as your Git server. So, log onto

that server, and issue the following commands:

$ mkdir -p ~/git/depot.git
$ cd ~/git/depot.git
$ git --bare init

The next thing to be aware of is that even if the SCM server and our web

server are the same physical machine, Capistrano will be accessing our SCM

software as if it were remote. We can make this smoother by generating a

public key (if you don’t already have one) and then using it to give ourselves

permission to access our own server:

$ test -e ~/.ssh/id_dsa.pub || ssh-keygen -t dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Test this by sshing into your own server. Among other things, this will ensure

that your known_hosts file is updated.

While we’re here, we have one last thing to attend to. Capistrano will insert

a directory named current between our application directory name and the

Rails subdirectories, including the public subdirectory. This means you’ll have

to adjust the DocumentRoot and Directory lines in your httpd.conf if you control your

own server or in a control panel for your shared host:

DocumentRoot /home/rubys/deploy/depot/current/public/
<Directory /home/rubys/deploy/depot/current/public>

Restart your Apache server. You’ll see a warning that the depot/current/public
directory doesn’t exist. That’s fine, because we’ll be creating it shortly.

Finally, ensure that the changes you made to your Gemfile and config/database.yml
are copied from the Depot application on your second machine to the Depot

application on your first machine.

report erratum • discuss

Iteration L2: Deploying Remotely with Capistrano • 289

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

That’s it for the server! From here on out, you’ll be doing everything from your

development machine.

Getting an Application Under Control

The first thing we’re going to do now is update our Gemfile to indicate that

we’re using Capistrano. The capistrano-rails gem is already in the Gemfile, but

commented out, so uncomment it and add capistrano-rvm, capistrano-bundler, and

capistrano-passenger:

rails51/depot_u/Gemfile

Use Capistrano for deployment
gem 'capistrano-rails', group: :development➤

gem 'capistrano-rvm', group: :development➤

gem 'capistrano-bundler', group: :development➤

gem 'capistrano-passenger', group: :development➤

We can now install Capistrano using bundle install. We used this command in

Iteration J1 on page 236 to install the bcrypt-ruby gem.

If you haven’t put your application under configuration control, do so now:

$ cd your_application_directory
$ git init
$ git add .
$ git commit -m "initial commit"

This next step is optional but might be a good idea if either you don’t have

full control of the deployment server or you have many deployment servers

to manage. We’re going to use a second feature of Bundler—namely, the

package command. What it does is put the version of the software that you’re

dependent on into the repository:

$ bundle package
$ git add Gemfile.lock vendor/cache
$ git commit -m "bundle gems"

From here, push all your code out to the server:

$ git remote add origin ssh://user@host/~/git/depot.git
$ git push origin master

Be sure to substitute user and host with the name of your user and host on

the remote machine.

With these few steps, you’ve gained control over what’s being deployed. You

control what is being committed to your local repository. You control when

this is being pushed out to your server. Next up, you’ll control putting this

code into production.

Chapter 17. Task L: Deployment and Production • 290

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/Gemfile
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Deploying the Application Remotely

We previously deployed the application locally on a server. Now we’re going

to do a second deployment, this time remotely.

The prep work is done. Our code is now on the SCM server where it can be

accessed by the app server. Again, it matters not whether these two servers

are the same; what’s important here are the roles that are being performed.

To add the necessary files to the project for Capistrano to do its magic, execute

the following command:

$ cap install STAGES=production
mkdir -p config/deploy
mkdir -p lib/capistrano/tasks
create config/deploy.rb
create config/deploy/production.rb
create Capfile
Capified

From the output, we can see that Capistrano set up three files. The last, Capfile,
is Capistrano’s analog to a Rakefile. You need to uncomment a few lines; after

you do this, you won’t need to touch this file further:

rails51/depot_u/Capfile

Load DSL and set up stages
require "capistrano/setup"

Include default deployment tasks
require "capistrano/deploy"

Load the SCM plugin appropriate to your project:
#
require "capistrano/scm/hg"
install_plugin Capistrano::SCM::Hg
or
require "capistrano/scm/svn"
install_plugin Capistrano::SCM::Svn
or
require "capistrano/scm/git"
install_plugin Capistrano::SCM::Git

Include tasks from other gems included in your Gemfile
#
For documentation on these, see for example:
#
https://github.com/capistrano/rvm
https://github.com/capistrano/rbenv
https://github.com/capistrano/chruby
https://github.com/capistrano/bundler
https://github.com/capistrano/rails
https://github.com/capistrano/passenger

report erratum • discuss

Iteration L2: Deploying Remotely with Capistrano • 291

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/Capfile
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

#
require "capistrano/rvm"➤

require "capistrano/rbenv"
require "capistrano/chruby"
require "capistrano/bundler"➤

require "capistrano/rails/assets"➤

require "capistrano/rails/migrations"➤

require "capistrano/passenger"➤

Load custom tasks from `lib/capistrano/tasks` if you have any defined
Dir.glob("lib/capistrano/tasks/*.rake").each { |r| import r }

Uncomment at most one of rvm, rbenv, or chruby, and then uncomment the rest,

as we will be using Bundler, assets, migrations, and Passenger.

The first file—namely, config/deploy.rb—contains the configuration needed to

deploy our application. Capistrano will provide us with a minimal version of

this file, but the following is a somewhat more complete version that you can

download and use as a starting point:

rails51/depot_u/config/deploy.rb

be sure to change these values
user = 'davec'
domain = 'depot.pragprog.com'

adjust if you are using RVM, remove if you are not
set :rvm_type, :system
set :rvm_ruby_string, 'ruby-2.4.1/'

file paths
set :application, 'depot'
set :repo_url, "#{user}@#{domain}:git/#{fetch(:application)}.git"
set :deploy_to, "/home/#{user}/deploy/#{fetch(:application)}"

distribute your applications across servers (the instructions below put them
all on the same server, defined above as 'domain', adjust as necessary)
role :app, domain
role :web, domain
role :db, domain

you might need to set this if you aren't seeing password prompts
or are seeing errors like 'no tty present and no askpass program specified'
#
set :pty true

As Capistrano executes in a non-interactive mode and therefore doesn't cause
any of your shell profile scripts to be run, the following might be needed
if (for example) you have locally installed gems or applications. Note:
this needs to contain the full values for the variables set, not simply
the deltas.
#
set :default_environment, {
'PATH' => '<your paths>:/usr/local/bin:/usr/bin:/bin',

Chapter 17. Task L: Deployment and Production • 292

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/config/deploy.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

'GEM_PATH' => '<your paths>:/usr/lib/ruby/gems/1.8'
}
#
See https://rvm.io/deployment/capistrano#environment for more info.

We’ll need to edit several properties to match our application. We certainly

need to change the user, domain, and :application. The :repo_url matches where we

put our Git file earlier. The :deploy_to may need to be tweaked to match where

we told Apache it could find the public directory for the application. We’ve also

included a few lines to show how to instruct Capistrano to make use of RVM.5

If RVM was not installed as root on your deployment machine, change the set
:rvm_type line to specify :user instead of :system. Adjust the :rvm_ruby_string to match

the version of the Ruby interpreter that you have installed and want to use.

If you’re not using RVM at all, remove these lines.

You may also need to configure paths for the default environment if some of

the needed software is in a non-standard location on your machine. At this

point, we should be off to the races.

Wash, Rinse, Repeat

Once we’ve gotten this far, our server is ready to have versions of our applica-

tion deployed to it any time we want. All we need to do is check our changes

into the repository and then deploy. At this point, we have three Capistrano

files that haven’t been checked in. Although they aren’t needed by the app

server, we can still use them to test the deployment process:

$ git add .
$ git commit -m "add cap files"
$ git push
$ cap production deploy

The first three commands update the SCM server. Once you become more

familiar with Git, you may want to have finer control over when and which

files are added, you may want to incrementally commit multiple changes

before deployment, and so on. It’s only the final command that will update

our app, web, and database servers. If for some reason we need to step back

in time and go back to a previous version of our application, we can use this:

$ cap production deploy:rollback

We now have a fully deployed application and can deploy as needed to update

the code running on the server. Each time we deploy our application, a new

5. https://rvm.io/integration/capistrano/

report erratum • discuss

Iteration L2: Deploying Remotely with Capistrano • 293

https://rvm.io/integration/capistrano/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

version of it is checked out onto the server, some symlinks are updated, and

the Passenger processes are restarted.

Iteration L3: Checking Up on a Deployed Application

Once we have our application deployed, we’ll no doubt need to check up from

time to time on how it’s running. We can do this in two primary ways. The

first is to monitor the various log files output by both our front-end web

server and the Apache server running our application. The second is to connect

to our application using rails console.

Looking at Log Files

To get a quick look at what’s happening in our application, we can use the

tail command to examine log files as requests are made against our application.

The most interesting data will usually be in the log files from the application

itself. Even if Apache is running multiple applications, the logged output for

each application is placed in the production.log file for that application.

Assuming that our application is deployed into the location we showed earlier,

here’s how we look at our running log file:

On your server
$ cd /home/rubys/deploy/depot/current
$ tail -f log/production.log

Sometimes, we need lower-level information—what’s going on with the data

in our application? When this is the case, it’s time to break out the most

useful live server debugging tool.

Using Console to Look at a Live Application

We’ve already created a large amount of functionality in our application’s

model classes. Of course, we created these to be used by our application’s

controllers. But we can also interact with them directly. The gateway to this

world is the rails console script. We can launch it on our server with this:

On your server
$ cd /home/rubys/deploy/depot/current/
$ rails console production
Loading production environment.
irb(main):001:0> p = Product.find_by(title: "CoffeeScript")
=> #<Product:0x24797b4 @attributes={. . .}
irb(main):002:0> p.price = 29.00
=> 29.0
irb(main):003:0> p.save
=> true

Chapter 17. Task L: Deployment and Production • 294

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Once we have a console session open, we can poke and prod all the various

methods on our models. We can create, inspect, and delete records. In a way,

it’s like having a root console to your application.

Once we put an application into production, we need to take care of a few

chores to keep the application running smoothly. These chores aren’t auto-

matically taken care of for us, but luckily we can automate them.

Dealing with Log Files

As an application runs, it constantly adds data to its log file. Eventually, the

log files can grow extremely large. To overcome this, most logging solutions

can roll over log files to create a progressive set of log files of increasing age.

This breaks up our log files into manageable chunks that can be archived or

even deleted after a certain amount of time has passed.

The Logger class supports rollover. We need to specify how many (or how often)

log files we want and the size of each, using a line like one of the following in

the file config/environments/production.rb:

config.logger = Logger.new(config.paths['log'].first, 'daily')

Or perhaps this:

require 'active_support/core_ext/numeric/bytes'
config.logger = Logger.new(config.paths['log'].first, 10, 10.megabytes)

Note that in this case an explicit require of active_support is needed, because

this statement is processed early in the initialization of your application

—before the Active Support libraries have been included. In fact, one of the

configuration options that Rails provides is to not include Active Support

libraries at all:

config.active_support.bare = true

Alternatively, we can direct our logs to the system logs for our machine:

config.logger = SyslogLogger.new

Find more options at http://guides.rubyonrails.org/configuring.html.

Iteration L4: Deploying with Fewer Steps on Heroku

If you are willing to give up some measure of control, a platform as a service

can make deploying much easier. Heroku is a popular service that will deploy

and manage your Rails application without requiring almost any of the steps

above.

report erratum • discuss

Iteration L4: Deploying with Fewer Steps on Heroku • 295

http://guides.rubyonrails.org/configuring.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

With Heroku, you do a bit of up-front configuration, then use Git to push

your app’s repository to them. That git push triggers Heroku to deploy your

app. Heroku connects your app to a database (Postgres in this case) and

handles managing logs, running background workers, and everything else

you’d need.

It comes at a price. For free, your app will sleep after inactivity and has a

limited pool of requests it can serve per day. To have your app up and running

all the time, you have to use a paid plan. But, you don’t have to manage or

run any servers or create any scripts for deployment. Let’s see what Heroku

is like, which requires creating an app in Heroku, setting up our app to use

Postgres, and deploying.

Setting Up the Initial App

The official Heroku docs for working with Rails should supersede what we’re

about to do,6 but the basic steps for getting a Rails app in Heroku have not

changed significantly in many years.

First, you’ll need to sign up at https://heroku.com for an account. Once you’ve

done that, install the Heroku Toolbelt, which is a command-line application

that allows you to interact with Heroku. The installation method depends on

your operating system.

For Mac OS, use Homebrew:

> brew install heroku

For recent versions of Heroku, or if you’re using Window’s Bash subsystem,

use Snap:

> sudo snap install heroku

For Windows without the Bash subsystem, you’ll need to download an installer

linked from the Toolbelt’s install page.7 This page also covers other versions

of Linux.

With the Toolbelt installed, you should log in on the command line using the

account you just created:

> heroku login
Enter your Heroku credentials:
Email: «your email»
Password: «your password»

6. https://devcenter.heroku.com/articles/getting-started-with-rails5
7. https://devcenter.heroku.com/articles/heroku-cli

Chapter 17. Task L: Deployment and Production • 296

report erratum • discuss

https://heroku.com
https://devcenter.heroku.com/articles/getting-started-with-rails5
https://devcenter.heroku.com/articles/heroku-cli
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Next, create your app in Heroku. Heroku will automatically create a unique

name and URL for your app when you create it. For getting started, this is

the most straightforward thing to do, but you can customize the names and

URLs later.

> heroku create
Creating app... done, free-flying-61534
http://free-flying-61534.herokuapp.com/ |

https://git.heroku.com/free-flying-61534.git

Once you deploy your app, it will be available at http://free-flying-61534.herokuapp.com.

The heroku command you ran also created a git remote that lives inside Heroku.

This is a remote Git repository that you can push code to, just like pushing

code to GitHub or Gitlab. This git remote is how we’ll trigger a deployment,

which we’ll see in a moment.

Next you need to configure your application to use Postgres for its database

in production, since that is what Heroku supports.

Using Postgres in Production

Rails will use Postgres if you add the pg gem to your Gemfile. For now, do this

in the production group (and remove any reference to MySQL if you added

that previously):

group :production do
gem 'pg'

end

To install this gem, you will need Postgres installed locally. Postgres’s download

page has instructions, which are different depending on your operating system.8

Once you’ve done this, run bundle install to install the pg gem.

To configure Rails to access Postgres in production, you should remove the

entire production: section from config/database.yml. Heroku will set an environment

variable named DATABASE_URL with the information needed to connect to the

Postgres instance running in Heroku. Rails and Active Record are already

configured to use this environment variable.

Commit the changes you made to your app using Git:

> git add .
> git commit -m 'configure Heroku deployments'

Now we’re ready to deploy.

8. https://www.postgresql.org/download/

report erratum • discuss

Iteration L4: Deploying with Fewer Steps on Heroku • 297

https://www.postgresql.org/download/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Deploying to Heroku

As mentioned above, triggering a deploy is a matter of pushing your code to

Heroku’s git remote using Git:

> git push heroku master
remote: Compressing source files... done.
remote: Building source:
remote:
remote: -----> Ruby app detected
remote: -----> Compiling Ruby/Rails

«A lot more output»
remote: Verifying deploy... done.
To https://git.heroku.com/free-flying-61534.git
* [new branch] master -> master

Your app won’t work yet because the database hasn’t been set up. Heroku

allows you to run Rake tasks remotely using the Toolbelt, so the first thing

you should do when the deploy completes is to migrate the database:

> heroku run bin/rails db:migrate

You can also use heroku run to run any task, including seeding the database:

> heroku run bin/rails db:seed

At this point, your app is deployed and should be working on Heroku. You

can do this without remembering the weird name Heroku assigned via this

command:

> heroku open

You can also view the Rails log:

> heroku logs --tail

«Rails log»
And you can interact with the production application via the Rails console

like so:

> heroku run rails c
irb(main):001:0>

Heroku uses a file named Procfile to know what processes you want to run

when you deploy your app. Although Heroku can often guess correctly, based

on the source code of your app, it’s a good practice to be explicit. A Procfile is
a text file that describes a process per line. The process is defined as a key

followed by a colon followed by the command-line invocation you want to run.

Chapter 17. Task L: Deployment and Production • 298

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

In Heroku, the web key is required for running web servers, which means our

Procfile should look like so:

web: bin/rails server

Commit these changes to Git:

> git add Procfile
> git commit -m 'configure production Procfile'

Now deploy the changes:

> git push heroku master

Look at how streamlined that deploy was! We’ve talked about how agile it is

to use Rails—this is a pretty agile deployment mechanism.

Moving On to Launch and Beyond

Once we’ve set up our initial deployment, we’re ready to finish the development

of our application and launch it into production. We’ll likely set up additional

deployment servers, and the lessons we learn from our first deployment will

tell us a lot about how we should structure later deployments. For example,

we’ll likely find that Rails is one of the slower components of our system: more

of the request time will be spent in Rails than in waiting on the database or

filesystem. This indicates that the way to scale up is to add machines to split

up the Rails load.

However, we might find that the bulk of the time a request takes is in the

database. If this is the case, we’ll want to look at how to optimize our database

activity. Maybe we’ll want to change how we access data. Or maybe we’ll need

to custom-craft some SQL to replace the default Active Record behaviors.

One thing is for sure: every application will require a different set of tweaks

over its lifetime. The most important activity is to listen to it over time and

discover what needs to be done. Our job isn’t done when we launch our

application. It’s actually just starting.

Although our job is just starting when we first deploy our application to pro-

duction, we’ve completed our tour of the Depot application. After we recap

what we did in this chapter, let’s look back at what we’ve accomplished in

remarkably few lines of code.

What We Just Did

We covered a lot of ground in this chapter. We took our code that ran locally

on our development machine for a single user and placed it on a different

report erratum • discuss

Iteration L4: Deploying with Fewer Steps on Heroku • 299

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

machine, running a different web server, accessing a different database, and

possibly even running a different operating system.

To accomplish this, we used a number of products:

• We installed and configured Phusion Passenger and Apache httpd, a

production-quality web server.

• We installed and configured MySQL, a production-quality database server.

• We got our application’s dependencies under control using Bundler

and Git.

• We installed and configured Capistrano, which enables us to confidently

and repeatably deploy our application.

• We also used an alternative hosting service, Heroku, to manage our app

in a simpler way.

Playtime

Here’s some stuff to try on your own:

• If we have multiple developers collaborating on development, we might

feel uncomfortable putting the details of the configuration of our database

(potentially including passwords!) into our configuration management

system. To address this, copy the completed database.yml into the shared
directory and write a task instructing Capistrano to copy this file into

your current directory each time you deploy.

• This chapter has focused on stable, tried-and-true, and perhaps somewhat

conservative deployment choices, but a lot of innovation is going on in this

area. At the moment, Capistrano and Git appear to be virtually uncontested

choices. Everything else is up for grabs. Here are some things to play with:

– Try replacing RVM with rbenv and ruby-build.9,10

– Try replacing both Phusion Passenger and Apache httpd with Unicorn

and nginx.11,12

Being agile means more than making the right choices. It requires both

adaptive planning and rapid and flexible responses to change.

9. https://github.com/sstephenson/rbenv/#readme
10. https://github.com/sstephenson/ruby-build#readme
11. http://unicorn.bogomips.org/
12. http://wiki.nginx.org/Main

Chapter 17. Task L: Deployment and Production • 300

report erratum • discuss

https://github.com/sstephenson/rbenv/#readme
https://github.com/sstephenson/ruby-build#readme
http://unicorn.bogomips.org/
http://wiki.nginx.org/Main
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 18

In this chapter, you'll see:

• Reviewing Rails concepts: model, view, controller, config-

uration, testing, and deployment

• Documenting what we’ve done

Depot Retrospective

Congratulations! By making it this far, you’ve obtained a solid understanding

of the basics of every Rails application. There’s much more to learn, which

we’ll pick back up again in Part III. For now, relax, and let’s recap what you’ve

seen in Part II.

Rails Concepts

In Chapter 3, The Architecture of Rails Applications, on page 39 we introduced

models, views, and controllers. Now let’s see how we applied each of these

concepts in the Depot application. Then let’s explore how we used configura-

tion, testing, and deployment.

Model

Models are where all of the persistent data retained by your application is

managed. In developing the Depot application, we created five models: Cart,
LineItem, Order, Product, and User.

By default, all models have id, created_at, and updated_at attributes. To our

models, we added attributes of type string (examples: title, name), integer (quantity),
text (description, address), and decimal (price), as well as foreign keys (product_id, cart_id).
We even created a virtual attribute that’s never stored in the database—

namely, a password.

We created has_many and belongs_to relationships that we can use to navigate

among our model objects, such as from Carts to LineItems to Products.

We employed migrations to update the databases, not only to introduce new

schema information but also to modify existing data. We demonstrated that

they can be applied in a fully reversible manner.

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The models we created were not merely passive receptacles for our data. For

starters, they actively validate the data, preventing errors from propagating.

We created validations for presence, inclusion, numericality, range, unique-

ness, format, and confirmation (and length too, if you completed the exercises).

We created custom validations for ensuring that deleted products aren’t ref-

erenced by any line item. We used an Active Record hook to ensure that an

administrator always remains, and used a transaction to roll back incomplete

updates on failure.

We also created logic to add a product to a cart, add all line items from a cart

to an order, encrypt and authenticate a password, and compute various totals.

Finally, we created a default sort order for products for display purposes.

View

Views control the way our application presents itself to the external world.

By default, Rails scaffolding provides edit, index, new, and show, as well as a

partial named form that’s shared between edit and new. We modified a number

of these, as well as created new partials for carts and line items.

In addition to the model-backed resource views, we created entirely new views

for admin, sessions, and the store itself.

We updated an overall layout to establish a common look and feel for the

entire site. We linked in a stylesheet. We made use of templates to generate

JavaScript that takes advantage of Ajax and WebSocket technologies to make

our website more interactive.

We made use of a helper to direct when to hide the cart from the main view.

We localized the customer views for display both in English and in Spanish.

Although we focused primarily on HTML views, we also created plain-text

views and Atom views. Not all of the views were designed for browsers: we

created views for email too, and those views were able to share partials for

displaying line items.

Controller

By the time we were done, we created eight controllers: one each for the five

models and the three additional ones to support the views for admin, sessions,
and the store itself.

These controllers interacted with the models in a number of ways, from finding

and fetching data and putting it into instance variables to updating models

Chapter 18. Depot Retrospective • 302

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

and saving data entered via forms. When done, we either redirected to another

action or rendered a view. We rendered views in HTML, JSON, and Atom.

We limited the set of permitted parameters on the line item controller.

We created callback actions that were run before selected actions to find the

cart, set the language, and authorize requests. We placed logic common to a

number of controllers into a concern—namely, the CurrentCart module.

We managed sessions, keeping track of the logged-in user (for administrators)

and carts (for customers). We kept track of the current locale used for inter-

nationalization of our output. We captured errors, logged them, and informed

the user via notices.

We employed fragment caching on the storefront and page-level caching on

the Atom feeds.

We also sent confirmation emails on receipt of an order.

Configuration

Conventions keep to a minimum the amount of configuration required for a

Rails application, but we did do a bit of customization.

We modified our database configuration to use MySQL in production.

We defined routes for our resources, admin and session controllers, and the

root of our website—namely, our storefront. We defined a who_bought member of

our products resource to access Atom feeds that contain this information.

We created an initializer for i18n purposes and updated the locales information

for both English (en) and Spanish (es).

We created seed data for our database.

We created a Capistrano script for deployment, including the definition of a

few custom tasks.

Testing

We maintained and enhanced tests throughout.

We employed unit tests to validation methods. We also tested increasing the

quantity on a given line item.

Rails provided basic tests for all our scaffolded controllers, which we main-

tained as we made changes. We added tests along the way for things such as

Ajax and ensuring that a cart has items before we create an order.

report erratum • discuss

Rails Concepts • 303

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We used fixtures to provide test data to fuel our tests.

We created an integration test to test an end-to-end scenario involving a user

adding product to a cart, entering an order, and receiving a confirmation email.

Deployment

We deployed our application to a production-quality web server (Apache httpd)

using a production-quality database server (MySQL). Along the way, we

installed and configured Phusion Passenger to run our application, Bundler

to track dependencies, and Git to configuration manage our code. Capistrano

was employed to orchestrate updating the deployed web server in production

from our development machine.

We made use of test and production environments to prevent our experimentation

during development from affecting production. Our development environment

made use of the lightweight SQLite database server and web server, Puma. Our

tests were run in a controlled environment with test data provided by fixtures.

Documenting What We’ve Done

To complete our retrospective, let’s see how much code we’ve written. There’s

a Rails command for that, too:

depot> bin/rails stats
+----------------------+--------+--------+---------+---------+-----+-------+
| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
+----------------------+--------+--------+---------+---------+-----+-------+
Controllers	625	382	9	55	6	4
Helpers	26	24	0	1	0	22
Jobs	2	2	1	0	0	0
Models	137	77	6	7	1	9
Mailers	33	15	2	2	1	5
Javascripts	66	7	0	3	0	0
Libraries	23	18	0	0	0	0
Tasks	23	18	0	0	0	0
Controller tests	386	274	8	46	5	3
Helper tests	0	0	0	0	0	0
Model tests	130	90	5	9	1	8
Mailer tests	39	26	2	4	2	4
Integration tests	219	153	2	10	5	13
+----------------------+--------+--------+---------+---------+-----+-------+						
Total	1709	1086	35	137	3	5
+----------------------+--------+--------+---------+---------+-----+-------+

Code LOC: 543 Test LOC: 543 Code to Test Ratio: 1:1.0

Think about it: you’ve accomplished a lot and with not all that much code.

Furthermore, much of it was generated for you. This is the magic of Rails.

Chapter 18. Depot Retrospective • 304

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Part III

Rails in Depth

CHAPTER 19

In this chapter, you'll see:

• The directory structure of a Rails application

• Naming conventions

• Adding Rake tasks

• Configuration

Finding Your Way Around Rails

Having survived our Depot project, you are now prepared to dig deeper into

Rails. For the rest of the book, we’ll go through Rails topic by topic (which

pretty much means module by module). You have seen most of these modules

in action before. We will cover not only what each module does but also how

to extend or even replace the module and why you might want to do so.

The chapters in Part III cover all the major subsystems of Rails: Active Record,

Active Resource, Action Pack (including both Action Controller and Action

View), and Active Support. This is followed by an in-depth look at migrations.

Then we are going to delve into the interior of Rails and show how the compo-

nents are put together, how they start up, and how they can be replaced.

Having shown how the parts of Rails can be put together, we’ll complete this

book with a survey of a number of popular replacement parts, many of which

can be used outside of Rails.

We need to set the scene. This chapter covers all the high-level stuff you need

to know to understand the rest: directory structures, configuration, and

environments.

Where Things Go

Rails assumes a certain runtime directory layout and provides application

and scaffold generators, which will create this layout for you. For example, if

we generate my_app using the command rails newmy_app, the top-level directory

for our new application appears as shown in the figure on page 308.

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Joe asks:

So, Where’s Rails?

One of the interesting aspects of Rails is how componentized it is. From a developer’s

perspective, you spend all your time dealing with high-level modules such as Active

Record and Action View. There is a component called Rails, but it sits below the

other components, silently orchestrating what they do and making them all work

together seamlessly. Without the Rails component, not much would happen. But at

the same time, only a small part of this underlying infrastructure is relevant to

developers in their day-to-day work. We’ll cover the parts that are relevant in the rest

of this chapter.

Let’s start with the text files in the top of the application directory:

• config.ru configures the Rack Webserver Interface, either to create Rails

Metal applications or to use Rack Middlewares in your Rails application.

These are discussed further in the Rails Guides.1

1. http://guides.rubyonrails.org/rails_on_rack.html

Chapter 19. Finding Your Way Around Rails • 308

report erratum • discuss

http://guides.rubyonrails.org/rails_on_rack.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

• Gemfile specifies the dependencies of your Rails application. You have

already seen this in use when the bcrypt-ruby gem was added to the Depot

application. Application dependencies also include the database, web

server, and even scripts used for deployment.

Technically, this file isn’t used by Rails but rather by your application. You

can find calls to the Bundler2 in the config/application.rb and config/boot.rb files.

• Gemfile.lock records the specific versions for each of your Rails application’s

dependencies. This file is maintained by Bundler and should be checked

into your repository.

• Rakefile defines tasks to run tests, create documentation, extract the current

structure of your schema, and more. Type rake -T at a prompt for the full

list. Type rake -D task to see a more complete description of a specific task.

• README contains general information about the Rails framework.

Let’s look at what goes into each directory (although not necessarily in order).

A Place for Our Application

Most of our work takes place in the app directory. The main code for the

application lives below the app directory, as shown in the figure on page 310.

We’ll talk more about the structure of the app directory as we look at the var-

ious Rails modules such as Active Record, Action Controller, and Action View

in more detail later in the book.

A Place for Our Tests

As we have seen in Iteration B2: Unit Testing of Models, on page 91, Iteration

C4: Functional Testing of Controllers, on page 114, and Iteration H2: Testing

Our JavaScript Functionality, on page 214, Rails has ample provisions for

testing your application, and the test directory is the home for all testing-

related activities, including fixtures that define data used by our tests.

A Place for Supporting Libraries

The lib directory holds application code that doesn’t fit neatly into a model,

view, or controller. For example, you may have written a library that creates

PDF receipts that your store’s customers can download. These receipts are

sent directly from the controller to the browser (using the send_data() method).

The code that creates these PDF receipts will sit naturally in the lib directory.

2. https://github.com/bundler/bundler

report erratum • discuss

Where Things Go • 309

https://github.com/bundler/bundler
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The lib directory is also a good place to put code that’s shared among models,

views, or controllers. Maybe you need a library that validates a credit card

number’s checksum, that performs some financial calculation, or that works

out the date of Easter. Anything that isn’t directly a model, view, or controller

should be slotted into lib.

Chapter 19. Finding Your Way Around Rails • 310

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Don’t feel that you have to stick a bunch of files directly into the lib directory.

Feel free to create subdirectories in which you group related functionality

under lib. For example, on the Pragmatic Programmer site, the code that gen-

erates receipts, customs documentation for shipping, and other PDF-formatted

documentation is in the directory lib/pdf_stuff.

In previous versions of Rails, the files in the lib directory were automatically

included in the load path used to resolve require statements. This is now an

option that you need to explicitly enable. To do so, place the following in

config/application.rb:

config.autoload_paths += %W(#{Rails.root}/lib)

Once you have files in the lib directory and the lib added to your autoload

paths, you can use them in the rest of your application. If the files contain

classes or modules and the files are named using the lowercase form of the

class or module name, then Rails will load the file automatically. For example,

we might have a PDF receipt writer in the file receipt.rb in the directory lib/pdf_stuff.
As long as our class is named PdfStuff::Receipt, Rails will be able to find and load

it automatically.

For those times where a library cannot meet these automatic loading condi-

tions, you can use Ruby’s require mechanism. If the file is in the lib directory,

you can require it directly by name. For example, if our Easter calculation

library is in the file lib/easter.rb, we can include it in any model, view, or con-

troller using this:

require "easter"

If the library is in a subdirectory of lib, remember to include that directory’s

name in the require statement. For example, to include a shipping calculation

for airmail, we might add the following line:

require "shipping/airmail"

A Place for Our Rake Tasks

You’ll also find an empty tasks directory under lib. This is where you can write

your own Rake tasks, allowing you to add automation to your project. This

isn’t a book about Rake, so we won’t elaborate, but here’s a simple example.

Rails provides a Rake task to tell you the latest migration that has been per-

formed. But it may be helpful to see a list of all the migrations that have been

performed. We’ll write a Rake task that prints the versions listed in the

schema_migration table. These tasks are Ruby code, but they need to be placed

into files with the extension .rake. We’ll call ours db_schema_migrations.rake:

report erratum • discuss

Where Things Go • 311

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_u/lib/tasks/db_schema_migrations.rake

namespace :db do
desc "Prints the migrated versions"
task :schema_migrations => :environment do
puts ActiveRecord::Base.connection.select_values(

'select version from schema_migrations order by version')
end

end

We can run this from the command line just like any other Rake task:

depot> bin/rails db:schema_migrations
(in /Users/rubys/Work/...)
20170425000001
20170425000002
20170425000003
20170425000004
20170425000005
20170425000006
20170425000007

Consult the Rake documentation at https://github.com/ruby/rake#readme for more

information on writing Rake tasks.

A Place for Our Logs

As Rails runs, it produces a bunch of useful logging information. This is stored

(by default) in the log directory. Here you’ll find three main log files, called

development.log, test.log, and production.log. The logs contain more than just trace

lines; they also contain timing statistics, cache information, and expansions

of the database statements executed.

Which file is used depends on the environment in which your application is

running (and we’ll have more to say about environments when we talk about

the config directory in A Place for Configuration, on page 314).

A Place for Static Web Pages

The public directory is the external face of your application. The web server

takes this directory as the base of the application. In here you place static (in

other words, unchanging) files, generally related to the running of the server.

A Place for Script Wrappers

If you find it helpful to write scripts that are launched from the command

line and perform various maintenance tasks for your application, the bin
directory is the place to put wrappers that call those scripts. You can use

bundle binstubs to populate this directory.

Chapter 19. Finding Your Way Around Rails • 312

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/lib/tasks/db_schema_migrations.rake
https://github.com/ruby/rake#readme
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

This directory also holds the Rails script. This is the script that is run when

you run the rails command from the command line. The first argument you

pass to that script determines the function Rails will perform:

console
Allows you to interact with your Rails application methods.

dbconsole
Allows you to directly interact with your database via the command line.

destroy
Removes autogenerated files created by generate.

generate
A code generator. Out of the box, it will create controllers, mailers, models,

scaffolds, and web services. Run generate with no arguments for usage

information on a particular generator; here’s an example:

bin/rails generate migration

new
Generates Rails application code.

runner
Executes a method in your application outside the context of the Web.

This is the noninteractive equivalent of rails console. You could use this to

invoke cache expiry methods from a cron job or handle incoming email.

server
Runs your Rails application in a self-contained web server, using the web

server listed in your Gemfile, or WEBrick if none is listed. We’ve been using

Puma in our Depot application during development.

A Place for Temporary Files

It probably isn’t a surprise that Rails keeps its temporary files tucked in the

tmp directory. You’ll find subdirectories for cache contents, sessions, and

sockets in here. Generally these files are cleaned up automatically by Rails,

but occasionally if things go wrong, you might need to look in here and delete

old files.

A Place for Third-Party Code

The vendor directory is where third-party code lives. You can install Rails and

all of its dependencies into the vendor directory, as we saw in Getting an

Application Under Control, on page 290.

report erratum • discuss

Where Things Go • 313

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

If you want to go back to using the system-wide version of gems, you can

delete the vendor/cache directory.

A Place for Configuration

The config directory contains files that configure Rails. In the process of

developing Depot, we configured a few routes, configured the database, created

an initializer, modified some locales, and defined deployment instructions.

The rest of the configuration was done via Rails conventions.

Before running your application, Rails loads and executes config/environment.rb
and config/application.rb. The standard environment set up automatically by these

files includes the following directories (relative to your application’s base

directory) in your application’s load path:

• The app/controllers directory and its subdirectories

• The app/models directory

• The vendor directory and the lib contained in each plugin subdirectory

• The directories app, app/helpers, app/mailers, and app/*/concerns

Each of these directories is added to the load path only if it exists.

In addition, Rails will load a per-environment configuration file. This file lives

in the environments directory and is where you place configuration options that

vary depending on the environment.

This is done because Rails recognizes that your needs, as a developer, are

very different when writing code, testing code, and running that code in pro-

duction. When writing code, you want lots of logging, convenient reloading

of changed source files, in-your-face notification of errors, and so on. In

testing, you want a system that exists in isolation so you can have repeatable

results. In production, your system should be tuned for performance, and

users should be kept away from errors.

The switch that dictates the runtime environment is external to your applica-

tion. This means that no application code needs to be changed as you move

from development through testing to production. In Chapter 17, Task L:

Deployment and Production, on page 279, we specified the environment on the

rake command using a RAILS_ENV parameter and to Phusion Passenger using a

RailsEnv line in our Apache configuration file. When starting a server with the

bin/rails server command, we use the -e option:

depot> bin/rails server -e development
depot> bin/rails server -e test
depot> bin/rails server -e production

Chapter 19. Finding Your Way Around Rails • 314

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

If you have special requirements, such as if you favor having a staging envi-

ronment, you can create your own environments. You’ll need to add a new

section to the database configuration file and a new file to the config/environments
directory.

What you put into these configuration files is entirely up to you. You can find

a list of configuration parameters you can set in the Configuring Rails Appli-

cations guide.3

Naming Conventions

Newcomers to Rails are sometimes puzzled by the way it automatically handles

the naming of things. They’re surprised that they call a model class Person and

Rails somehow knows to go looking for a database table called people. In this

section, you’ll learn how this implicit naming works.

The rules here are the default conventions used by Rails. You can override

all of these conventions using configuration options.

Mixed Case, Underscores, and Plurals

We often name variables and classes using short phrases. In Ruby, the con-

vention is to have variable names where the letters are all lowercase and

words are separated by underscores. Classes and modules are named differ-

ently: there are no underscores, and each word in the phrase (including the

first) is capitalized. (We’ll call this mixed case, for fairly obvious reasons.)

These conventions lead to variable names such as order_status and class names

such as LineItem.

Rails takes this convention and extends it in two ways. First, it assumes that

database table names, such as variable names, have lowercase letters and

underscores between the words. Rails also assumes that table names are

always plural. This leads to table names such as orders and third_parties.

On another axis, Rails assumes that files are named using lowercase with

underscores.

Rails uses this knowledge of naming conventions to convert names automat-

ically. For example, your application might contain a model class that handles

line items. You’d define the class using the Ruby naming convention, calling

it LineItem. From this name, Rails would automatically deduce the following:

3. http://guides.rubyonrails.org/configuring.html

report erratum • discuss

Naming Conventions • 315

http://guides.rubyonrails.org/configuring.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

• That the corresponding database table will be called line_items. That’s the

class name, converted to lowercase, with underscores between the words

and pluralized.

• Rails would also know to look for the class definition in a file called

line_item.rb (in the app/models directory).

Rails controllers have additional naming conventions. If our application has

a store controller, then the following happens:

• Rails assumes the class is called StoreController and that it’s in a file named

store_controller.rb in the app/controllers directory.

• Rails also looks for a helper module named StoreHelper in the file store_helper.rb
located in the app/helpers directory.

• It will look for view templates for this controller in the app/views/store
directory.

• It will by default take the output of these views and wrap them in the layout

template contained in the file store.html.erb or store.xml.erb in the directory

app/views/layouts.

All these conventions are shown in the following tables.

Model Naming

line_itemsTable

app/models/line_item.rbFile

LineItemClass

Controller Naming

http://../store/listURL

app/controllers/store_controller.rbFile

StoreControllerClass

listMethod

app/views/layouts/store.html.erbLayout

View Naming

http://../store/listURL

app/views/store/list.html.erb (or .builder)File

module StoreHelperHelper

app/helpers/store_helper.rbFile

Chapter 19. Finding Your Way Around Rails • 316

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

There’s one extra twist. In normal Ruby code you have to use the require keyword

to include Ruby source files before you reference the classes and modules in

those files. Since Rails knows the relationship between filenames and class

names, require isn’t normally necessary in a Rails application. The first time you

reference a class or module that isn’t known, Rails uses the naming conventions

to convert the class name to a filename and tries to load that file behind the

scenes. The net effect is that you can typically reference (say) the name of a

model class, and that model will be automatically loaded into your application.

Grouping Controllers into Modules

So far, all our controllers have lived in the app/controllers directory. It is some-

times convenient to add more structure to this arrangement. For example,

our store might end up with a number of controllers performing related but

disjoint administration functions. Rather than pollute the top-level namespace,

we might choose to group them into a single admin namespace.

David says:

Why Plurals for Tables?

Because it sounds good in conversation. Really. “Select a Product from products.”

And “Order has_many :line_items.”

The intent is to bridge programming and conversation by creating a domain language

that can be shared by both. Having such a language means cutting down on the

mental translation that otherwise confuses the discussion of a product description

with the client when it’s really implemented as merchandise body. These communica-

tions gaps are bound to lead to errors.

Rails sweetens the deal by giving you most of the configuration for free if you follow

the standard conventions. Developers are thus rewarded for doing the right thing, so

it’s less about giving up “your ways” and more about getting productivity for free.

Rails does this using a simple naming convention. If an incoming request has

a controller named (say) admin/book, Rails will look for the controller called

book_controller in the directory app/controllers/admin. That is, the final part of the

controller name will always resolve to a file called name_controller.rb, and any

leading path information will be used to navigate through subdirectories,

starting in the app/controllers directory.

Imagine that our program has two such groups of controllers (say, admin/xxx

and content/xxx) and that both groups define a book controller. There’d be a file

called book_controller.rb in both the admin and content subdirectories of app/controllers.

report erratum • discuss

Naming Conventions • 317

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Both of these controller files would define a class named BookController. If Rails

took no further steps, these two classes would clash.

To deal with this, Rails assumes that controllers in subdirectories of the

directory app/controllers are in Ruby modules named after the subdirectory. Thus,

the book controller in the admin subdirectory would be declared like this:

class Admin::BookController < ActionController::Base
...

end

The book controller in the content subdirectory would be in the Content module:

class Content::BookController < ActionController::Base
...

end

The two controllers are therefore kept separate inside your application.

The templates for these controllers appear in subdirectories of app/views. Thus,

the view template corresponding to this request:

http://my.app/admin/book/edit/1234

will be in this file:

app/views/admin/book/edit.html.erb

You’ll be pleased to know that the controller generator understands the con-

cept of controllers in modules and lets you create them with commands such

as this:

myapp> bin/rails generate controller Admin::Book action1 action2 ...

What We Just Did

Everything in Rails has a place, and we systematically explored each of those

nooks and crannies. In each place, files and the data contained in them follow

naming conventions, and we covered that too. Along the way, we filled in a

few missing pieces:

• We added a Rake task to print the migrated versions.

• We showed how to configure each of the Rails execution environments.

Next up are the major subsystems of Rails, starting with the largest, Active

Record.

Chapter 19. Finding Your Way Around Rails • 318

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 20

In this chapter, you'll see:

• The establish_connection method

• Tables, classes, columns, and attributes

• IDs and relationships

• Create, read, update, and delete operations

• Callbacks and transactions

Active Record

Active Record is the object-relational mapping (ORM) layer supplied with Rails.

It is the part of Rails that implements your application’s model.

In this chapter, we’ll build on the mapping data to rows and columns that

we did in Depot. Then we’ll look at using Active Record to manage table rela-

tionships and in the process cover create, read, update, and delete operations

(commonly referred to in the industry as CRUD methods). Finally, we will dig

into the Active Record object life cycle (including callbacks and transactions).

Defining Your Data

In Depot, we defined a number of models, including one for an Order. This

particular model has a number of attributes, such as an email address of type

String. In addition to the attributes that we defined, Rails provided an attribute

named id that contains the primary key for the record. Rails also provides

several additional attributes, including attributes that track when each row

was last updated. Finally, Rails supports relationships between models, such

as the relationship between orders and line items.

When you think about it, Rails provides a lot of support for models. Let’s

examine each in turn.

Organizing Using Tables and Columns

Each subclass of ApplicationRecord, such as our Order class, wraps a separate

database table. By default, Active Record assumes that the name of the table

associated with a given class is the plural form of the name of that class. If

the class name contains multiple capitalized words, the table name is assumed

to have underscores between these words.

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Table NameClassname

ordersOrder

tax_agenciesTaxAgency

batchesBatch

diagnosesDiagnosis

line_itemsLineItem

peoplePerson

dataDatum

quantitiesQuantity

These rules reflect Rails’ philosophy that class names should be singular

while the names of tables should be plural.

Although Rails handles most irregular plurals correctly, occasionally you may

stumble across one that is not handled correctly. If you encounter such a

case, you can add to Rails’ understanding of the idiosyncrasies and inconsis-

tencies of the English language by modifying the inflection file provided:

rails51/depot_u/config/initializers/inflections.rb

Be sure to restart your server when you modify this file.

Add new inflection rules using the following format. Inflections
are locale specific, and you may define rules for as many different
locales as you wish. All of these examples are active by default:
ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.plural /^(ox)$/i, '\1en'
inflect.singular /^(ox)en/i, '\1'
inflect.irregular 'person', 'people'
inflect.uncountable %w(fish sheep)
end

These inflection rules are supported but not enabled by default:
ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.acronym 'RESTful'
end

ActiveSupport::Inflector.inflections do |inflect|
inflect.irregular 'tax', 'taxes'

end

If you have legacy tables you have to deal with or don’t like this behavior, you

can control the table name associated with a given model by setting the

table_name for a given class:

class Sheep < ApplicationRecord
self.table_name = "sheep"

end

Chapter 20. Active Record • 320

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/config/initializers/inflections.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

David says:

Where Are Our Attributes?

The notion of a database administrator (DBA) as a separate role from programmer

has led some developers to see strict boundaries between code and schema. Active

Record blurs that distinction, and no other place is that more apparent than in the

lack of explicit attribute definitions in the model.

But fear not. Practice has shown that it makes little difference whether we’re looking

at a database schema, a separate XML mapping file, or inline attributes in the model.

The composite view is similar to the separations already happening in the Model-

View-Controller pattern—just on a smaller scale.

Once the discomfort of treating the table schema as part of the model definition has

dissipated, you’ll start to realize the benefits of keeping DRY. When you need to add

an attribute to the model, you simply have to create a new migration and reload the

application.

Taking the “build” step out of schema evolution makes it just as agile as the rest of

the code. It becomes much easier to start with a small schema and extend and change

it as needed.

Instances of Active Record classes correspond to rows in a database table.

These objects have attributes corresponding to the columns in the table. You

probably noticed that our definition of class Order didn’t mention any of the

columns in the orders table. That’s because Active Record determines them

dynamically at runtime. Active Record reflects on the schema inside the

database to configure the classes that wrap tables.

In the Depot application, our orders table is defined by the following migration:

rails51/depot_r/db/migrate/20170425000007_create_orders.rb

class CreateOrders < ActiveRecord::Migration[5.1]
def change
create_table :orders do |t|

t.string :name
t.text :address
t.string :email
t.integer :pay_type

t.timestamps
end

end
end

Let’s use the handy-dandy bin/rails console command to play with this model.

First, we’ll ask for a list of column names:

report erratum • discuss

Defining Your Data • 321

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/db/migrate/20170425000007_create_orders.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

depot> bin/rails console
Loading development environment (Rails 5.1.3)
>> Order.column_names
=> ["id", "name", "address", "email", "pay_type", "created_at", "updated_at"]

Then we’ll ask for the details of the pay_type column:

>> Order.columns_hash["pay_type"]
=> #<ActiveRecord::ConnectionAdapters::SQLite3Column:0x00000003618228

@name="pay_type", @sql_type="varchar(255)", @null=true, @limit=255,
@precision=nil, @scale=nil, @type=:string, @default=nil,
@primary=false, @coder=nil>

Notice that Active Record has gleaned a fair amount of information about the

pay_type column. It knows that it’s a string of at most 255 characters, it has

no default value, it isn’t the primary key, and it may contain a null value.

Rails obtained this information by asking the underlying database the first

time we tried to use the Order class.

The attributes of an Active Record instance generally correspond to the data

in the corresponding row of the database table. For example, our orders table

might contain the following data:

depot> sqlite3 -line db/development.sqlite3 "select * from orders limit 1"
id = 1

name = Dave Thomas
address = 123 Main St

email = customer@example.com
pay_type = Check

created_at = 2016-01-29 14:39:12.375458
updated_at = 2016-01-29 14:39:12.375458

If we fetched this row into an Active Record object, that object would have

seven attributes. The id attribute would be 1 (a Fixnum), the name attribute would

be the string "Dave Thomas", and so on.

We access these attributes using accessor methods. Rails automatically

constructs both attribute readers and attribute writers when it reflects on

the schema:

o = Order.find(1)
puts o.name #=> "Dave Thomas"
o.name = "Fred Smith" # set the name

Setting the value of an attribute does not change anything in the database—

we must save the object for this change to become permanent.

The value returned by the attribute readers is cast by Active Record to an

appropriate Ruby type if possible (so, for example, if the database column is

Chapter 20. Active Record • 322

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

a timestamp, a Time object will be returned). If we want to get the raw value

of an attribute, we append _before_type_cast to its name, as shown in the following

code:

product.price_before_type_cast #=> 34.95, a float
product.updated_at_before_type_cast #=> "2016-02-13 10:13:14"

Inside the code of the model, we can use the read_attribute() and write_attribute()
private methods. These take the attribute name as a string parameter.

We can see the mapping between SQL types and their Ruby representation

in the following table. Decimal and Boolean columns are slightly tricky.

Ruby ClassSQL Type

Fixnumint, integer

Floatfloat, double

BigDecimaldecimal, numeric

Stringchar, varchar, string

Dateinterval, date

Timedatetime, time

Stringclob, blob, text

See textboolean

Rails maps columns with Decimals with no decimal places to Fixnum objects;

otherwise, it maps them to BigDecimal objects, ensuring that no precision is

lost.

In the case of Boolean, a convenience method is provided with a question

mark appended to the column name:

user = User.find_by(name: "Dave")
if user.superuser?

grant_privileges
end

In addition to the attributes we define, there are a number of attributes that

either Rails provides automatically or have special meaning.

Additional Columns Provided by Active Record

A number of column names have special significance to Active Record. Here’s

a summary:

report erratum • discuss

Defining Your Data • 323

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

created_at, created_on, updated_at, updated_on
These are automatically updated with the timestamp of a row’s creation

or last update. Make sure the underlying database column is capable of

receiving a date, datetime, or string. Rails applications conventionally use

the _on suffix for date columns and the _at suffix for columns that include

a time.

id
This is the default name of a table’s primary key column (in Identifying

Individual Rows, on page 324).

xxx_id
This is the default name of a foreign key reference to a table named with

the plural form of xxx.

xxx_count
This maintains a counter cache for the child table xxx.

Additional plugins, such as acts_as_list,1 may define additional columns.

Both primary keys and foreign keys play a vital role in database operations

and merit additional discussion.

Locating and Traversing Records

In the Depot application, LineItems have direct relationships to three other

models: Cart, Order, and Product. Additionally, models can have indirect relation-

ships mediated by resource objects. The relationship between Orders and

Products through LineItems is an example of such a relationship.

All of this is made possible through IDs.

Identifying Individual Rows

Active Record classes correspond to tables in a database. Instances of a class

correspond to the individual rows in a database table. Calling Order.find(1), for

instance, returns an instance of an Order class containing the data in the row

with the primary key of 1.

If you’re creating a new schema for a Rails application, you’ll probably want

to go with the flow and let it add the id primary key column to all your tables.

However, if you need to work with an existing schema, Active Record gives

you a way of overriding the default name of the primary key for a table.

1. https://github.com/rails/acts_as_list

Chapter 20. Active Record • 324

report erratum • discuss

https://github.com/rails/acts_as_list
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

For example, we may be working with an existing legacy schema that uses

the ISBN as the primary key for the books table.

We specify this in our Active Record model using something like the following:

class LegacyBook < ApplicationRecord
self.primary_key = "isbn"

end

Normally, Active Record takes care of creating new primary key values for

records that we create and add to the database—they’ll be ascending integers

(possibly with some gaps in the sequence). However, if we override the pri-

mary key column’s name, we also take on the responsibility of setting the

primary key to a unique value before we save a new row. Perhaps surpris-

ingly, we still set an attribute called id to do this. As far as Active Record is

concerned, the primary key attribute is always set using an attribute called

id. The primary_key= declaration sets the name of the column to use in the

table. In the following code, we use an attribute called id even though the

primary key in the database is isbn:

book = LegacyBook.new
book.id = "0-12345-6789"
book.title = "My Great American Novel"
book.save
...
book = LegacyBook.find("0-12345-6789")
puts book.title # => "My Great American Novel"
p book.attributes #=> {"isbn" =>"0-12345-6789",

"title"=>"My Great American Novel"}

Just to make life more confusing, the attributes of the model object have the

column names isbn and title—id doesn’t appear. When you need to set the pri-

mary key, use id. At all other times, use the actual column name.

Model objects also redefine the Ruby id() and hash() methods to reference the

model’s primary key. This means that model objects with valid IDs may be

used as hash keys. It also means that unsaved model objects cannot reliably

be used as hash keys (because they won’t yet have a valid ID).

One final note: Rails considers two model objects as equal (using ==) if they

are instances of the same class and have the same primary key. This means

that unsaved model objects may compare as equal even if they have different

attribute data. If you find yourself comparing unsaved model objects (which

is not a particularly frequent operation), you might need to override the ==
method.

As we will see, IDs also play an important role in relationships.

report erratum • discuss

Locating and Traversing Records • 325

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Specifying Relationships in Models

Active Record supports three types of relationship between tables: one-to-one,

one-to-many, and many-to-many. You indicate these relationships by adding

declarations to your models: has_one, has_many, belongs_to, and the wonderfully

named has_and_belongs_to_many.

One-to-One Relationships

A one-to-one association (or, more accurately, a one-to-zero-or-one relation-

ship) is implemented using a foreign key in one row in one table to reference

at most a single row in another table. A one-to-one relationship might exist

between orders and invoices: for each order there’s at most one invoice.

class Invoice < ActiveRecord::Base

 belongs_to :order

 # . . .

end

invoices

id

order_id

. . .

orders

id

name

. . .

class Order < ActiveRecord::Base

 has_one :invoice

 # . . .

end

As the example shows, we declare this in Rails by adding a has_one declaration

to the Order model and by adding a belongs_to declaration to the Invoice model.

There’s an important rule illustrated here: the model for the table that contains

the foreign key always has the belongs_to declaration.

One-to-Many Relationships

A one-to-many association allows you to represent a collection of objects. For

example, an order might have any number of associated line items. In the

database, all the line item rows for a particular order contain a foreign key

column referring to that order.

class LineItem < ActiveRecord::Base

 belongs_to :order

 # . . .

end

line_items

id

order_id

. . .

orders

id

name

. . .

class Order < ActiveRecord::Base

 has_many :line_items

 # . . .

end

Chapter 20. Active Record • 326

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

In Active Record, the parent object (the one that logically contains a collection

of child objects) uses has_many to declare its relationship to the child table,

and the child table uses belongs_to to indicate its parent. In our example, class

LineItem belongs_to :order, and the orders table has_many :line_items.

Note that, again, because the line item contains the foreign key, it has the

belongs_to declaration.

Many-to-Many Relationships

Finally, we might categorize our products. A product can belong to many

categories, and each category may contain multiple products. This is an

example of a many-to-many relationship. It’s as if each side of the relationship

contains a collection of items on the other side.

class Category< ActiveRecord::Base

 has_and_belongs_to_many :products

 # . . .

end

categories

id

name

. . .

products

id

name

. . .

class Product< ActiveRecord::Base

 has_and_belongs_to_many :categories

 # . . .

end

categories_products

category_id

product_id

In Rails we can express this by adding the has_and_belongs_to_many declaration

to both models.

Many-to-many associations are symmetrical—both of the joined tables declare

their association with each other using “habtm.”

Rails implements many-to-many associations using an intermediate join

table. This contains foreign key pairs linking the two target tables. Active

Record assumes that this join table’s name is the concatenation of the two

target table names in alphabetical order. In our example, we joined the table

categories to the table products, so Active Record will look for a join table named

categories_products.

We can also define join tables directly. In the Depot application, we defined

a LineItems join, which joined Products to either Carts or Orders. Defining it ourselves

also gave us a place to store an additional attribute, namely, a quantity.

Now that we have covered data definitions, the next thing you would naturally

want to do is access the data contained within the database, so let’s do that.

report erratum • discuss

Locating and Traversing Records • 327

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Creating, Reading, Updating, and Deleting (CRUD)

Names such as SQLite and MySQL emphasize that all access to a database

is via the Structured Query Language (SQL). In most cases, Rails will take

care of this for you, but that is completely up to you. As you will see, you can

provide clauses or even entire SQL statements for the database to execute.

If you are familiar with SQL already, as you read this section take note of how

Rails provides places for familiar clauses such as select, from, where, group by,
and so on. If you are not already familiar with SQL, one of the strengths of

Rails is that you can defer knowing more about such things until you actually

need to access the database at this level.

In this section, we’ll continue to work with the Order model from the Depot

application for an example. We will be using Active Record methods to apply

the four basic database operations: create, read, update, and delete.

Creating New Rows

Given that Rails represents tables as classes and rows as objects, it follows

that we create rows in a table by creating new objects of the appropriate class.

We can create new objects representing rows in our orders table by calling

Order.new(). We can then fill in the values of the attributes (corresponding to

columns in the database). Finally, we call the object’s save() method to store

the order back into the database. Without this call, the order would exist only

in our local memory.

rails51/e1/ar/new_examples.rb

an_order = Order.new
an_order.name = "Dave Thomas"
an_order.email = "dave@example.com"
an_order.address = "123 Main St"
an_order.pay_type = "check"
an_order.save

Active Record constructors take an optional block. If present, the block is

invoked with the newly created order as a parameter. This might be useful if

you wanted to create and save an order without creating a new local variable.

rails51/e1/ar/new_examples.rb

Order.new do |o|
o.name = "Dave Thomas"
. . .
o.save

end

Chapter 20. Active Record • 328

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/new_examples.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Finally, Active Record constructors accept a hash of attribute values as an

optional parameter. Each entry in this hash corresponds to the name and

value of an attribute to be set. This is useful for doing things like storing

values from HTML forms into database rows.

rails51/e1/ar/new_examples.rb

an_order = Order.new(
name: "Dave Thomas",
email: "dave@example.com",
address: "123 Main St",
pay_type: "check")

an_order.save

Note that in all of these examples we did not set the id attribute of the new

row. Because we used the Active Record default of an integer column for the

primary key, Active Record automatically creates a unique value and sets the

id attribute as the row is saved. We can subsequently find this value by

querying the attribute:

rails51/e1/ar/new_examples.rb

an_order = Order.new
an_order.name = "Dave Thomas"
...
an_order.save
puts "The ID of this order is #{an_order.id}"

The new() constructor creates a new Order object in memory; we have to

remember to save it to the database at some point. Active Record has a con-

venience method, create(), that both instantiates the model object and stores

it into the database:

rails51/e1/ar/new_examples.rb

an_order = Order.create(
name: "Dave Thomas",
email: "dave@example.com",
address: "123 Main St",
pay_type: "check")

You can pass create() an array of attribute hashes; it’ll create multiple rows in

the database and return an array of the corresponding model objects:

rails51/e1/ar/new_examples.rb

orders = Order.create(
[{ name: "Dave Thomas",

email: "dave@example.com",
address: "123 Main St",
pay_type: "check"

},
{ name: "Andy Hunt",

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 329

http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/new_examples.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

email: "andy@example.com",
address: "456 Gentle Drive",
pay_type: "po"

}])

The real reason that new() and create() take a hash of values is that you can

construct model objects directly from form parameters:

@order = Order.new(order_params)

If you think this line looks familiar, it is because you have seen it before. It

appears in orders_controller.rb in the Depot application.

Reading Existing Rows

Reading from a database involves first specifying which particular rows of

data you are interested in—you’ll give Active Record some kind of criteria,

and it will return objects containing data from the row(s) matching the criteria.

The most direct way of finding a row in a table is by specifying its primary

key. Every model class supports the find() method, which takes one or more

primary key values. If given just one primary key, it returns an object contain-

ing data for the corresponding row (or throws an ActiveRecord::RecordNotFound
exception). If given multiple primary key values, find() returns an array of the

corresponding objects. Note that in this case a RecordNotFound exception is

raised if any of the IDs cannot be found (so if the method returns without

raising an error, the length of the resulting array will be equal to the number

of IDs passed as parameters).

an_order = Order.find(27) # find the order with id == 27

Get a list of product ids from a form, then
find the associated Products
product_list = Product.find(params[:product_ids])

Often, though, you need to read in rows based on criteria other than their

primary key value. Active Record provides additional methods enabling you

to express more complex queries.

SQL and Active Record

To illustrate how Active Record works with SQL, pass a string to the where()
method call corresponding to a SQL where clause. For example, to return a list

of all orders for Dave with a payment type of “po,” we could use this:

pos = Order.where("name = 'Dave' and pay_type = 'po'")

The result will be an ActiveRecord::Relation object containing all the matching

rows, each neatly wrapped in an Order object.

Chapter 20. Active Record • 330

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

David says:

To Raise or Not to Raise?

When you use a finder driven by primary keys, you’re looking for a particular record.

You expect it to exist. A call to Person.find(5) is based on our knowledge of the people
table. We want the row with an ID of 5. If this call is unsuccessful—if the record with

the ID of 5 has been destroyed—we’re in an exceptional situation. This mandates the

raising of an exception, so Rails raises RecordNotFound.

On the other hand, finders that use criteria to search are looking for a match. So,

Person.where(name: 'Dave').first is the equivalent of telling the database (as a black box)

“Give me the first person row that has the name Dave.” This exhibits a distinctly

different approach to retrieval; we’re not certain up front that we’ll get a result. It’s

entirely possible the result set may be empty. Thus, returning nil in the case of finders

that search for one row and an empty array for finders that search for many rows is

the natural, nonexceptional response.

That’s fine if our condition is predefined, but how do we handle it when the

name of the customer is set externally (perhaps coming from a web form)?

One way is to substitute the value of that variable into the condition string:

get the name from the form
name = params[:name]
DON'T DO THIS!!!
pos = Order.where("name = '#{name}' and pay_type = 'po'")

As the comment suggests, this really isn’t a good idea. Why? It leaves the

database wide open to something called a SQL injection attack, which the Ruby

on Rails Guides2 describe in more detail. For now, take it as a given that sub-

stituting a string from an external source into a SQL statement is effectively

the same as publishing your entire database to the whole online world.

Instead, the safe way to generate dynamic SQL is to let Active Record handle

it. Doing this allows Active Record to create properly escaped SQL, which is

immune from SQL injection attacks. Let’s see how this works.

If we pass multiple parameters to a where() call, Rails treats the first parameter

as a template for the SQL to generate. Within this SQL, we can embed

placeholders, which will be replaced at runtime by the values in the rest of

the array.

One way of specifying placeholders is to insert one or more question marks

in the SQL. The first question mark is replaced by the second element of the

2. http://guides.rubyonrails.org/security.html#sql-injection

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 331

http://guides.rubyonrails.org/security.html#sql-injection
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

array, the next question mark by the third, and so on. For example, we could

rewrite the previous query as this:

name = params[:name]
pos = Order.where(["name = ? and pay_type = 'po'", name])

We can also use named placeholders. We do that by placing placeholders of

the form :name into the string and by providing corresponding values in a

hash, where the keys correspond to the names in the query:

name = params[:name]
pay_type = params[:pay_type]
pos = Order.where("name = :name and pay_type = :pay_type",

pay_type: pay_type, name: name)

We can take this a step further. Because params is effectively a hash, we can

simply pass it all to the condition. If we have a form that can be used to enter

search criteria, we can use the hash of values returned from that form

directly:

pos = Order.where("name = :name and pay_type = :pay_type",
params[:order])

We can take this even further. If we pass just a hash as the condition, Rails

generates a where clause using the hash keys as column names and the hash

values as the values to match. Thus, we could have written the previous code

even more succinctly:

pos = Order.where(params[:order])

Be careful with this latter form of condition: it takes all the key-value pairs

in the hash you pass in when constructing the condition. An alternative would

be to specify which parameters to use explicitly:

pos = Order.where(name: params[:name],
pay_type: params[:pay_type])

Regardless of which form of placeholder you use, Active Record takes great

care to quote and escape the values being substituted into the SQL. Use these

forms of dynamic SQL, and Active Record will keep you safe from injection

attacks.

Using Like Clauses

We might be tempted to use parameterized like clauses in conditions:

Doesn't work
User.where("name like '?%'", params[:name])

Chapter 20. Active Record • 332

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Rails doesn’t parse the SQL inside a condition and so doesn’t know that the

name is being substituted into a string. As a result, it will go ahead and add

extra quotes around the value of the name parameter. The correct way to do

this is to construct the full parameter to the like clause and pass that

parameter into the condition:

Works
User.where("name like ?", params[:name]+"%")

Of course, if we do this, we need to consider that characters such as percent

signs, should they happen to appear in the value of the name parameter, will

be treated as wildcards.

Subsetting the Records Returned

Now that we know how to specify conditions, let’s turn our attention to the

various methods supported by ActiveRecord::Relation, starting with first() and all().

As you may have guessed, first() returns the first row in the relation. It returns

nil if the relation is empty. Similarly, to_a() returns all the rows as an array.

ActiveRecord::Relation also supports many of the methods of Array objects, such

as each() and map(). It does so by implicitly calling the all() first.

It’s important to understand that the query is not evaluated until one of these

methods is used. This enables us to modify the query in a number of ways,

namely, by calling additional methods, prior to making this call. Let’s look at

these methods now.

order

SQL doesn’t require rows to be returned in any particular order unless we

explicitly add an order by clause to the query. The order() method lets us specify

the criteria we’d normally add after the order by keywords. For example, the

following query would return all of Dave’s orders, sorted first by payment type

and then by shipping date (the latter in descending order):

orders = Order.where(name: 'Dave').
order("pay_type, shipped_at DESC")

limit

We can limit the number of rows returned by calling the limit() method. Gener-

ally when we use the limit method, we’ll probably also want to specify the

sort order to ensure consistent results. For example, the following returns

the first ten matching orders:

orders = Order.where(name: 'Dave').
order("pay_type, shipped_at DESC").
limit(10)

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 333

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

offset

The offset() method goes hand in hand with the limit() method. It allows us to

specify the offset of the first row in the result set that will be returned:

The view wants to display orders grouped into pages,
where each page shows page_size orders at a time.
This method returns the orders on page page_num (starting
at zero).
def Order.find_on_page(page_num, page_size)
order(:id).limit(page_size).offset(page_num*page_size)

end

We can use offset in conjunction with limit to step through the results of a query

n rows at a time.

select

By default, ActiveRecord::Relation fetches all the columns from the underlying

database table—it issues a select * from... to the database. Override this with

the select() method, which takes a string that will appear in place of the * in
the select statement.

This method allows us to limit the values returned in cases where we need

only a subset of the data in a table. For example, our table of podcasts might

contain information on the title, speaker, and date and might also contain a

large BLOB containing the MP3 of the talk. If you just wanted to create a list

of talks, it would be inefficient to also load the sound data for each row. The

select() method lets us choose which columns to load:

list = Talk.select("title, speaker, recorded_on")

joins

The joins() method lets us specify a list of additional tables to be joined to the

default table. This parameter is inserted into the SQL immediately after the

name of the model’s table and before any conditions specified by the first

parameter. The join syntax is database-specific. The following code returns

a list of all line items for the book called Programming Ruby:

LineItem.select('li.quantity').
where("pr.title = 'Programming Ruby 1.9'").
joins("as li inner join products as pr on li.product_id = pr.id")

readonly

The readonly() method causes ActiveRecord::Resource to return Active Record objects

that cannot be stored back into the database.

If we use the joins() or select() method, objects will automatically be marked

readonly.

Chapter 20. Active Record • 334

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

group

The group() method adds a group by clause to the SQL:

summary = LineItem.select("sku, sum(amount) as amount").
group("sku")

lock

The lock() method takes an optional string as a parameter. If we pass it a string,

it should be a SQL fragment in our database’s syntax that specifies a kind of

lock. With MySQL, for example, a share mode lock gives us the latest data in

a row and guarantees that no one else can alter that row while we hold the

lock. We could write code that debits an account only if there are sufficient

funds using something like the following:

Account.transaction do
ac = Account.where(id: id).lock("LOCK IN SHARE MODE").first
ac.balance -= amount if ac.balance > amount
ac.save

end

If we don’t specify a string value or we give lock() a value of true, the database’s

default exclusive lock is obtained (normally this will be "for update"). We can

often eliminate the need for this kind of locking using transactions (discussed

starting in Transactions, on page 348).

Databases do more than simply find and reliably retrieve data; they also do

a bit of data reduction analysis. Rails provides access to these methods too.

Getting Column Statistics

Rails has the ability to perform statistics on the values in a column. For

example, given a table of products, we can calculate the following:

average = Product.average(:price) # average product price
max = Product.maximum(:price)
min = Product.minimum(:price)
total = Product.sum(:price)
number = Product.count

These all correspond to aggregate functions in the underlying database, but

they work in a database-independent manner.

As before, methods can be combined:

Order.where("amount > 20").minimum(:amount)

These functions aggregate values. By default, they return a single result,

producing, for example, the minimum order amount for orders meeting some

condition. However, if you include the group method, the functions instead

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 335

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

produce a series of results, one result for each set of records where the

grouping expression has the same value. For example, the following calculates

the maximum sale amount for each state:

result = Order.group(:state).maximum(:amount)
puts result #=> {"TX"=>12345, "NC"=>3456, ...}

This code returns an ordered hash. You index it using the grouping element

("TX", "NC", … in our example). You can also iterate over the entries in order

using each(). The value of each entry is the value of the aggregation function.

The order and limit methods come into their own when using groups.

For example, the following returns the three states with the highest orders,

sorted by the order amount:

result = Order.group(:state).
order("max(amount) desc").
limit(3)

This code is no longer database independent—in order to sort on the aggre-

gated column, we had to use the SQLite syntax for the aggregation function

(max, in this case).

Scopes

As these chains of method calls grow longer, making the chains themselves

available for reuse becomes a concern. Once again, Rails delivers. An Active

Record scope can be associated with a Proc and therefore may have arguments:

class Order < ApplicationRecord
scope :last_n_days, ->(days) { where('updated < ?' , days) }

end

Such a named scope would make finding the worth of last week’s orders a

snap.

orders = Order.last_n_days(7)

Simpler scopes may have no parameters at all:

class Order < ApplicationRecord
scope :checks, -> { where(pay_type: :check) }

end

Scopes can also be combined. Finding the last week’s worth of orders that

were paid by check is just as straightforward:

orders = Order.checks.last_n_days(7)

Chapter 20. Active Record • 336

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

In addition to making your application code easier to write and easier to read,

scopes can make your code more efficient. The previous statement, for

example, is implemented as a single SQL query.

ActiveRecord::Relation objects are equivalent to an anonymous scope:

in_house = Order.where('email LIKE "%@pragprog.com"')

Of course, relations can also be combined:

in_house.checks.last_n_days(7)

Scopes aren’t limited to where conditions; we can do pretty much anything

we can do in a method call: limit, order, join, and so on. Just be aware that Rails

doesn’t know how to handle multiple order or limit clauses, so be sure to use

these only once per call chain.

In nearly every case, the methods we have been describing are sufficient. But

Rails is not satisfied with only being able to handle nearly every case, so for

cases that require a human-crafted query, there is an API for that too.

Writing Our Own SQL

Each of the methods we have been looking at contributes to the construction

of a full SQL query string. The method find_by_sql() lets our application take

full control. It accepts a single parameter containing a SQL select statement

(or an array containing SQL and placeholder values, as for find()) and returns

an array of model objects (that is potentially empty) from the result set. The

attributes in these models will be set from the columns returned by the query.

We’d normally use the select * form to return all columns for a table, but this

isn’t required:

rails51/e1/ar/find_examples.rb

orders = LineItem.find_by_sql("select line_items.* from line_items, orders " +
" where order_id = orders.id " +
" and orders.name = 'Dave Thomas' ")

Only those attributes returned by a query will be available in the resulting

model objects. We can determine the attributes available in a model object

using the attributes(), attribute_names(), and attribute_present?() methods. The first

returns a hash of attribute name-value pairs, the second returns an array of

names, and the third returns true if a named attribute is available in this

model object:

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 337

http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/find_examples.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/e1/ar/find_examples.rb

orders = Order.find_by_sql("select name, pay_type from orders")
first = orders[0]
p first.attributes
p first.attribute_names
p first.attribute_present?("address")

This code produces the following:

{"name"=>"Dave Thomas", "pay_type"=>"check"}
["name", "pay_type"]
false

find_by_sql() can also be used to create model objects containing derived column

data. If we use the as xxx SQL syntax to give derived columns a name in the

result set, this name will be used as the name of the attribute:

rails51/e1/ar/find_examples.rb

items = LineItem.find_by_sql("select *, " +
" products.price as unit_price, " +
" quantity*products.price as total_price, " +
" products.title as title " +
" from line_items, products " +
" where line_items.product_id = products.id ")

li = items[0]
puts "#{li.title}: #{li.quantity}x#{li.unit_price} => #{li.total_price}"

As with conditions, we can also pass an array to find_by_sql(), where the first

element is a string containing placeholders. The rest of the array can be either

a hash or a list of values to be substituted.

Order.find_by_sql(["select * from orders where amount > ?",
params[:amount]])

In the old days of Rails, people frequently resorted to using find_by_sql(). Since

then, all the options added to the basic find() method mean you can avoid

resorting to this low-level method.

Reloading Data

In an application where the database is potentially being accessed by multiple

processes (or by multiple applications), there’s always the possibility that a

fetched model object has become stale—someone may have written a more

recent copy to the database.

To some extent, this issue is addressed by transactional support (which we

describe in Transactions, on page 348). However, there’ll still be times where

you need to refresh a model object manually. Active Record makes this one

Chapter 20. Active Record • 338

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/find_examples.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/find_examples.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

David says:

But Isn’t SQL Dirty?

Ever since developers first wrapped relational databases with an object-oriented layer,

they’ve debated the question of how deep to run the abstraction. Some object-relational

mappers seek to eliminate the use of SQL entirely, hoping for object-oriented purity

by forcing all queries through an OO layer.

Active Record does not. It was built on the notion that SQL is neither dirty nor bad,

just verbose in the trivial cases. The focus is on removing the need to deal with the

verbosity in those trivial cases (writing a ten-attribute insert by hand will leave any

programmer tired) but keeping the expressiveness around for the hard queries—the

type SQL was created to deal with elegantly.

Therefore, you shouldn’t feel guilty when you use find_by_sql() to handle either perfor-

mance bottlenecks or hard queries. Start out using the object-oriented interface for

productivity and pleasure and then dip beneath the surface for a close-to-the-metal

experience when you need to do so.

line of code—call its reload() method, and the object’s attributes will be refreshed

from the database:

stock = Market.find_by(ticker: "RUBY")
loop do

puts "Price = #{stock.price}"
sleep 60
stock.reload

end

In practice, reload() is rarely used outside the context of unit tests.

Updating Existing Rows

After such a long discussion of finder methods, you’ll be pleased to know that

there’s not much to say about updating records with Active Record.

If you have an Active Record object (perhaps representing a row from our

orders table), you can write it to the database by calling its save() method. If

this object had previously been read from the database, this save will update

the existing row; otherwise, the save will insert a new row.

If an existing row is updated, Active Record will use its primary key column

to match it with the in-memory object. The attributes contained in the

Active Record object determine the columns that will be updated—a column

will be updated in the database only if its value has been changed. In the

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 339

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

following example, all the values in the row for order 123 can be updated

in the database table:

order = Order.find(123)
order.name = "Fred"
order.save

However, in the following example, the Active Record object contains just the

attributes id, name, and paytype—only these columns can be updated when the

object is saved. (Note that you have to include the id column if you intend to

save a row fetched using find_by_sql().)

orders = Order.find_by_sql("select id, name, pay_type from orders where id=123")
first = orders[0]
first.name = "Wilma"
first.save

In addition to the save() method, Active Record lets us change the values of

attributes and save a model object in a single call to update():

order = Order.find(321)
order.update(name: "Barney", email: "barney@bedrock.com")

The update() method is most commonly used in controller actions where it

merges data from a form into an existing database row:

def save_after_edit
order = Order.find(params[:id])
if order.update(order_params)

redirect_to action: :index
else
render action: :edit

end
end

We can combine the functions of reading a row and updating it using the

class methods update() and update_all(). The update() method takes an id parameter

and a set of attributes. It fetches the corresponding row, updates the given

attributes, saves the result to the database, and returns the model object.

order = Order.update(12, name: "Barney", email: "barney@bedrock.com")

We can pass update() an array of IDs and an array of attribute value hashes,

and it will update all the corresponding rows in the database, returning an

array of model objects.

Chapter 20. Active Record • 340

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Finally, the update_all() class method allows us to specify the set and where
clauses of the SQL update statement. For example, the following increases the

prices of all products with Java in their title by 10 percent:

result = Product.update_all("price = 1.1*price", "title like '%Java%'")

The return value of update_all() depends on the database adapter; most (but

not Oracle) return the number of rows that were changed in the database.

save, save!, create, and create!

It turns out that there are two versions of the save and create methods. The

variants differ in the way they report errors.

• save returns true if the record was saved; it returns nil otherwise.

• save! returns true if the save succeeded; it raises an exception otherwise.

• create returns the Active Record object regardless of whether it was suc-

cessfully saved. You’ll need to check the object for validation errors if you

want to determine whether the data was written.

• create! returns the Active Record object on success; it raises an exception

otherwise.

Let’s look at this in a bit more detail.

Plain old save() returns true if the model object is valid and can be saved:

if order.save
all OK

else
validation failed

end

It’s up to us to check on each call to save() to see that it did what we expected.

The reason Active Record is so lenient is that it assumes save() is called in the

context of a controller’s action method and the view code will be presenting

any errors back to the end user. And for many applications, that’s the case.

However, if we need to save a model object in a context where we want to

make sure to handle all errors programmatically, we should use save!(). This

method raises a RecordInvalid exception if the object could not be saved:

begin
order.save!

rescue RecordInvalid => error
validation failed

end

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 341

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Deleting Rows

Active Record supports two styles of row deletion. First, it has two class-level

methods, delete() and delete_all(), that operate at the database level. The delete()
method takes a single ID or an array of IDs and deletes the corresponding

row(s) in the underlying table. delete_all() deletes rows matching a given condi-

tion (or all rows if no condition is specified). The return values from both calls

depend on the adapter but are typically the number of rows affected. An

exception is not thrown if the row doesn’t exist prior to the call.

Order.delete(123)
User.delete([2,3,4,5])
Product.delete_all(["price > ?", @expensive_price])

The various destroy methods are the second form of row deletion provided by

Active Record. These methods all work via Active Record model objects.

The destroy() instance method deletes from the database the row corresponding

to a particular model object. It then freezes the contents of that object, pre-

venting future changes to the attributes.

order = Order.find_by(name: "Dave")
order.destroy
... order is now frozen

There are two class-level destruction methods, destroy() (which takes an ID or

an array of IDs) and destroy_all() (which takes a condition). Both methods read

the corresponding rows in the database table into model objects and call the

instance-level destroy() method of those objects. Neither method returns any-

thing meaningful.

Order.destroy_all(["shipped_at < ?", 30.days.ago])

Why do we need both the delete and destroy class methods? The delete methods

bypass the various Active Record callback and validation functions, while the

destroy methods ensure that they are all invoked. In general, it is better to use

the destroy methods if you want to ensure that your database is consistent

according to the business rules defined in your model classes.

We covered validation in Chapter 7, Task B: Validation and Unit Testing, on

page 87. We cover callbacks next.

Participating in the Monitoring Process

Active Record controls the life cycle of model objects—it creates them, monitors

them as they are modified, saves and updates them, and watches sadly as

they are destroyed. Using callbacks, Active Record lets our code participate

Chapter 20. Active Record • 342

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

in this monitoring process. We can write code that gets invoked at any signifi-

cant event in the life of an object. With these callbacks we can perform complex

validation, map column values as they pass in and out of the database, and

even prevent certain operations from completing.

Active Record defines sixteen callbacks. Fourteen of these form before/after

pairs and bracket some operation on an Active Record object. For example,

the before_destroy callback will be invoked just before the destroy() method is

called, and after_destroy will be invoked after. The two exceptions are after_find
and after_initialize, which have no corresponding before_xxx callback. (These two

callbacks are different in other ways, too, as we’ll see later.)

In the following figure we can see how Rails wraps the sixteen paired callbacks

around the basic create, update, and destroy operations on model objects.

Perhaps surprisingly, the before and after validation calls are not strictly

nested.

before_validation
validation operations

after_validation

before_save
before_update

after_update
after_save

before_validation
validation operations
after_validation

before_save
before_create

after_create
after_save

before_destroy

after_destroy

insert operation update operation delete operation

model.save() model.destroy()
new record existing record

The before_validation and after_validation calls also accept the on: :create or on: :update
parameter, which will cause the callback to be called only on the selected

operation.

In addition to these sixteen calls, the after_find callback is invoked after any

find operation, and after_initialize is invoked after an Active Record model object

is created.

To have your code execute during a callback, you need to write a handler and

associate it with the appropriate callback.

There are two basic ways of implementing callbacks.

report erratum • discuss

Participating in the Monitoring Process • 343

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The preferred way to define a callback is to declare handlers. A handler can

be either a method or a block. You associate a handler with a particular event

using class methods named after the event. To associate a method, declare

it as private or protected, and specify its name as a symbol to the handler

declaration. To specify a block, simply add it after the declaration. This block

receives the model object as a parameter:

class Order < ApplicationRecord
before_validation :normalize_credit_card_number
after_create do |order|

logger.info "Order #{order.id} created"
end
protected
def normalize_credit_card_number
self.cc_number.gsub!(/[-\s]/, '')

end
end

You can specify multiple handlers for the same callback. They will generally

be invoked in the order they are specified unless a handler thows :abort, in
which case the callback chain is broken early.

Alternately, you can define the callback instance methods using callback

objects, inline methods (using a proc), or inline eval methods (using a string).

See the online documentation for more details.3

Grouping Related Callbacks Together

If you have a group of related callbacks, it may be convenient to group them

into a separate handler class. These handlers can be shared between multiple

models. A handler class is simply a class that defines callback methods

(before_save(), after_create(), and so on). Create the source files for these handler

classes in app/models.

In the model object that uses the handler, you create an instance of this

handler class and pass that instance to the various callback declarations. A

couple of examples will make this clearer.

If our application uses credit cards in multiple places, we might want to share

our normalize_credit_card_number() method across multiple models. To do that, we’d

extract the method into its own class and name it after the event we want it

to handle. This method will receive a single parameter, the model object that

generated the callback:

3. http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html#label-Types+of+callbacks

Chapter 20. Active Record • 344

report erratum • discuss

http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html#label-Types+of+callbacks
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

class CreditCardCallbacks

Normalize the credit card number
def before_validation(model)
model.cc_number.gsub!(/[-\s]/, '')

end
end

Now, in our model classes, we can arrange for this shared callback to be

invoked:

class Order < ApplicationRecord
before_validation CreditCardCallbacks.new
...

end

class Subscription < ApplicationRecord
before_validation CreditCardCallbacks.new
...

end

In this example, the handler class assumes that the credit card number is

held in a model attribute named cc_number; both Order and Subscription would

have an attribute with that name. But we can generalize the idea, making

the handler class less dependent on the implementation details of the classes

that use it.

For example, we could create a generalized encryption and decryption han-

dler.This could be used to encrypt named fields before they are stored in the

database and to decrypt them when the row is read back. You could include

it as a callback handler in any model that needed the facility.

The handler needs to encrypt a given set of attributes in a model just before

that model’s data is written to the database. Because our application needs

to deal with the plain-text versions of these attributes, it arranges to decrypt

them again after the save is complete. It also needs to decrypt the data when

a row is read from the database into a model object. These requirements mean

we have to handle the before_save, after_save, and after_find events. Because we

need to decrypt the database row both after saving and when we find a new

row, we can save code by aliasing the after_find() method to after_save()—the same

method will have two names:

rails51/e1/ar/encrypter.rb

class Encrypter
We're passed a list of attributes that should
be stored encrypted in the database
def initialize(attrs_to_manage)
@attrs_to_manage = attrs_to_manage

end

report erratum • discuss

Participating in the Monitoring Process • 345

http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/encrypter.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Before saving or updating, encrypt the fields using the NSA and
DHS approved Shift Cipher
def before_save(model)
@attrs_to_manage.each do |field|

model[field].tr!("a-z", "b-za")
end

end

After saving, decrypt them back
def after_save(model)
@attrs_to_manage.each do |field|

model[field].tr!("b-za", "a-z")
end

end

Do the same after finding an existing record
alias_method :after_find, :after_save

end

This example uses trivial encryption—you might want to beef it up before

using this class for real.

We can now arrange for the Encrypter class to be invoked from inside our orders

model:

require "encrypter"
class Order < ApplicationRecord
encrypter = Encrypter.new([:name, :email])
before_save encrypter
after_save encrypter
after_find encrypter

protected
def after_find
end

end

We create a new Encrypter object and hook it up to the events before_save,
after_save, and after_find. This way, just before an order is saved, the method

before_save() in the encrypter will be invoked, and so on.

So, why do we define an empty after_find() method? Remember that we said

that for performance reasons after_find and after_initialize are treated specially.

One of the consequences of this special treatment is that Active Record won’t

know to call an after_find handler unless it sees an actual after_find() method in

the model class. We have to define an empty placeholder to get after_find pro-

cessing to take place.

This is all very well, but every model class that wants to use our encryption

handler would need to include some eight lines of code, just as we did with

Chapter 20. Active Record • 346

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

our Order class. We can do better than that. We’ll define a helper method that

does all the work and make that helper available to all Active Record models.

To do that, we’ll add it to the ApplicationRecord class:

rails51/e1/ar/encrypter.rb

class ApplicationRecord < ActiveRecord::Base
self.abstract_class = true

def self.encrypt(*attr_names)
encrypter = Encrypter.new(attr_names)

before_save encrypter
after_save encrypter
after_find encrypter

define_method(:after_find) { }
end

end

Given this, we can now add encryption to any model class’s attributes using

a single call:

class Order < ApplicationRecord
encrypt(:name, :email)

end

A small driver program lets us experiment with this:

o = Order.new
o.name = "Dave Thomas"
o.address = "123 The Street"
o.email = "dave@example.com"
o.save
puts o.name

o = Order.find(o.id)
puts o.name

On the console, we see our customer’s name (in plain text) in the model object:

ar> ruby encrypter.rb
Dave Thomas
Dave Thomas

In the database, however, the name and email address are obscured by our

industrial-strength encryption:

depot> sqlite3 -line db/development.sqlite3 "select * from orders"
id = 1

user_id =
name = Dbwf Tipnbt

address = 123 The Street
email = ebwf@fybnqmf.dpn

report erratum • discuss

Participating in the Monitoring Process • 347

http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/encrypter.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Callbacks are a fine technique, but they can sometimes result in a model

class taking on responsibilities that aren’t really related to the nature of the

model. For example, in Participating in the Monitoring Process, on page 342, we

created a callback that generated a log message when an order was created.

That functionality isn’t really part of the basic Order class—we put it there

because that’s where the callback executed.

When used in moderation, such an approach doesn’t lead to significant

problems. If, however, you find yourself repeating code, consider using con-

cerns4 instead.

Transactions

A database transaction groups a series of changes in such a way that either

the database applies all of the changes or it applies none of the changes. The

classic example of the need for transactions (and one used in Active Record’s

own documentation) is transferring money between two bank accounts. The

basic logic is straightforward:

account1.deposit(100)
account2.withdraw(100)

However, we have to be careful. What happens if the deposit succeeds but

for some reason the withdrawal fails (perhaps the customer is overdrawn)?

We’ll have added $100 to the balance in account1 without a corresponding

deduction from account2. In effect, we’ll have created $100 out of thin air.

Transactions to the rescue. A transaction is something like the Three Muske-

teers with their motto “All for one and one for all.” Within the scope of a

transaction, either every SQL statement succeeds or they all have no effect.

Putting that another way, if any statement fails, the entire transaction has

no effect on the database.

In Active Record we use the transaction() method to execute a block in the context

of a particular database transaction. At the end of the block, the transaction

is committed, updating the database, unless an exception is raised within

the block, in which case the database rolls back all of the changes. Because

transactions exist in the context of a database connection, we have to invoke

them with an Active Record class as a receiver.

4. http://37signals.com/svn/posts/3372-put-chubby-models-on-a-diet-with-concerns

Chapter 20. Active Record • 348

report erratum • discuss

http://37signals.com/svn/posts/3372-put-chubby-models-on-a-diet-with-concerns
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Thus, we could write this:

Account.transaction do
account1.deposit(100)
account2.withdraw(100)

end

Let’s experiment with transactions. We’ll start by creating a new database

table. (Make sure your database supports transactions, or this code won’t

work for you.)

rails51/e1/ar/transactions.rb

create_table :accounts, force: true do |t|
t.string :number
t.decimal :balance, precision: 10, scale: 2, default: 0

end

Next, we’ll define a rudimentary bank account class. This class defines

instance methods to deposit money to and withdraw money from the account.

It also provides some basic validation—for this particular type of account,

the balance can never be negative.

rails51/e1/ar/transactions.rb

class Account < ActiveRecord::Base
validates :balance, numericality: {greater_than_or_equal_to: 0}
def withdraw(amount)
adjust_balance_and_save!(-amount)

end
def deposit(amount)
adjust_balance_and_save!(amount)

end
private
def adjust_balance_and_save!(amount)
self.balance += amount
save!

end
end

Let’s look at the helper method, adjust_balance_and_save!(). The first line simply

updates the balance field. The method then calls save! to save the model

data. (Remember that save!() raises an exception if the object cannot be

saved—we use the exception to signal to the transaction that something

has gone wrong.)

So, now let’s write the code to transfer money between two accounts. It’s

pretty straightforward:

report erratum • discuss

Transactions • 349

http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/transactions.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/e1/ar/transactions.rb

peter = Account.create(balance: 100, number: "12345")
paul = Account.create(balance: 200, number: "54321")

Account.transaction do
paul.deposit(10)
peter.withdraw(10)

end

We check the database, and, sure enough, the money got transferred:

depot> sqlite3 -line db/development.sqlite3 "select * from accounts"
id = 1

number = 12345
balance = 90

id = 2
number = 54321
balance = 210

Now let’s get radical. If we start again but this time try to transfer $350, we’ll

run Peter into the red, which isn’t allowed by the validation rule. Let’s try it:

rails51/e1/ar/transactions.rb

peter = Account.create(balance: 100, number: "12345")
paul = Account.create(balance: 200, number: "54321")

rails51/e1/ar/transactions.rb

Account.transaction do
paul.deposit(350)
peter.withdraw(350)

end

When we run this, we get an exception reported on the console:

.../validations.rb:736:in `save!': Validation failed: Balance is negative
from transactions.rb:46:in `adjust_balance_and_save!'

: : :
from transactions.rb:80

Looking in the database, we can see that the data remains unchanged:

depot> sqlite3 -line db/development.sqlite3 "select * from accounts"
id = 1

number = 12345
balance = 100

id = 2
number = 54321
balance = 200

However, there’s a trap waiting for you here. The transaction protected the

database from becoming inconsistent, but what about our model objects? To

Chapter 20. Active Record • 350

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/transactions.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

see what happened to them, we have to arrange to intercept the exception to

allow the program to continue running:

rails51/e1/ar/transactions.rb

peter = Account.create(balance: 100, number: "12345")
paul = Account.create(balance: 200, number: "54321")

rails51/e1/ar/transactions.rb

begin
Account.transaction do
paul.deposit(350)
peter.withdraw(350)

end
rescue

puts "Transfer aborted"
end

puts "Paul has #{paul.balance}"
puts "Peter has #{peter.balance}"

What we see is a little surprising:

Transfer aborted
Paul has 550.0
Peter has -250.0

Although the database was left unscathed, our model objects were updated

anyway. This is because Active Record wasn’t keeping track of the before and

after states of the various objects—in fact, it couldn’t, because it had no easy

way of knowing just which models were involved in the transactions.

Built-in Transactions

When we discussed parent and child tables in Specifying Relationships in

Models, on page 326, we said that Active Record takes care of saving all the

dependent child rows when you save a parent row. This takes multiple SQL

statement executions (one for the parent and one each for any changed or

new children).

Clearly, this change should be atomic, but until now we haven’t been using

transactions when saving these interrelated objects. Have we been negligent?

Fortunately, no. Active Record is smart enough to wrap all the updates and

inserts related to a particular save() (and also the deletes related to a destroy())
in a transaction; either they all succeed or no data is written permanently to

the database. You need explicit transactions only when you manage multiple

SQL statements yourself.

report erratum • discuss

Transactions • 351

http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/ar/transactions.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

While we have covered the basics, transactions are actually very subtle. They

exhibit the so-called ACID properties: they’re Atomic, they ensure Consistency,

they work in Isolation, and their effects are Durable (they are made perma-

nent when the transaction is committed). It’s worth finding a good database

book and reading up on transactions if you plan to take a database applica-

tion live.

What We Just Did

We learned the relevant data structures and naming conventions for tables,

classes, columns, attributes, IDs, and relationships. We saw how to create,

read, update, and delete this data. Finally, we now understand how transac-

tions and callbacks can be used to prevent inconsistent changes.

This, coupled with validation as described in Chapter 7, Task B: Validation

and Unit Testing, on page 87, covers all the essentials of Active Record that

every Rails programmer needs to know. If you have specific needs beyond

what is covered here, look to the Rails Guides5 for more information.

The next major subsystem to cover is Action Pack, which covers both the view

and controller portions of Rails.

5. http://guides.rubyonrails.org/

Chapter 20. Active Record • 352

report erratum • discuss

http://guides.rubyonrails.org/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 21

In this chapter, you'll see:

• Representational State Transfer (REST)

• Defining how requests are routed to controllers

• Selecting a data representation

• Testing routes

• The controller environment

• Rendering and redirecting

• Sessions, flash, and callbacks

Action Dispatch and Action Controller

Action Pack lies at the heart of Rails applications. It consists of three Ruby

modules: ActionDispatch, ActionController, and ActionView. Action Dispatch routes

requests to controllers. Action Controller converts requests into responses.

Action View is used by Action Controller to format those responses.

As a concrete example, in the Depot application, we routed the root of the

site (/) to the index() method of the StoreController. At the completion of that

method, the template in app/views/store/index.html.erb was rendered. Each of these

activities was orchestrated by modules in the Action Pack component.

Working together, these three submodules provide support for processing

incoming requests and generating outgoing responses. In this chapter, we’ll

look at both Action Dispatch and Action Controller. In the next chapter, we

will cover Action View.

When we looked at Active Record, we saw it could be used as a freestanding

library; we can use Active Record as part of a nonweb Ruby application. Action

Pack is different. Although it is possible to use it directly as a framework, you

probably won’t. Instead, you’ll take advantage of the tight integration offered

by Rails. Components such as Action Controller, Action View, and Active

Record handle the processing of requests, and the Rails environment knits

them together into a coherent (and easy-to-use) whole. For that reason, we’ll

describe Action Controller in the context of Rails. Let’s start by looking at

how Rails applications handle requests. We’ll then dive down into the details

of routing and URL handling. We’ll continue by looking at how you write code

in a controller. Finally, we will cover sessions, flash, and callbacks.

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Dispatching Requests to Controllers

At its most basic, a web application accepts an incoming request from a

browser, processes it, and sends a response.

The first question that springs to mind is, how does the application know

what to do with the incoming request? A shopping cart application will receive

requests to display a catalog, add items to a cart, create an order, and so on.

How does it route these requests to the appropriate code?

It turns out that Rails provides two ways to define how to route a request: a

comprehensive way that you will use when you need to and a convenient way

that you will generally use whenever you can.

The comprehensive way lets you define a direct mapping of URLs to actions

based on pattern matching, requirements, and conditions. The convenient

way lets you define routes based on resources, such as the models that you

define. And because the convenient way is built on the comprehensive way,

you can freely mix and match the two approaches.

In both cases, Rails encodes information in the request URL and uses a

subsystem called Action Dispatch to determine what should be done with that

request. The actual process is very flexible, but at the end of it Rails has

determined the name of the controller that handles this particular request,

along with a list of any other request parameters. In the process, either one

of these additional parameters or the HTTP method itself is used to identify

the action to be invoked in the target controller.

Rails routes support the mapping between URLs and actions based on the

contents of the URL and on the HTTP method used to invoke the request.

We’ve seen how to do this on a URL-by-URL basis using anonymous or named

routes. Rails also supports a higher-level way of creating groups of related

routes. To understand the motivation for this, we need to take a little diversion

into the world of Representational State Transfer.

REST: Representational State Transfer

The ideas behind REST were formalized in Chapter 5 of Roy Fielding’s 2000

PhD dissertation.1 In a REST approach, servers communicate with clients

using stateless connections. All the information about the state of the inter-

action between the two is encoded into the requests and responses between

them. Long-term state is kept on the server as a set of identifiable resources.

1. http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Chapter 21. Action Dispatch and Action Controller • 354

report erratum • discuss

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Clients access these resources using a well-defined (and severely constrained)

set of resource identifiers (URLs in our context). REST distinguishes the

content of resources from the presentation of that content. REST is designed

to support highly scalable computing while constraining application architec-

tures to be decoupled by nature.

There’s a lot of abstract stuff in this description. What does REST mean in

practice?

First, the formalities of a RESTful approach mean that network designers

know when and where they can cache responses to requests. This enables

load to be pushed out through the network, increasing performance and

resilience while reducing latency.

Second, the constraints imposed by REST can lead to easier-to-write (and

maintain) applications. RESTful applications don’t worry about implementing

remotely accessible services. Instead, they provide a regular (and straightfor-

ward) interface to a set of resources. Your application implements a way of listing,

creating, editing, and deleting each resource, and your clients do the rest.

Let’s make this more concrete. In REST, we use a basic set of verbs to operate

on a rich set of nouns. If we’re using HTTP, the verbs correspond to HTTP

methods (GET, PUT, PATCH, POST, and DELETE, typically). The nouns are

the resources in our application. We name those resources using URLs.

The Depot application that we produced contained a set of products. There

are implicitly two resources here. First, there are the individual products.

Each constitutes a resource. There’s also a second resource: the collection of

products.

To fetch a list of all the products, we could issue an HTTP GET request against

this collection, say on the path /products. To fetch the contents of an individual

resource, we have to identify it. The Rails way would be to give its primary

key value (that is, its ID). Again we’d issue a GET request, this time against

the URL /products/1.

To create a new product in our collection, we use an HTTP POST request

directed at the /products path, with the post data containing the product to

add. Yes, that’s the same path we used to get a list of products. If you issue

a GET to it, it responds with a list, and if you do a POST to it, it adds a new

product to the collection.

Take this a step further. We’ve already seen you can retrieve the content of

a product—you just issue a GET request against the path /products/1. To update

report erratum • discuss

Dispatching Requests to Controllers • 355

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

that product, you’d issue an HTTP PUT request against the same URL. And,

to delete it, you could issue an HTTP DELETE request, using the same URL.

Take this further. Maybe our system also tracks users. Again, we have a set

of resources to deal with. REST tells us to use the same set of verbs (GET,

POST, PATCH, PUT, and DELETE) against a similar-looking set of URLs (/users,
/users/1, and so on).

Now we see some of the power of the constraints imposed by REST. We’re

already familiar with the way Rails constrains us to structure our applications

a certain way. Now the REST philosophy tells us to structure the interface to

our applications too. Suddenly our world gets a lot simpler.

Rails has direct support for this type of interface; it adds a kind of macro

route facility, called resources. Let’s take a look at how the config/routes.rb file
might have looked back in Creating a Rails Application, on page 71:

Depot::Application.routes.draw do
resources :products➤

end

The resources line caused seven new routes to be added to our application.

Along the way, it assumed that the application will have a controller named

ProductsController, containing seven actions with given names.

You can take a look at the routes that were generated for us. We do this by

making use of the handy rails routes command.

Prefix Verb URI Pattern
Controller#Action

products GET /products(.:format)
{:action=>"index", :controller=>"products"}

POST /products(.:format)
{:action=>"create", :controller=>"products"}

new_product GET /products/new(.:format)
{:action=>"new", :controller=>"products"}

edit_product GET /products/:id/edit(.:format)
{:action=>"edit", :controller=>"products"}

product GET /products/:id(.:format)
{:action=>"show", :controller=>"products"}

PATCH /products/:id(.:format)
{:action=>"update", :controller=>"products"}

DELETE /products/:id(.:format)
{:action=>"destroy", :controller=>"products"}

All the routes defined are spelled out in a columnar format. The lines will

generally wrap on your screen; in fact, they had to be broken into two lines

Chapter 21. Action Dispatch and Action Controller • 356

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

per route to fit on this page. The columns are (optional) route name, HTTP

method, route path, and (on a separate line on this page) route requirements.

Fields in parentheses are optional parts of the path. Field names preceded

by a colon are for variables into which the matching part of the path is placed

for later processing by the controller.

Now let’s look at the seven controller actions that these routes reference.

Although we created our routes to manage the products in our application,

let’s broaden this to talk about resources—after all, the same seven methods

will be required for all resource-based routes:

index
Returns a list of the resources.

create
Creates a new resource from the data in the POST request, adding it to

the collection.

new
Constructs a new resource and passes it to the client. This resource will

not have been saved on the server. You can think of the new action as

creating an empty form for the client to fill in.

show
Returns the contents of the resource identified by params[:id].

update
Updates the contents of the resource identified by params[:id] with the data

associated with the request.

edit
Returns the contents of the resource identified by params[:id] in a form

suitable for editing.

destroy
Destroys the resource identified by params[:id].

You can see that these seven actions contain the four basic CRUD operations

(create, read, update, and delete). They also contain an action to list resources

and two auxiliary actions that return new and existing resources in a form

suitable for editing on the client.

If for some reason you don’t need or want all seven actions, you can limit the

actions produced using :only or :except options on your resources:

resources :comments, except: [:update, :destroy]

report erratum • discuss

Dispatching Requests to Controllers • 357

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Several of the routes are named routes enabling you to use helper functions

such as products_url and edit_product_url(id:1).

Note that each route is defined with an optional format specifier. We will

cover formats in more detail in Selecting a Data Representation, on page 362.

Let’s take a look at the controller code:

rails51/depot_a/app/controllers/products_controller.rb

class ProductsController < ApplicationController
before_action :set_product, only: [:show, :edit, :update, :destroy]

GET /products
GET /products.json
def index
@products = Product.all

end

GET /products/1
GET /products/1.json
def show
end

GET /products/new
def new
@product = Product.new

end

GET /products/1/edit
def edit
end

POST /products
POST /products.json
def create
@product = Product.new(product_params)

respond_to do |format|
if @product.save

format.html { redirect_to @product,
notice: 'Product was successfully created.' }

format.json { render :show, status: :created,
location: @product }

else
format.html { render :new }
format.json { render json: @product.errors,
status: :unprocessable_entity }

end
end

end

PATCH/PUT /products/1
PATCH/PUT /products/1.json
def update

Chapter 21. Action Dispatch and Action Controller • 358

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_a/app/controllers/products_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

respond_to do |format|
if @product.update(product_params)

format.html { redirect_to @product,
notice: 'Product was successfully updated.' }

format.json { render :show, status: :ok, location: @product }
else

format.html { render :edit }
format.json { render json: @product.errors,

status: :unprocessable_entity }
end

end
end

DELETE /products/1
DELETE /products/1.json
def destroy
@product.destroy
respond_to do |format|

format.html { redirect_to products_url,
notice: 'Product was successfully destroyed.' }

format.json { head :no_content }
end

end

private
Use callbacks to share common setup or constraints between actions.
def set_product
@product = Product.find(params[:id])

end

Never trust parameters from the scary internet, only allow the white
list through.
def product_params
params.require(:product).permit(:title, :description, :image_url, :price)

end
end

Notice how we have one action for each of the RESTful actions. The comment

before each shows the format of the URL that invokes it.

Notice also that many of the actions contain a respond_to() block. As we saw in

Chapter 11, Task F: Add a Dash of Ajax, on page 151, Rails uses this to

determine the type of content to send in a response. The scaffold generator

automatically creates code that will respond appropriately to requests for

HTML or JSON content. We’ll play with that in a little while.

The views created by the generator are fairly straightforward. The only tricky

thing is the need to use the correct HTTP method to send requests to the

server. For example, the view for the index action looks like this:

report erratum • discuss

Dispatching Requests to Controllers • 359

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

rails51/depot_a/app/views/products/index.html.erb

<% if notice %>
<aside id="notice"><%= notice %></aside>

<% end %>

<h1>Products</h1>

<table>
<tfoot>

<tr>
<td colspan="3">
<%= link_to 'New product', new_product_path %>

</td>
</tr>

</tfoot>
<tbody>

<% @products.each do |product| %>
<tr class="<%= cycle('list_line_odd', 'list_line_even') %>">

<td class="image">
<%= image_tag(product.image_url, class: 'list_image') %>

</td>

<td class="description">
<h1><%= product.title %></h1>
<p>
<%= truncate(strip_tags(product.description),

length: 80) %>
</p>

</td>

<td class="actions">

<%= link_to 'Show', product %>
<%= link_to 'Edit', edit_product_path(product) %>

<%= link_to 'Destroy',
product,

method: :delete,
data: { confirm: 'Are you sure?' } %>

</td>
</tr>

<% end %>
</tbody>

</table>

The links to the actions that edit a product and add a new product should

both use regular GET methods, so a standard link_to works fine. However, the

request to destroy a product must issue an HTTP DELETE, so the call includes

the method: :delete option to link_to.

Chapter 21. Action Dispatch and Action Controller • 360

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_a/app/views/products/index.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Adding Additional Actions

Rails resources provide you with an initial set of actions, but you don’t need

to stop there. In Iteration G2: Atom Feeds, on page 189, we added an interface

to allow people to fetch a list of people who bought any given product. To do

that with Rails, we use an extension to the resources call:

Depot::Application.routes.draw do
resources :products do
get :who_bought, on: :member

end
end

That syntax is straightforward. It says “We want to add a new action named

who_bought, invoked via an HTTP GET. It applies to each member of the collec-

tion of products.”

Instead of specifying :member, if we instead specified :collection, then the route

would apply to the collection as a whole. This is often used for scoping; for

example, you may have collections of products on clearance or products that

have been discontinued.

Nested Resources

Often our resources themselves contain additional collections of resources.

For example, we may want to allow folks to review our products. Each review

would be a resource, and collections of review would be associated with each

product resource. Rails provides a convenient and intuitive way of declaring

the routes for this type of situation:

resources :products do
resources :reviews

end

This defines the top-level set of product routes and additionally creates a set

of subroutes for reviews. Because the review resources appear inside the

products block, a review resource must be qualified by a product resource.

This means that the path to a review must always be prefixed by the path to

a particular product. To fetch the review with ID 4 for the product with an ID

of 99, you’d use a path of /products/99/reviews/4.

The named route for /products/:product_id/reviews/:id is product_review, not simply

review. This naming simply reflects the nesting of these resources.

As always, you can see the full set of routes generated by our configuration

by using the rails routes command.

report erratum • discuss

Dispatching Requests to Controllers • 361

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Routing Concerns

So far, we have been dealing with a fairly small set of resources. On a larger

system there may be types of objects for which a review may be appropriate

or to which a who_bought action might reasonably be applied. Instead of

repeating these instructions for each resource, consider refactoring your

routes using concerns to capture the common behavior.

concern :reviewable do
resources :reviews

end

resources :products, concern: :reviewable
resources :users, concern: :reviewable

The preceding definition of the products resource is equivalent to the one in the

previous section.

Shallow Route Nesting

At times, nested resources can produce cumbersome URLs. A solution to this

is to use shallow route nesting:

resources :products, shallow: true do
resources :reviews

end

This will enable the recognition of the following routes:

/products/1 => product_path(1)
/products/1/reviews => product_reviews_index_path(1)
/reviews/2 => reviews_path(2)

Try the rails routes command to see the full mapping.

Selecting a Data Representation

One of the goals of a REST architecture is to decouple data from its representa-

tion. If a human uses the URL path /products to fetch products, they should see

nicely formatted HTML. If an application asks for the same URL, it could elect

to receive the results in a code-friendly format (YAML, JSON, or XML, perhaps).

We’ve already seen how Rails can use the HTTP Accept header in a respond_to
block in the controller. However, it isn’t always easy (and sometimes it’s plain

impossible) to set the Accept header. To deal with this, Rails allows you to

pass the format of response you’d like as part of the URL. As you have seen,

Rails accomplishes this by including a field called :format in your route defini-

tions. To do this, set a :format parameter in your routes to the file extension

of the MIME type you’d like returned:

Chapter 21. Action Dispatch and Action Controller • 362

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

GET /products(.:format)
{:action=>"index", :controller=>"products"}

Because a full stop (period) is a separator character in route definitions, :format
is treated as just another field. Because we give it a nil default value, it’s an

optional field.

Having done this, we can use a respond_to() block in our controllers to select

our response type depending on the requested format:

def show
respond_to do |format|

format.html
format.json { render json: @product.to_json }

end
end

Given this, a request to /store/show/1 or /store/show/1.html will return HTML content,

while /store/show/1.xml will return XML, and /store/show/1.json will return JSON.

You can also pass the format in as an HTTP request parameter:

GET HTTP://pragprog.com/store/show/123?format=xml

Although the idea of having a single controller that responds with different

content types seems appealing, the reality is tricky. In particular, it turns out

that error handling can be tough. Although it’s acceptable on error to redirect

a user to a form, showing them a nice flash message, you have to adopt a

different strategy when you serve XML. Consider your application architecture

carefully before deciding to bundle all your processing into single controllers.

Rails makes it straightforward to develop an application that is based on

resource-based routing. Many claim it greatly simplifies the coding of their

applications. However, it isn’t always appropriate. Don’t feel compelled to use

it if you can’t find a way of making it work. And you can always mix and

match. Some controllers can be resource based, and others can be based on

actions. Some controllers can even be resource based with a few extra actions.

Processing of Requests

In the previous section, we worked out how Action Dispatch routes an

incoming request to the appropriate code in your application. Now let’s see

what happens inside that code.

Action Methods

When a controller object processes a request, it looks for a public instance

method with the same name as the incoming action. If it finds one, that method

report erratum • discuss

Processing of Requests • 363

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

is invoked. If it doesn’t find one and the controller implements method_missing(),
that method is called, passing in the action name as the first parameter and

an empty argument list as the second. If no method can be called, the con-

troller looks for a template named after the current controller and action. If

found, this template is rendered directly. If none of these things happens, an

AbstractController::ActionNotFound error is generated.

Controller Environment

The controller sets up the environment for actions (and, by extension, for the

views that they invoke). Many of these methods provide direct access to

information contained in the URL or request:

action_name
The name of the action currently being processed.

cookies
The cookies associated with the request. Setting values into this object

stores cookies on the browser when the response is sent. Rails support

for sessions is based on cookies. We discuss sessions in Rails Sessions,

on page 375.

headers
A hash of HTTP headers that will be used in the response. By default,

Cache-Control is set to no-cache. You might want to set Content-Type headers for

special-purpose applications. Note that you shouldn’t set cookie values

in the header directly—use the cookie API to do this.

params
A hash-like object containing request parameters (along with pseudopa-

rameters generated during routing). It’s hash-like because you can index

entries using either a symbol or a string—params[:id] and params['id'] return

the same value. Idiomatic Rails applications use the symbol form.

request
The incoming request object. It includes these attributes:

• request_method returns the request method, one of :delete, :get, :head,
:post, or :put.

• method returns the same value as request_method except for :head, which

it returns as :get because these two are functionally equivalent from

an application point of view.

• delete?, get?, head?, post?, and put? return true or false based on the request

method.

Chapter 21. Action Dispatch and Action Controller • 364

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

• xml_http_request? and xhr? return true if this request was issued by one

of the Ajax helpers. Note that this parameter is independent of the

method parameter.

• url(), which returns the full URL used for the request.

• protocol(), host(), port(), path(), and query_string(), which return components

of the URL used for the request, based on the following pattern:

protocol://host:port/path?query_string.

• domain(), which returns the last two components of the domain name

of the request.

• host_with_port(), which is a host:port string for the request.

• port_string(), which is a :port string for the request if the port is not the

default port (80 for HTTP, 443 for HTTPS).

• ssl?(), which is true if this is an SSL request; in other words, the request

was made with the HTTPS protocol.

• remote_ip(), which returns the remote IP address as a string. The string

may have more than one address in it if the client is behind a proxy.

• env(), the environment of the request. You can use this to access values

set by the browser, such as this:

request.env['HTTP_ACCEPT_LANGUAGE']

• accepts(), which is an array with Mime::Type objects that represent the

MIME types in the Accept header.

• format(), which is computed based on the value of the Accept header,

with Mime[:HTML] as a fallback.

• content_type(), which is the MIME type for the request. This is useful for

put and post requests.

• headers(), which is the complete set of HTTP headers.

• body(), which is the request body as an I/O stream.

• content_length(), which is the number of bytes purported to be in the body.

Rails leverages a gem named Rack to provide much of this functionality.

See the documentation of Rack::Request for full details.

response
The response object, filled in during the handling of the request. Normally,

this object is managed for you by Rails. As we’ll see when we look at

report erratum • discuss

Processing of Requests • 365

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

callbacks in Callbacks, on page 381, we sometimes access the internals

for specialized processing.

session
A hash-like object representing the current session data. We describe this

in Rails Sessions, on page 375.

In addition, a logger is available throughout Action Pack.

Responding to the User

Part of the controller’s job is to respond to the user. There are basically four

ways of doing this:

• The most common way is to render a template. In terms of the MVC

paradigm, the template is the view, taking information provided by the

controller and using it to generate a response to the browser.

• The controller can return a string directly to the browser without invoking

a view. This is fairly rare but can be used to send error notifications.

• The controller can return nothing to the browser. This is sometimes used

when responding to an Ajax request. In all cases, however, the controller

returns a set of HTTP headers, because some kind of response is expected.

• The controller can send other data to the client (something other than

HTML). This is typically a download of some kind (perhaps a PDF docu-

ment or a file’s contents).

A controller always responds to the user exactly one time per request. This

means you should have just one call to a render(), redirect_to(), or send_xxx()
method in the processing of any request. (A DoubleRenderError exception is thrown

on the second render.)

Because the controller must respond exactly once, it checks to see whether a

response has been generated just before it finishes handling a request. If not,

the controller looks for a template named after the controller and action and

automatically renders it. This is the most common way that rendering takes

place. You may have noticed that in most of the actions in our shopping cart

tutorial we never explicitly rendered anything. Instead, our action methods set

up the context for the view and return. The controller notices that no rendering

has taken place and automatically invokes the appropriate template.

You can have multiple templates with the same name but with different

extensions (for example, .html.erb, .xml.builder, and .coffee). If you don’t specify an

extension in a render request, Rails assumes html.erb.

Chapter 21. Action Dispatch and Action Controller • 366

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Rendering Templates

A template is a file that defines the content of a response for our application.

Rails supports three template formats out of the box: erb, which is embedded

Ruby code (typically with HTML); builder, a more programmatic way of con-

structing XML content; and RJS, which generates JavaScript. We’ll talk about

the contents of these files starting in Using Templates, on page 385.

By convention, the template for action action of controller controller will be

in the file app/views/controller/action.type.xxx (where type is the file type, such as

html, atom, or js; and xxx is one of erb, builder, coffee or scss). The app/views part

of the name is the default. You can override this for an entire application by

setting this:

ActionController.prepend_view_path dir_path

The render() method is the heart of all rendering in Rails. It takes a hash of

options that tell it what to render and how to render it.

It is tempting to write code in our controllers that looks like this:

DO NOT DO THIS
def update
@user = User.find(params[:id])
if @user.update(user_params)

render action: show
end
render template: "fix_user_errors"

end

It seems somehow natural that the act of calling render (and redirect_to) should

somehow terminate the processing of an action. This is not the case. The

previous code will generate an error (because render is called twice) in the case

where update succeeds.

Let’s look at the render options used in the controller here (we’ll look separately

at rendering in the view starting in Partial-Page Templates, on page 406):

render()
With no overriding parameter, the render() method renders the default

template for the current controller and action. The following code will

render the template app/views/blog/index.html.erb:

class BlogController < ApplicationController
def index
render

end
end

report erratum • discuss

Processing of Requests • 367

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

So will the following (as the default behavior of a controller is to call render()
if the action doesn’t):

class BlogController < ApplicationController
def index
end

end

And so will this (because the controller will call a template directly if no

action method is defined):

class BlogController < ApplicationController
end

render(text: string)
Sends the given string to the client. No template interpretation or HTML

escaping is performed.

class HappyController < ApplicationController
def index
render(text: "Hello there!")

end
end

render(inline: string, [type: "erb"|"builder"|"coffee"|"scss"], [locals: hash])
Interprets string as the source to a template of the given type, rendering

the results back to the client. You can use the :locals hash to set the values

of local variables in the template.

The following code adds method_missing() to a controller if the application is

running in development mode. If the controller is called with an invalid

action, this renders an inline template to display the action’s name and

a formatted version of the request parameters:

class SomeController < ApplicationController

if RAILS_ENV == "development"
def method_missing(name, *args)
render(inline: %{

<h2>Unknown action: #{name}</h2>
Here are the request parameters:

<%= debug(params) %> })

end
end

end

render(action: action_name)
Renders the template for a given action in this controller. Sometimes folks

use the :action form of render() when they should use redirects. See the

discussion starting in Redirects, on page 372, for why this is a bad idea.

Chapter 21. Action Dispatch and Action Controller • 368

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

def display_cart
if @cart.empty?

render(action: :index)
else

...
end

end

Note that calling render(:action...) does not call the action method; it simply

displays the template. If the template needs instance variables, these

must be set up by the method that calls the render() method.

Let’s repeat this, because this is a mistake that beginners often make:

calling render(:action...) does not invoke the action method. It simply renders

that action’s default template.

render(template: name, [locals: hash])
Renders a template and arranges for the resulting text to be sent back to

the client. The :template value must contain both the controller and action

parts of the new name, separated by a forward slash. The following code

will render the template app/views/blog/short_list:

class BlogController < ApplicationController
def index
render(template: "blog/short_list")

end
end

render(file: path)
Renders a view that may be entirely outside of your application (perhaps

one shared with another Rails application). By default, the file is rendered

without using the current layout. This can be overridden with layout: true.

render(partial: name, …)
Renders a partial template. We talk about partial templates in depth in

Partial-Page Templates, on page 406.

render(nothing: true)
Returns nothing—sends an empty body to the browser.

render(xml: stuff)
Renders stuff as text, forcing the content type to be application/xml.

render(json: stuff, [callback: hash])
Renders stuff as JSON, forcing the content type to be application/json. Spec-

ifying :callback will cause the result to be wrapped in a call to the named

callback function.

report erratum • discuss

Processing of Requests • 369

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

render(:update) do |page| ... end
Renders the block as an RJS template, passing in the page object.

render(:update) do |page|
page[:cart].replace_html partial: 'cart', object: @cart
page[:cart].visual_effect :blind_down if @cart.total_items == 1

end

All forms of render() take optional :status, :layout, and :content_type parameters.

The :status parameter provides the value used in the status header in the HTTP

response. It defaults to "200 OK". Do not use render() with a 3xx status to do

redirects; Rails has a redirect() method for this purpose.

The :layout parameter determines whether the result of the rendering will be

wrapped by a layout. (We first came across layouts in Iteration C2: Adding a

Page Layout, on page 107. We’ll look at them in depth starting in Reducing

Maintenance with Layouts and Partials, on page 402.) If the parameter is false,
no layout will be applied. If set to nil or true, a layout will be applied only if

there is one associated with the current action. If the :layout parameter has a

string as a value, it will be taken as the name of the layout to use when ren-

dering. A layout is never applied when the :nothing option is in effect.

The :content_type parameter lets you specify a value that will be passed to the

browser in the Content-Type HTTP header.

Sometimes it is useful to be able to capture what would otherwise be sent to

the browser in a string. The render_to_string() method takes the same parameters

as render() but returns the result of rendering as a string—the rendering is not

stored in the response object and so will not be sent to the user unless you

take some additional steps.

Calling render_to_string does not count as a real render. You can invoke the real

render method later without getting a DoubleRender error.

Sending Files and Other Data

We’ve looked at rendering templates and sending strings in the controller.

The third type of response is to send data (typically, but not necessarily, file

contents) to the client.

send_data(data, options…)

Sends a data stream to the client. Typically the browser will use a combination

of the content type and the disposition, both set in the options, to determine

what to do with this data.

Chapter 21. Action Dispatch and Action Controller • 370

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

def sales_graph
png_data = Sales.plot_for(Date.today.month)
send_data(png_data, type: "image/png", disposition: "inline")
end

The options are:

:disposition (string)

Suggests to the browser that the file should be displayed inline (option

inline) or downloaded and saved (option attachment, the default).

:filename string

A suggestion to the browser of the default filename to use when saving

this data.

:status (string)

The status code (defaults to "200 OK").

:type (string)

The content type, defaulting to application/octet-stream.

:url_based_filename boolean

If true and :filename is not set, this option prevents Rails from providing the

basename of the file in the Content-Disposition header. Specifying the

basename of the file is necessary in order to make some browsers handle

i18n filenames correctly.

A related method is send_file, which sends the contents of a file to the client.

send_file(path, options…)

Sends the given file to the client. The method sets the Content-Length, Content-

Type, Content-Disposition, and Content-Transfer-Encoding headers.

:buffer_size (number)

The amount sent to the browser in each write if streaming is enabled

(:stream is true).

:disposition (string)

Suggests to the browser that the file should be displayed inline (option

inline) or downloaded and saved (option attachment, the default).

:filename (string)

A suggestion to the browser of the default filename to use when saving

the file. If not set, defaults to the filename part of path.

:status string

The status code (defaults to "200 OK").

report erratum • discuss

Processing of Requests • 371

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

:stream (true or false)

If false, the entire file is read into server memory and sent to the client.

Otherwise, the file is read and written to the client in :buffer_size chunks.

:type (string)

The content type, defaulting to application/octet-stream.

You can set additional headers for either send_ method by using the headers
attribute in the controller:

def send_secret_file
send_file("/files/secret_list")
headers["Content-Description"] = "Top secret"

end

We show how to upload files starting in Uploading Files to Rails Applications,

on page 391.

Redirects

An HTTP redirect is sent from a server to a client in response to a request. In

effect, it says, “I’m done processing this request, and you should go here to

see the results.” The redirect response includes a URL that the client should

try next along with some status information saying whether this redirection

is permanent (status code 301) or temporary (307). Redirects are sometimes

used when web pages are reorganized; clients accessing pages in the old

locations will get referred to the page’s new home. More commonly, Rails

applications use redirects to pass the processing of a request off to some

other action.

Redirects are handled behind the scenes by web browsers. Normally, the only

way you’ll know that you’ve been redirected is a slight delay and the fact that

the URL of the page you’re viewing will have changed from the one you

requested. This last point is important—as far as the browser is concerned,

a redirect from a server acts pretty much the same as having an end user

enter the new destination URL manually.

Redirects turn out to be important when writing well-behaved web applica-

tions. Let’s look at a basic blogging application that supports comment posting.

After a user has posted a comment, our application should redisplay the

article, presumably with the new comment at the end.

It’s tempting to code this using logic such as the following:

Chapter 21. Action Dispatch and Action Controller • 372

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

class BlogController
def display
@article = Article.find(params[:id])

end

def add_comment
@article = Article.find(params[:id])
comment = Comment.new(params[:comment])
@article.comments << comment
if @article.save

flash[:note] = "Thank you for your valuable comment"
else

flash[:note] = "We threw your worthless comment away"
end
DON'T DO THIS
render(action: 'display')

end
end

The intent here was clearly to display the article after a comment has been

posted. To do this, the developer ended the add_comment() method with a call to

render(action:'display'). This renders the display view, showing the updated article to

the end user. But think of this from the browser’s point of view. It sends a URL

ending in blog/add_comment and gets back an index listing. As far as the browser

is concerned, the current URL is still the one that ends in blog/add_comment. This

means that if the user hits Refresh or Reload (perhaps to see whether anyone

else has posted a comment), the add_comment URL will be sent again to the

application. The user intended to refresh the display, but the application sees

a request to add another comment. In a blog application, this kind of uninten-

tional double entry is inconvenient. In an online store, it can get expensive.

In these circumstances, the correct way to show the added comment in the

index listing is to redirect the browser to the display action. We do this using

the Rails redirect_to() method. If the user subsequently hits Refresh, it will

simply reinvoke the display action and not add another comment.

def add_comment
@article = Article.find(params[:id])
comment = Comment.new(params[:comment])
@article.comments << comment
if @article.save

flash[:note] = "Thank you for your valuable comment"
else
flash[:note] = "We threw your worthless comment away"

end
redirect_to(action: 'display')➤

end

report erratum • discuss

Processing of Requests • 373

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Rails has a lightweight yet powerful redirection mechanism. It can redirect

to an action in a given controller (passing parameters), to a URL (on or off the

current server), or to the previous page. Let’s look at these three forms in turn:

redirect_to(action: ..., options…) Sends a temporary redirection to the browser based

on the values in the options hash. The target URL is generated using url_for(),
so this form of redirect_to() has all the smarts of Rails routing code behind it.

redirect_to(path) Redirects to the given path. If the path does not start with a

protocol (such as http://), the protocol and port of the current request will

be prepended. This method does not perform any rewriting on the URL,

so it should not be used to create paths that are intended to link to actions

in the application (unless you generate the path using url_for or a named

route URL generator).

def save
order = Order.new(params[:order])
if order.save

redirect_to action: "display"
else

session[:error_count] ||= 0
session[:error_count] += 1
if session[:error_count] < 4

self.notice = "Please try again"
else
Give up -- user is clearly struggling
redirect_to("/help/order_entry.html")

end
end

end

redirect_to(:back) Redirects to the URL given by the HTTP_REFERER header in the

current request.

def save_details
unless params[:are_you_sure] == 'Y'

redirect_to(:back)
else

...
end

end

By default all redirections are flagged as temporary (they will affect only the

current request). When redirecting to a URL, it’s possible you might want to

make the redirection permanent. In that case, set the status in the response

header accordingly:

headers["Status"] = "301 Moved Permanently"
redirect_to("http://my.new.home")

Chapter 21. Action Dispatch and Action Controller • 374

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Because redirect methods send responses to the browser, the same rules

apply as for the rendering methods—you can issue only one per request.

So far, we have been looking at requests and responses in isolation. Rails

also provides a number of mechanisms that span requests.

Objects and Operations That Span Requests

While the bulk of the state that persists across requests belongs in the

database and is accessed via Active Record, some other bits of state have

different life spans and need to be managed differently. In the Depot applica-

tion, while the Cart itself was stored in the database, knowledge of which cart

is the current cart was managed by sessions. Flash notices were used to

communicate messages such as “Can’t delete the last user” to the next request

after a redirect. And callbacks were used to extract locale data from the URLs

themselves.

In this section, we will explore each of these mechanisms in turn.

Rails Sessions

A Rails session is a hash-like structure that persists across requests. Unlike

raw cookies, sessions can hold any objects (as long as those objects can be

marshaled), which makes them ideal for holding state information in web

applications. For example, in our store application, we used a session to hold

the shopping cart object between requests. The Cart object could be used in

our application just like any other object. But Rails arranged things such

that the cart was saved at the end of handling each request and, more

important, that the correct cart for an incoming request was restored when

Rails started to handle that request. Using sessions, we can pretend that our

application stays around between requests.

And that leads to an interesting question: exactly where does this data stay

around between requests? One choice is for the server to send it down to the

client as a cookie. This is the default for Rails. It places limitations on the

size and increases the bandwidth but means that there is less for the server

to manage and clean up. Note that the contents are (by default) encrypted,

which means that users can neither see nor tamper with the contents.

The other option is to store the data on the server. It requires more work to

set up and is rarely necessary. First, Rails has to keep track of sessions. It

does this by creating (by default) a 32-hex character key (which means there

are 1632 possible combinations). This key is called the session ID, and it’s

effectively random. Rails arranges to store this session ID as a cookie (with

report erratum • discuss

Objects and Operations That Span Requests • 375

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

the key _session_id) on the user’s browser. Because subsequent requests come

into the application from this browser, Rails can recover the session ID.

Second, Rails keeps a persistent store of session data on the server, indexed

by the session ID. When a request comes in, Rails looks up the data store

using the session ID. The data that it finds there is a serialized Ruby object.

It deserializes this and stores the result in the controller’s session attribute,

where the data is available to our application code. The application can add

to and modify this data to its heart’s content. When it finishes processing

each request, Rails writes the session data back into the data store. There it

sits until the next request from this browser comes along.

What should you store in a session? You can store anything you want, subject

to a few restrictions and caveats:

• There are some restrictions on what kinds of object you can store in a

session. The details depend on the storage mechanism you choose (which

we’ll look at shortly). In the general case, objects in a session must be

serializable (using Ruby’s Marshal functions). This means, for example, that

you cannot store an I/O object in a session.

• If you store any Rails model objects in a session, you’ll have to add model
declarations for them. This causes Rails to preload the model class so

that its definition is available when Ruby comes to deserialize it from the

session store. If the use of the session is restricted to just one controller,

this declaration can go at the top of that controller.

class BlogController < ApplicationController

model :user_preferences

. . .

However, if the session might get read by another controller (which is

likely in any application with multiple controllers), you’ll probably want

to add the declaration to application_controller.rb in app/controllers.

• You probably don’t want to store massive objects in session data—put

them in the database, and reference them from the session. This is par-

ticularly true for cookie-based sessions, where the overall limit is 4KB.

• You probably don’t want to store volatile objects in session data. For

example, you might want to keep a tally of the number of articles in a

blog and store that in the session for performance reasons. But, if you do

that, the count won’t get updated if some other user adds an article.

Chapter 21. Action Dispatch and Action Controller • 376

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

It is tempting to store objects representing the currently logged-in user

in session data. This might not be wise if your application needs to be

able to invalidate users. Even if a user is disabled in the database, their

session data will still reflect a valid status.

Store volatile data in the database, and reference it from the session

instead.

• You probably don’t want to store critical information solely in session

data. For example, if your application generates an order confirmation

number in one request and stores it in session data so that it can be saved

to the database when the next request is handled, you risk losing that

number if the user deletes the cookie from their browser. Critical informa-

tion needs to be in the database.

There’s one more caveat, and it’s a big one. If you store an object in session

data, then the next time you come back to that browser, your application will

end up retrieving that object. However, if in the meantime you’ve updated

your application, the object in session data may not agree with the definition

of that object’s class in your application, and the application will fail while

processing the request. There are three options here. One is to store the object

in the database using conventional models and keep just the ID of the row

in the session. Model objects are far more forgiving of schema changes than

the Ruby marshaling library. The second option is to manually delete all the

session data stored on your server whenever you change the definition of a

class stored in that data.

The third option is slightly more complex. If you add a version number to

your session keys and change that number whenever you update the stored

data, you’ll only ever load data that corresponds with the current version of

the application. You can potentially version the classes whose objects are

stored in the session and use the appropriate classes depending on the session

keys associated with each request. This last idea can be a lot of work, so you’ll

need to decide whether it’s worth the effort.

Because the session store is hash-like, you can save multiple objects in it,

each with its own key.

There is no need to also disable sessions for particular actions. Because ses-

sions are lazily loaded, simply don’t reference a session in any action in which

you don’t need a session.

report erratum • discuss

Objects and Operations That Span Requests • 377

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Session Storage

Rails has a number of options when it comes to storing your session data.

Each has good and bad points. We’ll start by listing the options and then

compare them at the end.

The session_store attribute of ActionController::Base determines the session storage

mechanism—set this attribute to a class that implements the storage strategy.

This class must be defined in the ActiveSupport::Cache::Store module. You use

symbols to name the session storage strategy; the symbol is converted into

a CamelCase class name.

session_store = :cookie_store
This is the default session storage mechanism used by Rails, starting

with version 2.0. This format represents objects in their marshaled form,

which allows any serializable data to be stored in sessions but is limited

to 4KB total. This is the option we used in the Depot application.

session_store = :active_record_store
You can use the activerecord-session_store gem2 to store your session data in

your application’s database using ActiveRecordStore.

session_store = :drb_store
DRb is a protocol that allows Ruby processes to share objects over a net-

work connection. Using the DRbStore database manager, Rails stores

session data on a DRb server (which you manage outside the web appli-

cation). Multiple instances of your application, potentially running on

distributed servers, can access the same DRb store. DRb uses Marshal to
serialize objects.

session_store = :mem_cache_store
memcached is a freely available, distributed object caching system main-

tained by Dormando.3 memcached is more complex to use than the other

alternatives and is probably interesting only if you are already using it

for other reasons at your site.

session_store = :memory_store
This option stores the session data locally in the application’s memory.

Because no serialization is involved, any object can be stored in an

in-memory session. As we’ll see in a minute, this generally is not a good

idea for Rails applications.

2. https://github.com/rails/activerecord-session_store#installation
3. http://memcached.org/

Chapter 21. Action Dispatch and Action Controller • 378

report erratum • discuss

https://github.com/rails/activerecord-session_store#installation
http://memcached.org/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

session_store = :file_store
Session data is stored in flat files. It’s pretty much useless for Rails

applications, because the contents must be strings. This mechanism

supports the additional configuration options :prefix, :suffix, and :tmpdir.

Comparing Session Storage Options

With all these session options to choose from, which should you use in your

application? As always, the answer is “It depends.”

There are few absolutes when it comes to performance, and everyone’s context

is different. Your hardware, network latencies, database choices, and possibly

even the weather will impact how all the components of session storage

interact. Our best advice is to start with the simplest workable solution and

then monitor it. If it starts to slow you down, find out why before jumping

out of the frying pan.

If you have a high-volume site, keeping the size of the session data small and

going with cookie_store is the way to go.

If we rule out memory store as being too simplistic, file store as too restrictive,

and memcached as overkill, the server-side choices boil down to CookieStore,

Active Record store, and DRb-based storage. Should you need to store more

in a session than you can with cookies, we recommend you start with an

Active Record solution. If, as your application grows, you find this becoming

a bottleneck, you can migrate to a DRb-based solution.

Session Expiry and Cleanup

One problem with all the server-side session storage solutions is that each

new session adds something to the session store. This means you’ll eventually

need to do some housekeeping or you’ll run out of server resources.

There’s another reason to tidy up sessions. Many applications don’t want a

session to last forever. Once a user has logged in from a particular browser,

the application might want to enforce a rule that the user stays logged in only

as long as they are active; when they log out or some fixed time after they

last use the application, their session should be terminated.

You can sometimes achieve this effect by expiring the cookie holding the

session ID. However, this is open to end-user abuse. Worse, it is hard to

synchronize the expiry of a cookie on the browser with the tidying up of the

session data on the server.

report erratum • discuss

Objects and Operations That Span Requests • 379

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We therefore suggest you expire sessions by simply removing their server-side

session data. Should a browser request subsequently arrive containing a

session ID for data that has been deleted, the application will receive no ses-

sion data; the session will effectively not be there.

Implementing this expiration depends on the storage mechanism being used.

For Active Record–based session storage, use the updated_at columns in the

sessions table. You can delete all sessions that have not been modified in the

last hour (ignoring daylight saving time changes) by having your sweeper task

issue SQL such as this:

delete from sessions
where now() - updated_at > 3600;

For DRb-based solutions, expiry takes place within the DRb server process.

You’ll probably want to record timestamps alongside the entries in the session

data hash. You can run a separate thread (or even a separate process) that

periodically deletes the entries in this hash.

In all cases, your application can help this process by calling reset_session() to
delete sessions when they are no longer needed (for example, when a user

logs out).

Flash: Communicating Between Actions

When we use redirect_to() to transfer control to another action, the browser

generates a separate request to invoke that action. That request will be han-

dled by our application in a fresh instance of a controller object—instance

variables that were set in the original action are not available to the code

handling the redirected action. But sometimes we need to communicate

between these two instances. We can do this using a facility called the flash.

The flash is a temporary scratchpad for values. It is organized like a hash

and stored in the session data, so you can store values associated with keys

and later retrieve them. It has one special property. By default, values stored

into the flash during the processing of a request will be available during the

processing of the immediately following request. Once that second request

has been processed, those values are removed from the flash.

Probably the most common use of the flash is to pass error and informational

strings from one action to the next. The intent here is that the first action

notices some condition, creates a message describing that condition, and

redirects to a separate action. By storing the message in the flash, the second

Chapter 21. Action Dispatch and Action Controller • 380

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

action is able to access the message text and use it in a view. An example of

such usage can be found in Iteration E1 on page 139.

It is sometimes convenient to use the flash as a way of passing messages into

a template in the current action. For example, our display() method might want

to output a cheery banner if there isn’t another, more pressing note. It doesn’t

need that message to be passed to the next action—it’s for use in the current

request only. To do this, it could use flash.now, which updates the flash but

does not add to the session data.

While flash.now creates a transient flash entry, flash.keep does the opposite,

making entries that are currently in the flash stick around for another request

cycle. If you pass no parameters to flash.keep, then all the flash contents are

preserved.

Flashes can store more than just text messages—you can use them to pass

all kinds of information between actions. Obviously, for longer-term informa-

tion you’d want to use the session (probably in conjunction with your database)

to store the data, but the flash is great if you want to pass parameters from

one request to the next.

Because the flash data is stored in the session, all the usual rules apply. In

particular, every object must be serializable. We strongly recommend passing

only basic objects like Strings or Hashes in the flash.

Callbacks

Callbacks enable you to write code in your controllers that wrap the processing

performed by actions—you can write a chunk of code once and have it be

called before or after any number of actions in your controller (or your con-

troller’s subclasses). This turns out to be a powerful facility. Using callbacks,

we can implement authentication schemes, logging, response compression,

and even response customization.

Rails supports three types of callbacks: before, after, and around. Such call-

backs are called just prior to and/or just after the execution of actions.

Depending on how you define them, they either run as methods inside the

controller or are passed the controller object when they are run. Either way,

they get access to details of the request and response objects, along with the

other controller attributes.

Before and After Callbacks

As their names suggest, before and after callbacks are invoked before or after

an action. Rails maintains two chains of callbacks for each controller. When

report erratum • discuss

Objects and Operations That Span Requests • 381

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

a controller is about to run an action, it executes all the callbacks on the before

chain. It executes the action before running the callbacks on the after chain.

Callbacks can be passive, monitoring activity performed by a controller. They

can also take a more active part in request handling. If a before action callback

returns false, then processing of the callback chain terminates, and the action

is not run. A callback may also render output or redirect requests, in which

case the original action never gets invoked.

We saw an example of using callbacks for authorization in the administration

part of our store example in Iteration J3: Limiting Access, on page 245. We

defined an authorization method that redirected to a login screen if the current

session didn’t have a logged-in user. We then made this method a before

action callback for all the actions in the administration controller.

Callback declarations also accept blocks and the names of classes. If a block

is specified, it will be called with the current controller as a parameter. If a

class is given, its filter() class method will be called with the controller as a

parameter.

By default, callbacks apply to all actions in a controller (and any subclasses

of that controller). You can modify this with the :only option, which takes one

or more actions on which the callback is invoked, and the :except option, which

lists actions to be excluded from callback.

The before_action and after_action declarations append to the controller’s chain of

callbacks. Use the variants prepend_before_action() and prepend_after_action() to put

callbacks at the front of the chain.

After callbacks can be used to modify the outbound response, changing the

headers and content if required. Some applications use this technique to

perform global replacements in the content generated by the controller’s

templates (for example, by substituting a customer’s name for the string

<customer/> in the response body). Another use might be compressing the

response if the user’s browser supports it.

Around callbacks wrap the execution of actions. You can write an around

callback in two different styles. In the first, the callback is a single chunk of

code. That code is called before the action is executed. If the callback code

invokes yield, the action is executed. When the action completes, the callback

code continues executing.

Thus, the code before the yield is like a before action callback, and the code

after is the after action callback. If the callback code never invokes yield, the

action is not run—this is the same as a before action callback return false.

Chapter 21. Action Dispatch and Action Controller • 382

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The benefit of around callbacks is that they can retain context across the

invocation of the action.

As well as passing around_action the name of a method, you can pass it a block

or a filter class.

If you use a block as a callback, it will be passed two parameters: the controller

object and a proxy for the action. Use call() on this second parameter to invoke

the original action.

A second form allows you to pass an object as a callback. This object should

implement a method called filter(). This method will be passed the controller

object. It yields to invoke the action.

Like before and after callbacks, around callbacks take :only and :except
parameters.

Around callbacks are (by default) added to the callback chain differently: the

first around action callback added executes first. Subsequently added around

callbacks will be nested within existing around callbacks.

Callback Inheritance

If you subclass a controller containing callbacks, the callbacks will be run

on the child objects as well as in the parent. However, callbacks defined in

the children will not run in the parent.

If you don’t want a particular callback to run in a child controller, you can

override the default processing with the skip_before_action and skip_after_action
declarations. These accept the :only and :except parameters.

You can use skip_action to skip any action callback (before, after, and around).

However, it works only for callbacks that were specified as the (symbol) name

of a method.

We made use of skip_before_action in Iteration J3: Limiting Access, on page 245.

What We Just Did

We learned how Action Dispatch and Action Controller cooperate to enable

our server to respond to requests. The importance of this can’t be emphasized

enough. In nearly every application, this is the primary place where the cre-

ativity of your application is expressed. While Active Record and Action View

are hardly passive, our routes and our controllers are where the action is.

We started this chapter by covering the concept of REST, which was the

inspiration for the way in which Rails approaches the routing of requests. We

report erratum • discuss

Objects and Operations That Span Requests • 383

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

saw how this provided seven basic actions as a starting point and how to add

more actions. We also saw how to select a data representation (for example,

JSON or XML). And we covered how to test routes.

We then covered the environment that Action Controller provides for your

actions, as well as the methods it provides for rendering and redirecting.

Finally, we covered sessions, flash, and callbacks, each of which is available

for use in your application’s controllers.

Along the way, we showed how these concepts were used in the Depot appli-

cation. Now that you have seen each in use and have been exposed to the

theory behind each, how you combine and use these concepts is limited only

by your own creativity.

In the next chapter, we will cover the remaining component of Action Pack,

namely, Action View, which handles the rendering of results.

Chapter 21. Action Dispatch and Action Controller • 384

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 22

In this chapter, you'll see:

• Templates

• Forms including fields and uploading files

• Helpers

• Layouts and partials

Action View

We’ve seen how the routing component determines which controller to use and

how the controller chooses an action. We’ve also seen how the controller and

action between them decide what to render to the user. Normally rendering

takes place at the end of the action, and involves a template. That’s what this

chapter is all about. Action View encapsulates all the functionality needed to

render templates, most commonly generating HTML, XML, or JavaScript back

to the user. As its name suggests, Action View is the view part of our MVC trilogy.

In this chapter, we will start with templates, for which Rails provides a range

of options. We will then cover a number of ways in which users provide input:

forms, file uploads, and links. We will complete this chapter by looking at a

number of ways to reduce maintenance using helpers, layouts, and partials.

Using Templates

When you write a view, you’re writing a template: something that will get

expanded to generate the final result. To understand how these templates

work, we need to look at three areas:

• Where the templates go

• The environment they run in

• What goes inside them

Where Templates Go

The render() method expects to find templates in the app/views directory of the

current application. Within this directory, the convention is to have a separate

subdirectory for the views of each controller. Our Depot application, for

instance, includes products and store controllers. As a result, our application

has templates in app/views/products and app/views/store. Each directory typically

contains templates named after the actions in the corresponding controller.

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

You can also have templates that aren’t named after actions. You render such

templates from the controller using calls such as these:

render(action: 'fake_action_name')
render(template: 'controller/name')
render(file: 'dir/template')

The last of these allows you to store templates anywhere on your filesystem.

This is useful if you want to share templates across applications.

The Template Environment

Templates contain a mixture of fixed text and code. The code in the template

adds dynamic content to the response. That code runs in an environment

that gives it access to the information set up by the controller:

• All instance variables of the controller are also available in the template.

This is how actions communicate data to the templates.

• The controller object’s flash, headers, logger, params, request, response, and session
are available as accessor methods in the view. Apart from the flash, view

code probably should not use these directly, because the responsibility

for handling them should rest with the controller. However, we do find

this useful when debugging. For example, the following html.erb template

uses the debug() method to display the contents of the session, the details

of the parameters, and the current response:

<h4>Session</h4> <%= debug(session) %>
<h4>Params</h4> <%= debug(params) %>
<h4>Response</h4> <%= debug(response) %>

• The current controller object is accessible using the attribute named con-
troller. This allows the template to call any public method in the controller

(including the methods in ActionController::Base).

• The path to the base directory of the templates is stored in the attribute

base_path.

What Goes in a Template

Out of the box, Rails supports five types of templates:

• ERB templates are a mixture of content and embedded Ruby. They are

typically used to generate HTML pages.

• Jbuilder1 templates generate JSON responses.

1. https://github.com/rails/jbuilder

Chapter 22. Action View • 386

report erratum • discuss

https://github.com/rails/jbuilder
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

• Builder templates use the Builder library2 to construct XML responses.

• CoffeeScript or JavaScript templates create JavaScript, which can change

both the presentation and the behavior of your content in the browser.

• SCSS templates create CSS stylesheets to control the presentation of your

content in the browser.

By far, the one that you will be using the most will be ERB. In fact, you made

extensive use of ERB templates in developing the Depot application.

So far in this chapter, we have focused on producing output. In Chapter 21,

Action Dispatch and Action Controller, on page 353, we focused on processing

input. In a well-designed application, these two are not unrelated: the output

we produce contains forms, links, and buttons that guide the end user to

producing the next set of inputs. As you might expect by now, Rails provides

a considerable amount of help in this area too.

Generating Forms

HTML provides a number of elements, attributes, and attribute values that

control how input is gathered. You certainly could hand-code your form

directly into the template, but there really is no need to do that.

In this section, we will cover a number of helpers that Rails provides that

assist with this process. In Using Helpers, on page 395, we will show you how

you can create your own helpers.

HTML provides a number of ways to collect data in forms. A few of the more

common means are shown in the following screenshot. Note that the form

itself is not representative of any sort of typical use; in general, you will use

only a subset of these methods to collect data.

2. http://api.rubyonrails.org/classes/ActionView/Base.html

report erratum • discuss

Generating Forms • 387

http://api.rubyonrails.org/classes/ActionView/Base.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Let’s look at the template that was used to produce that form:

rails51/views/app/views/form/input.html.erb

<%= form_for(:model) do |form| %>Line 1

<p>-

<%= form.label :input %>-

<%= form.text_field :input, :placeholder => 'Enter text here...' %>-

</p>5

-

<p>-

<%= form.label :address, :style => 'float: left' %>-

<%= form.text_area :address, :rows => 3, :cols => 40 %>-

</p>10

-

<p>-

<%= form.label :color %>:-

<%= form.radio_button :color, 'red' %>-

<%= form.label :red %>15

<%= form.radio_button :color, 'yellow' %>-

<%= form.label :yellow %>-

<%= form.radio_button :color, 'green' %>-

<%= form.label :green %>-

</p>20

-

<p>-

<%= form.label 'condiment' %>:-

<%= form.check_box :ketchup %>-

<%= form.label :ketchup %>25

<%= form.check_box :mustard %>-

<%= form.label :mustard %>-

<%= form.check_box :mayonnaise %>-

<%= form.label :mayonnaise %>-

</p>30

-

<p>-

<%= form.label :priority %>:-

<%= form.select :priority, (1..10) %>-

</p>35

-

<p>-

<%= form.label :start %>:-

<%= form.date_select :start %>-

</p>40

-

<p>-

<%= form.label :alarm %>:-

<%= form.time_select :alarm %>-

</p>45

<% end %>-

Chapter 22. Action View • 388

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/views/app/views/form/input.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

In that template, you will see a number of labels, such as the one on line 3.

You use labels to associate text with an input field for a specified attribute.

The text of the label will default to the attribute name unless you specify it

explicitly.

You use the text_field() and text_area() helpers (on lines 4 and 9, respectively) to

gather single-line and multiline input fields. You may specify a placeholder,
which will be displayed inside the field until the user provides a value. Not

every browser supports this function, but those that don’t simply will display

an empty box. Since this will degrade gracefully, there is no need for you to

design to the least common denominator—make use of this feature, because

those who can see it will benefit from it immediately.

Placeholders are one of the many small “fit and finish” features provided with

HTML5, and once again, Rails is ready even if the browser your users have

installed is not. You can use the search_field(), telephone_field(), url_field(), email_field(),
number_field(), and range_field() helpers to prompt for a specific type of input. How

the browser will make use of this information varies. Some may display the

field slightly differently in order to more clearly identify its function. Safari

on Mac, for example, will display search fields with rounded corners and will

insert a little x for clearing the field once data entry begins. Some may provide

added validation. For example, Opera will validate URL fields prior to submis-

sion. The iPad will even adjust the virtual onscreen keyboard to provide ready

access to characters such as the @ sign when entering an email address.

Although the support for these functions varies by browser, those that don’t

provide extra support for these functions simply display a plain, unadorned

input box. Once again, nothing is gained by waiting. If you have an input field

that’s expected to contain an email address, don’t simply use text_field()—go

ahead and start using email_field() now.

Lines 14, 24, and 34 demonstrate three different ways to provide a constrained

set of options. Although the display may vary a bit from browser to browser,

these approaches are all well supported across all browsers. The select() method

is particularly flexible—it can be passed an Enumeration as shown here, an

array of pairs of name-value pairs, or a Hash. A number of form options

helpers3 are available to produce such lists from various sources, including

the database.

3. http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html

report erratum • discuss

Generating Forms • 389

http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Finally, lines 39 and 44 show prompts for a date and time, respectively. As

you might expect by now, Rails provides plenty of options here too.4

Not shown in this example are hidden_field() and password_field(). A hidden field is

not displayed at all, but the value is passed back to the server. This may be

useful as an alternative to storing transient data in sessions, enabling data

from one request to be passed onto the next. Password fields are displayed,

but the text entered in them is obscured.

This is more than an adequate starter set for most needs. Should you find

that you have additional needs, you are quite likely to find a helper or gem

is already available for you. A good place to start is with the Rails Guides.5

Meanwhile, let’s explore how the data forms submit is processed.

Processing Forms

In the figure on page 391 we can see how the various attributes in the model

pass through the controller to the view, on to the HTML page, and back again

into the model. The model object has attributes such as name, country, and password.
The template uses helper methods to construct an HTML form to let the user

edit the data in the model. Note how the form fields are named. The country
attribute, for example, maps to an HTML input field with the name user[country].

When the user submits the form, the raw POST data is sent back to our

application. Rails extracts the fields from the form and constructs the params
hash. Simple values (such as the id field, extracted by routing from the form

action) are stored directly in the hash. But, if a parameter name has brackets

in it, Rails assumes that it is part of more structured data and constructs a

hash to hold the values. Inside this hash, the string inside the brackets acts

as the key. This process can repeat if a parameter name has multiple sets of

brackets in it.

ParamsForm Parameters

{ id: "123" }id=123
{ user: { name: "Dave" }}user[name]=Dave
{ user: { address: { city: "Wien" }}}user[address][city]=Wien

In the final part of the integrated whole, model objects can accept new attribute

values from hashes, which allows us to say this:

user.update(user_params)

4. http://api.rubyonrails.org/classes/ActionView/Helpers/DateHelper.html
5. http://guides.rubyonrails.org/form_helpers.html

Chapter 22. Action View • 390

report erratum • discuss

http://api.rubyonrails.org/classes/ActionView/Helpers/DateHelper.html
http://guides.rubyonrails.org/form_helpers.html
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

def edit
 @user = User.find(params[:id])
end

myapp_controller.rb

<% form_for :user,
 url: { action: 'save',
 id: @user } do |f| %>
 <%= f.text_field 'name' %>
 <%= f.text_field 'country' %>
 <%= f.password_field 'password' %>
 ...
<% end %>

edit.html.erb

<form action="/myapp/save/1234">
 <input name="user[name]" ... >
 <input name="user[country]" ... >
 <input name="user[password]" ... >
 ...
</form>

@params = {
 id: 1234,
 user: {
 name: "...",
 country: "...",
 password: "...",
 }
}

def save
 user = User.find(params[:id])
 if user.update(params[:user])
 ...
 end
end

myapp_controller.rb

1

2

3

4

5

The application receives a request to

edit a user. It reads data into the new

User model object.

The edit.html.erb template is called.

It uses the information in the user

object to generate…

…the HTML is sent to the browser.

When the response is received…

…the parameters are extracted into a

nested hash.

The save action uses the parameters

to find the user record and update it.

1

2

3

4

5

Rails integration goes deeper than this. Looking at the .html.erb file in the pre-

ceding figure, we can see that the template uses a set of helper methods to

create the form’s HTML; these are methods such as form_with() and text_field().

Before moving on, it is worth noting that params may be used for more than

text. Entire files can be uploaded. We’ll cover that next.

Uploading Files to Rails Applications

Your application may allow users to upload files. For example, a bug-reporting

system might let users attach log files and code samples to a problem ticket,

or a blogging application could let its users upload a small image to appear

next to their articles.

In HTTP, files are uploaded as a multipart/form-data POST message. As the

name suggests, forms are used to generate this type of message. Within that

form, you’ll use <input> tags with type="file". When rendered by a browser, this

allows the user to select a file by name. When the form is subsequently sub-

mitted, the file or files will be sent back along with the rest of the form data.

report erratum • discuss

Uploading Files to Rails Applications • 391

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

To illustrate the file upload process, we’ll show some code that allows a user

to upload an image and display that image alongside a comment. To do this,

we first need a pictures table to store the data:

rails51/e1/views/db/migrate/20170425000004_create_pictures.rb

class CreatePictures < ActiveRecord::Migration
def change
create_table :pictures do |t|

t.string :comment
t.string :name
t.string :content_type
If using MySQL, blobs default to 64k, so we have to give
an explicit size to extend them
t.binary :data, :limit => 1.megabyte

end
end

end

We’ll create a somewhat artificial upload controller just to demonstrate the

process. The get action is pretty conventional; it simply creates a new picture

object and renders a form:

rails51/e1/views/app/controllers/upload_controller.rb

class UploadController < ApplicationController
def get
@picture = Picture.new

end
. . .
private
Never trust parameters from the scary internet, only allow the white
list through.
def picture_params
params.require(:picture).permit(:comment, :uploaded_picture)

end
end

The get template contains the form that uploads the picture (along with a

comment). Note how we override the encoding type to allow data to be sent

back with the response:

rails51/e1/views/app/views/upload/get.html.erb

<%= form_for(:picture,
url: {action: 'save'},
html: {multipart: true}) do |form| %>

Comment: <%= form.text_field("comment") %>

Upload your picture: <%= form.file_field("uploaded_picture") %>

<%= submit_tag("Upload file") %>
<% end %>

Chapter 22. Action View • 392

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/e1/views/db/migrate/20170425000004_create_pictures.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/views/app/views/upload/get.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The form has one other subtlety. The picture uploads into an attribute called

uploaded_picture. However, the database table doesn’t contain a column of that

name. That means that there must be some magic happening in the model:

rails51/e1/views/app/models/picture.rb

class Picture < ActiveRecord::Base

validates_format_of :content_type,
with: /\Aimage/,
message: "must be a picture"

def uploaded_picture=(picture_field)
self.name = base_part_of(picture_field.original_filename)
self.content_type = picture_field.content_type.chomp
self.data = picture_field.read

end

def base_part_of(file_name)
File.basename(file_name).gsub(/[^\w._-]/, '')

end
end

We define an accessor called uploaded_picture=() to receive the file uploaded by

the form. The object returned by the form is an interesting hybrid. It is file-

like, so we can read its contents with the read() method; that’s how we get the

image data into the data column. It also has the attributes content_type and

original_filename, which let us get at the uploaded file’s metadata. Accessor

methods pick all this apart, resulting in a single object stored as separate

attributes in the database.

Note that we also add a validation to check that the content type is of the

form image/xxx. We don’t want someone uploading JavaScript.

The save action in the controller is totally conventional:

rails51/e1/views/app/controllers/upload_controller.rb

def save
@picture = Picture.new(picture_params)
if @picture.save

redirect_to(action: 'show', id: @picture.id)
else
render(action: :get)

end
end

Now that we have an image in the database, how do we display it? One way

is to give it its own URL and link to that URL from an image tag. For example,

we could use a URL such as upload/picture/123 to return the image for picture

123. This would use send_data() to return the image to the browser. Note how

report erratum • discuss

Uploading Files to Rails Applications • 393

http://media.pragprog.com/titles/rails51/code/rails51/e1/views/app/models/picture.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/views/app/controllers/upload_controller.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

we set the content type and filename—this lets browsers interpret the data

and supplies a default name should the user choose to save the image:

rails51/e1/views/app/controllers/upload_controller.rb

def picture
@picture = Picture.find(params[:id])
send_data(@picture.data,

filename: @picture.name,
type: @picture.content_type,
disposition: "inline")

end

Finally, we can implement the show action, which displays the comment and

the image. The action simply loads the picture model object:

rails51/e1/views/app/controllers/upload_controller.rb

def show
@picture = Picture.find(params[:id])

end

In the template, the image tag links back to the action that returns the picture

content. In the following screenshot, we can see the get and show actions.

rails51/e1/views/app/views/upload/show.html.erb

<h3><%= @picture.comment %></h3>

<img src="<%= url_for(:action => 'picture', :id => @picture.id) %>"/>

If you’d like an easier way of dealing with uploading and storing images, take

a look at thoughtbot’s Paperclip6 or Rick Olson’s attachment_fu7 plugins.

6. https://github.com/thoughtbot/paperclip#readme
7. https://github.com/technoweenie/attachment_fu

Chapter 22. Action View • 394

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails51/code/rails51/e1/views/app/views/upload/show.html.erb
https://github.com/thoughtbot/paperclip#readme
https://github.com/technoweenie/attachment_fu
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Create a database table that includes a given set of columns (documented on

Rick’s site), and the plugin will automatically manage storing both the

uploaded data and the upload’s metadata. Unlike our previous approach, it

handles storing the uploads in either your filesystem or a database table.

Forms and uploads are just two examples of helpers that Rails provides. Next

we will show you how you can provide your own helpers and introduce you

to a number of other helpers that come with Rails.

Using Helpers

Earlier we said that it’s OK to put code in templates. Now we’re going to

modify that statement. It’s perfectly acceptable to put some code in templates

—that’s what makes them dynamic. However, it’s poor style to put too much

code in templates.

There are three main reasons for this. First, the more code you put in the

view side of your application, the easier it is to let discipline slip and start

adding application-level functionality to the template code. This is definitely

poor form; you want to put application stuff in the controller and model layers

so that it is available everywhere. This will pay off when you add new ways

of viewing the application.

The second reason is that html.erb is basically HTML. When you edit it, you’re

editing an HTML file. If you have the luxury of having professional designers

create your layouts, they’ll want to work with HTML. Putting a bunch of Ruby

code in there just makes it hard to work with.

The final reason is that code embedded in views is hard to test, whereas code

split out into helper modules can be isolated and tested as individual units.

Rails provides a nice compromise in the form of helpers. A helper is simply a

module containing methods that assist a view. Helper methods are output-

centric. They exist to generate HTML (or XML, or JavaScript)—a helper extends

the behavior of a template.

Your Own Helpers

By default, each controller gets its own helper module. Additionally, there is

an application-wide helper named application_helper.rb. It won’t be surprising to

learn that Rails makes certain assumptions to help link the helpers into the

controller and its views. While all view helpers are available to all controllers,

it often is good practice to organize helpers. Helpers that are unique to the

views associated with the ProductController tend to be placed in a helper module

called ProductHelper in the file product_helper.rb in the app/helpers directory. You don’t

report erratum • discuss

Using Helpers • 395

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

have to remember all these details—the rails generate controller script creates a

stub helper module automatically.

In Iteration F4: Hiding an Empty Cart with a Custom Helper, on page 167, we

created such a helper method named hidden_div_if(), which enabled us to hide

the cart under specified conditions. We can use the same technique to clean

up the application layout a bit. Currently we have the following:

<h3><%= @page_title || "Pragmatic Store" %></h3>

Let’s move the code that works out the page title into a helper method. Because

we’re in the store controller, we edit the store_helper.rb file in app/helpers:

module StoreHelper
def page_title
@page_title || "Pragmatic Store"

end
end

Now the view code simply calls the helper method:

<h3><%= page_title %></h3>

(We might want to eliminate even more duplication by moving the rendering

of the entire title into a separate partial template, shared by all the controller’s

views, but we don’t talk about partial templates until Partial-Page Templates,

on page 406.)

Helpers for Formatting and Linking

Rails comes with a bunch of built-in helper methods, available to all views.

Here, we’ll touch on the highlights, but you’ll probably want to look at the

Action View RDoc for the specifics—there’s a lot of functionality in there.

Aside from the general convenience these helpers provide, many of them also

handle internationalization and localization. In Chapter 16, Task K: Interna-

tionalization, on page 253, we translated much of the application. Many of the

helpers we used handled that for us, such as number_to_currency(). It’s always a

good practice to use Rails helpers where they are appropriate, even if it seems

just as easy to hard-code the output you want.

Formatting Helpers

One set of helper methods deals with dates, numbers, and text:

<%= distance_of_time_in_words(Time.now, Time.local(2016, 12, 25)) %>
4 months

Chapter 22. Action View • 396

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

<%= distance_of_time_in_words(Time.now, Time.now + 33, include_seconds: false) %>
1 minute

<%= distance_of_time_in_words(Time.now, Time.now + 33, include_seconds: true) %>
Half a minute

<%= time_ago_in_words(Time.local(2012, 12, 25)) %>
7 months

<%= number_to_currency(123.45) %>
$123.45

<%= number_to_currency(234.56, unit: "CAN$", precision: 0) %>
CAN$235

<%= number_to_human_size(123_456) %>
120.6 KB

<%= number_to_percentage(66.66666) %>
66.667%

<%= number_to_percentage(66.66666, precision: 1) %>
66.7%

<%= number_to_phone(2125551212) %>
212-555-1212

<%= number_to_phone(2125551212, area_code: true, delimiter: " ") %>
(212) 555 1212

<%= number_with_delimiter(12345678) %>
12,345,678

<%= number_with_delimiter(12345678, delimiter: "_") %>
12_345_678

<%= number_with_precision(50.0/3, precision: 2) %>
16.67

The debug() method dumps out its parameter using YAML and escapes the

result so it can be displayed in an HTML page. This can help when trying to

look at the values in model objects or request parameters:

<%= debug(params) %>

--- !ruby/hash:HashWithIndifferentAccess
name: Dave
language: Ruby
action: objects
controller: test

report erratum • discuss

Using Helpers • 397

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Yet another set of helpers deals with text. There are methods to truncate

strings and highlight words in a string:

<%= simple_format(@trees) %>
Formats a string, honoring line and paragraph breaks. You could give it

the plain text of the Joyce Kilmer poem Trees
8, and it would add the HTML

to format it as follows.

<p> I think that I shall never see
A poem lovely as a tree.</p> <p>A

tree whose hungry mouth is prest
Against the sweet earth’s flowing

breast; </p>

<%= excerpt(@trees, "lovely", 8) %>
...A poem lovely as a tre...

<%= highlight(@trees, "tree") %>
I think that I shall never see A poem lovely as a <strong class="high-

light">tree. A <strong class="highlight">tree whose

hungry mouth is prest Against the sweet earth’s flowing breast;

<%= truncate(@trees, length: 20) %>
I think that I sh...

There’s a method to pluralize nouns:

<%= pluralize(1, "person") %> but <%= pluralize(2, "person") %>
1 person but 2 people

If you’d like to do what the fancy websites do and automatically hyperlink

URLs and email addresses, there are helpers to do that. There’s another that

strips hyperlinks from text.

Back in Iteration A2 on page 83, we saw how the cycle() helper can be used to

return the successive values from a sequence each time it’s called, repeating

the sequence as necessary. This is often used to create alternating styles for

the rows in a table or list. The current_cycle() and reset_cycle() methods are also

available.

Finally, if you’re writing something like a blog site or you’re allowing users to

add comments to your store, you could offer them the ability to create their text

in Markdown (BlueCloth)9 or Textile (RedCloth)10 format. These are formatters

that take text written in human-friendly markup and convert it into HTML.

8. https://www.poetryfoundation.org/poetrymagazine/poems/12744/trees
9. https://github.com/rtomayko/rdiscount
10. http://redcloth.org/

Chapter 22. Action View • 398

report erratum • discuss

https://www.poetryfoundation.org/poetrymagazine/poems/12744/trees
https://github.com/rtomayko/rdiscount
http://redcloth.org/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Linking to Other Pages and Resources

The ActionView::Helpers::AssetTagHelper and ActionView::Helpers::UrlHelper modules contain

a number of methods that let you reference resources external to the current

template. Of these, the most commonly used is link_to(), which creates a

hyperlink to another action in your application:

<%= link_to "Add Comment", new_comments_path %>

The first parameter to link_to() is the text displayed for the link. The next is a

string or hash specifying the link’s target.

An optional third parameter provides HTML attributes for the generated link:

<%= link_to "Delete", product_path(@product),
{ class: "dangerous", method: 'delete' }

%>

This third parameter also supports two additional options that modify the

behavior of the link. Each requires JavaScript to be enabled in the browser.

The :method option is a hack—it allows you to make the link look to the appli-

cation as if the request were created by a POST, PUT, PATCH, or DELETE,

rather than the normal GET method. This is done by creating a chunk of

JavaScript that submits the request when the link is clicked—if JavaScript

is disabled in the browser, a GET will be generated.

The :data parameter allows you to set custom data attributes. The most com-

monly used one is the :confirm option, which takes a short message. If present,

an unobtrusive JavaScript driver will display the message and get the user’s

confirmation before the link is followed:

<%= link_to "Delete", product_path(@product),
method: :delete,
data: { confirm: 'Are you sure?' }

%>

The button_to() method works the same as link_to() but generates a button in a

self-contained form, rather than a straight hyperlink. This is the preferred

method of linking to actions that have side effects. However, these buttons

live in their own forms, which imposes a couple of restrictions: they cannot

appear inline, and they cannot appear inside other forms.

Rails has conditional linking methods that generate hyperlinks if some condi-

tion is met or just return the link text otherwise. link_to_if() and link_to_unless()
take a condition parameter, followed by the regular parameters to link_to. If
the condition is true (for link_to_if) or false (for link_to_unless), a regular link will be

report erratum • discuss

Using Helpers • 399

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

created using the remaining parameters. If not, the name will be added as

plain text (with no hyperlink).

The link_to_unless_current() helper creates menus in sidebars where the current

page name is shown as plain text and the other entries are hyperlinks:

<% %w{ create list edit save logout }.each do |action| %>

<%= link_to_unless_current(action.capitalize, action: action) %>

<% end %>

The link_to_unless_current() helper may also be passed a block that is evaluated

only if the current action is the action given, effectively providing an alternative

to the link. There also is a current_page() helper method that simply tests whether

the current request URI was generated by the given options.

As with url_for(), link_to() and friends also support absolute URLs:

<%= link_to("Help", "http://my.site/help/index.html") %>

The image_tag() helper creates tags. Optional :size parameters (of the form

widthxheight) or separate width and height parameters define the size of the

image:

<%= image_tag("/assets/dave.png", class: "bevel", size: "80x120") %>
<%= image_tag("/assets/andy.png", class: "bevel",

width: "80", height: "120") %>

If you don’t give an :alt option, Rails synthesizes one for you using the image’s

filename. If the image path doesn’t start with a / character, Rails assumes

that it lives under the app/assets/images directory.

You can make images into links by combining link_to() and image_tag():

<%= link_to(image_tag("delete.png", size: "50x22"),
product_path(@product),
data: { confirm: "Are you sure?" },
method: :delete)

%>

The mail_to() helper creates a mailto: hyperlink that, when clicked, normally

loads the client’s email application. It takes an email address, the name of

the link, and a set of HTML options. Within these options, you can also use

:bcc, :cc, :body, and :subject to initialize the corresponding email fields. Finally,

the magic option encode: "javascript" uses client-side JavaScript to obscure the

generated link, making it harder for spiders to harvest email addresses from

Chapter 22. Action View • 400

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

your site. Unfortunately, it also means your users won’t see the email link if

they have JavaScript disabled in their browsers.

<%= mail_to("support@pragprog.com", "Contact Support",
subject: "Support question from #{@user.name}",
encode: "javascript") %>

As a weaker form of obfuscation, you can use the :replace_at and :replace_dot
options to replace the at sign and dots in the displayed name with other

strings. This is unlikely to fool harvesters.

The AssetTagHelper module also includes helpers that make it easy to link to

stylesheets and JavaScript code from your pages and to create autodiscovery

Atom feed links. We created links in the layouts for the Depot application

using the stylesheet_link_tag() and javascript_link_tag() methods in the head:

rails51/depot_r/app/views/layouts/application.html.erb

<html>
<head>

<title>Pragprog Books Online Store</title>
<%= csrf_meta_tags %>

<%= stylesheet_link_tag 'application', media: 'all',
'data-turbolinks-track': 'reload' %>

<%= javascript_include_tag 'application',
'data-turbolinks-track': 'reload' %>

</head>

The javascript_include_tag() method takes a list of JavaScript filenames (assumed

to live in assets/javascripts) and creates the HTML to load these into a page.

An RSS or Atom link is a header field that points to a URL in our application.

When that URL is accessed, the application should return the appropriate

RSS or Atom XML:

<html>
<head>
<%= auto_discovery_link_tag(:atom, products_url(format: 'atom')) %>

</head>
. . .

Finally, the JavaScriptHelper module defines a number of helpers for working

with JavaScript. These create JavaScript snippets that run in the browser to

generate special effects and to have the page dynamically interact with our

application.

By default, image and stylesheet assets are assumed to live in the images and

stylesheets directories relative to the application’s assets directory. If the path

given to an asset tag method starts with a forward slash, then the path is

report erratum • discuss

Using Helpers • 401

http://media.pragprog.com/titles/rails51/code/rails51/depot_r/app/views/layouts/application.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

assumed to be absolute, and no prefix is applied. Sometimes it makes sense

to move this static content onto a separate box or to different locations on

the current box. Do this by setting the configuration variable asset_host:

config.action_controller.asset_host = "http://media.my.url/assets"

Although this list of helpers may seem to be comprehensive, Rails provides

many more, new helpers are introduced with each release, and a select few

are retired or moved off into a plugin where they can be evolved at a different

pace than Rails.

Reducing Maintenance with Layouts and Partials

So far in this chapter we’ve looked at templates as isolated chunks of code

and HTML. But one of the driving ideas behind Rails is honoring the DRY

principle and eliminating the need for duplication. The average website,

though, has lots of duplication:

• Many pages share the same tops, tails, and sidebars.

• Multiple pages may contain the same snippets of rendered HTML (a blog

site, for example, may display an article in multiple places).

• The same functionality may appear in multiple places. Many sites have

a standard search component or a polling component that appears in

most of the sites’ sidebars.

Rails provides both layouts and partials that reduce the need for duplication

in these three situations.

Layouts

Rails allows you to render pages that are nested inside other rendered pages.

Typically this feature is used to put the content from an action within a

standard site-wide page frame (title, footer, and sidebar). In fact, if you’ve

been using the generate script to create scaffold-based applications, then you’ve

been using these layouts all along.

When Rails honors a request to render a template from within a controller,

it actually renders two templates. Obviously, it renders the one you ask for

(or the default template named after the action if you don’t explicitly render

anything). But Rails also tries to find and render a layout template (we’ll talk

about how it finds the layout in a second). If it finds the layout, it inserts the

action-specific output into the HTML produced by the layout.

Chapter 22. Action View • 402

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Let’s look at a layout template:

<html>
<head>

<title>Form: <%= controller.action_name %></title>
<%= stylesheet_link_tag 'scaffold' %>

</head>
<body>

<%= yield :layout %>

</body>
</html>

The layout sets out a standard HTML page, with the head and body sections.

It uses the current action name as the page title and includes a CSS file. In

the body, there’s a call to yield. This is where the magic takes place. When the

template for the action was rendered, Rails stored its content, labeling it :layout.
Inside the layout template, calling yield retrieves this text. In fact, :layout is the

default content returned when rendering, so you can write yield instead of yield
:layout. We personally prefer the slightly more explicit version.

If the my_action.html.erb template contained this:

<h1><%= @msg %></h1>

and the controller set @msg to Hello, World!, then the browser would see the

following HTML:

<html>
<head>

<title>Form: my_action</title>
<link href="/stylesheets/scaffold.css" media="screen"

rel="Stylesheet" type="text/css" />
</head>
<body>

<h1>Hello, World!</h1>

</body>
</html>

Locating Layout Files

As you’ve probably come to expect, Rails does a good job of providing defaults

for layout file locations, but you can override the defaults if you need some-

thing different.

Layouts are controller-specific. If the current request is being handled by a

controller called store, Rails will by default look for a layout called store (with

the usual .html.erb or .xml.builder extension) in the app/views/layouts directory. If

report erratum • discuss

Reducing Maintenance with Layouts and Partials • 403

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

you create a layout called application in the layouts directory, it will be applied

to all controllers that don’t otherwise have a layout defined for them.

You can override this using the layout declaration inside a controller. The most

basic invocation is to pass it the name of a layout as a string. The following

declaration will make the template in the file standard.html.erb or standard.xml.builder
the layout for all actions in the store controller. The layout file will be looked

for in the app/views/layouts directory:

class StoreController < ApplicationController

layout "standard"

...
end

You can qualify which actions will have the layout applied to them using the

:only and :except qualifiers:

class StoreController < ApplicationController

layout "standard", except: [:rss, :atom]

...
end

Specifying a layout of nil turns off layouts for a controller.

Sometimes you need to change the appearance of a set of pages at runtime.

For example, a blogging site might offer a different-looking side menu if the

user is logged in, or a store site might have different-looking pages if the site

is down for maintenance. Rails supports this need with dynamic layouts. If the

parameter to the layout declaration is a symbol, it’s taken to be the name of a

controller instance method that returns the name of the layout to be used:

class StoreController < ApplicationController

layout :determine_layout
...
private

def determine_layout
if Store.is_closed?

"store_down"
else

"standard"
end

end
end

Chapter 22. Action View • 404

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Subclasses of a controller use the parent’s layout unless they override it using

the layout directive. Finally, individual actions can choose to render using a

specific layout (or with no layout at all) by passing render() the :layout option:

def rss
render(layout: false) # never use a layout

end
def checkout
render(layout: "layouts/simple")

end

Passing Data to Layouts

Layouts have access to all the same data that’s available to conventional

templates. In addition, any instance variables set in the normal template will

be available in the layout (because the regular template is rendered before

the layout is invoked). This might be used to parameterize headings or menus

in the layout. For example, the layout might contain this:

<html>
<head>

<title><%= @title %></title>
<%= stylesheet_link_tag 'scaffold' %>

</head>
<body>

<h1><%= @title %></h1>
<%= yield :layout %>

</body>
</html>

An individual template could set the title by assigning to the @title variable:

<% @title = "My Wonderful Life" %>
<p>

Dear Diary:
</p>
<p>

Yesterday I had pizza for dinner. It was nice.
</p>

We can take this further. The same mechanism that lets us use yield :layout to
embed the rendering of a template into the layout also lets you generate arbitrary

content in a template, which can then be embedded into any template.

For example, different templates may need to add their own template-specific

items to the standard page sidebar. We’ll use the content_for mechanism in

those templates to define content and then use yield in the layout to embed

this content into the sidebar.

report erratum • discuss

Reducing Maintenance with Layouts and Partials • 405

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

In each regular template, use a content_for to give a name to the content ren-

dered inside a block. This content will be stored inside Rails and will not

contribute to the output generated by the template:

<h1>Regular Template</h1>

<% content_for(:sidebar) do %>

this text will be rendered
and saved for later
it may contain <%= "dynamic" %> stuff

<% end %>
<p>

Here's the regular stuff that will appear on
the page rendered by this template.

</p>

Then, in the layout, use yield :sidebar to include this block in the page’s sidebar:

<!DOCTYPE >
<html>

<body>
<div class="sidebar">
<p>

Regular sidebar stuff
</p>
<div class="page-specific-sidebar">

<%= yield :sidebar %>➤

</div>
</div>

</body>
</html>

This same technique can be used to add page-specific JavaScript functions

into the <head> section of a layout, create specialized menu bars, and so on.

Partial-Page Templates

Web applications commonly display information about the same application

object or objects on multiple pages. A shopping cart might display an order

line item on the shopping cart page and again on the order summary page.

A blog application might display the contents of an article on the main index

page and again at the top of a page soliciting comments. Typically this would

involve copying snippets of code between the different template pages.

Rails, however, eliminates this duplication with the partial-page templates

(more frequently called partials). You can think of a partial as a kind of

subroutine. You invoke it one or more times from within another template,

Chapter 22. Action View • 406

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

potentially passing it objects to render as parameters. When the partial tem-

plate finishes rendering, it returns control to the calling template.

Internally, a partial template looks like any other template. Externally, there’s

a slight difference. The name of the file containing the template code must

start with an underscore character, differentiating the source of partial tem-

plates from their more complete brothers and sisters.

For example, the partial to render a blog entry might be stored in the file

_article.html.erb in the normal views directory, app/views/blog:

<div class="article">
<div class="articleheader">

<h3><%= article.title %></h3>
</div>
<div class="articlebody">

<%= article.body %>
</div>

</div>

Other templates use the render(partial:) method to invoke this:

<%= render(partial: "article", object: @an_article) %>
<h3>Add Comment</h3>
. . .

The :partial parameter to render() is the name of the template to render (but

without the leading underscore). This name must be both a valid filename

and a valid Ruby identifier (so a-b and 20042501 are not valid names for partials).

The :object parameter identifies an object to be passed into the partial. This

object will be available within the template via a local variable with the same

name as the template. In this example, the @an_article object will be passed to

the template, and the template can access it using the local variable article.
That’s why we could write things such as article.title in the partial.

You can set additional local variables in the template by passing render() a
:locals parameter. This takes a hash where the entries represent the names

and values of the local variables to set:

render(partial: 'article',
object: @an_article,
locals: { authorized_by: session[:user_name],

from_ip: request.remote_ip })

Partials and Collections

Applications commonly need to display collections of formatted entries. A blog

might show a series of articles, each with text, author, date, and so on. A

report erratum • discuss

Reducing Maintenance with Layouts and Partials • 407

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

store might display entries in a catalog, where each has an image, a descrip-

tion, and a price.

The :collection parameter to render() works in conjunction with the :partial
parameter. The :partial parameter lets us use a partial to define the format of

an individual entry, and the :collection parameter applies this template to each

member of the collection.

To display a list of article model objects using our previously defined

_article.html.erb partial, we could write this:

<%= render(partial: "article", collection: @article_list) %>

Inside the partial, the local variable article will be set to the current article from

the collection—the variable is named after the template. In addition, the

variable article_counter will have its value set to the index of the current article

in the collection.

The optional :spacer_template parameter lets you specify a template that will be

rendered between each of the elements in the collection. For example, a view

might contain the following:

rails51/e1/views/app/views/partial/_list.html.erb

<%= render(partial: "animal",
collection: %w{ ant bee cat dog elk },
spacer_template: "spacer")

%>

This uses _animal.html.erb to render each animal in the given list, rendering the

partial _spacer.html.erb between each. If _animal.html.erb contains this:

rails51/e1/views/app/views/partial/_animal.html.erb

<p>The animal is <%= animal %></p>

and _spacer.html.erb contains this:

rails51/e1/views/app/views/partial/_spacer.html.erb

<hr />

your users would see a list of animal names with a line between each.

Shared Templates

If the first option or :partial parameter to a render call is a String with no

slashes, Rails assumes that the target template is in the current controller’s

view directory. However, if the name contains one or more / characters, Rails

assumes that the part up to the last slash is a directory name and the rest

is the template name. The directory is assumed to be under app/views. This

makes it easy to share partials and subtemplates across controllers.

Chapter 22. Action View • 408

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/e1/views/app/views/partial/_list.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/e1/views/app/views/partial/_animal.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/e1/views/app/views/partial/_spacer.html.erb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The convention among Rails applications is to store these shared partials in

a subdirectory of app/views called shared. Render shared partials using statements

such as these:

<%= render("shared/header", locals: {title: @article.title}) %>
<%= render(partial: "shared/post", object: @article) %>
. . .

In this previous example, the @article object will be assigned to the local variable

post within the template.

Partials with Layouts

Partials can be rendered with a layout, and you can apply a layout to a block

within any template:

<%= render partial: "user", layout: "administrator" %>

<%= render layout: "administrator" do %>
...

<% end %>

Partial layouts are to be found directly in the app/views directory associated

with the controller, along with the customary underbar prefix, such as

app/views/users/_administrator.html.erb.

Partials and Controllers

It isn’t just view templates that use partials. Controllers also get in on the

act. Partials give controllers the ability to generate fragments from a page

using the same partial template as the view. This is particularly important

when you are using Ajax support to update just part of a page from the

controller—use partials, and you know your formatting for the table row or

line item that you’re updating will be compatible with that used to generate

its brethren initially.

Taken together, partials and layouts provide an effective way to make sure

that the user interface portion of your application is maintainable. But being

maintainable is only part of the story; doing so in a way that also performs

well is also crucial.

What We Just Did

Views are the public face of Rails applications, and we have seen that Rails

delivers extensive support for what you need to build robust and maintainable

user and application programming interfaces.

report erratum • discuss

Reducing Maintenance with Layouts and Partials • 409

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

We started with templates, of which Rails provides built-in support for four

types: ERB, Builder, CoffeeScript, and SCSS. Templates make it easy for us

to provide HTML, JSON, XML, CSS, and JavaScript responses to any request.

We will discuss adding another option in Creating HTML Templates with Slim,

on page 433.

We dove into forms, which are the primary means by which users will interact

with your application. Along the way, we covered uploading files.

We continued with helpers, which enable us to factor out complex application

logic to allow our views to focus on presentation aspects. We explored a number

of helpers that Rails provides, ranging from basic formatting to hypertext links,

which are the final way in which users interact with HTML pages.

We completed our tour of Action View by covering two related ways of factoring

out large chunks of content for reuse. We use layouts to factor out the outer-

most layers of a view and provide a common look and feel. We use partials

to factor out common inner components, such as a single form or table.

That covers how a user with a browser will access our Rails application. Next

up: covering how we define and maintain the schema of the database our

application will use to store data.

Chapter 22. Action View • 410

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 23

In this chapter, you'll see:

• Naming migration files

• Renaming and columns

• Creating and renaming tables

• Defining indices and keys

• Using native SQL

Migrations

Rails encourages an agile, iterative style of development. We don’t expect to

get everything right the first time. Instead, we write tests and interact with

our customers to refine our understanding as we go.

For that to work, we need a supporting set of practices. We write tests to help

us design our interfaces and to act as a safety net when we change things,

and we use version control to store our application’s source files, allowing us

to undo mistakes and to monitor what changes day to day.

But there’s another area of the application that changes, an area that we

can’t directly manage using version control. The database schema in a Rails

application constantly evolves as we progress through the development: we

add a table here, rename a column there, and so on. The database changes

in step with the application’s code.

With Rails, each of those steps is made possible through the use of a migration.

You saw this in use throughout the development of the Depot application,

starting when we created the first products table in Generating the Scaffold, on

page 72, and when we performed such tasks as adding a quantity to the line_items
table in Iteration E1: Creating a Smarter Cart, on page 133. Now it is time to dig

deeper into how migrations work and what else you can do with them.

Creating and Running Migrations

A migration is simply a Ruby source file in your application’s db/migrate direc-

tory. Each migration file’s name starts with a number of digits (typically

fourteen) and an underscore. Those digits are the key to migrations, because

they define the sequence in which the migrations are applied—they are the

individual migration’s version number.

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The version number is the Coordinated Universal Time (UTC) timestamp at

the time the migration was created. These numbers contain the four-digit

year, followed by two digits each for the month, day, hour, minute, and second,

all based on the mean solar time at the Royal Observatory in Greenwich,

London. Because migrations tend to be created relatively infrequently and

the accuracy is recorded down to the second, the chances of any two people

getting the same timestamp is vanishingly small. And the benefit of having

timestamps that can be deterministically ordered far outweighs the miniscule

risk of this occurring.

Here’s what the db/migrate directory of our Depot application looks like:

depot> ls db/migrate
20170425000001_create_products.rb
20170425000002_create_carts.rb
20170425000003_create_line_items.rb
20170425000004_add_quantity_to_line_items.rb
20170425000005_combine_items_in_cart.rb
20170425000006_create_orders.rb
20170425000007_add_order_id_to_line_item.rb
20170425000008_create_users.rb

Although you could create these migration files by hand, it’s easier (and less

error prone) to use a generator. As we saw when we created the Depot appli-

cation, there are actually two generators that create migration files:

• The model generator creates a migration to in turn create the table asso-

ciated with the model (unless you specify the --skip-migration option). As the

example that follows shows, creating a model called discount also creates

a migration called yyyyMMddhhmmss_create_discounts.rb:

depot> bin/rails generate model discount
invoke active_record
create db/migrate/20121113133549_create_discounts.rb➤

create app/models/discount.rb
invoke test_unit
create test/models/discount_test.rb
create test/fixtures/discounts.yml

• You can also generate a migration on its own.

depot> bin/rails generate migration add_price_column
invoke active_record
create db/migrate/20121113133814_add_price_column.rb➤

Later, starting in Anatomy of a Migration, we’ll see what goes in the migration

files. But for now, let’s jump ahead a little in the workflow and see how to

run migrations.

Chapter 23. Migrations • 412

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Running Migrations

Migrations are run using the db:migrate Rake task:

depot> bin/rails db:migrate

To see what happens next, let’s dive down into the internals of Rails.

The migration code maintains a table called schema_migrations inside every Rails

database. This table has just one column, called version, and it will have one

row per successfully applied migration.

When you run bin/rails db:migrate, the task first looks for the schema_migrations
table. If it doesn’t yet exist, it will be created.

The migration code then looks at the migration files in db/migrate and skips from consid-

eration any that have a version number (the leading digits in the filename) that is

already in the database. It then proceeds to apply the remainder of the migrations,

creating a row in the schema_migrations table for each.

If we were to run migrations again at this point, nothing much would happen.

Each of the version numbers of the migration files would match with a row

in the database, so there would be no migrations to apply.

However, if we subsequently create a new migration file, it will have a version

number not in the database. This is true even if the version number was

before one or more of the already applied migrations. This can happen when

multiple users are using a version control system to store the migration files.

If we then run migrations, this new migration file—and only this migration

file—will be executed. This may mean that migrations are run out of order,

so you might want to take care and ensure that these migrations are indepen-

dent. Or you might want to revert your database to a previous state and then

apply the migrations in order.

You can force the database to a specific version by supplying the VERSION=
parameter to the rake db:migrate command:

depot> bin/rails db:migrate VERSION=20170425000009

If the version you give is greater than any of the migrations that have yet to

be applied, these migrations will be applied.

If, however, the version number on the command line is less than one or more

versions listed in the schema_migrations table, something different happens. In

these circumstances, Rails looks for the migration file whose number matches

the database version and undoes it. It repeats this process until there are no

more versions listed in the schema_migrations table that exceed the number you

report erratum • discuss

Creating and Running Migrations • 413

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

specified on the command line. That is, the migrations are unapplied in reverse

order to take the schema back to the version that you specify.

You can also redo one or more migrations:

depot> bin/rails db:migrate:redo STEP=3

By default, redo will roll back one migration and rerun it. To roll back multiple

migrations, pass the STEP= parameter.

Anatomy of a Migration

Migrations are subclasses of the Rails class ActiveRecord::Migration. When neces-

sary, migrations can contain up() and down() methods:

class SomeMeaningfulName < ActiveRecord::Migration
def up
...

end

def down
...

end
end

The name of the class, after all uppercase letters are downcased and preceded

by an underscore, must match the portion of the filename after the version

number. For example, the previous class could be found in a file named

20170425000017_some_meaningful_name.rb. No two migrations can contain classes

with the same name.

The up() method is responsible for applying the schema changes for this

migration, while the down() method undoes those changes. Let’s make this more

concrete. Here’s a migration that adds an e_mail column to the orders table:

class AddEmailToOrders < ActiveRecord::Migration
def up
add_column :orders, :e_mail, :string

end

def down
remove_column :orders, :e_mail

end
end

See how the down() method undoes the effect of the up() method? You can also

see that there is a bit of duplication here. In many cases, Rails can detect

how to automatically undo a given operation. For example, the opposite of

add_column() is clearly remove_column(). In such cases, by simply renaming up() to
change(), you can eliminate the need for a down():

Chapter 23. Migrations • 414

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

class AddEmailToOrders < ActiveRecord::Migration
def change
add_column :orders, :e_mail, :string

end
end

Now isn’t that much cleaner?

Column Types

The third parameter to add_column specifies the type of the database column. In

the prior example, we specified that the e_mail column has a type of :string. But

what does this mean? Databases typically don’t have column types of :string.

Remember that Rails tries to make your application independent of the

underlying database; you could develop using SQLite 3 and deploy to Postgres

if you wanted, for example. But different databases use different names for

the types of columns. If you used a SQLite 3 column type in a migration, that

migration might not work if applied to a Postgres database. So, Rails migra-

tions insulate you from the underlying database type systems by using logical

types. If we’re migrating a SQLite 3 database, the :string type will create a col-

umn of type varchar(255). On Postgres, the same migration adds a column with

the type char varying(255).

The types supported by migrations are :binary, :boolean, :date, :datetime, :decimal,
:float, :integer, :string, :text, :time, and :timestamp. The default mappings of these

types for the database adapters in Rails are shown in the following tables:

oracleopenbasemysqldb2

blobobjectblobblob(32768):binary

number(1)booleantinyint(1)decimal(1):boolean

datedatedatedate:date

datedatetimedatetimetimestamp:datetime

decimaldecimaldecimaldecimal:decimal

numberfloatfloatfloat:float

number(38)integerint(11)int:integer

varchar2(255)char(4096)varchar(255)varchar(255):string

clobtexttextclob(32768):text

datetimetimetime:time

datetimestampdatetimetimestamp:timestamp

report erratum • discuss

Anatomy of a Migration • 415

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

sybasesqlserversqlitepostgresql

imageimageblobbytea:binary

bitbitbooleanboolean:boolean

datetimedatedatedate:date

datetimedatetimedatetimetimestamp:datetime

decimaldecimaldecimaldecimal:decimal

float(8)float(8)floatfloat:float

intintintegerinteger:integer

varchar(255)varchar(255)varchar(255)(note 1):string

texttexttexttext:text

timetimedatetimetime:time

timestampdatetimedatetimetimestamp:timestamp

Using these tables, you could work out that a column declared to be :integer
in a migration would have the underlying type integer in SQLite 3 and number(38)
in Oracle.

There are three options you can use when defining most columns in a

migration; decimal columns take an additional two options. Each of these

options is given as a key: value pair. The common options are as follows:

null: true or false If false, the underlying column has a not null constraint added

(if the database supports it). Note: this is independent of any presence: true
validation, which may be performed at the model layer.

limit: size This sets a limit on the size of the field. This basically appends the

string (size) to the database column type definition.

default: value This sets the default value for the column. As this is performed

by the database, you don’t see this in a new model object when you ini-

tialize it or even when you save it. You have to reload the object from the

database to see this value. Note that the default is calculated once, at the

point the migration is run, so the following code will set the default column

value to the date and time when the migration was run:

add_column :orders, :placed_at, :datetime, default: Time.now

In addition, decimal columns take the options :precision and :scale. The :precision
option specifies the number of significant digits that will be stored, and the

:scale option determines where the decimal point will be located in these digits

(think of the scale as the number of digits after the decimal point). A decimal

number with a precision of 5 and a scale of 0 can store numbers from -99,999

Chapter 23. Migrations • 416

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

to +99,999. A decimal number with a precision of 5 and a scale of 2 can store

the range -999.99 to +999.99.

The :precision and :scale parameters are optional for decimal columns. However,

incompatibilities between different databases lead us to strongly recommend

that you include the options for each decimal column.

Here are some column definitions using the migration types and options:

add_column :orders, :attn, :string, limit: 100
add_column :orders, :order_type, :integer
add_column :orders, :ship_class, :string, null: false, default: 'priority'
add_column :orders, :amount, :decimal, precision: 8, scale: 2

Renaming Columns

When we refactor our code, we often change our variable names to make them

more meaningful. Rails migrations allow us to do this to database column

names, too. For example, a week after we first added it, we might decide that

e_mail isn’t the best name for the new column. We can create a migration to

rename it using the rename_column() method:

class RenameEmailColumn < ActiveRecord::Migration
def change
rename_column :orders, :e_mail, :customer_email

end
end

As rename_column() is reversible, separate up() and down() methods are not required

in order to use it.

Note that the rename doesn’t destroy any existing data associated with the

column. Also be aware that renaming is not supported by all the adapters.

Changing Columns

change_column() Use the change_column() method to change the type of a column

or to alter the options associated with a column. Use it the same way you’d

use add_column, but specify the name of an existing column. Let’s say that the

order type column is currently an integer, but we need to change it to be a

string. We want to keep the existing data, so an order type of 123 will become

the string "123". Later, we’ll use noninteger values such as "new" and "existing".

Changing from an integer column to a string is one line of code:

def up
change_column :orders, :order_type, :string

end

report erratum • discuss

Anatomy of a Migration • 417

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

However, the opposite transformation is problematic. We might be tempted

to write the obvious down() migration:

def down
change_column :orders, :order_type, :integer
end

But if our application has taken to storing data like "new" in this column, the

down() method will lose it—"new" can’t be converted to an integer. If that’s

acceptable, then the migration is acceptable as it stands. If, however, we want

to create a one-way migration—one that cannot be reversed—we’ll want to

stop the down migration from being applied. In this case, Rails provides a

special exception that we can throw:

class ChangeOrderTypeToString < ActiveRecord::Migration
def up
change_column :orders, :order_type, :string, null: false

end

def down
raise ActiveRecord::IrreversibleMigration

end
end

ActiveRecord::IrreversibleMigration is also the name of the exception that Rails will

raise if you attempt to call a method that can’t be automatically reversed from

within a change() method.

Managing Tables

So far we’ve been using migrations to manipulate the columns in existing

tables. Now let’s look at creating and dropping tables:

class CreateOrderHistories < ActiveRecord::Migration
def change
create_table :order_histories do |t|

t.integer :order_id, null: false
t.text :notes

t.timestamps
end

end
end

create_table() takes the name of a table (remember, table names are plural) and

a block. (It also takes some optional parameters that we’ll look at in a minute.)

The block is passed a table definition object, which we use to define the

columns in the table.

Chapter 23. Migrations • 418

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Generally the call to drop_table() is not needed, as create_table() is reversible.

drop_table() accepts a single parameter, which is the name of the table to drop.

The calls to the various table definition methods should look familiar—they’re

similar to the add_column method we used previously except these methods

don’t take the name of the table as the first parameter, and the name of the

method itself is the data type desired. This reduces repetition.

Note that we don’t define the id column for our new table. Unless we say oth-

erwise, Rails migrations automatically add a primary key called id to all tables

they create. For a deeper discussion of this, see Primary Keys, on page 422.

The timestamps method creates both the created_at and updated_at columns, with

the correct timestamp data type. Although there is no requirement to add these

columns to any particular table, this is yet another example of Rails making

it easy for a common convention to be implemented easily and consistently.

Options for Creating Tables

You can pass a hash of options as a second parameter to create_table. If you

specify force: true, the migration will drop an existing table of the same name

before creating the new one. This is a useful option if you want to create a

migration that forces a database into a known state, but there’s clearly a

potential for data loss.

The temporary: true option creates a temporary table—one that goes away when

the application disconnects from the database. This is clearly pointless in the

context of a migration, but as we will see later, it does have its uses elsewhere.

The options: "xxxx" parameter lets you specify options to your underlying

database. They are added to the end of the CREATE TABLE statement, right after

the closing parenthesis. Although this is rarely necessary with SQLite 3, it

may at times be useful with other database servers. For example, some ver-

sions of MySQL allow you to specify the initial value of the autoincrementing

id column. We can pass this in through a migration as follows:

create_table :tickets, options: "auto_increment = 10000" do |t|
t.text :description
t.timestamps

end

Behind the scenes, migrations will generate the following DDL from this table

description when configured for MySQL:

report erratum • discuss

Managing Tables • 419

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CREATE TABLE "tickets" (
"id" int(11) default null auto_increment primary key,
"description" text,
"created_at" datetime,
"updated_at" datetime

) auto_increment = 10000;

Be careful when using the :options parameter with MySQL. The Rails MySQL

database adapter sets a default option of ENGINE=InnoDB. This overrides any local

defaults you have and forces migrations to use the InnoDB storage engine for

new tables. Yet, if you override :options, you’ll lose this setting; new tables will

be created using whatever database engine is configured as the default for your

site. You may want to add an explicit ENGINE=InnoDB to the options string to force

the standard behavior in this case. You probably want to keep using InnoDB

if you’re using MySQL, because this engine gives you transaction support. You

might need this support in your application, and you’ll definitely need it in your

tests if you’re using the default of transactional test fixtures.

Renaming Tables

If refactoring leads us to rename variables and columns, then it’s probably

not a surprise that we sometimes find ourselves renaming tables, too.

Migrations support the rename_table() method:

class RenameOrderHistories < ActiveRecord::Migration
def change
rename_table :order_histories, :order_notes

end
end

Rolling back this migration undoes the change by renaming the table back.

Problems with rename_table

There’s a subtle problem when we rename tables in migrations.

For example, let’s assume that in migration 4 we create the order_histories table

and populate it with some data:

def up
create_table :order_histories do |t|
t.integer :order_id, null: false
t.text :notes

t.timestamps
end

order = Order.find :first
OrderHistory.create(order_id: order, notes: "test")

end

Chapter 23. Migrations • 420

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Later, in migration 7, we rename the table order_histories to order_notes. At this

point we’ll also have renamed the model OrderHistory to OrderNote.

Now we decide to drop our development database and reapply all migrations.

When we do so, the migrations throw an exception in migration 4: our appli-

cation no longer contains a class called OrderHistory, so the migration fails.

One solution, proposed by Tim Lucas, is to create local, dummy versions of

the model classes needed by a migration within the migration. For example,

the following version of the fourth migration will work even if the application

no longer has an OrderHistory class:

class CreateOrderHistories < ActiveRecord::Migration

class Order < ApplicationRecord::Base; end➤

class OrderHistory < ApplicationRecord::Base; end➤

def change
create_table :order_histories do |t|

t.integer :order_id, null: false
t.text :notes

t.timestamps
end

order = Order.find :first
OrderHistory.create(order: order_id, notes: "test")
end

end

This works as long as our model classes do not contain any additional func-

tionality that would have been used in the migration—all we’re creating here

is a bare-bones version.

Defining Indices

Migrations can (and probably should) define indices for tables. For example,

we might notice that once our application has a large number of orders in

the database, searching based on the customer’s name takes longer than

we’d like. It’s time to add an index using the appropriately named add_index()
method:

class AddCustomerNameIndexToOrders < ActiveRecord::Migration
def change
add_index :orders, :name

end
end

If we give add_index the optional parameter unique: true, a unique index will be

created, forcing values in the indexed column to be unique.

report erratum • discuss

Managing Tables • 421

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

By default the index will be given the name index_table_on_column. We can

override this using the name: "somename" option. If we use the :name option when

adding an index, we’ll also need to specify it when removing the index.

We can create a composite index—an index on multiple columns—by passing

an array of column names to add_index.

Indices are removed using the remove_index() method.

Primary Keys

Rails assumes every table has a numeric primary key (normally called id) and

ensures the value of this column is unique for each new row added to a table.

We’ll rephrase that.

Rails doesn’t work too well unless each table has a primary key that Rails

can manage. By default, Rails will create numeric primary keys, but you can

also use other types such as UUIDs, depending on what your actual database

provides. Rails is less fussy about the name of the column. So, for your

average Rails application, our strong advice is to go with the flow and let Rails

have its id column.

If you decide to be adventurous, you can start by using a different name for

the primary key column (but keeping it as an incrementing integer). Do this

by specifying a :primary_key option on the create_table call:

create_table :tickets, primary_key: :number do |t|
t.text :description

t.timestamps
end

This adds the number column to the table and sets it up as the primary key:

$ sqlite3 db/development.sqlite3 ".schema tickets"
CREATE TABLE tickets ("number" INTEGER PRIMARY KEY AUTOINCREMENT
NOT NULL, "description" text DEFAULT NULL, "created_at" datetime
DEFAULT NULL, "updated_at" datetime DEFAULT NULL);

The next step in the adventure might be to create a primary key that isn’t an

integer. Here’s a clue that the Rails developers don’t think this is a good idea:

migrations don’t let you do this (at least not directly).

Tables with No Primary Key

Sometimes we may need to define a table that has no primary key. The most

common case in Rails is for join tables—tables with just two columns where

each column is a foreign key to another table. To create a join table using

migrations, we have to tell Rails not to automatically add an id column:

Chapter 23. Migrations • 422

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

create_table :authors_books, id: false do |t|
t.integer :author_id, null: false
t.integer :book_id, null: false

end

In this case, you might want to investigate creating one or more indices on

this table to speed navigation between books and authors.

Advanced Migrations

Most Rails developers use the basic facilities of migrations to create and

maintain their database schemas. However, every now and then it’s useful

to push migrations just a bit further. This section covers some more advanced

migration usage.

Using Native SQL

Migrations give you a database-independent way of maintaining your applica-

tion’s schema. However, if migrations don’t contain the methods you need to

be able to do what you need to do, you’ll need to drop down to database-

specific code. Rails provides two ways to do this. One is with options arguments

to methods like add_column(). The second is the execute() method.

When you use options or execute(), you might well be tying your migration to a

specific database engine, because any SQL you provide in these two locations

uses your database’s native syntax.

An example of where you might need to use raw SQL is if you are creating a

custom data type inside your database. Postgres, for example, allows you to

specify enumerated types. Enumerated types work just fine with Rails; but

to create them in a migration, you have to use SQL and thus execute(). Suppose

we wanted to create an enumerated type for the various pay types we support-

ed in our checkout form (which we created in Chapter 12, Task G: Check Out!,

on page 175):

class AddPayTypes < ActiveRecord::Migrations[5.1]
def up
execute %{

CREATE TYPE
pay_type

AS ENUM (
'check',
'credit card',
'purchase order'

)
}

end

report erratum • discuss

Advanced Migrations • 423

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

def down
execute "DROP TYPE pay_type"

end
end

Note that if you need to model your database using execute(), you should con-

sider changing your schema dump format from “ruby” to “SQL,” as outlined

in the Rails Guide.1 The schema dump is used during tests to create an

empty database with the same schema you are using in production.

Custom Messages and Benchmarks

Although not exactly an advanced migration, something that is useful to do

within advanced migrations is to output our own messages and benchmarks.

We can do this with the say_with_time() method:

def up
say_with_time "Updating prices..." do

Person.all.each do |p|
p.update_attribute :price, p.lookup_master_price

end
end

end

say_with_time() prints the string passed before the block is executed and prints

the benchmark after the block completes.

When Migrations Go Bad

Migrations suffer from one serious problem. The underlying DDL statements

that update the database schema are not transactional. This isn’t a failing in

Rails—most databases just don’t support the rolling back of create table, alter
table, and other DDL statements.

Let’s look at a migration that tries to add two tables to a database:

class ExampleMigration < ActiveRecord::Migration
def change
create_table :one do ...
end
create_table :two do ...
end

end
end

1. http://guides.rubyonrails.org/active_record_migrations.html#schema-dumping-and-you

Chapter 23. Migrations • 424

report erratum • discuss

http://guides.rubyonrails.org/active_record_migrations.html#schema-dumping-and-you
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

In the normal course of events, the up() method adds tables, one and two, and

the down() method removes them.

But what happens if there’s a problem creating the second table? We’ll end

up with a database containing table one but not table two. We can fix whatever

the problem is in the migration, but now we can’t apply it—if we try, it will

fail because table one already exists.

We could try to roll the migration back, but that won’t work. Because the

original migration failed, the schema version in the database wasn’t updated,

so Rails won’t try to roll it back.

At this point, you could mess around and manually change the schema

information and drop table one. But it probably isn’t worth it. Our recommen-

dation in these circumstances is simply to drop the entire database, re-create

it, and apply migrations to bring it back up-to-date. You’ll have lost nothing,

and you’ll know you have a consistent schema.

All this discussion suggests that migrations are dangerous to use on produc-

tion databases. Should you run them? We really can’t say. If you have

database administrators in your organization, it’ll be their call. If it’s up to

you, you’ll have to weigh the risks. But, if you decide to go for it, you really

must back up your database first. Then, you can apply the migrations by

going to your application’s directory on the machine with the database role

on your production servers and executing this command:

depot> RAILS_ENV=production bin/rails db:migrate

This is one of those times where the legal notice at the start of this book kicks

in. We’re not liable if this deletes your data.

Schema Manipulation Outside Migrations

All the migration methods described so far in this chapter are also available

as methods on Active Record connection objects and so are accessible within

the models, views, and controllers of a Rails application.

For example, you might have discovered that a particular long-running report

runs a lot faster if the orders table has an index on the city column. However,

that index isn’t needed during the day-to-day running of the application, and

tests have shown that maintaining it slows the application appreciably.

Let’s write a method that creates the index, runs a block of code, and then

drops the index. This could be a private method in the model or could be

implemented in a library:

report erratum • discuss

Schema Manipulation Outside Migrations • 425

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

def run_with_index(*columns)
connection.add_index(:orders, *columns)
begin

yield
ensure
connection.remove_index(:orders, *columns)

end
end

The statistics-gathering method in the model can use this as follows:

def get_city_statistics
run_with_index(:city) do

.. calculate stats
end

end

What We Just Did

While we had been informally using migrations throughout the development

of the Depot application and even into deployment, in this chapter we saw

how migrations are the basis for a principled and disciplined approach to

configuration management of the schema for your database.

You learned how to create, rename, and delete columns and tables; to manage

indices and keys; to apply and back out entire sets of changes; and even to

mix in your own custom SQL into the mix, all in a completely reproducible

manner.

At this point we’ve covered the externals of Rails. The next few chapters are

going to delve deeper. We are going to show you how to take Rails apart and

put it back together. The first stop along the way is to show you how to use

select Rails classes and methods outside the context of a web server.

Chapter 23. Migrations • 426

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

CHAPTER 24

In this chapter, you'll see:

• Replacing Rails’ testing framework with RSpec

• Using Slim for HTML templates instead of ERB

• Serving CSS with Webpack

• Post-processing CSS with cssnext

Customizing and Extending Rails

As you’ve come to learn, Rails provides an answer for almost every question

you have about building a modern web application. It provides the basics for

handling requests, accessing a database, writing user interfaces, and running

tests. It does this by having a tightly integrated design, which is often referred

to as Rails being “opinionated software.”

This tight coupling comes at a price. If, for example, the way Rails manages

CSS doesn’t meet the needs of your project, you could be in trouble. Or, if

you prefer to write your tests in a different way, Rails doesn’t give you a lot

of options. Or does it? In past versions of Rails, customizing it was difficult

or impossible. In Rails 3, much effort was expended to make Rails more cus-

tomizable, and by Rails 4, developers had a lot more flexibility to use the tools

they prefer or that work the way they want to work. That’s what we’ll explore

in this chapter.

We’ll replace three parts of Rails in this chapter. First, we’ll see how to use

RSpec to write our tests instead of Rails’ default testing library. Next, we’ll

replace ERB for the alternative templating language Slim. Finally, we’ll see

how to manage CSS using Webpack instead of putting it in app/assets/stylesheets.
This chapter will demonstrate another benefit to Rails, which is that you don’t

have to throw out the parts that work for you to use alternatives that work

better. Let’s get started.

Testing with RSpec

RSpec is an alternative to MiniTest, which Rails uses. It’s different in almost

every way, and many developers prefer it. Here’s what one of our existing

tests might look like, written in RSpec:

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

RSpec.describe Cart do

let(:cart) { Cart.create }
let(:book_one) { products(:ruby) }
let(:book_two) { products(:two) }

before do
cart.add_product(book_one).save!
cart.add_product(book_two).save!

end

it "can have multiple products added" do
expect(cart.line_items.size).to eq(2)

end

it "calculates the total price of all products" do
expect(cart.total_price).to eq(book_one.price + book_two.price)

end
end

It almost looks like a different programming language! Developers that prefer

RSpec like that the test reads like English: “Describe Cart, it can have multiple

products added, expect cart.line_items.size to eq 2.”

We’re going to quickly go through how to write tests in RSpec without too

much explanation. There’s a great book for that already [MD17], so we’ll learn

just enough RSpec to see it working with Rails, which demonstrates Rails’

configurability. Although many developers that use RSpec set it up from the

start of a project, you don’t have to. RSpec can be added at any time, and

that’s what we’ll do here.

Add rspec-rails to your Gemfile, putting it in the development and test groups:

group :development, :test do
gem 'rspec-rails'

end

After you bundle install, a new generator will set up RSpec for you:

> bin/rails generate rspec:install
create .rspec
create spec
create spec/spec_helper.rb
create spec/rails_helper.rb

Verify the configuration is working by running the new task Rspec installed, spec:

> bin/rails spec
No examples found.

Finished in 0.00058 seconds (files took 0.11481 seconds to load)
0 examples, 0 failures

Chapter 24. Customizing and Extending Rails • 428

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Let’s reimplement the test for Cart as an RSpec test or spec. RSpec includes

generators to create starter specs for us, similar to what Rails does with

scaffolding. To create a model spec, use the spec:model generator:

> bin/rails generate spec:model Cart
create spec/models/cart_spec.rb

Now, rerun spec and we can see RSpec’s generator has created a pending spec:

> bin/rails spec
Pending: (Failures listed here are expected and do not affect your suite's status)

1) Cart add some examples to (or delete) spec/models/cart_spec.rb
Not yet implemented
./spec/models/cart_spec.rb:4

Finished in 0.00284 seconds (files took 1.73 seconds to load)
1 example, 0 failures, 1 pending

To reimplement the test for Cart as a spec, let’s first review the existing test:

rails51/depot_u/test/models/cart_test.rb

require 'test_helper'

class CartTest < ActiveSupport::TestCase
def setup
@cart = Cart.create
@book_one = products(:ruby)
@book_two = products(:two)

end

test "add unique products" do
@cart.add_product(@book_one).save!
@cart.add_product(@book_two).save!
assert_equal 2, @cart.line_items.size
assert_equal @book_one.price + @book_two.price, @cart.total_price

end

test "add duplicate product" do
@cart.add_product(@book_one).save!
@cart.add_product(@book_one).save!
assert_equal 2*@book_one.price, @cart.total_price
assert_equal 1, @cart.line_items.size
assert_equal 2, @cart.line_items[0].quantity

end
end

The setup creates a cart and fetches two products from the fixtures. It then

tests the add_product() in two ways: by adding two distinct products and by

adding the same product twice.

report erratum • discuss

Testing with RSpec • 429

http://media.pragprog.com/titles/rails51/code/rails51/depot_u/test/models/cart_test.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Let’s start with the setup. By default, RSpec is configured to look in spec/fixtures
for fixtures. This is correct for a project using RSpec from the start, but for

us, the fixtures are in test/fixtures. Change this by editing spec/rails_helper.rb:

rails51/depot_xa/spec/rails_helper.rb

RSpec.configure do |config|
Remove this line if you're not using ActiveRecord or ActiveRecord fixtures
config.fixture_path = "#{::Rails.root}/test/fixtures"➤

Back to the spec, its setup will need to create a Cart to use in our tests as well as

fetch two products from fixtures. By default, fixtures aren’t available in specs, but

you can call fixtures() to make them available. Here’s what the setup looks like:

rails51/depot_xa/spec/models/cart_spec.rb

require 'rails_helper'

RSpec.describe Cart, type: :model do

fixtures :products➤

subject(:cart) { Cart.new }➤

➤

let(:book_one) { products(:ruby) }➤

let(:book_two) { products(:two) }➤

This definitely doesn’t look like our original test! The call to subject() declares

the variable cart, which you will use in the tests later. The calls to let() declare

other variables that can be used in the tests. The reason for two methods

that seemingly do the same thing is an RSpec convention. The object that is

the focus of the test is declared with subject(). Ancillary data needed for the

test is declared with let().

The tests themselves will also look quite different from their equivalents in a

standard Rails test. For one thing, they aren’t called tests but rather examples.

Furthermore, it’s customary for each example to make only one assertion.

The existing test of adding different products makes two assertions, so in the

spec, that means two examples.

Assertions look different in RSpec as well:

expect(actual_value).to eq(expected_value)

Applying this to the two assertions around adding distinct items, we have

two examples (we’ll show you where this code goes in a moment):

it "has two line items" do
expect(cart.line_items.size).to eq(2)

end
it "has a total price of the two items' price" do

expect(cart.total_price).to eq(book_one.price + book_two.price)
end

Chapter 24. Customizing and Extending Rails • 430

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_xa/spec/rails_helper.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_xa/spec/models/cart_spec.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

These assertions won’t succeed unless items are added to the cart first. That

code could go inside each example, but RSpec allows you to extract duplicate

setup code into a block using before():

before do
cart.add_product(book_one).save!
cart.add_product(book_two).save!

end
it "has two line items" do

expect(cart.line_items.size).to eq(2)
end
it "has a total price of the two items' price" do

expect(cart.total_price).to eq(book_one.price + book_two.price)
end

This setup is only relevant to some of the tests of the add_product() method,

specifically the tests around adding different items. To test adding the same

item twice, you’ll need different setups. To make this happen, wrap the above

code in a block using context(). context() takes a string that describes the context

we’re creating and acts as a scope for before() blocks. It’s also customary to

wrap all examples of the behavior of a method inside a block given to describe().
Given all that, here’s what the first half of your spec should look like:

rails51/depot_xa/spec/models/cart_spec.rb

describe "#add_product" do➤

context "adding unique products" do➤

before do➤

cart.add_product(book_one).save!➤

cart.add_product(book_two).save!➤

end➤

➤

it "has two line items" do➤

expect(cart.line_items.size).to eq(2)➤

end➤

it "has a total price of the two items' price" do➤

expect(cart.total_price).to eq(book_one.price + book_two.price)➤

end➤

end➤

Here is the second half of the spec, which tests the behavior of add_product()
when adding the same item twice:

rails51/depot_xa/spec/models/cart_spec.rb

context "adding duplicate products" do➤

before do➤

cart.add_product(book_one).save!➤

cart.add_product(book_one).save!➤

end➤

➤

report erratum • discuss

Testing with RSpec • 431

http://media.pragprog.com/titles/rails51/code/rails51/depot_xa/spec/models/cart_spec.rb
http://media.pragprog.com/titles/rails51/code/rails51/depot_xa/spec/models/cart_spec.rb
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

it "has one line item" do➤

expect(cart.line_items.size).to eq(1)➤

end➤

it "has a line item with a quantity of 2" do➤

expect(cart.line_items.first.quantity).to eq(2)➤

end➤

it "has a total price of twice the product's price" do➤

expect(cart.total_price).to eq(book_one.price * 2)➤

end➤

end➤

Running bin/rails spec, it should pass:

> bin/rails spec
.....

Finished in 0.11007 seconds (files took 1.72 seconds to load)
5 examples, 0 failures

A lot of code in this file isn’t executing a test, but all the calls to describe(),
context(), and it() aren’t for naught. Passing SPEC_OPTS="--format=doc" to the spec

task, the test output is formatted like the documentation of the Cart class:

> bin/rails spec SPEC_OPTS="--format=doc"

Cart
#add_product
adding unique products

has two line items
has a total price of the two items' price

adding duplicate products
has one line item
has a line item with a quantity of 2
has a total price of twice the product's price

Finished in 0.14865 seconds (files took 1.76 seconds to load)
5 examples, 0 failures

Also note that rspec-rails changes the Rails generators to create empty spec files

in spec/ instead of test files in test/. This means that you use all the generators

and scaffolding you are used to in your normal workflow without having to

worry about the wrong type of test file being created.

If all of this seems strange to you, you are not alone. It is strange, and the

reasons RSpec is designed this way, as well as why you might want to use it,

are nuanced and beyond the scope of this book. The main point all this proves

is that you can replace a major part of Rails with an alternative and still get

all the benefits of the rest of Rails. It’s also worth noting that RSpec is quite

popular, and you are very likely to see it in the wild.

Chapter 24. Customizing and Extending Rails • 432

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Let’s learn more about Rails’ configurability by replacing another major piece

of Rails—ERB templates.

Creating HTML Templates with Slim

Slim is a templating language that can replace ERB.1 It is designed to require

much less code to achieve the same results, and it does this by using a

nested structure instead of HTML tags. Consider this ERB:

<h2><%= t('.title') %></h2>
<table>

<%= render(cart.line_items) %>

<tr class="total_line">
<td colspan="2">Total</td>
<td class="total_cell"><%= number_to_currency(cart.total_price) %></td>

</tr>

</table>

In Slim, this would look like so:

h2
= t('.title')

table
= render(cart.line_items)

tr.total_line
td.colspan=2

Total
td.total_cell

= number_to_currency(cart.total_price)

Slim treats each line as an opening HTML tag, and anything indented under

that line will be rendered inside that tag. Helper methods and instance vari-

ables can be accessed using =, like so:

ul
li = link_to @product.name, product_path(@product)

To execute logic, such as looping over a collection, use -, like so:

ul
- @products.each do |product|
li

- if product.available?
= link_to product.name, product_path(product)

- else
= "#{product.name} out of stock"

1. http://slim-lang.com

report erratum • discuss

Creating HTML Templates with Slim • 433

http://slim-lang.com
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

The code after - is executed as Ruby, but note that no end keyword is needed

—Slim inserts that for you.

Slim allows you to specify HTML classes by following a tag with a . and the

class name:

h1.title This title has the "title" class!

And, in a final bit of ultracompactness, if you want to create a div with an

HTML class on it, you can omit div entirely. This creates a div with the class

login-form that contains two text inputs:

.login-form
input type=text name=username
input type=password name=password

Putting all this together, let’s install Slim and reimplement the home page in

app/views/store/index.html.erb using it. This will demonstrate how Rails allows us

to completely replace its templating engine.

First, install slim-rails by adding it to the Gemfile:

gem 'slim-rails'

After you bundle install, your Rails app will now render files ending in .slim as a

Slim template. We can see this by removing app/views/store/index.html.erb and

creating app/views/stores/index.slim like so:

rails51/depot_xb/app/views/store/index.slim

- if notice
aside#notice = notice

h1 = t('.title_html')

ul.catalog
- cache @products do
- @products.each do |product|
- cache product do

li
= image_tag(product.image_url)
h2 = product.title
p = sanitize(product.description)
.price

= number_to_currency(product.price)
= button_to t('.add_html'),

line_items_path(product_id: product, locale: I18n.locale),
remote: true

Restart your server if you have it running, and you should see the home page

render the same as before.

Chapter 24. Customizing and Extending Rails • 434

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_xb/app/views/store/index.slim
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

In addition to being able to render Slim, installing slim-rails changes Rails

generators to create Slim files instead of ERB, so all of the scaffolding and

other generators you’re used to will now produce Slim templates automatically.

You can even convert your existing ERB templates to Slim by using the erb2slim
command, available by installing the html2slim Ruby gem.2

Let’s learn one more thing about Rails’ configurability by configuring our app

to serve CSS from Webpack.

Serving CSS via Webpack

We’ve been writing CSS in files located in app/assets/stylesheets. Rails will find

whatever .css files are there, bundle them all up together, and make the

combined CSS available to your views. If you want to use modern CSS tools

or techniques, such as CSS modules or Post CSS,3,4 it’s not easy or possible

to use them with the CSS that Rails serves up.

The part of Rails that handles CSS is called Sprockets, and while new gems

are always being produced to give Sprockets new abilities, the state of the art

in CSS is part of the JavaScript ecosystem and available via Webpack. Prior

to Rails 5.1, setting up Webpack was extremely difficult. But as we learned

in Chapter 13, Task H: Entering Additional, on page 195, Rails now includes

full support for Webpack, and it turns out that Webpacker has configured

Webpack to serve CSS already!

We’ll modify the app so that Webpack is serving CSS, and we’ll demonstrate the

benefit of this by installing cssnext.5 cssnext allows you to use features of CSS

that aren’t supported in the browser by post-processing the CSS you write.

Webpacker configured Webpack to look for CSS in app/javascript/packs, which is

strange, but since it’s the default, let’s go with it. Move app/assets/stylesheets/applica-
tion.scss into app/javascript/packs. Next, create the directory app/javascript/packs/css, and

move all the other .scss files from app/assets/javascripts into that directory.

If you open up app/javascript/packs/application.scss, you should see a large comment

at the top of the file. At the end of the comment, there are two directives that

look like this:

//= require_tree .
//= require_self

2. https://github.com/slim-template/html2slim
3. https://github.com/css-modules/css-modules
4. https://github.com/postcss/postcss
5. http://cssnext.io/

report erratum • discuss

Serving CSS via Webpack • 435

https://github.com/slim-template/html2slim
https://github.com/css-modules/css-modules
https://github.com/postcss/postcss
http://cssnext.io/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

These directives tell Sprockets to include all the .scss files in the current

directory, which allows us to put CSS in several different files. Webpack

doesn’t support these directives, so we’ll need to add some code to application.scss
to replicate what they do.

As mentioned way back in Iteration A2: Making Prettier Listings, on page 78,

our CSS files are actually Sass files, and Sass has the ability to import

external files using @import. Unfortunately, we can’t @import all files with one

line of code, so you’ll need to add one @import for each file:

rails51/depot_xc/app/javascript/packs/application.scss

@import "css/admin.scss";➤

@import "css/carts.scss";➤

@import "css/line_items.scss";➤

@import "css/orders.scss";➤

@import "css/products.scss";➤

@import "css/scaffolds.scss";➤

@import "css/sessions.scss";➤

@import "css/store.scss";➤

@import "css/users.scss";➤

Webpack will now serve up CSS, but the application layout needs to be

changed to bring it in. Replace the call to stylesheet_link_tag() with the Webpacker-

provided stylesheet_pack_tag().

rails51/depot_xc/app/views/layouts/application.html.erb

<%= stylesheet_pack_tag "application" %>➤

Restart your server, and the app should appear the same as it did before.

We can take advantage of this new way of serving CSS by configuring cssnext.

cssnext is a plugin to Post CSS, which is a general CSS post-processor. For-

tunately for us, Webpacker has already configured it, so we only need to

install and configure cssnext.

To install it, use Yarn to add it to the project:

> yarn add postcss-cssnext

Webpacker created the file .postcssrc.yml to allow configuration of Post CSS.

With cssnext installed, all we need to do is add a line to the end of the file

indicating we want cssnext to be included when post-processing the CSS:

rails51/depot_xc/.postcssrc.yml

plugins:
postcss-smart-import: {}
postcss-cssnext: {}

Chapter 24. Customizing and Extending Rails • 436

report erratum • discuss

http://media.pragprog.com/titles/rails51/code/rails51/depot_xc/app/javascript/packs/application.scss
http://media.pragprog.com/titles/rails51/code/rails51/depot_xc/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/rails51/code/rails51/depot_xc/.postcssrc.yml
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

To see this in action, let’s use the new CSS function gray(),6 which generates

various shades of gray. Few browsers support this, and cssnext will convert

any call to gray() into something the browser does support. We’ll change the

black border at the top of the home page to gray, like so:

rails51/depot_xc/app/javascript/packs/css/store.scss

.store {
max-width: 80em;
ul.catalog {

border-top: solid 0.250em gray(50%);➤

Restart your server and reload the page. The border should be gray. To see

what happened, open up http://0.0.0.0:8080/packs/application.css in your browser.

This will show you the CSS that’s actually being served up. If you scroll down

to the CSS from store.scss, you should see that it’s not the same—the gray()
function is gone, replaced by a call to rgb(), which modern browsers do support.

Customizing Rails in Other Ways

Customizing the edges of Rails, like you did above with CSS, HTML templates,

and tests, tends to be more straightforward and more options are out there for

you. Customizing Rails’ internals is more difficult. If you want, you can remove

Active Record entirely and use libraries like Sequel or ROM,7,8 but you’d be giving

up a lot—Active Record is tightly coupled with many parts of Rails.

Tight coupling is usually viewed as a problem, but it’s this coupling that

allows you to be so productive using Rails. The more you change your Rails

app into a loosely coupled assembly of unrelated libraries, the more work you

have to do getting the pieces to talk to each other. Finding the right balance

is up to you, your team, or your project.

The Rails ecosystem is also filled with plugins and enhancements to address

common needs that aren’t quite common enough to be added to Rails itself.

For example, Kaminari provides pagination for when you need to let a user

browse hundreds or thousands of records.9 Ransack and Searchkick provide

advanced ways of searching your database with Active Record.10,11 CarrierWave

6. http://cssnext.io/features/#gray-function
7. http://sequel.jeremyevans.net/
8. http://rom-rb.org/
9. https://github.com/kaminari/kaminari
10. https://github.com/activerecord-hackery/ransack
11. https://github.com/ankane/searchkick

report erratum • discuss

Customizing Rails in Other Ways • 437

http://media.pragprog.com/titles/rails51/code/rails51/depot_xc/app/javascript/packs/css/store.scss
http://cssnext.io/features/#gray-function
http://sequel.jeremyevans.net/
http://rom-rb.org/
https://github.com/kaminari/kaminari
https://github.com/activerecord-hackery/ransack
https://github.com/ankane/searchkick
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

makes uploading files to your Rails app much more straightforward than

hand-rolling it yourself.12

And if you want to analyze and improve the code inside your Rails app,

RuboCop can check that you are using a consistent style,13 while Brakeman

can check for common security vulnerabilities.14

These extras are the tip of the iceberg. The community of extensions and

plugins for Rails is yet another benefit to building your next web application

with Rails.

Where to Go from Here

Congratulations! We’ve covered a lot of ground together.

In Part I, you installed Rails, verified the installation using a basic application,

got exposed to the architecture of Rails, and got acquainted (or maybe reac-

quainted) with the Ruby language.

In Part II, you iteratively built an application, built up test cases along the

way, and ultimately deployed it using Capistrano. We designed this application

to touch on all aspects of Rails that every developer needs to be aware of.

Whereas Parts I and II of this book each served a single purpose, Part III

served a dual role.

For some of you, Part III methodically filled in the gaps and covered enough

for you to get real work done. For others, these will be the first steps of a

much longer journey.

For most of you, the real value is a bit of both. A firm foundation is required

in order for you to be able to explore further. And that’s why we started this

part with a chapter that not only covered the convention and configuration

of Rails but also covered the generation of documentation.

Then we proceeded to devote a chapter each to the model, views, and con-

troller, which are the backbone of the Rails architecture. We covered topics

ranging from database relationships to the REST architecture to HTML forms

and helpers.

We covered migration as an essential maintenance tool for the deployed

application’s database.

12. https://github.com/carrierwaveuploader/carrierwave
13. https://github.com/bbatsov/rubocop
14. https://github.com/presidentbeef/brakeman

Chapter 24. Customizing and Extending Rails • 438

report erratum • discuss

https://github.com/carrierwaveuploader/carrierwave
https://github.com/bbatsov/rubocop
https://github.com/presidentbeef/brakeman
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Finally, we split Rails apart and explored the concept of gems from a number

of perspectives, from making use of individual Rails components separately

to making full use of the foundation upon which Rails is built and finally to

building and extending the framework to suit your needs.

At this point, you have the necessary context and background to more deeply

explore whatever areas suit your fancy or are needed to solve that vexing

problem you face. We recommend you start by visiting the Ruby on Rails site

and exploring each of the links across the top of that page.15 Some of this will

be quick refreshers of materials presented in this book, but you will also find

plenty of links to current information on how report problems, learn more,

and keep up-to-date.

Additionally, please continue to contribute to the forums mentioned in the

book’s introduction.

Pragmatic Bookshelf has more books on Ruby and Rails subjects. There also

are plenty of related categories that go beyond Ruby and Rails, such as

technical practices; testing, design, and cloud computing; and tools, frame-

works, and languages. You can find these and many other categories at

http://www.pragprog.com/.

We hope you have enjoyed learning about Ruby on Rails as much as we have

enjoyed writing this book!

15. http://rubyonrails.org/

report erratum • discuss

Where to Go from Here • 439

http://www.pragprog.com/
http://rubyonrails.org/
http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Bibliography

[Bur15] Trevor Burnham. CoffeeScript. The Pragmatic Bookshelf, Raleigh, NC, 2015.

[CC16] Hampton Lintorn Catlin and Michael Lintorn Catlin. Pragmatic Guide to

Sass 3. The Pragmatic Bookshelf, Raleigh, NC, 2016.

[FH13] Dave Thomas, with Chad Fowler and Andy Hunt. Programming Ruby 1.9

& 2.0 (4th edition). The Pragmatic Bookshelf, Raleigh, NC, 4th, 2013.

[HT99] Andrew Hunt and David Thomas. The Pragmatic Programmer. The Pragmatic

Bookshelf, Raleigh, NC, 1999.

[MD17] Myron Marston and Ian Dees. Effective Testing with RSpec 3. The Pragmatic

Bookshelf, Raleigh, NC, 2017.

[Rap17] Noel Rappin. Take My Money. The Pragmatic Bookshelf, Raleigh, NC, 2017.

[Val13] José Valim. Crafting Rails 4 Applications. The Pragmatic Bookshelf, Raleigh,

NC, 2013.

report erratum • discuss

http://pragprog.com/titles/rails51/errata/add
http://forums.pragprog.com/forums/rails51

Index

SYMBOLS
! (exclamation point), bang

methods, 61

" (double quotes), strings, 49,
79

character
commenting out with,

287
comments, 49
CSS selectors, 115
expression interpolation,

50

#{…}, 50

%r{…}, 52

%{…}, 79

& prefix operator, 55

' (single quotes), strings, 49

() (parentheses)
method calls, 48
regular expressions, 52
REST routes, 357

-> lambda syntax, 62

. (dot)
CSS selectors, 115
filenames, 86
specifying HTML classes

in Slim, 434
translating names, 257
validating with regular

expressions, 90

/ (forward slash), regular ex-
pressions, 52

: (colon), in symbols, 48

: prefix, 48

; (semicolon), in methods, 49

<%=...%> sequence, 29

<<() method, 51

== operator, 325

=> (arrow syntax), 51

=~ match operator, 52

? (question mark)
predicate methods, 61
SQL placeholders, 331

@ symbol, instance variables,
48, 56

[’a’,’b’,’c’], 51

[…], 52

[] (brackets)
array indices, 50
hash indices, 52

\ (backslash)
multiple-line commands,

72
regular expressions, 53,

90
string substitutions, 50

^ (caret), multiple-line com-
mands, 72

(_) underscore
migrations, 411
in names, 48, 315, 319
partial templates, 153,

407

{} (braces)
blocks, 54
hashes, 51–52
JSX, 206

| (vertical bar)
arguments in blocks, 54
regular expressions, 52,

90

× (Unicode character), 138

A
\A, 53

-a option for committing, 101

:abort, 124

Accept header, 362

accepts(), 365

accessors, 57, 104, 393

ACID properties, 352

Action Cable, broadcasting
updates, 169–173

Action Controller, 353–384
about, 353
action methods, 363–375
callbacks and controllers,

381–383
dispatching requests,

354–363
flash and, 380
objects and operations

that span requests,
375–383

processing requests, 363–
375

redirects, 372–375
sending files and data,

370–372
sessions and controllers,

375–380

Action Dispatch
about, 353
concerns, 362
dispatching requests,

354–363
REST, 354–363

Action Mailer, 217–234
checking sent mail, 233

configuring email, 218–
219

receiving email, 223
sending email, 219–224
testing email, 224

Action Pack, about, 44, 353,
see also Action Controller;
Action Dispatch; Action
View

:action parameter, 368

Action View, 385–410
about, 353
generating forms, 387–

390
helpers, 395–402
layouts and partials, re-

ducing maintenance
with, 402–409

processing forms, 390–
391

templates and, 385–387
uploading files, 391–395

action_name, 364

ActionMailer::Base.deliveries(), 233

ActionNotFound, 363

actions, see also Action Ca-
ble; Action Controller; Ac-
tion Dispatch; Action Mail-
er; Action View; REST

action methods, 363–375
:action parameter for ren-

dering templates, 368
adding, 361
callbacks and controllers,

381–383
environment actions,

364–366
flash and controllers, 380
link_to_unless_current(), 400
MVC architecture, 40
qualifying layouts, 404
redirecting to, 374
selecting in callbacks,

382
user response actions,

366–375

Active Job
about, xiv, 225
connecting to slow pay-

ment processor, 225–
234

creating class, 229
resources, 233

Active Record, 319–352, see

also migrations
about, 319
advantages, 44

creating rows, 328–330
CRUD, 328–342
custom SQL queries, 337
defining data, 319–324
deleting rows, 342
encryption, 345–348
finding rows, 330–335
hook methods, 250
life cycle, 342–348
locating and traversing

records, 324–327
in MVC architecture, 43
plugins, 437
reading, 330–339
reloading data, 338
scopes, 336
specifying relationships,

326
statistics, 335
storing session data,

378, 380
subsetting records, 333–

335
tables and columns, un-

derstanding, 319–324
transactions, 348–352
updating rows, 339–341

Active Support, 295

ActiveJob::TestHelper module, 231

activerecord-session_store, 378

adapters, database, 21

addEventListener(), 202

add_XXX_to_TABLE pattern, 133

add_column(), 414

add_index(), 421

add_line_items_from_cart(), 186

add_product(), 134, 149

addition, Playtime exercises,
38

after callbacks, 381

after_action, 381

after_create, 343

after_destroy, 250, 343

after_find, 343, 345

after_initialize, 343, 346

after_save, 343, 345

after_update, 343

after_validation, 343

agile
principles, xix–xx
Rails as, xix

Agile Manifesto, xix

Ajax, 151–174
broadcasting updates,

169–173
creating cart, 159–164
defined, 151
exercises, 174
functional testing, 158–

159, 166
hiding cart, 167–169
highlighting changes,

164–167
incremental style, 173
moving cart to sidebar,

152–159
partial templates, 152–

156, 409
troubleshooting, 162, 173

all(), 333

allow_blank, 90

:alt option, 400

animation attribute, 164

animations, CSS, 164–167

any?(), 92

a op= b, 61

Apache
deployment with Capistra-

no, 288–294
deployment with Passen-

ger and MySQL, 281–
288

installing, 282
troubleshooting, 284

apache2ctl, 283

APIs, listing and documenta-
tion, xxiii

app directory, 24, 309

application.html.erb, 82, 107

applications
architecture, 39–45
checking on deployed

apps, 294–299
creating, 23–26, 71
directory, 23, 309
quitting, 25, 38
reloading automatically,

30
restarting without

Apache, 285
starting new, 25
uploading files, 391–395
URL of, 28, 31, 75, 104

around callbacks, 382

around_action, 382

array literals, 50

Index • 444

arrays
about, 50
SQL queries, 333, 338
words, 51

arrow syntax (=>), 51

as: option, 104

assert(), 91–94

assert_match(), 225

assert_redirected_to(), 144

assert_select(), 115, 119

assertions, see also testing
defined, 92
RSpec, 430

asset_host, 401

assets directory, 401

AssetTagHelper, 399–402

assignment shortcut, 61

_at suffix, 324

Atom
editor, 18
feeds, 189–192, 252, 401

atom_feed, 189–192

attachment_fu plugin, 394

attr_accessor, 57

attr_reader, 57

attr_writer, 57

attribute_names(), 337

attribute_present?(), 337

attributes
creating rows, 328
custom SQL queries, 337
custom data, 399
labels, 389
lack of explicit defini-

tions, 321
mapping, 42–44
raw values, 322
readers and writers, 322
reloading, 338
understanding, 321–324
updating records, 339

attributes() method, 337

authenticate_or_request_with_http_ba-
sic(), 252

authenticating
exercises, 251
limiting access, 245–247
testing, 246
users, 239–245

auto_discovery_link_tag(), 401

average(), 335

a || b, 61

B
back end, 233

:back parameter, 374

background jobs
connecting to slow pay-

ment processor, 225–
234

queuing, 230, 233
running in development

or production, 233

backslash (\)
multiple-line commands,

72
regular expressions, 53,

90
string substitutions, 50

bang methods, 61

banners
adding, 108
styling, 111

base_path attribute, 386

BBEdit, 19

:bcc parameter, 401

bcrypt-ruby gem, 290, 309

before(), 431

before callbacks, 381–382

before_action
about, 245, 381
checkout error handling,

178
locale, setting, 256

before_create, 343

before_destroy, 343

before_save, 343, 345

_before_type_cast, 322

before_update, 343

before_validation, 343

belongs_to(), 123, 184, 186, 326

benchmarks, 424

BigDecimal, 323

bin directory, 24, 312

:binary column type, 415

bind(), 208

binstubs, 25, 312

blacklisting, 245

blind option, 174

blocks
about, 54
callbacks, 344, 382–383
converting into a Proc, 62
passing, 54, 161

blogging redirect example,
372–375

BlueCloth, 398

body(), 365

:body parameter, 401

:boolean column type, 415

Booleans, 323, 415

braces ({})
block, 54
hashes, 51–52
JSX, 206

brackets ([])
array indices, 50
hash indices, 52

Brakeman, 438

broadcasting, updates, 169–
174

browsers
broadcasting changes,

172
debugging JavaScript,

173
Internet Explorer quirks

mode, 163
payment functional test-

ing, 214–216
reloading, 162
running JavaScript safe-

ly, 166
support for testing in live,

xiv

:buffer_size, 371

Builder, XML templates, 45,
190, 367, 387

bundle exec, 25

Bundler
about, 280
Capistrano, installing,

290
directory, 309
installing, 281
package command, 290
running rails, 25

button_to(), 125, 144, 160, 399

buttons
adding, 125–131, 144,

176, 399
Ajax-based, 159–164
decrementing, 174
deleting items, 149
disabling, 193
passing IDs to, 125
styling, 126
translating, 261

Index • 445

C
cache, 116

Cache-Control, 364

caching
controller role, 45
counter, 324
headers, 364
partial results, 116–118
resources, 117
REST, 355
Russian doll, 117
toggling, 116

call(), 383

callbacks
about, 245
Active Record and object

life cycle, 342–348
after, 381
around, 382
before, 381
cart example, 128
controllers and, 381–383
defining, 343
grouping, 344–348
handlers, 344–348
inheritance, 383
limiting access, 245–247,

382
locale, setting, 256
nesting, 383
passing objects as, 383
rendering JSON, 369
selecting actions, 382
skipping, 245, 383
types, 381
wrapping diagram, 343

Capfile, 291

Capistrano
about, 280
deployment with, 288–

294
exercises, 300
installing, 290

capitalize(), 50

Capybara, 214–215

caret (^), multiple-line com-
mands, 72

CarrierWave, 437

cart, see also orders; prod-
ucts, Depot app

adding buttons, 144
with Ajax, 151–174
broadcasting updates,

169–173
buttons, adding, 125–

131, 156

checkout, 175–193
connecting to products,

122–125
counter, 132
creating, 121–132
creating Ajax-based, 159–

164
deleting, 185
emptying, 143–148
error handling, 138–143
exercises, 149, 193
finding, 121
functional testing, 130,

138, 144, 148, 158–
159, 166, 178, 183,
186

hiding, 167–169, 396
highlighting changes,

164–167
moving to sidebar, 152–

159
multiple items, 133–138
orders, capturing, 175–

176
partial templates, 152–

156
price totals, 146
security, 139, 142
styling, 146
testing connection to

products, 124
testing with RSpec, 429–

433
translating, 261

case
JSX, 208
names, 48, 315

catalog, Depot app
broadcasting updates,

169–173
caching partial results,

116–118
creating listing, 103–107
display, 103–119
functional testing, 114–

116

:cc parameter, 220, 401

change(), 414, 418

change and agile principles,
xx

change_column(), 417

channels, 170

checkout ., 102

checkout, Depot app, 175–
193

dynamic forms, 201–214
errors, 178, 187

order alerts, 189–192
order details, capturing,

184–188
order form, 176–184
orders, capturing, 175–

176
testing, 178, 183, 186
testing with RSpec, 429–

433
translating, 265–275
validations, 182, 193

ChromeDriver
about, 3
installing, 6–7, 11, 13, 15
payment functional test-

ing, 214–216

chruby, 13

CI (continuous integration)
system, 17

class (HTML attribute), 80

class keyword, 56

class methods, 56, 61

classes
about, 47, 56–57
automatic loading, 317
callbacks, 382–383
class methods, 56, 61
creating Active Job, 229
defining, 56
defining for stylesheet, 82
JavaScript classes as

functions, 208
mapping, 42–44
marshaled objects, 59
migrations and names,

414
names, 48, 56, 315, 414
specifying HTML classes

in Slim, 434
tables, 319
versioning and storing

session data, 377

cleanup, session, 379

cloud hosting
advantages, 4
deleting files, 5
installing Rails, 4–6

Cloud9, 4–6

code
for this book, xiii, xxii
conventions, xxii
deployment diagram, 279
limiting in templates, 395
shared, 122, 310
statistics, 304
third-party, 313

Index • 446

CoffeeScript, 161, 169, 172,
387

CoffeeScript: Accelerated

JavaScript Development,
172

:collection parameter, 408

collections
partial templates, 153,

407
scoping, 361

colon (:), in symbols, 48

colors
cycling, 83
gray, 437
highlighting changes,

164–167

columns
adding, 133–138, 414
changing column type,

417
column types and migra-

tions, 415–418
fixtures, 95
listing, 321
mapping, 42–44, 415
removing, 414
renaming, 417
statistics, 335
timestamps, 324, 415
understanding, 319–324
updating records, 339

command line
about, 16
adding users, 249
database connections,

287
multiple-line commands,

72
tab completion, 17

command window, opening
in Windows, 12

comments
formatting helpers, 398
Ruby, 49
uploading images, 394

committing, 101, 290, 372–
375

components, React, 200, 203–
213

composite index, 422

concatenation, 38

concerns, 348, 362

conditional evaluation, 61

config directory, 314–315

config.ru, 308

config/deploy.rb file, 292

configuring
Apache, 282
databases, 97
directory, 314–315
documentation, 315
email, 218–219
Git, 12, 86
Heroku deployment, 297
Rack, 308
REST, 356
review of Depot app, 303
routes, 243
SCM systems, 289
second machine for de-

ployment, 281
selecting locale, 254
Webpacker, 197–200

:confirm parameter, 399

confirmation boxes, 83

confirmation emails, 217–225

connected(), 172

console
about, 313
adding users, 249
checking on deployed

apps, 294
exercises, 251
inspecting errors with,

35–36
listing column names,

321

console window, 25

constants, 48

constraints, REST, 354

constructors, 48

content type
forcing when rendering,

369
sending files and data,

371–372
uploading files, 393

Content-Type header, render-
ing attribute, 370

content_for, 406

content_length(), 365

content_type(), 365

:content_type parameter, 370,
393

context
forms, 179
RSpec tests, 431

context() method, 431

continuous integration (CI)
system, 17

control structures, 53

controller attribute, 386

controllers, see also Action
Controller; Action Dispatch;
Model-View-Controller
(MVC) architecture

action methods, 363–375
Action Pack support, 44
administration, 236
associating styles with,

82
buttons, adding, 125–131
callbacks and, 381–383
cart, emptying, 144–148
connecting to slow pay-

ment processor, 225–
234

creating, 27, 72, 103
creating Depot, 72
default behavior, 27
directories, 28
dispatching requests,

354–363
environment actions,

364–366
error logging, 140
flash and, 380
functional testing, 114–

116, 130, 138, 144,
148, 239, 244, 246

grouping into modules,
317

Hello, World! app, 26
locale, setting, 256
marshaled objects, 59
multiple items, 134–138
name in URL of applica-

tions, 28, 75
names, 72, 315–318
objects and operations

that span requests,
375–383

order details, capturing,
184–188

overriding layouts, 403
partial templates, 409
processing requests, 363–

375
redirects, 372–375
rendering template ac-

tions, 366–370
review of Depot app, 302
role, 40, 45
sending files and data,

370–372
separating logic from da-

ta, 31
sessions and, 45, 375–

380

Index • 447

switching locales, 277
user response actions,

366–375
writing helper methods,

168, 396

convention over configuration
advantages, xviii
Hello, World! example, 32
MVC architecture, 40

conventions, for this book,
xxii

cookies
action, 364
encryption, 283
expiring, 379
storing session data,

375–376, 378–379

cookies action, 364

copying, files, xxii

count(), 335

counters, 132, 324

coupling, 154, 437

Crafting Rails 4 Applications,
xxi

create()
about, 127
adding users, 235–239
buttons, adding, 125–131
compared to save(), 341
order details, capturing,

184–188
orders, duplication of,

186
requests and MVC archi-

tecture, 41
rows, 329
stopping for redirecting,

161
testing, 239

create action, 357

create!(), 79, 341

create_table(), 418–419, 422

created_at, 324, 419

created_on, 324, 419

credit-card processing
about, 176
connecting to slow pay-

ment processor, 225–
234

storing numbers, 214

cross-site request forgery at-
tacks, 108

CRUD, see also reading; up-
dating; deleting

Active Record, 328–342
callbacks diagram, 343

CSS, see also styling
buttons, 126
cart, 146, 164–167
catalog display, 106–

107, 109–112
checkout form, 181
cssnext, xiv, 435–437
cycling colors, 83
hiding flash messages,

169
highlighting changes with

animations, 164–167
locale switcher, 276
nesting rules with Sass,

111
ordering, 81
product list, 80–84
selector notation, 115
serving from Webpack,

435–437

CSS modules, 435

cssnext, xiv, 435–437

currency
converting numbers to,

113, 119, 396
formatting, 112, 119, 396
internationalization, 263–

264, 278

current directory, 289

current_cycle(), 398

current_item, 165

current_page(), 400

cycle(), 83, 398

Cygwin, 288

D
\d, 53

data, see also databases; data
types; separation of con-
cerns

custom attributes, 399
defining, 319–324
passing to layouts, 405
reloading, 338
seed data, 79
sending, 370–372

:data parameter, 399

data types
column types and migra-

tions, 415–418
default, 175

Ruby, 49–53
SQL to Ruby mappings,

323

database drivers, 20, 420

DATABASE_URL environment
variable, 297

databases, see also Active
Record; migrations; foreign
keys; MySQL; SQLite 3

adapters for Rails, 21
adding rows and

columns, 133–138, 414
column statistics, 335
column type mapping ta-

ble, 415
configuration files, 97
connecting, 20, 122–125,

286–288
creating, 72–74
creating rows, 328–330
deleting rows, 124, 133,

342
deployment diagram, 279
deployment with MySQL,

281–288
development, 97
drivers, 20, 420
encryption, 345–348
locale exercise, 278
mapping, 42–44, 72, 323
in MVC diagram, 40
names, 72, 286–287, 315
production, 97
Rails requirement, 3
reading, 330–339
in request diagram, 41
searching, 330–335
seed data, 79
supported by Rails, 20
test, 97
transactions, 348–352
updating rows, 339–341
validating, 88–90

:date column type, 415

dates
column type, 415
exercises, 119, 234
form helpers, 390
formatting helpers, 396
mapping, 323
_on suffix, 324

:datetime column type, 415

DB2
column type table, 415
database driver, 20

dbconsole, 313

debug(), 386, 397

Index • 448

debugging
Ajax, 173
inspecting errors with

rails console, 35–36
JavaScript, 173
templates, 386, 397

:decimal column type, 415

decimals, 323, 415–416

declarations, defined, 56, see

also methods

decryption, see encryption

default: value option, 416

DELETE
linking helpers, 399
links, 85
requests and MVC archi-

tecture, 41
REST, 355, 360
substitution by POST, 85

delete(), 342

delete?, 364

delete_all(), 342

deleting
cart, 185
cart items, 123, 143–

148, 185
exercises, 149
files in cloud, 5
line items, 123, 149, 185
linking helpers, 399
links, 83, 85
migrations, 137
orders, 185
products, 83
REST, 355, 357, 360
and routing requests, 41
rows, 124, 342
sessions, 377, 379–380
tables, 418–423
tables, items from, 133
users, 248–251

deliver_later(), 225

dependencies
directory, 309
installing Rails on Linux,

14

dependent: parameter, 123

deployment, 279–300
with Capistrano, 288–294
checking on deployed

apps, 294–299
diagram, 279
exercises, 300
with Heroku, 295–299
local, 283–288

with Passenger and
MySQL, 281–288

remote, 291–294
review of Depot app, 304
servers, 3
testing, 293
troubleshooting, 284, 299
Windows, 280

Depot app, 279–300
about, 65–70
Active Record organiza-

tion, 321–324
administration system,

235–252
cart, Ajax, 151–174
cart, creating, 121–132
cart, smart, 133–149
catalog display, 103–119
checkout, 175–193, 265–

275
connecting to slow pay-

ment processor, 225–
234

creating app, 71–86
credit-card processing,

176
CRUD examples, 328–

342
data specs, 68–70
development approach,

65
diagrams, 67–70
email, 217–234
encryption, 345–348
handler callback exam-

ple, 344
internationalization, 253–

278
migrations directory, 412
nesting resources, 361
page flow, 67
payment, 195–216
planning, 66–70
REST, 355–363
review, 301–304
Slim templates, 434
statistics, 304
testing with RSpec, 429–

433
use cases, 66
validations, 87–102

describe(), 431

deserialization, see encryption

desktop organization, 20

Destroy, 83, 85

destroy()
emptying cart, 143–145

rows, 342
transactions, 351

destroy action, 357

destroy script, 313

destroy: parameter, 123, 185

destroy_all(), 342

development
database for, 97
incremental, 65

development environment
automatic reloading, 30
setup, 16–20

development.log, 312

dialog boxes, confirmation, 83

digest password type, 235, 239

digits, regular expressions, 53

dir, 24, 72

directories
assets, 401
controllers, 28
creating new apps, 23
current, 289
diagram, 28
fixtures, 94
generator scripts, 27
helpers, 168
images, 401
layouts, 403, 409
listing contents, 24, 72
structure, 23, 307–315
tasks, 311
templates, 28, 385, 409
tests, 91, 309
views, 28, 385
virtual machine, 7
Webpack, 203, 209

disconnected(), 172

distance_of_time_in_words(), 396

div in Slim, 434

do/end, blocks, 54

Document Object Model,
see DOM

documentation
Apache, 285
configuration, 315
gems, xxiii
Rails, xxiii, 20
Rake, 312

DocumentRoot, 284

DOM
Ajax requests, 160, 165
CSS animations, 165
inspectors, 173

domain(), 365

Index • 449

Don’t Repeat Yourself princi-
ple, see DRY principle

Dormando, 378

dot (.)
CSS selectors, 115
filenames, 86
specifying HTML classes

in Slim, 434
translating names, 257
validating with regular

expressions, 90

DoubleRenderError, 366

down(), 135, 414, 418

downloads, 366

DRb, 378, 380

DRbStore, 378, 380

drivers, database, 20, 420

drop_table(), 419

DRY principle, xviii, xx, 154,
321

dummy tables, 287

duplication, see also DRY
principle

avoiding with layouts and
partials, 402–406

order checkout, 186

E
-e (environment) option, 314

each(), 333, 336

edit action, 357

editors, selecting, 17–19

Emacs, 17

email, 217–234
configuring, 218–219
connecting to slow pay-

ment processor, 225–
234

exercises, 234
form helpers, 181, 389
internationalization, 220
linking helpers, 398, 400
multiple content types,

222
parameters, 220
receiving, 223
sending, 219–224
testing, 218, 224

email_field(), 181, 389

Embedded Ruby, see ERB
templates

:encode parameter, 401

encryption
cookies, 283

DRbStore, 378
flash data, 381
session data, 375
using callback handler,

345–348

end keyword, 49, 53

engine, Rails, xxi

ENGINE=InnoDB, 420

ensure_not_refer-
enced_by_any_line_item(), 124

entity names, 261, 272

enum, payment values, 175,
181

env(), 365

ENV variable, MySQL on cloud,
6

environments
Apache, 285
config directory, 314
environments directory, 314
MySQL, 285
roles, 314
staging, 315
switching, 304, 314

environments directory, 314

.erb extension, 29

ERB templates
about, 29, 44, 367, 386
catalog display, 105–107
compared to Slim, 433
converting to Slim, 435
JavaScript, 161
MVC architecture, 44
replacing with Slim, xiv

error messages
exercises, 149
flash data, 139–143, 380
logging, 140
readability, xxiii
redirects, 158
translating, 271, 274
validations, 94, 98

errors, see also exceptions
Ajax, 162
allow_blank option, 90
associating with object,

124
checkout, 178, 187
creating and saving

records, 341
deleting users, 250
exercises, 234
handling cart, 138–143,

158
handling different content

types, 363

Hello, World! app, 35–36
installation, 24
logging, xxiii, 139–143
marshaling, 59
missing methods, 363
redirects, 139–140, 158–

159
rendering, 366
returning a string with-

out a view, 366
start-up, 75
validations, 88–90, 92–

94, 102

errors() method, 92

escape sequence, \u00D7, 138

escape_javascript(), 162

escaping
JavaScript, 162
SQL, 331

ETag, 190

events, synthetic, 207

examples, RSpec, 430

:except option, qualifying lay-
outs, 404

:except parameter
actions, 357
callbacks, 382

exceptions, see also errors
automatic rollback, 250
creating and saving

records, 341
finding records, 330–331
rescue clauses, 55, 140,

250
Ruby handling, 55
save!(), 341, 349

excerpt(), 398

exchange rates, 278

exclamation point (!), bang
methods, 61

execute(), 423–424

exercises, see Playtime exer-
cises

expand_path(), 62

expiry, session, 379

export, 205

expression interpolation, 50

extensions, rendering re-
quests, 366

F
Fedora, 7

feeds, see Atom

Fielding, Roy, 354

Index • 450

fields
associating with values,

241
dynamic forms, 195,

201–214
form helpers, 389
hiding, 390
limiting size, 416
REST routes, 357
validating, 88

:file parameter, 369

:file_store, 379

:filename parameter, 371

files
copying, xxii
deleting in cloud, 5
directory structure, 307–

315
editor support for naviga-

tion, 18
fixtures, 94–101
ignoring in Git, 86
layouts, 403
listing, 24, 72, 86
metadata, 393
names, 86, 315, 371
renaming with Git, 109
rendering to, 369
RSpec, 432
sending, 370–372
storing session data, 379
uploading, 391–395
using full path for require,

62
Webpack, 203, 209

filter(), 382–383

find(), 330–331, 338

find_by(), 134

find_by_sql(), 337, 339

Firebird, database driver, 20

first(), 333

Fixnum, 323

fixtures, 94–101, 430

fixtures() method, 97, 430

flash
adding users, 236
controllers and, 380
error messages, 139–

143, 380
hiding messages, 169
removing messages, 145
templates, 386
translating messages,

271, 274

flash attribute, 386

flash.keep, 381

flash.now, 381

floating numbers, 323, 415

force:, 419

foreign keys
about, 123
custom migrations exam-

ple, 423–424
relationships, 186, 326
xxx_id, 324

_form, 180

form helpers, 179, 387–391

form_tag, 241, 276

form_with(), 179

format(), 365

format option, 90

:format parameter, 362

format.atom, 190

formats
Atom feeds, 190
helper methods, 396–402
request actions, 365
route specifier, 358, 362
templates, 367
validating images, 90

forms
authenticating users,

239–245
basic new-product forms

for Depot app, 76
context, 179
dynamic, 195, 201–214
generating, 387–390
helpers, 179, 387–391
labels, 241, 389
modifying, 76
names, 179
new user, 237
order, 176–184
processing, 390–391
switching locale, 276–277
translating, 265–274
validations, 182
without model object, 241

forward slash (/), regular ex-
pressions, 52

fragment caching, 116–118

:from mail parameter, 220

functional testing
Ajax, 158–159, 166
cart, 130, 138, 144, 148,

158–159, 166, 178,
183, 186

catalog display, 114–116
checkout, 178, 183, 186

controllers, 114–116,
130, 138, 144, 148,
239, 244, 246

defined, 114
email, 224
exercises, 119, 252
highlighting, 166
payment, 214–216
redirects, 144, 158–159,

186, 239
review of Depot app, 303
user administration,

239, 244, 246

G
Garrett, Jesse James, 151

gem, listing Rails versions, 16

gem server, xxiii

Gemfile, 309

Gemfile.lock, 309

gems
deployment diagram, 279
documentation, xxiii
listing Rails versions, 16

generate, 27, 103, 313

generators
cart, 125
creating database, 72–74
directory, 27
forms, 387–390
mailers, 219
migration files, 412
styling with scaffolds, 80

GET
administration login, 243
linking helpers, 399
requests and MVC archi-

tecture, 41
REST, 355
side effects, 85

get action, uploading files,
392, 394

get?, 364

Git
about, 17, 289
checking status, 101
committing work, 101,

372–375
configuring, 12, 86
deployment diagram, 279
deployment with Heroku,

296–298
exercises, 86
ignoring files, 86
installing, 7, 10
installing Rails on virtual

machine, 7

Index • 451

renaming files, 109
resources, 17

git remote, 297

.gitignore file, 86

global replacements with
callbacks, 382

gray(), 437

:greater_than_or_equal_to, 89, 92

group(), 335

group by clause, 335

H
habtm, 327

handler class, 344–348

handlers, callbacks, 344–348

has_and_belongs_to_many(), 326

has_many(), 123, 185–186, 326

has_one(), 326

has_secure_password(), 236

hash(), 325

hash keys, 51, 325

hash literals, 51

hashes
about, 50–52
hash keys, 51, 325
passing as parameters,

52
placeholders, 332

head?, 364

headers
caching, 364
cookies, 364
flash, 386
request actions, 365
sending files, 372

headers attribute, 386

headers() method, 365

headers parameter, 364, 372

Heinemeier Hansson, David,
xiv, xxiii

Hello, World! app, 26–36, 403

helper methods
about, 167
default, 395
defined, 34, 395
directory, 168
formatting and linking,

396–402
forms, 179, 387–391
as modules, 58
named routes, 358
organizing, 395
templates, simple, 83
tests, 246

uploading files, 391–395
using, 395–402
writing, 168, 395

helper modules
about, 58
controller role, 45
default, 395

helpers directory, 168

Heroku, 295–299

Heroku Toolbelt, 296

hidden_div_if(), 168, 396

hidden_field(), 390

hiding
cart, 167–169, 396
form fields, 168, 390

highlight(), 398

highlighting
changes, 164–167, 174
formatting helpers, 398
syntax, 18
testing, 166

Homebrew, 12, 296

hook methods, 124, 250

host(), 365

host name mapping, 284

host value, MySQL on cloud,
6

host_with_port(), 365

hosts
binding to, 26
host name mapping, 284
MySQL connections, 288
request actions, 365

HTML, see also ERB tem-
plates; Haml

broadcasting changes,
172

entity names, 261, 272
mailers, 222
Slim, xiv, 433–435

HTML Abstraction Markup
Language, see Haml

html attribute, 172

html() method, 162

.html.erb files, 152

html2slim gem, 435

html_safe, 254

HTTP, see also redirecting
Accept header, 362
status response, 370–

372, 374
uploading files, 391–395

HTTP methods
deleting with, 85

REST, 355
selection, 125, 243

HTTP_REFERER, 374

httpd, 283

HTTPS, 365

I
-i email option, 218

I18n
selecting locale, 254–257
switching locale, 276–277
translating checkout,

265–275
translating storefront,

257–264

I18n object, 266

i18n-js library, 265–275

id
automatic setting, 324,

329, 419
importance of, 127
passing items, 127
renaming primary key,

325, 422

id() method, 325

IDEs, 19

IDs
deleting records, 342
importance of id field, 127
locating and traversing

records, 324–327
migrations, 136
passing to buttons, 125
session, 375
storing in session, 121

IETF (Internet Engineering
Task Force), 170

if statements, 53, 168

image_tag(), 106, 400

images
:alt option, 400
Depot product listing, 78–

84
directory, 401
displaying, 393
exercises, 174
linking helpers, 400
making into links, 400
tags, 106, 400
uploading files, 391–395
validating URLS for, 90,

93

images directory, 401

import, 202–203, 209

importing, Sass, 436

Index • 452

include, 128

indentation
editor support, 18
fixtures, 95
Ruby, 49
YAML, 58, 259

index(), 104–105, 242

index action, 357, 359

indices
arrays, 50
composite, 422
defining, 421
functional testing, 114
hashes, 52
manipulating outside mi-

grations, 425

inflections, 320

inheritance, callbacks, 383

:inline parameter, 368

InnoDB storage, 420

installing
Apache, 282
Bundler, 281
Capistrano, 290
ChromeDriver, 6–7, 11,

13, 15
on cloud, 4–6
cssnext, 436
development environment

setup, 16–20
errors, 24
examining, 24
Git, 7, 10
Heroku, 296
i18n-js library, 266
on Linux, 14
on Mac OS X, 12
MySQL, 285
Node.js, 10, 14
Passenger, 282
Postgres, 297
Rails, 3–16, 281
React, 198
RSpec, 428
Ruby, 9, 13–14
RVM, 14
on virtual machine, 7,

281
Webpacker, 197
on Windows, 8–12
Yarn, 6–7, 11, 13, 15

instance methods, defining,
56

instance variables
about, 56
accessing, 57

names, 48, 56
templates, 386

:integer column type, 415, 417

integration testing, 304

internationalization, 253–278
characters, 254, 261, 272
exercises, 278
locale, selecting, 254–257
locale, switching, 276–

277
mailers, 220
prices, 113, 263–264,

278
sending files and data,

371
translating checkout,

265–275
translating storefront,

257–264

Internet Engineering Task
Force (IETF), 170

Internet Explorer, quirks
mode, 163

invalid?(), 92

invalid_cart(), 140–143

IP address, request actions,
365

IrreversibleMigration, 418

iterators, 54

J
j(), 162

JavaScript, see also Ajax; Re-
act; Webpack

Action Cable, 170–173
app-like, 195
classes as functions, 208
debugging, 173
email helpers, 400
JavaScriptHelper helper mod-

ule, 401
linking helpers, 399, 401
Rails requirement, 3
RJS templates, 367, 370
running safely in brows-

er, 166
switching locales, 276
templates, 161, 387

javascript_include_tag(), 401

javascript_link_tag(), 401

javascript_pack_tag(), 199

JavaScriptHelper, 401

Jbuilder, JSON templates,
45, 386

jEdit, 19

join tables, 327, 334, 422

joins(), 334

.js extension, 161

.js.erb files, 161

JSON
exercises, 193
rendering templates, 369
specifying request format,

363
templates, 45, 386

:json parameter, 369

JSX, 201, 203–204, 208

K
Kaminari, 437

keyframes, CSS animations,
164

@keyframes directive, 165

keys, see also primary keys
foreign, 123, 186, 324,

326, 423–424
hash keys, 51, 325
public key for deploying

remotely, 289
secret, 283

Komodo, 19

L
label_tag, 241

labels, forms, 241, 389

lambda, 62

lambda expressions, 62

LANGUAGES array, 276

layout directive, 403–405

:layout parameter, 370, 403–
406

layouts, see also styling
adding, 107–112
avoiding duplication with,

402–406
catalog display, 107–112
directories, 403
directory, 82
dynamic, 404
files, 403
functional testing, 114
internationalization, 257–

264, 276–277
overriding controllers,

403
partial templates, 409
passing data to, 405
switching locale, 276–277
updating, 82–84
wrapping renderings, 370

Index • 453

layouts directory, 82, 403

:length, 102

less, scrolling log files, 141

let(), 430

lib directory, 309

libraries
directory, 309
MySQL, 287
Rails requirement, 3

libvirt, 7
like clauses, 332

limit(), 333, 336–337

limit: size option, 416

line breaks, 398

line items
buttons, adding, 125–131
capturing orders, 175–

176
deleting, 123, 149, 185
has many relationships,

123, 185
totaling prices, 146

@line_item instance variable,
128–129

line_items_path(), 125

link_to()
deleting with, 83, 85
linking pages together, 33
options, 399–402

link_to_if(), 399

link_to_unless(), 399

link_to_unless_current(), 400

linking
conditional, 399
helper methods, 396,

398–402
pages together, 32–35

links
deleting, 83, 85
generating, 33
generating tags, 108
images as, 400
REST actions, 360
Turbolinks, xxi, 108, 202

Linux
database drivers, 20
installing Rails, 14
scrolling log files, 141

loading
classes automatically,

317
fixtures, 96
lib files, 311
marshaled objects, 59

--local, listing Rails versions,
16

local deployment, 283–288

local variables
names, 48
partial templates, 407
templates, 368

locale
selecting, 254–257
switching, 276–277
translations, 267, 270

localhost, 288

:locals parameter, 368, 407

lock(), 335

log directory, 312

log files
deployed apps, 294
directory, 312
errors, xxiii, 139–143
rolling over, 295
scrolling, 20, 141
viewing, 141, 294

logger, 139–140, 366, 386

logging out, 241, 246, 379

logic, Ruby, 53–56, see al-

so separation of concerns

login, 235–252
adding users, 235–239
authenticating users,

239–245
deleting users, 248–251
exercises, 251
limiting access, 245–247
log out, 379
plugins, 251
styling, 247–251
testing, 244

login_as(), 246

logout(), 246

looping, see blocks; iterators

ls, 24, 72, 86

ls -a, 86

Lucas, Tim, 421

M
Mac OS X

database drivers, 21
editors, 18
enabling Apache, 282
installing Heroku, 296
installing Rails, 12
tracking log files, 141

mail(), 220

mail_to(), 400

mailer generator, 219

mailers, 219–224, see al-

so email

manifest file, 109–112

many-to-many relationships,
326–327

map(), 333

mapping
arrays, 333
column types, 415
columns, 42–44
databases, 42–44, 72,

323
host name, 284
models, 72
objects to forms, 178
SQL types, 323
URLs and actions, 354

Markdown, 398

marshaling, 59, 378

maximum(), 335

media queries, 111

memcached, 378

memory
sending data, 372
storing session data, 378

:memory_store, 378

messages, see email; error
messages

method attribute, 364

:method parameter, 399

method: :delete, 85

method_missing(), 363, 368

methods, see also helper
methods

about, 56–57
action methods, 363–375
bang methods, 61
callback handlers, 344
class methods, 56, 61
defined, 152
defining, 49
editor support, 18
hook methods, 124, 250
invoking, 48
JavaScript methods as

functions, 208
missing methods, 363,

368
names, 48
passing blocks, 54, 161
predicate methods, 61
private methods, 57, 122
protected methods, 57
public methods, 57

Index • 454

middleware, 266

migrate, 74, 176, 413

migrations, 411–426
adding rows and

columns, 133–138
advanced, 423–424
anatomy, 414–418
applying, 74
benchmarks, 424
checking status, 137
column types, 415–418
creating, 411
custom, 423–424
defined, 73, 411
defining indices, 421
deleting, 137
Depot setup, 73–74
down, 135, 414, 418
dropping tables, 418–423
exercises, 85, 149
file names, 411
force dropping tables,

419
irreversible, 418
join tables, 422
listing, 311
loading to production

server, 286
managing tables, 418–

423
messages, 424
multiple, 176
naming convention, 411
one-way, 418
order, 413
problems, 424
redoing, 69, 414
removing rows and

columns, 133
rolling back, 137, 250,

413, 424
running, 411–414
timestamps, 74, 412
undoing and reapplying,

69
up, 135, 414
using on other items, 425
version number, 412–413
version, forcing, 413

MIME types
request actions, 365
specifying, 362

minimum(), 335

MiniTest, 91

mobile devices, stylesheets,
112

Model-View-Controller (MVC)
architecture

about, xvii, 26
diagram, 40
understanding, 39–42

models, see also Model-View-
Controller (MVC) architec-
ture; unit testing

creating Depot, 72
equality, 325
foreign keys, 123, 326
generator, 412
Hello, World! app, 26
mapping to forms, 178
mapping to tables, 72
marshaled objects, 59
moving logic from con-

troller, 227
names, 72, 315–318
object life cycle, 342–348
objects and storing ses-

sion data, 376
objects, saving, 186
primary keys, 325
Rails support, 42–44
reloading, 338
review of Depot app, 301
role, 39
specifying relationships,

326
translating names, 273
validating, 87–102

modules
about, 58
automatic loading, 317
grouping controllers into,

317
names, 48, 58, 315

mv, 109

MVC, see Model-View-Con-
troller (MVC) architecture

MySQL
cloud hosting, 6
column type table, 415
database driver, 20, 420
deployment with, 281–

288
installing, 285
loading migrations, 286
options: parameter, 419
root password, 14
version, 287

mysql gem, 285

N
%n placeholder, 264

\n, forcing newlines with, 50

:name option, 422

named routes, 358, 361

names
channels, 171
classes, 48, 56, 315, 414
columns, renaming, 417
constants, 48
controllers, 72, 315–318
databases, 72, 286–287,

315
editor support, 18
email templates, 224
files, 86, 109, 315, 371
fixtures, 94–95
form fields, 179
instance variables, 48, 56
internationalization, 257,

261, 272
local variables, 48
methods, 48
migrations, 411
models, 72, 315–318
modifying the inflection

file, 320
modules, 48, 58, 315
naming conventions,

315–318
natural, 95
parameters, 48
partial templates, 153,

407
primary keys, 325, 422
React, 204
renaming files with Git,

109
routes, 34, 356
Ruby, 48, 315
tables, 315, 317, 319,

418
tables, renaming, 420
templates, 32, 224, 367,

385
uploading images, 393
users, 236, 239
variables, 48, 315
views, 315–318

natural names, 95

 , 264

nested resources, 361

nesting
callbacks, 383
Russian doll caching, 117

NetBeans, 19

new
about, 48, 313
checkout form, 178–184
creating new apps, 71

Index • 455

creating rows, 328
orders, duplication of,

186
resources, 357

newline character, replacing
string with, 50

nginx, 300

nil, 50, 52

no-cache, 364

Node.js, 10, 14

nonbreaking space character,
264

NoScript plugin, 173

:nothing parameter, 369

:notice parameter, 140

notices
error redirects, 140
flash and controller, 380
layout, 111

now(), 30

null: option, 416

number.currency.format, 263

number_field(), 389

number_to_currency(), 113, 119,
396

number_to_human_size(), 397

number_to_percentage(), 397

number_to_phone(), 397

number_with_delimiter(), 397

number_with_precision(), 397

numbers
column types, 415–416
converting to currency,

113, 119, 396
formatting, 112, 114, 396
functional testing, 114
internationalization, 263–

264, 278
mapping, 323
precision, 397, 416
validating, 89, 92

numericality(), 89

O
:object parameter, 407

object-oriented languages,
Ruby as, 47–49

object-related mapping (ORM)
libraries, 42–44, see also Ac-
tive Record; mapping

objects
associating errors with,

124
creating, 48

equality, 325
life cycle, 342–348
mapping, 42–44
mapping to forms, 178
marshaling, 59
passing as callback, 383
passing into partial tem-

plates, 407
primary keys, 325
saving, 185–186
storing session data, 376

offset(), 334

Olson, Rick, 394

onChange attribute, 206

onchange event handler, 276

one-to-many relationships,
326

one-to-one relationships, 326

:only
callbacks, 382
limiting actions, 357
qualifying layouts, 404

_on suffix, 324

Openbase, column type table,
415

OpenStruct, 226

options: parameter, 419

Oracle
column type table, 415
database driver, 20

order(), 105, 333, 336–337

order by, 333

@order instance variable, 178

ordering
callback handlers, 344
items, 105
migrations, 413
SQL queries, 333, 336–

337
users, 237

orders, see also cart; check-
out

alerts, 189–192
buttons, adding, 156
capturing, 175–176
capturing details, 184–

188
connecting to slow pay-

ment processor, 225–
234

deleting, 185
exercises, 234
forms, 176–184

handler callback exam-
ple, 344

translating, 265–275

organizing structures, Ruby,
56–58

original_filename, 393

ORM libraries, 42–44, see al-

so Active Record; mapping

P
package command, 290

page flow, sketching, 67

Pago, 226–234

Paperclip plugin, 394

paragraph breaks, 398

parameters
email, 220
names, 48
passing hashes as, 52
passing to partials, 152
passing with flash, 381
processing forms, 390

params object
about, 128, 364
associating fields with

values in forms, 241
placeholders, 332
processing forms, 390
views, 386

parentheses (())
method calls, 48
regular expressions, 52
REST routes, 357

:partial parameter, 369, 407

partial templates
avoiding duplication with,

402, 406–409
collections, 407
controllers, 409
defined, 152, 406
forms, 180
mailers, 221, 224
moving cart to sidebar,

152–156
names, 153, 407
rendering, 152–156, 369,

407–409
rendering with layouts,

409
shared, 408

partials, see partial templates

Passenger
deployment with, 281–

288
installing, 282

password_field(), 390

Index • 456

password_field_tag, 241

passwords
database, 287
exercises, 251
form helpers, 241, 390
hashing, 235, 239
obscuring, 390
root password for MySQL

server, 14
validating, 236

PATCH
linking helpers, 399
requests and MVC archi-

tecture, 41
substitution by POST, 85

path(), 365

paths
base_path attribute, 386
expanding, 62
line items, 125
pathnames to views, 105
product_path vs. product_url,

143
redirecting to, 374
request actions, 365
REST requests, 356
using full path for require,

62

payment, 195–216
connecting to slow pay-

ment processor, 225–
234

credit-card processing,
176

dynamic forms, 201–214
exercises, 216
functional testing, 214–

216
types, 175, 181–182,

193, 210–213, 278
validations, 182, 193

PDFs, 311

percentages, formatting
helpers, 396

perform_enqueued_jobs(), 232

perform_later(), 230

performance, REST, 355

pg gem, 297

phone numbers, formatting
helpers, 396

Phusion Passenger
deployment with, 281–

288
installing, 282

placeholders, 331, 389

platform as a service deploy-
ment, 295–299

Playtime exercises
administration, 251
Ajax, 174
authentication, 251
cart, 149, 193
counters, 132
date, 119, 234
deployment, 300
Depot setup, 85
directories, 38
email, 234
error messages, 149
errors, 234
internationalization, 278
JSON, 193
layouts, 119
migrations, 85, 149
order checkout, 193, 234
passwords, 251
payment, 216
rollbacks, 85
sessions, 132
tests, 119, 149, 252
time, 119
validations, 101, 251
version control, 86
XML, 193

plugins
customizing with, 437
login, 251

pluralize(), 132, 242, 398

plurals
naming conventions,

315, 317, 320
translations, 272

port number, name in URL of
applications, 75

port_string(), 365

ports
request actions, 365
URL of applications, 28

POST
administration login, 243
buttons, adding, 125
linking helpers, 399
processing forms, 390
requests and MVC archi-

tecture, 41
REST, 355
substitution for other

HTTP methods, 85
uploading files, 391

Post CSS, 435–436

post?, 364

Postgres
deployment with Heroku,

297
installing, 297
Queue Classic, 233

PostgreSQL (Postgres)
column type table, 415
database driver, 20
exercises, 300

Pragmatic Guide to Sass, 81

:precision option, 416

predicate methods, 61

prepend_after_action(), 382

prepend_before_action(), 382

presence: true, 88

prices
exercises, 149
formatting, 112, 114
internationalization, 113,

263–264, 278
totaling in cart, 146
validating, 89, 92

primary keys
about, 319, 422
creation, 419
finding rows, 324, 330
names, 325, 422
tables without, 422
updating records, 339

:primary_key option, 422

primary_key=, 325

private directive, 57, 122

private methods, 57, 122

Proc
converting blocks to, 62
scopes, 336

Procfile, 298

procmail, 223

:product_id, 125, 136

product_path, 143

product_url path, 143

production.log, 312

products, Depot app
buttons, adding, 125–131
caching catalog results,

116–118
catalog display, 103–119
connecting to cart, 122–

125
count, adding, 133–138
creating database, 72–74
deleting, 83
functional testing of cata-

log display, 114–116

Index • 457

locale exercise, 278
ordering, 105
seed data, 79
styling list, 80–84
validating, 87–101
viewing list, 75–84

Programming Ruby, 47

:prompt, 181

protected methods, 57

protocol(), 365

public directory, 284, 312

public key, deploying remote-
ly, 289

public methods, 57

PUT
linking helpers, 399
requests and MVC archi-

tecture, 41
REST, 355
substitution by POST, 85

put?, 364

puts(), 49

Q
query_string(), 365

question mark (?)
predicate methods, 61
SQL placeholders, 331

Queue Classic, 233

queuing, background jobs,
230, 233

quirks mode, 163

quotation marks, strings, 49,
79

R
Rack

configuring, 308
resources, 365

Rails
about, xiii
advantages, xvii–xx
customizing and extend-

ing, 427–438
directory structure, 307–

315
documentation, xxiii, 20
engine, xxi
installing, 3–16, 281
requirements, 3
resources, 439
standards, xix
versions, xiii, 3, 5, 16
versions, specifying, 23

Rails component, 308

Rails Doctrine, xviii

rails tool
about, 23
creating, 23–26
examining installation,

24
generating controllers, 27

rails-dev-box directory, virtual
machines, 7

RAILS_ENV environment vari-
able, 314

Rake
documentation, 312
listing tasks, 309
resources, 312
writing tasks for, 311

rake -D, 309

rake -T, 309

Rakefile, 309

Ransack, 437

rbenv, 13, 300

React
about, 196, 200
configuring, 198–200
dynamic forms, 201–214
translating forms, 265–

275

read(), 393

read_attribute(), 323

readability
fixture names, 95
Rails advantages, xviii
Ruby structures, 60

reading
Active Record, 330–339
attribute readers, 322
image data, 393

README, 309

readonly(), 334

receive(), 223

received(), 172, 221

RecordInvalid, 341

RecordNotFound, 139, 330

records, see Active Record;
databases

recovery, 69

RedCloth, 398

redirect(), 370

redirect_to()
messages, 140, 185
route paths, 143
using, 373–375
using once only, 366

redirecting
back to previous page,

374
from cart, 144, 156, 178,

185, 187
compared to rendering

with :action, 368
controllers and, 372–375
errors, 139–140, 158–159
flash when adding users,

236
permanent, 374
and render(), 370
route paths, 143
switching locales, 277
testing, 144, 158–159,

186, 239

redo, 69, 414

Reenskaug, Trygve, 39

regular expressions
about, 52
functional testing, 115
validating with, 90

reindentation, editor support,
18

relationships
connecting cart to prod-

ucts, 123–125
creating, 129
defining, 184
forms, 179
locating and traversing

records, 324–327
order checkout, 179,

184, 191
scopes, 337
specifying, 326
subsetting records, 333–

335
types, 326

reload(), 338

reloading
apps, 30
data, 338

remote deployment, 291–294

remote: parameter, 160

remote_ip(), 365

remove_XXX_from_TABLE, 133

remove_column(), 414

remove_index(), 422

rename_column(), 417

rename_table(), 420

renaming
columns, 417
files with Git, 109

Index • 458

primary key, 325, 422
tables, 420

render()
Ajax requests, 162
layouts, specifying, 405
parameters, 367–370
partial templates, 153,

407–409
React, 202–203, 209, 267
templates directory, 385
using, 367–370
using once only, 366

render_to_string(), 172, 370

rendering
actions, 366–370
Ajax requests, 162
caching and, 116
errors, 366
to files, 369
layouts, specifying, 405
parameters, 367–370
partial templates, 152–

156, 369, 407–409
rerendering, 116
templates directory, 385
to strings, 172, 368, 370

repetition, regular expres-
sions, 53

:replace_at, 401

:replace_dot, 401

repositories
creating empty, 289
got remote, 297

Representational State
Transfer (REST), 354–363

request, 364, 386

request_method attribute, 364

requests
callbacks and, 381–383
controller role, 45
diagram, 41
dispatching, 354–363
flash and controllers, 380
MVC architecture, 40
objects and operations

that span requests,
375–383

passing parameters with
flash, 381

processing , 363–375
redirects, 372–375
REST, 354–363
sessions and, 375–380
stale, 189

require
full filesystem path, 62

libraries, 311
source files, 317

require_tree, 109, 111

rescue clauses, 55, 140, 250

rescue_from, 140, 250

reset_cycle(), 398

reset_session(), 380

resources
Active Job, 233
for this book, xxiv
caching, 117
Capybara, 215
cloud hosting, 6
CoffeeScript, 172
Git, 17
Postgres, 297
Rack, 365
Rails, 439
Rake, 312
React, 204
Ruby, 62
RVM, 16
SCSS, 81

resources (REST), 354–363

respond_to(), 161, 359, 363

response object, 365, 386

REST (Representational State
Transfer), 354–363

restart.txt, 285

return keyword, 49

rgb(), 437

RJS templates, 367, 370

rm -rf *, 5
rollback, 137, 293

rollbacks
automatic, 250
deployment, 293
exercises, 85
migrations, 413, 424
using, 137

ROM, 437

root password, 14

routes, see also Action Con-
troller; Action Dispatch;
Action View

comprehensive, 354
concerns, 362
controller role, 45
convenient, 354
dispatching requests,

354–363
editing config file, 243
feeds, 191
filtering, 255
generating, 356

HTTP method selection,
125, 243

internationalization, 254
limiting actions, 357
listing, 255, 356, 361
locale, setting, 255
MVC architecture, 40
named, 358, 361
names, 34, 356
nesting resources, 361
processing requests, 363–

375
product_path vs. product_url,

143
redirecting, 143
REST, 354–363
selecting data representa-

tion, 362
setting root URL, 104
shallow route nesting,

362
specifying format, 358,

362
URL parsing, 32, 41
wrapping session, 243

routes command, 356, 361

rows
adding, 133–138
creating, 328–330
cycling colors, 83
deleting, 124, 133, 342
encryption, 345–348
finding, 330–335
fixtures, 95
identifying individual,

324
locking, 335
mapping, 42–44
reading, 330–339
timestamps, 324
updating, 339–341

RSpec
about, xiv
testing with, 427–433

RSS feeds, 189, 401

RuboCop, 438

Ruby
advantages, xviii
control structures, 53
data types, 49–53
development kit, 9
example, 59
exceptions, 55
idioms, 60–62
installing, 9, 13–14
logic, 53–56
marshaling, 59
names, 48, 315

Index • 459

as object-oriented lan-
guage, 47–49

organizing structures,
56–58

primer, 47–62
resources, 62
versions, 3, 9, 13, 21

ruby-build, 13, 300

RubyGems, documentation,
xxiii

RubyInstaller, 9

RubyMine, 19

runner, 313

Russian doll caching, 117

RVM
about, 13
deploying with Capistra-

no, 290, 293
installing, 14
resources, 16

rvm use, 15

:rvm_ruby_string, 293

S
\s, 53

sanitize(), 106

Sass
importing files, 436
media queries, 111
nesting CSS rules with,

111

Sassy CSS, see SCSS

save()
about, 186
compared to create(), 341
rows, 43, 328, 339
transactions, 351
updating rows, 339

save action, 393

save!(), 341, 349

saving
exceptions, 341, 349
orders, 185
rows, 43, 328, 339
transactions, 351
uploading files, 393

say_with_time(), 424

scaffold, 72–74, 80

scaffolding
actions, 125
creating database, 72–74
fixtures, 97
MVC architecture, 40
REST actions, 359
styling, 80

:scale option, 416

schema_migrations table, 413

schemas, see databases; mi-
grations

SCM (software configuration
management) systems, 289

scopes, 255, 336

scoping routes for REST ac-
tions, 361

scripts, directory, 312, see

also generators

SCSS, see also styling
catalog display, 106–

107, 109–112
order, 81
product list, 80–84
resources, 81
templates, 387

search_field(), 389

searching, databases, 330–
335

Searchkick, 437

secret, 283

secret keys, 283

security
cart, 139, 142
channels, 171
credit-card numbers, 214
cross-site forgery request

attacks, 108
email helpers, 400
forms, 183
limiting access, 245–247
passwords, 235
plugins, 438
RecordNotFound error, 139
sanitize(), 106
SQL injection attack, 331

seed command, 80

seed data, adding, 79

seeds.rb, 79

select(), 334, 337, 389

select_tag, 276

selectors, CSS, 115

self, 56

self.new, 61

semicolon (;), in methods, 49

send_data(), 309, 370–372, 393

send_file(), 371

send_xxx(), 366

:sendmail, 218

separation of concerns
about, 31

MVC architecture, 40
REST, 362
templates, 44

Sequel, 437

serialization, see encryption

server, 313

servers, see also Apache
deployment, 3, 279, 281–

288
quitting, 25, 75
restarting for recovery, 69
starting, 75, 313
starting from cloud, 6
starting new apps, 25
storing session data, 375

session ID, 375

session object, 366, 386

session_store, 378

sessions
controllers and, 45, 375–

380
debugging templates, 386
deleting, 379–380
exercises, 132
expiry and cleanup, 379
finding items with, 121
logging in, 240–245
removing cart, 144
session object, 366, 386
storing session data, 59,

375–379
wrapping route, 243

set :rvm_type, 293

set clause, 341

setState(), 207

set_cart(), 122, 128

set_i18n_locale_from_params, 257

:set_locale, 277

setup(), helper, 246

shallow route nesting, 362

share mode lock, 335

shared directory, 409

shipped(), 222

show action, 357, 394

sidebars
adding, 108
exercises, 119
linking helpers, 400
login, 247–251
moving cart to, 152–159
passing data to layouts,

406
styling, 111

Sidekiq, 233

Index • 460

simple_format(), 398

:size
images, 400
limiting field, 416

sketching, 67–70

skip_action, 383

skip_after_action, 383

skip_before_action(), 245, 383

Slim, xiv, 433–435

:smtp, 218

Snap, 296

socket:, 287

software configuration man-
agement (SCM) systems,
289

:spacer_template parameter, 408

spaces
fixtures, 95
nonbreaking space char-

acter, 264
whitespaces in regular

expressions, 53

specs, 429–433

sprintf(), 112

Sprockets, 435

SQL
Active Record and, 328,

330–335, 337, 339
custom migrations, 423–

424
escaping, 331
injection attacks, 331
mapping SQL types, 323
verbosity, 339

SQL Server
column type table, 415
database driver, 20

SQLite 3
advantages, 72
column type table, 415
configuration files, 97
limitations, 285
version, 20

ssl?(), 365

staging environment, 315

stale requests, 189

standards mode, 163

state and REST, 354–363

statement modifiers, 54

statistics
column, 335
Depot app, 304
Rails command, 304

stats, 304

status, checking migration sta-
tus, 137

:status HTTP parameter, 370–
371

STEP= parameter, 414

store_index_path, 104

store_index_url, 104

storefront
catalog display, 103–119
translating, 257–275

:stream parameter, 372

streams, 171, 372

:string column type, 415, 417

string literals, 49, 79

strings
column type, 415, 417
creating, 49
data type, 49
formatting helpers, 398
interpolation, 50
quotes, 49, 79
regular expressions, 52
rendering to, 172, 368,

370
returning without a view,

366
sending files and data,

371
validating with regular

expressions, 90

strip_tags(), 83

stylesheet_link_tag(), 108, 111,
401

stylesheets, see also CSS;
styling

catalog display, 106–
107, 109–112

directory, 401
helpers, 401
mobile devices, 112
product list, 80–84

stylesheets directory, 401

styling, see also layouts
buttons, 126
cart, 146, 164–167
catalog display, 106–

107, 109–112
checkout form, 181
cycling, 398
highlighting changes,

164–167
locale switcher, 276
login, 247–251
manifest file, 109–112
new user form, 237

product list, 80–84
sanitize(), 106

subject(), 430

:subject mail parameter, 220,
401

Sublime Text, 19

submit_tag, 276

subscribing to channels, 172

substitutions, 50

Subversion, 289

sudo apt-get update, 14

sum(), 146, 335

Sybase, column type table,
415

symbols
hash keys, 51
Ruby, 48

syntax highlighting, 18

synthetic events, 207

system testing, payment,
215–216

T
t (translation), 257, 268

-t email option, 218

table_name, 320

tables
adding rows and

columns, 133–138
classes, 319
column statistics, 335
creating, 72, 324, 418,

422
creating Depot, 72
creating rows, 328–330
defining indices, 421
deleting rows, 124
dropping, 418–423
dummy, 287
join tables, 327, 334, 422
managing with migra-

tions, 418–423
mapping, 42–44
names, 315, 317, 319,

418
without primary key, 422
reading, 330–339
removing rows and

columns, 133, 342
renaming, 420
searching, 330–335
setting table name, 320
temporary, 419
understanding, 319–324
updating, 339–341

Index • 461

tabs
completion, 17
YAML sensitivity, 288

tags
images, 400
stripping, 83

tail, scrolling log files, 20,
141, 294

Take My Money, 214

tasks
descriptions, 309
directory, 311
listing, 309
writing, 311

tasks directory, 311

telephone_field(), 389

:template parameter, 369

templates, see also ERB tem-
plates; layouts; rendering,
partial templates; styling

about, 386
accessing controller ob-

ject, 386
Action View and, 385–

387
administration page, 242
caching partial results,

117
catalog display, 105–107
code in, 395
CoffeeScript, 161, 387
debugging, 386
defined, 367
Depot app, simple, 82
directories, 28
directory, 385, 409
dynamic, 29
email, 219–224
error messages, 158
form helpers, 179, 387–

391
forms, 178–184
helpers, 179, 387–391
JavaScript, 161, 387
JSON, 45, 386
names, 32, 224, 367, 385
passing messages with

flash, 381
rendering actions, 366–

370
RJS, 367, 370
SCSS, 387
shared, 386, 408
Slim, 433–435
translating, 257–263
types, 44, 367, 386

uploading files, 391–395
XML, 45, 190, 367, 387

temporary files, 313

temporary tables, 419

temporary:, 419

test directory, 309

:test for email configuration,
218

test...do syntax, 91

test.log, 312

test_helper, 246

testing, see also functional
testing; unit testing

about, 159
agile principles, xx
connecting to slow pay-

ment processor, 225,
231–234

deployment, 293
directory, 91, 309
email, 218, 224
exercises, 119, 149, 252
fixtures, 94–101
frequency, 78
helpers, 246
integration tests, 304
log, 312
MiniTest framework, 91
Rails support for, xvii
review of Depot app, 303
with RSpec, xiv, 427–433
setup, 78
syntax, 91
system testing payment,

215–216
test data, 79
test database for, 97

text
form helpers, 179, 181,

389
formatting helpers, 396–

398
rendering, 368

:text column type, 415

:text parameter, 368

text_area, 181, 389

text_field, 179, 181, 389

text_field_tag, 241

Textile, 398

TextMate, 18–19

this, 208

thoughtbot, 394

time
_at suffix, 324
column type, 415

exercises, 119
feeds, 191
form helpers, 390
formatting helpers, 396
Hello, World! app, 29–31
mapping, 323
Playtime exercises, 38

:time column type, 415

time_ago_in_words(), 396

timeouts, 225

:timestamp column type, 415

timestamps
column type, 415
columns and rows, 324
copying files, xxii
DRbStore, 380
migrations, 74, 412
tables, 419
updating, xxii, 81

timestamps method, 419

titles
passing data to layouts,

405
translating, 259
validating, 89, 94–101
writing with helper, 396

tmp directory, 313

:to mail parameter, 220

to_a(), 333

touch, xxii, 81

transaction(), 348–352

transactions, 249, 348–352,
420

translate, 257–264

translating
checkout, 265–275
error messages, 271, 274
storefront, 257–264

translations
common strings, 272
pluralization, 272

troubleshooting
Ajax, 162, 173
Apache, 284
database connections,

287
deployment, 284, 299
migrations, 424
recovery, 69

truncate(), 83, 221, 398

try(), 240

Turbolinks, xxi, 108, 202

:type parameter, 371–372

Index • 462

U
%u, 264

\u00D7 escape sequence, 138

Ubuntu, 281

underscore (_)
migrations, 411
in names, 48, 315, 319
partial templates, 153,

407

undoing, with redo, 69

Unicode, 138

Unicorn, 300

unique: option, 421

:uniqueness parameter, 89

unit testing
assert(), 91–94
Depot validations, 91–

101
directory, 91
exercises, 149
fixtures, 94–101
models, 91–101
review of Depot app, 303
syntax, 91

unless, 54

until, 54

up(), 135, 414

update()
saving and changing at-

tributes, 340
testing, 239

update action, 357

update_all(), 340

updated_at, 191, 324

updated_on, 324

updates
adding users, 237
broadcasting, 169–174
Rails version, 16
storing session data and,

377

updating, see also migrations
layouts, 82–84
REST, 355, 357
RJS templates, 370
saving and changing at-

tributes, 340
timestamp, xxii, 81
tracking, 191, 324

upgrading, Rails version, 16

uploading, files, 391–395

url(), 365

:url_based_filename parameter,
371

url_field(), 389

url_for(), 374

UrlHelper, 399–402

URLs
administration login, 243
of applications, 28, 31,

75, 104
broken, 36
displaying images, 393
form helpers, 389
Heroku deployment, 297
line items, 125
linking helpers, 398–402
mapping actions, 354
redirects, 140, 143, 372–

375
request actions, 365
shallow route nesting,

362
validating, 90, 93

use cases, 66

use keyword, 15

:user_id
callbacks, 245
login, 240, 247

username
database, 287
MySQL on cloud, 6

users
adding, 235–239
adding from command

line, 249
authenticating, 239–245
deleting, 248–251
deployment diagram, 279
functional testing user

administration, 239,
244, 246

limiting access, 245–247
storing current user in

session data, 377
styling login, 247–251
whitelisting, 245

UTF-8, 254

V
Vagrant, 7–8

validates(), 88–101

validations
callbacks diagram, 343
checkout, 182, 185, 193
Depot, 87–102, 182, 193
email, 224
errors, 88–90, 92–94, 102
exercises, 101, 251
forms, 182
passwords, 236

testing, 99–101
uploading files, 393

values
aggregating, 335
associating with fields,

241
default value for

columns, 416
form fields, 179
limiting in SQL queries,

334
returning default with
a || b expression, 61

statistics, 335

variables, names, 48, 315

vendor directory, 313

--version, verifying versions, 16

version control, see also Git
about, 17
deployment, 288
exercises, 86
ignoring files, 86
storing session data, 377

version number
migrations, 412–413
verifying versions, 16

VERSION= parameter, 413

vertical bar (|)
arguments in blocks, 54
regular expressions, 52,

90

views, see also Action View;
Model-View-Controller
(MVC) architecture; tem-
plates

Action Pack support, 44
adding buttons, 144
catalog display, 103–107
creating Depot, 72, 74
directory, 28, 385
Hello, World! app, 26,

28, 32–35
linking pages, 32–35
names, 315–318
partial templates, 152–

156
pathnames to, 105
React components, 200
rendering to strings, 172
REST actions, 359
returning a string with-

out, 366
review of Depot app, 302
role, 39, 44
separating logic from da-

ta, 31
template files, 385

Index • 463

views directory, 385

Vim, 17

virtual machine
advantages, 4
configuring second ma-

chine for deployment,
281

installing Rails, 7, 281

VirtualBox, 8, 281

VirtualHost block, 284

W
\w, 53

Webpack
about, xiii, 195
dynamic forms, 201–214
serving CSS from, 435–

437

Webpacker
about, xiii, 195
advantages, 214
configuring, 197–200
creating new packs, 201

WebSocket Protocol and Ac-
tion Cable, 169–173

where clause, 341

which ruby, 21

while, 53

whitelisting, 245

whitespaces, regular expres-
sions, 53

wildcards, 53, 333

Windows
Cygwin and MySQL, 288
database drivers, 20
deploying to, 280
installing Heroku, 296
installing Rails, 8–12
listing directory contents,

72
log file viewing, 141
multiple line commands,

72
opening command win-

dow, 12
quitting applications, 38
scrolling log files, 141
Vagrant, 8

words
arrays, 51
regular expressions, 53

wrappers
callbacks, 343
directory, 312

write_attribute(), 323

writing
attribute writers, 322
custom SQL queries, 337

X
xhr :post, 166

xhr?, 365

XML
Atom feeds, 190
exercises, 193
JSX, 204

rendering templates, 369
requests, 363, 365
specifying request format,

363
templates, 45, 190, 367,

387

:xml parameter, 369

xml_http_request?, 365

xxx_count, 324

xxx_id, 324

Y
YAML

about, 58
fixtures, 94
internationalization, 259,

268, 273
tab sensitivity, 288

Yarn, 11
about, 3
cssnext installation, 436
installing, 6–7, 13, 15
Webpacker installation,

198

yarn install, 198

Yellow Fade Technique, 164

yield
about, 54
around callbacks, 382
layouts, 109, 403, 405

Z
\Z, 53

Index • 464

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email

us at support@pragprog.com with your feedback. Tell us your story and you

could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to

https://pragprog.com and use the coupon code BUYANOTHER2017 to save 30%

on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use

ebooks near water. If rash persists, see a doctor. Doesn’t apply to The

Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf

itself. Side effects may include increased knowledge and skill, increased

marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!

Use coupon code

BUYANOTHER2017

https://pragprog.com

The Modern Web
Get up to speed on the latest HTML, CSS, JavaScript techniques, and secure your Node

applications.

HTML5 and CSS3 (2nd edition)
HTML5 and CSS3 are more than just buzzwords –

they’re the foundation for today’s web applications.

This book gets you up to speed on the HTML5 elements

and CSS3 features you can use right now in your cur-

rent projects, with backwards compatible solutions

that ensure that you don’t leave users of older browsers

behind. This new edition covers even more new fea-

tures, including CSS animations, IndexedDB, and

client-side validations.

Brian P. Hogan

(314 pages) ISBN: 9781937785598. $38

https://pragprog.com/book/bhh52e

Secure Your Node.js Web Application
Cyber-criminals have your web applications in their

crosshairs. They search for and exploit common secu-

rity mistakes in your web application to steal user data.

Learn how you can secure your Node.js applications,

database and web server to avoid these security holes.

Discover the primary attack vectors against web appli-

cations, and implement security best practices and

effective countermeasures. Coding securely will make

you a stronger web developer and analyst, and you’ll

protect your users.

Karl Düüna

(230 pages) ISBN: 9781680500851. $36

https://pragprog.com/book/kdnodesec

https://pragprog.com/book/bhh52e
https://pragprog.com/book/kdnodesec

Level Up
From data structures to architecture and design, we have what you need.

A Common-Sense Guide to Data Structures and Algorithms
If you last saw algorithms in a university course or at

a job interview, you’re missing out on what they can

do for your code. Learn different sorting and searching

techniques, and when to use each. Find out how to

use recursion effectively. Discover structures for spe-

cialized applications, such as trees and graphs. Use

Big O notation to decide which algorithms are best for

your production environment. Beginners will learn how

to use these techniques from the start, and experienced

developers will rediscover approaches they may have

forgotten.

Jay Wengrow

(218 pages) ISBN: 9781680502442. $45.95

https://pragprog.com/book/jwdsal

Design It!
Don’t engineer by coincidence—design it like you mean

it! Grounded by fundamentals and filled with practical

design methods, this is the perfect introduction to

software architecture for programmers who are ready

to grow their design skills. Ask the right stakeholders

the right questions, explore design options, share your

design decisions, and facilitate collaborative workshops

that are fast, effective, and fun. Become a better pro-

grammer, leader, and designer. Use your new skills to

lead your team in implementing software with the right

capabilities—and develop awesome software!

Michael Keeling

(358 pages) ISBN: 9781680502091. $41.95

https://pragprog.com/book/mkdsa

https://pragprog.com/book/jwdsal
https://pragprog.com/book/mkdsa

Explore Testing
Explore the uncharted waters of exploratory testing and delve deeper into web testing.

Explore It!
Uncover surprises, risks, and potentially serious bugs

with exploratory testing. Rather than designing all tests

in advance, explorers design and execute small, rapid

experiments, using what they learned from the last

little experiment to inform the next. Learn essential

skills of a master explorer, including how to analyze

software to discover key points of vulnerability, how

to design experiments on the fly, how to hone your

observation skills, and how to focus your efforts.

Elisabeth Hendrickson

(186 pages) ISBN: 9781937785024. $29

https://pragprog.com/book/ehxta

The Way of the Web Tester
This book is for everyone who needs to test the web.

As a tester, you’ll automate your tests. As a developer,

you’ll build more robust solutions. And as a team,

you’ll gain a vocabulary and a means to coordinate

how to write and organize automated tests for the web.

Follow the testing pyramid and level up your skills in

user interface testing, integration testing, and unit

testing. Your new skills will free you up to do other,

more important things while letting the computer do

the one thing it’s really good at: quickly running

thousands of repetitive tasks.

Jonathan Rasmusson

(256 pages) ISBN: 9781680501834. $29

https://pragprog.com/book/jrtest

https://pragprog.com/book/ehxta
https://pragprog.com/book/jrtest

Put the “Fun” in Functional and

Dive Deeper into Rails
Elixir puts the “fun” back into functional programming. And by the creator of Elixir: go

further into the depths of Rails itself.

Programming Elixir 1.3
Explore functional programming without the academic

overtones (tell me about monads just one more time).

Create concurrent applications, but get them right

without all the locking and consistency headaches.

Meet Elixir, a modern, functional, concurrent language

built on the rock-solid Erlang VM. Elixir’s pragmatic

syntax and built-in support for metaprogramming will

make you productive and keep you interested for the

long haul. Maybe the time is right for the Next Big

Thing. Maybe it’s Elixir. This book is the introduction

to Elixir for experienced programmers, completely up-

dated for Elixir 1.3.

Dave Thomas

(362 pages) ISBN: 9781680502008. $38

https://pragprog.com/book/elixir13

Crafting Rails 4 Applications
Get ready to see Rails as you’ve never seen it before.

Learn how to extend the framework, change its behav-

ior, and replace whole components to bend it to your

will. Eight different test-driven tutorials will help you

understand Rails’ inner workings and prepare you to

tackle complicated projects with solutions that are

well-tested, modular, and easy to maintain.

This second edition of the bestselling Crafting Rails

Applications has been updated to Rails 4 and discusses

new topics such as streaming, mountable engines, and

thread safety.

José Valim

(208 pages) ISBN: 9781937785550. $36

https://pragprog.com/book/jvrails2

https://pragprog.com/book/elixir13
https://pragprog.com/book/jvrails2

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux 2
Your mouse is slowing you down. The time you spend

context switching between your editor and your con-

soles eats away at your productivity. Take control of

your environment with tmux, a terminal multiplexer

that you can tailor to your workflow. With this updated

second edition for tmux 2.3, you’ll customize, script,

and leverage tmux’s unique abilities to craft a produc-

tive terminal environment that lets you keep your fin-

gers on your keyboard’s home row.

Brian P. Hogan

(102 pages) ISBN: 9781680502213. $21.95

https://pragprog.com/book/bhtmux2

Practical Vim, Second Edition
Vim is a fast and efficient text editor that will make

you a faster and more efficient developer. It’s available

on almost every OS, and if you master the techniques

in this book, you’ll never need another text editor. In

more than 120 Vim tips, you’ll quickly learn the editor’s

core functionality and tackle your trickiest editing and

writing tasks. This beloved bestseller has been revised

and updated to Vim 8 and includes three brand-new

tips and five fully revised tips.

Drew Neil

(354 pages) ISBN: 9781680501278. $29

https://pragprog.com/book/dnvim2

https://pragprog.com/book/bhtmux2
https://pragprog.com/book/dnvim2

Exercises and Teams
From exercises to make you a better programmer to techniques for creating better teams,

we’ve got you covered.

Exercises for Programmers
When you write software, you need to be at the top of

your game. Great programmers practice to keep their

skills sharp. Get sharp and stay sharp with more than

fifty practice exercises rooted in real-world scenarios.

If you’re a new programmer, these challenges will help

you learn what you need to break into the field, and if

you’re a seasoned pro, you can use these exercises to

learn that hot new language for your next gig.

Brian P. Hogan

(118 pages) ISBN: 9781680501223. $24

https://pragprog.com/book/bhwb

Creating Great Teams
People are happiest and most productive if they can

choose what they work on and who they work with.

Self-selecting teams give people that choice. Build well-

designed and efficient teams to get the most out of your

organization, with step-by-step instructions on how to

set up teams quickly and efficiently. You’ll create a

process that works for you, whether you need to form

teams from scratch, improve the design of existing

teams, or are on the verge of a big team re-shuffle.

Sandy Mamoli and David Mole

(102 pages) ISBN: 9781680501285. $17

https://pragprog.com/book/mmteams

https://pragprog.com/book/bhwb
https://pragprog.com/book/mmteams

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers will

be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page

https://pragprog.com/book/rails51
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: https://pragprog.com/book/rails51

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/rails51
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/rails51
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Foreword to the Rails 5 Edition
	Preface to the Rails 5.1 Edition
	Acknowledgments
	Introduction
	Rails Simply Feels Right
	Rails Is Agile
	Who This Book Is For
	How to Read This Book

	Part I—Getting Started
	1. Installing Rails
	Installing on Cloud9
	Installing on a Virtual Machine
	Installing on Windows
	Installing on Mac OS X
	Installing on Linux
	Choosing a Rails Version
	Setting Up Your Development Environment
	Rails and Databases

	2. Instant Gratification
	Creating a New Application
	Hello, Rails!
	Linking Pages Together
	When Things Go Wrong

	3. The Architecture of Rails Applications
	Models, Views, and Controllers
	Rails Model Support
	Action Pack: The View and Controller

	4. Introduction to Ruby
	Ruby Is an Object-Oriented Language
	Data Types
	Logic
	Organizing Structures
	Marshaling Objects
	Pulling It All Together
	Ruby Idioms

	Part II—Building an Application
	5. The Depot Application
	Incremental Development
	What Depot Does
	Let's Code

	6. Task A: Creating the Application
	Iteration A1: Creating the Product Maintenance Application
	Iteration A2: Making Prettier Listings

	7. Task B: Validation and Unit Testing
	Iteration B1: Validating!
	Iteration B2: Unit Testing of Models

	8. Task C: Catalog Display
	Iteration C1: Creating the Catalog Listing
	Iteration C2: Adding a Page Layout
	Iteration C3: Using a Helper to Format the Price
	Iteration C4: Functional Testing of Controllers
	Iteration C5: Caching of Partial Results

	9. Task D: Cart Creation
	Iteration D1: Finding a Cart
	Iteration D2: Connecting Products to Carts
	Iteration D3: Adding a Button

	10. Task E: A Smarter Cart
	Iteration E1: Creating a Smarter Cart
	Iteration E2: Handling Errors
	Iteration E3: Finishing the Cart

	11. Task F: Add a Dash of Ajax
	Iteration F1: Moving the Cart
	Iteration F2: Creating an Ajax-Based Cart
	Iteration F3: Highlighting Changes
	Iteration F4: Hiding an Empty Cart with a Custom Helper
	Iteration F5: Broadcasting Updates with Action Cable

	12. Task G: Check Out!
	Iteration G1: Capturing an Order
	Iteration G2: Atom Feeds

	13. Task H: Entering Additional Payment Details
	Iteration H1: Adding Fields Dynamically to a Form
	Iteration H2: Testing Our JavaScript Functionality

	14. Task I: Processing Emails and Payments Efficiently
	Iteration I1: Sending Confirmation Emails
	Iteration I2: Connecting to a Slow Payment Processor with Active Job

	15. Task J: Logging In
	Iteration J1: Adding Users
	Iteration J2: Authenticating Users
	Iteration J3: Limiting Access
	Iteration J4: Adding a Sidebar, More Administration

	16. Task K: Internationalization
	Iteration K1: Selecting the Locale
	Iteration K2: Translating the Storefront
	Iteration K3: Translating Checkout
	Iteration K4: Adding a Locale Switcher

	17. Task L: Deployment and Production
	Iteration L1: Deploying with Phusion Passenger and MySQL
	Iteration L2: Deploying Remotely with Capistrano
	Iteration L3: Checking Up on a Deployed Application
	Iteration L4: Deploying with Fewer Steps on Heroku

	18. Depot Retrospective
	Rails Concepts
	Documenting What We've Done

	Part III—Rails in Depth
	19. Finding Your Way Around Rails
	Where Things Go
	Naming Conventions

	20. Active Record
	Defining Your Data
	Locating and Traversing Records
	Creating, Reading, Updating, and Deleting (CRUD)
	Participating in the Monitoring Process
	Transactions

	21. Action Dispatch and Action Controller
	Dispatching Requests to Controllers
	Processing of Requests
	Objects and Operations That Span Requests

	22. Action View
	Using Templates
	Generating Forms
	Processing Forms
	Uploading Files to Rails Applications
	Using Helpers
	Reducing Maintenance with Layouts and Partials

	23. Migrations
	Creating and Running Migrations
	Anatomy of a Migration
	Managing Tables
	Advanced Migrations
	When Migrations Go Bad
	Schema Manipulation Outside Migrations

	24. Customizing and Extending Rails
	Testing with RSpec
	Creating HTML Templates with Slim
	Serving CSS via Webpack
	Customizing Rails in Other Ways
	Where to Go from Here

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

