

HOW	TO	DESIGN	PROGRAMS
AN	INTRODUCTION	TO	PROGRAMMING	AND	COMPUTING

SECOND	EDITION

Matthias	Felleisen
Robert	Bruce	Findler
Matthew	Flatt
Shriram	Krishnamurthi

The	MIT	Press
Cambridge,	Massachusetts
London,	England

	

©2018	Massachusetts	Institute	of	Technology

Illustrations	©2000	Torrey	Butzer

This	work	is	licensed	to	the	public	under	a	Creative	Commons	Attribution-
NonCommercial-NoDerivatives	4.0	license	(international):
http://creativecommons.org/licenses/by-nc-nd/4.0/

All	rights	reserved	except	as	licensed	pursuant	to	the	Creative	Commons	license
identified	above.	Any	reproduction	or	other	use	not	licensed	as	above,	by	any
electronic	or	mechanical	means	(including	but	not	limited	to	photocopying,
public	distribution,	online	display,	and	digital	information	storage	and	retrieval)
requires	permission	in	writing	from	the	publisher.

This	book	was	set	in	Scribble	and	LaTeX	by	the	authors.

Library	of	Congress	Cataloging-in-Publication	Data	Names:	Felleisen,	Matthias.

Title:	How	to	design	programs:	an	introduction	to	programming	and	computing	/
Matthias	Felleisen,	Robert	Bruce	Findler,	Matthew	Flatt,	and	Shriram
Krishnamurthi.

Description:	Second	edition.	|	Cambridge,	MA:	The	MIT	Press,	[2017]	|	Revised
edition	of:	How	to	design	programs	/	Matthias	Felleisen	…	[et	al.].	2001.	|
Includes	bibliographical	references	and	index.

Identifiers:	LCCN	2017018384	|	ISBN	9780262534802	(pbk.:	alk.	paper)
Subjects:	LCSH:	Computer	programming.	|	Electronic	data	processing.
Classification:	LCC	QA76.6.H697	2017	|	DDC	005.1/2–dc23
LC	record	available	at	https://lccn.loc.gov/2017018384

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://lccn.loc.gov/2017018384

	

Contents

Preface
Systematic	Program	Design
DrRacket	and	the	Teaching	Languages
Skills	that	Transfer
This	Book	and	Its	Parts
The	Differences

Prologue:	How	to	Program
Arithmetic	and	Arithmetic
Inputs	and	Output
Many	Ways	to	Compute
One	Program,	Many	Definitions
One	More	Definition
You	Are	a	Programmer	Now
Not!

I   Fixed-Size	Data
1    Arithmetic

1.1    The	Arithmetic	of	Numbers
1.2    The	Arithmetic	of	Strings
1.3    Mixing	It	Up
1.4    The	Arithmetic	of	Images
1.5    The	Arithmetic	of	Booleans
1.6    Mixing	It	Up	with	Booleans
1.7    Predicates:	Know	Thy	Data

2    Functions	and	Programs
2.1    Functions
2.2    Computing
2.3    Composing	Functions
2.4    Global	Constants
2.5    Programs

3    How	to	Design	Programs
3.1    Designing	Functions
3.2    Finger	Exercises:	Functions
3.3    Domain	Knowledge
3.4    From	Functions	to	Programs
3.5    On	Testing
3.6    Designing	World	Programs
3.7    Virtual	Pet	Worlds

4    Intervals,	Enumerations,	and	Itemizations
4.1    Programming	with	Conditionals
4.2    Computing	Conditionally
4.3    Enumerations
4.4    Intervals
4.5    Itemizations
4.6    Designing	with	Itemizations
4.7    Finite	State	Worlds

5    Adding	Structure
5.1    From	Positions	to	posn	Structures
5.2    Computing	with	posns
5.3    Programming	with	posn
5.4    Defining	Structure	Types
5.5    Computing	with	Structures
5.6    Programming	with	Structures
5.7    The	Universe	of	Data
5.8    Designing	with	Structures
5.9    Structure	in	the	World
5.10  A	Graphical	Editor
5.11  More	Virtual	Pets

6    Itemizations	and	Structures
6.1    Designing	with	Itemizations,	Again
6.2    Mixing	Up	Worlds
6.3    Input	Errors
6.4    Checking	the	World
6.5    Equality	Predicates

7    Summary

Intermezzo	1:	Beginning	Student	Language

II   Arbitrarily	Large	Data
8    Lists

8.1    Creating	Lists
8.2    What	Is	'(),	What	Is	cons
8.3    Programming	with	Lists
8.4    Computing	with	Lists

9    Designing	with	Self-Referential	Data	Definitions
9.1    Finger	Exercises:	Lists
9.2    Non-empty	Lists
9.3    Natural	Numbers
9.4    Russian	Dolls
9.5    Lists	and	World
9.6    A	Note	on	Lists	and	Sets

10  More	on	Lists
10.1  Functions	that	Produce	Lists
10.2  Structures	in	Lists
10.3  Lists	in	Lists,	Files
10.4  A	Graphical	Editor,	Revisited

11  Design	by	Composition
11.1  The	list	Function
11.2  Composing	Functions
11.3  Auxiliary	Functions	that	Recur

11.4  Auxiliary	Functions	that	Generalize

12  Projects:	Lists
12.1  Real-World	Data:	Dictionaries
12.2  Real-World	Data:	iTunes
12.3  Word	Games,	Composition	Illustrated
12.4  Word	Games,	the	Heart	of	the	Problem
12.5  Feeding	Worms
12.6  Simple	Tetris
12.7  Full	Space	War
12.8  Finite	State	Machines

13  Summary

Intermezzo	2:	Quote,	Unquote

III   Abstraction
14  Similarities	Everywhere

14.1  Similarities	in	Functions
14.2  Different	Similarities
14.3  Similarities	in	Data	Definitions
14.4  Functions	Are	Values
14.5  Computing	with	Functions

15  Designing	Abstractions
15.1  Abstractions	from	Examples
15.2  Similarities	in	Signatures
15.3  Single	Point	of	Control
15.4  Abstractions	from	Templates

16  Using	Abstractions
16.1  Existing	Abstractions
16.2  Local	Definitions
16.3  Local	Definitions	Add	Expressive	Power
16.4  Computing	with	local
16.5  Using	Abstractions,	by	Example

16.6  Designing	with	Abstractions
16.7  Finger	Exercises:	Abstraction
16.8  Projects:	Abstraction

17  Nameless	Functions
17.1  Functions	from	lambda
17.2  Computing	with	lambda
17.3  Abstracting	with	lambda
17.4  Specifying	with	lambda
17.5  Representing	with	lambda

18  Summary

Intermezzo	3:	Scope	and	Abstraction

IV   Intertwined	Data
19  The	Poetry	of	S-expressions

19.1  Trees
19.2  Forests
19.3  S-expressions
19.4  Designing	with	Intertwined	Data
19.5  Project:	BSTs
19.6  Simplifying	Functions

20  Iterative	Refinement
20.1  Data	Analysis
20.2  Refining	Data	Definitions
20.3  Refining	Functions

21  Refining	Interpreters
21.1  Interpreting	Expressions
21.2  Interpreting	Variables
21.3  Interpreting	Functions
21.4  Interpreting	Everything

22  Project:	The	Commerce	of	XML

22.1  XML	as	S-expressions
22.2  Rendering	XML	Enumerations
22.3  Domain-Specific	Languages
22.4  Reading	XML

23  Simultaneous	Processing
23.1  Processing	Two	Lists	Simultaneously:	Case	1
23.2  Processing	Two	Lists	Simultaneously:	Case	2
23.3  Processing	Two	Lists	Simultaneously:	Case	3
23.4  Function	Simplification
23.5  Designing	Functions	that	Consume	Two	Complex	Inputs
23.6  Finger	Exercises:	Two	Inputs
23.7  Project:	Database

24  Summary

Intermezzo	4:	The	Nature	of	Numbers

V   Generative	Recursion
25  Non-standard	Recursion

25.1  Recursion	without	Structure
25.2  Recursion	that	Ignores	Structure

26  Designing	Algorithms
26.1  Adapting	the	Design	Recipe
26.2  Termination
26.3  Structural	versus	Generative	Recursion
26.4  Making	Choices

27  Variations	on	the	Theme
27.1  Fractals,	a	First	Taste
27.2  Binary	Search
27.3  A	Glimpse	at	Parsing

28  Mathematical	Examples
28.1  Newton’s	Method

28.2  Numeric	Integration
28.3  Project:	Gaussian	Elimination

29  Algorithms	that	Backtrack
29.1  Traversing	Graphs
29.2  Project:	Backtracking

30  Summary

Intermezzo	5:	The	Cost	of	Computation

VI   Accumulators
31  The	Loss	of	Knowledge

31.1  A	Problem	with	Structural	Processing
31.2  A	Problem	with	Generative	Recursion

32  Designing	Accumulator-Style	Functions
32.1  Recognizing	the	Need	for	an	Accumulator
32.2  Adding	Accumulators
32.3  Transforming	Functions	into	Accumulator	Style
32.4  A	Graphical	Editor,	with	Mouse

33  More	Uses	of	Accumulation
33.1  Accumulators	and	Trees
33.2  Data	Representations	with	Accumulators
33.3  Accumulators	as	Results

34  Summary

Epilogue:	Moving	On
Computing
Program	Design
Onward,	Developers	and	Computer	Scientists
Onward,	Accountants,	Journalists,	Surgeons,	and	Everyone	Else

Index

List	of	Figures
Figure	1:	The	basic	steps	of	a	function	design	recipe	Figure	2:	The	dependencies
among	parts	and	intermezzos	Figure	3:	Meet	DrRacket
Figure	4:	Landing	a	rocket	(version	1)	Figure	5:	Landing	a	rocket	(version	2)
Figure	6:	Landing	a	rocket	(version	3)	Figure	7:	Landing	a	rocket	(version	4)
Figure	8:	Landing	a	rocket	(version	5)	Figure	9:	Landing	a	rocket	(version	6)
Figure	10:	Laws	of	image	creation	Figure	11:	The	DrRacket	stepper
Figure	12:	A	batch	program
Figure	13:	How	big-bang	works	Figure	14:	A	first	interactive	program	Figure
15:	From	information	to	data,	and	back	Figure	16:	The	completion	of	design	step
5
Figure	17:	Testing	in	BSL
Figure	18:	The	wish	list	for	designing	world	programs	Figure	19:	Examples	for	a
moving	car	program	Figure	20:	Recall	from	“One	Program,	Many	Definitions”
Figure	21:	Conditional	functions	and	special	enumerations	Figure	22:	UFO,
descending
Figure	23:	Rendering	with	a	status	line	Figure	24:	Rendering	with	a	status	line,
revised	Figure	25:	Launching	a	countdown	and	a	liftoff	Figure	26:	How	a	traffic
light	functions	Figure	27:	A	symbolic	traffic	light	Figure	28:	A	transition
diagram	for	a	door	with	an	automatic	closer	Figure	29:	A	Cartesian	point
Figure	30:	The	universe	of	data
Figure	31:	Adding	structure	to	a	universe	Figure	32:	Rendering	space	invader
game	states,	by	example	Figure	33:	The	complete	rendering	function	Figure	34:
Rendering	game	states	again	Figure	35:	Rendering	the	space	invader	games,
with	tanks	Figure	36:	Two	ways	of	writing	a	data	definition	for	FSMs	Figure	37:
A	finite	state	machine	as	a	diagram	Figure	38:	The	universe	of	BSL	data	Figure
39:	BSL	core	vocabulary
Figure	40:	BSL	core	grammar
Figure	41:	Syntactic	naming	conventions	Figure	42:	Replacing	equals	by	equals
Figure	43:	BSL,	full	grammar
Figure	44:	Building	a	list
Figure	45:	Drawing	a	list

Figure	46:	List	primitives
Figure	47:	Searching	a	list
Figure	48:	Computing	with	lists,	step	1
Figure	49:	Computing	with	lists,	step	2
Figure	50:	Computing	with	lists,	step	3
Figure	51:	Arrows	for	self-references	in	data	definitions	and	templates	Figure
52:	How	to	translate	a	data	definition	into	a	template	Figure	53:	How	to	turn	a
template	into	a	function	definition	Figure	54:	Turning	a	template	into	a	function,
the	table	method	Figure	55:	Tabulating	arguments,	intermediate	values,	and
results	Figure	56:	Designing	a	function	for	self-referential	data	Figure	57:	A
table	for	cat
Figure	58:	A	table	for	sorted>?
Figure	59:	Creating	a	list	of	copies	Figure	60:	Random	attacks
Figure	61:	A	list-based	world	program	Figure	62:	Two	data	representations	for
sets	Figure	63:	Functions	for	the	two	data	representations	of	sets	Figure	64:
Computing	the	wages	of	all	employees	Figure	65:	Computing	the	wages	from
work	records	Figure	66:	Things	take	time
Figure	67:	Reading	files
Figure	68:	Counting	the	words	on	a	line	Figure	69:	Encoding	strings
Figure	70:	Transpose	a	matrix
Figure	71:	Tabulating	for	rev
Figure	72:	Sorting	lists	of	numbers	Figure	73:	Drawing	a	polygon
Figure	74:	Reading	a	dictionary
Figure	75:	Representing	iTunes	tracks	as	structures	(the	structures)	Figure	76:
Representing	iTunes	tracks	as	structures	(the	functions)	Figure	77:	Representing
iTunes	tracks	as	lists	Figure	78:	Finding	alternative	words	Figure	79:	Playing
Worm
Figure	80:	Random	placement	of	food	Figure	81:	Simple	Tetris
Figure	82:	Representing	and	interpreting	finite	state	machines	in	general	Figure
83:	A	simplistic	HTML	generator	Figure	84:	A	data	representation	based	on
nested	lists	Figure	85:	A	web	page	generated	with	BSL+
Figure	86:	Two	similar	functions	Figure	87:	Two	similar	functions,	revisited

Figure	88:	Two	more	similar	functions	Figure	89:	Finding	the	inf	and	sup	in	a
list	of	numbers	Figure	90:	A	pair	of	similar	functions	Figure	91:	The	same	two
similar	functions,	abstracted	Figure	92:	The	similar	functions	for	exercise	250
Figure	93:	The	similar	functions	for	exercise	251
Figure	94:	The	similar	functions	for	exercise	252
Figure	95:	ISL’s	abstract	functions	for	list	processing	(1)	Figure	96:	ISL’s
abstract	functions	for	list	processing	(2)	Figure	97:	Creating	a	program	with
abstractions	Figure	98:	Organizing	a	function	with	local
Figure	99:	Organizing	interconnected	function	definitions	with	local
Figure	100:	Using	local	may	improve	performance	Figure	101:	A	function	on
inventories,	see	exercise	261
Figure	102:	Power	from	local	function	definitions	Figure	103:	A	general	sorting
function	Figure	104:	A	curried	predicate	for	checking	the	ordering	of	a	list
Figure	105:	Drawing	lexical	scope	contours	for	exercise	301
Figure	106:	Drawing	lexical	scope	contours	for	exercise	301	(version	2)	Figure
107:	ISL+	extended	with	for	loops	Figure	108:	A	compact	definition	of
arrangements	with	for*/list
Figure	109:	Constructing	sequences	of	natural	numbers	Figure	110:	ISL+	match
expressions	Figure	111:	A	family	tree
Figure	112:	A	data	representation	of	the	sample	family	tree	Figure	113:	Finding
a	blue-eyed	child	in	an	ancestor	tree	Figure	114:	Calculating	with	trees	Figure
115:	Finding	a	blue-eyed	child	in	a	family	forest	Figure	116:	A	template	for	S-
expressions	Figure	117:	A	program	for	S-expressions	Figure	118:	Arrows	for
nests	of	data	definitions	and	templates	Figure	119:	A	binary	search	tree	and	a
binary	tree	Figure	120:	A	program	to	be	simplified	Figure	121:	Program
simplification,	step	1
Figure	122:	Program	simplification,	steps	2	and	3
Figure	123:	A	sample	directory	tree	Figure	124:	Representing	BSL	expressions
in	BSL
Figure	125:	From	S-expr	to	BSL-expr	Figure	126:	The	complete	definition	of
xexpr-attr

Figure	127:	A	realistic	data	representation	of	XML	enumerations	Figure	128:
Refining	functions	to	match	refinements	of	data	definitions	Figure	129:	Finite

state	machines,	revisited	Figure	130:	Interpreting	a	DSL	program	Figure	131:	A
file	with	a	machine	configuration	Figure	132:	Reading	X-expressions	Figure
133:	Web	data	as	an	event	Figure	134:	Indexing	into	a	list	Figure	135:	Indexing
into	a	list,	simplified	Figure	136:	A	simple	hangman	game	Figure	137:
Databases	as	tables	Figure	138:	Databases	as	ISL+	data	Figure	139:	The	result	of
systematic	expression	hoisting	Figure	140:	A	template	for	project
Figure	141:	Database	projection	Figure	142:	Database	projection	Figure	143:
Functions	for	inexact	representations	Figure	144:	A	Janus-faced	series	of	inexact
numbers	Figure	145:	The	graph	of	oscillate
Figure	146:	Useless	templates	for	breaking	up	strings	into	chunks	Figure	147:
Generative	recursion	Figure	148:	A	graphical	illustration	of	the	quick-sort
algorithm	Figure	149:	The	quick-sort	algorithm	Figure	150:	The	table-based
guessing	approach	for	combining	solutions	Figure	151:	Designing	algorithms
(part	1)	Figure	152:	Designing	algorithms	(part	2)	Figure	153:	From	generative
to	structural	recursion	Figure	154:	Finding	the	greatest	common	divisor	via
structural	recursion	Figure	155:	Finding	the	greatest	common	divisor	via
generative	recursion	Figure	156:	The	Sierpinski	triangle	Figure	157:	The
Sierpinski	algorithm	Figure	158:	A	numeric	function	f	with	root	in	interval	[a,b]
(stage)	Figure	159:	The	find-root	algorithm	Figure	160:	Translating	a	file	into	a
list	of	lines	Figure	161:	The	Newton	process
Figure	162:	The	graph	of	poly	on	the	interval	[-1,5]
Figure	163:	Distance	traveled	with	constant	vs	accelerating	speed	Figure	164:
Integrating	a	function	f	between	a	and	b	Figure	165:	A	generic	integration
function	Figure	166:	A	candidate	for	adaptive	integration	Figure	167:	A	data
representation	for	systems	of	equations	Figure	168:	A	directed	graph
Figure	169:	Finding	a	path	in	a	graph	Figure	170:	A	directed	graph	with	cycle
Figure	171:	A	definition	of	arrangements	using	generative	recursion	Figure
172:	A	chess	board	with	a	single	queen	and	the	positions	it	threatens	Figure	173:
Three	queen	configurations	for	a	3	by	3	chess	board	Figure	174:	Solutions	for
the	n	queens	puzzle	for	4	by	4	and	5	by	5	boards	Figure	175:	Solutions	for	the	4
queens	puzzle	Figure	176:	A	comparison	of	two	running	time	expressions	Figure
177:	Converting	relative	distances	to	absolute	distances	Figure	178:	Converting
relative	distances	with	an	accumulator	Figure	179:	A	simple	graph
Figure	180:	Finding	a	path	in	a	simple	graph	Figure	181:	Finding	a	path	in	a

simple	graph	with	an	accumulator	Figure	182:	Design	with	accumulators,	a
structural	example	Figure	183:	Calculating	with	accumulator-style	templates
Figure	184:	Some	stripped-down	binary	trees	Figure	185:	The	accumulator-style
version	of	height	Figure	186:	Lam	terms	as	trees
Figure	187:	Finding	undeclared	variables	Figure	188:	Static	distances
Figure	189:	An	implementation	of	lists	in	BSL
Figure	190:	Creating	a	game	tree	Figure	191:	Accumulators	as	results	of
generative	recursions,	a	skeleton	Figure	192:	Accumulators	as	results	of
generative	recursion,	the	function

	

PREFACE

Many	 professions	 require	 some	 form	 of	 programming.	 Accountants	 program
spreadsheets;	 musicians	 program	 synthesizers;	 authors	 program	 word
processors;	and	web	designers	program	style	sheets.	When	we	wrote	these	words
for	the	first	edition	of	the	book	(1995–2000),	readers	may	have	considered	them
futuristic;	 by	 now,	 programming	 has	 become	 a	 required	 skill	 and	 numerous
outlets—books,	on-line	courses,	K-12	curricula—cater	to	this	need,	always	with
the	goal	of	enhancing	people’s	job	prospects.

The	 typical	 course	 on	 programming	 teaches	 a	 “tinker	 until	 it	 works”
approach.	When	it	works,	students	exclaim	“It	works!”	and	move	on.	Sadly,	this
phrase	 is	also	 the	shortest	 lie	 in	computing,	and	 it	has	cost	many	people	many
hours	 of	 their	 lives.	 In	 contrast,	 this	 book	 focuses	 on	 habits	 of	 good
programming,	addressing	both	professional	and	vocational	programmers.

By	“good	programming,”	we	mean	an	approach	 to	 the	creation	of	software
that	 relies	 on	 systematic	 thought,	 planning,	 and	 understanding	 from	 the	 very
beginning,	at	every	stage,	and	for	every	step.	To	emphasize	the	point,	we	speak
of	systematic	program	design	and	systematically	designed	programs.	Critically,
the	 latter	 articulates	 the	 rationale	 of	 the	 desired	 functionality.	 Good
programming	also	 satisfies	an	aesthetic	 sense	of	accomplishment;	 the	elegance
of	 a	 good	program	 is	 comparable	 to	 time-tested	poems	or	 the	 black-and-white
photographs	 of	 a	 bygone	 era.	 In	 short,	 programming	 differs	 from	 good
programming	like	crayon	sketches	in	a	diner	from	oil	paintings	in	a	museum.

No,	 this	 book	won’t	 turn	 anyone	 into	 a	master	 painter.	But,	we	would	 not
have	spent	fifteen	years	writing	this	edition	if	we	didn’t	believe	that

everyone	can	design	programs

and

everyone	can	experience	the	satisfaction	that	comes	with	creative	design.

Indeed,	we	go	even	further	and	argue	that

program	design—but	not	programming—deserves	the	same	role	in	a	liberal-
arts	education	as	mathematics	and	language	skills.

A	 student	 of	 design	 who	 never	 touches	 a	 program	 again	 will	 still	 pick	 up
universally	useful	problem-solving	skills,	experience	a	deeply	creative	activity,
and	learn	to	appreciate	a	new	form	of	aesthetic.	The	rest	of	this	preface	explains
in	detail	what	we	mean	with	“systematic	design,”	who	benefits	in	what	manner,
and	how	we	go	about	teaching	it	all.

Systematic	Program	Design
A	program	 interacts	with	 people,	 dubbed	users,	 and	 other	 programs,	 in	which
case	we	speak	of	server	and	client	components.	Hence	any	reasonably	complete
program	 consists	 of	many	 building	 blocks:	 some	 deal	with	 input,	 some	 create
output,	 while	 some	 bridge	 the	 gap	 between	 those	 two.	 We	 choose	 to	 use
functions	as	fundamental	building	blocks	because	everyone	encounters	functions
in	 pre-algebra	 and	 because	 the	 simplest	 programs	 are	 just	 such	 functions.	The
key	is	to	discover	which	functions	are	needed,	how	to	connect	them,	and	how	to
build	them	from	basic	ingredients.

In	this	context,	“systematic	program	design”	refers	to	a	mix	of	two	concepts:
design	recipes	and	iterative	refinement.	The	design	recipes	are	a	creation	of	the
authors,	and	here	they	enable	the	use	of	the	latter.

We	drew	inspiration	from	Michael	Jackson’s	method	for	creating	COBOL	programs	plus
conversations	with	Daniel	Friedman	on	recursion,	Robert	Harper	on	type	theory,	and	Daniel	Jackson
on	software	design.

Design	Recipes	apply	 to	both	complete	programs	and	 individual	 functions.
This	book	deals	with	just	two	recipes	for	complete	programs:	one	for	programs
with	 a	graphical	 user	 interface	 (GUI)	 and	one	 for	batch	programs.	 In	 contrast,

design	recipes	for	functions	come	in	a	wide	variety	of	flavors:	for	atomic	forms
of	data	such	as	numbers;	for	enumerations	of	different	kinds	of	data;	for	data	that
compounds	other	data	in	a	fixed	manner;	for	finite	but	arbitrarily	large	data;	and
so	on.

The	function-level	design	recipes	share	a	common	design	process.	Figure	1
displays	 its	 six	 essential	 steps.	 The	 title	 of	 each	 step	 specifies	 the	 expected
outcome(s);	the	“commands”	suggest	the	key	activities.	Examples	play	a	central
role	at	almost	every	stage.	For	the	chosen	data	representation	in	step	1,	writing
down	examples	proves	how	real-world	information	is	encoded	as	data	and	how
data	is	interpreted	as	information.	Step	3	says	that	a	problem-solver	must	work
through	concrete	scenarios	to	gain	an	understanding	of	what	the	desired	function
is	expected	to	compute	for	specific	examples.	This	understanding	is	exploited	in
step	 5,	 when	 it	 is	 time	 to	 define	 the	 function.	 Finally,	 step	 6	 demands	 that
examples	 are	 turned	 into	 automated	 test	 code,	which	 ensures	 that	 the	 function
works	 properly	 for	 some	 cases.	 Running	 the	 function	 on	 real-world	 data	may
reveal	other	discrepancies	between	expectations	and	results.

Figure	1:	The	basic	steps	of	a	function	design	recipe

Instructors	Have	students	copy	figure	1	on	one	side	of	an	index	card.	When	students	are	stuck,	ask
them	to	produce	their	card	and	point	them	to	the	step	where	they	are	stuck.

Each	 step	 of	 the	 design	 process	 comes	with	 pointed	 questions.	 For	 certain
steps—say,	 the	 creation	 of	 the	 functional	 examples	 or	 the	 template—the
questions	may	appeal	 to	 the	data	definition.	The	 answers	 almost	 automatically
create	an	intermediate	product.	This	scaffolding	pays	off	when	it	comes	time	to
take	 the	 one	 creative	 step	 in	 the	 process:	 the	 completion	 of	 the	 function
definition.	And	even	then,	help	is	available	in	almost	all	cases.

Instructors	The	most	important	questions	are	those	for	steps	4	and	5.	Ask	students	to	write	down
these	questions	in	their	own	words	on	the	back	of	their	index	card.

The	 novelty	 of	 this	 approach	 is	 the	 creation	 of	 intermediate	 products	 for

beginner-level	programs.	When	a	novice	is	stuck,	an	expert	or	an	instructor	can
inspect	 the	 existing	 intermediate	 products.	 The	 inspection	 is	 likely	 to	 use	 the
generic	questions	 from	 the	design	process	 and	 thus	drive	 the	novice	 to	 correct
himself	 or	 herself.	 And	 this	 self-empowering	 process	 is	 the	 key	 difference
between	programming	and	program	design.

Iterative	 Refinement	 addresses	 the	 issue	 that	 problems	 are	 complex	 and
multifaceted.	 Getting	 everything	 right	 at	 once	 is	 nearly	 impossible.	 Instead,
computer	 scientists	 borrow	 iterative	 refinement	 from	 the	 physical	 sciences	 to
tackle	 this	 design	 problem.	 In	 essence,	 iterative	 refinement	 recommends
stripping	 away	 all	 inessential	 details	 at	 first	 and	 finding	 a	 solution	 for	 the
remaining	core	problem.	A	refinement	step	adds	in	one	of	these	omitted	details
and	 re-solves	 the	 expanded	 problem,	 using	 the	 existing	 solution	 as	 much	 as
possible.	 A	 repetition,	 also	 called	 an	 iteration,	 of	 these	 refinement	 steps
eventually	leads	to	a	complete	solution.

In	this	sense,	a	programmer	is	a	miniscientist.	Scientists	create	approximate
models	for	some	idealized	version	of	the	world	to	make	predictions	about	it.	As
long	as	the	model’s	predictions	come	true,	everything	is	fine;	when	the	predicted
events	 differ	 from	 the	 actual	 ones,	 scientists	 revise	 their	models	 to	 reduce	 the
discrepancy.	In	a	similar	vein,	when	programmers	are	given	a	task,	they	create	a
first	design,	turn	it	into	code,	evaluate	it	with	actual	users,	and	iteratively	refine
the	design	until	the	program’s	behavior	closely	matches	the	desired	product.

This	 book	 introduces	 iterative	 refinement	 in	 two	 different	 ways.	 Since
designing	 via	 refinement	 becomes	 useful	 even	 when	 the	 design	 of	 programs
becomes	complex,	the	book	introduces	the	technique	explicitly	in	the	fourth	part,
once	 the	 problems	 acquire	 a	 certain	 degree	 of	 difficulty.	 Furthermore,	we	 use
iterative	refinement	to	state	increasingly	complex	variants	of	the	same	problem
over	 the	 course	 of	 the	 first	 three	 parts	 of	 the	 book.	 That	 is,	 we	 pick	 a	 core
problem,	 deal	 with	 it	 in	 one	 chapter,	 and	 then	 pose	 a	 similar	 problem	 in	 a
subsequent	chapter—with	details	matching	the	newly	introduced	concepts.

DrRacket	and	the	Teaching	Languages
Learning	to	design	programs	calls	for	repeated	hands-on	practice.	Just	as	nobody
becomes	a	piano	player	without	playing	the	piano,	nobody	becomes	a	program
designer	without	 creating	 actual	 programs	 and	 getting	 them	 to	work	 properly.
Hence,	 our	 book	 comes	 with	 a	 modicum	 of	 software	 support:	 a	 language	 in

which	 to	write	 down	 programs	 and	 a	 program	 development	 environment	 with
which	programs	are	edited	like	word	documents	and	with	which	readers	can	run
programs.

Many	people	we	encounter	tell	us	they	wish	they	knew	how	to	code	and	then
ask	which	programming	language	they	should	learn.	Given	the	press	that	some
programming	languages	get,	this	question	is	not	surprising.	But	it	is	also	wholly
inappropriate.	 Learning	 to	 program	 in	 a	 currently	 fashionable	 programming
language	 often	 sets	 up	 students	 for	 eventual	 failure.	 Fashion	 in	 this	 world	 is
extremely	short	lived.	A	typical	“quick	programming	in	X”	book	or	course	fails
to	 teach	 principles	 that	 transfer	 to	 the	 next	 fashion	 language.	 Worse,	 the
language	 itself	 often	distracts	 from	 the	 acquisition	of	 transferable	 skills,	 at	 the
level	of	both	expressing	solutions	and	dealing	with	programming	mistakes.

Instructors	For	courses	not	aimed	at	beginners,	it	may	be	possible	to	use	an	off-the-shelf	language
with	the	design	recipes.

In	 contrast,	 learning	 to	 design	 programs	 is	 primarily	 about	 the	 study	 of
principles	 and	 the	 acquisition	 of	 transferable	 skills.	 The	 ideal	 programming
language	must	support	 these	two	goals,	but	no	off-the-shelf	 industrial	 language
does	so.	The	crucial	problem	is	that	beginners	make	mistakes	before	they	know
much	of	the	language,	yet	programming	languages	always	diagnose	these	errors
as	 if	 the	programmer	 already	knew	 the	whole	 language.	As	 a	 result,	 diagnosis
reports	often	stump	beginners.

Our	solution	is	to	start	with	our	own	tailor-made	teaching	language,	dubbed
“Beginning	 Student	 Language”	 or	 BSL.	 The	 language	 is	 essentially	 the
“foreign”	 language	 that	 students	 acquire	 in	 pre-algebra	 courses.	 It	 includes
notation	 for	 function	 definitions,	 function	 applications,	 and	 conditional
expressions.	Also,	expressions	can	be	nested.	This	language	is	thus	so	small	that
an	 error	 diagnosis	 in	 terms	of	 the	whole	 language	 is	 still	 accessible	 to	 readers
with	nothing	but	pre-algebra	under	their	belt.

Instructors	You	may	wish	to	explain	that	BSL	is	pre-algebra	with	additional	forms	of	data	and	a	host
of	pre-defined	functions	on	those.

A	student	who	has	mastered	 the	structural	design	principles	can	 then	move

on	to	“Intermediate	Student	Language”	and	other	advanced	dialects,	collectively
dubbed	 *SL.	 The	 book	 uses	 these	 dialects	 to	 teach	 design	 principles	 of
abstraction	and	general	recursion.	We	firmly	believe	that	using	such	a	series	of
teaching	 languages	 provides	 readers	 with	 a	 superior	 preparation	 for	 creating
programs	 for	 the	 wide	 spectrum	 of	 professional	 programming	 languages
(JavaScript,	Python,	Ruby,	Java,	and	others).

Note	 The	 teaching	 languages	 are	 implemented	 in	 Racket,	 a	 programming
language	 we	 built	 for	 building	 programming	 languages.	 Racket	 has	 escaped
from	the	lab	into	the	real	world,	and	it	is	a	programming	vehicle	of	choice	in	a
variety	of	settings,	from	gaming	to	the	control	of	telescope	arrays.	Although	the
teaching	 languages	borrow	elements	 from	 the	Racket	 language,	 this	book	does
not	teach	Racket.	Then	again,	a	student	who	has	completed	this	book	can	easily
move	on	to	Racket.	End

When	it	comes	to	programming	environments,	we	face	an	equally	bad	choice
as	 the	 one	 for	 languages.	 A	 programming	 environment	 for	 professionals	 is
analogous	to	the	cockpit	of	a	jumbo	jet.	It	has	numerous	controls	and	displays,
overwhelming	 anyone	 who	 first	 launches	 such	 a	 software	 application.	 Novice
programmers	need	the	equivalent	of	a	 two-seat,	single-engine	propeller	aircraft
with	which	they	can	practice	basic	skills.	We	have	therefore	created	DrRacket,	a
programming	environment	for	novices.

DrRacket	 supports	highly	playful,	 feedback-oriented	 learning	with	 just	 two
simple	interactive	panes:	a	definitions	area,	which	contains	function	definitions,
and	an	interactions	area,	which	allows	a	programmer	to	ask	for	the	evaluation	of
expressions	 that	 may	 refer	 to	 the	 definitions.	 In	 this	 context,	 it	 is	 as	 easy	 to
explore	“what	if”	scenarios	as	in	a	spreadsheet	application.	Experimentation	can
start	 on	 first	 contact,	 using	 conventional	 calculator-style	 examples	 and	quickly
proceeding	to	calculations	with	images,	words,	and	other	forms	of	data.

An	 interactive	 program	 development	 environment	 such	 as	 DrRacket
simplifies	the	learning	process	in	two	ways.	First,	it	enables	novice	programmers
to	manipulate	data	directly.	Because	no	 facilities	 for	 reading	 input	 information
from	files	or	devices	are	needed,	novices	don’t	need	to	spend	valuable	time	on
figuring	out	how	these	work.	Second,	the	arrangement	strictly	separates	data	and
data	manipulation	 from	input	and	output	of	 information	from	the	“real	world.”
Nowadays	this	separation	is	considered	so	fundamental	to	the	systematic	design
of	 software	 that	 it	 has	 its	 own	 name:	model-view-controller	 architecture.	 By
working	 in	 DrRacket,	 new	 programmers	 are	 exposed	 to	 this	 fundamental

software	engineering	idea	in	a	natural	way	from	the	get-go.

Skills	that	Transfer
The	skills	acquired	from	learning	 to	design	programs	systematically	 transfer	 in
two	 directions.	Naturally,	 they	 apply	 to	 programming	 in	 general	 as	well	 as	 to
programming	spreadsheets,	synthesizers,	style	sheets,	and	even	word	processors.
Our	 observations	 suggest	 that	 the	 design	process	 from	 figure	 1	 carries	 over	 to
almost	any	programming	language,	and	it	works	for	10-line	programs	as	well	as
for	 10,000-line	 programs.	 It	 takes	 some	 reflection	 to	 adopt	 the	 design	 process
across	the	spectrum	of	languages	and	scale	of	programming	problems;	but	once
the	process	becomes	second	nature,	its	use	pays	off	in	many	ways.

Learning	to	design	programs	also	means	acquiring	two	kinds	of	universally
useful	 skills.	 Program	 design	 certainly	 teaches	 the	 same	 analytical	 skills	 as
mathematics,	 especially	 (pre)algebra	 and	 geometry.	 But,	 unlike	 mathematics,
working	 with	 programs	 is	 an	 active	 approach	 to	 learning.	 Creating	 software
provides	immediate	feedback	and	thus	leads	to	exploration,	experimentation,	and
self-evaluation.	 The	 results	 tend	 to	 be	 interactive	 products,	 an	 approach	 that
vastly	 increases	 the	sense	of	accomplishment	when	compared	 to	drill	exercises
in	textbooks.

In	 addition	 to	 enhancing	 a	 student’s	 mathematical	 skills,	 program	 design
teaches	analytical	reading	and	writing	skills.	Even	the	smallest	design	tasks	are
formulated	as	word	problems.	Without	solid	reading	and	comprehension	skills,	it
is	 impossible	 to	 design	 programs	 that	 solve	 a	 reasonably	 complex	 problem.
Conversely,	 program	 design	 methods	 force	 a	 creator	 to	 articulate	 his	 or	 her
thoughts	 in	 proper	 and	 precise	 language.	 Indeed,	 if	 students	 truly	 absorb	 the
design	recipe,	they	enhance	their	articulation	skills	more	than	anything	else.

To	illustrate	this	point,	take	a	second	look	at	the	process	description	in	figure
1.	It	says	that	a	designer	must

1.	analyze	a	problem	statement,	typically	stated	as	a	word	problem;

2.	extract	and	express	its	essence,	abstractly;

3.	illustrate	the	essence	with	examples;

4.	make	outlines	and	plans	based	on	this	analysis;

5.	evaluate	results	with	respect	to	expected	outcomes;	and

6.	revise	the	product	in	light	of	failed	checks	and	tests.

Each	 step	 requires	 analysis,	 precision,	 description,	 focus,	 and	 attention	 to
details.	Any	experienced	entrepreneur,	engineer,	 journalist,	 lawyer,	scientist,	or
any	other	professional	can	explain	how	many	of	these	skills	are	necessary	for	his
or	her	daily	work.	Practicing	program	design—on	paper	and	in	DrRacket—is	a
joyful	way	to	acquire	these	skills.

Similarly,	refining	designs	is	not	restricted	to	computer	science	and	program
creation.	Architects,	composers,	writers,	and	other	professionals	do	it,	too.	They
start	with	ideas	in	their	head	and	somehow	articulate	their	essence.	They	refine
these	 ideas	on	paper	until	 their	product	 reflects	 their	mental	 image	as	much	as
possible.	As	they	bring	their	ideas	to	paper,	they	employ	skills	analogous	to	fully
absorbed	 design	 recipes:	 drawing,	writing,	 or	 piano	 playing	 to	 express	 certain
style	elements	of	a	building,	describe	a	person’s	character,	or	formulate	portions
of	a	melody.	What	makes	them	productive	with	an	iterative	development	process
is	that	they	have	absorbed	their	basic	design	recipes	and	learned	how	to	choose
which	one	to	use	for	the	current	situation.

This	Book	and	Its	Parts
The	purpose	of	this	book	is	to	introduce	readers	without	prior	experience	to	the
systematic	 design	 of	 programs.	 In	 tandem,	 it	 presents	 a	 symbolic	 view	 of
computation,	 a	method	 that	 explains	 how	 the	 application	of	 a	 program	 to	data
works.	 Roughly	 speaking,	 this	 method	 generalizes	 what	 students	 learn	 in
elementary	 school	 arithmetic	 and	 middle	 school	 algebra.	 But	 have	 no	 fear.
DrRacket	 comes	with	 a	mechanism—the	 algebraic	 stepper—that	 can	 illustrate
these	step-by-step	calculations.

The	 book	 consists	 of	 six	 parts	 separated	 by	 five	 intermezzos	 and	 is
bookended	 by	 a	 Prologue	 and	 an	 Epilogue.	 While	 the	 major	 parts	 focus	 on
program	design,	 the	 intermezzos	 introduce	 supplementary	 concepts	 concerning
programming	mechanics	and	computing.

The	Prologue	is	a	quick	introduction	to	plain	programming.	It	explains	how
to	write	a	simple	animation	in	*SL.	Once	finished,	any	beginner	is	bound	to	feel
simultaneously	empowered	and	overwhelmed.	The	final	note	therefore	explains

why	 plain	 programming	 is	 wrong	 and	 how	 a	 systematic,	 gradual	 approach	 to
program	design	eliminates	the	sense	of	dread	that	every	beginning	programmer
usually	experiences.	Now	the	stage	is	set	for	the	core	of	the	book:

•  Part	I	explains	the	most	fundamental	concepts	of	systematic	design	using
simple	examples.	The	central	idea	is	that	designers	typically	have	a	rough
idea	 of	 what	 data	 the	 program	 is	 supposed	 to	 consume	 and	 produce.	 A
systematic	 approach	 to	 design	 must	 therefore	 extract	 as	 many	 hints	 as
possible	 from	 the	 description	 of	 the	 data	 that	 flows	 into	 and	 out	 of	 a
program.	 To	 keep	 things	 simple,	 this	 part	 starts	 with	 atomic	 data—
numbers,	images,	and	so	on—and	then	gradually	introduces	new	ways	of
describing	 data:	 intervals,	 enumerations,	 itemizations,	 structures,	 and
combinations	of	these.

•  Intermezzo	 1	 describes	 the	 teaching	 language	 in	 complete	 detail:	 its
vocabulary,	 its	 grammar,	 and	 its	 meaning.	 Computer	 scientists	 refer	 to
these	 as	 syntax	 and	 semantics.	 Program	 designers	 use	 this	 model	 of
computation	 to	 predict	 what	 their	 creations	 compute	 when	 run	 or	 to
analyze	error	diagnostics.

•  Part	II	extends	part	I	with	 the	means	to	describe	the	most	 interesting	and
useful	forms	of	data:	arbitrarily	large	compound	data.	While	a	programmer
may	nest	the	kinds	of	data	from	part	I	to	represent	information,	the	nesting
is	 always	 of	 a	 fixed	 depth	 and	 breadth.	 This	 part	 shows	 how	 a	 subtle
generalization	gets	us	from	there	to	data	of	arbitrary	size.	The	focus	then
switches	 to	 the	 systematic	 design	 of	 programs	 that	 process	 this	 kind	 of
data.

•  Intermezzo	2	introduces	a	concise	and	powerful	notation	for	writing	down
large	pieces	of	data:	quotation	and	anti-quotation.

•  Part	 III	acknowledges	 that	many	of	 the	 functions	 from	part	 II	 look	alike.
No	programming	 language	 should	 force	programmers	 to	create	pieces	of
code	 that	 are	 so	 similar	 to	 each	 other.	 Conversely,	 every	 good
programming	 language	 comes	 with	 ways	 to	 eliminate	 such	 similarities.
Computer	 scientists	 call	 both	 the	 step	 of	 eliminating	 similarities	 and	 its
result	 abstraction,	 and	 they	 know	 that	 abstractions	 greatly	 increase	 a

programmer’s	productivity.	Hence,	 this	part	 introduces	design	recipes	for
creating	and	using	abstractions.

•  Intermezzo	 3	 plays	 two	 roles.	On	 the	 one	 hand,	 it	 injects	 the	 concept	 of
lexical	scope,	the	idea	that	a	programming	language	ties	every	occurrence
of	a	name	to	a	definition	that	a	programmer	can	find	with	an	inspection	of
the	 code.	 On	 the	 other	 hand,	 it	 explains	 a	 library	 with	 additional
mechanisms	for	abstraction,	including	so-called	for	loops.

•  Part	 IV	 generalizes	 part	 II	 and	 explicitly	 introduces	 the	 idea	 of	 iterative
refinement	into	the	catalog	of	design	concepts.

•  Intermezzo	4	explains	and	 illustrates	why	decimal	numbers	work	 in	such
strange	ways	 in	 all	 programming	 languages.	 Every	 budding	 programmer
ought	to	know	these	basic	facts.

•  Part	V	adds	a	new	design	principle.	While	structural	design	and	abstraction
suffice	 for	most	problems	 that	programmers	encounter,	 they	occasionally
lead	to	insufficiently	“performant”	programs.	That	is,	structurally	designed
programs	 might	 need	 too	 much	 time	 or	 energy	 to	 compute	 the	 desired
answers.	 Computer	 scientists	 therefore	 replace	 structurally	 designed
programs	with	programs	that	benefit	from	ad	hoc	insights	into	the	problem
domain.	This	part	 of	 the	book	 shows	how	 to	design	 a	 large	 class	of	 just
such	programs.

•  Intermezzo	 5	 uses	 examples	 from	 part	 V	 to	 illustrate	 how	 computer
scientists	think	about	performance.

•  Part	 VI	 adds	 one	 final	 trick	 to	 the	 toolbox	 of	 designers:	 accumulators.
Roughly	 speaking,	 an	 accumulator	 adds	 “memory”	 to	 a	 function.	 The
addition	 of	 memory	 greatly	 improves	 the	 performance	 of	 structurally
designed	 functions	 from	 the	 first	 four	 parts	 of	 the	 book.	 For	 the	 ad	 hoc
programs	 from	 part	 V,	 accumulators	 can	 make	 the	 difference	 between
finding	an	answer	and	never	finding	one.

The	Epilogue	is	both	an	assessment	and	a	look	ahead	to	what’s	next.
Independent	 readers	 ought	 to	work	 through	 the	 entire	 book,	 from	 the	 first

page	to	the	last.	We	say	“work”	because	we	really	mean	that	a	reader	ought	to
solve	all	exercises	or	at	least	know	how	to	solve	them.

Similarly,	 instructors	ought	 to	cover	as	many	elements	as	possible,	 starting
from	 the	 Prologue	 all	 the	way	 through	 the	 Epilogue.	Our	 teaching	 experience
suggests	 that	 this	 is	 doable.	 Typically,	 we	 organize	 our	 courses	 so	 that	 our
readers	 create	 a	 sizable	 and	 entertaining	 program	 over	 the	 course	 of	 the
semester.	We	understand,	however,	that	some	circumstances	call	for	significant
cuts	and	 that	 some	 instructors’	 tastes	call	 for	 slightly	different	ways	 to	use	 the
book.

Figure	2	is	a	navigation	chart	for	those	who	wish	to	pick	and	choose	from	the
elements	of	the	book.	The	figure	is	a	dependency	graph.	A	solid	arrow	from	one
element	to	another	suggests	a	mandatory	ordering;	for	example,	Part	II	requires
an	understanding	of	Part	I.	In	contrast,	a	dotted	arrow	is	mostly	a	suggestion;	for
example,	 understanding	 the	Prologue	 is	 unnecessary	 to	 get	 through	 the	 rest	 of
the	book.

Figure	2:	The	dependencies	among	parts	and	intermezzos

Based	on	this	chart,	here	are	three	feasible	paths	through	the	book:

•  A	high	school	instructor	may	want	to	cover	(as	much	as	possible	of)	parts	I
and	II,	including	a	small	project	such	as	a	game.

•  A	college	instructor	in	a	quarter	system	may	wish	to	focus	on	part	I,	part
II,	part	III,	and	part	V,	plus	the	intermezzos	on	*SL	and	scope.

•  A	 college	 instructor	 in	 a	 semester	 system	 may	 prefer	 to	 discuss
performance	 trade-offs	 in	 designs	 as	 early	 as	 possible.	 In	 this	 case,	 it	 is
best	to	cover	part	I	and	part	II	and	then	the	accumulator	material	from	part
VI	that	does	not	depend	on	part	V.	At	that	point,	 it	 is	possible	to	discuss
intermezzo	5	and	to	study	the	rest	of	the	book	from	this	angle.

Iteration	of	Sample	Topics	The	book	 revisits	 certain	 exercise	 and	 sample
topics	 time	 and	 again.	 For	 example,	 virtual	 pets	 are	 found	 all	 over	 part	 I	 and
even	 show	 up	 in	 part	 II.	 Similarly,	 both	 part	 I	 and	 part	 II	 cover	 alternative
approaches	 to	 implementing	an	 interactive	 text	editor.	Graphs	appear	 in	part	V
and	immediately	again	in	part	VI.	The	purpose	of	these	iterations	is	to	motivate
iterative	 refinement	 and	 to	 introduce	 it	 through	 the	 backdoor.	 We	 urge
instructors	to	assign	these	themed	sequences	of	exercises	or	to	create	their	own
such	sequences.

The	Differences
This	 second	 edition	 of	How	 to	Design	 Programs	 differs	 from	 the	 first	 one	 in
several	major	aspects:

1.	 It	 explicitly	 acknowledges	 the	 difference	 between	 designing	 a	 whole
program	 and	 the	 functions	 that	 make	 up	 a	 program.	 Specifically,	 this
edition	focuses	on	two	kinds	of	programs:	event-driven	(mostly	GUI,	but
also	networking)	programs	and	batch	programs.

2.	The	design	of	a	program	proceeds	in	a	top-down	planning	phase	followed
by	a	bottom-up	construction	phase.	We	explicitly	show	how	the	interface
to	 libraries	 dictates	 the	 shape	 of	 certain	 program	 elements.	 In	 particular,
the	 very	 first	 phase	 of	 a	 program	 design	 yields	 a	wish	 list	 of	 functions.
While	 the	 concept	 of	 a	 wish	 list	 exists	 in	 the	 first	 edition,	 this	 second
edition	treats	it	as	an	explicit	design	element.

3.	Fulfilling	an	entry	from	the	wish	list	relies	on	the	function	design	recipe,
which	is	the	subject	of	the	six	major	parts.

4.	 A	 key	 element	 of	 structural	 design	 is	 the	 definition	 of	 functions	 that
compose	 others.	 This	 design-by-composition	 is	 especially	 useful	 for	 the
world	of	batch	programs.	Like	generative	recursion,	it	requires	a	eureka!,
specifically	 a	 recognition	 that	 the	 creation	 of	 intermediate	 data	 by	 one
function	 and	 processing	 this	 intermediate	 result	 by	 a	 second	 function
simplifies	 the	 overall	 design.	 This	 approach	 also	 needs	 a	 wish	 list,	 but
formulating	 these	 wishes	 calls	 for	 an	 insightful	 development	 of	 an
intermediate	data	definition.	This	edition	of	the	book	weaves	in	a	number
of	explicit	exercises	on	design	by	composition.

We	thank	Kathi	Fisler	for	calling	our	attention	to	this	point.

5.	 While	 testing	 has	 always	 been	 a	 part	 of	 our	 design	 philosophy,	 the
teaching	 languages	 and	 DrRacket	 started	 supporting	 it	 properly	 only	 in
2002,	just	after	we	had	released	the	first	edition.	This	new	edition	heavily
relies	on	this	testing	support.

6.	This	edition	of	the	book	drops	the	design	of	imperative	programs.	The	old
chapters	 remain	 available	 on-line.	 An	 adaptation	 of	 this	 material	 will
appear	in	the	second	volume	of	this	series,	How	to	Design	Components.

7.	The	book’s	examples	and	exercises	employ	new	teachpacks.	The	preferred
style	is	to	link	in	these	libraries	via	require,	but	it	is	still	possible	to	add
teachpacks	via	a	menu	in	DrRacket.

8.	 Finally,	 this	 second	 edition	 differs	 from	 the	 first	 in	 a	 few	 aspects	 of
terminology	and	notation:

Second	Edition First	Edition
signature
itemization

contract
union

'() empty

#true true

#false false

The	last	three	differences	greatly	improve	quotation	for	lists.

Acknowledgments	from	the	First	Edition
Four	 people	 deserve	 special	 thanks:	 Robert	 “Corky”	 Cartwright,	 who	 co-
developed	a	predecessor	of	Rice	University’s	 introductory	course	with	 the	first
author;	 Daniel	 P.	 Friedman,	 for	 asking	 the	 first	 author	 to	 rewrite	 The	 Little
LISPer	(also	MIT	Press)	in	1984,	because	it	started	this	project;	John	Clements,
who	 designed,	 implemented,	 and	 maintains	 DrRacket’s	 stepper;	 and	 Paul
Steckler,	 who	 faithfully	 supported	 the	 team	with	 contributions	 to	 our	 suite	 of
programming	tools.

The	 development	 of	 the	 book	 benefited	 from	 many	 other	 friends	 and
colleagues	who	used	it	in	courses	and/or	gave	detailed	comments	on	early	drafts.
We	are	grateful	to	them	for	their	help	and	patience:	Ian	Barland,	John	Clements,
Bruce	 Duba,	 Mike	 Ernst,	 Kathi	 Fisler,	 Daniel	 P.	 Friedman,	 John	 Greiner,
Géraldine	Morin,	John	Stone,	and	Valdemar	Tamez.

A	dozen	generations	of	Comp	210	students	at	Rice	used	early	drafts	of	 the
text	 and	 contributed	 improvements	 in	 various	 ways.	 In	 addition,	 numerous
attendees	of	our	TeachScheme!	workshops	used	early	drafts	in	their	classrooms.
Many	sent	in	comments	and	suggestions.	As	representative	of	these	we	mention
the	 following	 active	 contributors:	Ms.	 Barbara	Adler,	Dr.	 Stephen	Bloch,	Ms.
Karen	 Buras,	 Mr.	 Jack	 Clay,	 Dr.	 Richard	 Clemens,	 Mr.	 Kyle	 Gillette,	 Mr.
Marvin	Hernandez,	Mr.	Michael	Hunt,	Ms.	Karen	North,	Mr.	Jamie	Raymond,
and	Mr.	Robert	 Reid.	 Christopher	 Felleisen	 patiently	worked	 through	 the	 first
few	parts	of	the	book	with	his	father	and	provided	direct	insight	into	the	views	of
a	young	student.	Hrvoje	Blazevic	(sailing,	at	 the	time,	as	Master	of	 the	LPG/C
Harriette),	 Joe	Zachary	 (University	of	Utah),	 and	Daniel	P.	Friedman	 (Indiana
University)	discovered	numerous	typos	in	the	first	printing,	which	we	have	now
fixed.	Thank	you	to	everyone.

Finally,	 Matthias	 expresses	 his	 gratitude	 to	 Helga	 for	 her	 many	 years	 of
patience	 and	 for	 creating	 a	 home	 for	 an	 absent-minded	 husband	 and	 father.
Robby	 is	 grateful	 to	 Hsing-Huei	 Huang	 for	 her	 support	 and	 encouragement;
without	 her,	 he	 would	 not	 have	 gotten	 anything	 done.	 Matthew	 thanks	 Wen
Yuan	for	her	constant	support	and	enduring	music.	Shriram	is	indebted	to	Kathi
Fisler	for	support,	patience	and	puns,	and	for	her	participation	in	this	project.

Acknowledgments

Acknowledgments
As	 in	 2001,	 we	 are	 grateful	 to	 John	 Clements	 for	 designing,	 validating,
implementing,	and	maintaining	DrRacket’s	algebraic	stepper.	He	has	done	so	for
nearly	 20	 years	 now,	 and	 the	 stepper	 has	 become	 an	 indispensable	 tool	 of
explanation	and	instruction.

Over	the	past	few	years,	several	colleagues	have	commented	on	the	various
drafts	 and	 suggested	 improvements.	We	gratefully	 acknowledge	 the	 thoughtful
conversations	and	exchanges	with	these	individuals:

Kathi	 Fisler	 (WPI	 and	 Brown	 University),	 Gregor	 Kiczales
(University	of	British	Columbia),	Prabhakar	Ragde	(University	of
Waterloo),	and	Norman	Ramsey	(Tufts	University).

Thousands	of	 teachers	and	instructors	attended	our	various	workshops	over	 the
years,	and	many	provided	valuable	feedback.	But	Dan	Anderson,	Stephen	Bloch,
Jack	Clay,	Nadeem	Abdul	Hamid,	and	Viera	Proulx	stand	out,	and	we	wish	 to
call	out	their	role	in	the	crafting	of	this	edition.

Guillaume	 Marceau,	 working	 with	 Kathi	 Fisler	 and	 Shriram,	 spent	 many
months	studying	and	improving	the	error	messages	in	DrRacket.	We	are	grateful
for	his	amazing	work.

Celeste	 Hollenbeck	 is	 the	 most	 amazing	 reader	 ever.	 She	 never	 tired	 of
pushing	back	until	 she	understood	 the	prose.	She	never	stopped	until	a	 section
supported	 its	 thesis,	 its	 organization	 matched,	 and	 its	 sentences	 connected.
Thank	you	very	much	for	your	incredible	efforts.

We	also	 thank	the	following:	Saad	Bashir,	Steven	Belknap,	Stephen	Bloch,
Joseph	 Bogart	 Tomas	 Cabrera,	 Estevo	 Castro,	 Stephen	 Chang,	 Jack	 Clay,
Richard	Cleis,	John	Clements,	Mark	Engelberg,	Christopher	Felleisen,	Sebastian
Felleisen,	Vladimir	Gajić,	Adrian	German,	Ryan	Golbeck,	Jane	Griscti,	Alberto
E.	 F.	 Guerrero,	 Nadeem	 Abdul	 Hamid,	 Wayne	 Iba,	 Jordan	 Johnson,	 Marc
Kaufmann,	Gregor	Kiczales,	Eugene	Kohlbecker,	 Jackson	Lawler,	Ben	Lerner,
Elena	Machkasova,	 Jay	Martin,	 Jay	McCarthy,	 Ann	 E.	Moskol,	 Paul	 Ojanen,
Klaus	 Ostermann,	 Alanna	 Pasco,	 S.	 Pehlivanoglu,	 David	 Porter,	 Norman
Ramsey,	 Ilnar	 Salimzianov,	 Brian	 Schack,	 Tubo	 Shi,	 Stephen	 Siegel,	 Kartik
Singhal,	Marc	Smith,	Dave	Smylie,	Vincent	St-Amour,	Éric	Tanter,	Sam	Tobin-
Hochstadt,	Manuel	del	Valle,	David	Van	Horn,	Mitch	Wand,	Roelof	Wobben,
and	Andrew	Zipperer	for	comments	on	drafts	of	this	second	edition.

The	 HTML	 layout	 at	 htdp.org	 is	 the	 work	 of	 Matthew	 Butterick,	 who

created	these	styles	for	our	on-line	documentation.
Finally,	we	are	grateful	to	Ada	Brunstein	and	Marie	Lufkin	Lee,	our	editors

at	MIT	Press,	who	gave	us	permission	to	develop	this	second	edition	of	How	to
Design	Programs	 on	 the	web.	We	 also	 thank	MIT’s	Christine	Bridget	 Savage
and	 John	 Hoey	 from	Westchester	 Publishing	 Services	 for	 managing	 the	 final
production	 process.	 John	Donohue,	 Jennifer	Robertson,	 and	Mark	Woodworth
did	a	wonderful	job	of	copy	editing	the	manuscript.

PROLOGUE:	HOW	TO	PROGRAM

When	 you	 were	 a	 small	 child,	 your	 parents	 taught	 you	 to	 count	 and	 perform
simple	calculations	with	your	fingers:	“1	+	1	is	2”;	“1	+	2	is	3”;	and	so	on.	Then
they	would	ask	“what’s	3	+	2?”	and	you	would	count	off	the	fingers	of	one	hand.
They	programmed,	and	you	computed.	And	in	some	way,	that’s	really	all	there	is
to	programming	and	computing.

Download	DrRacket	from	its	web	site.

Now	 it	 is	 time	 to	 switch	 roles.	 Start	 DrRacket.	 Doing	 so	 brings	 up	 the
window	 of	 figure	 3.	 Select	 “Choose	 language”	 from	 the	 “Language”	 menu,
which	 opens	 a	 dialog	 listing	 “Teaching	 Languages”	 for	 “How	 to	 Design
Programs.”	Choose	 “Beginning	Student”	 (the	Beginning	Student	Language,	 or
BSL)	 and	 click	 OK	 to	 set	 up	 DrRacket.	 With	 this	 task	 completed,	 you	 can
program,	and	the	DrRacket	software	becomes	the	child.	Start	with	the	simplest
of	all	calculations.	You	type

(+	1	1)

into	the	top	part	of	DrRacket,	click	RUN,	and	a	2	shows	up	in	the	bottom.

Figure	3:	Meet	DrRacket

That’s	how	simple	programming	is.	You	ask	questions	as	if	DrRacket	were	a
child,	 and	DrRacket	 computes	 for	 you.	You	 can	 also	 ask	DrRacket	 to	 process
several	requests	at	once:

(+	2	2)

(*	3	3)

(-	4	2)

(/	6	2)

After	you	click	RUN,	you	see	4	9	2	3	in	the	bottom	half	of	DrRacket,	which	are
the	expected	results.

Let’s	slow	down	for	a	moment	and	introduce	some	words:

•  The	 top	half	 of	DrRacket	 is	 called	 the	definitions	area.	 In	 this	 area,	 you
create	the	programs,	which	is	called	editing.	As	soon	as	you	add	a	word	or
change	something	in	the	definitions	area,	the	SAVE	button	shows	up	in	the
top-left	corner.	When	you	click	SAVE	for	the	first	time,	DrRacket	asks	you
for	the	name	of	a	file	so	that	it	can	store	your	program	for	good.	Once	your
definitions	 area	 is	 associated	with	 a	 file,	 clicking	SAVE	 ensures	 that	 the
content	of	the	definitions	area	is	stored	safely	in	the	file.

•  Programs	 consist	 of	 expressions.	 You	 have	 seen	 expressions	 in
mathematics.	For	now,	an	expression	is	either	a	plain	number	or	something
that	 starts	 with	 a	 left	 parenthesis	 “(”	 and	 ends	 in	 a	 matching	 right
parenthesis	“)”—which	DrRacket	rewards	by	shading	the	area	between	the
pair	of	parentheses.

•  When	 you	 click	 RUN,	 DrRacket	 evaluates	 the	 expressions	 in	 the
definitions	 area	 and	 shows	 their	 result	 in	 the	 interactions	 area.	 Then,
DrRacket,	your	faithful	servant,	awaits	your	commands	at	the	prompt	(>).
The	appearance	of	the	prompt	signals	that	DrRacket	is	waiting	for	you	to
enter	 additional	 expressions,	 which	 it	 then	 evaluates	 like	 those	 in	 the
definitions	area:

>	(+	1	1)

2

Enter	an	expression	at	the	prompt,	hit	the	“return”	or	“enter”	key	on	your
keyboard,	and	watch	how	DrRacket	responds	with	the	result.	You	can	do
so	as	often	as	you	wish:

>	(+	2	2)

4

>	(*	3	3)

9

>	(-	4	2)

2

>	(/	6	2)

3

>	(sqr	3)

9

>	(expt	2	3)

8

>	(sin	0)

0

>	(cos	pi)

#i-1.0

Take	a	close	 look	at	 the	 last	number.	 Its	“#i”	prefix	 is	short	 for	“I	don’t	 really
know	 the	 precise	 number	 so	 take	 that	 for	 now”	 or	 an	 inexact	 number.	Unlike
your	 calculator	 or	 other	 programming	 systems,	 DrRacket	 is	 honest.	 When	 it

doesn’t	know	the	exact	number,	it	warns	you	with	this	special	prefix.	Later,	we
will	show	you	really	strange	facts	about	“computer	numbers,”	and	you	will	then
truly	appreciate	that	DrRacket	issues	such	warnings.

By	now	you	might	be	wondering	whether	DrRacket	can	add	more	than	two
numbers	at	once,	and	yes,	it	can!	As	a	matter	of	fact,	it	can	do	it	in	two	different
ways:

>	(+	2	(+	3	4))

9

>	(+	2	3	4)

9

The	first	one	is	nested	arithmetic,	as	you	know	it	from	school.	The	second	one	is
BSL	arithmetic;	and	the	latter	is	natural,	because	in	this	notation	you	always	use
parentheses	to	group	operations	and	numbers	together.

This	book	does	not	teach	you	Racket,	even	if	the	editor	is	called	DrRacket.	See	the	Preface,	especially
the	section	on	DrRacket	and	the	Teaching	Languages	for	details	on	the	choice	to	develop	our	own
language.

In	BSL,	every	time	you	want	to	use	a	“calculator	operation,”	you	write	down
an	opening	parenthesis,	 the	operation	you	wish	 to	perform,	say	+,	 the	numbers
on	which	 the	operation	should	work	(separated	by	spaces	or	even	 line	breaks),
and,	finally,	a	closing	parenthesis.	The	items	following	the	operation	are	called
the	 operands.	 Nested	 arithmetic	means	 that	 you	 can	 use	 an	 expression	 for	 an
operand,	which	is	why

>	(+	2	(+	3	4))

9

is	a	fine	program.	You	can	do	this	as	often	as	you	wish:

>	(+	2	(+	(*	3	3)	4))

15

>	(+	2	(+	(*	3	(/	12	4))	4))

15

>	(+	(*	5	5)	(+	(*	3	(/	12	4))	4))

38

There	are	no	limits	to	nesting,	except	for	your	patience.
Naturally,	when	DrRacket	calculates	for	you,	it	uses	the	rules	that	you	know

and	 love	 from	math.	Like	 you,	 it	 can	 determine	 the	 result	 of	 an	 addition	 only
when	 all	 the	 operands	 are	 plain	 numbers.	 If	 an	 operand	 is	 a	 parenthesized
operator	 expression—something	 that	 starts	 with	 a	 “(”	 and	 an	 operation—it
determines	the	result	of	that	nested	expression	first.	Unlike	you,	it	never	needs	to
ponder	which	expression	to	calculate	first—because	this	first	rule	is	the	only	rule
there	is.

The	price	for	DrRacket’s	convenience	is	that	parentheses	have	meaning.	You
must	enter	all	these	parentheses,	and	you	may	not	enter	too	many.	For	example,
while	extra	parentheses	are	acceptable	to	your	math	teacher,	this	is	not	the	case
for	BSL.	The	expression	(+	(1)	(2))	contains	way	too	many	parentheses,	and
DrRacket	lets	you	know	in	no	uncertain	terms:

>	(+	(1)	(2))

function	call:expected	a	function	after	the	open	parenthesis,	f

ound	a	number

Once	you	get	used	to	BSL	programming,	though,	you	will	see	that	it	isn’t	a
price	at	all.	First,	you	get	to	use	operations	on	several	operands	at	once,	if	it	 is
natural	to	do	so:

>	(+	1	2	3	4	5	6	7	8	9	0)

45

>	(*	1	2	3	4	5	6	7	8	9	0)

0	

If	you	don’t	know	what	an	operation	does	for	several	operands,	enter	an	example
into	the	interactions	area	and	hit	“return”;	DrRacket	lets	you	know	whether	and
how	 it	works.	Or	use	HelpDesk	 to	 read	 the	documentation.	Second,	when	you
read	 programs	 that	 others	 write,	 you	 will	 never	 have	 to	 wonder	 which
expressions	are	evaluated	first.	The	parentheses	and	the	nesting	will	immediately
tell	you.

As	you	may	have	noticed,	the	names	of	operations	in	the	on-line	text	are	linked	to	the	documentation
in	HelpDesk.

In	 this	 context,	 to	 program	 is	 to	 write	 down	 comprehensible	 arithmetic
expressions,	 and	 to	 compute	 is	 to	 determine	 their	 value.	With	 DrRacket,	 it	 is
easy	to	explore	this	kind	of	programming	and	computing.

Arithmetic	and	Arithmetic
If	programming	were	just	about	numbers	and	arithmetic,	it	would	be	as	boring	as
mathematics.	 Fortunately,	 there	 is	 much	more	 to	 programming	 than	 numbers:
text,	truths,	images,	and	a	great	deal	more.

Just	kidding:	mathematics	is	a	fascinating	subject,	but	you	won’t	need	much	of	it	for	now.

The	 first	 thing	 you	 need	 to	 know	 is	 that	 in	 BSL,	 text	 is	 any	 sequence	 of
keyboard	 characters	 enclosed	 in	 double	 quotes	 (").	We	 call	 it	 a	 string.	 Thus,
"hello	 world"	 is	 a	 perfectly	 fine	 string;	 and	 when	 DrRacket	 evaluates	 this
string,	it	just	echoes	it	back	in	the	interactions	area,	like	a	number:

>	"hello	world"

"hello	world"

Indeed,	many	people’s	first	program	is	one	that	displays	exactly	this	string.
Otherwise,	you	need	 to	know	 that	 in	 addition	 to	 an	arithmetic	of	numbers,

DrRacket	also	knows	about	an	arithmetic	of	strings.	So	here	are	two	interactions
that	illustrate	this	form	of	arithmetic:

>	(string-append	"hello"	"world")

"helloworld"

>	(string-append	"hello	"	"world")

"hello	world"

Just	 like	 +,	 string-append	 is	 an	 operation;	 it	 makes	 a	 string	 by	 adding	 the
second	to	the	end	of	the	first.	As	the	first	interaction	shows,	it	does	this	literally,
without	 adding	 anything	 between	 the	 two	 strings:	 no	 blank	 space,	 no	 comma,
nothing.	Thus,	if	you	want	to	see	the	phrase	"hello	world",	you	really	need	to
add	a	space	to	one	of	these	words	somewhere;	that’s	what	the	second	interaction
shows.	Of	course,	the	most	natural	way	to	create	this	phrase	from	the	two	words
is	to	enter

(string-append	"hello"	"	"	"world")

because	string-append,	like	+,	can	handle	as	many	operands	as	desired.
You	can	do	more	with	strings	than	append	them.	You	can	extract	pieces	from

a	 string,	 reverse	 them,	 render	 all	 letters	 uppercase	 (or	 lowercase),	 strip	 blank
spaces	 from	 the	 left	 and	 right,	 and	 so	 on.	 And	 best	 of	 all,	 you	 don’t	 have	 to
memorize	any	of	that.	If	you	need	to	know	what	you	can	do	with	strings,	look	up
the	term	in	HelpDesk.

Use	F1	or	the	drop-down	menu	on	the	right	to	open	HelpDesk.	Look	at	the	manuals	for	BSL	and	its
section	on	pre-defined	operations,	especially	those	for	strings.

If	 you	 looked	 up	 the	 primitive	 operations	 of	 BSL,	 you	 saw	 that	 primitive
(sometimes	 called	pre-defined	 or	built-in)	 operations	 can	 consume	 strings	 and
produce	numbers:

>	(+	(string-length	"hello	world")	20)

31

>	(number->string	42)

"42"

There	is	also	an	operation	that	converts	strings	into	numbers:

>	(string->number	"42")

42

If	you	expected	“forty-two”	or	something	clever	along	those	lines,	sorry,	that’s
really	not	what	you	want	from	a	string	calculator.

The	last	expression	raises	a	question,	though.	What	if	someone	uses	string-
>number	with	a	string	that	is	not	a	number	wrapped	within	string	quotes?	In	that
case,	the	operation	produces	a	different	kind	of	result:

>	(string->number	"hello	world")

#false

This	 is	 neither	 a	 number	 nor	 a	 string;	 it	 is	 a	 Boolean.	 Unlike	 numbers	 and
strings,	Boolean	values	come	in	only	two	varieties:	#true	and	#false.	The	first
is	 truth,	 the	 second	 falsehood.	 Even	 so,	 DrRacket	 has	 several	 operations	 for

combining	Boolean	values:

>	(and	#true	#true)

#true

>	(and	#true	#false)

#false

>	(or	#true	#false)

#true

>	(or	#false	#false)

#false

>	(not	#false)

#true

and	 you	 get	 the	 results	 that	 the	 name	 of	 the	 operation	 suggests.	 (Don’t	 know
what	and,	or,	and	not	compute?	Easy:	(and	x	y)	is	true	if	x	and	y	are	true;	(or
x	 y)	 is	 true	 if	 either	 x	 or	 y	 or	 both	 are	 true;	 and	 (not	 x)	 results	 in	 #true
precisely	when	x	is	#false.)

It	is	also	useful	to	“convert”	two	numbers	into	a	Boolean:

>	(>	10	9)

#true

>	(<	-1	0)

#true

>	(=	42	9)

#false

Stop!	 Try	 the	 following	 three	 expressions:	 (>=	 10	 10),	 (<=	 -1	 0),	 and
(string=?	 "design"	 "tinker").	 This	 last	 one	 is	 different	 again;	 but	 don’t
worry,	you	can	do	it.

With	all	these	new	kinds	of	data—yes,	numbers,	strings,	and	Boolean	values
are	data—and	operations	 floating	around,	 it	 is	 easy	 to	 forget	 some	basics,	 like
nested	arithmetic:

What	is	the	result	of	this	expression?	How	did	you	figure	it	out?	All	by	yourself?

Or	did	you	just	type	it	into	DrRacket’s	interactions	area	and	hit	the	“return”	key?
If	you	did	the	latter,	do	you	think	you	would	know	how	to	do	this	on	your	own?
After	 all,	 if	 you	 can’t	 predict	 what	 DrRacket	 does	 for	 small	 expressions,	 you
may	not	want	to	trust	it	when	you	submit	larger	tasks	than	that	for	evaluation.

Before	we	show	you	how	to	do	some	“real”	programming,	let’s	discuss	one
more	kind	of	data	to	spice	things	up:	images.	When	you	insert	an	image	into	the
interactions	area	and	hit	“return”	like	this

DrRacket	 replies	 with	 the	 image.	 In	 contrast	 to	 many	 other	 programming
languages,	BSL	understands	images,	and	it	supports	an	arithmetic	of	images	just
as	 it	 supports	an	arithmetic	of	numbers	or	 strings.	 In	short,	your	programs	can
calculate	with	images,	and	you	can	do	so	in	the	interactions	area.	Furthermore,
BSL	programmers—like	 the	 programmers	 for	 other	 programming	 languages—
create	 libraries	 that	 others	 may	 find	 helpful.	 Using	 such	 libraries	 is	 just	 like
expanding	your	vocabularies	with	new	words	or	your	programming	vocabulary
with	new	primitives.	We	dub	such	libraries	teachpacks	because	they	are	helpful
with	teaching.

To	insert	images	such	as	this	rocket	into	DrRacket,	use	the	Insert	menu.	Or,	copy	and	paste	the
image	from	your	browser	into	DrRacket.

One	 important	 library—the	 2htdp/image	 library—supports	 operations	 for
computing	the	width	and	height	of	an	image:

Once	you	have	added	the	library	to	your	program,	clicking	RUN	gives	you	1176
because	that’s	the	area	of	a	28	by	42	image.

Add	(require	2htdp/image)	to	the	definitions	area,	or	select	Add	Teachpack	from	the	Language
menu	and	choose	image	from	the	Preinstalled	HtDP/2e	Teachpack	menu.

You	 don’t	 have	 to	 use	 Google	 to	 find	 images	 and	 insert	 them	 in	 your
DrRacket	programs	with	 the	“Insert”	menu.	You	can	also	 instruct	DrRacket	 to
create	simple	images	from	scratch:

When	 the	 result	 of	 an	 expression	 is	 an	 image,	 DrRacket	 draws	 it	 into	 the
interactions	area.	But	otherwise,	a	BSL	program	deals	with	images	as	data	that	is
just	like	numbers.	In	particular,	BSL	has	operations	for	combining	images	in	the
same	way	that	it	has	operations	for	adding	numbers	or	appending	strings:

Overlaying	these	images	in	the	opposite	order	produces	a	solid	blue	square:

Stop	and	reflect	on	this	last	result	for	a	moment.
As	 you	 can	 see,	 overlay	 is	 more	 like	 string-append	 than	 +,	 but	 it	 does

“add”	images	just	like	string-append	“adds”	strings	and	+	adds	numbers.	Here
is	another	illustration	of	the	idea:

These	 interactions	 with	 DrRacket	 don’t	 draw	 anything	 at	 all;	 they	 really	 just
measure	their	width.

Two	 more	 operations	 matter:	 empty-scene	 and	 place-image.	 The	 first
creates	 a	 scene,	 a	 special	 kind	 of	 rectangle.	 The	 second	 places	 an	 image	 into
such	a	scene:

and	you	get	this:

Not	quite.	The	image	comes	without	a	grid.	We	superimpose	the	grid	on	the	empty	scene	so	that	you
can	see	where	exactly	the	green	dot	is	placed.

As	you	can	see	from	this	image,	the	origin	(or	(0,0))	is	in	the	upper-left	corner.
Unlike	 in	mathematics,	 the	 y-coordinate	 is	measured	downward,	 not	 upward.
Otherwise,	the	image	shows	what	you	should	have	expected:	a	solid	green	disk
at	the	coordinates	(50,80)	in	a	100	by	100	empty	rectangle.

Let’s	 summarize	 again.	 To	 program	 is	 to	 write	 down	 an	 arithmetic
expression,	but	you’re	no	longer	restricted	to	boring	numbers.	In	BSL,	arithmetic
is	 the	arithmetic	of	numbers,	 strings,	Booleans,	and	even	 images.	To	compute,
though,	 still	 means	 to	 determine	 the	 value	 of	 an	 expression—except	 that	 this
value	can	be	a	string,	a	number,	a	Boolean,	or	an	image.

And	now	you’re	ready	to	write	programs	that	make	rockets	fly.

Inputs	and	Output
The	 programs	 you	 have	 written	 so	 far	 are	 pretty	 boring.	 You	 write	 down	 an
expression	or	several	expressions;	you	click	RUN;	you	see	some	results.	If	you
click	RUN	 again,	 you	 see	 the	 exact	 same	 results.	As	 a	matter	of	 fact,	 you	can

click	RUN	 as	often	 as	you	want,	 and	 the	 same	 results	 show	up.	 In	 short,	 your
programs	 really	 are	 like	 calculations	 on	 a	 pocket	 calculator,	 except	 that
DrRacket	calculates	with	all	kinds	of	data,	not	just	numbers.

That’s	 good	 news	 and	 bad	 news.	 It	 is	 good	 because	 programming	 and
computing	 ought	 to	 be	 a	 natural	 generalization	 of	 using	 a	 calculator.	 It	 is	 bad
because	the	purpose	of	programming	is	to	deal	with	lots	of	data	and	to	get	lots	of
different	results,	with	more	or	less	the	same	calculations.	(It	should	also	compute
these	results	quickly,	at	least	faster	than	we	can.)	That	is,	you	need	to	learn	more
still	before	you	know	how	to	program.	No	need	to	worry	though:	with	all	your
knowledge	 about	 arithmetic	 of	 numbers,	 strings,	 Boolean	 values,	 and	 images,
you’re	almost	ready	to	write	a	program	that	creates	movies,	not	just	some	silly
program	for	displaying	“hello	world”	somewhere.	And	that’s	what	we’re	going
to	do	next.

Just	 in	 case	 you	 didn’t	 know,	 a	 movie	 is	 a	 sequence	 of	 images	 that	 are
rapidly	 displayed	 in	 order.	 If	 your	 algebra	 teachers	 had	 known	 about	 the
“arithmetic	 of	 images”	 that	 you	 saw	 in	 the	 preceding	 section,	 you	 could	 have
produced	movies	 in	algebra	 instead	of	boring	number	 sequences.	Well,	here	 is
one	more	such	table:

Your	 teachers	would	 now	 ask	 you	 to	 fill	 in	 the	 blank,	 that	 is,	 replace	 the	 “?”
mark	with	a	number.

It	 turns	out	 that	making	a	movie	is	no	more	complicated	than	completing	a
table	of	numbers	like	that.	Indeed,	it	is	all	about	such	tables:

To	be	concrete,	your	teacher	should	ask	you	here	to	draw	the	fourth	image,	the
fifth,	and	the	1273rd	one	because	a	movie	is	just	a	lot	of	images,	some	20	or	30

of	 them	 per	 second.	 So	 you	 need	 some	 1200	 to	 1800	 of	 them	 to	 make	 one
minute’s	worth	of	it.

You	may	also	recall	 that	your	 teacher	not	only	asked	for	 the	fourth	or	fifth
number	in	some	sequence	but	also	for	an	expression	that	determines	any	element
of	the	sequence	from	a	given	x.	In	the	numeric	example,	the	teacher	wants	to	see
something	like	this:

If	you	plug	in	1,	2,	3,	and	so	on	for	x,	you	get	1,	4,	9,	and	so	on	for	y—just	as	the
table	says.	For	the	sequence	of	images,	you	could	say	something	like

y	=	the	image	that	contains	a	dot	x2	pixels	below	the	top.

The	key	is	that	these	one-liners	are	not	just	expressions	but	functions.
At	 first	 glance,	 functions	 are	 like	 expressions,	 always	with	 a	y	 on	 the	 left,

followed	 by	 an	 =	 sign,	 and	 an	 expression.	 They	 aren’t	 expressions,	 however.
And	the	notation	you	often	see	in	school	for	functions	is	utterly	misleading.	In
DrRacket,	you	therefore	write	functions	a	bit	differently:

(define	(y	x)	(*	x	x))

The	define	says	“consider	y	a	function,”	which,	like	an	expression,	computes	a
value.	A	function’s	value,	though,	depends	on	the	value	of	something	called	the
input,	which	we	express	with	(y	x).	Since	we	don’t	know	what	this	input	is,	we
use	a	name	to	represent	the	input.	Following	the	mathematical	tradition,	we	use	x
here	to	stand	in	for	the	unknown	input;	but	pretty	soon,	we	will	use	all	kinds	of
names.

This	second	part	means	you	must	supply	one	number—for	x—to	determine	a
specific	 value	 for	 y.	 When	 you	 do,	 DrRacket	 plugs	 the	 value	 for	 x	 into	 the
expression	associated	with	the	function.	Here	the	expression	is	(*	x	x).	Once	x
is	 replaced	 with	 a	 value,	 say	 1,	 DrRacket	 can	 compute	 the	 result	 of	 the
expressions,	which	is	also	called	the	output	of	the	function.

Mathematics	also	calls	y(1)	a	function	application,	but	your	teachers	forgot	to	tell	you.

Click	RUN	and	watch	nothing	happen.	Nothing	shows	up	in	the	interactions
area.	Nothing	seems	to	change	anywhere	else	in	DrRacket.	It	is	as	if	you	hadn’t
accomplished	 anything.	 But	 you	 did.	 You	 actually	 defined	 a	 function	 and
informed	 DrRacket	 about	 its	 existence.	 As	 a	 matter	 of	 fact,	 the	 latter	 is	 now
ready	for	you	to	use	the	function.	Enter

(y	1)

at	the	prompt	in	the	interactions	area	and	watch	a	1	appear	in	response.	The	(y
1)	is	called	a	function	application	in	DrRacket.	Try

(y	2)

and	see	a	4	pop	out.	Of	course,	you	can	also	enter	all	 these	expressions	 in	 the
definitions	area	and	click	RUN:

(define	(y	x)	(*	x	x))

(y	1)

(y	2)

(y	3)

(y	4)

(y	5)

In	response,	DrRacket	displays:	1	4	9	16	25,	which	are	the	numbers	from	the
table.	Now	determine	the	missing	entry.

What	all	this	means	for	you	is	that	functions	provide	a	rather	economic	way
of	 computing	 lots	 of	 interesting	 values	 with	 a	 single	 expression.	 Indeed,
programs	 are	 functions;	 and	 once	 you	 understand	 functions	 well,	 you	 know
almost	everything	there	is	to	know	about	programming.	Given	their	importance,
let’s	recap	what	we	know	about	functions	so	far:

•  First,

				(define	(FunctionName	InputName)	BodyExpression)

is	a	function	definition.	You	recognize	it	as	such	because	it	starts	with	the
“define”	keyword.	 It	essentially	consists	of	 three	pieces:	 two	names	and

an	expression.	The	first	name	is	 the	name	of	 the	function;	you	need	 it	 to
apply	 the	 function	 as	 often	 as	 you	 wish.	 The	 second	 name—called	 a
parameter—represents	 the	 input	of	 the	 function,	which	 is	unknown	until
you	apply	the	function.	The	expression,	dubbed	body,	computes	the	output
of	the	function	for	a	specific	input.

•  Second,

					(FunctionName	ArgumentExpression)

is	a	function	application.	The	first	part	tells	DrRacket	which	function	you
wish	to	use.	The	second	part	 is	 the	 input	 to	which	you	want	 to	apply	the
function.	 If	you	were	 reading	a	Windows	or	a	Mac	manual,	 it	might	 tell
you	that	this	expression	“launches”	the	“application”	called	FunctionName
and	that	 it	 is	going	to	process	ArgumentExpression	as	 the	input.	Like	all
expressions,	 the	latter	is	possibly	a	plain	piece	of	data	or	a	deeply	nested
expression.

Functions	 can	 input	 more	 than	 numbers,	 and	 they	 can	 output	 all	 kinds	 of
data,	too.	Our	next	task	is	to	create	a	function	that	simulates	the	second	table—
the	one	with	 images	of	a	colored	dot—just	 like	 the	first	 function	simulated	the
numeric	 table.	 Since	 the	 creation	 of	 images	 from	 expressions	 isn’t	 something
you	know	from	high	school,	let’s	start	simply.	Do	you	remember	empty-scene?
We	quickly	mentioned	 it	 at	 the	 end	of	 the	previous	 section.	When	you	 type	 it
into	the	interactions	area,	like	that:

DrRacket	produces	an	empty	rectangle,	also	called	a	scene.	You	can	add	images
to	a	scene	with	place-image:

Think	of	the	rocket	as	an	object	that	is	like	the	dot	in	the	above	table	from	your
mathematics	class.	The	difference	is	that	a	rocket	is	interesting.

Next,	 you	 should	 make	 the	 rocket	 descend,	 just	 like	 the	 dot	 in	 the	 above
table.	 From	 the	 preceding	 section,	 you	 know	 how	 to	 achieve	 this	 effect	 by
increasing	the	y-coordinate	that	is	supplied	to	place-image:

All	that’s	needed	now	is	to	produce	lots	of	these	scenes	easily	and	to	display	all
of	them	in	rapid	order.

The	first	goal	can	be	achieved	with	a	function,	of	course;	see	figure	4.	Yes,
this	is	a	function	definition.	Instead	of	y,	it	uses	the	name	picture-of-rocket,	a
name	that	immediately	tells	you	what	the	function	outputs:	a	scene	with	a	rocket.
Instead	of	x,	the	function	definition	uses	height	for	the	name	of	its	parameter,	a
name	that	suggests	that	it	is	a	number	and	that	it	tells	the	function	where	to	place
the	 rocket.	 The	 body	 expression	 of	 the	 function	 is	 exactly	 like	 the	 series	 of
expressions	with	which	we	just	experimented,	except	that	it	uses	height	in	place
of	a	number.	And	we	can	easily	create	all	of	those	images	with	this	one	function:

(picture-of-rocket	0)

(picture-of-rocket	10)

(picture-of-rocket	20)

(picture-of-rocket	30)

Figure	4:	Landing	a	rocket	(version	1)

Try	 this	 out	 in	 the	 definitions	 area	 or	 the	 interactions	 area;	 both	 create	 the
expected	scenes.

In	BSL,	you	can	use	all	kinds	of	characters	in	names,	including	“-”	and	“.”.

The	 second	 goal	 requires	 knowledge	 about	 one	 additional	 primitive
operation	from	the	2htdp/universe	library:	animate.	So,	click	RUN	and	enter	the
following	expression:

>	(animate	picture-of-rocket)

Stop	and	note	that	 the	argument	expression	is	a	function.	Don’t	worry	for	now
about	using	functions	as	arguments;	it	works	well	with	animate,	but	don’t	try	to
define	functions	like	animate	at	home	just	yet.

Don’t	forget	to	add	the	2htdp/universe	library	to	your	definitions	area.

As	soon	as	you	hit	the	“return”	key,	DrRacket	evaluates	the	expression;	but	it
does	not	display	a	result,	not	even	a	prompt.	It	opens	another	window—a	canvas
—and	starts	a	clock	that	 ticks	28	times	per	second.	Every	time	the	clock	ticks,
DrRacket	 applies	picture-of-rocket	 to	 the	number	of	 ticks	 passed	 since	 this
function	call.	The	results	of	these	function	calls	are	displayed	in	the	canvas,	and
it	produces	the	effect	of	an	animated	movie.	The	simulation	runs	until	you	close
the	window.	At	that	point,	animate	returns	the	number	of	ticks	that	have	passed.

The	 question	 is	 where	 the	 images	 on	 the	 window	 come	 from.	 The	 short
explanation	is	that	animate	runs	its	operand	on	the	numbers	0,	1,	2,	and	so	on,
and	displays	the	resulting	images.	The	long	explanation	is	this:

•  animate	starts	a	clock	and	counts	the	number	of	ticks;

•  the	clock	ticks	28	times	per	second;

•  every	 time	 the	 clock	 ticks,	 animate	 applies	 the	 function	 picture-of-
rocket	to	the	current	clock	tick;	and

•  the	scene	that	this	application	creates	is	displayed	on	the	canvas.

This	means	 that	 the	 rocket	 first	 appears	 at	height	0,	 then	1,	 then	2,	 and	 so	on,
which	 explains	 why	 the	 rocket	 descends	 from	 the	 top	 of	 the	 canvas	 to	 the
bottom.	That	 is,	our	 three-line	program	creates	 some	100	pictures	 in	about	3.5
seconds,	 and	 displaying	 these	 pictures	 rapidly	 creates	 the	 effect	 of	 a	 rocket
descending	to	the	ground.

Exercise	298	explains	how	to	design	animate.

So	here	is	what	you	learned	in	this	section.	Functions	are	useful	because	they
can	process	lots	of	data	in	a	short	time.	You	can	launch	a	function	by	hand	on	a
few	 select	 inputs	 to	 ensure	 that	 it	 produces	 the	 proper	 outputs.	 This	 is	 called
testing	a	function.	Or,	DrRacket	can	launch	a	function	on	lots	of	inputs	with	the
help	 of	 some	 libraries;	 when	 you	 do	 that,	 you	 are	 running	 the	 function.
Naturally,	 DrRacket	 can	 launch	 functions	 when	 you	 press	 a	 key	 on	 your
keyboard	or	when	you	manipulate	the	mouse	of	your	computer.	To	find	out	how,
keep	 reading.	Whatever	 triggers	 a	 function	 application	 isn’t	 important,	 but	 do
keep	in	mind	that	(simple)	programs	are	functions.

Many	Ways	to	Compute
When	 you	 evaluate	 (animate	 picture-of-rocket),	 the	 rocket	 eventually
disappears	 into	 the	 ground.	 That’s	 plain	 silly.	 Rockets	 in	 old	 science	 fiction
movies	don’t	sink	into	the	ground;	they	gracefully	land	on	their	bottoms,	and	the
movie	should	end	right	there.

This	 idea	suggests	 that	computations	should	proceed	differently,	depending
on	the	situation.	In	our	example,	the	picture-of-rocket	program	should	work
“as	is”	while	the	rocket	is	in	flight.	When	the	rocket’s	bottom	touches	the	bottom
of	the	canvas,	however,	it	should	stop	the	rocket	from	descending	any	farther.

In	a	sense,	the	idea	shouldn’t	be	new	to	you.	Even	your	mathematics	teachers

define	functions	that	distinguish	various	situations:

This	 sign	 function	 distinguishes	 three	 kinds	 of	 inputs:	 those	 numbers	 that	 are
larger	than	0,	those	equal	to	0,	and	those	smaller	than	0.	Depending	on	the	input,
the	result	of	the	function	is	+1,	0,	or	−1.

You	 can	 define	 this	 function	 in	 DrRacket	 without	 much	 ado	 using	 a
conditional	expression:

After	you	click	RUN,	you	can	interact	with	sign	like	any	other	function:

>	(sign	10)

1

>	(sign	-5)

-1

>	(sign	0)

0

Open	a	new	tab	in	DrRacket	and	start	with	a	clean	slate.

In	general,	a	conditional	expression	has	the	shape

(cond

				[ConditionExpression1	ResultExpression1]	

				[ConditionExpression2	ResultExpression2]	

				…	

				[ConditionExpressionN	ResultExpressionN])

This	is	a	good	time	to	explore	what	the	STEP	button	does.	Add	(sign	-5)	to	the	definitions	area	and

click	STEP	for	the	above	sign	program.	When	the	new	window	comes	up,	click	the	right	and	left
arrows	there.

That	is,	a	conditional	expression	consists	of	as	many	conditional	lines	as	needed.
Each	line	contains	two	expressions:	the	left	one	is	often	called	condition,	and	the
right	 one	 is	 called	 result;	 occasionally	 we	 also	 use	 question	 and	 answer.	 To
evaluate	 a	 cond	 expression,	DrRacket	 evaluates	 the	 first	 condition	 expression,
ConditionExpression1.	 If	 this	 yields	 #true,	 DrRacket	 replaces	 the	 cond
expression	 with	 ResultExpression1,	 evaluates	 it,	 and	 uses	 the	 value	 as	 the
result	of	the	entire	cond	expression.	If	the	evaluation	of	ConditionExpression1
yields	#false,	DrRacket	drops	the	first	line	and	starts	over.	In	case	all	condition
expressions	evaluate	to	#false,	DrRacket	signals	an	error.

With	this	knowledge,	you	can	now	change	the	course	of	the	simulation.	The
goal	is	to	not	let	the	rocket	descend	below	the	ground	level	of	a	100-by-60	scene.
Since	 the	 picture-of-rocket	 function	 consumes	 the	 height	 where	 it	 should
place	 the	 rocket	 in	 the	 scene,	 a	 simple	 test	 comparing	 the	 given	 height	 to	 the
maximum	height	appears	to	suffice.

See	figure	5	for	the	revised	function	definition.	The	definition	uses	the	name
picture-of-rocket.v2	 to	 distinguish	 the	 two	 versions.	 Using	 distinct	 names
also	allows	us	to	use	both	functions	in	the	interactions	area	and	to	compare	the
results.	Here	is	how	the	original	version	works:

Figure	5:	Landing	a	rocket	(version	2)

And	here	is	the	second	one:

No	matter	what	number	you	give	to	picture-of-rocket.v2,	if	it	is	over	60,	you
get	the	same	scene.	In	particular,	when	you	run

>	(animate	picture-of-rocket.v2)

the	rocket	descends	and	sinks	halfway	into	the	ground	before	it	stops.
Stop!	What	do	you	think	we	want	to	see?
Landing	the	rocket	this	far	down	is	ugly.	Then	again,	you	know	how	to	fix

this	 aspect	 of	 the	 program.	 As	 you	 have	 seen,	 BSL	 knows	 an	 arithmetic	 of
images.	When	place-image	adds	an	image	to	a	scene,	it	uses	its	center	point	as
if	 it	were	 the	whole	 image,	even	 though	the	 image	has	a	real	height	and	a	real
width.	 As	 you	 may	 recall,	 you	 can	 measure	 the	 height	 of	 an	 image	 with	 the
operation	image-height.	This	function	comes	in	handy	here	because	you	really
want	to	fly	the	rocket	only	until	its	bottom	touches	the	ground.

Putting	one	and	one	together	you	can	now	figure	out	that

is	 the	point	at	which	you	want	 the	 rocket	 to	stop	 its	descent.	You	could	figure
this	 out	 by	 playing	 with	 the	 program	 directly,	 or	 you	 can	 experiment	 in	 the
interactions	area	with	your	image	arithmetic.

Here	is	a	first	attempt:

Now	replace	the	third	argument	in	the	above	application	with

Stop!	Conduct	the	experiments.	Which	result	do	you	like	better?
When	you	think	and	experiment	along	these	lines,	you	eventually	get	to	the

program	 in	 figure	 6.	Given	 some	 number,	which	 represents	 the	height	 of	 the
rocket,	 it	 first	 tests	whether	 the	 rocket’s	bottom	is	above	 the	ground.	 If	 it	 is,	 it
places	the	rocket	into	the	scene	as	before.	If	it	isn’t,	it	places	the	rocket’s	image
so	that	its	bottom	touches	the	ground.

Figure	6:	Landing	a	rocket	(version	3)

One	Program,	Many	Definitions
Now	suppose	your	 friends	watch	 the	 animation	but	don’t	 like	 the	 size	of	your
canvas.	They	might	request	a	version	 that	uses	200-by-400	 scenes.	This	simple
request	forces	you	to	replace	100	with	400	in	five	places	in	the	program	and	60
with	200	in	two	other	places—not	to	speak	of	the	occurrences	of	50,	which	really
means	“middle	of	the	canvas.”

Stop!	Before	you	read	on,	try	to	do	just	that	so	that	you	get	an	idea	of	how
difficult	it	is	to	execute	this	request	for	a	five-line	program.	As	you	read	on,	keep
in	 mind	 that	 programs	 in	 the	 world	 consist	 of	 50,000	 or	 500,000	 or	 even
5,000,000	or	more	lines	of	program	code.

In	 the	 ideal	 program,	 a	 small	 request,	 such	 as	 changing	 the	 sizes	 of	 the
canvas,	 should	 require	 an	 equally	 small	 change.	 The	 tool	 to	 achieve	 this
simplicity	with	BSL	 is	define.	 In	 addition	 to	defining	 functions,	you	can	also
introduce	 constant	 definitions,	 which	 assign	 some	 name	 to	 a	 constant.	 The
general	shape	of	a	constant	definition	is	straightforward:

(define	Name	Expression)

Thus,	for	example,	if	you	write	down

(define	HEIGHT	60)

in	your	program,	you	are	saying	 that	HEIGHT	always	 represents	 the	number	60.
The	 meaning	 of	 such	 a	 definition	 is	 what	 you	 expect.	 Whenever	 DrRacket
encounters	HEIGHT	during	its	calculations,	it	uses	60	instead.

Now	 take	 a	 look	 at	 the	 code	 in	 figure	 7,	 which	 implements	 this	 simple
change	 and	 also	 names	 the	 image	 of	 the	 rocket.	 Copy	 the	 program	 into
DrRacket;	and	after	clicking	RUN,	evaluate	the	following	interaction:

>	(animate	picture-of-rocket.v4)

Confirm	that	the	program	still	functions	as	before.

Figure	7:	Landing	a	rocket	(version	4)

The	program	in	figure	7	consists	of	four	definitions:	one	function	definition
and	three	constant	definitions.	The	numbers	100	and	60	occur	only	twice—once
as	 the	 value	 of	 WIDTH	 and	 once	 as	 the	 value	 of	 HEIGHT.	 You	 may	 also	 have
noticed	that	it	uses	h	 instead	of	height	for	the	function	parameter	of	picture-
of-rocket.v4.	Strictly	speaking,	 this	change	 isn’t	necessary	because	DrRacket
doesn’t	confuse	height	with	HEIGHT,	but	we	did	it	to	avoid	confusing	you.

When	 DrRacket	 evaluates	 (animate	 picture-of-rocket.v4),	 it	 replaces
HEIGHT	 with	 60,	 WIDTH	 with	 100,	 and	 ROCKET	 with	 the	 image	 every	 time	 it
encounters	these	names.	To	experience	the	joys	of	real	programmers,	change	the
60	next	 to	HEIGHT	 into	a	400	and	click	RUN.	You	see	a	rocket	descending	and
landing	in	a	100	by	400	scene.	One	small	change	did	it	all.

In	 modern	 parlance,	 you	 have	 just	 experienced	 your	 first	 program
refactoring.	 Every	 time	 you	 reorganize	 your	 program	 to	 prepare	 yourself	 for
likely	future	change	requests,	you	refactor	your	program.	Put	it	on	your	resume.
It	 sounds	 good,	 and	 your	 future	 employer	 probably	 enjoys	 reading	 such
buzzwords,	 even	 if	 it	 doesn’t	 make	 you	 a	 good	 programmer.	 What	 a	 good
programmer	would	 never	 live	with,	 however,	 is	 having	 a	 program	 contain	 the
same	expression	three	times:

(-	HEIGHT	(/	(image-height	ROCKET)	2))

Every	 time	 your	 friends	 and	 colleagues	 read	 this	 program,	 they	 need	 to
understand	what	this	expression	computes,	namely,	the	distance	between	the	top
of	the	canvas	and	the	center	point	of	a	rocket	resting	on	the	ground.	Every	time
DrRacket	computes	 the	value	of	 the	expressions,	 it	has	 to	perform	 three	 steps:
(1)	 determine	 the	 height	 of	 the	 image;	 (2)	 divide	 it	 by	2;	 and	 (3)	 subtract	 the
result	from	HEIGHT.	And,	every	time,	it	comes	up	with	the	same	number.

This	observation	calls	for	the	introduction	of	one	more	definition:

(define	ROCKET-CENTER-TO-TOP

		(-	HEIGHT	(/	(image-height	ROCKET)	2)))

Now	 substitute	 ROCKET-CENTER-TO-TOP	 for	 the	 expression	 (-	 HEIGHT	 (/

(image-height	ROCKET)	2))	in	the	rest	of	the	program.	You	may	be	wondering
whether	 this	 definition	 should	 be	 placed	 above	 or	 below	 the	 definition	 for

HEIGHT.	 More	 generally,	 you	 should	 be	 wondering	 whether	 the	 ordering	 of
definitions	matters.	The	answer	is	that	for	constant	definitions,	the	order	matters;
and	 for	 function	 definitions,	 it	 doesn’t.	 As	 soon	 as	 DrRacket	 encounters	 a
constant	definition,	it	determines	the	value	of	the	expression	and	then	associates
the	name	with	this	value.	For	example,

(define	HEIGHT	(*	2	CENTER))

(define	CENTER	100)

causes	DrRacket	to	complain	that	“CENTER	is	used	before	its	definition,”	when	it
encounters	the	definition	for	HEIGHT.	In	contrast,

(define	CENTER	100)

(define	HEIGHT	(*	2	CENTER))

works	 as	 expected.	 First,	 DrRacket	 associates	 CENTER	 with	 100.	 Second,	 it
evaluates	 (*	 2	 CENTER),	 which	 yields	 200.	 Finally,	 DrRacket	 associates	 200
with	HEIGHT.

While	the	order	of	constant	definitions	matters,	it	does	not	matter	where	you
place	 constant	 definitions	 relative	 to	 function	 definitions.	 Indeed,	 if	 your
program	consists	of	many	function	definitions,	their	order	doesn’t	matter	either,
though	 it	 is	 good	 to	 introduce	 all	 constant	 definitions	 first,	 followed	 by	 the
definitions	 of	 functions	 in	 decreasing	 order	 of	 importance.	 When	 you	 start
writing	 your	 own	 multi-definition	 programs,	 you	 will	 see	 why	 this	 ordering
matters.

The	program	also	contains	two	line	comments,	introduced	with	semicolons	(“;”).	While	DrRacket
ignores	such	comments,	people	who	read	programs	should	not	because	comments	are	intended	for
human	readers.	It	is	a	“back	channel”	of	communication	between	the	author	of	the	program	and	all
of	its	future	readers	to	convey	information	about	the	program.

Once	you	eliminate	all	repeated	expressions,	you	get	the	program	in	figure	8.
It	 consists	of	one	 function	definition	and	 five	constant	definitions.	Beyond	 the
placement	 of	 the	 rocket’s	 center,	 these	 constant	 definitions	 also	 factor	 out	 the
image	itself	as	well	as	the	creation	of	the	empty	scene.

Figure	8:	Landing	a	rocket	(version	5)

Before	you	read	on,	ponder	the	following	changes	to	your	program:

•  How	would	you	change	the	program	to	create	a	200-by-400	scene?

•  How	would	 you	 change	 the	 program	 so	 that	 it	 depicts	 the	 landing	 of	 a
green	UFO	(unidentified	flying	object)?	Drawing	the	UFO	is	easy:

•  How	 would	 you	 change	 the	 program	 so	 that	 the	 background	 is	 always
blue?

•  How	would	you	change	the	program	so	that	the	rocket	lands	on	a	flat	rock
bed	that	is	10	pixels	higher	than	the	bottom	of	the	scene?	Don’t	forget	to
change	the	scenery,	too.

Better	 than	pondering	 is	doing.	 It’s	 the	only	way	 to	 learn.	So	don’t	 let	us	stop
you.	Just	do	it.

Magic	Numbers	Take	another	look	at	picture-of-rocket.v5.	Because	we
eliminated	 all	 repeated	 expressions,	 all	 but	 one	 number	 disappeared	 from	 this
function	 definition.	 In	 the	 world	 of	 programming,	 these	 numbers	 are	 called
magic	 numbers,	 and	 nobody	 likes	 them.	Before	 you	 know	 it,	 you	 forget	what

role	 the	number	plays	and	what	changes	are	 legitimate.	 It	 is	best	 to	name	such
numbers	in	a	definition.

Here	 we	 actually	 know	 that	 50	 is	 our	 choice	 for	 an	 x-coordinate	 for	 the
rocket.	Even	 though	50	 doesn’t	 look	 like	much	of	 an	 expression,	 it	 really	 is	 a
repeated	 expression,	 too.	 Thus,	we	 have	 two	 reasons	 to	 eliminate	50	 from	 the
function	definition,	and	we	leave	it	to	you	to	do	so.

One	More	Definition
Recall	 that	animate	 actually	 applies	 its	 functions	 to	 the	number	of	 clock	 ticks
that	have	passed	since	it	was	first	called.	That	is,	the	argument	to	picture-of-
rocket	isn’t	a	height	but	a	time.	Our	previous	definitions	of	picture-of-rocket
use	 the	wrong	 name	 for	 the	 argument	 of	 the	 function;	 instead	 of	h—short	 for
height—it	ought	to	use	t	for	time:

And	 this	 small	change	 to	 the	definition	 immediately	clarifies	 that	 this	program
uses	time	as	if	it	were	a	distance.	What	a	bad	idea.

Danger	ahead!	This	section	introduces	one	piece	of	knowledge	from	physics.	If	physics	scares	you,
skip	it	on	a	first	reading;	programming	doesn’t	require	physics	knowledge.

Even	if	you	have	never	taken	a	physics	course,	you	know	that	a	time	is	not	a
distance.	So	somehow	our	program	worked	by	accident.	Don’t	worry,	though;	it
is	all	easy	to	fix.	All	you	need	to	know	is	a	bit	of	rocket	science,	which	people
like	us	call	physics.

Physics?!?	Well,	perhaps	you	have	already	forgotten	what	you	learned	in	that
course.	Or	perhaps	you	have	never	 taken	a	 course	on	physics	because	you	are

way	too	young	or	gentle.	No	worries.	This	happens	to	the	best	programmers	all
the	 time	because	 they	need	to	help	people	with	problems	in	music,	economics,
photography,	 nursing,	 and	 all	 kinds	 of	 other	 disciplines.	 Obviously,	 not	 even
programmers	know	everything.	So	they	look	up	what	they	need	to	know.	Or	they
talk	to	the	right	kind	of	people.	And	if	you	talk	to	a	physicist,	you	will	find	out
that	the	distance	traveled	is	proportional	to	the	time:

That	is,	if	the	velocity	of	an	object	is	v,	then	the	object	travels	d	miles	(or	meters
or	pixels	or	whatever)	in	t	seconds.

Of	course,	a	teacher	ought	to	show	you	a	proper	function	definition:

because	this	tells	everyone	immediately	that	the	computation	of	d	depends	on	t
and	 that	v	 is	a	constant.	A	programmer	goes	even	further	and	uses	meaningful
names	for	these	one-letter	abbreviations:

(define	V	3)	

(define	(distance	t)	

		(*	V	t))

This	 program	 fragment	 consists	 of	 two	 definitions:	 a	 function	 distance	 that
computes	the	distance	traveled	by	an	object	traveling	at	a	constant	velocity,	and
a	constant	V	that	describes	the	velocity.

You	might	wonder	why	V	is	3	here.	There	is	no	special	reason.	We	consider
3	pixels	per	clock	tick	a	good	velocity.	You	may	not.	Play	with	this	number	and
see	what	happens	with	the	animation.

Now	we	 can	 fix	picture-of-rocket	 again.	 Instead	of	 comparing	t	with	 a
height,	the	function	can	use	(distance	t)	to	calculate	how	far	down	the	rocket
is.	 The	 final	 program	 is	 displayed	 in	 figure	 9.	 It	 consists	 of	 two	 function
definitions:	 picture-of-rocket.v6	 and	 distance.	 The	 remaining	 constant
definitions	make	 the	 function	 definitions	 readable	 and	modifiable.	 As	 always,
you	can	run	this	program	with	animate:

>	(animate	picture-of-rocket.v6)

Figure	9:	Landing	a	rocket	(version	6)

In	 comparison	 to	 the	 previous	 versions	 of	 picture-of-rocket,	 this	 one
shows	 that	 a	 program	may	 consist	 of	 several	 function	 definitions	 that	 refer	 to
each	other.	Then	 again,	 even	 the	 first	 version	used	+	 and	/—it’s	 just	 that	 you
think	of	those	as	built	into	BSL.

As	 you	 become	 a	 true-blue	 programmer,	 you	 will	 find	 out	 that	 programs
consist	 of	 many	 function	 definitions	 and	 many	 constant	 definitions.	 You	 will
also	see	that	functions	refer	to	each	other	all	 the	time.	What	you	really	need	to
practice	is	to	organize	them	so	that	you	can	read	them	easily,	even	months	after
completion.	After	all,	an	older	version	of	you—or	someone	else—will	want	 to
make	 changes	 to	 these	 programs;	 and	 if	 you	 cannot	 understand	 the	 program’s
organization,	 you	 will	 have	 a	 difficult	 time	 with	 even	 the	 smallest	 task.
Otherwise,	you	mostly	know	what	there	is	to	know.

You	Are	a	Programmer	Now
The	claim	that	you	are	a	programmer	may	have	come	as	a	surprise	to	you	at	the

end	of	the	preceding	section,	but	it	is	true.	You	know	all	the	mechanics	that	there
are	 to	 know	 about	 BSL.	 You	 know	 that	 programming	 uses	 the	 arithmetic	 of
numbers,	 strings,	 images,	 and	 whatever	 other	 data	 your	 chosen	 programming
languages	 support.	 You	 know	 that	 programs	 consist	 of	 function	 and	 constant
definitions.	You	know,	because	we	have	told	you,	that	in	the	end,	it’s	all	about
organizing	these	definitions	properly.	Last	but	not	least,	you	know	that	DrRacket
and	the	teachpacks	support	lots	of	other	functions	and	that	DrRacket’s	HelpDesk
explains	what	these	functions	do.

You	might	 think	 that	 you	 still	 don’t	 know	 enough	 to	 write	 programs	 that
react	to	keystrokes,	mouse	clicks,	and	so	on.	As	it	turns	out,	you	do.	In	addition
to	the	animate	function,	the	2htdp/universe	library	provides	other	functions	that
hook	up	your	programs	to	the	keyboard,	the	mouse,	the	clock,	and	other	moving
parts	 in	your	computer.	 Indeed,	 it	even	supports	writing	programs	 that	connect
your	 computer	 with	 anybody	 else’s	 computer	 around	 the	 world.	 So	 this	 isn’t
really	a	problem.

In	 short,	 you	 have	 seen	 almost	 all	 the	 mechanics	 of	 putting	 together
programs.	 If	you	 read	up	on	all	 the	 functions	 that	 are	 available,	you	can	write
programs	that	play	interesting	computer	games,	run	simulations,	or	keep	track	of
business	 accounts.	 The	 question	 is	 whether	 this	 really	 means	 you	 are	 a
programmer.	Are	you?

	
Stop!	Don’t	turn	the	page	yet.	Think!

Not!
When	you	look	at	the	“programming”	bookshelves	in	a	random	bookstore,	you
will	see	loads	of	books	that	promise	to	turn	you	into	a	programmer	on	the	spot.
Now	that	you	have	worked	your	way	through	some	first	examples,	however,	you
probably	realize	that	this	cannot	possibly	happen.

Acquiring	 the	 mechanical	 skills	 of	 programming—learning	 to	 write
expressions	that	the	computer	understands,	getting	to	know	which	functions	and
libraries	 are	 available,	 and	 similar	 activities—isn’t	 helping	 you	 all	 that	 much
with	 real	 programming.	 If	 it	 were,	 you	 could	 equally	 well	 learn	 a	 foreign
language	by	memorizing	a	thousand	words	from	the	dictionary	and	a	few	rules
from	a	grammar	book.

Good	programming	is	far	more	than	the	mechanics	of	acquiring	a	language.
Most	importantly,	it	is	about	keeping	in	mind	that	programmers	create	programs
for	other	people	to	read	them	in	the	future.	A	good	program	reflects	the	problem
statements	and	its	 important	concepts.	It	comes	with	a	concise	self-description.
Examples	 illustrate	 this	 description	 and	 relate	 it	 back	 to	 the	 problem.	 The
examples	make	sure	that	the	future	reader	knows	why	and	how	your	code	works.
In	 short,	 good	 programming	 is	 about	 solving	 problems	 systematically	 and
conveying	the	system	within	the	code.	Best	of	all,	this	approach	to	programming
actually	makes	programming	accessible	to	everyone—so	it	serves	two	masters	at
once.

The	 rest	 of	 this	 book	 is	 all	 about	 these	 things;	 very	 little	 of	 the	 book’s
content	is	actually	about	the	mechanics	of	DrRacket,	BSL,	or	libraries.	The	book
shows	 you	 how	 good	 programmers	 think	 about	 problems.	And,	 you	will	 even
learn	that	this	way	of	solving	problems	applies	to	other	situations	in	life,	such	as
the	work	of	doctors,	journalists,	lawyers,	and	engineers.

Oh,	and	by	the	way,	the	rest	of	the	book	uses	a	tone	that	is	more	appropriate
for	a	serious	text	than	this	Prologue.	Enjoy!

Note	 on	 What	 This	 Book	 Is	 Not	 About	 Introductory	 books	 on
programming	 tend	 to	 contain	 lots	 of	 material	 about	 the	 authors’	 favorite
application	 discipline:	 puzzles,	 mathematics,	 physics,	 music,	 and	 so	 on.	 Such
material	 is	natural	because	programming	 is	obviously	useful	 in	all	 these	areas,
but	it	also	distracts	from	the	essential	elements	of	programming.	Hence,	we	have
made	every	attempt	to	minimize	the	use	of	knowledge	from	other	areas	so	that

we	 can	 focus	 on	 what	 computer	 science	 can	 teach	 you	 about	 computational
problem	solving.

I
FIXED-SIZE	DATA

Every	programming	language	comes	with	a	language	of	data	and	a	language	of
operations	 on	 data.	 The	 first	 language	 always	 provides	 some	 forms	 of	 atomic
data;	 to	 represent	 the	 variety	 of	 information	 in	 the	 real	 world	 as	 data,	 a
programmer	 must	 learn	 to	 compose	 basic	 data	 and	 to	 describe	 such
compositions.	Similarly,	the	second	language	provides	some	basic	operations	on
atomic	 data;	 it	 is	 the	 programmer’s	 task	 to	 compose	 these	 operations	 into
programs	 that	 perform	 the	 desired	 computations.	 We	 use	 arithmetic	 for	 the
combination	 of	 these	 two	 parts	 of	 a	 programming	 language	 because	 it
generalizes	what	you	know	from	grade	school.

This	 first	 part	 of	 the	 book	 (I)	 introduces	 the	 arithmetic	 of	 BSL,	 the
programming	language	used	in	the	Prologue.	From	arithmetic,	 it	 is	a	short	step
to	 your	 first	 simple	 programs,	 which	 you	 may	 know	 as	 functions	 from
mathematics.	Before	you	know	it,	though,	the	process	of	writing	programs	looks
confusing,	 and	 you	will	 long	 for	 a	way	 to	 organize	 your	 thoughts.	We	 equate
“organizing	thoughts”	with	design,	and	this	first	part	of	the	book	introduces	you
to	a	systematic	way	of	designing	programs.

1 Arithmetic
From	 the	 Prologue,	 you	 know	 how	 to	write	 down	 the	 kind	 of	 expression	 you
know	from	first	grade	in	BSL	notation:

•  write	“(”,

•  write	down	the	name	of	a	primitive	operation	op,

•  write	down	the	arguments,	separated	by	some	space,	and

•  write	down	“)”.

Just	as	a	reminder,	here	is	a	primitive	expression:

(+	1	2)

It	 uses	 +,	 the	 operation	 for	 adding	 two	 numbers,	 followed	 by	 two	 arguments,
which	are	plain	numbers.	But	here	is	another	example:

(+	1	(+	1	(+	1	1)	2)	3	4	5)

This	second	example	exploits	two	points	in	the	above	description	that	are	open
to	 interpretation.	 First,	 primitive	 operations	 may	 consume	 more	 than	 two
arguments.	Second,	the	arguments	don’t	have	to	be	numbers	per	se;	they	can	be
expressions,	too.

Scan	this	first	chapter	quickly,	skip	ahead	to	the	second	one,	and	return	here,	when	you	encounter
“arithmetic”	that	you	don’t	recognize.

Evaluating	 expressions	 is	 also	 straightforward.	 First,	BSL	 evaluates	 all	 the
arguments	 of	 a	 primitive	 operation.	 Second,	 it	 “feeds”	 the	 resulting	 pieces	 of
data	to	the	operation,	which	produces	a	result.	Thus,

(+	1	2)	
==	
3

and

(+	1	(+	1	(+	1	1)	2)	3	(+	2	2)	5)	
==	
(+	1	(+	1	2	2)	3	4	5)	
==	
(+	1	5	3	4	5)	
==	
18

These	 calculations	 should	 look	 familiar	 because	 they	 are	 the	 same	 kind	 of
calculations	 that	you	performed	 in	mathematics	classes.	You	may	have	written
down	the	steps	in	a	different	way;	you	may	have	never	been	taught	how	to	write
down	a	sequence	of	calculation	steps.	Yet,	BSL	performs	calculations	 just	 like
you	do,	and	this	should	be	a	relief.	It	guarantees	that	you	understand	what	it	does
with	primitive	operations	and	primitive	data,	so	there	is	some	hope	that	you	can
predict	what	your	programs	will	compute.	Generally	speaking,	it	is	critical	for	a
programmer	 to	 know	how	 the	 chosen	 language	 calculates	 because	 otherwise	 a
program’s	computation	may	harm	the	people	who	use	them	or	on	whose	behalf
the	programs	calculate.

We	use	==	to	mean	“is	equal	to	according	to	the	laws	of	computation.”

The	 rest	 of	 this	 chapter	 introduces	 four	 forms	 of	 atomic	 data	 of	 BSL:
numbers,	strings,	images,	and	Boolean	values.	We	use	the	word	“atomic”	here	in
analogy	 to	 physics.	You	 cannot	 peek	 inside	 atomic	 pieces	 of	 data,	 but	 you	do
have	 functions	 that	 combine	 several	 pieces	 of	 atomic	 data	 into	 another	 one,
retrieve	 “properties”	 of	 them,	 also	 in	 terms	 of	 atomic	 data,	 and	 so	 on.	 The
sections	of	this	chapter	introduce	some	of	these	functions,	also	called	primitive
operations	or	pre-defined	operations.	You	can	find	others	in	the	documentation
of	BSL	that	comes	with	DrRacket.

The	next	volume,	How	to	Design	Components,	will	explain	how	to	design	atomic	data.

1.1 The	Arithmetic	of	Numbers
Most	 people	 think	 “numbers”	 and	 “operations	 on	 numbers”	 when	 they	 hear
“arithmetic.”	 “Operations	 on	 numbers”	means	 adding	 two	 numbers	 to	 yield	 a
third,	 subtracting	 one	 number	 from	 another,	 determining	 the	 greatest	 common
divisor	of	two	numbers,	and	many	more	such	things.	If	we	don’t	take	arithmetic
too	literally,	we	may	even	include	the	sine	of	an	angle,	rounding	a	real	number
to	the	closest	integer,	and	so	on.

The	BSL	language	supports	Numbers	and	arithmetic	on	them.	As	discussed
in	the	Prologue,	an	arithmetic	operation	such	as	+	is	used	like	this:

(+	3	4)

that	is,	in	prefix	notation	form.	Here	are	some	of	the	operations	on	numbers	that
our	 language	 provides:	 +,	 -,	 *,	 /,	 abs,	 add1,	 ceiling,	 denominator,	 exact-
>inexact,	 expt,	 floor,	 gcd,	 log,	 max,	 numerator,	 quotient,	 random,
remainder,	sqr,	and	tan.	We	picked	our	way	through	the	alphabet	just	to	show
the	 variety	 of	 operations.	 Explore	 what	 they	 compute,	 and	 then	 find	 out	 how
many	more	there	are.

If	you	need	an	operation	on	numbers	that	you	know	from	your	mathematics
courses,	 chances	 are	 that	 BSL	 knows	 about	 it,	 too.	 Guess	 its	 name	 and
experiment	 in	 the	 interactions	 area.	 Say	 you	 need	 to	 compute	 the	 sin	 of	 some
angle;	try

>	(sin	0)	
0

and	use	it	happily	ever	after.	Or	look	in	the	HelpDesk.	You	will	find	there	that	in
addition	 to	 operations	 BSL	 also	 recognizes	 the	 names	 of	 some	 widely	 used
numbers,	for	example,	pi	and	e.

You	might	know	e	from	calculus.	It’s	a	real	number,	close	to	2.718,	called	“Euler’s	constant.”

When	 it	 comes	 to	 numbers,	 BSL	 programs	 may	 use	 natural	 numbers,
integers,	rational	numbers,	real	numbers,	and	complex	numbers.	We	assume	that

you	have	heard	of	all	but	the	last	one.	The	last	one	may	have	been	mentioned	in
your	high	 school	class.	 If	not,	don’t	worry;	while	complex	numbers	are	useful
for	all	kinds	of	calculations,	a	novice	doesn’t	have	to	know	about	them.

A	truly	important	distinction	concerns	the	precision	of	numbers.	For	now,	it
is	 important	 to	 understand	 that	 BSL	 distinguishes	 exact	 numbers	 and	 inexact
numbers.	When	 it	 calculates	with	exact	numbers,	BSL	preserves	 this	precision
whenever	 possible.	 For	 example,	 (/	 4	 6)	 produces	 the	 precise	 fraction	 2/3,
which	DrRacket	can	render	as	a	proper	fraction,	an	improper	fraction,	or	a	mixed
decimal.	 Play	with	 your	 computer’s	mouse	 to	 find	 the	menu	 that	 changes	 the
fraction	into	decimal	expansion.

Some	 of	 BSL’s	 numeric	 operations	 cannot	 produce	 an	 exact	 result.	 For
example,	 using	 the	 sqrt	 operation	 on	 2	 produces	 an	 irrational	 number	 that
cannot	 be	 described	with	 a	 finite	 number	 of	 digits.	 Because	 computers	 are	 of
finite	 size	 and	 BSL	 must	 somehow	 fit	 such	 numbers	 into	 the	 computer,	 it
chooses	an	approximation:	1.4142135623730951.	As	mentioned	in	the	Prologue,
the	#i	 prefix	warns	novice	programmers	of	 this	 lack	of	 precision.	While	most
programming	languages	choose	to	reduce	precision	in	this	manner,	few	advertise
it	and	even	fewer	warn	programmers.

Note	on	Numbers	The	word	“Number”	refers	to	a	wide	variety	of	numbers,
including	counting	numbers,	integers,	rational	numbers,	real	numbers,	and	even
complex	 numbers.	 For	 most	 uses,	 you	 can	 safely	 equate	 Number	 with	 the
number	 line	from	elementary	school,	 though	on	occasion	 this	 translation	 is	 too
imprecise.	If	we	wish	to	be	precise,	we	use	appropriate	words:	Integer,	Rational,
and	 so	 on.	 We	 may	 even	 refine	 these	 notions	 using	 such	 standard	 terms	 as
PositiveInteger,	NonnegativeNumber,	NegativeNumber,	and	so	on.	End

Exercise	 1.	 Add	 the	 following	 definitions	 for	 x	 and	 y	 to	 DrRacket’s
definitions	area:

(define	x	3)	
(define	y	4)

Now	imagine	that	x	and	y	are	the	coordinates	of	a	Cartesian	point.	Write	down
an	 expression	 that	 computes	 the	 distance	 of	 this	 point	 to	 the	 origin,	 that	 is,	 a
point	with	the	coordinates	(0,0).

The	expected	result	for	these	values	is	5,	but	your	expression	should	produce
the	correct	result	even	after	you	change	these	definitions.

Just	 in	case	you	have	not	 taken	geometry	courses	or	 in	case	you	forgot	 the
formula	that	you	encountered	there,	the	point	(x,y)	has	the	distance

from	the	origin.	After	all,	we	are	teaching	you	how	to	design	programs,	not	how
to	be	a	geometer.

To	develop	the	desired	expression,	it	is	best	to	click	RUN	and	to	experiment
in	the	interactions	area.	The	RUN	action	tells	DrRacket	what	the	current	values
of	x	and	y	are	so	that	you	can	experiment	with	expressions	that	involve	x	and	y:

>	x	
3	
>	y	
4	
>	(+	x	10)	
13	
>	(*	x	y)	
12

Once	you	have	the	expression	that	produces	the	correct	result,	copy	it	from	the
interactions	area	to	the	definitions	area.

To	confirm	 that	 the	 expression	works	properly,	 change	x	 to	12	 and	y	 to	5,
then	click	RUN.	The	result	should	be	13.

Your	 mathematics	 teacher	 would	 say	 that	 you	 computed	 the	 distance
formula.	To	use	the	formula	on	alternative	inputs,	you	need	to	open	DrRacket,
edit	the	definitions	of	x	and	y	so	they	represent	the	desired	coordinates,	and	click
RUN.	But	 this	way	 of	 reusing	 the	 distance	 formula	 is	 cumbersome	 and	 naive.
We	 will	 soon	 show	 you	 a	 way	 to	 define	 functions,	 which	 makes	 reusing
formulas	straightforward.	For	now,	we	use	this	kind	of	exercise	to	call	attention
to	the	idea	of	functions	and	to	prepare	you	for	programming	with	them.	

1.2 The	Arithmetic	of	Strings
A	widespread	prejudice	 about	 computers	 concerns	 their	 innards.	Many	believe
that	 it	 is	 all	 about	 bits	 and	 bytes—whatever	 those	 are—and	 possibly	 numbers
because	 everyone	 knows	 that	 computers	 can	 calculate.	 While	 it	 is	 true	 that
electrical	 engineers	 must	 understand	 and	 study	 the	 computer	 as	 just	 such	 an
object,	beginning	programmers	and	everyone	else	need	never	(ever)	succumb	to
this	thinking.

Programming	 languages	 are	 about	 computing	 with	 information,	 and
information	 comes	 in	 all	 shapes	 and	 forms.	For	 example,	 a	 program	may	deal
with	 colors,	 names,	 business	 letters,	 or	 conversations	 between	 people.	 Even
though	 we	 could	 encode	 this	 kind	 of	 information	 as	 numbers,	 it	 would	 be	 a
horrible	idea.	Just	imagine	remembering	large	tables	of	codes,	such	as	0	means
“red”	and	1	means	“hello,”	and	the	like.

Instead,	most	programming	languages	provide	at	least	one	kind	of	data	that
deals	with	such	symbolic	information.	For	now,	we	use	BSL’s	strings.	Generally
speaking,	 a	 String	 is	 a	 sequence	 of	 the	 characters	 that	 you	 can	 enter	 on	 the
keyboard,	plus	a	few	others,	about	which	we	aren’t	concerned	just	yet,	enclosed
in	 double	 quotes.	 In	 the	 Prologue,	 we	 have	 seen	 a	 number	 of	 BSL	 strings:
"hello",	"world",	"blue",	"red",	and	others.	The	first	two	are	words	that	may
show	up	in	a	conversation	or	in	a	letter;	the	others	are	names	of	colors	that	we
may	wish	to	use.

Note	 We	 use	 1String	 to	 refer	 to	 the	 keyboard	 characters	 that	 make	 up	 a
String.	For	example,	"red"	consists	of	three	such	1Strings:	"r",	"e",	"d".	As	it
turns	out,	there	is	a	bit	more	to	the	definition	of	1String,	but	for	now	thinking	of
them	as	Strings	of	length	1	is	fine.	End

BSL	 includes	 only	 one	 operation	 that	 exclusively	 consumes	 and	 produces
strings:	string-append,	which,	 as	we	have	 seen	 in	 the	Prologue,	 concatenates
two	given	strings	into	one.	Think	of	string-append	as	an	operation	that	is	just
like	+.	While	 the	 latter	 consumes	 two	 (or	more)	 numbers	 and	 produces	 a	 new
number,	the	former	consumes	two	or	more	strings	and	produces	a	new	string:

>	(string-append	"what	a	"	"lovely	"	"day"	"	4	BSL")	
"what	a	lovely	day	4	BSL"

Nothing	 about	 the	 given	 numbers	 changes	when	+	 adds	 them	 up,	 and	 nothing

about	 the	 given	 strings	 changes	 when	 string-append	 concatenates	 them	 into
one	big	string.	If	you	wish	to	evaluate	such	expressions,	you	just	need	to	think
that	the	obvious	laws	hold	for	string-append,	similar	to	those	for	+:

Exercise	2.	Add	the	following	two	lines	to	the	definitions	area:

(define	prefix	"hello")	
(define	suffix	"world")

Then	use	string	primitives	to	create	an	expression	that	concatenates	prefix	and
suffix	 and	adds	"_"	between	 them.	When	you	 run	 this	program,	you	will	 see
"hello_world"	in	the	interactions	area.

See	exercise	1	for	how	to	create	expressions	using	DrRacket.	

1.3 Mixing	It	Up
All	other	operations	(in	BSL)	concerning	strings	consume	or	produce	data	other
than	strings.	Here	are	some	examples:

•  string-length	consumes	a	string	and	produces	a	number;

•  string-ith	consumes	a	string	s	together	with	a	number	i	and	extracts	the
1String	located	at	the	ith	position	(counting	from	0);	and

•  number->string	consumes	a	number	and	produces	a	string.

Also	look	up	substring	and	find	out	what	it	does.
If	 the	 documentation	 in	HelpDesk	 appears	 confusing,	 experiment	 with	 the

functions	in	the	interactions	area.	Give	them	appropriate	arguments,	and	find	out
what	they	compute.	Also	use	inappropriate	arguments	for	some	operations	just
to	find	out	how	BSL	reacts:

>	(string-length	42)	
string-length:expects	a	string,	given	42

As	you	can	see,	BSL	reports	an	error.	The	first	part	“string-length”	informs	you
about	the	operation	that	is	misapplied;	the	second	half	states	what	is	wrong	with
the	 arguments.	 In	 this	 specific	 example,	 string-length	 is	 supposed	 to	 be
applied	to	a	string	but	is	given	a	number,	specifically	42.

Naturally,	it	is	possible	to	nest	operations	that	consume	and	produce	different
kinds	of	data	as	 long	as	you	keep	 track	of	what	 is	proper	and	what	 is	not.
Consider	this	expression	from	the	the	Prologue:

(+	(string-length	"hello	world")	20)

The	 inner	 expression	 applies	 string-length	 to	 "hello	 world",	 our	 favorite
string.	The	outer	expression	has	+	consume	the	result	of	the	inner	expression	and
20.

Let’s	determine	the	result	of	this	expression	in	a	step-by-step	fashion:

(+	(string-length	"hello	world")	20)	

==	
(+	11	20)	
==	
31

Not	surprisingly,	computing	with	such	nested	expressions	that	deal	with	a	mix	of
data	 is	no	different	 from	computing	with	numeric	expressions.	Here	 is	another
example:

(+	(string-length	(number->string	42))	2)	
==	
(+	(string-length	"42")	2)	
==	
(+	2	2)	
==	
4

Before	you	go	on,	construct	some	nested	expressions	that	mix	data	in	the	wrong
way,	say,

(+	(string-length	42)	1)

Run	 them	 in	 DrRacket.	 Study	 the	 red	 error	 message	 but	 also	 watch	 what
DrRacket	highlights	in	the	definitions	area.

Exercise	3.	Add	the	following	two	lines	to	the	definitions	area:

(define	str	"helloworld")	
(define	i	5)

Then	create	an	expression	using	string	primitives	that	adds	"_"	at	position	i.	In
general	 this	means	 the	 resulting	string	 is	 longer	 than	 the	original	one;	here	 the
expected	result	is	"hello_world".

Position	means	i	characters	from	the	left	of	the	string,	but	programmers	start
counting	at	0.	Thus,	the	5th	letter	in	this	example	is	"w",	because	the	0th	letter	is
"h".	Hint	When	you	encounter	such	“counting	problems”	you	may	wish	to	add	a
string	of	digits	below	str	to	help	with	counting:

(define	str	"helloworld")	
(define	ind	"0123456789")	
(define	i	5)

See	exercise	1	for	how	to	create	expressions	in	DrRacket.	
Exercise	4.	Use	the	same	setup	as	in	exercise	3	to	create	an	expression	that

deletes	the	ith	position	from	str.	Clearly	this	expression	creates	a	shorter	string
than	the	given	one.	Which	values	for	i	are	legitimate?	

1.4 The	Arithmetic	of	Images
An	 Image	 is	 a	 visual,	 rectangular	 piece	 of	 data,	 for	 example,	 a	 photo	 or	 a
geometric	figure	and	its	frame.	You	can	insert	images	in	DrRacket	wherever	you
can	write	down	an	expression	because	images	are	values,	just	like	numbers	and
strings.

Remember	to	require	the	2htdp/image	library	in	a	new	tab.

Your	programs	can	also	manipulate	images	with	primitive	operations.	These
primitive	operations	come	in	 three	flavors.	The	first	kind	concerns	 the	creation
of	basic	images:

•  circle	produces	a	circle	image	from	a	radius,	a	mode	string,	and	a	color
string;

•  ellipse	 produces	 an	 ellipse	 from	 two	 radii,	 a	 mode	 string,	 and	 a	 color
string;

•  line	produces	a	line	from	two	points	and	a	color	string;

•  rectangle	produces	a	rectangle	from	a	width,	a	height,	a	mode	string,	and
a	color	string;

•  text	produces	a	 text	 image	 from	a	string,	a	 font	 size,	and	a	color	string;
and

•  triangle	produces	an	upward-pointing	equilateral	 triangle	 from	a	size,	a
mode	string,	and	a	color	string.

The	names	of	 these	operations	mostly	explain	what	kind	of	 image	 they	create.
All	you	must	know	is	that	mode	strings	means	"solid"	or	"outline",	and	color
strings	are	strings	such	as	"orange",	"black",	and	so	on.

Play	with	these	operations	in	the	interactions	window:

Stop!	 The	 above	 uses	 a	 previously	 unmentioned	 operation.	 Look	 up	 its
documentation	 and	 find	 out	 how	many	more	 such	 operations	 the	 2htdp/image
library	comes	with.	Experiment	with	the	operations	you	find.

The	second	kind	of	functions	on	images	concern	image	properties:

•  image-width	determines	the	width	of	an	image	in	terms	of	pixels;

•  image-height	determines	the	height	of	an	image;

They	extract	the	kind	of	values	from	images	that	you	expect:

>	(image-width	(circle	10	"solid"	"red"))	
20	
>	(image-height	(rectangle	10	20	"solid"	"blue"))	
20

Stop!	Explain	how	DrRacket	determines	the	value	of	this	expression:

(+	(image-width	(circle	10	"solid"	"red"))	
			(image-height	(rectangle	10	20	"solid"	"blue")))

A	 proper	 understanding	 of	 the	 third	 kind	 of	 image-composing	 primitives
requires	the	introduction	of	one	new	idea:	the	anchor	point.	An	image	isn’t	just	a
single	 pixel,	 it	 consists	 of	 many	 pixels.	 Specifically,	 each	 image	 is	 like	 a
photograph,	 that	 is,	 a	 rectangle	 of	 pixels.	 One	 of	 these	 pixels	 is	 an	 implicit
anchor	 point.	When	 you	 use	 an	 image	 primitive	 to	 compose	 two	 images,	 the
composition	happens	with	respect	to	the	anchor	points,	unless	you	specify	some
other	point	explicitly:

•  overlay	places	all	the	images	to	which	it	is	applied	on	top	of	each	other,
using	the	center	as	anchor	point;

•  overlay/xy	is	like	overlay	but	accepts	two	numbers—x	and	y—between
two	 image	arguments.	 It	 shifts	 the	 second	 image	by	x	 pixels	 to	 the	 right
and	 y	 pixels	 down—all	with	 respect	 to	 the	 first	 image’s	 top-left	 corner;
unsurprisingly,	a	negative	x	shifts	the	image	to	the	left	and	a	negative	y	up;
and

•  overlay/align	is	like	overlay	but	accepts	two	strings	that	shift	the	anchor
point(s)	to	other	parts	of	the	rectangles.	There	are	nine	different	positions
overall;	experiment	with	all	possibilities!

The	 2htdp/image	 library	 comes	 with	 many	 other	 primitive	 functions	 for
combining	images.	As	you	get	familiar	with	image	processing,	you	will	want	to
read	up	on	those.	For	now,	we	introduce	three	more	because	they	are	important
for	creating	animated	scenes	and	images	for	games:

•  empty-scene	creates	a	rectangle	of	some	given	width	and	height;

•  place-image	 places	 an	 image	 into	 a	 scene	 at	 a	 specified	 position.	 If	 the
image	doesn’t	fit	into	the	given	scene,	it	is	appropriately	cropped;

•  scene+line	 consumes	 a	 scene,	 four	 numbers,	 and	 a	 color	 to	draw	a	 line
into	the	given	image.	Experiment	with	it	to	see	how	it	works.

The	 laws	of	 arithmetic	 for	 images	 are	 analogous	 to	 those	 for	numbers;	 see
figure	10	for	some	examples	and	a	comparison	with	numeric	arithmetic.	Again,
no	image	gets	destroyed	or	changed.	Like	+,	these	primitives	just	make	up	new
images	that	combine	the	given	ones	in	some	manner.

Figure	10:	Laws	of	image	creation

Exercise	5.	Use	the	2htdp/image	library	to	create	the	image	of	a	simple	boat
or	tree.	Make	sure	you	can	easily	change	the	scale	of	the	entire	image.	

Copy	and	paste	the	image	into	your	DrRacket.

Exercise	6.	Add	the	following	line	to	the	definitions	area:

Create	an	expression	that	counts	the	number	of	pixels	in	the	image.	

1.5 The	Arithmetic	of	Booleans
We	need	one	last	kind	of	primitive	data	before	we	can	design	programs:	Boolean
values.	 There	 are	 only	 two	 kinds	 of	 Boolean	 values:	 #true	 and	 #false.
Programs	use	Boolean	values	for	representing	decisions	or	the	status	of	switches.

Computing	with	Boolean	values	is	simple,	too.	In	particular,	BSL	programs
get	away	with	 three	operations:	or,	and,	and	not.	These	operations	are	kind	of
like	addition,	multiplication,	and	negation	for	numbers.	Of	course,	because	there
are	 only	 two	Boolean	 values,	 it	 is	 actually	 possible	 to	 demonstrate	 how	 these
functions	work	in	all	possible	situations:

•  or	checks	whether	any	of	the	given	Boolean	values	is	#true:

>	(or	#true	#true)	

#true	

>	(or	#true	#false)	

#true	

>	(or	#false	#true)	

#true	

>	(or	#false	#false)	

#false

•  and	checks	whether	all	of	the	given	Boolean	values	are	#true:

>	(and	#true	#true)	

#true	

>	(and	#true	#false)	

#false	

>	(and	#false	#true)	

#false	

>	(and	#false	#false)	

#false

•  and	not	always	picks	the	Boolean	that	isn’t	given:

>	(not	#true)	

#false

Unsurprisingly,	 or	 and	 and	 may	 be	 used	 with	 more	 than	 two	 expressions.
Finally,	 there	 is	 more	 to	 or	 and	 and	 than	 these	 explanations	 suggest,	 but	 to

explain	the	extra	bit	requires	a	second	look	at	nested	expressions.
Exercise	 7.	 Boolean	 expressions	 can	 express	 some	 everyday	 problems.

Suppose	 you	want	 to	 decide	whether	 today	 is	 an	 appropriate	 day	 to	 go	 to	 the
mall.	You	go	to	the	mall	either	 if	 it	 is	not	sunny	or	if	 today	is	Friday	(because
that	is	when	stores	post	new	sales	items).

Nadeem	Hamid	suggested	this	formulation	of	the	exercise.

Here	 is	 how	 you	 could	 go	 about	 it	 using	 your	 new	 knowledge	 about
Booleans.	First	add	these	two	lines	to	the	definitions	area	of	DrRacket:

(define	sunny	#true)	
(define	friday	#false)

Now	create	an	expression	that	computes	whether	sunny	is	false	or	friday	is	true.
So	in	this	particular	case,	the	answer	is	#false.	(Why?)

See	 exercise	 1	 for	 how	 to	 create	 expressions	 in	 DrRacket.	 How	 many
combinations	of	Booleans	can	you	associate	with	sunny	and	friday?	

1.6 Mixing	It	Up	with	Booleans
One	important	use	of	Boolean	values	concerns	calculations	with	different	kinds
of	data.	We	know	from	the	Prologue	 that	BSL	programs	may	name	values	via
definitions.	For	example,	we	could	start	a	program	with

(define	x	2)

and	then	compute	its	inverse:

(define	inverse-of-x	(/	1	x))

This	works	fine,	as	long	as	we	don’t	edit	the	program	and	change	x	to	0.
This	is	where	Boolean	values	come	in,	in	particular	conditional	calculations.

First,	 the	 primitive	 function	 =	 determines	whether	 two	 (or	more)	 numbers	 are
equal.	If	so,	it	produces	#true,	otherwise	#false.	Second,	there	is	a	kind	of	BSL
expression	that	we	haven’t	mentioned	so	far:	the	if	expression.	It	uses	the	word
“if”	as	if	it	were	a	primitive	function;	it	isn’t.	The	word	“if”	is	followed	by	three
expressions,	 separated	 by	 blank	 spaces	 (that	 includes	 tabs,	 line	 breaks,	 etc.).
Naturally	the	entire	expression	is	enclosed	in	parentheses.	Here	is	an	example:

(if	(=	x	0)	0	(/	1	x))

This	 if	 expression	 contains	 (=	 x	 0),	 0,	 and	 (/	 1	 x),	 three	 so-called	 sub-
expressions.	The	evaluation	of	this	expression	proceeds	in	two	steps:

1.	The	first	expression	is	always	evaluated.	Its	result	must	be	a	Boolean.

2.	If	the	result	of	the	first	expression	is	#true,	then	the	second	expression	is
evaluated;	otherwise	 the	 third	one	 is.	Whatever	 their	 results	are,	 they	are
also	the	result	of	the	entire	if	expression.

Right-click	on	the	result	and	choose	a	different	representation.

Given	the	definition	of	x	above,	you	can	experiment	with	if	expressions	in
the	interactions	area:

>	(if	(=	x	0)	0	(/	1	x))	
0.5

Using	the	laws	of	arithmetic,	you	can	figure	out	the	result	yourself:

(if	(=	x	0)	0	(/	1	x))	
==	;	because	x	stands	for	2	
(if	(=	2	0)	0	(/	1	2))	
==	;	2	is	not	equal	to	0,	(=	2	0)	is	#false	
(if	#false	0	(/	1	x))	
(/	1	2)	
==	;	normalize	this	to	its	decimal	representation	
0.5

In	other	words,	DrRacket	knows	that	x	stands	for	2	and	that	the	latter	is	not	equal
to	0.	Hence,	(=	x	0)	produces	the	result	#false,	meaning	if	picks	its	third	sub-
expression	to	be	evaluated.

Stop!	Imagine	you	edit	the	definition	so	that	it	looks	like	this:

(define	x	0)

What	do	you	think

(if	(=	x	0)	0	(/	1	x))

evaluates	to	in	this	context?	Why?	Show	your	calculation.
In	addition	to	=,	BSL	provides	a	host	of	other	comparison	primitives.	Explain

what	the	following	four	comparison	primitives	determine	about	numbers:	<,	<=,
>,	>=.

Strings	 aren’t	 compared	 with	 =	 and	 its	 relatives.	 Instead,	 you	 must	 use
string=?	or	string<=?	or	string>=?	if	you	ever	need	to	compare	strings.	While
it	 is	obvious	that	string=?	checks	whether	the	two	given	strings	are	equal,	 the
other	two	primitives	are	open	to	interpretation.	Look	up	their	documentation.	Or,
experiment,	guess	a	general	 law,	and	then	check	in	 the	documentation	whether
you	guessed	right.

You	 may	 wonder	 why	 it	 is	 ever	 necessary	 to	 compare	 strings	 with	 each
other.	So	imagine	a	program	that	deals	with	traffic	lights.	It	may	use	the	strings

"green",	"yellow",	 and	"red".	 This	 kind	 of	 program	may	 contain	 a	 fragment
such	as	this:

(define	current-color	…)

	

(define	next-color	
		(if	(string=?	"green"	current-color)	"yellow"	…))

It	should	be	easy	to	imagine	that	 this	fragment	deals	with	the	computation	that
determines	which	 light	 bulb	 is	 to	 be	 turned	 on	 next	 and	which	 one	 should	 be
turned	off.

The	dots	in	the	definition	of	current-color	aren’t	a	part	of	the	program,	of	course.	Replace	them
with	a	string	that	refers	to	a	color.

The	 next	 few	 chapters	 introduce	 better	 expressions	 than	 if	 to	 express
conditional	computations	and,	most	 importantly,	systematic	ways	for	designing
them.

Exercise	8.	Add	the	following	line	to	the	definitions	area:

Create	a	conditional	expression	that	computes	whether	the	image	is	tall	or	wide.
An	 image	 should	 be	 labeled	 "tall"	 if	 its	 height	 is	 larger	 than	 or	 equal	 to	 its
width;	otherwise	it	is	"wide".	See	exercise	1	for	how	to	create	such	expressions
in	DrRacket;	as	you	experiment,	replace	the	cat	with	a	rectangle	of	your	choice
to	ensure	that	you	know	the	expected	answer.

Now	 try	 the	 following	 modification.	 Create	 an	 expression	 that	 computes

whether	a	picture	is	"tall",	"wide",	or	"square".	

1.7 Predicates:	Know	Thy	Data
Remember	 the	 expression	 (string-length	 42)	 and	 its	 result.	 Actually,	 the
expression	 doesn’t	 have	 a	 result,	 it	 signals	 an	 error.	 DrRacket	 lets	 you	 know
about	 errors	 via	 red	 text	 in	 the	 interactions	 area	 and	highlighting	of	 the	 faulty
expression	 (in	 the	 definitions	 area).	This	way	of	marking	 errors	 is	 particularly
helpful	when	you	use	this	expression	(or	its	relatives)	deeply	nested	within	some
other	expression:

(*	(+	(string-length	42)	1)	pi)

Experiment	with	this	expression	by	entering	it	both	into	DrRacket’s	interactions
area	and	in	the	definitions	area	(and	then	click	on	RUN).

Of	 course,	 you	 really	 don’t	 want	 such	 error-signaling	 expressions	 in	 your
program.	And	usually,	you	don’t	make	such	obvious	mistakes	as	using	42	as	a
string.	It	is	quite	common,	however,	that	programs	deal	with	variables	that	may
stand	for	either	a	number	or	a	string:

(define	in	…)	

(string-length	in)

A	variable	such	as	in	can	be	a	placeholder	 for	any	value,	 including	a	number,
and	this	value	then	shows	up	in	the	string-length	expression.

One	way	to	prevent	such	accidents	is	to	use	a	predicate,	which	is	a	function
that	consumes	a	value	and	determines	whether	or	not	it	belongs	to	some	class	of
data.	For	example,	the	predicate	number?	determines	whether	the	given	value	is
a	number	or	not:

>	(number?	4)	
#true	
>	(number?	pi)	
#true	
>	(number?	#true)	
#false	
>	(number?	"fortytwo")	

#false

As	you	see,	the	predicates	produce	Boolean	values.	Hence,	when	predicates	are
combined	with	conditional	expressions,	programs	can	protect	expressions	 from
misuse:

(define	in	…)

(if	(string?	in)	(string-length	in)	…)

Every	 class	 of	 data	 that	we	 introduced	 in	 this	 chapter	 comes	with	 a	 predicate.
Experiment	with	 number?,	 string?,	 image?,	 and	 boolean?	 to	 ensure	 that	 you
understand	how	they	work.

Put	(sqrt	-1)	at	the	prompt	in	the	interactions	area	and	hit	the	“enter”	key.	Take	a	close	look	at	the
result.	The	result	you	see	is	the	first	so-called	complex	number	anyone	encounters.	While	your
teacher	may	have	told	you	that	one	doesn’t	compute	the	square	root	of	negative	numbers,	the	truth	is
that	mathematicians	and	some	programmers	find	it	acceptable	and	useful	to	do	so	anyway.	But	don’t
worry:	understanding	complex	numbers	is	not	essential	to	being	a	program	designer.

In	 addition	 to	 predicates	 that	 distinguish	 different	 forms	 of	 data,
programming	 languages	 also	 come	 with	 predicates	 that	 distinguish	 different
kinds	of	numbers.	In	BSL,	numbers	are	classified	in	two	ways:	by	construction
and	 by	 their	 exactness.	 Construction	 refers	 to	 the	 familiar	 sets	 of	 numbers:
integer?,	rational?,	real?,	and	complex?,	but	many	programming	languages,
including	 BSL,	 also	 choose	 to	 use	 finite	 approximations	 to	 well-known
constants,	 which	 leads	 to	 somewhat	 surprising	 results	 with	 the	 rational?
predicate:

>	(rational?	pi)	
#true

As	for	exactness,	we	have	mentioned	the	idea	before.	For	now,	experiment	with
exact?	 and	 inexact?	 to	make	 sure	 they	 perform	 the	 checks	 that	 their	 names
suggest.	Later	we	are	going	to	discuss	the	nature	of	numbers	in	some	detail.

Exercise	9.	Add	the	following	line	to	the	definitions	area	of	DrRacket:

(define	in	…)

Then	create	an	expression	that	converts	the	value	of	in	to	a	positive	number.	For
a	String,	it	determines	how	long	the	String	is;	for	an	Image,	it	uses	the	area;	for	a
Number,	 it	decrements	 the	number	by	1,	unless	 it	 is	 already	0	or	negative;	 for
#true	it	uses	10	and	for	#false	20.

See	exercise	1	for	how	to	create	expressions	in	DrRacket.	
Exercise	10.	Now	relax,	eat,	sleep,	and	then	tackle	the	next	chapter.	

2 Functions	and	Programs
As	far	as	programming	is	concerned,	“arithmetic”	is	half	the	game;	the	other	half
is	 “algebra.”	 Of	 course,	 “algebra”	 relates	 to	 the	 school	 notion	 of	 algebra	 as
little/much	 as	 the	 notion	 of	 “arithmetic”	 from	 the	 preceding	 chapter	 relates	 to
arithmetic	 taught	 in	 grade-school	 arithmetic.	 Specifically,	 the	 algebra	 notions
needed	 are	 variable,	 function	 definition,	 function	 application,	 and	 function
composition.	 This	 chapter	 reacquaints	 you	 with	 these	 notions	 in	 a	 fun	 and
accessible	manner.

2.1 Functions
Programs	are	 functions.	Like	 functions,	programs	consume	 inputs	and	produce
outputs.	Unlike	 the	 functions	you	may	know,	programs	work	with	a	variety	of
data:	 numbers,	 strings,	 images,	mixtures	 of	 all	 these,	 and	 so	 on.	 Furthermore,
programs	are	triggered	by	events	in	the	real	world,	and	the	outputs	of	programs
affect	 the	 real	 world.	 For	 example,	 a	 spreadsheet	 program	 may	 react	 to	 an
accountant’s	 key	 presses	 by	 filling	 some	 cells	 with	 numbers,	 or	 the	 calendar
program	on	a	computer	may	launch	a	monthly	payroll	program	on	the	last	day	of
every	month.	Lastly,	a	program	may	not	consume	all	of	 its	 input	data	at	once,
instead	it	may	decide	to	process	data	in	an	incremental	manner.

Definitions	 While	 many	 programming	 languages	 obscure	 the	 relationship
between	programs	and	functions,	BSL	brings	it	to	the	fore.	Every	BSL	program
consists	of	 several	definitions,	usually	 followed	by	an	expression	 that	 involves
those	definitions.	There	are	two	kinds	of	definitions:

•  constant	definitions,	of	the	shape	(define	Variable	Expression),	which
we	encountered	in	the	preceding	chapter;	and

•  function	definitions,	which	come	in	many	flavors,	one	of	which	we	used	in
the	Prologue.

Like	expressions,	function	definitions	in	BSL	come	in	a	uniform	shape:

(define	(FunctionName	Variable	…	Variable)	
			Expression)

That	is,	to	define	a	function,	we	write	down

•  “(define(”,

•  the	name	of	the	function,

•  followed	by	several	variables,	separated	by	space	and	ending	in	“)”,

•  and	an	expression	followed	by	“)”.

And	that	is	all	there	is	to	it.	Here	are	some	small	examples:

•  (define	(f	x)	1)

•  (define	(g	x	y)	(+	1	1))

•  (define	(h	x	y	z)	(+	(*	2	2)	3))

Before	we	 explain	why	 these	 examples	 are	 silly,	we	 need	 to	 explain	what
function	definitions	mean.	Roughly	speaking,	a	function	definition	introduces	a
new	operation	on	data;	put	differently,	it	adds	an	operation	to	our	vocabulary	if
we	think	of	the	primitive	operations	as	the	ones	that	are	always	available.	Like	a
primitive	function,	a	defined	function	consumes	inputs.	The	number	of	variables
determines	how	many	inputs—also	called	arguments	or	parameters—a	function
consumes.	 Thus,	 f	 is	 a	 one-argument	 function,	 sometimes	 called	 a	 unary
function.	In	contrast,	g	is	a	two-argument	function,	also	dubbed	binary,	and	h	is
a	 ternary	 or	 three-argument	 function.	The	 expression—often	 referred	 to	 as	 the
function	body—determines	the	output.

The	 examples	 are	 silly	because	 the	 expressions	 inside	 the	 functions	do	not
involve	 the	variables.	Since	variables	are	about	 inputs,	not	mentioning	 them	in
the	expressions	means	that	the	function’s	output	is	independent	of	its	input	and
therefore	always	the	same.	We	don’t	need	to	write	functions	or	programs	if	the
output	is	always	the	same.

Variables	aren’t	data;	they	represent	data.	For	example,	a	constant	definition
such	as

(define	x	3)

says	 that	x	always	stands	 for	3.	The	variables	 in	a	 function	header,	 that	 is,	 the
variables	that	follow	the	function	name,	are	placeholders	for	unknown	pieces	of
data,	the	inputs	of	the	function.	Mentioning	a	variable	in	the	function	body	is	the
way	to	use	these	pieces	of	data	when	the	function	is	applied	and	the	values	of	the
variables	become	known.

Consider	the	following	fragment	of	a	definition:

(define	(ff	a)	…)

Its	function	header	is	(ff	a),	meaning	ff	consumes	one	piece	of	input,	and	the
variable	 a	 is	 a	 placeholder	 for	 this	 input.	 Of	 course,	 at	 the	 time	 we	 define	 a
function,	we	 don’t	 know	what	 its	 input(s)	will	 be.	 Indeed,	 the	whole	 point	 of
defining	a	function	is	that	we	can	use	the	function	many	times	on	many	different
inputs.

Useful	 function	 bodies	 refer	 to	 the	 function	 parameters.	 A	 reference	 to	 a
function	parameter	is	really	a	reference	to	the	piece	of	data	that	is	the	input	to	the
function.	If	we	complete	the	definition	of	ff	like	this

(define	(ff	a)	
		(*	10	a))

we	are	saying	that	the	output	of	a	function	is	ten	times	its	input.	Presumably	this
function	 is	 going	 to	 be	 supplied	 with	 numbers	 as	 inputs	 because	 it	 makes	 no
sense	to	multiply	images	or	Boolean	values	or	strings	by	10.

For	 now,	 the	 only	 remaining	question	 is	 how	a	 function	obtains	 its	 inputs.
And	to	this	end,	we	turn	to	the	notion	of	applying	a	function.

Applications	A	function	application	puts	defined	functions	to	work,	and	it
looks	just	like	the	applications	of	a	pre-defined	operation:

•  write	“(”,

•  write	down	the	name	of	a	defined	function	f,

•  write	down	as	many	arguments	as	f	consumes,	separated	by	space,

•  and	add	“)”	at	the	end.

With	 this	bit	of	explanation,	you	can	now	experiment	with	functions	 in	 the
interactions	area	just	as	we	suggested	you	experiment	with	primitives	to	find	out
what	they	compute.	The	following	three	experiments,	for	example,	confirm	that
f	from	above	produces	the	same	value	no	matter	what	input	it	is	applied	to:

>	(f	1)	
1	
>	(f	"hello	world")	
1	

>	(f	#true)	
1

What	does	(f	(circle	3	"solid"	"red"))	yield?

Remember	to	add	(require	2htdp/image)	to	the	definitions	area.

See,	 even	 images	 as	 inputs	 don’t	 change	 f’s	 behavior.	 But	 here	 is	 what
happens	when	the	function	is	applied	to	too	few	or	too	many	arguments:

>	(f)	
f:expects	1	argument,	found	none	
>	(f	1	2	3	4	5)	
f:expects	only	1	argument,	found	5

DrRacket	 signals	 an	 error	 that	 is	 just	 like	 those	 you	 see	 when	 you	 apply	 a
primitive	to	the	wrong	number	of	arguments:

>	(+)	
+:expects	at	least	2	arguments,	found	none

Functions	don’t	 have	 to	be	 applied	 at	 the	prompt	 in	 the	 interactions	 area.	 It	 is
perfectly	 acceptable	 to	 use	 function	 applications	 nested	 within	 other	 function
applications:

>	(+	(ff	3)	2)	
32	
>	(*	(ff	4)	(+	(ff	3)	2))	
1280	
>	(ff	(ff	1))	
100

Exercise	11.	Define	a	function	that	consumes	two	numbers,	x	and	y,	and	that
computes	the	distance	of	point	(x,y)	to	the	origin.

In	exercise	1	you	developed	the	right-hand	side	of	this	function	for	concrete
values	of	x	and	y.	Now	add	a	header.	

Exercise	12.	Define	the	function	cvolume,	which	accepts	the	length	of	a	side

of	 an	 equilateral	 cube	 and	 computes	 its	 volume.	 If	 you	 have	 time,	 consider
defining	csurface,	too.

Hint	 An	 equilateral	 cube	 is	 a	 three-dimensional	 container	 bounded	 by	 six
squares.	You	can	determine	the	surface	of	a	cube	if	you	know	that	the	square’s
area	is	its	length	multiplied	by	itself.	Its	volume	is	the	length	multiplied	with	the
area	of	one	of	its	squares.	(Why?)	

Exercise	 13.	 Define	 the	 function	 string-first,	 which	 extracts	 the	 first
1String	from	a	non-empty	string.	

Exercise	 14.	 Define	 the	 function	 string-last,	 which	 extracts	 the	 last
1String	from	a	non-empty	string.	

Exercise	 15.	Define	==>.	 The	 function	 consumes	 two	Boolean	 values,	 call
them	sunny	and	friday.	Its	answer	is	#true	if	sunny	is	false	or	friday	is	true.
Note	Logicians	call	this	Boolean	operation	implication,	and	they	use	the	notation
sunny	=	>	friday	for	this	purpose.	

Exercise	 16.	Define	 the	 function	image-area,	which	counts	 the	number	of
pixels	in	a	given	image.	See	exercise	6	for	ideas.	

Exercise	 17.	 Define	 the	 function	 image-classify,	 which	 consumes	 an
image	and	conditionally	produces	"tall"	if	the	image	is	taller	than	wide,	"wide"
if	 it	 is	 wider	 than	 tall,	 or	 "square"	 if	 its	 width	 and	 height	 are	 the	 same.	 See
exercise	8	for	ideas.	

Exercise	18.	Define	the	function	string-join,	which	consumes	two	strings
and	appends	them	with	"_"	in	between.	See	exercise	2	for	ideas.	

Exercise	 19.	Define	 the	 function	string-insert,	which	consumes	a	 string
str	 plus	 a	 number	i	 and	 inserts	"_"	 at	 the	 ith	 position	of	str.	Assume	i	 is	 a
number	between	0	and	the	length	of	the	given	string	(inclusive).	See	exercise	3
for	ideas.	Ponder	how	string-insert	copes	with	"".	

Exercise	 20.	Define	 the	 function	string-delete,	which	consumes	a	 string
plus	 a	 number	i	 and	deletes	 the	 ith	 position	 from	str.	Assume	i	 is	 a	 number
between	0	(inclusive)	and	the	length	of	the	given	string	(exclusive).	See	exercise
4	for	ideas.	Can	string-delete	deal	with	empty	strings?	

2.2 Computing
Function	 definitions	 and	 applications	 work	 in	 tandem.	 If	 you	 want	 to	 design
programs,	you	must	understand	this	collaboration	because	you	need	to	imagine
how	DrRacket	 runs	 your	 programs	 and	 because	 you	 need	 to	 figure	 out	what
goes	wrong	when	things	go	wrong—and	they	will	go	wrong.

While	you	may	have	seen	this	idea	in	an	algebra	course,	we	prefer	to	explain
it	our	way.	So	here	we	go.	Evaluating	a	 function	application	proceeds	 in	 three
steps:	 DrRacket	 determines	 the	 values	 of	 the	 argument	 expressions;	 it	 checks
that	 the	 number	 of	 arguments	 and	 the	 number	 of	 function	 parameters	 are	 the
same;	 if	so,	DrRacket	computes	 the	value	of	 the	body	of	 the	 function,	with	all
parameters	replaced	by	the	corresponding	argument	values.	This	last	value	is	the
value	of	the	function	application.	This	is	a	mouthful,	so	we	need	examples.

Here	is	a	sample	calculation	for	f:

(f	(+	1	1))	
==	;	DrRacket	knows	that	(+	1	1)	==	2	
(f	2)	
==	;	DrRacket	replaced	all	occurrences	of	x	with	2	
1

That	last	equation	is	weird	because	x	does	not	occur	in	the	body	of	f.	Therefore,
replacing	the	occurrences	of	x	with	2	in	the	function	body	produces	1,	which	is
the	function	body	itself.

For	ff,	DrRacket	performs	a	different	kind	of	computation:

(ff	(+	1	1))	
==	;	DrRacket	again	knows	that	(+	1	1)	==	2	
(ff	2)	
==	;	DrRacket	replaces	a	with	2	in	ff's	body	
(*	10	2)	
==	;	and	from	here,	DrRacket	uses	plain	arithmetic	
20

The	 best	 point	 is	 that	 when	 you	 combine	 these	 laws	 of	 computation	 with
those	of	arithmetic,	you	can	pretty	much	predict	the	outcome	of	any	program	in

BSL:

(+	(ff	(+	1	2))	2)	
==	;	DrRacket	knows	that	(+	1	2)	==	3	
(+	(ff	3)	2)	
==	;	DrRacket	replaces	a	with	3	in	ff's	body	
(+	(*	10	3)	2)	
==	;	now	DrRacket	uses	the	laws	of	arithmetic	
(+	30	2)	
==	
32

Naturally,	we	can	reuse	the	result	of	this	computation	in	others:

(*	(ff	4)	(+	(ff	3)	2))	
==	;	DrRacket	substitutes	4	for	a	in	ff's	body	
(*	(*	10	4)	(+	(ff	3)	2))	
==	;	DrRacket	knows	that	(*	10	4)	==	40	
(*	40	(+	(ff	3)	2))	
==	;	now	it	uses	the	result	of	the	above	calculation	
(*	40	32)	
==	
1280	;	because	it	is	really	just	math

In	sum,	DrRacket	is	an	incredibly	fast	algebra	student;	it	knows	all	the	laws
of	 arithmetic	 and	 it	 is	 great	 at	 substitution.	Even	better,	DrRacket	 cannot	 only
determine	the	value	of	an	expression;	it	can	also	show	you	how	it	does	it.	That
is,	 it	 can	 show	you	 step-by-step	 how	 to	 solve	 these	 algebra	 problems	 that	 ask
you	to	determine	the	value	of	an	expression.

Take	 a	 second	 look	 at	 the	 buttons	 that	 come	with	DrRacket.	One	 of	 them
looks	like	an	“advance	to	next	track”	button	on	an	audio	player.	If	you	click	this
button,	the	stepper	window	pops	up	and	you	can	step	through	the	evaluation	of
the	program	in	the	definitions	area.

Enter	the	definition	of	ff	into	the	definitions	area.	Add	(ff	(+	1	1))	at	the
bottom.	Now	click	the	STEP.	The	stepper	window	will	show	up;	figure	11	shows
what	it	 looks	like	in	version	6.2	of	 the	software.	At	this	point,	you	can	use	the

forward	 and	 backward	 arrows	 to	 see	 all	 the	 computation	 steps	 that	 DrRacket
uses	 to	determine	 the	value	of	an	expression.	Watch	how	 the	stepper	performs
the	same	calculations	as	we	do.

Figure	11:	The	DrRacket	stepper

Stop!	 Yes,	 you	 could	 have	 used	 DrRacket	 to	 solve	 some	 of	 your	 algebra
homework.	Experiment	with	the	various	options	that	the	stepper	offers.

Exercise	21.	Use	DrRacket’s	stepper	to	evaluate	(ff	(ff	1))	step-by-step.
Also	 try	 (+	 (ff	 1)(ff	 1)).	 Does	 DrRacket’s	 stepper	 reuse	 the	 results	 of
computations?	

At	this	point,	you	might	think	that	you	are	back	in	an	algebra	course	with	all
these	computations	involving	uninteresting	functions	and	numbers.	Fortunately,
this	approach	generalizes	to	all	programs,	including	the	interesting	ones,	in	this
book.

Let’s	 start	 by	 looking	 at	 functions	 that	 process	 strings.	Recall	 some	 of	 the
laws	of	string	arithmetic:

(string-append	"hello"	"	"	"world")	==	"hello	world"	
(string-append	"bye"	",	"	"world")	==	"bye,	world"	
…

Now	suppose	we	define	a	function	that	creates	the	opening	of	a	letter:

(define	(opening	first-name	last-name)	
		(string-append	"Dear	"	first-name	","))

When	you	apply	this	function	to	two	strings,	you	get	a	letter	opening:

>	(opening	"Matthew"	"Fisler")	
"Dear	Matthew,"

More	 importantly,	 though,	 the	 laws	 of	 computing	 explain	 how	 DrRacket
determines	this	result	and	how	you	can	anticipate	what	DrRacket	does:

(opening	"Matthew"	"Fisler")	
==		;	DrRacket	substitutes	"Matthew"	for	first-name	
(string-append	"Dear	"	"Matthew"	",")	
==	
"Dear	Matthew,"

Since	last-name	does	not	occur	 in	 the	definition	of	opening,	 replacing	 it	with
"Fisler"	has	no	effect.

The	rest	of	the	book	introduces	more	forms	of	data.	To	explain	operations	on
data,	we	always	use	laws	like	those	of	arithmetic	in	this	book.

Eventually	you	will	encounter	imperative	operations,	which	do	not	combine	or	extract	values	but
modify	them.	To	calculate	with	such	operations,	you	will	need	to	add	some	laws	to	those	of	arithmetic
and	substitution.

Exercise	22.	Use	DrRacket’s	stepper	on	this	program	fragment:

(define	(distance-to-origin	x	y)	
		(sqrt	(+	(sqr	x)	(sqr	y))))	
(distance-to-origin	3	4)

Does	the	explanation	match	your	intuition?	
Exercise	 23.	 The	 first	 1String	 in	 "hello	 world"	 is	 "h".	 How	 does	 the

following	function	compute	this	result?

(define	(string-first	s)	
		(substring	s	0	1))

Use	the	stepper	to	confirm	your	ideas.	
Exercise	24.	Here	is	the	definition	of	==>:	y

(define	(==>	x	y)	
		(or	(not	x)	y))

Use	the	stepper	to	determine	the	value	of	(==>	#true	#false).	
Exercise	25.	Take	a	look	at	this	attempt	to	solve	exercise	17:

Does	stepping	through	an	application	suggest	a	fix?	
Exercise	26.	What	do	you	expect	as	the	value	of	this	program:

Confirm	your	expectation	with	DrRacket	and	its	stepper.	

2.3 Composing	Functions
A	program	 rarely	 consists	 of	 a	 single	 function	 definition.	 Typically,	 programs
consist	 of	 a	main	 definition	 and	 several	other	 functions	 and	 turns	 the	 result	 of
one	function	application	into	the	input	for	another.	In	analogy	to	algebra,	we	call
this	 way	 of	 defining	 functions	 composition,	 and	 we	 call	 these	 additional
functions	auxiliary	functions	or	helper	functions.

Consider	the	program	of	figure	12	for	filling	in	letter	templates.	It	consists	of
four	 functions.	 The	 first	 one	 is	 the	main	 function,	which	 produces	 a	 complete
letter	 from	 the	 first	 and	 last	 name	of	 the	 addressee	plus	 a	 signature.	The	main
function	 refers	 to	 three	 auxiliary	 functions	 to	 produce	 the	 three	 pieces	 of	 the
letter—the	 opening,	 body,	 and	 signature—and	 composes	 the	 results	 in	 the
correct	order	with	string-append.

Figure	12:	A	batch	program

Stop!	 Enter	 these	 definitions	 into	 DrRacket’s	 definitions	 area,	 click	RUN,
and	evaluate	these	expressions	in	the	interactions	area:

>	(letter	"Matthew"	"Fisler"	"Felleisen")
"Dear	Matthew,\n\n	We	have	discovered	that	…\n"
>	(letter	"Kathi"	"Felleisen"	"Findler")
"Dear	Kathi,\n\nWe	have	discovered	that	…\n"

Aside	The	result	is	a	long	string	that	contains	"\n",	which	represents	a	new
line	when	the	string	is	printed.	Now	Add	(require	2htdp/batch-io)	 to	your
program,	which	adds	the	function	write-file	to	its	repertoire;	it	allows	you	to
print	this	string	to	the	console:

>	(write-file	'stdout	(letter	"Matt"	"Fiss"	"Fell"))	
Dear	Matt,	

We	have	discovered	that	all	people	with	the	
last	name	Fiss	have	won	our	lottery.	So,	
Matt,	hurry	and	pick	up	your	prize.	

Sincerely,	

Fell	
'stdout

Think	of	'stdout	as	a	String	for	now.

Chapter	2.5	explains	such	batch	programs	in	some	depth.	End
In	general,	when	a	problem	refers	to	distinct	tasks	of	computation,	a	program

should	 consist	 of	 one	 function	 per	 task	 and	 a	 main	 function	 that	 puts	 it	 all
together.	We	formulate	this	idea	as	a	simple	slogan:

Define	one	function	per	task.

The	 advantage	 of	 following	 this	 slogan	 is	 that	 you	 get	 reasonably	 small
functions,	each	of	which	is	easy	to	comprehend	and	whose	composition	is	easy
to	 understand.	 Once	 you	 learn	 to	 design	 functions,	 you	 will	 recognize	 that
getting	small	functions	to	work	correctly	is	much	easier	than	doing	so	with	large
ones.	Better	yet,	 if	you	ever	need	to	change	a	part	of	 the	program	due	to	some

change	to	the	problem	statement,	it	tends	to	be	much	easier	to	find	the	relevant
parts	 when	 it	 is	 organized	 as	 a	 collection	 of	 small	 functions	 as	 opposed	 to	 a
large,	monolithic	block.

Here	is	a	small	illustration	of	this	point	with	a	sample	problem:

Sample	Problem	The	owner	of	a	monopolistic	movie	theater	in	a
small	 town	 has	 complete	 freedom	 in	 setting	 ticket	 prices.	 The
more	he	charges,	the	fewer	people	can	afford	tickets.	The	less	he
charges,	the	more	it	costs	to	run	a	show	because	attendance	goes
up.	 In	 a	 recent	 experiment	 the	 owner	 determined	 a	 relationship
between	the	price	of	a	ticket	and	average	attendance.
At	a	price	of	$5.00	per	 ticket,	120	people	attend	a	performance.
For	 each	 10-cent	 change	 in	 the	 ticket	 price,	 the	 average
attendance	 changes	 by	 15	 people.	 That	 is,	 if	 the	 owner	 charges
$5.10,	 some	105	people	attend	on	 the	average;	 if	 the	price	goes
down	 to	 $4.90,	 average	 attendance	 increases	 to	 135.	 Let’s
translate	this	idea	into	a	mathematical	formula:

Stop!	Explain	the	minus	sign	before	you	proceed.
Unfortunately,	 the	 increased	 attendance	 also	 comes	 at	 an
increased	cost.	Every	performance	comes	at	a	fixed	cost	of	$180
to	the	owner	plus	a	variable	cost	of	$0.04	per	attendee.
The	 owner	 would	 like	 to	 know	 the	 exact	 relationship	 between
profit	and	ticket	price	in	order	to	maximize	the	profit.

While	the	task	is	clear,	how	to	go	about	it	is	not.	All	we	can	say	at	this	point	is
that	several	quantities	depend	on	each	other.

When	 we	 are	 confronted	 with	 such	 a	 situation,	 it	 is	 best	 to	 tease	 out	 the
various	dependencies,	one	by	one:

1.	The	problem	statement	specifies	how	the	number	of	attendees	depends	on
the	ticket	price.	Computing	this	number	is	clearly	a	separate	task	and	thus
deserves	its	own	function	definition:

(define	(attendees	ticket-price)	

		(-	120	(*	(-	ticket-price	5.0)	(/	15	0.1))))

2.	The	revenue	 is	exclusively	generated	by	the	sale	of	tickets,	meaning	it	 is
exactly	the	product	of	ticket	price	and	number	of	attendees:

(define	(revenue	ticket-price)	

		(*	ticket-price	(attendees	ticket-price)))

3.	The	cost	consists	of	two	parts:	a	fixed	part	($180)	and	a	variable	part	that
depends	on	the	number	of	attendees.	Given	that	the	number	of	attendees	is
a	function	of	the	ticket	price,	a	function	for	computing	the	cost	of	a	show
must	 also	 consume	 the	 ticket	 price	 so	 that	 it	 can	 reuse	 the	 attendees
function:

(define	(cost	ticket-price)	

		(+	180	(*	0.04	(attendees	ticket-price))))

4.	Finally,	profit	is	the	difference	between	revenue	and	costs	for	some	given
ticket	price:

(define	(profit	ticket-price)	

		(-	(revenue	ticket-price)	

					(cost	ticket-price)))

The	 BSL	 definition	 of	 profit	 directly	 follows	 the	 suggestion	 of	 the
informal	problem	description.

These	four	functions	are	all	there	is	to	the	computation	of	the	profit,	and	we	can
now	use	the	profit	function	to	determine	a	good	ticket	price.

Exercise	27.	Our	solution	to	the	sample	problem	contains	several	constants
in	the	middle	of	functions.	As	“One	Program,	Many	Definitions”	already	points
out,	 it	 is	best	 to	give	names	to	such	constants	so	that	future	readers	understand
where	 these	 numbers	 come	 from.	 Collect	 all	 definitions	 in	 DrRacket’s
definitions	area	and	change	 them	so	 that	all	magic	numbers	are	 refactored	 into
constant	definitions.	

Exercise	28.	Determine	the	potential	profit	for	these	ticket	prices:	$1,	$2,	$3,
$4,	and	$5.	Which	price	maximizes	 the	profit	of	 the	movie	 theater?	Determine

the	best	ticket	price	to	a	dime.	
Here	is	an	alternative	version	of	the	same	program,	given	as	a	single	function

definition:

Enter	this	definition	into	DrRacket	and	ensure	that	it	produces	the	same	results
as	the	original	version	for	$1,	$2,	$3,	$4,	and	$5.	A	single	look	should	suffice	to
show	how	much	more	difficult	it	is	to	comprehend	this	one	function	compared	to
the	above	four.

Exercise	 29.	 After	 studying	 the	 costs	 of	 a	 show,	 the	 owner	 discovered
several	ways	of	lowering	the	cost.	As	a	result	of	these	improvements,	there	is	no
longer	a	fixed	cost;	a	variable	cost	of	$1.50	per	attendee	remains.

Modify	 both	 programs	 to	 reflect	 this	 change.	 When	 the	 programs	 are
modified,	 test	 them	again	with	 ticket	prices	of	$3,	$4,	and	$5	and	compare	 the
results.	

2.4 Global	Constants
As	the	Prologue	already	says,	functions	such	as	profit	benefit	from	the	use	of
global	 constants.	 Every	 programming	 language	 allows	 programmers	 to	 define
constants.	In	BSL,	such	a	definition	has	the	following	shape:

•  write	“(define”,

•  write	down	the	name,

•  followed	by	a	space	and	an	expression,	and

•  write	down	“)”.

The	 name	 of	 a	 constant	 is	 a	 global	 variable	 while	 the	 definition	 is	 called	 a
constant	 definition.	We	 tend	 to	 call	 the	 expression	 in	 a	 constant	 definition	 the
right-hand	side	of	the	definition.

Constant	definitions	introduce	names	for	all	forms	of	data:	numbers,	images,
strings,	and	so	on.	Here	are	some	simple	examples:

;	the	current	price	of	a	movie	ticket:

(define	CURRENT-PRICE	5)

;	useful	to	compute	the	area	of	a	disk:

(define	ALMOST-PI	3.14)

;	a	blank	line:

(define	NL	"\n")

;	an	empty	scene:

(define	MT	(empty-scene	100	100))

The	first	 two	are	numeric	constants,	 the	last	 two	are	a	string	and	an	image.	By
convention,	we	use	uppercase	letters	for	global	constants	because	it	ensures	that
no	 matter	 how	 large	 the	 program	 is,	 the	 readers	 of	 our	 programs	 can	 easily
distinguish	such	variables	from	others.

All	functions	in	a	program	may	refer	to	these	global	variables.	A	reference	to
a	variable	is	just	like	using	the	corresponding	constants.	The	advantage	of	using
variable	names	instead	of	constants	is	that	a	single	edit	of	a	constant	definition

affects	all	uses.	For	example,	we	may	wish	to	add	digits	to	ALMOST-PI	or	enlarge
an	empty	scene:

(define	ALMOST-PI	3.14159)

;	an	empty	scene:

(define	MT	(empty-scene	200	800))

Most	 of	 our	 sample	 definitions	 employ	 literal	 constants	 on	 the	 right-hand
side,	 but	 the	 last	 one	 uses	 an	 expression.	 And	 indeed,	 a	 programmer	 can	 use
arbitrary	 expressions	 to	 compute	 constants.	 Suppose	 a	 program	 needs	 to	 deal
with	an	image	of	some	size	and	its	center:

(define	WIDTH	100)

(define	HEIGHT	200)

(define	MID-WIDTH	(/	WIDTH	2))

(define	MID-HEIGHT	(/	HEIGHT	2))

It	can	use	 two	definitions	with	 literal	constants	on	 the	 right-hand	side	and	 two
computed	constants,	that	is,	variables	whose	values	are	not	just	literal	constants
but	the	results	of	computing	the	value	of	an	expression.

Again,	we	state	an	imperative	slogan:

For	every	constant	mentioned	in	a	problem	statement,	 introduce
one	constant	definition.

Exercise	 30.	 Define	 constants	 for	 the	 price	 optimization	 program	 at	 the
movie	theater	so	that	the	price	sensitivity	of	attendance	(15	people	for	every	10
cents)	becomes	a	computed	constant.	

2.5 Programs
You	are	ready	to	create	simple	programs.	From	a	coding	perspective,	a	program
is	 just	 a	 bunch	 of	 function	 and	 constant	 definitions.	 Usually	 one	 function	 is
singled	 out	 as	 the	 “main”	 function,	 and	 this	 main	 function	 tends	 to	 compose
others.	 From	 the	 perspective	 of	 launching	 a	 program,	 however,	 there	 are	 two
distinct	kinds:

•  a	batch	program	consumes	all	of	its	inputs	at	once	and	computes	its	result.
Its	 main	 function	 is	 the	 composition	 of	 auxiliary	 functions,	 which	 may
refer	to	additional	auxiliary	functions,	and	so	on.	When	we	launch	a	batch
program,	 the	 operating	 system	 calls	 the	main	 function	 on	 its	 inputs	 and
waits	for	the	program’s	output.

•  an	 interactive	program	 consumes	some	of	 its	 inputs,	computes,	produces
some	output,	consumes	more	 input,	and	so	on.	When	an	 input	shows	up,
we	speak	of	an	event,	and	we	create	interactive	programs	as	event-driven
programs.	 The	 main	 function	 of	 such	 an	 event-driven	 program	 uses	 an
expression	 to	describe	which	 functions	 to	call	 for	which	kinds	of	events.
These	functions	are	called	event	handlers.
When	we	launch	an	interactive	program,	the	main	function	informs	the
operating	system	of	this	description.	As	soon	as	input	events	happen,	the
operating	system	calls	the	matching	event	handler.	Similarly,	the	operating
system	knows	from	the	description	when	and	how	to	present	the	results	of
these	function	calls	as	output.

This	book	focuses	mostly	on	programs	that	interact	via	graphical	user	interfaces
(GUI);	 there	are	other	kinds	of	 interactive	programs,	and	you	will	get	 to	know
those	as	you	continue	to	study	computer	science.

Batch	Programs	As	mentioned,	a	batch	program	consumes	all	of	its	inputs
at	 once	 and	 computes	 the	 result	 from	 these	 inputs.	 Its	 main	 function	 expects
some	arguments,	hands	them	to	auxiliary	functions,	receives	results	from	those,
and	composes	these	results	into	its	own	final	answer.

Once	 programs	 are	 created,	we	want	 to	 use	 them.	 In	DrRacket,	we	 launch
batch	 programs	 in	 the	 interactions	 area	 so	 that	 we	 can	 watch	 the	 program	 at
work.

Programs	are	even	more	useful	if	they	can	retrieve	the	input	from	some	file
and	 deliver	 the	 output	 to	 some	 other	 file.	 Indeed,	 the	 name	 “batch	 program”
dates	to	the	early	days	of	computing	when	a	program	read	a	file	(or	several	files)
from	a	batch	of	punch	cards	and	placed	 the	 result	 in	 some	other	 file(s),	 also	a
batch	of	cards.	Conceptually,	a	batch	program	reads	the	input	file(s)	at	once	and
also	produces	the	result	file(s)	all	at	once.

We	 create	 such	 file-based	 batch	 programs	with	 the	 2htdp/batch-io	 library,
which	adds	two	functions	to	our	vocabulary	(among	others):

•  read-file,	which	reads	the	content	of	an	entire	file	as	a	string,	and

•  write-file,	which	creates	a	file	from	a	given	string.

These	functions	write	strings	to	files	and	read	strings	from	them:

>	(write-file	"sample.dat"	"212")

"sample.dat"

>	(read-file	"sample.dat")

"212"

Before	you	evaluate	these	expressions,	save	the	definitions	area	in	a	file.

After	the	first	interaction	the	file	named	"sample.dat"	contains

212

The	result	of	write-file	 is	an	acknowledgment	that	 it	has	placed	the	string	in
the	 file.	 If	 the	 file	 already	 exists,	 it	 replaces	 its	 content	with	 the	 given	 string;
otherwise,	 it	 creates	 a	 file	 and	makes	 the	 given	 string	 its	 content.	 The	 second
interaction,	 (read-file	 "sample.dat"),	 produces	 "212"	 because	 it	 turns	 the
content	of	"sample.dat"	into	a	String.

For	pragmatic	 reasons,	write-file	 also	accepts	'stdout,	 a	 special	kind	of
token,	 as	 the	 first	 argument.	 It	 then	 displays	 the	 resulting	 file	 content	 in	 the
current	interactions	area,	for	example:

>	(write-file	'stdout	"212\n")

212

'stdout

The	names	'stdout	and	'stdin	are	short	for	standard	output	device	and	standard	input	device,
respectively.

By	 analogy,	 read-file	 accepts	 'stdin	 in	 lieu	 of	 a	 file	 name	 and	 then	 reads
input	from	the	current	interactions	area.

Let’s	 illustrate	 the	 creation	 of	 a	 batch	 program	 with	 a	 simple	 example.
Suppose	we	wish	to	create	a	program	that	converts	a	temperature	measured	on	a
Fahrenheit	 thermometer	 into	 a	Celsius	 temperature.	Don’t	worry,	 this	 question
isn’t	a	test	about	your	physics	knowledge;	here	is	the	conversion	formula:

This	book	is	not	about	memorizing	facts,	but	we	do	expect	you	to	know	where	to	find	them.	Do	you
know	where	to	find	out	how	temperatures	are	converted?

Naturally,	in	this	formula	f	is	the	Fahrenheit	temperature	and	C	is	the	Celsius
temperature.	 While	 this	 formula	 might	 be	 good	 enough	 for	 a	 pre-algebra
textbook,	a	mathematician	or	a	programmer	would	write	C(f)	on	the	left	side	of
the	equation	to	remind	readers	that	f	is	a	given	value	and	C	is	computed	from	f.

Translating	this	formula	into	BSL	is	straightforward:

(define	(C	f)	

		(*	5/9	(-	f	32)))

Recall	that	5/9	is	a	number,	a	rational	fraction	to	be	precise,	and	that	C	depends
on	the	given	f,	which	is	what	the	function	notation	expresses.

Launching	this	batch	program	in	the	interactions	area	works	as	usual:

>	(C	32)	

0	

>	(C	212)	

100	

>	(C	-40)	

-40

But	 suppose	we	wish	 to	 use	 this	 function	 as	 part	 of	 a	 program	 that	 reads	 the
Fahrenheit	 temperature	 from	 a	 file,	 converts	 this	 number	 into	 a	 Celsius

temperature,	and	then	creates	another	file	that	contains	the	result.
Once	we	 have	 the	 conversion	 formula	 in	 BSL,	 creating	 the	main	 function

means	composing	C	with	existing	primitive	functions:

We	call	the	main	function	convert.	It	consumes	two	file	names:	in	for	the	file
where	 the	 Fahrenheit	 temperature	 is	 found	 and	 out	 for	 where	 we	 want	 the
Celsius	result.	A	composition	of	five	functions	computes	convert’s	result.	Let’s
step	through	convert’s	body	carefully:

1.	(read-file	in)	retrieves	the	content	of	the	named	file	as	a	string;

2.	string->number	turns	this	string	into	a	number;

3.	C	interprets	the	number	as	a	Fahrenheit	temperature	and	converts	it	into	a
Celsius	temperature;

4.	 number->string	 consumes	 this	 Celsius	 temperature	 and	 turns	 it	 into	 a
string;	and

5.	(write-file	out…)	places	this	string	into	the	file	named	out.

This	long	list	of	steps	might	look	overwhelming,	and	it	doesn’t	even	include	the
string-append	part.	Stop!	Explain

(string-append	…	"\n")

In	 contrast,	 the	 average	 function	 composition	 in	 a	 pre-algebra	 course
involves	 two	 functions,	 possibly	 three.	 Keep	 in	 mind,	 though,	 that	 programs
accomplish	a	real-world	purpose	while	exercises	in	algebra	merely	illustrate	the

idea	of	function	composition.
At	this	point,	we	can	experiment	with	convert.	To	start	with,	we	use	write-

file	to	create	an	input	file	for	convert:

>	(write-file	"sample.dat"	"212")	

"sample.dat"	

>	(convert	"sample.dat"	'stdout)	

100	

'stdout	

>	(convert	"sample.dat"	"out.dat")	

"out.dat"	

>	(read-file	"out.dat")	

"100"

You	can	also	create	"sample.dat"	with	a	file	editor.

For	 the	 first	 interaction,	 we	 use	 'stdout	 so	 that	 we	 can	 view	 what	 convert
outputs	in	DrRacket’s	interactions	area.	For	the	second	one,	convert	is	given	the
name	"out.dat".	As	expected,	 the	call	 to	convert	 returns	 this	string;	from	the
description	 of	 write-file	 we	 also	 know	 that	 it	 deposited	 a	 Fahrenheit
temperature	in	the	file.	Here	we	read	the	content	of	this	file	with	read-file,	but
you	could	also	view	it	with	a	text	editor.

In	addition	to	running	the	batch	program,	it	is	also	instructive	to	step	through
the	computation.	Make	sure	that	the	file	"sample.dat"	exists	and	contains	just	a
number,	 then	 click	 the	 STEP	 button	 in	 DrRacket.	 Doing	 so	 opens	 another
window	in	which	you	can	peruse	 the	computational	process	 that	 the	call	 to	 the
main	function	of	a	batch	program	triggers.	You	will	see	that	the	process	follows
the	above	outline.

Exercise	 31.	Recall	 the	letter	 program	 from	 chapter	 2.3.	Here	 is	 how	 to
launch	the	program	and	have	it	write	its	output	to	the	interactions	area:

>	(write-file

			'stdout

			(letter	"Matthew"	"Fisler"	"Felleisen"))

Dear	Matthew,

We	have	discovered	that	all	people	with	the

last	name	Fisler	have	won	our	lottery.	So,

Matthew,	hurry	and	pick	up	your	prize.

Sincerely,

Felleisen

'stdout

Of	course,	programs	are	useful	because	you	can	launch	them	for	many	different
inputs.	Run	letter	on	three	inputs	of	your	choice.

Here	is	a	letter-writing	batch	program	that	reads	names	from	three	files	and
writes	a	letter	to	one:

The	 function	consumes	 four	strings:	 the	 first	 three	are	 the	names	of	 input	 files
and	the	last	one	serves	as	an	output	file.	It	uses	the	first	three	to	read	one	string
each	 from	 the	 three	named	 files,	hands	 these	 strings	 to	letter,	 and	eventually
writes	 the	 result	 of	 this	 function	 call	 into	 the	 file	 named	 by	 out,	 the	 fourth
argument	to	main.

Create	 appropriate	 files,	 launch	 main,	 and	 check	 whether	 it	 delivers	 the
expected	letter	in	a	given	file.	

Interactive	 Programs	 Batch	 programs	 are	 a	 staple	 of	 business	 uses	 of
computers,	 but	 the	programs	people	 encounter	now	are	 interactive.	 In	 this	 day
and	age,	people	mostly	interact	with	desktop	applications	via	a	keyboard	and	a
mouse.	Furthermore,	 interactive	programs	can	also	react	to	computer-generated
events,	 for	 example,	 clock	 ticks	 or	 the	 arrival	 of	 a	 message	 from	 some	 other
computer.

Exercise	 32.	 Most	 people	 no	 longer	 use	 desktop	 computers	 just	 to	 run
applications	 but	 also	 employ	 cell	 phones,	 tablets,	 and	 their	 cars’	 information
control	 screen.	 Soon	 people	 will	 use	 wearable	 computers	 in	 the	 form	 of
intelligent	glasses,	clothes,	and	sports	gear.	In	the	somewhat	more	distant	future,
people	may	 come	with	 built-in	 bio	 computers	 that	 directly	 interact	 with	 body
functions.	Think	of	 ten	 different	 forms	of	 events	 that	 software	 applications	 on
such	computers	will	have	to	deal	with.	

The	 purpose	 of	 this	 section	 is	 to	 introduce	 the	 mechanics	 of	 writing
interactive	BSL	programs.	Because	many	of	 the	project-style	examples	 in	 this
book	are	interactive	programs,	we	introduce	the	ideas	slowly	and	carefully.	You
may	 wish	 to	 return	 to	 this	 section	 when	 you	 tackle	 some	 of	 the	 interactive
programming	 projects;	 a	 second	 or	 third	 reading	 may	 clarify	 some	 of	 the
advanced	aspects	of	the	mechanics.

By	itself,	a	raw	computer	is	a	useless	piece	of	physical	equipment.	It	is	called
hardware	 because	 you	 can	 touch	 it.	 This	 equipment	 becomes	 useful	 once	 you
install	software,	that	is,	a	suite	of	programs.	Usually	the	first	piece	of	software	to
be	installed	on	a	computer	is	an	operating	system.	It	has	the	task	of	managing	the
computer	 for	 you,	 including	 connected	 devices	 such	 as	 the	 monitor,	 the
keyboard,	the	mouse,	the	speakers,	and	so	on.	The	way	it	works	is	that	when	a
user	 presses	 a	 key	 on	 the	 keyboard,	 the	 operating	 system	 runs	 a	 function	 that
processes	keystrokes.	We	say	that	the	keystroke	is	a	key	event,	and	the	function
is	an	event	handler.	In	the	same	vein,	the	operating	system	runs	an	event	handler
for	clock	ticks,	for	mouse	actions,	and	so	on.	Conversely,	after	an	event	handler
is	done	with	its	work,	the	operating	system	may	have	to	change	the	image	on	the
screen,	ring	a	bell,	print	a	document,	or	perform	a	similar	action.	To	accomplish
these	tasks,	it	also	runs	functions	that	translate	the	operating	system’s	data	into
sounds,	images,	actions	on	the	printer,	and	so	on.

Naturally,	 different	 programs	 have	 different	 needs.	 One	 program	 may
interpret	keystrokes	as	signals	to	control	a	nuclear	reactor;	another	passes	them
to	 a	 word	 processor.	 To	 make	 a	 general-purpose	 computer	 work	 on	 these
radically	different	tasks,	different	programs	install	different	event	handlers.	That
is,	a	rocket-launching	program	uses	one	kind	of	function	to	deal	with	clock	ticks
while	an	oven’s	software	uses	a	different	kind.

Designing	an	interactive	program	requires	a	way	to	designate	some	function
as	the	one	that	takes	care	of	keyboard	events,	another	function	for	dealing	with
clock	ticks,	a	third	one	for	presenting	some	data	as	an	image,	and	so	forth.	It	is
the	 task	 of	 an	 interactive	 program’s	 main	 function	 to	 communicate	 these
designations	to	the	operating	system,	that	is,	the	software	platform	on	which	the
program	is	launched.

DrRacket	 is	 a	 small	 operating	 system,	 and	BSL	 is	 one	of	 its	 programming
languages.	 The	 latter	 comes	 with	 the	 2htdp/universe	 library,	 which	 provides
big-bang,	 a	mechanism	 for	 telling	 the	 operating	 system	which	 function	 deals
with	which	event.	In	addition,	big-bang	keeps	track	of	the	state	of	the	program.

To	 this	 end,	 it	 comes	with	 one	 required	 sub-expression,	whose	value	becomes
the	 initial	 state	 of	 the	 program.	 Otherwise	 big-bang	 consists	 of	 one	 required
clause	 and	many	optional	 clauses.	The	 required	to-draw	 clause	 tells	DrRacket
how	 to	 render	 the	 state	 of	 the	 program,	 including	 the	 initial	 one.	 Each	 of	 the
other,	 optional	 clauses	 tells	 the	 operating	 system	 that	 a	 certain	 function	 takes
care	of	a	certain	event.	Taking	care	of	an	event	in	BSL	means	that	the	function
consumes	 the	 state	 of	 the	 program	 and	 a	 description	 of	 the	 event,	 and	 that	 it
produces	the	next	state	of	the	program.	We	therefore	speak	of	the	current	state
of	the	program.

Terminology	 In	 a	 sense,	 a	 big-bang	 expression	 describes	 how	 a	 program
connects	with	a	small	segment	of	the	world.	This	world	might	be	a	game	that	the
program’s	users	play,	an	animation	that	the	user	watches,	or	a	text	editor	that	the
user	 employs	 to	 manipulate	 some	 notes.	 Programming	 language	 researchers
therefore	 often	 say	 that	 big-bang	 is	 a	 description	 of	 a	 small	 world:	 its	 initial
state,	 how	 states	 are	 transformed,	 how	 states	 are	 rendered,	 and	 how	big-bang
may	determine	other	attributes	of	the	current	state.	In	this	spirit,	we	also	speak	of
the	state	of	the	world	and	even	call	big-bang	programs	world	programs.	End

Let’s	study	this	idea	step-by-step,	starting	with	this	definition:

(define	(number->square	s)

		(square	s	"solid"	"red"))

The	function	consumes	a	positive	number	and	produces	a	solid	red	square	of	that
size.	After	clicking	RUN,	experiment	with	the	function,	like	this:

It	behaves	like	a	batch	program,	consuming	a	number	and	producing	an	image,
which	DrRacket	renders	for	you.

Now	try	the	following	big-bang	expression	in	the	interactions	area:

>	(big-bang	100	[to-draw	number->square])

A	separate	window	appears,	and	it	displays	a	100	×	100	red	square.	In	addition,
the	DrRacket	 interactions	 area	 does	 not	 display	 another	 prompt;	 it	 is	 as	 if	 the
program	keeps	running,	and	this	 is	 indeed	the	case.	To	stop	 the	program,	click
on	DrRacket’s	STOP	button	or	the	window’s	CLOSE	button:

>	(big-bang	100	[to-draw	number->square])

100

When	 DrRacket	 stops	 the	 evaluation	 of	 a	 big-bang	 expression,	 it	 returns	 the
current	state,	which	in	this	case	is	just	the	initial	state:	100.

Here	is	a	more	interesting	big-bang	expression:

>	(big-bang	100

				[to-draw	number->square]

				[on-tick	sub1]

				[stop-when	zero?])

This	big-bang	expression	adds	two	optional	clauses	to	the	previous	one:	the	on-
tick	 clause	 tells	 DrRacket	 how	 to	 deal	 with	 clock	 ticks	 and	 the	 stop-when
clause	says	when	to	stop	the	program.	We	read	it	as	follows,	starting	with	100	as
the	initial	state:

1.	every	time	the	clock	ticks,	subtract	1	from	the	current	state;

2.	then	check	whether	zero?	is	true	of	the	new	state	and	if	so,	stop;	and

3.	every	time	an	event	handler	returns	a	value,	use	number->square	to	render
it	as	an	image.

Now	hit	 the	“return”	key	and	observe	what	happens.	Eventually	 the	evaluation
of	the	expressions	terminates	and	DrRacket	displays	0.

The	big-bang	expression	keeps	track	of	the	current	state.	Initially	this	state
is	100.	Every	time	the	clock	ticks,	it	calls	the	clock-tick	handler	and	gets	a	new
state.	Hence,	the	state	of	big-bang	changes	as	follows:

100,	99,	98,…,	2,	1,	0

When	the	state’s	value	becomes	0,	the	evaluation	is	done.	For	every	other	state
—from	 100	 to	 1—big-bang	 translates	 the	 state	 into	 an	 image,	 using	 number-
>square	 as	 the	 to-draw	 clause	 tells	 it	 to.	 Hence,	 the	 window	 displays	 a	 red
square	that	shrinks	from	100	×	100	pixels	to	1	×	1	pixel	over	100	clock	ticks.

Let’s	add	a	clause	for	dealing	with	key	events.	First,	we	need	a	function	that
consumes	 the	 current	 state	 and	 a	 string	 that	 describes	 the	 key	 event	 and	 then
returns	a	new	state:

(define	(reset	s	ke)

		100)

This	 function	 throws	 away	 its	 arguments	 and	 returns	 100,	 which	 is	 the	 initial
state	of	the	big-bang	expression	we	wish	to	modify.	Second,	we	add	an	on-key
clause	to	the	big-bang	expression:

>	(big-bang	100

				[to-draw	number->square]

				[on-tick	sub1]

				[stop-when	zero?]

				[on-key	reset])

Stop!	Explain	what	happens	when	you	hit	“return”,	count	to	10,	and	finally	press
"a".

What	you	will	see	is	that	the	red	square	shrinks	at	the	rate	of	one	pixel	per
clock	tick.	As	soon	as	you	press	the	"a"	key,	though,	the	red	square	reinflates	to
full	size	because	reset	is	called	on	the	current	length	of	the	square	and	"a"	and
returns	100.	 This	 number	 becomes	big-bang’s	 new	 state	 and	number->square
renders	it	as	a	full-sized	red	square.

In	 order	 to	 understand	 the	 evaluation	 of	 big-bang	 expressions	 in	 general,
let’s	look	at	a	schematic	version:

(big-bang	cw0

		[on-tick	tock]

		[on-key	ke-h]

		[on-mouse	me-h]

		[to-draw	render]

		[stop-when	end?]

		…)

This	big-bang	expression	specifies	three	event	handlers—tock,	ke-h,	and	me-h
—and	a	stop-when	clause.

The	evaluation	of	this	big-bang	expression	starts	with	cw0,	which	is	usually
an	expression.	DrRacket,	our	operating	system,	 installs	 the	value	of	cw0	 as	 the
current	state.	It	uses	render	to	translate	the	current	state	into	an	image,	which	is
then	 displayed	 in	 a	 separate	window.	 Indeed,	 render	 is	 the	 only	means	 for	 a
big-bang	expression	to	present	data	to	the	world.

Here	is	how	events	are	processed:

•  Every	 time	 the	 clock	 ticks,	DrRacket	 applies	tock	 to	big-bang’s	 current
state	and	receives	a	value	in	response;	big-bang	treats	this	return	value	as
the	next	current	state.

•  Every	time	a	key	is	pressed,	DrRacket	applies	ke-h	to	big-bang’s	current
state	and	a	string	that	represents	the	key;	for	example,	pressing	the	“a”	key
is	 represented	with	"a"	 and	 the	 left	 arrow	key	with	"left".	When	ke-h
returns	a	value,	big-bang	treats	it	as	the	next	current	state.

•  Every	 time	 a	 mouse	 enters	 the	 window,	 leaves	 it,	 moves,	 or	 is	 clicked,
DrRacket	 applies	 me-h	 to	 big-bang’s	 current	 state,	 the	 event’s	 x-and	 y-
coordinates,	 and	 a	 string	 that	 represents	 the	 kind	 of	 mouse	 event	 that
happened;	 for	 example,	 clicking	 a	 mouse’s	 button	 is	 represented	 with
"button-down".	When	me-h	returns	a	value,	big-bang	treats	it	as	the	next
current	state.

All	events	are	processed	in	order;	if	two	events	seem	to	happen	at	the	same	time,
DrRacket	acts	as	a	tie-breaker	and	arranges	them	in	some	order.

After	an	event	 is	processed,	big-bang	uses	both	end?	and	render	 to	check
the	current	state:

•  (end?	cw)	produces	a	Boolean	value.	 If	 it	 is	##true,	big-bang	stops	 the
computation	immediately.	Otherwise	it	proceeds.

•  (render	cw)	is	expected	to	produce	an	image	and	big-bang	displays	this
image	in	a	separate	window.

The	table	in	figure	13	concisely	summarizes	this	process.	In	the	first	row,	it

lists	 names	 for	 the	 current	 states.	 The	 second	 row	 enumerates	 names	 for	 the
events	that	DrRacket	encounters:	e0,	e1,	and	so	on.	Each	ei	might	be	a	clock	tick,
a	key	press,	or	a	mouse	event.	The	next	three	rows	specify	the	result	of	dealing
with	the	event:

•  If	e0	is	a	clock	tick,	big-bang	evaluates	(tock	cw0)	to	produce	cw1.

•  If	e0	is	a	key	event,	(ke-h	cw0	e0)	is	evaluated	and	yields	cw1.	The	handler
must	be	applied	to	the	event	itself	because,	in	general,	programs	are	going
to	react	to	each	key	differently.

•  If	e0	is	a	mouse	event,	big-bang	runs	(me-h	cw0	e0	…)	to	get	cw1.	The	call	is
a	sketch	because	a	mouse	event	e0	is	really	associated	with	several	pieces
of	data—its	nature	and	its	coordinates—and	we	just	wish	 to	 indicate	 that
much.

•  Finally,	render	turns	the	current	state	into	an	image,	which	is	indicated	by
the	last	row.	DrRacket	displays	these	images	in	the	separate	window.

Figure	13:	How	big-bang	works

The	column	below	cw1	shows	how	cw2	is	generated,	depending	on	what	kind	of
event	e1	takes	place.

Let’s	 interpret	 this	 table	 with	 the	 specific	 sequence	 of	 events:	 the	 user
presses	the	“a”	key,	then	the	clock	ticks,	and	finally	the	user	clicks	the	mouse	to
trigger	a	“button	down”	event	at	position	(90,100).	Then,	in	Racket	notation,

1.	cw1	is	the	result	of	(ke-h	cw0	"a");

2.	cw2	is	the	result	of	(tock	cw1);	and

3.	cw3	is	the	result	of	(me-h	cw2	90	100	"button-down").

We	can	actually	express	these	three	steps	as	a	sequence	of	three	definitions:

(define	cw1	(ke-h	cw0	"a"))

(define	cw2	(tock	cw1))

(define	cw3	(me-h	cw2	"button-down"	90	100))

Stop!	How	does	big-bang	display	each	of	these	three	states?
Now	let’s	consider	a	sequence	of	three	clock	ticks.	In	that	case,

1.	cw1	is	the	result	of	(tock	cw0);

2.	cw2	is	the	result	of	(tock	cw1);	and

3.	cw3	is	the	result	of	(tock	cw2).

Or,	reformulated	in	BSL:

(define	cw1	(tock	cw0))

(define	cw2	(tock	cw1))

(define	cw3	(tock	cw2))

Indeed,	we	can	also	determine	cw3	via	a	single	expression:

(tock	(tock	(tock	cw0)))

This	determines	 the	state	 that	big-bang	computes	after	 three	clock	 ticks.	Stop!
Reformulate	the	first	sequence	of	events	as	an	expression.

In	 short,	 the	 sequence	 of	 events	 determines	 in	 which	 order	 big-bang
conceptually	traverses	the	above	table	of	possible	states	 to	arrive	at	 the	current
state	for	each	time	slot.	Of	course,	big-bang	does	not	touch	the	current	state;	it
merely	 safeguards	 it	 and	 passes	 it	 to	 event	 handlers	 and	 other	 functions	when
needed.

From	 here,	 it	 is	 straightforward	 to	 define	 a	 first	 interactive	 program.	 See
figure	 14.	 The	 program	 consists	 of	 two	 constant	 definitions	 followed	 by	 three
function	 definitions:	 main,	 which	 launches	 a	 big-bang	 interactive	 program;
place-dot-at,	which	translates	the	current	state	into	an	image;	and	stop,	which
throws	away	its	inputs	and	produces	0.

Figure	14:	A	first	interactive	program

After	clicking	RUN,	we	can	ask	DrRacket	 to	evaluate	applications	of	 these
handler	functions.	This	is	one	way	to	confirm	their	workings:

Stop!	Try	now	to	understand	how	main	reacts	when	you	press	a	key.
One	way	to	find	out	whether	your	conjecture	is	correct	is	to	launch	the	main

function	on	some	reasonable	number:

>	(main	90)

Relax.
By	now,	you	may	feel	that	these	first	two	chapters	are	overwhelming.	They

introduce	 many	 new	 concepts,	 including	 a	 new	 language,	 its	 vocabulary,	 its
meaning,	its	idioms,	a	tool	for	writing	down	texts	in	this	vocabulary,	and	a	way

of	 running	 these	 programs.	 Confronted	 with	 this	 plethora	 of	 ideas,	 you	 may
wonder	how	one	 creates	 a	 program	when	presented	with	 a	 problem	 statement.
To	answer	this	central	question,	the	next	chapter	takes	a	step	back	and	explicitly
addresses	 the	 systematic	 design	 of	 programs.	 So	 take	 a	 breather	 and	 continue
when	ready.

3 How	to	Design	Programs
The	first	few	chapters	of	this	book	show	that	learning	to	program	requires	some
mastery	of	many	concepts.	On	the	one	hand,	programming	needs	a	language,	a
notation	 for	 communicating	 what	 we	 wish	 to	 compute.	 The	 languages	 for
formulating	 programs	 are	 artificial	 constructions,	 though	 acquiring	 a
programming	language	shares	some	elements	with	acquiring	a	natural	language.
Both	come	with	vocabulary,	grammar,	and	an	understanding	of	what	“phrases”
mean.
On	the	other	hand,	it	is	critical	to	learn	how	to	get	from	a	problem	statement	to	a
program.	We	need	 to	determine	what	 is	 relevant	 in	 the	problem	statement	 and
what	can	be	ignored.	We	need	to	tease	out	what	the	program	consumes,	what	it
produces,	 and	 how	 it	 relates	 inputs	 to	 outputs.	We	 have	 to	 know,	 or	 find	 out,
whether	the	chosen	language	and	its	libraries	provide	certain	basic	operations	for
the	 data	 that	 our	 program	 is	 to	 process.	 If	 not,	 we	 might	 have	 to	 develop
auxiliary	 functions	 that	 implement	 these	 operations.	 Finally,	 once	 we	 have	 a
program,	we	must	check	whether	it	actually	performs	the	intended	computation.
And	this	might	reveal	all	kinds	of	errors,	which	we	need	to	be	able	to	understand
and	fix.

All	 this	 sounds	 rather	 complex,	 and	 you	might	wonder	why	we	 don’t	 just
muddle	 our	 way	 through,	 experimenting	 here	 and	 there,	 leaving	 well	 enough
alone	when	the	results	look	decent.	This	approach	to	programming,	often	dubbed
“garage	programming,”	is	common	and	succeeds	on	many	occasions;	sometimes
it	is	the	launching	pad	for	a	start-up	company.	Nevertheless,	the	start-up	cannot
sell	the	results	of	the	“garage	effort”	because	only	the	original	programmers	and
their	friends	can	use	them.

A	good	program	comes	with	a	short	write-up	that	explains	what	it	does,	what
inputs	 it	 expects,	 and	 what	 it	 produces.	 Ideally,	 it	 also	 comes	 with	 some
assurance	 that	 it	 actually	 works.	 In	 the	 best	 circumstances,	 the	 program’s
connection	 to	 the	 problem	 statement	 is	 evident	 so	 that	 a	 small	 change	 to	 the
problem	 statement	 is	 easy	 to	 translate	 into	 a	 small	 change	 to	 the	 program.
Software	engineers	call	this	a	“programming	product.”

All	this	extra	work	is	necessary	because	programmers	don’t	create	programs
for	themselves.	Programmers	write	programs	for	other	programmers	to	read,	and
on	 occasion,	 people	 run	 these	 programs	 to	 get	work	 done.	Most	 programs	 are

large,	complex	collections	of	collaborating	functions,	and	nobody	can	write	all
these	functions	in	a	day.	Programmers	join	projects,	write	code,	 leave	projects;
others	take	over	their	programs	and	work	on	them.	Another	difficulty	is	that	the
programmer’s	clients	tend	to	change	their	mind	about	what	problem	they	really
want	solved.	They	usually	have	it	almost	right,	but	more	often	than	not,	they	get
some	 details	 wrong.	 Worse,	 complex	 logical	 constructions	 such	 as	 programs
almost	always	suffer	from	human	errors;	in	short,	programmers	make	mistakes.
Eventually	 someone	 discovers	 these	 errors	 and	 programmers	 must	 fix	 them.
They	need	to	reread	the	programs	from	a	month	ago,	a	year	ago,	or	twenty	years
ago	and	change	them.

The	word	“other”	also	includes	older	versions	of	the	programmer	who	usually	cannot	recall	all	the
thinking	that	the	younger	version	put	into	the	production	of	the	program.

Exercise	33.	Research	the	“year	2000”	problem.	
Here	we	present	a	design	recipe	that	integrates	a	step-by-step	process	with	a

way	of	organizing	programs	around	problem	data.	For	the	readers	who	don’t	like
to	stare	at	blank	screens	for	a	long	time,	this	design	recipe	offers	a	way	to	make
progress	 in	 a	 systematic	manner.	 For	 those	 of	 you	who	 teach	 others	 to	 design
programs,	the	recipe	is	a	device	for	diagnosing	a	novice’s	difficulties.	For	others,
our	recipe	might	be	something	that	they	can	apply	to	other	areas—say,	medicine,
journalism,	or	engineering.	For	those	who	wish	to	become	real	programmers,	the
design	recipe	also	offers	a	way	to	understand	and	work	on	existing	programs—
though	not	all	programmers	use	a	method	like	this	design	recipe	to	come	up	with
programs.	The	 rest	 of	 this	 chapter	 is	 dedicated	 to	 the	 first	 baby	 steps	 into	 the
world	of	 the	design	 recipe;	 the	 following	chapters	and	parts	 refine	and	expand
the	recipe	in	one	way	or	another.

3.1 Designing	Functions
Information	and	Data	The	purpose	of	a	program	is	to	describe	a	computational
process	that	consumes	some	information	and	produces	new	information.	In	this
sense,	 a	 program	 is	 like	 the	 instructions	 a	mathematics	 teacher	 gives	 to	 grade
school	 students.	 Unlike	 a	 student,	 however,	 a	 program	works	 with	more	 than
numbers:	it	calculates	with	navigation	information,	looks	up	a	person’s	address,
turns	 on	 switches,	 or	 inspects	 the	 state	 of	 a	 video	 game.	 All	 this	 information
comes	 from	a	part	of	 the	 real	world—often	called	 the	program’s	domain—and
the	 results	 of	 a	 program’s	 computation	 represent	 more	 information	 in	 this
domain.

Information	plays	a	central	 role	 in	our	description.	Think	of	 information	as
facts	 about	 the	 program’s	 domain.	 For	 a	 program	 that	 deals	 with	 a	 furniture
catalog,	 a	 “table	with	 five	 legs”	 or	 a	 “square	 table	 of	 two	by	 two	meters”	 are
pieces	of	 information.	A	game	program	deals	with	a	different	kind	of	domain,
where	“five”	might	refer	to	the	number	of	pixels	per	clock	tick	that	some	object
travels	on	its	way	from	one	part	of	the	canvas	to	another.	Or,	a	payroll	program
is	likely	to	deal	with	“five	deductions.”

For	a	program	to	process	information,	it	must	turn	it	into	some	form	of	data
in	the	programming	language;	then	it	processes	the	data;	and	once	it	is	finished,
it	 turns	 the	 resulting	 data	 into	 information	 again.	An	 interactive	 program	may
even	 intermingle	 these	 steps,	 acquiring	 more	 information	 from	 the	 world	 as
needed	and	delivering	information	in	between.

We	 use	 BSL	 and	 DrRacket	 so	 that	 you	 do	 not	 have	 to	 worry	 about	 the
translation	of	information	into	data.	In	DrRacket’s	BSL	you	can	apply	a	function
directly	to	data	and	observe	what	it	produces.	As	a	result,	we	avoid	the	serious
chicken-and-egg	problem	of	writing	functions	that	convert	information	into	data
and	vice	versa.	For	simple	kinds	of	information,	designing	such	program	pieces
is	 trivial;	 for	 anything	other	 than	 simple	 information,	 you	need	 to	know	about
parsing,	for	example,	and	that	immediately	requires	a	lot	of	expertise	in	program
design.

Software	engineers	use	the	slogan	model-view-controller	(MVC)	for	the	way
BSL	and	DrRacket	separate	data	processing	from	parsing	information	into	data
and	turning	data	into	information.	Indeed,	it	is	now	accepted	wisdom	that	well-
engineered	 software	 systems	 enforce	 this	 separation,	 even	 though	 most

introductory	books	still	comingle	them.	Thus,	working	with	BSL	and	DrRacket
allows	you	to	focus	on	the	design	of	the	core	of	programs,	and,	when	you	have
enough	 experience	 with	 that,	 you	 can	 learn	 to	 design	 the	 information-data
translation	parts.

Here	 we	 use	 two	 preinstalled	 teachpacks	 to	 demonstrate	 the	 separation	 of
data	and	 information:	2htdp/batch-io	 and	2htdp/universe.	Starting	with	 this
chapter,	we	develop	design	recipes	for	batch	and	 interactive	programs	to	give
you	an	idea	of	how	complete	programs	are	designed.	Do	keep	in	mind	that	the
libraries	 of	 full-fledged	 programming	 languages	 offer	many	more	 contexts	 for
complete	 programs,	 and	 that	 you	 will	 need	 to	 adapt	 the	 design	 recipes
appropriately.

Given	 the	 central	 role	 of	 information	 and	 data,	 program	 design	must	 start
with	 the	 connection	 between	 them.	 Specifically,	 we,	 the	 programmers,	 must
decide	how	 to	use	our	chosen	programming	 language	 to	represent	 the	 relevant
pieces	of	information	as	data	and	how	we	should	interpret	data	as	information.
Figure	15	explains	this	idea	with	an	abstract	diagram.

Figure	15:	From	information	to	data,	and	back

To	make	this	idea	concrete,	let’s	work	through	some	examples.	Suppose	you
are	designing	a	program	that	consumes	and	produces	information	in	the	form	of
numbers.	 While	 choosing	 a	 representation	 is	 easy,	 an	 interpretation	 requires
explaining	what	a	number	such	as	42	denotes	in	the	domain:

•  42	may	refer	to	the	number	of	pixels	from	the	top	margin	in	the	domain	of
images;

•  42	 may	 denote	 the	 number	 of	 pixels	 per	 clock	 tick	 that	 a	 simulation	 or
game	object	moves;

•  42	may	mean	a	temperature,	on	the	Fahrenheit,	Celsius,	or	Kelvin	scale	for
the	domain	of	physics;

•  42	may	 specify	 the	 size	of	 some	 table	 if	 the	domain	of	 the	program	 is	 a
furniture	catalog;	or

•  42	could	just	count	the	number	of	characters	in	a	string.

The	key	is	to	know	how	to	go	from	numbers	as	information	to	numbers	as	data
and	vice	versa.

Since	 this	knowledge	 is	 so	 important	 for	everyone	who	 reads	 the	program,
we	often	write	it	down	in	the	form	of	comments,	which	we	call	data	definitions.
A	 data	 definition	 serves	 two	 purposes.	 First,	 it	 names	 a	 collection	 of	 data—a
class—using	 a	 meaningful	 word.	 Second,	 it	 informs	 readers	 how	 to	 create
elements	of	 this	 class	 and	how	 to	decide	whether	 some	arbitrary	piece	of	data
belongs	to	the	collection.

Computing	scientists	use	“class”	to	mean	something	like	a	“mathematical	set.”

Here	is	a	data	definition	for	one	of	the	above	examples:

;	A	Temperature	is	a	Number.	

;	interpretation	represents	Celsius	degrees

The	first	line	introduces	the	name	of	the	data	collection,	Temperature,	and	tells
us	that	the	class	consists	of	all	Numbers.	So,	for	example,	if	we	ask	whether	102
is	 a	 temperature,	you	can	 respond	with	“yes”	because	102	 is	 a	number	and	all
numbers	are	temperatures.	Similarly,	if	we	ask	whether	"cold"	is	a	Temperature,
you	will	say	“no”	because	no	string	belongs	 to	Temperature.	And,	 if	we	asked
you	to	make	up	a	sample	Temperature,	you	might	come	up	with	something	like
−400.

If	you	happen	to	know	that	the	lowest	possible	temperature	is	approximately
−274°	C,	you	may	wonder	whether	it	is	possible	to	express	this	knowledge	in	a

data	definition.	Since	our	data	definitions	are	really	just	English	descriptions	of
classes,	 you	 may	 indeed	 define	 the	 class	 of	 temperatures	 in	 a	 much	 more
accurate	 manner	 than	 shown	 here.	 In	 this	 book,	 we	 use	 a	 stylized	 form	 of
English	 for	 such	data	 definitions,	 and	 the	next	 chapter	 introduces	 the	 style	 for
imposing	constraints	such	as	“larger	than	−274.”

So	 far,	 you	 have	 encountered	 the	 names	 of	 four	 classes	 of	 data:	 Number,
String,	Image,	and	Boolean.	With	that,	formulating	a	new	data	definition	means
nothing	more	 than	 introducing	 a	 new	 name	 for	 an	 existing	 form	 of	 data,	 say,
“temperature”	 for	 numbers.	 Even	 this	 limited	 knowledge,	 though,	 suffices	 to
explain	the	outline	of	our	design	process.

At	this	point,	you	may	wish	to	reread	the	section	on	Systematic	Program	Design	in	the	Preface,
especially	figure	1.

The	 Design	 Process	 Once	 you	 understand	 how	 to	 represent	 input
information	as	data	and	to	interpret	output	data	as	information,	the	design	of	an
individual	function	proceeds	according	to	a	straightforward	process:

1.	 Express	 how	 you	 wish	 to	 represent	 information	 as	 data.	 A	 one-line
comment	suffices:

;	We	use	numbers	to	represent	centimeters.

Formulate	data	definitions,	like	the	one	for	Temperature,	for	the	classes	of
data	you	consider	critical	for	the	success	of	your	program.

2.	Write	down	a	signature,	a	statement	of	purpose,	and	a	function	header.
A	 function	 signature	 is	 a	 comment	 that	 tells	 the	 readers	 of	 your	 design
how	many	 inputs	 your	 function	 consumes,	 from	 which	 classes	 they	 are
drawn,	 and	 what	 kind	 of	 data	 it	 produces.	 Here	 are	 three	 examples	 for
functions	that	respectively

•  consume	one	String	and	produce	a	Number:

;	String	->	Number

•  consume	a	Temperature	and	produce	a	String:

;	Temperature	->	String

As	this	signature	points	out,	introducing	a	data	definition	as	an
alias	for	an	existing	form	of	data	makes	it	easy	to	read	the
intention	behind	signatures.
Nevertheless,	we	recommend	that	you	stay	away	from	aliasing
data	definitions	for	now.	A	proliferation	of	such	names	can	cause
quite	a	lot	of	confusion.	It	takes	practice	to	balance	the	need	for
new	names	and	the	readability	of	programs,	and	there	are	more
important	ideas	to	understand	right	now.

•  consume	a	Number,	a	String,	and	an	Image:

;	Number	String	Image	->	Image

Stop!	What	does	this	function	produce?

A	purpose	 statement	 is	 a	BSL	 comment	 that	 summarizes	 the	 purpose	 of
the	 function	 in	 a	 single	 line.	 If	 you	 are	 ever	 in	 doubt	 about	 a	 purpose
statement,	write	down	the	shortest	possible	answer	to	the	question

what	does	the	function	compute?

Every	 reader	 of	 your	 program	 should	 understand	 what	 your	 functions
compute	without	having	to	read	the	function	itself.
A	 multi-function	 program	 should	 also	 come	 with	 a	 purpose	 statement.
Indeed,	 good	 programmers	 write	 two	 purpose	 statements:	 one	 for	 the
reader	who	may	have	 to	modify	 the	code	and	another	one	for	 the	person
who	wishes	to	use	the	program	but	not	read	it.
Finally,	a	header	is	a	simplistic	function	definition,	also	called	a	stub.	Pick
one	variable	name	for	each	class	of	input	in	the	signature;	the	body	of	the
function	 can	 be	 any	 piece	 of	 data	 from	 the	 output	 class.	 These	 three
function	headers	match	the	above	three	signatures:

•  (define	(f	a-string)	0)

•  (define(g	n)	"a")

•  (define(h	num	str	img)	(empty-scene	100	100))

Our	parameter	names	 reflect	what	kind	of	data	 the	parameter	 represents.
Sometimes,	 you	may	wish	 to	 use	 names	 that	 suggest	 the	 purpose	 of	 the
parameter.
When	you	formulate	a	purpose	statement,	it	is	often	useful	to	employ	the
parameter	names	to	clarify	what	is	computed.	For	example,

;	Number	String	Image	->	Image	
;	adds		s	to	img,	
;	y	pixels	from	the	top	and		10	from	the	left	
(define	(add-image	y	s	img)

		(empty-scene	100	100))

At	 this	 point,	 you	 can	 click	 the	 RUN	 button	 and	 experiment	 with	 the
function.	 Of	 course,	 the	 result	 is	 always	 the	 same	 value,	 which	 makes
these	experiments	quite	boring.

3.	 Illustrate	 the	 signature	 and	 the	 purpose	 statement	 with	 some	 functional
examples.	To	construct	a	functional	example,	pick	one	piece	of	data	from
each	input	class	from	the	signature	and	determine	what	you	expect	back.
Suppose	you	are	designing	a	function	that	computes	the	area	of	a	square.
Clearly	this	function	consumes	the	length	of	the	square’s	side,	and	that	is
best	 represented	with	 a	 (positive)	 number.	Assuming	 you	 have	 done	 the
first	process	 step	according	 to	 the	 recipe,	you	add	 the	examples	between
the	purpose	statement	and	the	header	and	get	this:

;	Number	->	Number	
;	computes	the	area	of	a	square	with	side	len	
;	given:	2,	expect:	4	
;	given:	7,	expect:	49	
(define	(area-of-square	len)	0)

4.	The	next	step	is	 to	take	 inventory,	 to	understand	what	are	the	givens	and
what	 we	 need	 to	 compute.	 For	 the	 simple	 functions	 we	 are	 considering
right	 now,	 we	 know	 that	 they	 are	 given	 data	 via	 parameters.	 While

parameters	 are	 placeholders	 for	 values	 that	 we	 don’t	 know	 yet,	 we	 do
know	that	it	is	from	this	unknown	data	that	the	function	must	compute	its
result.	 To	 remind	 ourselves	 of	 this	 fact,	 we	 replace	 the	 function’s	 body
with	a	template.

We	owe	the	term	“inventory”	to	Stephen	Bloch.

For	now,	 the	 template	contains	 just	 the	parameters,	 so	 that	 the	preceding
example	looks	like	this:

(define	(area-of-square	len)	

			(…	len	…))

The	dots	remind	you	that	this	isn’t	a	complete	function,	but	a	template,	a
suggestion	for	an	organization.
The	 templates	 of	 this	 section	 look	boring.	As	 soon	 as	we	 introduce	 new
forms	of	data,	templates	become	interesting.

5.	It	is	now	time	to	code.	In	general,	to	code	means	to	program,	though	often
in	the	narrowest	possible	way,	namely,	to	write	executable	expressions	and
function	definitions.
To	us,	coding	means	to	replace	the	body	of	the	function	with	an	expression
that	attempts	to	compute	from	the	pieces	in	the	template	what	the	purpose
statement	promises.	Here	is	the	complete	definition	for	area-of-square:

;	Number	->	Number	
;	computes	the	area	of	a	square	with	side		len	
;	given:	2,	expect:	4	
;	given:	7,	expect:	49	
(define	(area-of-square	len)	
		(sqr	len))

To	complete	the	add-image	function	takes	a	bit	more	work	than	that:	see
figure	16.	In	particular,	the	function	needs	to	turn	the	given	string	s	into	an
image,	which	is	then	placed	into	the	given	scene.

Figure	16:	The	completion	of	design	step	5

6.	The	last	step	of	a	proper	design	is	to	test	the	function	on	the	examples	that
you	worked	out	 before.	For	now,	 testing	works	 like	 this.	Click	 the	RUN
button	 and	 enter	 function	 applications	 that	 match	 the	 examples	 in	 the
interactions	area:

>	(area-of-square	2)	

4	

>(area-of-square	7)	

49

The	results	must	match	the	output	that	you	expect;	you	must	inspect	each
result	 and	make	 sure	 it	 is	 equal	 to	what	 is	written	 down	 in	 the	 example
portion	 of	 the	 design.	 If	 the	 result	 doesn’t	 match	 the	 expected	 output,
consider	the	following	three	possibilities:

(a)	 You	miscalculated	 and	 determined	 the	 wrong	 expected	 output	 for
some	of	the	examples.

(b)	 Alternatively,	 the	 function	 definition	 computes	 the	 wrong	 result.
When	this	is	the	case,	you	have	a	logical	error	in	your	program,	also
known	as	a	bug.

(c)	Both	the	examples	and	the	function	definition	are	wrong.

When	you	do	encounter	a	mismatch	between	expected	 results	and	actual
values,	we	 recommend	 that	 you	 first	 reassure	 yourself	 that	 the	 expected
results	 are	 correct.	 If	 so,	 assume	 that	 the	 mistake	 is	 in	 the	 function
definition.	Otherwise,	fix	the	example	and	then	run	the	tests	again.	If	you

are	 still	 encountering	 problems,	 you	 may	 have	 encountered	 the	 third,
somewhat	rare,	situation.

3.2 Finger	Exercises:	Functions
The	first	few	of	the	following	exercises	are	almost	copies	of	those	in	chapter	2.1,
though	where	the	latter	use	the	word	“define”	the	exercises	below	use	the	word
“design.”	What	this	difference	means	is	that	you	should	work	through	the	design
recipe	 to	 create	 these	 functions	 and	 your	 solutions	 should	 include	 all	 relevant
pieces.

As	the	title	of	the	section	suggests,	 these	exercises	are	practice	exercises	to
help	 you	 internalize	 the	 process.	 Until	 the	 steps	 become	 second	 nature,	 never
skip	 one	 because	 doing	 so	 leads	 to	 easily	 avoidable	 errors.	 There	 is	 plenty	 of
room	left	in	programming	for	complicated	errors;	we	have	no	need	to	waste	our
time	on	silly	ones.

Exercise	 34.	 Design	 the	 function	 string-first,	 which	 extracts	 the	 first
character	from	a	non-empty	string.	Don’t	worry	about	empty	strings.	

Exercise	 35.	 Design	 the	 function	 string-last,	 which	 extracts	 the	 last
character	from	a	non-empty	string.	

Exercise	36.	Design	 the	 function	image-area,	which	counts	 the	number	of
pixels	in	a	given	image.	

Exercise	37.	Design	the	function	string-rest,	which	produces	a	string	like
the	given	one	with	the	first	character	removed.	

Exercise	 38.	 Design	 the	 function	 string-remove-last,	 which	 produces	 a
string	like	the	given	one	with	the	last	character	removed.	

3.3 Domain	Knowledge
It	 is	 natural	 to	 wonder	 what	 knowledge	 it	 takes	 to	 code	 up	 the	 body	 of	 a
function.	A	little	bit	of	reflection	tells	you	that	this	step	demands	an	appropriate
grasp	of	the	domain	of	the	program.	Indeed,	there	are	two	forms	of	such	domain
knowledge:

1.	Knowledge	from	external	domains,	such	as	mathematics,	music,	biology,
civil	engineering,	art,	and	so	on.	Because	programmers	cannot	know	all	of
the	 application	 domains	 of	 computing,	 they	 must	 be	 prepared	 to
understand	the	language	of	a	variety	of	application	areas	so	that	they	can
discuss	problems	with	domain	experts.	Mathematics	 is	at	 the	 intersection
of	many,	 but	 not	 all,	 domains.	 Hence,	 programmers	must	 often	 pick	 up
new	languages	as	they	work	through	problems	with	domain	experts.

2.	 Knowledge	 about	 the	 library	 functions	 in	 the	 chosen	 programming
language.	When	your	task	is	to	translate	a	mathematical	formula	involving
the	tangent	function,	you	need	to	know	or	guess	that	your	chosen	language
comes	 with	 a	 function	 such	 as	 BSL’s	 tan.	 When	 your	 task	 involves
graphics,	 you	 will	 benefit	 from	 understanding	 the	 possibilities	 of	 the
2htdp/image	library.

Since	 you	 can	 never	 predict	 the	 area	 you	 will	 be	 working	 in,	 or	 which
programming	 language	 you	will	 have	 to	 use,	 it	 is	 imperative	 that	 you	 have	 a
solid	understanding	of	the	full	possibilities	of	whatever	computer	languages	are
around	 and	 suitable.	 Otherwise	 some	 domain	 expert	 with	 half-baked
programming	knowledge	will	take	over	your	job.

You	can	recognize	problems	that	demand	domain	knowledge	from	the	data
definitions	 that	 you	work	 out.	As	 long	 as	 the	 data	 definitions	 use	 classes	 that
exist	 in	 the	 chosen	programming	 language,	 the	definition	of	 the	 function	body
(and	 program)	 mostly	 relies	 on	 expertise	 in	 the	 domain.	 Later,	 when	 we
introduce	 complex	 forms	 of	 data,	 the	 design	 of	 functions	 demands	 computer
science	knowledge.

3.4 From	Functions	to	Programs
Not	 all	 programs	 consist	 of	 a	 single	 function	 definition.	 Some	 require	 several
functions;	 many	 also	 use	 constant	 definitions.	 No	 matter	 what,	 it	 is	 always
important	 to	 design	 every	 function	 systematically,	 though	 global	 constants	 as
well	as	auxiliary	functions	change	the	design	process	a	bit.

When	 you	 have	 defined	 global	 constants,	 your	 functions	may	 use	 them	 to
compute	 results.	 To	 remind	 yourself	 of	 their	 existence,	 you	may	 wish	 to	 add
these	constants	to	your	templates;	after	all,	they	belong	to	the	inventory	of	things
that	may	contribute	to	the	function	definition.

Multi-function	 programs	 come	 about	 because	 interactive	 programs
automatically	 need	 functions	 that	 handle	 key	 and	mouse	 events,	 functions	 that
render	the	state	as	music,	and	possibly	more.	Even	batch	programs	may	require
several	 different	 functions	 because	 they	 perform	 several	 separate	 tasks.
Sometimes	 the	 problem	 statement	 itself	 suggests	 these	 tasks;	 other	 times	 you
will	 discover	 the	 need	 for	 auxiliary	 functions	 as	 you	 are	 in	 the	 middle	 of
designing	some	function.

For	these	reasons,	we	recommend	keeping	around	a	list	of	needed	functions
or	 a	 wish	 list.	 Each	 entry	 on	 a	 wish	 list	 should	 consist	 of	 three	 things:	 a
meaningful	name	for	the	function,	a	signature,	and	a	purpose	statement.	For	the
design	 of	 a	 batch	 program,	 put	 the	 main	 function	 on	 the	 wish	 list	 and	 start
designing	 it.	 For	 the	 design	 of	 an	 interactive	 program,	 you	 can	 put	 the	 event
handlers,	 the	stop-when	 function,	 and	 the	 scene-rendering	 function	on	 the	 list.
As	 long	 as	 the	 list	 isn’t	 empty,	 pick	 a	 wish	 and	 design	 the	 function.	 If	 you
discover	 during	 the	 design	 that	 you	 need	 another	 function,	 put	 it	 on	 the	 list.
When	the	list	is	empty,	you	are	done.

We	owe	the	term	“wish	list”	to	John	Stone.

3.5 On	Testing
Testing	quickly	becomes	a	 labor-intensive	chore.	While	 it	 is	 easy	 to	 run	 small
programs	in	the	interactions	area,	doing	so	requires	a	lot	of	mechanical	labor	and
intricate	inspections.	As	programmers	grow	their	systems,	they	wish	to	conduct
many	 tests.	 Soon	 this	 labor	 becomes	 overwhelming,	 and	 programmers	 start	 to
neglect	 it.	 At	 the	 same	 time,	 testing	 is	 the	 first	 tool	 for	 discovering	 and
preventing	basic	flaws.	Sloppy	testing	quickly	leads	to	buggy	functions—that	is,
functions	with	hidden	problems—and	buggy	 functions	 retard	projects,	 often	 in
multiple	ways.

Hence,	it	is	critical	to	mechanize	tests	instead	of	performing	them	manually.
Like	 many	 programming	 languages,	 BSL	 includes	 a	 testing	 facility,	 and
DrRacket	 is	 aware	 of	 this	 facility.	To	 introduce	 this	 testing	 facility,	we	 take	 a
second	 look	at	 the	function	 that	converts	 temperatures	 in	Fahrenheit	 to	Celsius
temperatures	from	chapter	2.5.	Here	is	the	definition:

;		Number	->	Number	
;	converts	Fahrenheit	temperatures	to	Celsius	
;	given	32,	expect	0	
;	given	212,	expect	100	
;	given	$-$40,	expect	$-$40	
define	(f2c	f)	
		(*	5/9	($-$	f	32)))

Testing	 the	 function’s	 examples	 calls	 for	 three	 computations	 and	 three
comparisons	between	two	numbers	each.	You	can	formulate	these	tests	and	add
them	to	the	definitions	area	in	DrRacket:

(check-expect	(f2c	$-$40)	$-$40)	

(check-expect	(f2c	32)	0)	

(check-expect	(f2c	212)	100)

When	 you	 now	 click	 the	 RUN	 button,	 you	 see	 a	 report	 from	 BSL	 that	 the
program	passed	all	three	tests—and	you	have	nothing	else	to	do.

In	 addition	 to	 getting	 tests	 to	 run	 automatically,	 the	 check-expect	 forms
show	another	advantage	when	tests	fail.	To	see	how	this	works,	change	one	of

the	above	tests	so	that	the	result	is	wrong,	for	example

(check-expect	(f2c	$-$40)	40)

When	 you	 now	 click	 the	 RUN	 button,	 an	 additional	 window	 pops	 up.	 The
window’s	 text	 explains	 that	 one	 of	 three	 tests	 failed.	 For	 the	 failed	 test,	 the
window	displays	three	pieces:	the	computed	value,	the	result	of	the	function	call
(−40);	the	expected	value	(40);	and	a	hyperlink	to	the	text	of	the	failed	test	case.

You	 can	 place	 check-expect	 specifications	 above	 or	 below	 the	 function
definitions	 that	 they	 test.	When	 you	 click	RUN,	 DrRacket	 collects	 all	 check-
expect	specifications	and	evaluates	them	after	all	function	definitions	have	been
added	 to	 the	 “vocabulary”	 of	 operations.	 Figure	 17	 shows	 how	 to	 exploit	 this
freedom	 to	 combine	 the	 example	 and	 test	 step.	 Instead	 of	 writing	 down	 the
examples	as	comments,	you	can	translate	them	directly	into	tests.	When	you’re
all	done	with	the	design	of	the	function,	clicking	RUN	performs	the	test.	And	if
you	ever	change	the	function	for	some	reason,	the	next	click	retests	the	function.

Figure	17:	Testing	in	BSL

Last	but	not	least,	check-expect	also	works	for	images.	That	is,	you	can	test
image-producing	functions.	Say	you	wish	to	design	the	function	render,	which
places	 the	 image	 of	 a	 car,	 dubbed	 CAR,	 into	 a	 background	 scene,	 named
BACKGROUND.	For	the	design	of	this	function,	you	may	formulate	the	tests	such	as
the	following:

Alternatively,	you	could	write	them	like	this:

This	alternative	approach	helps	you	figure	out	how	to	express	the	function	body
and	 is	 therefore	 preferable.	 One	 way	 to	 develop	 such	 expressions	 is	 to
experiment	in	the	interactions	area.

For	additional	ways	of	formulating	tests,	see	intermezzo	1.

Because	it	is	so	useful	to	have	DrRacket	conduct	the	tests	and	not	to	check
everything	yourself	manually,	we	immediately	switch	to	this	style	of	testing	for
the	rest	of	the	book.	This	form	of	testing	is	dubbed	unit	testing,	and	BSL’s	unit-
testing	framework	is	especially	tuned	for	novice	programmers.	One	day	you	will
switch	 to	some	other	programming	 language;	one	of	your	 first	 tasks	will	be	 to
figure	out	its	unit-testing	framework.

3.6 Designing	World	Programs
While	 the	 previous	 chapter	 introduces	 the	2htdp/universe	 library	 in	 an	 ad	 hoc
way,	this	section	demonstrates	how	the	design	recipe	also	helps	you	create	world
programs	 systematically.	 It	 starts	 with	 a	 brief	 summary	 of	 the	 2htdp/universe
library	based	on	data	definitions	and	function	signatures.	Then	it	spells	out	 the
design	recipe	for	world	programs.

The	 teachpack	 expects	 that	 a	 programmer	 develops	 a	 data	 definition	 that
represents	the	state	of	the	world	and	a	function	render	that	knows	how	to	create
an	 image	 for	every	possible	 state	of	 the	world.	Depending	on	 the	needs	of	 the
program,	the	programmer	must	then	design	functions	that	respond	to	clock	ticks,
keystrokes,	and	mouse	events.	Finally,	an	interactive	program	may	need	to	stop
when	 its	 current	world	 belongs	 to	 a	 sub-class	 of	 states;	end?	 recognizes	 these
final	states.	Figure	18	spells	out	this	idea	in	a	schematic	and	simplified	way.

Figure	18:	The	wish	list	for	designing	world	programs

Assuming	 that	 you	 have	 a	 rudimentary	 understanding	 of	 the	 workings	 of
big-bang,	 you	 can	 focus	 on	 the	 truly	 important	 problem	 of	 designing	 world
programs.	Let’s	construct	a	concrete	example	for	the	following	design	recipe:

Sample	Problem	Design	a	program	that	moves	a	car	from	left	to
right	on	the	world	canvas,	three	pixels	per	clock	tick.

For	this	problem	statement,	it	is	easy	to	imagine	scenes	for	the	domain:

In	this	book,	we	often	refer	to	the	domain	of	an	interactive	big-bang	program	as
a	“world,”	and	we	speak	of	designing	“world	programs.”

The	design	recipe	for	world	programs,	like	the	one	for	functions,	is	a	tool	for
systematically	 moving	 from	 a	 problem	 statement	 to	 a	 working	 program.	 It
consists	of	three	big	steps	and	one	small	one:

1.	For	all	 those	properties	of	 the	world	 that	 remain	 the	same	over	 time	and
are	 needed	 to	 render	 it	 as	 an	 Image,	 introduce	 constants.	 In	 BSL,	 we
specify	such	constants	via	definitions.	For	the	purpose	of	world	programs,
we	distinguish	between	two	kinds	of	constants:
(a)	 “Physical”	 constants	 describe	 general	 attributes	 of	 objects	 in	 the

world,	such	as	the	speed	or	velocity	of	an	object,	its	color,	its	height,
its	width,	 its	 radius,	 and	 so	 forth.	Of	 course	 these	 constants	 don’t
really	 refer	 to	 physical	 facts,	 but	 many	 are	 analogous	 to	 physical
aspects	of	the	real	world.
In	the	context	of	our	sample	problem,	the	radius	of	the	car’s	wheels
and	the	distance	between	the	wheels	are	such	“physical”	constants:

(define	WIDTH-OF-WORLD	200)	

(define	WHEEL-RADIUS	5)	

(define	WHEEL-DISTANCE	(*	WHEEL-RADIUS	5))

Note	how	the	second	constant	is	computed	from	the	first.

(b)	Graphical	constants	are	images	of	objects	in	the	world.	The	program
composes	them	into	images	that	represent	the	complete	state	of	the
world.

We	suggest	you	experiment	in	DrRacket’s	interactions	area	to	develop	such	graphical	constants.

Here	are	graphical	constants	for	wheel	images	of	our	sample	car:

(define	WHEEL	

		(circle	WHEEL-RADIUS	"solid"	"black"))	

(define	SPACE	

		(rectangle	…	WHEEL-RADIUS	…	"white"))	

(define	BOTH-WHEELS	

		(beside	WHEEL	SPACE	WHEEL))

Graphical	constants	are	usually	computed,	and	the	computations
tend	to	involve	physical	constants	and	other	images.

It	 is	 good	 practice	 to	 annotate	 constant	 definitions	with	 a	 comment	 that
explains	what	they	mean.

2.	 Those	 properties	 that	 change	 over	 time—in	 reaction	 to	 clock	 ticks,
keystrokes,	or	mouse	actions—give	rise	 to	 the	current	state	of	 the	world.
Your	task	is	to	develop	a	data	representation	for	all	possible	states	of	the
world.	The	development	 results	 in	a	data	definition,	which	comes	with	a
comment	that	tells	readers	how	to	represent	world	information	as	data	and
how	to	interpret	data	as	information	about	the	world.
Choose	simple	forms	of	data	to	represent	the	state	of	the	world.
For	the	running	example,	it	is	the	car’s	distance	from	the	left	margin	that
changes	over	time.	While	the	distance	to	the	right	margin	changes,	too,	it
is	 obvious	 that	 we	 need	 only	 one	 or	 the	 other	 to	 create	 an	 image.	 A
distance	 is	 measured	 in	 numbers,	 so	 the	 following	 is	 an	 adequate	 data
definition:

;	A	WorldState	is	a	Number.	

;	interpretation	the	number	of	pixels	between	
;	the	left	border	of	the	scene	and	the	car

An	alternative	is	to	count	the	number	of	clock	ticks	that	have	passed	and	to
use	this	number	as	the	state	of	the	world.	We	leave	this	design	variant	as
an	exercise.

3.	Once	you	have	a	data	representation	for	the	state	of	the	world,	you	need	to
design	 a	 number	 of	 functions	 so	 that	 you	 can	 form	 a	 valid	 big-bang
expression.
To	start	with,	you	need	a	function	that	maps	any	given	state	into	an	image
so	that	big-bang	can	render	the	sequence	of	states	as	images:

;	render

Next	 you	 need	 to	 decide	 which	 kind	 of	 events	 should	 change	 which
aspects	 of	 the	 world	 state.	 Depending	 on	 your	 decisions,	 you	 need	 to
design	some	or	all	of	the	following	three	functions:

;	clock-tick-handler	

;	keystroke-handler	

;	mouse-event-handler

Finally,	if	the	problem	statement	suggests	that	the	program	should	stop	if
the	world	has	certain	properties,	you	must	design

;		end?

For	 the	generic	signatures	and	purpose	statements	of	 these	 functions,	 see
figure	 18.	 Adapt	 these	 generic	 purpose	 statements	 to	 the	 particular
problems	you	solve	so	that	readers	know	what	they	compute.
In	short,	the	desire	to	design	an	interactive	program	automatically	creates
several	initial	entries	for	your	wish	list.	Work	them	off	one	by	one	and	you
get	a	complete	world	program.
Let’s	 work	 through	 this	 step	 for	 the	 sample	 program.	 While	 big-bang
dictates	 that	we	must	design	a	 rendering	 function,	we	still	need	 to	 figure
out	 whether	 we	 want	 any	 event-handling	 functions.	 Since	 the	 car	 is

supposed	 to	 move	 from	 left	 to	 right,	 we	 definitely	 need	 a	 function	 that
deals	with	clock	ticks.	Thus,	we	get	this	wish	list:

;	WorldState	->	Image	
;	places	the	image	of	the	car	x	pixels	from	
;	the	left	margin	of	the	BACKGROUND	image	
(define(render	x)	
		BACKGROUND)	

;	WorldState	->	WorldState	
;	adds	3	to	x	to	move	the	car	right	
(define(tock	x)	
		x)

Note	how	we	tailored	the	purpose	statements	to	the	problem	at	hand,	with
an	understanding	of	how	big-bang	will	use	these	functions.

4.	 Finally,	 you	 need	 a	 main	 function.	 Unlike	 all	 other	 functions,	 a	 main
function	 for	 world	 programs	 doesn’t	 demand	 design	 or	 testing.	 Its	 sole
reason	 for	 existing	 is	 that	 you	 can	 launch	 your	 world	 program
conveniently	from	DrRacket’s	interactions	area.
The	 one	 decision	 you	 must	 make	 concerns	 main’s	 arguments.	 For	 our
sample	 problem,	we	 opt	 for	 one	 argument:	 the	 initial	 state	 of	 the	world.
Here	we	go:

Hence,	you	can	launch	this	interactive	program	with

>	(main	13)

to	watch	the	car	start	at	13	pixels	from	the	left	margin.	It	will	stop	when

you	 close	 big-bang’s	 window.	 Remember	 that	 big-bang	 returns	 the
current	state	of	the	world	when	the	evaluation	stops.

Naturally,	you	don’t	have	to	use	the	name	“WorldState”	for	the	class	of	data
that	 represents	 the	states	of	 the	world.	Any	name	will	do	as	 long	as	you	use	 it
consistently	 for	 the	signatures	of	 the	event-handling	functions.	Also,	you	don’t
have	 to	 use	 the	 names	tock,	end?,	 or	render.	You	may	 name	 these	 functions
whatever	you	like,	as	long	as	you	use	the	same	names	when	you	write	down	the
clauses	of	the	big-bang	expression.	Lastly,	you	may	have	noticed	that	you	may
list	 the	 clauses	 of	 a	 big-bang	 expression	 in	 any	 order	 as	 long	 as	 you	 list	 the
initial	state	first.

Let’s	 now	work	 through	 the	 rest	 of	 the	 program	 design	 process,	 using	 the
design	recipe	for	functions	and	other	design	concepts	spelled	out	so	far.

Exercise	 39.	Good	 programmers	 ensure	 that	 an	 image	 such	 as	CAR	 can	 be
enlarged	or	reduced	via	a	single	change	to	a	constant	definition.	We	started	the
development	of	our	car	image	with	a	single	plain	definition:

(define	WHEEL-RADIUS	5)

Good	programmers	establish	a	single	point	of	control	for	all	aspects	of	their	programs,	not	just	the
graphical	constants.	Several	chapters	deal	with	this	issue.

The	 definition	 of	 WHEEL-DISTANCE	 is	 based	 on	 the	 wheel’s	 radius.	 Hence,
changing	WHEEL-RADIUS	from	5	to	10	doubles	the	size	of	the	car	image.	This	kind
of	 program	 organization	 is	 dubbed	 single	 point	 of	 control,	 and	 good	 design
employs	this	idea	as	much	as	possible.

Develop	your	favorite	image	of	an	automobile	so	that	WHEEL-RADIUS	remains
the	single	point	of	control.	

The	next	entry	on	the	wish	list	is	the	clock	tick	handling	function:

;	WorldState	->	WorldState	
;	moves	the	car	by	3	pixels	for	every	clock	tick	
(define	(tock	ws)	ws)

Since	the	state	of	the	world	represents	the	distance	between	the	left	margin	of	the
canvas	 and	 the	 car,	 and	 since	 the	 car	 moves	 at	 three	 pixels	 per	 clock	 tick,	 a

concise	purpose	statement	combines	these	two	facts	into	one.	This	also	makes	it
easy	to	create	examples	and	to	define	the	function:

;	WorldState	->	WorldState	
;	moves	the	car	by		3	pixels	for	every	clock	tick	
;	examples:	
;			given:	20,	expect	23	
;			given:	78,	expect	81	
(define(tock	ws)	
		(+	ws	3))

The	 last	 design	 step	 calls	 for	 confirmation	 that	 the	 examples	 work	 as
expected.	So	we	click	the	RUN	button	and	evaluate	these	expressions:

>	(tock	20)	

23	

>	(tock	78)	

81

Since	the	results	are	as	expected,	the	design	of	tock	is	finished.
Exercise	40.	Formulate	the	examples	as	BSL	tests,	that	is,	using	the	check-

expect	form.	Introduce	a	mistake.	Re-run	the	tests.	
Our	second	entry	on	the	wish	list	specifies	a	function	that	translates	the	state

of	the	world	into	an	image:

;	WorldState	->	Image	
;	places	the	car	into	the	BACKGROUND	scene,	
;	according	to	the	given	world	state	
(define	(render	ws)	
		BACKGROUND)

To	make	examples	for	a	rendering	function,	we	suggest	arranging	a	table	like
the	upper	half	of	figure	19.	It	lists	the	given	world	states	and	the	desired	scenes.
For	your	 first	 few	rendering	 functions,	you	may	wish	 to	draw	 these	 images	by
hand.

Figure	19:	Examples	for	a	moving	car	program

Even	 though	 this	 kind	 of	 image	 table	 is	 intuitive	 and	 explains	 what	 the
running	function	is	going	to	display—a	moving	car—it	does	not	explain	how	the
function	 creates	 this	 result.	 To	 get	 from	 here	 to	 there,	we	 recommend	writing
down	expressions	like	those	in	the	lower	half	of	figure	19	that	create	the	images
in	the	table.	The	capitalized	names	refer	to	the	obvious	constants:	the	image	of	a
car,	its	fixed	y-coordinate,	and	the	background	scene,	which	is	currently	empty.

This	extended	table	suggests	a	pattern	for	the	formula	that	goes	into	the	body
of	the	render	function:

;	WorldState	->	Image	
;	places	the	car	into	the		BACKGROUND	scene,	
;	according	to	the	given	world	state	
(define	(render	ws)	
		place-image	CAR	ws	Y-CAR	BACKGROUND))

And	that	is	mostly	all	there	is	to	designing	a	simple	world	program.
Exercise	41.	Finish	the	sample	problem	and	get	the	program	to	run.	That	is,

assuming	that	you	have	solved	exercise	39,	define	the	constants	BACKGROUND	and
Y-CAR.	 Then	 assemble	 all	 the	 function	 definitions,	 including	 their	 tests.	When
your	program	runs	to	your	satisfaction,	add	a	tree	to	the	scenery.	We	used

to	 create	 a	 tree-like	 shape.	Also	 add	 a	 clause	 to	 the	 big-bang	 expression	 that
stops	the	animation	when	the	car	has	disappeared	on	the	right	side.	

After	 settling	 on	 an	 initial	 data	 representation	 for	 world	 states,	 a	 careful
programmer	may	have	to	revisit	this	fundamental	design	decision	during	the	rest
of	 the	design	process.	For	example,	 the	data	definition	 for	 the	sample	problem
represents	the	car	as	a	point.	But	(the	image	of)	the	car	isn’t	just	a	mathematical
point	without	width	and	height.	Hence,	the	interpretation	statement—the	number
of	pixels	from	the	left	margin—is	an	ambiguous	statement.	Does	this	statement
measure	 the	 distance	 between	 the	 left	 margin	 and	 the	 left	 end	 of	 the	 car?	 Its
center	point?	Or	even	 its	 right	end?	We	 ignored	 this	 issue	here	and	 leave	 it	 to
BSL’s	image	primitives	to	make	the	decision	for	us.	If	you	don’t	like	the	result,
revisit	 the	data	definition	above	and	modify	 it	or	 its	 interpretation	statement	 to
suit	your	taste.

Exercise	42.	Modify	the	interpretation	of	the	sample	data	definition	so	that	a
state	denotes	the	x-coordinate	of	the	right-most	edge	of	the	car.	

Exercise	 43.	Let’s	work	 through	 the	 same	problem	 statement	with	 a	 time-
based	data	definition:

;	An	AnimationState	is	a	Number.	
;	interpretation	the	number	of	clock	ticks	
;	since	the	animation	started

Like	 the	 original	 data	 definition,	 this	 one	 also	 equates	 the	 states	 of	 the	world
with	the	class	of	numbers.	Its	interpretation,	however,	explains	that	the	number
means	something	entirely	different.

Design	the	functions	tock	and	render.	Then	develop	a	big-bang	expression
so	 that	 once	 again	 you	 get	 an	 animation	 of	 a	 car	 traveling	 from	 left	 to	 right
across	the	world’s	canvas.

How	do	you	think	this	program	relates	to	animate	from	the	Prologue?
Use	the	data	definition	to	design	a	program	that	moves	the	car	according	to	a

sine	wave.	(Don’t	try	to	drive	like	that.)	

Dealing	with	mouse	movements	is	occasionally	tricky	because	they	aren’t	exactly	what	they	seems	to
be.	For	a	first	idea	of	why	that	is,	read	the	note	on	“Mice	and	Characters”	in	the	on-line	version.

We	end	the	section	with	an	illustration	of	mouse	event	handling,	which	also
illustrates	the	advantages	that	a	separation	of	view	and	model	provide.	Suppose
we	wish	to	allow	people	to	move	the	car	through	“hyperspace”:

Sample	Problem	Design	a	program	that	moves	a	car	across	 the
world	 canvas,	 from	 left	 to	 right,	 at	 the	 rate	 of	 three	 pixels	 per
clock	tick.	If	the	mouse	is	clicked	anywhere	on	the	canvas,	the
car	is	placed	at	the	x-coordinate	of	that	click.

The	bold	part	is	the	expansion	of	the	sample	problem	from	above.
When	we	are	confronted	with	a	modified	problem,	we	use	the	design	process

to	 guide	 us	 to	 the	 necessary	 changes.	 If	 used	 properly,	 this	 process	 naturally
determines	 what	 we	 need	 to	 add	 to	 our	 existing	 program	 to	 cope	 with	 the
expansion	of	the	problem	statement.	So	here	we	go:

1.	There	are	no	new	properties,	meaning	we	do	not	need	new	constants.

2.	The	 program	 is	 still	 concerned	with	 just	 one	 property	 that	 changes	 over
time,	the	x-coordinate	of	the	car.	Hence,	the	data	representation	suffices.

3.	 The	 revised	 problem	 statement	 calls	 for	 a	mouse-event	 handler,	without
giving	 up	 on	 the	 clock-based	 movement	 of	 the	 car.	 Hence,	 we	 state	 an
appropriate	wish:

;	WorldState	Number	Number	String	->	WorldState	
;	places	the	car	at	x-mouse	
;	if	the	given	me	is	"button-down"	
(define	(hyper	x-position-of-car	x-mouse	y-mouse	me)	
		x-position-of-car)

4.	 Lastly,	 we	 need	 to	 modify	 main	 to	 take	 care	 of	 mouse	 events.	 All	 this
requires	is	the	addition	of	an	on-mouse	clause	that	defers	to	the	new	entry
on	our	wish	list:

After	 all,	 the	modified	 problem	 calls	 for	 dealing	with	mouse	 clicks	 and
everything	else	remains	the	same.

The	rest	is	a	mere	matter	of	designing	one	more	function,	and	for	that	we	use	the
design	recipe	for	functions.

An	entry	on	 the	wish	 list	covers	 the	first	 two	steps	of	 the	design	recipe	for
functions.	Hence,	our	next	step	is	to	develop	some	functional	examples:

;	WorldState	Number	Number	String	->	WorldState	

;	places	the	car	at	x-mouse	

;	if	the	given	me	is	"button-down"	

;	given:	21	10	20	"enter"	

;	wanted:	21	

;	given:	42	10	20	"button-down"	

;	wanted:	10	

;	given:		42	10	20	"move"	

;	wanted:	42	

(define	(hyper	x-position-of-car	x-mouse	y-mouse	me)	

		x-position-of-car)

The	 examples	 say	 that	 if	 the	 string	 argument	 is	 equal	 to	 "button-down",	 the
function	returns	x-mouse;	otherwise	it	returns	x-position-of-car.

Exercise	 44.	 Formulate	 the	 examples	 as	BSL	 tests.	 Click	RUN	 and	watch
them	fail.	

To	complete	the	function	definition,	we	must	appeal	to	your	fond	memories
from	 the	 Prologue,	 specifically	 memories	 about	 the	 conditional	 form.	 Using
cond,	hyper	is	a	two-line	definition:

In	the	next	chapter,	we	explain	designing	with	cond	in	detail.

If	 you	 solved	 exercise	 44,	 rerun	 the	 program	 and	 watch	 all	 tests	 succeed.
Assuming	the	tests	do	succeed,	evaluate

(main	1)

in	DrRacket’s	interactions	area	and	transport	your	car	through	hyperspace.
You	may	wonder	why	this	program	modification	is	so	straightforward.	There

are	really	two	reasons.	First,	this	book	and	its	software	strictly	separate	the	data
that	 a	 program	 tracks—the	model—and	 the	 image	 that	 it	 shows—the	 view.	 In
particular,	functions	that	deal	with	events	have	nothing	to	do	with	how	the	state
is	rendered.	If	we	wish	to	modify	how	a	state	is	rendered,	we	can	focus	on	the
function	specified	in	a	to-draw	clause.	Second,	the	design	recipes	for	programs
and	 functions	 organize	 programs	 in	 the	 right	 way.	 If	 anything	 changes	 in	 a
problem	 statement,	 following	 the	 design	 recipe	 a	 second	 time	 naturally	 points
out	 where	 the	 original	 problem	 solution	 has	 to	 change.	 While	 this	 may	 look
obvious	for	 the	simple	kind	of	problems	we	are	dealing	with	now,	 it	 is	critical
for	the	kind	of	problems	that	programmers	encounter	in	the	real	world.

3.7 Virtual	Pet	Worlds
This	exercise	section	introduces	the	first	 two	elements	of	a	virtual	pet	game.	It
starts	with	just	a	display	of	a	cat	that	keeps	walking	across	the	canvas.	Of	course,
all	 the	walking	makes	 the	cat	unhappy	and	 its	unhappiness	 shows.	As	with	all
pets,	you	can	try	petting,	which	helps	some,	or	you	can	try	feeding,	which	helps
a	lot	more.

So	let’s	start	with	an	image	of	our	favorite	cat:

Copy	the	cat	image	and	paste	it	into	DrRacket,	then	give	the	image	a	name	with
define,	just	like	above.

Exercise	45.	Design	a	“virtual	cat”	world	program	that	continuously	moves
the	cat	from	left	to	right.	Let’s	call	it	cat-prog	and	let’s	assume	it	consumes	the
starting	 position	 of	 the	 cat.	 Furthermore,	 make	 the	 cat	 move	 three	 pixels	 per
clock	tick.	Whenever	the	cat	disappears	on	the	right,	it	reappears	on	the	left.	You
may	wish	to	read	up	on	the	modulo	function.	

Exercise	46.	Improve	the	cat	animation	with	a	slightly	different	image:

Adjust	the	rendering	function	from	exercise	45	so	that	it	uses	one	cat	image	or
the	 other	 based	 on	 whether	 the	 x-coordinate	 is	 odd.	 Read	 up	 on	 odd?	 in	 the

HelpDesk,	and	use	a	cond	expression	to	select	cat	images.	
Exercise	 47.	 Design	 a	 world	 program	 that	 maintains	 and	 displays	 a

“happiness	 gauge.”	 Let’s	 call	 it	 gauge-prog,	 and	 let’s	 agree	 that	 the	 program
consumes	 the	maximum	 level	 of	 happiness.	 The	 gauge	 display	 starts	with	 the
maximum	score,	and	with	each	clock	tick,	happiness	decreases	by	-0.1;	it	never
falls	below	0,	the	minimum	happiness	score.	Every	time	the	down	arrow	key	is
pressed,	 happiness	 increases	 by	 1/5;	 every	 time	 the	 up	 arrow	 is	 pressed,
happiness	jumps	by	1/3.

To	show	 the	 level	of	happiness,	we	use	a	 scene	with	a	 solid,	 red	 rectangle
with	a	black	frame.	For	a	happiness	 level	of	0,	 the	red	bar	should	be	gone;	for
the	maximum	happiness	 level	of	100,	 the	bar	 should	go	all	 the	way	across	 the
scene.

Note	When	you	know	enough,	we	will	 explain	how	 to	 combine	 the	gauge
program	with	 the	solution	of	exercise	45.	Then	we	will	be	able	 to	help	 the	cat
because	 as	 long	 as	 you	 ignore	 it,	 it	 becomes	 less	 happy.	 If	 you	 pet	 the	 cat,	 it
becomes	happier.	 If	you	 feed	 the	cat,	 it	becomes	much,	much	happier.	So	you
can	see	why	you	want	to	know	a	lot	more	about	designing	world	programs	than
these	first	three	chapters	can	tell	you.	

4 Intervals,	Enumerations,	and	Itemizations
At	the	moment,	you	have	four	choices	to	represent	information	as	data:	numbers,
strings,	images,	and	Boolean	values.	For	many	problems	this	is	enough,	but	there
are	 many	 more	 for	 which	 these	 four	 collections	 of	 data	 in	 BSL	 (or	 other
programming	languages)	don’t	suffice.	Actual	designers	need	additional	ways	of
representing	information	as	data.

At	 a	 minimum,	 good	 programmers	 must	 learn	 to	 design	 programs	 with
restrictions	 on	 these	 built-in	 collections.	One	way	 to	 restrict	 is	 to	 enumerate	 a
bunch	of	elements	from	a	collection	and	to	say	that	these	are	the	only	ones	that
are	going	to	be	used	for	some	problem.	Enumerating	elements	works	only	when
there	 is	a	 finite	number	of	 them.	To	accommodate	collections	with	“infinitely”
many	 elements,	we	 introduce	 intervals,	which	 are	 collections	 of	 elements	 that
satisfy	a	specific	property.

Infinite	may	just	mean	“so	large	that	enumerating	the	elements	is	entirely	impractical.”

Defining	 enumerations	 and	 intervals	means	 distinguishing	 among	 different
kinds	of	elements.	To	distinguish	in	code	requires	conditional	functions,	that	is,
functions	 that	 choose	 different	 ways	 of	 computing	 results	 depending	 on	 the
value	 of	 some	 argument.	 Both	 “Many	 Ways	 to	 Compute”	 and	 chapter	 1.6
illustrate	 with	 examples	 of	 how	 to	 write	 such	 functions.	 Neither	 section	 uses
design,	 however.	 Both	 just	 present	 some	 new	 construct	 in	 your	 favorite
programming	language	(that’s	BSL),	and	offer	some	examples	on	how	to	use	it.

In	 this	chapter,	we	discuss	a	general	design	for	enumerations	and	intervals,
new	 forms	 of	 data	 descriptions.	 We	 start	 with	 a	 second	 look	 at	 the	 cond
expression.	 Then	 we	 go	 through	 three	 different	 kinds	 of	 data	 descriptions:
enumerations,	 intervals,	 and	 itemizations.	 An	 enumeration	 lists	 every	 single
piece	of	data	that	belongs	to	it,	while	an	interval	specifies	a	range	of	data.	The
last	one,	itemizations,	mixes	the	first	two,	specifying	ranges	in	one	clause	of	its
definition	 and	 specific	 pieces	 of	 data	 in	 another.	 The	 chapter	 ends	 with	 the
general	design	strategy	for	such	situations.

4.1 Programming	with	Conditionals
Recall	 the	 brief	 introduction	 to	 conditional	 expressions	 in	 the	 Prologue.	 Since
cond	is	the	most	complicated	expression	form	in	this	book,	let’s	take	a	close	look
at	its	general	shape:

(cond	

		[ConditionExpression1	ResultExpression1]	

		[ConditionExpression2	ResultExpression2]	

		…	

		[ConditionExpressionN	ResultExpressionN])

Brackets	make	cond	lines	stand	out.	It	is	fine	to	use	(…)	in	place	of	[…].

A	cond	expression	starts	with	(cond,	 its	keyword,	and	ends	in).	Following	the
keyword,	 a	 programmer	writes	 as	many	 cond	 lines	 as	 needed;	 each	 cond	 line
consists	of	two	expressions,	enclosed	in	opening	and	closing	brackets:	[and].

A	cond	line	is	also	known	as	a	cond	clause.
Here	is	a	function	definition	that	uses	a	conditional	expression:

(define	(next	traffic-light-state)	

		(cond	

				[(string=?	"red"	traffic-light-state)	"green"]	

				[(string=?	"green"	traffic-light-state)	"yellow"]	

				[(string=?	"yellow"	traffic-light-state)	"red"]))

Like	 the	 mathematical	 example	 in	 the	 Prologue,	 this	 example	 illustrates	 the
convenience	 of	 using	cond	 expressions.	 In	many	 problem	 contexts,	 a	 function
must	 distinguish	 several	 different	 situations.	With	 a	 cond	 expression,	 you	 can
use	 one	 line	 per	 possibility	 and	 thus	 remind	 the	 reader	 of	 the	 code	 for	 the
different	situations	from	the	problem	statement.

A	note	on	pragmatics:	Contrast	cond	 expressions	with	if	 expressions	 from
chapter	 1.6.	 The	 latter	 distinguish	 one	 situation	 from	 all	 others.	 As	 such,	 if
expressions	are	much	less	suited	for	multi-situation	contexts;	they	are	best	used
when	all	we	wish	to	say	is	“one	or	the	other.”	We	therefore	always	use	cond	for
situations	 when	 we	 wish	 to	 remind	 the	 reader	 of	 our	 code	 that	 some	 distinct
situations	come	directly	from	data	definitions.	For	other	pieces	of	code,	we	use

whatever	construct	is	most	convenient.
When	the	conditions	get	too	complex	in	a	cond	expression,	you	occasionally

wish	 to	 say	 something	 like	 “in	 all	 other	 cases.”	 For	 these	 kinds	 of	 problems,
cond	expressions	permit	the	use	of	the	else	keyword	for	the	very	last	cond	line:

(cond	

		[ConditionExpression1	ResultExpression1]	

		[ConditionExpression2	ResultExpression2]	

		…	

		[else	DefaultResultExpression])

If	you	make	the	mistake	of	using	else	in	some	other	cond	line,	BSL	in	DrRacket
signals	an	error:

>	(cond	

				[(>	x	0)	10]	

				[else	20]	

				[(<	x	10)	30])	

cond:found	an	else	clause	that	isn't	the	last	clause	in	its	con

d	

expression

That	is,	BSL	rejects	grammatically	incorrect	phrases	because	it	makes	no	sense
to	figure	out	what	such	a	phrase	might	mean.

Imagine	 designing	 a	 function	 that,	 as	 part	 of	 a	 game-playing	 program,
computes	some	award	at	the	end	of	the	game.	Here	is	its	header:

;	A	PositiveNumber	is	a	Number	greater	than/equal	to	0.	

;	PositiveNumber	->	String	
;	computes	the	reward	level	from	the	given	score	s

And	here	are	two	variants	for	a	side-by-side	comparison:

The	 variant	 on	 the	 left	 uses	 a	 cond	 with	 three	 full-fledged	 conditions;	 on	 the
right,	the	function	comes	with	an	else	clause.	To	formulate	the	last	condition	for
the	function	on	the	left,	you	must	calculate	that	(<	20	s)	holds	because

•  s	is	in	PositiveNumber

•  (<=	0	s	10)	is	#false

•  (and	(<	10	s)	(<=	s	20))	evaluates	to	#false	as	well.

While	the	calculation	looks	simple	in	this	case,	it	is	easy	to	make	small	mistakes
and	 to	 introduce	bugs	 into	your	program.	It	 is	 therefore	better	 to	 formulate	 the
function	definition	as	shown	on	 the	right,	 if	you	know	that	you	want	 the	exact
opposite—called	the	complement—of	all	previous	conditions	in	a	cond.

4.2 Computing	Conditionally
From	reading	the	“Many	Ways	to	Compute”	and	chapter	1.6,	you	roughly	know
how	DrRacket	 evaluates	 conditional	 expressions.	 Let’s	 go	 over	 the	 idea	 a	 bit
more	precisely	for	cond	expressions.	Take	another	look	at	this	definition:

(define	(reward	s)	

		(cond	

				[(<=	0	s	10)	"bronze"]	

				[(and	(<	10	s)	(<=	s	20))	"silver"]	

				[else	"gold"]))

This	 function	 consumes	 a	 numeric	 score—a	positive	 number—and	 produces	 a
color.

Just	 looking	 at	 the	cond	 expression,	 you	 cannot	 predict	which	 of	 the	 three
cond	clauses	is	going	to	be	used.	And	that	is	the	point	of	a	function.	The	function
deals	with	many	different	inputs,	for	example,	2,	3,	7,	18,	29.	For	each	of	these
inputs,	it	may	have	to	proceed	in	a	different	manner.	Differentiating	among	the
varying	classes	of	inputs	is	the	purpose	of	the	cond	expression.

Take,	for	example

(reward	3)

You	know	that	DrRacket	replaces	function	applications	with	the	function’s	body
after	substituting	the	argument	for	the	parameter.	Hence,

(reward	3)	;	say	''equals''	

==	

(cond	

		[(<=	0	3	10)	"bronze"]	

		[(and	(<	10	3)	(<=	3	20))	"silver"]	

		[else	"gold"])

At	 this	point,	DrRacket	 evaluates	one	 condition	 at	 a	 time.	For	 the	 first	 one	 to
evaluate	to	#true,	it	continues	with	the	result	expression:

(reward	3)	

==	

(cond	

		[(<=	0	3	10)	"bronze"]	

		[(and	(<	10	3)	(<=	3	20))	"silver"]	

		[else	"gold"])	

==	

(cond	

		[#true	"bronze"]	

		[(and	(<	10	3)	(<=	3	20))	"silver"]	

		[else	"gold"])	

==	

"bronze"

Here	the	first	condition	holds	because	3	is	between	0	and	10.
Here	is	a	second	example:

(reward	21)	

==	

(cond	

		[(<=	0	21	10)	"bronze"]	

		[(and	(<	10	21)	(<=	21	20))	"silver"]	

		[else	"gold"])	

==	

(cond	

		[#false	"bronze"]	

		[(and	(<	10	21)	(<=	21	20))	"silver"]	

		[else	"gold"])	

==	

(cond	

		[(and	(<	10	21)	(<=	21	20))	"silver"]	

		[else	"gold"])

Note	how	the	first	condition	evaluated	to	#false	this	time,	and	as	mentioned	in
“Many	Ways	 to	 Compute”	 the	 entire	 cond	 clause	 is	 dropped.	 The	 rest	 of	 the
calculation	proceeds	as	expected:

(cond	

		[(and	(<	10	21)	(<=	21	20))	"silver"]	

		[else	"gold"])	

==	

(cond	

		[(and	#true	(<=	21	20))	"silver"]	

		[else	"gold"])	

==	

(cond	

		[(and	#true	#false)	"silver"]	

		[else	"gold"])	

==	

(cond	

		[#false	"silver"]	

		[else	"gold"])	

==	

(cond	

		[else	"gold"])	

==	"gold"

Like	 the	 first	 condition,	 the	 second	 one	 also	 evaluates	 to	#false	 and	 thus	 the
calculation	proceeds	 to	 the	 third	cond	 line.	The	else	 tells	DrRacket	 to	 replace
the	entire	cond	expression	with	the	answer	from	this	clause.

Exercise	 48.	Enter	 the	definition	of	reward	 followed	by	(reward	18)	 into
the	definitions	area	of	DrRacket	and	use	 the	stepper	 to	find	out	how	DrRacket
evaluates	applications	of	the	function.	

Exercise	 49.	 A	 cond	 expression	 is	 really	 just	 an	 expression	 and	 may
therefore	show	up	in	the	middle	of	another	expression:

(-	200	(cond	[(>	y	200)	0]	[else	y]))

Use	the	stepper	to	evaluate	the	expression	for	y	as	100	and	210.
Nesting	cond	 expressions	 can	 eliminate	 common	expressions.	Consider	 the

function	for	launching	a	rocket,	repeated	in	figure	20.	Both	branches	of	the	cond
expression	have	the	same	shape	except	as	indicated	with	…:

(place-image	ROCKET	X	…	MTSCN)

Figure	20:	Recall	from	“One	Program,	Many	Definitions”

Reformulate	 create-rocket-scene.v5	 to	 use	 a	 nested	 expression;	 the
resulting	function	mentions	place-image	only	once.	

4.3 Enumerations
Not	all	strings	represent	mouse	events.	If	you	looked	in	HelpDesk	when	the	last
section	introduced	the	on-mouse	clause	for	big-bang,	you	found	out	that	only	six
strings	are	used	to	notify	programs	of	mouse	events:

;	A	MouseEvt	is	one	of	these	Strings:	
;	--	"button-down"	
;	--	"button-up"	
;	--	"drag"	
;	--	"move"	
;	--	"enter"	
;	--	"leave"

The	interpretation	of	 these	strings	is	quite	obvious.	One	of	 the	first	 two	strings
shows	 up	 when	 the	 computer	 user	 clicks	 the	 mouse	 button	 or	 releases	 it.	 In
contrast,	the	third	and	fourth	are	about	moving	the	mouse	and	possibly	holding
down	the	mouse	button	at	the	same	time.	Finally,	the	last	two	strings	represent
the	events	of	a	mouse	moving	over	the	edge	of	the	canvas:	either	going	into	the
canvas	from	the	outside	or	exiting	the	canvas.

More	 importantly,	 the	 data	 definition	 for	 representing	 mouse	 events	 as
strings	looks	quite	different	from	the	data	definitions	we	have	seen	so	far.	It	 is
called	an	enumeration,	and	it	is	a	data	representation	in	which	every	possibility
is	listed.	It	should	not	come	as	a	surprise	that	enumerations	are	common.	Here	is
a	simple	one:

;	A	TrafficLight	is	one	of	the	following	Strings:	
;	--	"red"	
;	--	"green"	
;	--	"yellow"	
;	interpretation	the	three	strings	represent	the	three	
;	possible	states	that	a	traffic	light	may	assume

It	 is	 a	 simplistic	 representation	 of	 the	 states	 that	 a	 traffic	 light	 can	 take	 on.
Unlike	others,	this	data	definition	also	uses	a	slightly	different	phrase	to	explain
what	the	term	TrafficLight	means,	but	this	is	an	inessential	difference.

We	call	it	“simplistic”	because	it	does	not	include	the	“off”	state,	the	“blinking	red”	state,	or	the
“blinking	yellow”	state.

Programming	 with	 enumerations	 is	 mostly	 straightforward.	 When	 a
function’s	input	is	a	class	of	data	whose	description	spells	out	its	elements	on	a
case-by-case	basis,	the	function	should	distinguish	just	those	cases	and	compute
the	result	on	a	percase	basis.	For	example,	if	you	wanted	to	define	a	function	that
computes	the	next	state	of	a	traffic	light,	given	the	current	state	as	an	element	of
TrafficLight,	you	would	come	up	with	a	definition	like	this	one:

;	TrafficLight	->	TrafficLight	
;	yields	the	next	state	given	current	state	s	
(check-expect	(traffic-light-next	"red")	"green")	
(define	(traffic-light-next	s)	
		(cond	
				[(string=?	"red"	s)	"green"]	
				[(string=?	"green"	s)	"yellow"]	
				[(string=?	"yellow"	s)	"red"]))

Because	 the	data	definition	 for	TrafficLight	consists	of	 three	distinct	elements,
the	traffic-light-next	function	naturally	distinguishes	between	three	different
cases.	 For	 each	 case,	 the	 result	 expression	 is	 just	 another	 string,	 the	 one	 that
corresponds	to	the	next	case.

Exercise	 50.	 If	 you	 copy	 and	 paste	 the	 above	 function	 definition	 into	 the
definitions	 area	 of	 DrRacket	 and	 click	 RUN,	 DrRacket	 highlights	 two	 of	 the
three	cond	lines.	This	coloring	tells	you	that	your	test	cases	do	not	cover	the	full
conditional.	Add	enough	tests	to	make	DrRacket	happy.	

Exercise	51.	Design	a	big-bang	program	that	simulates	a	traffic	light	for	a
given	duration.	The	program	renders	the	state	of	a	traffic	light	as	a	solid	circle	of
the	appropriate	color,	and	it	changes	state	on	every	clock	tick.	What	is	the	most
appropriate	initial	state?	Ask	your	engineering	friends.	

The	main	 idea	of	an	enumeration	 is	 that	 it	defines	a	collection	of	data	as	a
finite	number	of	pieces	of	data.	Each	 item	explicitly	 spells	out	which	piece	of
data	belongs	to	the	class	of	data	that	we	are	defining.	Usually,	the	piece	of	data
is	just	shown	as	is;	on	some	occasions,	the	item	of	an	enumeration	is	an	English
sentence	 that	 describes	 a	 finite	 number	 of	 elements	 of	 pieces	 of	 data	 with	 a

single	phrase.
Here	is	an	important	example:

;	A	1String	is	a	String	of	length	1,	
;	including	
;	--	"\\"	(the	backslash),	
;	--	"	"	(the	space	bar),	
;	--	"\t"	(tab),	
;	--	"\r"	(return),	and	
;	--	"\b"	(backspace).	
;	interpretation	represents	keys	on	the	keyboard

You	 know	 that	 such	 a	 data	 definition	 is	 proper	 if	 you	 can	 describe	 all	 of	 its
elements	with	a	BSL	test.	In	the	case	of	1String,	you	can	find	out	whether	some
string	s	belongs	to	the	collection	with

(=	(string-length	s)	1)

An	 alternative	 way	 to	 check	 that	 you	 have	 succeeded	 is	 to	 enumerate	 all	 the
members	of	the	collection	of	data	that	you	wish	to	describe:

;	A	1String	is	one	of:	
;	--	"q"	
;	--	"w"	
;	--	"e"	
;	--	"r"	
;	…	
;	--	"\t"	
;	--	"\r"	
;	--	"\b"

If	you	look	at	your	keyboard,	you	find	←,	↑,	and	similar	labels.	Our	chosen
programming	 language,	 BSL,	 uses	 its	 own	 data	 definition	 to	 represent	 this
information.	Here	is	an	excerpt:

;	A	KeyEvent	is	one	of:	
;	--	1String	

;	--	"left"	
;	--	"right"	
;	--	"up"	
;	--	…

You	know	where	to	find	the	full	definition.

The	 first	 item	 in	 this	 enumeration	 describes	 the	 same	 bunch	 of	 strings	 that
1String	 describes.	 The	 clauses	 that	 follow	 enumerate	 strings	 for	 special	 key
events,	such	as	pressing	one	of	the	four	arrow	keys	or	releasing	a	key.

At	 this	 point,	 we	 can	 actually	 design	 a	 key-event	 handler	 systematically.
Here	is	a	sketch:

;	WorldState	KeyEvent	->	…	
(define	(handle-key-events	w	ke)	
		(cond	
				[(=	(string-length	ke)	1)	…]	
				[(string=?	"left"	ke)	…]	
				[(string=?	"right"	ke)	…]	
				[(string=?	"up"	ke)	…]	
				[(string=?	"down"	ke)	…]	
				…))

This	 event-handling	 function	 uses	 a	 cond	 expression,	 and	 for	 each	 line	 in	 the
enumeration	of	 the	data	definition,	 there	 is	one	cond	 line.	The	condition	 in	 the
first	 cond	 line	 identifies	 the	 KeyEvents	 identified	 in	 the	 first	 line	 of	 the
enumeration,	the	second	cond	clause	corresponds	to	the	second	data	enumeration
line,	and	so	on.

When	 programs	 rely	 on	 data	 definitions	 that	 come	 with	 the	 chosen
programming	language	(such	as	BSL)	or	its	libraries	(such	as	the	2htdp/universe
library),	it	is	common	that	they	use	only	a	part	of	the	enumeration.	To	illustrate
this	point,	let	us	look	at	a	representative	problem.

Sample	 Problem	 Design	 a	 key-event	 handler	 that	moves	 a	 red
dot	 left	 or	 right	 on	 a	 horizontal	 line	 in	 response	 to	 pressing	 the
left	and	right	arrow	keys.

Figure	 21	 presents	 two	 solutions	 to	 this	 problem.	 The	 function	 on	 the	 left	 is
organized	 according	 to	 the	 basic	 idea	 of	 using	one	cond	 clause	 per	 line	 in	 the
data	definition	of	the	input,	KeyEvent.	In	contrast,	the	right-hand	side	displays	a
version	 that	uses	 the	 three	essential	 lines:	 two	for	 the	keys	 that	matter	and	one
for	everything	else.	The	reordering	is	appropriate	because	only	two	of	the	cond-
lines	are	relevant,	and	they	can	be	cleanly	separated	from	other	lines.	Naturally,
this	kind	of	rearrangement	is	done	after	the	function	is	designed	properly.

Figure	21:	Conditional	functions	and	special	enumerations

4.4 Intervals
Imagine	yourself	responding	to	the	following	sample	design	task:

Sample	Problem	Design	a	program	that	simulates	the	descent	of
a	UFO.

After	a	bit	of	thinking,	you	could	come	up	with	something	like	figure	22.	Stop!
Study	the	definitions	and	replace	the	dots	before	you	read	on.

Figure	22:	UFO,	descending

Before	you	release	this	“game”	program,	however,	you	may	wish	to	add	the
display	of	the	status	line	to	the	canvas:

Sample	 Problem	 Add	 a	 status	 line.	 It	 says	 “descending”	when
the	UFO’s	height	is	above	one	third	of	the	height	of	the	canvas.	It
switches	to	"closing	in"	below	that.	And	finally,	when	the	UFO
has	reached	the	bottom	of	the	canvas,	the	status	notifies	the	player

that	the	UFO	has	“landed.”

You	are	free	to	use	appropriate	colors	for	the	status	line.
In	 this	 case,	 we	 don’t	 have	 a	 finite	 enumeration	 of	 distinct	 elements	 or

distinct	 sub-classes	of	data.	After	 all,	 conceptually,	 the	 interval	between	0	 and
HEIGHT	(for	some	number	greater	than	0)	contains	an	infinite	number	of	numbers
and	a	large	number	of	integers.	Therefore	we	use	intervals	to	superimpose	some
organization	 on	 the	 generic	 data	 definition,	 which	 just	 uses	 “numbers”	 to
describe	the	class	of	coordinates.

An	 interval	 is	 a	 description	 of	 a	 class	 of	 numbers	 via	 boundaries.	 The
simplest	interval	has	two	boundaries:	left	and	right.	If	the	left	boundary	is	to	be
included	in	the	interval,	we	say	it	is	closed	on	the	left.	Similarly,	a	right-closed
interval	 includes	 its	 right	 boundary.	 Finally,	 if	 an	 interval	 does	 not	 include	 a
boundary,	it	is	said	to	be	open	at	that	boundary.

Pictures	 of,	 and	 notations	 for,	 intervals	 use	 brackets	 for	 closed	 boundaries
and	parentheses	for	open	boundaries.	Here	are	four	such	intervals:

•  [3,5]	is	a	closed	interval:

•  (3,5]	is	a	left-open	interval:

•  [3,5)	is	a	right-open	interval:

•  and	(3,5)	is	an	open	interval:

Exercise	52.	Which	integers	are	contained	in	the	four	intervals	above?	
The	 interval	 concept	 helps	 us	 formulate	 a	 data	 definition	 that	 captures	 the

revised	problem	statement	better	than	the	“numbers”-based	definition:

;	A	WorldState	falls	into	one	of	three	intervals:	

;	--	between	0	and	CLOSE	

;	--	between	CLOSE	and	HEIGHT	

;	--	below	HEIGHT

Specifically,	there	are	three	intervals,	which	we	may	picture	as	follows:

What	 you	 see	 is	 the	 standard	 number	 line,	 turned	 vertical	 and	 broken	 into
intervals.	Each	interval	starts	with	an	angular	downward-pointing	bracket	()
and	 ends	 with	 an	 upward-pointing	 bracket	 ().	 The	 picture	 identifies	 three
intervals	in	this	manner:

•  the	upper	interval	goes	from	0	to	CLOSE;

•  the	middle	one	starts	at	CLOSE	and	reaches	HEIGHT;	and

•  the	lower,	invisible	interval	is	just	a	single	line	at	HEIGHT.

On	a	plain	number	line,	the	last	interval	starts	at	HEIGHT	and	goes	on	forever.

Visualizing	 the	 data	 definition	 in	 this	 manner	 helps	 with	 the	 design	 of
functions	 in	 two	 ways.	 First,	 it	 immediately	 suggests	 how	 to	 pick	 examples.
Clearly	we	want	the	function	to	work	inside	of	all	the	intervals,	and	we	want	the
function	to	work	properly	at	the	ends	of	each	interval.	Second,	the	image	tells	us
that	 we	 need	 to	 formulate	 a	 condition	 that	 determines	 whether	 or	 not	 some
“point”	is	within	one	of	the	intervals.

Putting	 the	 two	 together	 also	 raises	 a	 question,	 namely,	 how	 exactly	 the
function	deals	with	the	end	points.	In	the	context	of	our	example,	two	points	on
the	number	line	belong	to	two	intervals:	CLOSE	belongs	to	both	the	upper	interval
and	the	middle	one,	while	HEIGHT	seems	to	fall	into	both	the	middle	one	and	the
lowest	one.	Such	overlaps	usually	cause	problems	for	programs,	and	they	ought
to	be	avoided.

BSL	 functions	 avoid	 them	 naturally	 due	 to	 the	 way	 cond	 expressions	 are
evaluated.	 Consider	 this	 natural	 organization	 of	 a	 function	 that	 consumes
elements	of	WorldState:

;	WorldState	->	WorldState	
(define	(f	y)	
		(cond	
				[(<=	0	y	CLOSE)	…]	
				[(<=	CLOSE	y	HEIGHT)	…]	
				[(>=	y	HEIGHT)	…]))

The	three	cond	lines	correspond	to	the	three	intervals.	Each	condition	identifies
those	values	of	y	that	are	in	between	the	limits	of	the	intervals.	Due	to	the	way
cond	lines	are	checked	one	by	one,	however,	a	y	value	of	CLOSE	makes	BSL	pick
the	first	cond	line,	and	a	y	value	of	HEIGHT	triggers	the	evaluation	of	the	second
ResultExpression.

If	we	wanted	to	make	this	choice	obvious	and	immediate	for	every	reader	of
our	code,	we	would	use	different	conditions:

;	WorldState	->	WorldState	
(define	(g	y)	
		(cond	
				[(<=	0	y	CLOSE)	…]	
				[(and	(<	CLOSE	y)	(<=	y	HEIGHT))	…]	

				[(>	y	HEIGHT)	…]))

Note	how	the	second	cond	line	uses	and	to	combine	a	strictly-less	check	with	a
less-than-or-equal	check	instead	of	f’s	<=	with	three	arguments.

Given	all	 that,	we	can	complete	 the	definition	of	 the	function	 that	adds	 the
requested	 status	 line	 to	 our	 UFO	 animation;	 see	 figure	 23	 for	 the	 complete
definition.	The	function	uses	a	cond	expression	to	distinguish	the	three	intervals.
In	 each	 cond	 clause,	 the	 ResultExpression	 uses	 render	 (from	 figure	 22)	 to
create	the	image	with	the	descending	UFO	and	then	places	an	appropriate	text	at
position	(10,10)	with	place-image.

Figure	23:	Rendering	with	a	status	line

To	run	this	version,	you	need	to	change	main	from	figure	22	a	bit:

One	aspect	of	this	function	definition	might	disturb	you,	and	to	clarify	why,
let’s	refine	the	sample	problem	from	above	just	a	tiny	bit:

Sample	 Problem	 Add	 a	 status	 line,	positioned	 at	 (20,20),	 that
says	“descending”	when	 the	UFO’s	height	 is	above	one	 third	of
the	height	of	the	canvas.	⋯

This	could	be	the	response	of	a	client	who	has	watched	your	animation	for	a	first
time.

At	this	point,	you	have	no	choice	but	to	change	the	function	render/status
at	 six	 distinct	 places	 because	 you	 have	 three	 copies	 of	 one	 external	 piece	 of
information:	 the	 location	 of	 the	 status	 line.	 To	 avoid	 multiple	 changes	 for	 a
single	 element,	 programmers	 try	 to	 avoid	 copies.	You	have	 two	choices	 to	 fix
this	problem.	The	first	one	is	to	use	constant	definitions,	which	you	might	recall
from	 early	 chapters.	 The	 second	 one	 is	 to	 think	 of	 the	 cond	 expression	 as	 an
expression	 that	may	appear	anywhere	 in	a	 function,	 including	 in	 the	middle	of
some	other	expression;	see	figure	24	and	compare	with	figure	23.	In	this	revised
definition	of	render/status,	the	cond	expression	is	the	first	argument	to	place-
image.	As	you	can	see,	its	result	is	always	a	text	image	that	is	placed	at	position
(20,20)	into	the	image	created	by	(render	y).

Figure	24:	Rendering	with	a	status	line,	revised

4.5 Itemizations
An	interval	distinguishes	different	sub-classes	of	numbers,	which,	in	principle,	is
an	 infinitely	 large	 class.	 An	 enumeration	 spells	 out	 item	 for	 item	 the	 useful
elements	 of	 an	 existing	 class	 of	 data.	 Some	 data	 definitions	 need	 to	 include
elements	 from	 both.	 They	 use	 itemizations,	 which	 generalize	 intervals	 and
enumerations.	They	 allow	 the	 combination	of	 any	 already-defined	data	 classes
with	each	other	and	with	individual	pieces	of	data.

Consider	 the	 following	 example,	 a	 rewrite	 of	 an	 important	 data	 definition
from	chapter	4.3:

;	A	KeyEvent	is	one	of:	
;	--	1String	
;	--	"left"	
;	--	"right"	
;	--	"up"	
;	--	…

In	 this	 case,	 the	KeyEvent	 data	 definition	 refers	 to	 the	 1String	 data	 definition.
Since	 functions	 that	 deal	 with	 KeyEvents	 often	 deal	 with	 1Strings	 separately
from	the	rest	and	do	so	with	auxiliary	functions,	we	now	have	a	convenient	way
to	express	signatures	for	these	functions,	too.

The	 description	 of	 the	 string->number	 primitive	 employs	 the	 idea	 of	 an
itemization	in	a	sophisticated	way.	Its	signature	is

;	String	->	NorF	
;	converts	the	given	string	into	a	number;	
;	produces	#false	if	impossible	
(define	(string->number	s)	(…	s	…))

meaning	that	the	result	signature	names	a	simple	class	of	data:

;	An	NorF	is	one	of:	
;	--	#false	
;	--	a	Number

This	itemization	combines	one	piece	of	data	(#false)	with	a	large,	and	distinct,
class	of	data	(Number).

Now	 imagine	 a	 function	 that	 consumes	 the	 result	 of	 string->number	 and
adds	3,	dealing	with	#false	as	if	it	were	0:

;	NorF	->	Number	
;	adds	3	to	the	given	number;	3	otherwise	
(check-expect	(add3	#false)	3)	
(check-expect	(add3	0.12)	3.12)	
(define	(add3	x)	
		(cond	
				[(false?	x)	3]	
				[else	(+	x	3)]))

As	 above,	 the	 function’s	 body	 consists	 of	 a	 cond	 expression	 with	 as	 many
clauses	 as	 there	 are	 items	 in	 the	 enumeration	 of	 the	 data	 definition.	 The	 first
cond	 clause	 recognizes	 when	 the	 function	 is	 applied	 to	 #false;	 the
corresponding	result	is	3	as	requested.	The	second	clause	is	about	numbers	and
adds	3	as	required.

Let’s	study	a	somewhat	more	purposeful	design	task:

Sample	Problem	Design	a	program	that	launches	a	rocket	when
the	user	of	your	program	presses	the	space	bar.	The	program	first
displays	 the	 rocket	 sitting	 at	 the	 bottom	 of	 the	 canvas.	 Once
launched,	it	moves	upward	at	three	pixels	per	clock	tick.

This	revised	version	suggests	a	representation	with	two	classes	of	states:

;	An	LR	(short	for	launching	rocket)	is	one	of:	
;	--	"resting"	
;	--	NonnegativeNumber	
;	interpretation	"resting"	represents	a	grounded	rocket	
;	a	number	denotes	the	height	of	a	rocket	in	flight

While	the	interpretation	of	"resting"	 is	obvious,	the	interpretation	of	numbers
is	ambiguous	in	its	notion	of	height:

1.	the	word	“height”	could	refer	to	the	distance	between	the	ground	and	the

rocket’s	point	of	reference,	say,	its	center;	or

2.	it	could	mean	the	distance	between	the	top	of	the	canvas	and	the	reference
point.

Either	one	works	fine.	The	second	one	uses	the	conventional	computer	meaning
of	 the	 word	 “height.”	 It	 is	 thus	 slightly	 more	 convenient	 for	 functions	 that
translate	 the	 state	 of	 the	 world	 into	 an	 image,	 and	 we	 therefore	 choose	 to
interpret	the	number	in	that	spirit.

To	drive	home	this	choice,	exercise	57	below	asks	you	to	solve	the	exercises
of	this	section	using	the	first	interpretation	of	height.

Exercise	 53.	 The	 design	 recipe	 for	 world	 programs	 demands	 that	 you
translate	information	into	data	and	vice	versa	to	ensure	a	complete	understanding
of	 the	 data	 definition.	 It’s	 best	 to	 draw	 some	world	 scenarios	 and	 to	 represent
them	with	data	and,	conversely,	to	pick	some	data	examples	and	to	draw	pictures
that	match	them.	Do	so	for	the	LR	definition,	including	at	least	HEIGHT	and	0	as
examples.	

In	reality,	rocket	launches	come	with	countdowns:

Sample	Problem	Design	a	program	that	launches	a	rocket	when
the	user	presses	the	space	bar.	At	that	point,	the	simulation	starts
a	 countdown	 for	 three	 ticks,	 before	 it	 displays	 the	 scenery	 of	 a
rising	 rocket.	The	 rocket	 should	move	upward	at	 a	 rate	of	 three
pixels	per	clock	tick.

Following	the	program	design	recipe,	we	first	collect	constants:

(define	HEIGHT	300)	;	distances	in	pixels	

(define	WIDTH	100)	

(define	YDELTA	3)	

(define	BACKG	(empty-scene	WIDTH	HEIGHT))	

(define	ROCKET	(rectangle	5	30	"solid"	"red"))	

(define	CENTER	(/	(image-height	ROCKET)	2))

While	 WIDTH	 and	 HEIGHT	 describe	 the	 dimensions	 of	 the	 canvas	 and	 the
background	scene,	YDELTA	describes	how	fast	the	rocket	moves	along	the	y-axis,
as	 specified	 in	 the	 problem	 statement.	 The	 CENTER	 constant	 is	 the	 computed
center	of	the	rocket.

Next	we	 turn	 to	 the	 development	 of	 a	 data	 definition.	This	 revision	 of	 the
problem	clearly	calls	for	three	distinct	sub-classes	of	states:

;	An	LRCD	(for	launching	rocket	countdown)	is	one	of:	
;	--	"resting"	
;	--	a	Number	between	-3	and	-1	
;	--	a	NonnegativeNumber	
;	interpretation	a	grounded	rocket,	in	countdown	mode,	
;	a	number	denotes	the	number	of	pixels	between	the	
;	top	of	the	canvas	and	the	rocket	(its	height)

The	 second,	 new	 sub-class	 of	 data—three	 negative	 numbers—represents	 the
world	after	the	user	pressed	the	space	bar	and	before	the	rocket	lifts	off.

At	this	point,	we	write	down	our	wish	list	for	a	function	that	renders	states	as
images	and	for	any	event-handling	functions	that	we	may	need:

;	LRCD	->	Image	
;	renders	the	state	as	a	resting	or	flying	rocket	
(define	(show	x)	
		BACKG)	

;	LRCD	KeyEvent	->	LRCD	
;	starts	the	countdown	when	space	bar	is	pressed,	
;	if	the	rocket	is	still	resting	
(define	(launch	x	ke)	
		x)	

;	LRCD	->	LRCD	
;	raises	the	rocket	by	YDELTA,	
;	if	it	is	moving	already	
(define	(fly	x)	
		x)

Remember	 that	 the	design	 recipe	 for	world	programs	dictates	 these	 signatures,
though	 the	 choice	 of	 names	 for	 the	 data	 collection	 and	 the	 event	 handlers	 are
ours.	 Also,	 we	 have	 specialized	 the	 purpose	 statements	 to	 fit	 our	 problem

statement.
From	 here,	 we	 use	 the	 design	 recipe	 for	 functions	 to	 create	 complete

definitions	for	all	three	of	them,	starting	with	examples	for	the	first	one:

As	before	in	this	chapter,	we	make	one	test	per	sub-class	in	the	data	definition.
The	first	example	shows	the	resting	state,	the	second	the	middle	of	a	countdown,
and	the	last	one	the	rocket	in	flight.	Furthermore,	we	express	the	expected	values
as	 expressions	 that	 draw	 appropriate	 images.	We	used	DrRacket’s	 interactions
area	to	create	these	images;	what	would	you	do?

A	 close	 look	 at	 the	 examples	 reveals	 that	 making	 examples	 also	 means
making	 choices.	 Nothing	 in	 the	 problem	 statement	 actually	 demands	 how
exactly	 the	 rocket	 is	 displayed	 before	 it	 is	 launched,	 but	 doing	 so	 is	 natural.
Similarly,	nothing	says	to	display	a	number	during	the	countdown,	yet	it	adds	a
nice	touch.	Lastly,	if	you	solved	exercise	53	you	also	know	that	0	and	HEIGHT	are
special	points	for	the	third	clause	of	the	data	definition.

In	general,	 intervals	deserve	special	attention	when	you	make	up	examples,
that	 is,	 they	 deserve	 at	 least	 three	 kinds	 of	 examples:	 one	 from	 each	 end	 and
another	 one	 from	 inside.	 Since	 the	 second	 sub-class	 of	 LRCD	 is	 a	 (finite)
interval	 and	 the	 third	one	 is	 a	 half-open	 interval,	 let’s	 take	 a	 look	 at	 their	 end
points:

•  Clearly,	(show	-3)	and	(show	-1)	must	produce	images	like	the	one	for

(show	 -2).	 After	 all,	 the	 rocket	 still	 rests	 on	 the	 ground,	 even	 if	 the
countdown	numbers	differ.

•  The	case	for	(show	HEIGHT)	is	different.	According	to	our	agreement,	the
value	HEIGHT	represents	the	state	when	the	rocket	has	just	been	launched.
Pictorially	this	means	the	rocket	is	still	resting	on	the	ground.	Based	on	the
last	test	case	above,	here	is	the	test	case	that	expresses	this	insight:

(check-expect	

	(show	HEIGHT)	

	(place-image	ROCKET	10	HEIGHT	BACKG))

Except	 that	 if	 you	 evaluate	 the	 “expected	 value”	 expression	 by	 itself	 in
DrRacket’s	 interactions	 area,	 you	 see	 that	 the	 rocket	 is	 halfway
underground.	This	shouldn’t	be	the	case,	of	course,	meaning	that	we	need
to	adjust	this	test	case	and	the	above:

(check-expect	

	(show	HEIGHT)	

	(place-image	ROCKET	10	(-	HEIGHT	CENTER)	BACKG))	

(check-expect	

	(show	53)	

	(place-image	ROCKET	10	(-	53	CENTER)	BACKG))

•  Finally,	determine	the	result	you	now	expect	from	(show	0).	It	is	a	simple
but	revealing	exercise.

Following	the	precedents	in	this	chapter,	show	uses	a	cond	expression	to	deal
with	the	three	clauses	of	the	data	definition:

(define	(show	x)	

		(cond	

				[(string?	x)	…]	

				[(<=	-3	x	-1)	…]	

				[(>=	x	0)	…]))

Each	 clause	 identifies	 the	 corresponding	 sub-class	 with	 a	 precise	 condition:
(string?	x)	 picks	 the	 first	 sub-class,	which	 consists	 of	 just	 one	 element,	 the
string	"resting";	(<=	-3	x	-1)	 completely	describes	 the	 second	sub-class	of

data;	and	(>=	x	0)	is	a	test	for	all	non-negative	numbers.
Exercise	 54.	 Why	 is	 (string=?	 "resting"	 x)	 incorrect	 as	 the	 first

condition	 in	show?	Conversely,	 formulate	a	completely	accurate	condition,	 that
is,	a	Boolean	expression	that	evaluates	to	#true	precisely	when	x	belongs	to	the
first	sub-class	of	LRCD.	

Combining	the	examples	and	the	above	skeleton	of	the	show	function	yields
a	complete	definition	in	a	reasonably	straightforward	manner:

Indeed,	 this	 way	 of	 defining	 functions	 is	 highly	 effective	 and	 is	 an	 essential
element	of	the	full-fledged	design	approach	in	this	book.

Exercise	 55.	 Take	 another	 look	 at	 show.	 It	 contains	 three	 instances	 of	 an
expression	with	the	approximate	shape:

(place-image	ROCKET	10	(-	…	CENTER)	BACKG)

This	 expression	 appears	 three	 times	 in	 the	 function:	 twice	 to	 draw	 a	 resting
rocket	 and	 once	 to	 draw	 a	 flying	 rocket.	 Define	 an	 auxiliary	 function	 that
performs	 this	work	and	 thus	 shorten	show.	Why	 is	 this	 a	good	 idea?	You	may
wish	to	reread	the	Prologue.	

Let’s	 move	 on	 to	 the	 second	 function,	 which	 deals	 with	 the	 key	 event	 to
launch	 the	 rocket.	We	 have	 its	 header	material,	 so	 we	 formulate	 examples	 as
tests:

(check-expect	(launch	"resting"	"	")	-3)	

(check-expect	(launch	"resting"	"a")	"resting")	

(check-expect	(launch	-3	"	")	-3)	

(check-expect	(launch	-1	"	")	-1)	

(check-expect	(launch	33	"	")	33)	

(check-expect	(launch	33	"a")	33)

An	inspection	of	these	six	examples	shows	that	 the	first	 two	are	about	the	first
sub-class	of	LRCD,	the	third	and	fourth	concern	the	countdown,	and	the	last	two
are	about	key	events	when	the	rocket	is	already	in	the	air.

Since	 writing	 down	 the	 sketch	 of	 a	 cond	 expression	 worked	 well	 for	 the
design	of	the	show	function,	we	do	it	again:

(define	(launch	x	ke)	

		(cond	

				[(string?	x)	…]	

				[(<=	-3	x	-1)	…]	

				[(>=	x	0)	…]))

Looking	back	at	the	examples	suggests	that	nothing	changes	when	the	world	is
in	a	state	that	 is	represented	by	the	second	or	third	sub-class	of	data.	Meaning,
launch	should	produce	x	when	this	happens:

(define	(launch	x	ke)	

		(cond	

				[(string?	x)	…]	

				[(<=	-3	x	-1)	x]	

				[(>=	x	0)	x]))

Finally,	 the	 first	 example	 identifies	 the	 exact	 case	 when	 the	 launch	 function
produces	a	new	world	state:

(define	(launch	x	ke)	

		(cond	

				[(string?	x)	(if	(string=?	"	"	ke)	-3	x)]	

				[(<=	-3	x	-1)	x]	

				[(>=	x	0)	x]))

Specifically,	when	the	state	of	 the	world	is	"resting"	and	the	user	presses	 the
space	bar,	the	function	starts	the	countdown	with	−3.

Copy	 the	 code	 into	 the	 definitions	 area	 of	 DrRacket	 and	 ensure	 that	 the

above	 definitions	 work.	 At	 that	 point,	 you	 may	 wish	 to	 add	 a	 function	 for
running	the	program:

;	LRCD	->	LRCD	
(define	(main1	s)	
		(big-bang	s	
				[to-draw	show]	
				[on-key	launch]))

This	 function	 does	not	 specify	what	 to	 do	when	 the	 clock	 ticks;	 after	 all,	 we
haven’t	designed	fly	yet.	Still,	with	main1	 it	 is	possible	 to	run	this	 incomplete
version	 of	 the	 program	 and	 to	 check	 that	 you	 can	 start	 the	 countdown.	What
would	you	provide	as	the	argument	in	a	call	to	main1?

The	design	of	fly—the	clock-tick	handler—proceeds	just	like	the	design	of
the	 preceding	 two	 functions,	 and	 figure	 25	 displays	 the	 result	 of	 the	 design
process.	Once	again	 the	key	is	 to	cover	 the	space	of	possible	 input	data	with	a
goodly	 bunch	 of	 examples,	 especially	 for	 the	 two	 intervals.	 These	 examples
ensure	 that	 the	countdown	and	 the	 transition	 from	 the	countdown	 to	 the	 liftoff
work	properly.

Figure	25:	Launching	a	countdown	and	a	liftoff

Exercise	56.	Define	main2	so	that	you	can	launch	the	rocket	and	watch	it	lift
off.	Read	up	on	the	on-tick	clause	to	determine	the	length	of	one	tick	and	how
to	change	it.

If	you	watch	the	entire	 launch,	you	will	notice	that	once	the	rocket	reaches
the	 top	something	curious	happens.	Explain.	Add	a	stop-when	clause	 to	main2
so	 that	 the	 simulation	 of	 the	 liftoff	 stops	 gracefully	when	 the	 rocket	 is	 out	 of
sight.	

The	solution	of	exercise	56	yields	a	complete,	working	program,	but	one	that
behaves	 a	bit	 strangely.	Experienced	programmers	 tell	 you	 that	 using	negative
numbers	 to	 represent	 the	 countdown	 phase	 is	 too	 “brittle.”	 The	 next	 chapter
introduces	the	means	to	provide	a	good	data	definition	for	this	problem.	Before
we	 go	 there,	 however,	 the	 next	 section	 spells	 out	 in	 detail	 how	 to	 design
programs	that	consume	data	described	by	itemizations.

Exercise	57.	Recall	 that	 the	word	“height”	 forced	us	 to	choose	one	of	 two
possible	interpretations.	Now	that	you	have	solved	the	exercises	in	this	section,
solve	them	again	using	the	first	interpretation	of	the	word.	Compare	and	contrast
the	solutions.	

4.6 Designing	with	Itemizations
Designing	with	Itemizations

What	 the	 preceding	 three	 sections	 have	 clarified	 is	 that	 the	 design	 of
functions	 can—and	 must—exploit	 the	 organization	 of	 the	 data	 definition.
Specifically,	 if	 a	 data	 definition	 singles	 out	 certain	 pieces	 of	 data	 or	 specifies
ranges	of	data,	then	the	creation	of	examples	and	the	organization	of	the	function
reflect	these	cases	and	ranges.

In	 this	 section,	we	 refine	 the	 design	 recipe	 of	 chapter	 3.4	 so	 that	 you	 can
proceed	 in	 a	 systematic	 manner	 when	 you	 encounter	 problems	 concerning
functions	 that	 consume	 itemizations,	 including	 enumerations	 and	 intervals.	 To
keep	 the	 explanation	 grounded,	 we	 illustrate	 the	 six	 design	 steps	 with	 the
following,	somewhat	simplistic,	example:

Sample	Problem	The	state	of	Tax	Land	has	created	a	three-stage
sales	tax	to	cope	with	its	budget	deficit.	Inexpensive	items,	those
costing	less	than	$1,000,	are	not	taxed.	Luxury	items,	with	a	price
of	 more	 than	 $10,000,	 are	 taxed	 at	 the	 rate	 of	 eight	 percent
(8.00%).	 Everything	 in	 between	 comes	 with	 a	 five	 percent
(5.00%)	markup.
Design	 a	 function	 for	 a	 cash	 register	 that,	 given	 the	 price	 of	 an
item,	computes	the	sales	tax.

Keep	this	problem	in	mind	as	we	revise	the	steps	of	the	design	recipe:

1.	 When	 the	 problem	 statement	 distinguishes	 different	 classes	 of	 input
information,	you	need	carefully	formulated	data	definitions.
A	data	definition	must	use	distinct	clauses	for	each	sub-class	of	data	or	in
some	 cases	 just	 individual	 pieces	 of	 data.	 Each	 clause	 specifies	 a	 data
representation	 for	 a	 particular	 sub-class	 of	 information.	 The	 key	 is	 that
each	 sub-class	 of	 data	 is	 distinct	 from	 every	 other	 class,	 so	 that	 our
function	can	proceed	by	analyzing	disjoint	cases.
Our	 sample	 problem	 deals	 with	 prices	 and	 taxes,	 which	 are	 usually
positive	numbers.	It	also	clearly	distinguishes	three	ranges:

;	A	Price	falls	into	one	of	three	intervals:	

;	---	0	through	1000	
;	---	1000	through	10000	
;	---	10000	and	above.	
;	interpretation	the	price	of	an	item

Do	you	understand	how	these	ranges	relate	to	the	original	problem?

2.	 As	 far	 as	 the	 signature,	 purpose	 statement,	 and	 function	 header	 are
concerned,	you	proceed	as	before.
Here	is	the	material	for	our	running	example:

;	Price	->	Number	
;	computes	the	amount	of	tax	charged	for	p	
(define	(sales-tax	p)	0)

Developers	in	the	real	world	do	not	use	plain	numbers	in	the	chosen	programming	language	for
representing	amounts	of	money.	See	intermezzo	4	for	some	problems	with	numbers.

3.	For	 functional	 examples,	 however,	 it	 is	 imperative	 that	you	pick	at	 least
one	example	from	each	sub-class	in	the	data	definition.	Also,	if	a	sub-class
is	a	finite	range,	be	sure	to	pick	examples	from	the	boundaries	of	the	range
and	from	its	interior.

Since	our	sample	data	definition	involves	three	distinct	intervals,	let’s	pick
all	 boundary	 examples	 and	 one	 price	 from	 inside	 each	 interval	 and
determine	 the	 amount	 of	 tax	 for	 each:	 0,	 537,	 1000,	 1282,	 10000,	 and
12017.
Stop!	Try	to	calculate	the	tax	for	each	of	these	prices.
Here	is	our	first	attempt,	with	rounded	tax	amounts:

The	 question	marks	 point	 out	 that	 the	 problem	 statement	 uses	 the	 vague
phrase	 “those	 costing	 less	 than	 $1,000”	 and	 “more	 than	 $10,000”	 to
specify	the	tax	table.	While	a	programmer	may	jump	to	the	conclusion	that

these	 words	 mean	 “strictly	 less”	 or	 “strictly	 more,”	 the	 lawmakers	 may
have	 meant	 to	 say	 “less	 than	 or	 equal	 to”	 or	 “more	 than	 or	 equal	 to,”
respectively.	 Being	 skeptical,	 we	 decide	 here	 that	 Tax	 Land	 legislators
always	want	more	money	to	spend,	so	the	tax	rate	for	$1,000	is	5%	and	the
rate	for	$10,000	is	8%.	A	programmer	at	a	tax	company	would	have	to	ask
a	tax-law	specialist.
Now	that	we	have	figured	out	how	the	boundaries	are	to	be	interpreted	in
the	domain,	we	could	refine	the	data	definition.	We	trust	you	can	do	this
on	your	own.
Before	we	go,	let’s	turn	some	of	the	examples	into	test	cases:

(check-expect	(sales-tax	537)	0)	

(check-expect	(sales-tax	1000)	(*	0.05	1000))	

(check-expect	(sales-tax	12017)	(*	0.08	12017))

Take	 a	 close	 look.	 Instead	 of	 just	 writing	 down	 the	 expected	 result,	 we
write	down	how	to	compute	the	expected	result.	This	makes	it	easier	later
to	formulate	the	function	definition.
Stop!	 Write	 down	 the	 remaining	 test	 cases.	 Think	 about	 why	 you	 may
need	more	test	cases	than	sub-classes	in	the	data	definition.

4.	The	biggest	novelty	is	the	conditional	template.	In	general,

the	template	mirrors	the	organization	of	sub-classes	with	a	cond.

This	slogan	means	two	concrete	things.	First,	the	function’s	body	must	be
a	 conditional	 expression	with	 as	many	 clauses	 as	 there	 are	 distinct	 sub-
classes	in	the	data	definition.	If	the	data	definition	mentions	three	distinct
sub-classes	of	input	data,	you	need	three	cond	clauses;	if	it	has	seventeen
sub-classes,	 the	cond	expression	contains	seventeen	clauses.	Second,	you
must	formulate	one	condition	expression	per	cond	clause.	Each	expression
involves	 the	 function	 parameter	 and	 identifies	 one	 of	 the	 sub-classes	 of
data	in	the	data	definition:

(define	(sales-tax	p)	

		(cond	

				[(and	(<=	0	p)	(<	p	1000))	…]	

				[(and	(<=	1000	p)	(<	p	10000))	…]	

				[(>=	p	10000)	…]))

5.	When	you	have	finished	the	template,	you	are	ready	to	define	the	function.
Given	 that	 the	 function	 body	 already	 contains	 a	 schematic	 cond

expression,	it	is	natural	to	start	from	the	various	cond	lines.	For	each	cond
line,	you	may	assume	that	the	input	parameter	meets	the	condition	and	so
you	exploit	 the	corresponding	 test	cases.	To	 formulate	 the	corresponding
result	expression,	you	write	down	the	computation	for	this	example	as	an
expression	 that	 involves	 the	 function	parameter.	 Ignore	all	other	possible
kinds	of	input	data	when	you	work	on	one	line;	the	other	cond	clauses	take
care	of	those.

(define	(sales-tax	p)	

		(cond	

				[(and	(<=	0	p)	(<	p	1000))	0]	

				[(and	(<=	1000	p)	(<	p	10000))	(*	0.05	p)]	

				[(>=	p	10000)	(*	0.08	p)]))

6.	Finally,	run	the	tests	and	ensure	that	they	cover	all	cond	clauses.
What	 do	 you	 do	 when	 one	 of	 your	 test	 cases	 fails?	 Review	 the	 end	 of
chapter	3.1	concerning	test	failures.

Exercise	58.	Introduce	constant	definitions	that	separate	the	intervals	for	low
prices	and	luxury	prices	from	the	others	so	that	the	legislators	in	Tax	Land	can
easily	raise	the	taxes	even	more.	

4.7 Finite	State	Worlds
With	 the	 design	 knowledge	 in	 this	 chapter,	 you	 can	 develop	 a	 complete
simulation	of	American	traffic	lights.	When	such	a	light	is	green	and	it	is	time	to
stop	the	traffic,	the	light	turns	yellow,	and,	after	that,	it	turns	red.	When	the	light
is	red	and	it	is	time	to	get	the	traffic	going,	the	light	simply	switches	to	green.

The	 left-hand	 side	 of	 Figure	 26	 summarizes	 this	 description	 as	 a	 state
transition	 diagram.	 Such	 a	 diagram	 consists	 of	 states	 and	 arrows	 that	 connect
these	states.	Each	state	depicts	a	traffic	light	in	one	particular	configuration:	red,
yellow,	or	green.	Each	arrow	shows	how	the	world	can	change,	from	which	state
it	 can	 transition	 to	 another	 state.	 Our	 sample	 diagram	 contains	 three	 arrows,
because	 there	 are	 three	 possible	 ways	 in	 which	 the	 traffic	 light	 can	 change.
Labels	on	 the	arrows	 indicate	 the	 reason	 for	changes;	 a	 traffic	 light	 transitions
from	one	state	to	another	as	time	passes.

Figure	26:	How	a	traffic	light	functions

In	many	 situations,	 state	 transition	 diagrams	 have	 only	 a	 finite	 number	 of
states	and	arrows.	Computer	scientists	call	 such	diagrams	 finite	state	machines
(FSM),	 also	 known	 as	 finite	 state	 automata	 (FSA).	 Despite	 their	 simplicity,
FSMs/FSAs	play	an	important	role	in	computer	science.

To	 create	 a	 world	 program	 for	 an	 FSA,	 we	 must	 first	 pick	 a	 data
representation	for	the	possible	“states	of	the	world,”	which,	according	to	chapter
3.6,	 represents	 those	 aspects	 of	 the	 world	 that	 may	 change	 in	 some	 ways	 as

opposed	 to	 those	 that	 remain	 the	 same.	 In	 the	 case	 of	 our	 traffic	 light,	 what
changes	is	the	color	of	the	light,	that	is,	which	bulb	is	turned	on.	The	size	of	the
bulbs,	their	arrangement	(horizontal	or	vertical),	and	other	aspects	don’t	change.
Since	 there	 are	 only	 three	 states,	 we	 reuse	 the	 string-based	 data	 definition	 of
TrafficLight	from	above.

The	 right-hand	 side	 of	 figure	 26	 is	 a	 diagrammatic	 interpretation	 of	 the
TrafficLight	 data	definition.	Like	 the	diagram	 in	 figure	26,	 it	 consists	 of	 three
states,	 arranged	 in	 such	 a	 way	 that	 it	 is	 easy	 to	 view	 each	 data	 element	 as	 a
representation	of	a	concrete	configuration.	Also,	the	arrows	are	now	labeled	with
tick	to	suggest	that	our	world	program	uses	the	passing	of	time	as	the	trigger	that
changes	 the	 state	 of	 the	 traffic	 light.	 If	 we	 wanted	 to	 simulate	 a	 manually
operated	light,	we	might	choose	transitions	based	on	keystrokes.

Now	that	we	know	how	to	represent	the	states	of	our	world,	how	to	go	from
one	to	the	next,	and	that	the	state	changes	at	every	tick	of	the	clock,	we	can	write
down	 the	 signature,	 a	 purpose	 statement,	 and	 a	 stub	 for	 the	 two	 functions	we
must	design:

;	TrafficLight	->	TrafficLight	
;	yields	the	next	state,	given	current	state	cs	
(define	(tl-next	cs)	cs)	

;	TrafficLight	->	Image	
;	renders	the	current	state	cs	as	an	image	
(define	(tl-render	current-state)	
		(empty-scene	90	30))

Preceding	 sections	 use	 the	 names	render	 and	next	 to	 name	 the	 functions	 that
translate	a	state	of	the	world	into	an	image	and	that	deal	with	clock	ticks.	Here
we	 prefix	 these	 names	 with	 some	 syllable	 that	 suggests	 to	 which	 world	 the
functions	belong.	Because	the	specific	functions	have	appeared	before,	we	leave
them	as	exercises.

Exercise	59.	Finish	the	design	of	a	world	program	that	simulates	the	traffic
light	FSA.	Here	is	the	main	function:

;	TrafficLight	->	TrafficLight	
;	simulates	a	clock-based	American	traffic	light	

(define	(traffic-light-simulation	initial-state)	
		(big-bang	initial-state	
				[to-draw	tl-render]	
				[on-tick	tl-next	1]))

The	function’s	argument	 is	 the	 initial	 state	 for	 the	big-bang	expression,	which
tells	DrRacket	 to	 redraw	 the	 state	 of	 the	world	with	tl-render	 and	 to	 handle
clock	ticks	with	tl-next.	Also	note	that	 it	 informs	the	computer	 that	 the	clock
should	tick	once	per	second.

Complete	 the	 design	 of	 tl-render	 and	 tl-next.	 Start	 with	 copying
TrafficLight,	tl-next,	and	tl-render	into	DrRacket’s	definitions	area.

Here	are	some	test	cases	for	the	design	of	the	latter:

Your	function	may	use	these	images	directly.	If	you	decide	to	create	images	with
the	 functions	 from	 the	 2htdp/image	 library,	 design	 an	 auxiliary	 function	 for
creating	 the	 image	 of	 a	 one-color	 bulb.	 Then	 read	 up	 on	 the	 place-image
function,	which	can	place	bulbs	into	a	background	scene.	

Exercise	 60.	 An	 alternative	 data	 representation	 for	 a	 traffic	 light	 program
may	use	numbers	instead	of	strings:

;	An	N-TrafficLight	is	one	of:	
;	--	0	interpretation	the	traffic	light	shows	red	
;	--	1	interpretation	the	traffic	light	shows	green	
;	--	2	interpretation	the	traffic	light	shows	yellow

It	greatly	simplifies	the	definition	of	tl-next:

;	N-TrafficLight	->	N-TrafficLight	
;	yields	the	next	state,	given	current	state	cs	
(define	(tl-next-numeric	cs)	(modulo	(+	cs	1)	3))

Reformulate	tl-next’s	tests	for	tl-next-numeric.
Does	 the	 tl-next	 function	 convey	 its	 intention	more	 clearly	 than	 the	 tl-

next-numeric	function?	If	so,	why?	If	not,	why	not?	
Exercise	 61.	As	 chapter	 3.4	 says,	 programs	must	 define	 constants	 and	use

names	instead	of	actual	constants.	In	this	spirit,	a	data	definition	for	traffic	lights
must	use	constants,	too:

(define	RED	0)	would	use.	
(define	GREEN	1)	
(define	YELLOW	2)	

;	An	S-TrafficLight	is	one	of:	
;	--	RED	
;	--	GREEN	
;	--	YELLOW

This	form	of	data	definition	is	what	a	seasoned	designer	would	use.

If	 the	 names	 are	 chosen	 properly,	 the	 data	 definition	 does	 not	 need	 an
interpretation	statement.

Figure	 27	 displays	 two	different	 functions	 that	 switch	 the	 state	 of	 a	 traffic
light	in	a	simulation	program.	Which	of	the	two	is	properly	designed	using	the
recipe	 for	 itemization?	Which	of	 the	 two	 continues	 to	work	 if	 you	 change	 the
constants	to	the	following

(define	RED	"red")	

(define	GREEN	"green")	

(define	YELLOW	"yellow")

Figure	27:	A	symbolic	traffic	light

Does	this	help	you	answer	the	questions?
Aside	 The	 equal?	 function	 in	 figure	 27	 compares	 two	 arbitrary	 values,

regardless	of	what	these	values	are.	Equality	is	a	complicated	topic	in	the	world
of	programming.	End	

Here	 is	 another	 finite	 state	 problem	 that	 introduces	 a	 few	 additional
complications:

Sample	 Problem	 Design	 a	 world	 program	 that	 simulates	 the
working	of	a	door	with	an	automatic	door	closer.	 If	 this	kind	of
door	is	locked,	you	can	unlock	it	with	a	key.	An	unlocked	door	is
closed,	but	someone	pushing	at	the	door	opens	it.	Once	the	person
has	passed	through	the	door	and	lets	go,	the	automatic	door	takes
over	and	closes	the	door	again.	When	a	door	is	closed,	it	can	be
locked	again.

To	tease	out	the	essential	elements,	we	again	draw	a	transition	diagram;	see
the	left-hand	side	of	figure	27.	Like	the	traffic	light,	 the	door	has	three	distinct
states:	 locked,	 closed,	 and	 open.	 Locking	 and	 unlocking	 are	 the	 activities	 that
cause	the	door	to	transition	from	the	locked	to	the	closed	state	and	vice	versa.	As
for	opening	an	unlocked	door,	we	say	that	one	needs	to	push	the	door	open.	The
remaining	transition	is	unlike	the	others	because	it	doesn’t	require	any	activities
by	anyone	or	anything	else.	Instead,	the	door	closes	automatically	over	time.	The
corresponding	transition	arrow	is	labeled	with	time	to	emphasize	this.

Following	our	recipe,	we	start	with	a	translation	of	the	three	real-world	states
into	BSL	data:

(define	LOCKED	"locked")				;	A	DoorState	is	one	of:	
(define	CLOSED	"closed")				;	--	LOCKED	
(define	OPEN	"open")								;	--	CLOSED	
																												;	--	OPEN

We	also	keep	in	mind	the	lesson	of	exercise	61,	namely,	that	it	is	best	to	define
symbolic	constants	and	formulate	data	definitions	in	terms	of	such	constants.

The	next	step	of	a	world	design	demands	that	we	translate	the	chosen	actions
in	our	domain—the	arrows	in	the	left-hand	diagram—into	interactions	with	the
computer	 that	 the	 2htdp/universe	 library	 can	 deal	 with.	 Our	 pictorial
representation	 of	 the	 door’s	 states	 and	 transitions,	 specifically	 the	 arrow	 from

open	to	closed,	suggests	the	use	of	clock	ticks.	For	the	other	arrows,	we	could
use	 either	 key	 presses	 or	 mouse	 clicks.	 Let’s	 use	 three	 keystrokes:	 "u"	 for
unlocking	the	door,	"l"	for	locking	it,	and	the	space	bar	"	"	for	pushing	it	open.
The	right-hand-side	diagram	of	figure	28	expresses	these	choices	graphically;	it
translates	 the	 state-machine	 diagram	 from	 the	 world	 of	 information	 into	 the
world	of	data	in	BSL.

Figure	28:	A	transition	diagram	for	a	door	with	an	automatic	closer

Once	 we	 have	 decided	 to	 use	 the	 passing	 of	 time	 for	 one	 action	 and	 key
presses	for	the	others,	we	must	design	functions	that	render	the	current	state	of
the	world—represented	as	DoorState—and	that	transform	it	into	the	next	state	of
the	world.	And	that,	of	course,	amounts	to	a	wish	list	of	big-bang	functions:

•  door-closer,	which	closes	the	door	during	one	tick;

•  door-action,	which	acts	on	it	in	response	to	pressing	a	key;	and

•  door-render,	which	translates	the	current	state	into	an	image.

Stop!	Formulate	appropriate	signatures.
We	start	with	door-closer.	Since	door-closer	acts	as	the	on-tick	handler,

we	 get	 its	 signature	 from	 our	 choice	 of	 DoorState	 as	 the	 collection	 of	 world
states:

;	DoorState	->	DoorState	

;	closes	an	open	door	over	the	period	of	one	tick	
(define	(door-closer	state-of-door)	state-of-door)

Making	up	examples	is	trivial	when	the	world	can	only	be	in	one	of	three	states.
Here	 we	 use	 a	 table	 to	 express	 the	 basic	 idea,	 just	 like	 in	 some	 of	 the
mathematical	examples	given	above:

given	state desired	state
LOCKED LOCKED

CLOSED CLOSED

OPEN CLOSED

Stop!	Express	these	examples	as	BSL	tests.
The	template	step	demands	a	conditional	with	three	clauses:

(define	(door-closer	state-of-door)	

		(cond	

				[(string=?	LOCKED	state-of-door)	…]	

				[(string=?	CLOSED	state-of-door)	…]	

				[(string=?	OPEN	state-of-door)	…]))

and	the	process	of	turning	this	template	into	a	function	definition	is	dictated	by
the	examples:

(define	(door-closer	state-of-door)	

		(cond	

				[(string=?	LOCKED	state-of-door)	LOCKED]	

				[(string=?	CLOSED	state-of-door)	CLOSED]	

				[(string=?	OPEN	state-of-door)	CLOSED]))

Don’t	forget	to	run	your	tests.
The	second	function,	door-action,	takes	care	of	the	remaining	three	arrows

of	the	diagram.	Functions	that	deal	with	keyboard	events	consume	both	a	world
and	a	key	event,	meaning	the	signature	is	as	follows:

;	DoorState	KeyEvent	->	DoorState	
;	turns	key	event	k	into	an	action	on	state	s	
(define	(door-action	s	k)	
		s)

We	once	again	present	the	examples	in	tabular	form:

given	state given	key	event desired	state
LOCKED "u" CLOSED

CLOSED "l" LOCKED

CLOSED "	" OPEN

OPEN — OPEN

The	examples	combine	information	from	our	drawing	with	the	choices	we	made
about	 mapping	 actions	 to	 keyboard	 events.	 Unlike	 the	 table	 of	 examples	 for
traffic	 light,	 this	 table	 is	 incomplete.	 Think	 of	 some	 other	 examples;	 then
consider	why	our	table	suffices.

From	here,	it	is	straightforward	to	create	a	complete	design:

Note	the	use	of	and	to	combine	two	conditions:	one	concerning	the	current	state
of	the	door	and	the	other	concerning	the	given	key	event.

Lastly,	we	need	to	render	the	state	of	the	world	as	a	scene:

This	simplistic	function	uses	large	text.	Here	is	how	we	run	it	all:

;	DoorState	->	DoorState	
;	simulates	a	door	with	an	automatic	door	closer	
(define	(door-simulation	initial-state)	
		(big-bang	initial-state	
			[on-tick	door-closer]	
			[on-key	door-action]	
			[to-draw	door-render]))

Now	 it	 is	 time	 for	 you	 to	 collect	 the	 pieces	 and	 run	 them	 in	DrRacket	 to	 see
whether	it	all	works.

Exercise	 62.	 During	 a	 door	 simulation	 the	 “open”	 state	 is	 barely	 visible.
Modify	 door-simulation	 so	 that	 the	 clock	 ticks	 once	 every	 three	 seconds.
Rerun	the	simulation.	

5 Adding	Structure
Suppose	you	want	to	design	a	world	program	that	simulates	a	ball	bouncing	back
and	 forth	 on	 a	 straight	 vertical	 line	 between	 the	 floor	 and	 ceiling	 of	 some
imaginary,	perfect	room.	Assume	that	it	always	moves	two	pixels	per	clock	tick.
If	you	follow	the	design	recipe,	your	first	goal	is	to	develop	a	data	representation
for	what	 changes	 over	 time.	Here,	 the	 ball’s	 position	 and	 its	 direction	 change
over	time,	but	that’s	two	values	while	big-bang	keeps	track	of	just	one.	Thus	the
question	arises	how	one	piece	of	data	can	represent	 two	changing	quantities	of
information.

Here	 is	 another	 scenario	 that	 raises	 the	 same	 question.	Your	 cell	 phone	 is
mostly	 a	 few	million	 lines	 of	 code	wrapped	 in	 plastic.	Among	other	 things,	 it
administrates	your	contacts.	Each	contact	comes	with	a	name,	a	phone	number,
an	email	 address,	 and	perhaps	 some	other	 information.	When	you	have	 lots	of
contacts,	 each	 single	 contact	 is	 best	 represented	 as	 a	 single	 piece	 of	 data;
otherwise	the	various	pieces	could	get	mixed	up	by	accident.

Mathematicians	know	tricks	that	“merge”	two	numbers	into	a	single	number	such	that	it	is	possible
to	retrieve	the	original	ones.	Programmers	consider	these	kinds	of	tricks	evil	because	they	obscure	a
program’s	true	intentions.

Because	 of	 such	 programming	 problems,	 every	 programming	 language
provides	some	mechanism	to	combine	several	pieces	of	data	into	a	single	piece
of	compound	data	and	ways	to	retrieve	the	constituent	values	when	needed.	This
chapter	 introduces	 BSL’s	 mechanics,	 so-called	 structure	 type	 definitions,	 and
how	to	design	programs	that	work	on	compound	data.

5.1 From	Positions	to	posn	Structures
A	position	on	a	world	canvas	 is	uniquely	 identified	by	 two	pieces	of	data:	 the
distance	from	the	left	margin	and	the	distance	from	the	top	margin.	The	first	is
called	an	x-coordinate	and	the	second	one	is	the	y-coordinate.

DrRacket,	which	is	basically	a	BSL	program,	represents	such	positions	with
posn	structures.	A	posn	structure	combines	two	numbers	into	a	single	value.	We
can	create	a	posn	structure	with	the	operation	make-posn,	which	consumes	two
numbers	and	makes	a	posn.	For	example,

(make-posn	3	4)

is	an	expression	that	creates	a	posn	structure	whose	x-coordinate	is	3	and	whose
y-coordinate	is	4.

A	posn	structure	has	the	same	status	as	a	number	or	a	Boolean	or	a	string.	In
particular,	 both	 primitive	 operations	 and	 functions	may	 consume	 and	 produce
structures.	Also,	a	program	can	name	a	posn	structure:

(define	one-posn	(make-posn	8	6))

Stop!	Describe	one-posn	in	terms	of	coordinates.
Before	doing	anything	else,	let’s	take	a	look	at	the	laws	of	computation	for

posn	 structures.	 That	 way,	 we	 can	 both	 create	 functions	 that	 process	 posn
structures	and	predict	what	they	compute.

5.2 Computing	with	posns
While	 functions	 and	 the	 laws	 of	 functions	 are	 completely	 familiar	 from	 pre-
algebra,	posn	 structures	appear	 to	be	a	new	 idea.	Then	again,	 the	concept	of	a
posn	ought	 to	 look	 like	 the	Cartesian	points	or	positions	 in	 the	plane	you	may
have	encountered	before.

Selecting	a	Cartesian	point’s	pieces	is	also	a	familiar	process.	For	example,
when	a	teacher	says,	“take	a	look	at	the	graph	of	figure	29	and	tell	me	what	px
and	py	are,”	you	are	likely	to	answer	31	and	26,	respectively,	because	you	know
that	you	need	to	read	off	the	values	where	the	vertical	and	horizontal	lines	that
radiate	out	from	p	hit	the	axes.

Figure	29:	A	Cartesian	point

We	thank	Neil	Toronto	for	the	plot	library.

We	can	express	this	idea	in	BSL.	Assume	you	add

(define	p	(make-posn	31	26))

to	the	definitions	area,	click	RUN,	and	perform	these	interactions:

>	(posn-x	p)	

31	

>	(posn-y	p)	

26

Defining	 p	 is	 like	 marking	 the	 point	 in	 a	 Cartesian	 plane;	 using	 posn-x	 and
posn-y	is	like	subscripting	p	with	indexes:	px	and	py.

Computationally	speaking,	posn	structures	come	with	two	equations:

(posn-x	(make-posn	x0	y0))	==	x0	

(posn-y	(make-posn	x0	y0))	==	y0

DrRacket	 uses	 these	 equations	 during	 computations.	 Here	 is	 an	 example	 of	 a
computation	involving	posn	structures:

(posn-x	p)	

==	;	DrRacket	replaces	p	with	(make-posn	31	26)	

(posn-x	(make-posn	31	26))	

==	;	DrRacket	uses	the	law	for	posn-x	

31

Stop!	Confirm	 the	 second	 interaction	 above	with	 your	 own	 computation.	Also
use	DrRacket’s	stepper	to	double-check.

5.3 Programming	with	posn
Now	consider	designing	a	function	that	computes	the	distance	of	some	location
to	the	origin	of	the	canvas:

The	 picture	 clarifies	 that	 “distance”	 means	 the	 length	 of	 the	 most	 direct	 path
—“as	 the	 crow	 flies”—from	 the	 designated	 point	 to	 the	 top-left	 corner	 of	 the
canvas.

Here	are	the	purpose	statement	and	the	header:

;	computes	the	distance	of	ap	to	the	origin	

(define	(distance-to-0	ap)	

		0)

The	key	is	that	distance-to-0	consumes	a	single	value,	some	posn.	It	produces
a	single	value,	the	distance	of	the	location	to	the	origin.

In	 order	 to	 make	 up	 examples,	 we	 need	 to	 know	 how	 to	 compute	 this
distance.	 For	 points	 with	 0	 as	 one	 of	 the	 coordinates,	 the	 result	 is	 the	 other
coordinate:

(check-expect	(distance-to-0	(make-posn	0	5))	5)	

(check-expect	(distance-to-0	(make-posn	7	0))	7)

For	the	general	case,	we	could	try	to	figure	out	the	formula	on	our	own,	or	we
may	recall	the	formula	from	our	geometry	courses.	As	you	know,	this	is	domain
knowledge	that	you	might	have,	but	in	case	you	don’t	we	supply	it;	after	all,	this

domain	knowledge	 isn’t	computer	science.	So,	here	 is	 the	distance	formula	 for
(x,y)	again:

Given	this	formula,	we	can	easily	make	up	some	more	functional	examples:

(check-expect	(distance-to-0	(make-posn	3	4))	5)	

(check-expect	(distance-to-0	(make-posn	8	6))	10)	

(check-expect	(distance-to-0	(make-posn	5	12))	13)

Just	in	case	you’re	wondering,	we	rigged	the	examples	so	that	the	results	would
be	easy	to	figure	out.	This	isn’t	the	case	for	all	posn	structures.

Stop!	 Plug	 the	 x-and	 y-coordinates	 from	 the	 examples	 into	 the	 formula.
Confirm	the	expected	results	for	all	five	examples.

Next	 we	 can	 turn	 our	 attention	 to	 the	 definition	 of	 the	 function.	 The
examples	 imply	 that	 the	design	of	distance-to-0	does	not	need	 to	distinguish
between	different	situations;	it	always	just	computes	the	distance	from	the	x-and
y-coordinates	inside	the	given	posn	structure.	But	the	function	must	select	these
coordinates	from	the	given	posn	structure.	And	for	that,	 it	uses	the	posn-x	and
posn-y	primitives.	Specifically,	the	function	needs	to	compute	(posn-x	ap)	and
(posn-y	ap)	because	ap	is	the	name	of	the	given,	unknown	posn	structure:

(define	(distance-to-0	ap)	

		(…	(posn-x	ap)	…	

			…	(posn-y	ap)	…))

Using	this	template	and	the	examples,	the	rest	is	straightforward:

The	function	squares	(posn-x	ap)	and	(posn-y	ap),	which	represent	the	x-and
y-coordinates,	sums	up	the	results,	and	takes	the	square	root.	With	DrRacket,	we
can	also	quickly	check	that	our	new	function	produces	the	proper	results	for	our

examples.
Exercise	63.	Evaluate	the	following	expressions:

•  (distance-to-0	(make-posn	3	4))

•  (distance-to-0	(make-posn	6	(*	2	4)))

•  (+	(distance-to-0	(make-posn	12	5))	10)

by	hand.	Show	all	steps.	Assume	that	sqr	performs	its	computation	in	a	single
step.	Check	the	results	with	DrRacket’s	stepper.	

Exercise	64.	The	Manhattan	distance	of	a	point	to	the	origin	considers	a	path
that	 follows	 the	 rectangular	 grid	 of	 streets	 found	 in	Manhattan.	 Here	 are	 two
examples:

The	left	one	shows	a	“direct”	strategy,	going	as	far	left	as	needed,	followed	by	as
many	 upward	 steps	 as	 needed.	 In	 comparison,	 the	 right	 one	 shows	 a	 “random
walk”	 strategy,	going	 some	blocks	 leftward,	 some	upward,	 and	 so	on	until	 the
destination—here,	the	origin—is	reached.

Stop!	Does	it	matter	which	strategy	you	follow?
Design	 the	 function	 manhattan-distance,	 which	 measures	 the	 Manhattan

distance	of	the	given	posn	to	the	origin.	

5.4 Defining	Structure	Types
Unlike	numbers	or	Boolean	values,	structures	such	as	posn	usually	don’t	come
with	a	programming	language.	Only	the	mechanism	to	define	structure	types	is
provided;	the	rest	is	left	up	to	the	programmer.	This	is	also	true	for	BSL.

A	 structure	 type	 definition	 is	 another	 form	 of	 definition,	 distinct	 from
constant	and	function	definitions.	Here	 is	how	the	creator	of	DrRacket	defined
the	posn	structure	type	in	BSL:

(define-struct	posn	[x	y])

In	general,	a	structure	type	definition	has	this	shape:

(define-struct	StructureName	[FieldName	…])

The	use	of	brackets	in	a	structure	type	definition	is	a	convention,	not	a	necessity.	It	makes	the	field
names	stand	out.	Replacing	brackets	with	parentheses	is	perfectly	acceptable.

The	keyword	define-struct	signals	the	introduction	of	a	new	structure	type.	It
is	 followed	 by	 the	 name	 of	 the	 structure.	 The	 third	 part	 of	 a	 structure	 type
definition	 is	 a	 sequence	 of	 names	 enclosed	 in	 brackets;	 these	 names	 are	 the
fields.

A	structure	type	definition	actually	defines	functions.	But,	unlike	an	ordinary
function	 definition,	 a	 structure	 type	 definition	 defines	 many	 functions
simultaneously.	Specifically,	it	defines	three	kinds	of	functions:

•  one	 constructor,	 a	 function	 that	 creates	 structure	 instances.	 It	 takes	 as
many	 values	 as	 there	 are	 fields;	 as	 mentioned,	 structure	 is	 short	 for
structure	 instance.	 The	 phrase	 structure	 type	 is	 a	 generic	 name	 for	 the
collection	of	all	possible	instances;

•  one	selector	per	field,	which	extracts	the	value	of	the	field	from	a	structure
instance;	and

•  one	 structure	 predicate,	 which,	 like	 ordinary	 predicates,	 distinguishes
instances	from	all	other	kinds	of	values.

A	program	can	use	these	as	if	they	were	functions	or	built-in	primitives.
Curiously,	 a	 structure	 type	 definition	makes	 up	names	 for	 the	 various	 new

operations	 it	 creates.	 For	 the	 name	 of	 the	 constructor,	 it	 prefixes	 the	 structure
name	with	“make-”	and	for	the	names	of	the	selectors	it	postfixes	the	structure
name	with	the	field	names.	Finally,	the	predicate	is	just	the	structure	name	with
“?”	added,	pronounced	“huh”	when	read	aloud.

This	naming	convention	looks	complicated	and	perhaps	even	confusing.	But,
with	a	little	bit	of	practice,	you’ll	get	the	hang	of	it.	It	also	explains	the	functions
that	come	with	posn	structures:	make-posn	is	the	constructor,	posn-x	and	posn-y
are	 selectors.	While	 we	 haven’t	 encountered	 posn?	 yet,	 we	 now	 know	 that	 it
exists;	the	next	chapter	explains	the	role	of	these	predicates	in	detail.

Exercise	65.	Take	a	look	at	the	following	structure	type	definitions:

•  (define-struct	movie	[title	producer	year])

•  (define-struct	person	[name	hair	eyes	phone])

•  (define-struct	pet	[name	number])

•  (define-struct	CD	[artist	title	price])

•  (define-struct	sweater	[material	size	producer])

Write	down	the	names	of	 the	functions	(constructors,	selectors,	and	predicates)
that	each	introduces.	

Enough	 with	 posn	 structures	 for	 a	 while.	 Let’s	 look	 at	 a	 structure	 type
definition	that	we	might	use	to	keep	track	of	contacts	such	as	those	in	your	cell
phone:

(define-struct	entry	[name	phone	email])

Here	are	the	names	of	the	functions	that	this	definition	introduces:

•  make-entry,	 which	 consumes	 three	 values	 and	 constructs	 an	 instance	 of
entry;

•  entry-name,	entry-phone,	and	entry-email,	which	consume	one	instance
of	entry	and	select	one	of	the	three	field	values;	and

•  entry?,	the	predicate.

Since	each	entry	combines	three	values,	the	expression

(make-entry	"Al	Abe"	"666-7771"	"lee@x.me")

creates	an	entry	 structure	with	"Al	Abe"	 in	 the	name	 field,	"666-7771"	 in	 the
phone	field,	and	"lee@x.me"	in	the	email	field.

Exercise	 66.	 Revisit	 the	 structure	 type	 definitions	 of	 exercise	 65.	 Make
sensible	guesses	as	to	what	kind	of	values	go	with	which	fields.	Then	create	at
least	one	instance	per	structure	type	definition.	

Every	 structure	 type	 definition	 introduces	 a	 new	 kind	 of	 structure,	 distinct
from	all	others.	Programmers	want	 this	kind	of	expressive	power	because	 they
wish	 to	 convey	 an	 intention	with	 the	 structure	 name.	Wherever	 a	 structure	 is
created,	selected,	or	tested,	the	text	of	the	program	explicitly	reminds	the	reader
of	 this	 intention.	 If	 it	 weren’t	 for	 these	 future	 readers	 of	 code,	 programmers
could	 use	 one	 structure	 definition	 for	 structures	 with	 one	 field,	 another	 for
structures	with	two	fields,	a	third	for	structures	with	three,	and	so	on.

In	this	context,	let’s	study	another	programming	problem:

Sample	 Problem	 Develop	 a	 structure	 type	 definition	 for	 a
program	 that	 deals	 with	 “bouncing	 balls,”	 briefly	 mentioned	 at
the	very	beginning	of	this	chapter.	The	ball’s	location	is	a	single
number,	namely	 the	distance	of	pixels	 from	the	 top.	 Its	constant
speed	is	the	number	of	pixels	it	moves	per	clock	tick.	Its	velocity
is	the	speed	plus	the	direction	in	which	it	moves.

Since	 the	 ball	 moves	 along	 a	 straight,	 vertical	 line,	 a	 number	 is	 a	 perfectly
adequate	data	representation	for	its	velocity:

•  A	positive	number	means	the	ball	moves	down.

•  A	negative	number	means	it	moves	up.

We	can	use	this	domain	knowledge	to	formulate	a	structure	type	definition:

(define-struct	ball	[location	velocity])

Both	fields	are	going	to	contain	numbers,	so	(make-ball	10	-3)	is	a	good	data
example.	 It	 represents	 a	 ball	 that	 is	10	 pixels	 from	 the	 top	 and	moves	 up	 at	3
pixels	per	clock	tick.

Notice	 how,	 in	 principle,	 a	 ball	 structure	merely	 combines	 two	 numbers,
just	 like	 a	 posn	 structure.	 When	 a	 program	 contains	 the	 expression	 (ball-
velocity	 a-ball),	 it	 immediately	 conveys	 that	 this	 program	 deals	 with	 the
representation	 of	 a	 ball	 and	 its	 velocity.	 In	 contrast,	 if	 the	 program	used	posn
structures	 instead,	 (posn-y	 a-ball)	 might	 mislead	 a	 reader	 of	 the	 code	 into
thinking	that	the	expression	is	about	a	y-coordinate.

Exercise	67.	Here	is	another	way	to	represent	bouncing	balls:

(define	SPEED	3)	

(define-struct	balld	[location	direction])	

(make-balld	10	"up")

Interpret	this	code	fragment	and	create	other	instances	of	balld.	
Since	structures	are	values,	just	like	numbers	or	Booleans	or	strings,	it	makes

sense	 that	 one	 instance	 of	 a	 structure	 occurs	 inside	 another	 instance.	Consider
game	 objects.	 Unlike	 bouncing	 balls,	 such	 objects	 don’t	 always	 move	 along
vertical	 lines.	 Instead,	 they	move	 in	some	“oblique”	manner	across	 the	canvas.
Describing	 both	 the	 location	 and	 the	 velocity	 of	 a	 ball	 moving	 across	 a	 2-
dimensional	 world	 canvas	 demands	 two	 numbers:	 one	 per	 direction.	 For	 the
location	 part,	 the	 two	 numbers	 represent	 the	 x-and	 y-coordinates.	 Velocity
describes	 the	 changes	 in	 the	 horizontal	 and	 vertical	 direction;	 in	 other	words,
these	“change	numbers”	must	be	added	to	the	respective	coordinates	to	find	out
where	the	object	will	be	next.

It	is	physics	that	tells	you	to	add	an	object’s	velocity	to	its	location	to	obtain	its	next	location.
Developers	need	to	learn	whom	to	ask	about	which	domain.

Clearly,	posn	structures	can	represent	locations.	For	the	velocities,	we	define
the	vel	structure	type:

(define-struct	vel	[deltax	deltay])

It	 comes	with	 two	 fields:	deltax	 and	 deltay.	 The	word	 “delta”	 is	 commonly
used	to	speak	of	change	when	it	comes	to	simulations	of	physical	activities,	and

the	x	and	y	parts	indicate	which	axis	is	concerned.
Now	we	can	use	 instances	of	ball	 to	combine	a	posn	 structure	with	a	vel

structure	to	represent	balls	 that	move	in	straight	 lines	but	not	necessarily	along
only	vertical	(or	horizontal)	lines:

(define	ball1	

			(make-ball	(make-posn	30	40)	(make-vel	-10	5)))

One	way	to	interpret	this	instance	is	to	think	of	a	ball	that	is	30	pixels	from	the
left	and	40	pixels	from	the	top.	It	moves	10	pixels	toward	the	left	per	clock	tick,
because	subtracting	10	pixels	 from	 the	x-coordinate	brings	 it	closer	 to	 the	 left.
As	 for	 the	 vertical	 direction,	 the	 ball	 drops	 at	5	 pixels	 per	 clock	 tick,	 because
adding	positive	numbers	to	a	y-coordinate	increases	the	distance	from	the	top.

Exercise	 68.	An	 alternative	 to	 the	 nested	 data	 representation	 of	 balls	 uses
four	fields	to	keep	track	of	the	four	properties:

(define-struct	ballf	[x	y	deltax	deltay])

Yet	another	alternative	is	to	use	complex	numbers.	If	you	know	about	them,	contemplate	a	data
representation	that	uses	them	for	both	location	and	velocity.	For	example,	in	BSL,	4-3i	is	a	complex
number	and	could	be	used	to	represent	the	location	or	velocity	(4,-3).

Programmers	call	this	a	flat	representation.	Create	an	instance	of	ballf	that	has
the	same	interpretation	as	ball1.	

For	a	second	example	of	nested	structures,	let’s	briefly	look	at	the	example
of	contact	lists.	Many	cell	phones	support	contact	lists	that	allow	several	phone
numbers	per	 name:	one	 for	 a	 home	 line,	 one	 for	 the	office,	 and	one	 for	 a	 cell
phone	number.	For	phone	numbers,	we	wish	to	 include	both	the	area	code	and
the	 local	 number.	 Since	 this	 nests	 the	 information,	 it’s	 best	 to	 create	 a	 nested
data	representation,	too:

(define-struct	centry	[name	home	office	cell])	

(define-struct	phone	[area	number])	

(make-centry	"Shriram	Fisler"	

													(make-phone	207	"363-2421")	

													(make-phone	101	"776-1099")	

													(make-phone	208	"112-9981"))

The	intention	here	is	 that	an	entry	on	a	contact	 list	has	four	fields:	a	name	and
three	 phone	 records.	 The	 latter	 are	 represented	with	 instance	 of	 phone,	 which
separates	the	area	code	from	the	local	phone	number.

In	 sum,	 nesting	 information	 is	 natural.	 The	 best	 way	 to	 represent	 such
information	with	 data	 is	 to	mirror	 the	 nesting	with	 nested	 structure	 instances.
Doing	 so	makes	 it	 easy	 to	 interpret	 the	 data	 in	 the	 application	 domain	 of	 the
program,	 and	 it	 is	 also	 straightforward	 to	 go	 from	 examples	 of	 information	 to
data.	Of	course,	it	is	really	the	task	of	data	definitions	to	specify	how	to	go	back
and	 forth	 between	 information	 and	 data.	 Before	 we	 study	 data	 definitions	 for
structure	type	definitions,	however,	we	first	take	a	systematic	look	at	computing
with,	and	thinking	about,	structures.

5.5 Computing	with	Structures
Structure	 types	generalize	Cartesian	points	 in	 two	ways.	First,	 a	 structure	 type
may	 specify	 an	 arbitrary	 number	 of	 fields:	 zero,	 one,	 two,	 three,	 and	 so	 forth.
Second,	 structure	 types	 name	 fields,	 they	 don’t	 number	 them.	 This	 helps
programmers	 read	 code	 because	 it	 is	 much	 easier	 to	 remember	 that	 a	 family
name	is	available	in	a	field	called	last-name	than	in	the	7th	field.

Most	programming	languages	also	support	structure-like	data	that	use	numeric	field	names.

In	 the	 same	 spirit,	 computing	 with	 structure	 instances	 generalizes	 the
manipulation	of	Cartesian	 points.	To	 appreciate	 this	 idea,	 let	 us	 first	 look	 at	 a
diagrammatic	way	to	think	about	structure	instances	as	lockboxes	with	as	many
compartments	as	there	are	fields.	Here	is	a	representation	of

(definepl(make-entry"Al	Abe""666-7771""lee@x.me"))

as	such	a	diagram:

The	box’s	italicized	label	identifies	it	as	an	instance	of	a	specific	structure	type;
each	compartment	is	labeled,	too.	Here	is	another	instance:

(make-entry	"Tara	Harp"	"666-7770"	"th@smlu.edu")

corresponds	to	a	similar	box	diagram,	though	the	content	differs:

Not	surprisingly,	nested	structure	 instances	have	a	diagram	of	boxes	nested
in	boxes.	Thus,	ball1	from	above	is	equivalent	to	this	diagram:

In	this	case,	the	outer	box	contains	two	boxes,	one	per	field.
Exercise	69.	Draw	box	representations	for	the	solution	of	exercise	65.	
In	 the	 context	 of	 this	 imagery,	 a	 selector	 is	 like	 a	 key.	 It	 opens	 a	 specific

compartment	for	a	certain	kind	of	box	and	thus	enables	the	holder	to	extract	its
content.	Hence,	applying	entry-name	to	pl	from	above	yields	a	string:

>	(entry-name	pl)	

"Al	Abe"

But	entry-name	applied	to	a	posn	structure	signals	an	error:

>	(entry-name	(make-posn	42	5))	

entry-name:expects	an	entry,	given	(posn	42	5)

If	a	compartment	contains	a	box,	it	might	be	necessary	to	use	two	selectors	in	a
row	to	get	to	the	desired	number:

>	(ball-velocity	ball1)	

(make-vel	-10	5)

Applying	ball-velocity	to	ball1	extracts	the	value	of	the	velocity	field,	which
is	an	instance	of	vel.	To	get	to	the	velocity	along	the	x	axis,	we	apply	a	selector
to	the	result	of	the	first	selection:

>	(vel-deltax	(ball-velocity	ball1))	

-10

Since	the	inner	expression	extracts	the	velocity	from	ball1,	the	outer	expression
extracts	the	value	of	the	deltax	field,	which	in	this	case	is	-10.

The	 interactions	 also	 show	 that	 structure	 instances	 are	 values.	 DrRacket
prints	them	exactly	as	entered,	just	like	for	plain	values	such	as	numbers:

Stop!	Try	this	last	interaction	at	home,	so	you	see	the	proper	result.
Generally	 speaking,	 a	 structure	 type	 definition	 not	 only	 creates	 new

functions	 and	 new	 ways	 to	 create	 values,	 but	 it	 also	 adds	 new	 laws	 of
computation	 to	 DrRacket’s	 knowledge.	 These	 laws	 generalize	 those	 for	 posn
structures	in	chapter	5.2,	and	they	are	best	understood	by	example.

When	DrRacket	encounters	a	structure	type	definition	with	two	fields,

(define-struct	ball	[location	velocity])

it	introduces	two	laws,	one	per	selector:

(ball-location	(make-ball	l0	v0))	==	l0	

(ball-velocity	(make-ball	l0	v0))	==	v0

For	different	structure	type	definitions,	it	introduces	analogous	laws.	Thus,

(define-struct	vel	[deltax	deltay])

DrRacket	adds	these	two	laws	to	its	knowledge:

(vel-deltax	(make-vel	dx0	dy0))	==	dx0	

(vel-deltay	(make-vel	dx0	dy0))	==	dy0

Using	these	laws,	we	can	now	explain	the	interaction	from	above:

(vel-deltax	(ball-velocity	ball1))	

==	;	DrRacket	replaces	ball1	with	its	value	

(vel-deltax	

		(ball-velocity	

				(make-ball	(make-posn	30	40)	(make-vel	-10	5))))	

==	;	DrRacket	uses	the	law	for	ball-velocity	

(vel-deltax	(make-vel	-10	5))	

==	;	DrRacket	uses	the	law	for	vel-deltax	

-10

Exercise	70.	Spell	out	the	laws	for	these	structure	type	definitions:

(define-struct	centry	[name	home	office	cell])	

(define-struct	phone	[area	number])

Use	DrRacket’s	stepper	to	confirm	101	as	the	value	of	this	expression:

(phone-area	

	(centry-office	

			(make-centry	"Shriram	Fisler"	

					(make-phone	207	"363-2421")	

					(make-phone	101	"776-1099")	

					(make-phone	208	"112-9981"))))

Predicates	are	the	last	idea	that	we	must	discuss	to	understand	structure	type
definitions.	 As	 mentioned,	 every	 structure	 type	 definition	 introduces	 one	 new
predicate.	 DrRacket	 uses	 these	 predicates	 to	 discover	 whether	 a	 selector	 is
applied	to	the	proper	kind	of	value;	the	next	chapter	explains	this	idea	in	detail.
Here	we	 just	 want	 to	 convey	 that	 these	 predicates	 are	 just	 like	 the	 predicates
from	“arithmetic.”	While	number?	 recognizes	numbers	and	string?	 recognizes
strings,	 predicates	 such	 as	 posn?	 and	 entry?	 recognize	 posn	 structures	 and
entry	structures.	We	can	confirm	our	ideas	of	how	they	work	with	experiments
in	 the	 interactions	 area.	 Assume	 that	 the	 definitions	 area	 contains	 these
definitions:

(define	ap	(make-posn	7	0))	

(define	pl	(make-entry	"Al	Abe"	"666-7771"	"lee@x.me"))

If	posn?	is	a	predicate	that	distinguishes	posns	from	all	other	values,	we	should
expect	that	it	yields	#false	for	numbers	and	#true	for	ap:

>	(posn?	ap)	

#true	

>	(posn?	42)	

#false	

>	(posn?	#true)	

#false	

>	(posn?	(make-posn	3	4))	

#true

Similarly,	entry?	distinguishes	entry	structures	from	all	other	values:

>	(entry?	pl)	

#true	

>	(entry?	42)	

#false	

>	(entry?	#true)	

#false

In	 general,	 a	 predicate	 recognizes	 exactly	 those	 values	 constructed	 with	 a
constructor	 of	 the	 same	 name.	 Intermezzo	 1	 explains	 this	 law	 in	 detail,	 and	 it
also	collects	the	laws	of	computing	for	BSL	in	one	place.

Exercise	71.	Place	the	following	into	DrRacket’s	definitions	area:

;	distances	in	terms	of	pixels:	

(define	HEIGHT	200)	

(define	MIDDLE	(quotient	HEIGHT	2))	

(define	WIDTH	400)	

(define	CENTER	(quotient	WIDTH	2))	

(define-struct	game	[left-player	right-player	ball])	

(define	game0	

		(make-game	MIDDLE	MIDDLE	(make-posn	CENTER	CENTER)))

Click	RUN	and	evaluate	the	following	expressions:

(game-ball	game0)	

(posn?	(game-ball	game0))	

(game-left-player	game0)

Explain	 the	 results	 with	 step-by-step	 computations.	 Double-check	 your
computations	with	DrRacket’s	stepper.	

5.6 Programming	with	Structures
Proper	programming	calls	for	data	definitions.	With	the	introduction	of	structure
type	 definitions,	 data	 definitions	 become	 interesting.	 Remember	 that	 a	 data
definition	provides	a	way	of	representing	information	into	data	and	interpreting
that	data	as	information.	For	structure	types,	this	calls	for	a	description	of	what
kind	 of	 data	 goes	 into	 which	 field.	 For	 some	 structure	 type	 definitions,
formulating	such	descriptions	is	easy	and	obvious:

(define-struct	posn	[x	y])	
;	A	Posn	is	a	structure:	
;			(make-posn	Number	Number)	
;	interpretation	a	point	x	pixels	from	left,	y	from	top

It	doesn’t	make	any	sense	to	use	other	kinds	of	data	to	create	a	posn.	Similarly,
all	fields	of	entry—our	structure	type	definition	for	entries	on	a	contact	list—are
clearly	supposed	to	be	strings,	according	to	our	usage	in	the	preceding	section:

(define-struct	entry	[name	phone	email])	
;	An	Entry	is	a	structure:	
;				(make-entry	String	String	String)	
;	interpretation	a	contact's	name,	phone#,	and	email

For	 both	 posn	 and	 entry,	 a	 reader	 can	 easily	 interpret	 instances	 of	 these
structures	in	the	application	domain.

Contrast	 this	 simplicity	 with	 the	 structure	 type	 definition	 for	 ball,	 which
obviously	allows	at	least	two	distinct	interpretations:

(define-struct	ball	[location	velocity])	
;	A	Ball-1d	is	a	structure:	
;				(make-ball	Number	Number)	
;	interpretation	1	distance	to	top	and	velocity	
;	interpretation	2	distance	to	left	and	velocity

Whichever	one	we	use	in	a	program,	we	must	stick	to	it	consistently.	As	chapter
5.4	 shows,	 however,	 it	 is	 also	 possible	 to	 use	 ball	 structures	 in	 an	 entirely

different	manner:

;	A	Ball-2d	is	a	structure:	
;	(make-ball	Posn	Vel)	
;	interpretation	a	2-dimensional	position	and	velocity	

(define-struct	vel	[deltax	deltay])	
;	A	Vel	is	a	structure:	
;	(make-vel	Number	Number)	
;	interpretation	(make-vel	dx	dy)	means	a	velocity	of	
;	dx	pixels	[per	tick]	along	the	horizontal	and	
;	dy	pixels	[per	tick]	along	the	vertical	direction

Here	we	name	a	second	collection	of	data,	Ball-2d,	distinct	from	Ball-1d,	to
describe	data	representations	for	balls	that	move	in	straight	lines	across	a	world
canvas.	 In	 short,	 it	 is	 possible	 to	 use	one	and	 the	 same	 structure	 type	 in	 two
different	ways.	Of	course,	within	one	program,	it	is	best	to	stick	to	one	and	only
one	use;	otherwise	you	are	setting	yourself	up	for	problems.

Also,	Ball-2d	refers	 to	another	one	of	our	data	definitions,	namely,	 the	one
for	Vel.	While	 all	 other	 data	 definitions	 have	 thus	 far	 referred	 to	 built-in	 data
collections	 (Number,	 Boolean,	 String),	 it	 is	 perfectly	 acceptable,	 and	 indeed
common,	that	one	of	your	data	definitions	refers	to	another.

Exercise	72.	Formulate	a	data	definition	for	the	above	phone	structure	type
definition	that	accommodates	the	given	examples.

Next	formulate	a	data	definition	for	phone	numbers	using	this	structure	type
definition:

(define-struct	phone#	[area	switch	num])

Historically,	the	first	three	digits	make	up	the	area	code,	the	next	three	the	code
for	 the	 phone	 switch	 (exchange)	 of	 your	 neighborhood,	 and	 the	 last	 four	 the
phone	with	respect	to	the	neighborhood.	Describe	the	content	of	the	three	fields
as	precisely	as	possible	with	intervals.	

At	 this	 point,	 you	 might	 be	 wondering	 what	 data	 definitions	 really	 mean.
This	 question,	 and	 its	 answer,	 is	 the	 topic	 of	 the	 next	 section.	 For	 now,	 we
indicate	how	to	use	data	definitions	for	program	design.

Here	is	a	problem	statement	to	set	up	some	context:

Sample	 Problem	 Your	 team	 is	 designing	 an	 interactive	 game
program	 that	 moves	 a	 red	 dot	 across	 a	 100	 ×	 100	 canvas	 and
allows	players	to	use	the	mouse	to	reset	the	dot.	Here	is	how	far
you	got	together:

(define	MTS	(empty-scene	100	100))	
(define	DOT	(circle	3	"solid"	"red"))	

;	A	Posn	represents	the	state	of	the	world.	

;	Posn	->	Posn	
(define	(main	p0)	
		(big-bang	p0	
				[on-tick	x+]	
				[on-mouse	reset-dot]	
				[to-draw	scene+dot]))

Your	task	is	to	design	scene+dot,	the	function	that	adds	a	red	dot
to	the	empty	canvas	at	the	specified	position.

The	problem	context	dictates	the	signature	of	your	function:

;	Posn	->	Image	
;	adds	a	red	spot	to	MTS	at	p	
(define	(scene+dot	p)	MTS)

Adding	a	purpose	statement	is	straightforward.	As	chapter	3.1	mentions,	it	uses
the	function’s	parameter	to	express	what	the	function	computes.

Now	we	work	out	a	couple	of	examples	and	formulate	them	as	tests:

(check-expect	(scene+dot	(make-posn	10	20))	

														(place-image	DOT	10	20	MTS))	

(check-expect	(scene+dot	(make-posn	88	73))	

														(place-image	DOT	88	73	MTS))

Given	 that	 the	 function	 consumes	 a	 Posn,	 we	 know	 that	 the	 function	 can

extract	the	values	of	the	x	and	y	fields:

(define	(scene+dot	p)	

		(…	(posn-x	p)	…	(posn-y	p)	…))

Once	we	see	these	additional	pieces	in	the	body	of	the	function,	the	rest	of	the
definition	is	straightforward.	Using	place-image,	the	function	puts	DOT	into	MTS
at	the	coordinates	contained	in	p:

(define	(scene+dot	p)	

		(place-image	DOT	(posn-x	p)	(posn-y	p)	MTS))

A	function	may	produce	structures.	Let’s	 resume	our	sample	problem	from
above	because	it	includes	just	such	a	task:

Sample	Problem	A	 colleague	 is	 asked	 to	 define	x+,	 a	 function
that	consumes	a	Posn	and	increases	the	x-coordinate	by	3.

Recall	that	the	x+	function	handles	clock	ticks.
We	can	adapt	the	first	few	steps	of	the	design	of	scene+dot:

;	Posn	->	Posn	
;	increases	the	x-coordinate	of	p	by	3	
(check-expect	(x+	(make-posn	10	0))	(make-posn	13	0))	
(define	(x+	p)	
		(…	(posn-x	p)	…	(posn-y	p)	…))

The	 signature,	 the	 purpose,	 and	 the	 example	 all	 come	 out	 of	 the	 problem
statement.	 Instead	 of	 a	 header—a	 function	 with	 a	 default	 result—our	 sketch
contains	the	two	selector	expressions	for	Posns.	After	all,	the	information	for	the
result	must	come	from	the	inputs,	and	the	input	is	a	structure	that	contains	two
values.

Finishing	 the	definition	 is	easy	now.	Since	 the	desired	 result	 is	a	Posn,	 the
function	uses	make-posn	to	combine	the	pieces:

(define	(x+	p)	
		(make-posn	(+	(posn-x	p)	3)	(posn-y	p)))

Exercise	73.	Design	the	function	posn-up-x,	which	consumes	a	Posn	p	and	a

Number	n.	It	produces	a	Posn	like	p	with	n	in	the	x	field.
A	neat	observation	is	that	we	can	define	x+	using	posn-up-x:

(define	(x+	p)	

		(posn-up-x	p	(+	(posn-x	p)	3)))

Note	 Functions	 such	 as	 posn-up-x	 are	 often	 called	 updaters	 or	 functional
setters.	They	are	extremely	useful	when	you	write	large	programs.	

A	function	may	also	produce	instances	from	atomic	data.	While	make-posn
is	a	built-in	primitive	that	does	so,	our	running	problem	provides	another	fitting
illustration:

Sample	Problem	Another	 colleague	 is	 tasked	 to	 design	reset-
dot,	a	function	that	resets	the	dot	when	the	mouse	is	clicked.

To	 tackle	 this	 problem,	 you	 need	 to	 recall	 from	 chapter	 3.6	 that	mouse-event
handlers	 consume	 four	 values:	 the	 current	 state	 of	 the	 world,	 the	 x-and	 y-
coordinates	of	the	mouse	click,	and	a	MouseEvt.

By	 adding	 the	 knowledge	 from	 the	 sample	 problem	 to	 the	 program	design
recipe,	we	get	a	signature,	a	purpose	statement,	and	a	header:

;	Posn	Number	Number	MouseEvt	->	Posn	
;	for	mouse	clicks,	(make-posn	x	y);	otherwise	p	
(define	(reset-dot	p	x	y	me)	p)

Examples	 for	 mouse-event	 handlers	 need	 a	 Posn,	 two	 numbers,	 and	 a
MouseEvt,	which	is	just	a	special	kind	of	String.	A	mouse	click,	for	example,	is
represented	with	one	of	two	strings:	"button-down"	and	"button-up".	The	first
one	 signals	 that	 a	 user	 clicked	 the	mouse	 button,	 the	 latter	 signals	 its	 release.
With	 this	 in	mind,	 here	 are	 two	 examples,	which	 you	may	wish	 to	 study	 and
interpret:

(check-expect	

		(reset-dot	(make-posn	10	20)	29	31	"button-down")	

		(make-posn	29	31))	

(check-expect	

		(reset-dot	(make-posn	10	20)	29	31	"button-up")	

		(make-posn	10	20))

Although	 the	 function	 consumes	 only	 atomic	 forms	 of	 data,	 its	 purpose
statement	 and	 the	 examples	 suggest	 that	 it	 differentiates	between	 two	kinds	of
MouseEvts:	 "button-down"	 and	 all	 others.	 Such	 a	 case	 split	 suggests	 a	 cond
expression:

(define	(reset-dot	p	x	y	me)	

		(cond	

				[(mouse=?	"button-down"	me)	(…	p	…	x	y	…)]	

				[else	(…	p	…	x	y	…)]))

Following	 the	 design	 recipe,	 this	 skeleton	 mentions	 the	 parameters	 to	 remind
you	of	what	data	is	available.

The	rest	is	straightforward	again	because	the	purpose	statement	itself	dictates
what	the	function	computes	in	each	of	the	two	cases:

(define	(reset-dot	p	x	y	me)	

		(cond	

				[(mouse=?	me	"button-down")	(make-posn	x	y)]	

				[else	p]))

As	above,	we	could	have	mentioned	 that	make-posn	 creates	 instances	of	Posn,
but	you	know	this	and	we	don’t	need	to	remind	you	constantly.

Exercise	 74.	 Copy	 all	 relevant	 constant	 and	 function	 definitions	 to
DrRacket’s	definitions	area.	Add	the	tests	and	make	sure	they	pass.	Then	run	the
program	and	use	the	mouse	to	place	the	red	dot.	

Many	 programs	 deal	 with	 nested	 structures.	 We	 illustrate	 this	 point	 with
another	small	excerpt	from	a	world	program:

Sample	 Problem	 Your	 team	 is	 designing	 a	 game	 program	 that
keeps	track	of	an	object	that	moves	across	the	canvas	at	changing
speed.	 The	 chosen	 data	 representation	 requires	 two	 data
definitions:

(define-struct	ufo	[loc	vel])	
;	A	UFO	is	a	structure:	
;	(make-ufo	Posn	Vel)	
;	interpretation	(make-ufo	p	v)	is	at	location	
;	p	moving	at	velocity	v

Remember,	it’s	about	physics.

It	is	your	task	to	develop	ufo-move-1.	The	function	computes	the
location	of	a	given	UFO	after	one	clock	tick	passes.

Let	us	start	with	some	examples	that	explore	the	data	definitions	a	bit:

(define	v1	(make-vel	8	-3))	

(define	v2	(make-vel	-5	-3))	

(define	p1	(make-posn	22	80))	

(define	p2	(make-posn	30	77))	

(define	u1	(make-ufo	p1	v1))	

(define	u2	(make-ufo	p1	v2))	

(define	u3	(make-ufo	p2	v1))	

(define	u4	(make-ufo	p2	v2))

The	order	of	these	definitions	matters.	See	intermezzo	1.

The	first	four	are	elements	of	Vel	and	Posn.	The	last	four	combine	the	first	four
in	all	possible	combinations.

Next	we	write	down	a	signature,	a	purpose,	some	examples,	and	a	function
header:

For	the	function	examples,	we	use	the	data	examples	and	our	domain	knowledge
of	positions	and	velocities.	Specifically,	we	know	that	a	vehicle	that	 is	moving
north	at	60	miles	per	hour	and	west	at	10	miles	per	hour	is	going	to	end	up	60

miles	north	from	its	starting	point	and	10	miles	west	after	one	hour	of	driving.
After	two	hours,	it	will	be	120	miles	north	from	the	starting	point	and	20	miles
to	its	west.

As	always,	a	function	that	consumes	a	structure	instance	can	(and	probably
must)	extract	information	from	the	structure	to	compute	its	result.	So	once	again
we	add	selector	expressions	to	the	function	definition:

(define	(ufo-move-1	u)	

		(…	(ufo-loc	u)	…	(ufo-vel	u)	…))

Note	The	selector	expressions	raise	 the	question	whether	we	need	to	refine
this	 sketch	even	more.	After	 all,	 the	 two	expressions	 extract	 instances	of	Posn
and	 Vel,	 respectively.	 These	 two	 are	 also	 structure	 instances,	 and	 we	 could
extract	values	from	them	in	turn.	Here	is	what	the	resulting	skeleton	would	look
like:

;	UFO	->	UFO	
(define	(ufo-move-1	u)	
		(…	(posn-x	(ufo-loc	u))	…	
			…	(posn-y	(ufo-loc	u))	…	
			…	(vel-deltax	(ufo-vel	u))	…	
			…	(vel-deltay	(ufo-vel	u))	…))

Doing	 so	 obviously	makes	 the	 sketch	 look	 quite	 complex,	 however.	 For	 truly
realistic	programs,	following	this	idea	to	its	logical	end	would	create	incredibly
complex	program	outlines.	More	generally,

If	 a	 function	 deals	 with	 nested	 structures,	 develop	 one	 function
per	level	of	nesting.

In	the	second	part	of	the	book,	this	guideline	becomes	even	more	important	and
we	refine	it	a	bit.	End

Here	we	focus	on	how	to	combine	the	given	Posn	and	the	given	Vel	in	order
to	 obtain	 the	 next	 location	 of	 the	 UFO—because	 that’s	 what	 our	 physics
knowledge	 tells	 us.	 Specifically,	 it	 says	 to	 “add”	 the	 two	 together,	 where
“adding”	 can’t	 mean	 the	 operation	 we	 usually	 apply	 to	 numbers.	 So	 let	 us
imagine	that	we	have	a	function	for	adding	a	Vel	to	a	Posn:

;	Posn	Vel	->	Posn	
;	adds	v	to	p	
(define	(posn+	p	v)	p)

Writing	down	the	signature,	purpose,	and	header	like	this	is	a	legitimate	way	of
programming.	It	is	called	“making	a	wish”	and	is	a	part	of	“making	a	wish	list”
as	described	in	chapter	3.4.

The	key	is	to	make	wishes	in	such	a	way	that	we	can	complete	the	function
that	we	are	working	on.	In	this	manner,	we	can	split	difficult	programming	tasks
into	different	tasks,	a	technique	that	helps	us	solve	problems	in	reasonably	small
steps.	For	the	sample	problem,	we	get	a	complete	definition	for	ufo-move-1:

Because	 ufo-move-1	 and	 posn+	 are	 complete	 definitions,	 we	 can	 even	 click
RUN,	 which	 checks	 that	 DrRacket	 doesn’t	 complain	 about	 grammatical
problems	with	our	work	so	far.	Naturally,	 the	 tests	 fail	because	posn+	 is	 just	a
wish,	not	the	function	we	need.

Now	it	is	time	to	focus	on	posn+.	We	have	completed	the	first	two	steps	of
the	 design	 (data	 definitions,	 signature/purpose/header),	 so	 we	 must	 create
examples.	One	easy	way	to	create	functional	examples	for	a	“wish”	is	to	use	the
examples	 for	 the	original	 function	and	 to	 turn	 them	 into	examples	 for	 the	new
function:

(check-expect	(posn+	p1	v1)	p2)	

(check-expect	(posn+	p1	v2)	(make-posn	17	77))

In	geometry,	the	operation	corresponding	to	posn+	is	called	a	translation.

For	this	problem,	we	know	that	(ufo-move-1	(make-ufo	p1	v1))	is	to	produce
p2.	 At	 the	 same	 time,	 we	 know	 that	 ufo-move-1	 applies	 posn+	 to	 p1	 and	 v1,
implying	that	posn+	must	produce	p2	for	these	inputs.	Stop!	Check	our	manual
calculations	to	ensure	that	you	are	following	what	we	are	doing.

We	are	now	able	to	add	selector	expressions	to	our	design	sketch:

(define	(posn+	p	v)	

		(…	(posn-x	p)	…	(posn-y	p)	…	

			…	(vel-deltax	v)	…	(vel-deltay	v)	…))

Because	posn+	consumes	instances	of	Posn	and	Vel	and	because	each	piece	of
data	is	an	instance	of	a	two-field	structure,	we	get	four	expressions.	In	contrast	to
the	 nested	 selector	 expressions	 from	 above,	 these	 are	 simple	 applications	 of	 a
selector	to	a	parameter.

If	we	remind	ourselves	what	these	four	expressions	represent,	or	if	we	recall
how	we	computed	the	desired	results	from	the	two	structures,	our	completion	of
the	definition	of	posn+	is	straightforward:

The	first	step	is	to	add	the	velocity	in	the	horizontal	direction	to	the	x-coordinate
and	 the	 velocity	 in	 the	 vertical	 direction	 to	 the	 y-coordinate.	 This	 yields	 two
expressions,	one	per	new	coordinate.	With	make-posn	we	can	combine	them	into
a	single	Posn	again.

Exercise	75.	Enter	 these	definitions	and	 their	 test	cases	 into	 the	definitions
area	of	DrRacket	and	make	sure	they	work.	This	is	the	first	time	that	you	have
dealt	with	 a	 “wish,”	 and	 you	 need	 to	make	 sure	 you	 understand	 how	 the	 two
functions	work	together.	

5.7 The	Universe	of	Data
Every	language	comes	with	a	universe	of	data.	This	data	represents	information
from	and	about	the	external	world;	it	is	what	programs	manipulate.	This	universe
of	data	is	a	collection	that	not	only	contains	all	built-in	data	but	also	any	piece	of
data	that	any	program	may	ever	create.

Remember	that	mathematicians	call	data	collections	or	data	classes	sets.

The	 left	 side	of	 figure	30	 shows	one	way	 to	 imagine	 the	universe	of	BSL.
Since	there	are	infinitely	many	numbers	and	strings,	the	collection	of	all	data	is
infinite.	 We	 indicate	 “infinity”	 in	 the	 figure	 with	 “⋯”,	 but	 a	 real	 definition
would	have	to	avoid	this	imprecision.

Figure	30:	The	universe	of	data

Neither	programs	nor	 individual	 functions	 in	programs	deal	with	 the	entire
universe	of	data.	 It	 is	 the	purpose	of	 a	data	definition	 to	describe	parts	of	 this
universe	 and	 to	 name	 these	 parts	 so	 that	 we	 can	 refer	 to	 them	 concisely.	 Put
differently,	a	named	data	definition	is	a	description	of	a	collection	of	data,	and
that	 name	 is	 usable	 in	 other	 data	 definitions	 and	 in	 function	 signatures.	 In	 a
function	signature,	 the	name	specifies	what	data	a	 function	will	deal	with	and,
implicitly,	which	part	of	the	universe	of	data	it	won’t	deal	with.

Practically,	 the	 data	 definitions	 of	 the	 first	 four	 chapters	 restrict	 built-in
collections	 of	 data.	 They	 do	 so	 via	 an	 explicit	 or	 implicit	 itemization	 of	 all

included	values.	For	example,	 the	 region	shaded	with	gray	on	 the	 right	 side	 in
figure	30	depicts	the	following	data	definition:

;	A	BS	is	one	of:	
;	---	"hello",	
;	---	"world",	or	
;	---	pi.

While	this	particular	data	definition	looks	silly,	note	the	stylized	mix	of	English
and	BSL	that	is	used.	Its	meaning	is	precise	and	unambiguous,	clarifying	exactly
which	elements	belong	to	BS	and	which	don’t.

The	 definition	 of	 structure	 types	 completely	 revised	 the	 picture.	 When	 a
programmer	 defines	 a	 structure	 type,	 the	 universe	 expands	 with	 all	 possible
structure	 instances.	 For	 example,	 the	 addition	 of	posn	means	 that	 instances	 of
posn	 with	 all	 possible	 values	 in	 the	 two	 fields	 appear.	 The	 middle	 bubble	 in
figure	31	depicts	the	addition	of	these	values,	including	such	seeming	nonsense
as	(make-posn	"hello"	0)	 and	(make-posn	(make-posn	0	1)	2).	And	yes,
some	of	these	instances	of	posn	make	no	sense	to	us.	But,	a	BSL	program	may
construct	any	of	them.

Figure	31:	Adding	structure	to	a	universe

Adding	yet	 another	 structure	 type	definition	mixes	and	matches	everything
again.	 Say	 we	 add	 the	 definition	 for	 ball,	 also	 with	 two	 fields.	 As	 the	 third
bubble	 in	 figure	 31	 shows,	 this	 addition	 creates	 instances	 of	ball	 that	 contain

numbers,	posn	 structures,	 and	 so	 on,	 as	well	 as	 instances	 of	posn	 that	 contain
instances	of	ball.	Try	it	out	in	DrRacket!	Add

(define-struct	ball	[location	velocity])

to	the	definitions	area,	hit	RUN,	and	create	some	structure	instances.
As	far	as	the	pragmatics	of	data	definitions	is	concerned,	a	data	definition	for

structure	 types	describes	 large	 collections	of	 data	 via	 combinations	of	 existing
data	definitions	with	instances.	When	we	write

;	Posn	is	(make-posn	Number	Number)

we	are	describing	an	infinite	number	of	possible	instances	of	posn.	Like	above,
the	 data	 definitions	 use	 combinations	 of	 natural	 language,	 data	 collections
defined	elsewhere,	and	data	constructors.	Nothing	else	should	show	up	in	a	data
definition	at	the	moment.

A	data	definition	for	structures	specifies	a	new	collection	of	data	made	up	of
those	instances	to	be	used	by	our	functions.	For	example,	the	data	definition	for
Posns	identifies	the	region	shaded	in	gray	in	the	center	bubble	of	the	universe	in
figure	 31,	 which	 includes	 all	 those	 posn	 structures	 whose	 two	 fields	 contain
numbers.	At	 the	 same	 time,	 it	 is	 perfectly	 possible	 to	 construct	 an	 instance	 of
posn	that	doesn’t	satisfy	the	requirement	that	both	fields	contain	numbers:

(make-posn	(make-posn	1	1)	"hello")

This	structure	contains	a	posn	in	the	x	field	and	a	string	in	the	y	field.
Exercise	 76.	 Formulate	 data	 definitions	 for	 the	 following	 structure	 type

definitions:

•  (define-struct	movie	[title	producer	year])

•  (define-struct	person	[name	hair	eyes	phone])

•  (define-struct	pet	[name	number])

•  (define-struct	CD	[artist	title	price])

•  (define-struct	sweater	[material	size	producer])

Make	sensible	assumptions	as	to	what	kind	of	values	go	into	each	field.	
Exercise	 77.	 Provide	 a	 structure	 type	 definition	 and	 a	 data	 definition	 for

representing	 points	 in	 time	 since	 midnight.	 A	 point	 in	 time	 consists	 of	 three
numbers:	hours,	minutes,	and	seconds.	

Exercise	78.	Provide	a	structure	 type	and	a	data	definition	for	 representing
three-letter	 words.	 A	 word	 consists	 of	 lowercase	 letters,	 represented	 with	 the
1Strings	"a"	through	"z"	plus	#false.	Note	This	exercise	is	a	part	of	the	design
of	a	hangman	game;	see	exercise	396.	

Programmers	not	only	write	data	definitions,	they	also	read	them	in	order	to
understand	programs,	to	expand	the	kind	of	data	they	can	deal	with,	to	eliminate
errors,	and	so	on.	We	read	a	data	definition	to	understand	how	to	create	data	that
belongs	to	the	designated	collection	and	to	determine	whether	some	piece	of	data
belongs	to	some	specified	class.

Since	 data	 definitions	 play	 such	 a	 central	 and	 important	 role	 in	 the	 design
process,	 it	 is	often	best	 to	 illustrate	data	definitions	with	examples	 just	 like	we
illustrate	 the	 behavior	 of	 functions	 with	 examples.	 And	 indeed,	 creating	 data
examples	from	a	data	definition	is	straightforward:

•  for	a	built-in	collection	of	data	(number,	string,	Boolean,	images),	choose
your	favorite	examples;
Note	On	occasion,	people	use	descriptive	names	to	qualify	built-in	data
collections,	such	as	NegativeNumber	or	OneLetterString.	They	are	no
replacement	for	a	well-written	data	definition.	End

•  for	an	enumeration,	use	several	of	the	items	of	the	enumeration;

•  for	 intervals,	 use	 the	 end	 points	 (if	 they	 are	 included)	 and	 at	 least	 one
interior	point;

•  for	itemizations,	deal	with	each	part	separately;	and

•  for	data	definitions	for	structures,	follow	the	natural	language	description;
that	 is,	use	 the	constructor	 and	pick	an	example	 from	 the	data	collection
named	for	each	field.

That’s	all	there	is	to	constructing	examples	from	data	definitions	for	most	of	this

book,	 though	 data	 definitions	 are	 going	 to	 become	 much	 more	 complex	 than
what	you	have	seen	so	far.

Exercise	79.	Create	examples	for	the	following	data	definitions:

•  ;	A	Color	is	one	of:
;	---	"white"	

;	---	"yellow"	

;	---	"orange"	

;	---	"green"	

;	---	"red"	

;	---	"blue"	

;	---	"black"

Note	DrRacket	recognizes	many	more	strings	as	colors.	End

•  ;	H	is	a	Number	between	0	and	100.	
;	interpretation	represents	a	happiness	value

•  (define-struct	person	[fstname	lstname	male?])	
;	A	Person	is	a	structure:	

;			(make-person	String	String	Boolean)

Is	it	a	good	idea	to	use	a	field	name	that	looks	like	the	name	of	a	predicate?

•  (define-struct	dog	[owner	name	age	happiness])	
;	A	Dog	is	a	structure:	

;							(make-dog	Person	String	PositiveInteger	H)

Add	an	interpretation	to	this	data	definition,	too.

•  ;	A	Weapon	is	one	of:
;	---	#false

;	---	Posn

;	interpretation	#false	means	the	missile	hasn't

;	been	fired	yet;	a	Posn	means	it	is	in	flight

The	 last	 definition	 is	 an	 unusual	 itemization,	 combining	 built-in	 data	 with	 a
structure	type.	The	next	chapter	deals	with	such	definitions	in	depth.	

5.8 Designing	with	Structures
The	 introduction	 of	 structure	 types	 reinforces	 the	 need	 for	 all	 six	 steps	 in	 the
design	 recipe.	 It	 no	 longer	 suffices	 to	 rely	 on	 built-in	 data	 collections	 to
represent	 information;	 it	 is	 now	 clear	 that	 programmers	 must	 create	 data
definitions	for	all	but	the	simplest	problems.

This	section	adds	a	design	recipe,	illustrating	it	with	the	following:

Sample	Problem	Design	a	function	that	computes	the	distance	of
objects	in	a	3-dimensional	space	to	the	origin.

Here	we	go:

1.	When	a	problem	calls	for	the	representation	of	pieces	of	information	that
belong	 together	 or	 describe	 a	 natural	 whole,	 you	 need	 a	 structure	 type
definition.	 It	 requires	 as	many	 fields	 as	 there	 are	 relevant	 properties.	An
instance	of	this	structure	type	corresponds	to	the	whole,	and	the	values	in
the	fields	correspond	to	its	attributes.
A	data	definition	for	a	structure	type	introduces	a	name	for	the	collection
of	instances	that	are	legitimate.	Furthermore,	it	must	describe	which	kind
of	data	goes	with	which	field.	Use	only	names	of	built-in	data	collections
or	previously	defined	data	definitions.
In	the	end,	we	(and	others)	must	be	able	to	use	the	data	definition	to	create
sample	 structure	 instances.	Otherwise,	 something	 is	wrong	with	our	data
definition.	 To	 ensure	 that	 we	 can	 create	 instances,	 our	 data	 definitions
should	come	with	data	examples.
Here	is	how	we	apply	this	idea	to	the	sample	problem:

(define-struct	r3	[x	y	z])	

;	An	R3	is	a	structure:	

;			(make-r3	Number	Number	Number)	

(define	ex1	(make-r3	1	2	13))	

(define	ex2	(make-r3	-1	0	3))

The	 structure	 type	 definition	 introduces	 a	 new	kind	of	 structure,	r3,	 and
the	data	definition	 introduces	R3	as	 the	name	 for	all	 instances	of	r3	 that

contain	only	numbers.

2.	You	still	need	a	signature,	a	purpose	statement,	and	a	function	header	but
they	remain	the	same.	Stop!	Do	it	for	the	sample	problem.

3.	Use	 the	 examples	 from	 the	 first	 step	 to	 create	 functional	 examples.	 For
each	field	associated	with	intervals	or	enumerations,	make	sure	to	pick	end
points	 and	 intermediate	 points	 to	 create	 functional	 examples.	We	 expect
you	to	continue	working	on	the	sample	problem.

4.	A	function	that	consumes	structures	usually—though	not	always—extracts
the	values	 from	the	various	fields	 in	 the	structure.	To	remind	yourself	of
this	 possibility,	 add	 a	 selector	 for	 each	 field	 to	 the	 templates	 for	 such
functions.
Here	is	what	we	have	for	the	sample	problem:

;	R3	->	Number	
;	determines	the	distance	of	p	to	the	origin	
(define	(r3-distance-to-0	p)	
		(…	(r3-x	p)	…	(r3-y	p)	…	(r3-z	p)	…))

You	may	want	to	write	down	next	to	each	selector	expression	what	kind	of
data	 it	extracts	 from	the	given	structure;	you	can	find	 this	 information	 in
the	data	definition.	Stop!	Just	do	it!

5.	 Use	 the	 selector	 expressions	 from	 the	 template	 when	 you	 define	 the
function.	Keep	in	mind	that	you	may	not	need	some	of	them.

6.	 Test.	 Test	 as	 soon	 as	 the	 function	 header	 is	 written.	 Test	 until	 all
expressions	have	been	covered.	Test	again	when	you	make	changes.

Finish	 the	 sample	 problem.	 If	 you	 cannot	 remember	 the	 distance	 of	 a	 3-
dimensional	point	to	the	origin,	look	it	up	in	a	geometry	book.

There	you	will	find	a	formula	such	as	 .

Exercise	 80.	 Create	 templates	 for	 functions	 that	 consume	 instances	 of	 the
following	structure	types:

•  (define-struct	movie	[title	director	year])

•  (define-struct	pet	[name	number])

•  (define-struct	CD	[artist	title	price])

•  (define-struct	sweater	[material	size	color])

No,	you	do	not	need	data	definitions	for	this	task.	
Exercise	81.	Design	the	function	time->seconds,	which	consumes	instances

of	 time	 structures	 (see	 exercise	 77)	 and	 produces	 the	 number	 of	 seconds	 that
have	passed	since	midnight.	For	example,	 if	you	are	 representing	12	hours,	30
minutes,	and	2	seconds	with	one	of	these	structures	and	if	you	then	apply	time-
>seconds	to	this	instance,	the	correct	result	is	45002.	

Exercise	82.	Design	the	function	compare-word.	The	function	consumes	two
three-letter	words	(see	exercise	78).	It	produces	a	word	that	indicates	where	the
given	ones	agree	and	disagree.	The	function	retains	the	content	of	the	structure
fields	 if	 the	 two	 agree;	 otherwise	 it	 places	#false	 in	 the	 field	 of	 the	 resulting
word.	Hint	The	exercises	mentions	two	tasks:	the	comparison	of	words	and	the
comparison	of	“letters.”	

5.9 Structure	in	the	World
When	 a	world	 program	must	 track	 two	 independent	 pieces	 of	 information,	we
must	 use	 a	 collection	of	 structures	 to	 represent	 the	world	 state	 data.	One	 field
keeps	track	of	one	piece	of	 information	and	the	other	field	 the	second	piece	of
information.	Naturally,	if	the	domain	world	contains	more	than	two	independent
pieces	of	 information,	 the	structure	 type	definition	must	specify	as	many	fields
as	there	are	distinct	pieces	of	information.

Consider	a	space	invader	game	that	consists	of	a	UFO	and	a	tank.	The	UFO
descends	 along	 a	 straight	 vertical	 line	 and	 a	 tank	 moves	 horizontally	 at	 the
bottom	 of	 a	 scene.	 If	 both	 objects	 move	 at	 known	 constant	 speeds,	 all	 that’s
needed	to	describe	these	two	objects	is	one	piece	of	information	per	object:	the
y-coordinate	 for	 the	 UFO	 and	 the	 x-coordinate	 for	 the	 tank.	 Putting	 those
together	requires	a	structure	with	two	fields:

(define-struct	space-game	[ufo	tank])

We	leave	it	to	you	to	formulate	an	adequate	data	definition	for	this	structure	type
definition,	 including	 an	 interpretation.	 Ponder	 the	 hyphen	 in	 the	 name	 of	 the
structure.	BSL	 really	 allows	 the	use	of	 all	 kinds	of	 characters	 in	 the	names	of
variables,	functions,	structures,	and	field	names.	What	are	the	selector	names	for
this	structure?	The	name	of	the	predicate?

Every	 time	 we	 say	 “piece	 of	 information,”	 we	 don’t	 necessarily	 mean	 a
single	 number	 or	 a	 single	 word.	 A	 piece	 of	 information	 may	 itself	 combine
several	 pieces	 of	 information.	 Creating	 a	 data	 representation	 for	 that	 kind	 of
information	naturally	leads	to	nested	structures.

Let’s	add	a	modicum	of	spice	to	our	imaginary	space	invader	game.	A	UFO
that	 descends	 only	 along	 a	 vertical	 line	 is	 boring.	 To	 turn	 this	 idea	 into	 an
interesting	game	where	 the	 tank	attacks	 the	UFO	with	some	weapon,	 the	UFO
must	 be	 able	 to	 descend	 in	 nontrivial	 lines,	 perhaps	 jumping	 randomly.	 An
implementation	of	this	idea	means	that	we	need	two	coordinates	to	describe	the
location	 of	 the	 UFO,	 so	 that	 our	 revised	 data	 definition	 for	 the	 space	 game
becomes:

;	A	SpaceGame	is	a	structure:	

;				(make-space-game	Posn	Number).	

;	interpretation	(make-space-game	(make-posn	ux	uy)	tx)	

;	describes	a	configuration	where	the	UFO	is	

;	at	(ux,uy)	and	the	tank's	x-coordinate	is	tx

Understanding	 what	 kind	 of	 data	 representations	 are	 needed	 for	 world
programs	 takes	 practice.	 The	 following	 two	 sections	 introduce	 several
reasonably	 complex	 problem	 statements.	 Solve	 them	 before	moving	 on	 to	 the
kind	of	games	that	you	might	like	to	design	on	your	own.

5.10 A	Graphical	Editor
To	program	in	BSL,	you	open	DrRacket,	 type	on	the	keyboard,	and	watch	text
appear.	 Pressing	 the	 left	 arrow	 on	 the	 keyboard	moves	 the	 cursor	 to	 the	 left;
pressing	 the	 backspace	 (or	 delete)	 key	 erases	 a	 single	 letter	 to	 the	 left	 of	 the
cursor—if	there	is	a	letter	to	start	with.

This	 process	 is	 called	 “editing,”	 though	 its	 precise	 name	 should	 be	 “text
editing	of	programs”	because	we	will	use	“editing”	for	a	more	demanding	task
than	typing	on	a	keyboard.	When	you	write	and	revise	other	kinds	of	documents,
say,	 an	 English	 assignment,	 you	 are	 likely	 to	 use	 other	 software	 applications,
called	word	 processors,	 though	 computer	 scientists	 dub	 all	 of	 them	 editors	 or
even	graphical	editors.

You	are	now	in	a	position	to	design	a	world	program	that	acts	as	a	one-line
editor	 for	 plain	 text.	 Editing	 here	 includes	 entering	 letters	 and	 somehow
changing	 the	 already	 existing	 text,	 including	 the	 deletion	 and	 the	 insertion	 of
letters.	 This	 implies	 some	 notion	 of	 position	 within	 the	 text.	 People	 call	 this
position	 a	 cursor;	 most	 graphical	 editors	 display	 it	 in	 such	 a	 way	 that	 it	 can
easily	be	spotted.

Take	a	look	at	the	following	editor	configuration:

Someone	might	have	entered	the	text	“helloworld”	and	hit	the	left	arrow	key
five	 times,	causing	 the	cursor	 to	move	 from	 the	end	of	 the	 text	 to	 the	position
between	 “o”	 and	 “w.”	 Pressing	 the	 space	 bar	 would	 now	 cause	 the	 editor	 to
change	its	display	as	follows:

In	short,	the	action	inserts	“”	and	places	the	cursor	between	it	and	“w.”
Given	this	much,	an	editor	must	track	two	pieces	of	information:

1.	the	text	entered	so	far,	and

2.	the	current	location	of	the	cursor.

And	this	suggests	a	structure	type	with	two	fields.
We	can	imagine	several	different	ways	of	going	from	the	information	to	data

and	 back.	 For	 example,	 one	 field	 in	 the	 structure	 may	 contain	 the	 entire	 text
entered,	 and	 the	 other	 the	 number	 of	 characters	 between	 the	 first	 character
(counting	from	the	left)	and	the	cursor.	Another	data	representation	is	to	use	two
strings	in	the	two	fields:	the	part	of	the	text	to	the	left	of	the	cursor	and	the	part
of	the	text	to	its	right.	Here	is	our	preferred	approach	to	representing	the	state	of
an	editor:

(define-struct	editor	[pre	post])	

;	An	Editor	is	a	structure:	

;				(make-editor	String	String)	

;	interpretation	(make-editor	s	t)	describes	an	editor	

;	whose	visible	text	is	(string-append	s	t)	with	

;	the	cursor	displayed	between	s	and	t

Solve	the	next	few	exercises	based	on	this	data	representation.
Exercise	 83.	 Design	 the	 function	 render,	 which	 consumes	 an	 Editor	 and

produces	an	image.
The	purpose	of	 the	 function	 is	 to	 render	 the	 text	within	an	empty	 scene	of

200	×	20	pixels.	For	 the	cursor,	use	a	1	×	20	red	rectangle	and	for	 the	strings,
black	text	of	size	16.

Develop	 the	 image	 for	a	 sample	string	 in	DrRacket’s	 interactions	area.	We
started	with	this	expression:

You	may	wish	to	read	up	on	beside,	above,	and	such	functions.	When	you	are
happy	with	the	looks	of	the	image,	use	the	expression	as	a	test	and	as	a	guide	to
the	design	of	render.	

Exercise	84.	Design	edit.	The	 function	consumes	 two	 inputs,	an	editor	ed
and	a	KeyEvent	ke,	 and	 it	 produces	 another	 editor.	 Its	 task	 is	 to	 add	a	 single-
character	KeyEvent	ke	 to	 the	end	of	 the	pre	 field	of	ed,	 unless	ke	 denotes	 the
backspace	("\b")	key.	In	that	case,	it	deletes	the	character	immediately	to	the	left
of	the	cursor	(if	there	are	any).	The	function	ignores	the	tab	key	("\t")	and	the

return	key	("\r").
The	 function	 pays	 attention	 to	 only	 two	KeyEvents	 longer	 than	 one	 letter:

"left"	and	"right".	The	left	arrow	moves	the	cursor	one	character	to	the	left	(if
any),	and	the	right	arrow	moves	it	one	character	 to	 the	right	(if	any).	All	other
such	KeyEvents	are	ignored.

Develop	a	goodly	number	of	examples	for	edit,	paying	attention	to	special
cases.	When	we	solved	this	exercise,	we	created	20	examples	and	turned	all	of
them	into	tests.

Hint	 Think	 of	 this	 function	 as	 consuming	 KeyEvents,	 a	 collection	 that	 is
specified	as	an	enumeration.	 It	uses	auxiliary	 functions	 to	deal	with	 the	Editor
structure.	Keep	a	wish	 list	handy;	you	will	need	 to	design	additional	 functions
for	 most	 of	 these	 auxiliary	 functions,	 such	 as	 string-first,	 string-rest,
string-last,	 and	 string-remove-last.	 If	 you	 haven’t	 done	 so,	 solve	 the
exercises	in	chapter	2.1.	

Exercise	 85.	 Define	 the	 function	 run.	 Given	 the	 pre	 field	 of	 an	 editor,	 it
launches	 an	 interactive	 editor,	 using	render	 and	edit	 from	 the	 preceding	 two
exercises	for	the	to-draw	and	on-key	clauses,	respectively.	

Exercise	 86.	 Notice	 that	 if	 you	 type	 a	 lot,	 your	 editor	 program	 does	 not
display	all	of	the	text.	Instead	the	text	is	cut	off	at	the	right	margin.	Modify	your
function	edit	from	exercise	84	so	that	it	ignores	a	keystroke	if	adding	it	to	the
end	of	the	pre	field	would	mean	the	rendered	text	is	too	wide	for	your	canvas.	

Exercise	87.	Develop	a	data	 representation	 for	an	editor	based	on	our	 first
idea,	 using	 a	 string	 and	 an	 index.	 Then	 solve	 the	 preceding	 exercises	 again.
Retrace	the	design	recipe.	Hint	 if	you	haven’t	done	so,	solve	the	exercises	in
chapter	2.1.

Note	 on	 Design	 Choices	 The	 exercise	 is	 a	 first	 study	 of	 making	 design
choices.	 It	 shows	 that	 the	 very	 first	 design	 choice	 concerns	 the	 data
representation.	Making	 the	 right	 choice	 requires	 planning	 ahead	 and	weighing
the	complexity	of	each.	Of	course,	getting	good	at	this	is	a	question	of	gaining
experience.	

5.11 More	Virtual	Pets
In	this	section	we	continue	our	virtual	zoo	project	from	chapter	3.7.	Specifically,
the	goal	of	 the	exercise	 is	 to	combine	 the	cat	world	program	with	 the	program
for	managing	 its	 happiness	 gauge.	When	 the	 combined	 program	 runs,	 you	 see
the	cat	walking	across	the	canvas,	and,	with	each	step,	its	happiness	goes	down.
The	only	way	to	make	the	cat	happy	is	 to	feed	it	(down	arrow)	or	to	pet	 it	(up
arrow).	Finally,	 the	goal	of	 the	 last	exercise	 in	 this	 section	 is	 to	create	another
virtual,	happy	pet.

Exercise	 88.	 Define	 a	 structure	 type	 that	 keeps	 track	 of	 the	 cat’s	 x-
coordinate	and	 its	happiness.	Then	formulate	a	data	definition	for	cats,	dubbed
VCat,	including	an	interpretation.	

Exercise	 89.	 Design	 the	 happy-cat	 world	 program,	 which	 manages	 a
walking	 cat	 and	 its	 happiness	 level.	 Let’s	 assume	 that	 the	 cat	 starts	 out	 with
perfect	happiness.

Hints	 (1)	Reuse	 the	 functions	 from	 the	world	programs	 in	 chapter	 3.7.	 (2)
Use	 structure	 type	 from	 the	 preceding	 exercise	 to	 represent	 the	 state	 of	 the
world.	

Exercise	90.	Modify	the	happy-cat	program	from	the	preceding	exercises	so
that	it	stops	whenever	the	cat’s	happiness	falls	to	0.	

Exercise	91.	Extend	your	structure	 type	definition	and	data	definition	from
exercise	88	to	include	a	direction	field.	Adjust	your	happy-cat	program	so	that
the	cat	moves	in	the	specified	direction.	The	program	should	move	the	cat	in	the
current	direction,	and	it	should	turn	the	cat	around	when	it	reaches	either	end	of
the	scene.	

The	above	drawing	of	a	chameleon	is	a	transparent	image.	To	insert	it	into
DrRacket,	 insert	 it	 with	 the	 “Insert	 Image”	 menu	 item.	 Using	 this	 instruction
preserves	the	transparency	of	the	drawing’s	pixels.

When	 a	 partly	 transparent	 image	 is	 combined	with	 a	 colored	 shape,	 say	 a
rectangle,	the	image	takes	on	the	underlying	color.	In	the	chameleon	drawing,	it
is	actually	 the	 inside	of	 the	animal	 that	 is	 transparent;	 the	area	outside	 is	 solid
white.	Try	out	this	expression	in	your	DrRacket:

Exercise	 92.	 Design	 the	 cham	 program,	 which	 has	 the	 chameleon
continuously	walking	across	 the	canvas	 from	 left	 to	 right.	When	 it	 reaches	 the
right	end	of	the	canvas,	it	disappears	and	immediately	reappears	on	the	left.	Like
the	cat,	the	chameleon	gets	hungry	from	all	the	walking,	and,	as	time	passes	by,
this	hunger	expresses	itself	as	unhappiness.

For	 managing	 the	 chameleon’s	 happiness	 gauge,	 you	 may	 reuse	 the
happiness	gauge	from	the	virtual	cat.	To	make	the	chameleon	happy,	you	feed	it
(down	 arrow,	 two	 points	 only);	 petting	 isn’t	 allowed.	 Of	 course,	 like	 all
chameleons,	 ours	 can	 change	 color,	 too:	 "r"	 turns	 it	 red,	 "b"	 blue,	 and	 "g"
green.	 Add	 the	 chameleon	 world	 program	 to	 the	 virtual	 cat	 game	 and	 reuse
functions	from	the	latter	when	possible.

Start	with	a	data	definition,	VCham,	for	representing	chameleons.	
Exercise	93.	Copy	your	solution	to	exercise	92	and	modify	the	copy	so	that

the	 chameleon	 walks	 across	 a	 tricolor	 background.	 Our	 solution	 uses	 these
colors:

but	you	may	use	any	colors.	Observe	how	the	chameleon	changes	colors	to	blend
in	as	it	crosses	the	border	between	two	colors.

Have	some	Italian	pizza	when	you’re	done.

Note	When	you	watch	the	animation	carefully,	you	see	the	chameleon	riding
on	a	white	rectangle.	If	you	know	how	to	use	image	editing	software,	modify	the
picture	 so	 that	 the	white	 rectangle	 is	 invisible.	Then	 the	 chameleon	will	 really
blend	in.	

6 Itemizations	and	Structures
The	preceding	two	chapters	introduce	two	ways	of	formulating	data	definitions.
Those	 that	 employ	 itemization	 (enumeration	 and	 intervals)	 are	 used	 to	 create
small	 collections	 from	 large	 ones.	 Those	 that	 use	 structures	 combine	multiple
collections.	 Since	 the	 development	 of	 data	 representations	 is	 the	 starting	 point
for	proper	program	design,	 it	 cannot	 surprise	you	 that	programmers	 frequently
want	 to	 itemize	 data	 definitions	 that	 involve	 structures	 or	 to	 use	 structures	 to
combine	itemized	data.

Recall	 the	imaginary	space	invader	game	from	chapter	5.9	in	the	preceding
chapter.	Thus	far,	it	involves	one	UFO,	descending	from	space,	and	one	tank	on
the	ground,	moving	horizontally.	Our	data	 representation	uses	 a	 structure	with
two	 fields:	one	 for	 the	data	 representation	of	 the	UFO	and	another	one	 for	 the
data	representation	of	the	tank.	Naturally,	players	will	want	a	tank	that	can	fire
off	 a	 missile.	 All	 of	 a	 sudden,	 we	 can	 think	 of	 a	 second	 kind	 of	 state	 that
contains	three	independently	moving	objects:	the	UFO,	the	tank,	and	the	missile.
Thus	 we	 have	 two	 distinct	 structures:	 one	 for	 representing	 two	 independently
moving	objects	and	another	one	 for	 the	 third.	Since	a	world	state	may	now	be
one	 of	 these	 two	 structures,	 it	 is	 natural	 to	 use	 an	 itemization	 to	 describe	 all
possible	states:

1.	the	state	of	the	world	is	a	structure	with	two	fields,	or

2.	the	state	of	the	world	is	a	structure	with	three	fields.

As	 far	 as	 our	 domain	 is	 concerned—the	 actual	 game—the	 first	 kind	 of	 state
represents	the	time	before	the	tank	has	launched	its	sole	missile	and	the	second
one	the	time	after	the	missile	has	been	fired.

No	worries,	the	next	part	of	the	book	is	about	firing	as	many	missiles	as	you	want,	without	reloading.

This	 chapter	 introduces	 the	 basic	 idea	 of	 itemizing	 data	 definitions	 that
involve	structures.	Because	we	have	all	 the	other	 ingredients	we	need,	we	start
straight	 with	 itemizing	 structures.	 After	 that,	 we	 discuss	 some	 examples,
including	world	programs	 that	benefit	 from	our	new	power.	The	 last	section	 is

about	errors	in	programming.

6.1 Designing	with	Itemizations,	Again
Let’s	 start	with	 a	 refined	 problem	 statement	 for	 our	 space	 invader	 game	 from
chapter	5.6.

Sample	 Problem	 Design	 a	 game	 program	 using	 the
2htdp/universe	 library	 for	 playing	 a	 simple	 space	 invader	 game.
The	 player	 is	 in	 control	 of	 a	 tank	 (a	 small	 rectangle)	 that	must
defend	 our	 planet	 (the	 bottom	 of	 the	 canvas)	 from	 a	 UFO	 (see
chapter	4.4	for	one	possibility)	that	descends	from	the	top	of	the
canvas	to	the	bottom.	In	order	to	stop	the	UFO	from	landing,	the
player	may	fire	a	single	missile	(a	triangle	smaller	than	the	tank)
by	hitting	the	space	bar.	In	response,	the	missile	emerges	from	the
tank.	 If	 the	 UFO	 collides	 with	 the	 missile,	 the	 player	 wins;
otherwise	the	UFO	lands	and	the	player	loses.
Here	are	some	details	concerning	the	three	game	objects	and	their
movements.	 First,	 the	 tank	 moves	 a	 constant	 speed	 along	 the
bottom	of	 the	 canvas,	 though	 the	 player	may	 use	 the	 left	 arrow
key	 and	 the	 right	 arrow	 key	 to	 change	 directions.	 Second,	 the
UFO	 descends	 at	 a	 constant	 velocity	 but	 makes	 small	 random
jumps	 to	 the	 left	 or	 right.	Third,	 once	 fired,	 the	missile	 ascends
along	a	straight	vertical	line	at	a	constant	speed	at	least	twice	as
fast	 as	 the	 UFO	 descends.	 Finally,	 the	 UFO	 and	 the	 missile
collide	 if	 their	 reference	 points	 are	 close	 enough,	 for	 whatever
you	think	“close	enough”	means.

The	 following	 two	 subsections	 use	 this	 sample	 problem	 as	 a	 running
example,	so	study	it	well	and	solve	the	following	exercise	before	you	continue.
Doing	so	will	help	you	understand	the	problem	in	enough	depth.

Exercise	 94.	Draw	 some	 sketches	 of	what	 the	 game	 scenery	 looks	 like	 at
various	 stages.	 Use	 the	 sketches	 to	 determine	 the	 constant	 and	 the	 variable
pieces	of	the	game.	For	the	former,	develop	physical	and	graphical	constants	that
describe	 the	 dimensions	 of	 the	 world	 (canvas)	 and	 its	 objects.	 Also	 develop
some	background	scenery.	Finally,	 create	your	 initial	 scene	 from	 the	constants
for	the	tank,	the	UFO,	and	the	background.	

Defining	 Itemizations	 The	 first	 step	 in	 our	 design	 recipe	 calls	 for	 the

development	of	data	definitions.	One	purpose	of	a	data	definition	is	to	describe
the	 construction	 of	 data	 that	 represents	 the	 state	 of	 the	 world;	 another	 is	 to
describe	all	possible	pieces	of	data	that	the	event-handing	functions	of	the	world
program	 may	 consume.	 Since	 we	 haven’t	 seen	 itemizations	 that	 include
structures,	 this	 first	 subsection	 introduces	 this	 idea.	While	 this	 probably	won’t
surprise	you,	pay	close	attention.

For	this	space	invader	game,	we	could	get	away	with	one	structure	type	definition	of	three	fields
where	the	third	field	contains	#false	until	the	missile	is	fired,	and	a	Posn	for	the	missile’s
coordinates	thereafter.	See	below.

As	argued	in	the	introduction	to	this	chapter,	the	space	invader	game	with	a
missile-firing	tank	requires	a	data	representation	for	two	different	kinds	of	game
states.	We	choose	two	structure	type	definitions:

(define-struct	aim	[ufo	tank])	

(define-struct	fired	[ufo	tank	missile])

The	first	one	 is	for	 the	 time	period	when	the	player	 is	 trying	to	get	 the	 tank	in
position	for	a	shot,	and	the	second	one	is	for	representing	states	after	the	missile
is	fired.	Before	we	can	formulate	a	data	definition	for	the	complete	game	state,
however,	we	need	data	representations	for	the	tank,	the	UFO,	and	the	missile.

Assuming	 constant	 definitions	 for	 such	 physical	 constants	 as	 WIDTH	 and
HEIGHT,	which	are	the	subject	of	exercise	94,	we	formulate	 the	data	definitions
like	this:

;	A	UFO	is	a	Posn.	

;	interpretation	(make-posn	x	y)	is	the	UFO's	location	

;	(using	the	top-down,	left-to-right	convention)	

(define-struct	tank	[loc	vel])	

;	A	Tank	is	a	structure:	

;	(make-tank	Number	Number).	

;	interpretation	(make-tank	x	dx)	specifies	the	position:	

;	(x,	HEIGHT)	and	the	tank's	speed:	dx	pixels/tick	

;	A	Missile	is	a	Posn.	

;	interpretation	(make-posn	x	y)	is	the	missile's	place

Each	of	 these	data	definitions	describes	nothing	but	a	 structure,	either	a	newly
defined	 one,	tank,	 or	 a	 built-in	 data	 collection,	 Posn.	Concerning	 the	 latter,	 it
may	surprise	you	a	little	bit	that	Posns	are	used	to	represent	two	distinct	aspects
of	 the	 world.	 Then	 again,	 we	 have	 used	 numbers	 (and	 strings	 and	 Boolean
values)	 to	 represent	many	 different	 kinds	 of	 information	 in	 the	 real	world,	 so
reusing	a	collection	of	structures	such	as	Posn	isn’t	a	big	deal.

Now	we	are	in	a	position	to	formulate	the	data	definitions	for	the	state	of	the
space	invader	game:

;	A	SIGS	is	one	of:	

;	--	(make-aim	UFO	Tank)	

;	--	(make-fired	UFO	Tank	Missile)	

;	interpretation	represents	the	complete	state	of	a	

;	space	invader	game

The	shape	of	the	data	definition	is	that	of	an	itemization.	Each	clause,	however,
describes	the	content	of	a	structure	type,	just	like	the	data	definition	for	structure
types	we	have	 seen	 so	 far.	Still,	 this	 data	 definition	 shows	 that	 not	 every	data
definition	 comes	 with	 exactly	 one	 structure	 type	 definition;	 here	 one	 data
definition	involves	two	distinct	structure	type	definitions.

The	meaning	of	such	a	data	definition	 is	also	straightforward.	 It	 introduces
the	 name	 SIGS	 for	 the	 collection	 of	 all	 those	 structure	 instances	 that	 you	 can
create	according	to	the	definition.	So	let	us	create	some:

•  Here	is	an	instance	that	describes	the	tank	maneuvering	into	position	to	fire
the	missile:

(make-aim	(make-posn	20	10)	(make-tank	28	-3))

•  This	one	is	just	like	the	previous	one	but	the	missile	has	been	fired:

Of	 course,	 the	 capitalized	names	 refer	 to	 the	 physical	 constants	 that	 you
defined.

•  Finally,	here	is	one	where	the	missile	is	about	to	collide	with	the	UFO:

This	example	assumes	that	the	canvas	is	more	than	100	pixels	tall.

Notice	that	the	first	instance	of	SIGS	is	generated	according	to	the	first	clause	of
the	data	definition,	and	the	second	and	third	follow	the	second	clause.	Naturally
the	numbers	in	each	field	depend	on	your	choices	for	global	game	constants.

Exercise	95.	Explain	why	the	three	instances	are	generated	according	to	the
first	or	second	clause	of	the	data	definition.	

Exercise	 96.	 Sketch	 how	 each	 of	 the	 three	 game	 states	 could	 be	 rendered
assuming	a	200	×	200	canvas.	

The	Design	Recipe	With	a	new	way	of	formulating	data	definitions	comes
an	inspection	of	the	design	recipe.	This	chapter	introduces	a	way	to	combine	two
or	more	means	 of	 describing	 data,	 and	 the	 revised	 design	 recipe	 reflects	 this,
especially	the	first	step:

1.	When	do	you	need	this	new	way	of	defining	data?	You	already	know	that
the	need	for	itemizations	is	due	to	distinctions	among	different	classes	of
information	 in	 the	 problem	 statement.	 Similarly,	 the	 need	 for	 structure-
based	 data	 definitions	 is	 due	 to	 the	 demand	 to	 group	 several	 different
pieces	of	information.
An	 itemization	 of	 different	 forms	 of	 data—including	 collections	 of
structures—is	 required	 when	 your	 problem	 statement	 distinguishes
different	kinds	of	 information	 and	when	at	 least	 some	of	 these	pieces	of
information	consist	of	several	different	pieces.
One	thing	to	keep	in	mind	is	that	data	definitions	may	refer	to	other	data
definitions.	Hence,	 if	a	particular	clause	 in	a	data	definition	 looks	overly
complex,	it	 is	acceptable	to	write	down	a	separate	data	definition	for	this
clause	and	refer	to	this	auxiliary	definition.
And,	as	always,	formulate	data	examples	using	the	data	definitions.

2.	 The	 second	 step	 remains	 the	 same.	 Formulate	 a	 function	 signature	 that
mentions	 only	 the	 names	 of	 defined	 or	 built-in	 data	 collections,	 add	 a
purpose	statement,	and	create	a	function	header.

3.	Nothing	changes	for	the	third	step.	You	still	need	to	formulate	functional
examples	 that	 illustrate	 the	 purpose	 statement	 from	 the	 second	 step,	 and
you	still	need	one	example	per	item	in	the	itemization.

4.	The	development	of	 the	 template	now	exploits	 two	different	dimensions:
the	itemization	itself	and	the	use	of	structures	in	its	clauses.

By	the	first,	the	body	of	the	template	consists	of	a	cond	expression	that	has
as	many	cond	clauses	as	the	itemizations	has	items.	Furthermore,	you	must
add	a	condition	to	each	cond	clause	that	identifies	the	sub-class	of	data	in
the	corresponding	item.
By	the	second,	if	an	item	deals	with	a	structure,	the	template	contains	the
selector	 expressions—in	 the	cond	 clause	 that	 deals	with	 the	 sub-class	 of
data	described	in	the	item.
When	 you	 choose	 to	 describe	 the	 data	 with	 a	 separate	 data	 definition,
however,	 you	 do	 not	 add	 selector	 expressions.	 Instead,	 you	 create	 a
template	for	the	separate	data	definition	to	the	task	at	hand	and	refer	to	that
template	with	a	function	call.	The	latter	indicates	that	this	sub-class	of	data
is	being	processed	separately.
Before	going	through	the	work	of	developing	a	template,	briefly	reflect
on	the	nature	of	the	function.	If	the	problem	statement	suggests	that	there
are	several	tasks	to	be	performed,	it	is	likely	that	a	composition	of	several,
separately	designed	functions	is	needed	instead	of	a	template.	In	that	case,
skip	the	template	step.

5.	 Fill	 the	 gaps	 in	 the	 template.	 The	 more	 complex	 you	 make	 your	 data
definitions,	 the	more	 complex	 this	 step	 becomes.	 The	 good	 news	 is	 that
this	design	recipe	can	help	in	many	situations.
If	 you	 are	 stuck,	 fill	 the	 easy	 cases	 first	 and	 use	 default	 values	 for	 the
others.	 While	 this	 makes	 some	 of	 the	 test	 cases	 fail,	 you	 are	 making
progress	and	you	can	visualize	this	progress.

If	 you	 are	 stuck	on	 some	 cases	 of	 the	 itemization,	 analyze	 the	 examples
that	correspond	to	those	cases.	Determine	what	the	pieces	of	the	template
compute	 from	 the	 given	 inputs.	 Then	 consider	 how	 to	 combine	 these
pieces	(plus	some	constants)	to	compute	the	desired	output.	Keep	in	mind
that	you	might	need	an	auxiliary	function.
Also,	if	your	template	“calls”	another	template	because	the	data	definitions
refer	to	each	other,	assume	that	the	other	function	delivers	what	its	purpose
statement	 and	 its	 examples	 promise—even	 if	 this	 other	 function’s
definition	isn’t	finished	yet.

6.	Test.	If	tests	fail,	determine	what’s	wrong:	the	function,	the	tests,	or	both.
Go	back	to	the	appropriate	step.

Go	back	 to	chapter	3.1,	 reread	 the	description	of	 the	simple	design	recipe,	and
compare	it	to	this	revision.

Let’s	illustrate	the	design	recipe	with	the	design	of	a	rendering	function	for
the	 sample	 problem	 at	 the	 beginning	 of	 this	 section.	 Recall	 that	 a	 big-bang
expression	needs	such	a	rendering	function	to	turn	the	state	of	the	world	into	an
image	after	every	clock	tick,	mouse	click,	or	keystroke.

The	signature	of	this	rendering	function	says	that	it	maps	an	element	of	the
state-of-the-world	class	to	the	class	of	Images:

;	SIGS	->	Image	

;	adds	TANK,	UFO,	and	possibly	MISSILE	to	

;	the	BACKGROUND	scene	

(define	(si-render	s)	BACKGROUND)

Here	 TANK,	 UFO,	 MISSILE,	 and	 BACKGROUND	 are	 the	 requested	 image	 constants
from	 exercise	 94.	 Recall	 that	 this	 signature	 is	 just	 an	 instance	 of	 the	 general
signature	 for	 rendering	 functions,	 which	 always	 consume	 the	 collections	 of
world	states	and	produce	some	image.

Since	the	itemization	in	the	data	definition	consists	of	two	items,	let’s	make
three	examples,	using	the	data	examples	from	above.	See	figure	32.	Unlike	the
function	tables	found	in	mathematics	books,	this	table	is	rendered	vertically.	The
left	 column	 contains	 sample	 inputs	 for	 our	 desired	 function;	 the	 right	 column
lists	 the	 corresponding	 desired	 results.	 As	 you	 can	 see,	 we	 used	 the	 data
examples	from	the	first	step	of	 the	design	recipe,	and	they	cover	both	 items	of

the	itemization.

Figure	32:	Rendering	space	invader	game	states,	by	example

Next	we	turn	to	the	development	of	the	template,	the	most	important	step	of
the	design	process.	First,	we	know	that	 the	body	of	si-render	must	be	a	cond
expression	 with	 two	 cond	 clauses.	 Following	 the	 design	 recipe,	 the	 two
conditions	are	(aim?	s)	and	(fired?	s),	and	they	distinguish	the	two	possible
kinds	of	data	that	si-render	may	consume:

Second,	 we	 add	 selector	 expressions	 to	 every	 cond	 clause	 that	 deals	 with
structures.	 In	 this	 case,	 both	 clauses	 concern	 the	 processing	 of	 structures:	 aim
and	 fired.	 The	 former	 comes	 with	 two	 fields	 and	 thus	 requires	 two	 selector
expressions	for	the	first	cond	clause,	and	the	latter	kind	of	structures	consists	of
three	values	and	thus	demands	three	selector	expressions:

The	 template	 contains	 nearly	 everything	 we	 need	 to	 finish	 our	 task.	 To
complete	 the	 definition,	we	 figure	 out	 for	 each	cond	 line	 how	 to	 combine	 the
values	we	have	in	order	to	compute	the	expected	result.	Beyond	the	pieces	of	the
input,	 we	 may	 also	 use	 globally	 defined	 constants,	 for	 example,	 BACKGROUND,
which	is	obviously	of	help	here;	primitive	or	built-in	operations;	and,	if	all	else
fails,	wish-list	functions,	that	is,	we	describe	functions	we	wish	we	had.

Consider	the	first	cond	clause,	where	we	have	a	data	representation	of	a	tank,
that	 is,	(aim-tank	s),	and	 the	data	 representation	of	a	UFO,	 that	 is,	(aim-ufo
s).	From	the	first	example	 in	 figure	32,	we	know	that	we	need	 to	add	 the	 two
objects	to	the	background	scenery.	In	addition,	the	design	recipe	suggests	that	if
these	 pieces	 of	 data	 come	 with	 their	 own	 data	 definition,	 we	 are	 to	 consider
defining	helper	(auxiliary)	functions	and	to	use	those	to	compute	the	result:

Here	tank-render	and	ufo-render	are	wish-list	functions:

;	Tank	Image	->	Image	
;	adds	t	to	the	given	image	im	
(define	(tank-render	t	im)	im)	

;	UFO	Image	->	Image	
;	adds	u	to	the	given	image	im	
(define	(ufo-render	u	im)	im)

With	a	bit	of	analogy,	we	can	deal	with	the	second	cond	clause	in	the	same
way.	Figure	33	shows	the	complete	definition.	Best	of	all,	we	can	immediately
reuse	our	wish-list	functions,	tank-render	and	ufo-render,	and	all	we	need	to
add	is	a	function	for	including	a	missile	in	the	scene.	The	appropriate	wish-list
entry	is:

;	Missile	Image	->	Image	
;	adds	m	to	the	given	image	im	
(define	(missile-render	m	im)	im)

As	above,	the	comment	describes	in	sufficient	detail	what	we	want.

Figure	33:	The	complete	rendering	function

Exercise	97.	Design	the	functions	tank-render,	ufo-render,	and	missile-
render.	Compare	this	expression:

with	this	one:

When	do	the	two	expressions	produce	the	same	result?	

Exercise	 98.	Design	 the	 function	si-game-over?	 for	use	as	 the	stop-when
handler.	The	 game	 stops	 if	 the	UFO	 lands	 or	 if	 the	missile	 hits	 the	UFO.	For
both	 conditions,	we	 recommend	 that	 you	 check	 for	 proximity	of	 one	object	 to
another.

The	stop-when	clause	allows	for	an	optional	second	sub-expression,	namely
a	function	that	renders	the	final	state	of	the	game.	Design	si-render-final	and
use	 it	 as	 the	 second	 part	 for	 your	 stop-when	 clause	 in	 the	 main	 function	 of
exercise	100.	

Exercise	99.	Design	si-move.	This	function	is	called	for	every	clock	tick	to
determine	to	which	position	the	objects	move	now.	Accordingly,	it	consumes	an
element	of	SIGS	and	produces	another	one.

Moving	the	 tank	and	the	missile	(if	any)	 is	relatively	straightforward.	They
move	 in	 straight	 lines	 at	 a	 constant	 speed.	 Moving	 the	 UFO	 calls	 for	 small
random	jumps	to	the	left	or	the	right.	Since	you	have	never	dealt	with	functions
that	create	random	numbers,	the	rest	of	this	exercise	is	a	longish	hint	on	how	to
deal	with	this	issue.

BSL	 comes	with	 a	 function	 that	 creates	 random	 numbers.	 Introducing	 this
function	 illustrates	 why	 the	 signatures	 and	 purpose	 statements	 play	 such	 an
important	 role	during	 the	design.	Here	 is	 the	 relevant	material	 for	 the	 function
you	need:

;	Number	->	Number	
;	produces	a	number	in	the	interval	[0,n),	
;	possibly	a	different	one	each	time	it	is	called	
(define	(random	n)	…)

Since	 the	 signature	 and	 purpose	 statement	 precisely	 describe	 what	 a	 function
computes,	you	can	now	experiment	with	random	in	DrRacket’s	interactions	area.
Stop!	Do	so!

If	random	produces	different	numbers	(almost)	every	time	it	is	called,	testing
functions	 that	 use	 random	 is	 difficult.	 To	 start	 with,	 separate	 si-move	 and	 its
proper	functionality	into	two	parts:

The	idea	that	you	must	use	random	is	BSL	knowledge,	not	a	part	of	the	design	skills	you	must	acquire,
which	is	why	we	provide	this	hint.	Also,	random	is	the	first	and	only	BSL	primitive	that	is	not	a
mathematical	function.	Functions	in	programming	are	inspired	by	mathematical	functions,	but	they
are	not	identical	concepts.

(define	(si-move	w)	
		(si-move-proper	w	(random	…)))	

;	SIGS	Number	->	SIGS	
;	moves	the	space-invader	objects	predictably	by	delta	
(define	(si-move-proper	w	delta)	
		w)

With	this	definition	you	separate	the	creation	of	a	random	number	from	the	act
of	moving	the	game	objects.	While	random	may	produce	different	results	every
time	it	is	called,	si-move-proper	can	be	tested	on	specific	numeric	inputs	and	is
thus	guaranteed	to	return	the	same	result	when	given	the	same	inputs.	In	short,
most	of	the	code	remains	testable.

Instead	 of	 calling	random	 directly,	 you	may	wish	 to	 design	 a	 function	 that
creates	a	random	x-coordinate	for	the	UFO.	Consider	using	check-random	from
BSL’s	testing	framework	to	test	such	a	function.	

Exercise	100.	Design	 the	function	si-control,	which	plays	 the	role	of	 the
key-event	 handler.	 As	 such,	 it	 consumes	 a	 game	 state	 and	 a	 KeyEvent	 and
produces	a	new	game	state.	It	reacts	to	three	different	keys:

•  pressing	the	left	arrow	ensures	that	the	tank	moves	left;

•  pressing	the	right	arrow	ensures	that	the	tank	moves	right;	and

•  pressing	the	space	bar	fires	the	missile	if	it	hasn’t	been	launched	yet.

Once	 you	 have	 this	 function,	 you	 can	 define	 the	 si-main	 function,	 which
uses	big-bang	to	spawn	the	game-playing	window.	Enjoy!	

Data	 representations	are	 rarely	unique.	For	example,	we	could	use	a	 single
structure	type	to	represent	the	states	of	a	space	invader	game:

(define-struct	sigs	[ufo	tank	missile])	
;	A	SIGS.v2	(short	for	SIGS	version	2)	is	a	structure:	
;	(make-sigs	UFO	Tank	MissileOrNot)	
;	interpretation	represents	the	complete	state	of	a	
;	space	invader	game

;	A	MissileOrNot	is	one	of:	
;	--	#false	
;	--	Posn	
;	interpretation#false	means	the	missile	is	in	the	tank;	
;	Posn	says	the	missile	is	at	that	location

Unlike	the	first	data	representation	for	game	states,	this	second	version	does	not
distinguish	 between	 before	 and	 after	 the	 missile	 launch.	 Instead,	 each	 state
contains	 some	 data	 about	 the	 missile	 though	 this	 piece	 of	 data	 may	 just	 be
#false,	indicating	that	the	missile	hasn’t	been	fired	yet.

As	a	result,	 the	functions	for	this	second	data	representation	of	states	differ
from	 the	 functions	 for	 the	 first	 one.	 In	 particular,	 functions	 that	 consume	 an
element	of	SIGS.v2	do	not	use	a	cond	expression	because	there	is	only	one	kind
of	element	 in	 the	collection.	In	 terms	of	design	approach,	 the	design	recipe	for
structures	from	chapter	5.8	suffices.	Figure	34	shows	the	result	of	designing	the
rendering	function	for	this	data	representation.

Figure	34:	Rendering	game	states	again

In	 contrast,	 the	 design	 of	 functions	 using	MissileOrNot	 requires	 the	 recipe
from	this	section.	Let’s	look	at	the	design	of	missile-render.v2,	whose	job	it	is
to	add	a	missile	to	an	image.	Here	is	the	header	material:

;	MissileOrNot	Image	->	Image	

;	adds	an	image	of	missile	m	to	scene	s	

(define	(missile-render.v2	m	s)	

		s)

As	for	examples,	we	must	consider	at	least	two	cases:	one	when	m	is	#false
and	another	one	when	m	is	a	Posn.	In	the	first	case,	the	missile	hasn’t	been	fired,

which	means	that	no	image	of	a	missile	is	to	be	added	to	the	given	scene.	In	the
second	case,	the	missile’s	position	is	specified	and	that	is	where	the	image	of	the
missile	must	show	up.	Figure	35	demonstrates	the	workings	of	the	function	with
two	distinct	scenarios.

Figure	35:	Rendering	the	space	invader	games,	with	tanks

Exercise	101.	Turn	the	examples	in	figure	35	into	test	cases.	
Now	we	are	 ready	 to	develop	 the	 template.	Because	 the	data	definition	 for

the	major	 argument	 (m)	 is	 an	 itemization	with	 two	 items,	 the	 function	 body	 is
likely	to	consist	of	a	cond	expression	with	two	clauses:

(define	(missile-render.v2	m	s)	

		(cond	

				[(boolean?	m)	…]	

				[(posn?	m)	…]))

Following	the	data	definition	again,	 the	first	cond	clause	checks	whether	m	 is	a
Boolean	value	and	the	second	one	checks	whether	it	is	an	element	of	Posn.	And,
if	someone	were	to	accidentally	apply	missile-render.v2	to	#true	and	to	some
image,	 the	 function	would	use	 the	 first	cond	 clause	 to	 compute	 the	 result.	We
have	more	to	say	on	such	errors	below.

The	 second	 template	 step	 requests	 selector	 expressions	 in	 all	 those	 cond
clauses	 that	 deal	 with	 structures.	 In	 our	 example,	 this	 is	 true	 for	 the	 second
clause,	 and	 the	 selector	 expressions	 extract	 the	 x-and	 y-coordinates	 from	 the
given	Posn:

(define	(missile-render.v2	m	s)	

		(cond	

				[(boolean?	m)	…]	

				[(posn?	m)	(…	(posn-x	m)	…	(posn-y	m)	…)]))

Compare	this	template	with	the	one	for	si-render	above.	The	data	definition	for
the	 latter	 deals	 with	 two	 distinct	 structure	 types,	 and	 therefore	 the	 function
template	for	si-render	contains	selector	expressions	in	both	cond	clauses.	The
data	 definition	 for	 MissileOrNot,	 however,	 mixes	 items	 that	 are	 plain	 values
with	 items	that	describe	structures.	Both	kinds	of	definitions	are	perfectly	fine;
the	 key	 for	 you	 is	 to	 follow	 the	 recipe	 and	 to	 find	 a	 code	 organization	 that
matches	the	data	definition.

Here	is	the	complete	function	definition:

(define	(missile-render.v2	m	s)	

		(cond	

				[(boolean?	m)	s]	

				[(posn?	m)	(place-image	MISSILE	(posn-x	m)	(posn-y	m)	s)]))

Doing	this	step-by-step,	you	first	work	on	the	easy	clauses;	in	this	function	that’s
the	first	one.	Since	it	says	the	missile	hasn’t	been	fired,	the	function	returns	the
given	 s.	 For	 the	 second	 clause,	 you	 need	 to	 remember	 that	 (posn-x	 m)	 and
(posn-y	 m)	 select	 the	 coordinates	 for	 the	 image	 of	 the	missile.	 This	 function
must	 add	 MISSILE	 to	 s,	 so	 you	 have	 to	 figure	 out	 the	 best	 combination	 of
primitive	 operations	 and	 your	 own	 functions	 to	 combine	 the	 four	 values.	 The
choice	of	this	combining	operation	is	precisely	where	your	creative	insight	as	a
programmer	comes	into	play.

Exercise	 102.	 Design	 all	 other	 functions	 that	 are	 needed	 to	 complete	 the
game	for	this	second	data	definition.	

Exercise	103.	Develop	a	data	representation	for	the	following	four	kinds	of
zoo	animals:

•  spiders,	whose	 relevant	 attributes	 are	 the	 number	 of	 remaining	 legs	 (we
assume	that	spiders	can	lose	legs	in	accidents)	and	the	space	they	need	in
case	of	transport;

•  elephants,	 whose	 only	 attributes	 are	 the	 space	 they	 need	 in	 case	 of
transport;

•  boa	constrictors,	whose	attributes	include	length	and	girth;	and

•  armadillos,	for	which	you	must	determine	appropriate	attributes,	including
one	that	determines	the	space	needed	for	transport.

Develop	a	template	for	functions	that	consume	zoo	animals.
Design	the	fits?	function,	which	consumes	a	zoo	animal	and	a	description

of	 a	 cage.	 It	 determines	 whether	 the	 cage’s	 volume	 is	 large	 enough	 for	 the
animal.	

Exercise	 104.	 Your	 home	 town	manages	 a	 fleet	 of	 vehicles:	 automobiles,
vans,	 buses,	 and	 SUVs.	 Develop	 a	 data	 representation	 for	 vehicles.	 The
representation	of	each	vehicle	must	describe	the	number	of	passengers	that	it	can
carry,	 its	 license	 plate	 number,	 and	 its	 fuel	 consumption	 (miles	 per	 gallon).
Develop	a	template	for	functions	that	consume	vehicles.	

Exercise	105.	Some	program	contains	the	following	data	definition:

;	A	Coordinate	is	one	of:	
;	--	a	NegativeNumber	
;	interpretation	on	the	y	axis,	distance	from	top	
;	--	a	PositiveNumber	
;	interpretation	on	the	x	axis,	distance	from	left	
;	--	a	Posn	
;	interpretation	an	ordinary	Cartesian	point

Make	up	at	least	two	data	examples	per	clause	in	the	data	definition.	For	each	of
the	examples,	explain	its	meaning	with	a	sketch	of	a	canvas.	

6.2 Mixing	Up	Worlds
This	section	suggests	several	design	problems	for	world	program,	starting	with
simple	extension	exercises	concerning	our	virtual	pets.

Exercise	106.	In	chapter	5.11	we	discussed	the	creation	of	virtual	pets	 that
come	with	 happiness	 gauges.	One	 of	 the	 virtual	 pets	 is	 a	 cat;	 the	 other	 one,	 a
chameleon.	Each	program	is	dedicated	to	a	single	pet,	however.

Design	the	cat-cham	world	program.	Given	both	a	location	and	an	animal,	it
walks	 the	 latter	across	 the	canvas,	starting	from	the	given	 location.	Here	 is	 the
chosen	data	representation	for	animals:

;	A	VAnimal	is	either	
;	--	a	VCat	
;	--	a	VCham

where	VCat	and	VCham	are	your	data	definitions	from	exercises	88	and	92.
Given	that	VAnimal	is	the	collection	of	world	states,	you	need	to	design

•  a	rendering	function	from	VAnimal	to	Image;

•  a	function	for	handling	clock	ticks,	from	VAnimal	to	VAnimal;	and

•  a	 function	 for	 dealing	with	 key	 events	 so	 that	 you	 can	 feed	 and	 pet	 and
colorize	your	animal—as	applicable.

It	remains	impossible	to	change	the	color	of	a	cat	or	to	pet	a	chameleon.	
Exercise	 107.	Design	 the	cham-and-cat	 program,	which	deals	with	both	 a

virtual	 cat	 and	 a	 virtual	 chameleon.	 You	 need	 a	 data	 definition	 for	 a	 “zoo”
containing	both	animals	and	functions	for	dealing	with	it.

The	problem	 statement	 leaves	 open	how	keys	manipulate	 the	 two	 animals.
Here	are	two	possible	interpretations:

1.	Each	key	event	goes	to	both	animals.

2.	Each	key	event	applies	to	only	one	of	the	two	animals.
For	 this	 alternative,	 you	need	 a	data	 representation	 that	 specifies	 a	 focus

animal,	 that	 is,	 the	 animal	 that	 can	 currently	 be	manipulated.	 To	 switch
focus,	have	the	key-handling	function	interpret	"k"	for	“kitty”	and	"l"	for
lizard.	Once	 a	 player	 hits	"k",	 the	 following	 keystrokes	 apply	 to	 the	 cat
only—until	the	player	hits	"l".

Choose	one	of	the	alternatives	and	design	the	appropriate	program.	
Exercise	108.	In	its	default	state,	a	pedestrian	crossing	light	shows	an	orange

person	standing	on	a	red	background.	When	it	is	time	to	allow	the	pedestrian	to
cross	 the	 street,	 the	 light	 receives	 a	 signal	 and	 switches	 to	 a	 green,	 walking
person.	This	phase	lasts	for	10	seconds.	After	that	the	light	displays	the	digits	9,
8,	⋯,	 0	 with	 odd	 numbers	 colored	 orange	 and	 even	 numbers	 colored	 green.
When	the	countdown	reaches	0,	the	light	switches	back	to	its	default	state.

Design	a	world	program	that	implements	such	a	pedestrian	traffic	light.	The
light	 switches	 from	 its	 default	 state	 when	 you	 press	 the	 space	 bar	 on	 your
keyboard.	All	other	transitions	must	be	reactions	to	clock	ticks.	You	may	wish	to
use	the	following	images

or	you	can	make	up	your	own	stick	figures	with	the	image	library.	
Exercise	 109.	 Design	 a	 world	 program	 that	 recognizes	 a	 pattern	 in	 a

sequence	 of	 KeyEvents.	 Initially	 the	 program	 shows	 a	 100	 by	 100	 white
rectangle.	Once	your	program	has	encountered	the	first	desired	letter,	it	displays
a	yellow	rectangle	of	the	same	size.	After	encountering	the	final	letter,	the	color
of	the	rectangle	turns	green.	If	any	“bad”	key	event	occurs,	the	program	displays
a	red	rectangle.

The	specific	sequences	that	your	program	looks	for	start	with	"a",	followed
by	an	arbitrarily	long	mix	of	"b"	and	"c",	and	ended	by	a	"d".	Clearly,	"acbd"	is
one	 example	of	 an	 acceptable	 string;	 two	others	 are	"ad"	 and	"abcbbbcd".	Of
course,	"da",	"aa",	or	"d"	do	not	match.

Hint	 Your	 solution	 implements	 a	 finite	 state	 machine	 (FSM),	 an	 idea
introduced	in	chapter	4.7	as	one	design	principle	behind	world	programs.	As	the
name	says,	an	FSM	program	may	be	in	one	of	a	finite	number	of	states.	The	first
state	is	called	an	 initial	state.	Each	key	event	causes	the	machine	to	reconsider

its	current	state;	it	may	transition	to	the	same	state	or	to	another	one.	When	your
program	 recognizes	 a	 proper	 sequence	 of	 key	 events,	 it	 transitions	 to	 a	 final
state.

The	data	definition	on	the	right	uses	the	naming	technique	introduced	in	exercise	61.

For	a	sequence-recognition	problem,	states	typically	represent	the	letters	that
the	machine	expects	to	see	next;	see	figure	36	for	a	data	definition.	Take	a	look
at	 the	 last	 state,	 which	 says	 an	 illegal	 input	 has	 been	 encountered.	 Figure	 37
shows	 how	 to	 think	 of	 these	 states	 and	 their	 relationships	 in	 a	 diagrammatic
manner.	 Each	 node	 corresponds	 to	 one	 of	 the	 four	 finite	 states;	 each	 arrow
specifies	 which	 KeyEvent	 causes	 the	 program	 to	 transition	 from	 one	 state	 to
another.

Figure	36:	Two	ways	of	writing	a	data	definition	for	FSMs

Figure	37:	A	finite	state	machine	as	a	diagram

History	In	the	1950s,	Stephen	C.	Kleene,	whom	we	would	call	a	computer
scientist,	 invented	 regular	 expressions	 as	 a	 notation	 for	 the	 problem	 of
recognizing	text	patterns.	For	the	above	problem,	Kleene	would	write

which	means	a	followed	by	b	or	c	arbitrarily	often	until	d	is	encountered.	

6.3 Input	Errors
One	central	point	of	this	chapter	concerns	the	role	of	predicates.	They	are	critical
when	you	must	design	functions	that	process	mixes	of	data.	Such	mixes	come	up
naturally	 when	 your	 problem	 statement	 mentions	 many	 different	 kinds	 of
information,	but	they	also	come	up	when	you	hand	your	functions	and	programs
to	 others.	 After	 all,	 you	 know	 and	 respect	 your	 data	 definitions	 and	 function
signatures.	You	never	know,	however,	what	your	friends	and	colleagues	do,	and
you	 especially	 don’t	 know	 how	 someone	 without	 knowledge	 of	 BSL	 and
programming	 uses	 your	 programs.	 This	 section	 therefore	 presents	 one	way	 of
protecting	programs	from	inappropriate	inputs.

It	is	a	form	of	self-delusion	to	expect	that	we	always	respect	our	own	function	signatures.	Calling	a
function	on	the	wrong	kind	of	data	happens	to	the	best	of	us.	While	many	languages	are	like	BSL	and
expect	programmers	to	check	signatures	on	their	own,	others	do	so	automatically	at	the	cost	of	some
additional	complexity.

Let’s	demonstrate	this	point	with	a	simple	program,	a	function	for	computing
the	area	of	a	disk:

;	Number	->	Number	
;	computes	the	area	of	a	disk	with	radius	r	
(define	(area-of-disk	r)	
		(*	3.14	(*	r	r)))

Our	 friends	 may	 wish	 to	 use	 this	 function	 for	 their	 geometry	 homework.
Unfortunately,	when	our	friends	use	this	function,	they	may	accidentally	apply	it
to	 a	 string	 rather	 than	 a	 number.	 When	 that	 happens,	 the	 function	 stops	 the
program	execution	with	a	mysterious	error	message:

>	(area-of-disk	"my-disk")	

*:expects	a	number	as	1st	argument,	given	"my-disk"

With	predicates,	you	can	prevent	this	kind	of	cryptic	error	message	and	signal	an
informative	error	of	your	own	choice.

Specifically,	we	can	define	checked	versions	of	our	functions,	when	we	wish
to	hand	them	to	our	friends.	Because	our	friends	may	not	know	much	BSL,	we

must	 expect	 that	 they	 apply	 this	 checked	 function	 to	 arbitrary	 BSL	 values:
numbers,	 strings,	 images,	 Posns,	 and	 so	 on.	 Although	 we	 cannot	 anticipate
which	structure	 types	will	be	defined	in	BSL,	we	know	the	rough	shape	of	 the
data	definition	for	the	collection	of	all	BSL	values.	Figure	38	displays	this	shape
of	this	data	definition.	As	discussed	in	chapter	5.7,	the	data	definition	for	Any	is
open-ended	 because	 every	 structure	 type	 definition	 adds	 new	 instances.	 These
instances	may	contain	Any	values	again,	which	 implies	 that	 the	data	definition
of	Any	must	refer	to	itself—a	scary	thought	at	first.

Figure	38:	The	universe	of	BSL	data

Based	 on	 this	 itemization,	 the	 template	 for	 a	 checked	 function	 has	 the
following	rough	shape:

;	Any	->	???	
(define	(checked-f	v)	
		(cond	
				[(number?	v)	…]	
				[(boolean?	v)	…]	
				[(string?	v)	…]	
				[(image?	v)	…]	
				[(posn?	v)	(…(posn-x	v)	…	(posn-y	v)	…)]	
				…	
				;	which	selectors	are	needed	in	the	next	clause?	
				[(tank?	v)	…]	
				…))

Of	 course,	 nobody	 can	 list	 all	 clauses	 of	 this	 definition;	 fortunately,	 that’s	 not

necessary.	What	we	do	know	is	that	for	all	those	values	in	the	class	of	values	for
which	 the	 original	 function	 is	 defined,	 the	 checked	 version	 must	 produce	 the
same	results;	for	all	others,	it	must	signal	an	error.

Concretely,	 our	 sample	 function	 checked-area-of-disk	 consumes	 an
arbitrary	BSL	value	and	uses	area-of-disk	to	compute	the	area	of	a	disk	if	the
input	is	a	number.	It	must	stop	with	an	error	message	otherwise;	in	BSL	we	use
the	function	error	to	accomplish	this.	The	error	function	consumes	a	string	and
stops	the	program:

(error	"area-of-disk:	number	expected")

Hence	the	rough	definition	of	checked-area-of-disk	looks	like	this:

(define	MESSAGE	"area-of-disk:	number	expected")	

(define	(checked-area-of-disk	v)	

		(cond	

				[(number?	v)	(area-of-disk	v)]	

				[(boolean?	v)	(error	MESSAGE)]	

				[(string?	v)	(error	MESSAGE)]	

				[(image?	v)	(error	MESSAGE)]	

				[(posn?	v)	(error	MESSAGE)]	

				…	

				[(tank?	v)	(error	MESSAGE)]	

				…))

The	use	of	else	helps	us	finish	this	definition	in	the	natural	way:

;	Any	->	Number	
;	computes	the	area	of	a	disk	with	radius	v,	
;	if	v	is	a	number	
(define	(checked-area-of-disk	v)	
		(cond	
				[(number?	v)	(area-of-disk	v)]	
				[else	(error	"area-of-disk:	number	expected")]))

And	just	to	make	sure	we	get	what	we	want,	let’s	experiment:

>	(checked-area-of-disk	"my-disk")	

area-of-disk:number	expected

Writing	 checked	 functions	 is	 important	 if	 we	 distribute	 our	 programs	 for
others	 to	 use.	 Designing	 programs	 that	 work	 properly,	 however,	 is	 far	 more
important.	This	book	focuses	on	the	design	process	for	proper	program	design,
and,	 to	 do	 this	 without	 distraction,	 we	 agree	 that	 we	 always	 adhere	 to	 data
definitions	 and	 signatures.	 At	 least,	 we	 almost	 always	 do	 so,	 and	 on	 rare
occasions	 we	 may	 ask	 you	 to	 design	 checked	 versions	 of	 a	 function	 or	 a
program.

Exercise	110.	A	checked	version	of	area-of-disk	can	also	enforce	that	the
arguments	 to	 the	 function	 are	 positive	 numbers,	 not	 just	 arbitrary	 numbers.
Modify	checked-area-of-disk	in	this	way.	

Exercise	111.	Take	a	look	at	these	definitions:

(define-struct	vec	[x	y])	

;	A	vec	is	

;			(make-vec	PositiveNumber	PositiveNumber)	

;	interpretation	represents	a	velocity	vector

Develop	the	function	checked-make-vec,	which	is	to	be	understood	as	a	checked
version	 of	 the	 primitive	 operation	 make-vec.	 It	 ensures	 that	 the	 arguments	 to
make-vec	are	positive	numbers.	In	other	words,	checked-make-vec	enforces	our
informal	data	definition.	

Predicates	 You	 might	 wonder	 how	 you	 can	 design	 your	 own	 predicates.
After	all,	checked	functions	really	seem	to	have	this	general	shape:

;	Any	->	…
;	checks	that	a	is	a	proper	input	for	function	g	
(define	(checked-g	a)	
		(cond	
				[(XYZ?	a)	(g	a)]	
				[else	(error	"g:	bad	input")]))

where	g	itself	is	defined	like	this:

;	XYZ	->	…	
(define	(g	some-x)	…)

We	 assume	 that	 there	 is	 a	 data	 definition	 labeled	 XYZ,	 and	 that	 (XYZ?	 a)

produces	#true	when	a	is	an	element	of	XYZ	and	#false	otherwise.
For	 area-of-disk,	 which	 consumes	 Numbers,	 number?	 is	 clearly	 the

appropriate	predicate.	In	contrast,	for	some	functions	like	missile-render	from
above,	we	clearly	need	 to	define	our	own	predicate	because	MissileOrNot	 is	a
made-up,	 not	 a	 built-in,	 data	 collection.	 So	 let	 us	 design	 a	 predicate	 for
MissileOrNot.

We	recall	the	signature	for	predicates:

;	Any	->	Boolean	
;	is	a	an	element	of	the	MissileOrNot	collection	
(define	(missile-or-not?	a)	#false)

It	 is	 a	 good	 practice	 to	 use	 questions	 as	 purpose	 statements	 for	 predicates,
because	 applying	 a	 predicate	 is	 like	 asking	 a	 question	 about	 a	 value.	 The
question	mark	“?”	at	the	end	of	the	name	also	reinforces	this	idea;	some	people
may	tack	on	“huh”	to	pronounce	the	name	of	such	functions.

Making	up	examples	is	also	straightforward:

(check-expect	(missile-or-not?	#false)	#true)	

(check-expect	(missile-or-not?	(make-posn	9	2))	#true)	

(check-expect	(missile-or-not?	"yellow")	#false)

The	 first	 two	 examples	 recall	 that	 every	 element	 of	 MissileOrNot	 is	 either
#false	 or	 some	 Posn.	 The	 third	 test	 says	 that	 strings	 aren’t	 elements	 of	 the
collection.	Here	are	three	more	tests:

(check-expect	(missile-or-not?	#true)	#false)	

(check-expect	(missile-or-not?	10)	#false)	

(check-expect	(missile-or-not?	empty-image)	#false)

Explain	the	expected	answers!
Since	 predicates	 consume	 all	 possible	BSL	 values,	 their	 templates	 are	 just

like	the	templates	for	checked-f.	Stop!	Find	the	template	and	take	a	second	look
before	you	read	on.

As	with	checked	functions,	a	predicate	doesn’t	need	all	possible	cond	lines.
Only	those	that	might	produce	#true	are	required:

(define	(missile-or-not?	v)	

		(cond	

				[(boolean?	v)	…]	

				[(posn?	v)	(…	(posn-x	v)	…	(posn-y	v)	…)]	

				[else	#false]))

All	other	cases	are	summarized	via	an	else	line	that	produces	#false.
Given	the	template,	the	definition	of	missile-or-not?	is	a	simple	matter	of

thinking	through	each	case:

(define	(missile-or-not?	v)	

		(cond	

				[(boolean?	v)	(boolean=?	#false	v)]	

				[(posn?	v)	#true]	

				[else	#false]))

Only	#false	is	a	legitimate	MissileOrNot;	#true	isn’t.	We	express	this	idea	with
(boolean=?	#false	v),	but	(false?	v)	would	also	do:

(define	(missile-or-not?	v)	

		(cond	

				[(false?	v)	#true]	

				[(posn?	v)	#true]	

				[else	#false]))

Naturally	 all	 elements	 of	 Posn	 are	 also	 members	 of	 MissileOrNot,	 which
explains	the	#true	in	the	second	line.

Exercise	112.	Reformulate	the	predicate	now	using	an	or	expression.	
Exercise	113.	Design	predicates	for	the	following	data	definitions	from	the

preceding	section:	SIGS,	Coordinate	(VAnimal.	
To	wrap	up,	let	us	mention	key-event?	and	mouse-event?	as	two	important

predicates	 that	 you	may	wish	 to	 use	 in	 your	world	 programs.	 They	 check	 the
expected	property,	but	you	should	check	out	 their	documentation	 to	make	sure
you	understand	what	they	compute.

6.4 Checking	the	World
In	a	world	program,	many	things	can	go	wrong.	Although	we	just	agreed	to	trust
that	 our	 functions	 are	 always	 applied	 to	 the	 proper	 kind	 of	 data,	 in	 a	 world
program	 we	 may	 juggle	 too	 many	 things	 at	 once	 to	 place	 that	 much	 trust	 in
ourselves.	 When	 we	 design	 a	 world	 program	 that	 takes	 care	 of	 clock	 ticks,
mouse	clicks,	keystrokes,	 and	 rendering,	 it	 is	 just	 too	easy	 to	get	one	of	 those
interplays	wrong.	Of	course,	going	wrong	doesn’t	mean	that	BSL	recognizes	the
mistake	 immediately.	 For	 example,	 one	 of	 our	 functions	may	produce	 a	 result
that	 isn’t	 quite	 an	 element	 of	 your	 data	 representation	 for	world	 states.	At	 the
same	time,	big-bang	accepts	this	piece	of	data	and	holds	on	to	it,	until	the	next
event	 takes	 place.	 It	 is	 only	 when	 the	 following	 event	 handler	 receives	 this
inappropriate	 piece	 of	 data	 that	 the	 program	 may	 fail.	 But	 it	 may	 get	 worse
because	even	the	second	and	third	and	fourth	event-handling	step	may	actually
cope	 with	 inappropriate	 state	 values,	 and	 it	 all	 blows	 up	 much	 later	 in	 the
process.

To	help	with	this	kind	of	problem,	big-bang	comes	with	an	optional	check-
with	clause	that	accepts	a	predicate	for	world	states.	If,	for	example,	we	chose	to
represent	 all	 world	 states	with	Number,	 we	 could	 express	 this	 fact	 easily	 like
this:

(define	(main	s0)	

		(big-bang	s0	…	[check-with	number?]	…))

As	 soon	 as	 any	 event-handling	 function	 produces	 something	 other	 than	 a
number,	the	world	stops	with	an	appropriate	error	message.

A	check-with	clause	is	even	more	useful	when	the	data	definition	is	not	just
a	class	of	data	with	a	built-in	predicate	like	number?	but	something	subtle	such
as	this	interval	definition:

;	A	UnitWorld	is	a	number	

;			between	0	(inclusive)	and	1	(exclusive).

In	that	case	you	want	to	formulate	a	predicate	for	this	interval:

;	Any	->	Boolean	

;	is	x	between	0	(inclusive)	and	1	(exclusive)	

(check-expect	(between-0-and-1?	"a")	#false)	

(check-expect	(between-0-and-1?	1.2)	#false)	

(check-expect	(between-0-and-1?	0.2)	#true)	

(check-expect	(between-0-and-1?	0.0)	#true)	

(check-expect	(between-0-and-1?	1.0)	#false)	

(define	(between-0-and-1?	x)	

		(and	(number?	x)	(<=	0	x)	(<	x	1)))

With	 this	predicate	you	can	now	monitor	every	single	 transition	 in	your	world
program:

If	any	of	the	world-producing	handlers	creates	a	number	outside	of	the	interval,
or	worse,	a	non-numeric-value,	our	program	discovers	this	mistake	immediately
and	gives	us	a	chance	to	fix	the	mistake.

Exercise	 114.	 Use	 the	 predicates	 from	 exercise	 113	 to	 check	 the	 space
invader	world	 program,	 the	 virtual	 pet	 program	 (exercise	 106),	 and	 the	 editor
program	(chapter	5.10).	

6.5 Equality	Predicates
An	 equality	 predicate	 is	 a	 function	 that	 compares	 two	 elements	 of	 the	 same
collection	of	data.	Recall	the	definition	of	TrafficLight,	which	is	the	collection	of
three	 strings:	 "red",	 "green",	 and	 "yellow".	 Here	 is	 one	 way	 to	 define	 the
light=?	function:

;	TrafficLight	TrafficLight	->	Boolean	
;	are	the	two	(states	of)	traffic	lights	equal	

(check-expect	(light=?	"red"	"red")	#true)	
(check-expect	(light=?	"red"	"green")	#false)	
(check-expect	(light=?	"green"	"green")	#true)	
(check-expect	(light=?	"yellow"	"yellow")	#true)	

(define	(light=?	a-value	another-value)	
		(string=?	a-value	another-value))

When	 we	 click	 RUN,	 all	 tests	 succeed,	 but	 unfortunately	 other	 interactions
reveal	conflicts	with	our	intentions:

>	(light=?	"salad"	"greens")	

#false	

>	(light=?	"beans"	10)	

string=?:expects	a	string	as	2nd	argument,	given	10

Compare	these	interactions	with	other,	built-in	equality	predicates:

>	(boolean=?	"#true"	10)	

boolean=?:expects	a	boolean	as	1st	argument,	given	"#true"

Try	(string=?	10	#true)	and	(=	20	"help")	on	your	own.	All	of	them	signal
an	error	about	being	applied	to	the	wrong	kind	of	argument.

The	case	of	characters	matters;	"red"	is	different	from	"Red"	or	"RED".

A	 checked	 version	 of	 light=?	 enforces	 that	 both	 arguments	 belong	 to

TrafficLight;	if	not,	it	signals	an	error	like	those	that	built-in	equality	predicates
issue.	We	call	the	predicate	for	TrafficLight	light?	for	brevity:

Now	we	can	wrap	up	the	revision	of	light=?	by	just	following	our	original
analysis.	 First,	 the	 function	 determines	 that	 the	 two	 inputs	 are	 elements	 of
TrafficLight;	if	not	it	uses	error	to	signal	the	mistake:

(define	MESSAGE	
		"traffic	light	expected,	given	some	other	value")	

;	Any	Any	->	Boolean	
;	are	the	two	values	elements	of	TrafficLight	and,	
;	if	so,	are	they	equal	

(check-expect	(light=?	"red"	"red")	#true)	
(check-expect	(light=?	"red"	"green")	#false)	
(check-expect	(light=?	"green"	"green")	#true)	
(check-expect	(light=?	"yellow"	"yellow")	#true)	

(define	(light=?	a-value	another-value)	
		(if	(and	(light?	a-value)	(light?	another-value))	
						(string=?	a-value	another-value)	
						(error	MESSAGE)))

Exercise	115.	Revise	light=?	 so	 that	 the	error	message	specifies	which	of
the	two	arguments	isn’t	an	element	of	TrafficLight.	

While	it	 is	unlikely	that	your	programs	will	use	light=?,	 they	ought	to	use

key=?	and	mouse=?,	two	equality	predicates	that	we	briefly	mentioned	at	the	end
of	 the	 last	 subsection.	 Naturally,	 key=?	 is	 an	 operation	 for	 comparing	 two
KeyEvents;	 similarly,	mouse=?	 compares	 two	MouseEvts.	While	 both	kinds	 of
events	 are	 represented	 as	 strings,	 it	 is	 important	 to	 realize	 that	 not	 all	 strings
represent	key	events	or	mouse	events.

We	 recommend	using	key=?	 in	key-event	handlers	 and	mouse=?	 in	mouse-
event	handlers	 from	now	on.	The	use	of	key=?	 in	 a	key-event	handler	 ensures
that	 the	 function	 really	 compares	 strings	 that	 represent	 key	 events	 and	 not
arbitrary	 strings.	 As	 soon	 as,	 say,	 the	 function	 is	 accidentally	 applied	 to
"hello\n	world",	key=?	signals	an	error	and	thus	informs	us	that	something	is
wrong.

7 Summary
In	 this	 first	 part	 of	 the	 book,	 you	 learned	 a	 bunch	 of	 simple	 but	 important
lessons.	Here	is	a	summary:

1.	A	good	programmer	designs	programs.	A	bad	programmer	tinkers	until
the	program	seems	to	work.

2.	 The	 design	 recipe	 has	 two	 dimensions.	 One	 concerns	 the	 process	 of
design,	that	is,	the	sequence	of	steps	to	be	taken.	The	other	explains	how
the	chosen	data	representation	influences	the	design	process.

3.	 Every	 well-designed	 program	 consists	 of	 many	 constant	 definitions,
structure	 type	 definitions,	 data	 definitions,	 and	 function	 definitions.	 For
batch	 programs,	 one	 function	 is	 the	 “main”	 function,	 and	 it	 typically
composes	 several	 other	 functions	 to	 perform	 its	 computation.	 For
interactive	programs,	 the	big-bang	 function	 plays	 the	 role	 of	 the	main
function;	 it	 specifies	 the	 initial	 state	of	 the	program,	an	 image-producing
output	function,	and	at	most	three	event	handlers:	one	for	clock	ticks,	one
for	 mouse	 clicks,	 and	 one	 for	 key	 events.	 In	 both	 kinds	 of	 programs,
function	 definitions	 are	 presented	 “top	 down,”	 starting	 with	 the	 main
function,	followed	by	those	functions	mentioned	in	the	main	function,	and
so	on.

4.	Like	all	programming	languages,	Beginning	Student	Language	comes	with
a	vocabulary	and	a	grammar.	Programmers	must	be	 able	 to	determine
the	meaning	 of	 each	 sentence	 in	 a	 language	 so	 that	 they	 can	 anticipate
how	 the	 program	 performs	 its	 computation	 when	 given	 an	 input.	 The
following	intermezzo	explains	this	idea	in	detail.

5.	Programming	languages,	including	BSL,	come	with	a	rich	set	of	libraries
so	 that	 programmers	 don’t	 have	 to	 reinvent	 the	 wheel	 all	 the	 time.	 A
programmer	should	become	comfortable	with	 the	 functions	 that	a	 library
provides,	 especially	 their	 signatures	 and	 purpose	 statements.	 Doing	 so
simplifies	life.

6.	A	programmer	must	get	 to	know	 the	“tools”	 that	a	chosen	programming
language	offers.	These	tools	are	either	part	of	the	language—such	as	cond
or	max—or	they	are	“imported”	from	a	library.	In	this	spirit,	make	sure	you
understand	 the	 following	 terms:	 structure	 type	 definition,	 function
definition,	constant	definition,	structure	instance,	data	definition,	big-
bang,	and	event-handling	function.

INTERMEZZO	1:	BEGINNING	STUDENT
LANGUAGE

Part	 I	deals	with	BSL	as	 if	 it	were	a	natural	 language.	 It	 introduces	 the	“basic
words”	of	the	language,	suggests	how	to	compose	“words”	into	“sentences,”	and
appeals	 to	 your	 knowledge	 of	 algebra	 for	 an	 intuitive	 understanding	 of	 these
“sentences.”	 While	 this	 kind	 of	 introduction	 works	 to	 some	 extent,	 truly
effective	communication	requires	some	formal	study.

In	 many	 ways,	 the	 analogy	 of	 part	 I	 is	 correct.	 A	 programming	 language
does	 have	 a	 vocabulary	 and	 a	 grammar,	 though	 programmers	 use	 the	 word
syntax	 for	 these	 elements.	A	 sentence	 in	BSL	 is	 an	 expression	or	 a	 definition.
The	 grammar	 of	 BSL	 dictates	 how	 to	 form	 these	 phrases.	 But	 not	 all
grammatical	sentences	are	meaningful—neither	in	English	nor	in	a	programming
language.	For	example,	the	English	sentence	“the	cat	is	round”	is	a	meaningful
sentence,	but	“the	brick	 is	a	car”	makes	no	sense	even	 though	 it	 is	completely
grammatical.	To	determine	whether	a	sentence	is	meaningful,	we	must	know	the
meaning	of	a	language;	programmers	call	this	semantics.

Programmers	must	eventually	understand	these	principles	of	computation,	but	they	are
complementary	to	the	principles	of	design.

This	 intermezzo	 presents	 BSL	 as	 if	 it	 were	 an	 extension	 of	 the	 familiar
language	 of	 arithmetic	 and	 algebra	 in	 middle	 school.	 After	 all,	 computation
starts	 with	 this	 form	 of	 simple	 mathematics,	 and	 we	 should	 understand	 the
connection	 between	 this	 mathematics	 and	 computing.	 The	 first	 three	 sections
present	 the	syntax	and	semantics	of	a	good	portion	of	BSL.	Based	on	this	new
understanding	 of	 BSL,	 the	 fourth	 resumes	 our	 discussion	 of	 errors.	 The
remaining	sections	expand	this	understanding	to	the	complete	language;	the	last
one	expands	the	tools	for	expressing	tests.

BSL	Vocabulary
Figure	 39	 introduces	 and	defines	BSL’s	 basic	 vocabulary.	 It	 consists	 of	 literal
constants,	 such	 as	 numbers	 or	 Boolean	 values;	 names	 that	 have	 meaning
according	 to	BSL,	 for	 example,	cond	 or	+;	 and	 names	 to	which	 programs	 can
give	meaning	via	define	or	function	parameters.

Figure	39:	BSL	core	vocabulary

Each	 of	 the	 explanations	 defines	 a	 set	 via	 a	 suggestive	 itemization	 of	 its
elements.	Although	it	is	possible	to	specify	these	collections	in	their	entirety,	we
consider	 this	 superfluous	 here	 and	 trust	 your	 intuition.	 Just	 keep	 in	mind	 that
each	of	these	sets	may	come	with	some	extra	elements.

BSL	Grammar
Figure	 40	 shows	 a	 large	 part	 of	 the	 BSL	 grammar,	 which—in	 comparison	 to
other	languages—is	extremely	simple.	As	to	BSL’s	expressive	power,	don’t	let
the	 looks	deceive	you.	The	 first	 action	 item,	 though,	 is	 to	discuss	how	 to	 read
such	grammars.	Each	line	with	a	= 	introduces	a	syntactic	category;	the	best	way
to	 pronounce	 =	 is	 as	 “is	 one	 of”	 and	 |	 as	 “or.”	Wherever	 you	 see	 three	 dots,
imagine	as	many	repetitions	of	what	precedes	the	dots	as	you	wish.	This	means,
for	example,	that	a	program	is	either	nothing	or	a	single	occurrence	of	def-expr
or	a	sequence	of	two	of	them,	or	three,	four,	five,	or	however	many.	Since	this
example	 is	 not	 particularly	 illuminating,	 let’s	 look	 at	 the	 second	 syntactic
category.	It	says	that	def	is	either

Reading	a	grammar	aloud	makes	it	sound	like	a	data	definition.	One	could	indeed	use	grammars	to
write	down	many	of	our	data	definitions.

(define	(variable	variable)	expr)

because	“as	many	as	you	wish”	includes	zero,	or

(define	(variable	variable	variable)	expr)

which	is	one	repetition,	or

(define	(variable	variable	variable	variable)	expr)

which	uses	two.

Figure	40:	BSL	core	grammar

The	 final	point	 about	grammars	concerns	 the	 three	“words”	 that	 come	 in	a
distinct	 font:	 define,	 cond,	 and	 else.	 According	 to	 the	 definition	 of	 BSL
vocabulary,	 these	 three	words	 are	 names.	What	 the	vocabulary	definition	does
not	tell	us	is	that	these	names	have	a	pre-defined	meaning.	In	BSL,	these	words
serve	as	markers	that	differentiate	some	compound	sentences	from	others,	and	in
acknowledgment	of	their	role,	such	words	are	called	keywords.

Now	we	 are	 ready	 to	 state	 the	 purpose	 of	 a	 grammar.	 The	 grammar	 of	 a
programming	 language	dictates	how	 to	 form	sentences	 from	 the	vocabulary	of
the	 grammar.	 Some	 sentences	 are	 just	 elements	 of	 vocabulary.	 For	 example,
according	to	figure	40	42	is	a	sentence	of	BSL:

•  The	first	syntactic	category	says	that	a	program	is	a	def-expr.	Expressions
may	refer	to	the	definitions.

•  The	second	one	tells	us	that	a	def-expr	is	either	a	def	or	an	expr.

•  The	last	definition	lists	all	ways	of	forming	an	expr,	and	the	second	one	is
value.

Since	we	know	from	figure	39	that	42	is	a	value,	we	have	confirmation.

In	DrRacket,	a	program	really	consists	of	two	distinct	parts:	the	definitions	area	and	the	expressions
in	the	interactions	area.

The	interesting	parts	of	the	grammar	show	how	to	form	compound	sentences,

those	 built	 from	 other	 sentences.	 For	 example,	 the	 def	 part	 tells	 us	 that	 a
function	 definition	 is	 formed	 by	 using	 “(”,	 followed	 by	 the	 keyword	 define,
followed	 by	 another	 “(”,	 followed	 by	 a	 sequence	 of	 at	 least	 two	 variables,
followed	by	“)”,	followed	by	an	expr,	and	closed	by	a	right	parenthesis	“)”	that
matches	the	very	first	one.	Note	how	the	leading	keyword	define	distinguishes
definitions	from	expressions.

Expressions	 (expr)	 come	 in	 six	 flavors:	 variables,	 constants,	 primitive
applications,	(function)	applications,	and	two	varieties	of	conditionals.	While	the
first	 two	 are	 atomic	 sentences,	 the	 last	 four	 are	 compound	 sentences.	 Like
define,	 the	 keyword	 cond	 distinguishes	 conditional	 expressions	 from
applications.

Here	are	 three	examples	of	expressions:	"all",	x,	and	(f	x).	The	first	one
belongs	 to	 the	 class	 of	 strings	 and	 is	 therefore	 an	 expression.	The	 second	 is	 a
variable,	and	every	variable	is	an	expression.	The	third	is	a	function	application,
because	f	and	x	are	variables.

In	 contrast,	 these	 parenthesized	 sentences	 are	 not	 legal	 expressions:	 (f
define),	(cond	x),	and	((f	2)	10).	The	first	one	partially	matches	the	shape	of
a	function	application	but	it	uses	define	as	if	it	were	a	variable.	The	second	one
fails	to	be	a	correct	cond	expression	because	it	contains	a	variable	as	the	second
item	 and	 not	 a	 pair	 of	 expressions	 surrounded	 by	 parentheses.	 The	 last	 one	 is
neither	a	conditional	nor	an	application	because	the	first	part	is	an	expression.

Finally,	 you	 may	 notice	 that	 the	 grammar	 does	 not	 mention	 white	 space:
blank	spaces,	tabs,	and	newlines.	BSL	is	a	permissive	language.	As	long	as	there
is	 some	 white	 space	 between	 the	 elements	 of	 any	 sequence	 in	 a	 program,
DrRacket	 can	 understand	 your	 BSL	 programs.	 Good	 programmers,	 however,
may	not	like	what	you	write.	These	programmers	use	white	space	to	make	their
programs	easily	readable.	Most	importantly,	they	adopt	a	style	that	favors	human
readers	over	the	software	applications	that	process	programs	(such	as	DrRacket).
They	pick	up	this	style	from	carefully	reading	code	examples	 in	books,	paying
attention	to	how	they	are	formatted.

Keep	in	mind	that	two	kinds	of	readers	study	your	BSL	programs:	people	and	DrRacket.

Exercise	116.	Take	a	look	at	the	following	sentences:

1.	x

2.	(=	y	z)

3.	(=	(=	y	z)	0)

Explain	why	they	are	syntactically	legal	expressions	
Exercise	117.	Consider	the	following	sentences:

1.	(3	+	4)

2.	number?

3.	(x)

Explain	why	they	are	syntactically	illegal.	
Exercise	118.	Take	a	look	at	the	following	sentences:

1.	(define	(f	x)x)

2.	(define	(f	x)y)

3.	(define	(f	x	y)	3)

Explain	why	they	are	syntactically	legal	definitions	
Exercise	119.	Consider	the	following	sentences:

1.	(define	(f	"x")	x)

2.	(define	(f	x	y	z)	(x))

Explain	why	they	are	syntactically	illegal.	
Exercise	120.	Discriminate	the	legal	from	the	illegal	sentences:

1.	(x)

2.	(+	1	(not	x))

3.	(+	1	2	3)

Explain	why	the	sentences	are	legal	or	illegal.	Determine	whether	the	legal	ones
belong	to	the	category	expr	or	def.	

Note	 on	 Grammatical	 Terminology	 The	 components	 of	 compound
sentences	have	names.	We	have	introduced	some	of	these	names	on	an	informal
basis.	Figure	41	provides	a	summary	of	the	conventions.

Figure	41:	Syntactic	naming	conventions

In	addition	 to	 the	 terminology	of	 figure	41,	we	say	 function	header	 for	 the
second	 component	 of	 a	 definition.	 Accordingly,	 the	 expression	 component	 is
called	a	 function	body.	People	who	consider	programming	languages	as	a	form
of	mathematics	use	left-hand	side	for	a	header	and	right-hand	side	for	the	body.
On	occasion,	you	also	hear	or	read	the	term	actual	arguments	for	the	arguments
in	a	function	application.	End

BSL	Meaning
When	you	hit	the	return	key	on	your	keyboard	and	ask	DrRacket	to	evaluate	an
expression,	it	uses	the	laws	of	arithmetic	and	algebra	to	obtain	a	value.	For	the
variant	of	BSL	treated	so	far,	figure	39	defines	grammatically	what	a	value	is—
the	set	of	values	 is	 just	a	 subset	of	all	 expressions.	The	set	 includes	Booleans,
Strings,	and	Images.

The	rules	of	evaluation	come	in	two	categories.	An	infinite	number	of	rules,
like	those	of	arithmetic,	explain	how	to	determine	the	value	of	an	application	of
a	primitive	operation	to	values:

(+	1	1)	==	2	
(-	2	1)	==	1	
…

Remember	 ==	 says	 that	 two	 expressions	 are	 equal	 according	 to	 the	 laws	 of
computation	 in	 BSL.	 But	 BSL	 arithmetic	 is	 more	 general	 than	 just	 number
crunching.	It	also	includes	rules	for	dealing	with	Boolean	values,	strings,	and	so
on:

And,	like	in	algebra,	you	can	always	replace	equals	with	equals;	see	figure	42	for
a	sample	calculation.

Figure	42:	Replacing	equals	by	equals

Second,	 we	 need	 a	 rule	 from	 algebra	 to	 understand	 the	 application	 of	 a
function	to	arguments.	Suppose	the	program	contains	the	definition

(define	(f	x-1	…	x-n)	
		f-body)

Then	an	application	of	a	function	is	governed	by	the	law:

(f	v-1	…	v-n)	==	f-body	
;	with	all	occurrences	of	x-1	…	x-n	
;	replaced	with	v-1	…	v-n,	respectively

Due	to	the	history	of	languages	such	as	BSL,	we	refer	to	this	rule	as	the	beta	or
beta-value	rule.

See	chapter	17.2	for	more	on	this	rule.

This	 rule	 is	 formulated	 as	 generally	 as	 possible,	 so	 it	 is	 best	 to	 look	 at	 a
concrete	example.	Say	the	definition	is

(define	(poly	x	y)	
		(+	(expt	2	x)	y))

and	 DrRacket	 is	 given	 the	 expression	 (poly	 3	 5).	 Then	 the	 first	 step	 in	 an
evaluation	of	the	expression	uses	the	beta	rule:

(poly	3	5)	==	(+	(expt	2	3)	5)	…	==	(+	8	5)	==	13

In	 addition	 to	 beta,	 we	 need	 rules	 that	 determine	 the	 value	 of	 cond
expressions.	These	 rules	 are	 algebraic	 even	 if	 they	 are	 not	 explicitly	 taught	 as
part	 of	 the	 standard	 curriculum.	When	 the	 first	 condition	 is	 #false,	 the	 first
cond-line	disappears,	leaving	the	rest	of	the	lines	intact:

This	rule	has	the	name	condfalse.Here	is	condtrue:

The	rule	also	applies	when	the	first	condition	is	else.
Consider	the	following	evaluation:

(cond	
		[(zero?	3)	1]	
		[(=	3	3)	(+	1	1)]	
		[else	3])	
==	;	by	plain	arithmetic	and	equals-for-equals	
(cond	
		[#false	1]	
		[(=	3	3)	(+	1	1)]	
		[else	3])	
==	;	by	rule	condfalse	
(cond	
		[(=	3	3)	(+	1	1)]	
		[else	3])	
==	;	by	plain	arithmetic	and	equals-for-equals	
(cond	
		[#true	(+	1	1)]	
		[else	3])	
==	;	by	rule	condtrue	
(+	1	1)

The	calculation	illustrates	the	rules	of	plain	arithmetic,	the	replacement	of	equals
by	equals,	and	both	cond	rules.

Exercise	121.	Evaluate	the	following	expressions	step-by-step:

1.	(+	(*	(/	12	8)	2/3)	
			(-	20	(sqrt	4)))

2.	(cond	
		[(=	0	0)	#false]	
		[(>	0	1)	(string=?	"a"	"a")]	
		[else	(=	(/	1	0)	9)])

3.	(cond	
		[(=	2	0)	#false]	
		[(>	2	1)	(string=?	"a"	"a")]	
		[else	(=	(/	1	2)	9)])

Use	DrRacket’s	stepper	to	confirm	your	computations.	
Exercise	122.	Suppose	the	program	contains	these	definitions:

(define	(f	x	y)	
		(+	(*	3	x)	(*	y	y)))

Show	how	DrRacket	evaluates	the	following	expressions,	step-by-step:

1.	(+	(f	1	2)	(f	2	1))

2.	(f	1	(*	2	3))

3.	(f	(f	1	(*	2	3))	19)

Use	DrRacket’s	stepper	to	confirm	your	computations.	

Meaning	and	Computing
The	stepper	 tool	 in	DrRacket	mimics	a	 student	 in	a	pre-algebra	course.	Unlike
you,	 the	 stepper	 is	 is	 extremely	 good	 at	 applying	 the	 laws	 of	 arithmetic	 and
algebra	as	spelled	out	here,	and	it	is	also	extremely	fast.

A	scientist	calls	the	stepper	a	model	of	DrRacket’s	evaluation	mechanism.	Chapter	21Refining
Interpreters	presents	another	model,	an	interpreter.

You	can,	and	you	ought	to,	use	the	stepper	when	you	don’t	understand	how	a
new	 language	 construct	works.	 The	 sections	 on	Computing	 suggest	 exercises
for	this	purpose,	but	you	can	make	up	your	own	examples,	run	them	through	the
stepper,	and	ponder	why	it	takes	certain	steps.

Finally,	you	may	also	wish	to	use	the	stepper	when	you	are	surprised	by	the
result	 that	 a	 program	 computes.	 Using	 the	 stepper	 effectively	 in	 this	 way
requires	practice.	For	example,	it	often	means	copying	the	program	and	pruning
unnecessary	 pieces.	But	 once	 you	understand	how	 to	 use	 the	 stepper	well	 this
way,	 you	 will	 find	 that	 this	 procedure	 clearly	 explains	 run-time	 errors	 and
logical	mistakes	in	your	programs.

BSL	Errors
When	 DrRacket	 discovers	 that	 some	 parenthesized	 phrase	 does	 not	 belong	 to
BSL,	 it	 signals	 a	 syntax	 error.	 To	 determine	 whether	 a	 fully	 parenthesized
program	 is	 syntactically	 legal,	 DrRacket	 uses	 the	 grammar	 in	 figure	 40	 and
reasons	 along	 the	 lines	 explained	 above.	 Not	 all	 syntactically	 legal	 programs
have	meaning,	however.

For	a	nearly	full	list	of	error	messages,	see	the	last	section	of	this	intermezzo.

When	DrRacket	 evaluates	 a	 syntactically	 legal	 program	 and	 discovers	 that
some	operation	 is	 used	on	 the	wrong	kind	of	 value,	 it	 raises	 a	 run-time	 error.
Consider	 the	syntactically	 legal	expression	(/	1	0),	which,	as	you	know	from
mathematics,	 has	 no	 value.	 Since	 BSL’s	 calculations	 must	 be	 consistent	 with
mathematics,	DrRacket	signals	an	error:

>	(/	1	0)	
/:division	by	zero

Naturally	it	also	signals	an	error	when	an	expression	such	as	(/	1	0)	is	nested
deeply	inside	of	another	expression:

>	(+	(*	20	2)	(/	1	(-	10	10)))	
/:division	by	zero

DrRacket’s	 behavior	 translates	 into	 our	 calculations	 as	 follows.	When	 we
find	 an	 expression	 that	 is	 not	 a	 value	 and	when	 the	 evaluation	 rules	 allow	 no
further	 simplification,	 we	 say	 the	 computation	 is	 stuck.	 This	 notion	 of	 stuck
corresponds	to	a	run-time	error.	For	example,	computing	the	value	of	the	above
expression	leads	to	a	stuck	state:

(+	(*	20	2)	(/	1	(-	10	10)))	
==	
(+	(*	20	2)	(/	1	0))	
==	
(+	40	(/	1	0))

What	 this	 calculation	 also	 shows	 is	 that	 DrRacket	 eliminates	 the	 context	 of	 a
stuck	expression	as	it	signals	an	error.	In	this	concrete	example,	it	eliminates	the
addition	of	40	to	the	stuck	expression	(/	1	0).

Not	all	nested	stuck	expressions	end	up	signaling	errors.	Suppose	a	program
contains	this	definition:

(define	(my-divide	n)	
		(cond	
				[(=	n	0)	"inf"]	
				[else	(/	1	n)]))

If	you	now	apply	my-divide	to	0,	DrRacket	calculates	as	follows:

(my-divide	0)	
==	
(cond	
		[(=	0	0)	"inf"]	
		[else	(/	1	0)])

It	would	obviously	be	wrong	to	say	that	the	function	signals	the	division-by-zero
error	now,	even	though	an	evaluation	of	the	shaded	sub-expression	may	suggest
it.	The	reason	is	that	(=	0	0)	evaluates	to	#true	and	therefore	the	second	cond
clause	does	not	play	any	role:

(my-divide	0)	
==	
(cond	
		[(=	0	0)	"inf"]	
		[else	(/	1	0)])	
==	
(cond	
		[#true	"inf"]	
		[else	(/	1	0)])	
==	"inf"

Fortunately,	 our	 laws	 of	 evaluation	 take	 care	 of	 these	 situations
automatically.	We	just	need	to	remember	when	they	apply.	For	example,	in

(+	(*	20	2)	(/	20	2))

the	 addition	 cannot	 take	 place	 before	 the	multiplication	 or	 division.	 Similarly,
the	shaded	division	in

(cond	
		[(=	0	0)	"inf"]	
		[else	(/	1	0)])

cannot	be	substituted	 for	 the	complete	cond	expression	until	 the	corresponding
line	is	the	first	condition	in	the	cond.

As	a	rule	of	thumb,	it	is	best	to	keep	the	following	in	mind:

Always	choose	the	outermost	and	left-most	nested	expression	that
is	ready	for	evaluation.

While	this	guideline	may	look	simplistic,	it	always	explains	BSL’s	results.
In	some	cases,	programmers	also	want	 to	define	functions	 that	 raise	errors.

Recall	the	checked	version	of	area-of-disk	from	chapter	6.3:

(define	(checked-area-of-disk	v)	
		(cond	
				[(number?	v)	(area-of-disk	v)]	
				[else	(error	"number	expected")]))

Now	imagine	applying	checked-area-of-disk	to	a	string:

(-	(checked-area-of-disk	"a")	
			(checked-area-of-disk	10))	
==	
(-	(cond	
					[(number?	"a")	(area-of-disk	"a")]	
					[else	(error	"number	expected")])	
			(checked-area-of-disk	10))	
==	
(-	(cond	
					[#false	(area-of-disk	"a")]	

					[else	(error	"number	expected")])	
			(checked-area-of-disk	10))	
==	
(-	(error	"number	expected")	
			(checked-area-of-disk	10))

At	this	point	you	might	try	to	evaluate	the	second	expression,	but	even	if	you	do
find	out	that	its	result	is	roughly	314,	your	calculation	must	eventually	deal	with
the	 error	 expression,	 which	 is	 just	 like	 a	 stuck	 expression.	 In	 short,	 the
calculation	ends	in

(error	"number	expected")

Boolean	Expressions
Our	 current	 definition	 of	 BSL	 omits	 or	 and	 and	 expressions.	 Adding	 them
provides	a	case	 study	of	how	 to	 study	new	 language	constructs.	We	must	 first
understand	their	syntax	and	then	their	semantics.

Here	is	the	revised	grammar	of	expressions:
expr	=	…	
					|	(and	expr	expr)	
					|	(or	expr	expr)

The	 grammar	 says	 that	 and	 and	 or	 are	 keywords,	 each	 followed	 by	 two
expressions.	They	are	not	function	applications.

To	understand	why	and	and	or	are	not	BSL-defined	functions,	we	must	look
at	 their	 pragmatics	 first.	 Suppose	 we	 need	 to	 formulate	 a	 condition	 that
determines	whether	(/	1	n)	is	r:

(define	(check	n	r)	
		(and	(not	(=	n	0))	(=	(/	1	n)	r)))

We	 formulate	 the	 condition	 as	 an	 and	 combination	 because	we	 don’t	 wish	 to
divide	by	0	accidentally.	Now	let’s	apply	check	to	0	and	1/5:

(check	0	1/5)	
==	(and	(not	(=	0	0))	(=	(/	1	0)	1/5))

If	 and	 were	 an	 ordinary	 operation,	 we	 would	 have	 to	 evaluate	 both	 sub-
expressions,	 and	doing	 so	would	 trigger	 an	 error.	 Instead	and	 simply	does	 not
evaluate	the	second	expression	when	the	first	one	is	#false,	meaning,	and	short-
circuits	evaluation.

To	make	sure	expr-2	evaluates	to	a	Boolean	value,	these	abbreviations	should	use	(if	expr-2
#true	#false)	instead	of	just	expr-2.	We	gloss	over	this	detail	here.

It	would	be	easy	to	formulate	evaluation	rules	for	and	and	or.	Another	way
to	explain	their	meaning	is	to	translate	them	into	other	expressions:

(and	exp-1	exp-2)	is	short	for	(cond	
																														[exp-1	exp-2]	

																														[else	#false])

and

(or	exp-1	exp-2)	is	short	for	(cond	
																													[exp-1	#true]	
																													[else	exp-2])

So	if	you	are	ever	in	doubt	about	how	to	evaluate	an	and	or	or	expression,	use
the	 above	 equivalences	 to	 calculate.	 But	 we	 trust	 that	 you	 understand	 these
operations	intuitively,	and	that	is	almost	always	enough.

Exercise	123.	The	use	of	if	may	have	surprised	you	in	another	way	because
this	 intermezzo	does	not	mention	 this	 form	elsewhere.	 In	short,	 the	 intermezzo
appears	to	explain	and	with	a	form	that	has	no	explanation	either.	At	this	point,
we	are	 relying	on	your	 intuitive	understanding	of	if	 as	 a	 short-hand	 for	cond.
Write	down	a	rule	that	shows	how	to	reformulate

(if	exp-test	exp-then	exp-else)

as	a	cond	expression.	

Constant	Definitions
Programs	consist	not	only	of	function	definitions	but	also	of	constant	definitions,
but	these	weren’t	included	in	our	first	grammar.	So	here	is	an	extended	grammar
that	includes	constant	definitions:

definition	=	…	
											|	(define	name	expr)

The	 shape	 of	 a	 constant	 definition	 is	 similar	 to	 that	 of	 a	 function	 definition.
While	 the	keyword	define	distinguishes	constant	definitions	from	expressions,
it	does	not	differentiate	from	function	definitions.	For	that,	a	human	reader	must
look	at	the	second	component	of	the	definition.

As	it	turns	out,	DrRacket	has	another	way	of	dealing	with	function	definitions;	see	Chapter	17.

Next	we	must	understand	what	a	constant	definition	means.	For	a	constant
definition	with	a	literal	constant	on	the	right-hand	side,	such	as

(define	RADIUS	5)

the	 variable	 is	 just	 a	 short-hand	 for	 the	 value.	Wherever	DrRacket	 encounters
RADIUS	during	an	evaluation,	it	replaces	it	with	5.

For	a	definition	with	a	proper	expression	on	the	right-hand	side,	say,

(define	DIAMETER	(*	2	RADIUS))

we	must	immediately	determine	the	value	of	the	expression.	This	process	makes
use	of	whatever	definitions	precede	this	constant	definition.	Hence,

(define	RADIUS	5)	
(define	DIAMETER	(*	2	RADIUS))

is	equivalent	to

(define	RADIUS	5)	
(define	DIAMETER	10)

This	process	even	works	when	function	definitions	are	involved:

(define	RADIUS	10)	
(define	DIAMETER	(*	2	RADIUS))	
(define	(area	r)	(*	3.14	(*	r	r)))	
(define	AREA-OF-RADIUS	(area	RADIUS))

As	DrRacket	 steps	 through	 this	 sequence	of	definitions,	 it	 first	determines	 that
RADIUS	 stands	 for	 10,	 DIAMETER	 for	 20,	 and	 area	 is	 the	 name	 of	 a	 function.
Finally,	it	evaluates	(area	RADIUS)	to	314	and	associates	AREA-OF-RADIUS	with
that	value.

Mixing	constant	and	function	definitions	gives	rise	to	a	new	kind	of	run-time
error,	too.	Take	a	look	at	this	program:

(define	RADIUS	10)	
(define	DIAMETER	(*	2	RADIUS))	
(define	AREA-OF-RADIUS	(area	RADIUS))	
(define	(area	r)	(*	3.14	(*	r	r)))

It	 is	 like	the	one	above	with	the	last	 two	definitions	swapped.	For	the	first	 two
definitions,	evaluation	proceeds	as	before.	For	the	third	one,	however,	evaluation
goes	wrong.	The	process	calls	 for	 the	evaluation	of	(area	RADIUS).	While	 the
definition	of	RADIUS	precedes	this	expression,	the	definition	of	area	has	not	yet
been	 encountered.	 If	 you	 were	 to	 evaluate	 the	 program	 with	 DrRacket,	 you
would	therefore	get	an	error,	explaining	that	“this	function	is	not	defined.”	So	be
careful	 to	 use	 functions	 in	 constant	 definitions	 only	when	 you	 know	 they	 are
defined.

Exercise	124.	Evaluate	the	following	program,	step-by-step:

(define	PRICE	5)	
(define	SALES-TAX	(*	0.08	PRICE))	
(define	TOTAL	(+	PRICE	SALES-TAX))

Does	the	evaluation	of	the	following	program	signal	an	error?

(define	COLD-F	32)	
(define	COLD-C	(fahrenheit->celsius	COLD-F))	

(define	(fahrenheit->celsius	f)	
	(*	5/9	(-	f	32)))

How	about	the	next	one?

(define	LEFT	-100)	
(define	RIGHT	100)	
(define	(f	x)	(+	(*	5	(expt	x	2))	10))	
(define	f@LEFT	(f	LEFT))	
(define	f@RIGHT	(f	RIGHT))

Check	your	computations	with	DrRacket’s	stepper.	

Structure	Type	Definitions
As	 you	 can	 imagine,	 define-struct	 is	 the	most	 complex	BSL	 construct.	We
have	therefore	saved	its	explanation	for	last.	Here	is	the	grammar:

definition	=	…	
											|	(define-struct	name	[name	…])

A	 structure	 type	 definition	 is	 a	 third	 form	 of	 definition.	 The	 keyword
distinguishes	it	from	both	function	and	constant	definitions.

Here	is	a	simple	example:

(define-struct	point	[x	y	z])

Since	point,	x,	y,	and	z	are	variables	and	the	parentheses	are	placed	according	to
the	grammatical	pattern,	it	is	a	proper	definition	of	a	structure	type.	In	contrast,
these	two	parenthesized	sentences

(define-struct	[point	x	y	z])	
(define-struct	point	x	y	z)

are	 illegal	 definitions	 because	 define-struct	 is	 not	 followed	 by	 a	 single
variable	name	and	a	sequence	of	variables	in	parentheses.

While	 the	 syntax	 of	 define-struct	 is	 straightforward,	 its	 meaning	 is
difficult	 to	 spell	 out	 with	 evaluation	 rules.	 As	 mentioned	 several	 times,	 a
define-struct	 definition	 defines	 several	 functions	 at	 once:	 a	 constructor,
several	selectors,	and	a	predicate.	Thus	the	evaluation	of

(define-struct	c	[s-1	…	s-n])

introduces	the	following	functions	into	the	program:

1.	make-c:	a	constructor;

2.	c-s-1…	c-s-n:	a	series	of	selectors;	and

3.	c?:	a	predicate.

These	functions	have	the	same	status	as	+,	-,	or	*.	Before	we	can	understand	the
rules	that	govern	these	new	functions,	however,	we	must	return	to	the	definition
of	values.	After	all,	one	purpose	of	a	define-struct	 is	 to	 introduce	a	class	of
values	that	is	distinct	from	all	existing	values.

Simply	 put,	 the	 use	 of	 define-struct	 extends	 the	 universe	 of	 values.	 To
start	with,	 it	now	also	contains	structures,	which	compound	several	values	 into
one.	 When	 a	 program	 contains	 a	 define-struct	 definition,	 its	 evaluation
modifies	the	definition	of	values:

A	value	is	one	of:	a	number,	a	Boolean,	a	string,	an	image,

•  or	a	structure	value:
(make-c	_value-1	…	_value-n)

assuming	a	structure	type	c	is	defined.

For	example,	the	definition	of	point	adds	values	of	this	shape:

(make-point	1	2	-1)	
(make-point	"one"	"hello"	"world")	
(make-point	1	"one"	(make-point	1	2	-1))	
…

Now	 we	 are	 in	 a	 position	 to	 understand	 the	 evaluation	 rules	 of	 the	 new
functions.	If	c-s-1	is	applied	to	a	c	structure,	it	returns	the	first	component	of	the
value.	 Similarly,	 the	 second	 selector	 extracts	 the	 second	 component,	 the	 third
selector	the	third	component,	and	so	on.	The	relationship	between	the	new	data
constructor	 and	 the	 selectors	 is	 best	 characterized	 with	 n	 equations	 added	 to
BSL’s	rules:

(c-s-1	(make-c	V-1	…	V-n))	==	V-1	
(c-s-n	(make-c	V-1	…	V-n))	==	V-n

For	our	running	example,	we	get	the	specific	equations

(point-x	(make-point	V	U	W))	==	V	
(point-y	(make-point	V	U	W))	==	U	
(point-z	(make-point	V	U	W))	==	W

When	 DrRacket	 sees	 (point-y	 (make-point	 3	 4	 5)),	 it	 replaces	 the
expression	with	4	while	(point-x	(make-point	(make-point	1	2	3)	4	5))
evaluates	to	(make-point	1	2	3).

The	predicate	c?	can	be	applied	to	any	value.	It	returns	#true	if	the	value	is
of	kind	c	and	#false	otherwise.	We	can	translate	both	parts	into	two	equations:

(c?	(make-c	V-1	…	V-n))	==	#true	
(c?	V)																				==	#false

if	 V	 is	 a	 value	 not	 constructed	 with	 make-c.	 Again,	 the	 equations	 are	 best
understood	in	terms	of	our	example:

(point?	(make-point	U	V	W))	==	#true	
(point?	X)																		==	#false

if	X	is	a	value	but	not	a	point	structure.
Exercise	125.	Discriminate	the	legal	from	the	illegal	sentences:

1.	(define-struct	oops	[])

2.	(define-struct	child	[parents	dob	date])

3.	(define-struct	(child	person)	[dob	date])

Explain	why	the	sentences	are	legal	or	illegal.	
Exercise	 126.	 Identify	 the	 values	 among	 the	 following	 expressions,

assuming	the	definitions	area	contains	these	structure	type	definitions:

(define-struct	point	[x	y	z])	
(define-struct	none		[])

1.	(make-point	1	2	3)

2.	(make-point	(make-point	1	2	3)	4	5)

3.	(make-point	(+	1	2)	3	4)

4.	(make-none)

5.	(make-point	(point-x	(make-point	1	2	3))	4	5)

Explain	why	the	expressions	are	values	or	not.	
Exercise	127.	Suppose	the	program	contains

(define-struct	ball	[x	y	speed-x	speed-y])

Predict	the	results	of	evaluating	the	following	expression:

1.	(number?	(make-ball	1	2	3	4))

2.	(ball-speed-y	(make-ball	(+	1	2)	(+	3	3)	2	3))

3.	(ball-y	(make-ball	(+	1	2)	(+	3	3)	2	3))

4.	(ball-x	(make-posn	1	2))

5.	(ball-speed-y	5)

Check	your	predictions	in	the	interactions	area	and	with	the	stepper.	

BSL	Tests
Figure	43	presents	all	of	BSL	plus	a	number	of	testing	forms.

Figure	43:	BSL,	full	grammar

The	 general	 meaning	 of	 testing	 expressions	 is	 easy	 to	 explain.	When	 you
click	the	RUN	button,	DrRacket	collects	all	testing	expressions	and	moves	them
to	 the	 end	 of	 the	 program,	 retaining	 the	 order	 in	 which	 they	 appear.	 It	 then
evaluates	 the	content	of	 the	definitions	area.	Each	 test	 evaluates	 its	pieces	and
then	compares	them	with	the	expected	outcome	via	some	predicate.	Beyond	that,
tests	communicate	with	DrRacket	 to	collect	 some	statistics	and	 information	on
how	to	display	test	failures.

Exercise	128.	Copy	the	following	tests	into	DrRacket’s	definitions	area:

Validate	that	all	of	them	fail	and	explain	why.	

BSL	Error	Messages
A	 BSL	 program	 may	 signal	 many	 kinds	 of	 syntax	 errors.	 While	 we	 have
developed	BSL	and	 its	 error	 reporting	 system	specifically	 for	novices	who,	by
definition,	make	mistakes,	error	messages	need	some	getting	used	to.

Below	we	sample	the	kinds	of	error	messages	that	you	may	encounter.	Each
entry	in	one	of	the	listings	consists	of	three	parts:

•  the	code	fragments	that	signal	the	error	message;

•  the	error	message;	and

•  an	explanation	with	a	suggestion	on	how	to	fix	the	mistake.

Consider	 the	 following	 example,	 which	 is	 the	 worst	 possible	 error	message
you	may	ever	see:

A	 cond	 expression	 consists	 of	 the	 keyword	 followed	 by	 an
arbitrarily	 long	 sequence	 of	 cond	 clauses.	 In	 turn,	 every	 clause
consists	of	 two	parts:	 a	 condition	and	an	answer,	both	of	which
are	 expressions.	 In	 this	 definition	 of	 absolute,	 the	 first	 clause
starts	with	<,	which	 is	supposed	 to	be	a	condition	but	 isn’t	even
an	expression	according	to	our	definition.	This	confuses	BSL	so
much	that	 it	does	not	“see”	the	open	parenthesis	 to	the	left	of	<.
The	fix	is	to	use	(<	n	0)	as	the	condition.

The	 highlighting	 of	<	 in	 the	 function	 definition	 points	 to	 the	 error.	Below	 the
definition,	 you	 can	 see	 the	 error	 message	 that	 DrRacket	 presents	 in	 the
interactions	window	if	you	click	RUN.	Study	the	explanation	of	the	error	on	the
right	 to	 understand	 how	 to	 address	 this	 somewhat	 self-contradictory	message.
And	now	rest	assured	that	no	other	error	message	is	even	remotely	as	opaque	as

this	one.
So,	when	an	error	shows	up	and	you	need	help,	find	the	appropriate	figure,

search	the	entries	for	a	match,	and	then	study	the	complete	entry.
Error	Messages	about	Function	Applications	in	BSL

Assume	that	the	definitions	area	contains	the	following	and	nothing	else:

Hit	the	RUN	button.	Now	you	may	encounter	the	error	messages	below.

The	application	names	f	as	 the	function,	and	f	 is	not	defined	 in
the	 definitions	 area.	 Define	 the	 function,	 or	 make	 sure	 that	 the
variable	name	is	spelled	correctly.

An	 open	 parenthesis	must	 always	 be	 followed	 by	 a	 keyword	 or
the	name	of	a	function,	and	1	is	neither.	A	function	name	is	either
defined	by	BSL,	say	+,	or	in	the	definitions	area,	say	average.

This	 function	 call	 applies	 average	 to	 one	 argument,	 7,	 even

though	its	definition	calls	for	two	numbers.

Here	average	is	applied	to	three	numbers	instead	of	two.

Functions	 defined	 by	 BSL	 must	 also	 be	 applied	 to	 the	 correct
number	of	arguments.	For	example,	make-posn	must	be	applied	to
two	arguments.

Error	Messages	about	Wrong	Data	in	BSL
The	 error	 scenarios	 below	 again	 assume	 that	 the	 definitions	 area	 contains	 the
following:

;	Number	Number	->	Number	
;	find	the	average	of	x	and	y	

(define	(average	x	y)	…)

Remember	that	posn	is	a	pre-defined	structure	type.

A	 function	 must	 be	 applied	 to	 the	 arguments	 it	 expects.	 For
example,	posn-x	expects	an	instance	of	posn.

A	function	defined	to	consume	two	Numbers	must	be	applied	to
two	 Numbers;	 here	 average	 is	 applied	 to	 Strings.	 The	 error

message	 is	 triggered	 only	 when	 average	 applies	 +	 to	 these
Strings.	Like	all	primitive	operations,	+	is	a	checked	function.

Error	Messages	about	Conditionals	in	BSL
This	time	we	expect	a	constant	definition	in	the	definitions	area:

Every	cond	clause	must	consist	of	exactly	two	parts:	a	condition
and	an	answer.	Here	(>=	0-to-9	5)	is	apparently	intended	as	the
condition;	the	answer	is	missing.

In	 this	 case,	 the	 cond	 clause	 consists	 of	 three	 parts,	which	 also
violates	the	grammar.	While	(>=	0-to-9	5)	is	clearly	intended	to
be	the	condition,	the	clause	comes	with	two	answers:	"head"	and
"tail".	Pick	one	or	create	a	single	value	from	the	two	strings.

A	 conditional	 must	 come	 with	 at	 least	 one	 cond	 clause	 and
usually	it	comes	with	at	least	two.

Error	Messages	about	Function	Definitions	in	BSL
All	 of	 the	 following	 error	 scenarios	 assume	 that	 you	 have	 placed	 the	 code
snippet	into	the	definitions	area	and	hit	RUN.

A	 definition	 consist	 of	 three	 parts:	 the	 define	 keyword,	 a
sequence	 of	 variable	 names	 enclosed	 in	 parentheses,	 and	 an
expression.	This	definition	consists	of	four	parts;	this	definition	is
an	attempt	 to	use	 the	standard	notation	from	algebra	courses	 for
the	header	f	(x)	instead	of	(f	x).

The	 sequence	 of	 parameters	 in	 a	 function	 definition	 must	 not
contain	duplicate	variables.

In	BSL	a	 function	header	must	 contain	 at	 least	 two	names.	The
first	 one	 is	 the	 name	 of	 the	 function;	 the	 remaining	 variable
names	are	the	parameters,	and	they	are	missing	here.

The	function	header	contains	(x),	which	is	not	a	variable	name.

This	 function	 definition	 comes	 with	 two	 expressions	 following
the	header:	x	and	y.

Error	Messages	about	Structure	Type	Definitions	in	BSL
Now	you	need	to	place	the	structure	type	definitions	into	the	definitions	area	and
hit	RUN	to	experiment	with	the	following	errors.

A	 structure	 type	 definition	 consists	 of	 three	 parts:	 the	 define-
struct	keyword,	 the	structure’s	name,	and	a	sequence	of	names
in	parentheses.	Here	the	structure’s	name	is	missing.

The	 sequence	 of	 field	 names	 in	 a	 structure	 type	 definition	must
not	contain	duplicate	names.

These	structure	type	definitions	lack	the	sequence	of	field	names,
enclosed	in	parentheses.

II
ARBITRARILY	LARGE	DATA

Every	 data	 definition	 in	 Part	 I	 describes	 data	 of	 a	 fixed	 size.	 To	 us,	 Boolean
values,	 numbers,	 strings,	 and	 images	 are	 atomic;	 computer	 scientists	 say	 they
have	a	size	of	one	unit.	With	a	structure,	you	compose	a	fixed	number	of	pieces
of	data.	Even	if	you	use	the	language	of	data	definitions	to	create	deeply	nested
structures,	you	always	know	 the	exact	number	of	atomic	pieces	of	data	 in	any
specific	 instance.	 Many	 programming	 problems,	 however,	 deal	 with	 an
undetermined	 number	 of	 pieces	 of	 information	 that	must	 be	 processed	 as	 one
piece	of	data.	For	example,	one	program	may	have	to	compute	the	average	of	a
bunch	of	numbers	and	another	may	have	to	keep	track	of	an	arbitrary	number	of
objects	in	an	interactive	game.	Regardless,	it	is	impossible	with	your	knowledge
to	formulate	a	data	definition	that	can	represent	this	kind	of	information	as	data.

This	part	revises	the	language	of	data	definitions	so	that	it	becomes	possible
to	describe	data	of	(finite	but)	arbitrary	size.	For	a	concrete	illustration,	the	first
half	 of	 this	 part	 deals	 with	 lists,	 a	 form	 of	 data	 that	 appears	 in	most	 modern
programming	 languages.	 In	 parallel	 with	 the	 extended	 language	 of	 data
definitions,	 this	 part	 also	 revises	 the	 design	 recipe	 to	 cope	 with	 such	 data
definitions.	The	 latter	 chapters	 demonstrate	 how	 these	 data	 definitions	 and	 the
revised	design	recipe	work	in	a	variety	of	contexts.

8 Lists
You	 have	 probably	 not	 encountered	 self-referential	 definitions	 before.	 Your
English	teachers	certainly	stay	away	from	these,	and	many	mathematics	courses
are	vague	when	 it	comes	 to	such	definitions.	Programmers	cannot	afford	 to	be
vague.	Their	work	requires	precision.	While	a	definition	may	in	general	contain
several	 references	 to	 itself,	 this	chapter	presents	useful	examples	 that	need	 just
one,	starting	with	the	one	for	lists.

The	introduction	of	lists	also	spices	up	the	kind	of	applications	we	can	study.
While	 this	 chapter	 carefully	 builds	 up	 your	 intuition	 with	 examples,	 it	 also
motivates	 the	 revision	of	 the	design	 recipe	 in	 the	next	 chapter,	which	explains
how	 to	 systematically	 create	 functions	 that	 deal	 with	 self-referential	 data
definitions.

8.1 Creating	Lists
All	of	us	make	lists	all	the	time.	Before	we	go	grocery	shopping,	we	write	down
a	list	of	items	we	wish	to	purchase.	Some	people	write	down	a	to-do	list	every
morning.	During	December,	many	children	prepare	Christmas	wish	lists.	To	plan
a	party,	we	make	a	list	of	invitees.	Arranging	information	in	the	form	of	lists	is
an	ubiquitous	part	of	our	life.

Given	that	information	comes	in	the	shape	of	lists,	we	must	clearly	learn	how
to	represent	such	lists	as	BSL	data.	Indeed,	because	lists	are	so	important,	BSL
comes	with	 built-in	 support	 for	 creating	 and	manipulating	 lists,	 similar	 to	 the
support	for	Cartesian	points	(posn).	In	contrast	to	points,	the	data	definition	for
lists	is	always	left	to	you.	But	first	things	first.	We	start	with	the	creation	of	lists.

When	we	 form	a	 list,	we	 always	 start	 out	with	 the	 empty	 list.	 In	BSL,	we
represent	the	empty	list	with

'()

which	is	pronounced	“empty,”	short	for	“empty	list.”	Like	#true	or	5,	'()	is	just
a	constant.	When	we	add	something	to	a	list,	we	construct	another	list;	in	BSL,
the	cons	operation	serves	this	purpose.	For	example,

(cons	"Mercury"	'())

constructs	a	 list	 from	the	'()	 list	and	 the	string	"Mercury".	Figure	44	presents
this	 list	 in	 the	same	pictorial	manner	we	used	 for	 structures.	The	box	 for	cons
has	two	fields:	first	and	rest.	In	this	specific	example	the	first	field	contains
"Mercury"	and	the	rest	field	contains	'().

Figure	44:	Building	a	list

Once	we	have	a	list	with	one	item	in	it,	we	can	construct	lists	with	two	items
by	using	cons	again.	Here	is	one:

(cons	"Venus"	(cons	"Mercury"	'()))

And	here	is	another:

(cons	"Earth"	(cons	"Mercury"	'()))

The	middle	row	of	figure	44	shows	how	you	can	imagine	lists	that	contain	two
items.	It	is	also	a	box	of	two	fields,	but	this	time	the	rest	field	contains	a	box.
Indeed,	it	contains	the	box	from	the	top	row	of	the	same	figure.

Finally,	we	construct	a	list	with	three	items:

(cons	"Earth"	(cons	"Venus"	(cons	"Mercury"	'())))

The	 last	 row	 of	 figure	 44	 illustrates	 the	 list	 with	 three	 items.	 Its	 rest	 field
contains	a	box	that	contains	a	box	again.	So,	as	we	create	lists	we	put	boxes	into
boxes	into	boxes,	and	so	on.	While	this	may	appear	strange	at	first	glance,	it	is
just	 like	a	set	of	Chinese	gift	boxes	or	a	set	of	nested	drinking	cups,	which	we
sometimes	get	for	birthdays.	The	only	difference	is	that	BSL	programs	can	nest
lists	much	deeper	than	any	artist	could	nest	physical	boxes.

Because	even	good	artists	would	have	problems	with	drawing	deeply	nested
structures,	computer	scientists	resort	to	box-and-arrow	diagrams	instead.	Figure
45	 illustrates	 how	 to	 rearrange	 the	 last	 row	 of	 figure	 44.	 Each	 cons	 structure
becomes	a	separate	box.	If	the	rest	field	is	too	complex	to	be	drawn	inside	of	the
box,	we	draw	a	bullet	instead	and	a	line	with	an	arrow	to	the	box	that	it	contains.
Depending	on	how	the	boxes	are	arranged,	you	get	two	kinds	of	diagrams.	The
first,	displayed	in	the	top	row	of	figure	45,	lists	the	boxes	in	the	order	in	which
they	are	created.	The	second,	displayed	in	the	bottom	row,	lists	the	boxes	in	the
order	in	which	they	are	consed	together.	Hence	the	second	diagram	immediately
tells	you	what	first	would	have	produced	when	applied	 to	 the	 list,	 no	matter
how	 long	 the	 list	 is.	 For	 this	 reason,	 programmers	 prefer	 the	 second
arrangement.

Figure	45:	Drawing	a	list

Exercise	129.	Create	BSL	lists	that	represent

1.	a	list	of	celestial	bodies,	say,	at	least	all	the	planets	in	our	solar	system;

2.	 a	 list	 of	 items	 for	 a	meal,	 for	 example,	 steak,	 french	 fries,	 beans,	 bread,
water,	Brie	cheese,	and	ice	cream;	and

3.	a	list	of	colors.

Sketch	some	box	representations	of	these	lists,	similar	to	those	in	figures	44	and

45.	Which	of	the	sketches	do	you	like	better?	
You	can	also	make	lists	of	numbers.	Here	is	a	list	with	the	10	digits:

To	build	 this	 list	 requires	10	 list	 constructions	and	one	'().	For	a	 list	of	 three
arbitrary	numbers,	for	example,

we	need	three	conses.
In	general	a	list	does	not	have	to	contain	values	of	one	kind,	but	may	contain

arbitrary	values:

The	first	item	of	this	list	is	a	string,	the	second	one	is	a	number,	and	the	last	one
a	Boolean.	You	may	consider	this	list	as	the	representation	of	a	personnel	record
with	three	pieces	of	data:	the	name	of	the	employee,	the	number	of	years	spent	at
the	 company,	 and	 whether	 the	 employee	 has	 health	 insurance	 through	 the
company.	 Or,	 you	 could	 think	 of	 it	 as	 representing	 a	 virtual	 player	 in	 some
game.	Without	a	data	definition,	you	just	can’t	know	what	data	is	all	about.

Then	again,	if	this	list	is	supposed	to	represent	a	record	with	a	fixed	number	of	pieces,	use	a	structure
type	instead.

Here	is	a	first	data	definition	that	involves	cons:

;	A	3LON	is	a	list	of	three	numbers:	
;	(cons	Number	(cons	Number	(cons	Number	'())))	
;	interpretation	a	point	in	3-dimensional	space

Of	course,	this	data	definition	uses	cons	like	others	use	constructors	for	structure
instances,	 and	 in	 a	 sense,	 cons	 is	 just	 a	 special	 constructor.	 What	 this	 data
definition	fails	to	demonstrate	is	how	to	form	lists	of	arbitrary	length:	lists	that
contain	nothing,	one	item,	two	items,	ten	items,	or	perhaps	1,438,901	items.

So	let’s	try	again:

;	A	List-of-names	is	one	of:	
;	--	'()	
;	--	(cons	String	List-of-names)	
;	interpretation	a	list	of	invitees,	by	last	name

Take	a	deep	breath,	read	it	again.	This	data	definition	is	one	of	the	most	unusual
definitions	you	have	ever	encountered—you	have	never	before	seen	a	definition
that	 refers	 to	 itself.	 It	 isn’t	even	clear	whether	 it	makes	sense.	After	all,	 if	you
had	told	your	English	teacher	that	“a	table	is	a	table”	defines	the	word	“table,”
the	most	likely	response	would	have	been	“Nonsense!”	because	a	self-referential
definition	doesn’t	explain	what	a	word	means.

In	computer	science	and	in	programming,	though,	self-referential	definitions
play	a	central	role,	and	with	some	care,	such	definitions	actually	do	make	sense.
Here	 “making	 sense”	means	 that	we	 can	 use	 the	 data	 definition	 for	what	 it	 is
intended	for,	namely,	to	generate	examples	of	data	that	belong	to	the	class	that	is
being	 defined	 or	 to	 check	 whether	 some	 given	 piece	 of	 data	 belongs	 to	 the
defined	 class	 of	 data.	 From	 this	 perspective,	 the	 definition	 of	 List-of-names
makes	 complete	 sense.	 At	 a	 minimum,	 we	 can	 generate	 '()	 as	 one	 example,
using	 the	 first	 clause	 in	 the	 itemization.	 Given	 '()	 as	 an	 element	 of	 List-of-
names,	it	is	easy	to	make	a	second	one:

(cons	"Findler"	'())

Here	we	 are	 using	 a	String	 and	 the	 only	 list	 from	List-of-names	 to	 generate	 a
piece	of	data	according	 to	 the	second	clause	 in	 the	 itemization.	With	 the	 same
rule,	we	can	generate	many	more	lists	of	this	kind:

(cons	"Flatt"	'())	
(cons	"Felleisen"	'())	
(cons	"Krishnamurthi"	'())

And	while	these	lists	all	contain	one	name	(represented	as	a	String),	it	is	actually
possible	 to	 use	 the	 second	 line	 of	 the	 data	 definition	 to	 create	 lists	with	more
names	in	them:

(cons	"Felleisen"	(cons	"Findler"	'()))

This	piece	of	data	belongs	to	List-of-names	because	"Felleisen"	is	a	String	and
(cons	"Findler"	'())	is	a	confirmed	List-of-names.

Exercise	130.	Create	an	element	of	List-of-names	that	contains	five	Strings.
Sketch	a	box	representation	of	the	list	similar	to	those	found	in	figure	44.

Explain	why

(cons	"1"	(cons	"2"	'()))

is	an	element	of	List-of-names	and	why	(cons	2	'())	isn’t.	
Exercise	 131.	 Provide	 a	 data	 definition	 for	 representing	 lists	 of	 Boolean

values.	The	class	contains	all	arbitrarily	long	lists	of	Booleans.	

8.2 What	Is	'(),	What	Is	cons
Let’s	 step	 back	 for	 a	 moment	 and	 take	 a	 close	 look	 at	 '()	 and	 cons.	 As
mentioned,	 '()	 is	 just	 a	 constant.	 When	 compared	 to	 constants	 such	 as	 5	 or
"this	is	a	string",	it	looks	more	like	a	function	name	or	a	variable;	but	when
compared	with	#true	 and	#false,	 it	 should	be	easy	 to	 see	 that	 it	 really	 is	 just
BSL’s	representation	for	empty	lists.

As	for	our	evaluation	rules,	'()	is	a	new	kind	of	atomic	value,	distinct	from
any	other	kind:	numbers,	Booleans,	strings,	and	so	on.	It	also	isn’t	a	compound
value,	like	Posns.	Indeed,	'()	is	so	unique	it	belongs	in	a	class	of	values	all	by
itself.	As	such,	this	class	of	values	comes	with	a	predicate	that	recognizes	only
'()	and	nothing	else:

;	Any	->	Boolean	
;	is	the	given	value	'()	
(define	(empty?	x)	…)

Like	all	predicates,	empty?	can	be	applied	to	any	value	from	the	universe	of	BSL
values.	It	produces	#true	precisely	when	it	is	applied	to	'():

>	(empty?	'())	
#true	
>	(empty?	5)	
#false	
>	(empty?	"hello	world")	
#false	
>	(empty?	(cons	1	'()))	
#false	
>	(empty?	(make-posn	0	0))	
#false

Next	we	turn	to	cons.	Everything	we	have	seen	so	far	suggests	that	cons	is	a
constructor	 just	 like	 those	 introduced	 by	 structure	 type	 definitions.	 More
precisely,	cons	 appears	 to	be	 the	constructor	 for	a	 two-field	 structure:	 the	 first
one	 for	 any	 kind	 of	 value	 and	 the	 second	 one	 for	 any	 list-like	 value.	 The
following	definitions	translate	this	idea	into	BSL:

(define-struct	pair	[left	right])	
;	A	ConsPair	is	a	structure:	
;			(make-pair	Any	Any).	

;	Any	Any	->	ConsPair	
(define	(our-cons	a-value	a-list)	
		(make-pair	a-value	a-list))

The	only	catch	 is	 that	our-cons	accepts	all	possible	BSL	values	 for	 its	second
argument	and	cons	doesn’t,	as	the	following	experiment	validates:

>	(cons	1	2)	
cons:second	argument	must	be	a	list,	but	received	1	and	2

Put	differently,	cons	 is	really	a	checked	function,	the	kind	discussed	in	chapter
6,	which	suggests	the	following	refinement:

;	A	ConsOrEmpty	is	one	of:	
;	--	'()	
;	--	(make-pair	Any	ConsOrEmpty)	
;	interpretation	ConsOrEmpty	is	the	class	of	all	lists	

;	Any	Any	->	ConsOrEmpty	
(define	(our-cons	a-value	a-list)	
		(cond	
				[(empty?	a-list)	(make-pair	a-value	a-list)]	
				[(pair?	a-list)	(make-pair	a-value	a-list)]	
				[else	(error	"cons:	second	argument	…")]))

If	 cons	 is	 a	 checked	 constructor	 function,	 you	may	 be	 wondering	 how	 to
extract	 the	 pieces	 from	 the	 resulting	 structure.	 After	 all,	 Chapter	 5	 says	 that
programming	with	structures	 requires	selectors.	Since	a	cons	 structure	has	 two
fields,	 there	are	 two	selectors:	first	and	rest.	They	are	also	easily	defined	 in
terms	of	our	pair	structure:

Stop!	Define	our-rest.
If	your	program	can	access	the	structure	type	definition	for	pair,	it	is	easy	to

create	pairs	that	don’t	contain	'()	or	another	pair	in	the	right	field.	Whether
such	bad	 instances	 are	 created	 intentionally	or	 accidentally,	 they	 tend	 to	break
functions	and	programs	in	strange	ways.	BSL	therefore	hides	the	actual	structure
type	definition	for	cons	to	avoid	these	problems.	Chapter	16.2	demonstrates	one
way	 that	your	programs	can	hide	 such	definitions,	 too,	but	 for	now,	you	don’t
need	this	power.

Figure	 46	 summarizes	 this	 section.	The	 key	 insight	 is	 that	'()	 is	 a	 unique
value	 and	 that	 cons	 is	 a	 checked	 constructor	 that	 produces	 list	 values.
Furthermore,	 first,	 rest,	 and	 cons?	 are	 merely	 distinct	 names	 for	 the	 usual
predicate	 and	 selectors.	What	 this	 chapter	 teaches,	 then,	 is	not	 a	 new	way	 of
creating	data	but	a	new	way	of	formulating	data	definitions.

Figure	46:	List	primitives

8.3 Programming	with	Lists
Say	 you’re	 keeping	 track	 of	 your	 friends	 with	 some	 list,	 and	 say	 the	 list	 has
grown	so	large	that	you	need	a	program	to	determine	whether	some	name	is	on
the	list.	To	make	this	idea	concrete,	let’s	state	it	as	an	exercise:

Here	we	use	the	word	“friend”	in	the	sense	of	social	networks,	not	the	real	world.

Sample	Problem	You	 are	working	 on	 the	 contact	 list	 for	 some
new	cell	phone.	The	phone’s	owner	updates	and	consults	this	list
on	 various	 occasions.	 For	 now,	 you	 are	 assigned	 the	 task	 of
designing	 a	 function	 that	 consumes	 this	 list	 of	 contacts	 and
determines	whether	it	contains	the	name	“Flatt.”

Once	 we	 have	 a	 solution	 to	 this	 sample	 problem,	 we	 will	 generalize	 it	 to	 a
function	that	finds	any	name	on	a	list.

The	data	definition	 for	List-of-names	 from	 the	preceding	 is	 appropriate	 for
representing	the	list	of	names	that	the	function	is	to	search.	Next	we	turn	to	the
header	material:

;	List-of-names	->	Boolean	
;	determines	whether	"Flatt"	is	on	a-list-of-names	
(define	(contains-flatt?	a-list-of-names)	
		#false)

While	a-list-of-names	 is	a	good	name	for	 the	 list	of	names	 that	 the	function
consumes,	it	is	a	mouthful	and	we	therefore	shorten	it	to	alon.

Following	 the	general	design	 recipe,	we	next	make	up	 some	examples	 that
illustrate	 the	 purpose	 of	 the	 function.	 First,	 we	 determine	 the	 output	 for	 the
simplest	input:	'().	Since	this	list	does	not	contain	any	strings,	it	certainly	does
not	contain	"Flatt":

(check-expect	(contains-flatt?	'())	#false)

Then	we	consider	lists	with	a	single	item.	Here	are	two	examples:

In	the	first	case,	the	answer	is	#false	because	the	single	item	on	the	list	is	not
"Flatt";	in	the	second	case,	the	single	item	is	"Flatt",	so	the	answer	is	#true.
Finally,	here	is	a	more	general	example:

Again,	the	answer	case	must	be	#true	because	the	list	contains	"Flatt".	Stop!
Make	a	general	example	for	which	the	answer	must	be	#false.

Take	a	breath.	Run	the	program.	The	header	is	a	“dummy”	definition	for	the
function;	you	have	some	examples;	they	have	been	turned	into	tests;	and	best	of
all,	 some	 of	 them	 actually	 succeed.	 They	 succeed	 for	 the	 wrong	 reason	 but
succeed	they	do.	If	things	make	sense	now,	read	on.

The	 fourth	 step	 is	 to	 design	 a	 function	 template	 that	 matches	 the	 data
definition.	 Since	 the	 data	 definition	 for	 lists	 of	 strings	 has	 two	 clauses,	 the
function’s	body	must	be	a	cond	expression	with	two	clauses.	The	two	conditions
determine	which	of	the	two	kinds	of	lists	the	function	received:

(define	(contains-flatt?	alon)	
		(cond	
				[(empty?	alon)	…]	
				[(cons?	alon)	…]))

Instead	of	(cons?	alon),	we	could	use	else	in	the	second	clause.
We	 can	 add	 one	more	 hint	 to	 the	 template	 by	 studying	 each	 clause	 of	 the

cond	 expression	 in	 turn.	 Specifically,	 recall	 that	 the	 design	 recipe	 suggests
annotating	 each	 clause	with	 selector	 expressions	 if	 the	 corresponding	 class	 of
inputs	 consists	 of	 compounds.	 In	 our	 case,	 we	 know	 that	 '()	 does	 not	 have
compounds,	so	there	are	no	components.	Otherwise	the	list	is	constructed	from	a
string	and	another	list	of	strings,	and	we	remind	ourselves	of	this	fact	by	adding

(first	alon)	and	(rest	alon)	to	the	template:

Now	it	is	time	to	switch	to	the	programming	task	proper,	the	fifth	step	of	our
design	 recipe.	 It	 starts	 from	 a	 template	 and	 deals	 with	 each	 cond	 clause
separately.	If	(empty?	alon)	is	true,	the	input	is	the	empty	list,	in	which	case	the
function	must	 produce	 the	 result	#false.	 In	 the	 second	case,	(cons?	alon)	 is
true.	 The	 annotations	 in	 the	 template	 remind	 us	 that	 there	 is	 a	 first	 string	 and
then	the	rest	of	the	list.	So	let’s	consider	an	example	that	falls	into	this	category:

(cons	"A"	
		(cons	…	
						…	'()))

The	 function,	 like	 a	 person,	must	 compare	 the	 first	 item	with	"Flatt".	 In	 this
example,	the	first	one	is	"A"	and	not	"Flatt",	so	the	comparison	yields	#false.
If	we	had	considered	some	other	example	instead,	say,

(cons	"Flatt"	
		(cons	…	
						…	'()))

the	 function	 would	 determine	 that	 the	 first	 item	 on	 the	 input	 is	 "Flatt",	 and
would	 therefore	 respond	 with	 #true.	 This	 implies	 that	 the	 second	 line	 in	 the
cond	 expression	 should	 contain	 an	 expression	 that	 compares	 the	 first	 name	on
the	list	with	"Flatt":

Furthermore,	if	 the	comparison	yields	#true,	 the	function	must	produce	#true.
If	 the	comparison	yields	#false,	we	are	 left	with	another	 list	of	strings:	(rest
alon).	Clearly,	the	function	can’t	know	the	final	answer	in	this	case,	because	the
answer	depends	on	what	“⋯”	represents.	Put	differently,	if	the	first	item	is	not
"Flatt",	 we	 need	 some	 way	 to	 check	 whether	 the	 rest	 of	 the	 list	 contains
"Flatt".

Fortunately,	we	have	contains-flatt?	and	 it	 fits	 the	bill.	According	 to	 its
purpose	statement,	it	determines	whether	a	list	contains	"Flatt".	The	statement
implies	that	(contains-flatt?	l)	tells	us	whether	the	list	of	strings	l	contains
"Flatt".	And,	 in	 the	same	vein,	(contains-flatt?	(rest	alon))	determines
whether	"Flatt"	is	a	member	of	(rest	alon),	which	is	precisely	what	we	need
to	know.

In	short,	the	last	line	should	be	(contains-flatt?	(rest	alon)):

The	trick	is	now	to	combine	the	values	of	the	two	expressions	in	the	appropriate
manner.	As	mentioned,	 if	 the	 first	expression	yields	#true,	 there	 is	no	need	 to
search	the	rest	of	the	list;	if	it	is	#false,	though,	the	second	expression	may	still
yield	 #true,	 meaning	 the	 name	 "Flatt"	 is	 on	 the	 rest	 of	 the	 list.	 All	 of	 this
suggests	that	the	result	of	(contains-flatt?	alon)	 is	#true	 if	either	 the	first
expression	in	the	last	line	or	the	second	expression	yields	#true.

Figure	 47	 then	 shows	 the	 complete	 definition.	 Overall	 it	 doesn’t	 look	 too

different	 from	 the	 definitions	 in	 the	 first	 chapter	 of	 the	 book.	 It	 consists	 of	 a
signature,	a	purpose	statement,	two	examples,	and	a	definition.	The	only	way	in
which	this	function	definition	differs	from	anything	you	have	seen	before	is	the
self-reference,	 that	 is,	 the	 reference	 to	 contains-flatt?	 in	 the	 body	 of	 the
define.	Then	again,	the	data	definition	is	self-referential,	too,	so	in	some	sense
the	self-reference	in	the	function	shouldn’t	be	too	surprising.

Figure	47:	Searching	a	list

Exercise	132.	Use	DrRacket	to	run	contains-flatt?	in	this	example:

What	answer	do	you	expect?	
Exercise	133.	Here	is	another	way	of	formulating	the	second	cond	clause	in

contains-flatt?:

Explain	why	this	expression	produces	the	same	answers	as	the	or	expression	in
the	version	of	figure	47.	Which	version	is	better?	Explain.	

Exercise	 134.	Develop	 the	contains?	 function,	which	 determines	whether
some	given	string	occurs	on	a	given	list	of	strings.

Note	BSL	actually	comes	with	member?,	a	function	that	consumes	two	values
and	checks	whether	the	first	occurs	in	the	second,	a	list:

>	(member?	"Flatt"	(cons	"b"	(cons	"Flatt"	'())))	
#true

Don’t	use	member?	to	define	the	contains?	function.	

8.4 Computing	with	Lists
Since	we	 are	 still	 using	BSL,	 the	 rules	 of	 algebra—see	 intermezzo	 1—tell	 us
how	to	determine	the	value	of	expressions	such	as

(contains-flatt?	(cons	"Flatt"	(cons	"C"	'())))

without	 DrRacket.	 Programmers	must	 have	 an	 intuitive	 understanding	 of	 how
this	 kind	 of	 calculation	 works,	 so	 we	 step	 through	 the	 one	 for	 this	 simple
example.

Figure	 48	 displays	 the	 first	 step,	 which	 uses	 the	 usual	 substitution	 rule	 to
determine	 the	 value	 of	 an	 application.	 The	 result	 is	 a	 conditional	 expression
because,	as	an	algebra	teacher	would	say,	the	function	is	defined	in	a	step-wise
fashion.

Figure	48:	Computing	with	lists,	step	1

The	calculation	 is	 continued	 in	 figure	49.	To	 find	 the	correct	 clause	of	 the
cond	 expression,	 we	must	 determine	 the	 value	 of	 the	 conditions,	 one	 by	 one.
Since	 a	 consed	 list	 isn’t	 empty,	 the	 first	 condition’s	 result	 is	 #false,	 and	we
therefore	 eliminate	 the	 first	 cond	 clause.	 Finally	 the	 condition	 in	 the	 second
clause	evaluates	to	#true	because	cons?	of	a	consed	list	holds.

Figure	49:	Computing	with	lists,	step	2

From	 here,	 it	 is	 just	 three	more	 steps	 of	 arithmetic	 to	 get	 the	 final	 result.
Figure	 50	 displays	 the	 three	 steps.	 The	 first	 evaluates	 (first	 (cons

"Flatt"…))	 to	 "Flatt"	 due	 to	 the	 laws	 for	 first.	 The	 second	 discovers	 that
"Flatt"	is	a	string	and	equal	to	"Flatt".	The	third	says	(or	#true	X)	is	#true
regardless	of	what	X	is.

Figure	50:	Computing	with	lists,	step	3

Exercise	135.	Use	DrRacket’s	stepper	to	check	the	calculation	for

(contains-flatt?	(cons	"Flatt"	(cons	"C"	'())))

Also	use	the	stepper	to	determine	the	value	of

(contains-flatt?	

		(cons	"A"	(cons	"Flatt"	(cons	"C"	'()))))

What	happens	when	"Flatt"	is	replaced	with	"B"?	
Exercise	136.	Validate	with	DrRacket’s	stepper

(our-first	(our-cons	"a"	'()))	==	"a"	
(our-rest	(our-cons	"a"	'()))	==	'()

See	chapter	8.2	for	the	definitions	of	these	functions.	

9 Designing	with	Self-Referential	Data	Definitions
At	first	glance,	self-referential	data	definitions	seem	to	be	far	more	complex	than
those	 for	mixed	data.	But,	 as	 the	 example	 of	contains-flatt?	 shows,	 the	 six
steps	of	the	design	recipe	still	work.	Nevertheless,	in	this	section	we	generalize
the	design	recipe	so	that	it	works	even	better	for	self-referential	data	definitions.
The	 new	 parts	 concern	 the	 process	 of	 discovering	when	 a	 self-referential	 data
definition	is	needed,	deriving	a	template,	and	defining	the	function	body:

1.	 If	a	problem	statement	 is	about	 information	of	arbitrary	size,	you	need	a
self-referential	data	definition	to	represent	it.	At	this	point,	you	have	seen
only	one	such	class,	List-of-names.	The	left	side	of	figure	51	shows	how	to
define	List-of-strings	in	the	same	way.	Other	lists	of	atomic	data	work	the
same	way.

Figure	51:	Arrows	for	self-references	in	data	definitions	and	templates

Numbers	also	seem	to	be	arbitrarily	large.	For	inexact	numbers,	this	is	an	illusion.	For	precise
integers,	this	is	indeed	the	case.	Dealing	with	integers	is	therefore	a	part	of	this	chapter.

For	 a	 self-referential	 data	 definition	 to	 be	 valid,	 it	 must	 satisfy	 two
conditions.	First,	it	must	contain	at	least	two	clauses.	Second,	at	least	one
of	the	clauses	must	not	refer	back	to	the	class	of	data	that	is	being	defined.
It	 is	 good	 practice	 to	 identify	 the	 self-references	 explicitly	 with	 arrows
from	the	references	in	the	data	definition	back	to	the	term	being	defined;
see	figure	51	for	an	example	of	such	an	annotation.
You	must	 check	 the	 validity	 of	 self-referential	 data	 definitions	 with	 the
creation	of	data	examples.	Start	with	 the	clause	 that	does	not	refer	 to	 the

data	definition;	continue	with	the	other	one,	using	the	first	example	where
the	clause	refers	to	the	definition	itself.	For	the	data	definition	in	figure	51,
you	thus	get	lists	like	the	following	three:

If	 it	 is	 impossible	 to	 generate	 examples	 from	 the	 data	 definition,	 it	 is
invalid.	 If	 you	can	generate	 examples	but	you	can’t	 see	how	 to	generate
increasingly	 larger	 examples,	 the	 definition	 may	 not	 live	 up	 to	 its
interpretation.

2.	 Nothing	 changes	 about	 the	 header	 material:	 the	 signature,	 the	 purpose
statement,	and	the	dummy	definition.	When	you	do	formulate	the	purpose
statement,	focus	on	what	the	function	computes	not	how	it	goes	about	it,
especially	not	how	it	goes	through	instances	of	the	given	data.
Here	is	an	example	to	make	this	design	recipe	concrete:

;	List-of-strings	->	Number	
;	counts	how	many	strings	alos	contains	
(define	(how-many	alos)	
		0)

The	 purpose	 statement	 clearly	 states	 that	 the	 function	 just	 counts	 the
strings	on	the	given	input;	there	is	no	need	to	think	ahead	about	how	you
might	formulate	this	idea	as	a	BSL	function.

3.	When	it	comes	to	functional	examples,	be	sure	to	work	through	inputs	that
use	the	self-referential	clause	of	the	data	definition	several	times.	It	is	the
best	way	to	formulate	tests	that	cover	the	entire	function	definition	later.
For	 our	 running	 example,	 the	 purpose	 statement	 almost	 generates
functional	examples	by	itself	from	the	data	examples:

The	first	row	is	about	the	empty	list,	and	we	know	that	empty	list	contains
nothing.	The	second	row	is	a	list	of	one	string,	so	1	is	the	desired	answer.
The	last	row	is	about	a	list	of	two	strings.

4.	At	the	core,	a	self-referential	data	definition	looks	like	a	data	definition	for
mixed	 data.	 The	 development	 of	 the	 template	 can	 therefore	 proceed
according	 to	 the	 recipe	 in	 chapter	 6.	 Specifically,	 we	 formulate	 a	 cond
expression	 with	 as	 many	 cond	 clauses	 as	 there	 are	 clauses	 in	 the	 data
definition,	match	 each	 recognizing	 condition	 to	 the	 corresponding	 clause
in	 the	data	definition,	and	write	down	appropriate	selector	expressions	 in
all	cond	lines	that	process	compound	values.
Figure	 52	 expresses	 this	 idea	 as	 a	 question-and-answer	 game.	 In	 the	 left
column	it	states	questions	about	the	data	definition	for	the	argument,	and
in	the	right	column	it	explains	what	the	answer	means	for	the	construction
of	the	template.

Figure	52:	How	to	translate	a	data	definition	into	a	template

If	 you	 ignore	 the	 last	 row	 and	 apply	 the	 first	 three	 questions	 to	 any
function	that	consumes	a	List-of-strings,	you	arrive	at	this	shape:

Recall,	 though,	 that	 the	 purpose	 of	 a	 template	 is	 to	 express	 the	 data
definition	as	a	function	layout.	That	is,	a	template	expresses	as	code	what
the	data	definition	 for	 the	 input	 expresses	 as	 a	mix	of	English	 and	BSL.
Hence	all	important	pieces	of	the	data	definition	must	find	a	counterpart	in
the	template,	and	this	guideline	should	also	hold	when	a	data	definition	is
self-referential—contains	 an	 arrow	 from	 inside	 the	definition	 to	 the	 term
being	defined.	In	particular,	when	a	data	definition	is	self-referential	in	the
ith	clause	and	 the	kth	field	of	 the	structure	mentioned	there,	 the	 template
should	be	self-referential	in	the	ith	cond	clause	and	the	selector	expression
for	the	kth	field.	For	each	such	selector	expression,	add	an	arrow	back	to
the	 function	 parameter.	 At	 the	 end,	 your	 template	 must	 have	 as	 many
arrows	as	we	have	in	the	data	definition.
Figure	51	illustrates	this	idea	with	the	template	for	functions	that	consume
List-of-strings	 shown	 side	 by	 side	with	 the	 data	 definition.	Both	 contain
one	arrow	that	originates	in	the	second	clause—the	rest	field	and	selector,
respectively—and	points	back	to	the	top	of	the	respective	definitions.
Since	BSL	and	most	programming	 languages	are	 text-oriented,	you	must
use	an	alternative	to	the	arrow,	namely,	a	self-application	of	the	function	to
the	appropriate	selector	expression:

We	refer	to	a	self-use	of	a	function	as	recursion	and	in	the	first	four	parts
of	the	book	as	natural	recursion.

For	the	curious	among	our	readers,	the	design	recipe	for	arbitrarily	large	data	corresponds	to	so-
called	“proofs	by	induction”	in	mathematics,	and	the	“leap	of	faith”	represents	the	use	of	the
induction	hypothesis	for	the	inductive	step	of	such	a	proof.	Logic	proves	the	validity	of	this	proof
technique	with	an	Induction	Theorem.

5.	 For	 the	 function	 body	 we	 start	 with	 those	 cond	 lines	 without	 recursive
function	 calls,	 known	 as	 base	 cases.The	 corresponding	 answers	 are
typically	easy	to	formulate	or	already	given	as	examples.
Then	 we	 deal	 with	 the	 self-referential	 cases.	 We	 start	 by	 reminding
ourselves	what	each	of	the	expressions	in	the	template	line	computes.	For
the	 natural	 recursion	 we	 assume	 that	 the	 function	 already	 works	 as
specified	in	our	purpose	statement.	This	last	step	is	a	leap	of	faith,	but	as
you	will	see,	it	always	works.
The	rest	is	then	a	matter	of	combining	the	various	values.
Figure	 53	 formulates	 the	 first	 four	 questions	 and	 answers	 for	 this	 step.
Let’s	use	this	game	to	complete	the	definition	of	how-many.	Renaming	the
fun-for-los	template	to	how-many	gives	us	this	much:

Figure	53:	How	to	turn	a	template	into	a	function	definition

As	the	functional	examples	already	suggest,	the	answer	for	the	base	case	is
0.	The	two	expressions	in	 the	second	clause	compute	the	first	 item	and
the	number	of	strings	in	(rest	alos).	To	compute	how	many	strings	there
are	on	all	of	alos,	the	function	just	needs	to	add	1	to	the	value	of	the	latter
expression:

(define	(how-many	alos)	
		(cond	
				[(empty?	alos)	0]	
				[else	(+	(how-many	(rest	alos))	1)])

Felix	Klock	suggested	this	table-based	approach	to	guessing	the	combinator.

Finding	the	correct	way	to	combine	the	values	into	the	desired	answer	isn’t
always	 as	 easy.	 Novice	 programmers	 often	 get	 stuck	 with	 this	 step.	 As
figure	54	suggests,	it	is	a	good	idea	to	arrange	the	functional	examples	into

a	 table	 that	 also	 spells	 out	 the	values	 of	 the	 expressions	 in	 the	 template.
Figure	55	shows	what	this	table	looks	like	for	our	how-many	example.	The
left-most	 column	 lists	 the	 sample	 inputs,	 while	 the	 right-most	 column
contains	 the	 desired	 answers	 for	 these	 inputs.	 The	 three	 columns	 in
between	 show	 the	 values	 of	 the	 template	 expressions:	 (first	 alos),
(rest	 alos),	 and	 (how-many	 (rest	 alos)),	 which	 is	 the	 natural
recursion.	 If	 you	 stare	 at	 this	 table	 long	 enough,	 you	 recognize	 that	 the
result	column	is	always	one	more	than	the	values	in	the	natural	recursion
column.	You	may	thus	guess	that

(+	(how-many	(rest	alos))	1)

is	the	expression	that	computes	the	desired	result.	Since	DrRacket	is	fast	at
checking	these	kinds	of	guesses,	plug	it	in	and	click	RUN.	If	the	examples-
turned-into-tests	pass,	think	through	the	expression	to	convince	yourself	it
works	for	all	lists;	otherwise	add	more	example	rows	to	the	table	until	you
have	a	different	idea.

Figure	54:	Turning	a	template	into	a	function,	the	table	method

Figure	55:	Tabulating	arguments,	intermediate	values,	and	results

The	table	also	points	out	that	some	selector	expressions	in	the	template	are
possibly	 irrelevant	 for	 the	 actual	 definition.	 Here	 (first	 alos)	 is	 not
needed	 to	 compute	 the	 final	 answer—which	 is	 quite	 a	 contrast	 to
contains-flatt?,	which	uses	both	expressions	from	the	template.
As	you	work	your	way	through	the	rest	of	this	book,	keep	in	mind	that,	in
many	cases,	the	combination	step	can	be	expressed	with	BSL’s	primitives,
say,	+,	and,	or	cons.	In	some	cases,	though,	you	may	have	to	make	a	wish,
that	 is,	design	an	auxiliary	 function.	Finally,	 in	yet	other	cases,	you	may
need	nested	conditions.

6.	Finally,	make	sure	to	turn	all	examples	into	tests,	that	these	tests	pass,	and
that	running	them	covers	all	the	pieces	of	the	function.
Here	are	our	examples	for	how-many	turned	into	tests:

(check-expect	(how-many	'())	0)	
(check-expect	(how-many	(cons	"a"	'()))	1)	
(check-expect	
		(how-many	(cons	"b"	(cons	"a"	'())))	2)

Remember,	 it	 is	 best	 to	 formulate	 examples	 directly	 as	 tests,	 and	 BSL
allows	 this.	Doing	 so	 also	 helps	 if	 you	 need	 to	 resort	 to	 the	 table-based
guessing	approach	of	the	preceding	step.

Figure	56	summarizes	 the	design	 recipe	of	 this	 section	 in	a	 tabular	 format.
The	 first	 column	 names	 the	 steps	 of	 the	 design	 recipe,	 and	 the	 second	 the
expected	results	of	each	step.	In	the	third	column,	we	describe	the	activities	that

get	you	there.	The	figure	is	tailored	to	the	kind	of	self-referential	list	definitions
we	use	in	this	chapter.	As	always,	practice	helps	you	master	the	process,	so	we
strongly	 recommend	 that	you	 tackle	 the	 following	exercises,	which	ask	you	 to
apply	the	recipe	to	several	kinds	of	examples.

Figure	56:	Designing	a	function	for	self-referential	data

You	may	want	to	copy	figure	56	onto	one	side	of	an	index	card	and	write	down	your	favorite	versions
of	the	questions	and	answers	for	this	design	recipe	onto	the	back	of	it.	Then	carry	it	with	you	for
future	reference.

9.1 Finger	Exercises:	Lists
Exercise	137.	Compare	the	template	for	contains-flatt?	with	the	one	for	how-
many.	Ignoring	the	function	name,	they	are	the	same.	Explain	the	similarity.	

Exercise	 138.	 Here	 is	 a	 data	 definition	 for	 representing	 sequences	 of
amounts	of	money:

;	A	List-of-amounts	is	one	of:	
;	--	'()	
;	--	(cons	PositiveNumber	List-of-amounts)

Create	some	examples	to	make	sure	you	understand	the	data	definition.	Also	add
an	arrow	for	the	self-reference.

Design	 the	sum	 function,	which	 consumes	 a	List-of-amounts	 and	 computes
the	sum	of	the	amounts.	Use	DrRacket’s	stepper	to	see	how	(sum	l)	works	for	a
short	list	l	in	List-of-amounts.	

Exercise	139.	Now	take	a	look	at	this	data	definition:

;	A	List-of-numbers	is	one	of:	
;	--	'()	
;	--	(cons	Number	List-of-numbers)

Some	elements	of	this	class	of	data	are	appropriate	inputs	for	sum	from	exercise
138	and	some	aren’t.

Design	the	function	pos?,	which	consumes	a	List-of-numbers	and	determines
whether	 all	 numbers	 are	 positive	 numbers.	 In	 other	words,	 if	(pos?	l)	 yields
#true,	 then	 l	 is	 an	 element	 of	 List-of-amounts.	 Use	 DrRacket’s	 stepper	 to
understand	how	pos?	works	for	(cons	5	'())	and	(cons	-1	'()).

Also	 design	 checked-sum.	 The	 function	 consumes	 a	 List-of-numbers.	 It
produces	 their	 sum	 if	 the	 input	 also	 belongs	 to	 List-of-amounts;	 otherwise	 it
signals	an	error.	Hint	Recall	to	use	check-error.

What	does	sum	compute	for	an	element	of	List-of-numbers?	
Exercise	 140.	 Design	 the	 function	 all-true,	 which	 consumes	 a	 list	 of

Boolean	values	and	determines	whether	all	of	them	are	#true.	In	other	words,	if
there	is	any	#false	on	the	list,	the	function	produces	#false.

Now	design	one-true,	a	function	that	consumes	a	list	of	Boolean	values	and

determines	whether	at	least	one	item	on	the	list	is	#true.	
Employ	the	table-based	approach	to	coding.	It	may	help	with	the	base	case.

Use	DrRacket’s	stepper	to	see	how	these	functions	process	the	lists	(cons	#true
'()),	(cons	#false	'()),	and	(cons	#true	(cons	#false	'())).

Exercise	141.	If	you	are	asked	to	design	the	function	cat,	which	consumes	a
list	of	strings	and	appends	 them	all	 into	one	 long	string,	you	are	guaranteed	 to
end	up	with	this	partial	definition:

Fill	 in	 the	 table	 in	 figure	 57.	 Guess	 a	 function	 that	 can	 create	 the	 desired
result	from	the	values	computed	by	the	sub-expressions.

Figure	57:	A	table	for	cat

Use	DrRacket’s	stepper	to	evaluate	(cat	(cons	"a"	'())).	
Exercise	 142.	 Design	 the	 ill-sized?	 function,	 which	 consumes	 a	 list	 of

images	loi	and	a	positive	number	n.	It	produces	the	first	image	on	loi	that	is	not
an	n	by	n	square;	if	it	cannot	find	such	an	image,	it	produces	#false.

Hint	Use

;	ImageOrFalse	is	one	of:	
;	--	Image	
;	--	#false

for	the	result	part	of	the	signature.	

9.2 Non-empty	Lists
Now	you	know	enough	to	use	cons	and	to	create	data	definitions	for	lists.	If	you
solved	(some	of)	the	exercises	at	the	end	of	the	preceding	section,	you	can	deal
with	lists	of	various	flavors	of	numbers,	lists	of	Boolean	values,	lists	of	images,
and	 so	 on.	 In	 this	 section	 we	 continue	 to	 explore	 what	 lists	 are	 and	 how	 to
process	them.

Let’s	 start	with	 the	 simple-looking	problem	of	 computing	 the	 average	of	 a
list	of	temperatures.	To	simplify,	we	provide	the	data	definitions:

;	A	List-of-temperatures	is	one	of:	
;	--	'()	
;	--	(cons	CTemperature	List-of-temperatures)	
;	A	CTemperature	is	a	Number	greater	than	-272.

For	our	 intentions,	you	should	 think	of	 temperatures	as	plain	numbers,	but	 the
second	 data	 definition	 reminds	 you	 that	 in	 reality	 not	 all	 numbers	 are
temperatures	and	you	should	keep	this	in	mind.

The	header	material	is	straightforward:

;	List-of-temperatures	->	Number	
;	computes	the	average	temperature	
(define	(average	alot)	0)

Making	up	examples	for	this	problem	is	also	easy,	and	so	we	just	formulate	one
test:

(check-expect	
		(average	(cons	1	(cons	2	(cons	3	'()))))	2)

The	 expected	 result	 is	 of	 course	 the	 sum	 of	 the	 temperatures	 divided	 by	 the
number	of	temperatures.

A	moment’s	thought	tells	you	that	the	template	for	average	should	be	similar
to	the	ones	we	have	seen	so	far:

The	two	cond	clauses	mirror	the	two	clauses	of	the	data	definition;	the	questions
distinguish	empty	lists	from	non-empty	lists;	and	the	natural	recursion	is	needed
because	of	the	self-reference	in	the	data	definition.

It	 is	 way	 too	 difficult,	 however,	 to	 turn	 this	 template	 into	 a	 function
definition.	The	first	cond	clause	needs	a	number	that	represents	the	average	of	an
empty	 collection	 of	 temperatures,	 but	 there	 is	 no	 such	 number.	 Similarly,	 the
second	clause	demands	a	 function	 that	combines	a	 temperature	and	an	average
for	 the	 remaining	 temperatures	 into	 a	 new	 average.	 Although	 possible,
computing	the	average	in	this	way	is	highly	unnatural.

When	we	compute	the	average	of	temperatures,	we	divide	their	sum	by	their
number.	We	said	so	when	we	formulated	our	trivial	little	example.	This	sentence
suggests	 that	 average	 is	 a	 function	 of	 three	 tasks:	 summing,	 counting,	 and
dividing.	Our	guideline	from	Part	I	tells	us	to	write	one	function	per	task,	and	if
we	do	so	the	design	of	average	is	obvious:

;	List-of-temperatures	->	Number	
;	computes	the	average	temperature	
(define	(averagealot)	
		(/	(sumalot)	(how-manyalot)))	

;	List-of-temperatures	->	Number	
;	adds	up	the	temperatures	on	the	given	list	
(define	(sumalot)	0)	

;	List-of-temperatures	->	Number	
;	counts	the	temperatures	on	the	given	list	
(define	(how-manyalot)	0)

The	 last	 two	 function	 definitions	 are	wishes,	 of	 course,	 for	which	we	 need	 to

design	 complete	 definitions.	 Doing	 so	 is	 easy	 because	 how-many	 from	 above
works	 for	 List-of-strings	 and	 List-of-temperatures	 (why?)	 and	 because	 the
design	of	sum	follows	the	same	old	routine:

;	List-of-temperatures	->	Number	
;	adds	up	the	temperatures	on	the	given	list	
(define	(sum	alot)	
		(cond	
				[(empty?	alot)	0]	
				[else	(+	(first	alot)	(sum	(rest	alot)))]))

Stop!	Use	the	example	for	average	to	create	one	for	sum	and	ensure	that	the	test
runs	properly.	Then	run	the	tests	for	average.

When	you	read	this	definition	of	average	now,	it	is	obviously	correct	simply
because	 it	 directly	 corresponds	 to	 what	 everyone	 learns	 about	 averaging	 in
school.	 Still,	 programs	 run	 not	 just	 for	 us	 but	 for	 others.	 In	 particular,	 others
should	 be	 able	 to	 read	 the	 signature	 and	 use	 the	 function	 and	 expect	 an
informative	answer.	But,	our	definition	of	average	does	not	work	for	empty	lists
of	temperatures.

Exercise	143.	Determine	how	average	behaves	in	DrRacket	when	applied	to
the	 empty	 list.	 Then	 design	 checked-average,	 a	 function	 that	 produces	 an
informative	error	message	when	it	is	applied	to	'().	

In	mathematics,	we	would	say	exercise	143	shows	that	average	is	a	partial	function	because	it	raises
an	error	for	'().

An	alternative	solution	is	to	inform	future	readers	through	the	signature	that
average	doesn’t	work	for	empty	lists.	For	that,	we	need	a	data	representation	for
lists	that	excludes	'(),	something	like	this:

;	An	NEList-of-temperatures	is	one	of:	
;	--	???	
;	--	(cons	CTemperature	NEList-of-	temperatures)

The	 question	 is	 with	 what	 we	 should	 replace	 “???”	 so	 that	 the	 '()	 list	 is
excluded	but	 all	 other	 lists	 of	 temperatures	 still	 constructable.	One	hint	 is	 that

while	 the	 empty	 list	 is	 the	 shortest	 list,	 any	 list	 of	one	 temperature	 is	 the	next
shortest	list.	In	turn,	this	suggests	that	the	first	clause	should	describe	all	possible
lists	of	one	temperature:

;	An	NEList-of-temperatures	is	one	of:	
;	--	(cons	CTemperature	'())	
;	--	(cons	CTemperature	NEList-of-temperatures)	
;	interpretation	non-empty	lists	of	Celsius	temperatures

While	this	definition	differs	from	the	preceding	list	definitions,	it	shares	the
critical	elements:	a	self-reference	and	a	clause	that	does	not	use	a	self-reference.
Strict	adherence	to	the	design	recipe	demands	that	you	make	up	some	examples
of	NEList-of-temperatures	to	ensure	that	the	definition	makes	sense.	As	always,
you	should	start	with	the	base	clause,	meaning	the	example	must	look	like	this:

(cons	c	'())

where	c	stands	for	a	CTemperature,	like	thus:	(cons	-273	'()).	Also,	it	is	clear
that	all	non-empty	elements	of	List-of-temperatures	are	also	elements	of	the	new
class	of	data:	(cons	1	(cons	2	(cons	3	'())))	fits	the	bill	if	(cons	2	(cons
3	'()))	does,	and	(cons	2	(cons	3	'()))	belongs	to	NEList-of-temperatures
because	(cons	3	'())	 is	 an	 element	 of	NEList-of-temperatures,	 as	 confirmed
before.	 Check	 for	 yourself	 that	 there	 is	 no	 limit	 on	 the	 size	 of	 NEList-of-
temperatures.

Let’s	 now	 return	 to	 the	 problem	 of	 designing	 average	 so	 that	 everyone
knows	 it	 is	 for	 non-empty	 lists	 only.	 With	 the	 definition	 of	 NEList-of-
temperatures,	we	now	have	the	means	to	say	what	we	want	in	the	signature:

This	alternative	development	explains	that,	in	this	case,	we	can	narrow	down	the	domain	of	average
and	create	a	total	function.

Naturally	the	rest	remains	the	same:	the	purpose	statement,	the	example-test,	and
the	function	definition.	After	all,	the	very	idea	of	computing	the	average	assumes
a	 non-empty	 collection	 of	 numbers,	 and	 that	 was	 the	 entire	 point	 of	 our
discussion.

Exercise	144.	Will	sum	and	how-many	work	for	NEList-of-temperatures	even
though	they	are	designed	for	inputs	from	List-of-temperatures?	If	you	think	they
don’t	work,	provide	counter-examples.	If	you	think	they	would,	explain	why.	

Nevertheless,	 the	definition	also	 raises	 the	question	how	 to	design	sum	 and
how-many	because	they	consume	instances	of	NEList-of-temperatures	now.	Here
is	the	obvious	result	of	the	first	three	steps	of	the	design	recipe:

;	NEList-of-temperatures	->	Number	
;	computes	the	sum	of	the	given	temperatures	
(check-expect	
		(sum	(cons	1	(cons	2	(cons	3	'()))))	6)	
(define	(sum	ne-l)	0)

The	 example	 is	 adapted	 from	 the	 example	 for	average;	 the	 dummy	 definition
produces	a	number,	but	the	wrong	one	for	the	given	test.

The	fourth	step	is	the	most	interesting	part	of	the	design	of	sum	for	NEList-
of-temperatures.	 All	 preceding	 examples	 of	 design	 demand	 a	 template	 that
distinguishes	empty	lists	from	non-empty,	that	is,	consed,	lists	because	the	data
definitions	 have	 an	 appropriate	 shape.	 This	 is	 not	 true	 for	 NEList-of-

temperatures.	 Here	 both	 clauses	 add	 consed	 lists.	 The	 two	 clauses	 differ,
however,	in	the	rest	field	of	these	lists.	In	particular,	the	first	clause	always	uses
'()	 in	 the	rest	 field	 and	 the	 second	one	 uses	cons	 instead.	Hence	 the	 proper
condition	to	distinguish	the	first	kind	of	data	from	the	second	extracts	the	rest
field	and	then	uses	empty?:

;	NEList-of-temperatures	->	Number	
(define	(sum	ne-l)	
		(cond	
				[(empty?	(rest	ne-l))	…]	
				[else	…]))

Here	else	replaces	(cons?	(rest	ne-l)).
Next	you	should	inspect	both	clauses	and	determine	whether	one	or	both	of

them	deal	with	ne-l	as	if	it	were	a	structure.	This	is	of	course	the	case,	which	the
unconditional	use	of	rest	on	ne-l	demonstrates.	Put	differently,	add	appropriate
selector	expressions	to	the	two	clauses:

(define	(sum	ne-l)	
		(cond	
				[(empty?	(rest	ne-l))	(…	(first	ne-l)	…)]	
				[else	(…	(first	ne-l)	…	(rest	ne-l)	…)]))

Before	 you	 read	 on,	 explain	why	 the	 first	 clause	 does	 not	 contain	 the	 selector
expression	(rest	ne-l).

The	final	question	of	the	template	design	concerns	self-references	in	the	data
definition.	As	you	know,	NEList-of-temperatures	contains	one,	and	therefore
the	template	for	sum	demands	one	recursive	use:

(define	(sum	ne-l)	
		(cond	
				[(empty?	(rest	ne-l))	(…	(first	ne-l)	…)]	
				[else	
				(…	(first	ne-l)	…	(sum	(rest	ne-l))	…)]))

Specifically,	sum	is	called	on	(rest	ne-l)	in	the	second	clause	because	the	data
definition	is	self-referential	at	the	analogous	point.

For	the	fifth	design	step,	let’s	understand	how	much	we	already	have.	Since
the	 first	 cond	 clause	 looks	 significantly	 simpler	 than	 the	 second	 one	 with	 its
recursive	function	call,	you	should	start	with	that	one.	In	this	particular	case,	the
condition	says	that	sum	is	applied	to	a	list	with	exactly	one	temperature,	(first
ne-l).	Clearly,	this	one	temperature	is	the	sum	of	all	temperatures	on	the	given
list:

(define	(sum	ne-l)	
		(cond	
				[(empty?	(rest	ne-l))	(first	ne-l)]	
				[else	
					(…	(first	ne-l)	…	(sum	(rest	ne-l))	…)]))

The	 second	 clause	 says	 that	 the	 list	 consists	 of	 a	 temperature	 and	 at	 least	 one
more;	(first	ne-l)	extracts	 the	first	position	and	(rest	ne-l)	 the	remaining
ones.	Furthermore,	 the	 template	 suggests	 to	 use	 the	 result	 of	(sum	(rest	ne-
l)).	But	sum	is	the	function	that	you	are	defining,	and	you	can’t	possibly	know
how	it	uses	(rest	ne-l).	All	you	do	know	is	what	the	purpose	statement	says,
namely,	that	sum	adds	all	the	temperatures	on	the	given	list,	which	is	(rest	ne-
l).	If	this	statement	is	true,	then	(sum	(rest	ne-l))	adds	up	all	but	one	of	the
numbers	 of	 ne-l.	 To	 get	 the	 total,	 the	 function	 just	 has	 to	 add	 the	 first
temperature:

(define	(sum	ne-l)	
		(cond	
				[(empty?	(rest	ne-l))	(first	ne-l)]	
				[else	(+	(first	ne-l)	(sum	(rest	ne-l)))]))

If	 you	now	 run	 the	 test	 for	 this	 function,	 you	will	 see	 that	 the	 leap	 of	 faith	 is
justified.	Indeed,	for	reasons	beyond	the	scope	of	this	book,	this	leap	is	always
justified,	which	is	why	it	is	an	inherent	part	of	the	design	recipe.

Exercise	145.	Design	the	sorted>?	predicate,	which	consumes	a	NEList-of-
temperatures	 and	 produces	 #true	 if	 the	 temperatures	 are	 sorted	 in	 descending
order.	That	 is,	 if	 the	 second	 is	 smaller	 than	 the	 first,	 the	 third	 smaller	 than	 the
second,	and	so	on.	Otherwise	it	produces	#false.

Hint	This	problem	is	another	one	where	the	table-based	method	for	guessing

the	combinator	works	well.	Here	is	a	partial	 table	for	a	number	of	examples	in
figure	 58.	 Fill	 in	 the	 rest	 of	 the	 table.	 Then	 try	 to	 create	 an	 expression	 that
computes	the	result	from	the	pieces.	

Figure	58:	A	table	for	sorted>?

Exercise	 146.	 Design	 how-many	 for	 NEList-of-temperatures.	 Doing	 so
completes	average,	so	ensure	that	average	passes	all	of	its	tests,	too.	

Exercise	 147.	 Develop	 a	 data	 definition	 for	 NEList-of-Booleans,	 a
representation	of	non-empty	lists	of	Boolean	values.	Then	redesign	the	functions
all-true	and	one-true	from	exercise	140.	

Exercise	148.	Compare	the	function	definitions	from	this	section	(sum,	how-
many,	all-true,	one-true)	with	the	corresponding	function	definitions	from	the
preceding	sections.	 Is	 it	better	 to	work	with	data	definitions	 that	accommodate
empty	lists	as	opposed	to	definitions	for	non-empty	lists?	Why?	Why	not?	

9.3 Natural	Numbers
The	BSL	programming	language	supplies	many	functions	that	consume	lists	and
a	 few	 that	 produce	 them,	 too.	 Among	 those	 is	 make-list,	 which	 consumes	 a
number	n	together	with	some	other	value	v	and	produces	a	list	that	contains	v	n
times.	Here	are	some	examples:

>	(make-list	2	"hello")	
(cons	"hello"	(cons	"hello"	'()))	
>	(make-list	3	#true)	
(cons	#true	(cons	#true	(cons	#true	'())))	
>	(make-list	0	17)	
'()

In	short,	even	though	this	function	consumes	atomic	data,	it	produces	arbitrarily
large	pieces	of	data.	Your	question	should	be	how	this	is	possible.

Our	answer	is	that	make-list’s	input	isn’t	just	a	number,	it	is	a	special	kind
of	number.	 In	kindergarten	you	called	 these	numbers	“counting	numbers”,	 that
is,	these	numbers	are	used	to	count	objects.	In	computer	science,	these	numbers
are	 dubbed	 natural	 numbers.	 Unlike	 regular	 numbers,	 natural	 numbers	 come
with	a	data	definition:

;	An	N	is	one	of:	
;	--	0	
;	--	(add1	N)	
;	interpretation	represents	the	counting	numbers

The	first	clause	says	that	0	is	a	natural	number;	it	is	used	to	say	that	there	is	no
object	 to	be	counted.	The	second	clause	tells	you	that	 if	n	 is	a	natural	number,
then	n	+	1	is	one	too,	because	add1	is	a	function	that	adds	1	to	whatever	number
it	is	given.	We	could	write	this	second	clause	as	(+	n	1),	but	the	use	of	add1	is
supposed	to	signal	that	this	addition	is	special.

What	is	special	about	this	use	of	add1	is	that	it	acts	more	like	a	constructor
from	some	structure-type	definition	than	a	regular	function.	For	that	reason,	BSL
also	 comes	 with	 the	 function	 sub1,	 which	 is	 the	 “selector”	 corresponding	 to
add1.	Given	any	natural	number	m	not	equal	to	0,	you	can	use	sub1	to	find	out

the	 number	 that	 went	 into	 the	 construction	 of	m.	 Put	 differently,	 add1	 is	 like
cons	and	sub1	is	like	first	and	rest.

At	this	point	you	may	wonder	what	the	predicates	are	that	distinguish	0	from
those	 natural	 numbers	 that	 are	 not	 0.	 There	 are	 two,	 just	 as	 for	 lists:	 zero?,
which	 determines	 whether	 some	 given	 number	 is	 0,	 and	 positive?,	 which
determines	whether	some	number	is	larger	than	0.

Now	you	are	 in	a	position	 to	design	 functions	on	natural	numbers,	 such	as
make-list,	 yourself.	 The	 data	 definition	 is	 already	 available,	 so	 let’s	 add	 the
header	material:

Developing	 the	 template	 is	 the	 next	 step.	 The	 questions	 for	 the	 template
suggest	that	copier’s	body	is	a	cond	expression	with	two	clauses:	one	for	0	and
one	 for	 positive	 numbers.	 Furthermore,	 0	 is	 considered	 atomic	 and	 positive
numbers	are	considered	structured	values,	meaning	the	template	needs	a	selector
expression	 in	 the	second	clause.	Last	but	not	 least,	 the	data	definition	 for	N	 is
self-referential	 in	 the	 second	 clause.	 Hence	 the	 template	 needs	 a	 recursive
application	to	the	corresponding	selector	expression	in	the	second	clause:

(define	(copier	n	s)	
		(cond	
				[(zero?	n)	…]	
				[(positive?	n)	(…	(copier	(sub1	n)	s)	…)]))

Figure	59	contains	a	complete	definition	of	the	copier	function,	as	obtained
from	its	template.	Let’s	reconstruct	this	step	carefully.	As	always,	we	start	with

the	cond	 clause	 that	has	no	 recursive	calls.	Here	 the	condition	 tells	us	 that	 the
(important)	 input	 is	0,	 and	 that	means	 the	 function	must	 produce	 a	 list	with	0
items,	that	is,	none.	Of	course,	working	through	the	second	example	has	already
clarified	 this	case.	Next	we	 turn	 to	 the	other	cond	clause	and	remind	ourselves
what	its	expressions	compute:

1.	(sub1	n)	extracts	the	natural	number	that	went	into	the	construction	of	n,
which	we	know	is	larger	than	0;

2.	(copier	(sub1	n)	s)	produces	a	list	of	(sub1	n)	strings	s	according	to
the	purpose	statement	of	copier.

Figure	59:	Creating	a	list	of	copies

But	 the	 function	 is	 given	n	 and	must	 therefore	produce	 a	 list	with	n	 strings	s.
Given	 a	 list	 with	 one	 too	 few	 strings,	 it	 is	 easy	 to	 see	 that	 the	 function	must
simply	cons	one	s	onto	the	result	of	(copier	(sub1	n)	s).	And	that	is	precisely
what	the	second	clause	specifies.

At	 this	point,	you	should	run	 the	 tests	 to	ensure	 that	 this	 function	works	at
least	for	the	two	worked	examples.	In	addition,	you	may	wish	to	use	the	function
on	some	additional	inputs.

Exercise	149.	Does	copier	function	properly	when	you	apply	it	to	a	natural
number	and	a	Boolean	or	an	image?	Or	do	you	have	to	design	another	function?
Read	part	III	for	an	answer.

An	alternative	definition	of	copier	might	use	else:

(define	(copier.v2	n	s)	

			(cond	
						[(zero?	n)	'()]	
						[else	(cons	s	(copier.v2	(sub1	n)	s))]))

How	do	copier	 and	copier.v2	behave	when	you	apply	 them	 to	0.1	 and	"x"?
Explain.	Use	DrRacket’s	stepper	to	confirm	your	explanation.	

Exercise	150.	Design	the	function	add-to-pi.	It	consumes	a	natural	number
n	and	adds	it	to	pi	without	using	the	primitive	+	operation.	Here	is	a	start:

;	N	->	Number	
;	computes	(+	n	pi)	without	using	+	

(check-within	(add-to-pi	3)	(+	3	pi)	0.001)	

(define	(add-to-pi	n)	
		pi)

Once	you	have	a	complete	definition,	generalize	the	function	to	add,	which	adds
a	natural	number	n	 to	some	arbitrary	number	x	without	using	+.	Why	does	 the
skeleton	use	check-within?	

Exercise	151.	Design	the	function	multiply.	It	consumes	a	natural	number	n
and	multiplies	it	with	a	number	x	without	using	*.

Use	DrRacket’s	stepper	to	evaluate	(multiply	3	x)	for	any	x	you	like.	How
does	multiply	relate	to	what	you	know	from	grade	school?	

Exercise	152.	Design	two	functions:	col	and	row.
The	 function	 col	 consumes	 a	 natural	 number	 n	 and	 an	 image	 img.	 It

produces	a	column—a	vertical	arrangement—of	n	copies	of	img.
The	 function	 row	 consumes	 a	 natural	 number	 n	 and	 an	 image	 img.	 It

produces	a	row—a	horizontal	arrangement—of	n	copies	of	img.	
Exercise	153.	The	goal	of	 this	exercise	is	 to	visualize	the	result	of	a	1968-

style	European	 student	 riot.	Here	 is	 the	 rough	 idea.	A	 small	 group	of	 students
meets	 to	 make	 paint-filled	 balloons,	 enters	 some	 lecture	 hall,	 and	 randomly
throws	 the	 balloons	 at	 the	 attendees.	Your	 program	displays	 how	 the	 balloons
color	the	seats	in	the	lecture	hall.

Use	 the	 two	 functions	 from	 exercise	 152	 to	 create	 a	 rectangle	 of	 8	 by	 18
squares,	each	of	which	has	size	10	by	10.	Place	it	in	an	empty-scene	of	the	same

size.	This	image	is	your	lecture	hall.
Design	 add-balloons.	 The	 function	 consumes	 a	 list	 of	 Posn	 whose

coordinates	 fit	 into	 the	dimensions	of	 the	 lecture	hall.	 It	produces	an	 image	of
the	lecture	hall	with	red	dots	added	as	specified	by	the	Posns.

Figure	60	shows	the	output	of	our	solution	when	given	some	list	of	Posns.
The	left-most	is	the	clean	lecture	hall,	the	second	one	is	after	two	balloons	have
hit,	 and	 the	 last	 one	 is	 a	 highly	 unlikely	 distribution	 of	 10	 hits.	Where	 is	 the
10th?	

Figure	60:	Random	attacks

9.4 Russian	Dolls
Wikipedia	defines	a	Russian	doll	as	“a	set	of	dolls	of	decreasing	sizes	placed	one
inside	the	other”	and	illustrates	it	with	this	picture:

In	this	picture,	the	dolls	are	taken	apart	so	that	the	viewer	can	see	them	all.

The	problem	may	strike	you	as	abstract	or	even	absurd;	it	isn’t	clear	why	you	would	want	to
represent	Russian	dolls	or	what	you	would	do	with	such	a	representation.	Just	play	along	for	now.

Now	consider	the	problem	of	representing	such	Russian	dolls	with	BSL	data.
With	a	little	bit	of	imagination,	it	is	easy	to	see	that	an	artist	can	create	a	nest	of
Russian	dolls	that	consists	of	an	arbitrary	number	of	dolls.	After	all,	it	is	always
possible	to	wrap	another	layer	around	some	given	Russian	doll.	Then	again,	you
also	know	that	deep	inside	there	is	a	solid	doll	without	anything	inside.

For	each	layer	of	a	Russian	doll,	we	could	care	about	many	different	things:
its	 size,	 though	 it	 is	 related	 to	 the	 nesting	 level;	 its	 color;	 the	 image	 that	 is
painted	on	the	surface;	and	so	on.	Here	we	just	pick	one,	namely	the	color	of	the
doll,	which	we	represent	with	a	string.	Given	 that,	we	know	that	each	 layer	of
the	 Russian	 doll	 has	 two	 properties:	 its	 color	 and	 the	 doll	 that	 is	 inside.	 To
represent	pieces	of	information	with	two	properties,	we	always	define	a	structure
type:

(define-struct	layer	[color	doll])

And	then	we	add	a	data	definition:

;	An	RD	(short	for	Russian	doll)	is	one	of:	

;	--	String	
;	--	(make-layer	String	RD)

Naturally,	the	first	clause	of	this	data	definition	represents	the	innermost	doll,	or,
to	 be	 precise,	 its	 color.	 The	 second	 clause	 is	 for	 adding	 a	 layer	 around	 some
given	 Russian	 doll.	 We	 represent	 this	 with	 an	 instance	 of	 layer,	 which
obviously	contains	the	color	of	the	doll	and	one	other	field:	the	doll	that	is	nested
immediately	inside	of	this	doll.

Take	a	look	at	this	doll:

It	consists	of	three	dolls.	The	red	one	is	the	innermost	one,	the	green	one	sits	in
the	middle,	 and	 the	yellow	 is	 the	 current	outermost	wrapper.	To	 represent	 this
doll	with	an	element	of	RD,	you	start	on	either	end.	We	proceed	from	the	inside
out.	The	red	doll	is	easy	to	represent	as	an	RD.	Since	nothing	is	inside	and	since
it	is	red,	the	string	"red"	will	do	fine.	For	the	second	layer,	we	use

(make-layer	"green"	"red")

which	 says	 that	 a	 green	 (hollow)	 doll	 contains	 a	 red	 doll.	 Finally,	 to	 get	 the
outside	we	just	wrap	another	layer	around	this	last	doll:

(make-layer	"yellow"	(make-layer	"green"	"red"))

This	 process	 should	 give	 you	 a	 good	 idea	 of	 how	 to	 go	 from	 any	 set	 of
colored	 Russian	 dolls	 to	 a	 data	 representation.	 But	 keep	 in	 mind	 that	 a
programmer	must	also	be	able	to	do	the	converse,	that	is,	go	from	a	piece	of	data
to	 concrete	 information.	 In	 this	 spirit,	 draw	 a	 schematic	 Russian	 doll	 for	 the
following	element	of	RD:

(make-layer	"pink"	(make-layer	"black"	"white"))

You	might	even	try	this	in	BSL.
Now	that	we	have	a	data	definition	and	understand	how	to	represent	actual

dolls	 and	 how	 to	 interpret	 elements	 of	 RD	 as	 dolls,	 we	 are	 ready	 to	 design
functions	 that	 consume	RDs.	Specifically,	 let’s	design	 the	 function	 that	 counts
how	 many	 dolls	 a	 Russian	 doll	 set	 contains.	 This	 sentence	 is	 a	 fine	 purpose
statement	and	determines	the	signature,	too:

;	RD	->	Number	
;	how	many	dolls	are	part	of	an-rd

As	 for	 data	 examples,	 let’s	 start	 with	 (make-layer	 "yellow"	 (make-layer

"green"	 "red")).	 The	 image	 above	 tells	 us	 that	 3	 is	 the	 expected	 answer
because	there	are	three	dolls:	the	red	one,	the	green	one,	and	the	yellow	one.	Just
working	 through	 this	 one	 example	 also	 tells	 us	 that	 when	 the	 input	 is	 a
representation	of	this	doll

then	the	answer	is	1.
Step	 four	 demands	 the	 development	 of	 a	 template.	 Using	 the	 standard

questions	for	this	step	produces	this	template:

The	 number	 of	 cond	 clauses	 is	 determined	 by	 the	 number	 of	 clauses	 in	 the

definition	of	RD.	Each	of	the	clauses	specifically	spells	out	what	kind	of	data	it
is	 about,	 and	 that	 tells	 us	 to	 use	 the	 string?	 and	 layer?	 predicates.	 While
strings	 aren’t	 compound	 data,	 instances	 of	 layer	 contain	 two	 values.	 If	 the
function	needs	these	values,	it	uses	the	selector	expressions	(layer-color	an-
rd)	and	(layer-doll	an-rd).	Finally,	 the	second	clause	of	 the	data	definition
contains	 a	 self-reference	 from	 the	 doll	 field	 of	 the	 layer	 structure	 to	 the
definition	itself.	Hence	we	need	a	recursive	function	call	for	the	second	selector
expression.

The	examples	and	the	template	almost	dictate	the	function	definition.	For	the
non-recursive	cond	 clause,	 the	answer	 is	obviously	1.	For	 the	 recursive	clause,
the	template	expressions	compute	the	following	results:

•  (layer-color	 an-rd)	 extracts	 the	 string	 that	 describes	 the	 color	 of	 the
current	layer;

•  (layer-doll	an-rd)	extracts	 the	doll	contained	within	 the	current	 layer;
and

•  (depth	 (layer-doll	 an-rd))	 determines	 how	 many	 dolls	 are	 part	 of
(layer-doll	an-rd),	according	to	the	purpose	statement	of	depth.

This	 last	 number	 is	 almost	 the	 desired	 answer	 but	 not	 quite	 because	 the
difference	between	an-rd	 and	(layer-doll	an-rd)	 is	one	 layer,	meaning	one
extra	 doll.	 Put	 differently,	 the	 function	 must	 add	 1	 to	 the	 recursive	 result	 to
obtain	the	actual	answer:

;	RD	->	Number	
;	how	many	dolls	are	a	part	of	an-rd	
(define	(depth	an-rd)	
		(cond	
				[(string?	an-rd)	1]	
				[else	(+	(depth	(layer-doll	an-rd))	1)]))

Note	 how	 the	 function	 definition	 does	 not	 use	 (layer-color	 an-rd)	 in	 the
second	clause.	Once	again,	we	see	 that	 the	 template	 is	an	organization	schema
for	 everything	we	know	about	 the	 data	 definition,	 but	we	may	not	 need	 all	 of
these	pieces	for	the	actual	definition.

Let’s	finally	translate	the	examples	into	tests:

(check-expect	(depth	"red")	1)	
(check-expect	
		(depth	
			(make-layer	"yellow"	(make-layer	"green"	"red")))	
		3)

If	you	run	these	in	DrRacket,	you	will	see	that	their	evaluation	touches	all	pieces
of	the	definition	of	depth.

Exercise	154.	Design	 the	 function	colors.	 It	 consumes	a	Russian	doll	 and
produces	 a	 string	 of	 all	 colors,	 separated	 by	 a	 comma	 and	 a	 space.	 Thus	 our
example	should	produce

"yellow,	green,	red"

Exercise	 155.	 Design	 the	 function	 inner,	 which	 consumes	 an	 RD	 and
produces	 the	 (color	of	 the)	 innermost	doll.	Use	DrRacket’s	 stepper	 to	evaluate
(inner	rd)	for	your	favorite	rd.	

9.5 Lists	and	World
With	lists	and	self-referential	data	definitions	in	general,	you	can	design	and	run
many	more	 interesting	world	programs	 than	with	 finite	 data.	 Just	 imagine	you
can	 now	 create	 a	 version	 of	 the	 space	 invader	 program	 from	 chapter	 6	 that
allows	the	player	to	fire	as	many	shots	from	the	tank	as	desired.	Let’s	start	with	a
simplistic	version	of	this	problem:

Sample	 Problem	 Design	 a	world	 program	 that	 simulates	 firing
shots.	 Every	 time	 the	 “player”	 hits	 the	 space	 bar,	 the	 program
adds	a	shot	to	the	bottom	of	the	canvas.	These	shots	rise	vertically
at	the	rate	of	one	pixel	per	tick.

If	you	haven’t	designed	a	world	program	in	a	while,	reread	chapter	3.6.

Designing	 a	 world	 program	 starts	 with	 a	 separation	 of	 information	 into
constants	and	elements	of	 the	ever-changing	state	of	 the	world.	For	 the	 former
we	introduce	physical	and	graphical	constants;	for	the	latter	we	need	to	develop
a	 data	 representation	 for	 world	 states.	While	 the	 sample	 problem	 is	 relatively
vague	 about	 the	 specifics,	 it	 clearly	 assumes	 a	 rectangular	 scenery	with	 shots
painted	 along	a	vertical	 line.	Obviously	 the	 locations	of	 the	 shots	 change	with
every	clock	tick,	but	the	size	of	the	scenery	and	x-coordinate	of	the	line	of	shots
remain	the	same:

(define	HEIGHT	80)	;	distances	in	terms	of	pixels	
(define	WIDTH	100)	
(define	XSHOTS	(/	WIDTH	2))	

;	graphical	constants	
(define	BACKGROUND	(empty-scene	WIDTH	HEIGHT))	
(define	SHOT	(triangle	3	"solid"	"red"))

Nothing	in	the	problem	statement	demands	these	particular	choices,	but	as	long
as	they	are	easy	to	change—meaning	changing	by	editing	a	single	definition—
we	have	achieved	our	goal.

As	 for	 those	 aspects	 of	 the	 “world”	 that	 change,	 the	 problem	 statement

mentions	two.	First,	hitting	the	space	bar	adds	a	shot.	Second,	all	the	shots	move
straight	up	by	one	pixel	per	clock	tick.	Given	that	we	cannot	predict	how	many
shots	the	player	will	“fire,”	we	use	a	list	to	represent	them:

;	A	List-of-shots	is	one	of:	
;	--	'()	
;	--	(cons	Shot	List-of-shots)	
;	interpretation	the	collection	of	shots	fired

The	one	remaining	question	is	how	to	represent	each	individual	shot.	We	already
know	that	all	of	them	have	the	same	x-coordinate	and	that	this	coordinate	stays
the	 same	 throughout.	 Furthermore,	 all	 shots	 look	 alike.	 Hence,	 their	 y-
coordinates	 are	 the	 only	 property	 in	 which	 they	 differ	 from	 each	 other.	 It
therefore	suffices	to	represent	each	shot	as	a	number:

;	A	Shot	is	a	Number.	
;	interpretation	represents	the	shot's	y-coordinate

We	could	 restrict	 the	 representation	 of	 shots	 to	 the	 interval	 of	 numbers	 below
HEIGHT	 because	 we	 know	 that	 all	 shots	 are	 launched	 from	 the	 bottom	 of	 the
canvas	 and	 that	 they	 then	 move	 up,	 meaning	 their	 y-coordinate	 continuously
decreases.

You	can	also	use	a	data	definition	like	this	to	represent	this	world:

;	A	ShotWorld	is	List-of-numbers.	
;	interpretation	each	number	on	such	a	list	
;			represents	the	y-coordinate	of	a	shot

After	all,	the	above	two	definitions	describe	all	list	of	numbers;	we	already	have
a	definition	 for	 lists	of	numbers,	 and	 the	name	ShotWorld	 tells	 everyone	what
this	class	of	data	is	about.

Once	you	have	defined	constants	and	developed	a	data	representation	for	the
states	 of	 the	world,	 the	 key	 task	 is	 to	 pick	which	 event	 handlers	 you	wish	 to
employ	and	to	adapt	their	signatures	to	the	given	problem.	The	running	example
mentions	clock	ticks	and	the	space	bar,	all	of	which	translates	into	a	wish	list	of
three	functions:

•  the	function	that	turns	a	world	state	into	an	image:

;	ShotWorld	->	Image	
;	adds	the	image	of	a	shot	for	each	y	on	w	
;	at	(MID,y}	to	the	background	image	
(define	(to-image	w)	BACKGROUND)

because	the	problem	demands	a	visual	rendering;

•  one	for	dealing	with	tick	events:

;	ShotWorld	->	ShotWorld	
;	moves	each	shot	on	w	up	by	one	pixel	
(define	(tock	w)	w)

•  and	one	function	for	dealing	with	key	events:

;	ShotWorld	KeyEvent	->	ShotWorld	
;	adds	a	shot	to	the	world	
;	if	the	player	presses	the	space	bar	
(define	(keyh	w	ke)	w)

Don’t	 forget	 that	 in	 addition	 to	 the	 initial	wish	 list,	 you	 also	 need	 to	 define	 a
main	function	that	actually	sets	up	the	world	and	installs	the	handlers.	Figure	61
includes	 this	one	function	that	 is	not	designed	but	defined	as	a	modification	of
standard	schema.

Figure	61:	A	list-based	world	program

Let’s	 start	 with	 the	 design	 of	 to-image.	 We	 have	 its	 signature,	 purpose
statement,	and	header,	so	we	need	examples	next.	Since	the	data	definition	has
two	clauses,	 there	should	be	at	 least	 two	examples:	'()	and	a	consed	 list,	 say,
(cons	9	'()).	The	expected	result	for	'()	is	obviously	BACKGROUND;	if	there	is	a
y-coordinate,	though,	the	function	must	place	the	image	of	a	shot	at	MID	and	the
specified	coordinate:

Before	you	read	on,	work	through	an	example	that	applies	to-image	to	a	list	of
two	Shots.	Doing	so	helps	understand	how	the	function	works.

The	fourth	step	is	about	translating	the	data	definition	into	a	template:

The	template	for	data	definitions	for	lists	is	so	familiar	now	that	it	doesn’t	need
much	explanation.	If	you	have	any	doubts,	read	over	the	questions	in	figure	52
and	design	the	template	on	your	own.

From	here	it	is	straightforward	to	define	the	function.	The	key	is	to	combine
the	 examples	 with	 the	 template	 and	 to	 answer	 the	 questions	 from	 figure	 53.
Following	those,	you	start	with	the	base	case	of	an	empty	list	of	shots,	and,	from
the	 examples,	 you	 know	 that	 the	 expected	 answer	 is	 BACKGROUND.	 Next	 you
formulate	what	the	template	expressions	in	the	second	cond	compute:

•  (first	w)	extracts	the	first	coordinate	from	the	list;

•  (rest	w)	is	the	rest	of	the	coordinates;	and

•  (to-image	 (rest	 w))	 adds	 each	 shot	 on	 (rest	 w)	 to	 the	 background
image,	according	to	the	purpose	statement	of	to-image.

In	other	words,	(to-image	(rest	w))	renders	the	rest	of	the	list	as	an	image	and
thus	performs	almost	all	the	work.	What	is	missing	is	the	first	shot,	(first	w).
If	 you	 now	 apply	 the	 purpose	 statement	 to	 these	 two	 expressions,	 you	 get	 the
desired	expression	for	the	second	cond	clause:

The	added	icon	is	the	standard	image	for	a	shot;	the	two	coordinates	are	spelled
out	in	the	purpose	statement;	and	the	last	argument	to	place-image	is	the	image
constructed	from	the	rest	of	the	list.

Figure	61	displays	the	complete	function	definition	for	to-image	and	indeed
the	 rest	 of	 the	program,	 too.	The	design	of	tock	 is	 just	 like	 the	design	of	to-
image,	 and	you	should	work	 through	 it	 for	yourself.	The	signature	of	 the	keyh

handler,	 though,	 poses	 one	 interesting	 question.	 It	 specifies	 that	 the	 handler
consumes	 two	 inputs	 with	 nontrivial	 data	 definitions.	 On	 the	 one	 hand,	 the
ShotWorld	is	a	self-referential	data	definition.	On	the	other	hand,	the	definition
for	KeyEvents	is	a	large	enumeration.	For	now,	we	have	you	“guess”	which	of
the	 two	arguments	should	drive	 the	development	of	 the	 template;	 later	we	will
study	such	cases	in	depth.

As	far	as	a	world	program	is	concerned,	a	key	handler	such	as	keyh	is	about
the	key	event	that	it	consumes.	Hence,	we	consider	it	the	main	argument	and	use
its	 data	 definition	 to	 derive	 the	 template.	 Specifically,	 following	 the	 data
definition	 for	KeyEvent	 from	 chapter	 4.3,	 it	 dictates	 that	 the	 function	 needs	 a
cond	expression	with	numerous	clauses	like	this:

Of	 course,	 just	 like	 for	 functions	 that	 consume	 all	 possible	BSL	values,	 a	 key
handler	 usually	 does	 not	 need	 to	 inspect	 all	 possible	 cases.	 For	 our	 running
problem,	you	specifically	know	that	the	key	handler	reacts	only	to	the	space	bar
and	all	others	are	ignored.	So	it	is	natural	to	collapse	all	of	the	cond	clauses	into
an	else	clause	except	for	the	clause	for	"	".

Exercise	 156.	 Equip	 the	 program	 in	 figure	 61	with	 tests	 and	make	 sure	 it
passes	those.	Explain	what	main	does.	Then	run	the	program	via	main.	

Exercise	 157.	 Experiment	 to	 determine	 whether	 the	 arbitrary	 decisions
concerning	 constants	 are	 easy	 to	 change.	 For	 example,	 determine	 whether
changing	a	single	constant	definition	achieves	the	desired	outcome:

•  change	the	height	of	the	canvas	to	220	pixels;

•  change	the	width	of	the	canvas	to	30	pixels;

•  change	the	x	location	of	the	line	of	shots	to	“somewhere	to	the	left	of	the
middle”;

•  change	the	background	to	a	green	rectangle;	and

•  change	the	rendering	of	shots	to	a	red	elongated	rectangle.

Also	check	whether	it	is	possible	to	double	the	size	of	the	shot	without	changing
anything	else	or	to	change	its	color	to	black.	

Exercise	158.	If	you	run	main,	press	the	space	bar	(fire	a	shot),	and	wait	for	a
goodly	 amount	 of	 time,	 the	 shot	 disappears	 from	 the	 canvas.	When	 you	 shut
down	 the	 world	 canvas,	 however,	 the	 result	 is	 a	 world	 that	 still	 contains	 this
invisible	shot.

Design	 an	 alternative	tock	 function	 that	 doesn’t	 just	move	 shots	 one	pixel
per	clock	tick	but	also	eliminates	those	whose	coordinates	place	them	above	the
canvas.	Hint	You	may	wish	to	consider	 the	design	of	an	auxiliary	function	for
the	recursive	cond	clause.	

Exercise	 159.	 Turn	 the	 solution	 of	 exercise	 153	 into	 a	world	 program.	 Its
main	function,	dubbed	riot,	consumes	how	many	balloons	the	students	want	to
throw;	its	visualization	shows	one	balloon	dropping	after	another	at	a	rate	of	one
per	second.	The	function	produces	the	list	of	Posns	where	the	balloons	hit.

Hints	(1)	Here	is	one	possible	data	representation:

(define-struct	pair	[balloon#	lob])	
;	A	Pair	is	a	structure	(make-pair	N	List-of-posns)	
;	A	List-of-posns	is	one	of:	
;	--	'()	
;	--	(cons	Posn	List-of-posns)	
;	interpretation	(make-pair	n	lob)	means	n	balloons	
;	must	yet	be	thrown	and	added	to	lob

(2)	A	big-bang	expression	is	really	just	an	expression.	It	is	legitimate	to	nest
it	within	another	expression.

(3)	Recall	that	random	creates	random	numbers.	

9.6 A	Note	on	Lists	and	Sets
This	 book	 relies	 on	 your	 intuitive	 understanding	 of	 sets	 as	 collections	 of	BSL
values.	Chapter	5.7	specifically	says	that	a	data	definition	introduces	a	name	for
a	set	of	BSL	values.	There	is	one	question	that	this	book	consistently	asks	about
sets,	and	it	 is	whether	some	element	 is	 in	some	given	set.	For	example,	4	 is	 in
Number,	while	"four"	is	not.	The	book	also	shows	how	to	use	a	data	definition
to	check	whether	 some	value	 is	 a	member	of	 some	named	 set	 and	how	 to	use
some	of	 the	data	definitions	to	generate	sample	elements	of	sets,	but	 these	two
procedures	are	about	data	definitions,	not	sets	per	se.

At	 the	same	time,	 lists	represent	collections	of	values.	Hence	you	might	be
wondering	what	 the	 difference	 between	 a	 list	 and	 a	 set	 is	 or	whether	 this	 is	 a
needless	distinction.	If	so,	this	section	is	for	you.

Right	now	the	primary	difference	between	sets	and	lists	is	that	the	former	is	a
concept	we	 use	 to	 discuss	 steps	 in	 the	 design	 of	 code	 and	 the	 latter	 is	 one	 of
many	forms	of	data	in	BSL,	our	chosen	programming	language.	The	two	ideas
live	 at	 rather	 different	 levels	 in	 our	 conversations.	However,	 given	 that	 a	 data
definition	 introduces	 a	data	 representation	of	 actual	 information	 inside	of	BSL
and	 given	 that	 sets	 are	 collections	 of	 information,	 you	may	 now	 ask	 yourself
how	sets	are	represented	inside	of	BSL	as	data.

Most	full-fledged	languages	directly	support	data	representations	of	both	lists	and	sets.

While	lists	have	a	special	status	in	BSL,	sets	don’t,	but	at	the	same	time	sets
somewhat	resemble	lists.	The	key	difference	is	the	kind	of	functions	a	program
normally	uses	with	either	form	of	data.	BSL	provides	several	basic	constants	and
functions	 for	 lists—say,	 empty,	 empty?,	 cons,	 cons?,	 first,	 rest—and	 some
functions	 that	 you	 could	 define	 yourself—for	 example,	 member?,	 length,
remove,	reverse,	and	so	on.	Here	is	an	example	of	a	function	you	can	define	but
does	not	come	with	BSL

;	List-of-string	String	->	N	
;	determines	how	often	s	occurs	in	los	
(define	(count	los	s)	
		0)

Stop!	Finish	the	design	of	this	function.
Let’s	 proceed	 in	 a	 straightforward	 and	 possibly	 naive	manner	 and	 say	 sets

are	basically	lists.	And,	to	simplify	further,	let’s	focus	on	lists	of	numbers	in	this
section.	If	we	now	accept	that	it	merely	matters	whether	a	number	is	a	part	of	a
set	or	not,	 it	 is	 almost	 immediately	clear	 that	we	can	use	 lists	 in	 two	different
ways	to	represent	sets.

Figure	62	displays	 the	 two	data	definitions.	Both	basically	 say	 that	a	 set	 is
represented	as	a	list	of	numbers.	The	difference	is	that	the	definition	on	the	right
comes	with	the	constraint	that	no	number	may	occur	more	than	once	on	the	list.
After	all,	the	key	question	we	ask	about	a	set	is	whether	some	number	is	in	the
set	 or	 not,	 and	 whether	 it	 is	 in	 a	 set	 once,	 twice,	 or	 three	 times	 makes	 no
difference.

Figure	62:	Two	data	representations	for	sets

Regardless	 of	 which	 definition	 you	 choose,	 you	 can	 already	 define	 two
important	notions:

;	Son	
(define	es	'())	

;	Number	Son	->	Boolean	
;	is	x	in	s	
(define	(in?	x	s)	
		(member?	x	s))

The	first	one	is	the	empty	set,	which	in	both	cases	is	represented	by	the	empty
list.	The	second	one	is	a	membership	test.

One	way	to	build	larger	sets	is	to	use	cons	and	the	above	definitions.	Say	we
wish	 to	 build	 a	 representation	of	 the	 set	 that	 contains	1,	2,	 and	3.	Here	 is	 one
such	representation:

(cons	1	(cons	2	(cons	3	'())))

And	it	works	for	both	data	representations.	But,	is

(cons	2	(cons	1	(cons	3	'())))

really	not	a	representation	of	the	same	set?	Or	how	about

(cons	1	(cons	2	(cons	1	(cons	3	'()))))

The	 answer	 has	 to	 be	 affirmative	 as	 long	 as	 the	 primary	 concern	 is	whether	 a
number	 is	 in	 a	 set	 or	 not.	 Still,	 while	 the	 order	 of	 cons	 cannot	 matter,	 the
constraint	 in	 the	 right-hand	 data	 definition	 rules	 out	 the	 last	 list	 as	 a	 Son.R
because	it	contains	1	twice.

The	difference	between	 the	 two	data	definitions	 shows	up	when	we	design
functions.	Say	we	want	a	function	that	removes	a	number	from	a	set.	Here	is	a
wish-list	entry	that	applies	to	both	representations:

;	Number	Son	->	Son	
;	subtracts	x	from	s	
(define	(set-	x	s)	
		s)

The	purpose	 statement	uses	 the	word	 “subtract”	because	 this	 is	what	 logicians
and	mathematicians	use	when	they	work	with	sets.

Figure	63	shows	the	results.	The	two	columns	differ	in	two	points:

1.	The	test	on	the	left	uses	a	list	that	contains	1	 twice,	while	the	one	on	the
right	represents	the	same	set	with	a	single	cons.

2.	Because	of	 these	differences,	 the	set-	 on	 the	 left	must	use	remove-all,
while	the	one	on	the	right	gets	away	with	remove.

Figure	63:	Functions	for	the	two	data	representations	of	sets

Stop!	Copy	the	code	into	the	DrRacket	definitions	area	and	make	sure	the	tests
pass.	Then	read	on	and	experiment	with	the	code	as	you	do.

An	unappealing	aspect	of	figure	63	is	that	the	tests	use	es,	a	plain	list,	as	the
expected	 result.	 This	 problem	 may	 seem	 minor	 at	 first	 glance.	 Consider	 the
following	example,	however:

(set-1	set123)

where	set123	represents	the	set	containing	1,	2,	and	3	in	one	of	two	ways:

(define	set123-version1	
		(cons	1	(cons	2	(cons	3	'()))))	

(define	set123-version2	
		(cons	1	(cons	3	(cons	2	'()))))

Regardless	of	which	representation	we	choose,	(set-1	set123)	evaluates	to	one
of	these	two	lists:

(define	set23-version1	
		(cons	2	(cons	3	'())))	

(define	set23-version2	
		(cons	3	(cons	2	'())))

But	we	cannot	predict	which	of	those	two	set-	produces.
For	 the	 simple	 case	 of	 two	 alternatives,	 it	 is	 possible	 to	 use	 the	 check-

member-of	testing	facility	as	follows:

If	the	expected	set	contains	three	elements,	there	are	six	possible	variations,	not
including	 representations	 with	 repetitions,	 which	 the	 left-hand	 data	 definition
allows.

Fixing	this	problem	calls	for	the	combination	of	two	ideas.	First,	recall	that
set-	is	really	about	ensuring	that	the	given	element	does	not	occur	in	the	result.
It	is	an	idea	that	our	way	of	turning	the	examples	into	tests	does	not	bring	across.
Second,	 with	 BSL’s	 check-satisfied	 testing	 facility,	 it	 is	 possible	 to	 state
precisely	this	idea.

Intermezzo	 1	 briefly	 mentions	 check-satisfied,	 but,	 in	 a	 nutshell,	 the
facility	determines	whether	an	expression	satisfies	a	certain	property.	A	property
is	a	function	from	values	to	Boolean.	In	our	specific	case,	we	wish	to	state	that	1
is	not	a	member	of	some	set:

;	Son	->	Boolean	
;	#true	if	1	a	member	of	s;	#false	otherwise	
(define	(not-member-1?	s)	
		(not	(in?	1	s)))

Using	not-member-1?,	we	can	formulate	the	test	case	as	follows:

(check-satisfied	(set-	1	set123)	not-member-1?)

and	 this	 variant	 clearly	 states	 what	 the	 function	 is	 supposed	 to	 accomplish.
Better	yet,	this	formulation	simply	does	not	depend	on	how	the	input	or	output
set	is	represented.

In	sum,	lists	and	sets	are	related	in	that	both	are	about	collections	of	values,
but	they	also	differ	strongly:

property lists sets
membership one	among	many critical
ordering critical irrelevant
#	of	occurrences sensible irrelevant

#	of	occurrences sensible irrelevant
size finite	but	arbitrary finite	or	infinite

The	last	row	in	this	table	presents	a	new	idea,	though	an	obvious	one,	too.	Many
of	 the	 sets	 mentioned	 in	 this	 book	 are	 infinitely	 large,	 for	 example,	 Number,
String,	and	also	List-of-strings.	In	contrast,	a	list	is	always	finite	though	it	may
contain	an	arbitrarily	large	number	of	items.

In	sum,	this	section	explains	the	essential	differences	between	sets	and	lists
and	how	to	represent	finite	sets	with	finite	lists	in	two	different	ways.	BSL	is	not
expressive	 enough	 to	 represent	 infinite	 sets;	 exercise	 299	 introduces	 a
completely	different	 representation	of	 sets,	 a	 representation	 that	 can	 cope	with
infinite	sets,	 too.	The	question	of	how	actual	programming	languages	represent
sets	is	beyond	the	scope	of	this	book,	however.

Exercise	160.	Design	the	functions	set+.L	and	set+.R,	which	create	a	set	by
adding	 a	 number	 x	 to	 some	 given	 set	 s	 for	 the	 left-hand	 and	 right-hand	 data
definition,	respectively.	

10 More	on	Lists
Lists	 are	 a	 versatile	 form	 of	 data	 that	 come	 with	 almost	 all	 languages	 now.
Programmers	have	used	them	to	build	large	applications,	artificial	intelligences,
distributed	 systems,	 and	 more.	 This	 chapter	 illustrates	 some	 ideas	 from	 this
world,	 including	 functions	 that	 create	 lists,	 data	 representations	 that	 call	 for
structures	inside	of	lists,	and	representing	text	files	as	lists.

10.1 Functions	that	Produce	Lists
Here	is	a	function	for	determining	the	wage	of	an	hourly	employee:

;	Number	->	Number	
;	computes	the	wage	for	h	hours	of	work	
(define	(wage	h)	
		(*	12	h))

It	 consumes	 the	 number	 of	 hours	worked	 and	 produces	 the	wage.	A	 company
that	wishes	 to	use	payroll	software	 isn’t	 interested	 in	 this	function,	however.	 It
wants	one	that	computes	the	wages	for	all	its	employees.

Call	this	new	function	wage*.	Its	task	is	to	process	all	employee	work	hours
and	to	determine	the	wages	due	to	each	of	them.	For	simplicity,	let’s	assume	that
the	 input	 is	 a	 list	 of	 numbers,	 each	 representing	 the	 number	 of	 hours	 that	 one
employee	 worked,	 and	 that	 the	 expected	 result	 is	 a	 list	 of	 the	 weekly	 wages
earned,	also	represented	with	a	list	of	numbers.

Since	we	already	have	a	data	definition	 for	 the	 inputs	 and	outputs,	we	can
immediately	move	to	the	second	design	step:

;	List-of-numbers	->	List-of-numbers	
;	computes	the	weekly	wages	for	the	weekly	hours	
(define	(wage*	whrs)	
		'())

Next	you	need	some	examples	of	 inputs	and	 the	corresponding	outputs.	So
you	make	up	some	short	lists	of	numbers	that	represent	weekly	hours:

In	order	to	compute	the	output,	you	determine	the	weekly	wage	for	each	number
on	the	given	input	list.	For	the	first	example,	there	are	no	numbers	on	the	input
list	 so	 the	 output	 is	'().	Make	 sure	 you	 understand	why	 the	 second	 and	 third

expected	outputs	are	what	you	want.
Given	that	wage*	consumes	the	same	kind	of	data	as	several	other	functions

from	chapter	8	and	given	that	a	template	depends	only	on	the	shape	of	the	data
definition,	you	can	reuse	this	template:

In	 case	 you	want	 to	 practice	 the	 development	 of	 templates,	 use	 the	 questions
from	figure	52.

It	is	now	time	for	the	most	creative	design	step.	Following	the	design	recipe,
we	 consider	 each	cond	 line	 of	 the	 template	 in	 isolation.	 For	 the	 non-recursive
case,	(empty?	whrs)	is	true,	meaning	the	input	is	'().	The	examples	from	above
specify	the	desired	answer,	'(),	and	so	we	are	done.

In	the	second	case,	the	design	questions	tell	us	to	state	what	each	expression
of	the	template	computes:

•  (first	whrs)	yields	the	first	number	on	whrs,	which	is	the	first	number	of
hours	worked;

•  (rest	whrs)	is	the	rest	of	the	given	list;	and

•  (wage*	(rest	whrs))	says	that	the	rest	is	processed	by	the	very	function
we	are	defining.	As	always,	we	use	its	signature	and	its	purpose	statement
to	figure	out	the	result	of	this	expression.	The	signature	tells	us	that	it	is	a
list	of	numbers,	and	the	purpose	statement	explains	that	this	list	represents
the	list	of	wages	for	its	input,	which	is	the	rest	of	the	list	of	hours.

The	 key	 is	 to	 rely	 on	 these	 facts	 when	 you	 formulate	 the	 expression	 that
computes	the	result	in	this	case,	even	if	the	function	is	not	yet	defined.

Since	we	already	have	the	list	of	wages	for	all	but	the	first	item	of	whrs,	the
function	must	perform	two	computations	to	produce	the	expected	output	for	the
entire	whrs:	compute	the	weekly	wage	for	(first	whrs)	and	construct	the	list
that	represents	all	weekly	wages	for	whrs.	For	the	first	part,	we	reuse	wage.	For

the	second,	we	cons	the	two	pieces	of	information	together	into	one	list:

(cons	(wage	(first	whrs))	(wage*	(rest	whrs)))

And	with	that,	the	definition	is	complete:	see	figure	64.

Figure	64:	Computing	the	wages	of	all	employees

Exercise	 161.	 Translate	 the	 examples	 into	 tests	 and	 make	 sure	 they	 all
succeed.	 Then	 change	 the	 function	 in	 figure	 64	 so	 that	 everyone	 gets	 $14	 per
hour.	Now	revise	the	entire	program	so	that	changing	the	wage	for	everyone	is	a
single	change	to	the	entire	program	and	not	several.	

Exercise	 162.	No	 employee	 could	 possibly	work	more	 than	100	hours	 per
week.	To	protect	 the	company	against	 fraud,	 the	function	should	check	that	no
item	of	 the	 input	 list	 of	wage*	 exceeds	 100.	 If	 one	 of	 them	does,	 the	 function
should	immediately	signal	an	error.	How	do	we	have	to	change	the	function	in
figure	64	if	we	want	to	perform	this	basic	reality	check?	

Show	the	products	of	the	various	steps	in	the	design	recipe.	If	you	are	stuck,	show	someone	how	far
you	got	according	to	the	design	recipe.	The	recipe	isn’t	just	a	design	tool	for	you	to	use;	it	is	also	a
diagnosis	system	so	that	others	can	help	you	help	yourself.

Exercise	 163.	 Design	 convertFC.	 The	 function	 converts	 a	 list	 of
measurements	in	Fahrenheit	to	a	list	of	Celsius	measurements.	

Exercise	 164.	Design	 the	 function	convert-euro,	which	 converts	 a	 list	 of
US$	amounts	into	a	list	of	€	amounts.	Look	up	the	current	exchange	rate	on	the
web.

Generalize	convert-euro	 to	 the	 function	convert-euro*,	which	 consumes
an	exchange	rate	and	a	list	of	US$	amounts	and	converts	the	latter	into	a	list	of	€
amounts.	

Exercise	 165.	Design	 the	 function	subst-robot,	which	 consumes	 a	 list	 of
toy	descriptions	(one-word	strings)	and	replaces	all	occurrences	of	"robot"	with
"r2d2";	all	other	descriptions	remain	the	same.

Generalize	 subst-robot	 to	 substitute.	 The	 latter	 consumes	 two	 strings,
called	 new	 and	 old,	 and	 a	 list	 of	 strings.	 It	 produces	 a	 new	 list	 of	 strings	 by
substituting	all	occurrences	of	old	with	new.	

10.2 Structures	in	Lists
Representing	a	work	week	as	a	number	is	a	bad	choice	because	the	printing	of	a
paycheck	requires	more	information	than	hours	worked	per	week.	Also,	not	all
employees	earn	the	same	amount	per	hour.	Fortunately	a	list	may	contain	items
other	 than	 atomic	 values;	 indeed,	 lists	may	 contain	whatever	 values	we	want,
especially	structures.

Our	 running	 example	 calls	 for	 just	 such	 a	 data	 representation.	 Instead	 of
numbers,	we	use	structures	 that	represent	employees	plus	 their	work	hours	and
pay	rates:

(define-struct	work	[employee	rate	hours])	
;	A	(piece	of)	Work	is	a	structure:	
;			(make-work	String	Number	Number)	
;	interpretation	(make-work	n	r	h)	combines	the	name	
;	with	the	pay	rate	r	and	the	number	of	hours	h

While	 this	 representation	 is	 still	 simplistic,	 it	 is	 just	 enough	 of	 an	 additional
challenge	because	it	forces	us	to	formulate	a	data	definition	for	lists	that	contain
structures:

;	Low	(short	for	list	of	works)	is	one	of:	
;	--	'()	
;	--	(cons	Work	Low)	
;	interpretation	an	instance	of	Low	represents	the	
;	hours	worked	for	a	number	of	employees

Here	are	three	elements	of	Low:

Use	the	data	definition	to	explain	why	these	pieces	of	data	belong	to	Low.
Stop!	Also	use	the	data	definition	to	generate	two	more	examples.

When	you	work	on	real-world	projects,	you	won’t	use	such	suffixes;	instead	you	will	use	a	tool	for
managing	different	versions	of	code.

Now	 that	 you	 know	 that	 the	 definition	 of	 Low	makes	 sense,	 it	 is	 time	 to
redesign	the	function	wage*	so	that	it	consumes	elements	of	Low,	not	just	lists	of
numbers:

;	Low	->	List-of-numbers	
;	computes	the	weekly	wages	for	the	given	records	
(define	(wage*.v2	an-low)	
		'())

The	suffix	“.v2”	at	the	end	of	the	function	name	informs	every	reader	of	the	code
that	 this	 is	 a	 second,	 revised	version	of	 the	 function.	 In	 this	 case,	 the	 revision
starts	with	a	new	signature	and	an	adapted	purpose	statement.	The	header	is	the
same	as	above.

The	third	step	of	the	design	recipe	is	to	work	through	an	example.	Let’s	start
with	 the	 second	 list	 above.	 It	 contains	 one	 work	 record,	 namely,	 (make-work
"Robby"	11.95	39).	Its	interpretation	is	that	"Robby"	worked	for	39	hours	and
that	he	 is	 paid	 at	 the	 rate	of	$11.95	per	hour.	Hence	his	wage	 for	 the	week	 is
$466.05,	 that	 is,	 (*	 11.95	 39).	 The	 desired	 result	 for	 wage*.v2	 is	 therefore
(cons	466.05	'()).	Naturally,	if	the	input	list	contained	two	work	records,	we
would	perform	this	kind	of	computation	twice,	and	the	result	would	be	a	list	of
two	 numbers.	 Stop!	 Determine	 the	 expected	 result	 for	 the	 third	 data	 example
above.

Note	on	Numbers	Keep	in	mind	that	BSL—unlike	most	other	programming
languages—understands	 decimal	 numbers	 just	 like	 you	 do,	 namely,	 as	 exact
fractions.	 A	 language	 such	 as	 Java,	 for	 example,	 would	 produce
466.04999999999995	for	the	expected	wage	of	the	first	work	record.	Since	you
cannot	predict	when	operations	on	decimal	numbers	behave	in	this	strange	way,
you	are	better	off	writing	down	such	examples	as

just	 to	 prepare	yourself	 for	 other	 programming	 languages.	Then	 again,	writing
down	 the	example	 in	 this	 style	also	means	you	have	 really	 figured	out	how	 to
compute	the	wage.	End

From	here	we	move	on	 to	 the	development	of	 the	 template.	 If	you	use	 the
template	questions,	you	quickly	get	this	much:

because	the	data	definition	consists	of	two	clauses,	because	it	introduces	'()	in
the	 first	 clause	 and	 consed	 structures	 in	 the	 second,	 and	 so	 on.	 But	 you	 also
realize	 that	 you	know	even	more	 about	 the	 input	 than	 this	 template	 expresses.
For	example,	you	know	that	(first	an-low)	extracts	a	structure	of	three	fields
from	the	given	list.	This	seems	to	suggest	the	addition	of	three	more	expressions
to	the	template:

This	template	lists	all	potentially	interesting	data.
We	 use	 a	 different	 strategy	 here.	 Specifically,	 we	 suggest	 that	 you	 create

and	 refer	 to	 a	 separate	 function	 template	 whenever	 you	 are	 developing	 a
template	for	a	data	definition	that	refers	to	other	data	definitions:

Splitting	 the	 templates	 leads	 to	 a	 natural	 partition	 of	 work	 into	 functions	 and
among	 functions;	 none	 of	 them	 grows	 too	 large,	 and	 all	 of	 them	 relate	 to	 a
specific	data	definition.

Finally,	 you	 are	 ready	 to	 program.	 As	 always	 you	 start	 with	 the	 simple-
looking	case,	which	is	the	first	cond	line	here.	If	wage*.v2	is	applied	to	'(),	you
expect	 '()	 back	 and	 that	 settles	 it.	Next	 you	move	 on	 to	 the	 second	 line	 and
remind	yourself	of	what	these	expressions	compute:

1.	(first	an-low)	extracts	the	first	work	structure	from	the	list;

2.	(for-work	…)	says	that	you	wish	to	design	a	function	that	processes	work
structures;

3.	(rest	an-low)	extracts	the	rest	of	the	given	list;	and

4.	(wage*.v2	(rest	an-low))	determines	the	list	of	wages	for	all	the	work
records	other	than	the	first	one,	according	to	the	purpose	statement	of	the
function.

If	you	are	stuck	here,	use	the	table	method	from	figure	54.

If	you	understand	it	all,	you	see	that	it	is	enough	to	cons	the	two	expressions
together:

assuming	 that	for-work	 computes	 the	wage	 for	 the	 first	work	 record.	 In	 short,
you	 have	 finished	 the	 function	 by	 adding	 another	 entry	 to	 your	 wish	 list	 of
functions.

Since	for-work	 is	a	name	that	 just	serves	as	a	standin	and	since	it	 is	a	bad
name	 for	 this	 function,	 let’s	 call	 the	 function	 wage.v2	 and	 write	 down	 its
complete	wish-list	entry:

;	Work	->	Number	
;	computes	the	wage	for	the	given	work	record	w	
(define	(wage.v2	w)	
		0)

The	 design	 of	 this	 kind	 of	 function	 is	 extensively	 covered	 in	 Part	 I	 and	 thus
doesn’t	need	any	additional	explanation	here.	Figure	65	shows	the	final	result	of
developing	wage	and	wage*.v2.

Figure	65:	Computing	the	wages	from	work	records

Exercise	 166.	The	wage*.v2	 function	consumes	a	 list	 of	work	 records	and
produces	 a	 list	 of	 numbers.	 Of	 course,	 functions	 may	 also	 produce	 lists	 of
structures.

Develop	 a	 data	 representation	 for	 paychecks.	 Assume	 that	 a	 paycheck
contains	 two	 distinctive	 pieces	 of	 information:	 the	 employee’s	 name	 and	 an
amount.	Then	design	the	function	wage*.v3.	It	consumes	a	list	of	work	records
and	computes	a	list	of	paychecks	from	it,	one	per	record.

In	 reality,	 a	 paycheck	 also	 contains	 an	 employee	 number.	 Develop	 a	 data
representation	for	employee	information	and	change	the	data	definition	for	work
records	 so	 that	 it	 uses	 employee	 information	 and	 not	 just	 a	 string	 for	 the
employee’s	name.	Also	change	your	data	representation	of	paychecks	so	that	it
contains	 an	 employee’s	 name	 and	 number,	 too.	 Finally,	 design	 wage*.v4,	 a
function	that	maps	lists	of	revised	work	records	to	lists	of	revised	paychecks.

Note	 on	 Iterative	 Refinement	 This	 exercise	 demonstrates	 the	 iterative
refinement	 of	 a	 task.	 Instead	 of	 using	 data	 representations	 that	 include	 all
relevant	information,	we	started	from	simplistic	representation	of	paychecks	and
gradually	made	the	representation	realistic.	For	this	simple	program,	refinement
is	 overkill;	 later	we	will	 encounter	 situations	where	 iterative	 refinement	 is	 not
just	an	option	but	a	necessity.	

Exercise	167.	Design	the	function	sum,	which	consumes	a	list	of	Posns	and
produces	the	sum	of	all	of	its	x-coordinates.	

Exercise	 168.	 Design	 the	 function	 translate.	 It	 consumes	 and	 produces
lists	 of	 Posns.	 For	 each	 (make-posn	 x	 y)	 in	 the	 former,	 the	 latter	 contains
(make-posn	 x	 (+	 y	 1)).	 We	 borrow	 the	 word	 “translate”	 from	 geometry,
where	 the	movement	 of	 a	 point	 by	 a	 constant	 distance	 along	 a	 straight	 line	 is
called	a	translation.	

Exercise	 169.	 Design	 the	 function	 legal.	 Like	 translate	 from	 exercise
168,	the	function	consumes	and	produces	a	list	of	Posns.	The	result	contains	all
those	 Posns	 whose	 x-coordinates	 are	 between	 0	 and	 100	 and	 whose	 y-
coordinates	are	between	0	and	200.	

Exercise	170.	Here	is	one	way	to	represent	a	phone	number:

(define-struct	phone	[area	switch	four])	
;	A	Phone	is	a	structure:	
;			(make-phone	Three	Three	Four)	
;	A	Three	is	a	Number	between	100	and	999.	

;	A	Four	is	a	Number	between	1000	and	9999.

Design	 the	 function	 replace.	 It	 consumes	 and	 produces	 a	 list	 of	 Phones.	 It
replaces	all	occurrence	of	area	code	713	with	281.	

10.3 Lists	in	Lists,	Files
Chapter	2	 introduces	read-file,	 a	 function	 for	 reading	 an	 entire	 text	 file	 as	 a
string.	In	other	words,	 the	creator	of	read-file	chose	 to	represent	 text	files	as
strings,	 and	 the	 function	 creates	 the	 data	 representation	 for	 specific	 files
(specified	by	a	name).	Text	files	aren’t	plain	long	texts	or	strings,	however.	They
are	 organized	 into	 lines	 and	 words,	 rows	 and	 cells,	 and	many	 other	 ways.	 In
short,	 representing	 the	 content	 of	 a	 file	 as	 a	 plain	 string	 might	 work	 on	 rare
occasions	but	is	usually	a	bad	choice.

Add	(require	2htdp/batch-io)	to	your	definitions	area.

For	 concreteness,	 take	 a	 look	 at	 the	 sample	 file	 in	 figure	 66.	 It	 contains	 a
poem	by	Piet	Hein,	and	it	consists	of	many	lines	and	words.	When	you	use	the
program

(read-file	"ttt.txt")

Figure	66:	Things	take	time

to	turn	this	file	into	a	BSL	string,	you	get	this:

"TTT	\n	\n	Put	up	in	a	place\nwhere"

where	the	"\n"	inside	the	string	indicates	line	breaks.

The	dots	aren’t	really	a	part	of	the	result,	as	you	probably	guessed.

While	it	is	indeed	possible	to	break	apart	this	string	with	primitive	operations
on	strings,	for	example,	explode,	most	programming	languages—including	BSL
—support	many	different	representations	of	files	and	functions	that	create	such
representations	from	existing	files:

•  One	 way	 to	 represent	 this	 file	 is	 as	 a	 list	 of	 lines,	 where	 each	 line	 is
represented	as	one	string:

Here	 the	 second	 item	 of	 the	 list	 is	 the	 empty	 string	 because	 the	 file
contains	an	empty	line.

•  Another	way	 is	 to	 use	 a	 list	 of	words,	 again	 each	word	 represented	 as	 a
string:

Note	how	the	empty	second	line	disappears	with	this	representation.	After
all,	there	are	no	words	on	the	empty	line.

•  And	a	third	representation	relies	on	lists	of	lists	of	words:

This	 representation	 has	 an	 advantage	 over	 the	 second	 one	 in	 that	 it
preserves	 the	 organization	 of	 the	 file,	 including	 the	 emptiness	 of	 the
second	line.	The	price	is	that	all	of	a	sudden	lists	contain	lists.

While	 the	 idea	of	 list-containing	 lists	may	 sound	 frightening	at	 first,	 you	need
not	worry.	The	design	recipe	helps	even	with	such	complications.

Before	we	 get	 started,	 take	 a	 look	 at	 figure	 67.	 It	 introduces	 a	 number	 of
useful	file	reading	functions.	They	are	not	comprehensive:	there	are	many	other
ways	of	dealing	with	 text	 from	files,	 and	you	will	need	 to	know	a	 lot	more	 to
deal	with	 all	 possible	 text	 files.	 For	 our	 purposes	 here—teaching	 and	 learning
the	 principles	 of	 systematic	 program	 design—they	 suffice,	 and	 they	 empower
you	to	design	reasonably	interesting	programs.

Figure	67:	Reading	files

Figure	 67	 uses	 the	 names	 of	 two	 data	 definitions	 that	 do	 not	 exist	 yet,
including	 one	 involving	 list-containing	 lists.	 As	 always,	 we	 start	 with	 a	 data
definition,	 but	 this	 time	we	 leave	 this	 task	 to	you.	Hence,	 before	you	 read	on,
solve	the	following	exercises.	The	solutions	are	needed	to	make	complete	sense
out	of	 the	figure,	and	without	working	through	the	solutions,	you	cannot	really
understand	the	rest	of	this	section.

Exercise	 171.	You	 know	what	 the	 data	 definition	 for	 List-of-strings	 looks
like.	 Spell	 it	 out.	 Make	 sure	 that	 you	 can	 represent	 Piet	 Hein’s	 poem	 as	 an
instance	of	the	definition	where	each	line	is	represented	as	a	string	and	another
instance	 where	 each	 word	 is	 a	 string.	 Use	 read-lines	 and	 read-words	 to
confirm	your	representation	choices.

Next	 develop	 the	 data	 definition	 for	List-of-list-of-strings.	Again,	 represent
Piet	Hein’s	poem	as	an	instance	of	the	definition	where	each	line	is	represented
as	 a	 list	 of	 strings,	 one	 per	 word,	 and	 the	 entire	 poem	 is	 a	 list	 of	 such	 line
representations.	You	may	use	read-words/line	to	confirm	your	choice.	

As	you	probably	know,	operating	systems	come	with	programs	that	measure
files.	 One	 counts	 the	 number	 of	 lines,	 another	 determines	 how	 many	 words
appear	 per	 line.	 Let	 us	 start	with	 the	 latter	 to	 illustrate	 how	 the	 design	 recipe
helps	with	the	design	of	complex	functions.

The	first	step	is	to	ensure	that	we	have	all	the	necessary	data	definitions.	If
you	solved	the	above	exercise,	you	have	a	data	definition	for	all	possible	inputs
of	 the	 desired	 function,	 and	 the	 preceding	 section	 defines	 List-of-numbers,
which	describes	all	possible	inputs.	To	keep	things	short,	we	use	LLS	to	refer	to
the	class	of	lists	of	lists	of	strings,	and	use	it	to	write	down	the	header	material
for	the	desired	function:

;	LLS	->	List-of-numbers	
;	determines	the	number	of	words	on	each	line	
(define	(words-on-line	lls)	'())

We	name	the	functions	words-on-line	because	it	is	appropriate	and	captures	the
purpose	statement	in	one	phrase.

What	is	really	needed,	though,	is	a	set	of	data	examples:

(define	line0	(cons	"hello"	(cons	"world"	'())))	
(define	line1	'())	

(define	lls0	'())	
(define	lls1	(cons	line0	(cons	line1	'())))

The	 first	 two	 definitions	 introduce	 two	 examples	 of	 lines:	 one	 contains	 two
words,	the	other	contains	none.	The	last	two	definitions	show	how	to	construct
instances	of	LLS	from	these	line	examples.	Determine	what	the	expected	result
is	when	the	function	is	given	these	two	examples.

Once	you	have	data	 examples,	 it	 is	 easy	 to	 formulate	 functional	 examples;
just	imagine	applying	the	function	to	each	of	the	data	examples.	When	you	apply
words-on-line	to	lls0,	you	should	get	the	empty	list	back	because	there	are	no
lines.	 When	 you	 apply	 words-on-line	 to	 lls1,	 you	 should	 get	 a	 list	 of	 two
numbers	 back	 because	 there	 are	 two	 lines.	 The	 two	 numbers	 are	 2	 and	 0,
respectively,	given	that	the	two	lines	in	lls1	contain	two	and	no	words	each.

Here	is	how	you	translate	all	this	into	test	cases:

By	doing	it	at	the	end	of	the	second	step,	you	have	a	complete	program,	though
running	it	just	fails	some	of	the	test	cases.

The	 development	 of	 the	 template	 is	 the	 interesting	 step	 for	 this	 sample
problem.	By	answering	the	template	questions	from	figure	52,	you	get	the	usual
list-processing	template	immediately:

As	in	the	preceding	section,	we	know	that	the	expression	(first	lls)	extracts	a

List-of-strings,	 which	 has	 a	 complex	 organization,	 too.	 The	 temptation	 is	 to
insert	a	nested	template	to	express	this	knowledge,	but	as	you	should	recall,	the
better	idea	is	to	develop	a	second	auxiliary	template	and	to	change	the	first	line
in	the	second	condition	so	that	it	refers	to	this	auxiliary	template.

Since	 this	 auxiliary	 template	 is	 for	 a	 function	 that	 consumes	 a	 list,	 the
template	looks	nearly	identical	to	the	previous	one:

The	important	differences	are	that	(first	ln)	extracts	a	string	from	the	list,	and
we	consider	strings	as	atomic	values.	With	this	template	in	hand,	we	can	change
the	first	line	of	the	second	case	in	words-on-line	to

…	(line-processor	(first	lls))	…

which	 reminds	us	 for	 the	 fifth	 step	 that	 the	definition	 for	words-on-line	may
demand	the	design	of	an	auxiliary	function.

Now	it	is	time	to	program.	As	always,	we	use	the	questions	from	figure	53	to
guide	this	step.	The	first	case,	concerning	empty	lists	of	lines,	is	the	easy	case.
Our	examples	tell	us	that	the	answer	in	this	case	is	'(),	that	is,	the	empty	list	of
numbers.	The	 second	 case,	 concerning	cons,	 contains	 several	 expressions,	 and
we	start	with	a	reminder	of	what	they	compute:

•  (first	lls)	extracts	the	first	line	from	the	non-empty	list	of	(represented)
lines;

•  (line-processor	(first	lls))	suggests	that	we	may	wish	to	design	an
auxiliary	function	to	process	this	line;

•  (rest	lls)	is	the	rest	of	the	list	of	line;	and

•  (words-on-line	(rest	lls))	 computes	 a	 list	 of	words	 per	 line	 for	 the

rest	 of	 the	 list.	 How	 do	 we	 know	 this?	We	 promised	 just	 that	 with	 the
signature	and	the	purpose	statement	for	words-on-line.

Assuming	we	can	design	an	auxiliary	function	that	consumes	a	line	and	counts
the	words	on	one	 line—let’s	 call	 it	words#—it	 is	 easy	 to	 complete	 the	 second
condition:

This	expression	conses	the	number	of	words	on	the	first	line	of	lls	onto	a	list	of
numbers	 that	 represents	 the	 number	 of	words	 on	 the	 remainder	 of	 the	 lines	 of
lls.

It	 remains	 to	 design	 the	 words#	 function.	 Its	 template	 is	 dubbed	 line-
processor	and	its	purpose	is	 to	count	 the	number	of	words	on	a	 line,	which	is
just	a	list	of	strings.	So	here	is	the	wish-list	entry:

;	List-of-strings	->	Number	
;	counts	the	number	of	words	on	los	
(define	(words#	los)	0)

At	this	point,	you	may	recall	the	example	used	to	illustrate	the	design	recipe	for
self-referential	 data	 in	 chapter	 9.	 The	 function	 is	 called	 how-many,	 and	 it	 too
counts	the	number	of	strings	on	a	list	of	strings.	Even	though	the	input	for	how-
many	 is	 supposed	 to	 represent	 a	 list	 of	 names,	 this	 difference	 simply	 doesn’t
matter;	as	 long	as	 it	correctly	counts	 the	number	of	strings	on	a	 list	of	 strings,
how-many	solves	our	problem.

Since	it	is	good	to	reuse	existing	functions,	you	may	define	words#	as

(define	(words#	los)	
		(how-many	los))

In	reality,	however,	programming	languages	come	with	functions	that	solve	such
problems	already.	BSL	calls	 this	 function	length,	 and	 it	 counts	 the	number	of
values	on	any	list	of	values,	no	matter	what	the	values	are.

You	may	wish	to	look	over	the	list	of	functions	that	come	with	BSL.	Some	may	look	obscure	but	may
become	useful	in	one	of	the	upcoming	problems.	Using	such	functions	saves	your	time,	not	ours.

become	useful	in	one	of	the	upcoming	problems.	Using	such	functions	saves	your	time,	not	ours.

Figure	 68	 summarizes	 the	 full	 design	 for	 our	 sample	 problem.	 The	 figure
includes	two	test	cases.	Also,	instead	of	using	the	separate	function	words#,	the
definition	of	words-on-line	 simply	 calls	 the	length	 function	 that	 comes	with
BSL.	Experiment	with	the	definition	in	DrRacket	and	make	sure	that	the	two	test
cases	cover	the	entire	function	definition.

Figure	68:	Counting	the	words	on	a	line

With	one	small	step,	you	can	now	design	your	first	file	utility:

;	String	->	List-of-numbers	
;	counts	the	words	on	each	line	in	the	given	file	
(define	(file-statistic	file-name)	
		(words-on-line	
				(read-words/line	file-name)))

It	merely	composes	a	library	function	with	words-on-line.	The	former	reads	a
file	as	a	List-of-list-of-strings	and	hands	this	value	to	the	latter.

This	idea	of	composing	a	built-in	function	with	a	newly	designed	function	is

common.	Naturally,	people	don’t	design	functions	randomly	and	expect	to	find
something	 in	 the	 chosen	 programming	 language	 to	 complement	 their	 design.
Instead,	program	designers	plan	ahead	and	design	the	function	to	the	output	that
available	 functions	 deliver.	More	 generally	 still	 and	 as	mentioned	 above,	 it	 is
common	to	think	about	a	solution	as	a	composition	of	two	computations	and	to
develop	an	appropriate	data	collection	with	which	to	communicate	the	result	of
one	 computation	 to	 the	 second	 one,	 where	 each	 computation	 is	 implemented
with	a	function.

Exercise	172.	Design	 the	 function	collapse,	which	converts	a	 list	of	 lines
into	a	 string.	The	strings	should	be	separated	by	blank	spaces	 ("	").	The	 lines
should	be	separated	with	a	newline	("\n").

Challenge	When	you	are	finished,	use	the	program	like	this:

To	make	sure	 the	 two	files	"ttt.dat"	and	"ttt.txt"	are	 identical,	 remove	all
extraneous	white	spaces	in	your	version	of	the	T.T.T.	poem.	

Exercise	 173.	Design	 a	 program	 that	 removes	 all	 articles	 from	 a	 text	 file.
The	program	consumes	the	name	n	of	a	file,	reads	the	file,	removes	the	articles,
and	writes	the	result	out	to	a	file	whose	name	is	the	result	of	concatenating	"no-
articles-"	 with	 n.	 For	 this	 exercise,	 an	 article	 is	 one	 of	 the	 following	 three
words:	"a",	"an",	and	"the".

Use	read-words/line	so	that	 the	transformation	retains	the	organization	of
the	original	 text	 into	lines	and	words.	When	the	program	is	designed,	run	it	on
the	Piet	Hein	poem.	

Exercise	 174.	Design	 a	 program	 that	 encodes	 text	 files	 numerically.	 Each
letter	in	a	word	should	be	encoded	as	a	numeric	three-letter	string	with	a	value
between	 0	 and	 256.	 Figure	 69	 shows	 our	 encoding	 function	 for	 single	 letters.
Before	you	start,	explain	these	functions.

Figure	69:	Encoding	strings

Hints	(1)	Use	read-words/line	to	preserve	the	organization	of	the	file	into
lines	and	words.	(2)	Read	up	on	explode	again.	

Exercise	175.	Design	a	BSL	program	that	simulates	the	Unix	command	wc.
The	 purpose	 of	 the	 command	 is	 to	 count	 the	 number	 of	 1Strings,	 words,	 and
lines	 in	 a	 given	 file.	 That	 is,	 the	 command	 consumes	 the	 name	 of	 a	 file	 and
produces	a	value	that	consists	of	three	numbers.	

Exercise	 176.	 Mathematics	 teachers	 may	 have	 introduced	 you	 to	 matrix
calculations	by	now.	In	principle,	matrix	just	means	rectangle	of	numbers.	Here
is	one	possible	data	representation	for	matrices:

;	A	Matrix	is	one	of:	
;		--	(cons	Row	'())	
;		--	(cons	Row	Matrix)	
;	constraint	all	rows	in	matrix	are	of	the	same	length	

;	A	Row	is	one	of:	
;	--	'()	

;	--	(cons	Number	Row)

Note	the	constraints	on	matrices.	Study	the	data	definition	and	translate	the	two-
by-two	 matrix	 consisting	 of	 the	 numbers	 11,	 12,	 21,	 and	 22	 into	 this	 data
representation.	Stop,	don’t	read	on	until	you	have	figured	out	the	data	examples.

Here	is	the	solution	for	the	five-second	puzzle:

(define	row1	(cons	11	(cons	12	'())))	
(define	row2	(cons	21	(cons	22	'())))	
(define	mat1	(cons	row1	(cons	row2	'())))

If	you	didn’t	create	it	yourself,	study	it	now.
The	function	in	figure	70	implements	the	important	mathematical	operation

of	transposing	the	entries	 in	a	matrix.	To	transpose	means	to	mirror	 the	entries
along	the	diagonal,	that	is,	the	line	from	the	top-left	to	the	bottom-right.

Figure	70:	Transpose	a	matrix

Stop!	Transpose	mat1	by	hand,	then	read	figure	70.	Why	does	transpose	ask
(empty?	(first	lln))?

The	definition	assumes	two	auxiliary	functions:

•  first*,	which	consumes	a	matrix	and	produces	the	first	column	as	a	list	of
numbers;	and

•  rest*,	which	consumes	a	matrix	and	removes	the	first	column.	The	result

is	a	matrix.

Even	though	you	lack	definitions	for	these	functions,	you	should	be	able	to
understand	how	transpose	works.	You	should	also	understand	that	you	cannot
design	this	function	with	the	design	recipes	you	have	seen	so	far.	Explain	why.

Design	the	two	wish-list	functions.	Then	complete	the	design	of	transpose
with	some	test	cases.	

10.4 A	Graphical	Editor,	Revisited
Chapter	 5.10	 is	 about	 the	 design	 of	 an	 interactive	 graphical	 one-line	 editor.	 It
suggests	two	different	ways	to	represent	the	state	of	the	editor	and	urges	you	to
explore	 both:	 a	 structure	 that	 contains	 a	 pair	 of	 strings	 or	 a	 structure	 that
combines	a	string	with	an	index	to	a	current	position	(see	exercise	87).

A	third	alternative	is	to	use	structures	that	combine	two	lists	of	1Strings:

(define-struct	editor	[pre	post])	
;	An	Editor	is	a	structure:	
;			(make-editor	Lo1S	Lo1S)	
;	An	Lo1S	is	one	of:	
;	--	'()	
;	--	(cons	1String	Lo1S)

Before	you	wonder	why,	let’s	make	up	two	data	examples:

(define	good	
		(cons	"g"	(cons	"o"	(cons	"o"	(cons	"d"	'())))))	
(define	all	
		(cons	"a"	(cons	"l"	(cons	"l"	'()))))	
(define	lla	
		(cons	"l"	(cons	"l"	(cons	"a"	'()))))	

;	data	example	1:	
(make-editor	all	good)	

;	data	example	2:	
(make-editor	lla	good)

The	 two	 examples	 demonstrate	 how	 important	 it	 is	 to	 write	 down	 an
interpretation.	While	the	two	fields	of	an	editor	clearly	represent	the	letters	to	the
left	and	right	of	the	cursor,	the	two	examples	demonstrate	that	there	are	at	least
two	ways	to	interpret	the	structure	types:

1.	(make-editor	pre	post)	could	mean	the	letters	in	pre	precede	the	cursor

and	those	in	post	succeed	it	and	that	the	combined	text	is

(string-append	(implode	pre)	(implode	post))

Recall	that	implode	turns	a	list	of	1Strings	into	a	String.

2.	(make-editor	pre	post)	could	equally	well	mean	that	the	letters	in	pre
precede	 the	 cursor	 in	 reverse	 order.	 If	 so,	 we	 obtain	 the	 text	 in	 the
displayed	editor	like	this:

The	function	rev	must	consume	a	list	of	1Strings	and	reverse	it.

Even	without	a	complete	definition	for	rev,	you	can	imagine	how	it	works.	Use
this	 understanding	 to	 make	 sure	 you	 understand	 that	 translating	 the	 first	 data
example	 into	 information	 according	 to	 the	 first	 interpretation	 and	 treating	 the
second	 data	 example	 according	 to	 the	 second	 interpretation	 yields	 the	 same
editor	display:

Both	 interpretations	 are	 fine	 choices,	 but	 it	 turns	out	 that	 using	 the	 second
one	 greatly	 simplifies	 the	 design	 of	 the	 program.	 The	 rest	 of	 this	 section
demonstrates	 this	 point,	 illustrating	 the	 use	 of	 lists	 inside	 of	 structures	 at	 the
same	 time.	 To	 appreciate	 the	 lesson	 properly,	 you	 should	 have	 solved	 the
exercises	in	chapter	5.10.

Let’s	start	with	rev	because	we	clearly	need	this	function	to	make	sense	out
of	the	data	definition.	Its	header	material	is	straightforward:

;	Lo1s	->	Lo1s	
;	produces	a	reverse	version	of	the	given	list	

(check-expect	
		(rev	(cons	"a"	(cons	"b"	(cons	"c"	'()))))	

		(cons	"c"	(cons	"b"	(cons	"a"	'()))))	

(define	(rev	l)	l)

For	good	measure,	we	have	 added	one	 “obvious”	 example	 as	 a	 test	 case.	You
may	want	to	add	some	extra	examples	just	to	make	sure	you	understand	what	is
needed.

The	template	for	rev	is	the	usual	list	template:

There	 are	 two	 cases,	 and	 the	 second	 case	 comes	 with	 several	 selector
expressions	and	a	self-referential	one.

Filling	in	the	template	is	easy	for	the	first	clause:	the	reverse	version	of	the
empty	list	is	the	empty	list.	For	the	second	clause,	we	once	again	use	the	coding
questions:

•  (first	l)	is	the	first	item	on	the	list	of	1Strings;

•  (rest	l)	is	the	rest	of	the	list;	and

•  (rev	(rest	l))	is	the	reverse	of	the	rest	of	the	list.

Stop!	Try	to	finish	the	design	of	rev	with	these	hints.
If	these	hints	leave	you	stuck,	remember	to	create	a	table	from	the	examples.

Figure	71	 shows	 the	 table	 for	 two	examples:	(cons	"a"	'())	 and	(cons	"a"
(cons	"b"	(cons	"c"	'()))).	The	second	example	is	particularly	illustrative.
A	look	at	the	next	to	last	column	shows	that	(rev	(rest	l))	accomplishes	most
of	the	work	by	producing	(cons	"c"	(cons	"b"	'())).	Since	the	desired	result
is	(cons	"c"	(cons	"b"	(cons	"a"	'()))),	rev	must	somehow	add	"a"	to	the
end	of	the	result	of	the	recursion.	Indeed,	because	(rev	(rest	l))	is	always	the
reverse	 of	 the	 rest	 of	 the	 list,	 it	 clearly	 suffices	 to	 add	 (first	 l)	 to	 its	 end.
While	we	don’t	have	a	function	that	adds	items	to	the	end	of	a	list,	we	can	wish

for	it	and	use	it	to	complete	the	function	definition:

(define	(rev	l)	
		(cond	
				[(empty?	l)	'()]	
				[else	(add-at-end	(rev	(rest	l))	(first	l))]))

Figure	71:	Tabulating	for	rev

Here	is	the	extended	wish-list	entry	for	add-at-end:

It	is	“extended”	because	it	comes	with	an	example	formulated	as	a	test	case.	The
example	 is	 derived	 from	 the	 example	 for	 rev,	 and	 indeed,	 it	 is	 precisely	 the
example	that	motivates	the	wish-list	entry.	Make	up	an	example	where	add-at-
end	consumes	an	empty	list	before	you	read	on.

Since	 add-at-end	 is	 also	 a	 list-processing	 function,	 the	 template	 is	 just	 a
renaming	of	the	one	you	know	so	well	now:

To	 complete	 it	 into	 a	 function	 definition,	 we	 proceed	 according	 to	 the	 recipe
questions	for	step	5.	Our	first	question	is	to	formulate	an	answer	for	the	“basic”
case,	 that	 is,	 the	 first	case	here.	 If	you	worked	 through	 the	suggested	exercise,
you	know	that	the	result	of

(add-at-end	'()	s)

is	 always	 (cons	 s	 '()).	 After	 all,	 the	 result	must	 be	 a	 list	 and	 the	 list	must
contain	the	given	1String.

The	next	two	questions	concern	the	“complex”	or	“self-referential”	case.	We
know	what	the	expressions	in	the	second	cond	line	compute:	the	first	expression
extracts	the	first	1String	from	the	given	list	and	the	second	expression	“creates	a
new	 list	 by	 adding	s	 to	 the	 end	 of	(rest	l).”	 That	 is,	 the	 purpose	 statement
dictates	 what	 the	 function	 must	 produce	 here.	 From	 here,	 it	 is	 clear	 that	 the
function	must	add	(first	l)	back	to	the	result	of	the	recursion:

Run	the	tests-as-examples	to	reassure	yourself	that	this	function	works	and	that
therefore	rev	works,	too.	Of	course,	you	shouldn’t	be	surprised	to	find	out	that
BSL	already	provides	a	 function	 that	 reverses	any	given	 list,	 including	 lists	of
1Strings.	And	naturally,	it	is	called	reverse.

Exercise	 177.	Design	 the	 function	create-editor.	The	 function	consumes
two	strings	and	produces	an	Editor.	The	first	string	is	the	text	to	the	left	of	the
cursor	and	the	second	string	is	the	text	to	the	right	of	the	cursor.	The	rest	of	the
section	relies	on	this	function.	

At	 this	 point,	 you	 should	 have	 a	 complete	 understanding	 of	 our	 data

representation	for	the	graphical	one-line	editor.	Following	the	design	strategy	for
interactive	 programs	 from	chapter	 3.6,	 you	 should	 define	 physical	 constants—
the	width	 and	 height	 of	 the	 editor,	 for	 example—and	 graphical	 constants—for
example,	the	cursor.	Here	are	ours:

(define	HEIGHT	20)	;	the	height	of	the	editor	
(define	WIDTH	200)	;	its	width	
(define	FONT-SIZE	16)	;	the	font	size	
(define	FONT-COLOR	"black")	;	the	font	color	

(define	MT	(empty-scene	WIDTH	HEIGHT))	
(define	CURSOR	(rectangle	1	HEIGHT	"solid"	"red"))

The	 important	 point,	 however,	 is	 to	 write	 down	 the	 wish	 list	 for	 your	 event
handler(s)	 and	 your	 function	 that	 draws	 the	 state	 of	 the	 editor.	Recall	 that	 the
2htdp/universe	library	dictates	the	header	material	for	these	functions:

;	Editor	->	Image	
;	renders	an	editor	as	an	image	of	the	two	texts	
;	separated	by	the	cursor	
(define	(editor-render	e)	MT)	

;	Editor	KeyEvent	->	Editor	
;	deals	with	a	key	event,	given	some	editor	
(define	(editor-kh	ed	ke)	ed)(index	"editor-kh")

In	addition,	chapter	3.6	demands	that	you	write	down	a	main	function	for	your
program:

;	main	:	String	->	Editor	
;	launches	the	editor	given	some	initial	string	
(define	(main	s)	
			(big-bang	(create-editor	s	"")	
					[on-key	editor-kh]	
					[to-draw	editor-render]))

Reread	exercise	177	to	determine	the	initial	editor	for	this	program.

While	 it	 does	not	matter	which	wish	you	 tackle	next,	we	 choose	 to	design
editor-kh	first	and	editor-render	second.	Since	we	have	the	header	material,
let’s	explain	the	functioning	of	the	key-event	handler	with	two	examples:

Both	of	these	examples	demonstrate	what	happens	when	you	press	the	letter	“e”
on	 your	 keyboard.	 The	 computer	 runs	 the	 function	 editor-kh	 on	 the	 current
state	of	the	editor	and	"e".	In	the	first	example,	the	editor	is	empty,	which	means
that	the	result	is	an	editor	with	just	the	letter	"e"	in	it	followed	by	the	cursor.	In
the	 second	 example,	 the	 cursor	 is	 between	 the	 strings	 "cd"	 and	 "fgh",	 and
therefore	 the	 result	 is	 an	 editor	 with	 the	 cursor	 between	 "cde"	 and	 "fgh".	 In
short,	the	function	always	inserts	any	normal	letter	at	the	cursor	position.

Before	 you	 read	 on,	 you	 should	 make	 up	 examples	 that	 illustrate	 how
editor-kh	works	when	you	press	the	backspace	("\b")	key	to	delete	some	letter,
the	 "left"	 and	 "right"	 arrow	 keys	 to	move	 the	 cursor,	 or	 some	 other	 arrow
keys.	In	all	cases,	consider	what	should	happen	when	the	editor	is	empty,	when
the	cursor	is	at	the	left	end	or	right	end	of	the	non-empty	string	in	the	editor,	and
when	it	is	in	the	middle.	Even	though	you	are	not	working	with	intervals	here,	it
is	still	a	good	idea	to	develop	examples	for	the	“extreme”	cases.

Once	you	have	 test	cases,	 it	 is	 time	 to	develop	 the	 template.	 In	 the	case	of
editor-kh	you	are	working	with	a	function	that	consumes	two	complex	forms	of
data:	one	is	a	structure	containing	lists,	 the	other	one	is	a	 large	enumeration	of
strings.	Generally	speaking,	this	design	case	calls	for	an	improved	design	recipe;
but	in	cases	like	these,	it	is	also	clear	that	you	should	deal	with	one	of	the	inputs
first,	namely,	the	keystroke.

Having	 said	 that,	 the	 template	 is	 just	 a	 large	cond	 expression	 for	 checking
which	KeyEvent	the	function	received:

The	 cond	 expression	 doesn’t	 quite	 match	 the	 data	 definition	 for	 KeyEvent
because	some	KeyEvents	need	special	attention	("left",	"\b",	and	so	on),	some
need	to	be	ignored	because	they	are	special	("\t"	and	"\r"),	and	some	should	be
classified	into	one	large	group	(ordinary	keys).

Exercise	178.	Explain	why	the	template	for	editor-kh	deals	with	"\t"	and
"\r"	before	it	checks	for	strings	of	length	1.	

For	 the	 fifth	step—the	definition	of	 the	 function—we	 tackle	each	clause	 in
the	 conditional	 separately.	 The	 first	 clause	 demands	 a	 result	 that	 moves	 the
cursor	 and	 leaves	 the	 string	 content	 of	 the	 editor	 alone.	 So	 does	 the	 second
clause.	 The	 third	 clause,	 however,	 demands	 the	 deletion	 of	 a	 letter	 from	 the
editor’s	 content—if	 there	 is	 a	 letter.	 Last,	 the	 sixth	 cond	 clause	 concerns	 the
addition	of	letters	at	the	cursor	position.	Following	the	first	basic	guideline,	we
make	extensive	use	of	a	wish-list	and	imagine	one	function	per	task:

As	you	can	tell	from	the	definition	of	editor-kh,	three	of	the	four	wish-list
functions	have	the	same	signature:

;	Editor	->	Editor

The	last	one	takes	two	arguments	instead	of	one:

;	Editor	1String	->	Editor

We	 leave	 the	 proper	 formulation	of	wishes	 for	 the	 first	 three	 functions	 to	 you
and	focus	on	the	fourth	one.

Let’s	start	with	a	purpose	statement	and	a	function	header:

;	insert	the	1String	k	between	pre	and	post	
(define	(editor-ins	ed	k)	
		ed)

The	purpose	 is	straight	out	of	 the	problem	statement.	For	 the	construction	of	a
function	 header,	 we	 need	 an	 instance	 of	 Editor.	 Since	 pre	 and	 post	 are	 the
pieces	of	the	current	one,	we	just	put	them	back	together.

Next	we	derive	examples	for	editor-ins	from	those	for	editor-kh:

You	should	work	through	these	examples	using	the	interpretation	of	Editor.	That
is,	 make	 sure	 you	 understand	 what	 the	 given	 editor	 means	 in	 terms	 of
information	and	what	the	function	call	is	supposed	to	achieve	in	those	terms.	In
this	 particular	 case,	 it	 is	 best	 to	 draw	 the	 visual	 representation	 of	 the	 editor
because	it	represents	the	information	well.

The	fourth	step	demands	the	development	of	the	template.	The	first	argument

is	guaranteed	to	be	a	structure,	and	the	second	one	is	a	string,	an	atomic	piece	of
data.	In	other	words,	the	template	just	pulls	out	the	pieces	from	the	given	editor
representation:

(define	(editor-ins	ed	k)	
		(…	ed	…	k	…	
			…	(editor-pre	ed)	…	
			…	(editor-post	ed)	…))

Remember	a	template	lists	parameters	because	they	are	available,	too.
From	 the	 template	 and	 the	 examples,	 it	 is	 relatively	 easy	 to	 conclude	 that

editor-ins	is	supposed	to	create	an	editor	from	the	given	editor’s	pre	and	post
fields	with	k	added	to	the	front	of	the	former:

Even	though	both	(editor-pre	ed)	and	(editor-post	ed)	are	lists	of	1Strings,
there	 is	 no	 need	 to	 design	 auxiliary	 functions.	 To	 get	 the	 desired	 result,	 it
suffices	to	use	cons,	which	creates	lists.

At	this	point,	you	should	do	two	things.	First,	run	the	tests	for	this	function.
Second,	use	the	interpretation	of	Editor	and	explain	abstractly	why	this	function
performs	the	insertion.	And	as	if	this	isn’t	enough,	you	may	wish	to	compare	this
simple	definition	with	the	one	from	exercise	84	and	figure	out	why	the	other	one
needs	an	auxiliary	function	while	our	definition	here	doesn’t.

Exercise	179.	Design	the	functions

;	Editor	->	Editor	
;	moves	the	cursor	position	one	1String	left,	
;	if	possible	
(define	(editor-lft	ed)	ed)	

;	Editor	->	Editor	
;	moves	the	cursor	position	one	1String	right,	
;	if	possible	

(define	(editor-rgt	ed)	ed)	

;	Editor	->	Editor	
;	deletes	a	1String	to	the	left	of	the	cursor,	
;	if	possible	
(define	(editor-del	ed)	ed)

Again,	it	is	critical	that	you	work	through	a	good	range	of	examples.	
Designing	 the	 rendering	 function	 for	 Editors	 poses	 some	 new	 but	 small

challenges.	The	first	one	is	to	develop	a	sufficiently	large	number	of	test	cases.
On	 the	one	hand,	 it	demands	coverage	of	 the	possible	combinations:	an	empty
string	to	the	left	of	the	cursor,	an	empty	one	on	the	right,	and	both	strings	empty.
On	 the	other	hand,	 it	 also	 requires	 some	experimenting	with	 the	 functions	 that
the	 image	 library	 provides.	 Specifically,	 it	 needs	 a	 way	 to	 compose	 the	 two
pieces	of	strings	rendered	as	text	images,	and	it	needs	a	way	of	placing	the	text
image	into	the	empty	image	frame	(MT).	Here	is	what	we	do	to	create	an	image
for	the	result	of	(create-editor	"pre"	"post"):

If	you	compare	 this	with	 the	editor	 image	above,	you	notice	some	differences,
which	 is	 fine	 because	 the	 exact	 layout	 isn’t	 essential	 to	 the	 purpose	 of	 this
exercise,	 and	 because	 the	 revised	 layout	 doesn’t	 trivialize	 the	 problem.	 In	 any
case,	 do	 experiment	 in	 the	 interactions	 area	 of	DrRacket	 to	 find	 your	 favorite
editor	display.

You	are	now	ready	 to	develop	 the	 template,	 and	you	should	come	up	with
this	much:

(define	(editor-render	e)	
		(…	(editor-pre	e)	…	(editor-post	e)))

The	 given	 argument	 is	 just	 a	 structure	 type	 with	 two	 fields.	 Their	 values,
however,	are	lists	of	1Strings,	and	you	might	be	tempted	to	refine	the	template
even	more.	Don’t!	Instead,	keep	in	mind	that	when	one	data	definition	refers	to
another	complex	data	definition,	you	are	better	off	using	the	wish	list.

If	you	have	worked	through	a	sufficient	number	of	examples,	you	also	know
what	you	want	on	your	wish	list:	one	function	that	turns	a	string	into	a	text	of	the
right	size	and	color.	Let’s	call	this	function	editor-text.	Then	the	definition	of
editor-render	 just	uses	editor-text	 twice	and	then	composes	the	result	with
beside	and	place-image:

Although	 this	 definition	 nests	 expressions	 three	 levels	 deep,	 the	 use	 of	 the
imaginary	editor-text	function	renders	it	quite	readable.

What	remains	is	to	design	editor-text.	From	the	design	of	editor-render,
we	 know	 that	 editor-text	 consumes	 a	 list	 of	 1Strings	 and	 produces	 a	 text
image:

;	Lo1s	->	Image	
;	renders	a	list	of	1Strings	as	a	text	image	
(define	(editor-text	s)	
		(text	""	FONT-SIZE	FONT-COLOR))

This	dummy	definition	produces	an	empty	text	image.
To	demonstrate	what	editor-text	is	supposed	to	compute,	we	work	through

an	example.	The	example	input	is

(create-editor	"pre"	"post")

which	was	also	used	to	explain	editor-render	and	is	equivalent	to

(make-editor	
		(cons	"e"	(cons	"r"	(cons	"p"	'())))	
		(cons	"p"	(cons	"o"	(cons	"s"	(cons	"t"	'())))))

We	pick	the	second	list	as	our	sample	input	for	editor-text,	and	we	know	the
expected	result	from	the	example	for	editor-render:

(check-expect	
		(editor-text	
			(cons	"p"	(cons	"o"	(cons	"s"	(cons	"t"	'())))))	
		(text	"post"	FONT-SIZE	FONT-COLOR))

You	may	wish	to	make	up	a	second	example	before	reading	on.
Given	that	editor-text	consumes	a	list	of	1Strings,	we	can	write	down	the

template	without	much	ado:

After	 all,	 the	 template	 is	 dictated	 by	 the	 data	 definition	 that	 describes	 the
function	 input.	But	you	don’t	need	 the	 template	 if	you	understand	and	keep	 in
mind	the	interpretation	for	Editor.	It	uses	explode	 to	turn	a	string	into	a	list	of
1Strings.	 Naturally,	 there	 is	 a	 function	 implode	 that	 performs	 the	 inverse
computation,	that	is,

>	(implode	
			(cons	"p"	(cons	"o"	(cons	"s"	(cons	"t"	'())))))	
"post"

Using	this	function,	the	definition	of	editor-text	 is	 just	a	small	step	from	the
example	to	the	function	body:

(define	(editor-text	s)	
		(text	(implode	s)	FONT-SIZE	FONT-COLOR))

Exercise	180.	Design	editor-text	without	using	implode.	
The	true	surprise	comes	when	you	test	the	two	functions.	While	our	test	for

editor-text	 succeeds,	 the	 test	 for	 editor-render	 fails.	 An	 inspection	 of	 the
failure	 shows	 that	 the	 string	 to	 the	 left	 of	 the	 cursor—"pre"—is	 typeset
backward.	We	forgot	that	this	part	of	the	editor’s	state	is	represented	in	reverse.
Fortunately,	the	unit	tests	for	the	two	functions	pinpoint	which	function	is	wrong
and	 even	 tell	 us	 what	 is	 wrong	 with	 the	 function	 and	 suggest	 how	 to	 fix	 the
problem:

This	definition	uses	the	reverse	function	on	the	pre	field	of	ed.
Note	Modern	applications	allow	users	to	position	the	cursor	with	the	mouse

(or	 other	 gesture-based	 devices).	 While	 it	 is	 in	 principle	 possible	 to	 add	 this
capability	to	your	editor,	we	wait	with	doing	so	until	chapter	32.4.

11 Design	by	Composition
By	now	you	know	that	programs	are	complex	products	and	that	their	production
requires	 the	 design	 of	many	 collaborating	 functions.	 This	 collaboration	works
well	if	the	designer	knows	when	to	design	several	functions	and	how	to	compose
these	functions	into	one	program.
You	have	 encountered	 this	 need	 to	 design	 interrelated	 functions	 several	 times.
Sometimes	a	problem	statement	implies	several	different	tasks,	and	each	task	is
best	 realized	 with	 a	 function.	 At	 other	 times,	 a	 data	 definition	 may	 refer	 to
another	one,	and	in	that	case,	a	function	processing	the	former	kind	of	data	relies
on	a	function	processing	the	latter.

In	 this	 chapter,	 we	 present	 several	 scenarios	 that	 call	 for	 the	 design	 of
programs	 that	 compose	 many	 functions.	 To	 support	 this	 kind	 of	 design,	 the
chapter	 presents	 some	 informal	 guidelines	 on	 divvying	 up	 functions	 and
composing	 them.	 Since	 these	 examples	 demand	 complex	 forms	 of	 lists,
however,	this	chapter	starts	with	a	section	on	concise	list	notation.

11.1 The	list	Function
At	 this	point,	you	should	have	 tired	of	writing	so	many	conses	 just	 to	create	a
list,	especially	for	 lists	 that	contain	a	bunch	of	values.	Fortunately,	we	have	an
additional	 teaching	 language	 for	you	 that	provides	mechanisms	for	simplifying
this	part	of	a	programmer’s	life.	BSL+	does	so,	too.

You	have	graduated	from	BSL.	It	is	time	to	use	the	“Language”	menu	and	to	select	“Beginning
Student	with	List	Abbreviations”	for	your	studies.

The	key	innovation	is	list,	which	consumes	an	arbitrary	number	of	values
and	 creates	 a	 list.	The	 simplest	way	 to	 understand	list	 is	 to	 think	 of	 it	 as	 an
abbreviation.	Specifically,	every	expression	of	the	shape

(list	exp-1	…	exp-n)

stands	for	a	series	of	n	cons	expressions:

(cons	exp-1	(cons	…	(cons	exp-n	'())))

Keep	in	mind	that	'()	is	not	an	item	of	the	list	here,	but	actually	the	rest	of	the
list.	Here	is	a	table	with	three	examples:

They	introduce	lists	with	one,	two,	and	three	items,	respectively.
Of	course,	we	can	apply	list	not	only	to	values	but	also	to	expressions:

>	(list	(+	0	1)	(+	1	1))	
(list	1	2)	
>	(list	(/	1	0)	(+	1	1))	
/:division	by	zero

Before	 the	 list	 is	 constructed,	 the	 expressions	must	 be	 evaluated.	 If	 during	 the
evaluation	 of	 an	 expression	 an	 error	 occurs,	 the	 list	 is	 never	 formed.	 In	 short,
list	behaves	just	like	any	other	primitive	operation	that	consumes	an	arbitrary
number	of	arguments;	its	result	just	happens	to	be	a	list	constructed	with	conses.

The	use	of	list	greatly	simplifies	the	notation	for	lists	with	many	items	and
lists	that	contain	lists	or	structures.	Here	is	an	example:

(list	0	1	2	3	4	5	6	7	8	9)

This	list	contains	10	items	and	its	formation	with	cons	would	require	10	uses	of
cons	and	one	instance	of	'().	Similarly,	the	list

requires	11	uses	of	list,	which	sharply	contrasts	with	40	cons	and	11	additional
uses	of	'().

Exercise	181.	Use	list	to	construct	the	equivalent	of	these	lists:

1.	(cons	"a"	(cons	"b"	(cons	"c"	(cons	"d"	'()))))

2.	(cons	(cons	1	(cons	2	'()))	'())

3.	(cons	"a"	(cons	(cons	1	'())	(cons	#false	'())))

4.	(cons	(cons	"a"	(cons	2	'()))	(cons	"hello"	'()))

Also	try	your	hand	at	this	one:

Start	by	determining	how	many	items	each	list	and	each	nested	list	contains.	Use
check-expect	to	express	your	answers;	this	ensures	that	your	abbreviations	are
really	the	same	as	the	long-hand.	

Exercise	182.	Use	cons	and	'()	to	form	the	equivalent	of	these	lists:

1.	(list	0	1	2	3	4	5)

2.	(list	(list	"he"	0)	(list	"it"	1)	(list	"lui"	14))

3.	(list	1	(list	1	2)	(list	1	2	3))

Use	check-expect	to	express	your	answers.	
Exercise	183.	On	some	occasions	lists	are	formed	with	cons	and	list.

1.	(cons	"a"	(list	0	#false))

2.	(list	(cons	1	(cons	13	'())))

3.	(cons	(list	1	(list	13	'()))	'())

4.	(list	'()	'()	(cons	1	'()))

5.	(cons	"a"	(cons	(list	1)	(list	#false	'())))

Reformulate	 each	 of	 the	 following	 expressions	 using	 only	 cons	 or	 only	 list.
Use	check-expect	to	check	your	answers.	

Exercise	184.	Determine	the	values	of	the	following	expressions:

1.	(list	(string=?	"a"	"b")	#false)

2.	(list	(+	10	20)	(*	10	20)	(/	10	20))

3.	(list	"dana"	"jane"	"mary"	"laura")

Use	check-expect	to	express	your	answers.	

Exercise	185.	You	know	about	first	and	rest	from	BSL,	but	BSL+	comes
with	 even	 more	 selectors	 than	 that.	 Determine	 the	 values	 of	 the	 following
expressions:

1.	(first	(list	1	2	3))

2.	(rest	(list	1	2	3))

3.	(second	(list	1	2	3))

Find	out	from	the	documentation	whether	third	and	fourth	exist.	

11.2 Composing	Functions
Chapter	 3	 explains	 that	 programs	 are	 collections	 of	 definitions:	 structure	 type
definitions,	 data	 definitions,	 constant	 definitions,	 and	 function	 definitions.	 To
guide	 the	division	of	 labor	 among	 functions,	 the	 section	 also	 suggests	 a	 rough
guideline:

Design	 one	 function	 per	 task.	 Formulate	 auxiliary	 function
definitions	 for	 every	 dependency	 between	 quantities	 in	 the
problem.

And	don’t	forget	tests.

This	part	of	the	book	introduces	another	guideline	on	auxiliary	functions:

Design	 one	 template	 per	 data	 definition.	 Formulate	 auxiliary
function	definitions	when	one	data	definition	points	 to	a	 second
data	definition.

In	this	section,	we	take	a	look	at	one	specific	place	in	the	design	process	that
may	call	 for	 additional	 auxiliary	 functions:	 the	definition	 step,	which	creates	a
full-fledged	 definition	 from	 a	 template.	 Turning	 a	 template	 into	 a	 complete
function	 definition	 means	 combining	 the	 values	 of	 the	 template’s	 sub-
expressions	 into	 the	 final	 answer.	As	 you	 do	 so,	 you	might	 encounter	 several
situations	that	suggest	the	need	for	auxiliary	functions:

1.	If	the	composition	of	values	requires	knowledge	of	a	particular	domain	of
application—for	example,	composing	two	(computer)	images,	accounting,
music,	or	science—design	an	auxiliary	function.

2.	If	the	composition	of	values	requires	a	case	analysis	of	the	available	values
—for	 example,	 depends	on	 a	number	being	positive,	 zero,	 or	negative—
use	 a	 cond	 expression.	 If	 the	 cond	 looks	 complex,	 design	 an	 auxiliary
function	whose	arguments	are	the	template’s	expressions	and	whose	body
is	the	cond	expression.

3.	 If	 the	 composition	 of	 values	 must	 process	 an	 element	 from	 a	 self-

referential	 data	 definition—a	 list,	 a	 natural	 number,	 or	 something	 like
those—design	an	auxiliary	function.

4.	If	everything	fails,	you	may	need	to	design	a	more	general	function	and
define	 the	main	 function	 as	 a	 specific	 use	 of	 the	 general	 function.	 This
suggestion	 sounds	 counterintuitive,	 but	 it	 is	 called	 for	 in	 a	 remarkably
large	number	of	cases.

The	 last	 two	 criteria	 are	 situations	 that	we	haven’t	 discussed	 in	 any	detail,
though	 examples	 have	 come	 up	 before.	 The	 next	 two	 sections	 illustrate	 these
principles	with	additional	examples.

Before	we	continue,	though,	remember	that	the	key	to	managing	the	design
of	programs	is	to	maintain	the	often-mentioned

Wish	List

Maintain	 a	 list	 of	 function	 headers	 that	 must	 be	 designed	 to
complete	 a	 program.	 Writing	 down	 complete	 function	 headers
ensures	that	you	can	test	those	portions	of	the	programs	that	you
have	 finished,	which	 is	 useful	 even	 though	many	 tests	will	 fail.
Of	course,	when	the	wish	list	 is	empty,	all	 tests	should	pass	and
all	functions	should	be	covered	by	tests.

Before	you	put	a	function	on	the	wish	list,	you	should	check	whether	something
like	the	function	already	exists	in	your	language’s	library	or	whether	something
similar	 is	 already	 on	 the	 wish	 list.	 BSL,	 BSL+,	 and	 indeed	 all	 programming
languages	 provide	 many	 built-in	 operations	 and	 many	 library	 functions.	 You
should	explore	your	chosen	language	when	you	have	time	and	when	you	have	a
need,	so	that	you	know	what	it	provides.

11.3 Auxiliary	Functions	that	Recur
People	need	to	sort	things	all	the	time,	and	so	do	programs.	Investment	advisors
sort	portfolios	by	the	profit	each	holding	generates.	Game	programs	sort	lists	of
players	according	to	scores.	And	mail	programs	sort	messages	according	to	date
or	sender	or	some	other	criterion.

In	general,	you	can	sort	a	bunch	of	items	if	you	can	compare	and	order	each
pair	 of	 data	 items.	Although	 not	 every	 kind	 of	 data	 comes	with	 a	 comparison
primitive,	we	all	know	one	 that	does:	numbers.	Hence,	we	use	a	simplistic	but
highly	representative	sample	problem	in	this	section:

Sample	Problem	Design	a	function	that	sorts	a	list	of	reals.

The	exercises	below	clarify	how	to	adapt	this	function	to	other	data.
Since	 the	 problem	 statement	 does	 not	 mention	 any	 other	 task	 and	 since

sorting	does	not	 seem	 to	 suggest	other	 tasks,	we	 just	 follow	 the	design	 recipe.
Sorting	 means	 rearranging	 a	 bunch	 of	 numbers.	 This	 restatement	 implies	 a
natural	 data	 definition	 for	 the	 inputs	 and	 outputs	 of	 the	 function	 and	 thus	 its
signature.	Given	 that	we	have	a	definition	 for	List-of-numbers,	 the	 first	 step	 is
easy:

;	List-of-numbers	->	List-of-numbers	
;	produces	a	sorted	version	of	alon	
(define	(sort>	alon)	
		alon)

Returning	 alon	 ensures	 that	 the	 result	 is	 appropriate	 as	 far	 as	 the	 function
signature	is	concerned,	but	in	general,	the	given	list	isn’t	sorted	and	this	result	is
wrong.

When	 it	 comes	 to	making	 up	 examples,	 it	 quickly	 becomes	 clear	 that	 the
problem	 statement	 is	 quite	 imprecise.	As	 before,	we	use	 the	 data	 definition	of
List-of-numbers	 to	 organize	 the	 development	 of	 examples.	 Since	 the	 data
definition	consists	of	two	clauses,	we	need	two	examples.	Clearly,	when	sort>
is	applied	to	'(),	the	result	must	be	'().	The	question	is	what	the	result	for

(cons	12	(cons	20	(cons	-5	'())))

should	be.	The	list	isn’t	sorted,	but	there	are	two	ways	to	sort	it:

•  (cons	 20	 (cons	 12	 (cons	 -5	 '()))),	 that	 is,	 a	 list	 with	 the	 numbers
arranged	in	descending	order;	and

•  (cons	 -5	 (cons	 12	 (cons	 20	 '()))),	 that	 is,	 a	 list	 with	 the	 numbers
arranged	in	ascending	order.

In	a	real-world	situation,	you	would	now	have	to	ask	the	person	who	posed	the
problem	for	clarification.	Here	we	go	 for	 the	descending	alternative;	designing
the	ascending	alternative	doesn’t	pose	any	different	obstacles.

The	decision	calls	for	a	revision	of	the	header	material:

The	 header	material	 now	 includes	 the	 examples	 reformulated	 as	 unit	 tests	 and
using	list.	If	the	latter	makes	you	uncomfortable,	reformulate	the	test	with	cons
to	exercise	translating	back	and	forth.	As	for	the	additional	two	examples,	they
demand	 that	sort>	works	 on	 lists	 already	 sorted	 in	 ascending	 and	 descending
order.

Next	we	must	translate	the	data	definition	into	a	function	template.	We	have
dealt	with	lists	of	numbers	before,	so	this	step	is	easy:

Using	this	template,	we	can	finally	turn	to	the	interesting	part	of	the	program
development.	We	consider	each	case	of	the	cond	expression	separately,	starting
with	the	simple	case.	If	sort>’s	input	is	'(),	the	answer	is	'(),	as	specified	by
the	 example.	 If	 sort>’s	 input	 is	 a	 consed	 list,	 the	 template	 suggests	 two
expressions	that	might	help:

•  (first	alon)	extracts	the	first	number	from	the	input;	and

•  (sort>	 (rest	 alon))	 rearranges	 (rest	 alon)	 in	 descending	 order,
according	to	the	purpose	statement	of	the	function.

To	clarify	these	abstract	answers,	let’s	use	the	second	example	to	explain	these
pieces	in	detail.	When	sort>	consumes	(list	12	20	-5),

1.	(first	alon)	is	12,

2.	(rest	alon)	is	(list	20	-5),	and

3.	(sort>	(rest	alon))	produces	(list	20	-5)	because	this	list	is	already
sorted.

To	produce	the	desired	answer,	sort>	must	insert	12	between	the	two	numbers
of	 the	 last	 list.	More	generally,	we	must	 find	an	expression	 that	 inserts	(first
alon)	in	its	proper	place	into	the	result	of	(sort>	(rest	alon)).	If	we	can	do
so,	sorting	is	an	easily	solved	problem.

Inserting	a	number	 into	a	 sorted	 list	clearly	 isn’t	a	 simple	 task.	 It	demands
searching	through	the	sorted	list	to	find	the	proper	place	of	the	item.	Searching
through	any	list	demands	an	auxiliary	function	because	lists	are	of	arbitrary	size
and,	by	item	3	of	the	preceding	section,	processing	values	of	arbitrary	size	calls
for	the	design	of	an	auxiliary	function.

So	here	is	the	new	wish-list	entry:

;	Number	List-of-numbers	->	List-of-numbers	
;	inserts	n	into	the	sorted	list	of	numbers	alon	
(define	(insert	n	alon)	alon)

That	 is,	insert	 consumes	 a	 number	 and	 a	 list	 sorted	 in	 descending	 order	 and
produces	a	sorted	list	by	inserting	the	former	into	the	latter.

With	insert,	it	is	easy	to	complete	the	definition	of	sort>:

(define	(sort>	alon)	
		(cond	
			[(empty?	alon)	'()]	
			[else	
				(insert	(first	alon)	(sort>	(rest	alon)))]))

In	order	to	produce	the	final	result,	sort>	extracts	the	first	item	of	a	non-empty
list,	 computes	 the	 sorted	 version	 of	 the	 rest,	 and	 uses	 insert	 to	 produce	 the
completely	sorted	list	from	the	two	pieces.

Stop!	 Test	 the	 program	 as	 is.	 Some	 test	 cases	 pass,	 and	 some	 fail.	 That’s
progress.	The	next	step	in	its	design	is	the	creation	of	functional	examples.	Since
the	first	input	of	insert	is	any	number,	we	use	5	and	use	the	data	definition	for
List-of-numbers	to	make	up	examples	for	the	second	input.

First	 we	 consider	 what	 insert	 should	 produce	 when	 given	 a	 number	 and
'().	According	to	insert’s	purpose	statement,	the	output	must	be	a	list,	it	must
contain	 all	 numbers	 from	 the	 second	 input,	 and	 it	 must	 contain	 the	 first
argument.	This	suggests	the	following:

(check-expect	(insert	5	'())	(list	5))

Second,	we	use	a	non-empty	list	of	just	one	item:

(check-expect	(insert	5	(list	6))	(list	6	5))	
(check-expect	(insert	5	(list	4))	(list	5	4))

The	reasoning	of	why	these	are	the	expected	results	is	just	like	before.	For	one,
the	 result	must	contain	all	numbers	 from	the	second	 list	and	 the	extra	number.
For	two,	the	result	must	be	sorted.

Finally,	let’s	create	an	example	with	a	list	that	contains	more	than	one	item.

Indeed,	 we	 can	 derive	 such	 an	 example	 from	 the	 examples	 for	 sort>	 and
especially	 from	 our	 analysis	 of	 the	 second	cond	 clause.	 From	 there,	we	 know
that	sort>	works	only	if	12	is	inserted	into	(list	20	-5)	at	its	proper	place:

That	is,	insert	is	given	a	second	list	and	it	is	sorted	in	descending	order.
Note	what	the	development	of	examples	teaches	us.	The	insert	function	has

to	find	the	first	number	that	is	smaller	than	the	given	n.	When	there	is	no	such
number,	the	function	eventually	reaches	the	end	of	the	list	and	it	must	add	n	to
the	 end.	Now,	before	we	move	on	 to	 the	 template,	 you	 should	work	out	 some
additional	examples.	To	do	so,	you	may	wish	to	use	the	supplementary	examples
for	sort>.

In	 contrast	 to	 sort>,	 the	 function	 insert	 consumes	 two	 inputs.	 Since	 we
know	 that	 the	 first	 one	 is	 a	 number	 and	 atomic,	 we	 can	 focus	 on	 the	 second
argument—the	list	of	numbers—for	the	template	development:

The	only	difference	between	this	template	and	the	one	for	sort>	is	that	this	one
needs	to	take	into	account	the	additional	argument	n.

To	fill	 the	gaps	 in	 the	 template	of	insert,	we	again	proceed	on	a	case-by-
case	basis.	The	first	case	concerns	the	empty	list.	According	to	the	first	example,
(list	n)	is	the	expression	needed	in	the	first	cond	clause	because	it	constructs	a
sorted	list	from	n	and	alon.

The	 second	 case	 is	more	 complicated	 than	 the	 first,	 and	 so	we	 follow	 the
questions	from	figure	53:

1.	(first	alon)	is	the	first	number	on	alon;

2.	(rest	alon)	is	the	rest	of	alon	and,	like	alon,	 it	is	sorted	in	descending
order;	and

3.	(insert	n	(rest	alon))	produces	a	sorted	list	from	n	and	the	numbers
on	(rest	alon).

The	problem	is	how	to	combine	these	pieces	of	data	to	get	the	final	answer.
Let’s	work	through	some	examples	to	make	all	this	concrete:

(insert	7	(list	6	5	4))

Here	n	is	7	and	larger	than	any	of	the	numbers	in	the	second	input.	We	know	so
by	just	looking	at	the	first	item	of	the	list.	It	is	6,	but	because	the	list	is	sorted	all
other	 numbers	 on	 the	 list	 are	 even	 smaller	 than	6.	Hence	 it	 suffices	 if	we	 just
cons	7	onto	(list	6	5	4).

In	contrast,	when	the	application	is	something	like

(insert	0	(list	6	2	1	-1))

n	 must	 indeed	 be	 inserted	 into	 the	 rest	 of	 the	 list.	 More	 concretely,	 (first
alon)	 is	 6;	 (rest	 alon)	 is	 (list	 2	 1	 -1);	 and	 (insert	 n	 (rest	 alon))
produces	 (list	 2	 1	 0	 -1)	 according	 to	 the	 purpose	 statement.	 By	 adding	 6
back	onto	that	last	list,	we	get	the	desired	answer	for	(insert	0	(list	6	2	1
-1)).

To	 get	 a	 complete	 function	 definition,	we	must	 generalize	 these	 examples.
The	 case	 analysis	 suggests	 a	 nested	 conditional	 that	 determines	 whether	 n	 is
larger	than	(or	equal	to)	(first	alon):

•  If	 so,	 all	 the	 items	 in	 alon	 are	 smaller	 than	 n	 because	 alon	 is	 already
sorted.	The	answer	in	that	case	is	(cons	n	alon).

•  If,	however,	n	is	smaller	than	(first	alon),	then	the	function	has	not	yet
found	 the	 proper	 place	 to	 insert	n	 into	alon.	 The	 first	 item	 of	 the	 result
must	be	(first	alon)	and	that	n	must	be	inserted	into	(rest	alon).	The
final	result	in	this	case	is

(cons	(first	alon)	(insert	n	(rest	alon)))

because	this	list	contains	n	and	all	items	of	alon	in	sorted	order—which	is
what	we	need.

The	translation	of	this	discussion	into	BSL+	calls	for	an	if	expression	for	such
cases.	The	condition	is	(>=	n	(first	alon)),	and	the	expressions	for	the	two
branches	have	been	formulated.

Figure	 72	 contains	 the	 complete	 sort	 program.	Copy	 it	 into	 the	 definitions
area	 of	 DrRacket,	 add	 the	 test	 cases	 back	 in,	 and	 test	 the	 program.	 All	 tests
should	pass	now,	and	they	should	cover	all	expressions.

Figure	72:	Sorting	lists	of	numbers

Terminology	This	particular	program	for	sorting	is	known	as	insertion	sort
in	the	programming	literature.	Later	we	will	study	alternative	ways	to	sort	lists,
using	an	entirely	different	design	strategy.

Exercise	 186.	 Take	 a	 second	 look	 at	 intermezzo	 1,	 the	 intermezzo	 that
presents	 BSL	 and	 its	 ways	 of	 formulating	 tests.	 One	 of	 the	 latter	 is	 check-
satisfied,	which	determines	whether	an	expression	satisfies	a	certain	property.
Use	sorted>?	from	exercise	145	to	reformulate	the	tests	for	sort>	with	check-
satisfied.

Now	consider	this	function	definition:

;	List-of-numbers	->	List-of-numbers	
;	produces	a	sorted	version	of	l	
(define	(sort>/bad	l)	
		(list	9	8	7	6	5	4	3	2	1	0))

Can	 you	 formulate	 a	 test	 case	 that	 shows	 that	 sort>/bad	 is	 not	 a	 sorting

function?	Can	you	use	check-satisfied	to	formulate	this	test	case?
Notes	(1)	What	may	surprise	you	here	is	that	we	define	a	function	to	create	a

test.	In	the	real	world,	this	step	is	common,	and,	on	occasion,	you	really	need	to
design	 functions	 for	 tests—with	 their	 own	 tests	 and	 all.	 (2)	 Formulating	 tests
with	check-satisfied	is	occasionally	easier	than	using	check-expect	(or	other
forms),	 and	 it	 is	 also	 a	 bit	 more	 general.	 When	 the	 predicate	 completely
describes	the	relationship	between	all	possible	inputs	and	outputs	of	a	function,
computer	 scientists	 speak	 of	 a	 specification.	 Chapter	 17.4	 explains	 how	 to
specify	sort>	completely.	

Exercise	187.	Design	a	program	that	sorts	lists	of	game	players	by	score:

(define-struct	gp	[name	score])	
;	A	GamePlayer	is	a	structure:	
;				(make-gp	String	Number)	
;	interpretation	(make-gp	p	s)	represents	player	p	who	
;	scored	a	maximum	of	s	points

Hint	Formulate	a	function	that	compares	two	elements	of	GamePlayer.	
Exercise	188.	Design	a	program	that	sorts	lists	of	emails	by	date:

(define-struct	email	[from	date	message])	
;	An	Email	Message	is	a	structure:	
;			(make-email	String	Number	String)	
;	interpretation	(make-email	f	d	m)	represents	text	m	
;	sent	by	f,	d	seconds	after	the	beginning	of	time

Also	develop	a	program	that	sorts	lists	of	email	messages	by	name.	To	compare
two	strings	alphabetically,	use	the	string<?	primitive.	

Exercise	189.	Here	is	the	function	search:

;	Number	List-of-numbers	->	Boolean	
(define	(search	n	alon)	
		(cond	
			[(empty?	alon)	#false]	
			[else	(or	(=	(first	alon)	n)	
													(search	n	(rest	alon)))]))

It	 determines	whether	 some	 number	 occurs	 in	 a	 list	 of	 numbers.	 The	 function
may	have	 to	 traverse	 the	entire	 list	 to	 find	out	 that	 the	number	of	 interest	 isn’t
contained	in	the	list.

Develop	 the	 function	search-sorted,	which	 determines	whether	 a	 number
occurs	in	a	sorted	list	of	numbers.	The	function	must	take	advantage	of	the	fact
that	the	list	is	sorted.	

Exercise	 190.	 Design	 the	 prefixes	 function,	 which	 consumes	 a	 list	 of
1Strings	and	produces	the	list	of	all	prefixes.	A	list	p	is	a	prefix	of	l	if	p	and	l
are	the	same	up	through	all	items	in	p.	For	example,	(list	"a"	"b"	"c")	is	a
prefix	of	itself	and	(list	"a"	"b"	"c"	"d").

Design	 the	 function	 suffixes,	 which	 consumes	 a	 list	 of	 1Strings	 and
produces	all	suffixes.	A	list	s	is	a	suffix	of	l	if	p	and	l	are	the	same	from	the
end,	up	through	all	items	in	s.	For	example,	(list	"b"	"c"	"d")	is	a	suffix	of
itself	and	(list	"a"	"b"	"c"	"d").	

11.4 Auxiliary	Functions	that	Generalize
On	 occasion	 an	 auxiliary	 function	 is	 not	 just	 a	 small	 helper	 function	 but	 a
solution	to	a	more	general	problem.	Such	auxiliaries	are	needed	when	a	problem
statement	 is	 too	narrow.	As	programmers	work	 through	the	steps	of	 the	design
recipe,	 they	may	 discover	 that	 the	 “natural”	 solution	 is	wrong.	An	 analysis	 of
this	broken	solution	may	suggest	a	slightly	different,	but	more	general,	problem
statement,	as	well	as	a	simple	way	of	using	the	solution	to	the	general	problem
for	the	original	one.

Paul	C.	Fisher	suggested	this	problem.

We	illustrate	this	idea	with	a	solution	to	the	following	problem:

Sample	 Problem	 Design	 a	 function	 that	 adds	 a	 polygon	 to	 a
given	scene.

Just	in	case	you	don’t	recall	your	basic	geometry	(domain)	knowledge,	we	add	a
(simplistic)	definition	of	polygon:

A	polygon	 is	 a	planar	 figure	with	at	 least	 three	points	 (not	on	a
straight	line)	connected	by	three	straight	sides.

One	 natural	 data	 representation	 for	 a	 polygon	 is	 thus	 a	 list	 of	 Posns.	 For
example,	the	following	two	definitions

introduce	a	triangle	and	a	square,	just	as	the	names	say.	Now	you	may	wonder
how	to	interpret	'()	or	(list	(make-posn	30	40))	as	polygons,	and	the	answer
is	 that	 they	 do	not	 describe	 polygons.	 Because	 a	 polygon	 consists	 of	 at	 least
three	points,	a	good	data	representation	of	polygons	is	the	collection	of	lists	with

at	least	three	Posns.
Following	 the	 development	 of	 the	 data	 definition	 for	 non-empty	 lists	 of

temperatures	 (NEList-of-temperatures,	 in	 chapter	 9.2),	 formulating	 a	 data
representation	for	polygons	is	straightforward:

;	A	Polygon	is	one	of:	
;	--	(list	Posn	Posn	Posn)	
;	--	(cons	Posn	Polygon)

The	first	clause	says	that	a	list	of	three	Posns	is	a	Polygon,	and	the	second	clause
says	that	consing	a	Posn	onto	some	existing	Polygon	creates	another	one.	Since
this	data	definition	is	the	very	first	to	use	list	in	one	of	its	clauses,	we	spell	it
out	with	cons	just	to	make	sure	you	see	this	conversion	from	an	abbreviation	to
long-hand	in	this	context:

;	a	Polygon	is	one	of:	
;	--	(cons	Posn	(cons	Posn	(cons	Posn	'())))	
;	--	(cons	Posn	Polygon)

The	point	is	that	a	naively	chosen	data	representation—plain	lists	of	Posns—
may	 not	 properly	 represent	 the	 intended	 information.	 Revising	 the	 data
definition	 during	 an	 initial	 exploration	 is	 normal;	 indeed,	 on	 occasion	 such
revisions	become	necessary	during	the	rest	of	the	design	process.	As	long	as	you
stick	 to	 a	 systematic	 approach,	 though,	 changes	 to	 the	 data	 definition	 can
naturally	be	propagated	through	the	rest	of	the	design.

The	second	step	calls	for	the	signature,	purpose	statement,	and	header	of	the
function.	Since	the	problem	statement	mentions	just	one	task	and	no	other	task	is
implied,	we	start	with	one	function:

;	a	plain	background	image	
(define	MT	(empty-scene	50	50))	

;	Image	Polygon	->	Image	
;	renders	the	given	polygon	p	into	img	
(define	(render-poly	img	p)	
		img)

The	additional	definition	of	MT	is	called	for	because	it	simplifies	the	formulation
of	examples.

For	the	first	example,	we	use	the	above-mentioned	triangle.	A	quick	look	in
the	2htdp/image	library	suggests	scene+line	is	the	function	needed	to	render	the
three	lines	for	a	triangle:

The	innermost	scene+line	renders	the	line	from	the	first	to	the	second	Posn;	the
middle	 one	 uses	 the	 second	 and	 third	 Posn;	 and	 the	 outermost	 scene+line
connects	the	third	and	the	first	Posn.

Of	course,	we	experimented	in	DrRacket’s	interactions	area	to	get	this	expression	right.

Given	that	the	first	and	smallest	polygon	is	a	triangle,	 then	a	rectangle	or	a
square	suggests	itself	as	the	second	example.	We	use	square-p:

A	square	is	just	one	more	point	than	a	triangle,	and	it	is	easy	to	render.	You	may
also	wish	to	draw	these	shapes	on	a	piece	of	graph	paper.

The	construction	of	the	template	poses	a	challenge.	Specifically,	the	first	and

the	second	questions	of	 figure	52	ask	whether	 the	data	definition	differentiates
distinct	 subsets	 and	how	 to	 distinguish	 among	 them.	While	 the	 data	 definition
clearly	 sets	 apart	 triangles	 from	 all	 other	 polygons	 in	 the	 first	 clause,	 it	 is	 not
immediately	 clear	 how	 to	 differentiate	 the	 two.	 Both	 clauses	 describe	 lists	 of
Posns.	The	 first	 describes	 lists	 of	 three	 Posns,	while	 the	 second	 one	 describes
lists	of	Posns	that	have	at	least	four	items.	Thus	one	alternative	is	to	ask	whether
the	given	polygon	is	three	items	long:

(=	(length	p)	3)

Using	the	long-hand	version	of	the	first	clause,	that	is,

(cons	Posn	(cons	Posn	(cons	Posn	'())))

suggests	 a	 second	 way	 to	 formulate	 the	 first	 condition,	 namely,	 checking
whether	the	given	Polygon	is	empty	after	using	three	rest	functions:

(empty?	(rest	(rest	(rest	p))))

Since	all	Polygons	consist	of	at	least	three	Posns,	using	rest	three	times	is	legal.
Unlike	 length,	 rest	 is	 a	 primitive,	 easy-to-understand	 operation	 with	 a	 clear
operational	meaning.	It	selects	the	second	field	in	a	cons	structure	and	that	is	all
it	does.

It	is	truly	better	to	formulate	conditions	in	terms	of	built-in	predicates	and	selectors	than	your	own
(recursive)	functions.	See	intermezzo	5	for	an	explanation.

The	rest	of	 the	questions	 in	figure	52	have	direct	answers,	and	 thus	we	get
this	template:

Because	p	describes	a	triangle	in	the	first	clause,	it	must	consist	of	exactly	three
Posns,	which	are	extracted	via	first,	second,	and	third.	In	the	second	clause,	p
consists	 of	 a	 Posn	 and	 a	 Polygon,	 justifying	 (first	 p)	 and	 (rest	 p).	 The
former	 extracts	 a	 Posn	 from	 p,	 the	 latter	 a	 Polygon.	We	 therefore	 add	 a	 self-
referential	function	call	around	it;	we	must	also	keep	in	mind	that	dealing	with
(first	p)	in	this	clause	and	the	three	Posns	in	the	first	clause	may	demand	the
design	of	an	auxiliary	function.

Now	 we	 are	 ready	 to	 focus	 on	 the	 function	 definition,	 dealing	 with	 one
clause	 at	 a	 time.	 The	 first	 clause	 concerns	 triangles,	 which	 suggests	 a
straightforward	 answer.	 Specifically,	 there	 are	 three	 Posns	 and	 render-poly
should	connect	the	three	in	an	empty	scene	of	50	by	50	pixels.	Given	that	Posn	is
a	separate	data	definition,	we	get	an	obvious	wish-list	entry:

;	Image	Posn	Posn	->	Image	
;	draws	a	red	line	from	Posn	p	to	Posn	q	into	im	
(define	(render-line	im	p	q)	
		im)

Using	this	function,	the	first	cond	clause	in	render-poly	is	this:

This	expression	obviously	renders	the	given	Polygon	p	as	a	triangle	by	drawing	a
line	from	the	first	to	the	second,	the	second	to	the	third,	and	the	third	to	the	first

Posn.
The	second	cond	clause	is	about	Polygons	that	have	been	extended	with	one

Posn.	 In	 the	 template,	 we	 find	 two	 expressions,	 and,	 following	 figure	 53,	 we
remind	ourselves	of	what	these	expressions	compute:

1.	(first	p)	extracts	the	first	Posn;

2.	(rest	p)	extracts	the	Polygon	from	p;	and

3.	(render-polygon	img	(rest	p))	 renders	(rest	p),	which	 is	what	 the
purpose	statement	of	the	function	says.

The	question	is	how	to	use	these	pieces	to	render	the	given	Polygon	p.
One	idea	 that	may	come	to	mind	is	 that	(rest	p)	consists	of	at	 least	 three

Posns.	 It	 is	 therefore	possible	 to	 extract	 at	 least	 one	Posn	 from	 this	 embedded
Polygon	and	to	connect	(first	p)	with	this	additional	point.	Here	is	what	this
idea	looks	like	with	BSL+	code:

As	mentioned,	the	highlighted	sub-expression	renders	the	embedded	Polygon	in
an	empty	50	by	50	scene.	The	use	of	render-line	adds	one	line	to	 this	scene,
from	the	first	to	the	second	Posn	of	p.

Our	analysis	suggests	a	rather	natural,	complete	function	definition:

Designing	render-line	 is	 the	 kind	 of	 problem	 that	 you	 solved	 in	 the	 first
part	of	the	book.	Hence	we	just	provide	the	final	definition	so	that	you	can	test
the	above	function:

Stop!	Develop	a	test	for	render-line.
Lastly,	we	must	test	the	functions.	The	tests	for	render-poly	fail.	On	the	one

hand,	 the	 test	 failure	 is	 fortunate	 because	 it	 is	 the	 purpose	 of	 tests	 to	 find
problems	before	 they	 affect	 regular	 consumers.	On	 the	 other	 hand,	 the	 flaw	 is
unfortunate	 because	 we	 followed	 the	 design	 recipe,	 we	 made	 fairly	 natural
choices,	and	yet	the	function	doesn’t	work.

Stop!	Why	do	you	 think	 the	 tests	 fail?	Draw	an	 image	of	 the	pieces	 in	 the
template	of	render-poly.	Then	draw	the	line	that	combines	them.	Alternatively,
experiment	in	DrRacket’s	interactions	area:

The	image	shows	that	render-polygon	connects	the	three	dots	of	(rest	p)	and
then	connects	(first	p)	to	the	first	point	of	(rest	p),	that	is,	(second	p).	You
can	 easily	 validate	 this	 claim	 with	 an	 interaction	 that	 uses	 (rest	 square-p)
directly	as	input	for	render-poly:

In	 addition,	 you	may	wonder	 what	 render-poly	 would	 draw	 if	 we	 added
another	point,	say,	(make-posn	40	30),	to	the	original	square:

Instead	 of	 the	 desired	 pentagon,	render-polygon	 always	 draws	 the	 triangle	 at
the	end	of	the	given	Polygon	and	otherwise	connects	the	Posns	that	precede	the
triangle.

While	the	experiments	confirm	the	problems	of	our	design,	they	also	suggest
that	the	function	is	“almost	correct.”	It	connects	the	successive	dots	specified	by
a	 list	 of	 Posns,	 and	 then	 it	 draws	 a	 line	 from	 the	 first	 to	 the	 last	 Posn	 of	 the
trailing	triangle.	If	it	skipped	this	last	step,	the	function	would	just	“connect	the
dots”	 and	 thus	 draw	 an	 “open”	 polygon.	 By	 connecting	 the	 first	 and	 the	 last
point,	it	could	then	complete	its	task.

Put	differently,	the	analysis	of	our	failure	suggests	a	two-step	solution:

1.	Solve	a	more	general	problem.

2.	Use	the	solution	to	this	general	problem	to	solve	the	original	one.

We	start	with	the	statement	for	the	general	problem:

Sample	 Problem	 Design	 a	 function	 that	 draws	 connections
between	a	given	bunch	of	dots	and	into	a	given	scene.

Although	the	design	of	render-poly	almost	solves	this	problem,	we	design
this	 function	mostly	 from	scratch.	First,	we	need	a	data	definition.	Connecting
the	dots	makes	no	sense	unless	we	have	at	least	a	couple	of	dots.	To	keep	things
simple,	we	go	with	at	least	one	dot:

;	An	NELoP	is	one	of:	
;	--	(cons	Posn	'())	
;	--	(cons	Posn	NELoP)

Second,	we	 formulate	 a	 signature,	 a	 purpose	 statement,	 and	 a	 header	 for	 a
“connect	the	dots”	function:

;	Image	NELoP	->	Image	
;	connects	the	dots	in	p	by	rendering	lines	in	img	
(define	(connect-dots	img	p)	
		MT)

Third,	 we	 adapt	 the	 examples	 for	 render-poly	 for	 this	 new	 function.	 As	 our
failure	analysis	says,	the	function	connects	the	first	Posn	on	p	to	the	second	one,
the	second	one	to	the	third,	the	third	to	the	fourth,	and	so	on,	all	the	way	to	the
last	 one,	which	 isn’t	 connected	 to	 anything.	Here	 is	 the	 adaptation	 of	 the	 first
example,	a	list	of	three	Posns:

The	 expected	value	 is	 an	 image	with	 two	 lines:	 one	 from	 the	 first	Posn	 to	 the
second	one,	and	another	one	from	the	second	to	the	third	Posn.

Exercise	 191.	 Adapt	 the	 second	 example	 for	 the	 render-poly	 function	 to

connect-dots.	
Fourth,	we	use	the	template	for	functions	that	process	non-empty	lists:

The	template	has	two	clauses:	one	for	lists	of	one	Posn	and	the	second	one	for
lists	 with	 more	 than	 one.	 Since	 there	 is	 at	 least	 one	 Posn	 in	 both	 cases,	 the
template	 contains	 (first	 p)	 in	 both	 clauses;	 the	 second	 one	 also	 contains
(connects-dots	 (rest	 p))	 to	 remind	 us	 of	 the	 self-reference	 in	 the	 second
clause	of	the	data	definition.

The	 fifth	 and	central	 step	 is	 to	 turn	 the	 template	 into	 a	 function	definition.
Since	 the	 first	 clause	 is	 the	 simplest	one,	we	 start	with	 it.	As	we	have	already
said,	it	 is	impossible	to	connect	anything	when	the	given	list	contains	only	one
Posn.	 Hence,	 the	 function	 just	 returns	 MT	 from	 the	 first	 cond	 clause.	 For	 the
second	 cond	 clause,	 let	 us	 remind	 ourselves	 of	 what	 the	 template	 expressions
compute:

1.	(first	p)	extracts	the	first	Posn;

2.	(rest	p)	extracts	the	NELoP	from	p;	and

3.	 (connect-dots	 img	 (rest	 p))	 connects	 the	 dots	 in	 (rest	 p)	 by
rendering	lines	in	img.

From	our	first	attempt	to	design	render-poly,	we	know	connect-dots	needs	to
add	 one	 line	 to	 the	 result	 of	 (connect-dots	 img	 (rest	 p)),	 namely,	 from
(first	 p)	 to	 (second	 p).	 We	 know	 that	 p	 contains	 a	 second	 Posn	 because
otherwise	the	evaluation	of	cond	would	have	picked	the	first	clause.

Putting	everything	together,	we	get	the	following	definition:

This	 definition	 looks	 simpler	 than	 the	 faulty	 version	 of	 render-poly,	 even
though	it	copes	with	two	more	lists	of	Posns	than	render-poly.

Conversely,	 we	 say	 that	 connect-dots	 generalizes	 render-poly.	 Every
input	for	the	latter	is	also	an	input	for	the	former.	Or	in	terms	of	data	definitions,
every	 Polygon	 is	 also	 an	 NELoP.	 But,	 there	 are	 many	 NELoPs	 that	 are	 not
Polygons.	To	be	precise,	all	lists	of	Posns	that	contain	two	items	or	one	belong
to	 NELoP	 but	 not	 to	 Polygon.	 The	 key	 insight	 for	 you	 is,	 however,	 that	 just
because	a	function	has	to	deal	with	more	inputs	than	another	function	does	not
mean	 that	 the	 former	 is	 more	 complex	 than	 the	 latter;	 generalizations	 often
simplify	function	definitions.

This	argument	is	informal.	If	you	ever	need	a	formal	argument	for	such	claims	about	the	relationship
between	sets	or	functions,	you	will	need	to	study	logic.	Indeed,	this	book’s	design	process	is	deeply
informed	by	logic,	and	a	course	on	logic	in	computation	is	a	natural	complement.	In	general,	logic	is
to	computing	what	analysis	is	to	engineering.

As	spelled	out	above,	render-polygon	can	use	connect-dots	to	connect	all
successive	Posns	of	the	given	Polygon;	to	complete	its	 task,	 it	must	then	add	a
line	from	the	first	 to	 the	 last	Posn	of	 the	given	Polygon.	 In	 terms	of	code,	 this
just	means	 composing	 two	 functions:	connect-dots	 and	render-line,	 but	we
also	 need	 a	 function	 to	 extract	 the	 last	 Posn	 from	 the	 Polygon.	 Once	 we	 are
granted	this	wish,	the	definition	of	render-poly	is	a	one-liner:

Formulating	the	wish-list	entry	for	last	is	straightforward:

;	Polygon	->	Posn	
;	extracts	the	last	item	from	p

Then	 again,	 it	 is	 clear	 that	 last	 could	 be	 a	 generally	 useful	 function	 and	we
might	be	better	off	designing	it	for	inputs	from	NELoP:

;	NELoP	->	Posn	
;	extracts	the	last	item	from	p	
(define	(last	p)	
		(first	p))

Stop!	Why	is	it	acceptable	to	use	first	for	the	stub	definition	of	last?
Exercise	 192.	 Argue	 why	 it	 is	 acceptable	 to	 use	 last	 on	 Polygons.	 Also

argue	why	you	may	adapt	the	template	for	connect-dots	to	last:

(define	(last	p)	
		(cond	
				[(empty?	(rest	p))	(…	(first	p)	…)]	
				[else	(…	(first	p)	…	(last	(rest	p))	…)]))

Finally,	 develop	 examples	 for	 last,	 turn	 them	 into	 tests,	 and	 ensure	 that	 the
definition	of	last	in	figure	73	works	on	your	examples.	

Figure	73:	Drawing	a	polygon

In	summary,	the	development	of	render-poly	naturally	points	us	to	consider
the	general	problem	of	connecting	a	 list	of	successive	dots.	We	can	 then	solve
the	original	problem	by	defining	a	function	 that	composes	 the	general	function
with	 other	 auxiliary	 functions.	 The	 program	 therefore	 consists	 of	 a	 relatively
straightforward	main	function—render-poly—and	complex	auxiliary	functions
that	 perform	most	 of	 the	work.	You	will	 see	 time	 and	 again	 that	 this	 kind	 of
design	 approach	 is	 common	 and	 a	 good	method	 for	 designing	 and	 organizing
programs.

Exercise	193.	Here	are	two	more	ideas	for	defining	render-poly:

•  render-poly	could	cons	 the	last	item	of	p	onto	p	and	then	call	connect-
dots.

•  render-poly	could	add	the	first	item	of	p	to	the	end	of	p	via	a	version	of
add-at-end	that	works	on	Polygons.

Use	both	ideas	to	define	render-poly;	make	sure	both	definitions	pass	the	test
cases.	

Exercise	194.	Modify	connect-dots	so	that	it	consumes	an	additional	Posn
to	which	the	last	Posn	is	connected.	Then	modify	render-poly	 to	use	this	new
version	of	connect-dots.	

Naturally,	 functions	 such	 as	 last	 are	 available	 in	 a	 full-fledged
programming	 language,	 and	 something	 like	 render-poly	 is	 available	 in	 the
2htdp/image	library.	If	you	are	wondering	why	we	just	designed	these	functions,
consider	 the	 titles	 of	 both	 the	 book	 and	 this	 section.	 The	 goal	 is	not	 (just)	 to
design	 useful	 functions	 but	 to	 study	 how	 code	 is	 designed	 systematically.
Specifically,	this	section	is	about	the	idea	of	generalization	in	the	design	process;
for	more	on	this	idea	see	part	III	and	part	VI.

12 Projects:	Lists
This	 chapter	 presents	 several	 extended	 exercises,	 all	 of	 which	 aim	 to	 solidify
your	understanding	of	the	elements	of	design:	the	design	of	batch	and	interactive
programs,	 design	 by	 composition,	 design	wish	 lists,	 and	 the	 design	 recipe	 for
functions.	The	 first	 section	covers	problems	 involving	 real-world	data:	English
dictionaries	and	iTunes	libraries.	A	word-games	problem	requires	two	sections:
one	 to	 illustrate	 design	 by	 composition,	 the	 other	 to	 tackle	 the	 heart	 of	 the
problem.	The	remaining	sections	are	about	games	and	finite-state	machines.

This	chapter	relies	on	the	2htdp/batch-io	library.

12.1 Real-World	Data:	Dictionaries
Information	in	the	real	world	tends	to	come	in	large	quantities,	which	is	why	it
makes	 so	 much	 sense	 to	 use	 programs	 for	 processing	 it.	 For	 example,	 a
dictionary	does	not	just	contain	a	dozen	words,	but	hundreds	of	thousands.	When
you	want	to	process	such	large	pieces	of	information,	you	must	carefully	design
the	program	using	small	examples.	Once	you	have	convinced	yourself	 that	 the
programs	work	properly,	you	run	them	on	the	real-world	data	to	get	real	results.
If	the	program	is	too	slow	to	process	this	large	quantity	of	data,	reflect	on	each
function	and	how	it	works.	Question	whether	you	can	eliminate	any	redundant
computations.

For	performance	concerns,	see	part	V.	From	here	to	there,	the	focus	is	on	designing	programs
systematically	so	that	you	can	then	explore	performance	problems	properly.

Figure	74	displays	the	one	line	of	code	needed	to	read	in	an	entire	dictionary
of	the	English	language.	To	get	an	idea	of	how	large	such	dictionaries	are,	adapt
the	 code	 from	 the	 figure	 for	 your	 particular	 computer	 and	 use	 length	 to
determine	how	many	words	are	in	your	dictionary.	There	are	235,886	words	in
ours	today,	July	25,	2017.

Figure	74:	Reading	a	dictionary

In	 the	 following	exercises,	 letters	play	an	 important	 role.	You	may	wish	 to
add	 the	 following	 to	 the	 top	of	your	program	in	addition	 to	your	adaptation	of
figure	74:

;	A	Letter	is	one	of	the	following	1Strings:	
;	--	"a"	

;	--	…	
;	--	"z"	
;	or,	equivalently,	a	member?	of	this	list:	
(define	LETTERS	
		(explode	"abcdefghijklmnopqrstuvwxyz"))

Hint	Use	list	to	formulate	examples	and	tests	for	the	exercises.
Exercise	195.	Design	the	function	starts-with#,	which	consumes	a	Letter

and	Dictionary	and	 then	counts	how	many	words	 in	 the	given	Dictionary	 start
with	the	given	Letter.	Once	you	know	that	your	function	works,	determine	how
many	words	 start	with	"e"	 in	 your	 computer’s	 dictionary	 and	 how	many	with
"z".	

Exercise	 196.	 Design	 count-by-letter.	 The	 function	 consumes	 a
Dictionary	and	counts	how	often	each	letter	is	used	as	the	first	one	of	a	word	in
the	 given	 dictionary.	 Its	 result	 is	 a	 list	 of	 Letter-Counts,	 a	 piece	 of	 data	 that
combines	letters	and	counts.

Once	your	 function	 is	designed,	determine	how	many	words	 appear	 for	 all
letters	in	your	computer’s	dictionary.

Note	 on	Design	Choices	 An	 alternative	 is	 to	 design	 an	 auxiliary	 function
that	 consumes	 a	 list	 of	 letters	 and	 a	 dictionary	 and	 produces	 a	 list	 of	 Letter-
Counts	 that	 report	 how	 often	 the	 given	 letters	 occur	 as	 first	 ones	 in	 the
dictionary.	You	may	of	course	reuse	your	solution	of	exercise	195.	Hint	If	you
design	 this	 variant,	 notice	 that	 the	 function	 consumes	 two	 lists,	 requiring	 a
design	problem	that	is	covered	in	chapter	23	in	detail.	Think	of	Dictionary	as	an
atomic	 piece	 of	 data	 that	 is	 along	 for	 the	 ride	 and	 is	 handed	 over	 to	 starts-
with#	as	needed.	

Exercise	197.	Design	most-frequent.	The	function	consumes	a	Dictionary.
It	produces	the	Letter-Count	for	the	letter	that	occurs	most	often	as	the	first	one
in	the	given	Dictionary.

What	 is	 the	most	 frequently	 used	 letter	 in	 your	 computer’s	 dictionary	 and
how	often	is	it	used?

Note	 on	 Design	 Choices	 This	 exercise	 calls	 for	 the	 composition	 of	 the
solution	to	the	preceding	exercise	with	a	function	that	picks	the	correct	pairing
from	a	list	of	Letter-Counts.	There	are	two	ways	to	design	this	latter	function:

•  Design	a	function	that	picks	the	pair	with	the	maximum	count.

•  Design	a	function	that	selects	the	first	from	a	sorted	list	of	pairs.

Consider	designing	both.	Which	one	do	you	prefer?	Why?	
Exercise	 198.	 Design	 words-by-first-letter.	 The	 function	 consumes	 a

Dictionary	and	produces	a	list	of	Dictionarys,	one	per	Letter.
Redesign	most-frequent	from	exercise	197	using	this	new	function.	Call	the

new	function	most-frequent.v2.	Once	you	have	completed	 the	design,	ensure
that	the	two	functions	compute	the	same	result	on	your	computer’s	dictionary:

(check-expect	
		(most-frequent	AS-LIST)	
		(most-frequent.v2	AS-LIST))

Note	on	Design	Choices	For	words-by-first-letter	you	have	a	choice	for
dealing	with	the	situation	when	the	given	dictionary	does	not	contain	any	words
for	some	letter:

•  One	 alternative	 is	 to	 exclude	 the	 resulting	 empty	 dictionaries	 from	 the
overall	result.	Doing	so	simplifies	both	the	testing	of	the	function	and	the
design	of	most-frequent.v2,	but	it	also	requires	the	design	of	an	auxiliary
function.

•  The	 other	 one	 is	 to	 include	 '()	 as	 the	 result	 of	 looking	 for	 words	 of	 a
certain	letter,	even	if	there	aren’t	any.	This	alternative	avoids	the	auxiliary
function	needed	for	the	first	alternative	but	adds	complexity	to	the	design
of	most-frequent.v2.	End

Note	on	Intermediate	Data	and	Deforestation	This	second	version	of	 the
word-counting	 function	 computes	 the	 desired	 result	 via	 the	 creation	 of	 a	 large
intermediate	data	structure	that	serves	no	real	purpose	other	than	that	its	parts	are
counted.	On	occasion,	the	programming	language	eliminates	them	automatically
by	 fusing	 the	 two	functions	 into	one,	a	 transformation	on	programs	that	 is	also
called	 deforestation.	 When	 you	 know	 that	 the	 language	 does	 not	 deforest
programs,	 consider	 eliminating	 such	 data	 structures	 if	 the	 program	 does	 not
process	data	fast	enough.	

12.2 Real-World	Data:	iTunes
Apple’s	iTunes	software	is	widely	used	to	collect	music,	videos,	TV	shows,	and
so	 on.	You	may	wish	 to	 analyze	 the	 information	 that	 your	 iTunes	 application
gathers.	 It	 is	actually	quite	easy	 to	extract	 its	database.	Select	 the	application’s
File	menu,	choose	Library	and	then	Export—and	voilà,	you	can	export	a	so-
called	 XML	 representation	 of	 the	 iTunes	 information.	 Processing	 XML	 is
covered	in	some	depth	by	chapter	22;	here	we	rely	on	the	2htdp/itunes	library	to
get	hold	of	the	information.	Specifically,	 the	library	enables	you	to	retrieve	the
music	tracks	that	your	iTunes	library	contains.

While	 the	 details	 vary,	 an	 iTunes	 library	maintains	 some	 of	 the	 following
kinds	of	information	for	each	music	track,	occasionally	a	bit	less:

•  Track	 ID,	 a	 unique	 identifier	 for	 the	 track	 with	 respect	 to	 your	 library,
example:	442

•  Name,	the	title	of	the	track,	Wild	Child

•  Artist,	the	producing	artists,	Enya

•  Album,	the	title	of	the	album	to	which	it	belongs,	A	Day	Without

•  Genre,	the	music	genre	to	which	the	track	is	assigned,	New	Age

•  Kind,	the	encoding	of	the	music,	MPEG	audio	file

•  Size,	the	size	of	the	file,	4562044

•  Total	Time,	the	length	of	the	track	in	milliseconds,	227996

•  Track	Number,	the	position	of	the	track	within	the	album,	2

•  Track	Count,	the	number	of	tracks	on	the	album,	11

•  Year,	the	year	of	release,	2000

•  Date	Added,	when	the	track	was	added,	2002-7-17	3:55:14

•  Play	Count,	how	many	times	it	was	played,	20

•  Play	Date,	when	the	track	was	last	played,	3388484113	Unix	seconds

•  Play	Date	UTC,	when	it	was	last	played,	2011-5-17	17:35:13

As	 always,	 the	 first	 task	 is	 to	 choose	 a	 BSL	 data	 representation	 for	 this
information.	 In	 this	 section,	 we	 use	 two	 representations	 for	 music	 tracks:	 a
structure-based	one	and	another	based	on	lists.	While	the	former	records	a	fixed
number	of	attributes	per	track	and	only	if	all	information	is	available,	the	latter
comes	with	whatever	 information	 is	 available	 represented	as	data.	Each	 serves
particular	uses	well;	for	some	uses,	both	representations	are	useful.

In	addition	to	the	2htdp/batch-io	library,	this	section	relies	on	the	2htdp/itunes	library.

Figures	75	 and	76	 introduce	 the	 structure-based	 representation	of	 tracks	 as
implemented	by	 the	2htdp/itunes	 library.	The	track	 structure	 type	 comes	with
eight	 fields,	 each	 representing	 a	 particular	 property	 of	 the	 track.	 Most	 fields
contain	 atomic	 kinds	 of	 data,	 such	 as	 Strings	 and	 Ns;	 others	 contain	 Dates,
which	 is	 a	 structure	 type	 with	 six	 fields.	 The	 2htdp/itunes	 library	 exports	 all
predicates	 and	 selectors	 for	 the	track	 and	date	 structure	 types,	 but	 in	 lieu	 of
constructors	it	provides	checked	constructors.

Figure	75:	Representing	iTunes	tracks	as	structures	(the	structures)

Figure	76:	Representing	iTunes	tracks	as	structures	(the	functions)

The	 last	element	of	 the	description	of	 the	2htdp/itunes	 library	 is	a	 function
that	 reads	 an	 iTunes	 XML	 library	 description	 and	 delivers	 a	 list	 of	 tracks,

LTracks.	Once	you	have	exported	the	XML	library	from	some	iTunes	app,	you
can	run	the	following	code	snippet	to	retrieve	all	the	records:

;	modify	the	following	to	use	your	chosen	name	
(define	ITUNES-LOCATION	"itunes.xml")	

;	LTracks	
(define	itunes-tracks	
		(read-itunes-as-tracks	ITUNES-LOCATION))

Save	the	snippet	in	the	same	folder	as	your	iTunes	XML	export.	Remember	not
to	use	itunes-tracks	for	examples;	it	is	way	too	large	for	that.	Indeed,	it	may
be	 so	 large	 that	 reading	 the	 file	 every	 time	 you	 run	 your	 BSL	 program	 in
DrRacket	will	 take	a	 lot	of	 time.	You	may	 therefore	wish	 to	comment	out	 this
second	 line	while	you	design	 functions.	Uncomment	 it	only	when	you	wish	 to
compute	information	about	your	iTunes	collection.

Exercise	199.	While	the	important	data	definitions	are	already	provided,	the
first	 step	 of	 the	 design	 recipe	 is	 still	 incomplete.	Make	up	 examples	 of	Dates,
Tracks,	and	LTracks.	These	examples	come	in	handy	for	the	following	exercises
as	inputs.	

Exercise	200.	Design	the	function	total-time,	which	consumes	an	element
of	 LTracks	 and	 produces	 the	 total	 amount	 of	 play	 time.	 Once	 the	 program	 is
done,	compute	the	total	play	time	of	your	iTunes	collection.	

Exercise	201.	Design	select-all-album-titles.	The	function	consumes	an
LTracks	and	produces	the	list	of	album	titles	as	a	List-of-strings.

Also	 design	 the	 function	 create-set.	 It	 consumes	 a	 List-of-strings	 and
constructs	one	that	contains	every	String	from	the	given	list	exactly	once.	Hint	If
String	s	 is	 at	 the	 front	 of	 the	 given	 list	 and	 occurs	 in	 the	 rest	 of	 the	 list,	 too,
create-set	does	not	keep	s.

Finally	design	select-album-titles/unique,	which	consumes	an	LTracks
and	 produces	 a	 list	 of	 unique	 album	 titles.	 Use	 this	 function	 to	 determine	 all
album	 titles	 in	 your	 iTunes	 collection	 and	 also	 find	 out	 how	 many	 distinct
albums	it	contains.	

Exercise	202.	Design	select-album.	The	function	consumes	the	 title	of	an
album	and	an	LTracks.	It	extracts	from	the	latter	the	list	of	tracks	that	belong	to
the	given	album.	

Exercise	203.	Design	select-album-date.	The	function	consumes	 the	 title
of	an	album,	a	date,	and	an	LTracks.	It	extracts	from	the	latter	the	list	of	tracks
that	belong	to	the	given	album	and	have	been	played	after	the	given	date.	Hint
You	must	 design	 a	 function	 that	 consumes	 two	Dates	 and	 determines	whether
the	first	occurs	before	the	second.	

Exercise	204.	Design	select-albums.	The	function	consumes	an	element	of
LTracks.	It	produces	a	 list	of	LTracks,	one	per	album.	Each	album	is	uniquely
identified	by	its	title	and	shows	up	in	the	result	only	once.	Hints	(1)	You	want	to
use	 some	 of	 the	 solutions	 of	 the	 preceding	 exercises.	 (2)	 The	 function	 that
groups	 consumes	 two	 lists:	 the	 list	 of	 album	 titles	 and	 the	 list	 of	 tracks;	 it
considers	the	latter	as	atomic	until	it	is	handed	over	to	an	auxiliary	function.	See
exercise	196.	

Terminology	The	functions	whose	names	starts	with	select-	are	so-called
database	queries.	See	chapter	23.7	for	more	details.	End

Figure	77	shows	how	the	2htdp/itunes	library	represents	tracks	with	lists.	An
LLists	 is	 a	 list	 of	 track	 representations,	 each	 of	which	 is	 a	 list	 of	 lists	 pairing
Strings	with	four	kinds	of	values.	The	read-itunes-as-lists	function	reads	an
iTunes	XML	library	and	produces	an	element	of	LLists.	Hence,	you	get	access
to	all	track	information	if	you	add	the	following	definitions	to	your	program:

;	modify	the	following	to	use	your	chosen	name	
(define	ITUNES-LOCATION	"itunes.xml")	

;	LLists	
(define	list-tracks	
		(read-itunes-as-lists	ITUNES-LOCATION))

Figure	77:	Representing	iTunes	tracks	as	lists

Then	save	it	in	the	same	folder	where	the	iTunes	library	is	stored.
Exercise	 205.	 Develop	 examples	 of	 LAssoc	 and	 LLists,	 that	 is,	 the	 list

representation	of	tracks	and	lists	of	such	tracks.	
Exercise	 206.	 Design	 the	 function	 find-association.	 It	 consumes	 three

arguments:	 a	 String	 called	 key,	 an	 LAssoc,	 and	 an	 element	 of	 Any	 called
default.	 It	 produces	 the	 first	Association	whose	 first	 item	 is	 equal	 to	key,	 or
default	if	there	is	no	such	Association.

Note	Read	up	on	assoc	after	you	have	designed	this	function.	
Exercise	 207.	 Design	 total-time/list,	 which	 consumes	 an	 LLists	 and

produces	the	total	amount	of	play	time.	Hint	Solve	exercise	206	first.
Once	 you	 have	 completed	 the	 design,	 compute	 the	 total	 play	 time	 of	 your

iTunes	 collection.	 Compare	 this	 result	 with	 the	 time	 that	 the	 total-time
function	from	exercise	200	computes.	Why	is	there	a	difference?	

Exercise	 208.	 Design	 boolean-attributes.	 The	 function	 consumes	 an
LLists	 and	 produces	 the	 Strings	 that	 are	 associated	 with	 a	 Boolean	 attribute.
Hint	Use	create-set	from	exercise	201.

Once	 you	 are	 done,	 determine	 how	 many	 Boolean-valued	 attributes	 your

iTunes	library	employs	for	its	tracks.	Do	they	make	sense?	
Note	A	list-based	representation	is	a	bit	less	organized	than	a	structure-based

one.	 The	word	 semi-structured	 is	 occasionally	 used	 in	 this	 context.	 Such	 list-
representations	 accommodate	 properties	 that	 show	up	 rarely	 and	 thus	 don’t	 fit
the	 structure	 type.	 People	 often	 use	 such	 representations	 to	 explore	 unknown
information	 and	 later	 introduce	 structures	 when	 the	 format	 is	 well-known.
Design	a	function	track-as-struct,	which	converts	an	LAssoc	to	a	Track	when
possible.	End

12.3 Word	Games,	Composition	Illustrated
Some	of	you	solve	word	puzzles	in	newspapers	and	magazines.	Try	this:

Sample	Problem	Given	a	word,	find	all	words	that	are	made	up
from	the	same	letters.	For	example	“cat”	also	spells	“act.”

Let’s	 work	 through	 an	 example.	 Suppose	 you	 are	 given	 “dear.”	 There	 are
twenty-four	possible	arrangements	of	the	four	letters:

In	this	list,	there	are	three	legitimate	words:	“read,”	“dear,”	and	“dare.”
Note	 If	 a	 word	 contains	 the	 same	 letter	 twice,	 the	 collection	 of	 all

rearrangements	may	contain	several	copies	of	the	same	string.	For	our	purposes,
this	 is	 acceptable.	 For	 a	 realistic	 program,	 you	 may	 wish	 to	 avoid	 duplicate
entries	by	using	sets	instead	of	lists.	See	chapter	9.6.	End

A	systematic	enumeration	of	all	possible	arrangements	is	clearly	a	task	for	a
program,	as	is	the	search	in	an	English-language	dictionary.	This	section	covers
the	design	of	the	search	function,	leaving	the	solution	of	the	other	problem	to	the
next	section.	By	separating	the	two,	this	first	section	can	focus	on	the	high-level
ideas	of	systematic	program	design.

See	chapter	12.1	for	dealing	with	real-world	dictionaries.

Let’s	imagine	for	a	moment	how	we	might	solve	the	problem	by	hand.	If	you
had	enough	time,	you	might	enumerate	all	possible	arrangements	of	all	letters	in
a	 given	word	 and	 then	 just	 pick	 those	 variants	 that	 also	 occur	 in	 a	 dictionary.
Clearly,	 a	 program	 can	 proceed	 in	 this	 way	 too,	 and	 this	 suggests	 a	 natural
design	by	 composition,	 but,	 as	 always,	we	proceed	 systematically	 and	 start	 by
choosing	a	data	representation	for	our	inputs	and	outputs.

At	 least	 at	 first	 glance,	 it	 is	 natural	 to	 represent	 words	 as	 Strings	 and	 the
result	as	a	list	of	words	or	List-of-strings.	Based	on	this	choice,	we	can	formulate

a	signature	and	purpose	statement:

;	String	->	List-of-strings	
;	finds	all	words	that	use	the	same	letters	as	s	
(define	(alternative-words	s)	
		…)

Next,	we	 need	 some	 examples.	 If	 the	 given	word	 is	 “cat,”	we	 are	 dealing
with	three	letters:	c,	a,	and	t.	Some	playing	around	suggests	six	arrangements	of
these	letters:	cat,	cta,	tca,	tac,	act,	and	atc.	Two	of	these	are	actual	words:	“cat”
and	“act.”	Because	alternative-words	produces	a	list	of	Strings,	there	are	two
ways	 to	 represent	 the	 result:	(list	"act"	"cat")	 and	(list	"cat"	"act").
Fortunately,	 BSL	 comes	 with	 a	 way	 to	 say	 the	 function	 returns	 one	 of	 two
possible	results:

Stop!	Read	up	on	check-member-of	in	the	documentation.
Working	through	this	example	exposes	two	problems:

•  The	 first	 one	 is	 about	 testing.	 Suppose	 we	 had	 used	 the	 word	 “rat”	 for
which	there	are	 three	alternatives:	“rat,”	“tar,”	and	“art.”	In	 this	case,	we
would	have	to	formulate	six	lists,	each	of	which	might	be	the	result	of	the
function.	 For	 a	 word	 like	 “dear”	 with	 four	 possible	 alternatives,
formulating	a	test	would	be	even	harder.

•  The	second	problem	concerns	the	choice	of	word	representation.	Although
String	looks	natural	at	first,	the	examples	clarify	that	some	of	our	functions
must	view	words	as	sequences	of	letters,	with	the	possibility	of	rearranging
them	at	will.	It	is	possible	to	rearrange	the	letters	within	a	String,	but	lists
of	letters	are	obviously	better	suited	for	this	purpose.

Let’s	deal	with	these	problems	one	at	a	time,	starting	with	tests.
Assume	 we	 wish	 to	 formulate	 a	 test	 for	 alternative-words	 and	 "rat".

From	the	above,	we	know	that	the	result	must	contain	"rat",	"tar",	and	"art",

but	we	cannot	know	in	which	order	these	words	show	up	in	the	result.
In	 this	 situation,	 check-satisfied	 comes	 in	 handy.	We	 can	 use	 it	 with	 a

function	that	checks	whether	a	list	of	Strings	contains	our	three	Strings:

See	intermezzo	1.

With	this	function,	it	is	easy	to	formulate	a	test	for	alternative-words:

Note	 on	 Data	 versus	 Design	 What	 this	 discussion	 suggests	 is	 that	 the
alternative-words	function	constructs	a	set,	not	a	list.	For	a	detailed	discussion
of	 the	differences,	 see	 chapter	9.6.	Here	 it	 suffices	 to	know	 that	 sets	 represent
collections	of	values	without	regard	to	the	ordering	of	the	values	or	how	often
these	 values	 occur.	 When	 a	 language	 comes	 without	 support	 for	 data
representations	of	sets,	programmers	tend	to	resort	to	a	close	alternative,	such	as
the	List-of-strings	 representation	 here.	As	 programs	 grow,	 this	 choice	may
haunt	 programmers,	 but	 addressing	 this	 kind	 of	 problem	 is	 the	 subject	 of	 the
second	book.	End

For	 the	 problem	 with	 a	 word	 representation,	 we	 punt	 to	 the	 next	 section.
Specifically,	we	say	that	the	next	section	introduces	(1)	a	data	representation	for
Words	 suitable	 for	 rearranging	 letters,	 (2)	 a	 data	 definition	 for	 List-of-words,
and	 (3)	 a	 function	 that	maps	 a	Word	 to	 a	 List-of-words,	meaning	 a	 list	 of	 all
possible	rearrangements:

;	A	Word	is	…	

;	A	List-of-words	is	…	

;	Word	->	List-of-words	
;	finds	all	rearrangements	of	word	
(define	(arrangements	word)	
		(list	word))

Exercise	 209.	 The	 above	 leaves	 us	with	 two	 additional	wishes:	 a	 function
that	consumes	a	String	and	produces	its	corresponding	Word,	and	a	function	for
the	opposite	direction.	Here	are	the	wish-list	entries:

;	String	->	Word	
;	converts	s	to	the	chosen	word	representation	
(define	(string->word	s)	…)	

;	Word	->	String	
;	converts	w	to	a	string	
(define	(word->string	w)	…)

Look	 up	 the	 data	 definition	 for	 Word	 in	 the	 next	 section	 and	 complete	 the
definitions	of	string->word	and	word->string.	Hint	You	may	wish	to	look	in
the	list	of	functions	that	BSL	provides.	

With	 those	 two	 small	 problems	out	 of	 the	way,	we	 return	 to	 the	 design	of
alternative-words.	We	now	have:	(1)	a	signature,	(2)	a	purpose	statement,	(3)
examples	and	 test,	 (4)	 an	 insight	 concerning	our	 choice	of	data	 representation,
and	(5)	an	idea	of	how	to	decompose	the	problem	into	two	major	steps.

So,	instead	of	creating	a	template,	we	write	down	the	composition	we	have
in	mind:

(in-dictionary	(arrangements	s))

The	expression	says	that,	given	a	word	s,	we	use	arrangements	to	create	a	list	of
all	 possible	 rearrangements	 of	 the	 letters	 and	 in-dictionary	 to	 select	 those
rearrangements	that	also	occur	in	a	dictionary.

Stop!	 Look	 up	 the	 signatures	 for	 the	 two	 functions	 to	 make	 sure	 the
composition	works	out.	What	exactly	do	you	need	to	check?

What	 this	expression	fails	 to	capture	is	 the	fourth	point,	 the	decision	not	 to
use	plain	strings	to	rearrange	the	letters.	Before	we	hand	s	to	arrangements,	we
need	 to	 convert	 it	 into	 a	 word.	 Fortunately,	 exercise	 209	 asks	 for	 just	 such	 a

function:

(in-dictionary	
		(…	(arrangements	(string->word	s))))

Similarly,	we	need	to	convert	the	resulting	list	of	words	to	a	list	of	strings.	While
exercise	 209	 asks	 for	 a	 function	 that	 converts	 a	 single	 word,	 here	 we	 need	 a
function	that	deals	with	lists	of	them.	Time	to	make	another	wish:

(in-dictionary	
		(words->strings	
				(arrangements	(string->word	s))))

Stop!	What	is	the	signature	for	words->strings	and	what	is	its	purpose?
Figure	78	collects	all	 the	pieces.	The	following	exercises	ask	you	to	design

the	remaining	functions.

Figure	78:	Finding	alternative	words

Exercise	 210.	 Complete	 the	 design	 of	 the	 words->strings	 function
specified	in	figure	78.	Hint	Use	your	solution	to	exercise	209.	

Exercise	211.	Complete	the	design	of	in-dictionary,	specified	in	figure	78.
Hint	See	chapter	12.1	for	how	to	read	a	dictionary.	

12.4 Word	Games,	the	Heart	of	the	Problem
The	 goal	 is	 to	 design	 arrangements,	 a	 function	 that	 consumes	 a	 Word	 and
produces	 a	 list	 of	 the	 word’s	 letter-by-letter	 rearrangements.	 This	 extended
exercise	reinforces	the	need	for	deep	wish	lists,	that	is,	a	list	of	desired	functions
that	seems	to	grow	with	every	function	you	finish.

The	mathematical	term	is	permutations.

As	mentioned,	Strings	could	serve	as	a	representation	of	words,	but	a	String
is	atomic	and	the	very	fact	that	arrangements	needs	to	rearrange	its	letters	calls
for	 a	 different	 representation.	 Our	 chosen	 data	 representation	 of	 a	 word	 is
therefore	a	list	of	1Strings	where	each	item	in	the	input	represents	a	letter:

;	A	Word	is	one	of:	
;	--	'()	or	
;	--	(cons	1String	Word)	
;	interpretation	a	Word	is	a	list	of	1Strings	(letters)

Exercise	 212.	Write	 down	 the	 data	 definition	 for	 List-of-words.	 Make	 up
examples	of	Words	and	List-of-words.	Finally,	formulate	the	functional	example
from	above	with	check-expect.	 Instead	of	 the	 full	 example,	 consider	working
with	a	word	of	just	two	letters,	say	"d"	and	"e".	

The	template	of	arrangements	is	that	of	a	list-processing	function:

In	preparation	of	the	fifth	step,	let’s	look	at	the	template’s	cond	lines:

1.	If	 the	input	is	'(),	 there	is	only	one	possible	rearrangement	of	the	input:
the	 '()	 word.	Hence	 the	 result	 is	 (list	 '()),	 the	 list	 that	 contains	 the
empty	list	as	the	only	item.

2.	Otherwise	 there	 is	a	first	 letter	 in	 the	word,	and	(first	w)	 is	 that	 letter.
Also,	the	recursion	produces	the	list	of	all	possible	rearrangements	for	the
rest	of	the	word.	For	example,	if	the	list	is

(list	"d"	"e"	"r")

then	the	recursion	is	(arrangements	(list	"e"	"r")).	It	will	produce	the
result

To	 obtain	 all	 possible	 rearrangements	 for	 the	 entire	 list,	 we	 must	 now
insert	 the	 first	 item,	"d"	 in	 our	 case,	 into	 all	 of	 these	words	 between	 all
possible	letters	and	at	the	beginning	and	end.

Our	 analysis	 suggests	 that	 we	 can	 complete	 arrangements	 if	 we	 can
somehow	 insert	 one	 letter	 into	 all	 positions	 of	many	 different	words.	 The	 last
aspect	of	this	task	description	implicitly	mentions	lists	and,	following	the	advice
of	 this	chapter,	 calls	 for	an	auxiliary	 function.	Let’s	call	 this	 function	insert-
everywhere/in-all-words	 and	 let’s	 use	 it	 to	 complete	 the	 definition	 of
arrangements:

Exercise	 213.	 Design	 insert-everywhere/in-all-words.	 It	 consumes	 a
1String	and	a	list	of	words.	The	result	is	a	list	of	words	like	its	second	argument,
but	with	the	first	argument	inserted	at	the	beginning,	between	all	letters,	and	at

the	end	of	all	words	of	the	given	list.
Start	with	a	complete	wish-list	entry.	Supplement	it	with	tests	for	empty	lists,

a	list	with	a	one-letter	word,	and	another	list	with	a	two-letter	word,	and	the	like.
Before	you	continue,	study	the	following	three	hints	carefully.

Hints	 (1)	Reconsider	 the	example	from	above.	 It	 says	 that	"d"	needs	 to	be
inserted	 into	 the	words	(list	"e"	"r")	 and	(list	"r"	"e").	The	 following
application	is	therefore	one	natural	candidate	for	an	example:

(2)	You	want	to	use	the	BSL+	operation	append,	which	consumes	two	lists
and	produces	the	concatenation	of	the	two	lists:

>	(append	(list	"a"	"b"	"c")	(list	"d"	"e"))	
	(list	"a"	"b"	"c"	"d"	"e")

The	development	of	functions	like	append	is	the	subject	of	chapter	23.
(3)	This	solution	of	this	exercise	is	a	series	of	functions.	Patiently	stick	to	the

design	recipe	and	systematically	work	through	your	wish	list.	
Exercise	214.	Integrate	arrangements	with	the	partial	program	from	chapter

12.3.	After	making	 sure	 that	 the	 entire	 suite	 of	 tests	 passes,	 run	 it	 on	 some	of
your	favorite	examples.	

12.5 Feeding	Worms
Worm—also	known	as	Snake—is	one	of	the	oldest	computer	games.	When	the
game	starts,	a	worm	and	a	piece	of	food	appear.	The	worm	is	moving	toward	a
wall.	 Don’t	 let	 it	 reach	 the	wall;	 otherwise	 the	 game	 is	 over.	 Instead,	 use	 the
arrow	keys	to	control	the	worm’s	movements.

The	goal	of	the	game	is	to	have	the	worm	eat	as	much	food	as	possible.	As
the	 worm	 eats	 the	 food,	 it	 becomes	 longer;	 more	 and	more	 segments	 appear.
Once	 a	 piece	 of	 food	 is	 digested,	 another	 piece	 appears.	 The	 worm’s	 growth
endangers	the	worm	itself,	though.	As	it	grows	long	enough,	it	can	run	into	itself
and,	if	it	does,	the	game	is	over,	too.

Figure	79	displays	a	sequence	of	screen	shots	 that	 illustrates	how	the	game
works	in	practice.	On	the	left,	you	see	the	initial	setting.	The	worm	consists	of	a
single	red	segment,	its	head.	It	is	moving	toward	the	food,	which	is	displayed	as
a	green	disk.	The	screen	shot	in	the	center	shows	a	situation	when	the	worm	is
about	to	eat	some	food.	In	the	right-most	screen	shot	the	worm	has	run	into	the
right	wall.	The	game	is	over;	the	player	scored	11	points.

Figure	79:	Playing	Worm

The	following	exercises	guide	you	through	the	design	and	implementation	of
a	 Worm	 game.	 Like	 chapter	 10.2,	 these	 exercises	 illustrate	 how	 to	 tackle	 a
nontrivial	problem	via	iterative	refinement.	That	 is,	you	don’t	design	the	entire
interactive	 program	 all	 at	 once	 but	 in	 several	 stages,	 called	 iterations.	 Each
iteration	 adds	 details	 and	 refines	 the	 program—until	 it	 satisfies	 you	 or	 your
customer.	 If	you	aren’t	satisfied	with	 the	outcome	of	 the	exercises,	 feel	 free	 to
create	variations.

Exercise	 215.	 Design	 a	 world	 program	 that	 continually	 moves	 a	 one-
segment	worm	and	enables	a	player	to	control	the	movement	of	the	worm	with

the	four	cardinal	arrow	keys.	Your	program	should	use	a	red	disk	to	render	the
one-and-only	segment	of	the	worm.	For	each	clock	tick,	the	worm	should	move
a	diameter.

Hints	(1)	Reread	chapter	3.6	to	recall	how	to	design	world	programs.	When
you	define	 the	worm-main	 function,	use	 the	 rate	 at	which	 the	clock	 ticks	as	 its
argument.	See	 the	documentation	 for	on-tick	 on	how	 to	describe	 the	 rate.	 (2)
When	you	develop	a	data	 representation	 for	 the	worm,	 contemplate	 the	use	of
two	 different	 kinds	 of	 representations:	 a	 physical	 representation	 and	 a	 logical
one.	The	physical	 representation	keeps	 track	of	 the	actual	physical	position	of
the	worm	on	the	canvas;	the	logical	one	counts	how	many	(widths	of)	segments
the	worm	is	from	the	left	and	the	top.	For	which	of	the	two	is	it	easier	to	change
the	 physical	 appearances	 (size	 of	 worm	 segment,	 size	 of	 game	 box)	 of	 the
“game”?	

Exercise	216.	Modify	your	program	from	exercise	215	so	that	it	stops	if	the
worm	has	 reached	 the	walls	of	 the	world.	When	 the	program	stops	because	of
this	condition,	it	should	render	the	final	scene	with	the	text	"worm	hit	border"
in	the	lower	left	of	the	world	scene.	Hint	You	can	use	the	stop-when	clause	in
big-bang	to	render	the	last	world	in	a	special	way.	

Exercise	217.	Develop	a	data	representation	for	worms	with	tails.	A	worm’s
tail	 is	 a	 possibly	 empty	 sequence	 of	 “connected”	 segments.	Here	 “connected”
means	that	the	coordinates	of	a	segment	differ	from	those	of	its	predecessor	in	at
most	 one	 direction.	 To	 keep	 things	 simple,	 treat	 all	 segments—head	 and	 tail
segments—the	same.

Now	 modify	 your	 program	 from	 exercise	 215	 to	 accommodate	 a	 multi-
segment	 worm.	 Keep	 things	 simple:	 (1)	 your	 program	 may	 render	 all	 worm
segments	 as	 red	 disks	 and	 (2)	 ignore	 that	 the	worm	may	 run	 into	 the	wall	 or
itself.	Hint	One	way	to	realize	the	worm’s	movement	is	to	add	a	segment	in	the
direction	in	which	it	is	moving	and	to	delete	the	last	one.	

Exercise	 218.	Redesign	your	program	 from	exercise	217	 so	 that	 it	 stops	 if
the	worm	has	 run	 into	 the	walls	of	 the	world	or	 into	 itself.	Display	a	message
like	the	one	in	exercise	216	to	explain	whether	the	program	stopped	because	the
worm	hit	the	wall	or	because	it	ran	into	itself.

Hints	 (1)	 To	 determine	whether	 a	worm	 is	 going	 to	 run	 into	 itself,	 check
whether	the	position	of	the	head	would	coincide	with	one	of	its	old	tail	segments
if	it	moved.	(2)	Read	up	on	the	member?	function.	

Exercise	 219.	 Equip	 your	 program	 from	 exercise	 218	 with	 food.	 At	 any

point	in	time,	the	box	should	contain	one	piece	of	food.	To	keep	things	simple,	a
piece	of	food	is	of	the	same	size	as	a	worm	segment.	When	the	worm’s	head	is
located	 at	 the	 same	position	 as	 the	 food,	 the	worm	eats	 the	 food,	meaning	 the
worm’s	tail	 is	extended	by	one	segment.	As	the	piece	of	food	is	eaten,	another
one	shows	up	at	a	different	location.

Adding	food	to	the	game	requires	changes	to	the	data	representation	of	world
states.	 In	addition	 to	 the	worm,	 the	 states	now	also	 include	a	 representation	of
the	 food,	 especially	 its	 current	 location.	 A	 change	 to	 the	 game	 representation
suggests	new	functions	for	dealing	with	events,	though	these	functions	can	reuse
the	functions	for	the	worm	(from	exercise	218)	and	their	test	cases.	It	also	means
that	the	tick	handler	must	not	only	move	the	worm;	in	addition	it	must	manage
the	eating	process	and	the	creation	of	new	food.

Your	 program	 should	 place	 the	 food	 randomly	 within	 the	 box.	 To	 do	 so
properly,	you	need	a	design	 technique	 that	you	haven’t	 seen	before—so-called
generative	 recursion,	 which	 is	 introduced	 in	 part	 V—so	 we	 provide	 these
functions	 in	 figure	 80.	 Before	 you	 use	 them,	 however,	 explain	 how	 these
functions	work—assuming	 MAX	 is	 greater	 than	 1—and	 then	 formulate	 purpose
statements.

Figure	80:	Random	placement	of	food

For	the	workings	of	random,	read	the	manual	or	exercise	99.

Hints	(1)	One	way	to	interpret	“eating”	is	to	say	that	the	head	moves	where
the	food	used	to	be	located	and	the	tail	grows	by	one	segment,	inserted	where	the
head	used	to	be.	Why	is	this	interpretation	easy	to	design	as	a	function?	(2)	We
found	it	useful	to	add	a	second	parameter	to	the	worm-main	function	for	this	last
step,	a	Boolean	 that	determines	whether	big-bang	displays	 the	current	state	of
the	world	in	a	separate	window;	see	the	documentation	for	state	on	how	to	ask
for	this	information.	

Once	you	have	finished	this	last	exercise,	you	have	a	complete	worm	game.
Now	modify	your	worm-main	 function	 so	 that	 it	 returns	 the	 length	of	 the	 final
worm.	Then	use	Create	Executable	 (under	 the	Racket	menu)	 in	DrRacket	 to
turn	 your	 program	 into	 something	 that	 anybody	 can	 launch,	 not	 just	 someone
who	knows	about	BSL+.

You	may	also	wish	 to	 add	extra	 twists	 to	 the	game,	 to	make	 it	 really	your
game.	 We	 experimented	 with	 funny	 end-of-game	 messages,	 having	 several
different	pieces	of	food	around,	with	placing	extra	obstacles	in	the	room,	and	a
few	other	ideas.	What	can	you	think	of?

12.6 Simple	Tetris
Tetris	 is	 another	 game	 from	 the	 early	 days	 of	 software.	Since	 the	 design	of	 a
full-fledged	Tetris	game	demands	a	 lot	of	 labor	with	only	marginal	profit,	 this
section	focuses	on	a	simplified	version.	If	you	feel	ambitious,	look	up	how	Tetris
really	works	and	design	a	full-fledged	version.

In	 our	 simplified	 version,	 the	 game	 starts	 with	 individual	 blocks	 dropping
from	the	top	of	the	scene.	Once	one	of	them	lands	on	the	ground,	it	comes	to	a
rest	and	another	block	starts	dropping	down	from	some	random	place.	A	player
can	 control	 the	dropping	block	with	 the	 “left”	 and	 “right”	 arrow	keys.	Once	 a
block	lands	on	the	floor	of	the	canvas	or	on	top	of	some	already	resting	block,	it
comes	to	rest	and	becomes	immovable.	In	a	short	time,	the	blocks	stack	up;	if	a
stack	of	blocks	reaches	the	ceiling	of	the	canvas,	the	game	is	over.	Naturally	the
objective	of	this	game	is	to	land	as	many	blocks	as	possible.	See	figure	81	for	an
illustration	of	the	idea.

Figure	81:	Simple	Tetris

Given	 this	 description,	we	 can	 turn	 to	 the	 design	guidelines	 for	 interactive
programs	 from	 chapter	 3.6.	 They	 call	 for	 separating	 constant	 properties	 from
variable	 ones.	 The	 former	 can	 be	 written	 down	 as	 “physical”	 and	 graphical
constants;	 the	 latter	 suggest	 the	 data	 that	 makes	 up	 all	 possible	 states	 of	 the
simple	Tetris	game.	So	here	are	some	examples:

•  The	width	and	the	height	of	the	game	are	fixed	as	are	the	blocks.	In	terms
of	BSL+,	you	want	definitions	like	these:

Explain	these	definitions	before	you	read	on.

•  The	“landscapes”	of	blocks	differ	from	game	to	game	and	from	clock	tick
to	clock	tick.	Let’s	make	this	more	precise.	The	appearance	of	the	blocks
remains	the	same;	their	positions	differ.

We	are	now	left	with	the	central	problem	of	designing	a	data	representation
for	 the	 dropping	 blocks	 and	 the	 landscapes	 of	 blocks	 on	 the	 ground.	When	 it
comes	to	the	dropping	block,	there	are	again	two	possibilities:	one	is	to	choose	a
“physical”	 representation,	 another	 would	 be	 a	 “logical”	 one.	 The	 physical
representation	keeps	 track	of	 the	 actual	 physical	position	 of	 the	 blocks	 on	 the
canvas;	 the	 logical	one	counts	how	many	block	widths	a	block	is	from	the	left
and	 the	 top.	When	 it	 comes	 to	 the	 resting	blocks,	 there	are	even	more	choices
than	for	individual	blocks:	a	list	of	physical	positions,	a	list	of	logical	positions,
a	list	of	stack	heights,	and	so	forth.

See	exercise	215	for	a	related	design	decision.

In	this	section	we	choose	the	data	representation	for	you:

(define-struct	tetris	[block	landscape])	
(define-struct	block	[x	y])	

;	A	Tetris	is	a	structure:	
;	(make-tetris	Block	Landscape)	
;	A	Landscape	is	one	of:	
;	--	'()	
;	--	(cons	Block	Landscape)	

;	A	Block	is	a	structure:	
;	(make-block	N	N)	

;	interpretations	
;	(make-block	x	y)	depicts	a	block	whose	left	
;	corner	is	(*	x	SIZE)	pixels	from	the	left	and	
;	(*	y	SIZE)	pixels	from	the	top;	
;	(make-tetris	b0	(list	b1	b2	…))	means	b0	is	the	
;	dropping	block,	while	b1,	b2,	and	…	are	resting

This	 is	what	we	dubbed	 the	 logical	 representation,	 because	 the	 coordinates	 do
not	reflect	the	physical	location	of	the	blocks,	just	the	number	of	block	sizes	they
are	 from	 the	 origin.	Our	 choice	 implies	 that	x	 is	 always	 between	0	 and	WIDTH
(exclusive)	and	 that	y	 is	between	0	 and	HEIGHT	 (exclusive),	but	we	 ignore	 this
knowledge.

Exercise	220.	When	you	are	presented	with	a	complex	data	definition—like
the	 one	 for	 the	 state	 of	 a	 Tetris	 game—you	 start	 by	 creating	 instances	 of	 the
various	data	collections.	Here	are	some	suggestive	names	for	examples	you	can
later	use	for	functional	examples:

(define	landscape0	…)	
(define	block-dropping	…)	
(define	tetris0	…)	
(define	tetris0-drop	…)	
…	
(define	block-landed	(make-block	0	(-	HEIGHT	1)))	
…	
(define	block-on-block	(make-block	0	(-	HEIGHT	2)))

Design	 the	program	tetris-render,	which	 turns	a	given	 instance	of	Tetris
into	an	 Image.	Use	DrRacket’s	 interactions	area	 to	develop	 the	expression	 that
renders	 some	 of	 your	 (extremely)	 simple	 data	 examples.	 Then	 formulate	 the
functional	examples	as	unit	tests	and	the	function	itself.	

Exercise	221.	Design	the	 interactive	program	tetris-main,	which	displays
blocks	dropping	in	a	straight	line	from	the	top	of	the	canvas	and	landing	on	the
floor	 or	 on	 blocks	 that	 are	 already	 resting.	 The	 input	 to	 tetris-main	 should

determine	 the	 rate	at	which	 the	clock	 ticks.	See	 the	documentation	of	on-tick
for	how	to	specify	the	rate.

To	 discover	 whether	 a	 block	 landed,	 we	 suggest	 you	 drop	 it	 and	 check
whether	 it	 is	 on	 the	 floor	 or	 it	 overlaps	 with	 one	 of	 the	 blocks	 on	 the	 list	 of
resting	blocks.	Hint	Read	up	on	the	member?	primitive.

When	a	block	lands,	your	program	should	immediately	create	another	block
that	descends	on	the	column	to	the	right	of	the	current	one.	If	the	current	block	is
already	 in	 the	 right-most	 column,	 the	next	 block	 should	use	 the	 left-most	 one.
Alternatively,	 define	 the	 function	 block-generate,	 which	 randomly	 selects	 a
column	different	from	the	current	one;	see	exercise	219	for	inspiration.	

Exercise	 222.	Modify	 the	 program	 from	 exercise	 221	 so	 that	 a	 player	 can
control	 the	 horizontal	 movement	 of	 the	 dropping	 block.	 Each	 time	 the	 player
presses	the	"left"	arrow	key,	the	dropping	block	should	shift	one	column	to	the
left	unless	it	is	in	column	0	or	there	is	already	a	stack	of	resting	blocks	to	its	left.
Similarly,	each	time	the	player	presses	"right",	the	dropping	block	should	move
one	column	to	the	right	if	possible.	

Exercise	 223.	 Equip	 the	 program	 from	 exercise	 222	 with	 a	 stop-when
clause.	 The	 game	 ends	 when	 one	 of	 the	 columns	 contains	 enough	 blocks	 to
“touch”	the	top	of	the	canvas.	

Once	you	have	solved	exercise	223,	you	have	a	bare-bones	Tetris	game.	You
may	wish	to	polish	it	a	bit	before	you	show	it	to	your	friends.	For	example,	the
final	canvas	could	display	a	text	that	says	how	many	blocks	the	player	was	able
to	stack	up.	Or	every	canvas	could	contain	such	a	text.	The	choice	is	yours.

12.7 Full	Space	War
Chapter	 6	 alludes	 to	 a	 space	 invader	 game	 with	 little	 action;	 the	 player	 can
merely	move	the	ground	force	back	and	forth.	Chapter	9.5	enables	the	player	to
fire	 as	 many	 shots	 as	 desired.	 This	 section	 poses	 exercises	 that	 help	 you
complete	this	game.

As	always,	a	UFO	is	trying	to	land	on	Earth.	The	player’s	task	is	to	prevent
the	UFO	from	landing.	To	this	end,	the	game	comes	with	a	tank	that	may	fire	an
arbitrary	number	of	shots.	When	one	of	 these	shots	comes	close	enough	 to	 the
UFO’s	center	of	gravity,	the	game	is	over	and	the	player	won.	If	the	UFO	comes
close	enough	to	the	ground,	the	player	lost.

Exercise	224.	Use	the	lessons	 learned	from	the	preceding	two	sections	and
design	the	game	extension	slowly,	adding	one	feature	of	the	game	after	another.
Always	use	the	design	recipe	and	rely	on	the	guidelines	for	auxiliary	functions.
If	 you	 like	 the	 game,	 add	 other	 features:	 show	 a	 running	 text;	 equip	 the	UFO
with	charges	that	can	eliminate	the	tank;	create	an	entire	fleet	of	attacking	UFOs;
and	above	all,	use	your	imagination.	

If	you	don’t	like	UFOs	and	tanks	shooting	at	each	other,	use	the	same	ideas
to	produce	a	similar,	civilized	game.

Exercise	225.	Design	a	fire-fighting	game.
The	game	is	set	in	the	western	states	where	fires	rage	through	vast	forests.	It

simulates	an	airborne	fire-fighting	effort.	Specifically,	the	player	acts	as	the	pilot
of	 an	 airplane	 that	 drops	 loads	 of	 water	 on	 fires	 on	 the	 ground.	 The	 player
controls	the	plane’s	horizontal	movements	and	the	release	of	water	loads.

Your	game	 software	 starts	 fires	 at	 random	places	on	 the	ground.	You	may
wish	to	limit	the	number	of	fires,	making	them	a	function	of	how	many	fires	are
currently	burning	or	other	factors.	The	purpose	of	the	game	is	to	extinguish	all
fires	 in	 a	 limited	 amount	 of	 time.	Hint	 Use	 an	 iterative	 design	 approach	 as
illustrated	in	this	chapter	to	create	this	game.	

12.8 Finite	State	Machines
Finite	state	machines	(FSMs)	and	regular	expressions	are	ubiquitous	elements	of
programming.	 As	 chapter	 4.7	 explains,	 state	 machines	 are	 one	 way	 to	 think
about	 world	 programs.	 Conversely,	 exercise	 109	 shows	 how	 to	 design	 world
programs	that	implement	an	FSM	and	check	whether	a	player	presses	a	specific
series	of	keystrokes.

As	 you	 may	 also	 recall,	 a	 finite	 state	 machine	 is	 equivalent	 to	 a	 regular
expression.	 Hence,	 computer	 scientists	 tend	 to	 say	 that	 an	 FSM	 accepts	 the
keystrokes	that	match	a	particular	regular	expression,	like	this	one

from	exercise	109.	If	you	wanted	a	program	that	recognizes	a	different	pattern,
say,

you	would	 just	modify	 the	 existing	 program	 appropriately.	 The	 two	 programs
would	 resemble	 each	other,	 and	 if	 you	were	 to	 repeat	 this	 exercise	 for	 several
different	regular	expressions,	you	would	end	up	with	a	whole	bunch	of	similar-
looking	programs.

A	natural	idea	is	to	look	for	a	general	solution,	that	is,	a	world	program	that
consumes	 a	data	 representation	of	 an	FSM	 and	 recognizes	whether	 a	 player
presses	 a	matching	 sequence	 of	 keys.	 This	 section	 presents	 the	 design	 of	 just
such	a	world	program,	though	a	greatly	simplified	one.	In	particular,	the	FSMs
come	 without	 initial	 or	 final	 states,	 and	 the	 matching	 ignores	 the	 actual
keystrokes;	instead	the	transition	from	one	state	to	another	takes	place	whenever
any	key	is	pressed.	Furthermore,	we	require	that	the	states	are	color	strings.	That
way,	 the	 FSM-interpreting	 program	 can	 simply	 display	 the	 current	 state	 as	 a
color.

Note	on	Design	Choices	Here	is	another	attempt	to	generalize:

Sample	Problem	Design	a	program	that	 interprets	a	given	FSM
on	a	specific	list	of	KeyEvents.	That	is,	the	program	consumes	a
data	representation	of	an	FSM	and	a	string.	Its	result	 is	#true	 if

the	string	matches	the	regular	expression	that	corresponds	to	the
FSM;	otherwise	it	is	#false.

As	it	turns	out,	however,	you	cannot	design	this	program	with	the	principles	of
the	first	two	parts.	Indeed,	solving	this	problem	has	to	wait	until	chapter	30;	see
exercise	476.	End

The	simplified	problem	statement	dictates	a	number	of	points,	including	the
need	for	a	data	definition	for	the	representation	of	FSMs,	the	nature	of	its	states,
and	 their	 appearance	 as	 an	 image.	Figure	82	 collects	 this	 information.	 It	 starts
with	 a	 data	 definition	 for	 FSMs.	 As	 you	 can	 see,	 an	 FSM	 is	 just	 a	 list	 of
Transitions.	We	must	 use	 a	 list	 because	we	want	 our	world	 program	 to	work
with	 any	 FSM	 and	 that	means	 a	 finite,	 but	 arbitrarily	 large,	 number	 of	 states.
Each	 Transition	 combines	 two	 states	 in	 a	 structure:	 the	 current	 state	 and	 the
next	state,	that	is,	the	one	that	the	machine	transitions	to	when	the	player	presses
a	key.	The	final	part	of	the	data	definition	says	that	a	state	is	just	the	name	of	a
color.

Figure	82:	Representing	and	interpreting	finite	state	machines	in	general

Exercise	226.	Design	state=?,	an	equality	predicate	for	states.	
Since	 this	definition	 is	complex,	we	 follow	 the	design	 recipe	and	create	an

example:

You	probably	guessed	that	 this	 transition	table	describes	a	 traffic	 light.	 Its	first
transition	tells	us	that	the	traffic	light	jumps	from	"red"	to	"green",	the	second
one	represents	 the	 transition	from	"green"	 to	"yellow",	and	 the	 last	one	 is	 for
"yellow"	to	"red".

Exercise	227.	The	BW	Machine	is	an	FSM	that	flips	from	black	to	white	and
back	 to	black	for	every	key	event.	Formulate	a	data	 representation	for	 the	BW
Machine.	

Clearly,	the	solution	to	our	problem	is	a	world	program:

It	 is	supposed	to	consume	a	FSM,	but	we	have	no	clue	what	 the	program	is	 to
produce.	We	call	 the	program	simulate	 because	 it	 acts	 like	 the	given	FSM	 in
response	to	a	player’s	keystrokes.

Let’s	follow	the	design	recipe	for	world	programs	anyway	to	see	how	far	it
takes	us.	It	tells	us	to	differentiate	between	those	things	in	the	“real	world”	that
change	and	those	that	remain	the	same.	While	the	simulate	function	consumes
an	instance	of	FSM,	we	also	know	that	this	FSM	does	not	change.	What	changes
is	the	current	state	of	the	machine.

This	analysis	suggests	the	following	data	definition

;	A	SimulationState.v1	is	an	FSM-State.

The	empty-image	constant	represents	an	“invisible”	image.	It	is	a	good	default	value	for	writing
down	the	headers	of	rendering	functions.

According	 to	 the	 design	 recipe	 for	 world	 programs,	 this	 data	 definition
completes	the	main	function:

and	implies	a	wish	list	with	two	entries:

;	SimulationState.v1	->	Image	
;	renders	a	world	state	as	an	image	
(define	(render-state.v1	s)	
		empty-image)	

;	SimulationState.v1	KeyEvent	->	SimulationState.v1	
;	finds	the	next	state	from	ke	and	cs	
(define	(find-next-state.v1	cs	ke)	
			cs)

The	 sketch	 raises	 two	 questions.	 First,	 there	 is	 the	 issue	 of	 how	 the	 very	 first
SimulationState.v1	is	determined.	Currently,	the	chosen	state,	initial-state,	is
marked	 in	 grey	 to	warn	 you	 about	 the	 issue.	 Second,	 the	 second	 entry	 on	 the
wish	list	must	cause	some	consternation:

How	can	find-next-state	possibly	find	the	next	state	when	all	it
is	given	is	the	current	state	and	a	keystroke?

This	question	rings	especially	true	because,	according	to	the	simplified	problem
statement,	the	exact	nature	of	the	keystroke	is	irrelevant;	the	FSM	transitions	to
the	next	state	regardless	of	which	key	is	pressed.

What	 this	 second	 issue	exposes	 is	a	 fundamental	 limitation	of	BSL+.	To
appreciate	 this	 limitation,	we	 start	with	 a	work-around.	Basically,	 the	 analysis
demands	 that	 the	find-next-state	 function	receives	not	only	 the	current	state
but	 also	 the	FSM	so	 that	 it	 can	 search	 the	 list	 of	 transitions	 and	pick	 the	next
state.	In	other	words,	the	state	of	the	world	must	include	both	the	current	state	of
the	FSM	and	the	FSM	itself:

(define-struct	fs	[fsm	current])	
;	A	SimulationState.v2	is	a	structure:	
;			(make-fs	FSM	FSM-State)

Alonzo	Church	and	Alan	Turing,	the	first	two	computer	scientists,	proved	in	the	1930s	that	all
programming	languages	can	compute	certain	functions	on	numbers.	Hence,	they	argued	that	all
programming	languages	were	equal.	The	first	author	of	this	book	disagrees.	He	distinguishes
languages	according	to	how	they	allow	programmers	to	express	solutions.

According	to	the	world	design	recipe,	this	change	also	means	that	the	key-event
handler	must	return	this	combination:

;	SimulationState.v2	->	Image	
;	renders	a	world	state	as	an	image	
(define	(render-state.v2	s)	
		empty-image)	

;	SimulationState.v2	KeyEvent	->	SimulationState.v2	
;	finds	the	next	state	from	ke	and	cs	
(define	(find-next-state.v2	cs	ke)	
		cs)

Finally,	 the	main	function	must	now	consume	two	arguments:	 the	FSM	and	its
first	 state.	After	 all,	 the	 various	 FSMs	 that	simulate	 consumes	 come	with	 all
kinds	 of	 states;	we	 cannot	 assume	 that	 all	 of	 them	have	 the	 same	 initial	 state.
Here	is	the	revised	function	header:

;	FSM	FSM-State	->	SimulationState.v2	
;	match	the	keys	pressed	with	the	given	FSM	
(define	(simulate.v2	an-fsm	s0)	
		(big-bang	(make-fs	an-fsm	s0)	
				[to-draw	state-as-colored-square]	
				[on-key	find-next-state]))

Let’s	 return	 to	 the	 example	 of	 the	 traffic-light	 FSM.	 For	 this	 machine,	 it
would	be	best	to	apply	simulate	to	the	machine	and	"red":

(simulate.v2	fsm-traffic	"red")

Stop!	Why	do	you	think	"red"	is	good	for	traffic	lights?

Engineers	call	"red"	the	safe	state.

Note	on	Expressive	Power	Given	the	work-around,	we	can	now	explain	the
limitation	 of	 BSL.	 Even	 though	 the	 given	 FSM	 does	 not	 change	 during	 the
course	of	the	simulation,	its	description	must	become	a	part	of	the	world’s	state.
Ideally,	 the	 program	 should	 express	 that	 the	 description	 of	 the	 FSM	 remains
constant,	 but	 instead	 the	 program	 must	 treat	 the	 FSM	 as	 part	 of	 the	 ever-
changing	 state.	The	 reader	of	 a	program	cannot	deduce	 this	 fact	 from	 the	 first
piece	of	big-bang	alone.

The	next	part	of	the	book	resolves	this	conundrum	with	the	introduction	of	a
new	programming	 language	 and	 a	 specific	 linguistic	 construct:	 ISL	 and	local
definitions.	For	details,	see	chapter	16.3.	End

At	this	point,	we	can	turn	to	the	wish	list	and	work	through	its	entries,	one	at
a	 time.	 The	 first	 one,	 the	 design	 of	 state-as-colored-square,	 is	 so
straightforward	that	we	simply	provide	the	complete	definition:

In	 contrast,	 the	 design	 of	 the	 key-event	 handler	 deserves	 some	 discussion.
Recall	the	header	material:

;	SimulationState.v2	KeyEvent	->	SimulationState.v2	
;	finds	the	next	state	from	ke	and	cs	
(define	(find-next-state	an-fsm	current)	

		an-fsm)

According	 to	 the	design	 recipe,	 the	handler	must	consume	a	state	of	 the	world
and	 a	 KeyEvent,	 and	 it	 must	 produce	 the	 next	 state	 of	 the	 world.	 This
articulation	of	 the	signature	 in	plain	words	also	guides	 the	design	of	examples.
Here	are	the	first	two:

(check-expect	
		(find-next-state	(make-fs	fsm-traffic	"red")	"n")	
		(make-fs	fsm-traffic	"green"))	
(check-expect	
		(find-next-state	(make-fs	fsm-traffic	"red")	"a")	
		(make-fs	fsm-traffic	"green"))

The	 examples	 say	 that	 when	 the	 current	 state	 combines	 the	 fsm-traffic
machine	and	 its	"red"	 state,	 the	 result	 combines	 the	 same	FSM	with	"green",
regardless	 of	whether	 the	 player	 hit	 "n"	 or	 "a"	 on	 the	 keyboard.	 Here	 is	 one
more	example:

(check-expect	
		(find-next-state	(make-fs	fsm-traffic	"green")	"q")	
		(make-fs	fsm-traffic	"yellow"))

Interpret	the	example	before	reading	on.	Can	you	think	of	another	one?
Since	 the	 function	 consumes	 a	 structure,	 we	 write	 down	 a	 template	 for

structures	processing:

(define	(find-next-state	an-fsm	ke)	
		(…	(fs-fsm	an-fsm)	..	(fs-current	an-fsm)	…))

Furthermore,	 because	 the	 desired	 result	 is	 a	 SimulationState.v2,	we	 can	 refine
the	template	with	the	addition	of	an	appropriate	constructor:

(define	(find-next-state	an-fsm	ke)	
		(make-fs	
			…	(fs-fsm	an-fsm)	…	(fs-current	an-fsm)	…))

The	 examples	 suggest	 that	 the	 extracted	FSM	becomes	 the	 first	 component	 of
the	new	SimulationState.v2	and	that	the	function	really	just	needs	to	compute	the
next	state	from	the	current	one	and	the	list	of	Transitions	that	make	up	the	given
FSM.	Because	the	latter	is	arbitrarily	long,	we	make	up	a	wish—a	find	function
that	 traverses	 the	 list	 to	 look	 for	 a	 Transition	 whose	 current	 state	 is	 (fs-
current	an-fsm)—and	finish	the	definition:

(define	(find-next-state	an-fsm	ke)	
		(make-fs	
				(fs-fsm	an-fsm)	
				(find	(fs-fsm	an-fsm)	(fs-current	an-fsm))))

Here	is	the	formulation	of	the	new	wish:

The	examples	are	derived	from	the	examples	for	find-next-state.
Stop!	Develop	some	additional	examples,	then	tackle	the	exercises.
Exercise	228.	Complete	the	design	of	find.
Once	 the	 auxiliary	 functions	 are	 tested,	 use	 simulate	 to	 play	 with	 fsm-

traffic	and	the	BW	Machine	from	exercise	227.	
Our	 simulation	 program	 is	 intentionally	 quite	 restrictive.	 In	 particular,	 you

cannot	 use	 it	 to	 represent	 FSMs	 that	 transition	 from	 one	 state	 to	 another
depending	on	which	key	a	player	presses.	Given	the	systematic	design,	though,
you	can	extend	the	program	with	such	capabilities.

Exercise	229.	Here	is	a	revised	data	definition	for	Transition:

(define-struct	ktransition	[current	key	next])	

;	A	Transition.v2	is	a	structure:	
;			(make-ktransition	FSM-State	KeyEvent	FSM-State)

Represent	the	FSM	from	Transition.v2s;	ignore	errors	and	final	states.
Modify	 the	 design	 of	 simulate	 so	 that	 it	 deals	 with	 keystrokes	 in	 the

appropriate	manner	now.	Follow	the	design	recipe,	starting	with	 the	adaptation
of	the	data	examples.

Use	the	revised	program	to	simulate	a	run	of	the	FSM	from	exercise	109	on
the	following	sequence	of	keystrokes:	"a",	"b",	"b",	"c",	and	"d".	

Finite	state	machines	do	come	with	initial	and	final	states.	When	a	program
that	“runs”	an	FSM	reaches	a	final	state,	it	should	stop.	The	final	exercise	revises
the	data	representation	of	FSMs	one	more	time	to	introduce	these	ideas.

Exercise	230.	Consider	the	following	data	representation	for	FSMs:

(define-struct	fsm	[initial	transitions	final])	
(define-struct	transition	[current	key	next])	
;	An	FSM.v2	is	a	structure:	
;			(make-fsm	FSM-State	LOT	FSM-State)	
;	A	LOT	is	one	of:	
;	--	'()	
;	--	(cons	Transition.v3	LOT)	
;	A	Transition.v3	is	a	structure:	
;			(make-transition	FSM-State	KeyEvent	FSM-State)

Represent	the	FSM	from	exercise	109	in	this	context.
Design	the	function	fsm-simulate,	which	accepts	an	FSM.v2	and	runs	it	on

a	player’s	keystrokes.	If	the	sequence	of	keystrokes	forces	the	FSM.v2	to	reach	a
final	state,	fsm-simulate	stops.	Hint	The	function	uses	the	initial	field	of	the
given	fsm	structure	to	track	the	current	state.	

Note	on	Iterative	Refinement	These	last	 two	projects	introduce	the	notion
of	 “design	 by	 iterative	 refinement.”	 The	 basic	 idea	 is	 that	 the	 first	 program
implements	only	a	fraction	of	the	desired	behavior,	the	next	one	a	bit	more,	and
so	 on.	 Eventually	 you	 end	 up	 with	 a	 program	 that	 exhibits	 all	 of	 the	 desired
behavior,	 or	 at	 least	 enough	 of	 it	 to	 satisfy	 a	 customer.	 For	more	 details,	 see
chapter	20.	End

13 Summary
This	 second	 part	 of	 the	 book	 is	 about	 the	 design	 of	 programs	 that	 deal	 with
arbitrarily	large	data.	As	you	can	easily	imagine,	software	is	particularly	useful
when	 it	 is	 used	 on	 information	 that	 comes	 without	 prespecified	 size	 limits,
meaning	“arbitrarily	large	data”	is	a	critical	step	on	your	way	to	becoming	a	real
programmer.	In	this	spirit,	we	suggest	that	you	take	away	three	lessons:

1.	This	part	refines	the	design	recipe	to	deal	with	self-references	and	cross-
references	 in	data	definitions.	The	occurrence	of	 the	 former	 calls	 for	 the
design	 of	 recursive	 functions,	 and	 the	 occurrence	 of	 the	 latter	 calls	 for
auxiliary	functions.

2.	Complex	problems	call	for	a	decomposition	into	separate	problems.	When
you	decompose	a	problem,	you	need	 two	pieces:	 functions	 that	solve	 the
separate	 problems	 and	 data	 definitions	 that	 compose	 these	 separate
solutions	into	a	single	one.	To	ensure	that	the	composition	works	after	you
have	 spent	 time	 on	 the	 separate	 programs,	 you	 need	 to	 formulate	 your
“wishes”	together	with	the	required	data	definitions.
A	 decomposition-composition	 design	 is	 especially	 useful	 when	 the
problem	statement	 implicitly	or	explicitly	mentions	auxiliary	 tasks,	when
the	coding	step	 for	a	 function	calls	 for	a	 traversal	of	an(other)	arbitrarily
large	piece	of	data,	and—perhaps	surprisingly—when	a	general	problem	is
somewhat	 easier	 to	 solve	 than	 the	 specific	 one	 described	 in	 the	 problem
statement.

3.	Pragmatics	matter.	If	you	wish	to	design	big-bang	programs,	you	need
to	 understand	 its	 various	 clauses	 and	what	 they	 accomplish.	 Or,	 if	 your
task	 is	 to	 design	 programs	 that	 solve	 mathematical	 problems,	 you	 had
better	 make	 sure	 you	 know	 which	 mathematical	 operations	 the	 chosen
language	and	its	libraries	offer.

While	this	part	mostly	focuses	on	lists	as	a	good	example	of	arbitrarily	large	data
—because	 they	 are	 practically	 useful	 in	 languages	 such	 as	Haskell,	 Lisp,	ML,
Racket,	and	Scheme—the	ideas	apply	to	all	kinds	of	such	data:	files,	file	folders,

databases,	and	the	like.
Part	IV	continues	the	exploration	of	“large”	structured	data	and	demonstrates

how	the	design	recipe	scales	to	the	most	complex	kind	of	data.	In	the	meantime,
the	 next	 part	 takes	 care	 of	 an	 important	 worry	 you	 should	 have	 at	 this	 point,
namely,	 that	 a	 programmer’s	 work	 is	 all	 about	 creating	 the	 same	 kind	 of
programs	over	and	over	and	over	again.

	

INTERMEZZO	2:	QUOTE,	UNQUOTE

Lists	play	an	 important	 role	 in	our	book	as	well	 as	 in	Racket,	 the	basis	of	our
teaching	languages.	For	the	design	of	programs,	it	is	critical	to	understand	how
lists	 are	 constructed	 from	 first	 principles;	 it	 informs	 the	 creation	 of	 our
programs.	Routine	work	with	lists	calls	for	a	compact	notation,	however,	like	the
list	function	introduced	in	chapter	11.1.

Be	sure	to	set	your	language	level	to	BSL+	or	up.

Since	 the	 late	 1950s,	 Lisp-style	 languages	 have	 come	 with	 an	 even	 more
powerful	 pair	 of	 list-creation	 tools:	 quotation	 and	 anti-quotation.	 Many
programming	 languages	 support	 them	 now,	 and	 the	 PHP	 web	 page	 design
language	injected	the	idea	into	the	commercial	world.

This	 intermezzo	 gives	 you	 a	 taste	 of	 this	 quotation	 mechanism.	 It	 also
introduces	symbols,	a	form	of	data	that	is	intimately	tied	to	quotation.	While	this
introduction	 is	 informal	 and	 uses	 simplistic	 examples,	 the	 rest	 of	 the	 book
illustrates	 the	power	of	 the	 idea	with	near-realistic	variants.	Come	back	 to	 this
intermezzo	if	any	of	these	examples	cause	you	trouble.

Quote
Quotation	 is	 a	 short-hand	 mechanism	 for	 writing	 down	 a	 large	 list	 easily.
Roughly	speaking,	a	 list	constructed	with	 the	list	 function	can	be	constructed
even	 more	 concisely	 by	 quoting	 lists.	 Conversely,	 a	 quoted	 list	 abbreviates	 a
construction	with	list.

Technically,	 quote	 is	 a	 keyword	 for	 a	 compound	 sentence	 in	 the	 spirit	 of
intermezzo	1	and	it	is	used	like	this:	(quote	(1	2	3)).	DrRacket	translates	this
expression	to	(list	1	2	3).	At	this	point,	you	may	wonder	why	we	call	quote

an	abbreviation	because	the	quoted	expression	looks	more	complicated	than	its
translation.	 The	 key	 is	 that	 ' 	 is	 a	 short-hand	 for	 quote.	 Here	 are	 some	 short
examples,	then:

>	'(1	2	3)	
(list	1	2	3)	
>	'("a"	"b"	"c")	
(list	"a"	"b"	"c")	
>	'(#true	"hello	world"	42)	
(list	#true	"hello	world"	42)

As	you	can	see,	the	use	of	 ' 	creates	the	promised	lists.	In	case	you	forgot	what
(list	1	2	3)	means,	 reread	chapter	11.1;	 it	explains	 that	 this	 list	 is	 short	 for
(cons	1	(cons	2	(cons	3	'()))).

So	far	quote	looks	like	a	small	improvement	over	list,	but	look:

>	'(("a"	1)	
				("b"	2)	
				("d"	4))	
(list	(list	"a"	1)	(list	"b"	2)	(list	"d"	4))

With	' 	we	can	construct	lists	as	well	as	nested	lists.
To	understand	how	quote	works,	 imagine	it	as	a	function	that	traverses	the

shape	it	is	given.	When	' 	encounters	a	plain	piece	of	data—a	number,	a	string,	a
Boolean,	 or	 an	 image—it	 disappears.	 When	 it	 sits	 in	 front	 of	 an	 open
parenthesis,	(,	it	inserts	list	to	the	right	of	the	parenthesis	and	puts	' 	on	all	the
items	between	(and	the	closing) .	For	example,

'(1	2	3)	is	short	for	(list	'1	'2	'3)

As	you	already	know,	' 	disappears	from	numbers	so	the	rest	is	easy.	Here	is	an
example	that	creates	nested	lists:

'(("a"	1)	3)	is	short	for	(list	'("a"	1)	'3)

To	continue	this	example,	we	expand	the	abbreviation	in	the	first	position:

(list	'("a"	1)	'3)	is	short	for	(list	(list	'"a"	'1)	3)

We	leave	it	to	you	to	wrap	up	this	example.
Exercise	231.	Eliminate	quote	in	favor	of	list	from	these	expressions:

•  '(1	"a"	2	#false	3	"c")

•  '()

•  and	this	table-like	shape:

'(("alan"	1000)	

		("barb"	2000)	

		("carl"	1500))

Now	eliminate	list	in	favor	of	cons	where	needed.	

Quasiquote	and	Unquote
The	preceding	section	should	convince	you	of	 the	advantages	of	 ' 	 and	quote.
You	may	even	wonder	why	the	book	introduces	quote	only	now	and	didn’t	do
so	right	from	the	start.	It	seems	to	greatly	facilitate	the	formulation	of	test	cases
that	involve	lists	as	well	as	for	keeping	track	of	large	collections	of	data.	But	all
good	things	come	with	surprises,	and	that	includes	quote.

When	it	comes	to	program	design,	it	is	misleading	for	beginners	to	think	of
lists	 as	quoted	or	 even	list-constructed	values.	The	construction	of	 lists	with
cons	is	far	more	illuminating	for	the	step-wise	creation	of	programs	than	short-
hands	such	as	quote,	which	hide	the	underlying	construction.	So	don’t	forget	to
think	 of	 cons	 whenever	 you	 are	 stuck	 during	 the	 design	 of	 a	 list-processing
function.

Let’s	move	on,	 then,	 to	 the	 actual	 surprises	hidden	behind	quote.	 Suppose
your	definitions	area	contains	one	constant	definition:

(define	x	42)

Imagine	running	this	program	and	experimenting	with

'(40	41	x	43	44)

in	the	interactions	area.	What	result	do	you	expect?	Stop!	Try	to	apply	the	above
rules	of	' 	for	a	moment.

Here	is	the	experiment

>	'(40	41	x	43	44)	
(list	40	41	'x	43	44)

At	 this	 point	 it	 is	 important	 to	 remember	 that	 DrRacket	 displays	 values.
Everything	on	the	list	is	a	value,	including	'x.	It	is	a	value	you	have	never	seen
before,	namely,	a	Symbol.	For	our	purposes,	a	symbol	looks	like	a	variable	name
except	that	it	starts	with	' 	and	that	a	symbol	is	a	value.	Variables	only	stand	for
values;	they	are	not	values	in	and	of	themselves.	Symbols	play	a	role	similar	to
those	of	strings;	they	are	a	great	way	to	represent	symbolic	information	as	data.
Part	IV	illustrates	how;	for	now,	we	just	accept	symbols	as	yet	another	form	of
data.

To	drive	home	the	idea	of	symbols,	consider	a	second	example:

'(1	(+	1	1)	3)

You	might	expect	that	this	expression	constructs	(list	1	2	3).	If	you	use	the
rules	for	expanding	' ,	however,	you	discover	that

'(1	(+	1	1)	3)	is	short	for	(list	'1	'(+	1	1)	'3)

And	 the	 ' 	 on	 the	 second	 item	 in	 this	 list	 does	 not	 disappear.	 Instead,	 it
abbreviates	the	construction	of	another	list	so	that	the	entire	example	comes	out
as

(list	1	(list	'+	1	1)	3)

What	this	means	is	that	'+	is	a	symbol	just	like	'x.	Just	as	the	latter	is	unrelated
to	the	variable	x,	the	former	has	no	immediate	relationship	to	the	function	+	that
comes	 with	 BSL+.	 Then	 again,	 you	 should	 be	 able	 to	 imagine	 that	 '+	 could
serve	as	an	elegant	data	representation	of	the	function	+	just	as	'(+	1	1)	could
serve	as	a	data	representation	of	(+	1	1).	Part	IV	picks	up	this	idea.

In	some	cases,	you	do	not	want	to	create	a	nested	list.	You	actually	want	a
true	expression	in	a	quoted	list	and	you	want	to	evaluate	the	expression	during

the	construction	of	the	list.	For	such	cases,	you	want	to	use	quasiquote,	which,
like	quote,	is	just	a	keyword	for	a	compound	sentence:	(quasiquote	(1	2	3)).
And,	like	quote,	quasiquote	comes	with	a	short-hand,	namely	the	 ` 	character,
which	is	the	“other”	single-quote	key	on	your	keyboard.

At	first	glance,	 ` 	acts	just	like	' 	in	that	it	constructs	lists:

>	`(1	2	3)	
(list	1	2	3)	
>	`("a"	"b"	"c")	
(list	"a"	"b"	"c")	
>	`(#true	"hello	world"	42)	
(list	#true	"hello	world"	42)

The	 best	 part	 about	 ` 	 is	 that	 you	 can	 also	 use	 it	 to	 unquote,	 that	 is,	 you	 can
demand	 an	 escape	 back	 to	 the	 programming	 language	 proper	 inside	 of	 a
quasiquoted	list.	Let’s	illustrate	the	idea	with	the	above	examples:

>	`(40	41	,x	43	44)	
(list	40	41	42	43	44)	
>	`(1	,(+	1	1)	3)	
(list	1	2	3)

As	above,	the	first	interaction	assumes	a	definitions	area	that	contains	(define	x
42).	 The	 best	way	 to	 understand	 this	 syntax	 is	 to	 see	 it	with	 actual	 keywords
instead	of	 ` 	and	, 	short-hands:

(quasiquote	(40	41	(unquote	x)	43	44))	
(quasiquote	(1	(unquote	(+	1	1))	3))

The	rules	for	expanding	a	quasiquoted	and	an	unquoted	shape	are	those	of
quote	supplemented	with	one	rule.	When	` 	appears	in	front	of	a	parenthesis,	it	is
distributed	over	all	parts	between	it	and	the	matching	closing	parenthesis.	When
it	appears	next	to	a	basic	piece	of	data,	it	disappears.	When	it	is	in	front	of	some
variable	name,	you	get	a	symbol.	And	the	new	rule	is	that	when	` 	is	immediately
followed	by	unquote,	both	characters	disappear:

`(1	,(+	1	1)	3)	is	short	for	(list	`1	`,(+	1	1)	`3)

and

(list	`1	`,(+	1	1)	`3)	is	short	for	(list	1	(+	1	1)	3)

And	this	is	how	you	get	(list	1	2	3)	as	seen	above.
From	here	 it	 is	 a	 short	 step	 to	 the	production	of	web	pages.	Yes,	you	 read

correctly—web	pages!	In	principle,	web	pages	are	coded	in	the	HTML	and	CSS
programming	 languages.	 But	 nobody	 writes	 down	 HTML	 programs	 directly;
instead	people	design	programs	 that	produce	web	pages.	Not	 surprisingly,	you
can	write	such	functions	in	BSL+,	too,	and	there	is	a	simplistic	example	in	figure
83.	 As	 you	 can	 immediately	 see,	 this	 function	 consumes	 two	 strings	 and
produces	a	deeply	nested	list—a	data	representation	of	a	web	page.

Figure	83:	A	simplistic	HTML	generator

A	 second	 look	 also	 shows	 that	 the	title	 parameter	 shows	up	 twice	 in	 the
function	body:	once	nested	in	a	nested	list	labeled	with	'head	and	once	nested	in
the	nested	list	labeled	with	'body.	The	other	parameter	shows	up	only	once.	We
consider	 the	 nested	 list	 a	 page	 template,	 and	 the	 parameters	 are	 holes	 in	 the
template,	to	be	filled	by	useful	values.	As	you	can	imagine,	this	template-driven
style	of	creating	web	pages	is	most	useful	when	you	wish	to	create	many	similar
pages	for	a	site.

To	 understand	 how	 the	 function	 works,	 we	 experiment	 in	 DrRacket’s
interactions	 area.	 Given	 your	 knowledge	 of	 quasiquote	 and	 unquote,	 you
should	be	able	to	predict	what	the	result	of

(my-first-web-page	"Matthias"	"Hello	World")

is.	Then	again,	DrRacket	is	so	fast	that	it	is	better	to	show	you	the	result:	see	the
left	column	 in	 figure	84.	The	 right	column	of	 the	 table	contains	 the	equivalent
code	in	HTML.	If	you	were	to	open	this	web	page	in	a	browser	you	would	see
something	like	this:

Figure	84:	A	data	representation	based	on	nested	lists

Note	that	"Hello	World"	shows	up	twice	again:	once	in	the	title	bar	of	the	web
browser—which	is	due	to	the	<title>	specification—and	once	in	the	text	of	the
web	page.

You	can	use	show-in-browser	from	the	web-io.rkt	library	to	display	the	result	in	a	web	browser.

If	 this	 were	 1993,	 you	 could	 now	 sell	 the	 above	 function	 as	 a	 Dot	 Com
company	that	generates	people’s	first	web	page	with	a	simple	function	call.	Alas,

in	this	day	and	age,	it	is	only	an	exercise.
Exercise	 232.	 Eliminate	 quasiquote	 and	 unquote	 from	 the	 following

expressions	so	that	they	are	written	with	list	instead:

•  `(1	"a"	2	#false	3	"c")

•  this	table-like	shape:

`(("alan"	,(*	2	500))	

		("barb"	2000)	

		(,(string-append	"carl"	"	,	the	great")	1500)	

		("dawn"	2300))

•  and	this	second	web	page:

Also	write	down	the	nested	lists	that	the	expressions	produce.	

Unquote	Splice
When	quasiquote	meets	unquote	during	the	expansion	of	short-hands,	the	two
annihilate	each	other:

Thus,	 whatever	 make-row	 produces	 becomes	 the	 second	 item	 of	 the	 list.	 In
particular,	if	make-row	produces	a	list,	this	list	becomes	the	second	item	of	a	list.
If	make-row	 translates	 the	 given	 list	 of	 numbers	 into	 a	 list	 of	 strings,	 then	 the
result	is

(list	'tr	(list	"3"	"4"	"5"))

In	some	cases,	however,	we	may	want	to	splice	such	a	nested	list	into	the	outer
one,	so	that	for	our	running	example	we	would	get

(list	'tr	"3"	"4"	"5")

One	way	to	solve	this	small	problem	is	to	fall	back	on	cons.	That	is,	to	mix
cons	with	quote,	quasiquote,	and	unquote.	After	all,	all	of	these	characters	are
just	short-hands	for	consed	lists.	Here	is	what	is	needed	to	get	the	desired	result
in	our	example:

(cons	'tr	(make-row	'(3	4	5)))

Convince	yourself	that	the	result	is	(list	'tr	"3"	"4"	"5").
Since	this	situation	occurs	quite	often	in	practice,	BSL+	supports	one	more

short-hand	mechanism	for	list	creation:	,@,	also	known	as	unquote-splicing	in
keyword	form.	With	this	form,	it	is	straightforward	to	splice	a	nested	list	into	a
surrounding	list.	For	example,

`(tr	,@(make-row	'(3	4	5)))

translates	into

(cons	'tr	(make-row	'(3	4	5)))

which	is	precisely	what	we	need	for	our	example.
Now	 consider	 the	 problem	 of	 creating	 an	 HTML	 table	 in	 our	 nested-list

representation.	Here	is	a	table	of	two	rows	with	four	cells	each:

The	first	nested	 lists	 tells	HTML	to	draw	a	 thin	border	around	each	cell	 in	 the
table;	the	other	two	nested	lists	represent	a	row	each.

In	 practice,	 you	want	 to	 create	 such	 tables	 with	 arbitrarily	 wide	 rows	 and
arbitrarily	 many	 rows.	 For	 now,	 we	 just	 deal	 with	 the	 first	 problem,	 which

requires	a	function	that	translates	lists	of	numbers	into	HTML	rows:

Instead	 of	 adding	 examples,	 we	 explore	 the	 behavior	 of	 these	 functions	 in
DrRacket’s	interactions	area:

>	(make-cell	2)	
(list	'td	"2")	
>	(make-row	'(1	2))	
(list	(list	'td	"1")	(list	'td	"2"))

These	interactions	show	the	creation	of	lists	that	represent	a	cell	and	a	row.
To	turn	such	row	lists	into	actual	rows	of	an	HTML	table	representation,	we

need	to	splice	them	into	a	list	that	starts	with	'tr:

This	 function	 consumes	 two	 lists	 of	 numbers	 and	 creates	 an	 HTML	 table
representation.	 With	 make-row,	 it	 translates	 the	 lists	 into	 lists	 of	 cell

representations.	With	,@	these	lists	are	spliced	into	the	table	template:

>	(make-table	'(1	2	3	4	5)	'(3.5	2.8	-1.1	3.4	1.3))	
		(list	'table	(list	(list	'border	"1"))	'.…)

This	 application	 of	 make-table	 suggests	 another	 reason	 why	 people	 write
programs	to	create	web	pages	rather	than	make	them	by	hand.

The	dots	are	not	part	of	the	output.

Exercise	 233.	 Develop	 alternatives	 to	 the	 following	 expressions	 that	 use
only	list	and	produce	the	same	values:

•  `(0,@'(1	2	3)	4)

•  this	table-like	shape:

•  and	this	third	web	page:

where	make-row	is	the	function	from	above.

Use	check-expect	to	check	your	work.	
Exercise	234.	Create	 the	 function	make-ranking,	which	consumes	a	 list	of

ranked	song	titles	and	produces	a	list	representation	of	an	HTML	table.	Consider
this	example:

If	you	apply	make-ranking	to	one-list	and	display	the	resulting	web	page	in	a
browser,	you	see	something	like	the	screen	shot	in	figure	85.

Figure	85:	A	web	page	generated	with	BSL+

Hint	 Although	 you	 could	 design	 a	 function	 that	 determines	 the	 rankings
from	 a	 list	 of	 strings,	we	wish	 you	 to	 focus	 on	 the	 creation	 of	 tables	 instead.
Thus	we	supply	the	following	functions:

Before	 you	 use	 these	 functions,	 equip	 them	 with	 signatures	 and	 purpose
statements.	Then	explore	 their	workings	with	 interactions	 in	DrRacket.	Part	VI

expands	the	design	recipe	with	a	way	to	create	simpler	functions	for	computing
rankings	than	ranking	and	add-ranks.	

III
ABSTRACTION

Many	of	our	data	definitions	and	 function	definitions	 look	alike.	For	 example,
the	definition	for	a	list	of	Strings	differs	from	that	of	a	list	of	Numbers	in	only
two	 places:	 the	 names	 of	 the	 classes	 of	 data	 and	 the	 words	 “String”	 and
“Number.”	Similarly,	a	function	that	looks	for	a	specific	string	in	a	list	of	Strings
is	nearly	indistinguishable	from	one	that	looks	for	a	specific	number	in	a	list	of
Numbers.

Experience	 shows	 that	 these	 kinds	 of	 similarities	 are	 problematic.	 The
similarities	 come	 about	 because	 programmers—physically	 or	 mentally—copy
code.	When	 programmers	 are	 confronted	 with	 a	 problem	 that	 is	 roughly	 like
another	one,	 they	copy	the	solution	and	modify	the	new	copy	to	solve	the	new
problem.	 You	will	 find	 this	 behavior	 both	 in	 “real”	 programming	 contexts	 as
well	as	in	the	world	of	spreadsheets	and	mathematical	modeling.	Copying	code,
however,	means	that	programmers	copy	mistakes,	and	the	same	fix	may	have	to
be	applied	to	many	copies.	It	also	means	that	when	the	underlying	data	definition
is	 revised	 or	 extended,	 all	 copies	 of	 code	 must	 be	 found	 and	 modified	 in	 a
corresponding	way.	 This	 process	 is	 both	 expensive	 and	 error-prone,	 imposing
unnecessary	costs	on	programming	teams.

Good	programmers	try	to	eliminate	similarities	as	much	as	the	programming
language	 allows.	 “Eliminate”	 implies	 that	 programmers	 write	 down	 their	 first
drafts	of	programs,	 spot	 similarities	 (and	other	problems),	and	get	 rid	of	 them.
For	the	last	step,	they	either	abstract	or	use	existing	(abstract)	functions.	It	often
takes	several	iterations	of	this	process	to	get	the	program	into	satisfactory	shape.

A	program	is	like	an	essay.	The	first	version	is	a	draft,	and	drafts	demand	editing.

The	first	half	of	this	part	shows	how	to	abstract	over	similarities	in	functions
and	data	definitions.	Programmers	also	 refer	 to	 the	 result	of	 this	process	as	an
abstraction,	conflating	the	name	of	the	process	and	its	result.	The	second	half	is
about	 the	 use	 of	 existing	 abstractions	 and	 new	 language	 elements	 to	 facilitate
this	process.	While	the	examples	in	this	part	are	taken	from	the	realm	of	lists,	the

ideas	are	universally	applicable.

14 Similarities	Everywhere
If	you	solved	(some	of)	 the	exercises	 in	part	 II,	you	know	that	many	solutions
look	 alike.	 As	 a	 matter	 of	 fact,	 the	 similarities	 may	 tempt	 you	 to	 copy	 the
solution	of	 one	problem	 to	 create	 the	 solution	 for	 the	 next.	But	 thou	 shall	 not
steal	code,	not	even	your	own.	Instead,	you	must	abstract	over	similar	pieces	of
code	and	this	chapter	teaches	you	how	to	abstract.

Our	 means	 of	 avoiding	 similarities	 are	 specific	 to	 “Intermediate	 Student
Language”	 or	 ISL	 for	 short.	Almost	 all	 other	 programming	 languages	 provide
similar	means;	in	object-oriented	languages	you	may	find	additional	abstraction
mechanisms.	 Regardless,	 these	 mechanisms	 share	 the	 basic	 characteristics
spelled	 out	 in	 this	 chapter,	 and	 thus	 the	 design	 ideas	 explained	 here	 apply	 in
other	contexts,	too.

In	DrRacket,	choose	“Intermediate	Student”	from	the	“How	to	Design	Programs”	submenu	in	the
“Language”	menu.

14.1 Similarities	in	Functions
The	 design	 recipe	 determines	 a	 function’s	 basic	 organization	 because	 the
template	is	created	from	the	data	definition	without	regard	to	the	purpose	of	the
function.	Not	 surprisingly,	 then,	 functions	 that	 consume	 the	 same	kind	of	 data
look	alike.

Consider	the	two	functions	in	figure	86,	which	consume	lists	of	strings	and
look	for	specific	strings.	The	function	on	the	left	looks	for	"dog",	the	one	on	the
right	for	"cat".	The	two	functions	are	nearly	indistinguishable.	Each	consumes
lists	 of	 strings;	 each	 function	 body	 consists	 of	 a	 cond	 expression	 with	 two
clauses.	Each	produces	#false	if	the	input	is	'();	each	uses	an	or	expression	to
determine	whether	the	first	item	is	the	desired	item	and,	if	not,	uses	recursion	to
look	 in	 the	 rest	of	 the	 list.	The	only	difference	 is	 the	 string	 that	 is	used	 in	 the
comparison	 of	 the	 nested	 cond	 expressions:	 contains-dog?	 uses	 "dog"	 and
contains-cat?	 uses	 "cat".	 To	 highlight	 the	 differences,	 the	 two	 strings	 are
shaded.

Figure	86:	Two	similar	functions

Good	programmers	are	 too	 lazy	 to	define	 several	 closely	 related	 functions.
Instead	they	define	a	single	function	that	can	look	for	both	a	"dog"	and	a	"cat"
in	a	list	of	strings.	This	general	function	consumes	an	additional	piece	of	data—
the	string	to	look	for—and	is	otherwise	just	like	the	two	original	functions:

If	you	really	needed	a	function	such	as	contains-dog?	now,	you	could	define	it
as	 a	 one-line	 function,	 and	 the	 same	 is	 true	 for	 the	 contains-cat?	 function.
Figure	 87	 does	 just	 that,	 and	 you	 should	 briefly	 compare	 it	 with	 figure	 86	 to
make	 sure	you	understand	how	we	get	 from	 there	 to	here.	Best	of	 all,	 though,
with	contains?	it	is	now	trivial	to	look	for	any	string	in	a	list	of	strings	and	there
is	no	need	to	ever	define	a	specialized	function	such	as	contains-dog?	again.

Figure	87:	Two	similar	functions,	revisited

What	 you	 have	 just	 witnessed	 is	 called	 abstraction	 or,	 more	 precisely,
functional	abstraction.	Abstracting	different	versions	of	functions	is	one	way	to
eliminate	similarities	from	programs,	and	as	you	will	see,	removing	similarities
simplifies	keeping	a	program	intact	over	a	long	period.

Computer	scientists	borrow	the	term	“abstract”	from	mathematics.	There,	“6”	is	an	abstract	concept
because	it	represents	all	ways	of	enumerating	six	things.	In	contrast,	“6	inches”	or	“6	eggs”	are
concrete	uses.

Exercise	235.	Use	the	contains?	function	to	define	functions	that	search	for
"atom",	"basic",	and	"zoo",	respectively.	

Exercise	236.	Create	test	suites	for	the	following	two	functions:

Then	 abstract	 over	 them.	 Define	 the	 above	 two	 functions	 in	 terms	 of	 the
abstraction	 as	 one-liners	 and	 use	 the	 existing	 test	 suites	 to	 confirm	 that	 the
revised	 definitions	 work	 properly.	 Finally,	 design	 a	 function	 that	 subtracts	 2
from	each	number	on	a	given	list.	

14.2 Different	Similarities
Abstraction	 looks	 easy	 in	 the	 case	 of	 the	 contains-dog?	 and	 contains-cat?
functions.	It	takes	only	a	comparison	of	two	function	definitions,	a	replacement
of	a	literal	string	with	a	function	parameter,	and	a	quick	check	that	it	is	easy	to
define	the	old	functions	with	the	abstract	function.	This	kind	of	abstraction	is	so
natural	 that	 it	 showed	up	 in	 the	preceding	 two	parts	of	 the	book	without	much
ado.

This	section	 illustrates	how	the	very	same	principle	yields	a	powerful	form
of	 abstraction.	 Take	 a	 look	 at	 figure	 88.	 Both	 functions	 consume	 a	 list	 of
numbers	and	a	threshold.	The	left	one	produces	a	list	of	all	 those	numbers	that
are	below	 the	 threshold,	while	 the	one	on	 the	 right	 produces	 all	 those	 that	 are
above	the	threshold.

Figure	88:	Two	more	similar	functions

The	 two	 functions	 differ	 in	 only	 one	 place:	 the	 comparison	 operator	 that
determines	whether	a	number	from	the	given	list	should	be	a	part	of	the	result	or
not.	The	function	on	the	left	uses	<,	and	the	right	one	>.	Other	than	that,	the	two
functions	look	identical,	not	counting	the	function	name.

Let’s	 follow	 the	 first	 example	 and	 abstract	 over	 the	 two	 functions	with	 an
additional	parameter.	This	time	the	additional	parameter	represents	a	comparison
operator	rather	than	a	string:

To	apply	 this	new	function,	we	must	supply	 three	arguments:	a	 function	R	 that
compares	two	numbers,	a	list	l	of	numbers,	and	a	threshold	t.	The	function	then
extracts	all	those	items	i	from	l	for	which	(R	i	t)	evaluates	to	#true.

Stop!	At	this	point	you	should	ask	whether	this	definition	makes	any	sense.
Without	 further	 fuss,	 we	 have	 created	 a	 function	 that	 consumes	 a	 function—
something	 that	 you	 probably	 have	 not	 seen	 before.	 It	 turns	 out,	 however,	 that
your	simple	 little	 teaching	 language	ISL	supports	 these	kinds	of	 functions,	and
that	 defining	 such	 functions	 is	 one	 of	 the	 most	 powerful	 tools	 of	 good
programmers—even	in	languages	in	which	function-consuming	functions	do	not
seem	to	be	available.

If	you	have	taken	a	calculus	course,	you	have	encountered	the	differential	operator	and	the	indefinite
integral.	Both	of	those	are	functions	that	consume	and	produce	functions.	But	we	do	not	assume	that
you	have	taken	a	calculus	course.

Testing	shows	that	(extract	<	l	t)	computes	the	same	result	as	(small	l
t):

Similarly,	(extract	>	l	t)	produces	 the	 same	 result	 as	(large	l	t),	which
means	that	you	can	define	the	two	original	functions	like	this:

The	 important	 insight	 is	 not	 that	 small-1	 and	 large-1	 are	 one-line
definitions.	Once	you	have	an	abstract	function	such	as	extract,	you	can	put	it
to	good	uses	elsewhere:

1.	(extract	=	l	t):	This	expression	extracts	all	those	numbers	in	l	that	are
equal	to	t.

2.	(extract	<=	l	t):	This	one	produces	the	list	of	numbers	in	l	that	are	less
than	or	equal	to	t.

3.	(extract	>=	l	t):	This	last	expression	computes	the	list	of	numbers	that
are	greater	than	or	equal	to	the	threshold.

As	a	matter	of	fact,	the	first	argument	for	extract	need	not	be	one	of	ISL’s
pre-defined	 operations.	 Instead,	 you	 can	 use	 any	 function	 that	 consumes	 two
arguments	and	produces	a	Boolean.	Consider	this	example:

;	Number	Number	->	Boolean	
;	is	the	area	of	a	square	with	side	x	larger	than	c	
(define	(squared>?	x	c)	
		(>	(*	x	x)	c))

That	is,	squared>?	checks	whether	the	claim	x2	>	c	holds,	and	it	is	usable	with
extract:

(extract	squared>?	(list	3	4	5)	10)

This	application	extracts	those	numbers	in	(list	3	4	5)	whose	square	is	larger
than	10.

Exercise	 237.	 Evaluate	 (squared>?	 3	 10)	 and	 (squared>?	 4	 10)	 in
DrRacket.	How	about	(squared>?	5	10)?	

So	far	you	have	seen	that	abstracted	function	definitions	can	be	more	useful
than	 the	 original	 functions.	 For	 example,	 contains?	 is	 more	 useful	 than

contains-dog?	and	contains-cat?,	and	extract	is	more	useful	than	small	and
large.	 Another	 important	 aspect	 of	 abstraction	 is	 that	 you	 now	 have	 a	 single
point	of	control	over	all	these	functions.	If	it	turns	out	that	the	abstract	function
contains	 a	 mistake,	 fixing	 its	 definition	 suffices	 to	 fix	 all	 other	 definitions.
Similarly,	 if	 you	 figure	out	 how	 to	 accelerate	 the	 computations	of	 the	 abstract
function	or	how	to	reduce	its	energy	consumption,	then	all	functions	defined	in
terms	 of	 this	 function	 are	 improved	 without	 any	 extra	 effort.	 The	 following
exercises	indicate	how	these	single-point-of-control	improvements	work.

These	benefits	of	abstraction	are	available	at	all	levels	of	programming:	word	documents,
spreadsheets,	small	apps,	and	large	industrial	projects.	Creating	abstractions	for	the	latter	drives
research	on	programming	languages	and	software	engineering.

Exercise	238.	Abstract	the	two	functions	in	figure	89	into	a	single	function.
Both	consume	non-empty	lists	of	numbers	(Nelon)	and	produce	a	single	number.
The	 left	 one	 produces	 the	 smallest	 number	 in	 the	 list,	 and	 the	 right	 one	 the
largest.

Figure	89:	Finding	the	inf	and	sup	in	a	list	of	numbers

Define	 inf-1	 and	 sup-1	 in	 terms	 of	 the	 abstract	 function.	 Test	 them	with
these	two	lists:

Why	are	these	functions	slow	on	some	of	the	long	lists?
Modify	the	original	functions	with	the	use	of	max,	which	picks	the	larger	of

two	numbers,	and	min,	which	picks	the	smaller	one.	Then	abstract	again,	define
inf-2	 and	 sup-2,	 and	 test	 them	 with	 the	 same	 inputs	 again.	 Why	 are	 these
versions	so	much	faster?

For	another	answer	to	these	questions,	see	chapter	16.2.	

14.3 Similarities	in	Data	Definitions
Now	take	a	close	look	at	the	following	two	data	definitions:

The	one	on	 the	 left	 introduces	 lists	of	numbers;	 the	one	on	 the	 right	describes
lists	of	strings.	And	the	two	data	definitions	are	similar.	Like	similar	functions,
the	 two	data	definitions	use	 two	different	names,	but	 this	 is	 irrelevant	because
any	name	would	do.	The	only	real	difference	concerns	the	first	position	inside	of
cons	in	the	second	clause,	which	specifies	what	kind	of	items	the	list	contains.

In	 order	 to	 abstract	 over	 this	 one	 difference,	 we	 proceed	 as	 if	 a	 data
definition	 were	 a	 function.	 We	 introduce	 a	 parameter,	 which	 makes	 the	 data
definition	look	like	a	function,	and	where	there	used	to	be	different	references,
we	use	this	parameter:

;	A	[List-of	ITEM]	is	one	of:	
;	--	'()	
;	--	(cons	ITEM	[List-of	ITEM])

We	call	such	abstract	data	definitions	parametric	data	definitions	because	of	the
parameter.	 Roughly	 speaking,	 a	 parametric	 data	 definition	 abstracts	 from	 a
reference	 to	 a	 particular	 collection	 of	 data	 in	 the	 same	 manner	 as	 a	 function
abstracts	from	a	particular	value.

The	question	is,	of	course,	what	these	parameters	range	over.	For	a	function,
they	 stand	 for	 an	 unknown	 value;	 when	 the	 function	 is	 applied,	 the	 value
becomes	 known.	 For	 a	 parametric	 data	 definition,	 a	 parameter	 stands	 for	 an
entire	class	of	values.	The	process	of	supplying	the	name	of	a	data	collection	to	a
parametric	 data	 definition	 is	 called	 instantiation;	 here	 are	 some	 sample
instantiations	of	the	List-of	abstraction:

•  When	we	write	 [List-of	Number],	we	 are	 saying	 that	ITEM	 represents	 all

numbers	so	it	is	just	another	name	for	List-of-numbers;

•  Similarly,	[List-of	String]	defines	the	same	class	of	data	as	List-of-String;
and

•  If	we	had	identified	a	class	of	inventory	records,	like	this:

(define-struct	ir	[name	price])	

;	An	IR	is	a	structure:	

;			(make-ir	String	Number)

then	[List-of	IR]	would	be	a	name	for	the	lists	of	inventory	records.

By	 convention,	 we	 use	 names	 with	 all	 capital	 letters	 for	 parameters	 of	 data
definitions,	while	the	arguments	are	spelled	as	needed.

Our	 way	 to	 validate	 that	 these	 short-hands	 really	 mean	 what	 we	 say	 they
mean	is	to	substitute	the	actual	name	of	a	data	definition,	for	example,	Number,
for	the	parameter	ITEM	of	the	data	definition	and	to	use	a	plain	name	for	the	data
definition:

;	A	List-of-numbers-again	is	one	of:	
;	--	'()	
;	--	(cons	Number	List-of-numbers-again)

Since	the	data	definition	is	self-referential,	we	copied	the	entire	data	definition.
The	 resulting	 definition	 looks	 exactly	 like	 the	 conventional	 one	 for	 lists	 of
numbers	and	truly	identifies	the	same	class	of	data.

Let’s	 take	 a	 brief	 look	 at	 a	 second	 example,	 starting	with	 a	 structure	 type
definition:

(define-struct	point	[hori	veri])

Here	are	two	different	data	definitions	that	use	this	structure	type:

In	 this	 case,	 the	 data	 definitions	 differ	 in	 two	 places—both	 marked	 by
highlighting.	The	differences	in	the	hori	fields	correspond	to	each	other,	and	so
do	 the	 differences	 in	 the	 veri	 fields.	 It	 is	 thus	 necessary	 to	 introduce	 two
parameters	to	create	an	abstract	data	definition:

Here	H	 is	 the	parameter	for	data	collections	for	the	hori	field,	and	V	stands	for
data	collections	that	can	show	up	in	the	veri	field.

To	instantiate	a	data	definition	with	two	parameters,	you	need	two	names	of
data	collections.	Using	Number	and	Image	for	the	parameters	of	CP,	you	get	[CP
Number	 Image],	 which	 describes	 the	 collections	 of	 points	 that	 combine	 a
number	 with	 an	 image.	 In	 contrast	 [CP	 Boolean	 String]	 combines	 Boolean
values	with	strings	in	a	point	structure.

Exercise	239.	A	list	of	two	items	is	another	frequently	used	form	of	data	in
ISL	programming.	Here	is	a	data	definition	with	two	parameters:

Instantiate	this	definition	to	describe	the	following	classes	of	data:

•  pairs	of	Numbers,

•  pairs	of	Numbers	and	1Strings,	and

•  pairs	of	Strings	and	Booleans.

Also	make	one	concrete	example	for	each	of	these	three	data	definitions.	
Once	you	have	parametric	data	definitions,	you	can	mix	and	match	them	to

great	effect.	Consider	this	one:

;	[List-of	[CP	Boolean	Image]]

The	outermost	notation	is	[List-of	⋯],	which	means	that	you	are	dealing	with	a
list.	 The	 question	 is	 what	 kind	 of	 data	 the	 list	 contains,	 and	 to	 answer	 that
question,	you	need	to	study	the	inside	of	the	List-of	expression:

;	[CP	Boolean	Image]

This	inner	part	combines	Boolean	and	Image	in	a	point.	By	implication,

;	[List-of	[CP	Boolean	Image]]

is	a	list	of	points	that	combine	Booleans	and	Images.	Similarly,

;	[CP	Number	[List-of	Image]]

is	an	instantiation	of	CP	that	combines	one	Number	with	a	list	of	Images.
Exercise	240.	Here	are	two	strange	but	similar	data	definitions:

Both	data	definitions	rely	on	this	structure-type	definition:

(define-struct	layer	[stuff])

Both	 define	 nested	 forms	 of	 data:	 one	 is	 about	 numbers	 and	 the	 other	 about
strings.	 Make	 examples	 for	 both.	 Abstract	 over	 the	 two.	 Then	 instantiate	 the
abstract	definition	to	get	back	the	originals.	

Exercise	 241.	 Compare	 the	 definitions	 for	 NEList-of-temperatures	 and
NEList-of-Booleans.	Then	formulate	an	abstract	data	definition	NEList-of.	

Exercise	242.	Here	is	one	more	parametric	data	definition:

;	A	[Maybe	X]	is	one	of:	

;	--	#false	
;	--	X

Interpret	 these	 data	 definitions:	 [Maybe	 String],	 [Maybe	 [List-of	 String]],	 and
[List-of	[Maybe	String]].

What	does	the	following	function	signature	mean:

Work	through	the	remaining	steps	of	the	design	recipe.	

14.4 Functions	Are	Values
The	functions	in	this	part	stretch	our	understanding	of	program	evaluation.	It	is
easy	 to	 understand	 how	 functions	 consume	more	 than	 numbers,	 say	 strings	 or
images.	Structures	and	lists	are	a	bit	of	a	stretch,	but	they	are	finite	“things”	in
the	 end.	Function-consuming	 functions,	however,	 are	 strange.	 Indeed,	 the	very
idea	violates	 the	 first	 intermezzo	 in	 two	ways:	 (1)	 the	names	of	primitives	and
functions	are	used	as	arguments	in	applications,	and	(2)	parameters	are	used	in
the	function	position	of	applications.

Spelling	out	the	problem	tells	you	how	the	ISL	grammar	differs	from	BSL’s.
First,	 our	 expression	 language	 should	 include	 the	 names	 of	 functions	 and
primitive	operations	in	the	definition.	Second,	the	first	position	in	an	application
should	 allow	 things	 other	 than	 function	 names	 and	 primitive	 operations;	 at	 a
minimum,	it	must	allow	variables	and	function	parameters.

The	changes	to	the	grammar	seem	to	demand	changes	to	the	evaluation	rules,
but	all	that	changes	is	the	set	of	values.	Specifically,	to	accommodate	functions
as	 arguments	 of	 functions,	 the	 simplest	 change	 is	 to	 say	 that	 functions	 and
primitive	operations	are	values.

Exercise	243.	Assume	the	definitions	area	in	DrRacket	contains

(define	(f	x)	x)

Identify	the	values	among	the	following	expressions:

1.	(cons	f	'())

2.	(f	f)

3.	(cons	f	(cons	10	(cons	(f	10)	'())))

Explain	why	they	are	(not)	values.	
Exercise	244.	Argue	why	the	following	sentences	are	now	legal:

1.	(define	(f	x)	(x	10))

2.	(define	(f	x)	(x	f))

3.	(define	(f	x	y)	(x	'a	y	'b))

Explain	your	reasoning.	
Exercise	245.	Develop	the	function=at-1.2-3-and-5.775?	function.	Given

two	 functions	 from	 numbers	 to	 numbers,	 the	 function	 determines	whether	 the
two	produce	the	same	results	for	1.2,	3,	and	-5.775.

Mathematicians	 say	 that	 two	 functions	 are	 equal	 if	 they	 compute	 the	 same
result	when	given	the	same	input—for	all	possible	inputs.

Can	we	hope	to	define	function=?,	which	determines	whether	two	functions
from	numbers	 to	numbers	 are	 equal?	 If	 so,	 define	 the	 function.	 If	 not,	 explain
why	 and	 consider	 the	 implication	 that	 you	 have	 encountered	 the	 first	 easily
definable	idea	for	which	you	cannot	define	a	function.	

14.5 Computing	with	Functions
The	switch	from	BSL+	to	ISL	allows	the	use	of	functions	as	arguments	and	the
use	of	names	in	the	first	position	of	an	application.	DrRacket	deals	with	names
in	 these	 positions	 like	 anywhere	 else,	 but	 naturally,	 it	 expects	 a	 function	 as	 a
result.	 Surprisingly,	 a	 simple	 adaptation	 of	 the	 laws	 of	 algebra	 suffices	 to
evaluate	programs	in	ISL.

Let’s	see	how	this	works	for	extract	from	chapter	14.2.	Obviously,

(extract	<	'()	5)	==	'()

holds.	 We	 can	 use	 the	 law	 of	 substitution	 from	 intermezzo	 1	 and	 continue
computing	with	the	body	of	the	function.	Like	so	many	times,	the	parameters,	R,
l,	and	t,	are	replaced	by	their	arguments,	<,	'(),	and	5,	respectively.	From	here,
it	is	plain	arithmetic,	starting	with	the	conditionals:

Next	we	look	at	a	one-item	list:

(extract	<	(cons	4	'())	5)

The	result	should	be	(cons	4	'())	because	the	only	item	of	this	list	is	4	and	(<

4	5)	is	true.	Here	is	the	first	step	of	the	evaluation:

Again,	all	occurrences	of	R	are	replaced	by	<,	l	by	(cons	4	'()),	and	t	by	5.
The	rest	is	straightforward:

This	is	the	key	step,	with	<	used	after	being	substituted	into	this	position.	And	it
continues	with	arithmetic:

The	 last	 step	 is	 the	 equation	 from	 above,	 meaning	 we	 can	 apply	 the	 law	 of
substituting	equals	for	equals.

Our	final	example	is	an	application	of	extract	to	a	list	of	two	items:

Step	1	is	new.	It	deals	with	the	case	that	extract	eliminates	the	first	item	on	the
list	if	it	is	not	below	the	threshold.

Exercise	246.	Check	step	1	of	the	last	calculation

using	DrRacket’s	stepper.	
Exercise	 247.	 Evaluate	 (extract	 <	 (cons	 8	 (cons	 4	 '()))	 5)	 with

DrRacket’s	stepper.	
Exercise	 248.	 Evaluate	 (squared>?	 3	 10)	 and	 (squared>?	 4	 10)	 in

DrRacket’s	stepper.	
Consider	this	interaction:

>	(extract	squared>?	(list	3	4	5)	10)	
(list	4	5)

Here	are	some	steps	as	the	stepper	would	show	them:

Use	the	stepper	to	confirm	the	step	from	lines	(1)	to	(2).	Continue	the	stepping	to
fill	in	the	gaps	between	steps	(2)	and	(3).	Explain	each	step	as	the	use	of	a	law.

Exercise	249.	Functions	are	values:	arguments,	results,	 items	in	lists.	Place
the	 following	 definitions	 and	 expressions	 into	 DrRacket’s	 definitions	 window
and	use	the	stepper	to	find	out	how	running	this	program	works:

(define	(f	x)	x)	
(cons	f	'())	
(f	f)	
(cons	f	(cons	10	(cons	(f	10)	'())))

The	stepper	displays	functions	as	lambda	expressions;	see	chapter	17.	

15 Designing	Abstractions
In	essence,	to	abstract	is	to	turn	something	concrete	into	a	parameter.	We	have
this	 several	 times	 in	 the	 preceding	 section.	 To	 abstract	 similar	 function
definitions,	you	add	parameters	that	replace	concrete	values	in	the	definition.	To
abstract	 similar	 data	 definitions,	 you	 create	 parametric	 data	 definitions.	When
you	encounter	other	programming	languages,	you	will	see	that	their	abstraction
mechanisms	also	require	the	introduction	of	parameters,	though	they	may	not	be
function	parameters.

15.1 Abstractions	from	Examples
When	 you	 first	 learned	 to	 add,	 you	 worked	 with	 concrete	 examples.	 Your
parents	probably	taught	you	to	use	your	fingers	to	add	two	small	numbers.	Later
on,	you	studied	how	to	add	two	arbitrary	numbers;	you	were	introduced	to	your
first	kind	of	 abstraction.	Much	 later	 still,	 you	 learned	 to	 formulate	 expressions
that	 convert	 temperatures	 from	Celsius	 to	 Fahrenheit	 or	 calculate	 the	 distance
that	a	car	travels	at	a	given	speed	and	amount	of	time.	In	short,	you	went	from
very	concrete	examples	to	abstract	relations.

This	 section	 introduces	 a	 design	 recipe	 for	 creating	 abstractions	 from
examples.	 As	 the	 preceding	 section	 shows,	 creating	 abstractions	 is	 easy.	 We
leave	the	difficult	part	 to	the	next	section	where	we	show	you	how	to	find	and
use	existing	abstractions.

Recall	the	essence	of	chapter	14.	We	start	from	two	concrete	definitions;	we
compare	them;	we	mark	the	differences;	and	then	we	abstract.	And	that	is	mostly
all	there	is	to	creating	abstractions:

1.	Step	1	is	to	compare	two	items	for	similarities.
When	you	find	two	function	definitions	that	are	almost	the	same	except	for
their	names	and	some	values	at	analogous	places,	compare	them	and	mark
the	 differences.	 If	 the	 two	 definitions	 differ	 in	 more	 than	 one	 place,
connect	the	corresponding	differences	with	a	line.

The	recipe	requires	a	substantial	modification	for	abstracting	over	non-values.

Figure	90	shows	a	pair	of	similar	function	definitions.	The	two	functions
apply	 a	 function	 to	 each	 item	 in	 a	 list.	 They	 differ	 only	 as	 to	 which
function	 they	 apply	 to	 each	 item.	 The	 two	 highlights	 emphasize	 this
essential	difference.	They	also	differ	in	two	inessential	ways:	the	names	of
the	functions	and	the	names	of	the	parameters.

Figure	90:	A	pair	of	similar	functions

2.	 Next	 we	 abstract.	 To	 abstract	 means	 to	 replace	 the	 contents	 of
corresponding	code	highlights	with	new	names	and	add	these	names	to	the
parameter	 list.	For	our	 running	example,	we	obtain	 the	 following	pair	of
functions	 after	 replacing	 the	 differences	with	g;	 see	 figure	 91.	 This	 first
change	eliminates	 the	essential	difference.	Now	each	function	traverses	a
list	and	applies	some	given	function	to	each	item.

Figure	91:	The	same	two	similar	functions,	abstracted

The	 inessential	differences—the	names	of	 the	 functions	and	occasionally
the	names	of	some	parameters—are	easy	to	eliminate.	Indeed,	if	you	have
explored	 DrRacket,	 you	 know	 that	 check	 syntax	 allows	 you	 to	 do	 this
systematically	and	easily;	see	bottom	of	figure	91.	We	choose	to	use	map1
for	the	name	of	the	function	and	k	for	the	name	of	the	list	parameter.	No
matter	 which	 names	 you	 choose,	 the	 result	 is	 two	 identical	 function
definitions.
Our	example	is	simple.	In	many	cases,	you	will	find	that	there	is	more	than
just	one	pair	of	differences.	The	key	is	to	find	pairs	of	differences.	When
you	mark	up	the	differences	with	paper	and	pencil,	connect	related	boxes
with	a	 line.	Then	 introduce	one	additional	parameter	per	 line.	And	don’t
forget	 to	 change	 all	 recursive	 uses	 of	 the	 function	 so	 that	 the	 additional
parameters	go	along	for	the	ride.

3.	Now	we	must	validate	that	the	new	function	is	a	correct	abstraction	of	the
original	pair	of	functions.	To	validate	means	to	test,	which	here	means	to
define	the	two	original	functions	in	terms	of	the	abstraction.
Thus	 suppose	 that	 one	 original	 function	 is	 called	 f-original	 and
consumes	one	argument	and	that	the	abstract	function	is	called	abstract.
If	f-original	 differs	 from	 the	other	 concrete	 function	 in	 the	use	of	 one
value,	say,	val,	the	following	function	definition

(define	(f-from-abstract	x)	

		(abstract	x	val))

introduces	 the	 function	f-from-abstract,	which	 should	be	 equivalent	 to
f-original.	 That	 is,	 (f-from-abstract	 V)	 should	 produce	 the	 same
answer	as	(f-original	V)	for	every	proper	value	V.	In	particular,	it	must
hold	for	all	values	that	your	tests	for	f-original	use.	So	reformulate	and
rerun	those	tests	for	f-from-abstract	and	make	sure	they	succeed.
Let’s	return	to	our	running	example:

;	List-of-numbers	->	List-of-numbers	

(define	(cf*-from-map1	l)	(map1	l	C2F))	

;	Inventory	->	List-of-strings	

(define	(names-from-map1	i)	(map1	i	IR-name))

A	complete	 example	would	 include	 some	 tests,	 and	 thus	we	 can	 assume
that	both	cf*	and	names	come	with	some	tests:

To	ensure	that	the	functions	defined	in	terms	of	map1	work	properly,	you
can	copy	the	tests	and	change	the	function	names	appropriately:

4.	A	new	abstraction	needs	a	signature,	because,	as	chapter	16	explains,	the
reuse	of	abstractions	starts	with	their	signatures.	Finding	useful	signatures
is	a	serious	problem.	For	now	we	use	the	running	example	to	illustrate	the
difficulty;	chapter	15.2	resolves	the	issue.
Consider	 the	problem	of	map1’s	 signature.	On	 the	one	hand,	 if	 you	view
map1	as	an	abstraction	of	cf*,	you	might	think	it	is

;	List-of-numbers	[Number	->	Number]	->	List-of-numbe

rs

that	is,	the	original	signature	extended	with	one	part	for	functions:

;	[Number	->	Number]

Since	the	additional	parameter	for	map1	is	a	function,	the	use	of	a	function
signature	to	describe	it	should	not	surprise	you.	This	function	signature	is
also	 quite	 simple;	 it	 is	 a	 “name”	 for	 all	 the	 functions	 from	 numbers	 to
numbers.	 Here	 C2F	 is	 such	 a	 function,	 and	 so	 are	 add1,	 sin,	 and	 imag-
part.
On	 the	 other	 hand,	 if	 you	 view	 map1	 as	 an	 abstraction	 of	 names,	 the
signature	is	quite	different:

;	Inventory	[IR	->	String]	->	List-of-strings

This	time	the	additional	parameter	is	IR-name,	which	is	a	selector	function
that	consumes	IRs	and	produces	Strings.	But	clearly	this	second	signature
would	be	useless	 in	 the	 first	 case,	 and	vice	versa.	To	accommodate	both
cases,	the	signature	for	map1	must	express	that	Number,	IR,	and	String	are
coincidental.
Also	concerning	signatures,	you	are	probably	eager	to	use	List-of	by	now.
It	 is	clearly	easier	 to	write	[List-of	IR]	than	spelling	out	a	data	definition
for	Inventory.	So	yes,	as	of	now,	we	use	List-of	when	it	is	all	about	lists,
and	you	should	too.

Once	you	have	abstracted	two	functions,	you	should	check	whether	there	are
other	uses	for	the	abstract	function.	If	so,	the	abstraction	is	truly	useful.	Consider
map1,	for	example.	It	is	easy	to	see	how	to	use	it	to	add	1	to	each	number	on	a	list
of	numbers:

;	List-of-numbers	->	List-of-numbers	
(define	(add1-to-each	l)	
		(map1	l	add1))

Similarly,	map1	can	also	be	used	to	extract	the	price	of	each	item	in	an	inventory.
When	you	can	imagine	many	such	uses	for	a	new	abstraction,	add	it	to	a	library
of	useful	functions	to	have	around.	Of	course,	it	is	quite	likely	that	someone	else
has	thought	of	it	and	the	function	is	already	a	part	of	the	language.	For	a	function
like	map1,	see	chapter	16.

Exercise	 250.	 Design	 tabulate,	 which	 is	 the	 abstraction	 of	 the	 two
functions	 in	 figure	92.	When	tabulate	 is	properly	designed,	use	 it	 to	define	a
tabulation	function	for	sqr	and	tan.	

Figure	92:	The	similar	functions	for	exercise	250

Exercise	251.	Design	fold1,	which	is	the	abstraction	of	the	two	functions	in
figure	93.	

Figure	93:	The	similar	functions	for	exercise	251

Exercise	252.	Design	fold2,	which	is	the	abstraction	of	the	two	functions	in
figure	94.	Compare	 this	 exercise	with	 exercise	251.	Even	 though	both	 involve
the	 product	 function,	 this	 exercise	 poses	 an	 additional	 challenge	 because	 the
second	function,	image*,	consumes	a	list	of	Posns	and	produces	an	Image.	Still,
the	 solution	 is	within	 reach	 of	 the	material	 in	 this	 section,	 and	 it	 is	 especially
worth	 comparing	 the	 solution	 with	 the	 one	 to	 the	 preceding	 exercise.	 The
comparison	yields	interesting	insights	into	abstract	signatures.	

Figure	94:	The	similar	functions	for	exercise	252

Lastly,	when	 you	 are	 dealing	with	 data	 definitions,	 the	 abstraction	 process
proceeds	in	an	analogous	manner.	The	extra	parameters	to	data	definitions	stand
for	 collections	 of	 values,	 and	 testing	 means	 spelling	 out	 a	 data	 definition	 for
some	concrete	examples.	All	in	all,	abstracting	over	data	definitions	tends	to	be
easier	 than	 abstracting	 over	 functions,	 and	 so	we	 leave	 it	 to	 you	 to	 adapt	 the
design	recipe	appropriately.

15.2 Similarities	in	Signatures
As	it	turns	out,	a	function’s	signature	is	key	to	its	reuse.	Hence,	you	must	learn
to	 formulate	 signatures	 that	 describe	 abstracts	 in	 their	 most	 general	 terms
possible.	 To	 understand	 how	 this	 works,	 we	 start	 with	 a	 second	 look	 at
signatures	 and	 from	 the	 simple—though	 possibly	 startling—insight	 that
signatures	are	basically	data	definitions.

Both	signatures	and	data	definitions	specify	a	class	of	data;	the	difference	is
that	 data	 definitions	 also	 name	 the	 class	 of	 data	 while	 signatures	 don’t.
Nevertheless,	when	you	write	down

;	Number	Boolean	->	String	
(define	(f	n	b)	"hello	world")

your	first	line	describes	an	entire	class	of	data,	and	your	second	one	states	that	f
belongs	 to	 that	 class.	 To	 be	 precise,	 the	 signature	 describes	 the	 class	 of	 all
functions	that	consume	a	Number	and	a	Boolean	and	yield	a	String.

In	general,	the	arrow	notation	of	signatures	is	like	the	List-of	notation	from
chapter	 14.3.	The	 latter	 consumes	 (the	name	of)	 one	 class	 of	 data,	 say	X,	 and
describes	all	 lists	of	X	 items—without	assigning	 it	a	name.	The	arrow	notation
consumes	 an	 arbitrary	 number	 of	 classes	 of	 data	 and	 describes	 collections	 of
functions.

What	 this	means	 is	 that	 the	 abstraction	design	 recipe	 applies	 to	 signatures,
too.	You	compare	similar	signatures;	you	highlight	the	differences;	and	then	you
replace	 those	 with	 parameters.	 But	 the	 process	 of	 abstracting	 signatures	 feels
more	 complicated	 than	 the	 one	 for	 functions,	 partly	 because	 signatures	 are
already	abstract	pieces	of	 the	design	recipe	and	partly	because	the	arrow-based
notation	is	much	more	complex	than	anything	else	we	have	encountered.

Let’s	start	with	the	signatures	of	cf*	and	names:

The	diagram	is	 the	result	of	the	compare-and-contrast	step.	Comparing	the	two

signatures	shows	that	they	differ	in	two	places:	to	the	left	of	the	arrow,	we	see
Number	versus	IR,	and	to	its	right,	it	is	Number	versus	String.

If	we	replace	the	two	differences	with	some	kind	of	parameters,	say	X	and	Y,
we	get	the	same	signature:

;	[X	Y]	[List-of	X]	->	[List-of	Y]

The	 new	 signature	 starts	with	 a	 sequence	 of	 variables,	 drawing	 an	 analogy	 to
function	 definitions	 and	 the	 data	 definitions	 above.	 Roughly	 speaking,	 these
variables	 are	 the	 parameters	 of	 the	 signature,	 like	 those	 of	 functions	 and	 data
definitions.	To	make	the	latter	concrete,	the	variable	sequence	is	like	ITEM	in	the
definition	of	List-of	or	the	X	and	Y	in	the	definition	of	CP	from	chapter	14.3.	And
just	like	those,	X	and	Y	range	over	classes	of	values.

An	 instantiation	 of	 this	 parameter	 list	 is	 the	 rest	 of	 the	 signature	with	 the
parameters	 replaced	 by	 the	 data	 collections:	 either	 their	 names	 or	 other
parameters	 or	 abbreviations	 such	 as	 List-of	 from	 above.	 Thus,	 if	 you	 replace
both	X	and	Y	with	Number,	you	get	back	the	signature	for	cf*:

;	[List-of	Number]	->	[List-of	Number]

If	you	choose	IR	and	String,	you	get	back	the	signature	for	names:

;	[List-of	IR]	->	[List-of	String]

And	 that	 explains	 why	 we	 may	 consider	 this	 parametrized	 signature	 as	 an
abstraction	of	the	original	signatures	for	cf*	and	names.

Once	 we	 add	 the	 extra	 function	 parameter	 to	 these	 two	 functions,	 we	 get
map1,	and	the	signatures	are	as	follows:

Again,	 the	 signatures	 are	 in	 pictorial	 form	 and	 with	 arrows	 connecting	 the
corresponding	 differences.	 These	 markups	 suggest	 that	 the	 differences	 in	 the

second	 argument—a	 function—are	 related	 to	 the	 differences	 in	 the	 original
signatures.	 Specifically,	Number	 and	 IR	 on	 the	 left	 of	 the	 new	 arrow	 refer	 to
items	 on	 the	 first	 argument—a	 list—and	 the	 Number	 and	 String	 on	 the	 right
refer	to	the	items	on	the	result—also	a	list.

Since	listing	the	parameters	of	a	signature	is	extra	work,	for	our	purposes,	we
simply	 say	 that	 from	 now	 on	 all	 variables	 in	 signatures	 are	 parameters.	Other
programming	 languages,	however,	 insist	on	explicitly	 listing	 the	parameters	of
signatures,	 but	 in	 return	 you	 can	 articulate	 additional	 constraints	 in	 such
signatures	and	the	signatures	are	checked	before	you	run	the	program.

Now	let’s	apply	the	same	trick	to	get	a	signature	for	map1:

;	[X	Y]	[List-of	X]	[X	->	Y]	->	[List-of	Y]

Concretely,	map1	consumes	a	list	of	items,	all	of	which	belong	to	some	(yet	to	be
determined)	 collection	 of	 data	 called	 X.	 It	 also	 consumes	 a	 function	 that
consumes	elements	of	X	and	produces	elements	of	a	second	unknown	collection,
called	Y.	The	result	of	map1	is	lists	that	contain	items	from	Y.

Abstracting	over	signatures	takes	practice.	Here	is	a	second	pair:

;	[List-of	Number]	->	Number	
;	[List-of	Posn]	->	Image

They	are	the	signatures	for	product	and	image*	in	exercise	252.	While	the	two
signatures	have	some	common	organization,	 the	differences	are	distinct.	Let	us
first	spell	out	the	common	organization	in	detail:

•  both	signatures	describe	one-argument	functions;	and

•  both	argument	descriptions	employ	the	List-of	construction.

In	contrast	to	the	first	example,	here	one	signature	refers	to	Number	twice	while
the	second	one	refers	 to	Posns	and	Images	 in	analogous	positions.	A	structural
comparison	shows	that	the	first	occurrence	of	Number	corresponds	to	Posn	and
the	second	one	to	Image:

To	make	progress	on	a	signature	for	 the	abstraction	of	 the	two	functions	in
exercise	252,	let’s	take	the	first	two	steps	of	the	design	recipe:

Since	 the	 two	 functions	 differ	 in	 two	 pairs	 of	 values,	 the	 revised	 versions
consume	 two	additional	values:	one	 is	 an	atomic	value,	 to	be	used	 in	 the	base
case,	and	the	other	one	is	a	function	that	joins	together	the	result	of	the	natural
recursion	with	the	first	item	on	the	given	list.

The	 key	 is	 to	 translate	 this	 insight	 into	 two	 signatures	 for	 the	 two	 new
functions.	When	you	do	so	for	pr*,	you	get

;	[List-of	Number]	Number	[Number	Number	->	Number]	
;	->	Number

because	the	result	in	the	base	case	is	a	number	and	because	the	function	for	the
second	cond	line	is	+.	Similarly,	the	signature	for	im*	is

;	[List-of	Posn]	Image	[Posn	Image	->	Image]	
;	->	Image

As	 you	 can	 see	 from	 the	 function	 definition	 for	 im*,	 the	 base	 case	 returns	 an
image,	and	the	combination	function	is	place-dot,	which	combines	a	Posn	and
an	Image	into	an	Image.

Now	we	take	the	diagram	from	above	and	extend	it	to	the	signatures	with	the
additional	inputs:

From	this	diagram,	you	can	easily	see	that	the	two	revised	signatures	share	even
more	 organization	 than	 the	 original	 two.	 Furthermore,	 the	 pieces	 that	 describe
the	base	cases	correspond	to	each	other	and	so	do	the	pieces	of	the	sub-signature
that	 describe	 the	 combination	 function.	 All	 in	 all	 there	 are	 six	 pairs	 of
differences,	but	they	boil	down	to	just	two:

1.	some	occurrences	of	Number	correspond	to	Posn,	and

2.	other	occurrences	of	Number	correspond	to	Image.

So	to	abstract	we	need	two	variables,	one	per	kind	of	correspondence.
Here	then	is	the	signature	for	fold2,	the	abstraction	from	exercise	252:

;	[X	Y]	[List-of	X]	Y	[X	Y	->	Y]	->	Y

Stop!	Make	sure	 that	 replacing	both	parameters	of	 the	signature,	X	 and	Y,	with
Number	yields	the	signature	for	pr*	and	that	replacing	the	same	variables	with
Posn	and	Image,	respectively,	yields	the	signature	for	im*.

The	two	examples	illustrate	how	to	find	general	signatures.	In	principle	the
process	is	just	like	the	one	for	abstracting	functions.	Due	to	the	informal	nature
of	 signatures,	 however,	 it	 cannot	 be	 checked	 with	 running	 examples	 the	 way
code	is	checked.	Here	is	a	step-by-step	formulation:

1.	Given	two	similar	function	definitions,	f	and	g,	compare	 their	signatures
for	similarities	and	differences.	The	goal	is	to	discover	the	organization	of
the	signature	and	to	mark	the	places	where	one	signature	differs	from	the
other.	Connect	the	differences	as	pairs	just	like	you	do	when	you	analyze
function	bodies.

2.	 Abstract	 f	 and	 g	 into	 f-abs	 and	 g-abs.	 That	 is,	 add	 parameters	 that
eliminate	the	differences	between	f	and	g.	Create	signatures	for	f-abs	and
g-abs.	 Keep	 in	mind	what	 the	 new	 parameters	 originally	 stood	 for;	 this
helps	you	figure	out	the	new	pieces	of	the	signatures.

3.	Check	whether	 the	 analysis	 of	 step	1	 extends	 to	 the	 signatures	of	f-abs
and	 g-abs.	 If	 so,	 replace	 the	 differences	 with	 variables	 that	 range	 over
classes	of	data.	Once	the	two	signatures	are	the	same,	you	have	a	signature
for	the	abstracted	function.

4.	Test	 the	abstract	 signature.	First,	 ensure	 that	 suitable	 substitutions	of	 the
variables	in	the	abstract	signature	yield	the	signatures	of	f-abs	and	g-abs.
Second,	check	that	the	generalized	signature	is	in	sync	with	the	code.	For
example,	if	p	is	a	new	parameter	and	its	signature	is

;	…	[A	B	->	C]	…

then	p	must	always	be	applied	to	two	arguments,	the	first	one	from	A	and
the	second	one	from	B.	And	the	result	of	an	application	of	p	is	going	to	be
a	C	and	should	be	used	where	elements	of	C	are	expected.

As	with	abstracting	functions,	 the	key	 is	 to	compare	 the	concrete	signatures	of
the	 examples	 and	 to	 determine	 the	 similarities	 and	 differences.	 With	 enough
practice	and	intuition,	you	will	soon	be	able	to	abstract	signatures	without	much
guidance.

Exercise	253.	Each	of	these	signatures	describes	a	class	of	functions:

;	[Number	->	Boolean]	
;	[Boolean	String	->	Boolean]	
;	[Number	Number	Number	->	Number]	
;	[Number	->	[List-of	Number]]	
;	[[List-of	Number]	->	Boolean]

Describe	these	collections	with	at	least	one	example	from	ISL.	
Exercise	254.	Formulate	signatures	for	the	following	functions:

•  sort-n,	which	consumes	a	 list	of	numbers	 and	a	 function	 that	 consumes

two	numbers	 (from	 the	 list)	 and	produces	 a	Boolean;	sort-n	 produces	 a
sorted	list	of	numbers.

•  sort-s,	which	consumes	a	list	of	strings	and	a	function	that	consumes	two
strings	 (from	the	 list)	and	produces	a	Boolean;	sort-s	produces	a	sorted
list	of	strings.

Then	abstract	over	the	two	signatures,	following	the	above	steps.	Also	show	that
the	generalized	signature	can	be	 instantiated	 to	describe	 the	signature	of	a	 sort
function	for	lists	of	IRs.	

Exercise	255.	Formulate	signatures	for	the	following	functions:

•  map-n,	which	consumes	a	list	of	numbers	and	a	function	from	numbers	to
numbers	to	produce	a	list	of	numbers.

•  map-s,	 which	 consumes	 a	 list	 of	 strings	 and	 a	 function	 from	 strings	 to
strings	and	produces	a	list	of	strings.

Then	abstract	over	the	two	signatures,	following	the	above	steps.	Also	show	that
the	generalized	signature	can	be	instantiated	to	describe	the	signature	of	the	map1
function	above.	

15.3 Single	Point	of	Control
In	 general,	 programs	 are	 like	 drafts	 of	 papers.	 Editing	 drafts	 is	 important	 to
correct	typos,	to	fix	grammatical	mistakes,	to	make	the	document	consistent,	and
to	eliminate	 repetitions.	Nobody	wants	 to	 read	papers	 that	 repeat	 themselves	 a
lot,	and	nobody	wants	to	read	such	programs	either.

The	elimination	of	similarities	in	favor	of	abstractions	has	many	advantages.
Creating	an	abstraction	simplifies	definitions.	It	may	also	uncover	problems	with
existing	functions,	especially	when	similarities	aren’t	quite	right.	But,	the	single
most	 important	 advantage	 is	 the	 creation	 of	 single	 points	 of	 control	 for	 some
common	functionality.

Putting	 the	 definition	 for	 some	 functionality	 in	 one	 place	makes	 it	 easy	 to
maintain	a	program.	When	you	discover	a	mistake,	you	have	 to	go	 to	 just	one
place	to	fix	it.	When	you	discover	that	the	code	should	deal	with	another	form	of
data,	 you	 can	 add	 the	 code	 to	 just	 one	 place.	 When	 you	 figure	 out	 an
improvement,	one	change	improves	all	uses	of	the	functionality.	If	you	had	made
copies	of	the	functions	or	code	in	general,	you	would	have	to	find	all	copies	and
fix	them;	otherwise	the	mistake	might	live	on	or	only	one	of	the	functions	would
run	faster.

We	therefore	formulate	this	guideline:

Form	an	abstraction	instead	of	copying	and	modifying	any	code.

Our	design	 recipe	 for	 abstracting	 functions	 is	 the	most	 basic	 tool	 to	 create
abstractions.	 To	 use	 it	 requires	 practice.	 As	 you	 practice,	 you	 expand	 your
capabilities	to	read,	organize,	and	maintain	programs.	The	best	programmers	are
those	 who	 actively	 edit	 their	 programs	 to	 build	 new	 abstractions	 so	 that	 they
collect	 things	 related	 to	 a	 task	 at	 a	 single	 point.	 Here	 we	 use	 functional
abstraction	 to	 study	 this	 practice;	 in	 other	 courses	 on	 programming,	 you	 will
encounter	 other	 forms	 of	 abstraction,	 most	 importantly	 inheritance	 in	 class-
based	object-oriented	languages.

15.4 Abstractions	from	Templates
The	 first	 two	 chapters	 of	 this	 part	 present	many	 functions	 based	 on	 the	 same
template.	 After	 all,	 the	 design	 recipe	 says	 to	 organize	 functions	 around	 the
organization	 of	 the	 (major)	 input	 data	 definition.	 It	 is	 therefore	 not	 surprising
that	many	function	definitions	look	similar	to	each	other.

Indeed,	you	should	abstract	 from	the	 templates	directly,	and	you	should	do
so	 automatically;	 some	 experimental	 programming	 languages	 do	 so.	 Even
though	 this	 topic	 is	 still	 a	 subject	 of	 research,	 you	 are	 now	 in	 a	 position	 to
understand	the	basic	idea.	Consider	the	template	for	lists:

It	contains	two	gaps,	one	in	each	clause.	When	you	use	this	template	to	define	a
list-processing	function,	you	usually	fill	these	gaps	with	a	value	in	the	first	cond
clause	and	with	a	function	combine	in	the	second	clause.	The	combine	function
consumes	 the	 first	 item	 of	 the	 list	 and	 the	 result	 of	 the	 natural	 recursion	 and
creates	the	result	from	these	two	pieces	of	data.

Now	 that	 you	 know	 how	 to	 create	 abstractions,	 you	 can	 complete	 the
definition	of	the	abstraction	from	this	informal	description:

It	consumes	two	extra	arguments:	base,	which	is	the	value	for	the	base	case,	and
combine,	 which	 is	 the	 function	 that	 performs	 the	 value	 combination	 for	 the
second	clause.

Using	reduce	 you	 can	 define	many	 plain	 list-processing	 functions	 as	 “one

liners.”	 Here	 are	 definitions	 for	 sum	 and	 product,	 two	 functions	 used	 several
times	in	the	first	few	sections	of	this	chapter:

For	sum,	the	base	case	always	produces	0;	adding	the	first	item	and	the	result	of
the	 natural	 recursion	 combines	 the	 values	 of	 the	 second	 clause.	 Analogous
reasoning	explains	product.	Other	list-processing	functions	can	be	defined	in	a
similar	manner	using	reduce.

16 Using	Abstractions
Once	 you	 have	 abstractions,	 you	 should	 use	 them	when	 possible.	 They	 create
single	points	of	control,	and	they	are	a	work-saving	device.	More	precisely,	the
use	of	an	abstraction	helps	readers	of	your	code	to	understand	your	intentions.	If
the	 abstraction	 is	 well-known	 and	 built	 into	 the	 language	 or	 comes	 with	 its
standard	libraries,	it	signals	more	clearly	what	your	function	does	than	custom-
designed	code.

This	chapter	is	all	about	the	reuse	of	existing	ISL	abstractions.	It	starts	with	a
section	on	existing	 ISL	abstractions,	 some	of	which	you	have	seen	under	 false
names.	 The	 remaining	 sections	 are	 about	 reusing	 such	 abstractions.	 One	 key
ingredient	 is	 a	 new	 syntactic	 construct,	 local,	 for	 defining	 functions	 and
variables	 (and	 even	 structure	 types)	 locally	 within	 a	 function.	 An	 auxiliary
ingredient,	 introduced	 in	 the	 last	 section,	 is	 the	 lambda	 construct	 for	 creating
nameless	 functions;	 lambda	 is	 a	 convenience	 but	 inessential	 to	 the	 idea	 of
reusing	abstract	functions.

16.1 Existing	Abstractions
ISL	provides	a	number	of	abstract	functions	for	processing	natural	numbers	and
lists.	Figure	95	collects	the	header	material	for	the	most	important	ones.	The	first
one	processes	natural	numbers	and	builds	lists:

>	(build-list	3	add1)	
(list	1	2	3)

The	next	three	process	lists	and	produce	lists:

>	(filter	odd?	(list	1	2	3	4	5))	
(list	1	3	5)	
>	(sort	(list	3	2	1	4	5)	>)	
(list	5	4	3	2	1)	
>	(map	add1	(list	1	2	2	3	3	3))	
(list	2	3	3	4	4	4)

In	contrast,	andmap	and	ormap	reduce	lists	to	a	Boolean:

>	(andmap	odd?	(list	1	2	3	4	5))	
#false	
>	(ormap	odd?	(list	1	2	3	4	5))	
#true

Figure	95:	ISL’s	abstract	functions	for	list	processing	(1)

Hence,	this	kind	of	computation	is	called	a	reduction.
The	 two	 functions	 in	 figure	 96,	foldr	 and	foldl,	 are	 extremely	 powerful.

Both	 reduce	 lists	 to	 values.	 The	 sample	 computations	 explain	 the	 abstract
examples	in	the	headers	of	foldr	and	foldl	via	an	application	of	the	functions
to	+,	0,	and	a	short	list.	As	you	can	see,	foldr	processes	the	list	values	from	right
to	left	and	foldl	from	left	to	right.	While	for	some	functions	the	direction	makes
no	difference,	this	isn’t	true	in	general.

Figure	96:	ISL’s	abstract	functions	for	list	processing	(2)

Mathematics	calls	functions	associative	if	the	order	makes	no	difference.	ISL’s	=	is	associative	on
integers	but	not	on	inexacts.	See	below.

Exercise	256.	Explain	the	following	abstract	function:

;	[X]	[X	->	Number]	[NEList-of	X]	->	X	
;	finds	the	(first)	item	in	lx	that	maximizes	f	
;	if	(argmax	f	(list	x-1	…	x-n))	==	x-i,	
;	then	(>=	(f	x-i)	(f	x-1)),	(>=	(f	x-i)	(f	x-2)),	…	
(define	(argmax	f	lx)	…)

Use	 it	 on	 concrete	 examples	 in	 ISL.	Can	 you	 articulate	 an	 analogous	 purpose
statement	for	argmin?	

Figure	97	 illustrates	 the	power	of	composing	 the	 functions	 from	figures	95
and	96.	Its	main	function	is	listing.	The	purpose	is	to	create	a	string	from	a	list
of	addresses.	Its	purpose	statement	suggests	 three	tasks	and	thus	the	design	of
three	functions:

1.	one	that	extracts	the	first	names	from	the	given	list	of	Addr;

2.	one	that	sorts	these	names	in	alphabetical	order;	and

3.	one	that	concatenates	the	strings	from	step	2.

Figure	97:	Creating	a	program	with	abstractions

Before	you	read	on,	you	may	wish	to	execute	this	plan.	That	is,	design	all	three
functions	and	then	compose	them	in	the	sense	of	chapter	11.2	to	obtain	your	own
version	of	listing.

In	the	new	world	of	abstractions,	it	is	possible	to	design	a	single	function	that
achieves	 the	 same	 goal.	 Take	 a	 close	 look	 at	 the	 innermost	 expression	 of
listing	in	figure	97:

(map	address-first-name	l)

By	the	purpose	statement	of	map,	it	applies	address-first-name	to	every	single
instance	 of	 address,	 producing	 a	 list	 of	 first	 names	 as	 strings.	 Here	 is	 the
immediately	surrounding	expression:

(sort	…	string<?)

The	dots	represent	the	result	of	the	map	expression.	Since	the	latter	supplies	a	list
of	 strings,	 the	 sort	 expression	 produces	 a	 sorted	 list	 of	 first	 names.	And	 that
leaves	us	with	the	outermost	expression:

(foldr	string-append-with-space	"	"	…)

This	one	reduces	the	sorted	list	of	first	names	to	a	single	string,	using	a	function
named	 string-append-with-space.	 With	 such	 a	 suggestive	 name,	 you	 can
easily	imagine	now	that	this	reduction	concatenates	all	the	strings	in	the	desired
way—even	 if	 you	 do	 not	 quite	 understand	 how	 the	 combination	 of	foldr	 and
string-append-with-space	works.

Exercise	257.	You	can	design	build-list	and	foldl	with	the	design	recipes
that	you	know,	but	they	are	not	going	to	be	like	the	ones	that	ISL	provides.	For
example,	 the	 design	 of	 your	 own	 foldl	 function	 requires	 a	 use	 of	 the	 list
reverse	function:

Design	build-l*st,	which	works	just	like	build-list.	Hint	Recall	the	add-
at-end	function	from	exercise	193.	Note	on	Design	Part	VI	covers	the	concepts
needed	to	design	these	functions	from	scratch.	

16.2 Local	Definitions
Let’s	take	a	second	look	at	figure	97.	The	string-append-with-space	function
clearly	plays	a	 subordinate	 role	and	has	no	use	outside	of	 this	narrow	context.
Furthermore,	 the	 organization	 of	 the	 function	 body	 does	 not	 reflect	 the	 three
tasks	identified	above.

Almost	all	programming	languages	support	some	way	for	stating	these	kinds
of	relationships	as	a	part	of	a	program.	The	idea	is	called	a	local	definition,	also
called	a	private	definition.	 In	 ISL,	local	 expressions	 introduce	 locally	defined
functions,	variables,	and	structure	types.

This	 section	 introduces	 the	 mechanics	 of	 local.	 In	 general,	 a	 local
expression	has	this	shape:

(local	(def	…)	
				;	---	IN	---	
				body-expression)

The	evaluation	of	such	an	expression	proceeds	like	the	evaluation	of	a	complete
program.	First,	 the	definitions	are	 set	up,	which	may	 involve	 the	evaluation	of
the	right-hand	side	of	a	constant	definition.	Just	as	with	the	top-level	definitions
that	you	know	and	love,	the	definitions	in	a	local	expression	may	refer	to	each
other.	They	may	 also	 refer	 to	parameters	 of	 the	 surrounding	 function.	Second,
the	 body-expression	 is	 evaluated	 and	 it	 becomes	 the	 result	 of	 the	 local
expression.	 It	 is	 often	 helpful	 to	 separate	 the	 local	 defs	 from	 the	 body-
expression	with	 a	 comment;	 as	 indicated,	we	may	use	–-	IN	–-	 because	 the
word	suggests	that	the	definitions	are	available	in	a	certain	expression.

Figure	 98	 shows	 a	 revision	 of	 figure	 97	 using	 local.	 The	 body	 of	 the
listing.v2	function	is	now	a	local	expression,	which	consists	of	two	pieces:	a
sequence	of	definitions	and	a	body	expression.	The	sequence	of	local	definitions
looks	exactly	like	a	sequence	in	DrRacket’s	definitions	area.

Figure	98:	Organizing	a	function	with	local

In	 this	 example,	 the	 sequence	 of	 definitions	 consists	 of	 four	 pieces:	 three
constant	 definitions	 and	 a	 single	 function	 definition.	 Each	 constant	 definition
represents	one	of	the	three	planning	tasks.	The	function	definition	is	a	renamed
version	of	string-append-with-space;	 it	 is	used	with	foldr	 to	 implement	 the
third	task.	The	body	of	local	is	just	the	name	of	the	third	task.

Since	the	names	are	visible	only	within	the	local	expression,	shortening	the	name	is	fine.

The	visually	most	appealing	difference	concerns	the	overall	organization.	It
clearly	brings	across	 that	 the	 function	achieves	 three	 tasks	and	 in	which	order.
As	a	matter	of	fact,	this	example	demonstrates	a	general	principle	of	readability:

Use	 local	 to	 reformulate	 deeply	 nested	 expressions.	 Use	 well-
chosen	names	to	express	what	the	expressions	compute.

Future	readers	appreciate	it	because	they	can	comprehend	the	code	by	looking	at
just	the	names	and	the	body	of	the	local	expression.

Note	 on	Organization	 A	 local	 expression	 is	 really	 just	 an	 expression.	 It
may	 show	up	wherever	 a	 regular	 expression	 shows	up.	Hence	 it	 is	 possible	 to
indicate	 precisely	 where	 an	 auxiliary	 function	 is	 needed.	 Consider	 this
reorganization	of	the	local	expression	of	listing.v2:

It	 consists	 of	 exactly	 three	 definitions,	 suggesting	 it	 takes	 three	 computation
steps.	The	third	definition	consists	of	a	local	expression	on	the	right-hand	side,
which	expresses	that	helper	is	really	just	needed	for	the	third	step.

Whether	 you	want	 to	 express	 relationships	 among	 the	pieces	 of	 a	 program
with	such	precision	depends	on	two	constraints:	the	programming	language	and
how	long	the	code	is	expected	to	live.	Some	languages	cannot	even	express	the
idea	that	helper	is	useful	for	the	third	step	only.	Then	again,	you	need	to	balance
the	time	it	takes	to	create	the	program	and	the	expectation	that	you	or	someone
needs	to	revisit	it	and	comprehend	the	code	again.	The	preference	of	the	Racket
team	is	to	err	on	the	side	of	future	developers	because	the	team	members	know
that	no	program	is	ever	finished	and	all	programs	will	need	fixing.	End

Figure	 99	 presents	 a	 second	 example.	 The	 organization	 of	 this	 function
definition	 informs	 the	 reader	 that	 sort-cmp	 calls	 on	 two	 auxiliary	 functions:
isort	and	insert.	By	locality,	it	becomes	obvious	that	the	adjective	“sorted”	in
the	purpose	statement	of	insert	refers	to	isort.	In	other	words,	insert	is	useful
in	 this	 context	 only;	 a	 programmer	 should	 not	 try	 to	 use	 it	 elsewhere,	 out	 of
context.	While	 this	 constraint	 is	 already	 important	 in	 the	 original	 definition	 of
the	sort-cmp	function,	a	local	expression	expresses	it	as	part	of	the	program.

Figure	99:	Organizing	interconnected	function	definitions	with	local

Another	 important	 aspect	 of	 this	 reorganization	 of	 sort-cmp’s	 definition
concerns	the	visibility	of	cmp,	the	second	function	parameter.	The	locally	defined
functions	can	refer	to	cmp	because	it	is	defined	in	the	context	of	the	definitions.
By	 not	 passing	 around	 cmp	 from	 isort	 to	 insert	 (or	 back),	 the	 reader	 can
immediately	infer	that	cmp	remains	the	same	throughout	the	sorting	process.

Exercise	258.	Use	a	local	expression	to	organize	the	functions	for	drawing
a	polygon	 in	 figure	 73.	 If	 a	 globally	 defined	 function	 is	widely	 useful,	 do	 not
make	it	local.	

Exercise	 259.	 Use	 a	 local	 expression	 to	 organize	 the	 functions	 for
rearranging	words	from	chapter	12.4.	

Our	final	example	of	local’s	usefulness	concerns	performance.	Consider	the
definition	of	inf	in	figure	89.	It	contains	two	copies	of

(inf	(rest	l))

which	 is	 the	 natural	 recursion	 in	 the	 second	 cond	 line.	 Depending	 on	 the
outcome	of	the	question,	the	expression	is	evaluated	twice.	Using	local	to	name
this	expression	yields	an	improvement	to	the	function’s	readability	as	well	as	to
its	performance.

Figure	100	displays	the	revised	version.	Here	the	local	expression	shows	up
in	the	middle	of	a	cond	expression.	It	defines	a	constant	whose	value	is	the	result
of	 a	 natural	 recursion.	 Now	 recall	 that	 the	 evaluation	 of	 a	 local	 expression
evaluates	 the	 definitions	 once	 before	 proceeding	 to	 the	 body,	 meaning	 (inf
(rest	l))	is	evaluated	once	while	the	body	of	the	local	expression	refers	to	the
result	 twice.	 Thus,	 local	 saves	 the	 re-evaluation	 of	 (inf	 (rest	 l))	 at	 each
stage	in	the	computation.

Figure	100:	Using	local	may	improve	performance

Exercise	 260.	 Confirm	 the	 insight	 about	 the	 performance	 of	 inf.v2	 by
repeating	the	performance	experiment	of	exercise	238.	

Exercise	261.	Consider	the	function	definition	in	figure	101.	Both	clauses	in
the	nested	cond	expression	extract	the	first	item	from	an-inv	and	both	compute
(extract1	(rest	an-inv)).	Use	local	to	name	this	expression.	Does	this	help
increase	 the	 speed	 at	which	 the	 function	 computes	 its	 result?	 Significantly?	A
little	bit?	Not	at	all?	

Figure	101:	A	function	on	inventories,	see	exercise	261

16.3 Local	Definitions	Add	Expressive	Power
The	third	and	last	example	illustrates	how	local	adds	expressive	power	to	BSL
and	BSL+.	Chapter	12.8	presents	 the	design	of	a	world	program	that	simulates
how	a	 finite	 state	machine	 recognizes	 sequences	of	keystrokes.	While	 the	data
analysis	leads	in	a	natural	manner	to	the	data	definitions	in	figure	82,	an	attempt
to	design	the	main	function	of	the	world	program	fails.	Specifically,	even	though
the	 given	 finite	 state	 machine	 remains	 the	 same	 over	 the	 course	 of	 the
simulation,	 the	 state	 of	 the	 world	 must	 include	 it	 so	 that	 the	 program	 can
transition	from	one	state	to	the	next	when	the	player	presses	a	key.

Figure	 102	 shows	 an	 ISL	 solution	 to	 the	 problem.	 It	 uses	 local	 function
definitions	and	can	thus	equate	the	state	of	the	world	with	the	current	state	of	the
finite	 state	 machine.	 Specifically,	 simulate	 locally	 defines	 the	 key-event
handler,	which	consumes	only	 the	current	state	of	 the	world	and	 the	KeyEvent
that	represents	the	player’s	keystroke.	Because	this	locally	defined	function	can
refer	to	the	given	finite	state	machine	fsm,	it	is	possible	to	find	the	next	state	in
the	transition	table—even	though	the	transition	table	is	not	an	argument	to	this
function.

Figure	102:	Power	from	local	function	definitions

As	 the	 figure	 also	 shows,	 all	 other	 functions	 are	 defined	 in	 parallel	 to	 the
main	function.	This	includes	the	function	find,	which	performs	the	actual	search
in	the	transition	table.	The	key	improvement	over	BSL	is	that	a	locally	defined
function	 can	 reference	 both	 parameters	 to	 the	 function	 and	 globally	 defined
auxiliary	functions.

In	 short,	 this	 program	 organization	 signals	 to	 a	 future	 reader	 exactly	 the
insights	 that	 the	 data	 analysis	 stage	 of	 the	 design	 recipe	 for	 world	 programs
finds.	 First,	 the	 given	 representation	 of	 the	 finite	 state	 machine	 remains
unchanged.	 Second,	 what	 changes	 over	 the	 course	 of	 the	 simulation	 is	 the
current	state	of	the	finite	machine.

The	lesson	is	that	the	chosen	programming	language	affects	a	programmer’s
ability	 to	express	solutions,	as	well	as	a	future	reader’s	ability	 to	recognize	the
design	insight	of	the	original	creator.

Exercise	 262.	 Design	 the	 function	 identityM,	 which	 creates	 diagonal
squares	of	0s	and	1s:

Linear	algebra	calls	these	squares	identity	matrices.

>	(identityM	1)	
(list	(list	1))	
>	(identityM	3)	
(list	(list	1	0	0)	(list	0	1	0)	(list	0	0	1))

Use	the	structural	design	recipe	and	exploit	the	power	of	local.	

16.4 Computing	with	local
ISL’s	local	expression	calls	for	the	first	rule	of	calculation	that	is	truly	beyond
pre-algebra	knowledge.	The	rule	is	relatively	simple	but	quite	unusual.	It’s	best
illustrated	with	some	examples.	We	start	with	a	second	look	at	this	definition:

Now	suppose	we	wish	to	calculate	what	DrRacket	might	produce	for

(simulate	AN-FSM	A-STATE)

where	 AN-FSM	 and	 A-STATE	 are	 unknown	 values.	 Using	 the	 usual	 substitution
rule,	we	proceed	as	follows:

This	is	the	body	of	simulate	with	all	occurrences	of	fsm	and	s	replaced	by	the
argument	values	AN-FSM	and	A-STATE,	respectively.

At	this	point	we	are	stuck	because	the	expression	is	a	local	expression,	and
we	don’t	know	how	 to	calculate	with	 it.	So	here	we	go.	To	deal	with	a	local
expression	in	a	program	evaluation,	we	proceed	in	two	steps:

1.	We	rename	the	locally	defined	constants	and	functions	to	use	names	that
aren’t	used	elsewhere	in	the	program.

2.	We	lift	the	definitions	in	the	local	expression	to	the	top	level	and	evaluate

the	body	of	the	local	expression	next.

Stop!	Don’t	think.	Accept	the	two	steps	for	now.
Let’s	apply	these	two	steps	to	our	running	example,	one	at	a	time:

Our	choice	is	to	append	“-1”	to	the	end	of	the	function	name.	If	this	variant	of
the	name	already	exists,	we	use	“-2”	instead,	and	so	on.	So	here	is	the	result	of
step	2:

We	use	⊕	to	indicate	that	the	step	produces	two	pieces.

The	result	is	an	ordinary	program:	some	globally	defined	constants	and	functions
followed	by	an	expression.	The	normal	rules	apply,	and	there	is	nothing	else	to
say.

At	this	point,	it	is	time	to	rationalize	the	two	steps.	For	the	renaming	step,	we
use	a	variant	of	the	inf	function	from	figure	100.	Clearly,

(inf	(list	2	1	3))	==	1

The	question	is	whether	you	can	show	the	calculations	that	DrRacket	performs
to	determine	this	result.

The	first	step	is	straightforward:

We	substitute	(list	2	1	3)	for	l.
Since	the	list	isn’t	empty,	we	skip	the	steps	for	evaluating	the	conditional	and

focus	on	the	next	expression	to	be	evaluated:

Applying	the	two	steps	for	the	rule	of	local	yields	two	parts:	the	local	definition
lifted	to	the	top	and	the	body	of	the	local	expression.	Here	is	how	we	write	this
down:

Curiously,	 the	 next	 expression	we	 need	 to	 evaluate	 is	 the	 right-hand	 side	 of	 a
constant	definition	in	a	local	expression.	But	the	point	of	computing	is	that	you
can	replace	expressions	with	their	equivalents	wherever	you	want:

Once	 again,	 we	 skip	 the	 conditional	 steps	 and	 focus	 on	 the	 else	 clause,
which	 is	 also	 a	 local	 expression.	 Indeed	 it	 is	 another	 variant	 of	 the	 local
expression	in	the	definition	of	inf,	with	a	different	list	value	substituted	for	the
parameter:

Because	 it	 originates	 from	 the	 same	local	 expression	 in	inf,	 it	 uses	 the	 same
name	 for	 the	 constant,	 smallest-in-rest.	 If	 we	 didn’t	 rename	 local
definitions	 before	 lifting	 them,	 we	 would	 introduce	 two	 conflicting
definitions	for	the	same	name,	and	conflicting	definitions	are	catastrophic	for
mathematical	calculations.

Here	is	how	we	continue:

The	key	is	that	we	now	have	two	definitions	generated	from	one	and	the	same
local	expression	in	the	function	definition.	As	a	matter	of	fact	we	get	one	such

definition	per	item	in	the	given	list	(minus	1).
Exercise	263.	Use	DrRacket’s	stepper	to	study	the	steps	of	this	calculation	in

detail.	
Exercise	264.	Use	DrRacket’s	stepper	to	calculate	out	how	it	evaluates

(sup	(list	2	1	3))

where	sup	is	the	function	from	figure	89	equipped	with	local.	
For	the	explanation	of	the	lifting	step,	we	use	a	toy	example	that	gets	to	the

heart	of	the	issue,	namely,	that	functions	are	now	values:

((local	((define	(f	x)	(+	(*	4	(sqr	x))	3)))	f)	
	1)

Deep	down	we	know	that	this	is	equivalent	to	(f	1)	where

(define	(f	x)	(+	(*	4	(sqr	x))	3))

but	 the	 rules	of	pre-algebra	don’t	 apply.	The	key	 is	 that	 functions	can	be	 the
result	of	expressions,	including	local	expressions.	And	the	best	way	to	think
of	 this	 is	 to	move	such	local	definitions	 to	 the	 top	and	 to	deal	with	 them	like
ordinary	definitions.	Doing	so	renders	the	definition	visible	for	every	step	of	the
calculation.	By	now	you	also	understand	that	the	renaming	step	makes	sure	that
the	 lifting	 of	 definitions	 does	 not	 accidentally	 conflate	 names	 or	 introduce
conflicting	definitions.

Here	are	the	first	two	steps	of	the	calculation:

Remember	that	the	second	step	of	the	local	rule	replaces	the	local	expression
with	 its	 body.	 In	 this	 case,	 the	 body	 is	 just	 the	 name	 of	 the	 function,	 and	 its
surrounding	is	an	application	to	1.	The	rest	is	arithmetic:

(f-1	1) 		==	(+	(*	4	(sqr	1))	3)	==	7

Exercise	265.	Use	DrRacket’s	stepper	to	fill	in	any	gaps	above.	
Exercise	266.	Use	DrRacket’s	stepper	to	find	out	how	ISL	evaluates

to	5.	

16.5 Using	Abstractions,	by	Example
Now	that	you	understand	local,	you	can	easily	use	the	abstractions	from	figures
95	and	96.	Let’s	look	at	examples,	starting	with	this	one:

Sample	Problem	Design	add-3-to-all.	The	function	consumes
a	list	of	Posns	and	adds	3	to	the	x-coordinates	of	each.

If	 we	 follow	 the	 design	 recipe	 and	 take	 the	 problem	 statement	 as	 a	 purpose
statement,	we	can	quickly	step	through	the	first	three	steps:

;	[List-of	Posn]	->	[List-of	Posn]	
;	adds	3	to	each	x-coordinate	on	the	given	list	

(check-expect	
		(add-3-to-all	
				(list	(make-posn	3	1)	(make-posn	0	0)))	
		(list	(make-posn	6	1)	(make-posn	3	0)))	

(define	(add-3-to-all	lop)	'())

While	you	can	 run	 the	program,	doing	 so	 signals	a	 failure	 in	 the	one	 test	 case
because	the	function	returns	the	default	value	'().

At	 this	 point,	we	 stop	 and	 ask	what	 kind	 of	 function	we	 are	 dealing	with.
Clearly,	add-3-to-all	is	a	list-processing	function.	The	question	is	whether	it	is
like	any	of	the	functions	in	figures	95	and	96.	The	signature	tells	us	that	add-3-
to-all	is	a	list-processing	function	that	consumes	and	produces	a	list.	In	the	two
figures,	 we	 have	 several	 functions	 with	 similar	 signatures:	 map,	 filter,	 and
sort.

The	 purpose	 statement	 and	 example	 also	 tell	 you	 that	add-3-to-all	 deals
with	 each	 Posn	 separately	 and	 assembles	 the	 results	 into	 a	 single	 list.	 Some
reflection	says	that	also	confirms	that	the	resulting	list	contains	as	many	items	as
the	given	list.	All	this	thinking	points	to	one	function—map—because	the	point
of	 filter	 is	 to	 drop	 items	 from	 the	 list	 and	 sort	 has	 an	 extremely	 specific
purpose.

Here	is	map’s	signature	again:

;	[X	Y]	[X	->	Y]	[List-of	X]	->	[List-of	Y]

It	tells	us	that	map	consumes	a	function	from	X	 to	Y	and	a	list	of	Xs.	Given	that
add-3-to-all	 consumes	 a	 list	 of	 Posns,	 we	 know	 that	 X	 stands	 for	 Posn.
Similarly,	add-3-to-all	is	to	produce	a	list	of	Posns,	and	this	means	we	replace
Y	with	Posn.

From	the	analysis	of	 the	signature,	we	conclude	 that	map	 can	do	 the	 job	of
add-3-to-all	when	given	the	right	function	from	Posns	to	Posns.	With	local,
we	can	express	this	idea	as	a	template	for	add-3-to-all:

Doing	so	reduces	the	problem	to	defining	a	function	on	Posns.
Given	the	example	for	add-3-to-all	and	the	abstract	example	for	map,	you

can	actually	imagine	how	the	evaluation	proceeds:

(add-3-to-all	(list	(make-posn	3	1)	(make-posn	0	0)))	
==	
(map	fp	(list	(make-posn	3	1)	(make-posn	0	0)))	
==	
(list	(fp	(make-posn	3	1))	(fp	(make-posn	0	0)))

And	that	shows	how	fp	is	applied	to	every	single	Posn	on	the	given	list,	meaning
it	is	its	job	to	add	3	to	the	x-coordinate.

From	here,	it	is	straightforward	to	wrap	up	the	definition:

We	chose	add-3-to-1	as	the	name	for	the	local	function	because	the	name	tells
you	what	it	computes.	It	adds	3	to	the	x-coordinate	of	one	Posn.

You	may	now	 think	 that	using	abstractions	 is	hard.	Keep	 in	mind,	 though,
that	 this	first	example	spells	out	every	single	detail	and	that	 it	does	so	because
we	wish	to	teach	you	how	to	pick	the	proper	abstraction.	Let’s	take	a	look	at	a
second	example	a	bit	more	quickly:

Sample	Problem	Design	a	function	that	eliminates	all	Posns	with
y-coordinates	larger	than	100	from	some	given	list.

The	first	two	steps	of	the	design	recipe	yield	this:

;	[List-of	Posn]	->	[List-of	Posn]	
;	eliminates	Posns	whose	y-coordinate	is	>	100	
(check-expect	
	(keep-good	(list	(make-posn	0	110)	(make-posn	0	60)))	
	(list	(make-posn	0	60)))	

(define	(keep-good	lop)	'())

By	now	you	may	have	guessed	that	this	function	is	like	filter,	whose	purpose
is	to	separate	the	“good”	from	the	“bad.”

With	local	thrown	in,	the	next	step	is	also	straightforward:

The	local	function	definition	introduces	the	helper	function	needed	for	filter,
and	the	body	of	 the	local	expression	applies	filter	 to	 this	 local	function	and
the	given	list.	The	local	function	is	called	good?	because	filter	retains	all	those
items	of	lop	for	which	good?	produces	#true.

Before	 you	 read	 on,	 analyze	 the	 signature	 of	 filter	 and	 keep-good	 and
determine	 why	 the	 helper	 function	 consumes	 individual	 Posns	 and	 produces
Booleans.

Putting	all	of	our	ideas	together	yields	this	definition:

Explain	the	definition	of	good?	and	simplify	it.
Before	we	spell	out	a	design	recipe,	let’s	deal	with	one	more	example:

Sample	Problem	Design	a	function	that	determines	whether	any
of	a	list	of	Posns	is	close	to	some	given	position	pt	where	“close”
means	a	distance	of	at	most	5	pixels.

This	problem	clearly	consists	of	two	distinct	parts:	one	concerns	processing	the
list	 and	 the	other	one	calls	 for	 a	 function	 that	determines	whether	 the	distance
between	a	point	and	pt	is	“close.”	Since	this	second	part	is	unrelated	to	the	reuse
of	 abstractions	 for	 list	 traversals,	 we	 assume	 the	 existence	 of	 an	 appropriate
function:

;	Posn	Posn	Number	->	Boolean	
;	is	the	distance	between	p	and	q	less	than	d	
(define	(close-to	p	q	d)	…)

You	should	complete	this	definition	on	your	own.
As	 required	 by	 the	 problem	 statement,	 the	 function	 consumes	 two

arguments:	the	list	of	Posns	and	the	“given”	point	pt.	It	produces	a	Boolean:

The	signature	differentiates	this	example	from	the	preceding	ones.
The	Boolean	range	also	gives	away	a	clue	with	respect	to	figures	95	and	96.

Only	two	functions	in	this	list	produce	Boolean	values—andmap	and	ormap—and
they	 must	 be	 primary	 candidates	 for	 defining	 close?’s	 body.	 While	 the
explanation	of	andmap	says	that	some	property	must	hold	for	every	item	on	the
given	list,	the	purpose	statement	for	ormap	tells	us	that	it	looks	for	only	one	such
item.	Given	that	close?	just	checks	whether	one	of	the	Posns	is	close	to	pt,	we
should	try	ormap	first.

Let’s	 apply	 our	 standard	 “trick”	 of	 adding	 a	 local	 whose	 body	 uses	 the
chosen	abstraction	on	some	locally	defined	function	and	the	given	list:

Following	the	description	of	ormap,	the	local	function	consumes	one	item	of	the
list	 at	 a	 time.	 This	 accounts	 for	 the	 Posn	 part	 of	 its	 signature.	Also,	 the	 local
function	is	expected	to	produce	#true	or	#false,	and	ormap	checks	these	results
until	it	finds	#true.

Here	is	a	comparison	of	the	signature	of	ormap	and	close?,	starting	with	the
former:

;	[X]	[X	->	Boolean]	[List-of	X]	->	Boolean

In	our	case,	the	list	argument	is	a	list	of	Posns.	Hence	X	stands	for	Posn,	which
explains	 what	 is-one-close?	 consumes.	 Furthermore,	 it	 determines	 that	 the
result	 of	 the	 local	 function	 must	 be	 Boolean	 so	 that	 it	 can	 work	 as	 the	 first
argument	to	ormap.

The	rest	of	the	work	requires	just	a	bit	more	thinking.	While	is-one-close?
consumes	one	argument—a	Posn—the	close-to	 function	consumes	 three:	 two
Posns	and	a	“tolerance”	value.	While	the	argument	of	is-one-close?	is	one	of
the	two	Posns,	it	is	also	obvious	that	the	other	one	is	pt,	the	argument	of	close?
itself.	Naturally	the	“tolerance”	argument	is	5,	as	stated	in	the	problem:

Note	 two	properties	of	 this	definition.	First,	we	 stick	 to	 the	 rule	 that	 constants
deserve	definitions.	Second,	 the	 reference	 to	pt	 in	is-one-close?	 signals	 that
this	Posn	stays	the	same	for	the	entire	traversal	of	lop.

16.6 Designing	with	Abstractions
The	three	sample	problems	from	the	preceding	section	suffice	for	formulating	a
design	recipe:

1.	 Step	 1	 is	 to	 follow	 the	 design	 recipe	 for	 functions	 for	 three	 steps.
Specifically,	 you	 should	 distill	 the	 problem	 statement	 into	 a	 signature,	 a
purpose	statement,	an	example,	and	a	stub	definition.
Consider	 the	problem	of	defining	a	 function	 that	places	 small	 red	circles
on	a	200	×	200	canvas	for	a	given	list	of	Posns.	The	first	three	steps	of	the
design	recipe	yields	this	much:

Add	definitions	for	the	constants	so	DrRacket	can	run	the	code.

2.	Next	we	 exploit	 the	 signature	 and	 purpose	 statement	 to	 find	 a	matching
abstraction.	To	match	means	to	pick	an	abstraction	whose	purpose	is	more
general	than	the	one	for	the	function	to	be	designed;	it	also	means	that	the
signatures	are	related.	It	is	often	best	to	start	with	the	desired	output	and	to
find	an	abstraction	that	has	the	same	or	a	more	general	output.
For	our	 running	example,	 the	desired	output	 is	 an	 Image.	While	none	of
the	available	abstractions	produces	an	image,	two	of	them	have	a	variable
to	the	right	of

meaning	we	can	plug	in	any	data	collection	we	want.	If	we	do	use	Image,

the	signature	on	the	left	of	->	demands	a	helper	function	that	consumes	an
X	 together	with	an	Image	and	produces	an	Image.	Furthermore,	since	 the
given	list	contains	Posns,	X	does	stand	for	the	Posn	collection.

3.	Write	 down	 a	 template.	 For	 the	 reuse	 of	 abstractions,	 a	 template	 uses
local	for	two	different	purposes.	The	first	one	is	to	note	which	abstraction
to	use,	and	how,	in	the	body	of	the	local	expression.	The	second	one	is	to
write	 down	 a	 stub	 for	 the	 helper	 function:	 its	 signature,	 its	 purpose
(optionally),	and	its	header.	Keep	in	mind	that	the	signature	comparison	in
the	preceding	step	suggests	most	of	the	signature	for	the	auxiliary	function.
Here	is	what	this	template	looks	like	for	our	running	example	if	we	choose
the	foldr	function:

The	foldr	description	calls	for	a	“base”	Image	value,	to	be	used	if	or	when
the	 list	 is	 empty.	 In	our	 case,	we	 clearly	want	 the	 empty	 canvas	 for	 this
case.	 Otherwise,	 foldr	 uses	 a	 helper	 function	 and	 traverses	 the	 list	 of
Posns.

4.	 Finally,	 it	 is	 time	 to	 define	 the	 auxiliary	 function	 inside	local.	 In	most
cases,	 this	 function	 consumes	 relatively	 simple	 kinds	 of	 data,	 like	 those
encountered	 in	 part	 I.	 You	 know	 how	 to	 design	 those	 in	 principle.	 The
difference	 is	 that	 now	 you	 use	 not	 only	 the	 function’s	 arguments	 and
global	constants	but	also	the	arguments	of	the	surrounding	function.
In	our	 running	example,	 the	purpose	of	 the	helper	 function	 is	 to	add	one
dot	 to	 the	 given	 scene,	 which	 you	 can	 (1)	 guess	 or	 (2)	 derive	 from	 the
example:

5.	The	last	step	is	to	test	the	definition	in	the	usual	manner.
For	 abstract	 functions,	 it	 is	 occasionally	 possible	 to	 use	 the	 abstract
example	 of	 their	 purpose	 statement	 to	 confirm	 their	workings	 at	 a	more
general	 level.	 You	 may	 wish	 to	 use	 the	 abstract	 example	 for	 foldr	 to
confirm	that	dots	does	add	one	dot	after	another	to	the	background	scene.

In	the	third	step,	we	picked	foldr	without	further	ado.	Experiment	with	foldl	to
see	how	 it	would	help	complete	 this	 function.	Functions	 like	foldl	 and	foldr
are	well-known	and	are	spreading	in	usage	in	various	forms.	Becoming	familiar
with	them	is	a	good	idea,	and	that’s	the	point	of	the	next	two	sections.

16.7 Finger	Exercises:	Abstraction
Exercise	 267.	Use	map	 to	define	 the	 function	convert-euro,	which	converts	 a
list	 of	 US$	 amounts	 into	 a	 list	 of	 €	 amounts	 based	 on	 an	 exchange	 rate	 of
US$1.06	per	€	(on	April	13,	2017).

Also	 use	 map	 to	 define	 convertFC,	 which	 converts	 a	 list	 of	 Fahrenheit
measurements	to	a	list	of	Celsius	measurements.

Finally,	try	your	hand	at	translate,	a	function	that	translates	a	list	of	Posns
into	a	list	of	lists	of	pairs	of	numbers.	

Exercise	 268.	 An	 inventory	 record	 specifies	 the	 name	 of	 an	 item,	 a
description,	the	acquisition	price,	and	the	recommended	sales	price.

Define	 a	 function	 that	 sorts	 a	 list	 of	 inventory	 records	 by	 the	 difference
between	the	two	prices.	

Exercise	 269.	 Define	 eliminate-expensive.	 The	 function	 consumes	 a
number,	ua,	 and	 a	 list	 of	 inventory	 records,	 and	 it	 produces	 a	 list	 of	 all	 those
structures	whose	sales	price	is	below	ua.

Then	 use	 filter	 to	 define	 recall,	 which	 consumes	 the	 name	 of	 an
inventory	item,	called	ty,	and	a	list	of	 inventory	records	and	which	produces	a
list	of	inventory	records	that	do	not	use	the	name	ty.

In	 addition,	 define	 selection,	 which	 consumes	 two	 lists	 of	 names	 and
selects	all	those	from	the	second	one	that	are	also	on	the	first.	

Exercise	270.	Use	build-list	to	define	a	function	that

1.	creates	the	list	(list	0	…	(-	n	1))	for	any	natural	number	n;

2.	creates	the	list	(list	1	…	n)	for	any	natural	number	n;

3.	creates	the	list	(list	1	1/2	…	1/n)	for	any	natural	number	n;

4.	creates	the	list	of	the	first	n	even	numbers;	and

5.	creates	a	diagonal	square	of	0s	and	1s;	see	exercise	262.

Finally,	define	tabulate	from	exercise	250	using	build-list.	
Exercise	 271.	 Use	 ormap	 to	 define	 find-name.	 The	 function	 consumes	 a

name	and	a	list	of	names.	It	determines	whether	any	of	the	names	on	the	latter

are	equal	to	or	an	extension	of	the	former.
With	 andmap	 you	 can	 define	 a	 function	 that	 checks	 all	 names	 on	 a	 list	 of

names	that	start	with	the	letter	"a".
Should	 you	 use	 ormap	 or	 andmap	 to	 define	 a	 function	 that	 ensures	 that	 no

name	on	some	list	exceeds	a	given	width?	
Exercise	272.	Recall	that	the	append	function	in	ISL	concatenates	the	items

of	 two	 lists	 or,	 equivalently,	 replaces	 '()	 at	 the	 end	 of	 the	 first	 list	 with	 the
second	list:

Use	 foldr	 to	 define	 append-from-fold.	 What	 happens	 if	 you	 replace	 foldr
with	foldl?

Now	use	one	of	the	fold	functions	to	define	functions	that	compute	the	sum
and	the	product,	respectively,	of	a	list	of	numbers.

With	one	of	 the	 fold	 functions,	 you	can	define	 a	 function	 that	 horizontally
composes	a	list	of	Images.	Hints	(1)	Look	up	beside	and	empty-image.	Can	you
use	 the	other	 fold	 function?	Also	define	a	 function	 that	 stacks	a	 list	of	 images
vertically.	(2)	Check	for	above	in	the	libraries.	

Exercise	273.	The	fold	functions	are	so	powerful	that	you	can	define	almost
any	list	processing	functions	with	them.	Use	fold	to	define	map.	

Exercise	274.	Use	existing	abstractions	to	define	the	prefixes	and	suffixes
functions	from	exercise	190.	Ensure	that	they	pass	the	same	tests	as	the	original
function.	

16.8 Projects:	Abstraction
Now	 that	 you	 have	 some	 experience	 with	 the	 existing	 list-processing
abstractions	in	ISL,	it	is	time	to	tackle	some	of	the	small	projects	for	which	you
already	have	programs.	The	challenge	is	to	look	for	two	kinds	of	improvements.
First,	 inspect	 the	programs	for	functions	 that	 traverse	 lists.	For	 these	functions,
you	already	have	signatures,	purpose	statements,	 tests,	and	working	definitions
that	pass	the	tests.	Change	the	definitions	to	use	abstractions	from	figures	95	and
96.	 Second,	 also	 determine	 whether	 there	 are	 opportunities	 to	 create	 new
abstractions.	 Indeed,	 you	 might	 be	 able	 to	 abstract	 across	 these	 classes	 of
programs	 and	 provide	 generalized	 functions	 that	 help	 you	 write	 additional
programs.

You	may	wish	to	tackle	these	exercises	again	after	studying	chapter	17.

Exercise	 275.	 Chapter	 12.1	 deals	 with	 relatively	 simple	 tasks	 relating	 to
English	 dictionaries.	 The	 design	 of	 two	 of	 them	 just	 call	 out	 for	 the	 use	 of
existing	abstractions:

•  Design	most-frequent.	The	function	consumes	a	Dictionary	and	produces
the	Letter-Count	for	the	letter	that	is	most	frequently	used	as	the	first	one
in	the	words	of	the	given	Dictionary.

•  Design	words-by-first-letter.	The	function	consumes	a	Dictionary	and
produces	a	list	of	Dictionarys,	one	per	Letter.	Do	not	include	'()	if	there
are	no	words	for	some	letter;	ignore	the	empty	grouping	instead.

For	the	data	definitions,	see	figure	74.	
Exercise	 276.	Chapter	 12.2	 explains	 how	 to	 analyze	 the	 information	 in	 an

iTunes	XML	library.

•  Design	select-album-date.	The	function	consumes	the	title	of	an	album,
a	date,	and	an	LTracks.	It	extracts	from	the	latter	the	list	of	tracks	from	the
given	album	that	have	been	played	after	the	date.

•  Design	select-albums.	The	function	consumes	an	LTracks.	It	produces	a

list	 of	LTracks,	 one	 per	 album.	Each	 album	 is	 uniquely	 identified	 by	 its
title	and	shows	up	in	the	result	only	once.

See	figure	77	for	the	services	provided	by	the	2htdp/itunes	library.	
Exercise	 277.	 Chapter	 12.7	 spells	 out	 a	 game	 of	 space	 war.	 In	 the	 basic

version,	 a	 UFO	 descends	 and	 a	 player	 defends	 with	 a	 tank.	 One	 additional
suggestion	is	to	equip	the	UFO	with	charges	that	it	can	drop	at	the	tank;	the	tank
is	destroyed	if	a	charge	comes	close	enough.

Inspect	the	code	of	your	project	for	places	where	it	can	benefit	from	existing
abstraction,	that	is,	processing	lists	of	shots	or	charges.

Once	you	have	simplified	the	code	with	the	use	of	existing	abstractions,	look
for	opportunities	to	create	abstractions.	Consider	moving	lists	of	objects	as	one
example	where	abstraction	may	pay	off.	

Exercise	278.	Chapter	12.5	explains	how	another	one	of	the	oldest	computer
games	 work.	 The	 game	 features	 a	 worm	 that	 moves	 at	 a	 constant	 speed	 in	 a
player-controlled	direction.	When	it	encounters	food,	it	eats	the	food	and	grows.
When	it	runs	into	the	wall	or	into	itself,	the	game	is	over.

This	 project	 can	 also	 benefit	 from	 the	 abstract	 list-processing	 functions	 in
ISL.	Look	 for	places	 to	use	 them	and	 replace	existing	code,	 a	piece	at	 a	 time.
Tests	will	ensure	that	you	aren’t	introducing	mistakes.	

17 Nameless	Functions
Using	 abstract	 functions	 needs	 functions	 as	 arguments.	 Occasionally	 these
functions	are	existing	primitive	functions,	library	functions,	or	functions	that	you
defined:

•  (build-list	n	add1)	creates	(list	1…	n);

•  (foldr	 cons	 another-list	 a-list)	 concatenates	 the	 items	 in	 a-list
and	another-list	into	a	single	list;	and

•  (foldr	above	empty-image	images)	stacks	the	given	images.

At	other	times,	it	requires	the	definition	of	a	simple	helper	function,	a	definition
that	often	consists	of	a	single	line.	Consider	this	use	of	filter:

It	 finds	 all	 items	 on	 an	 inventory	 list	 whose	 price	 is	 below	 th.	 The	 auxiliary
function	is	nearly	trivial	yet	its	definition	takes	up	three	lines.

In	DrRacket,	choose	“Intermediate	Student	with	lambda”	from	the	“How	to	Design	Programs”
submenu	in	the	“Language”	menu.	The	history	of	lambda	is	intimately	involved	with	the	early	history
of	programming	and	programming	language	design.

This	situation	calls	for	an	improvement	to	the	language.	Programmers	should
be	able	to	create	such	small	and	insignificant	functions	without	much	effort.	The
next	 level	 in	 our	 hierarchy	 of	 teaching	 languages,	 “Intermediate	 Student
Language	 with	 lambda,”	 solves	 the	 problem	 with	 a	 new	 concept,	 nameless
functions.	This	 chapter	 introduces	 the	 concept:	 its	 syntax,	 its	meaning,	 and	 its
pragmatics.	With	lambda,	the	above	definition	is,	conceptually	speaking,	a	one-

liner:

;	[List-of	IR]	Number	->	Boolean	
(define	(find	l	th)	
		(filter	(lambda	(ir)	(<=	(ir-price	ir)	th))	l))

The	 first	 two	 sections	 focus	 the	mechanics	 of	lambda;	 the	 remaining	 ones	 use
lambda	 for	 instantiating	 abstractions,	 for	 testing	 and	 specifying,	 and	 for
representing	infinite	data.

17.1 Functions	from	lambda
The	syntax	of	lambda	is	straightforward:

(lambda	(variable-1	…	variable-N)	expression)

Its	distinguishing	characteristic	is	the	keyword	lambda.	The	keyword	is	followed
by	a	sequence	of	variables,	enclosed	in	a	pair	of	parentheses.	The	last	piece	is	an
arbitrary	expression,	and	it	computes	the	result	of	the	function	when	it	is	given
values	for	its	parameters.

Here	are	three	simple	examples,	all	of	which	consume	one	argument:

1.	 (lambda	 (x)	 (expt	 10	 x)),	 which	 assumes	 that	 the	 argument	 is	 a
number	and	computes	the	exponent	of	10	to	the	number;

2.	(lambda	(n)	(string-append	"To	"	n	",")),	which	uses	a	given	string
to	synthesize	an	address	with	string-append;	and

3.	(lambda	(ir)	(<=	(ir-price	ir)	th)),	which	 is	 a	 function	on	an	IR
structure	that	extracts	the	price	and	compares	it	with	th.

One	way	to	understand	how	lambda	works	is	to	view	it	as	an	abbreviation	for
a	local	expression.	For	example,

(lambda	(x)	(*	10	x))

is	short	for

(local	((define	some-name	(lambda	(x)	(*	10	x))))	
			some-name)

This	way	of	thinking	about	lambda	shows	one	more	time	why	the	rule	for	computing	with	local	is
complicated.

This	“trick”	works,	in	general,	as	long	as	some-name	does	not	appear	in	the	body
of	the	function.	What	this	means	is	 that	lambda	creates	a	function	with	a	name
that	nobody	knows.	If	nobody	knows	the	name,	it	might	as	well	be	nameless.

To	 use	 a	 function	 created	 from	 a	 lambda	 expression,	 you	 apply	 it	 to	 the
correct	number	of	arguments.	It	works	as	expected:

>	((lambda	(x)	(expt	10	x))	2)	
100	
>	((lambda	(name	rst)	(string-append	name	",	"	rst))	
			"Robby"	
			"etc.")	

"Robby,	etc."	
>	((lambda	(ir)	(<=	(ir-price	ir)	th))	
			(make-ir	"bear"	10))	
#true

Note	how	the	second	sample	 function	 requires	 two	arguments	and	 that	 the	 last
example	assumes	a	definition	for	th	in	the	definitions	window	such	as	this	one:

(define	th	20)

The	result	of	 the	last	example	is	#true	because	the	price	field	of	the	inventory
record	contains	10,	and	10	is	less	than	20.

The	important	point	is	that	these	nameless	functions	can	be	used	wherever	a
function	is	required,	including	with	the	abstractions	from	figure	95:

Once	again,	the	last	example	assumes	a	definition	for	th.

The	dots	are	not	part	of	the	output.

Exercise	 279.	 Decide	 which	 of	 the	 following	 phrases	 are	 legal	 lambda
expressions:

1.	(lambda	(x	y)	(x	y	y))

2.	(lambda	()	10)

3.	(lambda	(x)	x)

4.	(lambda	(x	y)	x)

5.	(lambda	x	10)

Explain	why	they	are	legal	or	illegal.	If	in	doubt,	experiment	in	the	interactions
area	of	DrRacket.	

Exercise	280.	Calculate	the	result	of	the	following	expressions:

Check	your	results	in	DrRacket.	
Exercise	281.	Write	down	a	lambda	expression	that

1.	consumes	a	number	and	decides	whether	it	is	less	than	10;

2.	multiplies	two	given	numbers	and	turns	the	result	into	a	string;

3.	consumes	a	natural	number	and	returns	0	for	evens	and	1	for	odds;

4.	consumes	two	inventory	records	and	compares	them	by	price;	and

5.	adds	a	red	dot	at	a	given	Posn	to	a	given	Image.

Demonstrate	how	to	use	these	functions	in	the	interactions	area.	

17.2 Computing	with	lambda
The	 insight	 that	 lambda	 abbreviates	 a	 certain	 kind	 of	 local	 also	 connects
constant	 definitions	 and	 function	 definitions.	 Instead	 of	 viewing	 function
definitions	 as	given,	we	can	 take	lambdas	 as	 another	 fundamental	 concept	 and
say	 that	 a	 function	 definition	 abbreviates	 a	 plain	 constant	 definition	 with	 a
lambda	expression	on	the	right-hand	side.

It’s	best	to	look	at	some	concrete	examples:

What	this	line	says	is	that	a	function	definition	consists	of	two	steps:	the	creation
of	the	function	and	its	naming.	Here,	the	lambda	on	the	right-hand	side	creates	a
function	 of	 one	 argument	 x	 that	 computes	 10	 ·	 x;	 it	 is	 define	 that	 names	 the
lambda	 expression	f.	We	give	names	 to	 functions	 for	 two	distinct	 reasons.	On
the	one	hand,	a	function	is	often	called	more	than	once	from	other	functions,	and
we	wouldn’t	want	to	spell	out	the	function	with	a	lambda	each	time	it	is	called.
On	the	other	hand,	functions	are	often	recursive	because	they	process	recursive
forms	of	data,	and	naming	functions	makes	it	easy	to	create	recursive	functions.

Exercise	282.	Experiment	with	the	above	definitions	in	DrRacket.
Also	add

;	Number	->	Boolean	
(define	(compare	x)	
		(=	(f-plain	x)	(f-lambda	x)))

to	 the	definitions	area	after	 renaming	 the	 left-hand	f	 to	f-plain	 and	 the	 right-
hand	one	to	f-lambda.	Then	run

(compare	(random	100000))

a	few	times	to	make	sure	the	two	functions	agree	on	all	kinds	of	inputs.	
If	function	definitions	are	just	abbreviations	for	constant	definitions,	we	can

replace	the	function	name	by	its	lambda	expression:

(f	(f	42))	
==	
((lambda	(x)	(*	10	x))	((lambda	(x)	(*	10	x))	42))

Strangely	 though,	 this	substitution	appears	 to	create	an	expression	 that	violates
the	grammar	as	we	know	it.	To	be	precise,	it	generates	an	application	expression
whose	function	position	is	a	lambda	expression.

The	 point	 is	 that	 ISL+’s	 grammar	 differs	 from	 ISL’s	 in	 two	 aspects:	 it
obviously	 comes	 with	 lambda	 expressions,	 but	 it	 also	 allows	 arbitrary
expressions	 to	 show	up	 in	 the	 function	 position	 of	 an	 application.	This	means
that	you	may	need	to	evaluate	the	function	position	before	you	can	proceed	with
an	application,	but	you	know	how	to	evaluate	most	expressions.	Of	course,	 the
real	 difference	 is	 that	 the	 evaluation	 of	 an	 expression	 may	 yield	 a	 lambda
expression.	Functions	really	are	values.	The	following	grammar	revises	the	one
from	intermezzo	1	to	summarize	these	differences:

Alonzo	Church,	who	invented	lambda	in	the	late	1920s,	hoped	to	create	a	unifying	theory	of	functions.
He	stated	the	beta	axiom	roughly	like	this.—From	his	work	we	know	that	from	a	theoretical
perspective,	a	language	does	not	need	local	once	it	has	lambda.	But	the	margin	of	this	page	is	too
small	to	explain	this	idea	properly.	If	you	are	curious,	read	up	on	the	Y	combinator.

What	you	really	need	to	know	is	how	to	evaluate	the	application	of	a	lambda
expression	to	arguments,	and	that	is	surprisingly	straightforward:

((lambda	(x-1	…	x-n)	f-body)	v-1	…	v-n)	==	f-body	
;	with	all	occurrences	of	x-1	…	x-n	
;	replaced	with	v-1	…	v-n,	respectively	[beta-v]

That	 is,	 the	 application	 of	 a	 lambda	 expression	 proceeds	 just	 like	 that	 of	 an
ordinary	 function.	 We	 replace	 the	 parameters	 of	 the	 function	 with	 the	 actual
argument	values	and	compute	the	value	of	the	function	body.

Here	is	how	to	use	this	law	on	the	first	example	in	this	chapter:

((lambda	(x)	(*	10	x))	2)	
==	
(*	10	2)	
==	
20

The	second	one	proceeds	in	an	analogous	manner:

((lambda	(name	rst)	(string-append	name	",	"	rst))	
	"Robby"	"etc.")	
==	
(string-append	"Robby"	",	"	"etc.")	
==	
"Robby,	etc."

Stop!	Use	your	intuition	to	calculate	the	third	example:

((lambda	(ir)	(<=	(ir-price	ir)	th))	
	(make-ir	"bear"	10))

Assume	th	is	larger	than	or	equal	to	10.
Exercise	283.	Confirm	that	DrRacket’s	stepper	can	deal	with	lambda.	Use	it

to	step	through	the	third	example	and	also	to	determine	how	DrRacket	evaluates
the	following	expressions:

Exercise	284.	Step	through	the	evaluation	of	this	expression:

((lambda	(x)	x)	(lambda	(x)	x))

Now	step	through	this	one:

((lambda	(x)	(x	x))	(lambda	(x)	x))

Stop!	What	do	you	think	we	should	try	next?
Yes,	try	to	evaluate

((lambda	(x)	(x	x))	(lambda	(x)	(x	x)))

Be	ready	to	hit	STOP.	

17.3 Abstracting	with	lambda
Although	 it	may	 take	 you	 a	while	 to	 get	 used	 to	lambda	 notation,	 you’ll	 soon
notice	 that	 lambda	 makes	 short	 functions	 much	 more	 readable	 than	 local
definitions.	Indeed,	you	will	find	that	you	can	adapt	step	4	of	the	design	recipe
from	chapter	16.6	to	use	lambda	instead	of	local.	Consider	the	running	example
from	that	section.	Its	template	based	on	local	is	this:

If	you	spell	out	 the	parameters	 so	 that	 their	names	 include	signatures,	you	can
easily	pack	all	the	information	from	local	into	a	single	lambda:

From	here,	you	should	be	able	to	complete	the	definition	as	well	as	you	did	from
the	original	template:

Let’s	illustrate	lambda	with	some	more	examples	from	chapter	16.5:

•  the	purpose	of	the	first	function	is	to	add	3	to	each	x-coordinate	on	a	given
list	of	Posns:

Because	map	expects	a	function	of	one	argument,	we	clearly	want	(lambda
(p)…).	The	function	then	deconstructs	p,	adds	3	to	the	x-coordinate,	and
repackages	the	data	into	a	Posn.

•  the	second	one	eliminates	Posns	whose	y-coordinate	is	above	100:

;	[List-of	Posn]	->	[List-of	Posn]	

(define	(keep-good	lop)	

		(filter	(lambda	(p)	(<=	(posn-y	p)	100))	lop))

Here	we	know	that	filter	needs	a	function	of	one	argument	that	produces
a	Boolean.	First,	the	lambda	function	extracts	the	y-coordinate	from	the
Posn	to	which	filter	applies	the	function.	Second,	it	checks	whether	it	is
less	than	or	equal	to	100,	the	desired	limit.

•  and	 the	 third	 one	 determines	whether	 any	 Posn	 on	lop	 is	 close	 to	 some
given	point:

Like	the	preceding	two	examples,	ormap	is	a	function	that	expects	a
function	of	one	argument	and	applies	this	functional	argument	to	every
item	on	the	given	list.	If	any	result	is	#true,	ormap	returns	#true,	too;	if
all	results	are	#false,	ormap	produces	#false.

It	is	best	to	compare	the	definitions	from	chapter	16.5	and	the	definitions	above
side	by	side.	When	you	do	so,	you	should	notice	how	easy	 the	 transition	 from
local	to	lambda	is	and	how	concise	the	lambda	version	is	in	comparison	to	the

local	version.	Thus,	 if	you	are	ever	in	doubt,	design	with	local	 first	and	then
convert	 this	 tested	 version	 into	 one	 that	 uses	lambda.	Keep	 in	mind,	 however,
that	lambda	 is	 not	 a	 cure-all.	The	 locally	 defined	 function	 comes	with	 a	 name
that	explains	its	purpose,	and,	if	it	is	long,	the	use	of	an	abstraction	with	a	named
function	is	much	easier	to	understand	than	one	with	a	large	lambda.

The	 following	 exercises	 request	 that	 you	 solve	 the	 problems	 from	 chapter
16.7	with	lambda	in	ISL+.

Exercise	285.	Use	map	to	define	the	function	convert-euro,	which	converts
a	 list	 of	 US$	 amounts	 into	 a	 list	 of	 €	 amounts	 based	 on	 an	 exchange	 rate	 of
US$1.06	per	€.

Also	 use	 map	 to	 define	 convertFC,	 which	 converts	 a	 list	 of	 Fahrenheit
measurements	to	a	list	of	Celsius	measurements.

Finally,	try	your	hand	at	translate,	a	function	that	translates	a	list	of	Posns
into	a	list	of	lists	of	pairs	of	numbers.	

Exercise	286.	An	inventory	record	specifies	the	name	of	an	inventory	item,	a
description,	the	acquisition	price,	and	the	recommended	sales	price.

Define	 a	 function	 that	 sorts	 a	 list	 of	 inventory	 records	 by	 the	 difference
between	the	two	prices.	

Exercise	287.	Use	filter	to	define	eliminate-exp.	The	function	consumes
a	number,	ua,	and	a	list	of	inventory	records	(containing	name	and	price),	and	it
produces	a	list	of	all	those	structures	whose	acquisition	price	is	below	ua.

Then	 use	 filter	 to	 define	 recall,	 which	 consumes	 the	 name	 of	 an
inventory	item,	called	ty,	and	a	list	of	 inventory	records	and	which	produces	a
list	of	inventory	records	that	do	not	use	the	name	ty.

In	 addition,	 define	 selection,	 which	 consumes	 two	 lists	 of	 names	 and
selects	all	those	from	the	second	one	that	are	also	on	the	first.	

Exercise	288.	Use	build-list	and	lambda	to	define	a	function	that

1.	creates	the	list	(list	0	…	(-	n	1))	for	any	natural	number	n;

2.	creates	the	list	(list	1	…	n)	for	any	natural	number	n;

3.	creates	the	list	(list	1	1/2	…	1/n)	for	any	natural	number	n;

4.	creates	the	list	of	the	first	n	even	numbers;	and

5.	creates	a	diagonal	square	of	0s	and	1s;	see	exercise	262.

Also	define	tabulate	with	lambda.	
Exercise	 289.	 Use	 ormap	 to	 define	 find-name.	 The	 function	 consumes	 a

name	and	a	list	of	names.	It	determines	whether	any	of	the	names	on	the	latter
are	equal	to	or	an	extension	of	the	former.

With	 andmap	 you	 can	 define	 a	 function	 that	 checks	 all	 names	 on	 a	 list	 of
names	that	start	with	the	letter	"a".

Should	 you	 use	 ormap	 or	 andmap	 to	 define	 a	 function	 that	 ensures	 that	 no
name	on	some	list	exceeds	some	given	width?	

Exercise	290.	Recall	that	the	append	function	in	ISL	concatenates	the	items
of	 two	 lists	 or,	 equivalently,	 replaces	 '()	 at	 the	 end	 of	 the	 first	 list	 with	 the
second	list:

(equal?	(append	(list	1	2	3)	(list	4	5	6	7	8))	
								(list	1	2	3	4	5	6	7	8))

Use	 foldr	 to	 define	 append-from-fold.	 What	 happens	 if	 you	 replace	 foldr
with	foldl?

Now	use	one	of	the	fold	functions	to	define	functions	that	compute	the	sum
and	the	product,	respectively,	of	a	list	of	numbers.

With	one	of	 the	 fold	 functions,	 you	can	define	 a	 function	 that	 horizontally
composes	a	list	of	Images.	Hints	(1)	Look	up	beside	and	empty-image.	Can	you
use	 the	other	 fold	 function?	Also	define	a	 function	 that	 stacks	a	 list	of	 images
vertically.	(2)	Check	for	above	in	the	libraries.	

Exercise	291.	The	fold	functions	are	so	powerful	that	you	can	define	almost
any	 list-processing	 functions	 with	 them.	 Use	 fold	 to	 define	 map-via-fold,
which	simulates	map.	

17.4 Specifying	with	lambda
Figure	99	shows	a	generalized	sorting	function	that	consumes	a	list	of	values	and
a	comparison	function	for	such	values.	For	convenience,	figure	103	reproduces
the	 essence	 of	 the	 definition.	 The	 body	 of	 sort-cmp	 introduces	 two	 local
auxiliary	 functions:	isort	 and	insert.	 In	 addition,	 the	 figure	 also	 comes	with
two	 test	 cases	 that	 illustrate	 the	workings	of	sort-cmp.	One	demonstrates	how
the	function	works	on	strings	and	the	other	one	on	numbers.

Figure	103:	A	general	sorting	function

Now	 take	 a	 quick	 look	 at	 exercise	 186.	 It	 asks	 you	 to	 formulate	 check-
satisfied	 tests	 for	 sort>	 using	 the	 sorted>?	 predicate.	 The	 former	 is	 a
function	 that	sorts	 lists	of	numbers	 in	descending	order;	 the	 latter	 is	a	 function
that	determines	whether	a	list	of	numbers	is	sorted	in	descending	order.	Hence,
the	solution	of	this	exercise	is

(check-satisfied	(sort>	'())	sorted>?)	
(check-satisfied	(sort>	'(12	20	-5))	sorted>?)	
(check-satisfied	(sort>	'(3	2	1))	sorted>?)	
(check-satisfied	(sort>	'(1	2	3))	sorted>?)

The	question	is	how	to	reformulate	the	tests	for	sort-cmp	analogously.
Since	 sort-cmp	 consumes	 a	 comparison	 function	 together	 with	 a	 list,	 the

generalized	version	of	sorted>?	must	take	one	too.	If	so,	the	following	test	cases
might	look	like	this:

Both	 (sorted	 string<?)	 and	 (sorted	 <)	must	 produce	 predicates.	 The	 first
one	checks	whether	some	list	of	strings	is	sorted	according	to	string<?,	and	the
second	one	whether	a	list	of	numbers	is	sorted	via	<.

We	have	thus	worked	out	the	desired	signature	and	purpose	of	sorted:

;	[X	X	->	Boolean]	->	[[List-of	X]	->	Boolean]	
;	produces	a	function	that	determines	whether	
;	some	list	is	sorted	according	to	cmp	
(define	(sorted	cmp)	
		…)

What	we	need	to	do	now	is	to	go	through	the	rest	of	the	design	process.
Let’s	first	finish	the	header.	Remember	that	the	header	produces	a	value	that

matches	the	signature	and	is	likely	to	break	most	of	the	tests/examples.	Here	we
need	sorted	to	produce	a	function	that	consumes	a	list	and	produces	a	Boolean.
With	lambda,	that’s	actually	straightforward:

Stop!	This	 is	your	 first	 function-producing	 function.	Read	 the	definition	again.
Can	you	explain	this	definition	in	your	own	words?

Next	we	need	examples.	According	to	our	above	analysis,	sorted	consumes
predicates	such	as	string<?	and	<,	but	clearly,	>,	<=,	and	your	own	comparison
functions	should	be	acceptable,	too.	At	first	glance,	this	suggests	test	cases	of	the
shape

(check-expect	(sorted	string<?)	…)	

(check-expect	(sorted	<)	…)

But,	 (sorted	 …)	 produces	 a	 function,	 and,	 according	 to	 exercise	 245,	 it
impossible	to	compare	functions.

Hence,	 to	 formulate	 reasonable	 test	 cases,	 we	 need	 to	 apply	 the	 result	 of
(sorted	…)	to	appropriate	lists.	And,	based	on	this	insight,	the	test	cases	almost
formulate	 themselves;	 indeed,	 they	can	easily	be	derived	 from	 those	 for	sort-
cmp	in	figure	103:

(check-expect	[(sorted	string<?)	'("b"	"c")]	#true)	
(check-expect	[(sorted	<)	'(1	2	3	4	5	6)]	#true)

Note	 Using	 square	 instead	 of	 parentheses	 highlights	 that	 the	 first	 expression
produces	a	function,	which	is	then	applied	to	arguments.

From	this	point	on,	the	design	is	quite	conventional.	What	we	basically	wish
to	design	is	a	generalization	of	sorted>?	from	chapter	9.2;	let’s	call	this	function
sorted/l.	What	 is	 unusual	 about	 sorted/l	 is	 that	 it	 “lives”	 in	 the	 body	 of	 a
lambda	inside	of	sorted:

Note	how	sorted/l	is	defined	locally	yet	refers	to	cmp.
Exercise	292.	Design	the	function	sorted?,	which	comes	with	the	following

signature	and	purpose	statement:

;	[X	X	->	Boolean]	[NEList-of	X]	->	Boolean	
;	determines	whether	l	is	sorted	according	to	cmp	

(check-expect	(sorted?	<	'(1	2	3))	#true)	
(check-expect	(sorted?	<	'(2	1	3))	#false)	
(define	(sorted?	cmp	l)	
		#false)

The	wish	list	even	includes	examples.	

Figure	 104	 shows	 the	 result	 of	 the	 design	 process.	 The	 sorted	 function
consumes	 a	 comparison	 function	 cmp	 and	 produces	 a	 predicate.	 The	 latter
consumes	a	list	l0	and	uses	a	locally	defined	function	to	determine	whether	all
the	 items	 in	 l0	 are	 ordered	 via	 cmp.	 Specifically,	 the	 locally	 defined	 function
checks	a	non-empty	list;	in	the	body	of	local,	sorted	first	checks	whether	l0	is
empty,	in	which	case	it	simply	produces	#true	because	the	empty	list	is	sorted.

Figure	104:	A	curried	predicate	for	checking	the	ordering	of	a	list

Stop!	Could	you	redefine	sorted	to	use	sorted?	from	exercise	292?	Explain
why	sorted/l	does	not	consume	cmp	as	an	argument.

The	 sorted	 function	 in	 figure	 104	 is	 a	 curried	 version	 of	 a	 function	 that
consumes	 two	arguments:	cmp	 and	l0.	 Instead	of	 consuming	 two	arguments	 at
once,	a	curried	function	consumes	one	argument	and	then	returns	a	function	that
consumes	the	second	one.

The	verb	“curry”	honors	Haskell	Curry,	the	second	person	to	invent	the	idea.	The	first	one	was
Mosses	Schönfinkel.

Exercise	 186	 asks	 how	 to	 formulate	 a	 test	 case	 that	 exposes	 mistakes	 in
sorting	functions.	Consider	this	definition:

;	List-of-numbers	->	List-of-numbers	
;	produces	a	sorted	version	of	l	
(define	(sort-cmp/bad	l)	
	'(9	8	7	6	5	4	3	2	1	0))

Formulating	such	a	test	case	with	check-expect	is	straightforward.
To	 design	 a	 predicate	 that	 exposes	 sort-cmp/bad	 as	 flawed,	 we	 need	 to

understand	 the	 purpose	 of	 sort-cmp	 or	 sorting	 in	 general.	 It	 clearly	 is
unacceptable	 to	 throw	away	the	given	 list	and	 to	produce	some	other	 list	 in	 its
place.	 That’s	 why	 the	 purpose	 statement	 of	 isort	 says	 that	 the	 function
“produces	a	variant	 of”	 the	given	 list.	 “Variant”	means	 that	 the	 function	does
not	throw	away	any	of	the	items	on	the	given	list.

With	these	thoughts	in	mind,	we	can	now	say	that	we	want	a	predicate	that
checks	whether	the	result	is	sorted	and	contains	all	the	items	from	the	given	list:

;	[List-of	X]	[X	X	->	Boolean]	->	[[List-of	X]	->	Boolean]	
;	is	l0	sorted	according	to	cmp	
;	are	all	items	in	list	k	members	of	list	l0	
(define	(sorted-variant-of	k	cmp)	
			(lambda	(l0)	#false))

The	two	lines	of	the	purpose	statement	suggest	examples:

Like	sorted,	sorted-variant-of	consumes	arguments	and	produces	a	function.
For	 the	 first	 case,	 sorted-variant-of	 produces	 #true	 because	 the	 '(2	 3)	 is
sorted	and	it	contains	all	numbers	in	'(3	2).	In	contrast,	the	function	produces
#false	in	the	second	case	because	'(3)	lacks	2	from	the	originally	given	list.

A	two-line	purpose	statement	suggests	 two	tasks,	and	 two	tasks	means	 that
the	function	itself	is	a	combination	of	two	functions:

The	body	of	the	function	is	an	and	expression	that	combines	two	function	calls.
With	the	call	to	the	sorted?	function	from	exercise	292,	the	function	realizes	the

first	 line	 of	 the	 purpose	 statement.	 The	 second	 call,	(contains?	k	l0),	 is	 an
implicit	wish	for	an	auxiliary	function.

We	immediately	give	the	full	definition:

;	[List-of	X]	[List-of	X]	->	Boolean	
;	are	all	items	in	list	k	members	of	list	l	

(check-expect	(contains?	'(1	2	3)	'(1	4	3))	#false)	
(check-expect	(contains?	'(1	2	3	4)	'(1	3))	#true)	

(define	(contains?	l	k)	
		(andmap	(lambda	(in-k)	(member?	in-k	l))	k))

On	 the	 one	 hand,	 we	 have	 never	 explained	 how	 to	 systematically	 design	 a
function	 that	 consumes	 two	 lists,	 and	 it	 actually	 needs	 its	 own	 chapter;	 see
chapter	 23.	 On	 the	 other	 hand,	 the	 function	 definition	 clearly	 satisfies	 the
purpose	 statement.	 The	 andmap	 expression	 checks	 that	 every	 item	 in	 k	 is	 a
member?	of	l,	which	is	what	the	purpose	statement	promises.

Sadly,	 sorted-variant-of	 fails	 to	 describe	 sorting	 functions	 properly.
Consider	this	variant	of	a	sorting	function:

;	[List-of	Number]	->	[List-of	Number]	
;	produces	a	sorted	version	of	l	
(define	(sort-cmp/worse	l)	
		(local	((define	sorted	(sort-cmp	l	<)))	
				(cons	(-	(first	sorted)	1)	sorted)))

It	is	again	easy	to	expose	a	flaw	in	this	function	with	a	check-expect	test	that	it
ought	to	pass	but	clearly	fails:

(check-expect	(sort-cmp/worse	'(1	2	3))	'(1	2	3))

Surprisingly,	a	check-satisfied	test	based	on	sorted-variant-of	succeeds:

Indeed,	such	a	test	succeeds	for	any	list	of	numbers,	not	just	'(1	2	3),	because
the	predicate	generator	merely	checks	 that	all	 the	 items	on	 the	original	 list	 are
members	of	the	resulting	list;	it	fails	to	check	whether	all	items	on	the	resulting
list	are	also	members	of	the	original	list.

The	 easiest	way	 to	 add	 this	 third	 check	 to	sorted-variant-of	 is	 to	 add	 a
third	sub-expression	to	the	and	expression:

We	choose	to	reuse	contains?	but	with	its	arguments	flipped.
At	this	point,	you	may	wonder	why	we	are	bothering	with	the	development

of	such	a	predicate	when	we	can	rule	out	bad	sorting	functions	with	plain	check-
expect	 tests.	The	difference	 is	 that	check-expect	 checks	only	 that	our	 sorting
functions	 work	 on	 specific	 lists.	 With	 a	 predicate	 such	 as	 sorted-variant-
of.v2,	we	can	articulate	the	claim	that	a	sorting	function	works	for	all	possible
inputs:

Let’s	 take	a	close	 look	at	 these	 two	 lines.	The	 first	 line	generates	a	 list	of	500
numbers.	 Every	 time	 you	 ask	 DrRacket	 to	 evaluate	 this	 test,	 it	 is	 likely	 to
generate	a	list	never	seen	before.	The	second	line	is	a	test	case	that	says	sorting
this	generated	list	produces	a	list	that	(1)	is	sorted,	(2)	contains	all	the	numbers
on	the	generated	list,	and	(3)	contains	nothing	else.	In	other	words,	it	 is	almost
like	saying	that	for	all	possible	lists,	sort-cmp	produces	outcomes	that	sorted-
variant-of.v2	blesses.

Computer	scientists	call	sorted-variant-of.v2	a	specification	of	a	sorting
function.	The	idea	that	all	lists	of	numbers	pass	the	above	test	case	is	a	theorem
about	 the	 relationship	between	 the	 specification	of	 the	 sorting	 function	 and	 its

implementation.	 If	 a	 programmer	 can	 prove	 this	 theorem	with	 a	mathematical
argument,	we	 say	 that	 the	 function	 is	correct	with	 respect	 to	 its	 specification.
How	 to	prove	 functions	or	programs	correct	 is	beyond	 the	 scope	of	 this	book,
but	a	good	computer	science	curriculum	shows	you	in	a	follow-up	course	how	to
construct	such	proofs.

Exercise	293.	Develop	found?,	a	specification	for	the	find	function:

Use	found?	to	formulate	a	check-satisfied	test	for	find.	
Exercise	294.	Develop	is-index?,	a	specification	for	index:

Use	is-index?	to	formulate	a	check-satisfied	test	for	index.	
Exercise	 295.	 Develop	 n-inside-playground?,	 a	 specification	 of	 the

random-posns	 function	 below.	The	 function	 generates	 a	 predicate	 that	 ensures
that	the	length	of	the	given	list	is	some	given	count	and	that	all	Posns	in	this	list
are	within	a	WIDTH	by	HEIGHT	rectangle:

Define	 random-posns/bad	 that	 satisfies	 n-inside-playground?	 and	 does
not	 live	 up	 to	 the	 expectations	 implied	 by	 the	 above	 purpose	 statement.	Note
This	 specification	 is	 incomplete.	 Although	 the	 word	 “partial”	 might	 come	 to
mind,	 computer	 scientists	 reserve	 the	 phrase	 “partial	 specification”	 for	 a
different	purpose.	

17.5 Representing	with	lambda
Because	 functions	 are	 first-class	 values	 in	 ISL+,	 we	 may	 think	 of	 them	 as
another	form	of	data	and	use	them	for	data	representation.	This	section	provides
a	 taste	 of	 this	 idea;	 the	 next	 few	 chapters	 do	 not	 rely	 on	 it.	 Its	 title	 uses
“abstracting”	because	people	consider	data	representations	that	use	functions	as
abstract.

As	always,	we	start	from	a	representative	problem:

Sample	 Problem	 Navy	 strategists	 represent	 fleets	 of	 ships	 as
rectangles	 (the	 ships	 themselves)	 and	 circles	 (their	 weapons’
reach).	The	coverage	of	a	fleet	of	ships	is	the	combination	of	all
these	shapes.	Design	a	data	representation	for	rectangles,	circles,
and	 combinations	 of	 shapes.	 Then	 design	 a	 function	 that
determines	whether	some	point	is	within	a	shape.

This	problem	is	also	solvable	with	a	self-referential	data	representation	that	says	a	shape	is	a	circle,
a	rectangle,	or	a	combination	of	two	shapes.	See	the	next	part	of	the	book	for	this	design	choice.

The	problem	comes	with	 all	 kinds	 of	 concrete	 interpretations,	which	we	 leave
out	 here.	A	 slightly	more	 complex	 version	was	 the	 subject	 of	 a	 programming
competition	 in	 the	 mid-1990s	 run	 by	 Yale	 University	 on	 behalf	 of	 the	 US
Department	of	Defense.

One	mathematical	approach	considers	shapes	as	predicates	on	points.	That	is,
a	 shape	 is	 a	 function	 that	 maps	 a	 Cartesian	 point	 to	 a	 Boolean	 value.	 Let’s
translate	these	English	words	into	a	data	definition:

;	A	Shape	is	a	function:	
;	[Posn	->	Boolean]	
;	interpretation	if	s	is	a	shape	and	p	a	Posn,	(s	p)	
;	produces	#true	if	p	is	in	s,	#false	otherwise

Its	interpretation	part	is	extensive	because	this	data	representation	is	so	unusual.
Such	 an	 unusual	 representation	 calls	 for	 an	 immediate	 exploration	 with
examples.	 We	 delay	 this	 step	 for	 a	 moment,	 however,	 and	 instead	 define	 a
function	that	checks	whether	a	point	is	inside	some	shape:

;	Shape	Posn	->	Boolean	
(define	(inside?	s	p)	
		(s	p))

Doing	so	is	straightforward	because	of	the	given	interpretation.	It	also	turns	out
that	it	is	simpler	than	creating	examples,	and,	surprisingly,	the	function	is	helpful
for	formulating	data	examples.

Stop!	Explain	how	and	why	inside?	works.
Now	 let’s	 return	 to	 the	problem	of	 elements	of	Shape.	Here	 is	 a	 simplistic

element	of	the	class:

;	Posn	->	Boolean	
(lambda	(p)	(and	(=	(posn-x	p)	3)	(=	(posn-y	p)	4)))

As	required,	it	consumes	a	Posn	p,	and	its	body	compares	the	coordinates	of	p	to
those	of	 the	point	 (3,4),	meaning	 this	 function	 represents	a	single	point.	While
the	data	representation	of	a	point	as	a	Shape	might	seem	silly,	 it	 suggests	how
we	can	define	functions	that	create	elements	of	Shape:

We	use	“mk”	because	this	function	is	not	an	ordinary	constructor.

Stop	again!	Convince	yourself	 that	 the	last	 line	creates	a	data	representation	of
(3,4).	Consider	using	DrRacket’s	stepper.

If	 we	 were	 to	 design	 such	 a	 function,	 we	 would	 formulate	 a	 purpose
statement	and	provide	some	illustrative	examples.	For	the	purpose	we	could	go
with	the	obvious:

;	creates	a	representation	for	a	point	at	(x,y)

or,	more	concisely	and	more	appropriately,

;	represents	a	point	at	(x,y)

For	 the	examples	we	want	 to	go	with	 the	 interpretation	of	Shape.	To	illustrate,
(mk-point	3	4)	is	supposed	to	evaluate	to	a	function	that	returns	#true	if,	and
only	 if,	 it	 is	 given	 (make-posn	 3	 4).	 Using	 inside?,	 we	 can	 express	 this
statement	via	tests:

In	 short,	 to	make	 a	 point	 representation,	we	 define	 a	 constructor-like	 function
that	consumes	the	point’s	two	coordinates.	Instead	of	a	record,	this	function	uses
lambda	 to	 construct	 another	 function.	 The	 function	 that	 it	 creates	 consumes	 a
Posn	and	determines	whether	its	x	and	y	fields	are	equal	to	the	originally	given
coordinates.

Next	 we	 generalize	 this	 idea	 from	 simple	 points	 to	 shapes,	 say	 circles.	 In
your	geometry	 courses,	 you	 learn	 that	 a	 circle	 is	 a	 collection	of	points	 that	 all
have	the	same	distance	to	the	center	of	the	circle—the	radius.	For	points	inside
the	circle,	 the	distance	is	smaller	than	or	equal	to	the	radius.	Hence,	a	function
that	 creates	 a	 Shape	 representation	 of	 a	 circle	must	 consume	 three	 pieces:	 the
two	coordinates	for	its	center	and	the	radius:

;	Number	Number	Number	->	Shape	
;	creates	a	representation	for	a	circle	of	radius	r	
;			located	at	(center-x,	center-y)	
(define	(mk-circle	center-x	center-y	r)	
		…)

Like	mk-point,	it	produces	a	function	via	a	lambda.	The	function	that	is	returned
determines	 whether	 some	 given	 Posn	 is	 inside	 the	 circle.	 Here	 are	 some
examples,	again	formulated	as	tests:

(check-expect	

		(inside?	(mk-circle	3	4	5)	(make-posn	0	0))	#true)	
(check-expect	
		(inside?	(mk-circle	3	4	5)	(make-posn	0	9))	#false)	
(check-expect	
		(inside?	(mk-circle	3	4	5)	(make-posn	-1	3))	#true)

The	origin,	(make-posn	0	0),	is	exactly	five	steps	away	from	(3,4),	the	center	of
the	circle;	see	chapter	5.4.	Stop!	Explain	the	remaining	examples.

Exercise	296.	Use	compass-and-pencil	drawings	to	check	the	tests.	
Mathematically,	 we	 say	 that	 a	 Posn	 p	 is	 inside	 a	 circle	 if	 the	 distance

between	p	and	the	circle’s	center	is	smaller	than	the	radius	r.	Let’s	wish	for	the
right	kind	of	helper	function	and	write	down	what	we	have.

The	distance-between	function	is	a	straightforward	exercise.
Exercise	 297.	 Design	 the	 function	 distance-between.	 It	 consumes	 two

numbers	and	a	Posn:	x,	y,	and	p.	The	function	computes	the	distance	between	the
points	(x,	y)	and	p.

Domain	Knowledge	The	distance	between	(x0,	y0)	and	(x1,	y1)	is

that	is,	the	distance	of	(x0	−	y0,	x1	−	y1)	to	the	origin.	
The	data	representation	of	a	rectangle	is	expressed	in	a	similar	manner:

Its	constructor	receives	four	numbers:	the	coordinates	of	the	upper-left	corner,	its
width,	 and	height.	The	 result	 is	 again	a	lambda	 expression.	As	 for	 circles,	 this
function	consumes	a	Posn	and	produces	a	Boolean,	checking	whether	the	x	and	y
fields	of	the	Posn	are	in	the	proper	intervals.

At	this	point,	we	have	only	one	task	left,	namely,	the	design	of	function	that
maps	 two	 Shape	 representations	 to	 their	 combination.	 The	 signature	 and	 the
header	are	easy:

Indeed,	 even	 the	 default	 value	 is	 straightforward.	 We	 know	 that	 a	 shape	 is
represented	as	a	function	from	Posn	to	Boolean,	so	we	write	down	a	lambda	that
consumes	 some	Posn	 and	produces	#false,	meaning	 it	 says	 no	point	 is	 in	 the
combination.

So	suppose	we	wish	to	combine	the	circle	and	the	rectangle	from	above:

(define	circle1	(mk-circle	3	4	5))	
(define	rectangle1	(mk-rect	0	3	10	3))	
(define	union1	(mk-combination	circle1	rectangle1))

Some	points	are	inside	and	some	outside	of	this	combination:

(check-expect	(inside?	union1	(make-posn	0	0))	#true)	
(check-expect	(inside?	union1	(make-posn	0	9))	#false)	
(check-expect	(inside?	union1	(make-posn	-1	3))	#true)

Since	(make-posn	0	0)	 is	 inside	both,	 there	 is	no	question	that	 it	 is	 inside	the
combination	of	the	two.	In	a	similar	vein,	(make-posn	0	-1)	is	in	neither	shape,
and	so	 it	 isn’t	 in	 the	combination.	Finally,	(make-posn	 -1	3)	 is	 in	circle1	but
not	in	rectangle1.	But	the	point	must	be	in	the	combination	of	the	two	shapes
because	every	point	that	is	in	one	or	the	other	shape	is	in	their	combination.

This	analysis	of	examples	implies	a	revision	of	mk-combination:

;	Shape	Shape	->	Shape	
(define	(mk-combination	s1	s2)	
		;	Posn	->	Boolean	
		(lambda	(p)	
				(or	(inside?	s1	p)	(inside?	s2	p))))

The	 or	 expression	 says	 that	 the	 result	 is	 #true	 if	 one	 of	 two	 expressions
produces	 #true:	 (inside?	 s1	 p)	 or	 (inside?	 s2	 p).	 The	 first	 expression
determines	whether	p	is	in	s1	and	the	second	one	whether	p	is	in	s2.	And	that	is
precisely	a	translation	of	our	above	explanation	into	ISL+.

Exercise	 298.	 Design	 my-animate.	 Recall	 that	 the	 animate	 function
consumes	 the	 representation	 of	 a	 stream	 of	 images,	 one	 per	 natural	 number.
Since	 streams	 are	 infinitely	 long,	 ordinary	 compound	 data	 cannot	 represent
them.	Instead,	we	use	functions:

;	An	ImageStream	is	a	function:	
;	[N	->	Image]	
;	interpretation	a	stream	s	denotes	a	series	of	images

Here	is	a	data	example:

You	may	recognize	this	as	one	of	the	first	pieces	of	code	in	the	Prologue.
The	job	of	(my-animate	s	n)	is	to	show	the	images	(s	0),	(s	1),	and	so	on

at	a	rate	of	30	images	per	second	up	to	n	images	total.	Its	result	is	the	number	of
clock	ticks	passed	since	launched.

Note	 This	 case	 is	 an	 example	 where	 it	 is	 possible	 to	 write	 down
examples/test	 cases	 easily,	 but	 these	 examples/tests	 per	 se	 do	 not	 inform	 the
design	process	of	this	big-bang	function.	Using	functions	as	data	representations
calls	for	more	design	concepts	than	this	book	supplies.	

Exercise	299.	Design	a	data	representation	for	finite	and	infinite	sets	so	that
you	 can	 represent	 the	 sets	 of	 all	 odd	 numbers,	 all	 even	 numbers,	 all	 numbers
divisible	by	10,	and	so	on.

Design	 the	 functions	add-element,	which	adds	 an	 element	 to	 a	 set;	union,
which	 combines	 the	 elements	 of	 two	 sets;	 and	 intersect,	 which	 collects	 all
elements	common	to	two	sets.

Hint	Mathematicians	 deal	 with	 sets	 as	 functions	 that	 consume	 a	 potential
element	ed	and	produce	#true	only	if	ed	belongs	to	the	set.	

18 Summary
This	 third	 part	 of	 the	 book	 is	 about	 the	 role	 of	 abstraction	 in	 program	design.
Abstraction	 has	 two	 sides:	 creation	 and	 use.	 It	 is	 therefore	 natural	 if	 we
summarize	the	chapter	as	two	lessons:

1.	Repeated	code	patterns	call	for	abstraction.	To	abstract	means	to	factor
out	 the	 repeated	 pieces	 of	 code—the	 abstraction—and	 to	 parameterize
over	the	differences.	With	the	design	of	proper	abstractions,	programmers
save	 themselves	 future	 work	 and	 headaches	 because	 mistakes,
inefficiencies,	 and	 other	 problems	 are	 all	 in	 one	 place.	 One	 fix	 to	 the
abstraction	 thus	 eliminates	 any	 specific	 problem	 once	 and	 for	 all.	 In
contrast,	 the	 duplication	 of	 code	means	 that	 a	 programmer	must	 find	 all
copies	and	fix	all	of	them	when	a	problem	is	found.

2.	Most	 languages	 come	 with	 a	 large	 collection	 of	 abstractions.	 Some	 are
contributions	 by	 the	 language	 design	 team;	 others	 are	 added	 by
programmers	 who	 use	 the	 language.	 To	 enable	 effective	 reuse	 of	 these
abstractions,	 their	 creators	 must	 supply	 the	 appropriate	 pieces	 of
documentation—a	purpose	statement,	a	signature,	and	good	examples
—and	programmers	use	them	to	apply	abstractions.

All	programming	 languages	 come	with	 the	means	 to	build	 abstractions	 though
some	means	are	better	than	others.	All	programmers	must	get	to	know	the	means
of	 abstraction	 and	 the	 abstractions	 that	 a	 language	 provides.	 A	 discerning
programmer	will	learn	to	distinguish	programming	languages	along	these	axes.

Beyond	abstraction,	this	third	part	also	introduces	the	idea	that

functions	are	values,	and	they	can	represent	information.

While	the	idea	is	ancient	for	the	Lisp	family	of	programming	languages	(such	as
ISL+)	and	for	specialists	in	programming	language	research,	it	has	only	recently
gained	 acceptance	 in	 most	 modern	 mainstream	 languages—C#,	 C++,	 Java,
JavaScript,	Perl,	Python.

	

INTERMEZZO	3:	SCOPE	AND	ABSTRACTION

While	 the	 preceding	 part	 gets	 away	 with	 explaining	 local	 and	 lambda	 in	 an
informal	 manner,	 the	 introduction	 of	 such	 abstraction	 mechanisms	 really
requires	additional	terminology	to	facilitate	such	discussions.	In	particular,	these
discussions	 need	 words	 to	 delineate	 regions	 within	 programs	 and	 to	 refer	 to
specific	uses	of	variables.

This	 intermezzo	 starts	 with	 a	 section	 that	 defines	 the	 new	 terminology:
scope,	 binding	 variables,	 and	 bound	 variables.	 It	 immediately	 uses	 this	 new
capability	to	introduce	two	abstraction	mechanisms	often	found	in	programming
languages:	 for	 loops	 and	 pattern	 matching.	 The	 former	 is	 an	 alternative	 to
functions	such	as	map,	build-list,	andmap,	and	the	like;	the	latter	abstracts	over
the	conditional	in	the	functions	of	the	first	three	parts	of	the	book.	Both	require
not	only	the	definition	of	functions	but	also	the	creation	of	entirely	new	language
constructs,	meaning	they	are	not	something	programmers	can	usually	design	and
add	to	their	vocabulary.

Scope
Consider	the	following	two	definitions:

Clearly,	the	occurrences	of	x	in	f	are	completely	unrelated	to	the	occurrences	of
x	in	the	definition	of	g.	We	could	systematically	replace	the	shaded	occurrences
with	y	and	the	function	would	still	compute	the	exact	same	result.	In	short,	 the
shaded	 occurrences	 of	 x	 have	 meaning	 only	 inside	 the	 definition	 of	 f	 and
nowhere	else.

At	the	same	time,	the	first	occurrence	of	x	 in	f	 is	different	from	the	others.
When	we	evaluate	(f	n),	the	occurrence	of	f	completely	disappears	while	those
of	x	are	replaced	with	n.	To	distinguish	these	two	kinds	of	variable	occurrences,
we	 call	 the	 x	 in	 the	 function	 header	 a	 binding	 occurrence	 and	 those	 in	 the
function’s	body	the	bound	occurrences.	We	also	say	that	the	binding	occurrence
of	 x	 binds	 all	 occurrences	 of	 x	 in	 the	 body	 of	 f.	 Indeed,	 people	 who	 study
programming	 languages	 even	 have	 a	 name	 for	 the	 region	 where	 a	 binding
occurrence	works,	namely,	its	lexical	scope.

The	 definitions	 of	 f	 and	 g	 bind	 two	more	 names:	 f	 and	 g.	 Their	 scope	 is
called	top-level	scope	because	we	think	of	scopes	as	nested	(see	below).

The	 term	 free	 occurrence	 applies	 to	 a	 variable	 without	 any	 binding
occurrence.	 It	 is	a	name	without	definition,	 that	 is,	neither	 the	 language	nor	 its
libraries	nor	the	program	associates	it	with	some	value.	For	example,	if	you	were
to	put	the	above	program	into	a	definitions	area	by	itself	and	run	it,	entering	f,	g,
and	x	at	the	prompt	of	the	interactions	would	show	that	the	first	two	are	defined
and	the	last	one	is	not:

>	f	
f	
>	g	
g	
>	x	
x:this	variable	is	not	defined

The	 description	 of	 lexical	 scope	 suggests	 a	 pictorial	 representation	 of	 f’s
definition:

DrRacket’s	“Check	Syntax”	functionality	draws	diagrams	like	these.

Here	is	an	arrow	diagram	for	top-level	scope:

Note	that	the	scope	of	f	 includes	all	definitions	above	and	below	its	definition.
The	bullet	over	the	first	occurrence	indicates	that	it	is	a	binding	occurrence.	The
arrows	from	the	binding	occurrence	to	the	bound	occurrences	suggest	the	flow	of
values.	 When	 the	 value	 of	 a	 binding	 occurrence	 becomes	 known,	 the	 bound
occurrences	receive	their	values	from	there.

Along	similar	lines,	these	diagrams	also	explain	how	renaming	works.	If	you
wish	 to	 rename	 a	 function	 parameter,	 you	 search	 for	 all	 bound	 occurrences	 in
scope	and	replace	them.	For	example,	renaming	f’s	x	to	y	in	the	program	above
means	that

(define	(f	x)	(+	(*	x	x)	25))	
(define	(g	x)	(+	(f	(+	x	1))	(f	(-	x	1))))

changes	only	two	occurrences	of	x:

(define	(f	y)	(+	(*	y	y)	25))	
(define	(g	x)	(+	(f	(+	x	1))	(f	(-	x	1))))

Exercise	300.	Here	is	a	simple	ISL+	program:

Draw	arrows	 from	p1’s	x	parameter	 to	all	 its	bound	occurrences.	Draw	arrows
from	 p1	 to	 all	 bound	 occurrences	 of	 p1.	 Check	 the	 results	 with	 DrRacket’s
CHECK	SYNTAX	functionality.	

In	contrast	to	top-level	function	definitions,	the	scope	of	the	definitions	in	a
local	 is	 limited.	 Specifically,	 the	 scope	 of	 local	 definitions	 is	 the	 local
expression.	 Consider	 the	 definition	 of	 an	 auxiliary	 function	 f	 in	 a	 local
expression.	 It	 binds	 all	 occurrences	within	 the	local	 expression	 but	 none	 that
occurs	outside:

The	two	occurrences	outside	of	local	are	not	bound	by	the	local	definition	of	f.
As	always,	the	parameters	of	a	function	definition,	local	or	not,	are	only	bound
in	the	function’s	body.

Since	 the	 scope	 of	 a	 function	 name	 or	 a	 function	 parameter	 is	 a	 textual
region,	 people	 also	 draw	 box	 diagrams	 to	 indicate	 scope.	More	 precisely,	 for

parameters	a	box	is	drawn	around	the	body	of	a	function:

In	the	case	of	local,	the	box	is	drawn	around	the	entire	expression:

In	this	example,	the	box	describes	the	scope	of	the	definitions	of	f	and	g.
Drawing	a	box	around	a	scope,	we	can	also	easily	understand	what	it	means

to	reuse	the	name	of	a	function	inside	a	local	expression:

The	gray	box	describes	the	scope	of	the	inner	definition	of	f;	the	white	box	is	the
scope	of	the	outer	definition	of	f.	Accordingly,	all	occurrences	of	f	in	the	gray
box	refer	to	the	inner	local;	all	those	in	the	white	box,	minus	the	gray	one,	refer
to	the	definition	in	the	outer	local.	In	other	words,	the	gray	box	is	a	hole	in	the
scope	of	the	outer	definition	of	f.

Holes	can	also	occur	in	the	scope	of	a	parameter	definition:

In	this	function,	the	parameter	x	is	used	twice:	for	f	and	g;	the	scope	of	the	latter
is	thus	a	hole	in	the	scope	of	the	former.

In	general,	if	the	same	name	occurs	more	than	once	in	a	function,	the	boxes
that	describe	 the	corresponding	 scopes	never	overlap.	 In	 some	cases	 the	boxes
are	nested	within	each	other,	which	gives	rise	to	holes.	Still,	the	picture	is	always
that	of	a	hierarchy	of	smaller	and	smaller	nested	boxes.

Exercise	301.	Draw	a	box	around	 the	scope	of	each	binding	occurrence	of
sort	and	alon	in	figure	105.	Then	draw	arrows	from	each	occurrence	of	sort	to
the	 appropriate	 binding	 occurrence.	Now	 repeat	 the	 exercise	 for	 the	 variant	 in
figure	106.	Do	the	two	functions	differ	other	than	in	name?	

Figure	105:	Drawing	lexical	scope	contours	for	exercise	301

Figure	106:	Drawing	lexical	scope	contours	for	exercise	301	(version	2)

Exercise	 302.	 Recall	 that	 each	 occurrence	 of	 a	 variable	 receives	 its	 value
from	its	binding	occurrence.	Consider	the	following	definition:

(define	x	(cons	1	x))

Where	 is	 the	 shaded	occurrence	of	x	 bound?	Since	 the	definition	 is	 a	 constant
definition	and	not	a	function	definition,	we	need	to	evaluate	the	right-hand	side
immediately.	What	should	be	 the	value	of	 the	 right-hand	side	according	 to	our
rules?	

As	discussed	in	chapter	17.1,	a	lambda	expression	is	just	a	short-hand	for	a
local	expression.	That	is,	if	a-new-name	does	not	occur	in	exp,

(lambda	(x-1	…	x-n)	exp)

is	short	for

(local	((define	(a-new-name	x-1	…	x-n)	exp))	
		a-new-name)

The	short-hand	explanation	suggests	that

(lambda	(x-1	…	x-n)	exp)

introduces	x-1,	⋯,	x-n	as	binding	occurrences	and	that	the	scope	of	parameters

is	exp,	for	example:

O	 course,	 if	 exp	 contains	 further	 binding	 constructs	 (say,	 a	 nested	 local
expression),	then	the	scope	of	the	variables	may	have	a	hole.

Exercise	303.	Draw	arrows	from	the	shaded	occurrences	of	x	to	their	binding
occurrences	in	each	of	the	following	three	lambda	expressions:

Also	 draw	 a	 box	 for	 the	 scope	 of	 each	 shaded	 x	 and	 holes	 in	 the	 scope	 as
necessary.	

ISL	for	Loops
Even	though	it	never	mentions	the	word,	part	III	introduces	loops.	Abstractly,	a
loop	 traverses	 compound	 data,	 processing	 one	 piece	 at	 a	 time.	 In	 the	 process,
loops	also	synthesize	data.	For	example,	map	traverses	a	list,	applies	a	function	to
each	item,	and	collects	the	results	in	a	list.	Similarly,	build-list	enumerates	the
sequence	of	predecessors	of	a	natural	number	(from	0	to	(-	n	1)),	maps	each	of
these	to	some	value,	and	also	gathers	the	results	in	a	list.

Use	the	2htdp/abstraction	library.	Instructors	who	use	it	for	the	remainder	of	the	book	should	explain
how	the	principles	of	design	apply	to	languages	without	for	and	match.

The	loops	of	ISL+	differ	from	those	in	conventional	languages	in	two	ways.
First,	 a	 conventional	 loop	 does	 not	 directly	 create	 new	 data;	 in	 contrast,
abstractions	such	as	map	and	build-list	are	all	about	computing	new	data	from
traversals.	Second,	conventional	languages	often	provide	only	a	fixed	number	of

loops;	 an	 ISL+	 programmer	 defines	 new	 loops	 as	 needed.	 Put	 differently,
conventional	languages	view	loops	as	syntactic	constructs	akin	to	local	or	cond,
and	 their	 introduction	 requires	 a	 detailed	 explanation	 of	 their	 vocabulary,
grammar,	scope,	and	meaning.

Loops	as	syntactic	constructs	have	two	advantages	over	the	functional	loops
of	 the	 preceding	 part.	 On	 the	 one	 hand,	 their	 shape	 tends	 to	 signal	 intentions
more	 directly	 than	 a	 composition	 of	 functions.	 On	 the	 other	 hand,	 language
implementations	 typically	 translate	 syntactic	 loops	 into	 faster	 commands	 for
computers	 than	 functional	 loops.	 It	 is	 therefore	 common	 that	 even	 functional
programming	 languages—with	 all	 their	 emphasis	 on	 functions	 and	 function
compositions—provide	syntactic	loops.

In	 this	 section,	 we	 introduce	 ISL+’s	 so-called	 for	 loops.	 The	 goal	 is	 to
illustrate	how	 to	 think	 about	 conventional	 loops	 as	 linguistic	 constructs	 and	 to
indicate	how	programs	built	with	abstractions	may	use	loops	instead.	Figure	107
spells	 out	 the	 grammar	 of	 our	 selected	 for	 loops	 as	 an	 extension	 of	 BSL’s
grammar	from	intermezzo	1.	Every	loop	is	an	expression	and,	like	all	compound
constructs,	is	marked	with	a	keyword.	The	latter	is	followed	by	a	parenthesized
sequence	 of	 so-called	 comprehension	 clauses	 and	 a	 single	 expression.	 The
clauses	 introduce	so-called	 loop	variables,	 and	 the	expression	at	 the	end	 is	 the
loop	body.

Figure	107:	ISL+	extended	with	for	loops

Even	a	cursory	look	at	the	grammar	shows	that	the	dozen	looping	constructs
come	 in	 six	 pairs:	 a	 for	 and	 for*	 variant	 for	 each	 of	 list,	 and,	 or,	 sum,

product,	 and	 string.	 All	 for	 loops	 bind	 the	 variables	 of	 their	 clauses	 in	 the
body;	 the	 for*	 variants	 also	 bind	 variables	 in	 the	 subsequent	 clauses.	 The
following	two	near-identical	code	snippets	illustrate	the	difference	between	these
two	scoping	rules:

Racket’s	version	of	these	loops	comes	with	more	functionality	than	those	presented	here,	and	the
language	has	many	more	loops	than	this.

The	 syntactic	 difference	 is	 that	 the	 left	 one	 uses	 for/list	 and	 the	 right	 one
for*/list.	 In	 terms	 of	 scope,	 the	 two	 strongly	 differ	 as	 the	 arrows	 indicate.
While	both	pieces	 introduce	 the	 loop	variables	width	 and	height,	 the	 left	 one
uses	an	externally	defined	variable	 for	height’s	 initial	value	and	 the	 right	one
uses	the	first	loop	variable.

Semantically,	a	for/list	expression	evaluates	the	expressions	in	its	clauses
to	generate	sequences	of	values.	If	a	clause	expression	evaluates	to

•  a	list,	its	items	make	up	the	sequence	values;

•  a	natural	number	n,	the	sequence	consists	of	0,	1,	⋯,	(-	n	1);	and

•  a	string,	its	one-character	strings	are	the	sequence	items.

Next,	 for/list	 evaluates	 the	 loop	 body	 with	 the	 loop	 variables	 successively
bound	to	the	values	of	 the	generated	sequence(s).	Finally,	 it	collects	 the	values
of	its	body	into	a	list.	The	evaluation	of	a	for/list	expression	stops	when	the
shortest	sequence	is	exhausted.

Terminology	 Each	 evaluation	 of	 a	 loop	 body	 is	 called	 an	 iteration.
Similarly,	a	loop	is	said	to	iterate	over	the	values	of	its	loop	variables.

Based	on	this	explanation,	we	can	easily	generate	the	list	from	0	to	9:

>	(for/list	([i	10])	
				i)	
(list	0	1	2	3	4	5	6	7	8	9)

This	is	the	equivalent	of	a	build-list	loop:

>	(build-list	10	(lambda	(i)	i))	
(list	0	1	2	3	4	5	6	7	8	9)

The	second	example	“zips”	together	two	sequences:

For	comparison	again,	here	is	the	same	expression	using	plain	ISL+:

The	final	example	emphasizes	designing	with	for/list:

Sample	 Problem	 Design	 enumerate.	 The	 function	 consumes	 a
list	and	produces	a	list	of	the	same	items	paired	with	their	relative
index.

Stop!	Design	this	function	systematically,	using	ISL+’s	abstractions.
With	for/list,	this	problem	has	a	straightforward	solution:

;	[List-of	X]	->	[List-of	[List	N	X]]	
;	pairs	each	item	in	lx	with	its	index	

(check-expect	
		(enumerate	'(a	b	c))	'((1	a)	(2	b)	(3	c)))	

(define	(enumerate	lx)	

		(for/list	([x	lx]	[ith	(length	lx)])	
				(list	(+	ith	1)	x)))

The	 function’s	 body	 uses	 for/list	 to	 iterate	 over	 the	 given	 list	 and	 a	 list	 of
numbers	 from	0	 to	(length	lx)	 (minus	1);	 the	 loop	body	combines	 the	 index
(plus	1)	with	the	list	item.

In	semantic	terms,	for*/list	iterates	over	the	sequences	in	a	nested	fashion
while	 for/list	 traverses	 them	 in	 parallel.	 That	 is,	 a	 for*/list	 expression
basically	unfolds	into	a	nest	of	loops:

(for*/list	([i	2]	[j	'(a	b)])	
		…)

is	short	for

In	addition,	for*/list	collects	the	nested	lists	into	a	single	list	by	concatenating
them	with	foldl	and	append.

Exercise	304.	Evaluate

(for/list	([i	2]	[j	'(a	b)])	(list	i	j))

and

(for*/list	([i	2]	[j	'(a	b)])	(list	i	j))

in	the	interactions	area	of	DrRacket.	
Let’s	continue	the	exploration	by	turning	the	difference	in	scoping	between

for/list	and	for*/list	into	a	semantic	difference:

To	 understand	 the	 first	 interaction,	 remember	 that	 for/list	 traverses	 the	 two
sequences	in	parallel	and	stops	when	the	shorter	one	is	exhausted.	Here,	the	two
sequences	are

The	first	 two	rows	show	the	values	of	 the	two	loop	variables,	which	change	in
tandem.	The	last	row	shows	the	result	of	each	iteration,	which	explains	the	first
result	and	the	absence	of	a	pair	containing	2.

Now	contrast	this	situation	with	for*/list:

While	 the	 first	 row	 is	 like	 the	one	 for	for/list,	 the	 second	one	now	displays
sequences	of	numbers	in	its	cells.	The	implicit	nesting	of	for*/list	means	that
each	iteration	recomputes	height	for	a	specific	value	of	width	and	thus	creates	a
distinct	sequence	 of	height	 values.	This	 explains	why	 the	 first	 cell	of	height
values	is	empty;	after	all,	there	are	no	natural	numbers	between	0	(inclusive)	and
0	 (exclusive).	Finally,	each	nested	for	 loop	yields	a	 sequences	of	pairs,	which
are	collected	into	a	single	list	of	pairs.

Here	is	a	problem	that	illustrates	this	use	of	for*/list	in	context:

Sample	Problem	Design	cross.	The	function	consumes	two	lists,
l1	and	l2,	and	produces	pairs	of	all	items	from	these	lists.

Stop!	Take	a	moment	to	design	the	function,	using	existing	abstractions.
As	you	design	cross,	you	work	through	a	table	such	as:

The	first	 row	displays	l1	as	given,	while	 the	 left-most	column	shows	l2.	Each
cell	in	the	table	corresponds	to	one	of	the	pairs	to	be	generated.

Since	the	purpose	of	for*/list	is	an	enumeration	of	all	such	pairs,	defining
cross	via	for*/list	is	straightforward:

We	use	check-satisfied	 instead	of	check-expect	because	we	do	not	wish	 to
predict	the	exact	order	in	which	for*/list	generates	the	pairs.

Note	 Figure	 108	 shows	 another	 in-context	 use	 of	for*/list.	 It	 displays	 a
compact	 solution	 of	 the	 extended	 design	 problem	 of	 creating	 all	 possible
rearrangements	of	the	letters	in	a	given	list.

Figure	108:	A	compact	definition	of	arrangements	with	for*/list

While	 chapter	 12.4	 sketches	 the	 proper	 design	 of	 this	 complex	 program,
figure	 108	 uses	 the	 combined	 power	 of	 for*/list	 and	 an	 unusual	 form	 of
recursion	 to	define	 the	 same	program	as	 a	 single,	 five-line	 function	definition.
The	 figure	merely	 exhibits	 the	 power	 of	 these	 abstractions;	 for	 the	 underlying
design,	see	especially	exercise	477.	End

We	thank	Mark	Engelberg	for	suggesting	this	exhibition	of	expressive	power.

The	…/list	 suffix	 clearly	 signals	 that	 the	 loop	 expression	 creates	 a	 list.	 In
addition,	 the	 library	 comes	 with	 for	 and	 for*x	 loops	 that	 have	 equally
suggestive	suffixes:

•  …/and	collects	the	values	of	all	iterations	with	and:

>	(for/and	([i	10])	(>	(-	9	i)	0))	

#false	

>	(for/and	([i	10])	(if	(>=	i	0)	i	#false))	

9

For	pragmatics,	the	loop	returns	the	last	generated	value	or	#false.

•  …/or	is	like	…/and	but	uses	or	instead	of	and:

>	(for/or	([i	10])	(if	(=	(-	9	i)	0)	i	#false))	

9	

>	(for/or	([i	10])	(if	(<	i	0)	i	#false))	

#false

These	loops	return	the	first	value	that	is	not	#false.

•  …/sum	adds	up	the	numbers	that	the	iterations	generate:

>	(for/sum	([c	"abc"])	(string->int	c))	

294

•  …/product	multiplies	the	numbers	that	the	iterations	generate

>	(for/product	([c	"abc"])	(+	(string->int	c)	1))	

970200

•  …/string	creates	Strings	from	the	1String	sequence:

>	(define	a	(string->int	"a"))	

>	(for/string	([j	10])	(int->string	(+	a	j)))	

"abcdefghij"

Stop!	Imagine	how	a	for/fold	loop	would	work.
Stop	 again!	 It	 is	 an	 instructive	 exercise	 to	 reformulate	 all	 of	 the	 above

examples	using	the	existing	abstractions	in	ISL+.	Doing	so	also	indicates	how	to
design	functions	with	for	loops	instead	of	abstract	functions.	Hint	Design	and-
map	 and	 or-map,	 which	 work	 like	 andmap	 and	 ormap,	 respectively,	 but	 which
return	the	appropriate	non-#false	values.

Looping	over	numbers	 isn’t	always	a	matter	of	enumerating	0	 through	(-	n
1).	Often	programs	need	 to	 step	 through	nonsequential	 sequences	of	numbers;
other	 times,	 an	 unlimited	 supply	 of	 numbers	 is	 needed.	 To	 accommodate	 this
form	of	programming,	Racket	comes	with	functions	that	generate	sequences,	and
figure	109	lists	two	that	are	provided	in	the	abstraction	library	for	ISL+.

Figure	109:	Constructing	sequences	of	natural	numbers

With	the	first	one,	we	can	simplify	the	enumerate	function	a	bit:

(define	(enumerate.v2	lx)	
		(for/list	([item	lx]	[ith	(in-naturals	1)])	
				(list	ith	item)))

Here	in-naturals	 is	used	 to	generate	 the	 infinite	sequence	of	natural	numbers
starting	at	1;	the	for	loop	stops	when	l	is	exhausted.

With	 the	 second	 one,	 it	 is,	 for	 example,	 possible	 to	 step	 through	 the	 even
numbers	among	the	first	n:

;	N	->	Number	
;	adds	the	even	numbers	between	0	and	n	(exclusive)	
(check-expect	(sum-evens	2)	0)	
(check-expect	(sum-evens	4)	2)	
(define	(sum-evens	n)	
		(for/sum	([i	(in-range	0	n	2)])	i))

Although	this	use	may	appear	trivial,	many	problems	originating	in	mathematics
call	 for	 just	such	 loops,	which	 is	precisely	why	concepts	such	as	in-range	are
found	in	many	programming	languages.

Exercise	305.	Use	loops	to	define	convert-euro.	See	exercise	267.	
Exercise	306.	Use	loops	to	define	a	function	that

1.	creates	the	list	(list	0	…	(-	n	1))	for	any	natural	number	n;

2.	creates	the	list	(list	1	…	n)	for	any	natural	number	n;

3.	creates	the	list	(list	1	1/2	…	1/n)	for	any	natural	number	n;

4.	creates	the	list	of	the	first	n	even	numbers;	and

5.	creates	a	diagonal	square	of	0s	and	1s;	see	exercise	262.

Finally,	use	loops	to	define	tabulate	from	exercise	250.	
Exercise	307.	Define	find-name.	The	function	consumes	a	name	and	a	 list

of	names.	It	retrieves	the	first	name	on	the	latter	that	is	equal	to,	or	an	extension
of,	the	former.

Define	a	function	that	ensures	 that	no	name	on	some	list	of	names	exceeds
some	given	width.	Compare	with	exercise	271.	

Pattern	Matching
When	we	design	a	function	for	a	data	definition	with	six	clauses,	we	use	a	six-
pronged	cond	expression.	When	we	formulate	one	of	the	cond	clauses,	we	use	a
predicate	to	determine	whether	this	clause	should	process	the	given	value	and,	if
so,	 selectors	 to	 deconstruct	 any	 compound	 values.	The	 first	 three	 parts	 of	 this
book	explain	this	idea	over	and	over	again.

The	interested	instructor	may	wish	to	study	the	facilities	of	the	2htdp/abstraction	library	to	define
algebraic	data	types.

Repetition	 calls	 for	 abstraction.	While	 part	 III	 explains	 how	 programmers
can	 create	 some	 of	 these	 abstractions,	 the	 predicate-selector	 pattern	 can	 be
addressed	only	by	a	language	designer.	In	particular,	the	designers	of	functional
programming	languages	have	recognized	the	need	for	abstracting	these	repetitive
uses	 of	 predicates	 and	 selectors.	 These	 languages	 therefore	 provide	 pattern
matching	 as	 a	 linguistic	 construct	 that	 combines	 and	 simplifies	 these	 cond
clauses.

This	 section	 presents	 a	 simplification	 of	 Racket’s	 pattern	 matcher.	 Figure
110,	 which	 displays	 its	 grammar;	 match	 is	 clearly	 a	 syntactically	 complex
construct.	While	its	outline	resembles	that	of	cond,	it	features	patterns	instead	of
conditions,	and	they	come	with	their	own	rules.

Figure	110:	ISL+	match	expressions

Roughly	speaking,

(match	expr	
		[pattern1	expr1]	
		[pattern2	expr2]	
		…)

proceeds	like	a	cond	expression	in	that	it	evaluates	expr	and	sequentially	tries	to
match	its	result	with	pattern1,	pattern2,	⋯	until	it	succeeds	with	patterni.	At
that	point,	it	determines	the	value	of	expri,	which	is	also	the	result	of	the	entire
match	expression.

The	key	difference	is	that	match,	unlike	cond,	introduces	a	new	scope,	which
is	best	illustrated	with	a	screen	shot	from	DrRacket:

As	 the	 image	 shows,	 each	 pattern	 clause	 of	 this	 function	 binds	 variables.
Furthermore,	 the	 scope	 of	 a	 variable	 is	 the	 body	of	 the	 clause,	 so	 even	 if	 two
patterns	 introduce	 the	same	variable	binding—as	 is	 the	case	 in	 the	above	code
snippet—their	bindings	cannot	interfere	with	each	other.

Syntactically,	 a	 pattern	 resembles	 nested,	 structural	 data	 whose	 leafs	 are
literal	constants,	variables,	or	predicate	patterns	of	the	shape

(?	predicate-name)

In	the	latter,	predicate-name	must	refer	to	a	predicate	function	in	scope,	that	is,
a	function	that	consumes	one	value	and	produces	a	Boolean.

Semantically,	a	pattern	is	matched	to	a	value	v.	If	the	pattern	is

•  a	literal-constant,	it	matches	only	that	literal	constant

•  a	 variable,	 it	 matches	 any	 value,	 and	 it	 is	 associated	 with	 this	 value
during	the	evaluation	of	the	body	of	the	corresponding	match	clause

Since	2	does	not	equal	the	first	pattern,	which	is	the	literal	constant	3,
match	matches	2	with	the	second	pattern,	which	is	a	plain	variable	and
thus	matches	any	value.	Hence,	match	picks	the	second	clause	and
evaluates	its	body,	with	x	standing	for	2.

•  (cons	pattern1	pattern2),	it	matches	only	an	instance	of	cons,	assuming
its	first	field	matches	pattern1	and	its	rest	matches	pattern2

These	interactions	show	how	match	first	deconstructs	cons	and	then	uses
literal	constants	and	variables	for	the	leafs	of	the	given	list.

•  (structure-name	pattern1	…	patternn),	 it	matches	 only	 a	structure-
name	structure,	assuming	its	field	values	match	pattern1,⋯,patternn

>	(define	p	(make-posn	3	4))	

>	(match	p	

				[(posn	x	y)	(sqrt	(+	(sqr	x)	(sqr	y)))])	

5

Obviously,	matching	an	instance	of	posn	with	a	pattern	is	just	like
matching	a	cons	pattern.	Note,	though,	how	the	pattern	uses	posn	for	the
pattern,	not	the	name	of	the	constructor.
Matching	also	works	for	our	own	structure	type	definitions:

>	(define-struct	phone	[area	switch	four])	

>	(match	(make-phone	713	664	9993)	

				[(phone	x	y	z)	(+	x	y	z)])	

11370

Again,	the	pattern	uses	the	name	of	the	structure,	phone.
Finally,	matching	also	works	across	several	layers	of	constructions:

>	(match	(cons	(make-phone	713	664	9993)	'())	

				[(cons	(phone	area-code	664	9993)	tail)	

					area-code])	

713

This	match	expression	extracts	the	area	code	from	a	phone	number	in	a	list
if	the	switch	code	is	664	and	the	last	four	digits	are	9993.

•  (?	 predicate-name),	 it	 matches	 when	 (predicate-name	 v)	 produces
#true

>	(match	(cons	1	'())	

				[(cons	(?	symbol?)	tail)	tail]	

				[(cons	head	tail)	head])	

1

This	expression	produces	1,	the	result	of	the	second	clause,	because	1	is
not	a	symbol.

Stop!	Experiment	with	match	before	you	read	on.
At	this	point,	it	is	time	to	demonstrate	the	usefulness	of	match:

Sample	Problem	Design	the	function	last-item,	which	retrieves
the	last	item	on	a	non-empty	list.	Recall	that	non-empty	lists	are
defined	as	follows:

;	A	[Non-empty-list	X]	is	one	of:	

;	--	(cons	X	'())	

;	--	(cons	X	[Non-empty-list	X])

Stop!	Part	II	deals	with	this	problem.	Look	up	the	solution.
With	match,	a	designer	can	eliminate	three	selectors	and	two	predicates	from

the	solution	using	cond:

;	[Non-empty-list	X]	->	X	
;	retrieves	the	last	item	of	ne-l	
(check-expect	(last-item	'(a	b	c))	'c)	
(check-error	(last-item	'()))	
(define	(last-item	ne-l)	
		(match	ne-l	
				[(cons	lst	'())	lst]	
				[(cons	fst	rst)	(last-item	rst)]))

Instead	of	predicates	and	selectors,	 this	 solution	uses	patterns	 that	are	 just	 like
those	found	in	the	data	definition.	For	each	self-reference	and	occurrence	of	the
set	parameter	in	the	data	definition,	the	patterns	use	program-level	variables.	The
bodies	of	the	match	clauses	no	longer	extract	the	relevant	parts	from	the	list	with
selectors	but	simply	refer	to	these	names.	As	before,	the	function	recurs	on	the
rest	 field	 of	 the	 given	cons	 because	 the	 data	 definition	 refers	 to	 itself	 in	 this
position.	In	the	base	case,	the	answer	is	lst,	the	variable	that	stands	for	the	last
item	on	the	list.

Let’s	take	a	look	at	a	second	problem	from	part	II:

Sample	Problem	Design	the	function	depth,	which	measures	the

number	 of	 layers	 surrounding	 a	 Russian	 doll.	 Here	 is	 the	 data
definition	again:

(define-struct	layer	[color	doll])	

;	An	RD.v2	(short	for	Russian	doll)	is	one	of:

;	--	"doll"	

;	--	(make-layer	String	RD.v2)

Here	is	a	definition	of	depth	using	match:

;	RD.v2	->	N	
;	how	many	dolls	are	a	part	of	an-rd	
(check-expect	(depth	(make-layer	"red"	"doll"))	1)	
(define	(depth	a-doll)	
		(match	a-doll	
				["doll"	0]	
				[(layer	c	inside)	(+	(depth	inside)	1)]))

While	 the	 pattern	 in	 the	 first	 match	 clause	 looks	 for	 "doll",	 the	 second	 one
matches	any	layer	structure,	associating	c	with	the	value	in	the	color	field	and
inside	with	the	value	in	the	doll	field.	In	short,	match	again	makes	the	function
definition	concise.

The	final	problem	is	an	excerpt	from	the	generalized	UFO	game:

Sample	Problem	Design	the	move-right	function.	It	consumes	a
list	of	Posns,	which	represent	the	positions	of	objects	on	a	canvas,
plus	a	number.	The	function	adds	the	latter	to	each	x-coordinate,
which	represents	a	rightward	movement	of	these	objects.

Here	is	our	solution,	using	the	full	power	of	ISL+:

Stop!	Did	you	notice	that	we	use	define	to	formulate	the	tests?	If	you	give	data
examples	good	names	with	define	and	write	down	next	to	them	what	a	function
produces	as	 the	expected	 result,	you	can	 read	 the	code	 later	much	more	easily
than	if	you	had	just	written	down	the	constants.

Stop!	How	does	a	solution	with	cond	and	selectors	compare?	Write	it	out	and
compare	the	two.	Which	one	do	you	like	better?

Exercise	308.	Design	the	function	replace,	which	substitutes	the	area	code
713	with	281	in	a	list	of	phone	records.	

Exercise	 309.	 Design	 the	 function	 words-on-line,	 which	 determines	 the
number	of	Strings	per	item	in	a	list	of	list	of	strings.	

IV
INTERTWINED	DATA

You	might	think	that	the	data	definitions	for	lists	and	natural	numbers	are	quite
unusual.	These	data	definitions	refer	to	themselves,	and	in	all	likelihood	they	are
the	 first	 such	 definitions	 you	 have	 ever	 encountered.	 As	 it	 turns	 out,	 many
classes	 of	 data	 require	 even	 more	 complex	 data	 definitions	 than	 these	 two.
Common	generalizations	involve	many	self-references	in	one	data	definition	or	a
bunch	 of	 data	 definitions	 that	 refer	 to	 each	 other.	 These	 forms	 of	 data	 have
become	ubiquitous,	and	it	is	therefore	critical	for	a	programmer	to	learn	to	cope
with	any	collection	of	data	definitions.	And	that’s	what	the	design	recipe	is	all
about.

This	part	starts	with	a	generalization	of	the	design	recipe	so	that	it	works	for
all	forms	of	structural	data	definitions.	Next,	it	introduces	the	concept	of	iterative
refinement	from	chapter	12	on	a	rigorous	basis	because	complex	data	definitions
are	 not	 developed	 in	 one	 fell	 swoop	 but	 in	 several	 stages.	 Indeed,	 the	 use	 of
iterative	 refinement	 is	 one	 of	 the	 reasons	 why	 all	 programmers	 are	 little
scientists	and	why	our	discipline	uses	the	word	“science”	in	its	American	name.
Two	last	chapters	illustrate	these	ideas:	one	explains	how	to	design	an	interpreter
for	BSL	and	another	is	about	processing	XML,	a	data	exchange	language	for	the
web.	The	last	chapter	expands	the	design	recipe	one	more	time,	reworking	it	for
functions	that	process	two	complex	arguments	at	the	same	time.

19 The	Poetry	of	S-expressions
Programming	resembles	poetry.	Like	poets,	programmers	practice	their	skill	on
seemingly	 pointless	 ideas.	 They	 revise	 and	 edit	 all	 the	 time,	 as	 the	 preceding
chapter	explains.	This	chapter	introduces	increasingly	complex	forms	of	data—
seemingly	without	a	real-world	purpose.	Even	when	we	provide	a	motivational
background,	the	chosen	kinds	of	data	are	pure	to	an	extreme,	and	it	 is	unlikely
that	you	will	ever	encounter	them	again.

Nevertheless,	 this	 chapter	 shows	 the	 full	 power	 of	 the	 design	 recipe	 and
introduces	 you	 to	 the	 kinds	 of	 data	 that	 real-world	 programs	 cope	 with.	 To
connect	this	material	with	what	you	will	encounter	in	your	life	as	a	programmer,
we	label	each	section	with	appropriate	names:	trees,	forests,	XML.	The	last	one
is	 a	 bit	 misleading	 because	 it	 is	 really	 about	 S-expressions;	 the	 connection
between	S-expressions	and	XML	is	clarified	in	chapter	22,	which,	in	contrast	to
this	chapter,	comes	much	closer	to	real-world	uses	of	complex	forms	of	data.

19.1 Trees
All	of	us	have	a	family	tree.	One	way	to	draw	a	family	tree	is	to	add	an	element
every	time	a	child	is	born	and	to	connect	the	elements	of	the	father	and	mother.
For	 those	 people	whose	 parents	 are	 unknown,	 there	 is	 no	 connection	 to	 draw.
The	result	is	an	ancestor	family	tree	because,	given	any	person,	the	tree	points	to
all	of	the	person’s	known	ancestors.

Figure	111	displays	a	 three-tier	 family	 tree.	Gustav	 is	 the	child	of	Eva	and
Fred,	while	Eva	is	 the	child	of	Carl	and	Bettina.	In	addition	to	people’s	names
and	 family	 relationships,	 the	 tree	 also	 records	 years	 of	 birth	 and	 eye	 colors.
Based	on	this	sketch,	you	can	easily	imagine	a	family	tree	reaching	back	many
generations	and	one	that	records	other	kinds	of	information.

Figure	111:	A	family	tree

Once	 a	 family	 tree	 is	 large,	 it	 makes	 sense	 to	 represent	 it	 as	 data	 and	 to
design	programs	that	process	this	kind	of	data.	Given	that	a	point	in	a	family	tree
combines	five	pieces	of	information—the	father,	the	mother,	the	name,	the	birth
date,	and	the	eye	color—we	should	define	a	structure	type:

(define-struct	child	[father	mother	name	date	eyes])

The	structure	type	definition	calls	a	data	definition:

;	A	Child	is	a	structure:
;			(make-child	Child		Child	String	N	String)

While	 this	 data	 definition	 looks	 straightforward,	 it	 is	 also	 useless.	 It	 refers	 to
itself,	but,	because	it	doesn’t	have	any	clauses,	there	is	no	way	to	create	a	proper
instance	Child.	Roughly,	we	would	have	to	write

(make-child	(make-child	(make-child	…)	…)	…)

without	 end.	 To	 avoid	 such	 pointless	 data	 definitions,	we	 demand	 that	 a	 self-
referential	data	definition	have	several	clauses	and	that	at	least	one	of	them	does
not	refer	back	to	the	data	definition.

Let’s	 postpone	 the	 data	 definition	 for	 a	 moment,	 and	 experiment	 instead.
Suppose	 we	 are	 about	 to	 add	 a	 child	 to	 an	 existing	 family	 tree	 and	 that	 we
already	 have	 representations	 for	 the	 parents.	 In	 that	 case,	 we	 can	 simply
construct	a	new	child	structure.	For	example,	 to	represent	Adam	in	a	program
that	already	 represents	Carl	and	Bettina,	 it	 suffices	 to	add	 the	 following	child
structure:

(define	Adam	
		(make-child	Carl	Bettina	"Adam"	1950	"hazel"))

assuming	Carl	and	Bettina	stand	for	representations	of	Adam’s	parents.
Then	again,	a	person’s	parents	may	be	unknown,	like	Bettina’s	in	the	family

tree	of	figure	111.	Yet,	even	then,	we	must	fill	the	corresponding	parent	field(s)
in	the	child	representation.	Whatever	data	we	choose,	it	must	signal	an	absence
of	information.	On	the	one	hand,	we	could	use	#false,	"none",	or	'()	from	the
pool	 of	 existing	 values.	 On	 the	 other	 hand,	 we	 should	 really	 say	 that	 the
information	 is	missing	 from	 a	 family	 tree.	We	 can	 achieve	 this	 objective	 best
with	the	introduction	of	a	structure	type	with	an	appropriate	name:

(define-struct	no-parent	[])

Now,	to	construct	a	child	structure	for	Bettina,	we	say

Of	course,	if	only	one	piece	of	information	is	missing,	we	fill	just	that	field	with

this	special	value.
Our	 experimentation	 suggests	 two	 insights.	 First,	we	 are	not	 looking	 for	 a

data	definition	 that	describes	how	to	generate	 instances	of	child	structures	but
for	 a	 data	 definition	 that	 describes	 how	 to	 represent	 family	 trees.	 Second,	 the
data	definition	consists	of	 two	clauses,	one	for	 the	variant	describing	unknown
family	trees	and	another	one	for	known	family	trees:

(define-struct	no-parent	[])	

(define-struct	child	[father	mother	name	date	eyes])	
;	An	FT	(short	for	family	tree)	is	one	of:	
;	--	(make-no-parent)	

;	--	(make-child	FT	FT	String	N	String)

Since	the	“no	parent”	tree	is	going	to	show	up	a	lot	in	our	programs,	we	define
NP	as	a	short-hand	and	revise	the	data	definition	a	bit:

(define	NP	(make-no-parent))	

;	An	FT	is	one	of:	
;	--	NP	;	
--	(make-child	FT	FT	String	N	String)

Following	 the	 design	 recipe	 from	 chapter	 9,	 we	 use	 the	 data	 definition	 to
create	 examples	 of	 family	 trees.	 Specifically,	 we	 translate	 the	 family	 tree	 in
figure	 111	 into	 our	 data	 representation.	 The	 information	 for	 Carl	 is	 easy	 to
translate	into	data:

(make-child	NP	NP	"Carl"	1926	"green")

Bettina	and	Fred	are	 represented	with	 similar	 instances	of	child.	The	case	 for
Adam	calls	for	nested	children,	one	for	Carl	and	one	for	Bettina:

Since	 the	 records	 for	Carl	and	Bettina	are	also	needed	 to	construct	 the	 records
for	 Dave	 and	 Eva,	 it	 is	 better	 to	 introduce	 definitions	 that	 name	 specific
instances	 of	 child	 and	 to	 use	 the	 variable	 names	 elsewhere.	 Figure	 112
illustrates	 this	approach	 for	 the	complete	data	 representation	of	 the	 family	 tree
from	figure	111.	Take	a	close	 look;	 the	 tree	serves	as	our	running	example	for
the	following	design	exercise.

Figure	112:	A	data	representation	of	the	sample	family	tree

Instead	of	designing	a	concrete	function	on	family	trees,	let’s	first	look	at	the
generic	organization	of	 such	a	 function.	That	 is,	 let’s	work	 through	 the	design
recipe	as	much	as	possible	without	having	a	concrete	task	in	mind.	We	start	with
the	header	material,	that	is,	step	2	of	the	recipe:

;	FT	->	???	
;	…

(define	(fun-FT	an-ftree)	…)

Even	 though	we	aren’t	 stating	 the	purpose	of	 the	 function,	we	do	know	 that	 it
consumes	a	family	tree	and	that	this	form	of	data	is	the	main	input.	The	“???”	in
the	signature	says	that	we	don’t	know	what	kind	of	data	the	function	produces;
the	“⋯”	remind	us	that	we	don’t	know	its	purpose.

The	 lack	 of	 purpose	 means	 we	 cannot	 make	 up	 functional	 examples.
Nevertheless,	 we	 can	 exploit	 the	 organization	 of	 the	 data	 definition	 for	 FT	 to
design	a	template.	Since	it	consists	of	two	clauses,	the	template	must	consist	of	a
cond	expression	with	two	clauses:

In	case	 the	argument	 to	fun-FT	 satisfies	no-parent?,	 the	structure	contains
no	 additional	 data,	 so	 the	 first	 clause	 is	 complete.	 For	 the	 second	 clause,	 the
input	contains	 five	pieces	of	data,	which	we	 indicate	with	 five	 selectors	 in	 the
template:

The	 last	 addition	 to	 templates	 concerns	 self-references.	 If	 a	 data	 definition
refers	 to	 itself,	 the	 function	 is	 likely	 to	 recur	 and	 templates	 indicate	 so	 with
suggestive	natural	recursions.	The	definition	for	FT	has	two	self-references,	and
the	template	therefore	needs	two	such	recursions:

Specifically,	fun-FT	is	applied	to	the	data	representation	for	fathers	and	mothers
in	 the	 second	 cond	 clause	 because	 the	 second	 clause	 of	 the	 data	 definition

contains	corresponding	self-references.
Let’s	 now	 turn	 to	 a	 concrete	 example,	 the	blue-eyed-child?	 function.	 Its

purpose	is	 to	determine	whether	any	child	structure	 in	a	given	family	 tree	has
blue	 eyes.	 You	 may	 copy,	 paste,	 and	 rename	 fun-FT	 to	 get	 its	 template;	 we
replace	“???”	with	Boolean	and	add	a	purpose	statement:

When	you	work	 in	 this	 fashion,	you	must	 replace	 the	 template’s	generic	name
with	a	specific	one.

Checking	with	our	recipe,	we	realize	that	we	need	to	backtrack	and	develop
some	examples	before	we	move	on	to	the	definition	step.	If	we	start	with	Carl,
the	first	person	in	the	family	tree,	we	see	that	Carl’s	family	tree	does	not	contain
a	child	with	a	"blue"	eye	color.	Specifically,	the	child	representing	Carl	says
the	eye	color	is	"green";	given	that	Carl’s	ancestor	trees	are	empty,	they	cannot
possibly	contain	a	child	with	"blue"	eye	color:

(check-expect	(blue-eyed-child?	Carl)	#false)

In	contrast,	Gustav	contains	a	child	for	Eva	who	does	have	blue	eyes:

(check-expect	(blue-eyed-child?	Gustav)	#true)

Now	we	are	 ready	 to	define	 the	actual	 function.	The	function	distinguishes
between	 two	 cases:	 a	 no-parent	 and	 a	 child.	 For	 the	 first	 case,	 the	 answer

should	 be	 obvious	 even	 though	we	 haven’t	made	 up	 any	 examples.	 Since	 the
given	family	tree	does	not	contain	any	child	whatsoever,	it	cannot	contain	one
with	"blue"	as	the	eye	color.	Hence	the	result	in	the	first	cond	clause	is	#false.

For	 the	 second	 cond	 clause,	 the	 design	 requires	 a	 lot	 more	 work.	 Again
following	 the	design	 recipe,	we	 first	 remind	ourselves	what	 the	 expressions	 in
the	template	accomplish:

1.	according	to	the	purpose	statement	for	the	function,

(blue-eyed-child?	(child-father	an-ftree))

determines	whether	some	child	in	the	father’s	FT	has	"blue"	eyes;

2.	 likewise,	 (blue-eyed-child?	 (child-mother	 an-ftree))	 determines
whether	someone	in	the	mother’s	FT	has	blue	eyes;	and

3.	 the	 selector	 expressions	 (child-name	 an-ftree),	 (child-date	 an-

ftree),	and	(child-eyes	an-ftree)	extract	the	name,	birth	date,	and	eye
color	from	the	given	child	structure,	respectively.

Now	we	just	need	to	figure	out	how	to	combine	these	expressions.
Clearly,	 if	 the	 child	 structure	 contains	 "blue"	 in	 the	 eyes	 field,	 the

function’s	 answer	 is	#true.	Next,	 the	 expressions	 concerning	 names	 and	 birth
dates	 are	 useless,	 which	 leaves	 us	 with	 the	 recursive	 calls.	 As	 stated,	 (blue-
eyed-child?	(child-father	an-ftree))	traverses	the	tree	on	the	father’s	side,
while	the	mother’s	side	of	the	family	tree	is	processed	with	(blue-eyed-child?
(child-mother	 an-ftree)).	 If	 either	 of	 these	 expressions	 returns	 #true,	 an-
ftree	contains	a	child	with	"blue"	eyes.

Our	analysis	suggests	that	the	result	should	be	#true	if	one	of	the	following
three	expressions	is	#true:

•  (string=?	(child-eyes	an-ftree)	"blue")

•  (blue-eyed-child?	(child-father	an-ftree))

•  (blue-eyed-child?	(child-mother	an-ftree))

which,	in	turn,	means	we	need	to	combine	these	expressions	with	or:

(or	(string=?	(child-eyes	an-ftree)	"blue")	
				(blue-eyed-child?	(child-father	an-ftree))	
				(blue-eyed-child?	(child-mother	an-ftree)))

Figure	113	pulls	everything	together	in	a	single	definition.

Figure	113:	Finding	a	blue-eyed	child	in	an	ancestor	tree

Since	this	function	is	the	very	first	one	to	use	two	recursions,	we	simulate	the
stepper’s	 action	 for	 (blue-eyed-child?	 Carl)	 to	 give	 you	 an	 impression	 of
how	it	all	works:

(blue-eyed-child?	Carl)

	==	

(blue-eyed-child?	
		(make-child	NP	NP	"Carl"	1926	"green"))

Let’s	 act	 as	 if	 NP	 were	 a	 value	 and	 let’s	 use	 carl	 as	 an	 abbreviation	 for	 the
instance	of	child:

After	dropping	the	first	cond	line,	it’s	time	to	replace	carl	with	its	value	and	to
perform	 the	 three	 auxiliary	 calculations	 in	 figure	 114.	 Using	 these	 to	 replace
equals	with	equals,	the	rest	of	the	computation	is	explained	easily:

Figure	114:	Calculating	with	trees

While	 we	 trust	 that	 you	 have	 seen	 such	 auxiliary	 calculations	 in	 your
mathematics	 courses,	 you	 also	 need	 to	 understand	 that	 the	 stepper	 would	not
perform	such	calculations;	 instead	 it	works	out	only	 those	calculations	 that	are
absolutely	needed.

Exercise	310.	Develop	count-persons.	The	function	consumes	a	family	tree
and	counts	the	child	structures	in	the	tree.	

Exercise	311.	Develop	the	function	average-age.	It	consumes	a	family	tree
and	 the	current	year.	 It	produces	 the	average	age	of	all	child	 structures	 in	 the
family	tree.	

Exercise	312.	Develop	 the	 function	eye-colors,	which	consumes	a	 family
tree	 and	 produces	 a	 list	 of	 all	 eye	 colors	 in	 the	 tree.	An	 eye	 color	may	 occur
more	 than	 once	 in	 the	 resulting	 list.	Hint	 Use	 append	 to	 concatenate	 the	 lists
resulting	from	the	recursive	calls.	

Exercise	313.	Suppose	we	need	 the	 function	blue-eyed-ancestor?,	which
is	like	blue-eyed-child?	but	responds	with	#true	only	when	a	proper	ancestor,
not	the	given	child	itself,	has	blue	eyes.

Although	the	goals	clearly	differ,	the	signatures	are	the	same:

;	FT	->	Boolean	
	(define	(blue-eyed-ancestor?	an-ftree)	…)

Stop!	Formulate	a	purpose	statement	for	the	function.
To	appreciate	the	difference,	we	take	a	look	at	Eva:

(check-expect	(blue-eyed-child?	Eva)	#true)

Eva	is	blue-eyed,	but	has	no	blue-eyed	ancestor.	Hence,

(check-expect	(blue-eyed-ancestor?	Eva)	#false)

In	contrast,	Gustav	is	Eva’s	son	and	does	have	a	blue-eyed	ancestor:

(check-expect	(blue-eyed-ancestor?	Gustav)	#true)

Now	suppose	a	friend	comes	up	with	this	solution:

Explain	why	this	function	fails	one	of	its	tests.	What	is	the	result	of	(blue-eyed-
ancestor?	 A)	 no	 matter	 which	 A	 you	 choose?	 Can	 you	 fix	 your	 friend’s
solution?	

19.2 Forests
It	is	a	short	step	from	a	family	tree	to	a	family	forest:

;	An	FF	(short	for	family	forest)	is	one	of:	;	
--	'()	

;	--	(cons	FT	FF)	
;	interpretation	a	family	forest	represents	several	
;	families	(say,	a	town)	and	their	ancestor	trees

Here	are	some	tree	excerpts	from	figure	111	arranged	as	forests:

(define	ff1	(list	Carl	Bettina))	

(define	ff2	(list	Fred	Eva))	
(define	ff3	(list	Fred	Eva	Carl))

The	first	two	forests	contain	two	unrelated	families,	and	the	third	one	illustrates
that	unlike	in	real	forests,	trees	in	family	forests	can	overlap.

Now	consider	this	representative	problem	concerning	family	trees:

Sample	 Problem	 Design	 the	 function	 blue-eyed-child-in-
forest?,	 which	 determines	 whether	 a	 family	 forest	 contains	 a
child	with	"blue"	in	the	eyes	field.

The	straightforward	solution	is	displayed	in	figure	115.	Study	the	signature,
the	purpose	statement,	and	the	examples	on	your	own.	We	focus	on	the	program
organization.	Concerning	the	template,	the	design	may	employ	the	list	template
because	 the	 function	 consumes	 a	 list.	 If	 each	 item	on	 the	 list	were	 a	 structure
with	 an	 eyes	 field	 and	 nothing	 else,	 the	 function	 would	 iterate	 over	 those
structures	using	the	selector	function	for	the	eyes	field	and	a	string	comparison.
In	 this	 case,	 each	 item	 is	 a	 family	 tree,	 but,	 luckily,	we	 already	 know	how	 to
process	family	trees.

Figure	115:	Finding	a	blue-eyed	child	in	a	family	forest

Let’s	step	back	and	inspect	how	we	explained	figure	115.	The	starting	point
is	a	pair	of	data	definitions	where	the	second	refers	to	the	first	and	both	refer	to
themselves.	The	result	is	a	pair	of	functions	where	the	second	refers	to	the	first
and	 both	 refer	 to	 themselves.	 In	 other	words,	 the	 function	 definitions	 refer	 to
each	other	the	same	way	the	data	definitions	refer	to	each	other.	Early	chapters
gloss	 over	 this	 kind	 of	 relationship,	 but	 now	 the	 situation	 is	 sufficiently
complicated	and	deserves	attention.

Exercise	 314.	 Reformulate	 the	 data	 definition	 for	 FF	 with	 the	 List-of
abstraction.	Now	 do	 the	 same	 for	 the	 blue-eyed-child-in-forest?	 function.
Finally,	define	blue-eyed-child-in-forest?	using	one	of	 the	 list	abstractions
from	the	preceding	chapter.	

Exercise	315.	Design	the	function	average-age.	It	consumes	a	family	forest
and	a	year	(N).	From	this	data,	it	produces	the	average	age	of	all	child	instances
in	the	forest.	Note	If	the	trees	in	this	forest	overlap,	the	result	isn’t	a	true	average
because	some	people	contribute	more	than	others.	For	this	exercise,	act	as	if	the
trees	don’t	overlap.	

19.3 S-expressions
While	intermezzo	2	introduced	S-expressions	on	an	informal	basis,	it	is	possible
to	describe	them	with	a	combination	of	three	data	definitions:

Recall	 that	Symbols	 look	 like	 strings	with	 a	 single	quote	 at	 the	beginning	and
with	no	quote	at	the	end.

The	 idea	 of	 S-expressions	 is	 due	 to	 John	McCarthy	 and	 his	 Lispers,	 who
created	 S-expressions	 in	 1958	 so	 that	 they	 could	 process	 Lisp	 programs	 with
other	Lisp	programs.	This	seemingly	circular	reasoning	may	sound	esoteric,	but,
as	mentioned	in	intermezzo	2,	S-expressions	are	a	versatile	form	of	data	that	is
often	 rediscovered,	 most	 recently	 with	 applications	 to	 the	 world	 wide	 web.
Working	 with	 S-expressions	 thus	 prepares	 a	 discussion	 of	 how	 to	 design
functions	for	highly	intertwined	data	definitions.

Exercise	316.	Define	the	atom?	function.	
Up	 to	 this	 point	 in	 this	 book,	 no	 data	 has	 required	 a	 data	 definition	 as

complex	 as	 the	 one	 for	 S-expressions.	 And	 yet,	 with	 one	 extra	 hint,	 you	 can
design	functions	 that	process	S-expressions	if	you	follow	the	design	recipe.	To
demonstrate	this	point,	let’s	work	through	a	specific	example:

Sample	 Problem	 Design	 the	 function	 count,	 which	 determines
how	many	times	some	symbol	occurs	in	some	S-expression.

While	 the	 first	 step	 calls	 for	 data	 definitions	 and	 appears	 to	 have	 been
completed,	 remember	 that	 it	 also	 calls	 for	 the	 creation	 of	 data	 examples,
especially	when	the	definition	is	complex.

A	data	definition	is	supposed	to	be	a	prescription	of	how	to	create	data,	and
its	 “test”	 is	whether	 it	 is	 usable.	One	 point	 that	 the	 data	 definition	 for	 S-expr

makes	is	that	every	Atom	is	an	element	of	S-expr,	and	you	know	that	Atoms	are
easy	to	fabricate:

'hello

20.12

"world"

In	the	same	vein,	every	SL	is	a	list	as	well	as	an	S-expr:

The	 first	 two	 are	 obvious;	 the	 third	 one	deserves	 a	 second	 look.	 It	 repeats	 the
second	S-expr	but	nested	inside	(cons…	'()).	What	this	means	is	that	it	is	a	list
that	contains	a	 single	 item,	namely,	 the	 second	example.	You	can	simplify	 the
example	with	list:

(list	(cons	'hello	(cons	20.12	(cons	"world"	'()))))	

;	or

(list	(list	'hello	20.12	"world"))

Indeed,	with	 the	 quotation	mechanism	 of	 intermezzo	 2	 it	 is	 even	 easier	 to
write	down	S-expressions.	Here	are	the	last	three:

>	'()	
'()	
>	'(hello	20.12	"world")	
(list	'hello	#i20.12	"world")	
>	'((hello	20.12	"world"))	
(list	(list	'hello	#i20.12	"world"))

To	help	you	out,	we	evaluate	these	examples	in	the	interactions	area	of	DrRacket
so	that	you	can	see	the	result,	which	is	closer	to	the	above	constructions	than	the
quote	notation.

With	quote,	it	is	quite	easy	to	make	up	complex	examples:

This	example	may	strike	you	as	odd	because	 it	 looks	 like	a	definition	 in	BSL,
but,	 as	 the	 interaction	with	DrRacket	 shows,	 it	 is	 just	 a	 piece	 of	 data.	Here	 is
another	one:

This	piece	of	data	 looks	 like	a	 table,	associating	 letters	with	numbers.	The	 last
example	is	a	piece	of	art:

>	'(wing	(wing	body	wing)	wing)	
(list	'wing	(list	'wing	'body	'wing)	'wing)

It	is	now	time	to	write	down	the	rather	obvious	header	for	count:

;	S-expr	Symbol	->	N	
;	counts	all	occurrences	of	sy	in	sexp	
(define	(count	sexp	sy)	
		0)

Since	the	header	is	obvious,	we	move	on	to	functional	examples.	If	the	given	S-
expr	is	'world	and	the	to-be-counted	symbol	is	'world,	the	answer	is	obviously
1.	Here	are	some	more	examples,	immediately	formulated	as	tests:

(check-expect	(count	'world	'hello)	0)

(check-expect	(count	'(world	hello)	'hello)	1)
(check-expect	(count	'(((world)	hello)	hello)	'hello)	2)

You	can	see	how	convenient	quotation	notation	is	for	test	cases.	When	it	comes
to	templates,	however,	thinking	in	terms	of	quote	is	disastrous.

Before	we	move	on	to	the	template	step,	we	need	to	prepare	you	for	the	next
generalization	of	the	design	recipe:

Hint	 For	 intertwined	 data	 definitions,	 create	 one	 template	 per
data	 definition.	Create	 them	 in	parallel.	Make	 sure	 they	 refer	 to
each	other	in	the	same	way	the	data	definitions	do.	End

This	hint	sounds	more	complicated	than	it	is.	For	our	problem,	it	means	we	need
three	templates:

1.	one	for	count,	which	counts	occurrences	of	symbols	in	S-exprs;

2.	one	for	a	function	that	counts	occurrences	of	symbols	in	SLs;	and

3.	one	for	a	function	that	counts	occurrences	of	symbols	in	Atoms.

And	here	 are	 three	partial	 templates,	with	 conditionals	 as	 suggested	by	 the
three	data	definitions:

The	 template	 for	 count	 contains	 a	 two-pronged	 conditional	 because	 the	 data
definition	 for	S-expr	has	 two	clauses.	 It	uses	 the	atom?	 function	 to	distinguish
the	 case	 for	 Atoms	 from	 the	 case	 for	 SLs.	 The	 template	 named	 count-sl
consumes	 an	 element	 of	 SL	 and	 a	 symbol,	 and	 because	 SL	 is	 basically	 a	 list,
count-sl	also	contains	a	two-pronged	cond.	Finally,	count-atom	is	supposed	to
work	for	both	Atoms	and	Symbols.	And	this	means	that	its	template	checks	for
the	three	distinct	forms	of	data	mentioned	in	the	data	definition	of	Atom.

The	next	step	is	to	take	apart	compound	data	in	the	relevant	clauses:

Why	do	we	add	just	two	selector	expressions	to	count-sl?
The	last	step	in	the	template	creation	process	calls	for	an	inspection	of	self-

references	in	the	data	definitions.	In	our	context,	this	means	self-references	and
references	from	one	data	definition	to	another	and	(possibly)	back.	Let’s	inspect
the	cond	lines	in	the	three	templates:

1.	The	atom?	line	in	count	corresponds	to	the	first	line	in	the	definition	of	S-
expr.	To	indicate	the	cross-reference	from	here	to	Atom,	we	add	(count-
atom	 sexp	 sy),	 meaning	 we	 interpret	 sexp	 as	 an	 Atom	 and	 let	 the
appropriate	function	deal	with	it.

2.	Following	the	same	line	of	thought,	the	second	cond	line	in	count	calls	for
the	addition	of	(count-sl	sexp	sy).

3.	The	empty?	 line	 in	count-sl	 corresponds	 to	a	 line	 in	 the	data	definition
that	makes	no	reference	to	another	data	definition.

4.	 In	 contrast,	 the	 else	 line	 contains	 two	 selector	 expressions,	 and	 each
extracts	a	different	kind	of	value.	Specifically,	(first	sl)	 is	an	element
of	S-expr,	which	means	that	we	wrap	it	in	(count	…).	After	all,	count	 is
responsible	 for	 counting	 inside	 of	 arbitrary	 S-exprs.	 Next,	 (rest	 sl)

corresponds	 to	 a	 self-reference,	 and	we	 know	 that	we	 need	 to	 deal	with
those	via	recursive	function	calls.

5.	Finally,	 all	 three	cases	 in	Atom	refer	 to	atomic	 forms	of	data.	Therefore

the	count-atom	function	does	not	need	to	change.

Figure	 116	 presents	 the	 three	 complete	 templates.	 Filling	 in	 the	 blanks	 in
these	templates	is	straightforward,	as	figure	117	shows.	You	ought	to	be	able	to
explain	any	random	line	in	the	three	definitions.	For	example:

[(atom?	sexp)	(count-atom	sexp	sy)]

Figure	116:	A	template	for	S-expressions

Figure	117:	A	program	for	S-expressions

determines	whether	sexp	is	an	Atom	and,	if	so,	interprets	the	S-expr	as	an	Atom
via	count-atom.

[else	
	(+	(count	(first	sl)	sy)	(count-sl	(rest	sl)	sy))]

means	the	given	list	consists	of	two	parts:	an	S-expr	and	an	SL.	By	using	count
and	 count-sl,	 the	 corresponding	 functions	 are	 used	 to	 count	 how	 often	 sy
appears	 in	 each	 part,	 and	 the	 two	 numbers	 are	 added	 up—yielding	 the	 total
number	of	sys	in	all	of	sexp.

[(symbol?	at)	(if	(symbol=?	at	sy)	1	0)]

tells	us	 that	 if	 an	Atom	 is	 a	Symbol,	sy	 occurs	once	 if	 it	 is	 equal	 to	sexp	 and
otherwise	it	does	not	occur	at	all.	Since	the	two	pieces	of	data	are	atomic,	there
is	no	other	possibility.

Exercise	317.	A	program	that	consists	of	three	connected	functions	ought	to
express	this	relationship	with	a	local	expression.

Copy	 and	 reorganize	 the	 program	 from	 figure	 117	 into	 a	 single	 function
using	local.	Validate	the	revised	code	with	the	test	suite	for	count.

The	second	argument	to	the	local	functions,	sy,	never	changes.	It	 is	always
the	 same	 as	 the	 original	 symbol.	 Hence	 you	 can	 eliminate	 it	 from	 the	 local
function	 definitions	 to	 tell	 the	 reader	 that	sy	 is	 a	 constant	 across	 the	 traversal
process.	

Exercise	 318.	 Design	 depth.	 The	 function	 consumes	 an	 S-expression	 and
determines	 its	 depth.	 An	 Atom	 has	 a	 depth	 of	 1.	 The	 depth	 of	 a	 list	 of	 S-
expressions	is	the	maximum	depth	of	its	items	plus	1.	

Exercise	 319.	Design	substitute.	 It	 consumes	an	S-expression	s	 and	 two
symbols,	old	and	new.	The	result	 is	 like	s	with	all	occurrences	of	old	replaced
by	new.	

Exercise	 320.	 Reformulate	 the	 data	 definition	 for	 S-expr	 so	 that	 the	 first
clause	is	expanded	into	the	three	clauses	of	Atom	and	the	second	clause	uses	the
List-of	abstraction.	Redesign	the	count	function	for	this	data	definition.

Now	integrate	 the	definition	of	SL	 into	 the	one	 for	S-expr.	Simplify	count

again.	Consider	using	lambda.
Note	 This	 kind	 of	 simplification	 is	 not	 always	 possible,	 but	 experienced

programmers	tend	to	recognize	such	opportunities.	
Exercise	 321.	Abstract	 the	 data	 definitions	 for	S-expr	 and	SL	 so	 that	 they

abstract	over	the	kinds	of	Atoms	that	may	appear.	

19.4 Designing	with	Intertwined	Data
The	jump	from	self-referential	data	definitions	to	collections	of	data	definitions
with	mutual	references	is	far	smaller	than	the	one	from	data	definitions	for	finite
data	 to	 self-referential	 data	 definitions.	 Indeed,	 the	 design	 recipe	 for	 self-
referential	 data	 definitions—see	 chapter	 9—needs	 only	 minor	 adjustments	 to
apply	to	this	seemingly	complex	situation:

1.	The	need	for	“nests”	of	mutually	related	data	definitions	is	similar	to	the
one	 for	 the	 need	 for	 self-referential	 data	 definitions.	 The	 problem
statement	deals	with	many	distinct	kinds	of	information,	and	one	form	of
information	refers	to	other	kinds.
Before	you	proceed	in	such	situations,	draw	arrows	to	connect	references
to	definitions.	Consider	the	left	side	of	figure	118.	It	displays	the	definition
for	S-expr,	which	contains	references	to	SL	and	Atom	that	are	connected
to	 their	 respective	 definitions	 via	 arrows.	 Similarly,	 the	 definition	 of	 SL
contains	one	self-reference	and	one	reference	back	to	SL;	again,	both	are
connected	by	appropriate	arrows.

Figure	118:	Arrows	for	nests	of	data	definitions	and	templates

Like	self-referential	data	definitions,	these	nests	of	definitions	also	call	for
validation.	At	a	minimum,	you	must	be	able	 to	construct	 some	examples
for	every	individual	definition.	Start	from	clauses	that	do	not	refer	to	any
of	 the	other	data	definitions	 in	 the	nest.	Keep	 in	mind	 that	 the	definition
may	be	invalid	if	it	is	impossible	to	generate	examples	from	them.

2.	The	key	change	 is	 that	you	must	design	as	many	functions	 in	parallel	as
there	 are	 data	 definitions.	 Each	 function	 specializes	 for	 one	 of	 the	 data
definitions;	all	remaining	arguments	remain	the	same.	Based	on	that,	you
start	 with	 a	 signature,	 a	 purpose	 statement,	 and	 a	 dummy	 definition	 for
each	function.

3.	Be	sure	to	work	through	functional	examples	that	use	all	mutual	references
in	the	nest	of	data	definitions.

4.	 For	 each	 function,	 design	 the	 template	 according	 to	 its	 primary	 data
definition.	Use	figure	51	to	guide	the	template	creation	up	to	the	last	step.
The	 revised	 last	 step	 calls	 for	 a	 check	 for	 all	 self-references	 and	 cross-
references.	 Use	 the	 data	 definitions	 annotated	 with	 arrows	 to	 guide	 this
step.	 For	 each	 arrow	 in	 the	 data	 definitions,	 include	 an	 arrow	 in	 the
templates.	See	the	right	side	of	figure	118	for	the	arrow-annotated	version
of	the	templates.
Now	replace	the	arrows	with	actual	function	calls.	As	you	gain	experience,
you	 will	 naturally	 skip	 the	 arrow-drawing	 step	 and	 use	 function	 calls
directly.
Note	Observe	how	both	nests—the	one	for	data	definitions	and	the	one	for
function	 templates—contain	 four	 arrows,	 and	 note	 how	 pairs	 of	 arrows
correspond	 to	 each	 other.	 Researchers	 call	 this	 correspondence	 a
symmetry.	It	is	evidence	that	the	design	recipe	provides	a	natural	way	for
going	from	problems	to	solutions.

5.	 For	 the	 design	 of	 the	 body,	 we	 start	 with	 those	 cond	 lines	 that	 do	 not
contain	natural	recursions	or	calls	to	other	functions.	They	are	called	base
cases.	 The	 corresponding	 answers	 are	 typically	 easy	 to	 formulate	 or	 are
already	given	by	the	examples.	After	that,	you	deal	with	the	self-referential
cases	and	the	cases	of	cross-function	calls.	Let	the	questions	and	answers

of	figure	53	guide	you.

6.	Run	the	tests	when	all	definitions	are	completed.	If	an	auxiliary	function	is
broken,	 you	 may	 get	 two	 error	 reports,	 one	 for	 the	 main	 function	 and
another	 one	 for	 the	 flawed	 auxiliary	 definition.	 A	 single	 fix	 should
eliminate	both.	Do	make	sure	that	running	the	tests	covers	all	the	pieces	of
the	function.

Finally,	 if	 you	 are	 stuck	 in	 step	 5,	 remember	 the	 table-based	 approach	 to
guessing	the	combination	function.	In	the	case	of	intertwined	data,	you	may	need
not	only	a	table	per	case	but	also	a	table	per	case	and	per	function	to	work	out
the	combination.

19.5 Project:	BSTs
Programmers	 often	 work	 with	 tree	 representations	 of	 data	 to	 improve	 the
performance	 of	 their	 functions.	 A	 particularly	 well-known	 form	 of	 tree	 is	 the
binary	 search	 tree	 because	 it	 is	 a	good	way	 to	 store	 and	 retrieve	 information
quickly.

To	 be	 concrete,	 let’s	 discuss	 binary	 trees	 that	 manage	 information	 about
people.	 Instead	 of	 the	 child	 structures	 in	 family	 trees,	 a	 binary	 tree	 contains
nodes:

(define-struct	no-info	[])	

(define	NONE	(make-no-info))

(define-struct	node	[ssn	name	left	right])	

;	A	BT	(short	for	BinaryTree)	is	one	of:	
;	--	NONE	

;	--	(make-node	Number	Symbol	BT	BT)

The	 corresponding	 data	 definition	 is	 like	 the	 one	 for	 family	 trees	 with	 NONE
indicating	 a	 lack	 of	 information	 and	 each	 node	 recording	 a	 social	 security
number,	 a	 name,	 and	 two	 other	 binary	 trees.	The	 latter	 are	 like	 the	 parents	 of
family	trees,	though	the	relationship	between	a	node	and	its	left	and	right	trees
is	not	based	on	family	relationships.

Here	are	two	binary	trees:

Figure	 119	 shows	how	we	 should	 think	 about	 such	 trees	 as	 drawings.	The
trees	are	drawn	upside	down,	with	the	root	at	the	top	and	the	crown	of	the	tree	at
the	 bottom.	Each	 circle	 corresponds	 to	 a	 node,	 labeled	with	 the	ssn	 field	 of	 a
corresponding	node	structure.	The	drawings	omit	NONE.

Figure	119:	A	binary	search	tree	and	a	binary	tree

Exercise	322.	Draw	the	above	two	trees	in	the	manner	of	figure	119.	Then
design	contains-bt?,	which	determines	whether	a	given	number	occurs	in	some
given	BT.	

Exercise	323.	Design	search-bt.	The	function	consumes	a	number	n	and	a
BT.	 If	 the	 tree	 contains	 a	 node	 structure	 whose	 ssn	 field	 is	 n,	 the	 function
produces	 the	 value	 of	 the	 name	 field	 in	 that	 node.	 Otherwise,	 the	 function
produces	#false.

Hint	Consider	using	contains-bt?	to	check	the	entire	tree	first	or	boolean?
to	check	the	result	of	the	natural	recursion	at	each	stage.	

If	we	read	the	numbers	in	the	two	trees	in	figure	119	from	left	 to	right,	we
obtain	two	different	sequences:

The	 sequence	 for	 tree	A	 is	 sorted	 in	 ascending	 order	 the	 one	 for	 B	 is	 not.	 A
binary	tree	of	the	first	kind	is	a	binary	search	tree.	Every	binary	search	tree	is	a
binary	tree,	but	not	every	binary	tree	is	a	binary	search	tree.	More	concretely,	we
formulate	a	condition—or	data	invariant—that	distinguishes	a	binary	search	tree
from	a	binary	tree:

The	BST	Invariant

A	BST	 (short	 for	 binary	 search	 tree)	 is	 a	 BT	 according	 to	 the
following	conditions:

•  NONE	is	always	a	BST.

•  (make-node	ssn0	name0	L	R)	is	a	BST	if
– L	is	a	BST,
– R	is	a	BST,
– all	ssn	fields	in	L	are	smaller	than	ssn0,
– all	ssn	fields	in	R	are	larger	than	ssn0.

In	other	words,	to	check	whether	a	BT	also	belongs	to	BST,	we	must	inspect	all
numbers	 in	 all	 subtrees	 and	 ensure	 that	 they	 are	 smaller	 or	 larger	 than	 some
given	number.	This	places	an	additional	burden	on	the	construction	of	data,	but,
as	the	following	exercises	show,	it	is	well	worth	it.

Exercise	 324.	Design	 the	 function	inorder.	 It	 consumes	 a	 binary	 tree	 and
produces	the	sequence	of	all	the	ssn	numbers	in	the	tree	as	they	show	up	from
left	to	right	when	looking	at	a	tree	drawing.

Hint	Use	append,	which	concatenates	lists	like	thus:

	(append	(list	1	2	3)	(list	4)	(list	5	6	7))	

==

	(list	1	2	3	4	5	6	7)

What	does	inorder	produce	for	a	binary	search	tree?	
Looking	for	a	node	with	a	given	ssn	in	a	BST	may	exploit	the	BST	invariant.

To	 find	out	whether	 a	BT	 contains	 a	 node	with	 a	 specific	ssn,	 a	 function	may
have	to	look	at	every	node	of	the	tree.	In	contrast,	to	find	out	whether	a	binary
search	tree	contains	the	same	ssn,	a	function	may	eliminate	one	of	two	subtrees
for	every	node	it	inspects.

Let’s	illustrate	the	idea	with	this	sample	BST:

(make-node	66	'a	L	R)

If	we	are	looking	for	66,	we	have	found	the	node	we	are	looking	for.	Now,	if	we
are	looking	for	a	smaller	number,	say	63,	we	can	focus	the	search	on	L	because
all	nodes	with	ssn	fields	smaller	than	66	are	in	L.	Similarly,	if	we	were	to	look
for	99,	we	would	ignore	L	and	focus	on	R	because	all	nodes	with	ssns	larger	than
66	are	in	R.

Exercise	325.	Design	search-bst.	The	function	consumes	a	number	n	and	a

BST.	 If	 the	 tree	contains	a	node	whose	ssn	 field	 is	n,	 the	function	produces	the
value	of	the	name	field	in	that	node.	Otherwise,	the	function	produces	NONE.	The
function	 organization	 must	 exploit	 the	 BST	 invariant	 so	 that	 the	 function
performs	as	few	comparisons	as	necessary.

See	exercise	189	for	searching	in	sorted	lists.	Compare!	
Building	a	binary	tree	 is	easy;	building	a	binary	search	tree	 is	complicated.

Given	any	two	BTs,	a	number,	and	a	name,	we	simply	apply	make-node	to	these
values	 in	 the	 correct	 order,	 and	voilà,	we	get	 a	 new	BT.	This	 same	procedure
fails	for	BSTs	because	the	result	would	typically	not	be	a	BST.	For	example,	 if
one	BST	 contains	 nodes	with	 ssn	 fields	 3	 and	 5	 in	 the	 correct	 order,	 and	 the
other	 one	 contains	 ssn	 fields	 2	 and	 6,	 simply	 combining	 the	 two	 trees	 with
another	social	security	number	and	a	name	does	not	produce	a	BST.

The	 remaining	 two	 exercises	 explain	 how	 to	 build	 a	 BST	 from	 a	 list	 of
numbers	 and	 names.	 Specifically,	 the	 first	 exercise	 calls	 for	 a	 function	 that
inserts	a	given	ssn0	and	name0	into	a	BST;	that	is,	it	produces	a	BST	like	the	one
it	 is	 given	 with	 one	 more	 node	 inserted	 containing	 ssn0,	 name0,	 and	 NONE
subtrees.	 The	 second	 exercise	 then	 requests	 a	 function	 that	 can	 deal	 with	 a
complete	list	of	numbers	and	names.

Exercise	 326.	 Design	 the	 function	 create-bst.	 It	 consumes	 a	 BST	 B,	 a
number	N,	and	a	symbol	S.	It	produces	a	BST	that	is	just	like	B	and	that	in	place	of
one	NONE	subtree	contains	the	node	structure

(make-node	N	S	NONE	NONE)

Once	the	design	is	completed,	use	the	function	on	tree	A	from	figure	119.	
Exercise	 327.	 Design	 the	 function	 create-bst-from-list.	 It	 consumes	 a

list	of	numbers	and	names	and	produces	a	BST	by	repeatedly	applying	create-
bst.	Here	is	the	signature:

;	[List-of	[List	Number	Symbol]]	->	BST

Use	the	complete	function	to	create	a	BST	from	this	sample	input:

The	result	 is	 tree	A	 in	figure	119,	 if	you	follow	the	structural	design	recipe.	 If
you	use	an	existing	abstraction,	you	may	still	get	this	tree	but	you	may	also	get
an	“inverted”	one.	Why?	

19.6 Simplifying	Functions
Exercise	317	shows	how	to	use	local	to	organize	a	function	that	deals	with	an
intertwined	 form	of	 data.	This	 organization	 also	 helps	 simplify	 functions	 once
we	know	that	the	data	definition	is	final.	To	demonstrate	this	point,	we	explain
how	to	simplify	the	solution	of	exercise	319.

Figure	120	displays	a	complete	definition	of	 the	substitute	 function.	The
definition	 uses	 local	 and	 three	 auxiliary	 functions	 as	 suggested	 by	 the	 data
definition.	The	figure	includes	a	test	case	so	that	you	can	retest	the	function	after
each	 edit	 suggested	 below.	 Stop!	Develop	 additional	 test	 cases;	 one	 is	 almost
never	enough.

Figure	120:	A	program	to	be	simplified

Exercise	 328.	Copy	 and	 paste	 figure	 120	 into	DrRacket;	 include	 your	 test
suite.	Validate	 the	 test	 suite.	As	 you	 read	 along	 the	 remainder	 of	 this	 section,
perform	 the	 edits	 and	 rerun	 the	 test	 suites	 to	 confirm	 the	 validity	 of	 our
arguments.	

Since	we	know	that	SL	describes	lists	of	S-expr,	we	can	use	map	to	simplify
for-sl.	See	figure	121	for	the	result.	While	the	original	program	says	that	for-
sexp	is	applied	to	every	item	on	sl,	its	revised	definition	expresses	the	same	idea
more	succinctly	with	map.

Figure	121:	Program	simplification,	step	1

For	 the	 second	 simplification	 step,	 we	 need	 to	 remind	 you	 that	 equal?
compares	 two	 arbitrary	 values.	 With	 this	 in	 mind,	 the	 third	 local	 function
becomes	a	one-liner.	Figure	122	displays	this	second	simplification.

Figure	122:	Program	simplification,	steps	2	and	3

At	 this	 point	 the	 last	 two	 local	 definitions	 consist	 of	 a	 single	 line.
Furthermore,	neither	definition	is	recursive.	Hence	we	can	 in-line	 the	functions
in	 for-sexp.	 Inlining	 means	 replacing	 (for-atom	 sexp)	 with	 (if	 (equal?

sexp	 old)	 new	 sexp),	 that	 is,	 we	 replace	 the	 parameter	 at	 with	 the	 actual
argument	sexp.	Similarly,	for	(for-sl	sexp)	we	put	in	(map	for-sexp	sexp);
see	the	bottom	half	of	figure	121.	All	we	are	left	with	now	is	a	function	whose
definition	 introduces	 one	 local	 function,	 which	 is	 called	 on	 the	 same	 major
argument.	 If	 we	 systematically	 supplied	 the	 other	 two	 arguments,	 we	 would
immediately	see	that	the	locally	defined	function	can	be	used	in	lieu	of	the	outer
one.

While	sexp	is	also	a	parameter,	this	substitution	is	really	acceptable	because	it,	too,	stands	in	for	an
actual	value.

Here	is	the	result	of	translating	this	last	thought	into	code:

Stop!	Explain	why	we	had	to	use	lambda	for	this	last	simplification.

20 Iterative	Refinement
When	 you	 develop	 real-world	 programs,	 you	may	 confront	 complex	 forms	 of
information	and	the	problem	of	representing	them	with	data.	The	best	strategy	to
approach	this	task	is	to	use	iterative	refinement,	a	well-known	scientific	process.
A	scientist’s	problem	is	to	represent	a	part	of	the	real	world,	using	some	form	of
mathematics.	The	result	of	 the	effort	 is	called	a	model.	The	scientist	 then	 tests
the	model	in	many	ways,	in	particular	by	predicting	the	outcome	of	experiments.
If	the	discrepancies	between	the	predictions	and	the	measurements	are	too	large,
the	model	 is	 refined	with	 the	 goal	 of	 improving	 the	 predictions.	This	 iterative
process	continues	until	the	predictions	are	sufficiently	accurate.

Consider	 a	 physicist	who	wishes	 to	 predict	 a	 rocket’s	 flight	 path.	While	 a
“rocket	as	a	point”	representation	is	simple,	it	is	also	quite	inaccurate,	failing	to
account	 for	 air	 friction,	 for	 example.	 In	 response,	 the	 physicist	 may	 add	 the
rocket’s	 rough	 contour	 and	 introduce	 the	 necessary	 mathematics	 to	 represent
friction.	 This	 second	 model	 is	 a	 refinement	 of	 the	 first	 model.	 In	 general,	 a
scientist	repeats—or	as	programmers	say,	iterates—this	process	until	the	model
predicts	the	rocket’s	flight	path	with	sufficient	accuracy.

A	programmer	trained	in	a	computer	science	department	should	proceed	like
this	physicist.	The	key	is	to	find	an	accurate	data	representation	of	the	real-world
information	 and	 functions	 that	 process	 them	 appropriately.	 Complicated
situations	call	for	a	refinement	process	to	get	to	a	sufficient	data	representation
combined	with	the	proper	functions.	The	process	starts	with	the	essential	pieces
of	information	and	adds	others	as	needed.	Sometimes	a	programmer	must	refine
a	model	after	 the	program	has	been	deployed	because	users	 request	additional
functionality.

So	 far	we	have	used	 iterative	 refinement	 for	you	when	 it	came	 to	complex
forms	 of	 data.	 This	 chapter	 illustrates	 iterative	 refinement	 as	 a	 principle	 of
program	 development	 with	 an	 extended	 example,	 representing	 and	 processing
(portions	of)	a	computer’s	file	system.	We	start	with	a	brief	discussion	of	the	file
system	and	 then	 iteratively	develop	 three	data	 representations.	Along	 the	way,
we	propose	some	programming	exercises	so	that	you	see	how	the	design	recipe
also	helps	modify	existing	programs.

20.1 Data	Analysis
Before	you	turn	off	DrRacket,	you	want	to	make	sure	that	all	your	work	is	safely
stashed	away	 somewhere.	Otherwise	you	have	 to	 reenter	 everything	when	you
fire	up	DrRacket	next.	So	you	ask	your	computer	to	save	programs	and	data	in
files.	A	file	is	roughly	a	string.

A	file	is	really	a	sequence	of	bytes,	one	after	another.	Try	to	define	the	class	of	files.

On	 most	 computer	 systems,	 files	 are	 organized	 in	 directories	 or	 folders.
Roughly	 speaking,	 a	 directory	 contains	 some	 files	 and	 some	more	 directories.
The	 latter	 are	 called	 sub-directories	 and	may	 contain	 yet	more	 sub-directories
and	files.	Because	of	the	hierarchy,	we	speak	of	directory	trees.

Figure	 123	 contains	 a	 graphical	 sketch	 of	 a	 small	 directory	 tree,	 and	 the
picture	explains	why	computer	scientists	call	them	trees.	Contrary	to	convention
in	 computer	 science,	 the	 figure	 shows	 the	 tree	 growing	 upward,	 with	 a	 root
directory	named	TS.	The	root	directory	contains	one	file,	called	read!,	and	two
sub-directories,	called	Text	and	Libs,	respectively.	The	first	sub-directory,	Text,
contains	only	three	files;	the	latter,	Libs,	contains	only	two	sub-directories,	each
of	which	contains	at	least	one	file.	Finally,	each	box	has	one	of	two	annotations:
a	directory	is	annotated	with	DIR,	and	a	file	is	annotated	with	a	number,	its	size.

Figure	123:	A	sample	directory	tree

Exercise	329.	How	many	times	does	a	file	name	read!	occur	in	the	directory
tree	TS?	Can	you	describe	 the	path	 from	 the	 root	directory	 to	 the	occurrences?
What	 is	 the	 total	 size	 of	 all	 the	 files	 in	 the	 tree?	What	 is	 the	 total	 size	 of	 the
directory	if	each	directory	node	has	size	1?	How	many	levels	of	directories	does
it	contain?	

20.2 Refining	Data	Definitions
Exercise	 329	 lists	 some	 of	 the	 questions	 that	 users	 routinely	 ask	 about
directories.	To	answer	such	questions,	the	computer’s	operating	system	provides
programs	that	can	answer	them.	If	you	want	to	design	such	programs,	you	need
to	develop	a	data	representation	for	directory	trees.

In	 this	 section,	 we	 use	 iterative	 refinement	 to	 develop	 three	 such	 data
representations.	 For	 each	 stage,	we	 need	 to	 decide	which	 attributes	 to	 include
and	which	to	ignore.	Consider	the	directory	tree	in	figure	123	and	imagine	how
it	is	created.	When	a	user	first	creates	a	directory,	it	is	empty.	As	time	goes	by,
the	user	adds	files	and	directories.	In	general,	a	user	refers	to	files	by	names	but
mostly	thinks	of	directories	as	containers.

Model	1	Our	thought	experiment	suggests	that	our	first	model	should	focus	on
files	as	atomic	entities	with	a	name	and	directories	as	containers.	Here	is	a	data
definition	 that	 deals	 with	 directories	 as	 lists	 and	 files	 as	 strings,	 that	 is,	 their
names:

;	A	Dir.v1	(short	for	directory)	is	one	of:	
;	--	'()	
;	--	(cons	File.v1	Dir.v1)	
;	--	(cons	Dir.v1	Dir.v1)	

;	A	File.v1	is	a	String.

The	names	have	a	.v1	suffix	to	distinguish	them	from	future	refinements.
Exercise	 330.	 Translate	 the	 directory	 tree	 in	 figure	 123	 into	 a	 data

representation	according	to	model	1.	
Exercise	 331.	Design	 the	 function	how-many,	which	 determines	 how	many

files	 a	 given	Dir.v1	 contains.	 Remember	 to	 follow	 the	 design	 recipe;	 exercise
330	provides	you	with	data	examples.	

Model	2	 If	you	solved	exercise	331,	you	know	 that	 this	 first	data	definition	 is
still	reasonably	simple.	But,	it	also	obscures	the	nature	of	directories.	With	this
first	 representation,	 we	 would	 not	 be	 able	 to	 list	 all	 the	 names	 of	 the	 sub-
directories	 of	 some	 given	 directory.	 To	 model	 directories	 in	 a	 more	 faithful

manner	 than	 containers,	 we	 must	 introduce	 a	 structure	 type	 that	 combines	 a
name	with	a	container:

(define-struct	dir	[name	content])

This	new	structure	type,	in	turn,	suggests	the	following	revision	of	the	data
definition:

;	A	Dir.v2	is	a	structure:	
;			(make-dir	String	LOFD)	

;	An	LOFD	(short	for	list	of	files	and	directories)	is	one	of:	
;	--	'()	

;	--	(cons	File.v2	LOFD)	
;	--	(cons	Dir.v2	LOFD)	

;	A	File.v2	is	a	String.

Note	how	the	data	definition	for	Dir.v2	refers	to	the	definition	for	LOFDs,	and
the	 one	 for	 LOFDs	 refers	 back	 to	 that	 of	 Dir.v2.	 The	 two	 definitions	 are
mutually	recursive.

Exercise	 332.	 Translate	 the	 directory	 tree	 in	 figure	 123	 into	 a	 data
representation	according	to	model	2.	

Exercise	 333.	Design	 the	 function	how-many,	which	 determines	 how	many
files	 a	 given	 Dir.v2	 contains.	 Exercise	 332	 provides	 you	 with	 data	 examples.
Compare	your	result	with	that	of	exercise	331.	

Exercise	334.	Show	how	to	equip	a	directory	with	two	more	attributes:	size
and	 readability.	 The	 former	measures	 how	much	 space	 the	 directory	 itself	 (as
opposed	 to	 its	 content)	 consumes;	 the	 latter	 specifies	 whether	 anyone	 else
besides	the	user	may	browse	the	content	of	the	directory.	

Model	3	Like	directories,	 files	have	attributes.	To	 introduce	 these,	we	proceed
just	as	above.	First,	we	define	a	structure	for	files:

(define-struct	file	[name	size	content])

Second,	we	provide	a	data	definition:

;	A	File.v3	is	a	structure:	
;			(make-file	String	N	String)

As	 indicated	by	 the	 field	names,	 the	 string	 represents	 the	name	of	 the	 file,	 the
natural	number	its	size,	and	the	string	its	content.

Finally,	 let’s	 split	 the	content	 field	of	directories	 into	 two	pieces:	a	 list	of
files	and	a	list	of	sub-directories.	This	change	requires	a	revision	of	the	structure
type	definition:

(define-struct	dir.v3	[name	dirs	files])

Here	is	the	refined	data	definition:

;	A	Dir.v3	is	a	structure:	
;			(make-dir.v3	String	Dir*	File*)	

;	A	Dir*	is	one	of:	
;	--	'()	

;	--	(cons	Dir.v3	Dir*)	

;	A	File*	is	one	of:	
;	--	'()	

;	--	(cons	File.v3	File*)

Following	 a	 convention	 in	 computer	 science,	 the	 use	 of	 *	 as	 the	 ending	 of	 a
name	 suggests	 “many”	 and	 is	 a	 marker	 distinguishing	 the	 name	 from	 similar
ones:	File.v3	and	Dir.v3.

Exercise	 335.	 Translate	 the	 directory	 tree	 in	 figure	 123	 into	 a	 data
representation	according	to	model	3.	Use	""	for	the	content	of	files.	

Exercise	 336.	Design	 the	 function	how-many,	which	 determines	 how	many
files	 a	 given	 Dir.v3	 contains.	 Exercise	 335	 provides	 you	 with	 data	 examples.
Compare	your	result	with	that	of	exercise	333.

Given	 the	 complexity	 of	 the	 data	 definition,	 contemplate	 how	 anyone	 can
design	correct	functions.	Why	are	you	confident	that	how-many	produces	correct
results?	

Exercise	 337.	Use	List-of	 to	 simplify	 the	 data	 definition	Dir.v3.	 Then	 use
ISL+’s	list-processing	functions	from	figures	95	and	96	to	simplify	the	function

definition(s)	for	the	solution	of	exercise	336.	
Starting	with	a	simple	representation	of	the	first	model	and	refining	it	step-

by-step,	 we	 have	 developed	 a	 reasonably	 accurate	 data	 representation	 for
directory	 trees.	 Indeed,	 this	 third	 data	 representation	 captures	 the	 nature	 of	 a
directory	tree	much	more	faithfully	than	the	first	two.	Based	on	this	model,	we
can	 create	 a	 number	 of	 other	 functions	 that	 users	 expect	 from	 a	 computer’s
operating	system.

20.3 Refining	Functions
To	make	 the	 following	exercises	 somewhat	 realistic,	DrRacket	comes	with	 the
dir.rkt	 library	from	the	first	edition	of	 this	book.	This	 teachpack	introduces	the
two	 structure	 type	 definitions	 from	 model	 3,	 though	 without	 the	 .v3	 suffix.
Furthermore,	 the	 teachpack	 provides	 a	 function	 that	 creates	 representations	 of
directory	trees	on	your	computer:

Add	(require	htdp/dir)	to	the	definitions	area.

;	String	->	Dir.v3	
;	creates	a	representation	of	the	a-path	directory	
(define	(create-dir	a-path)	…)

For	example,	 if	you	open	DrRacket	and	enter	the	following	three	lines	into	the
definitions	area:

(define	O	(create-dir	"Users…"))	;	on	OS	X	

(define	L	(create-dir	"varlog/"))	;	on	Linux	
(define	W	(create-dir	"C:\\Users\\…"))	;	on	Windows

you	get	data	representations	of	directories	on	your	computer	after	you	save	and
then	run	the	program.	Indeed,	you	could	use	create-dir	 to	map	the	entire	file
system	on	your	computer	to	an	instance	of	Dir.v3.

Warnings	(1)	For	large	directory	trees,	DrRacket	may	need	a	lot	of	time	to
build	a	representation.	Use	create-dir	on	small	directory	trees	first.	(2)	Do	not
define	your	own	dir	structure	type.	The	teachpack	already	defines	them,	and	you
must	not	define	a	structure	type	twice.

Although	create-dir	delivers	only	a	representation	of	a	directory	tree,	it	is
sufficiently	realistic	to	give	you	a	sense	of	what	it	is	like	to	design	programs	at
that	level.	The	following	exercises	illustrate	this	point.	They	use	Dir	to	refer	to
the	generic	idea	of	a	data	representation	for	directory	trees.	Use	the	simplest	data
definition	of	Dir	that	allows	you	to	complete	the	respective	exercise.	Feel	free	to
use	the	data	definition	from	exercise	337	and	the	functions	from	figures	95	and
96.

Exercise	 338.	Use	create-dir	 to	 turn	 some	 of	 your	 directories	 into	 ISL+
data	representations.	Then	use	how-many	from	exercise	336	to	count	how	many
files	they	contain.	Why	are	you	confident	that	how-many	produces	correct	results
for	these	directories?	

Exercise	339.	Design	find?.	The	function	consumes	a	Dir	and	a	file	name
and	determines	whether	or	not	a	file	with	this	name	occurs	in	the	directory	tree.	

Exercise	340.	Design	the	function	ls,	which	lists	the	names	of	all	files	and
directories	in	a	given	Dir.	

Exercise	341.	Design	du,	a	function	that	consumes	a	Dir	and	computes	the
total	 size	 of	 all	 the	 files	 in	 the	 entire	 directory	 tree.	 Assume	 that	 storing	 a
directory	in	a	Dir	structure	costs	1	file	storage	unit.	In	the	real	world,	a	directory
is	 basically	 a	 special	 file,	 and	 its	 size	 depends	 on	 how	 large	 its	 associated
directory	is.	

The	remaining	exercises	rely	on	the	notion	of	a	path,	which	for	our	purposes
is	a	list	of	names:

;	A	Path	is	[List-of	String].	
;	interpretation	directions	into	a	directory	tree

Take	a	second	look	at	figure	123.	In	that	diagram,	the	path	from	TS	to	part1	is
(list	 "TS"	 "Text"	 "part1").	 Similarly,	 the	 path	 from	 TS	 to	 Code	 is	 (list
"TS"	"Libs"	"Code").

Exercise	342.	Design	find.	The	function	consumes	a	directory	d	and	a	file
name	f.	 If	(find?	d	f)	 is	#true,	find	produces	a	path	 to	a	 file	with	name	f;
otherwise	it	produces	#false.

Hint	While	it	is	tempting	to	first	check	whether	the	file	name	occurs	in	the
directory	tree,	you	have	to	do	so	for	every	single	sub-directory.	Hence	it	is	better
to	combine	the	functionality	of	find?	and	find.

Challenge	 The	 find	 function	 discovers	 only	 one	 of	 the	 two	 files	 named
read!	in	figure	123.	Design	find-all,	which	generalizes	find	and	produces	the
list	of	all	paths	that	lead	to	f	in	d.	What	should	find-all	produce	when	(find?
d	f)	 is	#false?	Is	 this	part	of	 the	problem	really	a	challenge	compared	 to	 the
basic	problem?	

Exercise	 343.	 Design	 the	 function	 ls-R,	 which	 lists	 the	 paths	 to	 all	 files
contained	in	a	given	Dir.	

Exercise	 344.	 Redesign	 find-all	 from	 exercise	 342	 using	 ls-R	 from

exercise	343.	This	is	design	by	composition,	and	if	you	solved	the	challenge	part
of	exercise	342	your	new	function	can	find	directories,	too.	

21 Refining	Interpreters
DrRacket	is	a	program.	It	is	a	complex	one,	dealing	with	many	different	kinds	of
data.	Like	most	 complex	programs,	DrRacket	 also	 consists	of	many	 functions:
one	 that	 allows	 programmers	 to	 edit	 text,	 another	 one	 that	 acts	 like	 the
interactions	area,	a	third	one	that	checks	whether	definitions	and	expressions	are
“grammatical,”	and	so	on.

In	this	chapter,	we	show	you	how	to	design	the	function	that	implements	the
heart	 of	 the	 interactions	 area.	 Naturally,	 we	 use	 iterative	 refinement	 for	 this
design	project.	As	a	matter	of	 fact,	 the	very	 idea	of	 focusing	on	 this	 aspect	of
DrRacket	 is	 another	 instance	 of	 refinement,	 namely,	 the	 obvious	 one	 of
implementing	only	one	piece	of	functionality.

Simply	put,	the	interactions	area	performs	the	task	of	determining	the	values
of	expressions	that	you	enter.	After	you	click	RUN,	the	interactions	area	knows
about	all	the	definitions.	It	is	then	ready	to	accept	an	expression	that	may	refer	to
these	 definitions,	 to	 determine	 the	 value	 of	 this	 expression,	 and	 to	 repeat	 this
cycle	 as	 often	 as	 you	 wish.	 For	 this	 reason,	 many	 people	 also	 refer	 to	 the
interactions	area	as	the	read-eval-print	loop,	where	eval	is	short	for	evaluator,	a
function	that	is	also	called	interpreter.

Like	this	book,	our	refinement	process	starts	with	numeric	BSL	expressions.
They	are	simple;	they	do	not	assume	an	understanding	of	definitions;	and	even
your	 sister	 in	 fifth	 grade	 can	 determine	 their	 value.	Once	 you	 understand	 this
first	 step,	 you	 know	 the	 difference	 between	 a	 BSL	 expression	 and	 its
representation.	Next	we	move	on	to	expressions	with	variables.	The	last	step	is
to	add	definitions.

21.1 Interpreting	Expressions
Our	first	task	is	to	agree	on	a	data	representation	for	BSL	programs.	That	is,	we
must	figure	out	how	to	represent	a	BSL	expression	as	a	piece	of	BSL	data.	At
first,	this	sounds	strange	and	unusual,	but	it	is	not	difficult.	Suppose	we	just	want
to	represent	numbers,	additions,	and	multiplications	for	a	start.	Clearly,	numbers
can	 stand	 for	 numbers.	 An	 addition	 expression,	 however,	 calls	 for	 compound
data	 because	 it	 contains	 two	 expressions	 and	 because	 it	 is	 distinct	 from	 a
multiplication	expression,	which	also	needs	a	data	representation.

Following	 chapter	 5,	 a	 straightforward	 way	 to	 represent	 additions	 and
multiplications	is	to	define	two	structure	types,	each	with	two	fields:

(define-struct	add	[left	right])	

(define-struct	mul	[left	right])

The	intention	is	that	the	left	field	contains	one	operand—the	one	to	the	“left”	of
the	 operator—and	 the	 right	 field	 contains	 the	 other	 operand.	 The	 following
table	shows	three	examples:

The	next	question	concerns	an	expression	with	sub-expressions:

(+	(*	3	3)	(*	4	4))

The	 surprisingly	 simple	 answer	 is	 that	 fields	 may	 contain	 any	 value.	 In	 this
particular	case,	left	and	right	may	contain	representations	of	expressions,	and
you	may	nest	this	as	deeply	as	you	wish.	See	figure	124	for	additional	examples.

Figure	124:	Representing	BSL	expressions	in	BSL

Exercise	 345.	 Formulate	 a	 data	 definition	 for	 the	 representation	 of	 BSL
expressions	 based	 on	 the	 structure	 type	 definitions	 of	 add	 and	 mul.	 Let’s	 use
BSL-expr	in	analogy	for	S-expr	for	the	new	class	of	data.

Translate	the	following	expressions	into	data:

1.	(+	10	-10)

2.	(+	(*	20	3)	33)

3.	(+	(*	3.14	(*	2	3))	(*	3.14	(*	-1	-9)))

Interpret	the	following	data	as	expressions:

1.	(make-add	-1	2)

2.	(make-add	(make-mul	-2	-3)	33)

3.	(make-mul	(make-add	1	(make-mul	2	3))	3.14)	

Here	“interpret”	means	“translate	from	data	into	information.”	In	contrast,	“interpreter”	in	the	title
of	this	chapter	refers	to	a	program	that	consumes	the	representation	of	a	program	and	produces	its
value.	While	the	two	ideas	are	related,	they	are	not	the	same.

Now	 that	 you	 have	 a	 data	 representation	 for	 BSL	 programs,	 it	 is	 time	 to
design	 an	 evaluator.	 This	 function	 consumes	 a	 representation	 of	 a	 BSL
expression	and	produces	 its	value.	Again,	 this	 function	 is	unlike	any	you	have
ever	 designed	 so	 it	 pays	 off	 to	 experiment	 with	 some	 examples.	 To	 this	 end,
either	 you	 can	 use	 the	 rules	 of	 arithmetic	 to	 figure	 out	 what	 the	 value	 of	 an

expression	is	or	you	can	“play”	in	the	interactions	area	of	DrRacket.	Take	a	look
at	the	following	table	for	our	examples:

Exercise	346.	Formulate	a	data	definition	for	the	class	of	values	to	which	a
representation	of	a	BSL	expression	can	evaluate.	

Exercise	 347.	 Design	 eval-expression.	 The	 function	 consumes	 a
representation	of	a	BSL	expression	and	computes	its	value.	

Exercise	 348.	Develop	 a	 data	 representation	 for	Boolean	BSL	 expressions
constructed	 from	 #true,	 #false,	 and,	 or,	 and	 not.	 Then	 design	 eval-bool-
expression,	which	consumes	(representations	of)	Boolean	BSL	expressions	and
computes	their	values.	What	kind	of	values	do	these	Boolean	expressions	yield?	

Convenience	and	parsing	S-expressions	offer	a	convenient	way	to	represent
BSL	expressions	in	our	programming	language:

By	simply	putting	a	quote	in	front	of	an	expression,	we	get	ISL+	data.
Interpreting	an	S-expression	representation	is	clumsy,	mostly	because	not	all

S-expressions	represent	BSL-exprs.	For	example,	#true,	"hello",	and	'(+	x	1)
are	not	representatives	of	BSL	expressions.	As	a	result,	S-expressions	are	quite
inconvenient	for	the	designers	of	interpreters.	Programmers	invented	parsers	to
bridge	 the	 gap	 between	 convenience	 of	 use	 and	 implementation.	 A	 parser
simultaneously	checks	whether	some	piece	of	data	conforms	to	a	data	definition

and,	 if	 it	 does,	 builds	 a	matching	 element	 from	 the	 chosen	 class	 of	 data.	 The
latter	is	called	a	parse	tree.	If	the	given	data	does	not	conform,	a	parser	signals
an	error,	much	like	the	checked	functions	from	chapter	6.3.

Figure	 125	 presents	 a	 BSL	 parser	 for	 S-expressions.	 Specifically,	 parse
consumes	 an	 S-expr	 and	 produces	 a	 BSL-expr—if	 and	 only	 if	 the	 given	 S-
expression	 is	 the	 result	 of	 quoting	 a	 BSL	 expression	 that	 has	 a	 BSL-expr
representative.

Figure	125:	From	S-expr	to	BSL-expr

Exercise	 349.	 Create	 tests	 for	 parse	 until	 DrRacket	 tells	 you	 that	 every
element	in	the	definitions	area	is	covered	during	the	test	run.	

Exercise	 350.	 What	 is	 unusual	 about	 the	 definition	 of	 this	 program	 with
respect	to	the	design	recipe?

Note	One	unusual	aspect	is	that	parse	uses	length	on	the	list	argument.	Real
parsers	avoid	length	because	it	slows	the	functions	down.	

Exercise	 351.	 Design	 interpreter-expr.	 The	 function	 accepts	 S-
expressions.	 If	 parse	 recognizes	 them	 as	 BSL-expr,	 it	 produces	 their	 value.

Otherwise,	it	signals	the	same	error	as	parse.	

21.2 Interpreting	Variables
Since	the	first	section	ignores	constant	definitions,	an	expression	does	not	have	a
value	 if	 it	 contains	 a	 variable.	 Indeed,	 unless	 we	 know	 what	 x	 stands	 for,	 it
makes	no	sense	to	evaluate	(+	3	x).	Hence,	one	first	refinement	of	the	evaluator
is	to	add	variables	to	the	expressions	that	we	wish	to	evaluate.	The	assumption	is
that	the	definitions	area	contains	a	definition	such	as

(define	x	5)

and	that	programmers	evaluate	expressions	containing	x	in	the	interactions	area:

>	x	
5	
>	(+	x	3)	
8	
>	(*	1/2	(*	x	3))	
7.5

Indeed,	 you	 could	 imagine	 a	 second	 definition,	 say	 (define	 y	 3),	 and
interactions	that	involve	two	variables:

The	 preceding	 section	 implicitly	 proposes	 symbols	 as	 representations	 for
variables.	 After	 all,	 if	 you	 were	 to	 choose	 quoted	 S-expressions	 to	 represent
expressions	with	variables,	symbols	would	appear	naturally:

>	'x	
'x	
>	'(*	1/2	(*	x	3))	
(list	'*	0.5	(list	'*	'x	3))

One	obvious	alternative	is	a	string,	so	that	"x"	would	represent	x,	but	this	book
is	not	about	designing	interpreters,	so	we	stick	with	symbols.	From	this	decision,

it	follows	how	to	modify	the	data	definition	from	exercise	345:

;	A	BSL-var-expr	is	one	of:	
;	--	Number	
;	--	Symbol	
;	--	(make-add	BSL-var-expr	BSL-var-expr)	
;	--	(make-mul	BSL-var-expr	BSL-var-expr)

We	simply	add	one	clause	to	the	data	definition.
As	for	data	examples,	the	following	table	shows	some	BSL	expressions	with

variables	and	their	BSL-var-expr	representation:

They	 are	 all	 taken	 from	 the	 interactions	 above,	meaning	 you	 know	 the	 results
when	x	is	5	and	y	3.

One	 way	 to	 determine	 the	 value	 of	 variable	 expressions	 is	 to	 replace	 all
variables	with	 the	 values	 that	 they	 represent.	 This	 is	 the	way	 you	 know	 from
mathematics	classes	in	school,	and	it	is	a	perfectly	fine	way.

Exercise	 352.	Design	subst.	The	 function	consumes	a	BSL-var-expr	ex,	 a
Symbol	 x,	 and	 a	 Number	 v.	 It	 produces	 a	 BSL-var-expr	 like	 ex	 with	 all
occurrences	of	x	replaced	by	v.	

Exercise	353.	Design	the	numeric?	function.	It	determines	whether	a	BSL-
var-expr	is	also	a	BSL-expr.	Here	we	assume	that	your	solution	to	exercise	345
is	the	definition	for	BSL-var-expr	without	Symbols.	

Exercise	 354.	 Design	 eval-variable.	 The	 checked	 function	 consumes	 a
BSL-var-expr	 and	 determines	 its	 value	 if	 numeric?	 yields	 true	 for	 the	 input.
Otherwise	it	signals	an	error.

In	 general,	 a	 program	 defines	 many	 constants	 in	 the	 definitions	 area,	 and
expressions	 contain	more	 than	 one	 variable.	 To	 evaluate	 such	 expressions,	we
need	a	representation	of	the	definitions	area	when	it	contains	a	series	of	constant

definitions.	For	this	exercise	we	use	association	lists:

;	An	AL	(short	for	association	list)	is	[List-of	Association].	
;	An	Association	is	a	list	of	two	items:	
;				(cons	Symbol	(cons	Number	'())).

Make	up	elements	of	AL.
Design	eval-variable*.	The	function	consumes	a	BSL-var-expr	ex	and	an

association	 list	 da.	 Starting	 from	 ex,	 it	 iteratively	 applies	 subst	 to	 all
associations	 in	 da.	 If	 numeric?	 holds	 for	 the	 result,	 it	 determines	 its	 value;
otherwise	 it	signals	 the	same	error	as	eval-variable.	Hint	Think	of	 the	given
BSL-var-expr	as	an	atomic	value	and	traverse	the	given	association	list	instead.
We	provide	this	hint	because	the	creation	of	this	function	requires	a	little	design
knowledge	from	chapter	23.	

	
	
An	 environment	 model	 Exercise	 354	 relies	 on	 the	 mathematical

understanding	 of	 constant	 definitions.	 If	 a	 name	 is	 defined	 to	 stand	 for	 some
value,	all	occurrences	of	 the	name	can	be	replaced	with	 the	value.	Substitution
performs	 this	 replacement	 once	 and	 for	 all	 before	 the	 evaluation	 process	 even
starts.

An	 alternative	 approach,	 dubbed	 the	 environment	model,	 is	 to	 look	 up	 the
value	of	a	variable	when	needed.	The	evaluator	starts	processing	the	expression
immediately	 but	 also	 carries	 along	 the	 representation	 of	 the	 definitions	 area.
Every	time	the	evaluator	encounters	a	variable,	it	looks	in	the	definitions	area	for
its	value	and	uses	it.

Exercise	 355.	 Design	 eval-var-lookup.	 This	 function	 has	 the	 same
signature	as	eval-variable*:

;	BSL-var-expr	AL	->	Number	
(define	(eval-var-lookup	e	da)	…)

Instead	of	using	substitution,	the	function	traverses	the	expression	in	the	manner
that	the	design	recipe	for	BSL-var-expr	suggests.	As	it	descends	the	expression,
it	“carries	along”	da.	When	it	encounters	a	symbol	x,	it	uses	assq	to	look	up	the
value	of	x	 in	the	association	list.	If	 there	is	no	value,	eval-var-lookup	signals

an	error.	

21.3 Interpreting	Functions
At	 this	 point,	 you	 understand	 how	 to	 evaluate	 BSL	 programs	 that	 consist	 of
constant	definitions	and	variable	expressions.	Naturally	you	want	to	add	function
definitions	so	that	you	know—at	least	in	principle—how	to	deal	with	all	of	BSL.

The	goal	of	this	section	is	to	refine	the	evaluator	of	chapter	21.2	so	that	it	can
cope	with	functions.	Since	function	definitions	show	up	in	the	definitions	area,
another	way	to	describe	the	refined	evaluator	is	to	say	that	it	simulates	DrRacket
when	 the	 definitions	 area	 contains	 a	 number	 of	 function	 definitions	 and	 a
programmer	 enters	 an	 expression	 in	 the	 interactions	 area	 that	 contains	 uses	 of
these	functions.

For	simplicity,	let’s	assume	that	all	functions	in	the	definitions	area	consume
one	argument	and	that	there	is	only	one	such	definition.	The	necessary	domain
knowledge	dates	back	to	school	where	you	learned	that	f	(x)	=	e	represents	the
definition	of	function	f,	that	f	(a)	represents	the	application	of	f	to	a,	and	that	to
evaluate	the	latter,	you	substitute	a	for	x	 in	e.	As	it	 turns	out,	the	evaluation	of
function	applications	in	a	language	such	as	BSL	works	mostly	like	that,	too.

Before	 tackling	 the	 following	 exercises,	 you	 may	 wish	 to	 refresh	 your
knowledge	of	 the	 terminology	concerning	functions	as	presented	 in	 intermezzo
1.	Most	of	the	time,	algebra	courses	gloss	over	this	aspect	of	mathematics,	but	a
precise	use	and	understanding	of	terminology	is	needed	when	you	wish	to	solve
these	problems.

Exercise	356.	Extend	the	data	representation	of	chapter	21.2	 to	 include	 the
application	of	a	programmer-defined	function.	Recall	that	a	function	application
consists	of	two	pieces:	a	name	and	an	expression.	The	former	is	the	name	of	the
function	that	is	applied;	the	latter	is	the	argument.

Represent	these	expressions:	(k	(+	1	1)),	(*	5	(k	(+	1	1))),	(*	(i	5)
(k	(+	1	1))).	We	refer	to	this	newly	defined	class	of	data	as	BSL-fun-expr.	

Exercise	 357.	 Design	 eval-definition1.	 The	 function	 consumes	 four
arguments:

1.	a	BSL-fun-expr	ex;

2.	a	symbol	f,	which	represents	a	function	name;

3.	a	symbol	x,	which	represents	the	functions’s	parameter;	and

4.	a	BSL-fun-expr	b,	which	represents	the	function’s	body.

It	 determines	 the	 value	 of	 ex.	 When	 eval-definition1	 encounters	 an
application	of	f	to	some	argument,	it

1.	evaluates	the	argument,

2.	substitutes	the	value	of	the	argument	for	x	in	b;	and

3.	finally	evaluates	the	resulting	expression	with	eval-definition1.

Here	 is	how	to	express	 the	steps	as	code,	assuming	arg	 is	 the	argument	of	 the
function	application:

Notice	 that	 this	 line	 uses	 a	 form	 of	 recursion	 that	 has	 not	 been	 covered.	 The
proper	design	of	such	functions	is	discussed	in	part	V.

If	 eval-definition1	 encounters	 a	 variable,	 it	 signals	 the	 same	 error	 as
eval-variable	 from	 exercise	 354.	 It	 also	 signals	 an	 error	 for	 function
applications	that	refer	to	a	function	name	other	than	f.

Warning	 The	 use	 of	 this	 uncovered	 form	 of	 recursion	 introduces	 a	 new
element	 into	 your	 computations:	 non-termination.	 That	 is,	 a	 program	may	 run
forever	 instead	of	delivering	a	 result	or	 signaling	an	error.	 If	you	 followed	 the
design	recipes	of	the	first	four	parts,	you	cannot	write	down	such	programs.	For
fun,	construct	an	input	for	eval-definition1	that	causes	it	to	run	forever.	Use
STOP	to	terminate	the	program.	

For	an	evaluator	that	mimics	the	interactions	area,	we	need	a	representation
of	the	definitions	area.	We	assume	that	it	is	a	list	of	definitions.

Exercise	 358.	 Provide	 a	 structure	 type	 and	 a	 data	 definition	 for	 function
definitions.	Recall	that	such	a	definition	has	three	essential	attributes:

1.	the	function’s	name,	which	is	represented	with	a	symbol;

2.	the	function’s	parameter,	which	is	also	a	name;	and

3.	the	function’s	body,	which	is	a	variable	expression.

We	use	BSL-fun-def	to	refer	to	this	class	of	data.
Use	your	data	definition	to	represent	these	BSL	function	definitions:

1.	(define	(f	x)	(+	3	x))

2.	(define	(g	y)	(f	(*	2	y)))

3.	(define	(h	v)	(+	(f	v)	(g	v)))

Next,	 define	 the	 class	 BSL-fun-def*	 to	 represent	 a	 definitions	 area	 that
consists	 of	 a	 number	 of	 one-argument	 function	 definitions.	 Translate	 the
definitions	area	that	defines	f,	g,	and	h	into	your	data	representation	and	name	it
da-fgh.

Finally,	work	on	the	following	wish:

;	BSL-fun-def*	Symbol	->	BSL-fun-def	
;	retrieves	the	definition	of	f	in	da	
;	signals	an	error	if	there	is	none	
(check-expect	(lookup-def	da-fgh	'g)	g)	

(define	(lookup-def	da	f)	…)

Looking	up	a	definition	is	needed	for	the	evaluation	of	applications.	
Exercise	359.	Design	eval-function*.	The	 function	consumes	ex,	 a	BSL-

fun-expr,	and	da,	a	BSL-fun-def*	representation	of	a	definitions	area.	It	produces
the	 result	 that	 DrRacket	 shows	 if	 you	 evaluate	 ex	 in	 the	 interactions	 area,
assuming	the	definitions	area	contains	da.

The	 function	 works	 like	 eval-definition1	 from	 exercise	 357.	 For	 an
application	of	some	function	f,	it

1.	evaluates	the	argument;

2.	looks	up	the	definition	of	f	in	the	BSL-fun-def	representation	of	da,	which
comes	with	a	parameter	and	a	body;

3.	 substitutes	 the	 value	 of	 the	 argument	 for	 the	 function	 parameter	 in	 the
function’s	body;	and

4.	evaluates	the	new	expression	via	recursion.

Like	DrRacket,	eval-function*	 signals	an	error	when	 it	encounters	a	variable
or	function	name	without	definition	in	the	definitions	area.	

21.4 Interpreting	Everything
Take	a	look	at	the	following	BSL	program:

Think	of	 these	 definitions	 as	 the	 definitions	 area	 in	DrRacket.	After	 you	 click
RUN,	 you	 can	 evaluate	 expressions	 involving	 close-to-pi,	 area-of-circle,
and	volume-of-10-cylinder	in	the	interactions	area:

>	(area-of-circle	1)	
#i3.14	
>	(volume-of-10-cylinder	1)	
#i31.400000000000002	
>	(*	3	close-to-pi)	
#i9.42

The	goal	of	this	section	is	to	refine	your	evaluator	again	so	that	it	can	mimic	this
much	of	DrRacket.

Exercise	 360.	 Formulate	 a	 data	 definition	 for	 the	 representation	 of
DrRacket’s	definitions	area.	Concretely,	the	data	representation	should	work	for
a	 sequence	 that	 freely	 mixes	 constant	 definitions	 and	 one-argument	 function
definitions.	Make	sure	you	can	represent	the	definitions	area	consisting	of	three
definitions	at	the	beginning	of	this	section.	We	name	this	class	of	data	BSL-da-
all.

Design	 the	 function	 lookup-con-def.	 It	 consumes	 a	 BSL-da-all	 da	 and	 a
symbol	x.	It	produces	the	representation	of	a	constant	definition	whose	name	is
x,	 if	 such	 a	 piece	 of	 data	 exists	 in	da;	 otherwise	 the	 function	 signals	 an	 error
saying	that	no	such	constant	definition	can	be	found.

Design	 the	 function	 lookup-fun-def.	 It	 consumes	 a	 BSL-da-all	 da	 and	 a

symbol	f.	It	produces	the	representation	of	a	function	definition	whose	name	is
f,	 if	 such	 a	 piece	 of	 data	 exists	 in	da;	 otherwise	 the	 function	 signals	 an	 error
saying	that	no	such	function	definition	can	be	found.	

Exercise	 361.	Design	 eval-all.	 Like	 eval-function*	 from	 exercise	 359,
this	function	consumes	the	representation	of	an	expression	and	a	definitions	area.
It	produces	 the	same	value	 that	DrRacket	shows	 if	 the	expression	 is	entered	at
the	 prompt	 in	 the	 interactions	 area	 and	 the	 definitions	 area	 contains	 the
appropriate	definitions.	Hint	Your	eval-all	 function	 should	process	variables
in	the	given	expression	like	eval-var-lookup	in	exercise	355.	

Exercise	 362.	 It	 is	 cumbersome	 to	 enter	 the	 structure-based	 data
representation	of	BSL	expressions	and	a	definitions	area.	As	the	end	of	chapter
21.1	 demonstrates,	 it	 is	 much	 easier	 to	 quote	 expressions	 and	 (lists	 of)
definitions.

Design	 a	 function	 interpreter.	 It	 consumes	 an	 S-expr	 and	 an	 Sl.	 The
former	is	supposed	to	represent	an	expression	and	the	latter	a	list	of	definitions.
The	 function	 parses	 both	with	 the	 appropriate	 parsing	 functions	 and	 then	 uses
eval-all	from	exercise	361	to	evaluate	the	expression.	Hint	You	must	adapt	the
ideas	of	exercise	350	to	create	a	parser	for	definitions	and	lists	of	definitions.

You	 should	 know	 that	 eval-all-sexpr	 makes	 it	 straightforward	 to	 check
whether	it	really	mimics	DrRacket’s	evaluator.	

At	this	point,	you	know	a	lot	about	interpreting	BSL.	Here	are	some	of	the
missing	pieces:	Booleans	with	cond	or	if;	Strings	and	such	operations	string-
length	or	string-append;	and	lists	with	'(),	empty?,	cons,	cons?,	first,	rest;
and	so	on.	Once	your	evaluator	can	cope	with	all	these,	it	is	basically	complete
because	your	evaluators	already	know	how	to	interpret	recursive	functions.	Now
when	we	say	“trust	us,	you	know	how	to	design	these	refinements,”	we	mean	it.

22 Project:	The	Commerce	of	XML
XML	 is	 a	 widely	 used	 data	 language.	 One	 use	 concerns	 message	 exchanges
between	programs	running	on	different	computers.	For	example,	when	you	point
your	web	browser	at	a	web	site,	you	are	connecting	a	program	on	your	computer
to	a	program	on	another	computer,	and	the	latter	sends	XML	data	to	the	former.
Once	 the	 browser	 receives	 the	 XML	 data,	 it	 renders	 it	 as	 an	 image	 on	 your
computer’s	monitor.
The	following	comparison	illustrates	this	idea	with	a	concrete	example:

On	the	left,	you	see	a	piece	of	XML	data	that	a	web	site	may	send	to	your	web
browser.	 On	 the	 right,	 you	 see	 how	 one	 popular	 browser	 renders	 this	 snippet
graphically.

If	you	think	XML	is	too	old-fashioned	for	2018,	feel	free	to	redo	the	exercise	for	JSON	or	some	other
modern	data	exchange	format.	The	design	principles	remain	the	same.

This	 chapter	 explains	 the	 basics	 of	 processing	 XML	 as	 another	 design
exercise	 concerning	 intertwined	 data	 definitions	 and	 iterative	 refinement.	 The
next	section	starts	with	an	informal	comparison	of	S-expressions	and	XML	data
and	 uses	 it	 to	 formulate	 a	 full-fledged	 data	 definition.	 The	 remaining	 sections
explain	with	examples	how	to	process	an	S-expression	of	XML	data.

22.1 XML	as	S-expressions
The	most	basic	piece	of	XML	data	looks	like	this:

<machine>	</machine>

It	is	called	an	element	and	“machine”	is	the	name	of	the	element.	The	two	parts
of	the	element	are	like	parentheses	that	delimit	the	content	of	an	element.	When
there	is	no	content	between	the	two	parts—other	than	white	space—XML	allows
a	short-hand:

<machine	/>

But,	 as	 far	 as	 we	 are	 concerned	 here,	 this	 short-hand	 is	 equivalent	 to	 the
explicitly	bracketed	version.

Racket’s	xml	library	represents	XML	with	structures	as	well	as	S-expressions.

From	 an	 S-expression	 perspective,	 an	 XML	 element	 is	 a	 named	 pair	 of
parentheses	that	surround	some	content.	And	indeed,	representing	the	above	with
an	S-expression	is	quite	natural:

'(machine)

This	piece	of	data	has	 the	opening	and	closing	parentheses,	 and	 it	 comes	with
space	to	embed	content.

Here	is	a	piece	of	XML	data	with	content:

<machine><action	><machine>

Remember	 that	 the	 <action	 />	 part	 is	 a	 short-hand,	 meaning	 we	 are	 really
looking	at	this	piece	of	data:

<machine><action></action></machine>

In	general,	the	content	of	an	XML	element	is	a	series	of	XML	elements:

<machine><action	/><action	><action	></machine>

Stop!	Expand	the	short-hand	for	<action	/>	before	you	continue.
The	 S-expression	 representation	 continues	 to	 look	 simple.	Here	 is	 the	 first

one:

'(machine	(action))

And	this	is	the	representation	for	the	second	one:

'(machine	(action)	(action)	(action))

When	you	look	at	the	piece	of	XML	data	with	a	sequence	of	three	<action
/>	 elements	 as	 its	 content,	 you	 realize	 that	 you	may	wish	 to	 distinguish	 such
elements	from	each	other.	To	this	end,	XML	elements	come	with	attributes.	For
example,

<machine	initial="red"></machine>

is	 the	 “machine”	 element	 equipped	with	 one	 attribute	whose	name	 is	 “initial”
and	 whose	 value	 is	 “red”	 between	 string	 quotes.	 Here	 is	 a	 complex	 XML
element	with	nested	elements	that	have	attributes,	too:

<machine	initial="red">	
		<action	state="red"				next="green"	/>	
		<action	state="green"		next="yellow"	/>	
		<action	state="yellow"	next="red"	/>	
</machine>

We	use	blanks,	 indentation,	 and	 line	breaks	 to	make	 the	element	 readable,	but
this	white	space	has	no	meaning	for	our	XML	data	here.

XML	is	40	years	younger	than	S-expressions.

Naturally,	S-expressions	for	 these	“machine”	elements	look	much	like	their
XML	cousins:

'(machine	((initial	"red")))

To	 add	 attributes	 to	 an	 element,	we	 use	 a	 list	 of	 lists	where	 each	 of	 the	 latter
contains	 two	 items:	a	 symbol	and	a	 string.	The	symbol	 represents	 the	name	of
the	attribute	and	the	string	its	value.	This	idea	naturally	applies	to	complex	forms
of	XML	data,	too:

For	now	note	how	the	attributes	are	marked	by	two	opening	parentheses	and	the
remaining	 list	 of	 (representations	 of)	 XML	 elements	 has	 one	 opening
parenthesis.

You	 may	 recall	 the	 idea	 from	 intermezzo	 2,	 which	 uses	 S-expressions	 to
represent	XHTML,	a	special	dialect	of	XML.	In	particular,	the	intermezzo	shows
how	 easily	 a	 programmer	 can	 write	 down	 nontrivial	 XML	 data	 and	 even
templates	 of	 XML	 representations	 using	 backquote	 and	 unquote.	 Of	 course,
chapter	21.1	points	out	that	you	need	a	parser	to	determine	whether	any	given	S-
expression	 is	 a	 representation	 of	 XML	 data,	 and	 a	 parser	 is	 a	 complex	 and
unusual	kind	of	function.

Nevertheless,	we	 choose	 to	 go	with	 a	 representation	 of	XML	 based	 on	 S-
expressions	 to	 demonstrate	 the	 usefulness	 of	 this	 old,	 poetic	 idea	 in	 practical
terms.	 We	 proceed	 gradually	 to	 work	 out	 a	 data	 definition,	 putting	 iterative
refinement	to	work.	Here	is	a	first	attempt:

;	An	Xexpr.v0	(short	for	X-expression)	is	a	one-item	list:	
;			(cons	Symbol	'())

This	 is	 the	 “named	 parentheses”	 idea	 from	 the	 beginning	 of	 this	 section.
Equipping	this	element	representation	with	content	is	easy:

;	An	Xexpr.v1	is	a	list:	
;				(cons	Symbol	[List-of	Xexpr.v1])

The	 symbolic	 name	becomes	 the	 first	 item	on	 a	 list	 that	 otherwise	 consists	 of
XML	element	representatives.

The	last	refinement	step	is	to	add	attributes.	Since	the	attributes	in	an	XML
element	are	optional,	the	revised	data	definition	has	two	clauses:

;	An	Xexpr.v2	is	a	list:	
;	--	(cons	Symbol	Body)	
;	--	(cons	Symbol	(cons	[List-of	Attribute]	Body))	
;	where	Body	is	short	for	[List-of	Xexpr.v2]	
;	An	Attribute	is	a	list	of	two	items:	
;				(cons	Symbol	(cons	String	'()))

Exercise	363.	All	elements	of	Xexpr.v2	start	with	a	Symbol,	but	 some	are
followed	by	a	list	of	attributes	and	some	by	just	a	list	of	Xexpr.v2s.	Reformulate
the	 definition	 of	Xexpr.v2	 to	 isolate	 the	 common	 beginning	 and	 highlight	 the
different	kinds	of	endings.

Eliminate	the	use	of	List-of	from	Xexpr.v2.	
Exercise	364.	Represent	this	XML	data	as	elements	of	Xexpr.v2:

1.	<transition	from="seen-e"	to="seen-f"	/>

2.	<word	/><word	><word	>

Which	one	could	be	represented	in	Xexpr.v0	or	Xexpr.v1?	
Exercise	365.	Interpret	the	following	elements	of	Xexpr.v2	as	XML	data:

1.	'(server	((name	"example.org")))

2.	'(carcas	(board	(grass))	(player	((name	"sam"))))

3.	'(start)

Which	ones	are	elements	of	Xexpr.v0	or	Xexpr.v1?	
Roughly	 speaking,	 X-expressions	 simulate	 structures	 via	 lists.	 The

simulation	 is	 convenient	 for	 programmers;	 it	 asks	 for	 the	 least	 amount	 of
keyboard	 typing.	 For	 example,	 if	 an	 X-expression	 does	 not	 come	 with	 an
attribute	list,	it	is	simply	omitted.	This	choice	of	data	representation	represents	a

trade-off	 between	 authoring	 such	 expressions	 manually	 and	 processing	 them
automatically.	 The	 best	 way	 to	 deal	 with	 the	 latter	 problem	 is	 to	 provide
functions	that	make	X-expressions	look	like	structures,	especially	functions	that
access	the	quasi-fields:

•  xexpr-name,	which	extracts	the	tag	of	the	element	representation;

•  xexpr-attr,	which	extracts	the	list	of	attributes;	and

•  xexpr-content,	which	extracts	the	list	of	content	elements.

Once	we	have	these	functions,	we	can	use	lists	to	represent	XML	yet	that	act	as
if	they	were	instances	of	a	structure	type.

These	 functions	 parse	 S-expressions,	 and	 parsers	 are	 tricky	 to	 design.	 So
let’s	design	them	carefully,	starting	with	some	data	examples:

The	 first	 definition	 introduces	 a	 list	 of	 attributes,	which	 is	 reused	 twice	 in	 the
construction	 of	 X-expressions.	 The	 definition	 of	 e0	 reminds	 us	 that	 an	 X-
expression	may	not	come	with	either	attributes	or	content.	You	should	be	able	to
explain	why	e2	and	e3	are	basically	equivalent.

Next	we	formulate	a	signature,	a	purpose	statement,	and	a	header:

;	Xexpr.v2	->	[List-of	Attribute]	
;	retrieves	the	list	of	attributes	of	xe	
(define	(xexpr-attr	xe)	'())

Here	we	focus	on	xexpr-attr;	we	leave	the	other	two	as	exercises.
Making	up	functional	examples	requires	a	decision	concerning	the	extraction

of	 attributes	 from	X-expressions	without	 any.	While	our	 chosen	 representation

completely	omits	missing	attributes,	we	must	supply	'()	for	the	structure-based
representation	 of	 XML.	 The	 function	 therefore	 produces	 '()	 for	 such	 X-
expressions:

It	 is	 time	 to	develop	 the	 template.	Since	 the	data	definition	for	Xexpr.v2	 is
complex,	 we	 proceed	 slowly,	 step-by-step.	 First,	 while	 the	 data	 definition
distinguishes	two	kinds	of	X-expressions,	both	clauses	describe	data	constructed
by	consing	a	symbol	onto	a	 list.	Second,	what	differentiates	 the	 two	clauses	 is
the	rest	of	the	list	and	especially	the	optional	presence	of	a	list	of	attributes.	Let’s
translate	these	two	insights	into	a	template:

The	 local	 definition	 chops	 off	 the	 name	 of	 the	 X-expression	 and	 leaves	 the
remainder	of	 the	 list,	which	may	or	may	not	 start	with	a	 list	of	attributes.	The
key	is	that	it	is	just	a	list,	and	the	two	cond	clauses	indicate	so.	Third,	this	list	is
not	defined	via	a	self-reference	but	as	the	optional	cons	of	some	attributes	onto	a
possibly	empty	list	of	X-expressions.	In	other	words,	we	still	need	to	distinguish
the	two	usual	cases	and	extract	the	usual	pieces:

At	this	point,	we	can	already	see	that	recursion	is	not	needed	for	the	task	at
hand.	So,	we	switch	to	 the	fifth	step	of	 the	design	recipe.	Clearly,	 there	are	no
attributes	 if	 the	 given	 X-expression	 comes	 with	 nothing	 but	 a	 name.	 In	 the
second	 clause,	 the	 question	 is	 whether	 the	 first	 item	 on	 the	 list	 is	 a	 list	 of
attributes	 or	 just	 an	 Xexpr.v2.	 Because	 this	 sounds	 complicated,	 we	 make	 a
wish:

;	[List-of	Attribute]	or	Xexpr.v2	->	???	
;		determines	whether	x	is	an	element	of	[List-of	Attribute]	
;	#false	otherwise	

(define	(list-of-attributes?	x)	
		#false)

With	this	function,	it	is	straightforward	to	finish	xexpr-attr;	see	figure	126.	If
the	first	item	is	a	list	of	attributes,	the	function	produces	it;	otherwise	there	are
no	attributes.

Figure	126:	The	complete	definition	of	xexpr-attr

For	the	design	of	list-of-attributes?,	we	proceed	in	the	same	manner	and
get	this	definition:

We	skip	the	details	of	the	design	process	because	they	are	unremarkable.	What	is
remarkable	is	the	signature	of	this	function.	Instead	of	specifying	a	single	data
definition	 as	 possible	 inputs,	 the	 signature	 combines	 two	 data	 definitions
separated	by	the	English	word	“or.”	In	ISL+	such	an	informal	signature	with	a
definite	meaning	is	acceptable	on	occasion.

Exercise	366.	Design	xexpr-name	and	xexpr-content.	
Exercise	367.	The	design	recipe	calls	for	a	self-reference	in	the	template	for

xexpr-attr.	Add	 this	 self-reference	 to	 the	 template	 and	 then	 explain	why	 the
finished	parsing	function	does	not	contain	it.	

Exercise	 368.	 Formulate	 a	 data	 definition	 that	 replaces	 the	 informal	 “or”
signature	for	the	definition	of	the	list-of-attributes?	function.	

Exercise	369.	Design	find-attr.	The	function	consumes	a	list	of	attributes
and	 a	 symbol.	 If	 the	 attributes	 list	 associates	 the	 symbol	 with	 a	 string,	 the
function	retrieves	this	string;	otherwise	it	returns	#false.	Look	up	assq	and	use
it	to	define	the	function.	

For	the	remainder	of	this	chapter,	Xexpr	refers	to	Xexpr.v2.	Also,	we	assume
xexpr-name,	xexpr-attr,	and	xexpr-content	are	defined.	Finally,	we	use	find-
attr	from	exercise	369	to	retrieve	attribute	values.

22.2 Rendering	XML	Enumerations
XML	 is	 actually	 a	 family	 of	 languages.	 People	 define	 dialects	 for	 specific
channels	of	communication.	For	example,	XHTML	is	the	language	for	sending
web	 content	 in	 XML	 format.	 In	 this	 section,	 we	 illustrate	 how	 to	 design	 a
rendering	function	for	a	small	snippet	of	XHTML,	specifically	the	enumerations
from	the	beginning	of	this	chapter.

The	ul	tag	surrounds	a	so-called	unordered	HTML	list.	Each	item	of	this	list
is	 tagged	with	li,	which	 tends	 to	 contain	words	but	 also	other	 elements,	 even
enumerations.	 With	 “unordered”	 HTML	 means	 is	 that	 each	 item	 is	 to	 be
rendered	with	a	leading	bullet	instead	of	a	number.

Since	Xexpr	does	not	come	with	plain	strings,	it	is	not	immediately	obvious
how	to	represent	XHTML	enumerations	in	a	subset.	One	option	is	to	refine	the
data	representation	one	more	time,	so	that	an	Xexpr	could	be	a	String.	Another
option	is	to	introduce	a	representation	for	text:

;	An	XWord	is	'(word	((text	String))).

Here,	we	use	this	second	option;	Racket,	the	language	from	which	the	teaching
languages	are	derived,	offers	libraries	that	include	String	in	Xexpr.

Exercise	 370.	Make	 up	 three	 examples	 for	XWords.	Design	word?,	which
checks	whether	 some	 ISL+	value	 is	 in	XWord,	and	word-text,	which	extracts
the	value	of	the	only	attribute	of	an	instance	of	XWord.	

Exercise	371.	Refine	the	definition	of	Xexpr	so	that	you	can	represent	XML
elements,	including	items	in	enumerations,	that	are	plain	strings.	

Given	 the	 representation	 of	 words,	 representing	 an	 XHTML-style
enumeration	of	words	is	straightforward:

;	An	XEnum.v1	is	one	of:	
;	--	(cons	'ul	[List-of	XItem.v1])	
;	--	(cons	'ul	(cons	Attributes	[List-of	XItem.v1]))	
;	An	XItem.v1	is	one	of:	
;	--	(cons	'li	(cons	XWord	'()))	
;	--	(cons	'li	(cons	Attributes	(cons	XWord	'())))

For	completeness,	the	data	definition	includes	attribute	lists,	even	though	they	do

not	affect	rendering.
Stop!	Argue	that	every	element	of	XEnum.v1	is	also	in	XExpr.
Here	is	a	sample	element	of	XEnum.v1:

It	corresponds	to	the	inner	enumeration	of	the	example	from	the	beginning	of	the
chapter.	 Rendering	 it	 with	 help	 from	 the	 2htdp/image	 library	 should	 yield	 an
image	like	this:

The	 radius	 of	 the	 bullet	 and	 the	 distance	 between	 the	 bullet	 and	 the	 text	 are
matters	of	aesthetics;	here	the	idea	matters.

We	developed	these	expressions	in	the	interactions	area.	What	would	you	do?

To	create	this	kind	of	image,	you	might	use	this	ISL+	program:

assuming	BT	is	a	rendering	of	a	bullet.
Now	 let’s	 design	 the	 function	 carefully.	 Since	 the	 data	 representation

requires	 two	 data	 definitions,	 the	 design	 recipe	 tells	 you	 that	 you	must	 design
two	functions	in	parallel.	A	second	look	reveals,	however,	that	in	this	particular
case	 the	second	data	definition	 is	disconnected	 from	 the	 first	one,	meaning	we
can	deal	with	it	separately.

Furthermore,	 the	 definition	 for	XItem.v1	 consists	 of	 two	 clauses,	meaning
the	 function	 itself	 should	 consist	 of	 a	 cond	 with	 two	 clauses.	 The	 point	 of

viewing	XItem.v1	as	a	sub-language	of	Xexpr,	however,	is	to	think	of	these	two
clauses	in	terms	of	Xexpr	selector	functions,	in	particular,	xexpr-content.	With
this	function	we	can	extract	the	textual	part	of	an	item,	regardless	of	whether	it
comes	with	attributes	or	not:

;	XItem.v1	->	Image	
;	renders	an	item	as	a	"word"	prefixed	by	a	bullet	
(define	(render-item1	i)	
		(…	(xexpr-content	i)	…))

In	general,	xexpr-content	extracts	a	list	of	Xexpr;	in	this	specific	case,	the	list
contains	exactly	one	XWord,	and	this	word	contains	one	text:

From	here,	it	is	straightforward:

After	 extracting	 the	 text	 to	 be	 rendered	 in	 the	 item,	 it	 is	 simply	 a	 question	 of
rendering	 it	 as	 text	 and	 equipping	 it	 with	 a	 leading	 bullet;	 see	 the	 examples
above	for	how	you	might	discover	this	last	step.

Exercise	372.	Before	you	read	on,	equip	the	definition	of	render-item1	with
tests.	Make	sure	to	formulate	these	tests	in	such	a	way	that	they	don’t	depend	on
the	 BT	 constant.	 Then	 explain	how	 the	 function	works;	 keep	 in	mind	 that	 the
purpose	statement	explains	what	it	does.	

Now	we	can	focus	on	the	design	of	a	function	that	renders	an	enumeration.
Using	the	example	from	above,	the	first	two	design	steps	are	easy:

;	XEnum.v1	->	Image	
;	renders	a	simple	enumeration	as	an	image	
(check-expect	(render-enum1	e0)	e0-rendered)	
(define	(render-enum1	xe)	empty-image)

The	key	step	is	the	development	of	a	template.	According	to	the	data	definition,
an	 element	 of	 XEnum.v1	 contains	 one	 interesting	 piece	 of	 data,	 namely,	 the
(representation	of	 the)	XML	elements.	The	first	 item	is	always	'ul,	so	 there	 is
no	need	to	extract	it,	and	the	second,	optional	item	is	a	list	of	attributes,	which
we	ignore.	With	this	in	mind,	the	first	template	draft	looks	just	like	the	one	for
render-item1:

(define	(render-enum1	xe)	
		(…	(xexpr-content	xe)	…))	;	[List-of	XItem.v1]

While	 the	 data-oriented	 design	 recipe	 tells	 you	 that	 you	 should	 design	 a
separate	 function	 whenever	 you	 encounter	 a	 complex	 form	 of	 data,	 the
abstraction-based	 design	 recipe	 from	 part	 III	 tells	 you	 to	 reuse	 an	 existing
abstraction,	 say,	 a	 list-processing	 function	 from	 figures	 95	 and	 96,	 when
possible.	 Given	 that	 render-enum1	 is	 supposed	 to	 process	 a	 list	 and	 create	 a
single	image	from	it,	the	only	two	list-processing	abstractions	whose	signatures
fit	the	bill	are	foldr	and	foldl.	If	you	also	study	their	purpose	statements,	you
see	a	pattern	that	is	like	the	e0-rendered	example	above,	especially	for	foldr.
Let’s	try	to	use	it,	following	the	reuse	design	recipe:

From	the	type	matching,	you	also	know	that:

1.	the	first	argument	to	foldr	must	be	a	two-argument	function;

2.	the	second	argument	must	be	an	image;	and

3.	the	last	argument	is	the	list	representing	XML	content.

Naturally	empty-image	is	the	correct	starting	point.
This	 design-by-reuse	 focuses	 our	 attention	 on	 the	 function	 to	 be	 “folded”

over	the	list.	It	 turns	one	item	and	the	image	that	foldr	has	created	so	far	 into
another	 image.	The	 signature	 for	deal-with-one	 articulates	 this	 insight.	 Since
the	first	argument	is	an	XItem.v1,	render-item1	 is	the	function	that	renders	it.
This	yields	 two	images	 that	must	be	combined:	 the	 image	of	 the	first	 item	and
the	image	of	the	rest	of	the	items.	To	stack	them,	we	use	above:

Flat	enumerations	are	common,	but	they	are	also	a	simple	approximation	of
the	full-fledged	case.	In	the	real	world,	web	browsers	must	cope	with	arbitrarily
nested	 enumerations	 that	 arrive	 over	 the	 web.	 In	 XML	 and	 its	 web	 browser
dialect	XHTML,	 nesting	 is	 straightforward.	Any	 element	may	 show	 up	 as	 the
content	 of	 any	 other	 element.	 To	 represent	 this	 relationship	 in	 our	 limited
XHTML	 representation,	 we	 say	 that	 an	 item	 is	 either	 a	 word	 or	 another
enumeration.	 Figure	 127	 displays	 the	 second	 revision	 of	 the	 data	 definition.	 It
includes	 a	 revision	 of	 the	 data	 definition	 for	 enumerations	 so	 that	 the	 first
definition	refers	to	the	correct	form	of	item.

Figure	127:	A	realistic	data	representation	of	XML	enumerations

Are	you	wondering	whether	arbitrary	nesting	is	the	correct	way	to	think	about	this	problem?	If	so,
develop	a	data	definition	that	allows	only	three	levels	of	nesting	and	then	use	it.

The	 next	 question	 is	 how	 this	 change	 to	 the	 data	 definition	 affects	 the
rendering	 functions.	 Put	 differently,	 we	 need	 to	 revise	 render-enum1	 and
render-item1	so	that	they	can	cope	with	XEnum.v2	and	XItem.v2,	respectively.
Software	engineers	 face	 these	kinds	of	questions	all	 the	 time,	and	 it	 is	another
situation	where	the	design	recipe	shines.

Figure	128	shows	the	complete	answer.	Since	the	change	is	confined	to	the
data	definitions	for	XItem.v2,	it	should	not	come	as	a	surprise	that	the	change	to
the	 rendering	 program	 shows	 up	 in	 the	 function	 for	 rendering	 items.	 While
render-item1	does	not	need	to	distinguish	between	different	forms	of	XItem.v1,
render-item	is	forced	to	use	a	cond	because	XItem.v2	lists	two	different	kinds
of	items.	Given	that	this	data	definition	is	close	to	one	from	the	real	world,	the
distinguishing	characteristic	 is	not	 something	 simple—like	'()	 vs	cons—but	a
specific	piece	of	 the	given	 item.	 If	 the	 item’s	content	 is	a	Word,	 the	 rendering
function	 proceeds	 as	 before.	 Otherwise,	 the	 item	 contains	 an	 enumeration,	 in
which	 case	render-item	 uses	render-enum	 to	 deal	with	 the	 data,	 because	 the
data	definition	for	XItem.v2	refers	back	to	XEnum.v2	precisely	at	this	point.

Figure	128:	Refining	functions	to	match	refinements	of	data	definitions

Exercise	373.	Figure	128	is	missing	test	cases.	Develop	test	cases	for	all	the
functions.	

Exercise	374.	The	data	definitions	in	figure	127	use	list.	Rewrite	them	so
they	 use	 cons.	 Then	 use	 the	 recipe	 to	 design	 the	 rendering	 functions	 for
XEnum.v2	 and	 XItem.v2	 from	 scratch.	 You	 should	 come	 up	 with	 the	 same
definitions	as	in	figure	128.	

Exercise	375.	The	wrapping	of	cond	with

(beside/align	'center	BT	…)

may	surprise	you.	Edit	 the	 function	definition	 so	 that	 the	wrap-around	appears
once	 in	 each	 clause.	Why	 are	 you	 confident	 that	 your	 change	 works?	Which

version	do	you	prefer?	
Exercise	376.	Design	a	program	 that	counts	all	"hello"s	 in	an	 instance	of

XEnum.v2.	
Exercise	377.	Design	a	program	that	replaces	all	"hello"s	with	"bye"	in	an

enumeration.	

22.3 Domain-Specific	Languages
Engineers	routinely	build	large	software	systems	that	require	a	configuration	for
specific	contexts	before	they	can	be	run.	This	configuration	task	tends	to	fall	to
systems	 administrators	 who	 must	 deal	 with	 many	 different	 software	 systems.
The	word	“configuration”	refers	 to	 the	data	 that	 the	main	function	needs	when
the	program	is	launched.	In	a	sense	a	configuration	is	just	an	addition	argument,
though	 it	 is	 usually	 so	 complex	 that	 program	 designers	 prefer	 a	 different
mechanism	for	handing	it	over.

Since	 software	 engineers	 cannot	 assume	 that	 systems	 administrators	 know
every	 programming	 language,	 they	 tend	 to	 devise	 simple,	 special-purpose
configuration	 languages.	 These	 special	 languages	 are	 also	 known	 as	 domain-
specific	 languages	 (DSL).	Developing	 these	DSLs	around	a	common	core,	 say
the	 well-known	 XML	 syntax,	 simplifies	 life	 for	 systems	 administrators.	 They
can	 write	 small	 XML	 “programs”	 and	 thus	 configure	 the	 systems	 they	 must
launch.

Because	configurations	abstract	a	program	over	various	pieces	of	data,	Paul	Hudak	argued	in	the
1990s	that	DSLs	are	the	ultimate	abstractions,	that	is,	that	they	generalize	the	ideas	of	part	III	to
perfection.

While	the	construction	of	a	DSL	is	often	considered	a	task	for	an	advanced
programmer,	you	are	actually	in	a	position	already	to	understand,	appreciate,	and
implement	a	reasonably	complex	DSL.	This	section	explains	how	it	all	works.	It
first	 reacquaints	you	with	 finite	 state	machines	 (FSMs).	Then	 it	 shows	how	 to
design,	implement,	and	program	a	DSL	for	configuring	a	system	that	simulates
arbitrary	FSMs.

Finite	State	Machines	Remembered	The	 theme	of	 finite	state	machines	 is	an
important	one	in	computing,	and	this	book	has	presented	it	several	 times.	Here
we	reuse	the	example	from	chapter	12.8	as	the	component	for	which	we	wish	to
design	and	implement	a	configuration	DSL.

For	 convenience,	 figure	 129	 presents	 the	 entire	 code	 again,	 though
reformulated	 using	 just	 lists	 and	 using	 the	 full	 power	 of	 ISL+.	 The	 program
consists	of	two	data	definitions,	one	data	example,	and	two	function	definitions:

simulate	and	find.	Unlike	the	related	programs	in	preceding	chapters,	this	one
represents	a	transition	as	a	list	of	two	items:	the	current	state	and	the	next	one.

Figure	129:	Finite	state	machines,	revisited

The	main	function,	simulate,	consumes	a	transition	table	and	an	initial	state;
it	 then	evaluates	a	big-bang	expression,	which	reacts	 to	each	key	event	with	a
state	 transition.	 The	 states	 are	 displayed	 as	 colored	 squares.	 The	 to-draw	 and
on-key	clauses	are	specified	with	lambda	expressions	 that	consume	the	current
state,	 plus	 the	 actual	 key	 event,	 and	 that	 produce	 an	 image	 or	 the	 next	 state,
respectively.

As	its	signature	shows,	the	auxiliary	find	function	is	completely	independent
of	the	FSM	application.	It	consumes	a	list	of	two-item	lists	and	an	item,	but	the
actual	 nature	 of	 the	 items	 is	 specified	 via	 parameters.	 In	 the	 context	 of	 this
program,	 X	 and	 Y	 represent	 FSM-States,	 meaning	 find	 consumes	 a	 transition
table	together	with	a	state	and	produces	a	state.	The	function	body	uses	the	built-
in	assoc	function	to	perform	most	of	the	work.	Look	up	the	documentation	for
assoc	so	that	you	understand	why	the	body	of	local	uses	an	if	expression.

Exercise	378.	Modify	the	rendering	function	so	that	it	overlays	the	name	of
the	state	onto	the	colored	square.	

Exercise	379.	Formulate	test	cases	for	find.	
Exercise	 380.	 Reformulate	 the	 data	 definition	 for	 1Transition	 so	 that	 it	 is

possible	to	restrict	transitions	to	certain	keystrokes.	Try	to	formulate	the	change
so	that	find	continues	to	work	without	change.	What	else	do	you	need	to	change
to	get	the	complete	program	to	work?	Which	part	of	the	design	recipe	provides
the	answer(s)?	See	exercise	229	for	the	original	exercise	statement.	

Configurations	The	FSM	simulation	function	uses	two	arguments,	which	jointly
describe	 a	machine.	Rather	 than	 teach	 a	 potential	 “customer”	 how	 to	 open	 an
ISL+	program	in	DrRacket	and	launch	a	function	of	two	arguments,	the	“seller”
of	 simulate	 may	 wish	 to	 supplement	 this	 product	 with	 a	 configuration
component.

A	configuration	component	consists	of	 two	parts.	The	 first	one	 is	a	widely
used	simple	language	that	customers	use	to	formulate	the	initial	arguments	for	a
component’s	main	function(s).	The	second	one	is	a	function	that	translates	what
customers	say	into	a	function	call	for	the	main	function.	For	the	FSM	simulator,
we	must	agree	on	how	we	represent	finite	state	machines	in	XML.	By	judicious
planning,	chapter	22.1	presents	a	series	of	machine	examples	that	look	just	right
for	the	task.	Recall	the	final	machine	example	in	this	section:

<machine	initial="red">	
		<action	state="red"				next="green"	/>	
		<action	state="green"		next="yellow"	/>	
		<action	state="yellow"	next="red"	/>	
</machine>

Compare	it	to	the	transition	table	fsm-traffic	from	Xexpr	representation	of	this
example:

What	 we	 are	 still	 lacking	 is	 a	 general	 data	 definition	 that	 describes	 all
possible	Xexpr	representations	of	FSMs:

Like	 XEnum.v2,	 XMachine	 describes	 a	 subset	 of	 all	 Xexpr.	 Thus,	 when	 we
design	functions	that	process	this	new	form	of	data,	we	may	continue	to	use	the
generic	Xexpr	functions	to	access	pieces.

Exercise	 381.	 The	 definitions	 of	 XMachine	 and	 X1T	 use	 quote,	 which	 is
highly	 inappropriate	 for	 novice	 program	 designers.	 Rewrite	 them	 first	 to	 use
list	and	then	cons.	

Exercise	382.	Formulate	an	XML	configuration	for	the	BW	machine,	which
switches	from	white	to	black	and	back	for	every	key	event.	Translate	the	XML
configuration	 into	 an	 XMachine	 representation.	 See	 exercise	 227	 for	 an
implementation	of	the	machine	as	a	program.	

Before	we	dive	 into	 the	 translation	part	 of	 the	 configuration	problem,	 let’s
spell	it	out:

Sample	 Problem	 Design	 a	 program	 that	 uses	 an	 XMachine
configuration	to	run	simulate.

While	this	problem	is	specific	to	our	case,	it	is	easy	to	imagine	a	generalization
for	similar	systems,	and	we	encourage	you	to	do	so.

The	problem	statement	suggests	a	complete	outline:

;	XMachine	->	FSM-State	
;	simulates	an	FSM	via	the	given	configuration	
(define	(simulate-xmachine	xm)	
		(simulate	…	…))

Following	 the	 problem	 statement,	 our	 function	 calls	simulate	with	 two	 to-be-
determined	arguments.	What	we	need	to	complete	the	definition	are	two	pieces:
an	initial	state	and	a	transition	table.	These	two	pieces	are	part	of	xm,	and	we	are
best	off	wishing	for	appropriate	functions:

•  xm-state0	extracts	the	initial	state	from	the	given	XMachine:

(check-expect	(xm-state0	xm0)	"red")

•  xm->transitions	 translates	 the	 embedded	 list	 of	 X1Ts	 into	 a	 list	 of
1Transitions:

(check-expect	(xm->transitions	xm0)	fsm-traffic)

Since	XMachine	is	a	subset	of	Xexpr,	defining	xm-state0	is	straightforward.
Given	that	the	initial	state	is	specified	as	an	attribute,	xm-state0	extracts	the	list
of	 attributes	 using	 xexpr-attr	 and	 then	 retrieves	 the	 value	 of	 the	 'initial
attribute.

Let’s	then	turn	to	xm->transitions,	which	translates	the	transitions	inside	of
an	XMachine	configuration	into	a	transition	table:

;	XMachine	->	[List-of	1Transition]	
;	extracts	&	translates	the	transition	table	from	xm	
(define	(xm->transitions	xm)

	'())

The	 name	 of	 the	 function	 prescribes	 the	 signature	 and	 suggests	 a	 purpose
statement.	Our	 purpose	 statement	 describes	 a	 two-step	 process:	 (1)	 extract	 the
Xexpr	representation	of	the	transitions	and	(2)	translate	them	into	an	instance	of
[List-of	1Transition].

While	 the	extraction	part	obviously	uses	xexpr-content	 to	get	 the	 list,	 the
translation	 part	 calls	 for	 some	 more	 analysis.	 If	 you	 look	 back	 to	 the	 data
definition	of	XMachine,	you	see	that	the	content	of	the	Xexpr	is	a	list	of	X1Ts.
The	signature	tells	us	that	the	transition	table	is	a	list	of	1Transitions.	Indeed,	it
is	quite	obvious	that	each	item	in	the	former	list	is	translated	into	one	item	of	the
latter,	which	suggests	a	use	of	map:

As	you	 can	 see,	we	 follow	 the	design	 ideas	of	 chapter	 16.5	 and	 formulate	 the
function	as	a	local	whose	body	uses	map.	Defining	xaction->action	 is	again
just	a	matter	of	extracting	the	appropriate	values	from	an	Xexpr.

Figure	130	displays	the	complete	solution.	Here	the	translation	from	the	DSL
to	 a	proper	 function	 call	 is	 as	 large	 as	 the	original	 component.	This	 is	 not	 the
case	for	real-world	systems;	the	DSL	component	tends	to	be	a	small	fraction	of
the	overall	product,	which	is	why	the	approach	is	so	popular.

Figure	130:	Interpreting	a	DSL	program

Exercise	 383.	 Run	 the	 code	 in	 figure	 130	 with	 the	 BW	 Machine
configuration	from	exercise	382.	

22.4 Reading	XML
Systems	administrators	expect	that	sophisticated	applications	read	configuration
programs	 from	 a	 file	 or	 possibly	 from	 some	 place	 on	 the	 web.	 In	 ISL+	 your
programs	can	retrieve	(some)	XML	information.	Figure	132	shows	the	relevant
excerpt	from	the	teachpack.	For	consistency,	the	figure	uses	the	suffix	.v3	for	its
XML	 representation,	 including	 those	 data	 definitions	 for	 which	 there	 is	 no
version	2:

;	An	Xexpr.v3	is	one	of:	
;	--	Symbol	
;	--		String	
;	--	Number	
;	--	(cons	Symbol	(cons	Attribute*.v3	[List-of	Xexpr.v3]))	
;	--		(cons	Symbol	[List-of	Xexpr.v3])	
;	

;	An	Attribute*.v3	is	a	[List-of	Attribute.v3].	
;	

;	An	Attribute.v3	is	a	list	of	two	items:	
;			(list	Symbol	String)

This	section	uses	2htdp/batch-io	2htdp/universe,	and	2htdp/image	libraries.

Assume	 we	 have	 the	 file	 in	 figure	 131.	 If	 the	 2htdp/batch-io	 library	 is
required,	a	program	can	read	the	element	with	read-plain-xexpr.	The	function
retrieves	 the	 XML	 element	 in	 a	 format	 that	 matches	 the	 XMachine	 data
definition.	 A	 function	 for	 retrieving	 XML	 elements	 from	 the	 web	 is	 also
available	in	the	teachpack.	Try	this	in	DrRacket:

Figure	131:	A	file	with	a	machine	configuration

If	your	computer	is	connected	to	the	web,	this	expression	retrieves	our	standard
machine	configuration.

Reading	 files	 or	 web	 pages	 introduces	 an	 entirely	 novel	 idea	 into	 our
computational	model.	As	intermezzo	1	explains,	a	BSL	program	is	evaluated	in
the	same	manner	in	which	you	evaluate	variable	expressions	in	algebra.	Function
definitions	 are	 also	 treated	 just	 like	 in	 algebra.	 Indeed,	 most	 algebra	 courses
introduce	 conditional	 function	 definitions,	 meaning	 cond	 does	 not	 pose	 any
challenges	 either.	 Finally,	 while	 ISL+	 introduces	 functions	 as	 values,	 the
evaluation	model	remains	fundamentally	the	same.

One	 essential	 property	 of	 this	 computational	 model	 is	 that	 no	matter	 how
often	you	call	a	function	f	on	some	argument(s)	a…

(f	a	…)

the	answer	remains	 the	same.	The	introduction	of	read-file,	read-xexpr,	and
their	relatives	destroys	this	property,	however.	The	problem	is	that	files	and	web
sites	may	change	over	time	so	that	every	time	a	program	reads	files	or	web	sites
it	may	get	a	new	result.

Consider	 the	 idea	 of	 looking	 up	 the	 stock	 price	 of	 a	 company.	 Point	 your
browser	to	google.com/finance	or	any	other	such	financial	web	site	and	enter
the	name	of	your	favorite	company,	say,	Ford.	In	response,	the	site	will	display
the	 current	 price	 of	 the	 company’s	 stock	 and	 other	 information—for	 example,
how	much	 the	price	has	 changed	 since	 the	 last	 time	 it	was	posted,	 the	 current
time,	and	many	other	facts	and	ads.	The	important	point	is	that	as	you	reload	this
page	over	 the	course	of	a	day	or	a	week,	some	of	 the	 information	on	 this	web
page	will	change.

An	alternative	to	looking	up	such	company	information	manually	is	to	write

a	small	program	that	retrieves	such	information	on	a	regular	basis,	say,	every	15
seconds.	With	ISL	you	can	write	a	world	program	that	performs	this	task.	You
would	launch	it	like	this:

>	(stock-alert	"Ford")

to	see	a	world	window	that	displays	an	image	like	the	following:

To	develop	 such	 a	program	 requires	 skills	 beyond	normal	program	design.
First,	 you	need	 to	 investigate	 how	 the	web	 site	 formats	 its	 information.	 In	 the
case	 of	Google’s	 financial	 service	 page,	 an	 inspection	 of	 the	web	 source	 code
shows	the	following	pattern	near	the	top:

<meta	content="17.09"	itemprop="price"	/>	

<meta	content="+0.07"	itemprop="priceChange"	/>	
<meta	content="0.41"	itemprop="priceChangePercent"	/>
<meta	content="2013-08-12T16:59:06Z"	itemprop="quoteTime"	/>
<meta	content="NYSE	real-time	data"	itemprop="dataSource"	/>

If	 we	 had	 a	 function	 that	 could	 search	 an	 Xexpr.v3	 and	 extract	 (the
representation	 of	 XML)	 meta	 elements	 with	 the	 attribute	 value	 "price"	 and
"priceChange",	the	rest	of	stock-alert	would	be	straightforward.

Figure	133	displays	the	core	of	the	program.	The	design	of	get	is	left	to	the
exercises	because	its	workings	are	all	about	intertwined	data.

As	the	figure	shows,	 the	main	function	defines	 two	local	ones:	a	clock-tick
handler	 and	 a	 rendering	 function.	The	big-bang	 specification	 requests	 that	 the
clock	 tick	 every	 15	 seconds.	 When	 the	 clock	 ticks,	 ISL+	 applies	 retrieve-
stock-data	to	the	current	world,	which	it	ignores.	Instead,	the	function	visits	the
web	site	via	read-xexpr/web	and	extracts	the	appropriate	information	with	get.
Thus,	the	new	world	is	created	from	newly	available	information	on	the	web,	not
some	local	data.

Exercise	384.	Figure	133	mentions	read-xexpr/web.	See	figure	132	for	 its
signature	 and	 purpose	 statement	 and	 then	 read	 its	 documentation	 to	 determine
the	difference	to	its	“plain”	relative.

Figure	132:	Reading	X-expressions

Figure	 133	 is	 also	 missing	 several	 important	 pieces,	 in	 particular	 the
interpretation	 of	 data	 and	 purpose	 statements	 for	 all	 the	 locally	 defined
functions.	 Formulate	 the	 missing	 pieces	 so	 that	 you	 get	 to	 understand	 the
program.	

Figure	133:	Web	data	as	an	event

Exercise	385.	Look	up	the	current	stock	price	for	your	favorite	company	at
Google’s	financial	service	page.	If	you	don’t	favor	a	company,	pick	Ford.	Then
save	the	source	code	of	the	page	as	a	file	in	your	working	directory.	Use	read-
xexpr	in	DrRacket	to	view	the	source	as	an	Xexpr.v3.	

Exercise	386.	Here	is	the	get	function:

It	 assumes	 the	 existence	 of	 get-xexpr,	 a	 function	 that	 searches	 an	 arbitrary
Xexpr.v3	for	the	desired	attribute	and	produces	[Maybe	String].

Formulate	test	cases	that	look	for	other	values	than	"F"	and	that	force	get	to
signal	an	error.

Design	get-xexpr.	Derive	functional	examples	for	 this	function	from	those
for	 get.	 Generalize	 these	 examples	 so	 that	 you	 are	 confident	 get-xexpr	 can
traverse	an	arbitrary	Xexpr.v3.	Finally,	 formulate	a	 test	 that	uses	 the	web	data
saved	in	exercise	385.	

23 Simultaneous	Processing
Some	 functions	 have	 to	 consume	 two	 arguments	 that	 belong	 to	 classes	 with
nontrivial	 data	 definitions.	 How	 to	 design	 such	 functions	 depends	 on	 the
relationship	between	the	arguments.	First,	one	of	the	arguments	may	have	to	be
treated	as	if	it	were	atomic.	Second,	it	is	possible	that	the	function	must	process
the	two	arguments	in	lockstep.	Finally,	the	function	may	process	the	given	data
in	accordance	to	all	possible	cases.	This	chapter	 illustrates	 the	 three	cases	with
examples	 and	provides	 an	 augmented	design	 recipe.	The	 last	 section	discusses
the	equality	of	compound	data.

23.1 Processing	Two	Lists	Simultaneously:	Case	1
Consider	the	following	signature,	purpose	statement,	and	header:

;	[List-of	Number]	[List-of	Number]	->	[List-of	Number]	
;	replaces	the	final	'()	in	front	with	end	
(define	(replace-eol-with	front	end)	
		front)

The	signature	says	that	the	function	consumes	two	lists.	Let’s	see	how	the	design
recipe	works	in	this	case.

We	 start	 by	 working	 through	 examples.	 If	 the	 first	 argument	 is	 '(),
replace-eol-with	must	produce	the	second	one,	no	matter	what	it	is:

(check-expect	(replace-eol-with	'()	'(a	b))	'(a	b))

In	contrast,	 if	 the	first	argument	 is	not	'(),	 the	purpose	statement	requires	 that
we	replace	'()	at	the	end	of	front	with	end:

The	purpose	statement	and	the	examples	suggest	 that	as	 long	as	the	second
argument	 is	 a	 list,	 the	 function	 does	 not	 need	 to	 know	 anything	 about	 it.	 By
implication,	its	template	should	be	that	of	a	list-processing	function	with	respect
to	the	first	argument:

Let’s	fill	the	gaps	in	the	template	following	the	fifth	step	of	the	design	recipe.	If
front	 is	 '(),	 replace-eol-with	 produces	 end.	 If	 front	 is	 not	 '(),	 we	must
recall	what	the	template	expressions	compute:

•  (first	front)	evaluates	to	the	first	item	on	the	list,	and

•  (replace-eol-with	(rest	front)	end)	 replaces	 the	 final	'()	 in	(rest
front)	with	end.

Stop!	 Use	 the	 table	 method	 to	 understand	 what	 these	 bullets	 mean	 for	 the
running	example.

From	here	it	is	a	small	step	to	the	complete	definition:

Exercise	387.	Design	cross.	The	function	consumes	a	list	of	symbols	and	a
list	of	numbers	and	produces	all	possible	ordered	pairs	of	symbols	and	numbers.
That	is,	when	given	'(a	b	c)	and	'(1	2),	the	expected	result	is	'((a	1)	(a	2)
(b	1)	(b	2)	(c	1)	(c	2)).	

23.2 Processing	Two	Lists	Simultaneously:	Case	2
Chapter	10.1	presents	the	function	wages*,	which	computes	the	weekly	wages	of
some	 workers	 given	 their	 work	 hours.	 It	 consumes	 a	 list	 of	 numbers,	 which
represents	the	hours	worked	per	week,	and	produces	a	list	of	numbers,	which	are
the	corresponding	weekly	wages.	While	the	problem	assumes	that	all	employees
received	the	same	pay	rate,	even	a	small	company	pays	its	workers	differentiated
wages.

Here	 we	 look	 at	 a	 slightly	 more	 realistic	 version.	 The	 function	 now
consumes	two	lists:	the	list	of	hours	worked	and	the	list	of	corresponding	hourly
wages.	We	translate	this	revised	problem	into	a	revised	header:

;	[List-of	Number]	[List-of	Number]	->	[List-of	Number]	
;	multiplies	the	corresponding	items	on

;	hours	and	wages/h	

;		assume	the	two	lists	are	of	equal	length	
(define	(wages*.v2	hours	wages/h)	
		'())

Making	up	examples	is	straightforward:

As	required,	all	three	examples	use	lists	of	equal	length.
The	 assumption	 concerning	 the	 inputs	 can	 also	 be	 exploited	 for	 the

development	of	 the	 template.	More	concretely,	 the	condition	says	 that	(empty?
hours)	is	true	when	(empty?	wages/h)	is	true,	and	furthermore,	(cons?	hours)
is	true	when	(cons?	wages/h)	is	true.	It	is	thus	acceptable	to	use	a	template	for
one	of	the	two	lists:

In	 the	 first	 cond	 clause,	 both	 hours	 and	 wages/h	 are	 '().	 Hence	 no	 selector
expressions	 are	 needed.	 In	 the	 second	 clause,	 both	 hours	 and	 wages/h	 are
constructed	 lists,	 which	 means	 we	 need	 four	 selector	 expressions.	 Finally,
because	the	last	 two	are	lists	of	equal	length,	 they	make	up	a	natural	candidate
for	the	natural	recursion	of	wages*.v2.

The	 only	 unusual	 aspect	 of	 this	 template	 is	 that	 the	 recursive	 application
consists	 of	 two	 expressions,	 both	 selector	 expressions	 for	 the	 two	 arguments.
But,	this	idea	directly	follows	from	the	assumption.

From	here,	it	is	a	short	step	to	a	complete	function	definition:

The	first	example	implies	that	the	answer	for	the	first	cond	clause	is	'().	In	the
second	one,	we	have	three	values	available:

1.	(first	hours),	which	represents	the	first	number	of	weekly	hours;

2.	(first	wages/h),	which	is	the	first	pay	rate;	and

3.	 (wages*.v2	 (rest	 hours)	 (rest	 wages/h)),	 which,	 according	 to	 the
purpose	statement,	computes	 the	 list	of	weekly	wages	 for	 the	 remainders
of	the	two	lists.

Now	we	just	need	to	combine	these	values	to	get	the	final	answer.	As	suggested
by	the	examples,	we	must	compute	the	weekly	wage	for	the	first	employee	and
construct	a	list	from	that	wage	and	the	rest	of	the	wages:

(cons	(weekly-wage	(first	hours)	(first	wages/h))	
						(wages*.v2	(rest	hours)	(rest	wages/h)))

The	auxiliary	 function	weekly-wage	 uses	 the	number	of	hours	worked	and	 the
pay	rate	to	compute	the	weekly	wage	for	one	worker:

;	Number	Number	->	Number	
;	computes	the	weekly	wage	from	pay-rate	and	hours	
(define	(weekly-wage	pay-rate	hours)	
		(*	pay-rate	hours))

Stop!	Which	function	do	you	need	to	use	if	you	wish	to	compute	the	wages	for
one	worker?	Which	 function	 do	 you	 need	 to	 change	 if	 you	wish	 to	 deal	with
income	taxes?

Exercise	 388.	 In	 the	 real	 world,	 wages*.v2	 consumes	 lists	 of	 employee
structures	 and	 lists	 of	 work	 records.	 An	 employee	 structure	 contains	 an
employee’s	 name,	 social	 security	 number,	 and	 pay	 rate.	 A	 work	 record	 also
contains	an	employee’s	name	and	 the	number	of	hours	worked	 in	a	week.	The
result	is	a	list	of	structures	that	contain	the	name	of	the	employee	and	the	weekly
wage.

Modify	the	program	in	this	section	so	that	it	works	on	these	realistic	versions
of	data.	Provide	the	necessary	structure	type	definitions	and	data	definitions.	Use
the	design	recipe	to	guide	the	modification	process.	

Exercise	 389.	 Design	 the	 zip	 function,	 which	 consumes	 a	 list	 of	 names,
represented	 as	 strings,	 and	 a	 list	 of	 phone	 numbers,	 also	 strings.	 It	 combines
those	equally	long	lists	into	a	list	of	phone	records:

(define-struct	phone-record	[name	number])	

;	A	PhoneRecord	is	a	structure:	
;			(make-phone-record	String	String)

Assume	that	the	corresponding	list	items	belong	to	the	same	person.	

23.3 Processing	Two	Lists	Simultaneously:	Case	3
Here	is	a	third	type	of	problem:

Sample	 Problem	 Given	 a	 list	 of	 symbols	 los	 and	 a	 natural
number	n,	 the	 function	list-pick	 extracts	 the	nth	 symbol	 from
los;	if	there	is	no	such	symbol,	it	signals	an	error.

The	question	is	how	well	the	recipe	works	for	the	design	of	list-pick.
While	the	data	definition	for	a	list	of	symbols	is	fairly	familiar	by	now,	recall

the	class	of	natural	numbers	from	chapter	9.3:

;	N	is	one	of:	
;	--	0	
;	--	(add1	N)

Now	we	can	proceed	to	the	second	step:

;	[List-of	Symbol]	N	->	Symbol	
;	extracts	the	nth	symbol	from	l;	
;	signals	an	error	if	there	is	no	such	symbol	
(define	(list-pick	l	n)	
		'a)

Both	 lists	 of	 symbols	 and	 natural	 numbers	 are	 classes	 with	 complex	 data
definitions.	This	combination	makes	the	problem	nonstandard,	meaning	we	must
pay	attention	to	every	detail	for	every	step	of	the	design	recipe.

At	this	point,	we	usually	pick	some	input	examples	and	figure	out	what	the
desired	 output	 is.	 We	 start	 with	 inputs	 for	 which	 the	 function	 has	 to	 work
flawlessly:	'(a	b	c)	and	2.	For	a	list	of	 three	symbols	and	the	index	2,	list-
pick	 must	 return	 a	 symbol.	 The	 question	 is	 whether	 it	 is	 'b	 or	 'c.	 In	 grade
school,	you	would	have	counted	1,	2,	and	picked	'b	without	a	first	thought.	But
this	 is	 computer	 science,	 not	 grade	 school.	Here	 people	 start	 counting	 from	0,
meaning	that	'c	is	an	equally	appropriate	choice.	And	indeed,	this	is	the	choice
we	use:

(check-expect	(list-pick	'(a	b	c)	2)	'c)

Now	that	we	have	eliminated	this	fine	point	of	list-pick,	 let’s	 look	at	 the
actual	problem,	the	choice	of	inputs.	The	goal	of	the	example	step	is	to	cover	the
input	space	as	much	as	possible.	We	do	so	by	picking	one	input	per	clause	in	the
description	of	complex	 forms	of	data.	Here	 this	procedure	 suggests	we	pick	at
least	two	elements	from	each	class	because	each	data	definition	has	two	clauses.
We	choose	'()	and	(cons	'a	'())	 for	 the	first	argument,	and	0	and	3	 for	 the
latter.	Two	choices	per	argument	means	four	examples	total;	after	all,	there	is	no
immediately	obvious	connection	between	 the	 two	arguments	and	no	 restriction
in	the	signature.

As	 it	 turns	 out,	 only	 one	 of	 these	 pairings	 produces	 a	 proper	 result;	 the
remaining	 ones	 choose	 a	 position	 that	 does	 not	 exist	 because	 the	 list	 doesn’t
contain	enough	symbols:

(check-error	(list-pick	'()	0)	"list	too	short")	
(check-expect	(list-pick	(cons	'a	'())	0)	'a)	
(check-error	(list-pick	'()	3)	"list	too	short")

The	 function	 is	 expected	 to	 signal	 an	 error,	 and	we	pick	 our	 favorite	message
here.

Stop!	Put	these	fragments	into	DrRacket’s	definitions	area	and	run	the	partial
program.

The	discussion	on	examples	indicates	that	there	are	indeed	four	independent
cases	 that	we	must	 inspect	for	 the	design	of	 the	function.	One	way	to	discover
these	 cases	 is	 to	 arrange	 the	 conditions	 for	 each	 of	 the	 clauses	 into	 a	 two-
dimensional	table:

The	horizontal	dimension	of	the	table	lists	those	questions	that	list-pick	must
ask	about	lists;	the	vertical	dimension	lists	the	questions	about	natural	numbers.
By	 this	 arrangement,	we	 naturally	 get	 four	 squares,	where	 each	 represents	 the
case	when	both	the	conditions	on	the	horizontal	and	the	vertical	axis	are	true.

Our	 table	suggests	 that	 the	cond	 for	 the	function	 template	has	four	clauses.
We	can	figure	out	the	appropriate	condition	for	each	of	these	clauses	by	and-ing

the	horizontal	and	vertical	condition	for	each	box	in	the	table:

The	 cond	 outline	 of	 the	 template	 is	 merely	 a	 translation	 of	 this	 table	 into	 a
conditional:

As	always,	the	cond	expression	allows	us	to	distinguish	the	four	possibilities
and	 to	 focus	on	each	 individually	as	we	add	selector	expressions	 to	each	cond
clause:

The	first	argument,	l,	is	a	list,	and	a	template’s	cond	clause	for	non-empty	lists
contains	two	selector	expressions.	The	second	argument,	n,	belongs	to	N,	and	the
template’s	cond	clause	for	non-0	numbers	needs	only	one	selector	expression.	In

those	cases	where	either	(empty?	l)	or	(=	n	0)	holds,	the	respective	argument
is	atomic	and	there	is	no	need	for	a	corresponding	selector	expression.

The	 final	 step	 of	 the	 template	 construction	 demands	 that	 we	 annotate	 the
template	with	recursions	where	the	results	of	selector	expressions	belong	to	the
same	class	as	the	inputs.	For	this	first	example,	we	focus	on	the	last	cond	clause,
which	contains	selector	expressions	for	both	arguments.	 It	 is,	however,	unclear
how	to	form	the	natural	recursions.	If	we	disregard	the	purpose	of	the	function,
there	are	three	possible	recursions:

1.	(list-pick	(rest	l)	(sub1	n))

2.	(list-pick	l	(sub1	n))

3.	(list-pick	(rest	l)	n)

Each	one	 represents	 a	 feasible	 combination	of	 the	available	 expressions.	Since
we	cannot	know	which	one	matters	or	whether	all	three	matter,	we	move	on	to
the	next	development	stage.

Following	the	design	recipe	for	the	fifth	step,	let’s	analyze	each	cond	clause
in	the	template	and	decide	what	a	proper	answer	is:

1.	 If	 (and	 (=	 n	 0)	 (empty?	 l))	 holds,	 list-pick	 must	 pick	 the	 first
symbol	 from	an	empty	 list,	which	 is	 impossible.	The	answer	must	be	an
error	signal.

2.	If	(and	(>	n	0)	(empty?	l))	holds,	list-pick	is	again	asked	to	pick	a
symbol	from	an	empty	list.

3.	If	(and	(=	n	0)	(cons?	l))	holds,	list-pick	is	supposed	to	produce	the
first	symbol	from	l.	The	selector	expression	(first	l)	is	the	answer.

4.	If	(and	(>	n	0)	(cons?	l))	holds,	we	must	analyze	what	the	available
expressions	compute.	As	we	have	seen,	it	is	a	good	idea	to	work	through
an	existing	example	for	this	step.	We	pick	a	shortened	variant	of	the	first
example:

(check-expect	(list-pick	'(a	b)	1)	'b)

Here	is	what	the	three	natural	recursions	compute	with	these	values:

(a)	(list-pick	'(b)	0)	produces	'b;
(b)	(list-pick	'(a	b)	0)	evaluates	to	'a,	the	wrong	answer;
(c)	and	(list-pick	'(b)	1)	signals	an	error.

From	this,	we	conclude	that	(list-pick	(rest	l)	(sub1	n))	computes
the	desired	answer	in	the	last	cond	clause.

Exercise	390.	Design	the	function	tree-pick.	The	function	consumes	a	tree
of	symbols	and	a	list	of	directions:

(define-struct	branch	[left	right])	

;	A	TOS	is	one	of:	
;	--	Symbol	
;	--	(make-branch	TOS	TOS)	

;	A	Direction	is	one	of:	
;	--	'left	
;	--	'right	

;	A	list	of	Directions	is	also	called	a	path

Clearly	 a	 Direction	 tells	 the	 function	 whether	 to	 choose	 the	 left	 or	 the	 right
branch	 in	 a	 nonsymbolic	 tree.	What	 is	 the	 result	 of	 the	 tree-pick	 function?
Don’t	 forget	 to	 formulate	 a	 full	 signature.	 The	 function	 signals	 an	 error	when
given	a	symbol	and	a	non-empty	path.	

23.4 Function	Simplification
The	list-pick	 function	 in	 figure	134	 is	 far	more	 complicated	 than	necessary.
The	first	two	cond	clauses	signal	an	error.	That	is,	if	either

Figure	134:	Indexing	into	a	list

(and	(=	n	0)	(empty?	alos))

or

(and	(>	n	0)	(empty?	alos))

holds,	the	answer	is	an	error.	We	can	translate	this	observation	into	code:

To	 simplify	 this	 function	 even	 more,	 we	 need	 to	 get	 acquainted	 with
algebraic	laws	concerning	Booleans:

These	equations	are	known	as	de	Morgan’s	laws.

A	 similar	 law	 applies	 when	 the	 sub-expressions	 of	 the	 ands	 are	 swapped.
Applying	these	laws	to	list-pick	yields	this:

Now	consider	(or	(=	n	0)	(>	n	0)).	It	is	always	#true	because	n	belongs
to	N.	Since	(and	#true	(empty?	alos))	 is	equivalent	 to	(empty?	alos),	we
can	rewrite	the	function	again:

This	 last	 definition	 is	 already	 significantly	 simpler	 than	 the	 definition	 in
figure	134,	but	we	can	do	even	better	 than	 this.	Compare	 the	 first	condition	 in
the	 latest	version	of	list-pick	with	 the	 second	and	 third.	Since	 the	 first	cond
clause	filters	out	all	 those	cases	when	alos	 is	empty,	(cons?	alos)	 in	 the	 last
two	 clauses	 is	 always	 going	 to	 evaluate	 to	 #true.	 If	we	 replace	 the	 condition
with	#true	and	simplify	the	and	expressions	again,	we	get	a	three-line	version	of
list-pick

Figure	 135	 displays	 this	 simplified	 version	 of	 list-pick.	 While	 it	 is	 far
simpler	 than	 the	 original,	 it	 is	 important	 to	 understand	 that	 we	 designed	 the

original	in	a	systematic	manner	and	that	we	were	able	to	transform	the	first	into
the	 second	 with	 well-established	 algebraic	 laws.	 We	 can	 therefore	 trust	 this
simple	 version.	 If	we	 try	 to	 find	 the	 simple	 versions	 of	 functions	 directly,	we
sooner	or	later	fail	to	take	care	of	a	case	in	our	analysis,	and	we	are	guaranteed
to	produce	flawed	programs.

Figure	135:	Indexing	into	a	list,	simplified

Exercise	391.	Design	replace-eol-with	using	the	strategy	of	chapter	23.3.
Start	from	the	tests.	Simplify	the	result	systematically.	

Exercise	392.	Simplify	the	function	tree-pick	from	exercise	390.	

23.5 Designing	Functions	that	Consume	Two	Complex	Inputs
The	proper	approach	to	designing	functions	of	two	(or	more)	complex	arguments
is	to	follow	the	general	recipe.	You	must	conduct	a	data	analysis	and	define	the
relevant	classes	of	data.	If	the	use	of	parametric	definitions	such	as	List-of	and
short-hand	examples	 such	as	'(1	b	&)	 confuses	you,	expand	 them	so	 that	 the
constructors	become	explicit.	Next	you	need	a	 function	 signature	and	purpose.
At	 this	 point,	 you	 can	 think	 ahead	 and	 decide	 which	 of	 the	 following	 three
situations	you	are	facing:

1.	 If	 one	 of	 the	 parameters	 plays	 a	 dominant	 role,	 think	 of	 the	 other	 as	 an
atomic	piece	of	data	as	far	as	the	function	is	concerned.

2.	In	some	cases	the	parameters	range	over	the	same	class	of	values	and	must
have	the	same	size.	For	example,	two	lists	must	have	the	same	length,	or
two	web	pages	must	have	the	same	length	and	where	one	of	them	contains
an	embedded	page,	the	other	one	does,	too.	If	the	two	parameters	have	this
equal	 status	 and	 the	 purpose	 suggests	 that	 they	 are	 processed	 in	 a
synchronized	 manner,	 you	 choose	 one	 parameter,	 organize	 the	 function
around	it,	and	traverse	the	other	in	a	parallel	manner.

3.	 If	 there	 is	no	obvious	connection	between	 the	 two	parameters,	you	must
analyze	all	possible	cases	with	examples.	Then	use	this	analysis	to	develop
the	template,	especially	the	recursive	parts.

Once	you	decide	that	a	function	falls	into	the	third	category,	develop	a	two-
dimensional	table	to	make	sure	that	no	case	falls	through	the	cracks.	Let’s	use	a
nontrivial	pair	of	data	definitions	to	explain	this	idea	again:

The	left	data	definition	is	the	usual	list	definition;	the	right	one	is	a	three-clause
variant	of	TOS.	It	uses	two	structure	type	definitions:

(define-struct	with	[lft	info	rght])	
(define-struct	binary	[lft	rght])

Assuming	 the	 function	 consumes	 an	 LOD	 and	 a	 TID,	 the	 table	 that	 you
should	come	up	with	has	this	shape:

Along	 the	 horizontal	 direction	we	 enumerate	 the	 conditions	 that	 recognize	 the
sub-classes	for	the	first	parameter,	here	LOD,	and	along	the	vertical	direction	we
enumerate	the	conditions	for	the	second	parameter,	TID.

The	 table	 guides	 the	 development	 of	 both	 the	 function	 examples	 and	 the
function	template.	As	explained,	the	examples	must	cover	all	possible	cases;	that
is,	 there	must	be	at	 least	one	example	 for	 each	cell	 in	 the	 table.	Similarly,	 the
template	 must	 have	 one	 cond	 clause	 per	 cell;	 its	 condition	 combines	 the
horizontal	and	the	vertical	conditions	in	an	and	expression.	Each	cond	clause,	in
turn,	must	contain	all	feasible	selector	expressions	for	both	parameters.	If	one	of
the	parameters	is	atomic,	there	is	no	need	for	a	selector	expression.	Finally,	you
need	 to	 be	 aware	 of	 the	 feasible	 natural	 recursions.	 In	 general,	 all	 possible
combinations	 of	 selector	 expressions	 (and	 optionally,	 atomic	 arguments)	 are
candidates	 for	 a	 natural	 recursion.	 Because	 we	 can’t	 know	 which	 ones	 are
necessary	and	which	ones	aren’t,	we	keep	them	in	mind	for	the	coding	step.

In	summary,	the	design	of	multiparameter	functions	is	just	a	variation	on	the
old	design-recipe	 theme.	The	key	 idea	 is	 to	 translate	 the	data	definitions	 into	a
table	 that	 shows	all	 feasible	and	 interesting	combinations.	The	development	of
function	examples	and	the	template	exploit	the	table	as	much	as	possible.

23.6 Finger	Exercises:	Two	Inputs
Exercise	393.	Figure	62	presents	two	data	definitions	for	finite	sets.	Design	the
union	 function	for	 the	representation	of	 finite	sets	of	your	choice.	 It	consumes
two	sets	and	produces	one	that	contains	the	elements	of	both.

Design	intersect	for	the	same	set	representation.	It	consumes	two	sets	and
produces	the	set	of	exactly	those	elements	that	occur	in	both.	

Exercise	 394.	Design	merge.	The	 function	 consumes	 two	 lists	of	numbers,
sorted	 in	 ascending	 order.	 It	 produces	 a	 single	 sorted	 list	 of	 numbers	 that
contains	all	the	numbers	on	both	inputs	lists.	A	number	occurs	in	the	output	as
many	times	as	it	occurs	on	the	two	input	lists	together.	

Exercise	395.	Design	take.	 It	consumes	a	 list	l	and	a	natural	number	n.	 It
produces	the	first	n	items	from	l	or	all	of	l	if	it	is	too	short.

Design	drop.	It	consumes	a	list	l	and	a	natural	number	n.	Its	result	is	l	with
the	first	n	items	removed	or	just	’()	if	l	is	too	short.	

Exercise	396.	Hangman	is	a	well-known	guessing	game.	One	player	picks	a
word,	 the	other	player	gets	 told	how	many	letters	 the	word	contains.	The	latter
picks	a	letter	and	asks	the	first	player	whether	and	where	this	letter	occurs	in	the
chosen	word.	The	game	is	over	after	an	agreed-upon	time	or	number	of	rounds.

Figure	136	presents	 the	essence	of	a	 time-limited	version	of	 the	game.	See
chapter	16.3	for	why	checked-compare	is	defined	locally.

Figure	136:	A	simple	hangman	game

The	goal	of	this	exercise	is	to	design	compare-word,	 the	central	function.	It
consumes	the	word	to	be	guessed,	a	word	s	 that	represents	how	much/little	the
guessing	player	has	discovered,	and	the	current	guess.	The	function	produces	s
with	all	"_"	where	the	guess	revealed	a	letter.

Once	you	have	designed	the	function,	run	the	program	like	this:

(define	LOCATION	"usrshare/dict/words")	;	on	OS	X	
(define	AS-LIST	(read-lines	LOCATION))	
(define	SIZE	(length	AS-LIST))	
(play	(list-ref	AS-LIST	(random	SIZE))	10)

See	figure	74	for	an	explanation.	Enjoy	and	refine	as	desired!	
Exercise	397.	In	a	factory,	employees	punch	time	cards	as	they	arrive	in	the

morning	 and	 leave	 in	 the	 evening.	 Electronic	 time	 cards	 contain	 an	 employee
number	 and	 record	 the	 number	 of	 hours	 worked	 per	 week.	 Employee	 records
always	contain	the	name	of	the	employee,	an	employee	number,	and	a	pay	rate.

Design	wages*.v3.	The	function	consumes	a	list	of	employee	records	and	a
list	 of	 time-card	 records.	 It	 produces	 a	 list	 of	wage	 records,	which	contain	 the

name	and	weekly	wage	of	an	employee.	The	function	signals	an	error	if	it	cannot
find	an	employee	record	for	a	time	card	or	vice	versa.

Assumption	There	is	at	most	one	time	card	per	employee	number.	
Exercise	398.	A	linear	combination	is	the	sum	of	many	linear	terms,	that	is,

products	 of	 variables	 and	 numbers.	 The	 latter	 are	 called	 coefficients	 in	 this
context.	Here	are	some	examples:

In	all	examples,	the	coefficient	of	x	is	5,	that	of	y	is	17,	and	the	one	for	z	is	3.
If	 we	 are	 given	 values	 for	 variables,	 we	 can	 determine	 the	 value	 of	 a

polynomial.	For	example,	if	x	=	10,	the	value	of	5	·	x	is	50;	if	x	=	10	and	y	=	1,
the	value	of	5	·	x	+	17	·	y	is	67;	and	if	x	=	10,	y	=	1,	and	z	=	2,	the	value	of	5	·	x
+	17	·	y	+	3	·	z	is	73.

There	are	many	different	 representations	of	 linear	combinations.	We	could,
for	example,	represent	them	with	functions.	An	alternative	representation	is	a	list
of	its	coefficients.	The	above	combinations	would	be	represented	as:

(list	5)	
(list	5	17)	
(list	5	17	3)

This	choice	of	representation	assumes	a	fixed	order	of	variables.
Design	 value.	 The	 function	 consumes	 two	 equally	 long	 lists:	 a	 linear

combination	 and	 a	 list	 of	 variable	 values.	 It	 produces	 the	 value	 of	 the
combination	for	these	values.	

Exercise	399.	Louise,	 Jane,	Laura,	Dana,	and	Mary	decide	 to	 run	a	 lottery
that	 assigns	one	gift	 recipient	 to	each	of	 them.	Since	 Jane	 is	 a	developer,	 they
ask	 her	 to	write	 a	 program	 that	 performs	 this	 task	 in	 an	 impartial	manner.	Of
course,	the	program	must	not	assign	any	of	the	sisters	to	herself.

Here	is	the	core	of	Jane’s	program:

;	[List-of	String]	->	[List-of	String]	
;	picks	a	random	non-identity	arrangement	of	names	
(define	(gift-pick	names)	
		(random-pick	

				(non-same	names	(arrangements	names))))	

;	[List-of	String]	->	[List-of	[List-of	String]]	
;	returns	all	possible	permutations	of	names	
;	see	exercise	213	
(define	(arrangements	names)	
		…)

It	consumes	a	list	of	names	and	randomly	picks	one	of	 those	permutations	that
do	not	agree	with	the	original	list	at	any	place.

Your	task	is	to	design	two	auxiliary	functions:

;	[NEList-of	X]	->	X	
;	returns	a	random	item	from	the	list	
(define	(random-pick	l)	
				(first	l))	

;	[List-of	String]	[List-of	[List-of	String]]	
;	->	
;	[List-of	[List-of	String]]	
;	produces	the	list	of	those	lists	in	ll	that	do	
;	not	agree	with	names	at	any	place	
(define	(non-same	names	ll)	
		ll)

Recall	that	random	picks	a	random	number;	see	exercise	99.	
Exercise	 400.	 Design	 the	 function	 DNAprefix.	 The	 function	 takes	 two

arguments,	 both	 lists	 of	 'a,	 'c,	 'g,	 and	 't,	 symbols	 that	 occur	 in	 DNA
descriptions.	The	first	list	is	called	a	pattern,	the	second	one	a	search	string.	The
function	returns	#true	 if	 the	pattern	is	 identical	 to	 the	 initial	part	of	 the	search
string;	otherwise	it	returns	#false.

Also	design	DNAdelta.	This	 function	 is	 like	DNAprefix	but	 returns	 the	 first
item	in	the	search	string	beyond	the	pattern.	If	the	lists	are	identical	and	there	is
no	DNA	 letter	 beyond	 the	 pattern,	 the	 function	 signals	 an	 error.	 If	 the	 pattern
does	not	match	the	beginning	of	the	search	string,	it	returns	#false.	The	function
must	not	traverse	either	of	the	lists	more	than	once.

Can	DNAprefix	or	DNAdelta	be	simplified?	
Exercise	 401.	 Design	 sexp=?,	 a	 function	 that	 determines	 whether	 two	 S-

expressions	are	equal.	For	convenience,	here	is	the	data	definition	in	condensed
form:

;	An	S-expr	(S-expression)	is	one	of:	
;	--	Atom	
;	--	[List-of	S-expr]	
;	
;	An	Atom	is	one	of:	
;	--	Number	
;	--	String	
;	--	Symbol

Whenever	 you	 use	 check-expect,	 it	 uses	 a	 function	 like	 sexp=?	 to	 check
whether	 the	 two	 arbitrary	 values	 are	 equal.	 If	 not,	 the	 check	 fails	 and	 check-
expect	reports	it	as	such.	

Exercise	402.	Reread	exercise	354.	Explain	the	reasoning	behind	our	hint	to
think	of	the	given	expression	as	an	atomic	value	at	first.	

23.7 Project:	Database
Many	 software	 applications	 use	 a	 database	 to	 keep	 track	 of	 data.	 Roughly
speaking,	a	database	is	a	table	that	comes	with	an	explicitly	stated	organization
rule.	The	former	is	the	content;	 the	latter	is	called	a	schema.	Figure	137	shows
two	examples.	Each	 table	consists	of	 two	parts:	 the	schema	above	 the	 line	and
the	content	below.

Figure	137:	Databases	as	tables

This	section	pulls	together	knowledge	from	all	four	parts	of	the	book.

Let’s	focus	on	the	table	on	the	left.	It	has	three	columns	and	four	rows.	Each
column	comes	with	a	two-part	rule:

1.	 the	 rule	 in	 the	 left-most	 column	 says	 that	 the	 label	 of	 the	 column	 is
“Name”	and	that	every	piece	of	data	in	this	column	is	a	String;

2.	the	middle	column	is	labeled	“Age”	and	contains	Integers;	and

3.	the	label	of	the	right-most	one	is	“Present”;	its	values	are	Boolean.

Stop!	Explain	the	table	on	the	right	in	the	same	way.
Computer	scientists	think	of	these	tables	as	relations.	The	schema	introduces

terminology	 to	 refer	 to	 columns	 of	 a	 relation	 and	 to	 individual	 cells	 in	 a	 row.
Each	row	relates	a	fixed	number	of	values;	the	collection	of	all	rows	makes	up
the	entire	relation.	In	this	terminology,	the	first	row	of	the	left	table	in	figure	137
relates	"Alice"	to	35	and	#true.	Furthermore,	the	first	cell	of	a	row	is	called	the
“Name”	cell,	the	second	the	“Age”	cell,	and	the	third	one	the	“Present”	cell.

In	this	section,	we	represent	databases	via	structures	and	lists:

(define-struct	db	[schema	content])	
;	A	DB	is	a	structure:	(make-db	Schema	Content)	
;	A	Schema	is	a	[List-of	Spec]	
;	A	Spec	is	a	[List	Label	Predicate]	
;	A	Label	is	a	String	
;	A	Predicate	is	a	[Any	->	Boolean]	

;	A	(piece	of)	Content	is	a	[List-of	Row]	
;	A	Row	is	a	[List-of	Cell]	
;	A	Cell	is	Any	
;	constraint	cells	do	not	contain	functions	

;	integrity	constraint	In	(make-db	sch	con),	
;	for	every	row	in	con,	
;	(I1)	its	length	is	the	same	as	sch's,	and	
;	(I2)	its	ith	Cell	satisfies	the	ith	Predicate	in	sch

Stop!	 Translate	 the	 databases	 from	 figure	 137	 into	 the	 chosen	 data
representation.	Note	that	the	content	of	the	tables	already	uses	ISL+	data.

Figure	138	shows	how	to	represent	the	two	tables	in	DBs.	Its	left-hand	side
represents	the	schema,	the	content,	and	the	database	from	the	left-hand	side	table
in	 figure	 137;	 its	 right	 part	 corresponds	 to	 the	 right-hand	 side	 table.	 For
succinctness,	the	examples	use	the	quasiquote	and	unquote	notation.	Recall	that
it	allows	the	inclusion	of	a	value	such	as	boolean?	in	an	otherwise	quoted	list.	If
you	 feel	 uncomfortable	 with	 this	 notation,	 reformulate	 these	 examples	 with
list.

Figure	138:	Databases	as	ISL+	data

Exercise	 403.	A	Spec	 combines	 a	Label	 and	 a	Predicate	 into	 a	 list.	While
acceptable,	this	choice	violates	our	guideline	of	using	a	structure	type	for	a	fixed
number	of	pieces	of	information.

Here	is	an	alternative	data	representation:

(define-struct	spec	[label	predicate])	
;	Spec	is	a	structure:	(make-spec	Label	Predicate)

Use	this	alternative	definition	to	represent	the	databases	from	figure	137.	

Integrity	Checking	The	use	of	databases	critically	relies	on	their	integrity.	Here
“integrity”	 refers	 to	 the	 constraints	 (I1)	 and	 (I2)	 from	 the	 data	 definition.
Checking	database	integrity	is	clearly	a	task	for	a	function:

;	DB	->	Boolean	
;	do	all	rows	in	db	satisfy	(I1)	and	(I2)	

(check-expect	(integrity-check	school-db)	#true)	
(check-expect	(integrity-check	presence-db)	#true)	

(define	(integrity-check	db)	
		#false)

The	 wording	 of	 the	 two	 constraints	 suggests	 that	 some	 function	 has	 to

produce	#true	 for	 every	 row	 in	 the	 content	 of	 the	 given	 database.	Expressing
this	idea	in	code	calls	for	a	use	of	andmap	on	the	content	of	db:

Following	 the	 design	 recipe	 for	 the	 use	 of	 existing	 abstractions,	 the	 template
introduces	the	auxiliary	function	via	a	local	definition.

The	design	of	row-integrity-check	starts	from	this:

;	Row	->	Boolean	
;	does	row	satisfy	(I1)	and	(I2)	
(define	(row-integrity-check	row)	
		#false)

As	 always,	 the	 goal	 of	 formulating	 a	 purpose	 statement	 is	 to	 understand	 the
problem.	Here	it	says	that	 the	function	checks	two	conditions.	When	two	tasks
are	 involved,	 our	 design	 guidelines	 call	 for	 functions	 and	 the	 combination	 of
their	results:

Add	these	functions	to	your	wish	list;	their	names	convey	their	purpose.
Before	 we	 design	 these	 functions,	 we	 must	 contemplate	 whether	 we	 can

compose	 existing	 primitive	 operations	 to	 compute	 the	 desired	 value.	 For
example,	 we	 know	 that	 (length	 row)	 counts	 how	 many	 cells	 are	 in	 row.
Pushing	a	bit	more	in	this	direction,	we	clearly	want

(=	(length	row)	(length	(db-schema	db)))

This	condition	checks	that	the	length	of	row	is	equal	to	that	of	db’s	schema.
Similarly,	check-every-cell	calls	for	checking	that	some	function	produces

#true	for	every	cell	in	the	row.	Once	again,	it	looks	like	andmap	might	be	called

for:

(andmap	cell-integrity-check	row)

The	 purpose	 of	 cell-integrity-check	 is	 obviously	 to	 check	 constraint	 (I2),
that	is,

whether	“the	ith	Cell	satisfies	the	ith	Predicate	in	db’s	schema.”

And	 now	 we	 are	 stuck	 because	 this	 purpose	 statement	 refers	 to	 the	 relative
position	of	the	given	cell	in	row.	The	point	of	andmap	is,	however,	to	apply	cell-
integrity-check	to	every	cell	uniformly.

When	 you	 are	 stuck,	 you	 must	 work	 through	 examples.	 For	 auxiliary	 or
local	 functions,	 it’s	best	 to	derive	 these	examples	 from	 the	ones	 for	 the	main
function.	 The	 first	 example	 for	integrity-check	 asserts	 that	school-content
satisfies	 the	 integrity	constraints.	Clearly	all	 rows	 in	school-content	have	 the
same	length	as	school-schema.	The	question	is	why	a	row	such	as

(list	"Alice"	35	#true)

satisfies	the	predicates	in	the	corresponding	schema:

The	answer	is	that	all	three	applications	of	the	three	predicates	to	the	respective
cells	yields	true:

>	(string?	"Alice")	
#true	
>	(integer?	35)	
#true	
>	(boolean?	#true)	
#true

From	here,	it	is	just	a	short	step	to	see	that	the	function	must	process	these	two
lists—db’s	schema	and	the	given	row—in	parallel.

Exercise	404.	Design	 the	 function	andmap2.	 It	consumes	a	 function	f	 from
two	values	 to	Boolean	 and	 two	 equally	 long	 lists.	 Its	 result	 is	 also	 a	Boolean.
Specifically,	it	applies	f	to	pairs	of	corresponding	values	from	the	two	lists,	and
if	f	always	produces	#true,	andmap2	produces	#true,	 too.	Otherwise,	andmap2
produces	#false.	In	short,	andmap2	is	like	andmap	but	for	two	lists.	

Stop!	Solve	exercise	404	before	reading	on.
If	we	had	andmap2	in	ISL+,	checking	the	second	condition	on	row	would	be

straightforward:

The	given	function	consumes	a	Spec	s	from	db’s	schema,	extracts	the	predicate
in	the	second	position,	and	applies	it	to	the	given	Cell	c.	Whatever	the	predicate
returns	is	the	result	of	the	lambda	function.

Stop	again!	Explain	[(second	s)	c].
As	it	turns	out,	andmap	in	ISL+	is	already	like	andmap2:

Stop	a	last	time!	Develop	a	test	for	which	integrity-check	must	fail.
Note	 on	 Expression	 Hoisting	 Our	 definition	 of	 integrity-check	 suffers

from	 several	 problems,	 some	 visible,	 some	 invisible.	 Clearly,	 the	 function
extracts	db’s	 schema	 twice.	With	 the	existing	local	definition	 it	 is	possible	 to
introduce	a	definition	and	avoid	this	duplication:

We	know	from	chapter	16.2	that	lifting	such	an	expression	may	shorten	the	time
needed	 to	 run	 the	 integrity	check.	Like	 the	definition	of	inf	 in	 figure	100,	 the
original	 version	 of	 integrity-check	 extracts	 the	 schema	 from	 db	 for	 every
single	row,	even	though	it	obviously	stays	the	same.

Terminology	 Computer	 scientists	 speak	 of	 “hoisting	 an	 expression.”	 In	 a
similar	 vein,	 the	row-integrity-check	 function	 determines	 the	 length	 of	db’s
schema	every	single	time	it	is	called.	The	result	is	always	the	same.	Hence,	if	we
are	interested	in	improving	the	performance	of	this	function,	we	can	use	a	local
definition	to	name	the	width	of	the	database	content	once	and	for	all.	Figure	139
displays	 the	 result	 of	 hoisting	 (length	 schema)	 out	 of	 the	 row-integrity-
check.	For	readability,	 this	 final	definition	also	names	 the	content	 field	of	db.
End

Figure	139:	The	result	of	systematic	expression	hoisting

Projections	 and	Selections	 Programs	 need	 to	 extract	 data	 from	databases.

One	kind	of	extraction	 is	 to	select	content,	which	 is	explained	 in	chapter	12.2.
The	 other	 kind	 of	 extraction	 produces	 a	 reduced	 database;	 it	 is	 dubbed
projection.	 More	 specifically,	 a	 projection	 constructs	 a	 database	 by	 retaining
only	certain	columns	from	a	given	database.

The	description	of	a	projection	suggests	the	following:

;	DB	[List-of	Label]	->	DB	
;	retains	a	column	from	db	if	its	label	is	in	labels	
(define	(project	db	labels)	(make-db	'()	'()))

Given	the	complexity	of	a	projection,	it	is	best	to	work	through	an	example	first.
Say	we	wish	to	eliminate	the	age	column	from	the	database	on	the	left	in	figure
137.	Here	is	what	this	transformation	looks	like	in	terms	of	tables:

A	natural	way	to	articulate	the	example	as	a	test	reuses	figure	138:

If	you	run	the	above	code	in	DrRacket,	you	get	the	error	message

first	argument	of	equality	cannot	be	a	function

before	 DrRacket	 can	 even	 figure	 out	 whether	 the	 test	 succeeds.	 Recall	 from
chapter	 14.4	 that	 functions	 are	 infinitely	 large	 objects	 and	 it	 is	 impossible	 to
ensure	 that	 two	 functions	 always	 produce	 the	 same	 result	when	 applied	 to	 the
same	arguments.	We	therefore	weaken	the	test	case:

(check-expect	
		(db-content	(project	school-db	'("Name"	"Present")))	
		projected-content)

For	 the	 template,	we	again	 reuse	 existing	 abstractions;	 see	 figure	140.	The
local	expression	defines	two	functions:	one	for	use	with	filter	for	narrowing
down	 the	 schema	 of	 the	 given	 database	 and	 the	 other	 for	 use	 with	 map	 for
thinning	out	 the	content.	In	addition,	 the	function	again	extracts	and	names	the
schema	and	the	content	from	the	given	database.

Figure	140:	A	template	for	project

Before	we	turn	to	the	wish	list,	 let’s	step	back	and	study	the	decision	to	go
with	 two	reuses	of	existing	abstraction.	The	signature	 tells	us	 that	 the	 function
consumes	a	structure	and	produces	an	element	of	DB,	so

is	 clearly	 called	 for.	 It	 is	 also	 straightforward	 to	 see	 that	 the	 new	 schema	 is
created	 from	 the	 old	 schema	 and	 the	 new	 content	 from	 the	 old	 content.
Furthermore,	 the	 purpose	 statement	 of	 project	 calls	 for	 the	 retention	 of	 only
those	 labels	 that	 are	 mentioned	 in	 the	 second	 argument.	 Hence,	 the	 filter
function	correctly	narrows	down	the	given	schema.	 In	contrast,	 the	rows	per	se
stay	except	 that	each	of	 them	loses	some	cells.	Thus,	map	 is	 the	proper	way	of
processing	content.

Now	we	can	turn	to	the	design	of	the	two	auxiliary	functions.	The	design	of
keep?	is	straightforward.	Here	is	the	complete	definition:

;	Spec	->	Boolean	
;	does	this	spec	belong	to	the	new	schema	
(define	(keep?	c)	
		(member?	(first	c)	labels))

The	function	is	applied	to	a	Spec,	which	combines	a	Label	and	a	Predicate	in	a
list.	If	the	former	belongs	to	labels,	the	given	Spec	is	kept.

For	the	design	of	row-project,	the	goal	is	to	keep	those	Cells	in	each	Row
of	content	whose	name	 is	a	member	of	 the	given	labels.	Let’s	work	 through
the	above	example.	The	four	rows	are:

(list	"Alice"	35	#true)	
(list	"Bob"			25	#false)	
(list	"Carol"	30	#true)	
(list	"Dave"		32	#false)

Each	of	these	rows	is	as	long	as	school-schema:

(list	"Name"	"Age"	"Present")

The	names	 in	 the	 schema	determine	 the	 names	 of	 the	 cells	 in	 the	 given	 rows.
Hence,	row-project	must	keep	the	first	and	third	cell	of	each	row	because	it	is
their	names	that	are	in	the	given	labels.

Since	Row	is	defined	recursively,	this	matching	process	between	the	content
of	 the	 Cells	 and	 their	 names	 calls	 for	 a	 recursive	 helper	 function	 that	 row-
project	can	apply	to	the	content	and	the	labels	of	the	cells.	Let’s	specify	it	as	a
wish:

;	Row	[List-of	Label]	->	Row	
;	retains	those	cells	whose	corresponding	element	
;	in	names	is	also	in	labels	
(define	(row-filter	row	names)	'())

Using	this	wish,	row-project	is	a	one-liner:

(define	(row-project	row)	
		(row-filter	row	(map	first	schema)))

The	map	expression	extracts	the	names	of	the	cells,	and	those	names	are	handed
to	row-filter	to	extract	the	matching	cells.

Exercise	405.	Design	the	function	row-filter.	Construct	examples	for	row-
filter	from	the	examples	for	project.

Assumption	 The	 given	 database	 passes	 an	 integrity	 check,	 meaning	 each
row	is	as	long	as	the	schema	and	thus	its	list	of	names.	

Figure	141	puts	all	the	pieces	together.	The	function	project	has	the	suffix
.v1	because	it	calls	for	some	improvement.	The	following	exercises	ask	you	to
implement	some	of	those.

Figure	141:	Database	projection

Exercise	 406.	 The	 row-project	 function	 recomputes	 the	 labels	 for	 every
row	 of	 the	 database’s	 content.	 Does	 the	 result	 differ	 from	 function	 call	 to
function	call?	If	not,	hoist	the	expression.	

Exercise	 407.	Redesign	row-filter	 using	foldr.	Once	you	have	done	 so,
you	may	merge	row-project	and	row-filter	 into	a	single	function.	Hint	The
foldr	function	in	ISL+	may	consume	two	lists	and	process	them	in	parallel.	

The	final	observation	is	that	row-project	checks	the	membership	of	a	label
in	 labels	 for	 every	 single	 cell.	 For	 the	 cells	 of	 the	 same	 column	 in	 different
rows,	the	result	is	going	to	be	the	same.	Hence	it	also	makes	sense	to	hoist	this
computation	out	of	the	function.

This	 form	 of	 hoisting	 is	 somewhat	 more	 difficult	 than	 plain	 expression
hoisting.	We	basically	wish	to	pre-compute	the	result	of

(member?	label	labels)

for	 all	 rows	 and	 pass	 the	 results	 into	 the	 function	 instead	 of	 the	 list	 of	 labels.
That	is,	we	replace	the	list	of	labels	with	a	list	of	Booleans	that	indicate	whether
the	cell	in	the	corresponding	position	is	to	be	kept.	Fortunately,	computing	those
Booleans	is	just	another	application	of	keep?	on	the	schema:

(map	keep?	schema)

Instead	of	 keeping	 some	Specs	 from	 the	 given	schema	 and	 throwing	 away	 the
others,	this	expression	just	collects	the	decisions.

Figure	142	 shows	 the	 final	version	of	project	 and	 integrates	 the	 solutions
for	 the	preceding	exercises.	 It	also	uses	local	 to	extract	and	name	schema	and
content,	 plus	 keep?	 for	 checking	 whether	 the	 label	 in	 some	 Spec	 is	 worth
keeping.	The	remaining	two	definitions	introduce	mask,	which	stands	for	the	list
of	Booleans	discussed	above,	and	the	revised	version	of	row-project.	The	latter
uses	foldr	to	process	the	given	row	and	mask	in	parallel.

Figure	142:	Database	projection

Compare	 this	revised	definition	of	project	with	project.v1	 in	figure	141.
The	 final	 definition	 is	 both	 simpler	 and	 faster	 than	 the	 original	 version.
Systematic	 design	 combined	with	 careful	 revisions	 pays	 off;	 test	 suites	 ensure
that	revisions	don’t	mess	up	the	functionality	of	the	program.

Exercise	408.	Design	the	function	select.	It	consumes	a	database,	a	list	of
labels,	and	a	predicate	on	rows.	The	result	is	a	list	of	rows	that	satisfy	the	given
predicate,	projected	down	to	the	given	set	of	labels.	

Exercise	409.	Design	reorder.	The	function	consumes	a	database	db	and	list
lol	 of	 Labels.	 It	 produces	 a	 database	 like	 db	 but	 with	 its	 columns	 reordered
according	to	lol.	Hint	Read	up	on	ist-ref.

At	first	assume	that	lol	consists	exactly	of	the	labels	of	db’s	columns.	Once
you	 have	 completed	 the	 design,	 study	what	 has	 to	 be	 changed	 if	lol	 contains
fewer	labels	than	there	are	columns	and	strings	that	are	not	labels	of	a	column	in
db.	

Exercise	410.	Design	the	function	db-union,	which	consumes	two	databases
with	the	exact	same	schema	and	produces	a	new	database	with	this	schema	and
the	joint	content	of	both.	The	function	must	eliminate	rows	with	the	exact	same
content.

Assume	that	the	schemas	agree	on	the	predicates	for	each	column.	

Exercise	 411.	Design	join,	 a	 function	 that	 consumes	 two	 databases:	db-1
and	db-2.	The	schema	of	db-2	starts	with	the	exact	same	Spec	that	the	schema	of
db-1	ends	in.	The	function	creates	a	database	from	db-1	by	replacing	the	last	cell
in	each	row	with	the	translation	of	the	cell	in	db-2.

Here	 is	 an	 example.	Take	 the	 databases	 in	 figure	 137.	The	 two	 satisfy	 the
assumption	of	these	exercises,	that	is,	the	last	Spec	in	the	schema	of	the	first	is
equal	to	the	first	Spec	of	the	second.	Hence	it	is	possible	to	join	them:

Its	translation	maps	#true	to	"presence"	and	#false	to	"absence".
Hints	(1)	In	general,	the	second	database	may	“translate”	a	cell	to	a	row	of

values,	not	just	one	value.	Modify	the	example	by	adding	additional	terms	to	the
row	for	"presence"	and	"absence".

(2)	It	may	also	“translate”	a	cell	 to	several	rows,	 in	which	case	the	process
adds	 several	 rows	 to	 the	 new	 database.	 Here	 is	 a	 second	 example,	 a	 slightly
different	pair	of	databases	from	those	in	figure	137:

Joining	 the	 left	database	with	 the	one	on	 the	 right	yields	a	database	with	eight
rows:

(3)	 Use	 iterative	 refinement	 to	 solve	 the	 problem.	 For	 the	 first	 iteration,
assume	that	a	“translation”	finds	only	one	row	per	cell.	For	the	second	one,	drop
the	assumption.

Note	 on	Assumptions	 This	 exercise	 and	 the	 entire	 section	mostly	 rely	 on
informally	 stated	 assumptions	 about	 the	 given	 databases.	 Here,	 the	 design	 of
join	assumes	that	“the	schema	of	db-2	starts	with	the	exact	same	Spec	that	the
schema	 of	 db-1	 ends	 in.”	 In	 reality,	 database	 functions	 must	 be	 checked

functions	 in	 the	 spirit	 of	 chapter	 6.3.	 Designing	 checked-join	 would	 be
impossible	for	you,	however.	A	comparison	of	the	last	Spec	in	the	schema	of	db-
1	with	 the	 first	 one	 in	 db-2	 calls	 for	 a	 comparison	 of	 functions.	 For	 practical
solutions,	see	a	text	on	databases.	

24 Summary
This	 fourth	part	 of	 the	book	 is	 about	 the	design	of	 functions	 that	 process	 data
whose	 description	 requires	 many	 intertwined	 definitions.	 These	 forms	 of	 data
show	up	everywhere	in	the	real	world,	from	your	computer’s	local	file	system	to
the	 world	 wide	 web	 and	 geometric	 shapes	 used	 in	 animated	 movies.	 After
working	through	this	part	of	the	book	carefully,	you	know	that	the	design	recipe
scales	to	these	forms	of	data,	too:

1.	When	the	description	of	program	data	calls	for	several	mutually	referential
data	definitions,	the	design	recipe	calls	for	the	simultaneous	development
of	templates,	one	per	data	definition.	If	a	data	definition	A	refers	to	a	data
definition	B,	then	the	template	function-for-A	refers	to	function-for-B
in	the	exact	same	place	and	manner.	Otherwise	the	design	recipes	work	as
before,	function	for	function.

2.	When	a	 function	has	 to	process	 two	 types	of	 complex	data,	you	need	 to
distinguish	 three	 cases.	 First,	 the	 function	 may	 deal	 with	 one	 of	 the
arguments	as	if	it	were	atomic.	Second,	the	two	arguments	are	expected	to
have	 the	 exact	 same	 structure,	 and	 the	 function	 traverses	 them	 in	 a
completely	parallel	manner.	Third,	the	function	may	have	to	deal	with	all
possible	 combinations	 separately.	 In	 this	 case,	 you	 make	 a	 two-
dimensional	 table	 that	 along	one	dimension	 enumerates	 all	 kinds	of	 data
from	 one	 data	 definition	 and	 along	 the	 other	 one	 deals	 with	 the	 second
kind	of	data.	Finally	you	use	the	table’s	cells	to	formulate	conditions	and
answers	for	the	various	cases.
This	part	of	 the	book	deals	with	functions	on	 two	complex	arguments.	 If
you	ever	encounter	one	of	those	rare	cases	where	a	function	receives	three
complex	 pieces	 of	 data,	 you	 know	 you	 need	 (to	 imagine)	 a	 three-
dimensional	table.

You	have	now	seen	all	forms	of	structural	data	that	you	are	likely	to	encounter
over	 the	 course	 of	 your	 career,	 though	 the	 details	 will	 differ.	 If	 you	 are	 ever
stuck,	remember	the	design	recipe;	it	will	get	you	started.

	

INTERMEZZO	4:	THE	NATURE	OF	NUMBERS

When	 it	 comes	 to	 numbers,	 programming	 languages	mediate	 the	 gap	 between
the	underlying	hardware	and	 true	mathematics.	The	 typical	computer	hardware
represents	 numbers	 with	 fixed-size	 chunks	 of	 data;	 they	 also	 come	 with
processors	 that	work	on	 just	 such	chunks.	 In	paper-and-pencil	calculations,	we
don’t	worry	about	how	many	digits	we	process;	 in	principle,	we	can	deal	with
numbers	 that	 consist	 of	 one	 digit,	 10	 digits,	 or	 10,000	 digits.	 Thus,	 if	 a
programming	 language	 uses	 the	 numbers	 from	 the	 underlying	 hardware,	 its
calculations	are	as	efficient	as	possible.	If	it	sticks	to	the	numbers	we	know	from
mathematics,	it	must	translate	those	into	chunks	of	hardware	data	and	back—and
these	translations	cost	time.	Because	of	this	cost,	most	creators	of	programming
languages	adopt	the	hardware-based	choice.

These	chunks	are	called	bits,	bytes,	and	words.

This	 intermezzo	 explains	 the	 hardware	 representation	 of	 numbers	 as	 an
exercise	 in	 data	 representation.	 Concretely,	 the	 first	 subsection	 introduces	 a
concrete	 fixed-size	 data	 representation	 for	 numbers,	 discusses	 how	 to	 map
numbers	 into	 this	 representation,	 and	 hints	 at	 how	 calculations	 work	 on	 such
numbers.	 The	 second	 and	 third	 sections	 illustrate	 the	 two	 most	 fundamental
problems	 of	 this	 choice:	 arithmetic	 overflow	 and	 underflow,	 respectively.	 The
last	 one	 sketches	 how	 arithmetic	 in	 the	 teaching	 languages	works;	 its	 number
system	generalizes	what	 you	 find	 in	most	 of	 today’s	 programming	 languages.
The	final	exercises	show	how	bad	things	can	get	when	programs	compute	with
numbers.

Fixed-Size	Number	Arithmetic

Suppose	 we	 can	 use	 four	 digits	 to	 represent	 numbers.	 If	 we	 represent	 natural
numbers,	one	representable	range	is	[0,10000).	For	real	numbers,	we	could	pick
10,000	fractions	between	0	and	1	or	5,000	between	0	and	1	and	another	5,000
between	 1	 and	 2,	 and	 so	 on.	 In	 either	 case,	 four	 digits	 can	 represent	 at	 most
10,000	numbers	for	some	chosen	interval,	while	the	number	line	for	this	interval
contains	an	infinite	number	of	numbers.

The	 common	 choice	 for	 hardware	 numbers	 is	 to	 use	 so-called	 scientific
notation,	meaning	numbers	are	represented	with	two	parts:

For	pure	scientific	notation,	the	base	is	between	0	and	9;	we	ignore	this	constraint.

1.	a	mantissa,	which	is	a	base	number,	and

2.	an	exponent,	which	is	used	to	determine	a	10-based	factor.

Expressed	as	a	formula,	we	write	numbers	as

where	m	is	the	mantissa	and	e	the	exponent.	For	example,	one	representation	of
1200	with	this	scheme	is

another	one	is

In	general,	a	number	has	several	equivalents	in	this	representation.
We	can	also	use	negative	exponents,	which	add	fractions	at	 the	cost	of	one

extra	piece	of	data:	the	sign	of	the	exponent.	For	example,

stands	for

To	 use	 a	 form	 of	 mantissa-exponent	 notation	 for	 our	 problem,	 we	 must
decide	how	many	of	the	four	digits	we	wish	to	use	for	the	representation	of	the
mantissa	and	how	many	for	the	exponent.	Here	we	use	two	for	each	plus	a	sign
for	 the	 exponent;	 other	 choices	 are	 possible.	 Given	 this	 decision,	 we	 can	 still
represent	0	as

The	maximal	number	we	can	represent	is

which	 is	 99	 followed	 by	 99	 0’s.	 Using	 the	 negative	 exponents,	 we	 can	 add
fractions	all	the	way	down	to

which	 is	 the	 smallest	 representable	 number.	 In	 sum,	 using	 scientific	 notation
with	 four	 digits	 (and	 a	 sign),	 we	 can	 represent	 a	 vast	 range	 of	 numbers	 and
fractions,	but	this	improvement	comes	with	its	own	problems.

To	understand	the	problems,	it	is	best	to	make	these	choices	concrete	with	a
data	representation	in	ISL+	and	by	running	some	experiments.	Let’s	represent	a
fixed-size	number	with	a	structure	that	has	three	fields:

(define-struct	inex	[mantissa	sign	exponent])	
;	An	Inex	is	a	structure:	
;			(make-inex	N99	S	N99)	
;	An	S	is	one	of:	
;	--	1	
;	--	-1	
;	An	N99	is	an	N	between	0	and	99	(inclusive).

Because	 the	conditions	on	 the	 fields	of	an	 Inex	are	 so	 stringent,	we	define	 the
function	create-inex	to	instantiate	this	structure	type	definition;	see	figure	143.

The	 figure	 also	 defines	inex->number,	which	 turns	 Inexes	 into	 numbers	 using
the	above	formula.

Figure	143:	Functions	for	inexact	representations

Let’s	translate	the	above	example,	1200,	into	our	data	representation:

(create-inex	12	1	2)

Representing	1200	 as	120	 ·	 101	 is	 illegal,	 however,	 according	 to	our	 Inex	data
definition:

>	(create-inex	120	1	1)	
bad	values	given

For	other	numbers,	though,	we	can	find	two	Inex	equivalents.	One	example
is	5e-19:

>	(create-inex	50	-1	20)	
(make-inex	50	-1	20)	
>	(create-inex	5	-1	19)	
(make-inex	5	-1	19)

Use	inex->number	to	confirm	the	equivalence	of	these	two	numbers.
With	 create-inex	 it	 is	 also	 easy	 to	 delimit	 the	 range	 of	 representable

numbers,	which	is	actually	quite	small	for	many	applications:

(define	MAX-POSITIVE	(create-inex	99	1	99))	
(define	MIN-POSITIVE	(create-inex	1	-1	99))

The	 question	 is	 which	 of	 the	 real	 numbers	 in	 the	 range	 between	 0	 and	 MAX-
POSITIVE	can	be	translated	into	an	Inex.	In	particular,	any	positive	number	less
than

has	no	equivalent	Inex.	Similarly,	the	representation	has	gaps	in	the	middle.	For
example,	the	immediate	successor	of

(create-inex	12	1	2)

is

(create-inex	13	1	2)

The	first	Inex	represents	1200,	the	second	one	1300.	Numbers	in	the	middle,	say
1240,	can	be	 represented	as	one	or	 the	other—no	other	 Inex	makes	sense.	The
standard	choice	 is	 to	 round	 the	number	 to	 the	closest	 representable	equivalent,
and	 that	 is	 what	 computer	 scientists	 mean	 with	 inexact	 numbers.	 That	 is,	 the
chosen	 data	 representation	 forces	 us	 to	 map	 mathematical	 numbers	 to
approximations.

Finally,	 we	 must	 also	 consider	 arithmetic	 operations	 on	 Inex	 structures.
Adding	two	Inex	representations	with	the	same	exponent	means	adding	the	two
mantissas:

(inex+	(create-inex	1	1	0)	(create-inex	2	1	0))	
==	
(create-inex	3	1	0)

Translated	into	mathematical	notation,	we	have

When	the	addition	of	two	mantissas	yields	too	many	digits,	we	have	to	use	the
closest	neighbor	in	Inex.	Consider	adding	55	·	100	 to	 itself.	Mathematically	we
get

but	 we	 can’t	 just	 translate	 this	 number	 naively	 into	 our	 chosen	 representation
because	110	>	99.	The	proper	corrective	action	is	to	represent	the	result	as

Or,	translated	into	ISL+,	we	must	ensure	that	inex+	computes	as	follows:

More	generally,	if	the	mantissa	of	the	result	is	too	large,	we	must	divide	it	by	10
and	increase	the	exponent	by	one.

Sometimes	the	result	contains	more	mantissa	digits	than	we	can	represent.	In
those	cases,	inex+	must	 round	 to	 the	closest	 equivalent	 in	 the	 Inex	world.	For
example:

Compare	this	with	the	precise	calculation:

Because	 the	result	has	 too	many	mantissa	digits,	 the	 integer	division	of	 the
result	mantissa	by	10	produces	an	approximate	result:

This	is	an	example	of	the	many	approximations	in	Inex	arithmetic.

And	inexact	is	appropriate.

We	can	also	multiply	Inex	numbers.	Recall	that

Thus	we	get:

or,	in	ISL+	notation:

(inex*	(create-inex	2	1	4)	(create-inex	8	1	10))	
==	
(create-inex	16	1	14)

As	with	addition,	 things	are	not	straightforward.	When	the	result	has	too	many
significant	digits	in	the	mantissa,	inex*	has	to	increase	the	exponent:

(inex*	(create-inex	20	1	1)	(create-inex	5	1	4))	
==	
(create-inex	10	1	6)

And	 just	 like	 inex+,	 inex*	 introduces	 an	 approximation	 if	 the	 true	 mantissa
doesn’t	have	an	exact	equivalent	in	Inex:

(inex*	(create-inex	27	-1	1)	(create-inex	7	1	4))	
==	
(create-inex	19	1	4)

Exercise	412.	Design	inex+.	The	function	adds	two	Inex	representations	of
numbers	 that	 have	 the	 same	exponent.	The	 function	must	be	 able	 to	deal	with

inputs	that	increase	the	exponent.	Furthermore,	it	must	signal	its	own	error	if	the
result	is	out	of	range,	not	rely	on	create-inex	for	error	checking.

Challenge	 Extend	 inex+	 so	 that	 it	 can	 deal	 with	 inputs	 whose	 exponents
differ	by	1:

(check-expect	
		(inex+	(create-inex	1	1	0)	(create-inex	1	-1	1))	
		(create-inex	11	-1	1))

Do	not	attempt	to	deal	with	larger	classes	of	inputs	than	that	without	reading	the
following	subsection.	

Exercise	 413.	 Design	 inex*.	 The	 function	 multiplies	 two	 Inex
representations	of	numbers,	including	inputs	that	force	an	additional	increase	of
the	output’s	exponent.	Like	inex+,	it	must	signal	its	own	error	if	the	result	is	out
of	range,	not	rely	on	create-inex	to	perform	error	checking.	

Exercise	414.	As	this	section	illustrates,	gaps	in	the	data	representation	lead
to	 round-off	errors	when	numbers	are	mapped	 to	 Inexes.	The	problem	 is,	 such
round-off	errors	accumulate	across	computations.

Design	add,	a	function	that	adds	up	n	copies	of	#i1/185.	For	your	examples,
use	0	and	1;	for	the	latter,	use	a	tolerance	of	0.0001.	What	is	the	result	for	(add
185)?	What	would	you	expect?	What	happens	if	you	multiply	the	result	with	a
large	number?

Design	sub.	The	function	counts	how	often	1/185	can	be	subtracted	from	the
argument	until	it	is	0.	Use	0	and	1/185	for	your	examples.	What	are	the	expected
results?	What	are	the	results	for	(sub	1)	and	(sub	#i1.0)?	What	happens	in	the
second	case?	Why?	

Overflow
While	 scientific	 notation	 expands	 the	 range	of	 numbers	we	 can	 represent	with
fixed-size	chunks	of	data,	 it	 is	 still	 finite.	Some	numbers	are	 just	 too	big	 to	 fit
into	a	fixed-size	number	representation.	For	example,

can’t	be	represented	because	the	exponent	500	won’t	fit	into	two	digits,	and	the
mantissa	is	as	large	as	legally	possible.

Numbers	 that	 are	 too	 large	 for	 Inex	 can	 arise	 during	 a	 computation.	 For
example,	 two	 numbers	 that	we	 can	 represent	 can	 add	 up	 to	 a	 number	 that	we
cannot	represent:

(inex+	(create-inex	50	1	99)	(create-inex	50	1	99))	
==	
(create-inex	100	1	99)

which	violates	the	data	definition.	When	Inex	arithmetic	produces	numbers	that
are	too	large	to	be	represented,	we	speak	of	(arithmetic)	overflow.

When	overflow	takes	place,	some	language	implementations	signal	an	error
and	stop	the	computation.	Others	designate	some	symbolic	value,	called	infinity,
to	represent	such	numbers	and	propagate	it	through	arithmetic	operations.

Note	If	Inexes	had	a	sign	field	for	the	mantissa,	then	two	negative	numbers
can	add	up	to	one	that	 is	so	negative	that	 it	can’t	be	represented	either.	This	 is
called	overflow	in	the	negative	direction.	End

Exercise	 415.	 ISL+	 uses	 +inf.0	 to	 deal	 with	 overflow.	 Determine	 the
integer	n	such	that

(expt	#i10.0	n)

is	 an	 inexact	 number	 while	 (expt	 #i10.	 (+	 n	 1))	 is	 approximated	 with
+inf.0.	Hint	Design	a	function	to	compute	n.	

Underflow
At	the	opposite	end	of	the	spectrum,	there	are	small	numbers	that	don’t	have	a
representation	 in	 Inex.	 For	 example,	 10−500	 is	 not	 0,	 but	 it’s	 smaller	 than	 the
smallest	 non-zero	 number	 we	 can	 represent.	 An	 (arithmetic)	 underflow	 arises
when	we	multiply	two	small	numbers	and	the	result	is	too	small	for	Inex:

(inex*	(create-inex	1	-1	10)	(create-inex	1	-1	99))	
==	
(create-inex	1	-1	109)

which	signals	an	error.
When	 underflow	 occurs,	 some	 language	 implementations	 signal	 an	 error;

others	 use	 0	 to	 approximate	 the	 result.	 Using	 0	 to	 approximate	 underflow	 is

qualitatively	different	 from	picking	an	approximate	 representation	of	a	number
in	 Inex.	 Concretely,	 approximating	 1250	 with	 (create-inex	 12	 1	 2)	 drops
significant	digits	 from	the	mantissa,	but	 the	result	 is	always	within	10%	of	 the
number	 to	 be	 represented.	 Approximating	 an	 underflow,	 however,	 means
dropping	 the	 entire	 mantissa,	 meaning	 the	 result	 is	 not	 within	 a	 predictable
percentage	range	of	the	true	result.

Exercise	 416.	 ISL+	 uses	 #i0.0	 to	 approximate	 underflow.	 Determine	 the
smallest	 integer	n	 such	 that	(expt	#i10.0	n)	 is	 still	 an	 inexact	 ISL+	number
and	 (expt	 #i10.	 (-	 n	 1))	 is	 approximated	 with	 0.	Hint	 Use	 a	 function	 to
compute	n.	Consider	abstracting	over	 this	function	and	the	solution	of	exercise
415.	

*SL	Numbers
Most	programming	languages	support	only	approximate	number	representations
and	arithmetic	for	numbers.	A	typical	language	limits	its	integers	to	an	interval
that	 is	 related	 to	 the	 size	 of	 the	 chunks	 of	 the	 hardware	 on	which	 it	 runs.	 Its
representation	of	 real	 numbers	 is	 loosely	 based	on	 the	 sketch	 in	 the	 preceding
sections,	though	with	larger	chunks	than	the	four	digits	Inex	uses	and	with	digits
from	the	2-based	number	system.

Inexact	real	representations	come	in	several	flavors:	float,	double,	extflonum,	and	so	on.

The	 teaching	 languages	 support	 both	 exact	 and	 inexact	 numbers.	 Their
integers	 and	 rationals	 are	 arbitrarily	 large	 and	 precise,	 limited	 only	 by	 the
absolute	 size	 of	 the	 computer’s	 entire	 memory.	 For	 calculations	 on	 these
numbers,	 our	 teaching	 languages	 use	 the	 underlying	 hardware	 as	 long	 as	 the
involved	rationals	fit	into	the	supported	chunks	of	data;	it	automatically	switches
to	 a	 different	 representation	 and	 to	 a	 different	 version	 of	 the	 arithmetic
operations	for	numbers	outside	of	this	interval.	Their	real	numbers	come	in	two
flavors:	exact	and	 inexact.	An	exact	number	 truly	 represents	a	 real	number;	an
inexact	one	approximates	a	 real	number	 in	 the	spirit	of	 the	preceding	sections.
Arithmetic	operations	preserve	exactness	when	possible;	they	produce	an	inexact
result	when	necessary.	Thus,	sqrt	returns	an	inexact	number	for	both	the	exact
and	inexact	representation	of	2.	In	contrast,	sqrt	produces	an	exact	2	when	given
exact	 4	 and	 #i2.0	 for	 an	 input	 of	 #i4.0.	 Finally,	 a	 numeric	 constant	 in	 a

teaching	program	is	understood	as	an	exact	rational,	unless	it	is	prefixed	with	#i.
Plain	 Racket	 interprets	 all	 decimal	 numbers	 as	 inexact	 numbers;	 it	 also

renders	 all	 real	 numbers	 as	 decimals,	 regardless	 of	 whether	 they	 are	 exact	 or
inexact.	The	implication	is	that	all	such	numbers	are	dangerous	because	they	are
likely	to	be	inexact	approximations	of	the	true	number.	A	programmer	can	force
Racket	to	interpret	numbers	with	a	dot	as	exact	by	prefixing	numerical	constants
with	#e.

At	 this	 point,	 you	may	 wonder	 how	much	 a	 program’s	 results	 may	 differ
from	the	 true	results	 if	 it	uses	 these	 inexact	numbers.	This	question	 is	one	 that
early	 computer	 scientists	 struggled	 with	 a	 lot,	 and	 over	 the	 past	 few	 decades
these	 studies	 have	 created	 a	 separate	 field,	 called	 numerical	 analysis.	 Every
computer	scientist,	and	indeed,	every	person	who	uses	computers	and	software,
ought	 to	 be	 aware	 of	 its	 existence	 and	 some	 of	 its	 basic	 insights	 into	 the
workings	of	numeric	programs.	As	a	first	taste,	the	following	exercises	illustrate
how	bad	things	can	get.	Work	through	them	to	never	lose	sight	of	the	problems
of	inexact	numbers.

For	an	accessible	introduction—using	Racket—read	Practically	Accurate	Floating-Point	Math,	an
article	on	error	analysis	by	Neil	Toronto	and	Jay	McCarthy.	It	is	also	fun	to	watch	Debugging
Floating-Point	Math	in	Racket,	Neil	Toronto’s	RacketCon	2011	lecture,	available	on	YouTube.

Exercise	417.	Evaluate	(expt	1.001	1e-12)	in	Racket	and	in	ISL+.	Explain
what	you	see.	

Exercise	 418.	Design	my-expt	without	using	expt.	The	 function	 raises	 the
first	given	number	to	the	power	of	the	second	one,	a	natural	number.	Using	this
function,	conduct	the	following	experiment.	Add

(define	inex	(+	1	#i1e-12))	
(define	exac	(+	1	1e-12))

to	the	definitions	area.	What	is	(my-expt	inex	30)?	And	how	about	(my-expt
exac	30)?	Which	answer	is	more	useful?	

Exercise	419.	When	you	add	two	inexact	numbers	of	vastly	different	orders
of	magnitude,	you	may	get	 the	 larger	one	back	as	 the	 result.	For	example,	 if	a
number	 system	 uses	 only	 15	 significant	 digits,	 we	 run	 into	 problems	 when
adding	numbers	that	vary	by	more	than	a	factor	of	1016:

but	the	closest	representable	answer	is	1016.
At	first	glance,	this	approximation	doesn’t	look	too	bad.	Being	wrong	by	one

part	in	1016	(ten	million	billion)	is	close	enough	to	the	truth.	Unfortunately,	this
kind	of	problem	can	add	up	 to	huge	problems.	Consider	 the	 list	of	numbers	 in
figure	144	and	determine	the	values	of	these	expressions:

•  (sum	JANUS)

•  (sum	(reverse	JANUS))

•  (sum	(sort	JANUS	<))

Figure	144:	A	Janus-faced	series	of	inexact	numbers

Assuming	sum	adds	 the	numbers	 in	a	 list	 from	left	 to	 right,	explain	what	 these
expressions	compute.	What	do	you	think	of	the	results?

Generic	 advice	 on	 inexact	 calculations	 tells	 programmers	 to	 start	 additions
with	 the	 smallest	 numbers.	While	 adding	 a	 big	 number	 to	 two	 small	 numbers
might	yield	 the	big	one,	adding	small	numbers	 first	 creates	a	 large	one,	which
might	change	the	outcome:

>	(expt	2	#i53.0)	
#i9007199254740992.0	

>	(sum	(list	#i1.0	(expt	2	#i53.0)))	
#i9007199254740992.0	
>	(sum	(list	#i1.0	#i1.0	(expt	2	#i53.0)))	
#i9007199254740994.0

This	trick	may	not	work;	see	the	JANUS	interactions	above.
In	a	language	such	as	ISL+,	you	can	convert	the	numbers	to	exact	rationals,

use	exact	arithmetic	on	those,	and	convert	the	result	back:

(exact->inexact	(sum	(map	inexact->exact	JANUS)))

Evaluate	 this	expression	and	compare	the	result	 to	 the	three	sums	above.	What
do	you	think	now	about	advice	from	the	web?	

Exercise	420.	JANUS	is	just	a	fixed	list,	but	take	a	look	at	this	function:

Applying	oscillate	 to	 a	 natural	 number	 n	 produces	 the	 first	 n	 elements	 of	 a
mathematical	series.	It	is	best	understood	as	a	graph,	like	the	one	in	figure	145.
Run	(oscillate	15)	in	DrRacket	and	inspect	the	result.

Figure	145:	The	graph	of	oscillate

Summing	its	results	from	left	 to	right	computes	a	different	result	 than	from
right	to	left:

>	(sum	(oscillate	#i1000.0))	
#i-0.49746596003269394	
>	(sum	(reverse	(oscillate	#i1000.0)))	
#i-0.4974659600326953

Again,	the	difference	may	appear	to	be	small	until	we	see	the	context:

>	(-	(*	1e+16	(sum	(oscillate	#i1000.0)))	
					(*	1e+16	(sum	(reverse	(oscillate	#i1000.0)))))	
#i14.0

Can	this	difference	matter?	Can	we	trust	computers?	
The	question	is	which	numbers	programmers	should	use	in	their	programs	if

they	 are	given	 a	 choice.	The	 answer	depends	on	 the	 context,	 of	 course.	 In	 the
world	of	financial	statements,	numerical	constants	should	be	interpreted	as	exact
numbers,	 and	 computational	manipulations	 of	 financial	 statements	 ought	 to	 be
able	to	rely	on	the	exactness-preserving	nature	of	mathematical	operations.	After
all,	 the	 law	 cannot	 accommodate	 the	 serious	 errors	 that	 come	 with	 inexact
numbers	and	their	operations.	In	scientific	computations,	however,	the	extra	time
needed	to	produce	exact	results	might	 impose	too	much	of	a	burden.	Scientists

therefore	 tend	 to	 use	 inexact	 numbers	 but	 carefully	 analyze	 their	 programs	 to
make	sure	that	the	numerical	errors	are	tolerable	for	their	uses	of	the	outputs	of
programs.

	

V
GENERATIVE	RECURSION

If	 you	 follow	 the	 design	 recipe	 of	 the	 first	 four	 parts,	 either	 you	 turn	 domain
knowledge	 into	 code	 or	 you	 exploit	 the	 structure	 of	 the	 data	 definition	 to
organize	 your	 code.	 The	 latter	 functions	 typically	 decompose	 their	 arguments
into	their	immediate	structural	components	and	then	process	those	components.
If	one	of	 these	 immediate	components	belongs	to	 the	same	class	of	data	as	 the
input,	 the	 function	 is	 structurally	 recursive.	 While	 structurally	 designed
functions	make	up	the	vast	majority	of	code	in	the	world,	some	problems	cannot
be	solved	with	a	structural	approach	to	design.

Some	functions	merely	compose	such	functions;	we	group	those	with	the	“structural”	group.

To	solve	such	complicated	problems,	programmers	use	generative	recursion,
a	form	of	recursion	that	is	strictly	more	powerful	than	structural	recursion.	The
study	 of	 generative	 recursion	 is	 as	 old	 as	mathematics	 and	 is	 often	 called	 the
study	 of	 algorithms.	 The	 inputs	 of	 an	 algorithm	 represent	 a	 problem.	 An
algorithm	 tends	 to	 rearrange	 a	 problem	 into	 a	 set	 of	 several	 problems,	 solve
those,	and	combine	their	solutions	into	one	overall	solution.	Often	some	of	these
newly	generated	 problems	 are	 the	 same	kind	 of	 problem	as	 the	 given	 one,	 in
which	 case	 the	 algorithm	 can	 be	 reused	 to	 solve	 them.	 In	 these	 cases,	 the
algorithm	is	recursive,	but	its	recursion	uses	newly	generated	data	not	immediate
parts	of	the	input	data.

From	the	very	description	of	generative	recursion,	you	can	tell	that	designing
a	 generative	 recursive	 function	 is	more	 of	 an	 ad	 hoc	 activity	 than	 designing	 a
structurally	recursive	function.	Still,	many	elements	of	the	general	design	recipe
apply	to	the	design	of	algorithms,	too,	and	this	part	of	the	book	illustrates	how
and	how	much	 the	design	 recipe	helps.	The	key	 to	designing	algorithms	 is	 the
“generation”	step,	which	often	means	dividing	up	the	problem.	And	figuring	out
a	novel	way	of	dividing	a	problem	requires	insight.	Sometimes	very	little	insight
is	required.	For	example,	it	might	just	require	a	bit	of	commonsense	knowledge
about	 breaking	 up	 sequences	 of	 letters.	 At	 other	 times,	 it	 may	 rely	 on	 deep

mathematical	theorems	about	numbers.	In	practice,	programmers	design	simple
algorithms	 on	 their	 own	 and	 rely	 on	 domain	 specialists	 for	 their	 complex
brethren.	 For	 either	 kind,	 programmers	 must	 thoroughly	 understand	 the
underlying	 ideas	 so	 that	 they	 can	 code	 up	 algorithms	 and	 have	 the	 program
communicate	with	future	readers.	The	best	way	to	get	acquainted	with	the	idea	is
to	 study	 a	 wide	 range	 of	 examples	 and	 to	 develop	 a	 sense	 for	 the	 kinds	 of
generative	recursions	that	may	show	up	in	the	real	world.

In	Greek,	it’s	“eureka!”

25 Non-standard	Recursion
At	 this	 point	 you	 have	 designed	 numerous	 functions	 that	 employ	 structural
recursion.	When	you	design	a	function,	you	know	you	need	to	look	at	 the	data
definition	for	its	major	input.	If	this	input	is	described	by	a	self-referential	data
definition,	 you	 end	 up	with	 a	 function	 that	 refers	 to	 itself	 basically	where	 the
data	definition	refers	to	itself.

This	 chapter	 presents	 two	 sample	 programs	 that	 use	 recursion	 differently.
They	are	 illustrative	of	 the	problems	 that	 require	 some	“eureka,”	 ranging	 from
the	obvious	idea	to	the	sophisticated	insight.

25.1 Recursion	without	Structure
Imagine	you	have	joined	the	DrRacket	team.	The	team	is	working	on	a	sharing
service	 to	 support	 collaborations	 among	 programmers.	 Concretely,	 the	 next
revision	of	DrRacket	is	going	to	enable	ISL	programmers	to	share	the	content	of
their	 DrRacket’s	 definitions	 area	 across	 several	 computers.	 Each	 time	 one
programmer	modifies	the	buffer,	the	revised	DrRacket	broadcasts	the	content	of
the	definitions	area	 to	 the	 instances	of	DrRacket	 that	participate	 in	 the	 sharing
session.

Sample	 Problem	 Your	 task	 is	 to	 design	 the	 function	 bundle,
which	 prepares	 the	 content	 of	 the	 definitions	 area	 for
broadcasting.	 DrRacket	 hands	 over	 the	 content	 as	 a	 list	 of
1Strings.	The	function’s	task	is	to	bundle	up	chunks	of	individual
“letters”	into	chunks	and	to	thus	produce	a	list	of	strings—called
chunks—of	a	given	length,	called	chunk	size.

As	you	can	see,	the	problem	basically	spells	out	the	signature	and	there	is	no
need	for	any	problem-specific	data	definition:

;	[List-of	1String]	N	->	[List-of	String]	
;	bundles	chunks	of	s	into	strings	of	length	n	
(define	(bundle	s	n)	
		'())

The	 purpose	 statement	 reformulates	 a	 sentence	 fragment	 from	 the	 problem
statement	and	uses	the	parameters	from	the	dummy	function	header.

The	third	step	calls	for	function	examples.	Here	is	a	list	of	1Strings:

(list	"a"	"b"	"c"	"d"	"e"	"f"	"g"	"h")

If	we	tell	bundle	to	bundle	this	list	into	pairs—that	is,	n	is	2—then	the	following
list	is	the	expected	result:

(list	"ab"	"cd"	"ef"	"gh")

Now	if	n	 is	3	 instead,	 there	 is	a	 left-over	“letter.”	Since	 the	problem	statement

does	not	tell	us	which	of	the	characters	is	left	over,	we	can	imagine	at	least	two
valid	scenarios:

•  The	function	produces	(list	"abc"	"def"	"g");	that	is,	it	considers	the
last	letter	as	the	left-over	one.

•  Or,	it	produces	(list	"a"	"bcd"	"efg"),	which	packs	the	lead	character
into	a	string	by	itself.

Stop!	Come	up	with	at	least	one	other	choice.
To	make	things	simple,	we	pick	the	first	choice	as	the	desired	result	and	say

so	by	writing	down	a	corresponding	test:

Note	the	use	of	explode;	it	makes	the	test	readable.
Examples	and	tests	must	also	describe	what	happens	at	the	boundary	of	data

definitions.	In	this	context,	boundary	clearly	means	bundle	is	given	a	list	that	is
too	short	for	the	given	chunk	size:

(check-expect	(bundle	'("a"	"b")	3)	(list	"ab"))

It	 also	means	we	must	 consider	what	 happens	when	bundle	 is	 given	'().	 For
simplicity,	we	choose	'()	as	the	desired	result:

(check-expect	(bundle	'()	3)	'())

One	natural	alternative	is	to	ask	for	'("").	Can	you	see	others?
The	template	step	reveals	that	a	structural	approach	cannot	work.	Figure	146

shows	four	possible	templates.	Since	both	arguments	to	bundle	are	complex,	the
first	two	consider	one	of	the	arguments	atomic.	That	clearly	cannot	be	the	case
because	the	function	has	to	take	apart	each	argument.	The	third	template	is	based
on	 the	 assumption	 that	 the	 two	 arguments	 are	 processed	 in	 lockstep,	which	 is
close—except	that	bundle	clearly	has	to	reset	the	chunk	size	to	its	original	value
at	regular	intervals.	The	final	template	says	that	the	two	arguments	are	processed
independently,	meaning	there	are	four	possibilities	to	proceed	at	each	stage.	This

final	design	decouples	the	arguments	too	much	because	the	list	and	the	counting
number	must	be	processed	together.	 In	short,	we	must	admit	 that	 the	structural
templates	appear	to	be	useless	for	this	design	problem.

Figure	146:	Useless	templates	for	breaking	up	strings	into	chunks

Figure	147	shows	a	complete	definition	for	bundle.	The	definition	uses	the
drop	 and	 take	 functions	 requested	 in	 exercise	 395;	 these	 functions	 are	 also
available	 in	 standard	 libraries.	 For	 completeness,	 the	 figure	 comes	 with	 their
definitions:	drop	eliminates	up	to	n	items	from	the	front	of	the	list,	take	returns
up	to	that	many	items.	Using	these	functions,	it	is	quite	straightforward	to	define
bundle:

1.	if	the	given	list	is	'(),	the	result	is	'()	as	decided	upon;

2.	 otherwise	 bundle	 uses	 take	 to	 grab	 the	 first	 n	 1Strings	 from	 s	 and
implodes	them	into	a	plain	String;

3.	 it	 then	 recurs	 with	 a	 list	 that	 is	 shortened	 by	 n	 items,	 which	 is
accomplished	with	drop;	and

4.	finally,	cons	combines	the	string	from	2	with	the	list	of	strings	from	3	to
create	the	result	for	the	complete	list.

Figure	147:	Generative	recursion

List	item	3	highlights	the	key	difference	between	bundle	and	any	function	in	the
first	four	parts	of	this	book.	Because	the	definition	of	List-of	conses	an	item	onto
a	 list	 to	 create	 another	 one,	 all	 functions	 in	 the	 first	 four	 parts	 use	first	 and
rest	 to	 deconstruct	 a	 non-empty	 list.	 In	 contrast,	 bundle	 uses	 drop,	 which
removes	not	just	one	but	n	items	at	once.

While	the	definition	of	bundle	is	unusual,	the	underlying	ideas	are	intuitive
and	not	too	different	from	the	functions	seen	so	far.	Indeed,	if	the	chunk	size	n	is
1,	 bundle	 specializes	 to	 a	 structurally	 recursive	 definition.	 Also,	 drop	 is
guaranteed	 to	 produce	 an	 integral	 part	 of	 the	 given	 list,	 not	 some	 arbitrarily
rearranged	version.	And	this	idea	is	precisely	what	the	next	section	presents.

Exercise	421.	 Is	(bundle	'("a"	"b"	"c")	0)	 a	proper	use	of	 the	bundle

function?	What	does	it	produce?	Why?	
Exercise	 422.	 Define	 the	 function	 list->chunks.	 It	 consumes	 a	 list	 l	 of

arbitrary	data	and	a	natural	number	n.	The	function’s	result	is	a	list	of	list	chunks
of	size	n.	Each	chunk	represents	a	sub-sequence	of	items	in	l.

Use	list->chunks	to	define	bundle	via	function	composition.	
Exercise	 423.	 Define	 partition.	 It	 consumes	 a	 String	 s	 and	 a	 natural

number	n.	The	function	produces	a	list	of	string	chunks	of	size	n.
For	non-empty	strings	s	and	positive	natural	numbers	n,

(equal?	(partition	s	n)	(bundle	(explode	s)	n))

is	 #true.	 But	 don’t	 use	 this	 equality	 as	 the	 definition	 for	 partition;	 use
substring	instead.

Hint	Have	partition	produce	its	natural	result	for	the	empty	string.	For	the
case	where	n	is	0,	see	exercise	421.

Note	 The	 partition	 function	 is	 somewhat	 closer	 to	 what	 a	 cooperative
DrRacket	environment	would	need	than	bundle.	

25.2 Recursion	that	Ignores	Structure
Recall	that	the	sort>	function	from	chapter	11	consumes	a	list	of	numbers	and
rearranges	 it	 in	 some	 order,	 typically	 ascending	 or	 descending.	 It	 proceeds	 by
inserting	 the	 first	number	 into	 the	appropriate	position	of	 the	sorted	rest	of	 the
list.	 Put	 differently,	 it	 is	 a	 structurally	 recursive	 function	 that	 reprocesses	 the
result	of	the	natural	recursions.

Hoare’s	quick-sort	algorithm	goes	about	sorting	lists	in	a	radically	different
manner	 and	 has	 become	 the	 classic	 example	 of	 generative	 recursion.	 The
underlying	 generative	 step	 uses	 the	 time-honored	 strategy	 of	 divide-and-
conquer.	 That	 is,	 it	 divides	 the	 nontrivial	 instances	 of	 the	 problem	 into	 two
smaller,	 related	 problems;	 solves	 those	 smaller	 problems;	 and	 combines	 their
solutions	 into	a	 solution	 for	 the	original	problem.	 In	 the	case	of	 the	quick-sort
algorithm,	the	intermediate	goal	is	to	divide	the	list	of	numbers	into	two	lists:

•  one	that	contains	all	the	numbers	that	are	strictly	smaller	than	the	first

•  and	another	one	with	all	those	items	that	are	strictly	larger.

Then	the	two	smaller	lists	are	sorted	via	the	quick-sort	algorithm.	Once	the	two
lists	are	sorted,	the	results	are	composed	with	the	first	item	placed	in	the	middle.
Owing	to	its	special	role,	the	first	item	on	the	list	is	called	the	pivot	item.

To	 develop	 an	 understanding	 of	 how	 the	 quick-sort	 algorithm	works,	 let’s
walk	 through	 an	 example,	 quick-sorting	 (list	 11	 8	 14	 7).	 Figure	 148
illustrates	 the	process	 in	a	graphical	way.	The	figure	consists	of	a	 top	half,	 the
divide	phase,	and	the	bottom	half,	the	conquer	phase.

Figure	148:	A	graphical	illustration	of	the	quick-sort	algorithm

The	partition	phase	is	represented	with	boxes	and	solid	arrows.	Three	arrows
emerge	from	each	boxed	list	and	go	to	a	box	with	three	pieces:	the	circled	pivot
element	in	the	middle,	to	its	left	the	boxed	list	of	numbers	smaller	than	the	pivot,
and	 to	 its	 right	 the	 boxed	 list	 of	 those	 numbers	 that	 are	 larger	 than	 the	 pivot.
Each	of	 these	 steps	 isolates	at	 least	one	number	as	 the	pivot,	meaning	 the	 two
neighboring	 lists	 are	 shorter	 than	 the	 given	 list.	 Consequently,	 the	 overall
process	terminates	too.

Consider	the	first	step	where	the	input	is	(list	11	8	14	7).	The	pivot	item
is	11.	Partitioning	the	list	into	items	larger	and	smaller	than	11	produces	(list	8
7)	 and	 (list	 14).	 The	 remaining	 steps	 of	 the	 partitioning	 phase	 work	 in	 an
analogous	way.	Partitioning	ends	when	all	numbers	have	been	isolated	as	pivot
elements.	At	this	point,	you	can	already	read	off	 the	final	result	by	reading	the
pivots	from	left	to	right.

The	 conquering	 phase	 is	 represented	 with	 dashed	 arrows	 and	 boxed	 lists.
Three	 arrows	 enter	 each	 result	 box:	 the	middle	 one	 from	 a	 pivot,	 the	 left	 one
from	the	boxed	result	of	sorting	the	smaller	numbers,	and	the	right	one	from	the
boxed	result	of	sorting	the	larger	ones.	Each	step	adds	at	least	one	number	to	the

result	 list,	 the	pivot,	meaning	 the	 lists	grow	toward	 the	bottom	of	 the	diagram.
The	box	at	the	bottom	is	a	sorted	variant	of	the	given	list	at	the	top.

Take	a	look	at	the	left-most,	upper-most	conquer	step.	It	combines	the	pivot
7	with	two	empty	lists,	resulting	in	'(7).	The	next	one	down	corresponds	to	the
partitioning	 step	 that	 isolated	 8	 and	 thus	 yields	 '(7	 8).	 Each	 level	 in	 the
conquering	 phase	 mirrors	 a	 corresponding	 level	 from	 the	 partitioning	 phase.
After	all,	the	overall	process	is	recursive.

Exercise	424.	Draw	a	quick-sort	diagram	like	the	one	in	figure	148	for	(list
11	9	2	18	12	14	4	1).	

Now	 that	 we	 have	 a	 good	 understanding	 of	 the	 quick-sort	 idea,	 we	 can
translate	it	into	ISL+.	Clearly,	quick-sort<	distinguishes	two	cases.	If	the	input
is	'(),	it	produces	'()	because	this	list	is	sorted	already;	otherwise,	it	performs	a
generative	recursion.	This	case	split	suggests	the	following	cond	expression:

The	answer	for	the	first	case	is	given.	For	the	second	case,	when	quick-sort<’s
input	is	a	non-empty	list,	the	algorithm	uses	the	first	item	to	partition	the	rest	of
the	 list	 into	 two	 sublists:	 a	 list	with	 all	 items	 smaller	 than	 the	 pivot	 item	 and
another	one	with	those	larger	than	the	pivot	item.

Since	the	rest	of	the	list	is	of	unknown	size,	we	leave	the	task	of	partitioning
the	list	to	two	auxiliary	functions:	smallers	and	largers.	They	process	the	list
and	filter	out	those	items	that	are	smaller	and	larger,	respectively,	than	the	pivot.
Hence	each	auxiliary	function	accepts	two	arguments,	namely,	a	list	of	numbers
and	 a	 number.	 Designing	 these	 two	 functions	 is	 an	 exercise	 in	 structural
recursion.	Try	on	your	own	or	read	the	definitions	shown	in	figure	149.

Figure	149:	The	quick-sort	algorithm

Each	of	these	lists	is	sorted	separately,	using	quick-sort<,	which	implies	the
use	of	recursion,	specifically	the	following	two	expressions:

1.	 (quick-sort<	 (smallers	 alon	 pivot)),	 which	 sorts	 the	 list	 of	 items
smaller	than	the	pivot;	and

2.	 (quick-sort<	 (largers	 alon	 pivot)),	 which	 sorts	 the	 list	 of	 items
larger	than	the	pivot.

Once	quick-sort<	has	the	sorted	versions	of	the	two	lists,	it	must	combine	the
two	 lists	 and	 the	 pivot	 in	 the	 proper	 order:	 first	 all	 those	 items	 smaller	 than
pivot,	then	pivot,	and	finally	all	those	that	are	larger.	Since	the	first	and	last	list
are	already	sorted,	quick-sort<	can	simply	use	append:

Figure	149	contains	the	full	program;	read	it	before	proceeding.
Now	that	we	have	an	actual	function	definition,	we	can	evaluate	the	example

from	above	by	hand:

(quick-sort<	(list	11	8	14	7))

The	 calculation	 shows	 the	 essential	 steps	 of	 the	 sorting	 process,	 that	 is,	 the
partitioning	steps,	the	recursive	sorting	steps,	and	the	concatenation	of	the	three
parts.	From	this	calculation,	 it	 is	easy	to	see	how	quick-sort<	 implements	 the

process	illustrated	in	figure	148.
Both	figure	148	and	the	calculation	also	show	how	quick-sort<	completely

ignores	 the	structure	of	 the	given	 list.	The	 first	 recursion	works	on	 two	distant
numbers	from	the	originally	given	list	and	the	second	one	on	the	list’s	third	item.
These	 recursions	 aren’t	 random,	 but	 they	 are	 certainly	 not	 relying	 on	 the
structure	of	the	data	definition.

Contrast	 quick-sort<’s	 organization	with	 that	 of	 the	 sort>	 function	 from
chapter	11.	The	design	of	the	latter	follows	the	structural	design	recipe,	yielding
a	program	that	processes	a	 list	 item	by	item.	By	splitting	the	 list,	quick-sort<
can	speed	up	the	process	of	sorting	the	list,	though	at	the	cost	of	not	using	plain
first	and	rest.

Exercise	 425.	 Articulate	 purpose	 statements	 for	 smallers	 and	 largers	 in
figure	149.	

Exercise	426.	Complete	the	hand-evaluation	from	above.	A	close	inspection
of	the	evaluation	suggests	an	additional	trivial	case	for	quick-sort<.	Every	time
quick-sort<	consumes	a	list	of	one	item,	it	returns	it	as	is.	After	all,	the	sorted
version	of	a	list	of	one	item	is	the	list	itself.

Modify	 quick-sort<	 to	 take	 advantage	 of	 this	 observation.	 Evaluate	 the
example	again.	How	many	steps	does	the	revised	algorithm	save?	

Exercise	427.	While	quick-sort<	quickly	reduces	the	size	of	the	problem	in
many	 cases,	 it	 is	 inappropriately	 slow	 for	 small	 problems.	 Hence	 people	 use
quick-sort<	 to	 reduce	 the	 size	 of	 the	 problem	 and	 switch	 to	 a	 different	 sort
function	when	the	list	is	small	enough.

Develop	a	version	of	quick-sort<	that	uses	sort<	(an	appropriately	adapted
variant	 of	 sort>	 from	 chapter	 11.3)	 if	 the	 length	 of	 the	 input	 is	 below	 some
threshold.	

Exercise	428.	If	the	input	to	quick-sort<	contains	the	same	number	several
times,	the	algorithm	returns	a	list	that	is	strictly	shorter	than	the	input.	Why?	Fix
the	problem	so	that	the	output	is	as	long	as	the	input.	

Exercise	429.	Use	filter	to	define	smallers	and	largers.	
Exercise	 430.	 Develop	 a	 variant	 of	 quick-sort<	 that	 uses	 only	 one

comparison	function,	say,	<.	Its	partitioning	step	divides	the	given	list	alon	into
a	list	that	contains	the	items	of	alon	smaller	than	the	pivot	and	another	one	with
those	that	are	not	smaller.

Use	 local	 to	 package	 up	 the	 program	 as	 a	 single	 function.	 Abstract	 this
function	so	that	it	consumes	a	list	and	a	comparison	function.	

26 Designing	Algorithms
The	 overview	 for	 this	 part	 already	 explains	 that	 the	 design	 of	 generative
recursion	 functions	 is	more	 ad	 hoc	 than	 structural	 design.	As	 the	 first	 chapter
shows,	 two	 generative	 recursions	 can	 radically	 differ	 in	 how	 they	 process
functions.	Both	bundle	 and	quick-sort<	process	 lists,	but	while	 the	 former	at
least	respects	the	sequencing	in	the	given	list,	the	latter	rearranges	its	given	list
at	will.	The	question	is	whether	a	single	design	recipe	can	help	with	the	creation
of	such	widely	differing	functions.

The	 first	 section	 shows	 how	 to	 adapt	 the	 process	 dimension	 of	 the	 design
recipe	 to	 generative	 recursion.	 The	 second	 section	 homes	 in	 on	 another	 new
phenomenon:	an	algorithm	may	fail	to	produce	an	answer	for	some	of	its	inputs.
Programmers	must	therefore	analyze	their	programs	and	supplement	the	design
information	 with	 a	 comment	 on	 termination.	 The	 remaining	 sections	 contrast
structural	and	generative	recursion.

26.1 Adapting	the	Design	Recipe
Let’s	examine	the	six	general	steps	of	our	structural	design	recipe	in	light	of	the
examples	in	the	preceding	chapter:

•  As	 before,	 we	 must	 represent	 the	 problem	 information	 as	 data	 in	 our
chosen	programming	language.	The	choice	of	a	data	representation	for	a
problem	 affects	 our	 thinking	 about	 the	 computational	 process,	 so	 some
planning	ahead	is	necessary.	Alternatively,	be	prepared	to	backtrack	and	to
explore	 different	 data	 representations.	 Regardless,	 we	 must	 analyze	 the
problem	information	and	define	data	collections.

•  We	 also	 need	 a	 signature,	 a	 function	 header,	 and	 a	 purpose	 statement.
Since	 the	 generative	 step	 has	 no	 connection	 to	 the	 structure	 of	 the	 data
definition,	 the	purpose	statement	must	go	beyond	what	 the	function	is	 to
compute	and	also	explain	how	the	function	computes	its	result.

•  It	 is	 useful	 to	 explain	 the	 “how”	 with	 function	 examples,	 the	 way	 we
explained	bundle	and	quick-sort<	in	the	previous	chapter.	That	is,	while
function	examples	in	the	structural	world	merely	specify	which	output	the
function	 is	 to	 produce	 for	 which	 input,	 the	 purpose	 of	 examples	 in	 the
world	of	generative	recursion	is	to	explain	the	underlying	idea	behind	the
computational	process.
For	bundle,	the	examples	specify	how	the	function	acts	in	general	and	in
certain	boundary	cases.	For	quick-sort<,	the	example	in	figure	148
illustrates	how	the	function	partitions	the	given	list	with	respect	to	the
pivot	item.	By	adding	such	worked	examples	to	the	purpose	statement,	we
—the	designers—gain	an	improved	understanding	of	the	desired	process,
and	we	communicate	this	understanding	to	future	readers	of	this	code.

•  Our	 discussion	 suggests	 a	 general	 template	 for	 algorithms.	 Roughly
speaking,	the	design	of	an	algorithm	distinguishes	two	kinds	of	problems:
those	that	are	trivially	solvable	and	those	that	are	not.	If	a	given	problem	is
trivially	 solvable,	 an	 algorithm	 produces	 the	 matching	 solution.	 For
example,	 the	 problems	 of	 sorting	 an	 empty	 list	 or	 a	 one-item	 list	 are
trivially	solvable.	A	list	with	many	items	is	a	nontrivial	problem.	For	these

nontrivial	problems,	algorithms	commonly	generate	new	problems	of	 the
same	 kind	 as	 the	 given	 one,	 solve	 those	 recursively,	 and	 combine	 the
solutions	into	an	overall	solution.

For	this	part	of	the	book,	“trivial”	is	a	technical	term.

Based	on	this	sketch,	all	algorithms	have	roughly	this	organization:

The	original	problem	is	occasionally	needed	to	combine	the	solutions	for
the	newly	generated	problems,	which	is	why	it	is	handed	over	to	combine-
solutions.

•  This	 template	 is	only	a	suggestive	blueprint,	not	a	definitive	shape.	Each
piece	 of	 the	 template	 is	 to	 remind	 us	 to	 think	 about	 the	 following	 four
questions:

– What	is	a	trivially	solvable	problem?

	
– How	are	trivial	solutions	solved?
– How	does	 the	algorithm	generate	new	problems	 that	are	more	easily
solvable	 than	 the	 original	 one?	 Is	 there	 one	 new	 problem	 that	 we
generate	or	are	there	several?

	
– Is	 the	solution	of	 the	given	problem	the	same	as	the	solution	of	(one
of)	 the	 new	 problems?	Or,	 do	we	 need	 to	 combine	 the	 solutions	 to
create	 a	 solution	 for	 the	 original	 problem?	 And,	 if	 so,	 do	 we	 need
anything	from	the	original	problem	data?

To	define	the	algorithm	as	a	function,	we	must	express	the	answers	to
these	four	questions	as	functions	and	expressions	in	terms	of	the	chosen
data	representation.
For	this	step,	the	table-driven	attempt	from	chapter	9	might	help	again.
Reconsider	the	quick-sort<	example	from	chapter	26.2.	The	central	idea
behind	quick-sort<	is	to	divide	a	given	list	into	a	list	of	smaller	items	and
larger	items	and	to	sort	those	separately.	Figure	150	spells	out	how	some
simple	numeric	examples	work	out	for	the	nontrivial	cases.	From	these
examples	it	is	straightforward	to	guess	that	the	answer	to	the	fourth
question	is	to	append	the	sorted	list	of	smaller	numbers,	the	pivot	number,
and	the	sorted	list	of	larger	numbers,	which	can	easily	be	translated	into
code.

Figure	150:	The	table-based	guessing	approach	for	combining	solutions

•  Once	 the	function	 is	complete,	 it	 is	 time	 to	 test	 it.	As	before,	 the	goal	of
testing	is	to	discover	and	eliminate	bugs.

Exercise	431.	Answer	the	four	key	questions	for	the	bundle	problem	and	the
first	 three	 questions	 for	 the	 quick-sort<	 problem.	 How	 many	 instances	 of
generate-problem	are	needed?	

Exercise	 432.	 Exercise	 219	 introduces	 the	 function	 food-create,	 which
consumes	a	Posn	and	produces	a	randomly	chosen	Posn	that	is	guaranteed	to	be
distinct	 from	 the	 given	 one.	 First	 reformulate	 the	 two	 functions	 as	 a	 single
definition,	using	local;	then	justify	the	design	of	food-create.	

26.2 Termination
Generative	 recursion	 adds	 an	 entirely	 new	 aspect	 to	 computations:	 non-
termination.	A	function	such	as	bundle	may	never	produce	a	value	or	signal	an
error	for	certain	inputs.	Exercise	421	asks	what	the	result	of	(bundle	'("a"	"b"
"c")	0)	is,	and	here	is	an	explanation	of	why	it	does	not	have	a	result:

The	 calculation	 shows	 how	 evaluating	 (bundle	 '("a"	 "b"	 "c")	 0)	 requires
having	a	result	for	the	very	same	expression.	In	the	context	of	ISL+	this	means
the	 evaluation	 does	 not	 stop.	 Computer	 scientists	 say	 that	 bundle	 does	 not
terminate	when	the	second	argument	is	0;	they	also	say	that	the	function	loops	or
that	the	computation	is	stuck	in	an	infinite	loop.

Contrast	this	insight	with	the	designs	presented	in	the	first	four	parts.	Every
function	designed	according	to	the	recipe	either	produces	an	answer	or	raises	an
error	 signal	 for	 every	 input.	 After	 all,	 the	 recipe	 dictates	 that	 each	 natural
recursion	consumes	an	immediate	piece	of	the	input,	not	the	input	itself.	Because
data	 is	 constructed	 in	 a	 hierarchical	 manner,	 input	 shrinks	 at	 every	 stage.
Eventually	the	function	is	applied	to	an	atomic	piece	of	data,	and	the	recursion
stops.

This	reminder	also	explains	why	generative	recursive	functions	may	diverge.
According	 to	 the	 design	 recipe	 for	 generative	 recursion,	 an	 algorithm	 may
generate	new	problems	without	any	 limitations.	 If	 the	design	 recipe	 required	a
guarantee	 that	 the	 new	 problems	were	 “smaller”	 than	 the	 given	 one,	 it	 would
terminate.	 But,	 imposing	 such	 a	 restriction	 would	 needlessly	 complicate	 the
design	of	functions	such	as	bundle.

The	theory	of	computation	actually	shows	that	we	must	lift	these	restrictions	eventually.

In	this	book,	we	therefore	keep	the	first	six	steps	of	the	design	recipe	mostly
intact	 and	 supplement	 them	 with	 a	 seventh	 step:	 the	 termination	 argument.
Figure	151	presents	 the	 first	part	of	 the	design	 recipe	 for	generative	 recursion,
and	figure	152	the	second	one.	They	show	the	design	recipe	in	the	conventional
tabular	 form.	 The	 unmodified	 steps	 come	with	 a	 dash	 in	 the	activity	 column.
Others	come	with	comments	on	how	the	design	recipe	for	generative	recursion
differs	 from	 the	 one	 for	 structural	 recursion.	 The	 last	 row	 in	 figure	 152	 is
completely	new.

Figure	151:	Designing	algorithms	(part	1)

Figure	152:	Designing	algorithms	(part	2)

A	termination	argument	comes	in	one	of	two	forms.	The	first	one	argues	why
each	recursive	call	works	on	a	problem	that	is	smaller	than	the	given	one.	Often
this	argument	is	straightforward;	on	rare	occasions,	you	will	need	to	work	with	a
mathematician	 to	 prove	 a	 theorem	 for	 such	 arguments.	 The	 second	 kind
illustrates	with	an	example	that	the	function	may	not	terminate.	Ideally	it	should
also	describe	 the	 class	 of	 data	 for	which	 the	 function	may	 loop.	 In	 rare	 cases,
you	may	not	be	able	to	make	either	argument	because	computer	science	does	not
know	enough	yet.

You	cannot	define	a	predicate	for	this	class;	otherwise	you	could	modify	the	function	and	ensure	that
it	always	terminates.

Let’s	 illustrate	 the	 two	kinds	 of	 termination	 arguments	with	 examples.	 For
the	bundle	function,	it	suffices	to	warn	readers	about	chunk	size	0:

;	[List-of	1String]	N	->	[List-of	String]	
;	bundles	sub-sequences	of	s	into	strings	of	length	n	
;	termination	(bundle	s	0)	loops	unless	s	is	'()	
(define	(bundle	s	n)	…)

In	 this	 case,	 it	 is	 possible	 to	 define	 a	 predicate	 that	 precisely	 describes	 when

bundle	 terminates.	For	quick-sort<,	 the	key	observation	is	that	each	recursive
use	of	quick-sort<	receives	a	list	that	is	shorter	than	alon:

;	[List-of	Number]	->	[List-of	Number]	
;	creates	a	sorted	variant	of	alon	
;	termination	both	recursive	calls	to	quick-sort<	
;	receive	list	that	miss	the	pivot	item	
(define	(quick-sort<	alon)	…)

In	 one	 case,	 the	 list	 consists	 of	 the	 numbers	 that	 are	 strictly	 smaller	 than	 the
pivot;	the	other	one	is	for	numbers	strictly	larger.

Exercise	 433.	 Develop	 a	 checked	 version	 of	 bundle	 that	 is	 guaranteed	 to
terminate	for	all	inputs.	It	may	signal	an	error	for	those	cases	where	the	original
version	loops.	

Exercise	434.	Consider	the	following	definition	of	smallers,	one	of	the	two
“problem	generators”	for	quick-sort<:

What	can	go	wrong	when	 this	version	 is	used	with	 the	quick-sort<	definition
from	chapter	26.2?	

Exercise	435.	When	you	worked	on	exercise	430	or	exercise	428,	you	may
have	 produced	 looping	 solutions.	 Similarly,	 exercise	 434	 actually	 reveals	 how
brittle	 the	 termination	argument	 is	 for	quick-sort<.	 In	all	 cases,	 the	argument
relies	on	the	idea	that	smallers	and	largers	produce	lists	that	are	maximally	as
long	as	 the	given	list,	and	on	our	understanding	that	neither	 includes	 the	given
pivot	in	the	result.

Based	on	this	explanation,	modify	the	definition	of	quick-sort<	so	that	both
functions	receive	lists	that	are	shorter	than	the	given	one.	

Exercise	 436.	 Formulate	 a	 termination	 argument	 for	 food-create	 from

exercise	432.	

26.3 Structural	versus	Generative	Recursion
The	 template	 for	algorithms	 is	 so	general	 that	 it	 includes	 structurally	 recursive
functions.	Consider	 the	 left	 side	 of	 figure	 153.	 This	 template	 is	 specialized	 to
deal	with	one	trivial	clause	and	one	generative	step.	If	we	replace	trivial?	with
empty?	and	generate	with	rest,	we	get	a	template	for	list-processing	functions;
see	the	right	side	of	figure	153.

Figure	153:	From	generative	to	structural	recursion

Exercise	437.	Define	solve	and	combine-solutions	so	that

•  special	computes	the	length	of	its	input,

•  special	negates	each	number	on	the	given	list	of	numbers,	and

•  special	uppercases	the	given	list	of	strings.

What	do	you	conclude	from	these	exercises?	
Now	you	may	wonder	whether	 there	 is	a	 real	difference	between	structural

recursive	 design	 and	 the	 one	 for	 generative	 recursion.	 Our	 answer	 is	 “it
depends.”	Of	course,	we	could	 say	 that	 all	 functions	using	 structural	 recursion
are	just	special	cases	of	generative	recursion.	This	“everything	is	equal”	attitude,
however,	 is	 of	 no	 help	 if	 we	 wish	 to	 understand	 the	 process	 of	 designing
functions.	 It	 confuses	 two	 kinds	 of	 design	 that	 require	 different	 forms	 of
knowledge	and	that	have	different	consequences.	One	relies	on	a	systematic	data
analysis	 and	 not	 much	 more;	 the	 other	 requires	 a	 deep,	 often	 mathematical,
insight	 into	 the	 problem-solving	 process	 itself.	 One	 leads	 programmers	 to
naturally	 terminating	 functions;	 the	 other	 requires	 a	 termination	 argument.
Conflating	these	two	approaches	is	unhelpful.

26.4 Making	Choices
When	you	interact	with	a	function	f	that	sorts	lists	of	numbers,	it	is	impossible
for	you	to	know	whether	f	is	sort<	or	quick-sort<.	The	two	functions	behave
in	an	observably	equivalent	way.	This	raises	the	question	of	which	of	the	two	a
programming	 language	should	provide.	More	generally,	when	we	can	design	a
function	using	structural	recursion	and	generative	recursion,	we	must	figure	out
which	one	to	pick.

Observable	equivalence	is	a	central	concept	from	the	study	of	programming	languages.

To	illustrate	the	consequences	of	this	choice,	we	discuss	a	classical	example
from	mathematics:	the	problem	of	finding	the	greatest	common	divisor	(gcd)	of
two	positive	natural	numbers.	All	 such	numbers	have	1	as	divisor	 in	common.
On	occasion—say,	2	and	3—this	is	also	the	only	common	divisor.	Both	6	and	25
are	numbers	with	several	divisors:

John	Stone	suggested	the	greatest	common	divisor	as	a	suitable	example.

•  6	is	evenly	divisible	by	1,	2,	3,	and	6;

•  25	is	evenly	divisible	by	1,	5,	and	25.

And	yet,	 their	greatest	common	divisor	 is	1.	 In	contrast,	18	and	24	have	many
common	divisors	and	their	greatest	common	divisor	is	6:

•  18	is	evenly	divisible	by	1,	2,	3,	6,	9,	and	18;

•  24	is	evenly	divisible	by	1,	2,	3,	4,	6,	8,	12,	and	24.

Completing	the	first	three	steps	of	the	design	recipe	is	straightforward:

;	N[>=	1]	N[>=	1]	->	N	
;	finds	the	greatest	common	divisor	of	n	and	m	
(check-expect	(gcd	6	25)	1)	

(check-expect	(gcd	18	24)	6)	
(define	(gcd	n	m)	42)

The	signature	specifies	the	inputs	as	natural	numbers	greater	than	or	equal	to	1.
From	here	we	design	both	 a	 structural	 and	 a	 generative	 recursive	 solution.

Since	 this	 part	 of	 the	 book	 is	 about	 generative	 recursion,	we	merely	 present	 a
structural	solution	in	figure	154	and	leave	the	design	ideas	to	exercises.	Just	note
that	(=	(remainder	n	i)	(remainder	m	i)	0)	 encodes	 the	 idea	 that	both	n
and	m	are	“evenly	divisible”	by	i.

Figure	154:	Finding	the	greatest	common	divisor	via	structural	recursion

Exercise	 438.	 In	 your	words:	 how	 does	greatest-divisor-<=	work?	Use
the	 design	 recipe	 to	 find	 the	 right	 words.	 Why	 does	 the	 locally	 defined
greatest-divisor-<=	recur	on	(min	n	m)?	

Although	 the	design	of	gcd-structural	 is	 rather	 straightforward,	 it	 is	also
naive.	 It	 simply	 tests	 for	 every	 number	 between	 the	 smaller	 of	n	 and	m	 and	1
whether	 it	 divides	 both	n	 and	m	 evenly	 and	 returns	 the	 first	 such	 number.	 For
small	n	and	m,	this	works	just	fine.	Consider	the	following	example,	however:

(gcd-structural	101135853	45014640)

The	 result	 is	177.	To	get	 there,	gcd-structural	 checks	 the	 “evenly	divisible”
condition	for	45014640,	that	is,	it	checks	45014640	-	177	remainders.	Checking
that	 many	 remainders—twice!—is	 a	 large	 effort,	 and	 even	 reasonably	 fast
computers	need	time	to	complete	this	task.

Exercise	439.	Copy	gcd-structural	into	DrRacket	and	evaluate

(time	(gcd-structural	101135853	45014640))

in	the	interactions	area.	
Since	mathematicians	recognized	the	inefficiency	of	this	structural	function	a

long	 time	 ago,	 they	 studied	 the	 problem	 of	 finding	 divisors	 in	 depth.	 The
essential	insight	is	that

for	two	natural	numbers,	L	for	large	and	S	for	small,	the	greatest
common	divisor	is	equal	to	the	greatest	common	divisor	of	S	and
the	remainder	of	L	divided	by	S.

Here	is	how	we	can	articulate	this	insight	as	an	equation:

(gcd	L	S)	==	(gcd	S	(remainder	L	S))

Since	(remainder	L	S)	is	smaller	than	both	L	and	S,	the	right-hand	side	use	of
gcd	consumes	S	first.

Here	is	how	this	insight	applies	to	our	small	example:

•  The	given	numbers	are	18	and	24.

•  According	to	the	insight,	they	have	the	same	gcd	as	18	and	6.

•  And	these	two	have	the	same	greatest	common	divisor	as	6	and	0.

Now	we	seem	stuck	because	0	 is	unexpected.	But,	0	can	be	evenly	divided	by
every	number,	meaning	we	have	found	our	answer:	6.

Working	 through	 the	 example	 not	 only	 validates	 the	 basic	 insight	 but	 also
suggests	how	to	turn	the	insight	into	an	algorithm:

•  when	the	smaller	of	the	numbers	is	0,	we	face	a	trivial	case;

•  the	larger	of	the	two	numbers	is	the	solution	in	the	trivial	case;

•  generating	a	new	problem	requires	one	remainder	operation;	and

•  the	above	equation	tells	us	that	the	answer	to	the	newly	generated	problem
is	also	the	answer	to	the	originally	given	problem.

In	short,	the	answers	for	the	four	design-recipe	questions	fall	out.
Figure	 155	 presents	 the	 definition	 of	 the	 algorithm.	 The	 local	 definition

introduces	 the	 workhorse	 of	 the	 function:	 clever-gcd.	 Its	 first	 cond	 line
discovers	the	trivial	case	by	comparing	smaller	to	0	and	produces	the	matching
solution.	 The	 generative	 step	 uses	 smaller	 as	 the	 new	 first	 argument	 and
(remainder	large	small)	as	the	new	second	argument	to	clever-gcd.

Figure	155:	Finding	the	greatest	common	divisor	via	generative	recursion

If	we	now	use	gcd-generative	with	our	above	example,

(gcd-generative	101135853	45014640)

we	see	 that	 the	response	 is	nearly	 instantaneous.	A	hand-evaluation	shows	 that
clever-gcd	recurs	only	nine	times	before	it	produces	the	solution:

…	
==	(clever-gcd	101135853	45014640)	
==	(clever-gcd	45014640	11106573)	
==	(clever-gcd	11106573	588348)	
==	(clever-gcd	588348	516309)	
==	(clever-gcd	516309	72039)	
==	(clever-gcd	72039	12036)	
==	(clever-gcd	12036	11859)	
==	(clever-gcd	11859	177)	
==	(clever-gcd	177	0)

This	also	means	 that	 it	checks	only	nine	remainder	conditions,	clearly	a	much
smaller	effort	than	gcd-structural	expends.

Exercise	 440.	Copy	gcd-generative	 into	 the	 definitions	 area	 of	DrRacket
and	evaluate

(time	(gcd-generative	101135853	45014640))

in	the	interactions	area.	
You	may	now	think	that	generative	recursion	design	has	discovered	a	much

faster	 solution	 to	 the	 gcd	 problem,	 and	 you	 may	 conclude	 that	 generative
recursion	 is	 always	 the	 right	 way	 to	 go.	 This	 judgment	 is	 too	 rash	 for	 three
reasons.	 First,	 even	 a	 well-designed	 algorithm	 isn’t	 always	 faster	 than	 an
equivalent	structurally	recursive	function.	For	example,	quick-sort<	wins	only
for	 large	 lists;	 for	 small	 ones,	 the	 standard	 sort<	 function	 is	 faster.	Worse,	 a
badly	 designed	 algorithm	 can	wreak	 havoc	 on	 the	 performance	 of	 a	 program.
Second,	it	 is	typically	easier	to	design	a	function	using	the	recipe	for	structural
recursion.	 Conversely,	 designing	 an	 algorithm	 requires	 an	 idea	 of	 how	 to
generate	 new	 problems,	 a	 step	 that	 often	 requires	 some	 deep	 insight.	 Finally,
programmers	 who	 read	 functions	 can	 easily	 understand	 structurally	 recursive
functions,	 even	 without	 much	 documentation.	 The	 generative	 step	 of	 an
algorithm,	 though,	 is	based	on	a	“eureka!”	and,	without	a	good	explanation,	 is
difficult	 to	 understand	 for	 future	 readers—and	 that	 includes	 older	 versions	 of
yourself.

Experience	shows	that	most	functions	in	a	program	employ	structural	design;
only	a	few	exploit	generative	recursion.	When	we	encounter	a	situation	where	a
design	could	use	the	recipe	for	either	structural	or	generative	recursion,	the	best
approach	is	to	start	with	a	structural	version.	If	the	result	turns	out	to	be	too	slow
for	the	task	at	hand—and	only	then—it	is	time	to	explore	the	use	of	generative
recursion.

Exercise	441.	Evaluate

(quick-sort<	(list	1	2	3	4	5	6	7	8	9	10	11	12	13	14))

by	 hand.	 Show	 only	 those	 lines	 that	 introduce	 a	 new	 recursive	 call	 to	quick-
sort<.	 How	 many	 recursive	 applications	 of	 quick-sort<	 are	 required?	 How
many	recursive	applications	of	the	append	function?	Suggest	a	general	rule	for	a
list	of	length	n.

Evaluate

(quick-sort<	(list	1	2	3	4	5	6	7	8	9	10	11	12	13	14))

by	hand.	How	many	 recursive	applications	of	quick-sort<	 are	 required?	How
many	recursive	applications	of	append?	Does	this	contradict	the	first	part	of	the
exercise?	

Exercise	442.	Add	sort<	and	quick-sort<	to	the	definitions	area.	Run	tests
on	 the	 functions	 to	 ensure	 that	 they	 work	 on	 basic	 examples.	 Also	 develop
create-tests,	 a	 function	 that	 creates	 large	 test	 cases	 randomly.	Then	 explore
how	fast	each	works	on	various	lists.

Does	 the	 experiment	 confirm	 the	 claim	 that	 the	plain	sort<	 function	often
wins	over	quick-sort<	for	short	lists	and	vice	versa?

Determine	the	cross-over	point.	Use	it	to	build	a	clever-sort	function	that
behaves	like	quick-sort<	for	large	lists	and	like	sort<	for	lists	below	this	cross-
over	point.	Compare	with	exercise	427.	

Exercise	443.	Given	the	header	material	for	gcd-structural,	a	naive	use	of
the	design	recipe	might	use	the	following	template	or	some	variant:

Why	is	it	impossible	to	find	a	divisor	with	this	strategy?	
Exercise	444.	Exercise	443	means	that	the	design	for	gcd-structural	calls

for	some	planning	and	a	design-by-composition	approach.

Ideally,	you	should	use	sets	not	lists.

The	 very	 explanation	 of	 “greatest	 common	 denominator”	 suggests	 a	 two-
stage	approach.	First	design	a	function	that	can	compute	the	list	of	divisors	of	a
natural	number.	Second,	design	a	function	that	picks	the	largest	common	number
in	the	list	of	divisors	of	n	and	the	list	of	divisors	of	m.	The	overall	function	would

look	like	this:

(define	(gcd-structural	S	L)	
		(largest-common	(divisors	S	S)	(divisors	S	L)))	

;	N[>=	1]	N[>=	1]	->	[List-of	N]	
;	computes	the	divisors	of	l	smaller	or	equal	to	k	
(define	(divisors	k	l)	
		'())	

;	[List-of	N]	[List-of	N]	->	N	
;	finds	the	largest	number	common	to	both	k	and	l	
(define	(largest-common	k	l)	
		1)

Why	do	you	think	divisors	consumes	two	numbers?	Why	does	it	consume	S	as
the	first	argument	in	both	uses?	

27 Variations	on	the	Theme
The	design	of	 an	 algorithm	 starts	with	 an	 informal	 description	of	 a	 process	of
how	 to	 create	 a	 problem	 that	 is	 more	 easily	 solvable	 than	 the	 given	 one	 and
whose	solution	contributes	to	the	solution	of	the	given	problem.	Coming	up	with
this	kind	of	 idea	 requires	 inspiration,	 immersion	 in	an	application	domain,	and
experience	with	many	different	kinds	of	examples.

This	chapter	presents	 several	 illustrative	examples	of	 algorithms.	Some	are
directly	 drawn	 from	 mathematics,	 which	 is	 the	 source	 of	 many	 ideas;	 others
come	from	computational	settings.	The	first	example	is	a	graphical	illustration	of
our	 principle:	 the	Sierpinski	 triangle.	The	 second	 one	 explains	 the	 divide-and-
conquer	principle	with	the	simple	mathematical	example	of	finding	the	root	of	a
function.	It	then	shows	how	to	turn	this	idea	into	a	fast	algorithm	for	searching
sequences,	 a	widely	 used	 application.	 The	 third	 section	 concerns	 “parsing”	 of
sequences	of	1Strings,	also	a	common	problem	in	real-world	programming.

27.1 Fractals,	a	First	Taste
Fractals	play	an	important	role	 in	computational	geometry.	Flake	writes	 in	The
Computational	Beauty	of	Nature	 (The	MIT	Press,	1998)	that	“geometry	can	be
extended	 to	 account	 for	 objects	 with	 a	 fractional	 dimension.	 Such	 objects,
known	 as	 fractals,	 come	 very	 close	 to	 capturing	 the	 richness	 and	 variety	 of
forms	found	in	nature.	Fractals	possess	structural	self-similarity	on	multiple	⋯
scales,	meaning	that	a	piece	of	a	fractal	will	often	look	like	the	whole.”

Figure	156	displays	an	example	of	a	fractal	shape,	known	as	 the	Sierpinski
triangle.	The	basic	 shape	 is	an	 (equilateral)	 triangle,	 like	 the	one	 in	 the	center.
When	this	triangle	is	composed	sufficiently	many	times	in	a	triangular	fashion,
we	get	the	left-most	shape.

Figure	156:	The	Sierpinski	triangle

The	right-most	image	in	figure	156	explains	the	generative	step.	When	taken
by	itself,	it	says	that,	given	a	triangle,	find	the	midpoint	of	each	side	and	connect
them	to	each	other.	This	step	yields	four	triangles;	repeat	the	process	for	each	of
the	outer	of	these	three	triangles	unless	these	triangles	are	too	small.

We	owe	this	solution	to	Marc	Smith.

An	alternative	explanation,	well	 suited	 for	 the	shape	composition	 functions

in	the	2htdp/image	library,	is	based	on	the	transition	from	the	image	in	the	center
to	 the	 image	on	 the	 right.	By	 juxtaposing	 two	of	 the	 center	 triangles	 and	 then
placing	one	copy	above	these	two,	we	also	get	the	shape	on	the	right:

This	 section	 uses	 the	 alternative	 description	 to	 design	 the	 Sierpinski
algorithm;	chapter	34.3	deals	with	the	first	description.	Given	that	the	goal	is	to
generate	 the	 image	 of	 an	 equilateral	 triangle,	 we	 encode	 the	 problem	 with	 a
(positive)	 number,	 the	 length	 of	 the	 triangle’s	 side.	 This	 decision	 yields	 a
signature,	a	purpose	statement,	and	a	header:

;	Number	->	Image	
;	creates	Sierpinski	triangle	of	size	side	

(define	(sierpinski	side)	
		(triangle	side	'outline	'red))

Now	it	is	time	to	address	the	four	questions	of	generative	recursion:

•  When	 the	given	number	 is	 so	 small	 that	 drawing	 triangles	 inside	 of	 it	 is
pointless,	the	problem	is	trivial.

•  In	that	case,	it	suffices	to	generate	a	triangle.

•  Otherwise,	the	algorithm	must	generate	a	Sierpinski	triangle	of	size	side	/	2
because	 juxtaposing	 two	 such	 triangles	 in	 either	 direction	 yields	 one	 of
size	side.

•  If	half-sized	is	the	Sierpinski	triangle	of	size	side	/	2,	then

(above	half-sized	

							(beside	half-sized	half-sized))

is	a	Sierpinski	triangle	of	size	side.

With	 these	answers,	 it	 is	 straightforward	 to	define	 the	 function.	Figure	157
spells	out	 the	details.	The	“triviality	condition”	 translates	 to	(<=	side	SMALL)
for	some	constant	SMALL.	For	the	trivial	answer,	the	function	returns	a	triangle	of
the	 given	 size.	 In	 the	 recursive	 case,	 a	 local	 expression	 introduces	 the	 name
half-sized	 for	 the	Sierpinski	 triangle	 that	 is	 half	 as	 big	 as	 the	 specified	 size.
Once	the	recursive	call	has	generated	the	small	Sierpinski	triangle,	it	composes
this	image	via	above	and	beside.

Figure	157:	The	Sierpinski	algorithm

The	 figure	 highlights	 two	 other	 points.	 First,	 the	 purpose	 statement	 is

articulated	as	an	explanation	of	what	the	function	accomplishes

;	creates	Sierpinski	triangle	of	size	side	by	…

and	how	it	accomplishes	this	goal:

;	…	generating	one	of	size	(/	side	2)	and	
;	placing	one	copy	above	two	composed	copies

Second,	 the	examples	 illustrate	 the	 two	possible	cases:	one	 if	 the	given	 size	 is
small	 enough,	 and	 one	 for	 a	 size	 that	 is	 too	 large	 still.	 In	 the	 latter	 case,	 the
expression	that	computes	the	expected	value	explains	exactly	the	meaning	of	the
purpose	statement.

	
Since	sierpinski	is	based	on	generative	recursion,	defining	the	function	and

testing	it	is	not	the	last	step.	We	must	also	consider	why	the	algorithm	terminates
for	any	given	legal	input.	The	input	of	sierpinski	is	a	single	positive	number.	If
the	 number	 is	 smaller	 than	 SMALL,	 the	 algorithm	 terminates.	 Otherwise,	 the
recursive	 call	 uses	 a	 number	 that	 is	 half	 as	 large	 as	 the	given	one.	Hence,	 the
algorithm	must	terminate	for	all	positive	sides,	assuming	SMALL	is	positive,	too.

One	view	of	the	Sierpinski	process	is	that	it	divides	its	problem	in	half	until
it	is	immediately	solvable.	With	a	little	imagination,	you	can	see	that	the	process
can	 be	 used	 to	 search	 for	 numbers	 with	 certain	 properties.	 The	 next	 section
explains	this	idea	in	detail.

27.2 Binary	Search
Applied	mathematicians	model	the	real	world	with	nonlinear	equations	and	then
try	 to	 solve	 them.	 Specifically,	 they	 translate	 problems	 into	 a	 function	 f	 from
numbers	to	numbers	and	look	for	some	number	r	such	that

The	value	r	is	called	the	root	of	f.
Here	is	a	problem	from	the	physical	domain:

Sample	 Problem	 A	 rocket	 is	 flying	 at	 the	 constant	 speed	 of	 v
miles	 per	 hour	 on	 a	 straight	 line	 toward	 some	 target,	 d0	 miles
away.	 It	 then	accelerates	at	 the	 rate	of	a	miles	per	hour	squared
for	t	hours.	When	will	it	hit	its	target?

Physics	tells	us	that	the	distance	covered	is	the	following	function	of	time:

The	question	of	when	 it	hits	 the	 target	asks	us	 to	 find	 the	 time	 t0	 such	 that	 the
object	reaches	the	desired	goal:

From	algebra	we	know	that	this	is	a	quadratic	equation	and	that	it	is	possible	to
solve	such	equations	if	d0,	a,	and	v	satisfy	certain	conditions.

Generally	such	problems	call	for	more	complexity	than	quadratic	equations.
In	 response,	mathematicians	have	spent	 the	 last	 few	centuries	developing	 root-
finding	 methods	 for	 different	 types	 of	 functions.	 In	 this	 section,	 we	 study	 a
solution	that	is	based	on	the	Intermediate	Value	Theorem	(IVT),	an	early	result
of	analysis.	The	resulting	algorithm	is	a	primary	example	of	generative	recursion
based	on	a	mathematical	theorem.	Computer	scientists	have	generalized	it	to	the
binary	search	algorithm.

The	Intermediate	Value	Theorem	says	that	a	continuous	function	f	has	a	root
in	 an	 interval	 [a,b]	 if	 f	 (a)	 and	 f	 (b)	 are	 on	 opposite	 sides	 of	 the	 x-axis.	 By

continuous	we	mean	a	function	that	doesn’t	“jump,”	that	doesn’t	have	gaps,	and
that	proceeds	on	a	“smooth”	path.

Figure	 158	 illustrates	 the	 Intermediate	Value	Theorem.	The	 function	 f	 is	 a
continuous	 function,	 as	 suggested	 by	 the	 uninterrupted,	 smooth	 graph.	 It	 is
below	 the	 x-axis	 at	 a	 and	 above	 at	 b,	 and	 indeed,	 it	 intersects	 the	 x-axis
somewhere	in	this	interval,	labeled	“range	1”	in	the	figure.

Figure	158:	A	numeric	function	f	with	root	in	interval	[a,b]	(stage)

Now	take	a	look	at	the	midpoint	between	a	and	b:

It	partitions	 the	 interval	 [a,b]	 into	 two	smaller,	equally	sized	 intervals.	We	can
now	compute	the	value	of	f	at	m	and	see	whether	it	is	below	0	or	above.	Here	f
(m)	>	0,	so,	according	to	the	Intermediate	Value	Theorem,	the	root	is	in	the	left
interval:	[a,m].	Our	picture	confirms	this	because	the	root	is	in	the	left	half	of	the
interval,	labeled	“range	2”	in	figure	158.

We	now	have	a	description	of	the	key	step	in	the	root-finding	process.	Next,
we	translate	this	description	into	an	ISL+	algorithm.	Our	first	task	is	to	state	its
purpose.	Clearly	 the	 algorithm	 consumes	 a	 function	 and	 the	 boundaries	 of	 the

interval	in	which	we	expect	to	find	a	root:

;	[Number	->	Number]	Number	Number	->	…	
(define	(find-root	f	left	right)	…)

The	three	parameters	can’t	be	just	any	function	and	numbers.	For	find-root	to
work,	we	must	assume	that	the	following	holds:

(or	(<=	(f	left)	0	(f	right))	
				(<=	(f	right)	0	(f	left)))

that	is,	(f	left)	and	(f	right)	must	be	on	opposite	sides	of	the	x-axis.

DrRacket	allows	the	use	of	Greek	symbols	such	as	ε.	But	you	can	also	write	EPSILON	instead.

Next	we	need	to	fix	the	function’s	result	and	formulate	a	purpose	statement.
Simply	put,	find-root	finds	an	interval	that	contains	a	root.	The	search	divides
the	 interval	until	 its	 size,	(-	right	left),	 is	 tolerably	small,	 say,	 smaller	 than
some	constant	ε.	At	 that	point,	 the	function	could	produce	one	of	 three	results:
the	 left	boundary,	 the	right	one,	or	a	representation	of	 the	 interval.	Any	one	of
them	completely	identifies	the	interval,	and	since	it	is	simpler	to	return	numbers,
we	pick	the	left	boundary.	Here	is	the	complete	header	material:

;	[Number	->	Number]	Number	Number	->	Number	
;	determines	R	such	that	f	has	a	root	in	[R,(+	R	ε)]	
;	assume	f	is	continuous	
;	(2)	(or	(<=	(f	left)	0	(f	right))	(<=	(f	right)	0	(f	left)))	
;	generative	divides	interval	in	half,	the	root	is	in	
;	one	of	the	two	halves,	picks	according	to	(2)	
(define	(find-root	f	left	right)	
		0)

Exercise	445.	Consider	the	following	function	definition:

;	Number	->	Number	
(define	(poly	x)	
		(*	(-	x	2)	(-	x	4)))

It	defines	a	binomial	for	which	we	can	determine	its	roots	by	hand:

>	(poly	2)	
0	
>	(poly	4)	
0

Use	poly	to	formulate	a	check-satisfied	test	for	find-root.
Also	 use	 poly	 to	 illustrate	 the	 root-finding	 process.	 Start	with	 the	 interval

[3,6]	and	tabulate	the	information	as	follows	for	ε	=	0:

Our	next	task	is	to	address	the	four	questions	of	algorithm	design:

1.	 We	 need	 a	 condition	 that	 describes	 when	 the	 problem	 is	 solved	 and	 a
matching	answer.	Given	our	discussion	so	far,	this	is	straightforward:

(<=	(-	right	left)	ε)

2.	The	matching	result	in	the	trivial	case	is	left.

3.	 For	 the	 generative	 case,	 we	 need	 an	 expression	 that	 generates	 new
problems	for	find-root.	According	 to	our	 informal	description,	 this	step
requires	determining	the	midpoint	and	its	function	value:

The	midpoint	 is	 then	 used	 to	 pick	 the	 next	 interval.	 Following	 IVT,	 the
interval	[left,mid]	is	the	next	candidate	if

(or	(<=	(f	left)	0	f@m)	(<=	f@m	0	(f	left)))

while	[mid,right]	is	used	for	the	recursive	call	if

(or	(<=	f@m	0	(f	right))	(<=	(f	right)	0	f@m))

Translated	into	code,	the	body	of	local	must	be	a	conditional:

In	both	clauses,	we	use	find-root	to	continue	the	search.

4.	 The	 answer	 to	 the	 final	 question	 is	 obvious.	 Since	 the	 recursive	 call	 to
find-root	finds	the	root	of	f,	there	is	nothing	else	to	do.

The	 completed	 function	 is	 displayed	 in	 figure	 159;	 the	 following	 exercises
elaborate	on	its	design.

Figure	159:	The	find-root	algorithm

Exercise	446.	Add	the	test	from	exercise	445	to	the	program	in	figure	159.
Experiment	with	different	values	for	ε.	

Exercise	 447.	The	poly	 function	 has	 two	 roots.	Use	find-root	with	poly

and	an	interval	that	contains	both	roots.	
Exercise	 448.	 The	 find-root	 algorithm	 terminates	 for	 all	 (continuous)	 f,

left,	and	right	for	which	the	assumption	holds.	Why?	Formulate	a	termination
argument.

Hint	 Suppose	 the	 arguments	 of	find-root	 describe	 an	 interval	 of	 size	S1.
How	 large	 is	 the	 distance	 between	 left	 and	 right	 for	 the	 first	 and	 second
recursive	call	 to	find-root?	After	how	many	steps	 is	(-	right	left)	 smaller
than	or	equal	to	ε?	

Exercise	449.	As	presented	in	figure	159,	find-root	computes	the	value	of
f	for	each	boundary	value	twice	to	generate	the	next	interval.	Use	local	to	avoid
this	recomputation.

In	addition,	find-root	recomputes	the	value	of	a	boundary	across	recursive
calls.	 For	 example,	 (find-root	 f	 left	 right)	 computes	 (f	 left)	 and,	 if
[left,mid]	 is	 chosen	 as	 the	 next	 interval,	find-root	 computes	(f	left)	 again.
Introduce	a	helper	 function	 that	 is	 like	find-root	but	consumes	not	only	left
and	right	but	also	(f	left)	and	(f	right)	at	each	recursive	stage.

How	many	recomputations	of	(f	left)	does	 this	design	maximally	avoid?
Note	 The	 two	 additional	 arguments	 to	 this	 helper	 function	 change	 at	 each
recursive	stage,	but	the	change	is	related	to	the	change	in	the	numeric	arguments.
These	arguments	are	so-called	accumulators,	which	are	the	topic	of	part	VI.	

Exercise	 450.	 A	 function	 f	 is	monotonically	 increasing	 if	 (<=	 (f	 a)	 (f
b))	 holds	 whenever	 (<	 a	 b)	 holds.	 Simplify	 find-root	 assuming	 the	 given
function	is	not	only	continuous	but	also	monotonically	increasing.	

Exercise	451.	A	table	is	a	structure	of	two	fields:	the	natural	number	VL	and
a	function	array,	which	consumes	natural	numbers	and,	for	those	between	0	and
VL	(exclusive),	produces	answers:

(define-struct	table	[length	array])	
;	A	Table	is	a	structure:	
;			(make-table	N	[N	->	Number])

Many	programming	languages,	including	Racket,	support	arrays	and	vectors,	which	are	similar	to
tables.

Since	 this	 data	 structure	 is	 somewhat	 unusual,	 it	 is	 critical	 to	 illustrate	 it	with

examples:

Here	 table1’s	 array	 function	 is	 defined	 for	 more	 inputs	 than	 its	 length	 field
allows;	table2	is	defined	for	just	one	input,	namely	0.	Finally,	we	also	define	a
useful	function	for	looking	up	values	in	tables:

;	Table	N	->	Number	
;	looks	up	the	ith	value	in	array	of	t	
(define	(table-ref	t	i)	
		((table-array	t)	i))

The	root	of	a	 table	t	 is	a	number	in	(table-array	t)	 that	 is	close	to	0.	A
root	index	is	a	natural	number	i	such	that	(table-ref	t	i)	is	a	root	of	table	t.
A	table	t	is	monotonically	increasing	if	(table-ref	t	0)	is	less	than	(table-
ref	t	1),	(table-ref	t	1)	is	less	than	(table-ref	t	2),	and	so	on.

Design	 find-linear.	 The	 function	 consumes	 a	 monotonically	 increasing
table	and	finds	the	smallest	index	for	a	root	of	the	table.	Use	the	structural	recipe
for	N,	 proceeding	 from	0	 through	1,	2,	 and	 so	 on	 to	 the	array-length	 of	 the
given	table.	This	kind	of	root-finding	process	is	often	called	a	linear	search.

Design	find-binary,	which	 also	 finds	 the	 smallest	 index	 for	 the	 root	 of	 a
monotonically	 increasing	 table	 but	 uses	 generative	 recursion	 to	 do	 so.	 Like
ordinary	binary	search,	 the	algorithm	narrows	an	 interval	down	 to	 the	smallest
possible	size	and	then	chooses	the	index.	Don’t	forget	to	formulate	a	termination
argument.

Hint	The	key	problem	is	that	a	table	index	is	a	natural	number,	not	a	plain
number.	 Hence	 the	 interval	 boundary	 arguments	 for	 find	 must	 be	 natural

numbers.	 Consider	 how	 this	 observation	 changes	 (1)	 the	 nature	 of	 trivially
solvable	problem	instances,	 (2)	 the	midpoint	computation,	 (3)	and	 the	decision
as	to	which	interval	to	generate	next.	To	make	this	concrete,	imagine	a	table	with
1024	 slots	 and	 the	 root	 at	1023.	How	many	calls	 to	find	 are	needed	 in	find-
linear	and	find-binary,	respectively?	

27.3 A	Glimpse	at	Parsing
As	mentioned	in	chapter	20,	computers	come	with	files,	which	provide	a	form	of
permanent	memory.	From	our	perspective	a	file	is	just	a	list	of	1Strings,	though
interrupted	by	a	special	string:

;	A	File	is	one	of:	
;	--	'()	
;	--	(cons	"\n"	File)	
;	--	(cons	1String	File)	
;	interpretation	represents	the	content	of	a	file	
;	"\n"	is	the	newline	character

The	exact	convention	differs	from	one	operating	system	to	another,	but	for	our	purposes	this	is
irrelevant.

The	idea	is	that	Files	are	broken	into	lines,	where	"\n"	represents	the	so-called
newline	character,	which	 indicates	 the	 end	of	 a	 line.	Let’s	 also	 introduce	 lines
before	we	move	on:

;	A	Line	is	a	[List-of	1String].

Many	functions	need	 to	process	 files	as	 list	of	 lines.	The	read-lines	 from
the	2htdp/batch-io	library	is	one	of	them.	Concretely,	the	function	turns	the	file

(list	
		"h"	"o"	"w"	"	"	"a"	"r"	"e"	"	"	"y"	"o"	"u"	"\n"	
		"d"	"o"	"i"	"n"	"g"	"?"	"\n"	
		"a"	"n"	"y"	"	"	"p"	"r"	"o"	"g"	"r"	"e"	"s"	"s"	"?")

into	a	list	of	three	lines:

(list	
		(list	"h"	"o"	"w"	"	"	"a"	"r"	"e"	"	"	"y"	"o"	"u")	
		(list	"d"	"o"	"i"	"n"	"g"	"?")	
		(list	"a"	"n"	"y"	"	"	"p"	"r"	"o"	"g"	"r"	"e"	

								"s"	"s"	"?"))

Similarly,	the	file

(list	"a"	"b"	"c"	"\n"	"d"	"e"	"\n"	"f"	"g"	"h"	"\n")

also	corresponds	to	a	list	of	three	lines:

(list	(list	"a"	"b"	"c")	
						(list	"d"	"e")	
						(list	"f"	"g"	"h"))

Stop!	What	are	the	list-of-lines	representations	for	these	three	cases:	'(),	(list
"\n"),	and	(list	"\n"	"\n")?	Why	are	these	examples	important	test	cases?

The	problem	of	turning	a	sequence	of	1Strings	into	a	list	of	lines	is	called	the
parsing	problem.	Many	programming	languages	provide	functions	 that	 retrieve
lines,	words,	numbers,	and	other	kinds	of	so-called	tokens	from	files.	But	even	if
they	 do,	 it	 is	 common	 that	 programs	 need	 to	 parse	 these	 tokens	 even	 further.
This	 section	 provides	 a	 glimpse	 at	 a	 parsing	 technique.	 Parsing	 is	 so	 complex
and	so	central	to	the	creation	of	full-fledged	software	applications,	however,	that
most	 undergraduate	 curricula	 come	with	 at	 least	 one	 course	on	parsing.	So	do
not	think	you	can	tackle	real	parsing	problems	properly	even	after	mastering	this
section.

We	start	by	stating	the	obvious—a	signature,	a	purpose	statement,	one	of	the
above	 examples,	 and	 a	 header—for	 a	 function	 that	 turns	 a	 File	 into	 a	 list	 of
Lines:

It	 is	 also	 easy	 to	 describe	 the	 parsing	 process,	 given	 our	 experience	 with
chapter	26.1:

1.	The	problem	is	trivially	solvable	if	the	file	is	'().

2.	In	that	case,	the	file	doesn’t	contain	a	line.

3.	Otherwise,	the	file	contains	at	least	one	"\n"	or	some	other	1String.	These
items—up	to	and	including	the	first	"\n",	if	any—must	be	separated	from
the	rest	of	the	File.	The	remainder	is	a	new	problem	of	the	same	kind	that
file->list-of-lines	can	solve.

4.	 It	 then	 suffices	 to	cons	 the	 initial	 segment	 as	 a	 single	 line	 to	 the	 list	 of
Lines	that	result	from	the	rest	of	the	File.

The	 four	 questions	 suggest	 a	 straightforward	 instantiation	 of	 the	 template	 for
generative	 recursive	 functions.	 Because	 the	 separation	 of	 the	 initial	 segment
from	the	rest	of	the	file	requires	a	scan	of	an	arbitrarily	long	list	of	1Strings,	we
put	 two	 auxiliary	 functions	 on	 our	 wish	 list:	 first-line,	 which	 collects	 all
1Strings	up	to,	but	excluding,	the	first	occurrence	of	"\n"	or	the	end	of	the	list;
and	remove-first-line,	which	 removes	 the	very	 same	 items	 that	first-line
collects.

From	here,	 it	 is	 easy	 to	 create	 the	 rest	 of	 the	program.	 In	file->list-of-
lines,	the	answer	in	the	first	clause	must	be	'()	because	an	empty	file	does	not

contain	 any	 lines.	 The	 answer	 in	 the	 second	 clause	 must	 cons	 the	 value	 of
(first-line	 afile)	 onto	 the	 value	 (file->list-of-lines	 (remove-first-
line	 afile)),	 because	 the	 first	 expression	 computes	 the	 first	 line	 and	 the
second	 one	 computes	 the	 rest	 of	 the	 lines.	 Finally,	 the	 auxiliary	 functions
traverse	 their	 inputs	 in	 a	 structurally	 recursive	manner;	 their	 development	 is	 a
straightforward	exercise.	Figure	160	presents	the	complete	program	code.

Figure	160:	Translating	a	file	into	a	list	of	lines

Here	is	how	file->list-of-lines	processes	the	second	test:

This	 evaluation	 is	 another	 reminder	 that	 the	 argument	 of	 the	 recursive
application	of	file->list-of-lines	is	almost	never	the	rest	of	the	given	file.	It
also	 shows	why	 this	 generative	 recursion	 is	 guaranteed	 to	 terminate	 for	 every
given	File.	Every	 recursive	 application	 consumes	 a	 list	 that	 is	 shorter	 than	 the
given	one,	meaning	the	recursive	process	stops	when	the	process	reaches	'().

Exercise	 452.	 Both	 first-line	 and	 remove-first-line	 are	 missing
purpose	statements.	Articulate	proper	statements.	

Exercise	 453.	Design	 the	 function	 tokenize.	 It	 turns	 a	 Line	 into	 a	 list	 of
tokens.	Here	 a	 token	 is	 either	 a	1String	or	 a	String	 that	 consists	of	 lower-case
letters	 and	nothing	else.	That	 is,	 all	whitespace	1Strings	 are	dropped;	 all	 other
non-letters	 remain	 as	 is;	 and	 all	 consecutive	 letters	 are	 bundled	 into	 “words.”
Hint	Read	up	on	the	string-whitespace?	function.	

Exercise	 454.	Design	create-matrix.	 The	 function	 consumes	 a	 number	n

and	a	list	of	n2	numbers.	It	produces	an	n	×	n	matrix,	for	example:

Make	up	a	second	example.	

28 Mathematical	Examples
Many	solutions	to	mathematical	problems	employ	generative	recursion.	A	future
programmer	must	get	to	know	such	solutions	for	two	reasons.	On	the	one	hand,	a
fair	 number	 of	 programming	 tasks	 are	 essentially	 about	 turning	 these	 kinds	 of
mathematical	 ideas	 into	 programs.	 On	 the	 other	 hand,	 practicing	 with	 such
mathematical	problems	often	proves	 inspirational	 for	 the	design	of	 algorithms.
This	chapter	deals	with	three	such	problems.

28.1 Newton’s	Method
Chapter	 27.2	 introduces	 one	 method	 for	 finding	 the	 root	 of	 a	 mathematical
function.	 As	 the	 exercises	 in	 the	 same	 section	 sketch,	 the	 method	 naturally
generalizes	to	computational	problems,	such	as	finding	certain	values	in	tables,
vectors,	and	arrays.	 In	mathematical	applications,	programmers	 tend	to	employ
methods	that	originate	from	analytical	mathematics.	A	prominent	one	is	due	to
Newton.	Like	binary	search,	 the	so-called	Newton	method	 repeatedly	 improves
an	 approximation	 to	 the	 root	 until	 it	 is	 “close	 enough.”	Starting	 from	a	 guess,
say,	 r1,	 the	 essence	 of	 the	 process	 is	 to	 construct	 the	 tangent	 of	 f	 at	 r1	 and	 to
determine	 its	 root.	 While	 the	 tangent	 approximates	 the	 function,	 it	 is	 also
straightforward	to	determine	its	root.	By	repeating	this	process	sufficiently	often,
an	algorithm	can	find	a	root	r	for	which	(f	r)	is	close	enough	to	0.

Newton	proved	this	fact.

Clearly,	 this	 process	 relies	 on	 two	 pieces	 of	 domain	 knowledge	 about
tangents:	their	slopes	and	roots.	Informally,	a	tangent	of	f	at	some	point	r1	is	the
line	 that	 goes	 through	 the	 point	 (r1,	 f	 (r1))	 and	 has	 the	 same	 slope	 as	 f.	 One
mathematical	way	to	obtain	the	tangent’s	slope	is	to	pick	two	close	points	on	the
x-axis	that	are	equidistant	from	r1	and	to	use	the	slope	of	the	line	determined	by	f
at	those	two	points.	The	convention	is	to	choose	a	small	number	ε	and	to	work
with	r1	+	ε	and	r1	−	ε.	That	is,	the	points	are	(r1	−	ε,	f(r1	−	ε))	and	(r1	+	ε,	f(r1	+
ε)),	which	determine	a	line	and	a	slope:

Exercise	 455.	 Translate	 this	 mathematical	 formula	 into	 the	 ISL+	 function
slope,	which	maps	function	f	and	a	number	r1	to	the	slope	of	f	at	r1.	Assume
that	ε	 is	a	global	constant.	For	your	examples,	use	functions	whose	exact	slope
you	 can	 figure	 out,	 say,	 horizontal	 lines,	 linear	 functions,	 and	 perhaps
polynomials	if	you	know	some	calculus.	

The	second	piece	of	domain	knowledge	concerns	the	root	of	a	tangent,	which
is	just	a	line	or	a	linear	function.	The	tangent	goes	through	(r1,	f	(r1))	and	has	the

above	slope.	Mathematically,	it	is	defined	as

Finding	 the	 root	 of	 tangent	 means	 finding	 a	 value	 root-of-tangent	 so	 that
tangent(root-of-tangent)	equals	0:

We	can	solve	this	equation	in	a	straightforward	manner:

Exercise	456.	Design	root-of-tangent,	a	function	that	maps	f	and	r1	to	the
root	of	the	tangent	through	(r1,(f	r1)).	

Now	we	can	use	 the	design	 recipe	 to	 translate	 the	description	of	Newton’s
process	into	an	ISL+	program.	The	function—let’s	call	it	newton	in	honor	of	its
inventor—consumes	a	function	f	and	a	number	r1:

;	[Number	->	Number]	Number	->	Number	
;	finds	a	number	r	such	that	(f	r)	is	small	
;	generative	repeatedly	generates	improved	guesses	
(define	(newton	f	r1)	1.0)

For	 the	 template	 of	 newton,	 we	 turn	 to	 the	 central	 four	 questions	 of	 the
design	recipe	for	generative	recursion:

1.	 If	(f	r1)	 is	 close	 enough	 to	0,	 the	 problem	 is	 solved.	Close	 to	0	 could
mean	 (f	 r1)	 is	 a	 small	 positive	 number	 or	 a	 small	 negative	 number.
Hence	we	check	its	absolute	value:

(<=	(abs	(f	r1)))

2.	The	solution	is	r1.

3.	 The	 generative	 step	 of	 the	 algorithm	 consists	 of	 finding	 the	 root	 of	 the

tangent	of	f	at	r1,	which	generates	the	next	guess.	By	applying	newton	to
f	and	this	new	guess,	we	resume	the	process.

4.	The	answer	of	the	recursion	is	also	the	answer	of	the	original	problem.

Figure	161	displays	newton.	 It	 includes	 two	 tests	 that	 are	derived	 from	 the
tests	in	chapter	27.2	for	find-root.	After	all,	both	functions	search	for	the	root
of	a	function,	and	poly	has	two	known	roots.

Figure	161:	The	Newton	process

We	are	not	finished	with	the	design	of	newton.	The	new,	seventh	step	of	the
design	 recipe	 calls	 for	 an	 investigation	 into	 the	 termination	 behavior	 of	 the
function.	For	newton,	the	problem	shows	up	with	poly:

;	Number	->	Number	
(define	(poly	x)	(*	(-	x	2)	(-	x	4)))

As	mentioned,	 its	 roots	are	2	and	4.	The	graph	of	poly	 in	 figure	162	confirms
these	roots	and	also	shows	that	between	the	two	roots	the	function	flattens	out.
For	 a	 mathematically	 inclined	 person,	 this	 shape	 raises	 the	 question	 of	 what
newton	computes	for	an	initial	guess	of	3:

>	(poly	3)	
-1	

>	(newton	poly	3)	
/:division	by	zero

Figure	162:	The	graph	of	poly	on	the	interval	[-1,5]

The	explanation	is	that	slope	produces	a	“bad”	value	and	the	root-of-tangent
function	turns	it	into	an	error:

>	(slope	poly	3)	
0	
>	(root-of-tangent	poly	3)	
/:division	by	zero

In	addition	 to	 this	 run-time	error,	newton	 exhibits	 two	other	problems	with
respect	to	termination.	Fortunately,	we	can	demonstrate	both	with	poly.	The	first
one	concerns	the	nature	of	numbers,	which	we	briefly	touched	on	in	chapter	1.1.
It	is	safe	to	ignore	the	distinction	between	exact	and	inexact	numbers	for	many
beginner	 exercises	 in	 programming,	 but	 when	 it	 comes	 to	 translating
mathematics	into	programs,	you	need	to	proceed	with	extreme	caution.	Consider
the	following:

>	(newton	poly	2.9999)

An	 ISL+	 program	 treats	 2.9999	 as	 an	 exact	 number,	 and	 the	 computations	 in

newton	 process	 it	 as	 such,	 though	 because	 the	 numbers	 aren’t	 integers,	 the
computation	uses	exact	rational	fractions.	Since	the	arithmetic	for	fractions	can
get	much	slower	than	the	arithmetic	for	inexact	numbers,	the	above	function	call
takes	a	significant	amount	of	time	in	DrRacket.	Depending	on	your	computer,	it
may	take	between	a	few	seconds	and	a	minute	or	more.	If	you	happen	to	choose
other	numbers	that	trigger	this	form	of	computation,	it	may	seem	as	if	the	call	to
newton	does	not	terminate	at	all.

The	second	problem	concerns	non-termination.	Here	is	the	example:

>	(newton	poly	#i3.0)

It	 uses	 the	 inexact	 number	#i3.0	 as	 the	 initial	 guess,	which	unlike	3	 causes	 a
different	 kind	 of	 problem.	 Specifically,	 the	 slope	 function	 now	 produces	 an
inexact	0	for	poly	while	root-of-tangent	jumps	to	infinity:

>	(slope	poly	#i3.0)	
#i0.0	
>	(root-of-tangent	poly	#i3.0)	
#i+inf.0

As	a	result,	the	evaluation	immediately	falls	into	an	infinite	loop.
In	 short,	 newton	 exhibits	 the	 full	 range	 of	 problems	 when	 it	 comes	 to

complex	termination	behavior.	For	some	inputs,	the	function	produces	a	correct
result.	For	some	others,	it	signals	errors.	And	for	yet	others,	it	goes	into	infinite
loop	or	appears	to	go	into	one.	The	header	for	newton—or	some	other	piece	of
writing—must	warn	others	who	wish	 to	use	 the	 function	and	 future	 readers	of
these	complexities,	and	good	math	libraries	in	common	programming	languages
do	so.

The	calculation	in	newton	turns	#i+inf.0	into	+nan.0,	a	piece	of	data	that	says	“not	a	number.”
Most	arithmetic	operations	propagate	this	value,	which	explains	the	behavior	of	newton.

Exercise	 457.	 Design	 the	 function	 double-amount,	 which	 computes	 how
many	 months	 it	 takes	 to	 double	 a	 given	 amount	 of	 money	 when	 a	 savings
account	pays	interest	at	a	fixed	rate	on	a	monthly	basis.

This	exercise	was	suggested	by	Adrian	German.

This	exercise	was	suggested	by	Adrian	German.

Domain	 Knowledge	With	 a	 minor	 algebraic	 manipulation,	 you	 can	 show
that	 the	given	amount	is	 irrelevant.	Only	the	interest	rate	matters.	Also	domain
experts	 know	 that	 doubling	 occurs	 after	 roughly	 72/r	 month	 as	 long	 as	 the
interest	rate	r	is	“small.”	

28.2 Numeric	Integration
Many	physics	problems	boil	down	to	determining	the	area	under	a	curve:

Sample	Problem	A	car	drives	at	a	constant	speed	of	v	meters	per
second.	How	far	does	it	travel	in	5,	10,	15	seconds?
A	 rocket	 lifts	off	 at	 the	constant	 rate	of	 acceleration	of	12	m/s2.
What	height	does	it	reach	after	5,	10,	15	seconds?

Physics	tells	us	that	a	vehicle	travels	dcon(t)	=	v	·t	meters	if	it	moves	at	a	constant
speed	v	for	t	seconds.	For	vehicles	that	accelerate,	the	distance	traveled	depends
on	the	square	of	the	time	t	passed:

In	 general,	 the	 law	 tells	 us	 that	 the	 distance	 corresponds	 to	 the	 area	 under	 the
graph	of	speed	v(t)	over	time	t.

Figure	163	illustrates	the	idea	in	a	graphical	manner.	On	the	left,	we	see	an
overlay	of	two	graphs:	the	solid	flat	line	is	the	speed	of	the	vehicle	and	the	rising
dashed	line	is	the	distance	traveled.	A	quick	check	shows	that	the	latter	is	indeed
the	 area	 determined	 by	 the	 former	 and	 the	 x-axis	 at	 every	 point	 in	 time.
Similarly,	the	graphs	on	the	right	show	the	relationship	between	a	rocket	moving
at	 constantly	 increasing	 speed	 and	 the	 height	 it	 reaches.	Determining	 this	 area
under	 the	 graph	 of	 a	 function	 for	 some	 specific	 interval	 is	 called	 (function)
integration.

Figure	163:	Distance	traveled	with	constant	vs	accelerating	speed

While	mathematicians	know	formulas	for	the	two	sample	problems	that	give
precise	 answers,	 the	 general	 problem	 calls	 for	 computational	 solutions.	 The
problem	 is	 that	 curves	 often	 come	 with	 complex	 shapes,	 more	 like	 those	 in
figure	164,	which	suggests	that	someone	needs	to	know	the	area	between	the	x-
axis,	 the	 vertical	 lines	 labeled	 a	 and	 b,	 and	 the	 graph	 of	 f.	 Applied
mathematicians	 determine	 such	 areas	 in	 an	 approximate	manner,	 summing	 the
areas	 of	 many	 small	 geometric	 shapes.	 It	 is	 therefore	 natural	 to	 develop
algorithms	that	deal	with	these	calculations.

Figure	164:	Integrating	a	function	f	between	a	and	b

An	 integration	 algorithm	 consumes	 three	 inputs:	 the	 function	 f	 and	 two
borders,	 a	 and	 b.	 The	 fourth	 part,	 the	 x-axis,	 is	 implied.	 This	 suggests	 the
following	signature:

;	[Number	->	Number]	Number	Number	->	Number

In	 order	 to	 understand	 the	 idea	 behind	 integration,	 it	 is	 best	 to	 study	 simple
examples	such	as	a	constant	function	or	a	linear	one.	Thus,	consider

(define	(constant	x)	20)

Passing	constant	 to	integrate,	 together	with	12	and	22,	describes	a	rectangle

of	width	10	and	height	20.	The	area	of	this	rectangle	is	200,	meaning	we	get	this
test:

(check-expect	(integrate	constant	12	22)	200)

Similarly,	let’s	use	linear	to	create	a	second	test:

(define	(linear	x)	(*	2	x))

If	we	use	linear,	0,	 and	10	with	integrate,	 the	area	 is	a	 triangle	with	a	base
width	of	10	and	a	height	of	20.	Here	is	the	example	as	a	test:

(check-expect	(integrate	linear	0	10)	100)

After	all,	a	triangle’s	area	is	half	of	the	product	of	its	base	width	and	height.
For	 a	 third	 example,	 we	 exploit	 some	 domain-specific	 knowledge.	 As

mentioned,	 mathematicians	 know	 how	 to	 determine	 the	 area	 under	 some
functions	in	a	precise	manner.	For	example,	the	area	under	the	function

on	the	interval	[a,b]	can	be	calculated	with	the	following	formula

Here	is	how	to	turn	this	idea	into	a	concrete	test:

Figure	165	collects	the	result	of	the	first	three	steps	of	the	design	recipe.	The
figure	adds	a	purpose	statement	and	an	obvious	assumption	concerning	the	two
interval	 boundaries.	 Instead	 of	 check-expect	 it	 uses	 check-within,	 which
anticipates	 the	 numerical	 inaccuracies	 that	 come	 with	 computational
approximations	 in	 such	 calculations.	 Analogously,	 the	 header	 of	 integrate

specifies	 #i0.0	 as	 the	 return	 result,	 signaling	 that	 the	 function	 is	 expected	 to
return	an	inexact	number.

Figure	165:	A	generic	integration	function

The	 following	 two	 exercises	 show	 how	 to	 turn	 domain	 knowledge	 into
integration	 functions.	 Both	 functions	 compute	 rather	 crude	 approximations.
While	 the	design	of	 the	 first	uses	only	mathematical	 formulas,	 the	second	also
exploits	 a	 bit	 of	 structural	 design	 ideas.	 Solving	 these	 exercises	 creates	 the
necessary	appreciation	for	the	core	of	this	section,	which	presents	a	generative-
recursive	integration	algorithm.

The	method	is	known	as	Kepler’s	rule.

Exercise	458.	Kepler	suggested	a	simple	integration	method.	To	compute	an
estimate	of	the	area	under	f	between	a	and	b,	proceed	as	follows:

1.	divide	the	interval	into	half	at	mid	=	(a	+	b)/2;

2.	compute	the	areas	of	these	two	trapezoids:

•  (a,0),(a,f	(a)),(mid,0),(mid,f	(mid))

•  (mid,0),(mid,f	(mid)),(b,0),(b,f	(b));

3.	then	add	the	two	areas.

Domain	Knowledge	Let’s	take	a	look	at	these	trapezoids.	Here	are	the	two
possible	shapes,	with	minimal	annotations	to	reduce	clutter:

The	left	shape	assumes	f	(L)	>	f	(R)	while	the	right	one	shows	the	case	where	f
(L)	<	 f	 (R).	Despite	 the	 asymmetry,	 it	 is	 still	 possible	 to	 calculate	 the	 area	 of
these	trapezoids	with	a	single	formula:

Stop!	Convince	 yourself	 that	 this	 formula	adds	 the	 area	 of	 the	 triangle	 to	 the
area	of	the	lower	rectangle	for	the	left	trapezoid,	while	it	subtracts	the	triangle
from	the	area	of	the	large	rectangle	for	the	right	one.

Also	show	that	the	above	formula	is	equal	to

This	is	a	mathematical	validation	of	the	asymmetry	of	the	formula.
Design	 the	 function	 integrate-kepler.	 That	 is,	 turn	 the	 mathematical

knowledge	 into	an	 ISL+	 function.	Adapt	 the	 test	 cases	 from	 figure	165	 to	 this
use.	Which	of	the	three	tests	fails	and	by	how	much?	

Exercise	459.	Another	simple	integration	method	divides	the	area	into	many
small	rectangles.	Each	rectangle	has	a	fixed	width	and	is	as	tall	as	the	function
graph	 in	 the	 middle	 of	 the	 rectangle.	 Adding	 up	 the	 areas	 of	 the	 rectangles
produces	an	estimate	of	the	area	under	the	function’s	graph.

Let’s	use

to	stand	for	the	number	of	rectangles	to	be	considered.	Hence	the	width	of	each
rectangle	is

The	height	of	one	of	these	rectangles	is	 the	value	of	 f	at	 its	midpoint.	The	first
midpoint	is	clearly	at	a	plus	half	of	the	width	of	the	rectangle,

which	means	its	area	is

To	 compute	 the	 area	 of	 the	 second	 rectangle,	 we	 must	 add	 the	 width	 of	 one
rectangle	to	the	first	midpoint:

For	the	third	one,	we	get

In	general,	we	can	use	the	following	formula	for	the	ith	rectangle:

The	first	rectangle	has	index	0,	the	last	one	R	-	1.
Using	these	rectangles,	we	can	now	determine	the	area	under	the	graph:

Turn	 the	 description	 of	 the	 process	 into	 an	 ISL+	 function.	 Adapt	 the	 test
cases	from	figure	165	to	this	case.

The	more	rectangles	the	algorithm	uses,	the	closer	its	estimate	is	to	the	actual
area.	 Make	 R	 a	 top-level	 constant	 and	 increase	 it	 by	 factors	 of	 10	 until	 the
algorithm’s	accuracy	eliminates	problems	with	an	ε	value	of	0.1.

Decrease	ε	to	0.01	and	increase	R	enough	to	eliminate	any	failing	test	cases
again.	Compare	the	result	to	exercise	458.	

The	 Kepler	 method	 of	 exercise	 458	 immediately	 suggests	 a	 divide-and-
conquer	 strategy	 like	 binary	 search	 introduced	 in	 chapter	 27.2.	 Roughly
speaking,	 the	 algorithm	 would	 split	 the	 interval	 into	 two	 pieces,	 recursively
compute	the	area	of	each	piece,	and	add	the	two	results.

Exercise	 460.	 Develop	 the	 algorithm	 integrate-dc,	 which	 integrates	 a
function	f	between	the	boundaries	a	and	b	using	a	divide-and-conquer	strategy.
Use	Kepler’s	method	when	the	interval	is	sufficiently	small.	

The	 divide-and-conquer	 approach	 of	 exercise	 460	 is	 wasteful.	 Consider	 a
function	whose	 graph	 is	 level	 in	 one	 part	 and	 rapidly	 changes	 in	 another;	 see
figure	166	for	a	concrete	example.	For	the	level	part	on	the	graph,	it	is	pointless
to	keep	splitting	 the	 interval.	 It	 is	 just	as	easy	to	compute	 the	 trapezoid	for	 the
complete	 interval	 as	 for	 the	 two	 halves.	 For	 the	 “wavy”	 part,	 however,	 the
algorithm	must	continue	dividing	the	interval	until	the	irregularities	of	the	graph
are	reasonably	small.

Figure	166:	A	candidate	for	adaptive	integration

To	discover	when	f	is	level,	we	can	change	the	algorithm	as	follows.	Instead
of	just	testing	how	large	the	interval	is,	the	new	algorithm	computes	the	area	of
three	trapezoids:	the	given	one	and	the	two	halves.	If	the	difference	between	the
two	is	less	than	the	area	of	a	small	rectangle	of	height	ε	and	width	b	−	a,

it	is	safe	to	assume	that	the	overall	area	is	a	good	approximation.	In	other	words,
the	 algorithm	 determines	 whether	 f	 changes	 so	 much	 that	 it	 affects	 the	 error
margin.	 If	 so,	 it	 continues	with	 the	 divide-and-conquer	 approach;	 otherwise	 it
stops	and	uses	the	Kepler	approximation.

Exercise	 461.	 Design	 integrate-adaptive.	 That	 is,	 turn	 the	 recursive
process	 description	 into	 an	 ISL+	 algorithm.	Make	 sure	 to	 adapt	 the	 test	 cases
from	figure	165	to	this	use.

Do	not	discuss	the	termination	of	integrate-adaptive.
Does	 integrate-adaptive	 always	 compute	 a	 better	 answer	 than	 either

integrate-kepler	 or	 integrate-rectangles?	 Which	 aspect	 is	 integrate-
adaptive	guaranteed	to	improve?	

Terminology	 The	 algorithm	 is	 called	 adaptive	 integration	 because	 it
automatically	allocates	 time	 to	 those	parts	of	 the	graph	 that	need	 it	and	spends
little	 time	 on	 the	 others.	 Specifically,	 for	 those	 parts	 of	 f	 that	 are	 level,	 it

performs	just	a	few	calculations;	for	the	other	parts,	it	inspects	small	intervals	to
decrease	 the	error	margin.	Computer	science	knows	many	adaptive	algorithms,
and	integrate-adaptive	is	just	one	of	them.

28.3 Project:	Gaussian	Elimination
Mathematicians	not	only	search	for	solutions	of	equations	in	one	variable;	they
also	study	whole	systems	of	linear	equations:

Sample	Problem	In	a	bartering	world,	the	values	of	coal	(x),	oil
(y),	and	gas	(z)	are	determined	by	these	exchange	equations:

A	solution	to	such	a	system	of	equations	consists	of	a	collection	of	numbers,	one
per	variable,	such	that	if	we	replace	the	variable	with	its	corresponding	number,
the	 two	 sides	 of	 each	 equation	 evaluate	 to	 the	 same	 number.	 In	 our	 running
example,	the	solution	is

We	can	easily	check	this	claim:

The	three	equations	reduce	to

Figure	 167	 introduces	 a	 data	 representation	 for	 our	 problem	 domain.	 It
includes	 an	 example	 of	 a	 system	 of	 equations	 and	 its	 solution.	 This
representation	 captures	 the	 essence	 of	 a	 system	 of	 equations,	 namely,	 the
numeric	 coefficients	 of	 the	 variables	 on	 the	 left-hand	 side	 and	 the	 right-hand-
side	values.	The	names	of	the	variables	don’t	play	any	role	because	they	are	like
parameters	of	functions;	meaning,	as	 long	as	 they	are	consistently	renamed	the
equations	have	the	same	solutions.

Figure	167:	A	data	representation	for	systems	of	equations

For	the	rest	of	this	section,	it	is	convenient	to	use	these	functions:

;	Equation	->	[List-of	Number]	
;	extracts	the	left-hand	side	from	a	row	in	a	matrix	
(check-expect	(lhs	(first	M))	'(2	2	3))	
(define	(lhs	e)	
		(reverse	(rest	(reverse	e))))	

;	Equation	->	Number	
;	extracts	the	right-hand	side	from	a	row	in	a	matrix	
(check-expect	(rhs	(first	M))	10)	
(define	(rhs	e)	
		(first	(reverse	e)))

Exercise	 462.	 Design	 the	 function	 check-solution.	 It	 consumes	 an	 SOE
and	a	Solution.	Its	result	is	#true	if	plugging	in	the	numbers	from	the	Solution
for	 the	 variables	 in	 the	 Equations	 of	 the	 SOE	 produces	 equal	 left-hand-side
values	and	right-hand-side	values;	otherwise	the	function	produces	#false.	Use
check-solution	to	formulate	tests	with	check-satisfied.

Hint	Design	the	function	plug-in	first.	It	consumes	the	left-hand	side	of	an
Equation	and	a	Solution	and	calculates	out	the	value	of	the	left-hand	side	when

the	numbers	from	the	solution	are	plugged	in	for	the	variables.	
Gaussian	elimination	 is	a	 standard	method	 for	 finding	solutions	 to	systems

of	 linear	 equations.	 It	 consists	 of	 two	 steps.	 The	 first	 step	 is	 to	 transform	 the
system	of	equations	into	a	system	of	different	shape	but	with	the	same	solution.
The	second	step	is	to	find	solutions	to	one	equation	at	a	time.	Here	we	focus	on
the	first	step	because	it	is	another	interesting	instance	of	generative	recursion.

The	first	step	of	the	Gaussian	elimination	algorithm	is	called	“triangulation”
because	the	result	is	a	system	of	equations	in	the	shape	of	a	triangle.	In	contrast,
the	original	system	is	a	rectangle.	To	understand	this	terminology,	take	a	look	at
this	list,	which	represents	the	original	system:

Triangulation	transforms	this	matrix	into	the	following:

As	promised,	the	shape	of	this	system	of	equations	is	(roughly)	a	triangle.
Exercise	463.	Check	that	the	following	system	of	equations

has	 the	 same	 solution	 as	 the	 one	 labeled	 with	 (†).	 Do	 so	 by	 hand	 and	 with
check-solution	from	exercise	462.	

The	 key	 idea	 of	 triangulation	 is	 to	 subtract	 the	 first	 Equation	 from	 the
remaining	 ones.	 To	 subtract	 one	 Equation	 from	 another	means	 to	 subtract	 the
corresponding	 coefficients	 in	 the	 two	 Equations.	 With	 our	 running	 example,
subtracting	the	first	equation	from	the	second	yields	the	following	matrix:

The	goal	of	these	subtractions	is	to	put	a	0	into	the	first	column	of	all	but	the	first
equation.	 For	 the	 third	 equation,	 getting	 a	 0	 into	 the	 first	 position	 means
subtracting	the	first	equation	twice	from	the	third	one:

Following	convention,	we	drop	the	leading	0’s	from	the	last	two	equations:

That	is,	we	first	multiply	each	item	in	the	first	row	with	2	and	then	subtract	the
result	 from	 the	 last	 row.	 As	 mentioned,	 these	 subtractions	 do	 not	 change	 the
solution;	 that	 is,	 the	 solution	 of	 the	 original	 system	 is	 also	 the	 solution	 of	 the
transformed	one.

Mathematics	teaches	how	to	prove	such	facts.	We	use	them.

Exercise	464.	Check	that	the	following	system	of	equations

has	the	same	solution	as	the	one	labeled	with	(†).	Again	do	so	by	hand	and	with
check-solution	from	exercise	462.	

Exercise	 465.	Design	 subtract.	 The	 function	 consumes	 two	Equations	 of
equal	length.	It	“subtracts”	a	multiple	of	the	second	equation	from	the	first,	item
by	 item,	 so	 that	 the	 resulting	 Equation	 has	 a	 0	 in	 the	 first	 position.	 Since	 the

leading	 coefficient	 is	 known	 to	 be	0,	subtract	 returns	 the	 rest	 of	 the	 list	 that
results	from	the	subtractions.	

Now	consider	the	rest	of	the	SOE:

It	 is	 also	an	SOE,	 so	we	can	apply	 the	 same	algorithm	again.	For	our	 running
example,	 this	 next	 subtraction	 step	 calls	 for	 subtracting	 the	 first	 Equation	 -1
times	from	the	second	one.	Doing	so	yields

The	rest	of	this	SOE	is	a	single	equation	and	cannot	be	simplified.
Exercise	466.	Here	is	a	representation	for	triangular	SOEs:

;	A	TM	is	an	[NEList-of	Equation]	
;	such	that	the	Equations	are	of	decreasing	length:	
;			n	+	1,		n,		n	−	1,		…,		2.	
;	interpretation	represents	a	triangular	matrix

Design	the	triangulate	algorithm:

;	SOE	->	TM	
;	triangulates	the	given	system	of	equations	
(define	(triangulate	M)	
		'(1	2))

Turn	 the	 above	 example	 into	 a	 test	 and	 spell	 out	 explicit	 answers	 for	 the	 four
questions	based	on	our	loose	description.

Do	not	yet	deal	with	the	termination	step	of	the	design	recipe.	
Unfortunately,	the	solution	to	exercise	466	occasionally	fails	to	produce	the

desired	triangular	system.	Consider	 the	following	representation	of	a	system	of
equations:

Its	solution	is	x	=	1,	y	=	1,	and	z	=	1.
The	 first	 step	 is	 to	subtract	 the	 first	 row	from	 the	second	and	 to	subtract	 it

twice	from	the	last	one,	which	yields	the	following	matrix:

Next,	triangulation	would	focus	on	the	rest	of	the	matrix:

but	 the	 first	 item	of	 this	matrix	 is	0.	 Since	 it	 is	 impossible	 to	divide	by	0,	 the
algorithm	signals	an	error	via	subtract.

To	overcome	this	problem,	we	need	to	use	another	piece	of	knowledge	from
our	problem	domain.	Mathematics	tells	us	that	switching	equations	in	a	system
of	equations	does	not	affect	the	solution.	Of	course,	as	we	switch	equations,	we
must	eventually	find	an	equation	whose	leading	coefficient	is	not	0.	Here	we	can
simply	swap	the	first	two:

From	 here	we	may	 continue	 as	 before,	 subtracting	 the	 first	 equation	 from	 the
remaining	one	0	times.	The	final	triangular	matrix	is:

Stop!	Show	that	x	=	1,	y	=	1,	and	z	=	1	is	still	a	solution	for	these	equations.
Exercise	467.	Revise	the	algorithm	triangulate	from	exercise	466	so	that	it

rotates	 the	 equations	 first	 to	 find	 one	 with	 a	 leading	 coefficient	 that	 is	 not	 0
before	it	subtracts	the	first	equation	from	the	remaining	ones.

Does	this	algorithm	terminate	for	all	possible	system	of	equations?
Hint	The	following	expression	rotates	a	non-empty	list	L:

(append	(rest	L)	(list	(first	L)))

Explain	why.	
Some	SOEs	don’t	have	a	solution.	Consider	this	one:

If	you	try	to	triangulate	this	SOE—by	hand	or	with	your	solution	from	exercise
467—you	arrive	at	an	intermediate	matrix	all	of	whose	equations	start	with	0:

Exercise	468.	Modify	triangulate	 from	exercise	467	so	 that	 it	 signals	an
error	if	it	encounters	an	SOE	whose	leading	coefficients	are	all	0.	

After	we	obtain	a	triangular	system	of	equations	such	as	(*)	in	exercise	463,
we	 can	 solve	 the	 equations,	 one	 at	 a	 time.	 In	 our	 specific	 example,	 the	 last
equation	says	that	z	is	2.	Equipped	with	this	knowledge,	we	can	eliminate	z	from
the	second	equation	through	a	substitution:

Doing	so,	in	turn,	determines	the	value	for	y:

Now	 that	 we	 have	 z	 =	 2	 and	 y	 =	 1,	 we	 can	 plug	 these	 values	 into	 the	 first
equation:

This	yields	another	equation	in	a	single	variable,	which	we	solve	like	this:

This	 finally	 yields	 a	 value	 for	 x	 and	 thus	 the	 complete	 solution	 for	 the	 entire
SOE.

Exercise	469.	Design	 the	solve	 function.	 It	consumes	 triangular	SOEs	and
produces	a	solution.

Hint	 Use	 structural	 recursion	 for	 the	 design.	 Start	 with	 the	 design	 of	 a
function	that	solves	a	single	linear	equation	in	n+1	variables,	given	a	solution	for
the	last	n	variables.	In	general,	this	function	plugs	in	the	values	for	the	rest	of	the
left-hand	side,	 subtracts	 the	 result	 from	 the	 right-hand	side,	and	divides	by	 the
first	coefficient.	Experiment	with	this	suggestion	and	the	above	examples.

Challenge	Use	an	existing	abstraction	and	lambda	to	design	solve.	
Exercise	 470.	 Define	 gauss,	 which	 combines	 the	 triangulate	 function

from	exercise	468	and	the	solve	function	from	exercise	469.	

29 Algorithms	that	Backtrack
Problem	 solving	 doesn’t	 always	 progress	 along	 some	 straight	 line.	 Sometimes
we	may	follow	one	approach	and	discover	that	we	are	stuck	because	we	took	a
wrong	turn.	One	obvious	option	is	to	backtrack	to	the	place	where	we	made	the
fateful	decision	and	to	take	a	different	turn.	Some	algorithms	work	just	like	that.
This	chapter	presents	two	instances.	The	first	section	deals	with	an	algorithm	for
traversing	graphs.	The	second	one	is	an	extended	exercise	that	uses	backtracking
in	the	context	of	a	chess	puzzle.

29.1 Traversing	Graphs
Graphs	are	ubiquitous	in	our	world	and	the	world	of	computing.	Imagine	a	group
of	 people,	 say,	 the	 students	 in	 your	 school.	 Write	 down	 all	 the	 names,	 and
connect	the	names	of	those	people	who	know	each	other.	You	have	just	created
your	first	undirected	graph.

Social	scientists	use	such	algorithms	to	figure	out	the	power	structure	in	a	company.	Similarly	they
use	such	graphs	to	predict	the	probable	activities	of	people,	even	without	knowledge	of	the	content	of
their	emails.

Now	 take	 a	 look	 at	 figure	 168,	 which	 displays	 a	 small	 directed	 graph.	 It
consists	of	 seven	nodes—the	circled	 letters—and	nine	 edges—the	arrows.	The
graph	may	 represent	 a	 small	version	of	 an	email	network.	 Imagine	a	 company
and	all	the	emails	that	go	back	and	forth.	Write	down	the	email	addresses	of	all
employees.	 Then,	 address	 by	 address,	 draw	 an	 arrow	 from	 the	 address	 to	 all
those	addresses	to	whom	the	owner	sends	emails	during	a	week.	This	is	how	you
would	 create	 the	directed	graph	 in	 figure	168,	 though	 it	might	 end	up	 looking
much	more	complex,	almost	impenetrable.

Figure	168:	A	directed	graph

In	 general,	 a	 graph	 consists	 of	 a	 collection	 of	 nodes	 and	 a	 collection	 of
edges,	which	connect	nodes.	 In	 a	directed	graph,	 the	 edges	 represent	one-way
connections	between	the	nodes;	in	an	undirected	graph,	the	edges	represent	two-
way	connections	between	the	nodes.	In	this	context,	the	following	is	a	common
type	of	problem:

Sample	 Problem	 Design	 an	 algorithm	 that	 proposes	 a	 way	 to
introduce	 one	 person	 to	 another	 in	 a	 directed	 email	 graph	 for	 a
large	 company.	 The	 program	 consumes	 a	 directed	 graph
representing	 established	 email	 connections	 and	 two	 email
addresses.	 It	 returns	 a	 sequence	 of	 email	 addresses	 that	 connect
the	first	email	with	the	second.

Mathematical	scientists	call	the	desired	sequence	a	path.
Figure	168	makes	the	sample	problem	concrete.	For	example,	you	may	wish

to	 test	whether	 the	 program	can	 find	 a	 path	 from	C	 to	D.	This	 particular	 path
consists	of	the	origination	node	C	and	the	destination	node	D.	In	contrast,	if	you
wish	to	connect	E	with	D,	there	are	two	paths:

•  send	email	from	E	to	F	and	then	to	D.

•  send	it	from	E	to	C	and	then	to	D.

Sometimes	 it	 is	 impossible	 to	 connect	 two	 nodes	with	 a	 path.	 In	 the	 graph	 of
figure	168,	you	cannot	move	from	C	to	G	by	following	the	arrows.

Looking	at	figure	168	you	can	easily	figure	out	how	to	get	from	one	node	to
another	without	thinking	much	about	how	you	did	it.	So	imagine	for	a	moment
that	the	graph	in	figure	168	is	a	large	park.	Also	imagine	someone	says	you	are
located	at	E	and	you	need	to	get	to	G.	You	can	clearly	see	two	paths,	one	leading
to	 C	 and	 another	 one	 leading	 to	 F.	 Follow	 the	 first	 one	 and	 make	 sure	 to
remember	 that	 it	 is	 also	 possible	 to	 get	 from	 E	 to	 F.	 Now	 you	 have	 a	 new
problem,	 namely,	 how	 to	 get	 from	C	 to	G.	 The	 key	 insight	 is	 that	 this	 new
problem	 is	 just	 like	 the	 original	 problem;	 it	 asks	 you	 to	 find	 a	 path	 from	 one
node	 to	another.	Furthermore,	 if	you	can	solve	 the	problem,	you	know	how	 to
get	from	E	to	G—just	add	the	step	from	E	to	C.	But	there	is	no	path	from	C	to	G.
Fortunately,	you	 remember	 that	 it	 is	 also	possible	 to	go	 from	E	 to	F,	meaning
you	can	backtrack	 to	some	point	where	you	have	a	choice	 to	make	and	 restart
the	search	from	there.

Now	 let’s	 design	 this	 algorithm	 in	 a	 systematic	 manner.	 Following	 the
general	design	recipe,	we	start	with	a	data	analysis.	Here	are	two	compact	 list-
based	representations	of	the	graph	in	figure	168:

Both	contain	one	list	per	node.	Each	of	these	lists	starts	with	the	name	of	a	node
followed	by	 its	 (immediate)	neighbors,	 that	 is,	nodes	 reachable	by	 following	a
single	arrow.	The	two	differ	in	how	they	connect	the	(name	of	the)	node	and	its
neighbors:	the	left	one	uses	list	while	the	right	one	uses	cons.	For	example,	the
second	 list	 represents	node	B	with	 its	 two	outgoing	edges	 to	E	and	F	 in	 figure
168.	On	the	left	'B	is	the	first	name	on	a	two-element	list;	on	the	right	it	is	the
first	name	on	a	three-element	list.

Exercise	 471.	 Translate	 one	 of	 the	 above	 definitions	 into	 proper	 list	 form
using	list	and	proper	symbols.

The	data	representation	for	nodes	is	straightforward:

;	A	Node	is	a	Symbol.

Formulate	 a	 data	 definition	 to	 describe	 the	 class	 of	 all	Graph	 representations,
allowing	 an	 arbitrary	 number	 of	 nodes	 and	 edges.	 Only	 one	 of	 the	 above
representations	has	to	belong	to	Graph.

Design	 the	 function	neighbors.	 It	 consumes	 a	Node	n	 and	 a	Graph	g	 and
produces	the	list	of	immediate	neighbors	of	n	in	g.	

Using	 your	 data	 definitions	 for	Node	 and	Graph—regardless	 of	which	 one
you	chose,	 as	 long	as	you	also	designed	neighbors—we	can	now	 formulate	 a
signature	 and	 a	 purpose	 statement	 for	 find-path,	 the	 function	 that	 searches	 a
path	in	a	graph:

;	Node	Node	Graph	->	[List-of	Node]	
;	finds	a	path	from	origination	to	destination	in	G	
(define	(find-path	origination	destination	G)	
		'())

What	this	header	leaves	open	is	the	exact	shape	of	the	result.	It	implies	that	the
result	is	a	list	of	nodes,	but	it	does	not	say	which	nodes	it	contains.

To	 appreciate	 this	 ambiguity	 and	why	 it	 matters,	 let’s	 study	 the	 examples
from	above.	In	ISL+,	we	can	now	formulate	them	like	this:

(find-path	'C	'D	sample-graph)	
(find-path	'E	'D	sample-graph)	
(find-path	'C	'G	sample-graph)

The	 first	 call	 to	 find-path	 must	 return	 a	 unique	 path,	 the	 second	 one	 must
choose	one	from	two,	and	the	third	one	must	signal	that	there	is	no	path	from	'C
to	'G	in	sample-graph.	Here	are	two	possibilities,	then,	on	how	to	construct	the
return	value:

•  The	 result	 of	 the	 function	 consists	 of	 all	 nodes	 leading	 from	 the
origination	node	 to	 the	destination	node,	 including	 those	 two.	 In	 this
case,	an	empty	path	could	be	used	 to	express	 the	 lack	of	a	path	between
two	nodes.

•  Alternatively,	since	the	call	itself	already	lists	two	of	the	nodes,	the	output
could	mention	only	 the	“interior”	nodes	of	 the	path.	Then	the	answer	for
the	first	call	would	be	'()	because	'D	is	an	immediate	neighbor	of	'C.	Of
course,	'()	could	then	no	longer	signal	failure.

It	is	easy	to	imagine	others,	such	as	skipping	either	of	the	two	given	nodes.

Concerning	 the	 lack-of-a-path	 issue,	 we	 must	 choose	 a	 distinct	 value	 for
signaling	 this	 notion.	 Because	 #false	 is	 distinct,	 is	meaningful,	 and	works	 in
either	case,	we	opt	for	it.	As	for	the	multiple-paths	issue,	we	postpone	making	a
choice	for	now	and	list	both	possibilities	in	the	example	section:

Our	 next	 design	 step	 is	 to	 understand	 the	 four	 essential	 pieces	 of	 the
function:	the	“trivial	problem”	condition,	a	matching	solution,	the	generation	of
a	 new	problem,	 and	 the	 combination	 step.	The	 above	 discussion	 of	 the	 search
process	and	the	analysis	of	the	three	examples	suggest	answers:

1.	If	 the	 two	given	nodes	are	directly	connected	with	an	arrow	in	 the	given
graph,	 the	 path	 consists	 of	 just	 these	 two	 nodes.	 But	 there	 is	 an	 even
simpler	 case,	 namely,	 when	 the	 origination	 argument	 of	 find-path	 is
equal	to	its	destination.

2.	In	that	second	case,	the	problem	is	truly	trivial	and	the	matching	answer	is
(list	destination).

3.	 If	 the	 arguments	 are	 different,	 the	 algorithm	must	 inspect	 all	 immediate
neighbors	of	origination	and	determine	whether	there	is	a	path	from	any
one	 of	 those	 to	 destination.	 In	 other	 words,	 picking	 one	 of	 those
neighbors	generates	a	new	instance	of	the	“find	a	path”	problem.

4.	Finally,	once	the	algorithm	has	a	path	from	a	neighbor	of	origination	to
destination,	it	is	easy	to	construct	a	complete	path	from	the	former	to	the
latter—just	add	the	origination	node	to	the	list.

From	 a	 programming	 perspective,	 the	 third	 point	 is	 critical.	 Since	 a	 node	 can
have	 an	 arbitrary	 number	 of	 neighbors,	 the	 “inspect	 all	 neighbors”	 task	 is	 too
complex	for	a	single	primitive.	We	need	an	auxiliary	function	 that	consumes	a
list	of	nodes	and	generates	a	new	path	problem	for	each	of	them.	Put	differently,
the	function	is	a	list-oriented	version	of	find-path.

Let’s	call	this	auxiliary	function	find-path/list	and	let’s	formulate	a	wish
for	it:

;	[List-of	Node]	Node	Graph	->	[Maybe	Path]	
;	finds	a	path	from	some	node	on	lo-originations	to	
;	destination;	otherwise,	it	produces	#false	
(define	(find-path/list	lo-originations	destination	G)	
		#false)

Using	 this	 wish,	 we	 can	 fill	 in	 the	 generic	 template	 for	 generative-recursive
functions	to	get	a	first	draft	of	find-path:

It	 uses	 the	 neighbors	 from	 exercise	 471	 and	 the	 wish-list	 function	 find-
path/list	and	otherwise	uses	the	answers	to	the	four	questions	about	generative
recursive	functions.

The	rest	of	the	design	process	is	about	details	of	composing	these	functions
properly.	 Consider	 the	 signature	 of	 find-path/list.	 Like	 find-path,	 it
produces	[Maybe	Path].	That	 is,	 if	 it	 finds	a	path	from	any	of	 the	neighbors,	 it
produces	 this	 path;	 otherwise,	 if	 none	 of	 the	 neighbors	 is	 connected	 to

destination,	 the	 function	 produces	 #false.	 Hence	 the	 answer	 of	 find-path
depends	on	the	kind	of	result	that	find-path/list	produces,	meaning	the	code
must	distinguish	the	two	possible	answers	with	a	cond	expression:

The	two	cases	reflect	the	two	kinds	of	answers	we	might	receive:	a	Boolean	or	a
list.	 In	 the	first	case,	find-path/list	cannot	 find	a	path	from	any	neighbor	 to
destination,	meaning	find-path	 itself	cannot	construct	such	a	path	either.	 In
the	 second	 case,	 the	 auxiliary	 function	 found	 a	 path,	 but	find-path	must	 still
add	origination	to	the	front	of	this	path	because	candidate	starts	with	one	of
origination’s	neighbors,	not	origination	itself	as	agreed	upon	above.

Figure	169	contains	the	complete	definition	of	find-path.	It	also	contains	a
definition	of	find-path/list,	which	processes	 its	 first	argument	via	 structural
recursion.	For	 each	node	 in	 the	 list,	find-path/list	 uses	find-path	 to	 check
for	 a	 path.	 If	 find-path	 indeed	 produces	 a	 path,	 that	 path	 is	 its	 answer.
Otherwise,	find-path/list	backtracks.

Figure	169:	Finding	a	path	in	a	graph

Note	 Chapter	 19.1	 discusses	 backtracking	 in	 the	 structural	 world.	 A
particularly	good	example	is	the	function	that	searches	blue-eyed	ancestors	in	a
family	tree.	When	the	function	encounters	a	node,	it	first	searches	one	branch	of
the	family	tree,	say	the	father’s,	and	if	this	search	produces	#false,	 it	searches
the	other	half.	Since	graphs	generalize	trees,	comparing	this	function	with	find-
path	is	an	instructive	exercise.	End

Lastly,	 we	 need	 to	 check	 whether	 find-path	 produces	 an	 answer	 for	 all
possible	inputs.	It	is	relatively	easy	to	check	that,	when	given	the	graph	in	figure
168	and	any	two	nodes	in	this	graph,	find-path	always	produces	some	answer.
Stop!	Solve	the	next	exercise	before	you	read	on.

Exercise	472.	Test	find-path.	Use	the	function	to	find	a	path	from	'A	to	'G
in	sample-graph.	Which	one	does	it	find?	Why?

Design	 test-on-all-nodes,	 a	 function	 that	 consumes	 a	 graph	 g	 and
determines	whether	there	is	a	path	between	any	pair	of	nodes.	

For	other	graphs,	however,	find-path	may	not	terminate	for	certain	pairs	of
nodes.	Consider	the	graph	in	figure	170.

Figure	170:	A	directed	graph	with	cycle

Stop!	Define	cyclic-graph	to	represent	the	graph	in	this	figure.
Compared	to	figure	168,	this	new	graph	contains	only	one	extra	edge,	from

C	 to	B.	This	 seemingly	small	addition,	 though,	allows	us	 to	 start	a	 search	 in	a
node	and	to	return	to	the	same	node.	Specifically,	it	is	possible	to	move	from	B
to	E	to	C	and	back	to	B.	Indeed,	when	find-path	is	applied	to	'B,	'D,	and	this
graph,	it	fails	to	stop,	as	a	hand-evaluation	confirms:

(find-path	'B	'D	cyclic-graph)	
==	..	(find-path	'B	'D	cyclic-graph)	..	
==	..	(find-path/list	(list	'E	'F)	'D	cyclic-graph)	..	
==	..	(find-path	'E	'D	cyclic-graph)	..	
==	..	(find-path/list	(list	'C	'F)	'D	cyclic-graph)	..	
==	..	(find-path	'C	'D	cyclic-graph)	..	
==	..	(find-path/list	(list	'B	'D)	'D	cyclic-graph)	..	
==	..	(find-path	'B	'D	cyclic-graph)	..

The	hand-evaluation	shows	that	after	seven	applications	of	find-path	and	find-
path/list,	 ISL+	must	 evaluate	 the	 exact	 same	 expression	 that	 it	 started	with.
Since	 the	 same	 input	 triggers	 the	 same	evaluation	 for	any	 function,	find-path
does	not	terminate	for	these	inputs.

In	summary,	the	termination	argument	goes	like	this.	If	some	given	graph	is
free	of	cycles,	find-path	produces	some	output	for	any	given	inputs.	After	all,
every	path	can	only	contain	a	finite	number	of	nodes,	and	the	number	of	paths	is
finite,	 too.	 The	 function	 therefore	 either	 exhaustively	 inspects	 all	 solutions
starting	 from	 some	 given	 node	 or	 finds	 a	 path	 from	 the	 origination	 to	 the
destination	node.	If,	however,	a	graph	contains	a	cycle,	that	is,	a	path	from	some

node	back	to	itself,	find-path	may	not	produce	a	result	for	some	inputs.

You	know	only	one	exception	to	this	rule:	random.

The	 next	 part	 presents	 a	 program	 design	 technique	 that	 addresses	 just	 this
kind	of	problem.	 In	particular,	 it	presents	a	variant	of	find-path	 that	can	deal
with	cycles	in	a	graph.

Exercise	473.	Test	find-path	on	'B,	'C,	and	the	graph	in	figure	170.	Also
use	test-on-all-nodes	from	exercise	472	on	this	graph.	

Exercise	474.	Redesign	the	find-path	program	as	a	single	function.	
Exercise	 475.	 Redesign	 find-path/list	 so	 that	 it	 uses	 an	 existing	 list

abstraction	from	figures	95	and	96	instead	of	explicit	structural	recursion.	Hint
Read	 the	 documentation	 for	 Racket’s	 ormap.	 How	 does	 it	 differ	 from	 ISL+'s
ormap	function?	Would	the	former	be	helpful	here?	

Note	 on	 Data	 Abstraction	 You	 may	 have	 noticed	 that	 the	 find-path
function	does	not	need	to	know	how	Graph	is	defined.	As	long	as	you	provide	a
correct	neighbors	function	for	Graph,	find-path	works	perfectly	fine.	In	short,
the	find-path	program	uses	data	abstraction.

As	part	 III	 says,	data	 abstraction	works	 just	 like	 function	abstraction.	Here
you	 could	 create	 a	 function	 abstract-find-path,	 which	 would	 consume	 one
more	 parameter	 than	 find-path:	 neighbors.	 As	 long	 as	 you	 always	 handed
abstract-find-path	 a	 graph	 G	 from	 Graph	 and	 the	 matching	 neighbors
function,	 it	 would	 process	 the	 graph	 properly.	 While	 the	 extra	 parameter
suggests	abstraction	in	the	conventional	sense,	the	required	relationship	between
two	 of	 the	 parameters—G	 and	 neighbors—really	means	 that	 abstract-find-
path	 is	 also	 abstracted	 over	 the	 definition	 of	Graph.	 Since	 the	 latter	 is	 a	 data
definition,	the	idea	is	dubbed	data	abstraction.

When	programs	grow	large,	data	abstraction	becomes	a	critical	 tool	 for	 the
construction	of	a	program’s	components.	The	next	volume	in	the	How	to	Design
series	 addresses	 this	 idea	 in	 depth;	 the	 next	 section	 illustrates	 the	 idea	 with
another	example.	End

Exercise	476.	Chapter	12.8	poses	a	problem	concerning	finite	state	machines
and	strings	but	immediately	defers	to	this	chapter	because	the	solution	calls	for
generative	 recursion.	You	have	now	acquired	 the	 design	knowledge	needed	 to
tackle	the	problem.

Design	 the	 function	 fsm-match.	 It	 consumes	 the	 data	 representation	 of	 a
finite	state	machine	and	a	string.	It	produces	#true	if	the	sequence	of	characters
in	the	string	causes	the	finite	state	machine	to	transition	from	an	initial	state	to	a
final	state.

Since	this	problem	is	about	the	design	of	generative	recursive	functions,	we
provide	the	essential	data	definition	and	a	data	example:

The	 data	 example	 corresponds	 to	 the	 regular	 expression	 a	 (b|c)*	 d.	 As
mentioned	in	exercise	109,	"acbd",	"ad",	and	"abcd"	are	examples	of	acceptable
strings;	"da",	"aa",	or	"d"	do	not	match.

In	this	context,	you	are	designing	the	following	function:

;	FSM	String	->	Boolean	
;	does	an-fsm	recognize	the	given	string	
(define	(fsm-match?	an-fsm	a-string)	
		#false)

Hint	Design	the	necessary	auxiliary	function	locally	to	the	fsm-match?	function.
In	this	context,	represent	the	problem	as	a	pair	of	parameters:	the	current	state	of
the	finite	state	machine	and	the	remaining	list	of	1Strings.	

We	thank	Mark	Engelberg	for	suggesting	this	exercise.

Exercise	477.	Inspect	the	function	definition	of	arrangements	in	figure	171.

The	 figure	 displays	 a	 generative-recursive	 solution	 of	 the	 extended	 design
problem	covered	by	chapter	12.4,	namely

given	a	word,	create	all	possible	rearrangements	of	the	letters.

Figure	171:	A	definition	of	arrangements	using	generative	recursion

The	extended	exercise	is	a	direct	guide	to	the	structurally	recursive	design	of	the
main	 function	 and	 two	 auxiliaries,	 where	 the	 design	 of	 the	 latter	 requires	 the
creation	of	two	more	helper	functions.	In	contrast,	figure	171	uses	the	power	of
generative	 recursion—plus	 foldr	 and	 map—to	 define	 the	 same	 program	 as	 a
single	function	definition.

Explain	 the	 design	 of	 the	 generative-recursive	 version	 of	 arrangements.
Answer	 all	 questions	 that	 the	 design	 recipe	 for	 generative	 recursion	 poses,
including	the	question	of	termination.

Does	 arrangements	 in	 figure	 171	 create	 the	 same	 lists	 as	 the	 solution	 of
chapter	12.4?	

29.2 Project:	Backtracking
The	 n	 queens	 puzzle	 is	 a	 famous	 problem	 from	 the	 world	 of	 chess	 that	 also
illustrates	the	applicability	of	backtracking	in	a	natural	way.	For	our	purposes,	a
chess	board	is	a	grid	of	n	by	n	squares.	The	queen	is	a	game	piece	that	can	move
in	a	horizontal,	vertical,	or	diagonal	direction	arbitrarily	 far	without	“jumping”
over	another	piece.	We	say	that	a	queen	threatens	a	square	if	it	is	on	the	square
or	can	move	 to	 it.	Figure	172	 illustrates	 the	notion	 in	a	graphical	manner.	The
queen	is	in	the	second	column	and	sixth	row.	The	solid	lines	radiating	out	from
the	queen	go	through	all	those	squares	that	are	threatened	by	the	queen.

Figure	172:	A	chess	board	with	a	single	queen	and	the	positions	it	threatens

We	thank	Mark	Engelberg	for	his	reformulation	of	this	section.

The	classical	queens	problem	is	to	place	8	queens	on	an	8	by	8	chess	board
such	that	the	queens	on	the	board	don’t	threaten	each	other.	Computer	scientists
generalize	the	problem	and	ask	whether	it	is	possible	to	place	n	queens	on	a	n	by
n,	chess	board	such	that	the	queens	don’t	pose	a	threat	to	each	other.

For	n	=	2,	the	complete	puzzle	obviously	has	no	solution.	A	queen	placed	on
any	of	the	four	squares	threatens	all	remaining	squares.

There	 is	 also	 no	 solution	 for	 n	 =	 3.	 Figure	 173	 presents	 all	 different
placements	of	two	queens,	that	is,	solutions	for	k	=	3	and	n	=	2.	In	each	case,	the
left	queen	occupies	a	square	in	the	left	column	while	a	second	queen	is	placed	in
one	 of	 two	 squares	 that	 the	 first	 one	 does	 not	 threaten.	 The	 placement	 of	 a
second	 queen	 threatens	 all	 remaining,	 unoccupied	 squares,	 meaning	 it	 is

impossible	to	place	a	third	queen.

Figure	173:	Three	queen	configurations	for	a	3	by	3	chess	board

Exercise	 478.	You	can	also	place	 the	 first	 queen	 in	 all	 squares	of	 the	 top-
most	row,	the	right-most	column,	and	the	bottom-most	row.	Explain	why	all	of
these	solutions	are	just	like	the	three	scenarios	depicted	in	figure	173.

This	 leaves	 the	 central	 square.	 Is	 it	 possible	 to	 place	 even	 a	 second	 queen
after	you	place	one	on	the	central	square	of	a	3	by	3	board?	

Figure	174	displays	two	solutions	for	the	n	queens	puzzle:	the	left	one	is	for
n	=	4,	the	right	one	for	n	=	5.	The	figure	shows	how	in	each	case	a	solution	has
one	 queen	 in	 each	 row	 and	 column,	 which	 makes	 sense	 because	 a	 queen
threatens	the	entire	row	and	column	that	radiate	out	from	its	square.

Figure	174:	Solutions	for	the	n	queens	puzzle	for	4	by	4	and	5	by	5	boards

Now	that	we	have	conducted	a	sufficiently	detailed	analysis,	we	can	proceed
to	the	solution	phase.	The	analysis	suggests	several	ideas:

1.	The	problem	is	about	placing	one	queen	at	a	time.	When	we	place	a	queen
on	a	board,	we	can	mark	the	corresponding	rows,	columns,	and	diagonals
as	unusable	for	other	queens.

2.	For	another	queen,	we	consider	only	nonthreatened	spots.

3.	Just	in	case	this	first	choice	of	a	spot	leads	to	problems	later,	we	remember
what	other	squares	are	feasible	for	placing	this	queen.

4.	If	we	are	supposed	to	place	a	queen	on	a	board	but	no	safe	squares	are	left,
we	backtrack	to	a	previous	point	in	the	process	where	we	chose	one	square
over	another	and	try	one	of	the	remaining	squares.

In	short,	this	solution	process	is	like	the	“find	a	path”	algorithm.
Moving	from	the	process	description	to	a	designed	algorithm	clearly	calls	for

two	data	representations:	one	for	 the	chess	boards	and	one	for	positions	on	the
board.	Let’s	start	with	the	latter:

(define	QUEENS	8)	
;	A	QP	is	a	structure:	
;			(make-posn	CI	CI)	
;	A	CI	is	an	N	in	[0,QUEENS).	
;	interpretation	(make-posn	r	c)	denotes	the	square	at	
;	the	r-th	row	and	c-th	column

After	all,	the	chess	board	basically	dictates	the	choice.
The	definition	for	CI	could	use	[1,QUEENS]	instead	of	[0,	QUEENS),	but	the	two

definitions	are	basically	equivalent	and	counting	up	from	0	is	what	programmers
do.	Similarly,	the	so-called	algebraic	notation	for	chess	positions	uses	the	letters
'a	 through	'h	for	one	of	the	board’s	dimensions,	meaning	QP	could	have	used
CIs	 and	 such	 letters.	 Again,	 the	 two	 are	 roughly	 equivalent	 and	 with	 natural
numbers	it	is	easier	in	ISL+	to	create	many	positions	than	with	letters.

Exercise	479.	Design	the	threatening?	function.	It	consumes	two	QPs	and
determines	whether	queens	placed	on	the	two	respective	squares	would	threaten
each	other.

Domain	Knowledge	(1)	Study	figure	172.	The	queen	in	this	figure	threatens
all	squares	on	the	horizontal,	 the	vertical,	and	the	diagonal	lines.	Conversely,	a
queen	on	any	square	on	these	lines	threatens	the	queen.

(2)	 Translate	 your	 insights	 into	 mathematical	 conditions	 that	 relate	 the
squares’	coordinates	to	each	other.	For	example,	all	squares	on	a	horizontal	have
the	same	y-coordinate.	Similarly,	all	 squares	on	one	diagonal	have	coordinates
whose	 sums	 are	 the	 same.	Which	diagonal	 is	 that?	For	 the	other	 diagonal,	 the

differences	between	the	two	coordinates	remain	the	same.	Which	diagonal	does
this	idea	describe?

Hint	 Once	 you	 have	 figured	 out	 the	 domain	 knowledge,	 formulate	 a	 test
suite	 that	 covers	 horizontals,	 verticals,	 and	 diagonals.	 Don’t	 forget	 to	 include
arguments	for	which	threatening?	must	produce	#false.	

Exercise	 480.	 Design	 render-queens.	 The	 function	 consumes	 a	 natural
number	n,	a	list	of	QPs,	and	an	Image.	It	produces	an	image	of	an	n	by	n	chess
board	with	the	given	image	placed	according	to	the	given	QPs.

You	may	wish	 to	 look	 for	 an	 image	 for	 a	 chess	 queen	 on-line	 or	 create	 a
simplistic	one	with	the	available	image	functions.	

As	for	a	data	representation	for	Boards,	we	postpone	this	step	until	we	know
how	the	algorithm	implements	the	process.	Doing	so	is	another	exercise	in	data
abstraction.	Indeed,	a	data	definition	for	Board	isn’t	even	necessary	to	state	the
signature	for	the	algorithm	proper:

The	 complete	 puzzle	 is	 about	 finding	 a	 placement	 for	n	 queens	 on	 an	n	 by	n
chess	 board.	 So	 clearly,	 the	 algorithm	 consumes	 nothing	 else	 but	 a	 natural
number,	 and	 it	 produces	 a	 representation	 for	 the	 n	 queen	 placements—if	 a
solution	exists.	The	latter	can	be	represented	with	a	list	of	QPs,	which	is	why	we
choose

;	[List-of	QP]	or	#false

as	the	result.	Naturally,	#false	represents	the	failure	to	find	a	solution.
The	 next	 step	 is	 to	 develop	 examples	 and	 to	 formulate	 them	 as	 tests.	We

know	that	n-queens	must	fail	when	given	2	or	3.	For	4,	there	are	two	solutions

with	real	boards	and	four	identical	queens.	Figure	174	shows	one	of	them,	on	the
left,	and	the	other	one	is	this:

In	 terms	 of	 data	 representations,	 however,	 there	 are	 many	 different	 ways	 to
represent	these	two	images.	Figure	175	sketches	some.	Fill	in	the	rest.

Figure	175:	Solutions	for	the	4	queens	puzzle

Exercise	481.	The	tests	in	figure	175	are	awful.	No	real-world	programmer
ever	spells	out	all	these	possible	outcomes.

One	 solution	 is	 to	 use	 property	 testing	 again.	 Design	 the	 n-queens-
solution?	 function,	 which	 consumes	 a	 natural	 number	 n	 and	 produces	 a
predicate	on	queen	placements	 that	determines	whether	a	given	placement	 is	a
solution	to	an	n	queens	puzzle:

•  A	solution	for	an	n	queens	puzzle	must	have	length	n.

•  A	QP	on	such	a	list	may	not	threaten	any	other,	distinct	QP.

Once	you	have	 tested	 this	 predicate,	 use	 it	 and	check-satisfied	 to	 formulate
the	tests	for	n-queens.

An	alternative	solution	 is	 to	understand	the	 lists	of	QPs	as	sets.	 If	 two	lists
contain	 the	 same	 QPs	 in	 different	 order,	 they	 are	 equivalent	 as	 the	 figure
suggests.	Hence	you	could	formulate	the	test	for	n-queens	as

Design	 the	 function	set=?.	 It	 consumes	 two	 lists	 and	determines	whether	 they
contain	the	same	items—regardless	of	order.	

Exercise	482.	The	key	idea	to	is	to	design	a	function	that	places	n	queens	on
a	chess	board	that	may	already	contain	some	queens:

;	Board	N	->	[Maybe	[List-of	QP]]	
;	places	n	queens	on	board;	otherwise,	returns	#false	
(define	(place-queens	a-board	n)	
		#false)

Figure	175	already	refers	to	this	function	in	the	definition	of	n-queens.
Design	 the	 place-queens	 algorithm.	 Assume	 you	 have	 the	 following

functions	to	deal	with	Boards:

;	N	->	Board	
;	creates	the	initial	n	by	n	board	
(define	(board0	n)	…)	

;	Board	QP	->	Board	
;	places	a	queen	at	qp	on	a-board	
(define	(add-queen	a-board	qp)	

		a-board)	

;	Board	->	[List-of	QP]	
;	finds	spots	where	it	is	still	safe	to	place	a	queen	
(define	(find-open-spots	a-board)	
		'())

The	first	function	is	used	in	figure	175	to	create	the	initial	board	representation
for	place-queens.	You	will	need	the	other	two	to	describe	the	generative	steps
for	the	algorithm.	

You	cannot	 confirm	yet	 that	your	 solution	 to	 the	preceding	exercise	works
because	 it	 relies	 on	 an	 extensive	wish	 list.	 It	 calls	 for	 a	 data	 representation	 of
Boards	 that	 supports	 the	 three	 functions	 on	 the	 wish	 list.	 This,	 then,	 is	 your
remaining	problem.

Exercise	 483.	 Develop	 a	 data	 definition	 for	 Board	 and	 design	 the	 three
functions	specified	in	exercise	482.	Consider	the	following	ideas:

•  a	Board	collects	those	positions	where	a	queen	can	still	be	placed;

•  a	Board	contains	the	list	of	positions	where	a	queen	has	been	placed;

•  a	Board	is	a	grid	of	n	by	n	squares,	each	possibly	occupied	by	a	queen.	Use
a	structure	with	three	fields	to	represent	a	square:	one	for	x,	one	for	y,	and
a	third	one	saying	whether	the	square	is	threatened.

Use	one	of	the	above	ideas	to	solve	this	exercise.
Challenge	 Use	 all	 three	 ideas	 to	 come	 up	 with	 three	 different	 data

representations	of	Board.	Abstract	your	solution	to	exercise	482	and	confirm	that
it	works	with	any	of	your	data	representations	of	Board.	

30 Summary
This	 fifth	part	of	 the	book	 introduces	 the	 idea	of	eureka!	 into	program	design.
Unlike	the	structural	design	of	the	first	four	parts,	eureka!	design	starts	from	an
idea	of	how	the	program	should	solve	a	problem	or	process	data	that	represents	a
problem.	Designing	here	means	coming	up	with	a	clever	way	to	call	a	recursive
function	on	a	new	kind	of	problem	that	is	like	the	given	one	but	simpler.

Keep	 in	 mind	 that	 while	 we	 have	 dubbed	 it	 generative	 recursion,	 most
computer	scientists	refer	to	these	functions	as	algorithms.

Once	 you	 have	 completed	 this	 part	 of	 the	 book,	 you	 will	 understand	 the
following	about	the	design	of	generative	recursion:

1.	The	standard	outline	of	the	design	recipe	remains	valid.

2.	 The	 major	 change	 concerns	 the	 coding	 step.	 It	 introduces	 four	 new
questions	 on	 going	 from	 the	 completely	 generic	 template	 for	 generative
recursion	 to	a	complete	 function.	With	 two	of	 these	questions,	you	work
out	the	“trivial”	parts	of	the	solution	process;	and	with	the	other	two	you
work	out	the	generative	solution	step.

3.	 The	 minor	 change	 is	 about	 the	 termination	 behavior	 of	 generative
recursive	 functions.	 Unlike	 structurally	 designed	 functions,	 algorithms
may	not	terminate	for	some	inputs.	This	problem	might	be	due	to	inherent
limitations	in	the	idea	or	the	translation	of	the	idea	into	code.	Regardless,
the	 future	 reader	 of	 your	 program	 deserves	 a	 warning	 about	 potentially
“bad”	inputs.

You	 will	 encounter	 some	 simple	 or	 well-known	 algorithms	 in	 your	 real-
world	 programming	 tasks,	 and	 you	will	 be	 expected	 to	 cope.	 For	 truly	 clever
algorithms,	software	companies	employ	highly	paid	specialists,	domain	experts,
and	 mathematicians	 to	 work	 out	 the	 conceptual	 details	 before	 they	 ask
programmers	to	turn	the	concepts	into	programs.	You	must	also	be	prepared	for
this	kind	of	task,	and	the	best	preparation	is	practice.

	

INTERMEZZO	5:	THE	COST	OF
COMPUTATION

What	do	you	know	about	program	f	once	the	following	tests	succeed:

(check-expect	(f	0)	0)	
(check-expect	(f	1)	1)	
(check-expect	(f	2)	8)

If	this	question	showed	up	on	a	standard	test,	you	might	respond	with	this:

(define	(f	x)	(expt	x	3))

But	nothing	speaks	against	the	following:

(define	(f	x)	(if	(=	x	2)	8	(*	x	x)))

Tests	tell	you	only	that	a	program	works	as	expected	on	some	inputs.
In	the	same	spirit,	timing	the	evaluation	of	a	program	application	for	specific

inputs	tells	you	how	long	it	takes	to	compute	the	answers	for	those	inputs—and
nothing	 else.	You	may	have	 two	programs—prog-linear	 and	prog-square—
that	compute	the	same	answers	when	given	the	same	inputs,	and	you	may	find
that	for	all	chosen	inputs,	prog-linear	always	computes	the	answer	faster	than
prog-square.	 Chapter	 26.4	 presents	 just	 such	 a	 pair	 of	 programs:	 gcd,	 a
structurally	 recursive	 program,	 and	 gcd-generative,	 an	 equivalent	 but
generative-recursive	program.	The	timing	comparison	suggests	 that	 the	latter	 is
much	faster	than	the	former.

You	may	also	wish	to	reread	chapter	16.2	and	the	discussion	of	integrity	checks	in	chapter	23.7.

You	may	also	wish	to	reread	chapter	16.2	and	the	discussion	of	integrity	checks	in	chapter	23.7.

How	confident	are	you	 that	you	wish	 to	use	prog-linear	 instead	of	prog-
square?	Consider	 the	graph	 in	figure	176.	 In	 this	graph,	 the	x-axis	 records	 the
size	 of	 the	 input—say,	 the	 length	 of	 a	 list—and	 the	 y-axis	 records	 the	 time	 it
takes	 to	 compute	 the	 answer	 for	 an	 input	 of	 a	 specific	 size.	 Assume	 that	 the
straight	 line	 represents	 the	 running	 time	of	prog-linear	 and	 the	 curved	graph
represents	 prog-square.	 In	 the	 shaded	 region,	 prog-linear	 takes	 more	 time
than	prog-square,	but	at	the	edge	of	this	region	the	two	graphs	cross,	and	to	its
right	the	performance	of	prog-square	is	worse	than	that	of	prog-linear.	If,	for
whatever	reasons,	you	had	evaluated	the	performance	of	prog-linear	and	prog-
square	only	for	input	sizes	in	the	shaded	region	and	if	your	clients	were	to	run
your	program	mostly	on	inputs	that	fall	in	the	nonshaded	region,	you	would	be
delivering	the	wrong	program.

Figure	176:	A	comparison	of	two	running	time	expressions

This	 intermezzo	 introduces	 the	 idea	 of	 algorithmic	 analysis,	 which	 allows
programmers	 to	 make	 general	 statements	 about	 a	 program’s	 performance	 and

everyone	 else	 about	 the	 growth	 of	 a	 function.	 Any	 serious	 programmer	 and
scientist	must	eventually	become	 thoroughly	 familiar	with	 this	notion.	 It	 is	 the
basis	for	analyzing	performance	attributes	of	programs.	To	understand	the	 idea
properly,	you	will	need	to	work	through	a	text	book.

We	thank	Prabhakar	Ragde	for	sharing	his	notes	on	connecting	the	first	edition	of	this	book	with
algorithmic	analysis.

Concrete	Time,	Abstract	Time
Chapter	 26.4	 compares	 the	 running	 time	 of	 gcd	 and	 gcd-generative.	 In
addition,	it	argues	that	the	latter	is	better	because	it	always	uses	fewer	recursive
steps	 than	 the	 former	 to	 compute	 an	 answer.	We	 use	 this	 idea	 as	 the	 starting
point	to	analyze	the	performance	of	how-many,	a	simple	program	from	chapter	9:

(define	(how-many	a-list)	
		(cond	
				[(empty?	a-list)	0]	
				[else	(+	(how-many	(rest	a-list))	1)]))

Suppose	we	want	to	know	how	long	it	takes	to	compute	the	length	of	some
unknown,	non-empty	list.	Using	the	rules	of	computation	from	intermezzo	1,	we
can	look	at	this	process	as	a	series	of	algebraic	manipulations:

(how-many	some-non-empty-list)	
==	
(cond	
		[(empty?	some-non-empty-list)	0]	
		[else	(+	(how-many	(rest	some-non-empty-list))	1)])	
==	
(cond	
		[#false	0]	
		[else	(+	(how-many	(rest	some-non-empty-list))	1)])	
==	
(cond	
		[else	(+	(how-many	(rest	some-non-empty-list))	1)])	
==	

(+	(how-many	(rest	some-non-empty-list))	1)

The	first	step	is	to	replace	a-list	in	the	definition	of	how-many	with	the	actual
argument,	some-non-empty-list,	which	 yields	 the	 first	cond	 expression.	Next
we	must	evaluate

(empty?	some-non-empty-list)

By	 assumption	 the	 result	 is	 #false.	 The	 question	 is	 how	 long	 it	 takes	 to
determine	this	result.	While	we	don’t	know	the	precise	amount	of	time,	it	is	safe
to	say	that	checking	on	the	constructor	of	a	list	takes	a	small	and	fixed	amount	of
time.	 Indeed,	 this	 assumption	 also	 holds	 for	 the	 next	 step,	 when	 cond	 checks
what	the	value	of	the	first	condition	is.	Since	it	 is	#false,	 the	first	cond	 line	is
dropped.	Checking	whether	 a	cond	 line	 starts	with	else	 is	 equally	 fast,	which
means	we	are	left	with

(+	(how-many	(rest	some-non-empty-list))	1)

Finally	we	may	 safely	 assume	 that	rest	 extracts	 the	 remainder	of	 the	 list	 in	 a
fixed	amount	of	time,	but	otherwise	it	looks	like	we	are	stuck.	To	compute	how
long	how-many	takes	to	determine	the	length	of	some	list,	we	need	to	know	how
long	how-many	takes	to	count	the	number	of	items	in	the	rest	of	that	list.

Alternatively,	 if	 we	 assume	 that	 predicates	 and	 selectors	 take	 some	 fixed
amount	 of	 time,	 the	 time	 it	 takes	 how-many	 to	 determine	 the	 length	 of	 a	 list
depends	 on	 the	 number	 of	 recursive	 steps	 it	 takes.	 Somewhat	more	 precisely,
evaluating	 (how-many	 some-list)	 takes	 roughly	 n	 times	 some	 fixed	 amount
where	 n	 is	 the	 length	 of	 the	 list	 or,	 equivalently,	 the	 number	 of	 times	 the
program	recurs.

Generalizing	 from	 this	 example	 suggests	 that	 the	 running	 time	depends	 on
the	size	of	the	input	and	that	the	number	of	recursive	steps	is	a	good	estimate	for
the	length	of	an	evaluation	sequence.	For	this	reason,	computer	scientists	discuss
the	abstract	running	time	of	a	program	as	a	relationship	between	the	size	of	the
input	and	 the	number	of	 recursive	 steps	 in	an	evaluation.	 In	our	 first	 example,
the	size	of	the	input	is	the	number	of	items	on	the	list.	Thus,	a	list	of	one	item
requires	one	recursive	step,	a	list	of	two	needs	two	steps,	and	for	a	list	of	n	items,
it’s	n	steps.

“Abstract”	because	the	measure	ignores	the	details	of	how	much	time	primitive	steps	take.

Computer	 scientists	 use	 the	 phrase	 a	 program	 f	 takes	 “on	 the	 order	 of	 n
steps”	 to	 formulate	 a	 claim	 about	 the	 abstract	 running	 time	 of	 f.	 To	 use	 the
phrase	correctly,	it	must	come	with	an	explanation	of	n,	for	example,	“it	counts
the	number	of	items	on	the	given	list”	or	“it	is	the	number	of	digits	in	the	given
number.”	 Without	 such	 an	 explanation,	 the	 original	 phrase	 is	 actually
meaningless.

Not	all	programs	have	the	kind	of	simple	abstract	running	time	as	how-many.
Take	a	look	at	the	first	recursive	program	in	this	book:

For	a	list	that	starts	with	'flatt,	say,

(contains-flatt?	
		(list	'flatt	'robot	'ball	'game-boy	'pokemon))

the	program	requires	no	recursive	steps.	In	contrast,	if	'flatt	occurs	at	the	end
of	the	list,	as	in,

(contains-flatt?	
		(list	'robot	'ball	'game-boy	'pokemon	'flatt))

the	evaluation	needs	as	many	recursive	steps	as	there	are	items	in	the	list.
This	 second	 analysis	 brings	 us	 to	 the	 second	 important	 idea	 of	 program

analysis,	namely,	the	kind	of	analysis	that	is	performed:

•  A	best-case	analysis	focuses	on	the	class	of	inputs	for	which	the	program
can	easily	find	 the	answer.	 In	our	running	example,	a	 list	 that	starts	with
'flatt	is	the	best	kind	of	input.

•  In	 turn,	 a	worst-case	analysis	 determines	how	badly	a	program	performs
for	those	inputs	that	stress	it	most.	The	contains-flatt?	function	exhibits
its	worst	performance	when	'flatt	is	at	the	end	of	the	input	list.

•  Finally,	an	average	analysis	starts	from	the	ideas	that	programmers	cannot
assume	that	inputs	are	always	of	the	best	possible	shape	and	that	they	must
hope	 that	 the	 inputs	 are	 not	 of	 the	worst	 possible	 shape.	 In	many	 cases,
they	 must	 estimate	 the	 average	 time	 a	 program	 takes.	 For	 example,
contains-flatt?	finds,	on	the	average,	'flatt	somewhere	in	the	middle
of	the	input	list.	Thus,	if	the	latter	consists	of	n	items,	the	average	running
time	of	contains-flatt?	is	n/2,	that	is,	it	recurs	half	as	often	as	there	are
items	on	the	input.

Computer	 scientists	 therefore	 usually	 employ	 the	 “on	 the	 order	 of”	 phrase	 in
conjunction	with	“on	the	average”	or	“in	the	worst	case.”

Returning	to	the	idea	that	contains-flatt?	uses,	on	the	average,	an	“order
of	 n/2	 steps”	 brings	 us	 to	 one	 more	 characteristic	 of	 abstract	 running	 time.
Because	it	ignores	the	exact	time	it	takes	to	evaluate	primitive	computation	steps
—checking	predicates,	selecting	values,	picking	cond	clauses—we	can	drop	the
division	by	2.	Here	is	why.	By	assumption,	each	basic	step	takes	k	units	of	time,
meaning	contains-flatt?	takes	time

If	you	had	a	newer	computer,	these	basic	computations	may	run	twice	as	fast,	in
which	 case	 we	 would	 use	 k/2	 as	 the	 constant	 for	 basic	 work.	 Let’s	 call	 this
constant	c	and	calculate:

that	is,	the	abstract	running	time	is	always	n	multiplied	by	a	constant,	and	that’s
all	that	matters	to	say	“on	the	order	of	n.”

Now	consider	our	sorting	program	from	figure	72.	Here	is	a	hand-evaluation
for	a	small	input,	listing	all	recursive	steps:

(sort	(list	3	1	2))	

==	(insert	3	(sort	(list	1	2)))	
==	(insert	3	(insert	1	(sort	(list	2))))	
==	(insert	3	(insert	1	(insert	2	(sort	'()))))	
==	(insert	3	(insert	1	(insert	2	'())))	
==	(insert	3	(insert	1	(list	2)))	
==	(insert	3	(cons	2	(insert	1	'())))	
==	(insert	3	(list	2	1))	
==	(insert	3	(list	2	1))	
==	(list	3	2	1)

The	 evaluation	 shows	how	sort	 traverses	 the	 given	 list	 and	how	 it	 sets	 up	 an
application	of	insert	for	each	number	in	the	list.	Put	differently,	sort	is	a	two-
phase	program.	During	the	first	one,	the	recursive	steps	for	sort	set	up	as	many
applications	 of	insert	 as	 there	 are	 items	 in	 the	 list.	During	 the	 second	phase,
each	application	of	insert	traverses	a	sorted	list.

Inserting	 an	 item	 is	 similar	 to	 finding	 one,	 so	 it	 is	 not	 surprising	 that	 the
performance	 of	 insert	 and	 contains-flatt?	 are	 alike.	 The	 applications	 of
insert	 to	 a	 list	 of	 l	 items	 triggers	 between	 0	 and	 l	 recursive	 steps.	 On	 the
average,	we	assume	it	requires	l/2,	which	means	that	insert	takes	“on	the	order
of	l	steps”	where	l	is	the	length	of	the	given	list.

The	 question	 is	 how	 long	 these	 lists	 are	 to	 which	 insert	 adds	 numbers.
Generalizing	 from	the	above	calculation,	we	can	see	 that	 the	 first	one	 is	n	−	1
items	long,	the	second	one	n	−	2,	and	so	on,	all	the	way	down	to	the	empty	list.
Hence,	we	get	that	insert	performs

meaning

represents	the	best	“guess”	at	the	average	number	of	insertion	steps.	In	this	last
term,	n2	is	the	dominant	factor,	and	so	we	say	that	a	sorting	process	takes	“on	the
order	of	n2	steps.”	Exercise	486	ask	you	to	argue	why	it	is	correct	to	simplify	this
claim	in	this	way.

See	exercise	486	for	why	this	is	the	case.
We	 can	 also	 proceed	 with	 less	 formalism	 and	 rigor.	 Because	 sort	 uses

insert	once	per	item	on	the	list,	we	get	an	“order	of	n”	insert	steps	where	n	is
the	 size	 of	 the	 list.	 Since	 insert	 needs	 n/2	 steps,	 we	 now	 see	 that	 a	 sorting
process	needs	n	·	n/2	steps	or	“on	the	order	of	n2.”

Totaling	 it	 all	 up,	we	get	 that	sort	 takes	on	 the	 “order	of	n	 steps”	plus	n2
recursive	steps	in	insert	for	a	list	of	n	items,	which	yields

steps.	 See	 again	 exercise	 486	 for	 details.	 Note	 This	 analysis	 assumes	 that
comparing	two	items	on	the	list	takes	a	fixed	amount	of	time.	End

Our	final	example	is	the	inf	program	from	chapter	16.2:

Let’s	start	with	a	small	input:	(list	3	2	1	0).	We	know	that	the	result	is	0.
Here	is	the	first	important	step	of	a	hand-evaluation:

From	here,	we	must	evaluate	the	first	recursive	call.	Because	the	result	is	0	and
the	condition	is	 thus	#false,	we	must	evaluate	the	recursion	in	the	else-branch
as	well.

Once	we	do	so,	we	see	two	evaluations	of	(inf	(list	1	0)):

(inf	(list	2	1	0))	

==	
(if	(<	2	(inf	(list	1	0)))	2	(inf	(list	1	0)))

At	this	point	we	can	generalize	the	pattern	and	summarize	it	in	a	table:

In	total,	the	hand-evaluation	requires	eight	recursive	steps	for	a	list	of	four	items.
If	we	added	4	to	the	front	of	the	list,	we	would	double	the	number	of	recursive
steps	again.	Speaking	algebraically,	inf	needs	on	the	order	of	2n	recursive	steps
for	a	list	of	n	numbers	when	the	last	number	is	 the	maximum,	which	is	clearly
the	worst	case	for	inf.

Stop!	 If	 you	 paid	 close	 attention,	 you	 know	 that	 the	 above	 suggestion	 is
sloppy.	 The	 inf	 program	 really	 just	 needs	 2n−1	 recursive	 steps	 for	 a	 list	 of	 n
items.	What	is	going	on?

Remember	that	we	don’t	really	measure	the	exact	time	when	we	say	“on	the
order	 of.”	 Instead	 we	 skip	 over	 all	 built-in	 predicates,	 selectors,	 constructors,
arithmetic,	 and	 so	 on	 and	 focus	 on	 recursive	 steps	 only.	 Now	 consider	 this
calculation:

It	shows	that	2n−1	and	2n	differ	by	a	small	factor:	2,	meaning	“on	the	order	of	2n−1
steps”	describes	inf	in	a	world	where	all	basic	operations	provided	by	*SL	run	at
half	 the	 speed	when	compared	 to	an	inf	program	 that	 runs	at	 “the	order	of	2n
steps.”	 In	 this	 sense,	 the	 two	 expressions	 really	 mean	 the	 same	 thing.	 The
question	is	what	exactly	they	mean,	and	that	is	the	subject	of	the	next	section.

Exercise	 484.	While	 a	 list	 sorted	 in	 descending	 order	 is	 clearly	 the	worst
possible	input	for	inf,	the	analysis	of	inf’s	abstract	running	time	explains	why
the	 rewrite	 of	 inf	 with	 local	 reduces	 the	 running	 time.	 For	 convenience,	we
replicate	this	version	here:

Hand-evaluate	 (infL	 (list	 3	 2	 1	 0)).	 Then	 argue	 that	 infL	 uses	 on	 the
“order	of	n	steps”	in	the	best	and	the	worst	case.	You	may	now	wish	to	revisit
exercise	261,	which	asks	you	to	explore	a	similar	problem.	

Exercise	 485.	A	number	 tree	 is	 either	a	number	or	a	pair	of	number	 trees.
Design	sum-tree,	which	determines	the	sum	of	the	numbers	in	a	tree.	What	is	its
abstract	running	time?	What	is	an	acceptable	measure	of	the	size	of	such	a	tree?
What	is	the	worst	possible	shape	of	the	tree?	What’s	the	best	possible	shape?	

The	Definition	of	“On	the	Order	Of”
The	 preceding	 section	 alluded	 to	 all	 the	 key	 ingredients	 of	 the	 phrase	 “on	 the
order	of.”	Now	it	is	time	to	introduce	a	rigorous	description	of	the	phrase.	Let’s
start	with	the	two	ideas	that	the	preceding	section	develops:

1.	The	 abstract	measurement	 of	 performance	 is	 a	 relationship	 between	 two
quantities:	the	size	of	the	input	and	the	number	of	recursive	steps	needed
to	 determine	 the	 answer.	 The	 relationship	 is	 actually	 a	 mathematical
function	 that	maps	 one	 natural	 number	 (the	 size	 of	 the	 input)	 to	 another
(the	time	needed).

2.	 Hence,	 a	 general	 statement	 about	 the	 performance	 of	 a	 program	 is	 a
statement	 about	 a	 function,	 and	a	 comparison	of	 the	performance	of	 two
programs	calls	for	the	comparison	of	two	such	functions.

How	do	you	decide	whether	one	such	function	is	“better”	than	another?

Exercise	245	tackles	a	different	question,	namely,	whether	we	can	formulate	a	program	that	decides
whether	two	other	programs	are	equal.	In	this	intermezzo,	we	are	not	writing	a	program;	we	are
using	plain	mathematical	arguments.

Let’s	 return	 to	 the	 imaginary	programs	from	the	 introduction:	prog-linear
and	prog-square.	They	compute	the	same	results	but	their	performance	differs.

The	prog-linear	program	requires	“on	the	order	of	n	steps”	while	prog-square
uses	 “on	 the	 order	 of	 n2	 steps.”	 Mathematically	 speaking,	 the	 performance
function	for	prog-linear	is

and	prog-square’s	associated	performance	function	is

In	these	definitions,	cL	is	the	cost	for	each	recursive	step	in	prog-square	and	cS
is	the	cost	per	step	in	prog-linear.

Say	we	 figure	 out	 that	 cL	 =	 1000	 and	 cS	 =	 1.	 Then	we	 can	 tabulate	 these
abstract	running	times	to	make	the	comparison	concrete:

Like	the	graphs	in	figure	176,	the	table	at	first	seems	to	say	that	prog-square	is
better	 than	prog-linear,	because	for	 inputs	of	 the	same	size	n,	prog-square’s
result	 is	 smaller	 than	prog-linear’s.	But	 look	 at	 the	 last	 column	 in	 the	 table.
Once	the	inputs	are	sufficiently	large,	prog-square’s	advantage	decreases	until
it	disappears	at	an	input	size	of	1000.	Thereafter	prog-square	is	always	slower
than	prog-linear.

This	last	insight	is	the	key	to	the	precise	definition	of	the	phrase	“order	of.”
If	 a	 function	 f	 on	 the	 natural	 numbers	 produces	 larger	 numbers	 than	 some
function	g	for	all	natural	numbers,	then	f	is	clearly	larger	than	g.	But	what	if	this
comparison	fails	for	just	a	few	inputs,	say	for	1000	or	1000000,	and	holds	for	all
others?	In	that	case,	we	would	still	like	to	say	f	is	better	than	g.	And	this	brings
us	to	the	following	definition.

Definition	 Given	 a	 function	 g	 on	 the	 natural	 numbers,	 O(g)
(pronounced:	 “big-O	 of	 g”)	 is	 a	 class	 of	 functions	 on	 natural
numbers.	A	function	f	is	a	member	of	O(g)	if	there	exist	numbers
c	and	bigEnough	such	that

Terminology	If	f	∈	O(g),	we	say	f	is	no	worse	than	g.

Naturally,	 we	 would	 love	 to	 illustrate	 this	 definition	 with	 the	 example	 of
prog-linear	 and	 prog-square	 from	 above.	 Recall	 the	 performance	 functions
for	prog-linear	and	prog-square,	with	the	constants	plugged	in:

and

The	 key	 is	 to	 find	 the	magic	 numbers	 c	 and	bigEnough	 such	 that	H	∈	O(G),
which	would	validate	 that	prog-square’s	performance	 is	no	worse	 than	prog-
linear’s.	For	now,	we	just	tell	you	what	these	numbers	are:

Using	these	numbers,	we	need	to	show	that

for	every	single	n	larger	than	1000.	Here	is	how	this	kind	of	argument	is	spelled
out:

Pick	some	specific	n0	that	satisfies	the	condition:

We	use	the	symbolic	name	n0	so	that	we	don’t	make	any	specific
assumptions	 about	 it.	 Now	 recall	 from	 algebra	 that	 you	 can
multiply	 both	 sides	 of	 the	 inequality	 with	 the	 same	 positive
factor,	and	the	inequality	still	holds.	We	use	n0:

At	 this	 point,	 it	 is	 time	 to	 observe	 that	 the	 left	 side	 of	 the
inequality	is	just	H(n0)	and	the	right	side	is	G(n0):

Since	n0	 is	 a	 generic	 number	 of	 the	 right	 kind,	we	 have	 shown
exactly	what	we	wanted	to	show.

Usually	you	find	bigEnough	and	c	by	working	your	way	backward	through	such
an	argument.	While	this	kind	of	mathematical	reasoning	is	fascinating,	we	leave
it	to	a	course	on	algorithms.

The	definition	of	O	also	explains	with	mathematical	rigor	why	we	don’t	have
to	 pay	 attention	 to	 specific	 constants	 in	 our	 comparisons	 of	 abstract	 running
times.	Say	we	can	make	each	basic	step	of	prog-linear	go	twice	as	fast	so	that
we	have:

and

The	above	argument	goes	through	by	doubling	bigEnough	to	2000.
Finally,	most	people	use	O	 together	with	a	short-hand	for	stating	functions.

Thus	they	say	how-many’s	running	time	is	O(n)—because	they	tend	to	think	of	n
as	an	abbreviation	of	 the	 (mathematical)	 function	 id(n)	=	n.	Similarly,	 this	use
yields	the	claim	that	sort’s	worst-case	running	time	is	O(n2)	and	inc’s	is	O(2n)
—again	because	n2	is	short-hand	for	the	function	sqr(n)	=	n2	and	2n	is	short	for
expt(n)	=	2n.

Stop!	What	does	it	mean	to	say	that	a	function’s	performance	is	O(1)?
Exercise	486.	In	the	first	subsection,	we	stated	that	the	function	f(n)	=	n2	+	n

belongs	to	the	class	O(n2).	Determine	the	pair	of	numbers	c	and	bigEnough	that
verify	this	claim.	

Exercise	487.	Consider	the	functions	f(n)	=	2n	and	g(n)	=	1000n.	Show	that	g
belongs	 to	O(f),	which	means	 that	 f	 is,	 abstractly	 speaking,	more	 (or	 at	 least
equally)	expensive	than	g.	If	the	input	size	is	guaranteed	to	be	between	3	and	12,

which	function	is	better?	
Exercise	488.	Compare	f(n)	=	nlog(n)	and	g(n)	=	n2.	Does	f	belong	to	O(g)	or

g	to	O(f)?	

Why	Do	Programs	Use	Predicates	and	Selectors?
The	notion	of	 “on	 the	order	of”	 explains	why	 the	design	 recipes	produce	both
well-organized	 and	 “performant”	 programs.	 We	 illustrate	 this	 insight	 with	 a
single	example,	 the	design	of	a	program	that	searches	for	a	number	 in	a	 list	of
numbers.	 Here	 are	 the	 signature,	 the	 purpose	 statement,	 and	 examples
formulated	as	tests:

;	Number	[List-of	Number]	->	Boolean	
;	is	x	in	l	

(check-expect	(search	0	'(3	2	1	0))	#true)	
(check-expect	(search	4	'(3	2	1	0))	#false)

Here	are	two	definitions	that	live	up	to	these	expectations:

The	design	of	the	program	on	the	left	follows	the	design	recipe.	In	particular,	the
development	of	the	template	calls	for	the	use	of	structural	predicates	per	clause
in	the	data	definition.	Following	this	advice	yields	a	conditional	program	whose
first	cond	line	deals	with	empty	lists	and	whose	second	one	deals	with	all	others.
The	question	in	the	first	cond	line	uses	empty?	and	the	second	one	uses	cons?	of
else.

The	 design	 of	 searchS	 fails	 to	 live	 up	 to	 the	 structural	 design	 recipe.	 It
instead	takes	inspiration	from	the	idea	that	 lists	are	containers	 that	have	a	size.
Hence,	a	program	can	check	this	size	for	0,	which	is	equivalent	to	checking	for
emptiness.

It	really	uses	generative	recursion.

Although	 this	 idea	 is	 functionally	correct,	 it	makes	 the	assumption	 that	 the
cost	of	*SL-provided	operations	is	a	fixed	constant.	If	length	is	more	like	how-
many,	 however,	 searchS	 is	 going	 to	 be	 slower	 than	 searchL.	 Using	 our	 new
terminology,	searchL	 is	using	O(n)	 recursive	steps	while	searchS	needs	O(n2)
steps	 for	a	 list	of	n	 items.	 In	short,	using	arbitrary	*SL	operations	 to	 formulate
conditions	may	shift	performance	from	one	class	of	functions	to	one	that	is	much
worse.

Let’s	 wrap	 up	 this	 intermezzo	 with	 an	 experiment	 that	 checks	 whether
length	is	a	constant-time	function	or	whether	it	consumes	time	proportionally	to
the	length	of	the	given	list.	The	easiest	way	is	to	define	a	program	that	creates	a
long	 list	 and	 determines	 how	 much	 time	 each	 version	 of	 the	 search	 program
takes:

Now	run	this	program	on	10000	and	20000.	If	length	 is	like	empty?,	 the	times
for	 the	 second	 run	will	 be	 roughly	 twice	 those	 of	 the	 first	 one;	 otherwise,	 the
time	for	searchS	will	increase	dramatically.

Stop!	Conduct	the	experiment.
Assuming	you	have	completed	 the	experiment,	you	now	know	 that	length

takes	time	proportionally	to	the	size	of	the	given	list.	The	“S”	in	searchS	stands
for	“squared”	because	its	running	time	is	O(n2).	But	don’t	jump	to	the	conclusion
that	 this	 kind	 of	 reasoning	 holds	 for	 every	 programming	 language	 you	 will
encounter.	Many	deal	with	containers	differently	 than	*SL.	Understanding	how
this	is	done	requires	one	more	design	concept,	accumulators,	the	concern	of	the
final	part	of	this	book.

See	chapter	33.2	for	how	other	languages	track	the	size	of	a	container.

VI
ACCUMULATORS

When	you	ask	ISL+	to	apply	some	function	f	to	an	argument	a,	you	usually	get
some	value	v.	If	you	evaluate	(f	a)	again,	you	get	v	again.	As	a	matter	of	fact,
you	get	v	no	matter	how	often	you	request	the	evaluation	of	(f	a).	Whether	the
function	 is	 applied	 for	 the	 first	 time	 or	 the	 hundredth	 time,	 whether	 the
application	is	located	in	DrRacket’s	interactions	area	or	inside	the	function	itself,
doesn’t	matter.	The	function	works	according	to	its	purpose	statement,	and	that’s
all	you	need	to	know.

The	function	application	may	also	loop	forever	or	signal	an	error,	but	we	ignore	these	possibilities.
We	also	ignore	random,	which	is	the	true	exception	to	this	rule.

This	principle	of	context-independence	plays	a	critical	role	in	 the	design	of
recursive	 functions.	When	 it	 comes	 to	 design,	 you	 are	 free	 to	 assume	 that	 the
function	 computes	what	 the	 purpose	 statement	 promises—even	 if	 the	 function
isn’t	defined	yet.	In	particular,	you	are	free	to	use	the	results	of	recursive	calls	to
create	the	code	of	some	function,	usually	in	one	of	its	cond	clauses.	The	template
and	 coding	 steps	 of	 the	 design	 recipes	 for	 both	 structurally	 and	 generative-
recursive	functions	rely	on	this	idea.

While	context-independence	facilitates	the	design	of	functions,	it	causes	two
problems.	In	general,	context-independence	induces	a	loss	of	knowledge	during
a	 recursive	 evaluation;	 a	 function	 does	 not	 “know”	 whether	 it	 is	 called	 on	 a
complete	list	or	on	a	piece	of	that	list.	For	structurally	recursive	programs,	this
loss	of	knowledge	means	 that	 they	may	have	 to	 traverse	data	more	 than	once,
inducing	a	performance	cost.	For	functions	that	employ	generative	recursion,	the
loss	means	 that	 the	 function	may	not	be	 able	 to	 compute	 the	 result	 at	 all.	The
preceding	part	illustrates	this	second	problem	with	a	graph	traversal	function	that
cannot	find	a	path	between	two	nodes	for	a	circular	graph.

This	part	 introduces	a	variant	of	 the	design	 recipes	 to	address	 this	 “loss	of
context”	problem.	Since	we	wish	 to	 retain	 the	principle	 that	(f	a)	 returns	 the
same	result	no	matter	how	often	or	where	it	is	evaluated,	the	only	solution	is	to

add	an	argument	that	represents	the	context	of	the	function	call.	We	call	this
additional	argument	an	accumulator.	During	the	traversal	of	data,	 the	recursive
calls	 continue	 to	 receive	 regular	 arguments	 while	 accumulators	 change	 in
relation	to	those	and	the	context.

Designing	 functions	 with	 accumulators	 correctly	 is	 clearly	 more	 complex
than	 any	 of	 the	 design	 approaches	 from	 the	 preceding	 chapters.	 The	 key	 is	 to
understand	the	relationship	between	the	proper	arguments	and	the	accumulators.
The	following	chapters	explain	how	to	design	functions	with	accumulators	and
how	they	work.

31 The	Loss	of	Knowledge
Both	 functions	designed	according	 to	 structural	 recipes	 and	 the	generative	one
suffer	 from	 the	 loss	 of	 knowledge,	 though	 in	 different	 ways.	 This	 chapter
explains	 with	 two	 examples—one	 from	 each	 category—how	 the	 lack	 of
contextual	 knowledge	 affects	 the	 performance	 of	 functions.	 While	 the	 first
section	 is	 about	 structural	 recursion,	 the	 second	 one	 addresses	 concerns	 in	 the
generative	realm.

31.1 A	Problem	with	Structural	Processing
Let’s	start	with	a	seemingly	straightforward	example:

Sample	Problem	You	are	working	for	a	geometer	team	that	will
measure	 the	 length	 of	 road	 segments.	 The	 team	 asked	 you	 to
design	a	program	that	translates	these	relative	distances	between	a
series	 of	 road	 points	 into	 absolute	 distances	 from	 some	 starting
point.

For	example,	we	might	be	given	a	line	such	as	this:

Each	 number	 specifies	 the	 distance	 between	 two	 dots.	 What	 we	 need	 is	 the
following	picture,	where	each	dot	is	annotated	with	the	distance	to	the	left-most
end:

Designing	 a	 program	 that	 performs	 this	 calculation	 is	 a	 mere	 exercise	 in
structural	function	design.	Figure	177	contains	the	complete	program.	When	the
given	list	is	not	'(),	the	natural	recursion	computes	the	absolute	distance	of	the
remainder	of	 the	dots	 to	 the	first	one	on	(rest	l).	Because	 the	first	 is	not	 the
actual	origin	and	has	a	distance	of	(first	l)	to	the	origin,	we	must	add	(first
l)	 to	 each	 number	 on	 the	 result	 of	 the	 natural	 recursion.	 This	 second	 step—
adding	 a	 number	 to	 each	 item	 on	 a	 list	 of	 numbers—requires	 an	 auxiliary
function.

Figure	177:	Converting	relative	distances	to	absolute	distances

While	designing	the	program	is	relatively	straightforward,	using	it	on	larger
and	 larger	 lists	 reveals	 a	 problem.	 Consider	 the	 evaluation	 of	 the	 following
expression:

(relative->absolute	(build-list	size	add1))

As	we	increase	size,	the	time	needed	grows	even	faster:

Instead	of	doubling	as	we	go	from	1000	to	2000	items,	the	time	quadruples.	This
is	 also	 the	 approximate	 relationship	 for	 going	 from	 2000	 to	 4000,	 and	 so	 on.
Using	the	terminology	of	intermezzo	5,	we	say	that	the	function’s	performance
is	O(n2)	where	n	is	the	length	of	the	given	list.

The	times	will	differ	from	computer	to	computer	and	year	to	year.	These	measurements	were
conducted	in	2017	on	a	MacMini	running	OS	X	10.11;	the	previous	measurement	took	place	in	1998,
and	the	times	were	100x	larger.

Exercise	489.	Reformulate	add-to-each	using	map	and	lambda.	
Exercise	490.	Develop	a	formula	that	describes	the	abstract	running	time	of

relative->absolute.	Hint	Evaluate	the	expression

(relative->absolute	(build-list	size	add1))

by	 hand.	 Start	 by	 replacing	 size	 with	 1,	 2,	 and	 3.	 How	 many	 recursions	 of
relative->absolute	and	add-to-each	are	required	each	time?	

Considering	 the	 simplicity	 of	 the	 problem,	 the	 amount	 of	 work	 that	 the
program	performs	is	surprising.	If	we	were	to	convert	the	same	list	by	hand,	we
would	 tally	up	 the	 total	distance	and	 just	 add	 it	 to	 the	 relative	distances	as	we
take	steps	along	the	line.	Why	can’t	a	program	do	so?

Let’s	attempt	to	design	a	version	of	the	function	that	is	close	to	our	manual
method.	We	still	start	from	the	list-processing	template:

Now	let’s	simulate	a	hand-evaluation:

The	first	item	of	the	result	list	should	obviously	be	3,	and	it	is	easy	to	construct
this	 list.	 But,	 the	 second	 one	 should	 be	 (+	 3	 2),	 yet	 the	 second	 instance	 of
relative->absolute/a	 has	 no	 way	 of	 “knowing”	 that	 the	 first	 item	 of	 the
original	list	is	3.	The	“knowledge”	is	lost.

Again,	 the	 problem	 is	 that	 recursive	 functions	 are	 independent	 of	 their
context.	A	function	processes	L	in	(cons	N	L)	the	same	way	as	in	(cons	K	L).
Indeed,	if	given	L	by	itself,	it	would	also	process	the	list	in	that	way.

To	 make	 up	 for	 the	 loss	 of	 “knowledge,”	 we	 equip	 the	 function	 with	 an
additional	parameter:	accu-dist.	The	latter	represents	the	accumulated	distance,
which	is	the	tally	that	we	keep	when	we	convert	a	list	of	relative	distances	to	a
list	of	absolute	distances.	Its	initial	value	must	be	0.	As	the	function	traverses	the
list,	it	must	add	its	numbers	to	the	tally.

Here	is	the	revised	definition:

The	 recursive	 application	 consumes	 the	 rest	 of	 the	 list	 and	 the	 new	 absolute
distance	of	the	current	point	to	the	origin.	Although	both	arguments	are	changing
for	 every	 call,	 the	 change	 in	 the	 second	 one	 strictly	 depends	 on	 the	 first
argument.	The	function	is	still	a	plain	list-processing	procedure.

Now	let’s	evaluate	our	running	example	again:

(relative->absolute/a	(list	3	2	7))	
==	(relative->absolute/a	(list	3	2	7)	0)	
==	(cons	3	(relative->absolute/a	(list	2	7)	3))	
==	(cons	3	(cons	5	(relative->absolute/a	(list	7)	5)))	
==	(cons	3	(cons	5	(cons	12	???)))	
==	(cons	3	(cons	5	(cons	12	'())))

Stop!	Fill	in	the	question	marks	in	line	4.

The	 hand-evaluation	 shows	 just	 how	 much	 the	 use	 of	 an	 accumulator
simplifies	the	conversion	process.	Each	item	in	the	list	is	processed	once.	When
relative->absolute/a	 reaches	 the	 end	 of	 the	 argument	 list,	 the	 result	 is
completely	determined	and	no	 further	work	 is	needed.	 In	general,	 the	 function
performs	on	the	order	of	N	natural	recursion	steps	for	a	list	with	N	items.

One	 problem	 is	 that,	 unlike	 relative->absolute,	 the	 new	 function
consumes	 two	 arguments,	 not	 just	 one.	 Worse,	 someone	 might	 accidentally
misuse	relative->absolute/a	by	applying	it	to	a	list	of	numbers	and	a	number
that	 isn’t	0.	We	can	solve	both	problems	with	a	 function	definition	 that	uses	a
local	 definition	 to	 encapsulate	 relative->absolute/a;	 figure	 178	 shows	 the
result.	 Now,	 relative->absolute	 is	 indistinguishable	 from	 relative-

>absolute.v2	with	respect	to	input-output.

Figure	178:	Converting	relative	distances	with	an	accumulator

Now	let’s	look	at	how	this	version	of	the	program	performs.	To	this	end,	we
evaluate

(relative->absolute.v2	(build-list	size	add1))

and	tabulate	the	results	for	several	values	of	size:

Amazingly,	 relative->absolute.v2	 never	 takes	 more	 than	 one	 second	 to
process	such	lists,	even	for	a	list	of	7000	numbers.	Comparing	this	performance
to	 the	 one	 of	 relative->absolute,	 you	 may	 think	 that	 accumulators	 are	 a
miracle	 cure	 for	 all	 slow-running	 programs.	Unfortunately,	 this	 isn’t	 the	 case,
but	 when	 a	 structurally	 recursive	 function	 has	 to	 reprocess	 the	 result	 of	 the
natural	recursion	you	should	definitely	consider	the	use	of	accumulators.	In	this
particular	 case,	 the	 performance	 improved	 from	 O(n2)	 to	 O(n)—with	 an
additional	large	reduction	in	the	constant.

Exercise	491.	With	a	bit	of	design	and	a	bit	of	 tinkering,	a	friend	of	yours
came	up	with	the	following	solution	for	the	sample	problem:

Adrian	German	and	Mardin	Yadegar	suggested	this	exercise.

This	 simple	 solution	 merely	 uses	 well-known	 ISL+	 functions:	 reverse	 and
foldr.	Using	lambda,	as	you	know,	 is	 just	a	convenience.	You	may	also	recall
from	part	 III	 that	foldr	 is	 designable	with	 the	 design	 recipes	 presented	 in	 the
first	two	parts	of	the	book.

Does	your	friend’s	solution	mean	there	is	no	need	for	our	complicated	design
in	this	motivational	section?	For	an	answer,	see	chapter	32.1,	but	reflect	on	the
question	first.	Hint	Try	to	design	reverse	on	your	own.	

31.2 A	Problem	with	Generative	Recursion
Let’s	revisit	the	problem	of	“traveling”	along	a	path	in	a	graph:

Sample	Problem	Design	 an	 algorithm	 that	 checks	whether	 two
nodes	are	connected	in	a	simple	graph.	In	such	a	graph,	each	node
has	 exactly	 one,	 directional	 connection	 to	 another,	 and	 possibly
itself.

Chapter	29	covers	the	variant	where	the	algorithm	has	to	discover	the	path.	This
sample	problem	is	simpler	than	that	because	this	section	focuses	on	the	design	of
an	accumulator	version	of	the	algorithm.

Consider	the	sample	graph	in	figure	179.	There	are	six	nodes,	A	through	F,
and	six	connections.	A	path	from	A	to	E	must	contain	B	and	C.	There	is	no	path,
though,	from	A	to	F	or	from	any	other	node	besides	itself.

Figure	179:	A	simple	graph

The	right	part	of	 figure	179	shows	how	to	 represent	 this	graph	with	nested
lists.	Each	node	is	represented	by	a	list	of	two	symbols.	The	first	symbol	is	the
label	of	 the	node;	 the	 second	one	 is	 the	 single	node	 that	 is	 reachable	 from	 the
first	one.	Here	are	the	relevant	data	definitions:

;	A	SimpleGraph	is	a	[List-of	Connection]	
;	A	Connection	is	a	list	of	two	items:	
;			(list	Node	Node)	
;	A	Node	is	a	Symbol.

They	are	straightforward	translations	of	our	informal	descriptions.
We	 already	 know	 that	 the	 problem	 calls	 for	 generative	 recursion,	 and	 it	 is

easy	to	create	the	header	material:

;	Node	Node	SimpleGraph	->	Boolean	
;	is	there	a	path	from	origin	to	destination	
;	in	the	simple	graph	sg	

(check-expect	(path-exists?	'A	'E	a-sg)	#true)	
(check-expect	(path-exists?	'A	'F	a-sg)	#false)	

(define	(path-exists?	origin	destination	sg)	
		#false)

What	we	need	are	answers	to	the	four	basic	questions	of	the	recipe	for	generative
recursion:

•  The	problem	is	trivial	if	origin	is	the	same	as	destination.

•  The	trivial	solution	is	#true.

•  If	origin	is	not	the	same	as	destination,	there	is	only	one	thing	we	can
do:	step	to	the	immediate	neighbor	and	search	for	destination	from	there.

•  There	is	no	need	to	do	anything	if	we	find	the	solution	to	the	new	problem.
If	 origin’s	 neighbor	 is	 connected	 to	 destination,	 then	 so	 is	 origin.
Otherwise	there	is	no	connection.

From	here	we	just	need	to	express	these	answers	in	ISL+	to	obtain	a	full-fledged
program.

Figure	180	contains	the	complete	program,	including	the	function	for	finding
the	 neighbor	 of	 a	 node	 in	 a	 simple	 graph—a	 straightforward	 exercise	 in
structural	 recursion—and	 test	 cases	 for	 both	 possible	 outcomes.	Don’t	 run	 the
program,	 however.	 If	 you	 do,	 be	 ready	with	 your	mouse	 to	 stop	 the	 run-away
program.	 Indeed,	 even	 a	 casual	 look	 at	 the	 function	 suggests	 that	 we	 have	 a
problem.	Although	the	function	is	supposed	to	produce	#false	if	there	is	no	path
from	 origin	 to	 destination,	 the	 program	 doesn’t	 contain	 #false	 anywhere.
Conversely,	we	 need	 to	 ask	what	 the	 function	 actually	 does	when	 there	 is	 no
path	between	two	nodes.

Figure	180:	Finding	a	path	in	a	simple	graph

Take	another	look	at	figure	179.	In	this	simple	graph	there	is	no	path	from	C
to	D.	The	connection	that	leaves	C	passes	right	by	D	and	instead	goes	to	E.	So
let’s	look	at	a	hand-evaluation:

(path-exists?	'C	'D	'((A	B)	…	(F	F)))	
==	(path-exists?	'E	'D	'((A	B)	…	(F	F)))	
==	(path-exists?	'B	'D	'((A	B)	…	(F	F)))	
==	(path-exists?	'C	'D	'((A	B)	…	(F	F)))

It	 confirms	 that	 as	 the	 function	 recurs,	 it	 calls	 itself	 with	 the	 exact	 same
arguments	again	and	again.	In	other	words,	the	evaluation	never	stops.

Our	problem	with	path-exists?	 is	again	a	 loss	of	“knowledge,”	similar	 to
that	 of	 relative->absolute	 above.	 Like	 relative->absolute,	 the	 design	 of
path-exists?	uses	a	recipe	and	assumes	that	recursive	calls	are	independent	of
their	 context.	 In	 the	 case	 of	 path-exists?	 this	 means,	 in	 particular,	 that	 the
function	doesn’t	“know”	whether	a	previous	application	in	the	current	chain	of
recursions	received	the	exact	same	arguments.

The	 solution	 to	 this	 design	 problem	 follows	 the	 pattern	 of	 the	 preceding

section.	 We	 add	 a	 parameter,	 which	 we	 call	 seen	 and	 which	 represents	 the
accumulated	list	of	starter	nodes	that	the	function	has	encountered,	starting	with
the	original	application.	Its	initial	value	must	be	'().	As	the	function	checks	on	a
specific	origin	and	moves	to	its	neighbors,	origin	is	added	to	seen.

Here	is	a	first	revision	of	path-exists?,	dubbed	path-exists?/a:

The	addition	of	the	new	parameter	alone	does	not	solve	our	problem,	but,	as	the
hand-evaluation	of

(path-exists?/a	'C	'D	'((A	B)	…	(F	F))	'())

shows,	it	provides	the	foundation	for	one:

==	(path-exists?/a	'E	'D	'((A	B)	…	(F	F))	'(C))	
==	(path-exists?/a	'B	'D	'((A	B)	…	(F	F))	'(E	C))	
==	(path-exists?/a	'C	'D	'((A	B)	…	(F	F))	'(B	E	C))

In	 contrast	 to	 the	 original	 function,	 the	 revised	 function	 no	 longer	 calls	 itself
with	the	exact	same	arguments.	While	the	three	arguments	proper	are	again	the
same	 for	 the	 third	 recursive	 application,	 the	 accumulator	 argument	 is	 different
from	that	of	 the	first	application.	 Instead	of	'(),	 it	 is	now	'(B	E	C).	The	new
value	 tells	 us	 that	 during	 the	 search	 of	 a	 path	 from	'C	 to	'D,	 the	 function	 has
inspected	'B,	'E,	and	'C	as	starting	points.

All	 we	 need	 to	 do	 now	 is	 to	 make	 the	 algorithm	 exploit	 the	 accumulated
knowledge.	Specifically,	the	algorithm	can	determine	whether	the	given	origin
is	already	an	item	in	seen.	If	so,	the	problem	is	also	trivially	solvable,	yielding

#false	as	the	solution.	Figure	181	contains	the	definition	of	path-exists.v2?,
which	is	the	revision	of	path-exists?.	The	definition	refers	to	member?,	an	ISL+
function.

Figure	181:	Finding	a	path	in	a	simple	graph	with	an	accumulator

The	definition	of	path-exists.v2?	also	eliminates	the	two	minor	problems
with	the	first	revision.	By	localizing	the	definition	of	the	accumulating	function,
we	 can	 ensure	 that	 the	 first	 call	 always	 uses	'()	 as	 the	 initial	 value	 for	seen.
And,	path-exists.v2?	satisfies	the	exact	same	signature	and	purpose	statement
as	the	path-exists?	function.

Still,	 there	 is	 a	 significant	 difference	 between	 path-exists.v2?	 and
relative-to-absolute2.	 Whereas	 the	 latter	 was	 equivalent	 to	 the	 original
function,	path-exists.v2?	improves	on	path-exists?.	While	the	latter	fails	to
find	an	answer	for	some	inputs,	path-exists.v2?	finds	a	solution	for	any	simple
graph.

Exercise	 492.	 Modify	 the	 definitions	 in	 figure	 169	 so	 that	 the	 program
produces	#false,	even	if	it	encounters	the	same	origin	twice.	

32 Designing	Accumulator-Style	Functions
The	 preceding	 chapter	 illustrates	 the	 need	 for	 accumulating	 extra	 knowledge
with	 two	examples.	 In	one	case,	accumulation	makes	 it	 easy	 to	understand	 the
function	and	yields	one	 that	 is	 far	 faster	 than	 the	original	version.	 In	 the	other
case,	accumulation	is	necessary	for	the	function	to	work	properly.	In	both	cases,
though,	 the	 need	 for	 accumulation	 becomes	 only	 apparent	 once	 a	 properly
designed	function	exists.

Generalizing	 from	 the	 preceding	 chapter	 suggests	 that	 the	 design	 of
accumulator	functions	has	two	major	aspects:

1.	the	recognition	that	a	function	benefits	from	an	accumulator;	and

2.	an	understanding	of	what	the	accumulator	represents.

The	first	two	sections	address	these	two	questions.	Because	the	second	one	is	a
difficult	 topic,	 the	 third	 section	 illustrates	 it	 with	 a	 series	 of	 examples	 that
convert	regular	functions	into	accumulating	ones.

32.1 Recognizing	the	Need	for	an	Accumulator
Recognizing	 the	need	 for	 accumulators	 is	not	 an	easy	 task.	We	have	 seen	 two
reasons,	and	they	are	the	most	prevalent	ones.	In	either	case,	it	is	critical	that	we
first	built	a	complete	function	based	on	a	conventional	design	recipe.	Then	we
study	the	function	and	proceed	as	follows:

1.	 If	 a	 structurally	 recursive	 function	 traverses	 the	 result	 of	 its	 natural
recursion	 with	 an	 auxiliary,	 recursive	 function,	 consider	 the	 use	 of	 an
accumulator	parameter.
Take	 a	 look	 at	 the	 definition	 of	 invert	 in	 figure	 182.	 The	 result	 of	 the
recursive	 application	 produces	 the	 reverse	 of	 the	 rest	 of	 the	 list.	 It	 uses
add-as-last	to	add	the	first	item	to	this	reversed	list	and	thus	creates	the
reverse	of	the	entire	list.	This	second,	auxiliary	function	is	also	recursive.
We	have	thus	identified	an	accumulator	candidate.

Figure	182:	Design	with	accumulators,	a	structural	example

It	 is	now	time	 to	study	some	hand-evaluations,	as	 in	chapter	31.1,	 to	see
whether	an	accumulator	helps.	Consider	the	following:

(invert	'(a	b	c))	

==	(add-as-last	'a	(invert	'(b	c)))	

==	(add-as-last	'a	(add-as-last	'b	(invert	'(c))))	

==	…	

==	(add-as-last	'a	(add-as-last	'b	'(c)))	

==	(add-as-last	'a	'(c	b))	

==	'(c	b	a)

Stop!	Replace	the	dots	with	the	two	missing	steps.	Then	you	can	see	that
invert	eventually	reaches	the	end	of	the	given	list—just	like	add-as-last
—and	if	it	knew	which	items	to	put	there,	there	would	be	no	need	for	the
auxiliary	function.

2.	 If	we	 are	 dealing	with	 a	 function	 based	 on	 generative	 recursion,	we	 are
faced	 with	 a	 much	more	 difficult	 task.	 Our	 goal	 must	 be	 to	 understand
whether	the	algorithm	can	fail	to	produce	a	result	for	inputs	for	which	we
expect	a	result.	If	so,	adding	a	parameter	that	accumulates	knowledge	may
help.	Because	these	situations	are	complex,	we	defer	the	discussion	of	an
example	to	chapter	33.

Exercise	 493.	 Argue	 that,	 in	 the	 terminology	 of	 intermezzo	 5,	 invert
consumes	O(n2)	time	when	the	given	list	consists	of	n	items.	

Exercise	494.	Does	the	insertion	sort>	function	from	chapter	11.3	need	an
accumulator?	If	so,	why?	If	not,	why	not?	

32.2 Adding	Accumulators
Once	 you	 have	 decided	 that	 an	 existing	 function	 should	 be	 equipped	 with	 an
accumulator,	take	these	two	steps:

•  Determine	 the	 knowledge	 that	 the	 accumulator	 represents,	 what	 kind	 of
data	to	use,	and	how	the	knowledge	is	acquired	as	data.
For	example,	for	the	conversion	of	relative	distances	to	absolute	distances,
it	suffices	to	accumulate	the	total	distance	encountered	so	far.	As	the
function	processes	the	list	of	relative	distances,	it	adds	each	new	relative
distance	found	to	the	accumulator’s	current	value.	For	the	routing
problem,	the	accumulator	remembers	every	node	encountered.	As	the
path-checking	function	traverses	the	graph,	it	conses	each	new	node	on	to
the	accumulator.
In	general,	you	will	want	to	proceed	as	follows.

1.	Create	an	accumulator	template:

Sketch	 a	 manual	 evaluation	 of	 an	 application	 of	 function	 to
understand	the	nature	of	the	accumulator.

2.	Determine	the	kind	of	data	that	the	accumulator	tracks.
Write	 down	 a	 statement	 that	 explains	 the	 accumulator	 as	 a
relationship	 between	 the	 argument	d	 of	 the	 auxiliary	function/a
and	the	original	argument	d0.
Note	 The	 relationship	 remains	 constant,	 also	 called	 invariant,
over	 the	 course	 of	 the	 evaluation.	 Because	 of	 this	 property,	 an
accumulator	statement	is	often	called	an	invariant.

3.	Use	the	invariant	to	determine	the	initial	value	a0	for	a.

4.	 Also	 exploit	 the	 invariant	 to	 determine	 how	 to	 compute	 the
accumulator	for	the	recursive	function	calls	within	the	definition	of
function/a.

•  Exploit	the	accumulator’s	knowledge	for	the	design	of	function/a.
For	a	structurally	recursive	function,	the	accumulator’s	value	is	typically
used	in	the	base	case,	that	is,	the	cond	clause	that	does	not	recur.	For
functions	that	use	generative-recursive	functions,	the	accumulated
knowledge	might	be	used	in	an	existing	base	case,	in	a	new	base	case,	or
in	the	cond	clauses	that	deal	with	generative	recursion.

As	you	can	see,	the	key	is	the	precise	description	of	the	role	of	the	accumulator.
It	is	therefore	important	to	practice	this	skill.

Let’s	take	a	look	at	the	invert	example:

As	illustrated	in	the	preceding	section,	this	template	suffices	to	sketch	a	manual
evaluation	of	an	example	such	as

(invert	'(a	b	c))

Here	is	the	idea:

This	sketch	suggests	that	invert/a	can	keep	track	of	all	the	items	it	has	seen	in	a
list	 that	 tracks	 the	difference	between	alox0	and	a	 in	 reverse	order.	The	 initial
value	 is	 clearly	 '();	 updating	 the	 accumulator	 inside	 of	 invert/a	 with	 cons
produces	exactly	the	desired	value	when	invert/a	reaches	'().

Here	is	a	refined	template	that	includes	these	insights:

While	the	body	of	the	local	definition	initializes	the	accumulator	with	'(),	the
recursive	call	uses	cons	 to	add	the	current	head	of	alox	 to	 the	accumulator.	 In
the	base	case,	invert/a	uses	the	knowledge	in	the	accumulator,	the	reversed	list.

Note	 how,	 once	 again,	 invert.v2	 merely	 traverses	 the	 list.	 In	 contrast,
invert	reprocesses	every	result	of	its	natural	recursion	with	add-as-last.	Stop!
Measure	how	much	faster	invert.v2	runs	than	invert.

Terminology	 Programmers	 use	 the	 phrase	 accumulator-style	 function	 to
discuss	 functions	 that	use	an	accumulator	parameter.	Examples	of	 functions	 in
accumulator	style	are	relative->absolute/a,	invert/a,	and	path-exists?/a.

32.3 Transforming	Functions	into	Accumulator	Style
Articulating	 the	 accumulator	 statement	 is	 difficult,	 but,	 without	 formulating	 a
good	 invariant,	 it	 is	 impossible	 to	 understand	 an	 accumulator-style	 function.
Since	 the	 goal	 of	 a	 programmer	 is	 to	 make	 sure	 that	 others	 who	 follow
understand	 the	 code	 easily,	 practicing	 this	 skill	 is	 critical.	 And	 formulating
invariants	deserves	a	lot	of	practice.

The	goal	of	this	section	is	to	study	the	formulation	of	accumulator	statements
with	three	case	studies:	a	summation	function,	the	factorial	function,	and	a	tree-
traversal	 function.	 Each	 such	 case	 is	 about	 the	 conversion	 of	 a	 structurally
recursive	function	 into	accumulator	style.	None	actually	calls	 for	 the	use	of	an
accumulator	parameter.	But	they	are	easily	understood	and,	with	the	elimination
of	 all	 other	 distractions,	 using	 such	 examples	 allows	 us	 to	 focus	 on	 the
articulation	of	the	accumulator	invariant.

For	the	first	example,	consider	these	definitions	of	the	sum	function:

Here	is	the	first	step	toward	an	accumulator	version:

Stop!	Supply	a	signature	and	a	test	case	that	works	for	both.
As	 suggested	 by	 our	 first	 step,	we	 have	 put	 the	 template	 for	 sum/a	 into	 a

local	definition,	added	an	accumulator	parameter,	and	renamed	the	parameter	of
sum.

Figure	 183	 shows	 two	 side-by-side	 sketches	 of	 hand-evaluations.	 A
comparison	 immediately	 suggests	 the	 central	 idea,	 namely,	 that	sum/a	 can	 use
the	 accumulator	 to	 add	 up	 the	 numbers	 it	 encounters.	 Concerning	 the
accumulator	 invariant,	 the	 calculations	 suggest	 a	 represents	 the	 sum	 of	 the
numbers	encountered	so	far:

Figure	183:	Calculating	with	accumulator-style	templates

a	is	the	sum	of	the	numbers	that	alon	lacks	from	alon0

For	example,	the	invariant	forces	the	following	relationships	to	hold:

Given	this	precise	invariant,	the	rest	of	the	design	is	straightforward:

If	alon	 is	'(),	sum/a	returns	a	because	it	represents	the	sum	of	all	numbers	on
alon.	The	 invariant	also	 implies	 that	0	 is	 the	 initial	value	for	a0	and	+	updates
the	accumulator	by	adding	 the	number	 that	 is	about	 to	be	“forgotten”—(first

alox)—to	the	accumulator	a.
Exercise	 495.	 Complete	 the	manual	 evaluation	 of	 (sum/a	 '(10	 4)	 0)	 in

figure	182.	Doing	so	shows	that	the	sum	and	sum.v2	add	up	the	given	numbers	in
reverse	 order.	 While	 sum	 adds	 up	 the	 numbers	 from	 right	 to	 left,	 the
accumulator-style	version	adds	them	up	from	left	to	right.

Note	on	Numbers	Remember	that	for	exact	numbers,	this	difference	has	no
effect	on	the	final	result.	For	inexact	numbers,	the	difference	can	be	significant.
See	the	exercises	at	the	end	of	intermezzo	5.	

For	the	second	example,	we	turn	to	the	well-known	factorial	function:

The	factorial	function	is	useful	for	the	analysis	of	algorithms.

While	relative-2-absolute	 and	invert	 processed	 lists,	 the	 factorial	 function
works	on	natural	numbers,	which	its	template	reflects.

We	proceed	as	before	with	a	template	for	an	accumulator-style	version:

followed	by	a	sketch	of	a	hand-evaluation:

The	left	column	indicates	how	the	original	version	works;	the	right	one	sketches
how	the	accumulator-style	function	proceeds.	Both	structurally	traverse	a	natural
number	 until	 they	 reach	 0.	 While	 the	 original	 version	 schedules	 only
multiplications,	 the	 accumulator	 keeps	 track	 of	 each	 number	 as	 the	 structural
traversal	descends	through	the	given	natural	number.

Given	the	goal	of	multiplying	these	numbers,	!/a	can	use	the	accumulator	to
multiply	the	numbers	immediately:

a	is	the	product	of	the	natural	numbers	in	the	interval	[n0,n).

In	particular,	when	n0	is	3	and	n	is	1,	a	is	6.
Exercise	496.	What	should	the	value	of	a	be	when	n0	is	3	and	n	is	1?	How

about	when	n0	is	10	and	n	is	8?	
Using	 this	 invariant	we	can	easily	pick	 the	 initial	value	for	a—it	 is	1—and

we	know	 that	multiplying	 the	 current	 accumulator	with	n	 is	 the	 proper	 update
operation:

It	also	follows	from	the	accumulator	statement	that	when	n	is	0,	the	accumulator
is	the	product	of	n	through	1,	meaning	it	is	the	desired	result.	So,	like	sum,	!/a
returns	a	in	this	case	and	uses	the	result	of	the	recursion	in	the	second	case.

Exercise	 497.	 Like	 sum,	 !.v1	 performs	 the	 primitive	 computations,
multiplication	 in	 this	 case,	 in	 reverse	 order.	 Surprisingly,	 this	 affects	 the
performance	of	the	function	in	a	negative	manner.

Measure	 how	 long	 it	 takes	 to	 evaluate	(!.v1	20)	 1,000	 times.	Recall	 that
(time	 an-expression)	 function	 determines	 how	 long	 it	 takes	 to	 run	 an-
expression.	

For	the	third	and	last	example,	we	use	a	function	that	measures	the	height	of
simplified	 binary	 trees.	 The	 example	 illustrates	 that	 accumulator-style
programming	applies	to	all	kinds	of	data,	not	just	those	defined	with	single	self-
references.	Indeed,	it	is	as	commonly	used	for	complicated	data	definitions	as	it
is	for	lists	and	natural	numbers.

Here	are	the	relevant	definitions:

(define-struct	node	[left	right])	
;	A	Tree	is	one	of:	
;	--	'()	
;	--	(make-node	Tree	Tree)	
(define	example	
		(make-node	(make-node	'()	(make-node	'()	'()))	'()))

These	 trees	 carry	 no	 information;	 their	 leafs	 are	 '().	 Still,	 there	 are	 many
different	 trees,	 as	 figure	 184	 shows;	 it	 also	 uses	 suggestive	 graphics	 to	 bring

across	what	these	pieces	of	data	look	like	as	trees.

Figure	184:	Some	stripped-down	binary	trees

One	property	that	one	may	wish	to	compute	is	the	height	of	such	a	tree:

Stop!	 Supply	 a	 signature	 and	 a	 test.	 The	 table	 in	 figure	 184	 indicates	 how	 to
measure	the	height	of	a	tree,	though	it	leaves	the	notion	somewhat	ambiguous:	it
is	either	the	number	of	nodes	from	the	root	of	the	tree	to	the	highest	leaf	or	the
number	of	connections	on	such	a	path.	The	height	function	follows	the	second
option.

To	transform	this	function	into	an	accumulator-style	function,	we	follow	the
standard	path.	We	begin	with	an	appropriate	template:

As	 always,	 the	 problem	 is	 to	 determine	 what	 knowledge	 the	 accumulator
represents.	One	obvious	choice	is	the	number	of	traversed	branches:

a	is	the	number	of	steps	it	takes	to	reach	abt	from	abt0.

Illustrating	this	accumulator	invariant	is	best	done	with	a	graphical	example.
Take	 a	 second	 look	 at	 figure	 184.	 The	 bottom-most	 tree	 comes	 with	 two
annotations,	each	pointing	out	one	subtree:

1.	If	abt0	is	the	complete	tree	and	abt	is	the	subtree	pointed	to	by	the	circled
1,	 the	accumulator’s	value	must	be	1	because	it	 takes	exactly	one	step	to
get	from	the	root	of	abt	to	the	root	of	abt0.

2.	In	the	same	spirit,	for	the	subtree	labeled	2	the	accumulator	is	2	because	it
takes	two	steps	to	get	to	this	place.

As	 for	 the	 preceding	 two	 examples,	 the	 invariant	 basically	 dictates	 how	 to
follow	the	rest	of	the	design	recipe	for	accumulators:	the	initial	value	for	a	is	0;
the	update	operation	is	add1;	and	the	base	case	uses	the	accumulated	knowledge
by	 returning	 it.	 Translating	 this	 into	 code	 yields	 the	 following	 skeleton
definition:

But,	in	contrast	to	the	first	two	examples,	a	is	not	the	final	result.	In	the	second
cond	 clause,	 the	 two	 recursive	 calls	 yield	 two	 values.	 The	 design	 recipe	 for
structural	 functions	 dictates	 that	 we	 combine	 those	 in	 order	 to	 formulate	 an
answer	 for	 this	 case;	 the	 dots	 above	 indicate	 that	 we	 still	 need	 to	 pick	 an
operation	that	combines	these	values.

Following	 the	 design	 recipe	 also	 tells	 us	 that	we	 need	 to	 interpret	 the	 two
values	 to	find	 the	appropriate	function.	According	 to	 the	purpose	statement	 for
height/a,	 the	first	value	is	the	height	of	the	left	subtree,	and	the	second	one	is
the	height	of	the	right	one.	Given	that	we	are	interested	in	the	height	of	abt	itself
and	that	the	height	is	the	largest	number	of	steps	it	takes	to	reach	a	leaf,	we	use
the	 max	 function	 to	 pick	 the	 proper	 one;	 see	 figure	 185	 for	 the	 complete
definition.

Figure	185:	The	accumulator-style	version	of	height

Note	on	an	Alternative	Design	In	addition	to	counting	the	number	of	steps
it	 takes	 to	 reach	 a	 node,	 an	 accumulator	 function	 could	 hold	 on	 to	 the	 largest
height	encountered	so	far.	Here	is	the	accumulator	statement	for	the	design	idea:

The	 first	 accumulator	 represents	 the	 number	 of	 steps	 it	 takes	 to
reach	abt	from	(the	root	of)	abt0.	The	second	one	stands	for	the
height	of	the	part	in	abt0	that	is	strictly	to	to	the	left	of	abt.

Clearly,	 this	 statement	 assumes	 a	 template	 with	 two	 accumulator	 parameters,
something	we	have	not	encountered	before:

Exercise	 498.	 Complete	 height.v3.	Hint	 The	 bottom-most	 tree	 of	 figure
184	contains	no	subtree	to	the	left	of	the	subtree	marked	with	1.	It	contains	one
complete	path	 from	 root	 to	 tree	 in	 the	part	 of	 the	 tree	 that	 is	 to	 the	 left	 of	 the
subtree	marked	with	2;	this	path	consists	of	two	steps.	

This	second	design	has	a	more	complex	accumulator	invariant	than	the	first
one.	By	implication,	its	implementation	requires	more	care	than	the	first	one.	At
the	same	time,	it	comes	without	any	obvious	advantages.

Our	 point	 is	 that	 different	 accumulator	 invariants	 yield	 different	 variants.
You	can	design	both	variants	systematically,	following	the	same	design	recipe.
When	you	have	complete	function	definitions,	you	can	compare	and	contrast	the
results,	and	you	can	then	decide	which	one	to	keep,	based	on	evidence.	End

Exercise	499.	Design	an	accumulator-style	version	of	product,	the	function
that	computes	the	product	of	a	list	of	numbers.	Stop	when	you	have	formulated
the	accumulator	invariant	and	have	someone	check	it.

The	performance	of	product	 is	O(n)	where	n	 is	 the	length	of	the	list.	Does
the	accumulator	version	improve	on	this?	

Exercise	500.	Design	an	accumulator-style	version	of	how-many,	which	is	the
function	 that	 determines	 the	 number	 of	 items	 on	 a	 list.	 Stop	 when	 you	 have
formulated	the	invariant	and	have	someone	check	it.

The	performance	of	how-many	is	O(n)	where	n	is	the	length	of	the	list.	Does
the	accumulator	version	improve	on	this?

Computer	scientists	refer	to	this	space	as	stack	space,	but	you	can	safely	ignore	this	terminology	for
now.

When	 you	 evaluate	 (how-many	 some-non-empty-list)	 by	 hand,	 n
applications	of	add1	are	pending	by	the	time	the	function	reaches	'()—where	n
is	 the	number	of	 items	on	 the	 list.	Computer	scientists	sometime	say	 that	how-
many	needs	O(n)	space	to	represent	these	pending	function	applications.	Does	the
accumulator	reduce	the	amount	of	space	needed	to	compute	the	result?	

Exercise	 501.	 Design	 an	 accumulator-style	 version	 of	 add-to-pi.	 The
function	adds	a	natural	number	to	pi	without	using	+:

;	N	->	Number	
;	adds	n	to	pi	without	using	+	
(check-within	(add-to-pi	2)	(+	2	pi)	0.001)	
(define	(add-to-pi	n)	
		(cond	
				[(zero?	n)	pi]	
				[else	(add1	(add-to-pi	(sub1	n)))]))

Stop	when	 you	 have	 formulated	 the	 accumulator	 invariant	 and	 have	 someone
check	it.	

Exercise	502.	Design	the	function	palindrome,	which	accepts	a	non-empty
list	and	constructs	a	palindrome	by	mirroring	the	list	around	the	last	item.	When
given	(explode	"abc"),	it	yields	(explode	"abcba").

Hint	Here	is	a	solution	designed	by	function	composition:

See	chapter	11.4	for	last;	design	all-but-last	in	an	analogous	manner.

This	solution	traverses	s0	four	times:

1.	via	all-but-last,

2.	via	last,

3.	via	all-but-last	again,	and

4.	via	reverse,	which	is	ISL+’s	version	of	invert.

Even	with	local	 definition	 for	 the	 result	 of	all-but-last,	 the	 function	needs
three	traversals.	While	these	traversals	aren’t	“stacked”	and	therefore	don’t	have
a	disastrous	 impact	on	 the	 function’s	performance,	an	accumulator	version	can
compute	the	same	result	with	a	single	traversal.	

Exercise	503.	Exercise	467	implicitly	asks	for	the	design	of	a	function	that
rotates	a	Matrix	until	 the	first	coefficient	of	 the	first	 row	differs	from	0.	 In	 the
context	 of	 Exercise	 467,	 the	 solution	 calls	 for	 a	 generative-recursive	 function
that	creates	a	new	matrix	by	shifting	the	first	row	to	the	end	when	it	encounters	a
0	in	the	first	position.	Here	is	the	solution:

Stop!	Modify	this	function	so	that	it	signals	an	error	when	all	rows	start	with	0.
If	 you	 measure	 this	 function	 on	 large	 instances	 of	 Matrix,	 you	 get	 a

surprising	result:

As	the	number	of	rows	increases	from	1,000	to	5,000,	the	time	spent	by	rotate
does	not	increase	by	a	factor	of	five	but	by	twenty.

The	problem	is	that	rotate	uses	append,	which	makes	a	brand-new	list	like
(rest	M)	only	to	add	(first	M)	at	the	end.	If	M	consists	of	1,000	rows	and	the
last	row	is	the	only	one	with	a	non-0	coefficient,	that’s	roughly

lists.	How	many	lists	do	we	get	if	M	consists	of	5,000	lines?
Now	suppose	we	conjecture	that	the	accumulator-style	version	is	faster	than

the	generative	one.	Here	is	the	accumulator	template	for	a	structurally	recursive
version	of	rotate:

The	goal	 is	 to	remember	 the	first	 row	when	its	 leading	coefficient	 is	0	without
using	append	for	every	recursion.

Formulate	 an	 accumulator	 statement.	 Then	 follow	 the	 accumulator	 design
recipe	to	complete	the	above	function.	Measure	how	fast	it	runs	on	a	Matrix	that
consists	 of	 rows	with	 leading	0s	 except	 for	 the	 last	 one.	 If	 you	 completed	 the
design	correctly,	the	function	is	quite	fast.	

Exercise	 504.	 Design	 to10.	 It	 consumes	 a	 list	 of	 digits	 and	 produces	 the
corresponding	 number.	 The	 first	 item	on	 the	 list	 is	 the	most	 significant	 digit.
Hence,	when	applied	to	'(1	0	2),	it	produces	102.

Domain	 Knowledge	 You	 may	 recall	 from	 grade	 school	 that	 the	 result	 is
determined	by	1	·	102	+	0	·	101	+	2	·	100	=	((1	·	10	+	0)	·	10)	+	2	=	102.	

Exercise	 505.	 Design	 the	 function	 is-prime,	 which	 consumes	 a	 natural
number	and	returns	#true	if	it	is	prime	and	#false	otherwise.

Domain	Knowledge	A	number	n	is	prime	if	it	is	not	divisible	by	any	number
between	n	-	1	and	2.

Hint	The	design	recipe	for	N	[>=1]	suggests	the	following	template:

This	 template	 immediately	 tells	 you	 that	 the	 function	 forgets	 n,	 its	 initial
argument	 as	 it	 recurs.	 Since	 n	 is	 definitely	 needed	 to	 determine	 whether	 n	 is
divisible	 by	 (-	 n	 1),	 (-	 n	 2),	 and	 so	 on,	 you	 know	 that	 you	 need	 an
accumulator-style	function.	

Note	on	Speed	Programmers	who	encounter	accumulator-style	functions	for
the	first	time	often	get	the	impression	that	they	are	always	faster	than	their	plain
counterparts.	So	let’s	take	a	look	at	the	solution	of	exercise	497:

An	explanation	of	these	times	is	beyond	the	scope	of	this	book.

The	 table’s	 top	 row	shows	 the	number	of	 seconds	 for	 five	 runs	of	(!.v1	20),
while	the	bottom	one	lists	those	of	running	(!.v2	20).	The	last	column	shows
the	 averages.	 In	 short,	 the	 table	 shows	 that	 people	 jump	 to	 premature
conclusions;	the	performance	of	at	least	one	accumulator-style	function	is	worse
than	that	of	the	original.	Do	not	trust	prejudices.	Instead,	measure	performance
characteristics	of	your	programs	for	yourself.	End

Exercise	506.	Design	an	accumulator-style	version	of	map.	

Exercise	 507.	Exercise	 257	 explains	 how	 to	 design	foldl	with	 the	 design
recipes	and	guidelines	of	the	first	two	parts	of	the	book:

That	 is,	foldl	 is	 the	 result	 of	 reversing	 the	given	 list	 and	 then	using	foldr	 to
fold	the	given	function	over	this	intermediate	list.

The	f*ldl	function	obviously	traverses	the	list	twice,	but	once	we	design	all
the	functions,	it	becomes	clear	how	much	harder	it	has	to	work:

We	 know	 that	 reverse	 has	 to	 traverse	 a	 list	 once	 for	 every	 item	 on	 the	 list,
meaning	f*ldl	 really	performs	n2	 traversals	 for	 a	 list	of	 length	n.	Fortunately,
we	know	how	to	eliminate	this	bottleneck	with	an	accumulator:

Once	 reverse	 uses	 an	 accumulator,	 we	 actually	 get	 the	 apparent

performance	 of	 two	 traversals	 of	 the	 list.	 The	 question	 is	 whether	 we	 can
improve	on	this	by	adding	an	accumulator	to	the	locally	defined	fold:

Since	equipping	the	function	with	an	accumulator	reverses	the	order	in	which	the
list	is	traversed,	the	initial	reversal	of	the	list	is	superfluous.

Task	1	Recall	the	signature	for	foldl:

;	[X	Y]	[X	Y	->	Y]	Y	[List-of	X]	->	Y

It	 is	 also	 the	 signature	 of	 f*ldl.	 Formulate	 the	 signature	 for	 fold/a	 and	 its
accumulator	 invariant.	Hint	 Assume	 that	 the	 difference	 between	 l0	 and	 l	 is
(list	x1	x2	x3).	What	is	a,	then?

You	 may	 also	 be	 wondering	 why	 fold/a	 consumes	 its	 arguments	 in	 this
unusual	order,	first	 the	accumulator	and	then	the	list.	To	understand	the	reason
for	 this	 ordering,	 imagine	 instead	 that	 fold/a	 also	 consumes	 f—as	 the	 first
argument.	At	this	point	it	becomes	abundantly	clear	that	fold/a	is	foldl:

Task	 2	 Design	 build-l*st	 using	 an	 accumulator-style	 approach.	 The
function	must	satisfy	the	following	tests:

(check-expect	(build-l*st	n	f)	(build-list	n	f))

for	any	natural	number	n	and	function	f.	

32.4 A	Graphical	Editor,	with	Mouse
Chapter	5.10	introduces	the	notion	of	a	one-line	editor	and	presents	a	number	of
exercises	 on	 creating	 a	 graphical	 editor.	 Recall	 that	 a	 graphical	 editor	 is	 an
interactive	program	 that	 interprets	key	events	 as	 editing	actions	on	a	 string.	 In
particular,	when	a	user	presses	the	left	or	right	arrow	keys,	the	cursor	moves	left
or	 right;	 similarly,	 pressing	 the	 delete	 key	 removes	 a	 1String	 from	 the	 edited
text.	The	editor	program	uses	a	data	representation	that	combines	two	strings	in	a
structure.	 Chapter	 10.4	 resumes	 these	 exercises	 and	 shows	 how	 the	 same
program	can	greatly	 benefit	 from	a	 different	 data	 structure,	 one	 that	 combines
two	strings.

Neither	 of	 these	 sections	 deals	 with	 mouse	 actions	 for	 navigation,	 even
though	 all	 modern	 applications	 support	 this	 functionality.	 The	 basic	 difficulty
with	 mouse	 events	 is	 to	 place	 the	 cursor	 at	 the	 appropriate	 spot.	 Since	 the
program	deals	with	a	 single	 line	of	 text,	 a	mouse	click	at	 (x,y)	 clearly	aims	 to
place	 the	cursor	between	the	 letters	 that	are	visible	at	or	around	the	x	position.
This	section	fills	the	gap.

Recall	the	relevant	definitions	from	chapter	10.4:

(define	FONT-SIZE	11)	
(define	FONT-COLOR	"black")	

;	[List-of	1String]	->	Image	
;	renders	a	string	as	an	image	for	the	editor	
(define	(editor-text	s)	
		(text	(implode	s)	FONT-SIZE	FONT-COLOR))	

(define-struct	editor	[pre	post])	
;	An	Editor	is	a	structure:	
;				(make-editor	[List-of	1String]	[List-of	1String])	
;	interpretation	if	(make-editor	p	s)	is	the	state	of	
;	an	interactive	editor,	(reverse	p)	corresponds	to	
;	the	text	to	the	left	of	the	cursor	and	s	to	the	
;	text	on	the	right

Exercise	508.	Design	split-structural	using	the	structural	design	recipe.

The	function	consumes	a	list	of	1Strings	ed	and	a	natural	number	x;	the	former
represents	 the	complete	string	in	some	Editor	and	the	latter	 the	x-coordinate	of
the	mouse	click.	The	function	produces

(make-editor	p	s)

such	 that	 (1)	p	 and	s	make	 up	ed	 and	 (2)	 x	 is	 larger	 than	 the	 image	 of	p	 and
smaller	than	the	image	of	p	extended	with	the	first	1String	on	s	(if	any).

Here	is	the	first	condition	expressed	with	an	ISL+	expression:

(string=?	(string-append	p	s)	ed)

The	second	one	is

(<=	(image-width	(editor-text	p))	
				x	
				(image-width	(editor-text	(append	p	(first	s)))))

assuming	(cons?	s).
Hints	 (1)	The	x-coordinate	measures	 the	 distance	 from	 the	 left.	Hence	 the

function	must	check	whether	smaller	and	smaller	prefixes	of	ed	fit	into	the	given
width.	The	 first	one	 that	doesn’t	 fit	 corresponds	 to	 the	pre	 field	of	 the	desired
Editor,	the	remainder	of	ed	to	the	post	field.

(2)	 Designing	 this	 function	 calls	 for	 thoroughly	 developing	 examples	 and
tests.	See	chapter	4.	

Exercise	509.	Design	the	function	split.	Use	the	accumulator	design	recipe
to	improve	on	the	result	of	exercise	508.	After	all,	the	hints	already	point	out	that
when	the	function	discovers	the	correct	split	point,	it	needs	both	parts	of	the	list,
and	one	part	is	obviously	lost	due	to	recursion.	

Once	you	have	solved	this	exercise,	equip	the	main	function	of	chapter	10.4
with	a	clause	for	mouse	clicks.	As	you	experiment	with	moving	 the	cursor	via
mouse	 clicks,	 you	will	 notice	 that	 it	 does	 not	 exactly	 behave	 like	 applications
that	you	use	on	your	other	devices—even	though	split	passes	all	its	tests.

Graphical	 programs,	 like	 editors,	 call	 for	 experimentation	 to	 come	up	with
the	best	 “look	 and	 feel”	 experiences.	 In	 this	 case,	 your	 editor	 is	 too	 simplistic
with	 its	 placement	 of	 the	 cursor.	 After	 the	 applications	 on	 your	 computer
determine	 the	 split	point,	 they	also	determine	which	 letter	division	 is	 closer	 to

the	x-coordinate	and	place	the	cursor	there.
Exercise	 510.	Many	operating	 systems	come	with	 the	fmt	 program,	which

can	 rearrange	 the	 words	 in	 a	 file	 so	 that	 all	 lines	 in	 the	 resulting	 file	 have	 a
maximal	 width.	 As	 a	 widely	 used	 program,	 fmt	 supports	 a	 range	 of	 related
functions.	This	exercise	focuses	on	its	core	functionality.

Design	 the	 program	 fmt.	 It	 consumes	 a	 natural	 number	 w,	 the	 name	 of	 an
input	 file	 in-f,	 and	 the	 name	 of	 an	 output	 file	 out-f—in	 the	 same	 sense	 as
read-file	 from	the	2htdp/batch-io	 library.	 Its	purpose	 is	 to	 read	all	 the	words
from	the	in-f,	 to	arrange	these	words	in	 the	given	order	 into	 lines	of	maximal
width	w,	and	to	write	these	lines	to	out-f.	

33 More	Uses	of	Accumulation
This	chapter	presents	three	more	uses	of	accumulators.	The	first	section	concerns
the	use	of	accumulators	in	conjunction	with	tree-processing	functions.	It	uses	the
compilation	of	ISL+	as	an	illustrative	example.	The	second	section	explains	why
we	occasionally	want	accumulators	inside	of	data	representations	and	how	to	go
about	placing	them	there.	The	final	section	resumes	the	discussion	of	rendering
fractals.

33.1 Accumulators	and	Trees
When	you	 ask	DrRacket	 to	 run	 an	 ISL+	program,	 it	 translates	 the	 program	 to
commands	 for	 your	 specific	 computer.	This	 process	 is	 called	compilation,	 and
the	 part	 of	 DrRacket	 that	 performs	 the	 task	 is	 called	 a	 compiler.	 Before	 the
compiler	 translates	 the	 ISL+	program,	 it	 checks	 that	 every	variable	 is	declared
via	a	define,	a	define-struct,	or	a	lambda.

Stop!	Enter	x,	(lambda	(y)	x),	and	(x	5)	as	complete	ISL+	programs	into
DrRacket	and	ask	it	to	run	each.	What	do	you	expect	to	see?

Let’s	phrase	this	idea	as	a	sample	problem:

Sample	Problem	You	have	been	hired	 to	re-create	a	part	of	 the
ISL+	 compiler.	 Specifically,	 your	 task	 deals	with	 the	 following
language	 fragment,	 specified	 in	 the	 so-called	 grammar	 notation
that	many	programming	language	manuals	use:

We	use	the	Greek	letter	λ	instead	of	lambda	to	signal	that	this	exercise	deals	with	ISL+	as	an	object	of
study,	not	just	a	programming	language.

Remember	 from	 intermezzo	 1	 that	 you	 can	 read	 the	 grammar
aloud	replacing	=	with	“is	one	of”	and	 | 	with	“or.”
Recall	that	λ	expressions	are	functions	without	names.	They	bind
their	parameter	in	their	body.	Conversely,	a	variable	occurrence	is
declared	 by	 a	 surrounding	 λ	 that	 specifies	 the	 same	 name	 as	 a
parameter.	You	may	wish	to	revisit	intermezzo	3	because	it	deals
with	the	same	issue	from	the	perspective	of	a	programmer.	Look
for	 the	 terms	 “binding	 occurrence,”	 “bound	 occurrence,”	 and
“free.”
Develop	 a	 data	 representation	 for	 the	 above	 language	 fragment;
use	 symbols	 to	 represent	 variables.	 Then	 design	 a	 function	 that
replaces	all	undeclared	variables	with	'*undeclared.

This	problem	 is	 representative	of	many	 steps	 in	 the	 translation	process	 and,	 at
the	same	time,	is	a	great	case	study	for	accumulator-style	functions.

Before	we	dive	 into	 the	problem,	 let’s	 look	at	some	examples	 in	 this	mini-
language,	recalling	what	we	know	about	lambda:

•  (λ	(x)	x)	is	the	function	that	returns	whatever	it	is	given,	also	known	as
the	identity	function;

•  (λ	 (x)	 y)	 looks	 like	 a	 function	 that	 returns	 y	 whenever	 it	 is	 given	 an
argument,	except	that	y	isn’t	declared;

•  (λ	(y)	(λ	(x)	y))	is	a	function	that,	when	given	some	value	v,	produces	a
function	that	always	returns	v;

•  ((λ	(x)	x)	(λ	(x)	x))	applies	the	identity	function	to	itself;

•  ((λ	(x)	(x	x))	(λ	(x)	(x	x)))	is	a	short	infinite	loop;	and

•  (((λ	(y)	(λ	(x)	y))	(λ	(z)	z))	(λ	(w)	w))	 is	 a	complex	expression
that	is	best	run	in	ISL+	to	find	out	whether	it	terminates.

Indeed,	you	can	 run	all	of	 the	above	 ISL+	expressions	 in	DrRacket	 to	confirm
what	is	written	about	them.

Exercise	 511.	 Explain	 the	 scope	 of	 each	 binding	 occurrence	 in	 the	 above
examples.	Draw	arrows	from	the	bound	to	the	binding	occurrences.	

Developing	a	data	representation	for	the	language	is	easy,	especially	because
its	description	uses	a	grammar	notation.	Here	is	one	possibility:

;	A	Lam	is	one	of:	
;	--	a	Symbol	
;	--	(list	'λ	(list	Symbol)	Lam)	
;	--	(list	Lam	Lam)

Because	 of	 quote,	 this	 data	 representation	 makes	 it	 easy	 to	 create	 data
representations	for	expressions	in	our	subset	of	ISL+:

(define	ex1	'(λ	(x)	x))	

(define	ex2	'(λ	(x)	y))	
(define	ex3	'(λ	(y)	(λ	(x)	y)))	
(define	ex4	'((λ	(x)	(x	x))	(λ	(x)	(x	x))))

These	four	data	examples	are	representations	of	some	of	the	above	expressions.
Stop!	Create	data	representations	for	the	remaining	examples.

Exercise	 512.	Define	is-var?,	is-λ?,	 and	is-app?,	 that	 is,	predicates	 that
distinguish	variables	from	λ	expressions	and	applications.

Also	define

•  λ-para,	which	extracts	the	parameter	from	a	λ	expression;

•  λ-body,	which	extracts	the	body	from	a	λ	expression;

•  app-fun,	which	extracts	the	function	from	an	application;	and

•  app-arg,	which	extracts	the	argument	from	an	application.

With	these	predicates	and	selectors,	you	basically	can	act	as	if	you	had	defined	a
structure-oriented	data	representation.

Design	 declareds,	 which	 produces	 the	 list	 of	 all	 symbols	 used	 as	 λ
parameters	in	a	λ	term.	Don’t	worry	about	duplicate	symbols.	

Exercise	513.	Develop	a	data	representation	for	the	same	subset	of	ISL+	that
uses	 structures	 instead	 of	 lists.	Also	 provide	 data	 representations	 for	ex1,	ex2,
and	ex3	following	your	data	definition.	

We	follow	the	structural	design	recipe,	and	here	is	the	product	of	steps	two
and	three:

;	Lam	->	Lam	
;	replaces	all	symbols	s	in	le	with	'*undeclared	
;	if	they	do	not	occur	within	the	body	of	a	λ	
;	expression	whose	parameter	is	s	

(check-expect	(undeclareds	ex1)	ex1)	
(check-expect	(undeclareds	ex2)	'(λ	(x)	*undeclared))	
(check-expect	(undeclareds	ex3)	ex3)	
(check-expect	(undeclareds	ex4)	ex4)	

(define	(undeclareds	le0)	
		le0)

Note	 how	we	 expect	 undeclareds	 to	 process	 ex4	 even	 though	 the	 expression
loops	 forever	 when	 run;	 compilers	 don’t	 run	 programs,	 they	 read	 them	 and
create	others.

A	 close	 look	 at	 the	 purpose	 statement	 directly	 suggests	 that	 the	 function
needs	an	accumulator.	This	becomes	even	clearer	when	we	inspect	the	template
for	undeclareds:

When	undeclareds	recurs	on	the	body	of	(the	representation	of)	a	λ	expression,
it	forgets	(λ-para	le),	the	declared	variable.

So,	let’s	start	with	an	accumulator-style	template:

In	this	context,	we	can	now	formulate	an	accumulator	invariant:

a	represents	the	list	of	λ	parameters	encountered	on	the	path	from
the	top	of	le0	to	the	top	of	le.

For	example,	if	le0	is

and	le	 is	 the	highlighted	subtree,	 then	a	contains	y.	The	left	side	of	figure	186
presents	a	graphical	illustration	of	the	same	example.	It	shows	a	Lam	expression
as	 an	 upside-down	 tree;	 that	 is,	 the	 root	 is	 at	 the	 top.	A	@	 node	 represents	 an
application	with	 two	 descendants;	 the	 other	 nodes	 are	 self-explanatory.	 In	 this
tree	 diagram,	 the	 bold	 path	 leads	 from	 le0	 to	 le	 through	 a	 single	 variable
declaration.

Figure	186:	Lam	terms	as	trees

Similarly,	if	we	pick	a	different	subtree	of	the	same	piece	of	data,

we	get	an	accumulator	that	contains	both	'y	and	'x.	The	right	side	of	figure	186
makes	 this	 point	 again.	Here	 the	 bold	 path	 leads	 through	 two	'λ	 nodes	 to	 the
boxed	 subtree,	 and	 the	 accumulator	 is	 the	 list	 of	 declared	 variables	 along	 the
bold	path.

Now	that	we	have	settled	on	the	data	representation	of	the	accumulator	and
its	invariant,	we	can	resolve	the	remaining	design	questions:

•  We	pick	an	initial	accumulator	value	of	'().

•  We	use	cons	to	add	(λ-para	le)	to	a.

•  We	 exploit	 the	 accumulator	 for	 the	 clause	 where	 undeclareds/a	 deals
with	 a	 variable.	 Specifically,	 the	 function	 uses	 the	 accumulator	 to	 check
whether	the	variable	is	in	the	scope	of	a	declaration.

Figure	 187	 shows	 how	 to	 translate	 these	 ideas	 into	 a	 complete	 function
definition.	Note	 the	 name	 declareds	 for	 the	 accumulator;	 it	 brings	 across	 the
key	 idea	behind	 the	accumulator	 invariant,	helping	 the	programmer	understand
the	definition.	The	base	case	uses	member?	from	ISL+	to	determine	whether	the
variable	 le	 is	 in	 declareds	 and,	 if	 not,	 replaces	 it	 with	 '*undeclared.	 The

second	cond	 clause	 uses	 a	local	 to	 introduce	 the	 extended	 accumulator	newd.
Because	 para	 is	 also	 used	 to	 rebuild	 the	 expression,	 it	 has	 its	 own	 local
definition.	Finally,	 the	 last	clause	concerns	function	applications,	which	do	not
declare	variables	and	do	not	use	any	directly.	As	a	result,	it	is	by	far	the	simplest
of	the	three	clauses.

Figure	187:	Finding	undeclared	variables

Exercise	514.	Make	up	an	ISL+	expression	in	which	x	occurs	both	free	and
bound.	Formulate	it	as	an	element	of	Lam.	Does	undeclareds	work	properly	on
your	expression?	

Exercise	515.	Consider	the	following	expression:

(λ	(*undeclared)	((λ	(x)	(x	*undeclared))	y))

Yes,	 it	 uses	 *undeclared	 as	 a	 variable.	 Represent	 it	 in	 Lam	 and	 check	 what
undeclareds	produces	for	this	expression.

Modify	undeclareds	so	that	it	replaces	a	free	occurrence	of	'x	with

(list	'*undeclared	'x)

and	a	bound	one	'y	with

(list	'*declared	'y)

Doing	 so	 unambiguously	 identifies	 problem	 spots,	 which	 a	 program
development	environment	such	as	DrRacket	can	use	to	highlight	errors.

Note	The	trick	of	replacing	a	variable	occurrence	with	the	representation	of
an	 application	 feels	 awkward.	 If	 you	 dislike	 it,	 consider	 synthesizing	 the
symbols	'*undeclared:x	and	'declared:y	instead.	

Exercise	 516.	 Redesign	 the	 undeclareds	 function	 for	 the	 structure-based
data	representation	from	exercise	513.	
Exercise	 517.	Design	static-distance.	The	 function	 replaces	 all	 occurrences
of	variables	with	a	natural	number	that	represents	how	far	away	the	declaring	λ
is.	Figure	188	illustrates	the	idea	for	the	term

Figure	188:	Static	distances

'((λ	(x)	((λ	(y)	(y	x))	x))	(λ	(z)	z))

in	graphical	form.	It	includes	dotted	arrows	that	point	from	variable	occurrences
to	the	corresponding	variable	declarations.	On	the	right,	the	figure	shows	a	tree
of	 the	 same	 shape,	 though	 without	 the	 arrows.	 The	 'λ	 nodes	 come	 without
names,	 and	 variable	 occurrences	 have	 been	 replaced	 by	 natural	 numbers	 that
specify	 which	 'λ	 declares	 the	 variable.	 Each	 natural	 number	 n	 says	 that	 the
binding	occurrence	is	n	steps	upward—toward	the	root	of	the	Lam	tree.	A	value
of	0	denotes	the	first	'λ	on	the	path	to	the	root,	1	the	second	one,	and	so	on.

Hint	 The	 undeclareds	 accumulator	 of	 undeclareds/a	 is	 a	 list	 of	 all
parameters	on	path	from	le	to	le0	in	reverse	order—the	last	one	seen	is	first	on
the	list.	

33.2 Data	Representations	with	Accumulators
The	end	of	 intermezzo	5	explains	 that	*SL	measures	 the	size	of	containers,	say
lists,	 by	 traversing	 them	 and	 hints	 that	 other	 programming	 languages	 use	 a
different,	less	expensive	way,	to	compute	sizes.	In	this	section,	we	show	how	to
implement	 this	 idea	 with	 the	 addition	 of	 an	 accumulator	 to	 data
representations.

See	chapter	12.8	for	an	early	example	of	this	idea.

Consider	the	ubiquitous	lists	in	*SL.	All	lists	are	constructed	from	cons	and
'();	operations	such	as	quote	and	list,	 for	example,	are	merely	abbreviations
for	these	two.	As	chapter	8.2	shows,	it	is	also	possible	to	mimic	lists	in	BSL	with
suitable	structure	type	and	function	definitions.

Figure	189	recalls	the	basic	idea.	Stop!	Can	you	define	our-rest	now?

Figure	189:	An	implementation	of	lists	in	BSL

The	key	insight	is	that	we	can	add	a	third	field	to	the	structure	type	definition
of	pair:

(define-struct	cpair	[count	left	right])	

;	A	[MyList	X]	is	one	of:	
;	--	'()	
;	--	(make-cpair	(tech	"N")	X	[MyList	X])	
;	accumulator	the	count	field	is	the	number	of	cpairs

As	 the	 accumulator	 statement	 says,	 the	 extra	 field	 is	used	 to	keep	 track	of	 the
number	of	cpair	 instances	used	 to	 create	 the	 list.	That	 is,	 it	 remembers	 a	 fact
about	 the	 construction	 of	 the	 list.	 We	 call	 this	 kind	 of	 structure	 field	 a	 data
accumulator.

Adding	a	field	to	the	major	list	constructor	does	not	come	for	free.	To	begin
with,	it	requires	a	change	to	the	checked	version	of	the	constructor,	the	one	that
is	actually	available	to	programs:

;	data	definitions,	via	a	constructor-function	
(define	(our-cons	f	r)	
		(cond	
				[(empty?	r)	(make-cpair	1	f	r)]	
				[(cpair?	r)	(make-cpair	(+	(cpair-count	r)	1)	f	r)]	
				[else	(error	"our-cons:	…")]))

If	 the	 extended	 list	 is	 '(),	 count	 is	 populated	with	 1;	 otherwise,	 the	 function
computes	the	length	from	the	given	cpair.

Now	the	function	definition	for	our-length	is	obvious:

;	Any	->	N	
;	how	many	items	does	l	contain	
(define	(our-length	l)	
		(cond	
				[(empty?	l)	0]	
				[(cpair?	l)	(cpair-count	l)]	
				[else	(error	"my-length:	…")]))

The	 function	 consumes	 any	 kind	 of	 value.	 For	 '()	 and	 instances	 of	 cpair,	 it
produces	natural	numbers;	otherwise	it	signals	an	error.

The	 second	 problem	 with	 the	 addition	 of	 a	 count	 field	 concerns
performance.	Indeed,	there	are	two	concerns.	On	the	one	hand,	every	single	list

construction	comes	with	an	extra	field	now,	meaning	a	33%	increase	in	memory
consumption.	 On	 the	 other	 hand,	 the	 addition	 of	 the	 field	 decreases	 how	 fast
our-cons	constructs	a	list.	In	addition	to	the	check	that	the	extended	list	is	either
'()	or	an	instance	of	a	cpair,	the	constructor	now	computes	the	size	of	the	list.
Although	this	computation	consumes	a	constant	amount	of	time,	it	is	imposed	on
every	 single	 use	 of	our-cons—and	 just	 think	 how	many	 times	 this	 book	 uses
cons	and	does	not	ever	compute	how	long	the	resulting	list	is!

Exercise	 518.	 Argue	 that	 our-cons	 takes	 a	 constant	 amount	 of	 time	 to
compute	its	result,	regardless	of	the	size	of	its	input.	

Exercise	 519.	 Is	 it	 acceptable	 to	 impose	 the	 extra	 cost	 on	 cons	 for	 all
programs	to	turn	length	into	a	constant-time	function?	

While	 the	addition	of	a	count	 field	 to	 lists	 is	questionable,	 sometimes	data
accumulators	play	a	crucial	role	in	finding	a	solution.	The	next	example	is	about
adding	so-called	artificial	intelligence	to	a	board-game-playing	program,	and	its
data	accumulator	is	an	absolute	necessity.

As	 you	 play	 board	 games	 or	 solve	 puzzles,	 you	 tend	 to	 think	 about	 your
possible	 moves	 at	 every	 stage.	 As	 you	 get	 better,	 you	may	 even	 imagine	 the
possibilities	after	 this	 first	 step.	The	 result	 is	a	so-called	game	 tree,	which	 is	a
(part	 of	 the)	 tree	 of	 all	 possible	moves	 that	 the	 rules	 allow.	 Let’s	 start	with	 a
problem:

Sample	Problem	Your	manager	tells	you	the	following	story.
“Once	 upon	 a	 time,	 three	 cannibals	 were	 guiding	 three
missionaries	 through	 a	 jungle.	 They	 were	 on	 their	 way	 to	 the
nearest	mission	 station.	After	 some	 time,	 they	 arrived	 at	 a	wide
river,	 filled	 with	 deadly	 snakes	 and	 fish.	 There	 was	 no	 way	 to
cross	the	river	without	a	boat.	Fortunately,	they	found	a	rowboat
with	two	oars	after	a	short	search.	Unfortunately,	the	boat	was	too
small	 to	carry	all	of	 them.	 It	 could	barely	carry	 two	people	at	 a
time.	Worse,	because	of	the	river’s	width	someone	had	to	row	the
boat	back.
“Since	the	missionaries	could	not	trust	the	cannibals,	they	had	to
figure	out	a	plan	to	get	all	six	of	them	safely	across	the	river.	The
problem	was	that	these	cannibals	would	kill	and	eat	missionaries
as	soon	as	 there	were	more	cannibals	 than	missionaries	 in	some
place.	Our	missionaries	had	to	devise	a	plan	that	guaranteed	that

there	were	never	any	missionaries	 in	 the	minority	on	either	 side
of	 the	 river.	 The	 cannibals,	 however,	 could	 be	 trusted	 to
cooperate	 otherwise.	 Specifically,	 they	 would	 not	 abandon	 any
potential	 food,	 just	 as	 the	 missionaries	 would	 not	 abandon	 any
potential	converts.”
While	 your	manager	 doesn’t	 assign	 any	 specific	 design	 task,	 he
wants	 to	 explore	 whether	 the	 company	 can	 design	 (and	 sell)
programs	that	solve	such	puzzles.

While	puzzles	aren’t	board	games,	the	program	illustrates	the	idea	of	game	trees
in	the	most	straightforward	manner	possible.

In	principle,	it	is	quite	straightforward	to	solve	such	puzzles	by	hand.	Here	is
the	 rough	 idea.	 Pick	 a	 graphical	 representation	 of	 the	 problem	 states.	 Ours
consists	 of	 a	 three-part	 box:	 the	 left	 one	 represents	 the	 missionaries	 and	 the
cannibals;	 the	middle	combines	 the	river	and	 the	boat;	and	 the	 third	part	 is	 the
right-hand	 side	of	 the	 river.	Take	a	 look	at	 the	 following	 representation	of	 the
initial	state:

Black	circles	denote	missionaries,	white	circles	cannibals.	All	of	them	are	on	the
left-hand	 river	 bank.	The	boat	 is	 also	on	 the	 left	 side.	Nobody	 is	 on	 the	 right.
Here	are	two	more	states:

The	first	one	is	the	final	state,	where	all	people	and	the	boat	are	on	the	right	bank
of	 the	river.	The	second	one	depicts	some	intermediate	state	where	 two	people
are	on	the	left	with	the	boat	and	four	people	are	on	the	right.

Now	that	you	have	a	way	to	write	down	the	state	of	the	puzzle,	you	can	think
about	 the	possibilities	 at	 each	 stage.	Doing	 so	yields	a	 tree	of	possible	moves.
Figure	190	sketches	the	first	two	and	a	half	layers	in	such	a	tree.	The	left-most
state	 is	 the	 initial	 one.	Because	 the	 boat	 can	 transport	 at	most	 two	people	 and
must	 be	 rowed	 by	 at	 least	 one,	 you	 have	 five	 possibilities	 to	 explore:	 one

cannibal	 rows	 across;	 two	 cannibals	 row	 across;	 one	 missionary	 and	 one
cannibal	go;	one	missionary	crosses;	or	two	missionaries	do.	These	possibilities
are	represented	with	five	arrows	going	from	the	initial	state	to	five	intermediate
states.

Figure	190:	Creating	a	game	tree

For	each	of	these	five	intermediate	states,	you	can	play	the	same	game	again.
In	figure	190	you	see	how	the	game	continues	for	the	middle	(third)	one	of	the
new	states.	Because	 there	are	only	 two	people	on	 the	right	 river	bank,	you	see
three	 possibilities:	 a	 cannibal	 goes	 back,	 a	 missionary	 goes	 back,	 or	 both	 do.
Hence	three	arrows	connect	the	middle	state	to	the	three	states	on	the	right	side
of	the	tree.	If	you	keep	drawing	this	tree	of	possibilities	in	a	systematic	manner,
you	eventually	discover	the	final	state.

A	second	look	at	figure	190	reveals	two	problems	with	this	naive	approach
to	 generating	 the	 tree	 of	 possibilities.	 The	 first	 one	 is	 the	 dashed	 arrow	 that
connects	the	middle	state	on	the	right	to	the	initial	state.	It	indicates	that	rowing
back	the	two	people	from	the	right	 to	 the	left	gets	 the	puzzle	back	to	 its	 initial
state,	meaning	you’re	starting	over,	which	is	obviously	undesirable.	The	second
problem	concerns	those	states	with	a	star	in	the	top-right	corner.	In	both	cases,
there	 are	more	white-circle	 cannibals	 than	black-circle	missionaries	on	 the	 left
river	bank,	meaning	the	cannibals	would	eat	the	missionaries.	Again,	the	goal	is
to	avoid	such	states,	making	these	moves	undesirable.

One	 way	 to	 turn	 this	 puzzle	 into	 a	 program	 is	 to	 design	 a	 function	 that

determines	 whether	 some	 final	 state—here	 the	 final	 state—is	 reachable	 from
some	given	state.	Here	is	an	appropriate	function	definition:

The	auxiliary	function	uses	generative	recursion,	generating	all	new	possibilities
given	a	 list	of	possibilities.	 If	one	of	 the	given	possibilities	 is	a	 final	 state,	 the
function	returns	it.

Clearly,	 solve	 is	 quite	 generic.	 As	 long	 as	 you	 define	 a	 collection	 of
PuzzleStates,	a	function	for	recognizing	final	states,	and	a	function	for	creating
all	“successor”	states,	solve	can	work	on	your	puzzle.

Exercise	520.	The	solve*	function	generates	all	states	reachable	with	n	boat
trips	before	it	looks	at	states	that	require	n	+	1	boat	trips,	even	if	some	of	those
boat	trips	return	to	previously	encountered	states.	Because	of	this	systematic	way
of	 traversing	 the	 tree,	 solve*	 cannot	 go	 into	 an	 infinite	 loop.	 Why?
Terminology	 This	way	 of	 searching	 a	 tree	 or	 a	 graph	 is	 dubbed	breadth-first
search.	

Exercise	521.	Develop	a	representation	for	the	states	of	the	missionary-and-
cannibal	 puzzle.	 Like	 the	 graphical	 representation,	 a	 data	 representation	 must
record	 the	number	of	missionaries	and	cannibals	on	each	side	of	 the	 river	plus
the	location	of	the	boat.

The	description	of	PuzzleState	calls	for	a	new	structure	type.	Represent	 the
above	initial,	intermediate,	and	final	states	in	your	representation.

Design	the	function	final?,	which	detects	whether	in	a	given	state	all	people
are	on	the	right	river	bank.

Design	 the	 function	render-mc,	which	maps	a	 state	of	 the	missionary-and-
cannibal	puzzle	to	an	image.	

The	 problem	 is	 that	 returning	 the	 final	 state	 says	 nothing	 about	 how	 the
player	 can	 get	 from	 the	 initial	 state	 to	 the	 final	 one.	 In	 other	words,	 create-
next-states	forgets	how	it	gets	to	the	returned	states	from	the	given	ones.	And
this	 situation	 clearly	 calls	 for	 an	 accumulator,	 but	 at	 the	 same	 time,	 the
accumulated	knowledge	is	best	associated	with	every	individual	PuzzleState,	not
solve*	or	any	other	function.

Exercise	 522.	Modify	 the	 representation	 from	 exercise	 521	 so	 that	 a	 state
records	the	sequence	of	states	traversed	to	get	there.	Use	a	list	of	states.

Articulate	and	write	down	an	accumulator	statement	with	the	data	definition
that	explains	the	additional	field.

Modify	final?	or	render-mc	for	this	representation	as	needed.	
Exercise	523.	Design	the	create-next-states	function.	It	consumes	lists	of

missionary-and-cannibal	 states	 and	 generates	 the	 list	 of	 all	 those	 states	 that	 a
boat	ride	can	reach.

Ignore	 the	accumulator	 in	 the	 first	draft	of	create-next-states,	but	make
sure	 that	 the	 function	does	not	 generate	 states	where	 the	 cannibals	 can	 eat	 the
missionaries.

For	 the	 second	 design,	 update	 the	 accumulator	 field	 in	 the	 state	 structures
and	use	it	to	rule	out	states	that	have	been	encountered	on	the	way	to	the	current
state.	

Exercise	 524.	 Exploit	 the	 accumulator-oriented	 data	 representation	 to
modify	solve.	The	revised	function	produces	the	list	of	states	that	lead	from	the
initial	PuzzleState	to	the	final	one.

Also	consider	 creating	 a	movie	 from	 this	 list,	 using	render-mc	 to	generate
the	images.	Use	run-movie	to	display	the	movie.	

33.3 Accumulators	as	Results
Take	another	look	at	figure	157.	It	displays	a	Sierpinski	triangle	and	a	suggestion
how	to	create	it.	Specifically,	the	images	on	the	right	explain	one	version	of	the
generative	idea	behind	the	process:

The	given	problem	is	a	triangle.	When	the	triangle	is	too	small	to
be	subdivided	any	further,	the	algorithm	does	nothing;	otherwise,
it	 finds	 the	midpoints	 of	 its	 three	 sides	 and	deals	with	 the	 three
outer	triangles	recursively.

In	 contrast,	 chapter	 27.1	 shows	 how	 to	 compose	 Sierpinski	 triangles
algebraically,	a	process	that	does	not	correspond	to	this	description.

Most	programmers	expect	“draw”	to	mean	the	action	of	adding	a	triangle	to
some	canvas.	The	scene+line	function	from	the	2htdp/image	library	makes	this
idea	 concrete.	 The	 function	 consumes	 an	 image	 s	 and	 the	 coordinates	 of	 two
points	and	adds	a	line	through	these	two	points	to	s.	It	is	easy	to	generalize	from
scene+line	to	add-triangle	and	from	there	to	add-sierpinski:

Sample	 Problem	 Design	 the	 add-sierpinski	 function.	 It
consumes	an	image	and	three	Posns	describing	a	triangle.	It	uses
the	latter	to	add	a	Sierpinski	triangle	to	this	image.

Note	how	this	problem	implicitly	refers	to	the	above	process	description	of	how
to	draw	a	Sierpinski	triangle.	In	other	words,	we	are	confronted	with	a	classical
generative-recursive	 problem,	 and	 we	 can	 start	 with	 the	 classic	 template	 of
generative	recursion	and	the	four	central	design	questions:

•  The	problem	is	trivial	if	the	triangle	is	too	small	to	be	subdivided.

•  In	the	trivial	case,	the	function	returns	the	given	image.

•  Otherwise	the	midpoints	of	 the	sides	of	the	given	triangle	are	determined
to	add	another	triangle.	Each	“outer”	triangle	is	then	processed	recursively.

•  Each	of	these	recursive	steps	produces	an	image.	The	remaining	question
is	how	to	combine	these	images.

Figure	 191	 shows	 the	 result	 of	 translating	 these	 answers	 into	 a	 skeletal
definition.	 Since	 each	 midpoint	 is	 used	 twice,	 the	 skeleton	 uses	 local	 to
formulate	the	generative	step	in	ISL+.	The	local	expression	introduces	the	three
new	midpoints	plus	three	recursive	applications	of	add-sierpinski.	The	dots	in
its	body	suggest	a	combination	of	the	scenes.

Figure	191:	Accumulators	as	results	of	generative	recursions,	a	skeleton

Exercise	525.	Tackle	the	wish	list	that	the	skeleton	implies:

;	Image	Posn	Posn	Posn	->	Image	
;	adds	the	black	triangle	a,	b,	c	to	scene	
(define	(add-triangle	scene	a	b	c)	scene)	

;	Posn	Posn	Posn	->	Boolean	
;	is	the	triangle	a,	b,	c	too	small	to	be	divided	
(define	(too-small?	a	b	c)	
		#false)	

;	Posn	Posn	->	Posn	
;	determines	the	midpoint	between	a	and	b	

(define	(midpoint	a	b)	
		a)

Design	the	three	functions.
Domain	Knowledge	(1)	For	the	too-small?	function	it	suffices	to	measure

the	distance	between	two	points	and	to	check	whether	it	 is	below	some	chosen
threshold,	say,	10.	The	distance	between	(x0,	y0)	and	(x1,	y1)	is

that	is,	the	distance	of	(x0	−	x1,	y0	−	y1)	to	the	origin.
The	 midpoint	 between	 points	 (x0,	 y0)	 and	 (x1,	 y1)	 has	 as	 coordinates	 the

midpoints	between	the	respective	x	and	y	coordinates:

Now	 that	 we	 have	 all	 the	 auxiliary	 functions,	 it	 is	 time	 to	 return	 to	 the
problem	of	 combining	 the	 three	 images	 that	 are	 created	by	 the	 recursive	 calls.
One	obvious	guess	is	to	use	the	overlay	or	underlay	function,	but	an	evaluation
in	the	interactions	area	of	DrRacket	shows	that	the	functions	hide	the	underlying
triangles.

Specifically,	 imagine	 that	 the	 three	 recursive	 calls	 produce	 the	 following
empty	scenes,	enriched	with	a	single	triangle	in	appropriate	locations:

A	combination	should	look	like	this	figure:

But,	 combining	 these	 shapes	 with	 overlay	 or	 underlay	 does	 not	 yield	 this
desired	shape:

Indeed,	 the	 image	 library	 of	 ISL+	 does	 not	 support	 a	 function	 that	 combines
these	scenes	in	an	appropriate	manner.

Let’s	 take	 a	 second	 look	 at	 these	 interactions.	 If	 scene1	 is	 the	 result	 of
adding	the	upper	triangle	to	the	given	scene	and	scene2	is	the	result	of	adding	a
triangle	on	the	lower	left,	perhaps	the	second	recursive	call	should	add	triangles
to	the	result	of	the	first	call.	Doing	so	would	yield

and	handing	over	this	scene	to	the	third	recursive	call	produces	exactly	what	is
wanted:

Figure	 192	 shows	 the	 reformulation	 based	 on	 this	 insight.	 The	 three
highlights	pinpoint	the	key	design	idea.	All	concern	the	case	when	the	triangle	is
sufficiently	 large	 and	 it	 is	 added	 to	 the	 given	 scene.	 Once	 its	 sides	 are
subdivided,	 the	 first	 outer	 triangle	 is	 recursively	 processed	 using	 scene1,	 the
result	 of	 adding	 the	 given	 triangle.	 Similarly,	 the	 result	 of	 this	 first	 recursion,
dubbed	scene2,	 is	used	for	the	second	recursion,	which	is	about	processing	the
second	 triangle.	Finally,	scene3	 flows	 into	 the	 third	 recursive	call.	 In	sum,	 the

novelty	 is	 that	 the	 accumulator	 is	 simultaneously	 an	 argument,	 a	 tool	 for
collecting	knowledge,	and	the	result	of	the	function.

Figure	192:	Accumulators	as	results	of	generative	recursion,	the	function

To	explore	add-sierpinski	it	is	best	to	start	from	an	equilateral	triangle	and
an	 image	 that	 leaves	a	 sufficiently	 large	border.	Here	are	definitions	 that	meet
these	two	criteria:

(define	MT	(empty-scene	400	400))	
(define	A	(make-posn	200		50))	
(define	B	(make-posn	27		350))	
(define	C	(make-posn	373	350))	

(add-sierpinski	MT	A	B	C)

Check	what	 kind	of	Sierpinski	 fractal	 this	 code	 fragment	 delivers.	Experiment
with	 the	 definitions	 from	 exercise	 525	 to	 create	 sparser	 and	 denser	 Sierpinski
triangles	than	the	first	one.

Exercise	526.	To	compute	the	endpoints	of	an	equilateral	Sierpinski	triangle,
draw	a	circle	and	pick	three	points	on	the	circle	 that	are	120	degrees	apart,	 for
example,	120,	240,	and	360.

Design	the	function	circle-pt:

(define	CENTER	(make-posn	200	200))	
(define	RADIUS	200)	

;	the	radius	in	pixels	

;	Number	->	Posn	
;	determines	the	point	on	the	circle	with	CENTER	
;	and	RADIUS	whose	angle	is	

;	examples	
;	what	are	the	x	and	y	coordinates	of	the	desired	
;	point,	when	given:	120/360,	240/360,	360/360	

(define	(circle-pt	factor)	
		(make-posn	0	0))

Domain	 Knowledge	 This	 design	 problem	 calls	 on	 knowledge	 from
mathematics.	 One	 way	 to	 view	 the	 problem	 is	 as	 a	 conversion	 of	 a	 complex
number	 from	 the	 polar-coordinate	 representation	 to	 the	 Posn	 representation.
Read	up	on	make-polar,	real-part,	and	imag-part	in	ISL+.	Another	way	is	to
use	trigonometry,	sin	and	cos,	to	determine	the	coordinates.	If	you	choose	this
route,	 recall	 that	 these	 trigonometry	 functions	 compute	 the	 sine	 and	 cosine	 in
terms	of	radians,	not	degrees.	Also	keep	in	mind	that	on-screen	positions	grow
downward,	not	upward.	

Exercise	527.	Take	a	look	at	the	following	two	images:

They	demonstrate	how	to	generate	a	fractal	Savannah	tree	in	the	same	way	that
figure	156	shows	how	to	draw	a	Sierpinski	triangle.	The	image	on	the	left	shows
what	 a	 fractal	 Savannah	 tree	 looks	 like.	 The	 right	 one	 explains	 the	 generative

construction	step.
Design	 the	 function	 add-savannah.	 The	 function	 consumes	 an	 image	 and

four	numbers:	(1)	the	x-coordinate	of	a	line’s	base	point,	(2)	the	y-coordinate	of
a	line’s	base	point,	(3)	the	length	of	the	line,	and	(4)	the	angle	of	the	line.	It	adds
a	fractal	Savannah	tree	to	the	given	image.

Unless	the	line	is	too	short,	the	function	adds	the	specified	line	to	the	image.
It	 then	 divides	 the	 line	 into	 three	 segments.	 It	 recursively	 uses	 the	 two
intermediate	points	as	the	new	starting	points	for	two	lines.	The	lengths	and	the
angles	of	the	two	branches	change	in	a	fixed	manner,	but	independently	of	each
other.	Use	constants	to	define	these	changes	and	work	with	them	until	you	like
your	tree	well	enough.

Hint	Experiment	with	shortening	each	 left	branch	by	at	 least	one	 third	and
rotating	 it	 left	by	at	 least	0.15	degrees.	For	each	 right	branch,	 shorten	 it	by	at
least	20%	and	rotate	it	by	0.2	degrees	in	the	opposite	direction.	

Géraldine	Morin	suggested	this	exercise.

Exercise	528.	Graphics	programmers	often	need	to	connect	two	points	with
a	smooth	curve	where	“smooth”	is	relative	to	some	perspective.	Here	is	are	two
sketches:

The	 left	 one	 shows	 a	 smooth	 curve,	 connecting	 points	A	 and	C;	 the	 right	 one
supplies	the	perspective	point,	B,	and	the	angle	of	an	observer.

One	method	for	drawing	such	curves	is	due	to	Bézier.	It	is	a	prime	example
of	generative	recursion,	and	the	following	sequence	explains	the	eureka!	behind
the	algorithm:

Consider	 the	 image	 on	 the	 left.	 It	 reminds	 you	 that	 the	 three	 given	 points
determine	a	triangle	and	that	the	connection	from	A	to	C	is	the	focal	point	of	the
algorithm.	The	goal	is	to	pull	the	line	from	A	to	C	toward	B	so	that	it	turns	into	a
smooth	curve.

Now	 turn	 to	 the	 image	 in	 the	middle.	 It	 explains	 the	 essential	 idea	 of	 the
generative	 step.	 The	 algorithm	 determines	 the	 midpoint	 on	 the	 two	 observer
lines,	A-B	and	B-C,	as	well	as	their	midpoint,	A-B-C.

Finally,	the	right-most	image	shows	how	these	three	new	points	generate	two
distinct	recursive	calls:	one	deals	with	the	new	triangle	on	the	left	and	the	other
one	with	the	triangle	on	the	right.	More	precisely,	A-B	and	B-C	become	the	new
observer	points	and	the	lines	from	A	to	A-B-C	and	from	C	to	A-B-C	become	the
foci	of	the	two	recursive	calls.

When	 the	 triangle	 is	 small	 enough,	we	 have	 a	 trivially	 solvable	 case.	 The
algorithm	just	draws	the	triangle,	and	it	appears	as	a	point	on	the	given	image.
As	 you	 implement	 this	 algorithm,	 you	 need	 to	 experiment	 with	 the	 notion	 of
“small	enough”	to	make	the	curve	look	smooth.	

34 Summary
This	last	part	is	about	designing	with	accumulators,	a	mechanism	for	collecting
knowledge	 during	 a	 data	 structure	 traversal.	 Adding	 an	 accumulator	 can	 fix
performance	flaws	and	eliminate	termination	problems.	Your	takeaway	from	this
part	are	two	and	a	half	design	lessons:

1.	 The	 first	 step	 is	 to	 recognize	 the	 need	 for	 introducing	 an	 accumulator.
Traversals	“forget”	pieces	of	the	argument	when	they	step	from	one	piece
to	 the	 next.	 If	 you	 discover	 that	 such	 knowledge	 could	 simplify	 the
function’s	design,	consider	introducing	an	accumulator.	The	first	step	is	to
switch	to	the	accumulator	template.

2.	 The	 key	 step	 is	 to	 formulate	 an	 accumulator	 statement.	 The	 latter	must
express	what	knowledge	 the	accumulator	gathers	as	what	kind	of	data.
In	most	cases,	the	accumulator	statement	describes	the	difference	between
the	original	argument	and	the	current	one.

3.	The	third	step,	a	minor	one,	is	to	deduce	from	the	accumulator	statement
(a)	 what	 the	 initial	 accumulator	 value	 is,	 (b)	 how	 to	 maintain	 it	 during
traversal	steps,	and	(c)	how	to	exploit	its	knowledge.

The	 idea	of	accumulating	knowledge	 is	ubiquitous,	 and	 it	 appears	 in	many
different	 forms	 and	 shapes.	 It	 is	widely	used	 in	 so-called	 functional	 languages
like	ISL+.	Programmers	using	imperative	languages	encounter	accumulators	in	a
different	way,	mostly	via	assignment	statements	in	primitive	looping	constructs
because	the	latter	cannot	return	values.	Designing	such	imperative	accumulator
programs	 proceeds	 just	 like	 the	 design	 of	 accumulator	 functions	 here,	 but	 the
details	are	beyond	the	scope	of	this	first	book	on	systematic	program	design.

	

EPILOGUE:	MOVING	ON

You	have	reached	the	end	of	 this	 introduction	to	computing	and	programming,
or	 program	 design,	 as	 we	 say	 here.	 While	 there	 is	 more	 to	 learn	 about	 both
subjects,	this	is	a	good	point	to	stop,	summarize,	and	look	ahead.

Computing
In	elementary	school,	you	learned	to	calculate	with	numbers.	At	first,	you	used
numbers	 to	 count	 real	 things:	 three	 apples,	 five	 friends,	 twelve	 bagels.	 A	 bit
later,	 you	 encountered	 addition,	 subtraction,	multiplication,	 and	 even	 division;
then	 came	 fractions.	 Eventually,	 you	 found	 out	 about	 variables	 and	 functions,
which	 your	 teachers	 called	 algebra.	 Variables	 represented	 numbers,	 and
functions	related	numbers	to	numbers.

Because	you	used	numbers	throughout	this	process,	you	didn’t	think	much	of
numbers	as	a	means	to	represent	information	about	the	real	world.	Yes,	you	had
started	 with	 three	 bears,	 five	 wolves,	 and	 twelve	 horses;	 but	 by	 high	 school,
nobody	reminded	you	of	this	relationship.

When	you	move	from	mathematical	calculations	to	computing,	the	step	from
information	 to	 data	 and	 back	 becomes	 central.	 Nowadays,	 programs	 process
representations	of	music,	videos,	molecules,	chemical	compounds,	business	case
studies,	 electrical	 diagrams,	 and	 blueprints.	 Fortunately,	 you	 don’t	 need	 to
encode	all	this	information	with	numbers	or,	worse,	just	0	and	1;	if	you	had	to,
life	would	 be	 unimaginably	 tedious.	 Instead,	 computing	 generalizes	 arithmetic
and	algebra	so	 that	when	you	program,	you	can	code—and	your	programs	can
compute—with	 strings,	 Booleans,	 characters,	 structures,	 lists,	 functions,	 and
many	more	kinds	of	data.

Classes	 of	 data	 and	 their	 functions	 come	with	 equational	 laws	 that	 explain
their	meaning,	 just	 like	 the	 laws	 for	 numbers	 and	 their	 functions.	While	 these
equational	 laws	 are	 as	 simple	 as	 “(+	1	1)	 evaluates	 to	2”	 and	 “(not	#true)
equals	 #false,”	 you	 can	 use	 them	 to	 predict	 the	 behavior	 of	 entire	 programs.
When	you	run	a	program,	you	actually	just	apply	one	of	its	many	functions,	an

act	that	you	can	explain	with	the	beta	rule	first	mentioned	in	intermezzo	1.	Once
the	variables	are	replaced	with	values,	the	laws	of	data	take	over	until	you	have
either	only	a	value	or	another	function	application.	But	yes,	that’s	all	there	is	to
computing.

Program	Design
A	 typical	 software	 development	 project	 requires	 the	 collaboration	 of	 many
programmers,	 and	 the	 result	 consists	 of	 thousands	 of	 functions.	 Over	 the	 life
span	of	such	a	project,	programmers	come	and	go.	Hence,	the	design	structure	of
programs	is	really	a	means	of	communication	among	programmers	across	time.
When	you	approach	code	that	someone	else	wrote	some	time	ago,	the	program
ought	 to	express	 its	purpose	and	 its	 relationships	 to	other	pieces—because	 that
other	person	might	not	be	around	anymore.

In	 such	 a	 dynamic	 context,	 programmers	 must	 create	 programs	 in	 a
disciplined	manner	if	they	wish	to	work	reasonable	numbers	of	hours	or	produce
high-quality	products.	Following	a	systematic	design	method	guarantees	that	the
program	organization	 is	comprehensible.	Others	can	 then	easily	understand	 the
pieces	and	the	whole,	and	then	fix	bugs	or	add	new	pieces	of	functionality.

The	design	process	of	 this	book	 is	one	of	 these	methods,	and	you	ought	 to
follow	it	whenever	you	create	programs	you	might	care	about.	You	start	with	an
analysis	of	the	world	of	information	and	a	description	of	the	data	that	represents
the	information.	Then	you	make	a	plan,	a	work	list	of	functions	needed.	If	 this
list	is	large,	you	refine	the	process	in	an	iterative	manner.	You	start	with	a	subset
of	 functions	 that	 quickly	 yields	 a	 product	with	which	 a	 client	 can	 interact.	As
you	 observe	 these	 interactions,	 you	will	 quickly	 figure	 out	which	 elements	 of
your	work	list	to	tackle	next.

Designing	a	program,	or	only	a	 function,	 requires	a	 rigorous	understanding
of	what	it	computes.	Unless	you	can	describe	the	purpose	of	a	piece	of	code	with
a	concise	statement,	you	cannot	produce	anything	useful	for	future	programmers.
Make	up,	and	work	through,	examples.	Turn	these	examples	into	a	suite	of	tests.
This	test	suite	is	even	more	important	when	it	comes	to	future	modifications	of
the	program.	Anyone	who	changes	the	code	can	rerun	these	tests	and	reconfirm
that	the	program	still	works	for	the	basic	examples.

Eventually	your	program	will	also	fail.	Other	programmers	may	use	it	in	an
unanticipated	manner.	Real-world	users	may	find	differences	between	expected

and	 actual	 behavior.	 Because	 you	 have	 designed	 the	 code	 in	 a	 systematic
manner,	 you	will	 know	what	 to	 do.	You	will	 formulate	 a	 failing	 test	 case	 for
your	program’s	main	function.	From	this	one	test,	you	will	derive	a	test	case	for
each	 function	 that	 the	main	 function	mentions.	Those	 functions	 that	 pass	 their
new	tests	do	not	contribute	 to	 the	failure.	One	of	 the	others	does;	on	occasion,
several	might	 collude	 to	 create	 a	bug.	 If	 the	broken	 function	composes	others,
resume	 the	 test	 creation;	otherwise	you	have	 found	 the	 source	of	 the	problem.
You	will	know	 that	you	have	 fixed	 the	problem	when	 the	program	as	a	whole
passes	all	its	tests.

No	matter	how	hard	you	work,	a	function	or	program	isn’t	done	the	first	time
it	 passes	 the	 test	 suite.	 You	must	 find	 time	 to	 inspect	 it	 for	 design	 flaws	 and
repetitions	of	designs.	If	you	find	any	design	patterns,	form	new	abstractions	or
use	existing	abstractions	to	eliminate	these	patterns.

If	 you	 respect	 these	 guidelines,	 you	 will	 produce	 solid	 software	 with
reasonable	effort.	 It	will	work	because	you	understand	why	and	how	 it	works.
Others	who	must	modify	 or	 enhance	 your	 software	will	 understand	 it	 quickly
because	 the	 code	 communicates	 its	 process	 and	 its	 purpose.	Working	 through
this	 book	got	 you	 started.	Now	you	must	 practice,	 practice,	 practice.	And	you
will	have	 to	 learn	a	 lot	more	about	program	design	and	computing	 than	a	 first
book	can	teach.

Onward,	Developers	and	Computer	Scientists
Right	now,	you	might	be	wondering	what	to	study	next.	The	answer	is	both	more
programming	and	more	computing.

As	 a	 student	 of	 program	design,	 your	 next	 task	 is	 to	 learn	 how	 the	 design
process	applies	in	the	setting	of	a	full-fledged	programming	language.	Some	of
these	languages	are	like	the	teaching	languages,	and	the	transition	will	be	easy.
Others	 require	 a	 different	 mind-set	 because	 they	 offer	 means	 for	 spelling	 out
data	definitions	(classes	and	objects)	and	for	formulating	signatures	so	that	they
are	 cross-checked	before	 the	program	 is	 run	 (types).	 In	 addition,	 you	will	 also
have	 to	 learn	how	 to	scale	 the	design	process	 to	 the	use	and	production	of	 so-
called	 frameworks	 (“stacks”)	 and	 components.	 Roughly	 speaking,	 frameworks
abstract	pieces	of	functionality—for	example,	graphical	user	interfaces,	database
connections,	and	web	connectivity—that	are	common	to	many	software	systems.
You	 need	 to	 learn	 to	 instantiate	 these	 abstractions,	 and	 your	 programs	 will

compose	these	instances	to	create	coherent	systems.	Similarly,	learning	to	create
new	system	components	is	also	inherently	a	part	of	scaling	up	your	skills.

Given	your	knowledge,	it	is	easy	for	you	to	learn	Racket,	the	language	behind	the	teaching	languages
in	this	book.	See	“Realm	of	Racket”	for	one	possible	introduction.

As	a	student	of	computing,	you	will	also	have	to	expand	your	understanding
of	 the	computational	process.	This	book	has	 focused	on	 the	 laws	 that	describe
the	process	 itself.	 In	order	 to	 function	as	a	 real	software	engineer,	you	need	 to
learn	 what	 the	 process	 costs,	 at	 both	 a	 theoretical	 level	 and	 a	 practical	 one.
Studying	 the	concept	of	big-O	in	some	more	depth	 is	a	 first,	 small	step	 in	 this
direction;	 learning	 to	measure	and	analyze	a	program’s	performance	 is	 the	real
goal	because	you	will	need	 this	 skill	 as	 a	developer	on	a	 regular	basis.	Above
and	 beyond	 these	 basic	 ideas,	 you	 will	 also	 need	 knowledge	 about	 hardware,
networking,	 layering	 of	 software,	 and	 specialized	 algorithms	 in	 various
disciplines.

Onward,	Accountants,	Journalists,	Surgeons,	and	Everyone	Else
Some	of	you	wanted	to	see	what	computing	and	programming	are	all	about.	You
now	know	that	computing	is	merely	a	generalization	of	calculating,	and	you	may
sense	how	useful	program	design	is	to	you.	Even	if	you	never	develop	programs
again,	 you	 know	 what	 distinguishes	 a	 garage	 programmer	 from	 a	 serious
software	 developer.	When	 you	 interact	with	 developers	 as	 a	 professional,	 you
know	 that	 systematic	design	matters	because	 it	 affects	your	quality	of	 life	 and
the	bottom	line	of	your	business.

In	reality,	though,	you	are	likely	to	“program”	again,	on	a	regular	basis;	you
may	 just	 fail	 to	 see	 your	 activities	 in	 this	 light.	 Imagine	 a	 journalist	 for	 a
moment.	His	 story	 starts	with	 the	 collection	 of	 information	 and	 data,	 laying	 it
out,	organizing	it,	and	adding	anecdotes.	If	you	squint,	you’ll	see	that	this	is	only
step	one	of	the	design	process.	Let’s	turn	to	a	family	doctor	who,	after	checking
up	on	your	symptoms,	formulates	a	hypothesis	of	what	might	affect	you.	Do	you
see	step	two?	Or,	think	of	a	lawyer	who	illustrates	the	point	of	an	argument	with
a	number	of	examples—an	instance	of	step	three.	Finally,	a	civil	engineer	cross-
checks	the	bridge	as	 it	 is	built	 to	make	sure	it	 lives	up	to	the	blueprint	and	the
underlying	 static	 calculations.	Cross-checking	 is	 a	 form	of	 testing—step	 six	of

the	 process;	 it	 compares	 actual	 measurements	 with	 expected	 values	 from	 the
predictive	 calculations.	Each	of	 these	professionals	develops	 a	 system	 to	work
effectively	and	efficiently;	and	deep	down,	this	system	is	likely	to	resemble	the
design	process	employed	in	this	book.

Now,	once	you	accept	that	many	activities	are	a	form	of	programming,	you
can	 transfer	 additional	 ideas	 from	 the	 design	 process	 to	 your	 own	 life.	 For
example,	 if	 you	 recognize	 patterns,	 you	 may	 take	 the	 little	 additional	 time	 it
takes	 to	 create	 an	 “abstraction”—a	 single	 point	 of	 control—to	 simplify	 your
future	work.	So,	regardless	of	whether	you	become	an	accountant	or	a	doctor	or
something	else,	 remember	 the	design	processes	wherever	you	go	and	whatever
you	do.

Exercise	Write	a	short	essay	on	how	the	design	process	may	help	you	with
your	chosen	profession.	

	

Index

!.v1,	!.v2,	715
1String,	110
1Transition,	548,	670
3LON,	235
==>,	57

accumulator	statement,	709,	752
add-3-to-all,	429,	446
add-as-last,	706
add-at-end,	305
add-image,	83
add-queen,	678
add-ranks,	378
add-sierpinski,	741,	747
add-to-each,	699
add-to-pi,	266,	720
add-triangle,	742
add1*,	384
add1-to-each,	401
add3,	119
Addr,	415
AL,	528
all-words-from-rat,	347
all-words-from-rat?,	347,	475,	671
alternative-words,	346,	347
andmap,	412
AnimationState,	98
Any,	192
area-of-circle,	532
area-of-disk,	191

area-of-square,	83,	84
argmax,	413
arrangements,	348,	475,	572,	671
Association,	344,	528
Atom,	499
attendees,	60
Attribute,	537
Attribute.v3,	553
average,	257,	258,	260

Ball-1d,	Ball-2d,	153
batch	program,	64
batch	program,	design,	79
between-0-and-1,	197
binary	search	tree,	510
BinaryTree,	508
Block,	357
blue-eyed-ancestor?,	497
blue-eyed-child-in-forest?,	498
blue-eyed-child?,	492,	494
Board,	675
board0,	678
body,	58
Boolean,	44
BS,	161
BSDN,	344
BSL-da-all,	532
BSL-expr,	523
BSL-fun-def	,	531
BSL-fun-def*,	531
BSL-fun-expr,	530
BSL-var-expr,	527
binary	search	tree,	510
binary	tree,	508
build-list,	412
bulletize,	546

bundle,	605,	606,	619

C,	66
C2F,	397
cat,	256
Cell,	575
cf*,	397
cf*-from-map1,	400
check-error,	220
check-expect,	220
check-member-of,	220
check-random,	220
check-range,	220
check-satisfied,	220,	281,	282,	324,	347,	354,	450,	454,	456,	475,	635,	659,	671,
677

check-with,	197
check-within,	220
checked-area-of-disk,	193
checked-f,	192
checked-g,	194
Child,	489
CI,	675
circle-pt,	747
classify,	57
close-to,	432
close?,	432,	447
closing,	58
code1,	298
Color,	165
compare,	443
computational	process,	78
cond,	clauses,	206
cond,	220
connect-dots,	332,	334,	335
Connection,	702
ConsOrEmpty,	238

ConsPair,	238
constant,	649
constant	definition,	define,	220
contains-cat?,	382,	383
contains-dog?,	382,	383
contains-flatt?,	240,	686
contains?,	383,	454
Content,	575
convert,	66,	68
Coordinate,	188
copier,	264
copier.v2,	266
cost,	61
count,	278,	501,	504
count-atom,	502,	504
count-sl,	504
create-date,	341
create-dir,	520
create-inex,	591
create-rocket-scene,	107,	462
create-track,	341
cross,	475
CTemperature,	257

data	definition,	82,	93,	164,	174,	178,	246,	248,	397,	404,	410,	457,	615,	619,
754

data	examples,	158,	164,	178,	247
data	representation,	93,	127,	138,	168,	169,	175,	181,	185,	189,	200,	255,	272,
372,	615,	618,	619

data,	structural,	480,	487,	588
Date,	341
database,	574
define,	function	definition,	204
define,	constant	definition,	220
define,	local	definitions,	416
define,	structure	definition,	220

depth,	270,	484
design	guideline,	159,	213,	308,	314,	317,	353,	356,	359,	410,	577
design	process,	78,	81,	126,	180,	200,	317,	452,	614,	622,	753
design	recipe,	78,	285,	382,	516,	546,	588,	591,	603,	604,	614,	706
design	recipe	&	induction,	250
design	recipe,	abstraction,	397,	404,	410,	433,	577
design	recipe,	batch	programs,	79
design	recipe,	dimensions,	200
design	recipe,	failure,	606
design	recipe,	functions,	81,	95
design	recipe,	generative	recursion,	614,	615,	618,	619,	621,	622,	679,	696,	697,
703

design	recipe,	interactive	program,	79
design	recipe,	itemization,	127
design	recipe,	mixed	data,	177,	248
design	recipe,	mut.-referential	data	definitions,	506,	544
design	recipe,	self-referential	data	definitions,	246,	253,	423,	506
design	recipe,	simultaneous	processing,	568
design	recipe,	structural	data,	512,	603,	610,	614,	621,	622,	669,	671,	679,	682,
691,	692,	695,	708

design	recipe,	structures,	166,	185
design	recipe,	use	of	abstraction,	544
design	recipe,	with	accumulator,	717
design	recipe,	world	program,	122
design	recipes,	691
design,	composition,	314
design,	refinement,	367,	487,	514,	522,	534,	536
Dictionary,	337
Dir*,	519
Dir.v1,	518
Dir.v2,	518
Dir.v3,	519
Direction,	566
distance,	26
distance-to-0,	141,	142
distance-to-origin,	57

divisors,	627
door-action,	136,	137
door-render,	137
door-simulation,	137
DoorState,	134
dots,	434,	446
drop,	608
dummy	header,	82

Editor,	170,	302
editor-del,	310
editor-ins,	310
editor-kh,	306
editor-lft,	310
editor-render,	306,	311
editor-rgt,	310
editor-text,	312
Email	Message,	325
encode-letter,	298
Entry,	153
enumerate,	473
enumerate.v2,	478
Equation,	656
eval-var-lookup,	529
ExpectsToSee.v1,	190
ExpectsToSee.v2,	190
extract,	385

f*ldl,	723
f*oldl,	416
f2c,	88
FF,	497
File,	638
File*,	519
file->list-of-lines,	640
file-statistic,	297

File.v1,	518
File.v2,	518
File.v3,	519
filter,	412
find,	366,	421,	439,	455,	548
find-next-state,	365
find-next-state.v1,	362
find-next-state.v2,	363
find-open-spots,	679
find-path,	665,	666,	667
find-root,	634,	637
first,	57
first-line,	640
fly,	121,	125
foldl,	413
foldr,	413
food-create,	354
Four,	291
FSM,	361,	670
fsm-match?,	671
FSM-State,	361,	670
fst,	58
family	tree,	490
function,	50
function	definition,	14
function	definition,	50
function	definition,	define,	204
function	examples,	83,	85,	96,	158,	164,	248,	252,	270,	320,	358,	615

GamePlayer,	325
gcd,	623
gcd-generative,	626
gcd-structural,	624,	627
get,	557
gift-pick,	572
Graph,	664

H,	165
handle-key-events,	111
height,	716
height.v2,	716,	718,	719
HM-Word,	571
how-many,	248,	252,	258,	683
hyper,	99,	100

im*,	406
Image,	40
image*,	403
ImageStream,	461
in-dictionary,	347
in-naturals,	477
in-range,	477
in?,	279
index,	456
Inex,	591
inex->number,	599
inf,	387,	687
inf.v2,	420
infL,	691
insert,	58,	321,	324
insertion-sort,	468
inside?,	457
Integer,	36
integrate,	655
integrity-check,	576,	579
interactive	program,	64
interactive	program,	design,	79
Inventory,	398
invert,	706
invert.v2,	711
IR,	389,	398
is-prime?,	723
is-queens-result?,	677

keep-good,	447
keep?,	583
keh,	111
KeyEvent,	111,	118
keyh,	274

Label,	575
Lam,	728
Landscape,	357
large,	384
large-1,	386
largers,	611
largest-common,	630
LAssoc,	344
last,	335
last-item,	483
launch,	121,	125
Letter,	338
Letter-Count,	338
lhs,	655
light=?,	198
light?,	198
Line,	638
line-processor,	296
linear,	650
List,	390
List-of	,	388
List-of-amounts,	254
list-of-attributes?,	539
List-of-list-of-strings,	293
List-of-names,	236
List-of-numbers,	254,	388
List-of-posns,	277
List-of-shots,	272
List-of-String,	388
List-of-strings,	247

List-of-temperatures,	257
List-of-words,	350
list-pick,	562
listing,	413
listing.v2,	417
LLists,	344
LLS,	298
LNum,	391
Lo1S,	302
local,	define	&	define-struct,	416
LOD,	569
LOFD,	518
Lon,	388
lookup-def,	531
Los,	388
LOT,	367
Low,	286
LR,	120
LRCD,	121
LStr,	391
LTracks,	341

main,	94,	95,	99,	112,	116,	197,	306
make-cell,	377
make-row,	377
make-table,	377
map,	412
map1,	397
Matrix,	300
Maybe,	391
mid-point,	745
mirror,	721
Missile,	176
missile-or-not,	195
missile-render,	181
missile-render.v2,	185,	186

MissileOrNot,	185
mk-circle,	459
mk-combination,	460,	461
mk-point,	458
mk-rect,	460
MouseEvt,	108
move-right,	484
my-first-web-page,	373
MyList,	734

N,	264
n-queens,	676,	677
N-TrafficLight,	132
N99,	591
names,	397
names-from-map1,	400
NegativeNumber,	36
neighbor,	703
NEList-of	,	391
NEList-of-Booleans,	263
NEList-of-temperatures,	259
Nelon,	387
NELoP,	332
newton,	645
next,	103
Node,	664,	702
Non-empty-list,	483
non-same,	573
NonnegativeNumber,	36
NorF,	119
not-member-1?,	281
not=-1-1?,	354
Number,	35
number->square,	70
nxt,	112

occurs,	391
opening,	56,	58
ormap,	412
oscillate,	603
our-cons,	238,	734,	738
our-first,	238,	735
our-length,	741

Pair,	277
Pair-boolean-string,	389
Pair-number-image,	389
parse,	525
parse-atom,	525
parse-sl,	525
Path,	521,	665
path-exists.v2?,	706
path-exists?,	702,	704
path-exists?/a,	705
Person,	165
Phone,	291
PhoneRecord,	561
picture-of-rocket,	16,	26
picture-of-rocket.v2,	19
picture-of-rocket.v3,	21
picture-of-rocket.v4,	22
picture-of-rocket.v5,	24
picture-of-rocket.v6,	27
place-dot,	403
place-dot-at,	75
place-queens,	678
play,	571
plus5,	384
poly,	649
Polygon,	327
Position,	112
PositiveInteger,	36

PositiveNumber,	104
Posn,	152
posn+,	159,	160
pr*,	406
Predicate,	575
Price,	128
product,	402,	411
profit,	61
program	design	recipe,	79
project,	581,	582,	585
project.v1,	585
purpose	statement,	78,	81,	84,	248,	250,	615,	752
PuzzleState,	739

QP,	674
quasiquote	&	`	,	372
unquote	&	,,	372
quick-sort<,	611,	620
quote	&	',	369
quasiquote	&	`,	372

R3,	166
r3-distance-to-0,	167
random,	183
random-pick,	573
random-posns,	456
ranking,	378
Rational,	36
RD,	268
RD.v2,	483
rdd-link,	268
read-file,	293
read-itunes-as-lists,	343
read-itunes-as-tracks,	341
read-lines,	293
read-plain-xexpr/web,	553

read-words,	293
read-xexpr,	553
read-xexpr/web,	553
reduce,	411
relative->absolute,	697,	702
relative->absolute.v2,	701
remove-first-line,	644
render,	94,	96,	112
render-enum,	546
render-item,	546
render-line,	329,	330,	335
render-poly,	327,	330
render-polygon,	334,	335
render-state,	362
render-word,	571
render/status,	116
replace-eol-with,	558,	559
reset,	72
reset-dot,	156
rev,	303
revenue,	61
reward,	104,	105
rhs,	656
root-of-tangent,	645
rotate,	722
rotate.v2,	722
Row,	301,	575
row-filter,	583
row-integrity-check,	577
row-project,	584

S,	591
S-expr,	499
S-TrafficLight,	133
sales-tax,	128,	130
scene+dot,	154

Schema,	575
search,	325
searchL,	691
searchS,	691
set-,	280
set-.1,	280
set-.R,	280
Shape,	457
Shot,	273
ShotWorld,	273
show,	121,	123,	124
si-move,	183
si-render,	179,	181,	184
sierpinski,	630,	633
sign,	18
signature,	81,	83,	248,	404,	406,	754
SIGS,	176
SIGS.v2,	184
SimpleGraph,	702
simulate,	364,	421,	423,	548
simulate-xmachine,	550,	551
simulate.v1,	362
SimulationState.v1,	362
SimulationState.v2,	363
SL,	499
slope,	645
small,	384
small-1,	386
smallers,	614,	621
SOE,	656
Solution,	656
solve,	741
Son,	279
Son.L,	279
Son.R,	279
sort,	412,	468

sort-cmp,	418,	449
sort-cmp/bad,	452
sort-cmp/worse,	454
sort>,	319,	321,	324
sort>/bad,	324
sorted,	450,	452
sorted-variant-of,	453
sorted-variant-of.v2,	454
SpaceGame,	169
Spec,	575
square,	650
squared>?,	386
state-as-colored-square,	365,	421
stock-alert,	555
StockWorld,	556
stop,	75
String,	38
string->number,	119
string-append-with-space,	413
structure	definition,	define-struct,	220
substitute,	512,	514
substitute.v3,	513
sum,	258,	261,	402,	411
sum-evens,	478
sum,	712
sup,	387
Symbol,	371

tab-sin,	402
tab-sqrt,	402
Table,	637
table	method,	252,	289,	304,	559
table-ref,	639
take,	606
Tank,	176
tank-render,	181

Temperature,	81
template,	84,	129,	167,	178,	248,	249,	270,	382,	410,	588,	615,	616,	709
template,	accumulator,	709
template,	generative,	616
termination	statement,	614,	618,	619,	669,	679,	747
tests,	suite,	352,	384,	505,	675,	753
tests,	unit,	90,	313,	320,	358
Tetris,	357
Three,	291
TID,	569
timing,	695
tl-next,	131
tl-next-numeric,	133
tl-render,	131
TM,	659
to-image,	273
tock,	94,	96,	273
too-small?,	744
TOS,	566
Track,	341
traffic-light-next,	109
traffic-light-simulation,	132
TrafficLight,	109
Transition,	361,	366,	367
transpose,	300
Tree,	715
triangulate,	659

UFO,	157
ufo-move-1,	158
ufo-render,	181
undeclareds,	734
UnitWorld,	197
url-exists?,	553

VAnimal,	188

VCat,	172
VCham,	173
vec,	194
Vel,	153
volume-of-10-cylinder,	532

wage,	283
wage*,	283,	286
wages*.v2,	559
Weapon,	165
weekly-wage,	561
Word,	350
words#,	297
words->strings,	347
words-on-line,	294,	295,	297
Work,	286
world	program,	design	recipe,	90
WorldState,	93,	113

x+,	155
X1T,	550
XEnum,	541,	545
Xexpr,	536,	537,	541,	553
xexpr-attr,	538
xexpr?,	553
XItem,	541,	545
xm->transitions,	551,	552
xm-state0,	551
XMachine,	550
XWord,	541
XYZ,	194

y,	as	a	function,	13

	Title Page
	Copyright
	Contents
	Preface
	Systematic Program Design
	DrRacket and the Teaching Languages
	Skills that Transfer
	This Book and Its Parts
	The Differences

	Prologue: How to Program
	Arithmetic and Arithmetic
	Inputs and Output
	Many Ways to Compute
	One Program, Many Definitions
	One More Definition
	You Are a Programmer Now
	Not!

	I. Fixed-Size Data
	1. Arithmetic
	1.1. The Arithmetic of Numbers
	1.2. The Arithmetic of Strings
	1.3. Mixing It Up
	1.4. The Arithmetic of Images
	1.5. The Arithmetic of Booleans
	1.6. Mixing It Up with Booleans
	1.7. Predicates: Know Thy Data

	2. Functions and Programs
	2.1. Functions
	2.2. Computing
	2.3. Composing Functions
	2.4. Global Constants
	2.5. Programs

	3. How to Design Programs
	3.1. Designing Functions
	3.2. Finger Exercises: Functions
	3.3. Domain Knowledge
	3.4. From Functions to Programs
	3.5. On Testing
	3.6. Designing World Programs
	3.7. Virtual Pet Worlds

	4. Intervals, Enumerations, and Itemizations
	4.1. Programming with Conditionals
	4.2. Computing Conditionally
	4.3. Enumerations
	4.4. Intervals
	4.5. Itemizations
	4.6. Designing with Itemizations
	4.7. Finite State Worlds

	5. Adding Structure
	5.1. From Positions to posn Structures
	5.2. Computing with posns
	5.3. Programming with posn
	5.4. Defining Structure Types
	5.5. Computing with Structures
	5.6. Programming with Structures
	5.7. The Universe of Data
	5.8. Designing with Structures
	5.9. Structure in the World
	5.10. A Graphical Editor
	5.11. More Virtual Pets

	6. Itemizations and Structures
	6.1. Designing with Itemizations, Again
	6.2. Mixing Up Worlds
	6.3. Input Errors
	6.4. Checking the World
	6.5. Equality Predicates

	7. Summary

	Intermezzo 1: Beginning Student Language
	II. Arbitrarily Large Data
	8. Lists
	8.1. Creating Lists
	8.2. What Is '(), What Is cons
	8.3. Programming with Lists
	8.4. Computing with Lists

	9. Designing with Self-Referential Data Definitions
	9.1. Finger Exercises: Lists
	9.2. Non-empty Lists
	9.3. Natural Numbers
	9.4. Russian Dolls
	9.5. Lists and World
	9.6. A Note on Lists and Sets

	10. More on Lists
	10.1. Functions that Produce Lists
	10.2. Structures in Lists
	10.3. Lists in Lists, Files
	10.4. A Graphical Editor, Revisited

	11. Design by Composition
	11.1. The list Function
	11.2. Composing Functions
	11.3. Auxiliary Functions that Recur
	11.4. Auxiliary Functions that Generalize

	12. Projects: Lists
	12.1. Real-World Data: Dictionaries
	12.2. Real-World Data: iTunes
	12.3. Word Games, Composition Illustrated
	12.4. Word Games, the Heart of the Problem
	12.5. Feeding Worms
	12.6. Simple Tetris
	12.7. Full Space War
	12.8. Finite State Machines

	13. Summary

	Intermezzo 2: Quote, Unquote
	III. Abstraction
	14. Similarities Everywhere
	14.1. Similarities in Functions
	14.2. Different Similarities
	14.3. Similarities in Data Definitions
	14.4. Functions Are Values
	14.5. Computing with Functions

	15. Designing Abstractions
	15.1. Abstractions from Examples
	15.2. Similarities in Signatures
	15.3. Single Point of Control
	15.4. Abstractions from Templates

	16. Using Abstractions
	16.1. Existing Abstractions
	16.2. Local Definitions
	16.3. Local Definitions Add Expressive Power
	16.4. Computing with local
	16.5. Using Abstractions, by Example
	16.6. Designing with Abstractions
	16.7. Finger Exercises: Abstraction
	16.8. Projects: Abstraction

	17. Nameless Functions
	17.1. Functions from lambda
	17.2. Computing with lambda
	17.3. Abstracting with lambda
	17.4. Specifying with lambda
	17.5. Representing with lambda

	18. Summary

	Intermezzo 3: Scope and Abstraction
	IV. Intertwined Data
	19. The Poetry of S-expressions
	19.1. Trees
	19.2. Forests
	19.3. S-expressions
	19.4. Designing with Intertwined Data
	19.5. Project: BSTs
	19.6. Simplifying Functions

	20. Iterative Refinement
	20.1. Data Analysis
	20.2. Refining Data Definitions
	20.3. Refining Functions

	21. Refining Interpreters
	21.1. Interpreting Expressions
	21.2. Interpreting Variables
	21.3. Interpreting Functions
	21.4. Interpreting Everything

	22. Project: The Commerce of XML
	22.1. XML as S-expressions
	22.2. Rendering XML Enumerations
	22.3. Domain-Specific Languages
	22.4. Reading XML

	23. Simultaneous Processing
	23.1. Processing Two Lists Simultaneously: Case 1
	23.2. Processing Two Lists Simultaneously: Case 2
	23.3. Processing Two Lists Simultaneously: Case 3
	23.4. Function Simplification
	23.5. Designing Functions that Consume Two Complex Inputs
	23.6. Finger Exercises: Two Inputs
	23.7. Project: Database

	24. Summary

	Intermezzo 4: The Nature of Numbers
	V. Generative Recursion
	25. Non-standard Recursion
	25.1. Recursion without Structure
	25.2. Recursion that Ignores Structure

	26. Designing Algorithms
	26.1. Adapting the Design Recipe
	26.2. Termination
	26.3. Structural versus Generative Recursion
	26.4. Making Choices

	27. Variations on the Theme
	27.1. Fractals, a First Taste
	27.2. Binary Search
	27.3. A Glimpse at Parsing

	28. Mathematical Examples
	28.1. Newton’s Method
	28.2. Numeric Integration
	28.3. Project: Gaussian Elimination

	29. Algorithms that Backtrack
	29.1. Traversing Graphs
	29.2. Project: Backtracking

	30. Summary

	Intermezzo 5: The Cost of Computation
	VI. Accumulators
	31. The Loss of Knowledge
	31.1. A Problem with Structural Processing
	31.2. A Problem with Generative Recursion

	32. Designing Accumulator-Style Functions
	32.1. Recognizing the Need for an Accumulator
	32.2. Adding Accumulators
	32.3. Transforming Functions into Accumulator Style
	32.4. A Graphical Editor, with Mouse

	33. More Uses of Accumulation
	33.1. Accumulators and Trees
	33.2. Data Representations with Accumulators
	33.3. Accumulators as Results

	34. Summary

	Epilogue: Moving On
	Computing
	Program Design
	Onward, Developers and Computer Scientists
	Onward, Accountants, Journalists, Surgeons, and Everyone Else

	Index

